WorldWideScience

Sample records for strong neuroprotective effects

  1. [Neuroprotective effects of curcumin].

    Science.gov (United States)

    Li, Yong; Wang, Pengwen

    2009-12-01

    Traditionally, turmeric has been put to use as a food additive and herbal medicine in Asia. Curcumin is an active principle of the perennial herb curcuma longa (commonly known as turmeric). Recent evidence suggests that curcumin has activities with potential for neuroprotective efficacy, including anti-inflammatory, antioxidant, and antiprotein-aggregate activities. In the current review, we provide the newly evidence for the potential role of curcumin in the neuroprotective effects of neurodegenerative diseases like Alzheimer's disease (AD).

  2. Neuroprotective effects of Lepidium meyenii (Maca).

    Science.gov (United States)

    Pino-Figueroa, Alejandro; Nguyen, Diane; Maher, Timothy J

    2010-06-01

    The neuroprotective activity of the plant Lepidium meyenii (Maca) was studied in two experimental models: in vitro and in vivo. Crayfish neurons were pretreated with vehicle or the pentane extract from Maca, subjected to H(2)O(2), and their viability determined microscopically and chemically. A significant concentration-neuroprotective effect relationship was demonstrated. The pentane extract was then administered intravenously to rats prior to and following middle cerebral artery occlusion. While infarct volumes were decreased for the lower dose, higher doses increased infarct volumes compared to controls. These results suggest a potential application of Maca as a neuroprotectant.

  3. Proliferative Activity and Neuroprotective Effect of Ligustrazene ...

    African Journals Online (AJOL)

    Proliferative Activity and Neuroprotective Effect of. Ligustrazene Derivative by Irritation of Vascular. Endothelial Growth Factor Expression in Middle Cerebral. Artery Occlusion Rats. Zhang Huazheng1, Wang Penglong2, Ren Liwei1, Wang Xiaobo2, Li Guoliang2,. Wang Mina1, Chu Fuhao2, Gong Yan2, Xu Bing2, Bi Siling1, ...

  4. Neuroprotective Effects of Lutein in the Retina

    Science.gov (United States)

    Ozawa, Yoko; Sasaki, Mariko; Takahashi, Noriko; Kamoshita, Mamoru; Miyake, Seiji; Tsubota, Kazuo

    2012-01-01

    Although a large variety of pharmaceutical therapies for treating disease have been developed in recent years, there has been little progress in disease prevention. In particular, the protection of neural tissue is essential, because it is hardly regenerated. The use of nutraceuticals for maintaining the health has been supported by several clinical studies, including cross-sectional and interventional studies for age-related macular disease. However, mechanistic evidence for their effects at the molecular level has been very limited. In this review, we focus on lutein, which is a xanthophyll type of carotenoid. Lutein is not synthesized in mammals, and must be obtained from the diet. It is delivered to the retina, and in humans, it is concentrated in the macula. Here, we describe the neuroprotective effects of lutein and their underlying molecular mechanisms in animal models of vision-threatening diseases, such as innate retinal inflammation, diabetic retinopathy, and light-induced retinal degeneration. In lutein-treated mouse ocular disease models, oxidative stress in the retina is reduced, and its downstream pathological signals are inhibited. Furthermore, degradation of the functional proteins, rhodopsin (a visual substance) and synaptophysin (a synaptic vesicle protein also influenced in other neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease), the depletion of brain-derived neurotrophic factor (BDNF), and DNA damage are prevented by lutein, which preserves visual function. We discuss the possibility of using lutein, an antioxidant, as a neuroprotective treatment for humans. PMID:22211688

  5. Neuroprotective effect of paeonol against isoflurane- induced ...

    African Journals Online (AJOL)

    Purpose: To investigate whether paeonol affords neuroprotection against isoflurane-induced neurotoxicity. Methods: Separate ... significant improvement in the general behaviour and working memory of the rats. Conclusion: Paeonol significantly .... any visual impairments and/or swimming difficulties. The pool was covered ...

  6. Neuroprotective effect of paeonol against isofluraneinduced ...

    African Journals Online (AJOL)

    Purpose: To investigate whether paeonol affords neuroprotection against isoflurane-induced neurotoxicity. Methods: Separate groups of neonatal rat pups were administered paeonol (20, 40 or 80 mg/kg) from post-natal day 3 (P3) to post-natal day 15. On post-natal day 7, the pups were exposed to 6 h of isoflurane (0.75 ...

  7. Neuroprotective effects of Ellagic acid on Neonatal Hypoxic Brain ...

    African Journals Online (AJOL)

    Purpose: To investigate if ellagic acid exerts neuroprotective effects in hypoxic ischemic (HI) brain injury by inhibiting apoptosis and inflammatory responses. Methods: Separate groups of rat pups from post-natal day 4 (D4) were administered with ellagic acid (10, 20 or 40 mg/kg body weight) orally till post- natal day 10 ...

  8. The Neuroprotective Effect Of Electro-Acupuncture Against Ischemic ...

    African Journals Online (AJOL)

    The Neuroprotective Effect Of Electro-Acupuncture Against Ischemic Stroke In Animal Model: A Review. ... Conclusion: An awareness of the benefits of acupuncture might lead more patients into accepting acupuncture therapy for the management of patients with ischemic stroke and patients with high risk of ischemic stroke.

  9. Neuroprotective effect of Terminalia chebula extracts and ellagic ...

    African Journals Online (AJOL)

    Background: Alzheimer's disease (AD) is one of the common neurodegenerative disorders among elderly. The purpose of this study was to determine the neuroprotective effect and mechanisms of action underlying the Terminalia chebula extracts and ellagic acid by using beta-amyloid25-35 (Aβ25-35)-induced cell toxicity ...

  10. Neuroprotective effect corilagin in spinal cord injury rat model by ...

    African Journals Online (AJOL)

    Background: Neurological functions get altered in a patient suffering from spinal cord injury (SCI). Present study evaluates the neuroprotective effect of corilagin in spinal cord injury rats by inhibiting nuclear factor-kappa B (NF-κB), inflammatory mediators and apoptosis. Materials and method: Spinal cord injury was ...

  11. Neuroprotective effects of anticonvulsants in rat hippocampal slice cultures exposed to oxygen/glucose deprivation

    DEFF Research Database (Denmark)

    Rekling, Jens C

    2003-01-01

    cell death induced by OGD. The newer anticonvulsants carbamazepine, felbamate, lamotrigine, tiagabine, and oxcarbazepine also had significant neuroprotective effects, but gabapentin, valproic acid (10 mM), levetiracetam and retigabine were not neuroprotective at a concentration up to 300 micro...

  12. Neuroprotective effects of Resveratrol in Alzheimer Disease Pathology

    Directory of Open Access Journals (Sweden)

    Shraddha D Rege

    2014-09-01

    Full Text Available Alzheimer’s disease (AD is a chronic neurodegenerative disorder characterized by a progressive loss of cognitive and behavioral abilities. Extracellular senile plaques and intracellular neurofibrillary tangles are hallmarks of AD. Researchers aim to analyze the molecular mechanisms underlying AD pathogenesis; however, the therapeutic options available to treat this disease are inadequate. In the past few years, several studies have reported interesting insights about the neuroprotective properties of the polyphenolic compound resveratrol (3, 5, 4’-trihydroxy-trans-stilbene when used with in vitro and in vivo models of AD. The aim of this review is to focus on the neuroprotective and antioxidant effects of resveratrol on AD and its multiple potential mechanisms of action. In addition, because the naturally occurring forms of resveratrol have a very limited half-life in plasma, a description of potential analogues aimed at increasing bioavailability in plasma is also discussed.

  13. Molecular Basis for Certain Neuroprotective Effects of Thyroid Hormone

    Directory of Open Access Journals (Sweden)

    Paul eDavis

    2011-10-01

    Full Text Available The pathophysiology of brain damage that is common to ischemia-reperfusion inury and brain trauma includes disordered neuronal and glial cell energetics, intracellular acidosis, calcium toxicity, extracellular excitotoxic glutamate accumulation and dysfunction of the cytoskeleton and endoplasmic reticulum. Thyroid hormone isoforms, 3, 5, 3'-triiodo-L-thyronine (T3 and L-thyroxine (T4, have nongenomic and genomic actions that are relevant to repair of certain features of the pathophysiology of brain damage. Thyroid hormone can nongenomically repair intracullar H+ accumulation by stimulation of the Na+/H+ exchanger and can support desirably low [Ca2+]i.c. by activation of plasma membrane Ca2+-ATPase. Thyroid hormone nongenomically stimulates astrocyte glutamate uptake, an action that protects both glial cells and neurons. The hormone supports the integrity of the cytoskeleton by its effect on actin. Several proteins linked to thyroid hormone action are also neuroprotective. For example, the hormone stimulates expression of the seladin-1 gene whose gene product is anti-apoptotic and is potentially protection in the setting of neurodegeneration. Transthyretin (TTR is a serum transport protein for T4 that is important to blood-brain barrier transfer of the hormone and TTR has also been found to be neuroprotective in the setting of ischemia. Finally, the interesting thyronamine derivatives of T4 have been shown to protect against ischemic brain damage through their ability to induce hypothermia in the intact organism. Thus, thyroid hromone or hormone derivatives have experimental promise as neuroprotective agents.

  14. Neuroprotective effects of daphnetin against NMDA receptor-mediated excitotoxicity.

    Science.gov (United States)

    Yang, Le; Yang, Qi; Zhang, Kun; Li, Yu-Jiao; Wu, Yu-Mei; Liu, Shui-Bing; Zheng, Lian-He; Zhao, Ming-Gao

    2014-09-15

    The accumulation of glutamate can excessively activate the N-methyl-d-aspartate (NMDA) receptors and cause excitotoxicity. Daphnetin (Dap), a coumarin derivative, is a protein kinase inhibitor that exhibits antioxidant and neuroprotective properties. However, little is known about the neuroprotective effects of Dap on glutamate-induced excitotoxicity. We evaluated the neuroprotective activities in the primary cultured cortical neurons against NMDA-induced excitotoxicity. Pretreatment with Dap significantly prevented NMDA-induced neuronal cell loss. Dap significantly inhibited the neuronal apoptosis by regulating balance of Bcl-2 and Bax expression. Furthermore, pretreatment of Dap reversed the up-regulation of NR2B-containing NMDA receptors and inhibited the intracellular Ca2+ overload induced by NMDA exposure. In addition, Dap prevented cerebral ischemic injury in mice induced via a 2 h middle cerebral artery occlusion and a 24 h reperfusion in vivo. The findings suggest that Dap prevents the excitotoxicity through inhibiting the NR2B-containing NMDA receptors and the subsequent calcium overload in cultured cortical neurons.

  15. Ketogenic Diet Provides Neuroprotective Effects against Ischemic Stroke Neuronal Damages

    Directory of Open Access Journals (Sweden)

    Sheida Shaafi

    2014-12-01

    Full Text Available Ischemic stroke is a leading cause of death and disability in the world. Many mechanisms contribute in cell death in ischemic stroke. Ketogenic diet which has been successfully used in the drug-resistant epilepsy has been shown to be effective in many other neurologic disorders. The mechanisms underlying of its effects are not well studied, but it seems that its neuroprotective ability is mediated at least through alleviation of excitotoxicity, oxidative stress and apoptosis events. On the basis of these mechanisms, it is postulated that ketogenic diet could provide benefits to treatment of cerebral ischemic injuries.

  16. Neuroprotective Effects of Palm vitamin E Tocotrienols

    Directory of Open Access Journals (Sweden)

    Yuen Kah Hay

    2014-11-01

    Full Text Available Cell and animal studies have convincingly shown the tocotrienols to be neuro protective. However, many compounds have been proven neuro protective in pre-clinical studies but none succeeded in human trials. Such failures can be attributed to the use of a wrong study model, example acute ischemic stroke. Stroke has a short treatment time window of about 4.5 hours and hence the difficulty of giving the compound within this time period. Furthermore, disruption of blood flow to the affected areas will limit the administered agent from reaching the target tissues. Therefore, the compound should best be given before the stroke event, like in the animal studies. Considering the above, the present study was conducted to investigate the neuro protective effects of palm vitamin E tocotrienols using human volunteers with white matter lesions (WMLs. WMLs are associated with ischemic small blood vessel disease of the brain leading to bundles of nerve fibers degenerating. The lesions are self-progressive and can be quantified using magnetic resonance imaging (MRI. In the present study, 121 volunteers with WMLs were randomized 200mg palm tocotrienols twice daily or placebo and imaged at baseline, after 1 year and 2 years of supplementation. Changes in the volume of WMLs from baseline were then determined. Results obtained showed that the mean WML volume of the treated group remained essentially unchanged after 2 years, whereas the placebo group showed a mark progression. The change in the mean WML volume of the 2 groups was significantly different (p<0.05 after 2 years. Hence, the present study provided clinical evidence that palm vitamin E tocotrienols are neuro protective and may help to minimize tissue injury of the brain during a stroke event, thus making a difference in the stroke outcome when taken as a supplement.

  17. Ethanol and Cognition: Indirect Effects, Neurotoxicity and Neuroprotection: A Review

    Directory of Open Access Journals (Sweden)

    John C.M. Brust

    2010-04-01

    Full Text Available Ethanol affects cognition in a number of ways. Indirect effects include intoxication, withdrawal, brain trauma, central nervous system infection, hypoglycemia, hepatic failure, and Marchiafava-Bignami disease. Nutritional deficiency can cause pellagra and Wernicke-Korsakoff disorder. Additionally, ethanol is a direct neurotoxin and in sufficient dosage can cause lasting dementia. However, ethanol also has neuroprotectant properties and in low-to-moderate dosage reduces the risk of dementia, including Alzheimer type. In fetuses ethanol is teratogenic, and whether there exists a safe dose during pregnancy is uncertain and controversial.

  18. A New Triterpene from Buddleja lindleyana with Neuroprotective Effect

    Directory of Open Access Journals (Sweden)

    Ya-Shuo Ren

    2017-07-01

    Full Text Available In the phytochemical investigation of Buddleja lindleyana , a new 3-acetyl substituted triterpene, 13, 28-epoxy-23-hydroxy-3β-acetoxy-olean-11-ene (1, together with four same skeleton type known compounds (2-5 were isolated. The structure of 1 was elucidated by means of extensive spectroscopic analysis. Their neuroprotective effect against 1-methyl-4 -phenylpyridinium ion-induced (MPP +-induced neurotoxicity in SH-SY5Y cells were evaluated. The structure activity relationship of compounds 1-5 has been discussed preliminarily.

  19. Neuroprotective effect of melatonin in experimentally induced hypobaric hypoxia.

    Science.gov (United States)

    Vornicescu, Corina; Boşca, Bianca; Crişan, Doiniţa; Yacoob, Sumaya; Stan, Nora; Filip, Adriana; Şovrea, Alina

    2013-01-01

    Melatonin (MEL) is an endogenous neurohormone with many biological functions, including a powerful antioxidant effect. The aim of the present study was to determine whether MEL protects the brain tissue from the oxidative stress induced by hypobaric hypoxia (HH) in vivo. This study was performed on Wistar rats randomly assigned in four groups, according to the pressure conditions and treatment: Group 1: normoxia and placebo; Group 2: HH and placebo; Group 3: normoxia and MEL; and Group 4: HH and MEL. The following aspects were evaluated: cognitive function (space reference and memory), oxidative stress parameters - serum and brain malondialdehyde (MDA) and reduced glutathione (GSH) levels -, and brain tissue macroscopic and microscopic morphological changes. Exposure to oxidative stress results in cognitive dysfunctions and biochemical alterations: significant increase of MDA and reduction of GSH in both serum and brain tissue. The most important morphological changes were observed in Group 2: increased cellularity, loss of pericellular haloes, shrunken neurons with scanty cytoplasm and hyperchromatic, pyknotic or absent nuclei; reactive gliosis, edema and blood-brain barrier alterations could also be observed in some areas. MEL treatment significantly diminished all these effects. Our results suggest that melatonin is a neuroprotective antioxidant both in normoxia and hypobaric hypoxia that can prevent and counteract the deleterious effects of oxidative stress (neuronal death, reactive astrogliosis, memory impairment and cognitive dysfunctions). Dietary supplements containing melatonin might be useful neuroprotective agents for the therapy of hypoxia-induced consequences.

  20. Antivasoconstrictor effect of the neuroprotective agent dexrazoxane in rat aorta.

    Science.gov (United States)

    Vidrio, Horacio; Carrasco, Omar F; Rodríguez, Rodolfo

    2006-12-14

    Dexrazoxane is used clinically to reduce the cardiotoxicity of anthracycline cancer chemotherapeutic agents, acting by an iron-chelating antioxidant mechanism. In a study designed to explore the possible mechanism of the recently described neuroprotective effect of the drug in cerebral ischemia, its influence on vascular reactivity was determined in rat aortic rings. Dexrazoxane was found to be devoid of direct contractile or relaxant activity and to have no influence on responses to acetylcholine or histamine (relaxation), or to angiotensin or serotonin (contraction). In contrast, it decreased contractions to norepinephrine, as evidenced by rightward displacement of the concentration-response curves. The effect was prevented by the removal of the endothelium and by the alpha(2)-adrenoceptor antagonist yohimbine; it was partially antagonized by the endothelium-derived depolarizing factor inhibitor clotrimazole, but was not affected by L-NAME or indomethacin, inhibitors of endothelial nitric oxide and prostacyclin production. The anti-contractile effect did not occur in rings stimulated with the alpha(1)-adrenoceptor agonist phenylephrine. It was concluded that dexrazoxane opposes norepinephrine vascular contraction by enhancing endothelial alpha(2)-adrenoceptor-mediated release of relaxing factor(s). The drug could thus offset the deleterious vasoconstriction elicited by the increased circulating catecholamines present during cerebral ischemia, and by this mechanism produce neuroprotection.

  1. Neuroprotective effects of anticonvulsants in rat hippocampal slice cultures exposed to oxygen/glucose deprivation

    DEFF Research Database (Denmark)

    Rekling, Jens C

    2003-01-01

    Some anticonvulsants show neuroprotective effects, and may be of use in reducing neuronal death resulting from stroke or traumatic brain injury. Here I report that a broad range of anticonvulsants protect cells in hippocampal slice cultures from death induced by oxygen/glucose deprivation (OGD...... cell death induced by OGD. The newer anticonvulsants carbamazepine, felbamate, lamotrigine, tiagabine, and oxcarbazepine also had significant neuroprotective effects, but gabapentin, valproic acid (10 mM), levetiracetam and retigabine were not neuroprotective at a concentration up to 300 micro......M. In conclusion, several classical and newer anticonvulsants have neuroprotective properties in an in vitro model that simulates cerebral ischemia....

  2. Ghrelin-AMPK Signaling Mediates the Neuroprotective Effects of Calorie Restriction in Parkinson's Disease

    Science.gov (United States)

    Bayliss, Jacqueline A.; Lemus, Moyra B.; Stark, Romana; Santos, Vanessa V.; Thompson, Aiysha; Rees, Daniel J.; Galic, Sandra; Elsworth, John D.; Kemp, Bruce E.; Davies, Jeffrey S.

    2016-01-01

    Calorie restriction (CR) is neuroprotective in Parkinson's disease (PD) although the mechanisms are unknown. In this study we hypothesized that elevated ghrelin, a gut hormone with neuroprotective properties, during CR prevents neurodegeneration in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. CR attenuated the MPTP-induced loss of substantia nigra (SN) dopamine neurons and striatal dopamine turnover in ghrelin WT but not KO mice, demonstrating that ghrelin mediates CR's neuroprotective effect. CR elevated phosphorylated AMPK and ACC levels in the striatum of WT but not KO mice suggesting that AMPK is a target for ghrelin-induced neuroprotection. Indeed, exogenous ghrelin significantly increased pAMPK in the SN. Genetic deletion of AMPKβ1 and 2 subunits only in dopamine neurons prevented ghrelin-induced AMPK phosphorylation and neuroprotection. Hence, ghrelin signaling through AMPK in SN dopamine neurons mediates CR's neuroprotective effects. We consider targeting AMPK in dopamine neurons may recapitulate neuroprotective effects of CR without requiring dietary intervention. SIGNIFICANCE STATEMENT The neuroprotective mechanisms of calorie restriction (CR) in Parkinson's disease are unknown. Indeed, the difficulty to adhere to CR necessitates an alternative method to recapitulate the neuroprotective benefits of CR while bypassing dietary constraints. Here we show that CR increases plasma ghrelin, which targets substantia nigra dopamine to maintain neuronal survival. Selective deletion on AMPK beta1 and beta2 subunits only in DAT cre-expressing neurons shows that the ghrelin-induced neuroprotection requires activation of AMPK in substantia nigra dopamine neurons. We have discovered ghrelin as a key metabolic signal, and AMPK in dopamine neurons as its target, which links calorie restriction with neuroprotection in Parkinson's disease. Thus, targeting AMPK in dopamine neurons may provide novel neuroprotective benefits in Parkinson's disease. PMID

  3. Novel Neuroprotective Effects of Melanin-Concentrating Hormone in Parkinson's Disease.

    Science.gov (United States)

    Park, Ji-Yeun; Kim, Seung-Nam; Yoo, Junsang; Jang, Jaehwan; Lee, Ahreum; Oh, Ju-Young; Kim, Hongwon; Oh, Seung Tack; Park, Seong-Uk; Kim, Jongpil; Park, Hi-Joon; Jeon, Songhee

    2017-12-01

    Acupuncture has shown the therapeutic effect on various neurodegenerative disorders including Parkinson's disease (PD). While investigating the neuroprotective mechanism of acupuncture, we firstly found the novel function of melanin-concentrating hormone (MCH) as a potent neuroprotective candidate. Here, we explored whether hypothalamic MCH mediates the neuroprotective action of acupuncture. In addition, we aimed at evaluating the neuroprotective effects of MCH and elucidating underlying mechanism in vitro and in vivo PD models. First, we tested whether hypothalamic MCH mediates the neuroprotective effects of acupuncture by challenging MCH-R1 antagonist (i.p.) in mice PD model. We also investigated whether MCH has a beneficial role in dopaminergic neuronal protection in vitro primary midbrain and human neuronal cultures and in vivo MPTP-induced, Pitx3 -/- , and A53T mutant mice PD models. Transcriptomics followed by quantitative PCR and western blot analyses were performed to reveal the neuroprotective mechanism of MCH. We first found that hypothalamic MCH biosynthesis was directly activated by acupuncture treatment and that administration of an MCH-R1 antagonist reverses the neuroprotective effects of acupuncture. A novel finding is that MCH showed a beneficial role in dopaminergic neuron protection via downstream pathways related to neuronal survival. This is the first study to suggest the novel neuroprotective action of MCH as well as the involvement of hypothalamic MCH in the acupuncture effects in PD, which holds great promise for the application of MCH in the therapy of neurodegenerative diseases.

  4. Neuroprotective effect of apocynin nitrone in oxygen glucose ...

    African Journals Online (AJOL)

    Purpose: To investigate the neuroprotective potential of apocynin nitrone (AN-1), a nitrone analogue of apocynin, in rat brain tissue as a novel candidate for ischemic stroke treatment. Methods: In vitro neuroprotection of AN-1 was studied in SH-SY5Y cells treated with oxygen glucose deprivation (OGD). Cell viability was ...

  5. Neuroprotective effects of DHA in Alzheimer’s disease models

    Directory of Open Access Journals (Sweden)

    Florent-Béchard Sabrina

    2007-05-01

    Full Text Available Alzheimer’s disease (AD is a major public health concern in all developped countries. Although the precise cause of AD is still unknown, a growing body of evidence supports the notion that soluble oligomers of amyloid b-peptide (Aβ may be the proximate effectors of synaptic injuries and neuronal death in the early stages of AD. AD patients display lower levels of docosahexaenoic acid (DHA, C22:6; n-3 in plasma and brain tissues as compared to control subjects of same age. Furthermore, epidemiological studies suggest that high DHA intake might have protective properties against neurodegenerative diseases. These observations are supported by in vivo studies showing that DHA-rich diets limit the synaptic loss and cognitive defects induced by Aβ peptide. Although the molecular basis underlying these neuroprotective effects remains unknown, several mechanisms have been proposed such as (i regulation of the expression of potentially protective genes, (ii activation of antiinflammatory pathways, (iii modulation of functional properties of the synaptic membranes along with changes in their physicochemical and structural features. We recently demonstrated that DHA protects neurons from soluble Aβ oligomer-induced apoptosis. Indeed, DHA pretreatment was observed to significantly increase neuronal survival upon Aβ treatment by preventing cytoskeleton perturbations, caspase activation and apoptosis, as well as by promoting ERK-related survival pathways. These data suggest that DHA enrichment most likely induces changes in neuronal membrane properties with functional outcomes, thereby increasing protection from soluble Aβ oligomers. Such neuroprotective effects could be of major interest in the prevention of AD and other neurodegenerative diseases.

  6. A Neuroprotective Sericin Hydrogel As an Effective Neuronal Cell Carrier for the Repair of Ischemic Stroke.

    Science.gov (United States)

    Wang, Zheng; Wang, Jian; Jin, Yang; Luo, Zhen; Yang, Wen; Xie, Hongjian; Huang, Kai; Wang, Lin

    2015-11-11

    Ischemic stroke causes extensive cellular loss that impairs brain functions, resulting in severe disabilities. No effective treatments are currently available for brain tissue regeneration. The need to develop effective therapeutic approaches for treating stroke is compelling. A tissue engineering approach employing a hydrogel carrying both cells and neurotrophic cytokines to damaged regions is an encouraging alternative for neuronal repair. However, this approach is often challenged by low in vivo cell survival rate, and low encapsulation efficiency and loss of cytokines. To address these limitations, we propose to develop a biomaterial that can form a matrix capable of improving in vivo survival of transplanted cells and reducing in vivo loss of cytokines. Here, we report that using sericin, a natural protein from silk, we have fabricated a genipin-cross-linked sericin hydrogel (GSH) with porous structure and mild swelling ratio. The GSH supports the effective attachment and growth of neurons in vitro. Strikingly, our data reveal that sericin protein is intrinsically neurotrophic and neuroprotective, promoting axon extension and branching as well as preventing primary neurons from hypoxia-induced cell death. Notably, these functions are inherited by the GSH's degradation products, which might spare a need of incorporating costly cytokines. We further demonstrate that this neurotrophic effect is dependent on the Lkb1-Nuak1 pathway, while the neuroprotective effect is realized through regulating the Bcl-2/Bax protein ratio. Importantly, when transplanted in vivo, the GSH gives a high cell survival rate and allows the cells to continuously proliferate. Together, this work unmasks the neurotrophic and neuroprotective functions for sericin and provides strong evidence justifying the GSH's suitability as a potential neuronal cell delivery vehicle for ischemic stroke repair.

  7. Neuroprotective effects of statins against amyloid β-induced neurotoxicity

    Directory of Open Access Journals (Sweden)

    Hsin-Hua Li

    2018-01-01

    Full Text Available A growing body of evidence suggests that disruption of the homeostasis of lipid metabolism affects the pathogenesis of Alzheimer's disease (AD. In particular, dysregulation of cholesterol homeostasis in the brain has been reported to considerably increase the risk of developing AD. Thus, dysregulation of lipid homeostasis may increase the amyloid β (Aβ levels by affecting amyloid precursor protein (APP cleavage, which is the most important risk factor involved in the pathogenesis of AD. Previous research demonstrated that Aβ can trigger neuronal insulin resistance, which plays an important role in response to Aβ-induced neurotoxicity in AD. Epidemiological studies also suggested that statin use is associated with a decreased incidence of AD. Therefore, statins are believed to be a good candidate for conferring neuroprotective effects against AD. Statins may play a beneficial role in reducing Aβ-induced neurotoxicity. Their effect involves a putative mechanism beyond its cholesterol-lowering effects in preventing Aβ-induced neurotoxicity. However, the underlying molecular mechanisms of the protective effect of statins have not been clearly determined in Aβ-induced neurotoxicity. Given that statins may provide benefits beyond the inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase, these drugs may also improve the brain. Thus, statins may have beneficial effects on impaired insulin signaling by activating AMP-activated protein kinase (AMPK in neuronal cells. They play a potential therapeutic role in targeting Aβ-mediated neurotoxicity.

  8. Antihypertensive and neuroprotective effects of astaxanthin in experimental animals.

    Science.gov (United States)

    Hussein, Ghazi; Nakamura, Masami; Zhao, Qi; Iguchi, Tomomi; Goto, Hirozo; Sankawa, Ushio; Watanabe, Hiroshi

    2005-01-01

    Astaxanthin is a natural antioxidant carotenoid that occurs in a wide variety of living organisms. We investigated, for the first time, antihypertensive effects of astaxanthin (ASX-O) in spontaneously hypertensive rats (SHR). Oral administration of ASX-O for 14 d induced a significant reduction in the arterial blood pressure (BP) in SHR but not in normotensive Wistar Kyoto (WKY) strain. The long-term administration of ASX-O (50 mg/kg) for 5 weeks in stroke prone SHR (SHR-SP) induced a significant reduction in the BP. It also delayed the incidence of stroke in the SHR-SP. To investigate the action mechanism of ASX-O, the effects on PGF(2alpha)-induced contractions of rat aorta treated with NG-nitro-L-arginine methyl ester (L-NAME) were studied in vitro. ASX-O (1 to 10 microM) induced vasorelaxation mediated by nitric oxide (NO). The results suggest that the antihypertensive effect of ASX-O may be due to a NO-related mechanism. ASX-O also showed significant neuroprotective effects in ischemic mice, presumably due to its antioxidant potential. Pretreatment of the mice with ASX-O significantly shortened the latency of escaping onto the platform in the Morris water maze learning performance test. In conclusion, these results indicate that astaxanthin can exert beneficial effects in protection against hypertension and stroke and in improving memory in vascular dementia.

  9. Epobis is a Nonerythropoietic and Neuroprotective Agonist of the Erythropoietin Receptor with Anti-Inflammatory and Memory Enhancing Effects

    DEFF Research Database (Denmark)

    Dmytriyeva, Oksana; Pankratova, Stanislava; Korshunova, Irina

    2016-01-01

    The cytokine erythropoietin (EPO) stimulates proliferation and differentiation of erythroid progenitor cells. Moreover, EPO has neuroprotective, anti-inflammatory, and antioxidative effects, but the use of EPO as a neuroprotective agent is hampered by its erythropoietic activity. We have recently....... These data reveal Epobis to be a nonerythropoietic and neuroprotective EPO receptor agonist with anti-inflammatory and memory enhancing properties....

  10. Anticonvulsant and neuroprotective effects of Pimpinella anisum in rat brain

    Directory of Open Access Journals (Sweden)

    Karimzadeh Fariba

    2012-06-01

    Full Text Available Abstract Background Essential oil of Pimpinella anisum L. Apiaceae (anise oil has been widely used in traditional Persian medicine to treat a variety of diseases, including some neurological disorders. This study was aimed to test the possible anti-seizure and anti-hypoxia effects of anise oil. Methods The effects of different concentrations of anise oil were tested on seizure attacks induced by pentylenetetrazol (PTZ injection and neuronal hypoxia induced by oxygen withdrawal as well as on production of dark neurons and induction of long-term potentiation (LTP in in vivo and in vitro experimental models of rat brain. Results Anise oil significantly prolonged the latency of seizure attacks and reduced the amplitude and duration of epileptiform burst discharges induced by injection of intraperitoneal PTZ. In addition, anise oil significantly inhibited production of dark neurons in different regions of the brain in epileptic rats. Anise oil also significantly enhanced the duration of the appearance of anoxic terminal negativity induced by oxygen withdrawal and inhibited induction of LTP in hippocampal slices. Conclusions Our data indicate the anticonvulsant and neuroprotective effects of anise oil, likely via inhibition of synaptic plasticity. Further evaluation of anise oil to use in the treatment of neurological disorders is suggested.

  11. Anticonvulsant and neuroprotective effects of Pimpinella anisum in rat brain.

    Science.gov (United States)

    Karimzadeh, Fariba; Hosseini, Mahmoud; Mangeng, Diana; Alavi, Hassan; Hassanzadeh, Gholam Reza; Bayat, Mohamad; Jafarian, Maryam; Kazemi, Hadi; Gorji, Ali

    2012-06-18

    Essential oil of Pimpinella anisum L. Apiaceae (anise oil) has been widely used in traditional Persian medicine to treat a variety of diseases, including some neurological disorders. This study was aimed to test the possible anti-seizure and anti-hypoxia effects of anise oil. The effects of different concentrations of anise oil were tested on seizure attacks induced by pentylenetetrazol (PTZ) injection and neuronal hypoxia induced by oxygen withdrawal as well as on production of dark neurons and induction of long-term potentiation (LTP) in in vivo and in vitro experimental models of rat brain. Anise oil significantly prolonged the latency of seizure attacks and reduced the amplitude and duration of epileptiform burst discharges induced by injection of intraperitoneal PTZ. In addition, anise oil significantly inhibited production of dark neurons in different regions of the brain in epileptic rats. Anise oil also significantly enhanced the duration of the appearance of anoxic terminal negativity induced by oxygen withdrawal and inhibited induction of LTP in hippocampal slices. Our data indicate the anticonvulsant and neuroprotective effects of anise oil, likely via inhibition of synaptic plasticity. Further evaluation of anise oil to use in the treatment of neurological disorders is suggested.

  12. Neuroprotective effects of leptin in the context of obesity and metabolic disorders.

    Science.gov (United States)

    Davis, Cecilia; Mudd, Jeremy; Hawkins, Meredith

    2014-12-01

    As the population of the world ages, the prevalence of neurodegenerative disease continues to rise, accompanied by increases in disease burden related to obesity and metabolic disorders. Thus, it will be essential to develop tools for preventing and slowing the progression of these major disease entities. Epidemiologic studies have shown strong associations between obesity, metabolic dysfunction, and neurodegeneration, while animal models have provided insights into the complex relationships between these conditions. Experimentally, the fat-derived hormone leptin has been shown to act as a neuroprotective agent in various animal models of dementia, toxic insults, ischemia/reperfusion, and other neurodegenerative processes. Specifically, leptin minimizes neuronal damage induced by neurotoxins and pro-apoptotic conditions. Leptin has also demonstrated considerable promise in animal models of obesity and metabolic disorders via modulation of glucose homeostasis and energy intake. However, since obesity is known to induce leptin resistance, we hypothesize that resistance to the neuroprotective effects of leptin contributes to the pathogenesis of obesity-associated neurodegenerative diseases. This review aims to explore the literature pertinent to the role of leptin in the protection of neurons from the toxic effects of aging, obesity and metabolic disorders, to investigate the physiological state of leptin resistance and its causes, and to consider how leptin might be employed therapeutically in the prevention and treatment of neurodegenerative disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Additive Neuroprotective Effect of Borneol with Mesenchymal Stem Cells on Ischemic Stroke in Mice

    Directory of Open Access Journals (Sweden)

    Xiao-Guang Zhang

    2018-01-01

    Full Text Available Intravenous stem cell transplantation initiates neuroprotection related to the secretion of trophic factor. Borneol, a potential herbal neuroprotective agent, is a penetration enhancer. Here, we aimed to investigate whether they have additive neuroprotective effect on cerebral ischemia. Borneol was given to mice by gavage 3 days before middle cerebral artery occlusion (MCAO induction until the day when the mice were sacrificed. Mesenchymal stem cells (MSCs were intravenously injected at 24 h after MCAO induction. Neurological deficits, infarct volume, cell death, and neurogenesis were evaluated. Combined use of MSCs and borneol could more effectively reduce infarction volume and cell apoptosis, enhance neurogenesis, and improve the functional recovery than that of MSCs alone. The findings showed that combined use of borneol and stem cells provided additive neuroprotective effect on cerebral ischemia. However, the supposed effect of borneol on the improved MSC penetration still needs further direct evidence.

  14. Neuroprotective effects of phytochemicals on dopaminergic neuron cultures.

    Science.gov (United States)

    Sandoval-Avila, S; Diaz, N F; Gómez-Pinedo, U; Canales-Aguirre, A A; Gutiérrez-Mercado, Y K; Padilla-Camberos, E; Marquez-Aguirre, A L; Díaz-Martínez, N E

    2016-06-21

    Parkinson's disease is a progressive neurodegenerative disorder characterised by a loss of dopaminergic neurons in the substantia nigra pars compacta, which results in a significant decrease in dopamine levels and consequent functional motor impairment. Although its aetiology is not fully understood, several pathogenic mechanisms, including oxidative stress, have been proposed. Current therapeutic approaches are based on dopamine replacement drugs; these agents, however, are not able to stop or even slow disease progression. Novel therapeutic approaches aimed at acting on the pathways leading to neuronal dysfunction and death are under investigation. In recent years, such natural molecules as polyphenols, alkaloids, and saponins have been shown to have a neuroprotective effect due to their antioxidant and anti-inflammatory properties. The aim of our review is to analyse the most relevant studies worldwide addressing the benefits of some phytochemicals used in in vitro models of Parkinson's disease. Copyright © 2016 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  15. Comparative Neuroprotective Effects of Dexamethasone and Minocycline during Hepatic Encephalopathy

    Science.gov (United States)

    Gamal, Maha; Abdel Wahab, Zainab; Eshra, Mohamed; Rashed, Laila; Sharawy, Nivin

    2014-01-01

    Objective. Encephalopathy and brain edema are serious complications of acute liver injury and may lead to rapid death of patients. The present study was designed to investigate the role of the inflammatory mediators and oxidative stress in the cytotoxic brain oedema and the neuroprotective effects of both minocycline and dexamethasone. Methods. 48 male albino rats were divided into 4 groups: control group, acute liver injury (ALI) group, minocycline pretreated ALI group, and dexamethasone pretreated ALI group. 24 hours after acute liver injury serum ammonia, liver enzymes, brain levels of heme oxygenase-1 gene, iNOS gene expression, nitrite/nitrate, and cytokines were measured. In addition, the grades of encephalopathy and brain water content were assessed. Results. ALI was associated with significant increases in all measured inflammatory mediators, oxidative stress, iNOS gene expression, and nitrite/nitrate. Both minocycline and dexamethasone significantly modulated the inflammatory changes and the oxidative/nitrosative stress associated with ALI. However, only minocycline but not dexamethasone significantly reduced the cytotoxic brain oedema. Conclusion. Both minocycline and dexamethasone could modulate inflammatory and oxidative changes observed in brain after ALI and could be novel preventative therapy for hepatic encephalopathy episodes. PMID:24693424

  16. Comparative study of neuroprotective effect of tricyclics vs. trazodone on animal model of depressive disorder.

    Science.gov (United States)

    Marinescu, Ileana P; Predescu, Anca; Udriştoiu, T; Marinescu, D

    2012-01-01

    The neurobiological model of depressive disorder may be correlated with the animal model on rat, hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis, the increase of cortisol level being specific to the model of depression in women. The neurobiological model of depression in women presents vulnerabilities for some cerebral structures (hippocampus, frontal cortex, cerebral amygdala). A decrease of frontal cortex and hippocampus volumes are recognized in depressive disorder in women, depending on duration of disease and antidepressant therapy. Neurobiological vulnerability may be pronounced through cholinergic blockade. The purpose of the study was to highlight the cytoarchitectural changes in the frontal cortex and hippocampus by comparing two antidepressant substances: amitriptyline with a strong anticholinergic effect and trazodone, without anticholinergic effect. The superior neuroprotective qualities of trazodone for the frontal cortex, hippocampus and dentate gyrus are revealed. The particular neurobiological vulnerability of depression in women requires a differentiated therapeutic approach, avoiding the use of antidepressants with anticholinergic action.

  17. The Neuroprotection Effect of Oxygen Therapy: A Systematic Review ...

    African Journals Online (AJOL)

    2018-04-04

    Apr 4, 2018 ... OR “acute ischemic stroke (AIS)” OR “TBI” AND. “Clinical trial”. We also reviewed the .... Table 1: Characteristics of studies that compared normobaric oxygen treatment and controls in stroke patients. Study Year Study design ...... Young AR, Ali C, Duretête A, Vivien D. Neuroprotection and stroke: Time for a ...

  18. Neuroprotective effect of creatine against propionic acid toxicity in ...

    African Journals Online (AJOL)

    edoja

    2013-07-31

    Jul 31, 2013 ... management of autism as a neurodevelopmental disorder recently related to PA neurotoxicity. Key words: Propionic acid, creatine, SH-SY5Y, comet assay, DNA fragmentation assay, apoptosis, neuroprotection. INTRODUCTION. Propionic acid (PA) is a short chain fatty acid that is dietary obtained (Zarate ...

  19. Neuroprotective effect of creatine against propionic acid toxicity in ...

    African Journals Online (AJOL)

    With sufficient research and clinical trials in future, this could prove to be successful in treatment or management of autism as a neurodevelopmental disorder recently related to PA neurotoxicity. Keywords: Propionic acid, creatine, SH-SY5Y, comet assay, DNA fragmentation assay, apoptosis, neuroprotection. African Journal ...

  20. Neuroprotective effects of α-lipoic acid against hypoxic– ischemic ...

    African Journals Online (AJOL)

    Purpose: To explore the neuroprotective efficacy of α-lipoic acid (ALA) against hypoxic-ischemic encephalopathy (HIE) in neonatal rats. Methods: Forty-eight rats (P7-pups) were randomly assigned to one of four groups: group I received saline; group II (HI) underwent unilateral carotid artery ligation and hypoxia (92 % N2 ...

  1. Neuroprotective effect of a new variant of Epo nonhematopoietic against oxidative stress

    Directory of Open Access Journals (Sweden)

    C. Castillo

    2018-04-01

    Full Text Available Human erythropoietin is mainly recognized for its hematopoietic function; however, by binding to its receptor (EpoR, it can activate different signaling pathways as STAT, PI3K, MAPK and RAS to increase cellular differentiation or provide neuroprotective effects, among others. A recombinant human erythropoietin variant with low glycosylation and without hematopoietic effect (EpoL was purified from skimmed goat milk. Recombinant human erythropoietin (Epo was obtained from CHO cell line and used as control to compare EpoL effects. Neuroprotection studies were performed in PC12 cells and rat hippocampal slices. Cells were pretreated during 1 h with EpoL or Epo and exposed to oxidative agents (H2O2 or FCCP; cell viability was assayed at the end of the experiment by the MTT method. Hippocampal slices were exposed to 15 min of oxygen and glucose deprivation (OGD and the neuroprotective drugs EpoL or Epo were incubated for 2 h post-OGD in re-oxygenated medium. Cell cultures stressed with oxidative agents, and pretreated with EpoL, showed neuroprotective effects of 30% at a concentration 10 times lower than that of Epo. Moreover, similar differences were observed in OGD ex vivo assays. Neuroprotection elicited by EpoL was lost when an antibody against EpoR was present, indicating that its effect is EpoR-dependent. In conclusion, our results suggest that EpoL has a more potent neuroprotective profile than Epo against oxidative stress, mediated by activation of EpoR, thus EpoL represents an important target to develop a potential biopharmaceutical to treat different central nervous system pathologies related to oxidative stress such as stroke or neurodegenerative diseases. Keywords: Erythropoietin, Erythropoietin receptor, Neuroprotection, Oxidative stress

  2. [Similarity of cycloprolylglycine to piracetam in antihypoxic and neuroprotective effects].

    Science.gov (United States)

    Kolisnikova, K N; Gudasheva, T A; Nazarova, G A; Antipov, T A; Voronina, T A; Seredenin, S B

    2012-01-01

    The antihypoxic activity of the endogenous cyclic dipeptide cycloprolylglycine (CPG) has been studied on a model of normobaric hypoxia with hypercapnia and its neuroprotective activity has been studied on a model of human neuroblastoma SH-SY5Y cell damage by 6-hydroxydopamine. It is established that CPG exhibits the antihypoxic activity at doses of 0.5 and 1.0 mg/kg (i.p.) on outbred and BALB/c mice, but not on C57B1/6 mice. The neuroprotective activity of CPG was detected in 10(-5) - 10(-8) M concentration range only when the treatment was carried out 24h before toxin introduction. The obtained data confirm the hypothesis that piracetam is a mimetic of the endogenous CPG neuropeptide.

  3. Neuroprotective effect of geniposide on Parkinson's disease model mice

    Directory of Open Access Journals (Sweden)

    Yi-mei CHEN

    2015-07-01

    Full Text Available Objective  To investigate the neuroprotective effect of geniposide on 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP induced Parkinson's disease (PD model mice and possible mechanism.  Methods  A total of 48 male C57BL/6 mice were randomly divided into control, model, geniposide and MPTP + geniposide groups. The behaviors of C57BL/6 mice were assessed by using open field test, the tyrosine hydroxylase (TH and Bcl-2 positive neurons in the midbrain substantia nigra of mice were detected by immunohistochemistry and the number of apoptosis neurons were observed with TdT-mediated dUTP-biotin nick end labeling (TUNEL.  Results  The number of mobile grid [(76.33 ± 8.59 times/5 min], standing [(19.58 ± 3.97 times/5 min], TH-positive neurons [(12.83 ± 2.32/HPF] and Bcl-2-positive neurons [(10.83 ± 2.23/HPF] in model group were significantly lower than those in the control group [(142.50 ± 11.65 times/5 min, (39.17 ± 4.75 times/5 min, (35.67 ± 1.75/HPF, (20.67 ± 1.75/HPF; P = 0.000, for all]. The apoptosis neurons in model group [(20.33 ± 2.58/HPF] were significantly higher than that in control group [(3.83 ± 1.67 /HPF, P = 0.000. The number of mobile grid [(97.67 ± 13.15 times/5 min, P = 0.000], standing [(29.33 ± 2.90 times/5 min, P = 0.000], TH-positive neurons [(17.50 ± 2.07/HPF, P = 0.002] and Bcl-2-positive neurons [(15.17 ± 2.79 /HPF, P = 0.003] in MPTP + geniposide group were significantly higher than those in model group. The number of apoptosis neurons [(14.67 ± 3.08 /HPF] in MPTP + geniposide group was significantly lower than that in model group (P = 0.001. Conclusions Geniposide can protect dopaminergic neurons in MPTP-induced neurodegeneration and the mechanism may be associated with the inhibition of neuronal apoptosis. DOI: 10.3969/j.issn.1672-6731.2015.06.012

  4. Neuroprotective effects of propofol, thiopental, etomidate, and midazolam in fetal rat brain in ischemia-reperfusion model.

    Science.gov (United States)

    Harman, Ferhat; Hasturk, Askin Esen; Yaman, Mehmet; Arca, Turkan; Kilinc, Kamer; Sargon, Mustafa Fevzi; Kaptanoglu, Erkan

    2012-07-01

    The aim of this study was to investigate the neuroprotective effects of propofol, thiopental, etomidate, and midazolam as anesthetic drugs in fetal rat brain in the ischemia-reperfusion (IR) model. Pregnant rats of day 19 were randomly allocated into eight groups. Fetal brain ischemia was induced by clamping the utero-ovarian artery bilaterally for 30 min and reperfusion was achieved by removing the clamps for 60 min. In the control group, fetal rat brains were obtained immediately after laparotomy. In the sham group, fetal rat brains were obtained 90 min after laparotomy. In the IR group, IR procedure was performed. No treatment was given in the IR group. One milliliter intralipid solution, 40 mg/kg propofol, 3 mg/kg thiopental, 0.1 mg/kg etomidate, and 3 mg/kg midazolam was administered intraperitoneally in the vehicle group, propofol group, thiopental group, etomidate group, and midazolam group, respectively, 20 min before IR procedure. At the end of the reperfusion period, the whole brains of the fetal rats were removed for evaluation of thiobarbituric acid reactive substances and for examination by electron microscopy. According to lipid peroxidation data, all the anesthetic drugs provide neuroprotection; however, ultrastructural findings and mitochondrial scoring confirms that only propofol and midazolam provides a strong neuroprotective effect. Propofol and midazolam may be used to protect fetal brain in case of acute fetal distress and hypoxic injury as a first choice anesthetic drug in cesarean delivery.

  5. Angiotensin II Type 2 Receptor Agonist Experts Sustained Neuroprotective Effects In Aged Rats

    DEFF Research Database (Denmark)

    Sumners, Colin; Isenberg, Jacob; Harmel, Allison

    2016-01-01

    OBJECTIVE: The renin angiotensin system is a promising target for stroke neuroprotection and therapy through activation of angiotensin type II receptors (AT2R). The selective non-peptide AT2R agonist, Compound 21 (C21), has been shown to exhibit neuroprotection and improve stroke outcomes...... in preclinical studies, effects that likely involve neurotropic actions. However, these beneficial actions of C21 have not been demonstrated to occur beyond 1 week post stroke. The objective of this study was to determine if systemic administration of C21 would exert sustained neuroprotective effects in aged...... min), 24 h, and 48 h after stroke. Infarct size was assessed by magnetic resonance imaging at 21 days post MCAO. Animals received blinded neurological exams at 4 h, 24 h, 72 h, 7d, 14d, and 21d post-MCAO. RESULTS: Systemic treatment with C21 after stroke significantly improved neurological function...

  6. A c-Src Inhibitor Peptide Based on Connexin43 Exerts Neuroprotective Effects through the Inhibition of Glial Hemichannel Activity.

    Science.gov (United States)

    Gangoso, Ester; Talaverón, Rocío; Jaraíz-Rodríguez, Myriam; Domínguez-Prieto, Marta; Ezan, Pascal; Koulakoff, Annette; Medina, José M; Giaume, Christian; Tabernero, Arantxa

    2017-01-01

    . In fact, TAT-Cx43 266-283 and dasatinib, a potent c-Src inhibitor, strongly reduced the activation of astrocyte hemichannels. In conclusion, our results suggest that TAT-Cx43 266-283 exerts a neuroprotective effect through the reduction of hemichannel activity likely mediated by c-Src in astrocytes. These data unveil a new role of c-Src in the regulation of Cx43-hemichannel activity that could be part of the mechanism by which astroglial c-Src participates in neuroinflammation.

  7. A c-Src Inhibitor Peptide Based on Connexin43 Exerts Neuroprotective Effects through the Inhibition of Glial Hemichannel Activity

    Directory of Open Access Journals (Sweden)

    Ester Gangoso

    2017-12-01

    bromide (EtBr uptake assay. In fact, TAT-Cx43266–283 and dasatinib, a potent c-Src inhibitor, strongly reduced the activation of astrocyte hemichannels. In conclusion, our results suggest that TAT-Cx43266–283 exerts a neuroprotective effect through the reduction of hemichannel activity likely mediated by c-Src in astrocytes. These data unveil a new role of c-Src in the regulation of Cx43-hemichannel activity that could be part of the mechanism by which astroglial c-Src participates in neuroinflammation.

  8. Cognitive Enhancing and Neuroprotective Effect of the Embryo of the Nelumbo nucifera Seed

    Directory of Open Access Journals (Sweden)

    Eun Sil Kim

    2014-01-01

    Full Text Available The aim of the present study was to evaluate the effect of ENS on cognitive impairment induced by scopolamine and its potential neuroprotective effect against glutamate-induced cytotoxicity in HT22 cell and to investigate the underlying mechanisms. ENS (3, 10, 30, and 100 mg/kg, scopolamine (1 mg/kg, and donepezil (1 mg/kg were administered to mice during a test period. Scopolamine impaired memory and learning in a water maze test and a passive avoidance test. The neuroprotective effect of ENS (10 and 100 μg/mL was investigated on glutamate-induced cell death in HT22 cells by MTT assay. We investigated acetylcholinesterase inhibition in hippocampus and antioxidant activity, ROS levels, and Ca2+ influx in HT22 cells to elucidate the potential mechanisms of ENS. We found that ENS significantly ameliorated scopolamine-induced memory impairment and inhibited AChE activity in hippocampus. In vitro, ENS showed potent neuroprotective effects against glutamate-induced neurotoxicity in the HT22 cell. In addition, ENS induced a decrease in ROS production and intercellular Ca2+ accumulation and showed DPPH radical and H2O2 scavenging activity. In conclusion, ENS showed both a memory improving effect and a neuroprotective effect. Our results indicate that ENS may be of use in the treatment and prevention of neurodegenerative disorders.

  9. Cognitive Enhancing and Neuroprotective Effect of the Embryo of the Nelumbo nucifera Seed

    Science.gov (United States)

    Kim, Eun Sil; Weon, Jin Bae; Yun, Bo-Ra; Lee, Jiwoo; Eom, Min Rye; Oh, Kyoung-Hee; Ma, Choong Je

    2014-01-01

    The aim of the present study was to evaluate the effect of ENS on cognitive impairment induced by scopolamine and its potential neuroprotective effect against glutamate-induced cytotoxicity in HT22 cell and to investigate the underlying mechanisms. ENS (3, 10, 30, and 100 mg/kg), scopolamine (1 mg/kg), and donepezil (1 mg/kg) were administered to mice during a test period. Scopolamine impaired memory and learning in a water maze test and a passive avoidance test. The neuroprotective effect of ENS (10 and 100 μg/mL) was investigated on glutamate-induced cell death in HT22 cells by MTT assay. We investigated acetylcholinesterase inhibition in hippocampus and antioxidant activity, ROS levels, and Ca2+ influx in HT22 cells to elucidate the potential mechanisms of ENS. We found that ENS significantly ameliorated scopolamine-induced memory impairment and inhibited AChE activity in hippocampus. In vitro, ENS showed potent neuroprotective effects against glutamate-induced neurotoxicity in the HT22 cell. In addition, ENS induced a decrease in ROS production and intercellular Ca2+ accumulation and showed DPPH radical and H2O2 scavenging activity. In conclusion, ENS showed both a memory improving effect and a neuroprotective effect. Our results indicate that ENS may be of use in the treatment and prevention of neurodegenerative disorders. PMID:25610484

  10. Paracrine effect of carbon monoxide - astrocytes promote neuroprotection through purinergic signaling in mice.

    Science.gov (United States)

    Queiroga, Cláudia S F; Alves, Raquel M A; Conde, Sílvia V; Alves, Paula M; Vieira, Helena L A

    2016-08-15

    The neuroprotective role of carbon monoxide (CO) has been studied in a cell-autonomous mode. Herein, a new concept is disclosed - CO affects astrocyte-neuron communication in a paracrine manner to promote neuroprotection. Neuronal survival was assessed when co-cultured with astrocytes that had been pre-treated or not with CO. The CO-pre-treated astrocytes reduced neuronal cell death, and the cellular mechanisms were investigated, focusing on purinergic signaling. CO modulates astrocytic metabolism and extracellular ATP content in the co-culture medium. Moreover, several antagonists of P1 adenosine and P2 ATP receptors partially reverted CO-induced neuroprotection through astrocytes. Likewise, knocking down expression of the neuronal P1 adenosine receptor A2A-R (encoded by Adora2a) reverted the neuroprotective effects of CO-exposed astrocytes. The neuroprotection of CO-treated astrocytes also decreased following prevention of ATP or adenosine release from astrocytic cells and inhibition of extracellular ATP metabolism into adenosine. Finally, the neuronal downstream event involves TrkB (also known as NTRK2) receptors and BDNF. Pharmacological and genetic inhibition of TrkB receptors reverts neuroprotection triggered by CO-treated astrocytes. Furthermore, the neuronal ratio of BDNF to pro-BDNF increased in the presence of CO-treated astrocytes and decreased whenever A2A-R expression was silenced. In summary, CO prevents neuronal cell death in a paracrine manner by targeting astrocytic metabolism through purinergic signaling. © 2016. Published by The Company of Biologists Ltd.

  11. Neuroprotective effects of daidzein on focal cerebral ischemia injury in rats

    OpenAIRE

    Adem Bozkurt Aras; Mustafa Guven; Tarık Akman; Adile Ozkan; Halil Murat Sen; Ugur Duz; Yıldıray Kalkan; Coskun Silan; Murat Cosar

    2015-01-01

    Daidzein, a plant extract, has antioxidant activity. It is hypothesized, in this study, that daidzein exhibits neuroprotective effects on cerebral ischemia. Rat models of middle cerebral artery occlusion were intraperitoneally administered daidzein. Biochemical and immunohistochemical tests showed that superoxide dismutase and nuclear respiratory factor 1 expression levels in the brain tissue decreased after ischemia and they increased obviously after daidzein administration; malondialdehyde ...

  12. Neuroprotective Effect of Insulin-like Growth Factor-II on 1- Methyl-4 ...

    African Journals Online (AJOL)

    Purpose: To evaluate the receptor-mediated neuroprotective effect of insulin-like growth factor-II (IGF-. II) on 1-methyl-4-phenyl pyridinium (MPP)-induced oxidative damage in adult cortical neuronal cultures. Methods: Adult rats were randomly divided into 5 groups. Cortical neurons were prepared from rats. The cells were ...

  13. Neuroprotective Effect of Insulin-like Growth Factor-II on 1- Methyl-4 ...

    African Journals Online (AJOL)

    Purpose: To evaluate the receptor-mediated neuroprotective effect of insulin-like growth factor-II (IGFII) on 1-methyl-4-phenyl pyridinium (MPP) induced oxidative damage in adult cortical neuronal cultures. Methods: Adult rats were randomly divided into 5 groups. Cortical neurons were prepared from rats. The cells were ...

  14. Neuroprotective effect of whole-plant extract of Torilis leptophylla in ...

    African Journals Online (AJOL)

    Purpose: To investigate the neuroprotective effect of Torilis leptophylla (TL) extract on animals exposed to isoflurane-induced anesthesia. Methods: General anesthesia was induced in diabetic rats by administration of 2 % sevoflurane (v/v) in 100 % oxygen. The animals from the treatment group were orally administered TL ...

  15. Neuroprotective effect of progesterone on acute phase changes induced by partial global cerebral ischaemia in mice.

    Science.gov (United States)

    Aggarwal, Raman; Medhi, Bikash; Pathak, Ashis; Dhawan, Veena; Chakrabarti, Amitava

    2008-06-01

    The possible neuroprotective effect of progesterone, a steroid hormone, on acute phase changes in a mouse model of cerebral ischaemia induced by bilateral common carotid artery occlusion (BCAO) was studied. A total of 72 male mice were included in the study. The BCAO model was used to induce partial global cerebral ischaemia. Morphological assessment included measurement of infarct size and brain oedema. Post-ischaemic seizure susceptibility was assessed using a subconvulsive dose of pentylenetetrazole (30 mgkg(-1) i.p.). Biochemical estimations included tumour necrosis factor alpha (TNF-alpha) levels and enzyme parameters such as lipid peroxidation, superoxide dismutase, catalase and glutathione peroxidase, and protein estimation. BCAO induced a significant infarct size and oedema in the saline-treated control group, along with an increase in oxidative stress, indicated by increased lipid peroxidation and decreased levels of antioxidants such as superoxide dismutase, catalase and glutathione peroxidase. Progesterone (15 mgkg(-1) i.p.) administration showed a neuro-protective effect by significantly reducing the cerebral infarct size as compared with the control group. Post-ischaemic seizure susceptibility was also reduced as the number of positive responders decreased. Brain oedema subsided, but not significantly. Progesterone significantly reduced TNF-alpha levels compared with the ischaemia group. Progesterone improved levels of all the antioxidants, indicating activity against oxidative stress induced by BCAO. The results demonstrate the neuroprotective effect of progesterone against ischaemic insult, suggesting a role for the steroid as a neuroprotective agent.

  16. Cortical spreading depression produces a neuroprotective effect activating mitochondrial uncoupling protein-5

    Directory of Open Access Journals (Sweden)

    Viggiano E

    2016-07-01

    Full Text Available Emanuela Viggiano,1,2 Vincenzo Monda,1 Antonietta Messina,1 Fiorenzo Moscatelli,3 Anna Valenzano,3 Domenico Tafuri,4 Giuseppe Cibelli,3 Bruno De Luca,1 Giovanni Messina,1,3 Marcellino Monda1 1Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Second University of Naples, Naples, 2Department of Medicine, University of Padua, Padua, 3Department of Clinical and Experimental Medicine, University of Foggia, Foggia, 4Department of Motor Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy Abstract: Depression of electrocorticogram propagating over the cortex surface results in cortical spreading depression (CSD, which is probably related to the pathophysiology of stroke, epilepsy, and migraine. However, preconditioning with CSD produces neuroprotection to subsequent ischemic episodes. Such effects require the expression or activation of several genes, including neuroprotective ones. Recently, it has been demonstrated that the expression of the uncoupling proteins (UCPs 2 and 5 is amplified during brain ischemia and their expression exerts a long-term effect upon neuron protection. To evaluate the neuroprotective consequence of CSD, the expression of UCP-5 in the brain cortex was measured following CSD induction. CSD was evoked in four samples of rats, which were sacrificed after 2 hours, 4 hours, 6 hours, and 24 hours. Western blot analyses were carried out to measure UCP-5 concentrations in the prefrontal cortices of both hemispheres, and immunohistochemistry was performed to determine the localization of UCP-5 in the brain cortex. The results showed a significant elevation in UCP-5 expression at 24 hours in all cortical strata. Moreover, UCP-5 was triggered by CSD, indicating that UCP-5 production can have a neuroprotective effect. Keywords: cortical spreading depression, neuroprotective effect, uncoupling protein-5

  17. Neuroprotective effect of ketamine/xylazine on two rat models of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    M.M. Ferro

    2007-01-01

    Full Text Available There is a great concern in the literature for the development of neuroprotectant drugs to treat Parkinson's disease. Since anesthetic drugs have hyperpolarizing properties, they can possibly act as neuroprotectants. In the present study, we have investigated the neuroprotective effect of a mixture of ketamine (85 mg/kg and xylazine (3 mg/kg (K/X on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP or 6-hydroxydopamine (6-OHDA rat models of Parkinson's disease. The bilateral infusion of MPTP (100 µg/side or 6-OHDA (10 µg/side into the substantia nigra pars compacta of adult male Wistar rats under thiopental anesthesia caused a modest (~67% or severe (~91% loss of tyrosine hydroxylase-immunostained cells, respectively. On the other hand, an apparent neuroprotective effect was observed when the rats were anesthetized with K/X, infused 5 min before surgery. This treatment caused loss of only 33% of the nigral tyrosine hydroxylase-immunostained cells due to the MPTP infusion and 51% due to the 6-OHDA infusion. This neuroprotective effect of K/X was also suggested by a less severe reduction of striatal dopamine levels in animals treated with these neurotoxins. In the working memory version of the Morris water maze task, both MPTP- and 6-OHDA-lesioned animals spent nearly 10 s longer to find the hidden platform in the groups where the neurotoxins were infused under thiopental anesthesia, compared to control animals. This amnestic effect was not observed in rats infused with the neurotoxins under K/X anesthesia. These results suggest that drugs with a pharmacological profile similar to that of K/X may be useful to delay the progression of Parkinson's disease.

  18. Neuroprotective Effects of Germinated Brown Rice against Hydrogen Peroxide Induced Cell Death in Human SH-SY5Y Cells

    Directory of Open Access Journals (Sweden)

    Shahid Iqbal

    2012-08-01

    Full Text Available The neuroprotective and antioxidative effects of germinated brown rice (GBR, brown rice (BR and commercially available γ-aminobutyric acid (GABA against cell death induced by hydrogen peroxide (H2O2 in human neuroblastoma SH-SY5Y cells have been investigated. Results show that GBR suppressed H2O2-mediated cytotoxicity and induced G0/G1 phase cell cycle arrest in SH-SY5Y cells. Moreover, GBR reduced mitochondrial membrane potential<strong> (strong>MMP and prevented phosphatidylserine (PS translocation in SH-SY5Y cells, key features of apoptosis, and subsequent cell death. GBR exhibited better neuroprotective and antioxidative activities as compared to BR and GABA. These results indicate that GBR possesses high antioxidative activities and suppressed cell death in SH-SY5Y cells by blocking the cell cycle re-entry and apoptotic mechanisms. Therefore, GBR could be developed as a value added functional food to prevent neurodegenerative diseases caused by oxidative stress and apoptosis.

  19. Neuroprotective-Neurotrophic Effect of Endogenous Dehydroepiandrosterone Sulfate During Intense Stress Exposure

    Science.gov (United States)

    2014-06-02

    Combination treatment with progesterone and vitamin D hormone may be more effective than monotherapy for traumatic brain injury. Front Neuroendocrinol...Taylor).Marcus K. Taylor a,b,c,⇑, Michael Stone a,c, Heidemarie K. Laurent b, d , Mitchell J. Rauh a,c, Douglas A. Granger b,e aBiobehavioral Sciences...and neurogenesis [20]. Regarding neuroprotection, DHEA(S) is thought to exert pro-survival effects by modulating gamma-ami- nobutyric acid [18

  20. Two new compounds from the fruits of Buddleja lindleyana with neuroprotective effect.

    Science.gov (United States)

    Wu, De-Ling; Wang, Yang-Kui; Liu, Jing-Song; Wang, Xun-Cui; Zhang, Wei

    2012-01-01

    Two new triterpenoid glycosides, mimengosides H (1) and I (2), were isolated from the fruits of Buddleja lindleyana Fort. Their structures were determined by extensive spectroscopic methods. Neuroprotective effects of these isolates against 1-methyl-4-phenylpyridinium ion-induced neurotoxicity in PC12 cells were evaluated. Pretreatment with compound 1 had potential protective effect in a concentration range from 0.1 to 1 μmol l⁻¹.

  1. Neuroprotective effects of daidzein on focal cerebral ischemia injury in rats

    Directory of Open Access Journals (Sweden)

    Adem Bozkurt Aras

    2015-01-01

    Full Text Available Daidzein, a plant extract, has antioxidant activity. It is hypothesized, in this study, that daidzein exhibits neuroprotective effects on cerebral ischemia. Rat models of middle cerebral artery occlusion were intraperitoneally administered daidzein. Biochemical and immunohistochemical tests showed that superoxide dismutase and nuclear respiratory factor 1 expression levels in the brain tissue decreased after ischemia and they increased obviously after daidzein administration; malondialdehyde level and apoptosis-related cysteine peptidase caspase-3 and caspase-9 immunoreactivity in the brain tissue increased after ischemia and they decreased obviously after daidzein administration. Hematoxylin-eosin staining and luxol fast blue staining results showed that intraperitoneal administration of daidzein markedly alleviated neuronal damage in the ischemic brain tissue. These findings suggest that daidzein exhibits neuroprotective effects on ischemic brain tissue by decreasing oxygen free radical production, which validates the aforementioned hypothesis

  2. Neuroprotective effects of daidzein on focal cerebral ischemia injury in rats

    Science.gov (United States)

    Aras, Adem Bozkurt; Guven, Mustafa; Akman, Tarık; Ozkan, Adile; Sen, Halil Murat; Duz, Ugur; Kalkan, Yıldıray; Silan, Coskun; Cosar, Murat

    2015-01-01

    Daidzein, a plant extract, has antioxidant activity. It is hypothesized, in this study, that daidzein exhibits neuroprotective effects on cerebral ischemia. Rat models of middle cerebral artery occlusion were intraperitoneally administered daidzein. Biochemical and immunohistochemical tests showed that superoxide dismutase and nuclear respiratory factor 1 expression levels in the brain tissue decreased after ischemia and they increased obviously after daidzein administration; malondialdehyde level and apoptosis-related cysteine peptidase caspase-3 and caspase-9 immunoreactivity in the brain tissue increased after ischemia and they decreased obviously after daidzein administration. Hematoxylin-eosin staining and luxol fast blue staining results showed that intraperitoneal administration of daidzein markedly alleviated neuronal damage in the ischemic brain tissue. These findings suggest that daidzein exhibits neuroprotective effects on ischemic brain tissue by decreasing oxygen free radical production, which validates the aforementioned hypothesis. PMID:25788936

  3. Neuroprotective effects of Withania somnifera Dunn. in hippocampal sub-regions of female albino rat.

    Science.gov (United States)

    Jain, S; Shukla, S D; Sharma, K; Bhatnagar, M

    2001-09-01

    The neuroprotective effects of W. somnifera were studied on stressed adult female Swiss albino rats. Experimental rats were subjected to immobilization stress for 14 h and were treated with a root powder extract of W. somnifera available as Stresscom capsules (Dabur India Ltd). Control rats were maintained in completely, non stressed conditions. Thionin stained serial coronal sections (7 microm) of brain passing through the hippocampal region of stressed rats (E(1) group) demonstrated 85% degenerating cells (dark cells and pyknotic cells) in the CA(2) and CA(3) sub-areas. Treatment with W. somnifera root powder extract significantly reduced (80%) the number of degenerating cells in both the areas. The study thus demonstrates the antistress neuroprotective effects of W. somnifera. Copyright 2001 John Wiley & Sons, Ltd.

  4. Differential effects of synthetic progestagens on neuron survival and estrogen neuroprotection in cultured neurons.

    Science.gov (United States)

    Jayaraman, Anusha; Pike, Christian J

    2014-03-25

    Progesterone and other progestagens are used in combination with estrogens for clinical purposes, including contraception and postmenopausal hormone therapy. Progesterone and estrogens have interactive effects in brain, however interactions between synthetic progestagens and 17β-estradiol (E2) in neurons are not well understood. In this study, we investigated the effects of seven clinically relevant progestagens on estrogen receptor (ER) mRNA expression, E2-induced neuroprotection, and E2-induced BDNF mRNA expression. We found that medroxyprogesterone acetate decreased both ERα and ERβ expression and blocked E2-mediated neuroprotection and BDNF expression. Conversely, levonorgestrel and nesterone increased ERα and or ERβ expression, were neuroprotective, and failed to attenuate E2-mediated increases in neuron survival and BDNF expression. Other progestagens tested, including norethindrone, norethindrone acetate, norethynodrel, and norgestimate, had variable effects on the measured endpoints. Our results demonstrate a range of qualitatively different actions of progestagens in cultured neurons, suggesting significant variability in the neural effects of clinically utilized progestagens. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Methamphetamine-induced dopaminergic toxicity prevented owing to the neuroprotective effects of salicylic acid.

    Science.gov (United States)

    Thrash-Williams, Bessy; Karuppagounder, Senthilkumar S; Bhattacharya, Dwipayan; Ahuja, Manuj; Suppiramaniam, Vishnu; Dhanasekaran, Muralikrishnan

    2016-06-01

    Methamphetamine (Schedule-II drug, U.S. Drug Enforcement Administration) is one of the most abused illicit drug following cocaine, marijuana, and heroin in the USA. There are numerous health impairments and substantial economic burden caused by methamphetamine abuse. Salicylic acid, potent anti-inflammatory drug and a known neuroprotectant has shown to protect against toxicity-induced by other dopaminergic neurotoxins. Hence, in this study we investigated the neuroprotective effects of salicylic acid against methamphetamine-induced toxicity in mice. The current study investigated the effects of sodium salicylate and/or methamphetamine on oxidative stress, monoamine oxidase, mitochondrial complex I & IV activities using spectrophotometric and fluorimetric methods. Behavioral analysis evaluated the effect on movement disorders-induced by methamphetamine. Monoaminergic neurotransmitter levels were evaluated using high pressure liquid chromatography-electrochemical detection. Methamphetamine caused significant generation of reactive oxygen species and decreased complex-I activity leading to dopamine depletion. Striatal dopamine depletion led to significant behavioral changes associated with movement disorders. Sodium salicylate (50 & 100mg/kg) significantly scavenged reactive oxygen species, blocked mitochondrial dysfunction and exhibited neuroprotection against methamphetamine-induced neurotoxicity. In addition, sodium salicylate significantly blocked methamphetamine-induced behavioral changes related to movement abnormalities. One of the leading causative theories in nigral degeneration associated with movement disorders such as Parkinson's disease is exposure to stimulants, drugs of abuse, insecticide and pesticides. These neurotoxic substances can induce dopaminergic neuronal insult by oxidative stress, apoptosis, mitochondrial dysfunction and inflammation. Salicylic acid due to its antioxidant and anti-inflammatory effects could provide neuroprotection against the

  6. Neuroprotective effects of SMADs in a rat model of cerebral ischemia/reperfusion

    Directory of Open Access Journals (Sweden)

    Fang-fang Liu

    2015-01-01

    Full Text Available Previous studies have shown that up-regulation of transforming growth factor β1 results in neuroprotective effects. However, the role of the transforming growth factor β1 downstream molecule, SMAD2/3, following ischemia/reperfusion remains unclear. Here, we investigated the neuroprotective effects of SMAD2/3 by analyzing the relationships between SMAD2/3 expression and cell apoptosis and inflammation in the brain of a rat model of cerebral ischemia/reperfusion. Levels of SMAD2/3 mRNA were up-regulated in the ischemic penumbra 6 hours after cerebral ischemia/reperfusion, reached a peak after 72 hours and were then decreased at 7 days. Phosphorylated SMAD2/3 protein levels at the aforementioned time points were consistent with the mRNA levels. Over-expression of SMAD3 in the brains of the ischemia/reperfusion model rats via delivery of an adeno-associated virus containing the SMAD3 gene could reduce tumor necrosis factor-α and interleukin-1β mRNA levels, down-regulate expression of the pro-apoptotic gene, capase-3, and up-regulate expression of the anti-apoptotic protein, Bcl-2. The SMAD3 protein level was negatively correlated with cell apoptosis. These findings indicate that SMAD3 exhibits neuroprotective effects on the brain after ischemia/reperfusion through anti-inflammatory and anti-apoptotic pathways.

  7. TRPV1 may increase the effectiveness of estrogen therapy on neuroprotection and neuroregeneration

    Directory of Open Access Journals (Sweden)

    Ricardo Ramírez-Barrantes

    2016-01-01

    Full Text Available Aging induces physical deterioration, loss of the blood brain barrier, neuronal loss-induced mental and neurodegenerative diseases. Hypotalamus-hypophysis-gonad axis aging precedes symptoms of menopause or andropause and is a major determinant of sensory and cognitive integrated function. Sexual steroids support important functions, exert pleiotropic effects in different sensory cells, promote regeneration, plasticity and health of the nervous system. Their diminution is associated with impaired cognitive and mental health and increased risk of neurodegenerative diseases. Then, restoring neuroendocrine axes during aging can be key to enhance brain health through neuroprotection and neuroregeneration, depending on the modulation of plasticity mechanisms. Estrogen-dependent transient receptor potential cation channel, subfamily V, member 1 (TRPV1 expression induces neuroprotection, neurogenesis and regeneration on damaged tissues. Agonists of TRPV1 can modulate neuroprotection and repair of sensitive neurons, while modulators as other cognitive enhancers may improve the survival rate, differentiation and integration of neural stem cell progenitors in functional neural network. Menopause constitutes a relevant clinical model of steroidal production decline associated with progressive cognitive and mental impairment, which allows exploring the effects of hormone therapy in health outcomes such as dysfunction of CNS. Simulating the administration of hormone therapy to virtual menopausal individuals allows assessing its hypothetical impact and sensitivity to conditions that modify the effectiveness and efficiency.

  8. A new look at an old drug: neuroprotective effects and therapeutic potentials of lithium salts

    Directory of Open Access Journals (Sweden)

    Dell’Osso L

    2016-07-01

    Full Text Available Liliana Dell’Osso, Claudia Del Grande, Camilla Gesi, Claudia Carmassi, Laura Musetti Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy Abstract: Increasing evidence highlights bipolar disorder as being associated with impaired neurogenesis, cellular plasticity, and resiliency, as well as with cell atrophy or loss in specific brain regions. This has led most recent research to focus on the possible neuroprotective effects of medications, and particularly interesting findings have emerged for lithium. A growing body of evidence from preclinical in vitro and in vivo studies has in fact documented its neuroprotective effects from different insults acting on cellular signaling pathways, both preventing apoptosis and increasing neurotrophins and cell-survival molecules. Furthermore, positive effects of lithium on neurogenesis, brain remodeling, angiogenesis, mesenchymal stem cells functioning, and inflammation have been revealed, with a key role played through the inhibition of the glycogen synthase kinase-3, a serine/threonine kinase implicated in the pathogenesis of many neuropsychiatric disorders. These recent evidences suggest the potential utility of lithium in the treatment of neurodegenerative diseases, neurodevelopmental disorders, and hypoxic–ischemic/traumatic brain injury, with positive results at even lower lithium doses than those traditionally considered to be antimanic. The aim of this review is to briefly summarize the potential benefits of lithium salts on neuroprotection and neuroregeneration, emphasizing preclinical and clinical evidence suggesting new therapeutic potentials of this drug beyond its mood stabilizing properties. Keywords: bipolar disorder, GSK-3, neurodegeneration, neurogenesis, neurodevelopmental disorders

  9. Acute neuroprotective effects of extremely low-frequency electromagnetic fields after traumatic brain injury in rats.

    Science.gov (United States)

    Yang, Yang; Li, Ling; Wang, Yan-Gang; Fei, Zhou; Zhong, Jun; Wei, Li-Zhou; Long, Qian-Fa; Liu, Wei-Ping

    2012-05-10

    Traumatic brain injury commonly has a result of a short window of opportunity between the period of initial brain injury and secondary brain injury, which provides protective strategies and can reduce damages of brain due to secondary brain injury. Previous studies have reported neuroprotective effects of extremely low-frequency electromagnetic fields. However, the effects of extremely low-frequency electromagnetic fields on neural damage after traumatic brain injury have not been reported yet. The present study aims to investigate effects of extremely low-frequency electromagnetic fields on neuroprotection after traumatic brain injury. Male Sprague-Dawley rats were used for the model of lateral fluid percussion injury, which were placed in non-electromagnetic fields and 15 Hz (Hertz) electromagnetic fields with intensities of 1 G (Gauss), 3 G and 5 G. At various time points (ranging from 0.5 to 30 h) after lateral fluid percussion injury, rats were treated with kainic acid (administered by intraperitoneal injection) to induce apoptosis in hippocampal cells. The results were as follows: (1) the expression of hypoxia-inducible factor-1α was dramatically decreased during the neuroprotective time window. (2) The kainic acid-induced apoptosis in the hippocampus was significantly decreased in rats exposed to electromagnetic fields. (3) Electromagnetic fields exposure shortened the escape time in water maze test. (4) Electromagnetic fields exposure accelerated the recovery of the blood-brain barrier after brain injury. These findings revealed that extremely low-frequency electromagnetic fields significantly prolong the window of opportunity for brain protection and enhance the intensity of neuroprotection after traumatic brain injury. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Neuroprotective and Anti-Inflammatory Effects of Rhus coriaria Extract in a Mouse Model of Ischemic Optic Neuropathy

    Directory of Open Access Journals (Sweden)

    Saba Khalilpour

    2018-04-01

    Full Text Available Modulating oxidative stresses and inflammation can potentially prevent or alleviate the pathological conditions of diseases associated with the nervous system, including ischemic optic neuropathy. In this study we evaluated the anti-neuroinflammatory and neuroprotective activities of Rhus coriaria (R. coriaria extract in vivo. The half maximal inhibitory concentration (IC50 for DPPH, ABTS and β–carotene were 6.79 ± 0.009 µg/mL, 10.94 ± 0.09 µg/mL, and 6.25 ± 0.06 µg/mL, respectively. Retinal ischemia was induced by optic nerve crush injury in albino Balb/c mice. The anti-inflammatory activity of ethanolic extract of R. coriaria (ERC and linoleic acid (LA on ocular ischemia was monitored using Fluorescence Molecular Tomography (FMT. Following optic nerve crush injury, the mice treated with 400 mg/kg of ERC and LA exhibited an 84.87% and 86.71% reduction of fluorescent signal (cathepsin activity respectively. The results of this study provide strong scientific evidence for the neuroprotective activity of the ERC, identifying LA as one of the main components responsible for the effect. ERC may be useful and worthy of further development for its adjunctive utilization in the treatment of optic neuropathy.

  11. Uric acid demonstrates neuroprotective effect on Parkinson's disease mice through Nrf2-ARE signaling pathway.

    Science.gov (United States)

    Huang, Ting-Ting; Hao, Dong-Lin; Wu, Bo-Na; Mao, Lun-Lin; Zhang, Jin

    2017-12-02

    Uric acid has neuroprotective effect on Parkinson's disease (PD) by inhibiting oxidative damage and neuronal cell death. Our previous study has shown that uric acid protected dopaminergic cell line damage through inhibiting accumulation of NF-E2-related factor 2 (Nrf2). This study aimed to investigate its in vivo neuroprotective effect. PD was induced by MPTP intraperitoneally injection for 7 d in male C57BL/6 mice. Mice were treated with either uric acid (intraperitoneally injection 250 mg/kg) or saline for a total of 13 d. We showed that uric acid improved behavioral performances and cognition of PD mice, increased TH-positive dopaminergic neurons and decreased GFAP-positive astrocytes in substantia nigra (SN). Uric acid increased mRNA and protein expressions of Nrf2 and three Nrf2-responsive genes, including γ-glutamate-cysteine ligase catalytic subunit (γ-GCLC), heme oxygenase-1 (HO-1) and NQO1. Uric acid significantly increased superoxide dismutase (SOD), CAT, glutathione (GSH) levels and decreased malondialdehyde (MDA) level in SN regions of MPTP-treated mice. Uric acid inhibited the hippocampal expression of IL-1β and decreased serum and hippocampus levels of interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α). In conclusion, uric acid demonstrates neuroprotective properties for dopaminergic neurons in PD mice through modulation of neuroinflammation and oxidative stress. Copyright © 2017. Published by Elsevier Inc.

  12. Neuroprotective effect of adenoviral catalase gene transfer in cortical neuronal cultures.

    Science.gov (United States)

    Gáspár, Tamás; Domoki, Ferenc; Lenti, Laura; Institoris, Adám; Snipes, James A; Bari, Ferenc; Busija, David W

    2009-05-13

    Reduced availability of reactive oxygen species is a key component of neuroprotection against various toxic stimuli. Recently we showed that the hydrogen peroxide scavenger catalase plays a central role in delayed preconditioning induced by the mitochondrial ATP-sensitive potassium channel opener BMS-191095. The purpose of the experiments discussed here was to investigate the neuroprotective effect of catalase in vitro using a recombinant adenoviral catalase gene transfer protocol. To induce catalase overexpression, cultured rat cortical neurons were infected with the adenoviral vector Ad5CMVcatalase and control cells were incubated with Ad5CMVntLacZ for 24 h. Gene transfer effectively increased catalase protein levels and activity, but did not influence other antioxidants tested. Ad5CMVcatalase, with up to 10 plaque forming units (pfu) per neuron, did not affect cell viability under control conditions and did not protect against glutamate excitotoxicity or oxygen-glucose deprivation. In contrast, catalase overexpression conferred a dose-dependent protection against exposure to hydrogen peroxide (viability: control, 33.02+/-1.09%; LacZ 10 pfu/cell, 32.85+/-1.51%; catalase 1 pfu/cell, 62.09+/-4.17%*; catalase 2 pfu/cell, 98.71+/-3.35%*; catalase 10 pfu/cell, 99.68+/-1.99%*; *pcatalase inhibitor 3-aminotriazole. Our results support the view that enhancing cellular antioxidant capacity may play a crucial role in neuroprotective strategies.

  13. Neuroprotective effect of the endogenous neural peptide apelin in cultured mouse cortical neurons

    International Nuclear Information System (INIS)

    Zeng, Xiang Jun; Yu, Shan Ping; Zhang, Like; Wei, Ling

    2010-01-01

    The adipocytokine apelin and its G protein-coupled APJ receptor were initially isolated from a bovine stomach and have been detected in the brain and cardiovascular system. Recent studies suggest that apelin can protect cardiomyocytes from ischemic injury. Here, we investigated the effect of apelin on apoptosis in mouse primary cultures of cortical neurons. Exposure of the cortical cultures to a serum-free medium for 24 h induced nuclear fragmentation and apoptotic death; apelin-13 (1.0-5.0 nM) markedly prevented the neuronal apoptosis. Apelin neuroprotective effects were mediated by multiple mechanisms. Apelin-13 reduced serum deprivation (SD)-induced ROS generation, mitochondria depolarization, cytochrome c release and activation of caspase-3. Apelin-13 prevented SD-induced changes in phosphorylation status of Akt and ERK1/2. In addition, apelin-13 attenuated NMDA-induced intracellular Ca 2+ accumulation. These results indicate that apelin is an endogenous neuroprotective adipocytokine that may block apoptosis and excitotoxic death via cellular and molecular mechanisms. It is suggested that apelins may be further explored as a potential neuroprotective reagent for ischemia-induced brain damage.

  14. Neuroprotective Effects of Cannabidiol in Hypoxic Ischemic Insult. The Therapeutic Window in Newborn Mice.

    Science.gov (United States)

    Mohammed, Nagat; Ceprian, Maria; Jimenez, Laura; Pazos, M Ruth; Martínez-Orgado, Jose

    2017-01-01

    A relevant therapeutic time window (TTW) is an important criterion for considering the clinical relevance of a substance preventing newborn hypoxic-ischemic (HI) brain damage. To test the TTW of the neuroprotective effects of cannabidol (CBD), a non-psychoactive cannabinoid in a model of newborn HI brain damage. 9-10 day-old C57BL6 mice underwent a HI insult (10% oxygen for 90 min after left carotid artery electrocoagulation). Then, CBD 1 mg/kg or vehicle were administered s.c. 15 min, or 1, 3, 6, 12, 18 or 24 h after the end of the HI insult. Seven days later brain damage was assessed using T2W Magnetic Resonance Imaging scan (ipsilateral hemisphere volume loss, IVHL) and histological studies: Nissl staining (neuropathological score), TUNEL staining (apoptotic damage) and immunohistochemistry with glial fibrillary acidic protein (astrocyte viability) or ionized calcium binding adaptor molecule (microglial activation). CBD administered up to 18 h after HI reduced IHVL and neuropathological score by 60%, TUNEL+ count by 90% and astrocyte damage by 50%. In addition, CBD blunted the HI-induced increase in microglial population. When CBD administration was delayed 24 h, however, the neuroprotective effect was lost in terms of IHVL, apoptosis or astrogliosis reduction. CBD shows a TTW of 18 h when administered to HI newborn mice, which represents a broader TTW than reported for other neuroprotective treatments including hypothermia. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. The neuroprotective effect of hyperbaric oxygen treatment on laser-induced retinal damage in rats

    Science.gov (United States)

    Vishnevskia-Dai, Victoria; Belokopytov, Mark; Dubinsky, Galina; Nachum, Gal; Avni, Isaac; Belkin, Michael; Rosner, Mordechai

    2005-04-01

    Retinal damage induced by mechanical trauma, ischemia or laser photocoagulation increases considerably by secondary degeneration processes. The spread of damage may be ameliorated by neuroprotection that is aimed at reducing the extent of the secondary degeneration and promote healing processes. Hyperbaric oxygen (HBO) treatment consists of inspiration of oxygen at higher than one absolute atmospheric pressure. Improved neural function was observed in patients with acute brain trauma or ischemia treated with HBO. This study was designed to evaluate the neuroprotective effect of hyperbaric oxygen (HBO) on laser induced retinal damage in a rat model. Standard argon laser lesions were created in 25 pigmented rats divided into three groups: Ten rats were treated immediately after the irradiation with HBO three times during the first 24 hr followed by 12 consecutive daily treatments. Five rats received a shorter treatment regimen of 10 consecutive HBO treatments. The control group (10 rats) underwent the laser damage with no additional treatment. The retinal lesions were evaluated 20 days after the injury. All outcome measures were improved by the longer HBO treatment (Ptreatment was less effective, showing an increase only in nuclei density at the central area of lesion (Pretinal damage in a rat model. In the range of HBO exposures studied, longer exposure provides more neuroprotection. These results encourage further evaluation of the potential therapeutic use of hyperbaric oxygen in diseases and injuries of the retina.

  16. Neuroprotective effect of the endogenous neural peptide apelin in cultured mouse cortical neurons

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiang Jun [Department of Pathophysiology, Capital Medical University, Beijing 100069 (China); Department of Anesthesiology, 101 Woodruff Circle, Suite 617, Emory University School of Medicine, Atlanta, GA 30322 (United States); Yu, Shan Ping [Department of Anesthesiology, 101 Woodruff Circle, Suite 617, Emory University School of Medicine, Atlanta, GA 30322 (United States); Zhang, Like [Department of Pathophysiology, Capital Medical University, Beijing 100069 (China); Wei, Ling, E-mail: lwei7@emory.edu [Department of Anesthesiology, 101 Woodruff Circle, Suite 617, Emory University School of Medicine, Atlanta, GA 30322 (United States)

    2010-07-01

    The adipocytokine apelin and its G protein-coupled APJ receptor were initially isolated from a bovine stomach and have been detected in the brain and cardiovascular system. Recent studies suggest that apelin can protect cardiomyocytes from ischemic injury. Here, we investigated the effect of apelin on apoptosis in mouse primary cultures of cortical neurons. Exposure of the cortical cultures to a serum-free medium for 24 h induced nuclear fragmentation and apoptotic death; apelin-13 (1.0-5.0 nM) markedly prevented the neuronal apoptosis. Apelin neuroprotective effects were mediated by multiple mechanisms. Apelin-13 reduced serum deprivation (SD)-induced ROS generation, mitochondria depolarization, cytochrome c release and activation of caspase-3. Apelin-13 prevented SD-induced changes in phosphorylation status of Akt and ERK1/2. In addition, apelin-13 attenuated NMDA-induced intracellular Ca{sup 2+} accumulation. These results indicate that apelin is an endogenous neuroprotective adipocytokine that may block apoptosis and excitotoxic death via cellular and molecular mechanisms. It is suggested that apelins may be further explored as a potential neuroprotective reagent for ischemia-induced brain damage.

  17. Neuroprotective Effects of Galantamine on Nerve Agent-Induced Neuroglial and Biochemical Changes.

    Science.gov (United States)

    Golime, RamaRao; Palit, Meehir; Acharya, J; Dubey, D K

    2017-09-19

    Neuroprotection from nerve agent such as soman-induced neural damage is a major challenge for existing drugs. Nerve agent exposure can cause many neural effects in survivors arising mainly due to acetylcholinesterase (AChE) inhibition or death within minutes. Unraveling the mechanisms underlying the nerve agent-induced multiple neurological effects is useful to develop better and safe drugs. The present study aimed to understand the molecular response during soman exposure and to evaluate the neuroprotective efficacy of galantamine on nerve agent-induced neurotoxic changes. mRNA expression studies using quantitative real-time PCR revealed significant changes in S-100β, Gfap, c-fos, and Bdnf in the hippocampus and piriform cortex after soman (90 μg/kg, s.c) exposure. Immunoblot analysis showed acute soman exposure significantly increased the protein levels of neuroglial markers (S100-β and GFAP); c-Fos and protein oxidation in discrete rat brain areas indicate their role in nerve agent-induced neurotoxicity. Induction of BDNF levels during soman exposure may indicate the recovery mechanisms activation. AChE was inhibited in the blood and brain up to 82% after soman exposure. Antidotal treatment with galantamine alone (3 mg/kg) and galantamine plus atropine (10 mg/kg) has protected animals from nerve agent-induced intoxication, death, and soman-inhibited AChE up to 45% in the blood and brain. Animal received galantamine displayed increased levels of neuroprotective genes (nAChRα-7, Bcl-2, and Bdnf) in the brain suggest the neuroprotective value of galantamine. Neuroglial changes, c-Fos, and protein oxidation levels significantly reduced after galantamine and galantamine plus atropine treatment indicate their potential antidotal value in nerve agent treatment.

  18. Specific neuroprotective effects of manual stimulation of real ...

    African Journals Online (AJOL)

    The objective of this study was to investigate the effectiveness and specific effects of acupuncture on ischemic-induced damage in rats after permanent middle cerebral artery occlusion. Cerebral ischemia was induced by middle cerebral artery occlusion in male Wistar rats. The rats were divided into the following 4 groups: ...

  19. Potential Neuroprotective Effects of Adiponectin in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Roy Chun-Laam Ng

    2017-03-01

    Full Text Available The adipocyte-secreted protein adiponectin (APN has several protective functions in the peripheral tissues including insulin sensitizing, anti-inflammatory and anti-oxidative effects that may benefit neurodegenerative diseases such as Alzheimer’s disease (AD. In addition, dysregulation of cerebral insulin sensitivities and signaling activities have been implicated in AD. Emerging insights into the mechanistic roles of adiponectin and AD highlight the potential therapeutic effects for AD through insulin signaling.

  20. The neuroprotective effects of caffeine in neurodegenerative diseases.

    Science.gov (United States)

    Kolahdouzan, Mahshad; Hamadeh, Mazen J

    2017-04-01

    Caffeine is the most widely used psychostimulant in Western countries, with antioxidant, anti-inflammatory and anti-apoptotic properties. In Alzheimer's disease (AD), caffeine is beneficial in both men and women, in humans and animals. Similar effects of caffeine were observed in men with Parkinson's disease (PD); however, the effect of caffeine in female PD patients is controversial due to caffeine's competition with estrogen for the estrogen-metabolizing enzyme, CYP1A2. Studies conducted in animal models of amyotrophic lateral sclerosis (ALS) showed protective effects of A 2 A R antagonism. A study found caffeine to be associated with earlier age of onset of Huntington's disease (HD) at intakes >190 mg/d, but studies in animal models have found equivocal results. Caffeine is protective in AD and PD at dosages equivalent to 3-5 mg/kg. However, further research is needed to investigate the effects of caffeine on PD in women. As well, the effects of caffeine in ALS, HD and Machado-Joseph disease need to be further investigated. Caffeine's most salient mechanisms of action relevant to neurodegenerative diseases need to be further explored. © 2017 John Wiley & Sons Ltd.

  1. Dose-related neuroprotective effects of chronic nicotine in 6-hydroxydopamine treated rats, and loss of neuroprotection in α4 nicotinic receptor subunit knockout mice

    Science.gov (United States)

    Ryan, R E; Ross, S A; Drago, J; Loiacono, R E

    2001-01-01

    The present study examined the effect of a range of doses of chronic nicotine (0.75, 1.5, 3.0 and 30.0 mg kg−1 day−1, s.c., 14 days) upon striatal dopaminergic nerve terminal survival following 6-hydroxydopamine (6-OHDA; 10 μg intrastriatal unilaterally) in rats; and the effects of acute nicotine (1 mg kg−1, s.c.) pretreatment upon striatal neurodegeneration induced by methamphetamine (5 mg kg−1, i.p., three doses at 2 h intervals) in wild-type and α4 nicotinic receptor (nAChR) subunit knockout mice.In both models of Parkinsonian-like damage, loss of striatal dopaminergic nerve terminals was assessed by [3H]-mazindol autoradiography.In rats, chronic nicotine infusion delivered by osmotic minipump implanted subcutaneously 7 days prior to intrastriatal 6-OHDA injection produced significant and dose-related protection against 6-OHDA-induced neurodegeneration. Low (0.75 and 1.5 mg kg−1 day−1) but not high (3.0 and 30.0 mg kg−1 day−1) nicotine doses significantly inhibited 6-OHDA-induced degeneration.In wild-type mice, acute nicotine treatment produced significant inhibition of methamphetamine-induced neurodegeneration. In α4 nAChR subunit knockout mice, acute nicotine treatment failed to inhibit methamphetamine-induced neurodegeneration.Nicotine is capable of protecting dopaminergic neurons against Parkinsonian-like neurodegeneration in vivo. In rats, this neuroprotective effect is critically dependent upon nicotine dose and is consistent with the activation of nAChRs, as high, desensitizing doses of nicotine fail to be neuroprotective. Further, neuroprotection is absent in α4 nAChR subunit knockout mice. The current results therefore suggest that activation of α4 subunit containing nAChRs constitutes a major component of the neuroprotective effect of nicotine upon Parkinsonian-like damage in vivo. PMID:11309235

  2. A review on the possible neuroprotective effects of Moringa oleifera ...

    African Journals Online (AJOL)

    Moringa oleifera is an edible plant that has been reputed to be a miracle plant by numerous authors, with effects on practically every body system. Phytochemical analyses have demonstrated that the leaves are rich in various minerals, vitamins and antioxidants. Its use in some continents dates back to Antiquity.

  3. Neuroprotective Effects of Garlic: A review | Mathew | Libyan Journal ...

    African Journals Online (AJOL)

    Garlic has been investigated extensively for health benefits, resulting in more than one thousand publications over the last decade alone. It is considered one of the best disease preventive foods, based on its potent and varied effects. Midlife risk factors for cardiovascular diseases, such as high serum total cholesterol, ...

  4. Neuroprotective Effect of Sargassum thunbergii (Mertens ex Roth ...

    African Journals Online (AJOL)

    Purpose: To evaluate the anti-oxidant and anti-neuroinflammatory effects of the Sargassum thunbergii extract (Mertens ex Roth) Kuntze (STE) in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells in vitro. Methods: STE antioxidative activity was evaluated with an Electron Spin Resonance (ESR) spectrometer, which ...

  5. The Neuroprotection Effect of Oxygen Therapy: A Systematic Review ...

    African Journals Online (AJOL)

    2018-04-04

    Apr 4, 2018 ... NBO on oxidative cerebral metabolism and oxygen treatment for severe TBI was not an all or nothing phenomenon but represented a graduated effect.[27] In the following clinical trial, they evaluated the combination of HBO and NBO as a single treatment. Compared with standard care (control treatment), ...

  6. Neuroprotective effects of phytosterol esters against high cholesterol-induced cognitive deficits in aged rat.

    Science.gov (United States)

    Rui, Xu; Wenfang, Li; Jing, Cheng; Meng, Chen; Chengcheng, Ding; Jiqu, Xu; Shuang, Rong

    2017-03-22

    Accumulating epidemiological and experimental studies have confirmed that a high-cholesterol diet is detrimental to cognitive performance in animal models. Phytosterols, a class of naturally occurring structural components in plant foods, have been demonstrated to possess cholesterol-lowering and antioxidant effects. Phytosterol esters (PSE) are esters of phytosterol. The aim of this study was to evaluate the neuroprotective effects of PSE on cognitive deficit induced by a cholesterol-enriched diet in aged rats, and to explore their underlying mechanisms for these effects. Based on their Morris water maze performance, the latencies differed by <1.5 standard deviations (SDs) on days 3-5 of testing, 60 rats were chosen from 12-month-old female Sprague Dawley aged rats and were randomized into three groups, which were fed either a control diet, a high cholesterol diet (HCD) or a high-cholesterol diet supplemented with 2% PSE (HCD + PSE) for 6 months. In our study, we found that PSE treatment maintained the body weight balance, reduced the serum lipid levels, and improved the cognitive performance of aged rats in the Morris water maze test, as evaluated by shortened escape latencies. Importantly, histological and immunohistochemical results in the brain showed that PSE supplementation may have a neuroprotective effect that alleviates neuroinflammation in aged rats. This neuroprotective effect significantly inhibited degeneration, resulting in a significant increase in the number of pyramidal cells and an apparent decrease in the number of astrocytes compared to rats that were fed only a HCD. Furthermore, PSE improved cholinergic activities by restoring the acetylcholine (ACh) content and decreasing acetylcholinesterase (AChE) activity in the cerebral cortex, as well as by elevating choline acetyl transferase (ChAT) activity in the hippocampus and the cerebral cortex. These results suggest that PSE can play a useful role in alleviating cognitive deficit induced by a

  7. Neuroprotective and axon growth-promoting effects following inflammatory stimulation on mature retinal ganglion cells in mice depend on ciliary neurotrophic factor and leukemia inhibitory factor.

    Science.gov (United States)

    Leibinger, Marco; Müller, Adrienne; Andreadaki, Anastasia; Hauk, Thomas G; Kirsch, Matthias; Fischer, Dietmar

    2009-11-11

    After optic nerve injury retinal ganglion cells (RGCs) normally fail to regenerate axons in the optic nerve and undergo apoptosis. However, lens injury (LI) or intravitreal application of zymosan switch RGCs into an active regenerative state, enabling these neurons to survive axotomy and to regenerate axons into the injured optic nerve. Several factors have been proposed to mediate the beneficial effects of LI. Here, we investigated the contribution of glial-derived ciliary neurotrophic factor (CNTF) to LI-mediated regeneration and neuroprotection using wild-type and CNTF-deficient mice. In wild-type mice, CNTF expression was strongly upregulated in retinal astrocytes, the JAK/STAT3 pathway was activated in RGCs, and RGCs were transformed into an active regenerative state after LI. Interestingly, retinal LIF expression was correlated with CNTF expression after LI. In CNTF-deficient mice, the neuroprotective and axon growth-promoting effects of LI were significantly reduced compared with wild-type animals, despite an observed compensatory upregulation of LIF expression in CNTF-deficient mice. The positive effects of LI and also zymosan were completely abolished in CNTF/LIF double knock-out mice, whereas LI-induced glial and macrophage activation was not compromised. In culture CNTF and LIF markedly stimulated neurite outgrowth of mature RGCs. These data confirm a key role for CNTF in directly mediating the neuroprotective and axon regenerative effects of inflammatory stimulation in the eye and identify LIF as an additional contributing factor.

  8. Structure-activity relationships for flavone interactions with amyloid β reveal a novel anti-aggregatory and neuroprotective effect of 2',3',4'-trihydroxyflavone (2-D08).

    Science.gov (United States)

    Marsh, Dylan T; Das, Sukanya; Ridell, Jessica; Smid, Scott D

    2017-07-15

    Naturally-occurring flavonoids have well documented anti-aggregatory and neuroprotective properties against the hallmark toxic protein in Alzheimer's disease, amyloid β (Aβ). However the extensive diversity of flavonoids has limited the insight into the precise structure-activity relationships that confer such bioactive properties against the Aβ protein. In the present study we have characterised the Aβ binding properties, anti-aggregatory and neuroprotective effects of a discreet set of flavones, including the recently described novel protein sumoylation inhibitor 2',3',4'-trihydroxyflavone (2-D08). Quercetin, transilitin, jaceosidin, nobiletin and 2-D08 were incubated with human Aβ 1-42 for 48h in vitro and effects on Aβ fibrillisation kinetics and morphology measured using Thioflavin T (ThT) and electron microscopy respectively, in addition to effects on neuronal PC12 cell viability. Of the flavones studied, only quercetin, transilitin and 2-D08 significantly inhibited Aβ 1-42 aggregation and toxicity in PC12 cells. Of those, 2-D08 was the most effective inhibitor. The strong anti-amyloid activity of 2-D08 indicates that extensive hydroxylation in the B ring is the most important determinant of activity against β amyloid within the flavone scaffold. The lack of efficacy of jaceosidin and nobiletin indicate that extension of B ring hydroxylation with methoxyl groups result in an incremental loss of anti-fibrillar and neuroprotective activity, highlighting the constraint to vicinal hydroxyl groups in the B ring for effective inhibition of aggregation. These findings reveal further structural insights into anti-amyloid bioactivity of flavonoids in addition to a novel and efficacious anti-aggregatory and neuroprotective effect of the semi-synthetic flavone and sumoylation inhibitor 2',3',4'-trihydroxyflavone (2-D08). Such modified flavones may facilitate drug development targeting multiple pathways in neurodegenerative disease. Crown Copyright © 2017

  9. Neuroprotective effects of 17β-estradiol rely on estrogen receptor membrane initiated signals

    Directory of Open Access Journals (Sweden)

    Marco eFiocchetti

    2012-04-01

    Full Text Available 17β-estradiol (E2 exerts protective effects in the central nervous system besides its crucial role in many physiological and pathological events. E2 effects are not restricted to the brain areas related with the control of the reproductive function, but rather are widespread throughout the developing and the adult brain. E2 actions are mediated by estrogen receptors (i.e., ERα and ERβ belonging to the nuclear receptor super family. As members of the ligand-regulated transcription factor family, the actions of ERs in the brain were thought to mediate only the E2 long-term transcriptional effects. However, a growing body of evidence has emerged indicating the presence of rapid, membrane initiated E2 effects in the brain which result independent from ER transcriptional activities and involved in E2-induced neuroprotection. Aim of this review is to focus on the rapid effects of E2 in the brain taking into account the specific contribution of the signaling pathway of ERβ subtype in neuroprotective actions of E2.

  10. Neuroprotective effects of bis(7-tacrine against glutamate-induced retinal ganglion cells damage

    Directory of Open Access Journals (Sweden)

    Xu Zhi

    2010-03-01

    Full Text Available Abstract Background Glutamate-mediated excitotoxicity, primarily through N-methyl-D-aspartate (NMDA receptors, may be an important cause of retinal ganglion cells (RGCs death in glaucoma and several other retinal diseases. Bis(7-tacrine is a noncompetitive NMDA receptors antagonist that can prevent glutamate-induced hippocampal neurons damage. We tested the effects of bis(7-tacrine against glutamate-induced rat RGCs damage in vitro and in vivo. Results In cultured neonatal rats RGCs, the MTT assay showed that glutamate induced a concentration- and time-dependent toxicity. Bis(7-tacrine and memantine prevented glutamate-induced cell death in a concentration-dependent manner with IC50 values of 0.028 μM and 0.834 μM, respectively. The anti-apoptosis effects of bis(7-tacrine were confirmed by annexin V-FITC/PI staining. In vivo, TUNEL analysis and retrograde labeling analysis found that pretreatment with bis(7-tacrine(0.2 mg/kg induced a significant neuroprotective effect against glutamate-induced RGCs damage. Conclusions Our results showed that bis(7-tacrine had neuroprotective effects against glutamate-induced RGCs damage in vitro and in vivo, possibly through the drug's anti-NMDA receptor effects. These findings make bis(7-tacrine potentially useful for treating a variety of ischemic or traumatic retinopathies inclusive of glaucoma.

  11. Finding quantum effects in strong classical potentials

    Science.gov (United States)

    Hegelich, B. Manuel; Labun, Lance; Labun, Ou Z.

    2017-06-01

    The long-standing challenge to describing charged particle dynamics in strong classical electromagnetic fields is how to incorporate classical radiation, classical radiation reaction and quantized photon emission into a consistent unified framework. The current, semiclassical methods to describe the dynamics of quantum particles in strong classical fields also provide the theoretical framework for fundamental questions in gravity and hadron-hadron collisions, including Hawking radiation, cosmological particle production and thermalization of particles created in heavy-ion collisions. However, as we show, these methods break down for highly relativistic particles propagating in strong fields. They must therefore be improved and adapted for the description of laser-plasma experiments that typically involve the acceleration of electrons. Theory developed from quantum electrodynamics, together with dedicated experimental efforts, offer the best controllable context to establish a robust, experimentally validated foundation for the fundamental theory of quantum effects in strong classical potentials.

  12. Neuroprotective Effect of Lutein on NMDA-Induced Retinal Ganglion Cell Injury in Rat Retina.

    Science.gov (United States)

    Zhang, Chanjuan; Wang, Zhen; Zhao, Jiayi; Li, Qin; Huang, Cuiqin; Zhu, Lihong; Lu, Daxiang

    2016-05-01

    Lutein injection is a possible therapeutic approach for retinal diseases, but the molecular mechanism of its neuroprotective effect remains to be elucidated. The aim of this study was to investigate its protective effects in retinal ganglion cells (RGCs) against N-methyl-D-aspartate (NMDA)-induced retinal damage in vivo. Retinal damage was induced by intravitreal NMDA injection in rats. Each animal was given five daily intraperitoneal injections of Lutein or vehicle along with intravitreal NMDA injections. Electroretinograms were recorded. The number of viable RGCs was quantified using the retinal whole-mount method by immunofluorescence. Proteins were measured by Western blot assays. Lutein reduced the retinal damage and improved the response to light, as shown by an animal behavior assay (the black-and-white box method) in rats. Furthermore, Lutein treatment prevented the NMDA-induced reduction in phNR wave amplitude. Lutein increased RGC number after NMDA-induced retina damage. Most importantly, Bax, cytochrome c, p-p38 MAPK, and p-c-Jun were all upregulated in rats injected with NMDA, but these expression patterns were reversed by continuous Lutein uptake. Bcl-2, p-GSK-3β, and p-Akt in the Lutein-treated eyes were increased compared with the NMDA group. Lutein has neuroprotective effects against retinal damage, its protective effects may be partly mediated by its anti-excitability neurotoxicity, through MAPKs and PI3K/Akt signaling, suggesting a potential approach for suppressing retinal neural damage.

  13. The Long Run: Neuroprotective Effects of Physical Exercise on Adult Neurogenesis from Youth to Old Age

    Science.gov (United States)

    Saraulli, Daniele; Costanzi, Marco; Mastrorilli, Valentina; Farioli-Vecchioli, Stefano

    2017-01-01

    Background The rapid lengthening of life expectancy has raised the problem of providing social programs to counteract the age-related cognitive decline in a growing number of older people. Physical activity stands among the most promising interventions aimed at brain wellbeing, because of its effective neuroprotective action and low social cost. The purpose of this review is to describe the neuroprotective role exerted by physical activity in different life stages. In particular, we focus on adult neurogenesis, a process which has proved being highly responsive to physical exercise and may represent a major factor of brain health over the lifespan. Methods The most recent literature related to the subject has been reviewed. The text has been divided into three main sections, addressing the effects of physical exercise during childhood/adolescence, adulthood and aging, respectively. For each one, the most relevant studies, carried out on both human participants and rodent models, have been described. Results The data reviewed converge in indicating that physical activity exerts a positive effect on brain functioning throughout the lifespan. However, uncertainty remains about the magnitude of the effect and its biological underpinnings. Cellular and synaptic plasticity provided by adult neurogenesis are highly probable mediators, but the mechanism for their action has yet to be conclusively established. Conclusion Despite alternative mechanisms of action are currently debated, age-appropriate physical activity programs may constitute a large-scale, relatively inexpensive and powerful approach to dampen the individual and social impact of age-related cognitive decline. PMID:27000776

  14. Neuroprotective effect of 3-morpholinosydnonimine against Zn²⁺-induced PC12 cell death.

    Science.gov (United States)

    An, Jeong Mi; Moon, Seong Ah; Hong, Soo Young; Kang, Jeong Wan; Seo, Jeong Taeg

    2015-02-05

    Excessive intracellular accumulation of zinc (Zn(2+)) is neurotoxic and contributes to a number of neuropathological conditions. Here, we investigated the protective effect of 3-morpholinosydnonimine (SIN-1) against Zn(2+)-induced neuronal cell death in differentiated PC12 cells. We found that Zn(2+)-induced PC12 cell death was reduced in a concentration-dependent manner by pretreatment with SIN-1. The intracellular accumulation of Zn(2+) was not affected by pretreatment with SIN-1, indicating that SIN-1-induced neuroprotection was not attributable to reduced influx of Zn(2+) into cells. SIN-1C, the stable decomposition product of SIN-1, failed to prevent Zn(2+)-induced cell death. Furthermore, the protective effect of SIN-1 against Zn(2+)-induced PC12 cell death was almost completely abolished by uric acid, a free radical scavenger, suggesting that reactive oxygen and nitrogen species generated by SIN-1 may contribute to the protective effect. SIN-1 prevented the inactivation of glutathione reductase (GR) and the increase in the ratio of oxidized glutathione/total glutathione (GSSG/total GSH) induced by Zn(2+). Addition of membrane permeable GSH ethyl ester (GSH-EE) to PC12 cells prior to Zn(2+) treatment significantly increased cell viability. We therefore conclude that SIN-1 may exert neuroprotective effect against Zn(2+)-induced cell death in differentiated PC12 cells by preventing inhibition of GR and increase in GSSG/total GSH ratio. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Oil palm phenolics confer neuroprotective effects involving cognitive and motor functions in mice.

    Science.gov (United States)

    Leow, Soon-Sen; Sekaran, Shamala Devi; Tan, YewAi; Sundram, Kalyana; Sambanthamurthi, Ravigadevi

    2013-09-01

    Phenolics are important phytochemicals which have positive effects on chronic diseases, including neurodegenerative ailments. The oil palm (Elaeis guineensis) is a rich source of water-soluble phenolics. This study was carried out to discover the effects of administering oil palm phenolics (OPP) to mice, with the aim of identifying whether these compounds possess significant neuroprotective properties. OPP was given to BALB/c mice on a normal diet as fluids for 6 weeks while the controls were given distilled water. These animals were tested in a water maze and on a rotarod weekly to assess the effects of OPP on cognitive and motor functions, respectively. Using Illumina microarrays, we further explored the brain gene expression changes caused by OPP in order to determine the molecular mechanisms involved. Real-time quantitative reverse transcription-polymerase chain reaction experiments were then carried out to validate the microarray data. We found that mice given OPP showed better cognitive function and spatial learning when tested in a water maze, and their performance also improved when tested on a rotarod, possibly due to better motor function and balance. Microarray gene expression analysis showed that these compounds up-regulated genes involved in brain development and activity, such as those under the regulation of the brain-derived neurotrophic factor. OPP also down-regulated genes involved in inflammation. These results suggest that the improvement of mouse cognitive and motor functions by OPP is caused by the neuroprotective and anti-inflammatory effects of the extract.

  16. Neuroprotective effects of ultrasound-guided nerve growth factor injections after sciatic nerve injury

    Science.gov (United States)

    Li, Hong-fei; Wang, Yi-ru; Huo, Hui-ping; Wang, Yue-xiang; Tang, Jie

    2015-01-01

    Nerve growth factor (NGF) plays an important role in promoting neuroregeneration after peripheral nerve injury. However, its effects are limited by its short half-life; it is therefore important to identify an effective mode of administration. High-frequency ultrasound (HFU) is increasingly used in the clinic for high-resolution visualization of tissues, and has been proposed as a method for identifying and evaluating peripheral nerve damage after injury. In addition, HFU is widely used for guiding needle placement when administering drugs to a specific site. We hypothesized that HFU guiding would optimize the neuroprotective effects of NGF on sciatic nerve injury in the rabbit. We performed behavioral, ultrasound, electrophysiological, histological, and immunohistochemical evaluation of HFU-guided NGF injections administered immediately after injury, or 14 days later, and compared this mode of administration with intramuscular NGF injections. Across all assessments, HFU-guided NGF injections gave consistently better outcomes than intramuscular NGF injections administered immediately or 14 days after injury, with immediate treatment also yielding better structural and functional results than when the treatment was delayed by 14 days. Our findings indicate that NGF should be administered as early as possible after peripheral nerve injury, and highlight the striking neuroprotective effects of HFU-guided NGF injections on peripheral nerve injury compared with intramuscular administration. PMID:26807123

  17. Neuroprotective effects of ultrasound-guided nerve growth factor injections after sciatic nerve injury.

    Science.gov (United States)

    Li, Hong-Fei; Wang, Yi-Ru; Huo, Hui-Ping; Wang, Yue-Xiang; Tang, Jie

    2015-11-01

    Nerve growth factor (NGF) plays an important role in promoting neuroregeneration after peripheral nerve injury. However, its effects are limited by its short half-life; it is therefore important to identify an effective mode of administration. High-frequency ultrasound (HFU) is increasingly used in the clinic for high-resolution visualization of tissues, and has been proposed as a method for identifying and evaluating peripheral nerve damage after injury. In addition, HFU is widely used for guiding needle placement when administering drugs to a specific site. We hypothesized that HFU guiding would optimize the neuroprotective effects of NGF on sciatic nerve injury in the rabbit. We performed behavioral, ultrasound, electrophysiological, histological, and immunohistochemical evaluation of HFU-guided NGF injections administered immediately after injury, or 14 days later, and compared this mode of administration with intramuscular NGF injections. Across all assessments, HFU-guided NGF injections gave consistently better outcomes than intramuscular NGF injections administered immediately or 14 days after injury, with immediate treatment also yielding better structural and functional results than when the treatment was delayed by 14 days. Our findings indicate that NGF should be administered as early as possible after peripheral nerve injury, and highlight the striking neuroprotective effects of HFU-guided NGF injections on peripheral nerve injury compared with intramuscular administration.

  18. Neuroprotective effects of (-)-linalool against oxygen-glucose deprivation-induced neuronal injury.

    Science.gov (United States)

    Park, Hyeon; Seol, Geun Hee; Ryu, Sangwoo; Choi, In-Young

    2016-04-01

    (-)-Linalool, a major component of many essential oils, is widely used in cosmetics and flavoring ingredients as well as in traditional medicines. Although various in vitro and in vivo studies have shown that (-)-linalool has anti-convulsant, anti-nociceptive, anti-inflammatory and anti-oxidative properties, its anti-ischemic/hypoxic effects have yet to be determined. This study assessed the neuroprotective effects of (-)-linalool against oxygen-glucose deprivation/reoxygenation (OGD/R)-induced cortical neuronal injury, an in vitro model of ischemic stroke. (-)-Linalool significantly attenuated OGD/R-evoked cortical neuronal injury/death, although it did not inhibit N-methyl-D-aspartate (NMDA)-induced excitotoxicity. (-)-Linalool significantly reduced intracellular oxidative stress during OGD/R-induced injury, as well as scavenging peroxyl radicals (Trolox equivalents or TE = 3.8). This anti-oxidant effect was found to correlate with the restoration of OGD/R-induced decreases in the activities of SOD and catalase. In addition, (-)-linalool inhibited microglial migration induced by monocyte-chemoattractant protein-1 (MCP-1), a chemokine released by OGD/R. These findings show that (-)-linalool has neuroprotective effects against OGD/R-induced neuronal injury, which may be due to its anti-oxidant and anti-inflammatory activities. Detailed examination of the anti-ischemic mechanisms of (-)-linalool may indicate strategies for the development of drugs to treat cerebral ischemic injury.

  19. Neuroprotective effect of Portulaca oleracea extracts against 6-hydroxydopamine-induced lesion of dopaminergic neurons

    Directory of Open Access Journals (Sweden)

    WALESKA B. MARTINS

    2016-01-01

    Full Text Available ABSTRACT The Portulaca oleracea L. (Portulacaceae is a cosmopolitan species with a wide range of biological activities, including antioxidant and neuroprotective actions. We investigated the effects of P. oleracea extracts in a 6-hydroxydopamine rat model of Parkinson's disease, a debilitating disorder without effective treatments. Chemical profiles of aqueous and ethanolic extracts of whole plant were analyzed by thin layer chromatography and the antioxidant activity was assessed by 2,2-diphenyl-1-picrilhidrazila method. Male Wistar rats received intrastriatal 6-hydroxydopamine and were treated with vehicle or extracts (oral, 200 and 400 mg/kg daily for two weeks. The behavioral open field test was conducted at days 1 and 15. Immunohistochemical analysis was performed 4 weeks after surgery to quantify tyrosine-hydroxylase cell counts in the substantia nigra pars compacta. Extracts presented antioxidant activity in concentrations above 300 µg/kg. The chromatographic analysis revealed the presence of Levodopa, alkaloids, flavonoids, saponins, tannins, terpenoids and polysaccharides. Both extracts improved motor recovery 15 days after lesion and protected from tyrosine-hydroxylase cell loss after 4 weeks, but these effects were more evident for the aqueous extract. Because the dopamine precursor is present, in addition to antioxidant compounds and neuroprotective effects, P. oleracea can be considered as potential strategy for treating Parkinson's disease.

  20. Neuroprotective effect of Portulaca oleracea extracts against 6-hydroxydopamine-induced lesion of dopaminergic neurons.

    Science.gov (United States)

    Martins, Waleska B; Rodrigues, Sheyla A; Silva, Hatamy K; Dantas, Camila G; Júnior, Waldecy DE Lucca; Filho, Lauro Xavier; Cardoso, Juliana C; Gomes, Margarete Z

    2016-09-01

    The Portulaca oleracea L. (Portulacaceae) is a cosmopolitan species with a wide range of biological activities, including antioxidant and neuroprotective actions. We investigated the effects of P. oleracea extracts in a 6-hydroxydopamine rat model of Parkinson's disease, a debilitating disorder without effective treatments. Chemical profiles of aqueous and ethanolic extracts of whole plant were analyzed by thin layer chromatography and the antioxidant activity was assessed by 2,2-diphenyl-1-picrilhidrazila method. Male Wistar rats received intrastriatal 6-hydroxydopamine and were treated with vehicle or extracts (oral, 200 and 400 mg/kg) daily for two weeks. The behavioral open field test was conducted at days 1 and 15. Immunohistochemical analysis was performed 4 weeks after surgery to quantify tyrosine-hydroxylase cell counts in the substantia nigra pars compacta. Extracts presented antioxidant activity in concentrations above 300 µg/kg. The chromatographic analysis revealed the presence of Levodopa, alkaloids, flavonoids, saponins, tannins, terpenoids and polysaccharides. Both extracts improved motor recovery 15 days after lesion and protected from tyrosine-hydroxylase cell loss after 4 weeks, but these effects were more evident for the aqueous extract. Because the dopamine precursor is present, in addition to antioxidant compounds and neuroprotective effects, P. oleracea can be considered as potential strategy for treating Parkinson's disease.

  1. Neuroprotective effects of ultrasound-guided nerve growth factor injections after sciatic nerve injury

    Directory of Open Access Journals (Sweden)

    Hong-fei Li

    2015-01-01

    Full Text Available Nerve growth factor (NGF plays an important role in promoting neuroregeneration after peripheral nerve injury. However, its effects are limited by its short half-life; it is therefore important to identify an effective mode of administration. High-frequency ultrasound (HFU is increasingly used in the clinic for high-resolution visualization of tissues, and has been proposed as a method for identifying and evaluating peripheral nerve damage after injury. In addition, HFU is widely used for guiding needle placement when administering drugs to a specific site. We hypothesized that HFU guiding would optimize the neuroprotective effects of NGF on sciatic nerve injury in the rabbit. We performed behavioral, ultrasound, electrophysiological, histological, and immunohistochemical evaluation of HFU-guided NGF injections administered immediately after injury, or 14 days later, and compared this mode of administration with intramuscular NGF injections. Across all assessments, HFU-guided NGF injections gave consistently better outcomes than intramuscular NGF injections administered immediately or 14 days after injury, with immediate treatment also yielding better structural and functional results than when the treatment was delayed by 14 days. Our findings indicate that NGF should be administered as early as possible after peripheral nerve injury, and highlight the striking neuroprotective effects of HFU-guided NGF injections on peripheral nerve injury compared with intramuscular administration.

  2. Comparative Neuroprotective Effects of Rasagiline and Aminoindan with Selegiline on Dexamethasone-Induced Brain Cell Apoptosis

    Science.gov (United States)

    Tazik, Shawna; Johnson, Shakevia; Lu, Deyin; Johnson, Chandra; Youdim, Moussa B. H.; Stockmeier, Craig A.

    2009-01-01

    Stress can affect the brain and lead to depression; however, the molecular pathogenesis is unclear. An association between stress and stress-induced hypersecretion of glucocorticoids occurs during stress. Dexamethasone (a synthetic glucocorticoid steroid) has been reported to induce apoptosis and increase the activity of monoamine oxidase (MAO) (Youdim et al. 1989). MAO is an enzyme for the degradation of aminergic neurotransmitters; dopamine, noradrenaline and serotonin and dietary amines and MAO inhibitors are classical antidepressant drugs. In this study, we have compared the ability of rasagiline (Azilect) and its main metabolite, R-aminoindan with selegiline (Deprenyl) in prevention of dexamethasone-induced brain cell death employing human neuroblastoma SH-SY5Y cells and glioblastoma 1242-MG cells. Dexamethasone reduced cell viability as measured by MTT test, but rasagiline, selegiline, and 1-R-aminoindan could significantly prevent dexamethasone-induced brain cell death. Among three drugs, rasagiline had the highest neuroprotective effect. Furthermore, the inhibitory effects of these drugs on MAOB catalytic activity and on apoptotic DNA damage (TUNEL staining) were examined. Rasagiline exhibited highest inhibition on MAO B enzymatic activity and prevention on DNA damage as compared to selegiline and 1-R-aminoindan. In summary, the greater neuroprotective effect of rasagiline may be associated with the combination of the parent drug and its metabolite 1-R-aminoindan. PMID:19384601

  3. Neuroprotective effects of polygalacic acid on scopolamine-induced memory deficits in mice.

    Science.gov (United States)

    Guo, Changrun; Shen, Jinyang; Meng, Zhaoqing; Yang, Xiaolin; Li, Fei

    2016-02-15

    Polygala tenuifolia Willd is a Traditional Chinese Medicine used for the treatment of learning and memory deficits. Triterpenoid saponins, the main bioactive compounds of Polygala tenuifolia Willd, are easily hydrolyzed to polygalacic acid (PA). The present study was undertaken to investigate the neuroprotective effects of PA on scopolamine-induced cognitive dysfunction and to elucidate its underlying mechanisms of action. PA (3, 6, and 12 mg/kg) was administered orally to mice for fourteen days, and scopolamine (1 mg/kg) was injected intraperitoneally for fourteen days to induce memory impairment. Memory-related behaviors were evaluated using the Morris water maze. Cholinergic and neuroinflammatory activities were measured in brain tissue. Superoxide dismutase activities, malondialdehyde and reduced glutathione contents were also measured in the brains. Treatment with scopolamine significantly increased the escape latency time, decreased the number of crossings, and shortened the time spent in the target quadrant, while PA reversed these scopolamine-induced effects. PA significantly improved cholinergic system reactivity, as indicated by decreased acetylcholinesterase (AChE) activity, increased choline acetyltransferase (ChAT) activity, and elevated levels of acetylcholine (ACh) in the hippocampus and frontal cortex. PA also significantly ameliorated neuroinflammation and oxidative stress in mice. These results suggest that PA might exert a significant neuroprotective effect on cognitive impairment, driven in part by the modulation of cholinergic activity and neuroinflammation. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. The Neuroprotective Effects of SIRT1 on NMDA-Induced Excitotoxicity

    Directory of Open Access Journals (Sweden)

    Xiaorong Yang

    2017-01-01

    Full Text Available Silent information regulator 1 (SIRT1, an NAD+-dependent deacetylase, is involved in the regulation of gene transcription, energy metabolism, and cellular aging and has become an important therapeutic target across a range of diseases. Recent research has demonstrated that SIRT1 possesses neuroprotective effects; however, it is unknown whether it protects neurons from NMDA-mediated neurotoxicity. In the present study, by activation of SIRT1 using resveratrol (RSV in cultured cortical neurons or by overexpression of SIRT1 in SH-SY5Y cell, we aimed to evaluate the roles of SIRT1 in NMDA-induced excitotoxicity. Our results showed that RSV or overexpression of SIRT1 elicited inhibitory effects on NMDA-induced excitotoxicity including a decrease in cell viability, an increase in lactate dehydrogenase (LDH release, and a decrease in the number of living cells as measured by CCK-8 assay, LDH test, and Calcein-AM and PI double staining. RSV or overexpression of SIRT1 significantly improved SIRT1 deacetylase activity in the excitotoxicity model. Further study suggests that overexpression of SIRT1 partly suppressed an NMDA-induced increase in p53 acetylation. These results indicate that SIRT1 activation by either RSV or overexpression of SIRT1 can exert neuroprotective effects partly by inhibiting p53 acetylation in NMDA-induced neurotoxicity.

  5. Anticonvulsant and neuroprotective effects of Rosa damascena hydro-alcoholic extract on rat hippocampus

    Directory of Open Access Journals (Sweden)

    Mansour Homayoun

    2015-04-01

    Full Text Available Objective: Previously, analgesic, hypnotic, and anticonvulsant effects have been suggested for Rosa damascena (R. damascena. In the present study, possible anti-seizure and neuro-protective effects of hydro-alcoholic extract of R. damascena has been investigated after inducing seizures in rats by pentylenetetrazole (PTZ. Materials and Methods: The rats were divided to five groups: (1 Control: received saline, (2 PTZ: 100 mg/kg, i.p., (3 PTZ-Extract 50 mg/kg(PTZ-Ext 50, (4 PTZ- Extract 100 mg/kg(PTZ-Ext 100, and (5 PTZ- Extract 200 mg/kg(PTZ-Ext 200 groups which were treated with 50, 100, and 200 mg/kg respectively of hydro-alcoholic extract of R. damascena for one week before PTZ injection. The animals were examined for electrocorticography (ECoG recording and finally, the brains were removed for histological study. Results: The hydro-alcoholic extract of R. damascena significantly prolonged the latency of seizure attacks and reduced the frequency and amplitude of epileptiform burst discharges induced by PTZ injection. Moreover, all three doses of the extract significantly inhibited production of dark neurons in different regions of the hippocampus in the mentioned animal model. Conclusion: The present study showed that the hydro-alcoholic extract of R. damascena has anticonvulsant and neuroprotective effects. More investigations are needed to be done in order to better understand the responsible compound(s as well as the possible mechanism(s.

  6. Neuroprotective effect of Buddleja officinalis extract on transient middle cerebral artery occlusion in rats.

    Science.gov (United States)

    Lee, Dae-Hee; Ha, Nina; Bu, Yung-Min; Choi, Hyoung Il; Park, Yoo Guen; Kim, Yoon Bum; Kim, Mi-Yeon; Kim, Hocheol

    2006-08-01

    The flower buds of Buddleja officinalis MAXIM (Loganiaceae) are used to treat headache and inflammatory diseases in traditional Korean medicine. In the present study, the neuroprotective effects of the methanolic extract of B. officinalis (BOME) and of its hexane fraction (BOHF) were investigated in a middle cerebral artery occlusion (MCAo, 120 min occlusion, 24 h reperfusion) Sprague-Dawley rat model. BOME or BOHF (100 mg/kg, p.o.) was twice administered 30 min before the onset of MCAo and 2 h after reperfusion. BOME and BOHF treated groups showed infarct volumes reduced by 33.9% and 68.2%, respectively, at 2 h occlusion. In BOHF treated animals, cyclooxygenase-2 and iNOS inductions were inhibited in ischemic hemispheres at both the mRNA and protein levels. Furthermore, in vitro studies showed that BOME and BOHF both inhibited LPS-induced nitric oxide production in BV-2 mouse microglial cells. These results suggest that the anti-inflammatory and the microglial activation inhibitory effects of B. officinalis extract may contribute to its neuroprotective effects in brain ischemia.

  7. Neuroprotective effects of oligodendrocyte progenitor cell transplantation in premature rat brain following hypoxic-ischemic injury.

    Directory of Open Access Journals (Sweden)

    Long-Xia Chen

    Full Text Available Periventricular leukomalacia (PVL is a common ischemic brain injury in premature infants for which there is no effective treatment. The objective of this study was to determine whether transplanted mouse oligodendrocyte progenitor cells (OPCs have neuroprotective effects in a rat model of PVL. Hypoxia-ischemia (HI was induced in 3-day-old rat pups by left carotid artery ligation, followed by exposure to 6% oxygen for 2.5 h. Animals were assigned to OPC transplantation or sham control groups and injected with OPCs or PBS, respectively, and sacrificed up to 6 weeks later for immunohistochemical analysis to investigate the survival and differentiation of transplanted OPCs. Apoptosis was evaluated by double immunolabeling of brain sections for caspase-3 and neuronal nuclei (NeuN, while proliferation was assessed using a combination of anti-Nestin and -bromodeoxyuridine antibodies. The expression of brain-derived neurotrophic factor (BDNF and Bcl-2 was examined 7 days after OPC transplantation. The Morris water maze was used to test spatial learning and memory. The results showed that transplanted OPCs survived and formed a myelin sheath, and stimulated BDNF and Bcl-2 expression and the proliferation of neural stem cells (NSC, while inhibiting HI-induced neuronal apoptosis relative to control animals. Moreover, deficits in spatial learning and memory resulting from HI were improved by OPC transplantation. These results demonstrate an important neuroprotective role for OPCs that can potentially be exploited in cell-based therapeutic approaches to minimize HI-induced brain injury.

  8. Neuroprotective effects of the triterpenoid, CDDO methyl amide, a potent inducer of Nrf2-mediated transcription.

    Directory of Open Access Journals (Sweden)

    Lichuan Yang

    Full Text Available The NF-E2-related factor-2 (Nrf2/antioxidant response element (ARE signaling pathway regulates phase 2 detoxification genes, including a variety of antioxidative enzymes. We tested neuroprotective effects of the synthetic triterpenoid CDDO-MA, a potent activator of the Nrf2/ARE signaling. CDDO-MA treatment of neuroblastoma SH-SY5Y cells resulted in Nrf2 upregulation and translocation from cytosol to nucleus and subsequent activation of ARE pathway genes. CDDO-MA blocked t-butylhydroperoxide-induced production of reactive oxygen species (ROS by activation of ARE genes only in wild type, but not Nrf2 knockout mouse embryonic fibroblasts. Oral administration of CDDO-MA resulted in significant protection against MPTP-induced nigrostriatal dopaminergic neurodegeneration, pathological alpha-synuclein accumulation and oxidative damage in mice. Additionally, CDDO-MA treatment in rats produced significant rescue against striatal lesions caused by the neurotoxin 3-NP, and associated increases in the oxidative damage markers malondialdehyde, F(2-Isoprostanes, 8-hydroxy-2-deoxyguanosine, 3-nitrotyrosine, and impaired glutathione homeostasis. Our results indicate that the CDDO-MA renders its neuroprotective effects through its potent activation of the Nrf2/ARE pathway, and suggest that triterpenoids may be beneficial for the treatment of neurodegenerative diseases like Parkinson's disease and Huntington's disease.

  9. In vitro evaluation of antioxidant and neuroprotective effects of curcumin loaded in Pluronic micelles

    Directory of Open Access Journals (Sweden)

    Cvetelina Gorinova

    2016-09-01

    Full Text Available Curcumin is a polyphenolic substance with attractive pharmacological activities (e.g. antioxidant, anti-inflammatory, anticancer. Incorporation of curcumin in polymeric micelles could overcome the problems associated with its instability and low aqueous solubility. The aim of this study was to load curcumin in polymeric micelles based on Pluronic® P 123 or Pluronic® F 127 triblock copolymers and evaluate the antioxidant and neuroprotective effects after micellization. The micelles were prepared and loaded with curcumin by applying the dissolution method. Higher encapsulation efficiency was observed in the micelles formulated with Pluronic® P 123. These micelles were characterized with small size and narrow size distribution. The effects of micellar curcumin were investigated in two in vitro models. First, the capacity of micellar curcumin to inhibit iron/ascorbic acid-induced lipid peroxidation in rat liver microsomes was evaluated. Micellar curcumin and free drug showed similar inhibition of lipid peroxidation. Second, micellar curcumin and free curcumin showed protective potential in a model of 6-hydroxydopamine induced neurotoxicity in rat brain synaptosomes. The results from both methods indicated preservation of antioxidant and neuroprotective activity of curcumin in micelles. The small micellar size, high loading capacity and preservation of antioxidant activity of curcumin into Pluronic micelles, suggested their further evaluation as a curcumin delivery system.

  10. Neuroprotective effects of cactus polysaccharide on oxygen and glucose deprivation induced damage in rat brain slices.

    Science.gov (United States)

    Huang, Xianju; Li, Qin; Zhang, Yingpei; Lü, Qing; Guo, Lianjun; Huang, Lin; He, Zhi

    2008-06-01

    1. The neuroprotective effect of cactus polysaccharide (CP) on oxygen and glucose deprivation (OGD) and reoxygenation (REO)-induced damage in the cortical and hippocampal slices of rat brain was investigated. 2. Cell viability was evaluated by using the 2, 3, 5-triphenyl tetrazolium chloride (TTC) method. The fluorescence of propidium iodide (PI) staining was used for quantification of cellular survival, and lactate dehydrogenase (LDH) activity in incubation medium was assessed by LDH assay to evaluate the degree of injury. 3. The OGD ischemic condition significantly decreased cellular viability and increased LDH release in the incubation medium. CP (0.2 mg/l approximately 2 mg/l) protected brain slices from OGD injury in a dosage dependent manner as demonstrated by increased A 490 value of TTC, decreased PI intensity and LDH release. At the above concentration, CP also prevented the increase of nitric oxide (NO) content and inducible nitric oxide synthase (iNOS) activity induced by OGD. 4. CP can protect the brain slices (cortical and hippocampus) against injury induced by OGD. Its neuroprotective effect may be partly mediated by the NO/iNOS system induced by OGD insult.

  11. Histidine Neuroprotective Effect on CA1 Region of Rat Hippocampus Following Transient Brain Ischemia

    Directory of Open Access Journals (Sweden)

    H Vaghefi Eftekhar

    2012-02-01

    Full Text Available Background & Aim: There are multiple processes that lead to cell death after brain ischemia, such as glutamate release and inflammatory reactions. Histamine is able to suppress inflammatory reactions and glutamate release. Since histidine is precursor of histamine, this study was conducted to evaluate its neuroprotective effects on CA1 region of rat hippocampus following brain ischemia. Methods: In the present experimental study, thirty-six male Wistar rats were randomly divided into six groups as the following: control, surgical control, ischemia, and three groups which different doses (200, 500, and 1000 mg/kg of histidine. Focal cerebral ischemia, for 60 min, was provoked by transient occlusion of the right middle cerebral artery in all groups except the two control groups, and histidine neuro-protective effects on neuronal death was evaluated in CA1 of hippocampus neurons after 7 days. The gathered data was analyzed using one-way ANOVA. Results: The results showed that the mean number of neuronal degeneration and pancellular necrosis in groups which received doses of 500 and 1000 mg/kg of histidine have significantly decreased in comparison with the ischemia group (p=0.001. This reduction in dose of 200 mg/kg of histidine was not statistically significant (p=0.05. Conclusion: Our present findings show that intraperitoneal administration of histidine before reperfusion alleviated CA1 damage.

  12. Neuroprotective effects of sildenafil against oxidative stress and memory dysfunction in mice exposed to noise stress.

    Science.gov (United States)

    Sikandaner, Hu Erxidan; Park, So Young; Kim, Min Jung; Park, Shi Nae; Yang, Dong Won

    2017-02-15

    Noise exposure has been well characterized as an environmental stressor, and is known to have auditory and non-auditory effects. Phosphodiesterase 5 (PDE5) inhibitors affect memory and hippocampus plasticity through various signaling cascades which are regulated by cGMP. In this study, we investigated the effects of sildenafil on memory deficiency, neuroprotection and oxidative stress in mice caused by chronic noise exposure. Mice were exposed to noise for 4h every day up to 14days at 110dB SPL of noise level. Sildenafil (15mg/kg) was orally administered 30min before noise exposure for 14days. Behavioral assessments were performed using novel object recognition (NOR) test and radial arm maze (RAM) test. Higher levels of memory dysfunction and oxidative stress were observed in noise alone-induced mice compared to control group. Interestingly, sildenafil administration increased memory performance, decreased oxidative stress, and increased neuroprotection in the hippocampus region of noise alone-induced mice likely through affecting memory related pathways such as cGMP/PKG/CREB and p25/CDK5, and induction of free radical scavengers such as SOD1, SOD2, SOD3, Prdx5, and catalase in the brain of stressed mice. Copyright © 2016. Published by Elsevier B.V.

  13. Neuroprotective Effect of Salvianolic Acids against Cerebral Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Shuai Hou

    2016-07-01

    Full Text Available This study investigated the neuroprotective effect of salvianolic acids (SA against ischemia/reperfusion (I/R injury, and explored whether the neuroprotection was dependent on mitochondrial connexin43 (mtCx43 via the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT pathway. In vitro, we measured astrocyte apoptosis, mitochondrial membrane potential, and also evaluated the morphology of astrocyte mitochondria with transmission electron microscopy. In vivo, we determined the cerebral infarction volume and measured superoxide dismutase (SOD activity and malondialdehyde (MDA content. Additionally, mtCx43, p-mtCx43, AKT, and p-AKT levels were determined. In vitro, we found that I/R injury induced apoptosis, decreased cell mitochondrial membrane potential (MMP, and damaged mitochondrial morphology in astrocytes. In vivo, we found that I/R injury resulted in a large cerebral infarction, decreased SOD activity, and increased MDA expression. Additionally, I/R injury reduced both the p-mtCx43/mtCx43 and p-AKT/AKT ratios. We reported that both in vivo and in vitro, SA ameliorated the detrimental outcomes of the I/R. Interestingly, co-administering an inhibitor of the PI3K/AKT pathway blunted the effects of SA. SA represents a potential treatment option for cerebral infarction by up-regulating mtCx43 through the PI3K/AKT pathway.

  14. Biochemical Properties and Neuroprotective Effects of Compounds in Various Species of Berries

    Directory of Open Access Journals (Sweden)

    Erin Kelly

    2017-12-01

    Full Text Available Several species of berries, such as blueberries (Vaccinium angustifolium and lingonberries (Vaccinium vitis-idaea L., have attracted much scientific attention in recent years, especially due to their reported antioxidant and anti-inflammatory properties. Berries, as with other types of plants, have developed metabolic mechanisms to survive various environmental stresses, some of which involve reactive oxygen species. In addition, the fruits and leaves of berries have high amounts of polyphenols, such as flavonoids, which act as potent antioxidants. These compounds could potentially be beneficial for brain aging and neurodegenerative disorders. There are now several studies documenting the beneficial effects of various berries in cell models of neurotoxicity as well as in vivo models of neurodegenerative disease. In the current review, we discuss the metabolic strategies that plants and animals have developed in order to combat reactive oxygen species. We then discuss issues of bioavailability of various compounds in mammals and provide a synopsis of studies demonstrating the neuroprotective ability of berries and polyphenols. We also summarize findings from our own research group. For example, we have detected various polyphenols in samples of blueberries and lingonberries and have found that the leaves have a much higher antioxidant capacity than the fruits. Extracts from these species have also demonstrated neuroprotective effects in cellular models of toxicity and inflammation, which are being further pursued in animal models.

  15. Neuroprotective and antioxidative effect of cactus polysaccharides in vivo and in vitro.

    Science.gov (United States)

    Huang, Xianju; Li, Qin; Li, Huige; Guo, Lianjun

    2009-12-01

    Cactus polysaccharides (CP), some of the active components in Opuntia dillenii Haw have been reported to display neuroprotective effects in rat brain slices. In the present study, we investigated the neuroprotective properties of CP and their potential mechanisms on brain ischemia-reperfusion injury in rats, and on oxidative stress-induced damage in PC12 cells. Male Sprague-Dawley rats with ischemia following middle cerebral artery occlusion and reperfusion were investigated. CP (200 mg/kg) significantly decreased the neurological deficit score, reduced infarct volume, decreased neuronal loss in cerebral cortex, and remarkably reduced the protein synthesis of inducible nitric oxide synthase which were induced by ischemia and reperfusion. Otherwise, the protective effect of CP was confirmed in in vitro study. CP protected PC12 cells against hydrogen peroxide (H(2)O(2)) insult. Pretreatment with CP prior to H(2)O(2) exposure significantly elevated cell viability, reduced H(2)O(2)-induced apoptosis, and decreased both intracellular and total accumulation of reactive oxygen species (ROS) production. Furthermore, CP also reversed the upregulation of Bax/Bcl-2 mRNA ratio, the downstream cascade following ROS. These results suggest that CP may be a candidate compound for the treatment of ischemia and oxidative stress-induced neurodegenerative disease.

  16. [Studying the neuroprotective effect of the novel glutamic acid derivative neiroglutam on focal cerebral ischemia in rats].

    Science.gov (United States)

    Tiurenkov, I N; Kurkin, D V; Bakulin, D A; Volotova, E V

    2014-01-01

    We have studied the neuroprotective effect of the novel glutamic acid derivative neiroglutam on reversible focal cerebral ischemia in rats. The neuroprotective drug action was assessed by the ability to reduce the severity of neurological deficit (1, 2, 3, 5 and 7 days), forelimb fine-motor disorders (in the ladder test), hind limb motor activity (beam-walking test), and volume of the infarct zone upon 7-day pathologic exposure. It was found that the therapeutic administration of neiroglutam (26 mg/kg, i.p., for 7 days) reduces the volume of necrosis of cerebral tissues in case of focal brain ischemia in animals (on the average by 38%, (p < 0.05) and decreases the severity of motor disorders, which indicates the presence of neuroprotective effect of this compound.

  17. The Neuroprotective Effect of Kefir on Spinal Cord Ischemia/Reperfusion Injury in Rats.

    Science.gov (United States)

    Guven, Mustafa; Akman, Tarik; Yener, Ali Umit; Sehitoglu, Muserref Hilal; Yuksel, Yasemin; Cosar, Murat

    2015-05-01

    The main causes of spinal cord ischemia are a variety of vascular pathologies causing acute arterial occlusions. We investigated neuroprotective effects of kefir on spinal cord ischemia injury in rats. Rats were divided into three groups : 1) sham operated control rats; 2) spinal cord ischemia group fed on a standard diet without kefir pretreatment; and 3) spinal cord ischemia group fed on a standard diet plus kefir. Spinal cord ischemia was performed by the infrarenal aorta cross-clamping model. The spinal cord was removed after the procedure. The biochemical and histopathological changes were observed within the samples. Functional assessment was performed for neurological deficit scores. The kefir group was compared with the ischemia group, a significant decrease in malondialdehyde levels was observed (pkefir group were significantly higher than ischemia group (pkefir group is compared with ischemia group, there was a significant decrease in numbers of dead and degenerated neurons (pkefir group compared with ischemia group (pkefir group were significantly higher than ischemia group at 24 h (pkefir pretreatment in spinal cord ischemia/reperfusion reduced oxidative stress and neuronal degeneration as a neuroprotective agent. Ultrastructural studies are required in order for kefir to be developed as a promising therapeutic agent to be utilized for human spinal cord ischemia in the future.

  18. The neuroprotective role of endocannabinoids against chemical-induced injury and other adverse effects.

    Science.gov (United States)

    Zogopoulos, Panagiotis; Vasileiou, Ioanna; Patsouris, Efstratios; Theocharis, Stamatios

    2013-04-01

    Considerable progress has been made, recently, in understanding the role of the endocannabinoid system in regard to neuroprotection. Endogenous cannabinoids have received increasing attention as potential protective agents in several cases of neuronal injury. The endocannabinoid system is comprised of cannabinoid receptors (CB1 and CB2), their endogenous ligands (endocannabinoids) and proteins responsible for their metabolism. Endocannabinoids serve as retrograde signalling messengers in GABAergic and glutamatergic synapses, as well as modulators of post-synaptic transmission, interacting with other neurotransmitters, including norepinephrine and dopamine. Furthermore, endocannabinoids modulate neuronal, glial and endothelial cell function and exert neuromodulatory, anti-excitotoxic, anti-inflammatory and vasodilatory effects. Physiological stimuli and pathological conditions lead to differential increases in brain endocannabinoids that regulate distinct biological functions. The purpose of this review is to present the available in vivo and in vitro experimental data, up to date, regarding the endocannabinoid system and its role in neuroprotection, as well as its possible therapeutic perspectives. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Wormhole effect in a strong topological insulator

    Science.gov (United States)

    Rosenberg, G.; Guo, H.-M.; Franz, M.

    2010-07-01

    An infinitely thin solenoid carrying magnetic flux Φ (a “Dirac string”) inserted into an ordinary band insulator has no significant effect on the spectrum of electrons. In a strong topological insulator, remarkably, such a solenoid carries protected gapless one-dimensional fermionic modes when Φ=hc/2e . These modes are spin-filtered and represent a distinct bulk manifestation of the topologically nontrivial insulator. We establish this “wormhole” effect by both general qualitative considerations and by numerical calculations within a minimal lattice model. We also discuss the possibility of experimental observation of a closely related effect in artificially engineered nanostructures.

  20. Novel insights into lithium's mechanism of action: neurotrophic and neuroprotective effects.

    Science.gov (United States)

    Quiroz, Jorge A; Machado-Vieira, Rodrigo; Zarate, Carlos A; Manji, Husseini K

    2010-01-01

    The monovalent cation lithium partially exerts its effects by activating neurotrophic and neuroprotective cellular cascades. Here, we discuss the effects of lithium on oxidative stress, programmed cell death (apoptosis), inflammation, glial dysfunction, neurotrophic factor functioning, excitotoxicity, and mitochondrial stability. In particular, we review evidence demonstrating the action of lithium on cyclic adenosine monophosphate (cAMP)-mediated signal transduction, cAMP response element binding activation, increased expression of brain-derived neurotrophic factor, the phosphatidylinositide cascade, protein kinase C inhibition, glycogen synthase kinase 3 inhibition, and B-cell lymphoma 2 expression. Notably, we also review data from clinical studies demonstrating neurotrophic effects of lithium. We expect that a better understanding of the clinically relevant pathophysiological targets of lithium will lead to improved treatments for those who suffer from mood as well as neurodegenerative disorders. Copyright 2010 S. Karger AG, Basel.

  1. Neuroprotective effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis.

    Science.gov (United States)

    Sun, Xin-Zhi; Liao, Ying; Li, Wei; Guo, Li-Mei

    2017-06-01

    Ganoderma lucidum polysaccharides have protective effects against apoptosis in neurons exposed to ischemia/reperfusion injury, but the mechanisms are unclear. The goal of this study was to investigate the underlying mechanisms of the effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Hydrogen peroxide (H 2 O 2 ) was used to induce apoptosis in cultured cerebellar granule cells. In these cells, ganoderma lucidum polysaccharides remarkably suppressed H 2 O 2 -induced apoptosis, decreased expression of caspase-3, Bax and Bim and increased that of Bcl-2. These findings suggested that ganoderma lucidum polysaccharides regulate expression of apoptosis-associated proteins, inhibit oxidative stress-induced neuronal apoptosis and, therefore, have significant neuroprotective effects.

  2. Neuroprotective effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis

    Science.gov (United States)

    Sun, Xin-zhi; Liao, Ying; Li, Wei; Guo, Li-mei

    2017-01-01

    Ganoderma lucidum polysaccharides have protective effects against apoptosis in neurons exposed to ischemia/reperfusion injury, but the mechanisms are unclear. The goal of this study was to investigate the underlying mechanisms of the effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Hydrogen peroxide (H2O2) was used to induce apoptosis in cultured cerebellar granule cells. In these cells, ganoderma lucidum polysaccharides remarkably suppressed H2O2-induced apoptosis, decreased expression of caspase-3, Bax and Bim and increased that of Bcl-2. These findings suggested that ganoderma lucidum polysaccharides regulate expression of apoptosis-associated proteins, inhibit oxidative stress-induced neuronal apoptosis and, therefore, have significant neuroprotective effects. PMID:28761429

  3. Retinal Neuroprotective Effects of Flibanserin, an FDA-Approved Dual Serotonin Receptor Agonist-Antagonist.

    Directory of Open Access Journals (Sweden)

    Aaron S Coyner

    Full Text Available To assess the neuroprotective effects of flibanserin (formerly BIMT-17, a dual 5-HT1A agonist and 5-HT2A antagonist, in a light-induced retinopathy model.Albino BALB/c mice were injected intraperitoneally with either vehicle or increasing doses of flibanserin ranging from 0.75 to 15 mg/kg flibanserin. To assess 5-HT1A-mediated effects, BALB/c mice were injected with 10 mg/kg WAY 100635, a 5-HT1A antagonist, prior to 6 mg/kg flibanserin and 5-HT1A knockout mice were injected with 6 mg/kg flibanserin. Injections were administered once immediately prior to light exposure or over the course of five days. Light exposure lasted for one hour at an intensity of 10,000 lux. Retinal structure was assessed using spectral domain optical coherence tomography and retinal function was assessed using electroretinography. To investigate the mechanisms of flibanserin-mediated neuroprotection, gene expression, measured by RT-qPCR, was assessed following five days of daily 15 mg/kg flibanserin injections.A five-day treatment regimen of 3 to 15 mg/kg of flibanserin significantly preserved outer retinal structure and function in a dose-dependent manner. Additionally, a single-day treatment regimen of 6 to 15 mg/kg of flibanserin still provided significant protection. The action of flibanserin was hindered by the 5-HT1A antagonist, WAY 100635, and was not effective in 5-HT1A knockout mice. Creb, c-Jun, c-Fos, Bcl-2, Cast1, Nqo1, Sod1, and Cat were significantly increased in flibanserin-injected mice versus vehicle-injected mice.Intraperitoneal delivery of flibanserin in a light-induced retinopathy mouse model provides retinal neuroprotection. Mechanistic data suggests that this effect is mediated through 5-HT1A receptors and that flibanserin augments the expression of genes capable of reducing mitochondrial dysfunction and oxidative stress. Since flibanserin is already FDA-approved for other indications, the potential to repurpose this drug for treating retinal

  4. Neuroprotective effects of probenecid in a transgenic animal model of Huntington's disease.

    Science.gov (United States)

    Vamos, Eniko; Voros, Krisztina; Zadori, Denes; Vecsei, Laszlo; Klivenyi, Peter

    2009-09-01

    Huntington's disease (HD) is an autosomal dominantly inherited disorder, caused by an expanded polyglutamine region of a protein called huntingtin. The excitotoxicity, oxidative damage and altered membrane transport may have an important role in the pathogenesis of HD. Probenecid is a non-selective inhibitor of multidrug resistance-associated proteins, but it also inhibits organic anion transporters. In this study, we examined the effects of probenecid on the survival, behaviour and immunohistochemical changes in the N171-82Q transgenic mouse model of HD. After probenecid administration, the duration of survival improved by 35%. The motor activity was significantly ameliorated as compared with the control transgenic group. Probenecid treatment significantly reduced the neuronal loss and the number of neuronal intranuclear aggregates. These results suggest that probenecid may exert a neuroprotective effect by increasing the membrane transport of protective compounds, and/or inhibiting the toxic compounds.

  5. Dose-dependent neuroprotective effect of enoxaparin on cold-induced traumatic brain injury.

    Science.gov (United States)

    Keskin, Ilknur; Gunal, M Yalcin; Ayturk, Nilufer; Kilic, Ulkan; Ozansoy, Mehmet; Kilic, Ertugrul

    2017-05-01

    Recent evidence exists that enoxaparin can reduce brain injury because of its anticoagulant activity. To investigate the potential therapeutic effect of enoxaparin on cold-induced traumatic brain injury, at 20 minutes after modeling, male BALB/c mouse models of cold-induced traumatic brain injury were intraperitoneally administered 3 and 10 mg/kg enoxaparin or isotonic saline solution. Twenty-four hours later, enoxaparin at 10 mg/kg greatly reduced infarct volume, decreased cell apoptosis in the cortex and obviously increased serum level of total antioxidant status. By contrast, administration of enoxaparin at 3 mg/kg did not lead to these changes. These findings suggest that enoxaparin exhibits neuroprotective effect on cold-induced traumatic brain injury in a dose-dependent manner.

  6. Polyphenolic compounds with antioxidant potential and neuro-protective effect from Cimicifuga dahurica (Turcz.) Maxim.

    Science.gov (United States)

    Qin, Rulan; Zhao, Ying; Zhao, Yudan; Zhou, Wanrong; Lv, Chongning; Lu, Jincai

    2016-12-01

    Three new phenolic compounds (1-3), along with five known compounds (4-8) were isolated from the rhizome of Cimicifuga dahurica (Turcz.) Maxim. Their structures were elucidated by spectroscopic methods including 1D-NMR, 2D-NMR and HR-MS techniques. DPPH method and protective effect on PC12 cells against H 2 O 2 -induced oxidative damage model were carried to evaluate the antioxidant capability of these compounds. Compound 5 showed significant antioxidant activity with IC 50 values 9.33μM in DPPH assay and compound 2 displayed marked neuro-protective effect with 87.65% cell viability at the concentration of 10μM. Additionally, the possible structure-activity relationships of these phenolic compounds were tentatively discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The Long Run: Neuroprotective Effects of Physical Exercise on Adult Neurogenesis from Youth to Old Age.

    Science.gov (United States)

    Saraulli, Daniele; Costanzi, Marco; Mastrorilli, Valentina; Farioli-Vecchioli, Stefano

    2017-01-01

    The rapid lengthening of life expectancy has raised the problem of providing social programs to counteract the age-related cognitive decline in a growing number of older people. Physical activity stands among the most promising interventions aimed at brain wellbeing, because of its effective neuroprotective action and low social cost. The purpose of this review is to describe the neuroprotective role exerted by physical activity in different life stages. In particular, we focus on adult neurogenesis, a process which has proved being highly responsive to physical exercise and may represent a major factor of brain health over the lifespan. The most recent literature related to the subject has been reviewed. The text has been divided into three main sections, addressing the effects of physical exercise during childhood/ adolescence, adulthood and aging, respectively. For each one, the most relevant studies, carried out on both human participants and rodent models, have been described. The data reviewed converge in indicating that physical activity exerts a positive effect on brain functioning throughout the lifespan. However, uncertainty remains about the magnitude of the effect and its biological underpinnings. Cellular and synaptic plasticity provided by adult neurogenesis are highly probable mediators, but the mechanism for their action has yet to be conclusively established. Despite alternative mechanisms of action are currently debated, age-appropriate physical activity programs may constitute a large-scale, relatively inexpensive and powerful approach to dampen the individual and social impact of age-related cognitive decline. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Neuroprotection in glaucoma

    Directory of Open Access Journals (Sweden)

    Azadeh Doozandeh

    2016-01-01

    Full Text Available Glaucoma is a degenerative optic neuropathy characterized by retinal ganglion cell (RGC loss and visual field defects. It is known that in some glaucoma patients, death of RGCs continues despite intraocular pressure (IOP reduction. Neuroprotection in the field of glaucoma is defined as any treatment, independent of IOP reduction, which prevents RGC death. Glutamate antagonists, ginkgo biloba extract, neurotrophic factors, antioxidants, calcium channel blockers, brimonidine, glaucoma medications with blood regulatory effect and nitric oxide synthase inhibitors are among compounds with possible neuroprotective activity in preclinical studies. A few agents (such as brimonidine or memantine with neuroprotective effects in experimental studies have advanced to clinical trials; however the results of clinical trials for these agents have not been conclusive. Nevertheless, lack of compelling clinical evidence has not prevented the off-label use of some of these compounds in glaucoma practice. Stem cell transplantation has been reported to halt experimental neurodegenerative disease processes in the absence of cell replacement. It has been hypothesized that transplantation of some types of stem cells activates multiple neuroprotective pathways via secretion of various factors. The advantage of this approach is a prolonged and targeted effect. Important concerns in this field include the secretion of unwanted harmful mediators, graft survival issues and tumorigenesis. Neuroprotection in glaucoma, pharmacologically or by stem cell transplantation, is an interesting subject waiting for broad and multidisciplinary collaborative studies to better clarify its role in clinical practice.

  9. Evidence of neuroprotective effects of saffron and crocin in a Drosophila model of parkinsonism.

    Science.gov (United States)

    Rao, Sriranjini Venkat; Muralidhara; Yenisetti, Sarat Chandra; Rajini, Padmanabhan S

    2016-01-01

    Evidence suggests that saffron and its major bioactives exhibit significant neuromodulatory effects in various animal models. However, specific data related to their efficacy to attenuate oxidative stress and neurotoxicity in animal models of Parkinson's disease (PD) are limited. Hence, we investigated the neuroprotective efficacy of saffron methanolic extract (SME) and its active constituent, crocin (CR) employing a Drosophila model of parkinsonism. We focussed on attenuation of Rotenone (ROT)-induced locomotor phenotype, oxidative stress, mitochondrial dysfunction and neurotoxicity in this model. SME and CR-enrichment significantly reduced ROT (500μM) induced mortality, rescued the locomotor phenotype and diminished the enhanced levels of oxidative stress markers in head/body regions of flies. The reduced levels of reduced glutathione (GSH) and total thiols (TSH) resulting from ROT exposure were significantly restored with concomitant enhancement of the antioxidant enzymes activities. Further, ROT-induced mitochondrial dysfunctions (MTT reduction, activities of SDH and NADH-Cyt C reductase (complexes I-III) enzymes) were markedly attenuated by SME/CR enrichment. While ROT elevated the activity of acetylcholinesterase (AChE) in head/body regions, both the treatments caused marked diminution of AChE activity and restored the dopamine levels suggesting their effectiveness to mitigate cholinergic function. Interestingly, SME/CR enrichment significantly delayed the onset of locomotor deficits and extended life span of flies among ROT (50μM)-stressed flies. In a satellite study, flies provided with SME/CR prophylaxis exhibited marked resistance to an acute Paraquat (PQ) challenge as evidenced by the lower incidence of lethality and improved locomotor phenotype. Taken together, the neuroprotective effects of saffron and crocin in the fly model may be largely attributable to its antioxidant action. Based on our findings, we propose that saffron may be exploited as a

  10. Synthesis, binding affinity at glutamic acid receptors, neuroprotective effects, and molecular modeling investigation of novel dihydroisoxazole amino acids

    DEFF Research Database (Denmark)

    Conti, Paola; De Amici, Marco; Grazioso, Giovanni

    2005-01-01

    neuroprotective effect when tested in an oxygen glucose deprivation (OGD) cell culture test. The same compounds were preliminarily assayed using Xenopus oocytes expressing cloned rat NMDA receptors containing the NR1 subunit in combination with either NR2A, NR2B, NR2C, or NR2D subunit. In this assay, all three...

  11. Comparison of neuroprotective effects of erythropoietin (EPO) and carbamylerythropoietin (CEPO) against ischemia-like oxygen-glucose deprivation (OGD) and NMDA excitotoxicity in mouse hippocampal slice cultures

    DEFF Research Database (Denmark)

    Montero, Maria; Rom Poulsen, Frantz; Noraberg, Jens

    2007-01-01

    In addition to its well-known hematopoietic effects, erythropoietin (EPO) also has neuroprotective properties. However, hematopoietic side effects are unwanted for neuroprotection, underlining the need for EPO-like compounds with selective neuroprotective actions. One such compound, devoid...... of hematopoietic bioactivity, is the chemically modified, EPO-derivative carbamylerythropoietin (CEPO). For comparison of the neuroprotective effects of CEPO and EPO, we subjected organotypic hippocampal slice cultures to oxygen-glucose deprivation (OGD) or N-methyl-d-aspartate (NMDA) excitotoxicity. Hippocampal...... cultures. To elucidate a possible mechanism involved in EPO and CEPO neuroprotection against OGD, the integrity of alpha-II-spectrin cytoskeletal protein was studied. Both EPO and CEPO significantly reduced formation of spectrin cleavage products in the OGD model. We conclude that CEPO is at least...

  12. The neuroprotective effects of tocotrienol rich fraction and alpha tocopherol against glutamate injury in astrocytes

    Directory of Open Access Journals (Sweden)

    Thilaga Rati Selvaraju

    2014-11-01

    Full Text Available Tocotrienol rich fraction (TRF is an extract of palm oil, which consists of 25% alpha tocopherol (α-TCP and 75% tocotrienols. TRF has been shown to possess potent antioxidant, anti-inflammatory, anticancer, neuroprotection, and cholesterol lowering activities. Glutamate is the main excitatory amino acid neurotransmitter in the central nervous system of mammalian, which can be excitotoxic, and it has been suggested to play a key role in neurodegenerative disorders like Parkinson’s and Alzheimer’s diseases. In this present study, the effects of vitamin E (TRF and α-TCP in protecting astrocytes against glutamate injury were elucidated. Astrocytes induced with 180 mM of glutamate lead to significant cell death. However, glutamate mediated cytotoxicity was diminished via pre and post supplementation of TRF and α-TCP. Hence, vitamin E acted as a potent antioxidant agent in recovering mitochondrial injury due to elevated oxidative stress, and enhanced better survivability upon glutamate toxicity.  

  13. The neuroprotective effect of vitamin E on chronic sleep deprivation-induced memory impairment: the role of oxidative stress.

    Science.gov (United States)

    Alzoubi, Karem H; Khabour, Omar F; Rashid, Baraa Abu; Damaj, Imad M; Salah, Heba A

    2012-01-01

    Sleep deprivation induces oxidative stress and impairs learning and memory processes. Vitamin E, on the other hand, is a strong antioxidant that has neuroprotective effect on the brain. In this study, we examined the potential protective effect of chronic administration of vitamin E on chronic sleep deprivation-induced cognitive impairment. In addition, possible molecular targets for vitamin E effects on chronic sleep deprivation-induced cognitive impairment were determined. Sleep deprivation was induced in rats using modified multiple platform model. Vitamin E (100mg/kg) was administered to animals by oral gavage. Behavioral study was conducted to test the spatial learning and memory using the radial arm water maze (RAWM). In addition, the hippocampus was dissected out and antioxidant markers including glutathione (GSH), oxidized glutathione (GSSG) and GSH/GSSG, glutathione peroxidase (GPx), catalase, and superoxide dismutase (SOD) were assessed. The results of this project revealed that chronic sleep deprivation impaired both (short- and long-term) memories (Psleep deprivation-induced reduction in the hippocampus GSH/GSSG ratio, and activity of catalase, SOD, and GPx. In conclusion, sleep deprivation induces memory impairment, and treatment with vitamin E prevented this impairment probably through its antioxidant action in the hippocampus. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Neuroprotective effects of xanthohumol, a prenylated flavonoid from hops (Humulus lupulus), in ischemic stroke of rats.

    Science.gov (United States)

    Yen, Ting-Lin; Hsu, Chung-King; Lu, Wan-Jung; Hsieh, Cheng-Ying; Hsiao, George; Chou, Duen-Suey; Wu, Gong-Jhe; Sheu, Joen-Rong

    2012-02-29

    Xanthohumol is the principal prenylated flavonoid in hops (Humulus lupulus L.), an ingredient of beer. Xanthohumol was found to be a potent chemopreventive agent; however, no data are available concerning its neuroprotective effects. In the present study, the neuroprotective activity and mechanisms of xanthohumol in rats with middle cerebral artery occlusion (MCAO)-induced cerebral ischemia were examined. Treatment with xanthohumol (0.2 and 0.4 mg/kg; intraperitoneally) 10 min before MCAO dose-dependently attenuated focal cerebral ischemia and improved neurobehavioral deficits in cerebral ischemic rats. Xanthohumol treatment produced a marked reduction in infarct size compared to that in control rats. MCAO-induced focal cerebral ischemia was associated with increases in hypoxia-inducible factor (HIF)-1α, tumor necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS), and active caspase-3 protein expressions in ischemic regions. These expressions were obviously inhibited by treatment with xanthohumol. In addition, xanthohumol (3-70 μM) concentration-dependently inhibited platelet aggregation stimulated by collagen (1 μg/mL) in human platelet-rich plasma. An electron spin resonance (ESR) method was used to examine the scavenging activity of xanthohumol on free radicals which had formed. Xanthohumol (1.5 and 3 μM) markedly reduced the ESR signal intensity of hydroxyl radical (OH•) formation in the H₂O₂/NaOH/DMSO system. In conclusion, this study demonstrates for the first time that in addition to its originally being considered an agent preventing tumor growth, xanthohumol possesses potent neuroprotective activity. This activity is mediated, at least in part, by inhibition of inflammatory responses (i.e., HIF-1α, iNOS expression, and free radical formation), apoptosis (i.e., TNF-α, active caspase-3), and platelet activation, resulting in a reduction of infarct volume and improvement in neurobehavior in rats with cerebral ischemia. Therefore, this

  15. Neuroprotective effects of triterpene glycosides from glycine max against glutamate induced toxicity in primary cultured rat cortical cells.

    Science.gov (United States)

    Moon, Hyung-In; Lee, Jai-Heon

    2012-01-01

    To examine the neuroprotective effects of Glycine max, we tested its protection against the glutamate-induced toxicity in primary cortical cultured neurons. In order to clarify the neuroprotective mechanism(s) of this observed effect, isolation was performed to seek and identify active fractions and components. From such fractionation, two triterpene glycosides, 3-O-[α-l-rhamnopyranosyl(1-2)-β-d-glucopyranosyl(1-2)-β-d-glucuronopyranosyl]olean-12-en-3β,22β,24-triol (1) and 3-O-[β-d-glucopyranosyl(1-2)-β-d-galactopyranosyl(1-2)-β-d-glucuronopyranosyl]olean-12-en-3β,22β,24-triol (2) were isolated with the methanol extracts with of air-dried Glycine max. Among these compounds, compound 2 exhibited significant neuroprotective activities against glutamate-induced toxicity, exhibiting cell viability of about 50% at concentrations ranging from 0.1 μM to 10 μM. Therefore, the neuroprotective effect of Glycine max might be due to the inhibition of glutamate-induced toxicity by triterpene glycosides.

  16. Antiepileptogenic and Neuroprotective Effects of Pergularia daemia on Pilocarpine Model of Epilepsy

    Directory of Open Access Journals (Sweden)

    Antoine K. Kandeda

    2017-06-01

    Full Text Available In this study, we investigated antiepileptogenic and neuroprotective effects of the aqueous extract of Pergularia daemia roots (PDR using in vivo and in vitro experimental models. In in vivo studies, status epilepticus caused by pilocarpine injection triggers epileptogenesis which evolves during about 1–2 weeks. After 2 h of status epilepticus, mice were treated during the epileptogenesis period for 7 days with sodium valproate and vitamin C (standards which demonstrated to alter epileptogenesis, or Pergularia daemia. The animals were then, 1 week after status epilepticus, challenged with acute pentylenetetrazole (PTZ administration to test behaviorally the susceptibility to a convulsant agent of animals treated or not with the plan extract. Memory was assessed after PTZ administration in the elevated plus maze and T-maze paradigms at 24 and 48 h. Antioxidant and acetylcholinesterase activities were determined in the hippocampus after sacrifice, in vitro studies were conducted using embryonic rat primary cortical cultures exposed to L-glutamate. Cell survival rate was measured and apoptotic and necrotic cell death determined. The results showed that chronic oral administration of PDR significantly and dose-dependently increased the latency to myoclonic jerks, clonic seizures and generalized tonic–clonic seizures, and the seizure score. In addition, PDR at all doses (from 4.9 to 49 mg/kg significantly decreased the initial and retention transfer latencies in the elevated plus maze. Interestingly PDR at the same doses significantly increased the time spent and the number of entries in T-maze novel arm. PDR significantly increased the activities of acetylcholinesterase and antioxidant enzymes superoxide dismutase, catalase, and total glutathione and proteins, and decreased malondialdehyde level. Furthermore, PDR increased viability rate of primary cortical neurons after L-glutamate-induced excitotoxicity, in a dose dependent manner. Altogether

  17. [Neuroprotective effect of curcumin to Aβ of double transgenic mice with Alzheimer's disease].

    Science.gov (United States)

    Feng, Hui-Li; Fan, Hui; Dang, Hui-Zi; Chen, Xiao-Pei; Ren, Ying; Yang, Jin-Duo; Wang, Peng-Wen

    2014-10-01

    To observe the changes in Aβ40, Aβ42 and ADDLs in brains of 3 month-old APPswe/PS1dE9 double transgenic mice after six-month intervention with curcumin, in order to discuss the neuroprotective effect of curcumin. APPswe/PS1dE9dtg mice were randomly divided into the model group, the Rosiglitazone group (10 mg x kg(-1) x d(-1)) and curcumin high (400 mg x kg9-1) x d(-1)), medium (200 mg x kg(-1) x d(-1)) and low (100 mg x kg(-1) x d(-1)) dosage groups, with C57/BL6J mice of the same age and the same background in the normal control group. After 6 months, the immunohistochemical staining (IHC) and the Western blot method were used to observe the changes in positive cell of Aβ40, Aβ42 and ADDLs in hippocampal CA1 area, their distribution and protein expressions. Both of the immunohistochemical staining and the Western blot method showed more positive cell of Aβ40, Aβ42 and ADDLs in hippocampal CA1 area and higher protein expressions in the model group than the normal group (P curcumin high group, the medium group showed a significant decrease (P curcumin can significantly reduce the expressions of hippocampal Aβ40, Aβ42 and ADDLs in brains of APPswe/PS1dE9 double transgenic mice. Whether curcumin can impact Aβ cascade reaction by down-regulating expressions of Aβ40, Aβ42 and ADDLs and show the neuroprotective effect needs further studies.

  18. Neuroprotective effects of Thalassia testudinum leaf extract BM-21 on focal ischemia in rats

    Directory of Open Access Journals (Sweden)

    Teidy E. García

    2017-05-01

    Full Text Available Context: The extract from the marine plant Thalassia testudinum BM-21, standardized to thalassiolin B content (5.8 ± 0.3%, possesses antioxidant, anti-inflammatory and neuroprotective effects on acrylamide-induced neurotoxicity in mice and global ischemia in Mongolian gerbils. Aims: To determine whether or not BM-21 possesses neuroprotective effects against cerebral ischemia induced by permanent middle cerebral artery occlusion (pMCAo, a clinically relevant model of stroke. Methods: BM-21 was administered orally (400 mg/kg, once-a–day/10 days prior to ischemia. Twenty-four hours after occlusion, we studied neurological signs, infarct volume, cerebral edema, histological damage and oxidative stress in cortex and striatum. In addition, brain susceptibility to in vitro lipid peroxidation induced by kainic acid and 2,2′-azobis(2-amidinopropane dihydrochloride was studied after the BM-21 administration. Results: BM-21 prevented behavioral deficit; reduced infarct volume and cerebral edema; markedly decreased neuronal damage in striatum and cortex region. After occlusion, there was a significant increase of oxidative stress in cortex and striatum. Treatment of ischemic rats with BM-21 (400 mg/kg prevented lipid peroxidation and protein damage and increased the antioxidant enzymatic activities and glutathione. BM-21 also inhibited the in vitro lipid peroxidation in total brain homogenates. Conclusions: Oral pre-treatment of BM-21 protects rats against pMCAo ischemia-induced damage in the striatum and cortex. Results suggest that the protection of BM-21 involve at least partially, the increase resistance to oxidative stress.

  19. The neuroprotective effects of purslane (Portulaca oleracea) on rotenone-induced biochemical changes and apoptosis in brain of rat.

    Science.gov (United States)

    Abdel Moneim, Ahmed E

    2013-09-01

    Purslane (Portulaca oleraceae L.), a member of the Portulacaceae family, is widespread as a weed and has been ranked as the eighth most common plant in the world. In order to evaluate purslane herbal aqueous juice as a neuroprotective agent, the antioxidant activity of purslane juice was assessed in vitro and the neuroprotective effects of purslane (1.5 mL/Kg bwt) on rotenone (12 mg/Kg bwt for 12 days) induced biochemical changes and apoptosis in striatum of rats were also examined. The repeated administration of rotenone produced dramatic increases in intercellular content of calcium, dopamine metabolites and apoptosis in the striatum. In addition, rotenone administration caused significant decrease in complex I activity. These biochemical changes and apoptosis inductions were effectively counteracted by administration of purslane. Overall, the present study demonstrated the neuroprotective role of purslane in the striatum and proposes its prophylactic potential against developing brain damage and Parkinson's disease induction followed by rotenone administration, and that purslane may be considered as a potential neuroprotective agent against environmental factors affecting the function of the dopaminergic system.

  20. Strong curvature effects in Neumann wave problems

    DEFF Research Database (Denmark)

    Willatzen, Morten; Pors, A.; Gravesen, Jens

    2012-01-01

    Waveguide phenomena play a major role in basic sciences and engineering. The Helmholtz equation is the governing equation for the electric field in electromagnetic wave propagation and the acoustic pressure in the study of pressure dynamics. The Schro¨dinger equation simplifies to the Helmholtz...... equation for a quantum-mechanical particle confined by infinite barriers relevant in semiconductor physics. With this in mind and the interest to tailor waveguides towards a desired spectrum and modal pattern structure in classical structures and nanostructures, it becomes increasingly important...... to understand the influence of curvature effects in waveguides. In this work, we demonstrate analytically strong curvature effects for the eigenvalue spectrum of the Helmholtz equation with Neumann boundary conditions in cases where the waveguide cross section is a circular sector. It is found that the linear...

  1. Neuroprotective effects of bee venom acupuncture therapy against rotenone-induced oxidative stress and apoptosis.

    Science.gov (United States)

    Khalil, Wagdy K B; Assaf, Naglaa; ElShebiney, Shaimaa A; Salem, Neveen A

    2015-01-01

    Parkinson's disease (PD), the most common neurodegenerative movement disorder, is characterized by dopaminergic neurodegeneration, mitochondrial impairment, and oxidative stress. Exposure of animals to rotenone induces a range of responses characteristic of PD, including reactive oxygen species production and dopaminergic cell death. Although l-dopa is the drug of choice for improving core symptoms of PD, it is associated with involuntary movements. The current study was directed to evaluate the neuroprotective effect of bee venom acupuncture therapy (BVA) against rotenone-induced oxidative stress, neuroinflammation, and apoptosis in PD mouse model. Forty male Swiss mice were divided into four groups: (1) received saline solution orally and served as normal control, (2) received rotenone (1.5 mg/kg, s.c. every other day for 6 doses), (3) received rotenone concomitantly with l-dopa (25 mg/kg, daily, p.o. for 6 days), and finally (4) received rotenone concomitantly with BVA (0.02 ml once every 3 days for two weeks). Rotenone-treated mice showed impairment in locomotor behavior and a significant reduction in brain dopamine, serotonin, norepinephrine, GSH levels, and paraoxonase activity, whereas a significant increase was observed in brain malondialdehyde, tumor necrosis factor-α, interleukin-β levels besides DNA damage, and over-expression of caspase-3, Bax, and Bcl-2 genes. Significant improvement of the aforementioned parameters was demonstrated after BVA compared to l-dopa therapy. In conclusion, bee venom normalized all the neuroinflammatory and apoptotic markers and restored brain neurochemistry after rotenone injury. Therefore, BVA is a promising neuroprotective therapy for PD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Neuroprotective effect of Arthrospira (Spirulina) platensis against kainic acid-neuronal death.

    Science.gov (United States)

    Pérez-Juárez, Angélica; Chamorro, Germán; Alva-Sánchez, Claudia; Paniagua-Castro, Norma; Pacheco-Rosado, Jorge

    2016-08-01

    Context Arthrospira (Spirulina) platensis (SP) is a cyanobacterium which has attracted attention because of its nutritional value and pharmacological properties. It was previously reported that SP reduces oxidative stress in the hippocampus and protects against damaging neurobehavioural effects of systemic kainic acid (KA). It is widely known that the systemic administration of KA induces neuronal damage, specifically in the CA3 hippocampal region. Objective The present study determines if the SP sub-chronic treatment has neuroprotective properties against KA. Materials and methods Male SW mice were treated with SP during 24 d, at doses of 0, 200, and 800 mg/kg, once daily, and with KA (35 mg/kg, ip) as a single dose on day 14. After the treatment, a histological analysis was performed and the number of atrophic neuronal cells in CA3 hippocampal region was quantified. Results Pretreatment with SP does not protect against seizures induced by KA. However, mortality in the SP 200 and the SP 800 groups was of 20%, while for the KA group, it was of 60%. A single KA ip administration produced a considerable neuronal damage, whereas both doses of SP sub-chronic treatment reduced the number of atrophic neurons in CA3 hippocampal region with respect to the KA group. Discussion The SP neurobehaviour improvement after KA systemic administration correlates with the capacity of SP to reduce KA-neuronal death in CA3 hippocampal cells. This neuroprotection may be related to the antioxidant properties of SP. Conclusion SP reduces KA-neuronal death in CA3 hippocampal cells.

  3. Strong curvature effects in Neumann wave problems

    International Nuclear Information System (INIS)

    Willatzen, M.; Pors, A.; Gravesen, J.

    2012-01-01

    Waveguide phenomena play a major role in basic sciences and engineering. The Helmholtz equation is the governing equation for the electric field in electromagnetic wave propagation and the acoustic pressure in the study of pressure dynamics. The Schrödinger equation simplifies to the Helmholtz equation for a quantum-mechanical particle confined by infinite barriers relevant in semiconductor physics. With this in mind and the interest to tailor waveguides towards a desired spectrum and modal pattern structure in classical structures and nanostructures, it becomes increasingly important to understand the influence of curvature effects in waveguides. In this work, we demonstrate analytically strong curvature effects for the eigenvalue spectrum of the Helmholtz equation with Neumann boundary conditions in cases where the waveguide cross section is a circular sector. It is found that the linear-in-curvature contribution originates from parity symmetry breaking of eigenstates in circular-sector tori and hence vanishes in a torus with a complete circular cross section. The same strong curvature effect is not present in waveguides subject to Dirichlet boundary conditions where curvature contributions contribute to second-order in the curvature only. We demonstrate this finding by considering wave propagation in a circular-sector torus corresponding to Neumann and Dirichlet boundary conditions, respectively. Results for relative eigenfrequency shifts and modes are determined and compared with three-dimensional finite element method results. Good agreement is found between the present analytical method using a combination of differential geometry with perturbation theory and finite element results for a large range of curvature ratios.

  4. Neuroprotective effects of compounds with antioxidant and anti-inflammatory properties in a Drosophila model of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Yang Yufeng

    2009-09-01

    Full Text Available Abstract Background Parkinson's disease (PD is the most common movement disorder. Extrapyramidal motor symptoms stem from the degeneration of the dopaminergic pathways in patient brain. Current treatments for PD are symptomatic, alleviating disease symptoms without reversing or retarding disease progression. Although the cause of PD remains unknown, several pathogenic factors have been identified, which cause dopaminergic neuron (DN death in the substantia nigra (SN. These include oxidative stress, mitochondrial dysfunction, inflammation and excitotoxicity. Manipulation of these factors may allow the development of disease-modifying treatment strategies to slow neuronal death. Inhibition of DJ-1A, the Drosophila homologue of the familial PD gene DJ-1, leads to oxidative stress, mitochondrial dysfunction, and DN loss, making fly DJ-1A model an excellent in vivo system to test for compounds with therapeutic potential. Results In the present study, a Drosophila DJ-1A model of PD was used to test potential neuroprotective drugs. The drugs applied are the Chinese herb celastrol, the antibiotic minocycline, the bioenergetic amine coenzyme Q10 (coQ10, and the glutamate antagonist 2,3-dihydroxy-6-nitro-7-sulphamoylbenzo[f]-quinoxaline (NBQX. All of these drugs target pathogenic processes implicated in PD, thus constitute mechanism-based treatment strategies. We show that celastrol and minocycline, both having antioxidant and anti-inflammatory properties, confer potent dopaminergic neuroprotection in Drosophila DJ-1A model, while coQ10 shows no protective effect. NBQX exerts differential effects on cell survival and brain dopamine content: it protects against DN loss but fails to restore brain dopamine level. Conclusion The present study further validates Drosophila as a valuable model for preclinical testing of drugs with therapeutic potential for neurodegenerative diseases. The lower cost and amenability to high throughput testing make Drosophila PD

  5. Therapeutic effects of cannabinoids in animal models of seizures, epilepsy, epileptogenesis, and epilepsy-related neuroprotection.

    Science.gov (United States)

    Rosenberg, Evan C; Patra, Pabitra H; Whalley, Benjamin J

    2017-05-01

    The isolation and identification of the discrete plant cannabinoids in marijuana revived interest in analyzing historical therapeutic claims made for cannabis in clinical case studies and anecdotes. In particular, sources as old as the 11th and 15th centuries claimed efficacy for crude marijuana extracts in the treatment of convulsive disorders, prompting a particularly active area of preclinical research into the therapeutic potential of plant cannabinoids in epilepsy. Since that time, a large body of literature has accumulated describing the effects of several of the >100 individual plant cannabinoids in preclinical models of seizures, epilepsy, epileptogenesis, and epilepsy-related neuroprotection. We surveyed the literature for relevant reports of such plant cannabinoid effects and critically reviewed their findings. We found that acute CB 1 R agonism in simple models of acute seizures in rodents typically produces anti-convulsant effects whereas CB 1 R antagonists exert converse effects in the same models. However, when the effects of such ligands are examined in more complex models of epilepsy, epileptogenesis and neuroprotection, a less simplistic narrative emerges. Here, the complex interactions between (i) brain regions involved in a given model, (ii) relative contributions of endocannabinoid signaling to modulation of synaptic transmission in such areas, (iii) multi-target effects, (iv) cannabinoid type 1 and type 2 receptor signaling interactions and, (v) timing, (vi) duration and (vii) localization of ligand administration suggest that there is both anti-epileptic therapeutic potential and a pro-epileptic risk in up- and down-regulation of endocannabinoid signaling in the central nervous system. Factors such receptor desensitization and specific pharmacology of ligands used (e.g. full vs partial agonists and neutral antagonists vs inverse agonists) also appear to play an important role in the effects reported. Furthermore, the effects of several plant

  6. The neuroprotective effect of nicotine in Parkinson’s disease models is associated with inhibiting PARP-1 and caspase-3 cleavage

    Directory of Open Access Journals (Sweden)

    Justin Y.D. Lu

    2017-10-01

    Full Text Available Clinical evidence points to neuroprotective effects of smoking in Parkinson’s disease (PD, but the molecular mechanisms remain unclear. We investigated the pharmacological pathways involved in these neuroprotective effects, which could provide novel ideas for developing targeted neuroprotective treatments for PD. We used the ETC complex I inhibitor methylpyridinium ion (MPP+ to induce cell death in SH-SY5Y cells as a cellular model for PD and found that nicotine inhibits cell death. Using choline as a nicotinic acetylcholine receptor (nAChR agonist, we found that nAChR stimulation was sufficient to protect SH-SY5Y cells against cell death from MPP+. Blocking α7 nAChR with methyllycaconitine (MLA prevented the protective effects of nicotine, demonstrating that these receptors are necessary for the neuroprotective effects of nicotine. The neuroprotective effect of nicotine involves other pathways relevant to PD. Cleaved Poly (ADP-ribose polymerase-1 (PARP-1 and cleaved caspase-3 were decreased by nicotine in 6-hydroxydopamine (6-OHDA lesioned mice and in MPP+-treated SH-SY5Y cells. In conclusion, our data indicate that nicotine likely exerts neuroprotective effects in PD through the α7 nAChR and downstream pathways including PARP-1 and caspase-3. This knowledge could be pursued in future research to develop neuroprotective treatments for PD.

  7. Neuroprotective Effect of Ginkgolide B on Bupivacaine-Induced Apoptosis in SH-SY5Y Cells

    Science.gov (United States)

    Li, Le; Zhang, Qing-guo; Lai, Lu-ying; Wen, Xian-jie; Zheng, Ting; Cheung, Chi-wai; Zhou, Shu-qin; Xu, Shi-yuan

    2013-01-01

    Local anesthetics are used routinely and effectively. However, many are also known to activate neurotoxic pathways. We tested the neuroprotective efficacy of ginkgolide B (GB), an active component of Ginkgo biloba, against ROS-mediated neurotoxicity caused by the local anesthetic bupivacaine. SH-SY5Y cells were treated with different concentrations of bupivacaine alone or following preincubation with GB. Pretreatment with GB increased SH-SY5Y cell viability and attenuated intracellular ROS accumulation, apoptosis, mitochondrial dysfunction, and ER stress. GB suppressed bupivacaine-induced mitochondrial depolarization and mitochondria complex I and III inhibition and increased cleaved caspase-3 and Htra2 expression, which was strongly indicative of activation of mitochondria-dependent apoptosis with concomitantly enhanced expressions of Grp78, caspase-12 mRNA, protein, and ER stress. GB also improved ultrastructural changes indicative of mitochondrial and ER damage induced by bupivacaine. These results implicate bupivacaine-induced ROS-dependent mitochondria, ER dysfunction, and apoptosis, which can be attenuated by GB through its antioxidant property. PMID:24228138

  8. Neuroprotective effect of quercetin in a model of Parkinson’s disease in rat: A histochemical analysis

    Directory of Open Access Journals (Sweden)

    Mehdi Mehdizadeh

    2009-01-01

    Full Text Available AbstractIntroduction: Parkinson's disease (PD is a neuropathological disorder involving the degeneration of dopaminergic neurons in the substantia nigra, with the subsequent loss of their terminals in the striatum. Quercetin, a natural flavonoid, is a strong antioxidant and radical scavenger. Therefore, its neuroprotective effect in a model of Parkinson’s disease in rat was evaluated.Methods: For this purpose, unilateral intrastriatal 6-hydroxydopamine (6-OHDA-lesioned rats were pretreated with quercetin (20 mg/kg; i.p. 1 hour before surgery and treated once a day for one month. Nissl-stained neurons of substantia nigra pars compacta (SNC were counted. Results: Number of Nissl-stained neurons in left side of SNC of lesion group was lower relative to sham-operated group (p<0.005 and it was higher in quercetin-treated lesion group as compared to untreated lesion group (p<0.01.Discussion: Flavonoid quercetin administration for one month could protect the neurons of SNC against 6-OHDA toxicity. 

  9. Neuroprotective effect of quercetin in a model of Parkinson’s disease in rat: A histochemical analysis

    Directory of Open Access Journals (Sweden)

    Mehdi Mehdizadeh

    2009-01-01

    Full Text Available AbstractIntroduction: Parkinson's disease (PD is a neuropathological disorder involving the degeneration of dopaminergic neurons in the substantia nigra, with the subsequent loss of their terminals in the striatum. Quercetin, a natural flavonoid, is a strong antioxidant and radical scavenger. Therefore, its neuroprotective effect in a model of Parkinson’s disease in rat was evaluated.Methods: For this purpose, unilateral intrastriatal 6-hydroxydopamine (6-OHDA-lesioned rats were pretreated with quercetin (20 mg/kg i.p. 1 hour before surgery and treated once a day for one month. Nissl-stained neurons of substantia nigra pars compacta (SNC were counted. Results: Number of Nissl-stained neurons in left side of SNC of lesion group was lower relative to sham-operated group (p<0.005 and it was higher in quercetin-treated lesion group as compared to untreated lesion group (p<0.01.Discussion: Flavonoid quercetin administration for one month could protect the neurons of SNC against 6-OHDA toxicity.

  10. In Vitro Neuroprotective Effect of Shikimic Acid Against Hydrogen Peroxide-Induced Oxidative Stress.

    Science.gov (United States)

    Rabelo, Thallita Kelly; Zeidán-Chuliá, Fares; Caregnato, Fernanda Freitas; Schnorr, Carlos Eduardo; Gasparotto, Juciano; Serafini, Mairim Russo; de Souza Araújo, Adriano Antunes; Quintans-Junior, Lucindo José; Moreira, José Cláudio Fonseca; Gelain, Daniel Pens

    2015-08-01

    Shikimic acid (SA), originally extracted from Illicium verum Hook. fil., is an indispensable starting material for the synthesis of the antiviral drug Oseltamivir (Tamiflu(®)) with very limited number of studies regarding its biological effects in vitro. Therefore, we here evaluated the thermoanalytical profile, redox properties, and in vitro effects of SA on human neuronal-like cells (SH-SY5Y). The thermoanalytical profile of SA was studied by using differential scanning calorimetry (DSC) and thermogravimetry/derivative thermogravimetry (TG/DTG) characterization. Both antioxidant potential and in vitro lipoperoxidation levels were analyzed. Cell viability and intracellular reactive species (RS) production was determined by DCF and SRB assays, respectively. Our results show in vitro antioxidant activity of SA without exerting cytotoxic effects on SH-SY5Y cells at tested concentrations of 10 nM, 10 μM, and 10 mM. In addition, SA protected the cells against H2O2-induced toxicity; effect that could be related, at least in part, with decreased intracellular RS production and its antioxidant potential. The present study shows evidence for neuroprotective actions of SA against oxidative stress-induced toxicity on SH-SY5Y cells, inviting for further investigation about its potential use in the context of oxidative stress-associated neurodegenerative diseases.

  11. Neuroprotective effect of resveratrol against scopolamine-induced cognitive impairment and oxidative stress in rats

    Directory of Open Access Journals (Sweden)

    Pushpalatha Bunadri

    2013-01-01

    Full Text Available The objective of this study was to examine the neuroprotective effect of resveratrol on cognitive impairment induced by scopolamine, a muscarinic antagonist, in rats. Memory impairment was induced by administration of scopolamine (1 mg/kg intraperitoneally. Cognitive functions were assessed using radial arm maze, an active avoidance paradigm. Oxidative stress parameters like malondialdehyde, catalase and superoxide dismutase were assessed and acetylcholinesterase activity was estimated. More working and reference memory errors in the radial arm maze test and fewer avoidances in the active avoidance test were observed with scopolamine in the 1 mg/kg i.p.-treated animals. This phenomenon is a clear indication of memory impairment. Oral administration of resveratrol (20 mg/kg inhibited the occurrence of higher working, reference memory errors and prevented the incidence of less avoidances. Resveratrol appeared to have exerted memory-enhancing effects by inhibiting acetylcholinesterase activity and prevented the rise in malondialdehyde levels and loss of antioxidant enzymes catalase and superoxide dismutase, showing antioxidant potential. Based on the above results of behavioral and biochemical studies, it can be concluded that resveratrol protected against scopolamine-induced loss of cognition. The results also indicate that resveratrol is an antioxidant and an acetylcholinesterase inhibitor, and it is likely that resveratrol’s protective effect is related to its antioxidant and cholinesterase inhibitory effects.

  12. Neuroprotective and Cognition-Enhancing Effects of Compound K Isolated from Red Ginseng.

    Science.gov (United States)

    Seo, Ji Yeon; Ju, Sung Hee; Oh, Jisun; Lee, Seung Kwon; Kim, Jong-Sang

    2016-04-13

    The present study was aimed at elucidating the effect of compound K derived from red ginseng on memory function in mouse model and glutamate-induced cytotoxicity in mouse hippocampal HT22 cells. Compound K induced antioxidant enzymes in nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated manner, and effectively attenuated cytotoxicity and mitochondrial damage induced by glutamate in HT22 cells. However, the cytoprotective effect by compound K was abolished by heme oxygenase-1 inhibitor, tin protophorphyrin IX, suggesting that neuroprotective effect of compound K was caused by its Nrf2-mediated induction of antioxidant enzymes. Further, memory deficit induced by scopolamine was restored by compound K, which did not inhibit acetylcholine esterase, in C57BL/6 mice but not in Nrf2 knockout mice as assessed by passive avoidance test, Y-maze and water maze tests, suggesting that scopolamine-induced memory impairment was overcome by the induction of Nrf2-mediated antioxidant enzymes by the compound K. Overall, our data indicate that compound K could be useful in prevention and treatment of reactive oxygen species-induced neurological disorders such as Alzheimer's disease.

  13. Neuroprotective effects of yoga practice: age-, experience-, and frequency-dependent plasticity

    Directory of Open Access Journals (Sweden)

    Chantal eVillemure

    2015-05-01

    Full Text Available Yoga combines postures, breathing, and meditation. Despite reported health benefits, yoga’s effects on the brain has received little study. We used magnetic resonance imaging to compare age-related gray matter (GM decline in yogis and controls. We also examined the effect of increasing yoga experience and weekly practice on GM volume and assessed which aspects of weekly practice contributed most to brain size. Controls displayed the well documented age-related global brain GM decline while yogis did not, suggesting that yoga contributes to protect the brain against age-related decline. Years of yoga experience correlated mostly with GM volume differences in the left hemisphere (insula, frontal operculum and orbitofrontal cortex suggesting that yoga tunes the brain towards a parasympatically-driven mode and positive states. The number of hours of weekly practice correlated with GM volume in the primary somatosensory cortex/superior parietal lobule (S1/SPL, precuneus/posterior cingulate cortex (PCC, hippocampus, and primary visual cortex (V1. Commonality analyses indicated that the combination of postures and meditation contributed the most to the size of the hippocampus, precuneus/PCC, and S1/SPL while the combination of meditation and breathing exercises contributed the most to V1 volume. Yoga’s potential neuroprotective effects may provide a neural basis for some of its beneficial effects.

  14. Neuroprotective effects of 20(S)-protopanaxatriol (PPT) on scopolamine-induced cognitive deficits in mice.

    Science.gov (United States)

    Lu, Cong; Lv, Jingwei; Dong, Liming; Jiang, Ning; Wang, Yan; Wang, Qiong; Li, Yinghui; Chen, Shanguang; Fan, Bei; Wang, Fengzhong; Liu, Xinmin

    2018-02-22

    20(S)-protopanaxatriol (PPT), one of the ginsenosides from Panax ginseng, has been reported to have neuroprotective effects and to improve memory. The present study was designed to investigate the protective effect of PPT on scopolamine-induced cognitive deficits in mice. Male Institute of Cancer Research mice were pretreated with 2 different doses of PPT (20 and 40 μmol/kg) for 27 days by intraperitoneal injection, and scopolamine (0.75 mg/kg) was injected intraperitoneally for 9 days to induce memory impairment. Thirty minutes after the last pretreatment, the locomotor activity was firstly examined to evaluate the motor function of mice. Then, memory-related behaviors were evaluated, and the related mechanism was further researched. It was founded that PPT treatment significantly reversed scopolamine-induced cognitive impairment in the object location recognition experiment, the Morris water maze test, and the passive avoidance task, showing memory-improving effects. PPT also significantly improved cholinergic system reactivity and suppressed oxidative stress, indicated by inhibition of acetylcholinesterase activity, elevation of acetylcholine levels, increasing superoxide dismutase activity and lowering levels of malondialdehyde in the hippocampus. In addition, the expression levels of Egr-1, c-Jun, and cAMP responsive element binding in the hippocampus were significantly elevated by PPT administration. These results suggest that PPT may be a potential drug candidate for the treatment of cognitive deficit in Alzheimer's disease. Copyright © 2018 John Wiley & Sons, Ltd.

  15. Neuro-protective effect of rutin against Cisplatin-induced neurotoxic rat model.

    Science.gov (United States)

    Almutairi, Mashal M; Alanazi, Wael A; Alshammari, Musaad A; Alotaibi, Moureq Rashed; Alhoshani, Ali R; Al-Rejaie, Salim Salah; Hafez, Mohamed M; Al-Shabanah, Othman A

    2017-09-29

    Cisplatin is widely used chemotherapeutic agent for cancer treatment with limited uses due to its neurotoxic side effect. The aim of this study was to determine the potential preventive effects of rutin on the brain of cisplatin- neurotoxic rat model. Forty rats were divided into four groups. Group-1 (control group) was intra-peritoneal (IP) injected with 2.5 ml/kg saline. Group-2 (rutin group) was orally administrated 30 mg/kg rutin dissolved in water for 14 days. Group-3 (cisplatin group) was IP received 5 mg/kg cisplatin single dose. Group-4 (rutin and cisplatin group) was orally administrated 30 mg/kg rutin dissolved in water for 14 days with a single dose of 5 mg/kg cisplatin IP on day ten. Brain tissues from frontal cortex was used to extract RNA, the gene expression levels of paraoxonase-1 (PON-1), PON-2, PON-3, peroxisome proliferator-activated receptor delta (PPAR-δ), and glutathione peroxidase (GPx) was investigated by Real-time PCR. Cisplatin significantly decreased the expression levels of PON-1, PON-3, PPAR-δ and GPX whereas significantly increased PON-2 expression levels. Co-administration of Rutin prevented the cisplatin-induced toxicity by restoring the alteration in the studied genes to normal values as in the control group. This study showed that Rutin has neuroprotective effect and reduces cisplatin- neurotoxicity with possible mechanism via the antioxidant pathway.

  16. Pridopidine, a dopamine stabilizer, improves motor performance and shows neuroprotective effects in Huntington disease R6/2 mouse model.

    Science.gov (United States)

    Squitieri, Ferdinando; Di Pardo, Alba; Favellato, Mariagrazia; Amico, Enrico; Maglione, Vittorio; Frati, Luigi

    2015-11-01

    Huntington disease (HD) is a neurodegenerative disorder for which new treatments are urgently needed. Pridopidine is a new dopaminergic stabilizer, recently developed for the treatment of motor symptoms associated with HD. The therapeutic effect of pridopidine in patients with HD has been determined in two double-blind randomized clinical trials, however, whether pridopidine exerts neuroprotection remains to be addressed. The main goal of this study was to define the potential neuroprotective effect of pridopidine, in HD in vivo and in vitro models, thus providing evidence that might support a potential disease-modifying action of the drug and possibly clarifying other aspects of pridopidine mode-of-action. Our data corroborated the hypothesis of neuroprotective action of pridopidine in HD experimental models. Administration of pridopidine protected cells from apoptosis, and resulted in highly improved motor performance in R6/2 mice. The anti-apoptotic effect observed in the in vitro system highlighted neuroprotective properties of the drug, and advanced the idea of sigma-1-receptor as an additional molecular target implicated in the mechanism of action of pridopidine. Coherent with protective effects, pridopidine-mediated beneficial effects in R6/2 mice were associated with an increased expression of pro-survival and neurostimulatory molecules, such as brain derived neurotrophic factor and DARPP32, and with a reduction in the size of mHtt aggregates in striatal tissues. Taken together, these findings support the theory of pridopidine as molecule with disease-modifying properties in HD and advance the idea of a valuable therapeutic strategy for effectively treating the disease. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  17. Neuroprotective Effects of Butanol Fraction of Cordyceps cicadae on Glutamate-Induced Damage in PC12 Cells Involving Oxidative Toxicity.

    Science.gov (United States)

    Wang, Dan; Wang, Jibiao; Wang, Dujun; Yu, Xiaofeng; Olatunji, Opeyemi Joshua; Ouyang, Zhen; Wei, Yuan

    2018-01-01

    The current study was aimed at investigating the neuroprotective effects of the butanol fraction from Cordyceps cicadae (C BU ), which was responsible for the anti-aging effect of this medicine. Glutamate-induced PC12 cells were used as a model to determine the neuroprotective effect against oxidative cell death. Cell viability, cytotoxicity, flow cytometry, mitochondrial transmembrane potential (MMP), reactive oxygen species (ROS), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) levels were analyzed to assess neuronal cell survival or death. The results obtained from the above evaluations showed that C BU was the most effective fraction and even better than pure compounds present in C. cicadae in terms of suppressing glutamate-induced damage in PC12 cells, increasing cell viability, decreasing lactase dehydrogenase (LDH) release, and reduction of apoptosis induced by exposure to glutamate. Furthermore, C BU protected cells against mitochondrial dysfunction and oxidative stress as indicated by the suppression of ROS accumulation and up regulation of the levels of GSH-Px and SOD. In summary, the above results showed that C BU exerted neuroprotective effect against oxidative damage, and this activity could be partly due to the action of nucleosides present in the C BU . © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  18. Neuroprotective Effects of Centella asiatica against Intracerebroventricular Colchicine-Induced Cognitive Impairment and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Anil Kumar

    2009-01-01

    Full Text Available Oxidative stress appears to be an early event involved in the pathogenesis of Alzheimer's disease. The present study was designed to investigate the neuroprotective effects of Centella asiatica against colchicine-induced memory impairment and oxidative damage in rats. Colchicine (15 μg/5 μL was administered intracerebroventricularly in the lateral ventricle of male wistar rats. Morris water maze and plus-maze performance tests were used to assess memory performance tasks. Various biochemical parameters such as lipid peroxidation, nitrite, reduced glutathione, glutathione-S-transferase, superoxide dismutase, acetylcholinesterase were also assessed. ICV colchicine resulted marked memory impairment and oxidative damage. Chronic treatment with Centella asiatica extract (150 and 300 mg/kg, p.o. for a period of 25 days, beginning 4 days prior to colchicine administration, significantly attenuated colchicine-induced memory impairment and oxidative damage. Besides, Centella asiatica significantly reversed colchicines administered increase in acetylcholinesterase activity. Thus, present study indicates protective effect of Centella asiatica against colchicine-induced cognitive impairment and associated oxidative damage.

  19. Neuroprotective Effects of Centella asiatica against Intracerebroventricular Colchicine-Induced Cognitive Impairment and Oxidative Stress

    Science.gov (United States)

    Kumar, Anil; Dogra, Samrita; Prakash, Atish

    2009-01-01

    Oxidative stress appears to be an early event involved in the pathogenesis of Alzheimer's disease. The present study was designed to investigate the neuroprotective effects of Centella asiatica against colchicine-induced memory impairment and oxidative damage in rats. Colchicine (15 μg/5 μL) was administered intracerebroventricularly in the lateral ventricle of male wistar rats. Morris water maze and plus-maze performance tests were used to assess memory performance tasks. Various biochemical parameters such as lipid peroxidation, nitrite, reduced glutathione, glutathione-S-transferase, superoxide dismutase, acetylcholinesterase were also assessed. ICV colchicine resulted marked memory impairment and oxidative damage. Chronic treatment with Centella asiatica extract (150 and 300 mg/kg, p.o.) for a period of 25 days, beginning 4 days prior to colchicine administration, significantly attenuated colchicine-induced memory impairment and oxidative damage. Besides, Centella asiatica significantly reversed colchicines administered increase in acetylcholinesterase activity. Thus, present study indicates protective effect of Centella asiatica against colchicine-induced cognitive impairment and associated oxidative damage. PMID:20798885

  20. Neuroprotective Effects of Clostridium butyricum against Vascular Dementia in Mice via Metabolic Butyrate

    Directory of Open Access Journals (Sweden)

    Jiaming Liu

    2015-01-01

    Full Text Available Probiotics actively participate in neuropsychiatric disorders. However, the role of gut microbiota in brain disorders and vascular dementia (VaD remains unclear. We used a mouse model of VaD induced by a permanent right unilateral common carotid arteries occlusion (rUCCAO to investigate the neuroprotective effects and possible underlying mechanisms of Clostridium butyricum. Following rUCCAO, C. butyricum was intragastrically administered for 6 successive weeks. Cognitive function was estimated. Morphological examination was performed by electron microscopy and hematoxylin-eosin (H&E staining. The BDNF-PI3K/Akt pathway-related proteins were assessed by western blot and immunohistochemistry. The diversity of gut microbiota and the levels of butyrate in the feces and the brains were determined. The results showed that C. butyricum significantly attenuated the cognitive dysfunction and histopathological changes in VaD mice. C. butyricum not only increased the levels of BDNF and Bcl-2 and decreased level of Bax but also induced Akt phosphorylation (p-Akt and ultimately reduced neuronal apoptosis. Moreover, C. butyricum could regulate the gut microbiota and restore the butyrate content in the feces and the brains. These results suggest that C. butyricum might be effective in the treatment of VaD by regulating the gut-brain axis and that it can be considered a new therapeutic strategy against VaD.

  1. Neuroprotective Effect of Dexmedetomidine on Hyperoxia-Induced Toxicity in the Neonatal Rat Brain

    Directory of Open Access Journals (Sweden)

    Marco Sifringer

    2015-01-01

    Full Text Available Dexmedetomidine is a highly selective agonist of α2-receptors with sedative, anxiolytic, analgesic, and anesthetic properties. Neuroprotective effects of dexmedetomidine have been reported in various brain injury models. In the present study, we investigated the effects of dexmedetomidine on neurodegeneration, oxidative stress markers, and inflammation following the induction of hyperoxia in neonatal rats. Six-day-old Wistar rats received different concentrations of dexmedetomidine (1, 5, or 10 µg/kg bodyweight and were exposed to 80% oxygen for 24 h. Sex-matched littermates kept in room air and injected with normal saline or dexmedetomidine served as controls. Dexmedetomidine pretreatment significantly reduced hyperoxia-induced neurodegeneration in different brain regions of the neonatal rat. In addition, dexmedetomidine restored the reduced/oxidized glutathione ratio and attenuated the levels of malondialdehyde, a marker of lipid peroxidation, after exposure to high oxygen concentration. Moreover, administration of dexmedetomidine induced downregulation of IL-1β on mRNA and protein level in the developing rat brain. Dexmedetomidine provides protections against toxic oxygen induced neonatal brain injury which is likely associated with oxidative stress signaling and inflammatory cytokines. Our results suggest that dexmedetomidine may have a therapeutic potential since oxygen administration to neonates is sometimes inevitable.

  2. Neuroprotective effects of sulforaphane on cholinergic neurons in mice with Alzheimer's disease-like lesions.

    Science.gov (United States)

    Zhang, Rui; Zhang, Jingzhu; Fang, Lingduo; Li, Xi; Zhao, Yue; Shi, Wanying; An, Li

    2014-08-18

    Alzheimer's disease (AD) is a common neurodegenerative disease in elderly individuals, and effective therapies are unavailable. This study was designed to investigate the neuroprotective effects of sulforaphane (an activator of NF-E2-related factor 2) on mice with AD-like lesions induced by combined administration of aluminum and D-galactose. Step-down-type passive avoidance tests showed sulforaphane ameliorated cognitive impairment in AD-like mice. Immunohistochemistry results indicated sulforaphane attenuated cholinergic neuron loss in the medial septal and hippocampal CA1 regions in AD-like mice. However, spectrophotometry revealed no significant difference in acetylcholine level or the activity of choline acetyltransferase or acetylcholinesterase in the cerebral cortex among groups of control and AD-like mice with and without sulforaphane treatment. Sulforaphane significantly increased the numbers of 5-bromo-2'-deoxyuridine-positive neurons in the subventricular and subgranular zones in AD-like mice which were significantly augmented compared with controls. Atomic absorption spectrometry revealed significantly lower aluminum levels in the brains of sulforaphane-treated AD-like mice than in those that did not receive sulforaphane treatment. In conclusion, sulforaphane ameliorates neurobehavioral deficits by reducing cholinergic neuron loss in the brains of AD-like mice, and the mechanism may be associated with neurogenesis and aluminum load reduction. These findings suggest that phytochemical sulforaphane has potential application in AD therapeutics.

  3. Exercise preconditioning exhibits neuroprotective effects on hippocampal CA1 neuronal damage after cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Nabi Shamsaei

    2015-01-01

    Full Text Available Recent evidence has suggested the neuroprotective effects of physical exercise on cerebral ischemic injury. However, the role of physical exercise in cerebral ischemia-induced hippocampal damage remains controversial. The aim of the present study was to evaluate the effects of pre-ischemia treadmill training on hippocampal CA1 neuronal damage after cerebral ischemia. Male adult rats were randomly divided into control, ischemia and exercise + ischemia groups. In the exercise + ischemia group, rats were subjected to running on a treadmill in a designated time schedule (5 days per week for 4 weeks. Then rats underwent cerebral ischemia induction through occlusion of common carotids followed by reperfusion. At 4 days after cerebral ischemia, rat learning and memory abilities were evaluated using passive avoidance memory test and rat hippocampal neuronal damage was detected using Nissl and TUNEL staining. Pre-ischemic exercise significantly reduced the number of TUNEL-positive cells and necrotic cell death in the hippocampal CA1 region as compared to the ischemia group. Moreover, pre-ischemic exercise significantly prevented ischemia-induced memory dysfunction. Pre-ischemic exercise mighct prevent memory deficits after cerebral ischemia through rescuing hippocampal CA1 neurons from ischemia-induced degeneration.

  4. Tamoxifen: an FDA approved drug with neuroprotective effects for spinal cord injury recovery

    Directory of Open Access Journals (Sweden)

    Jennifer M Colón

    2016-01-01

    Full Text Available Spinal cord injury (SCI is a condition without a cure, affecting sensory and/or motor functions. The physical trauma to the spinal cord initiates a cascade of molecular and cellular events that generates a non-permissive environment for cell survival and axonal regeneration. Among these complex set of events are damage of the blood-brain barrier, edema formation, inflammation, oxidative stress, demyelination, reactive gliosis and apoptosis. The multiple events activated after SCI require a multi-active drug that could target most of these events and produce a permissive environment for cell survival, regeneration, vascular reorganization and synaptic formation. Tamoxifen, a selective estrogen receptor modulator, is an FDA approved drug with several neuroprotective properties that should be considered for the treatment of this devastating condition. Various investigators using different animal models and injury parameters have demonstrated the beneficial effects of this drug to improve functional locomotor recovery after SCI. Results suggest that the mechanism of action of Tamoxifen administration is to modulate anti-oxidant, anti-inflammatory and anti-gliotic responses. A gap of knowledge exists regarding the sex differences in response to Tamoxifen and the therapeutic window available to administer this treatment. In addition, the effects of Tamoxifen in axonal outgrowth or synapse formation needs to be investigated. This review will address some of the mechanisms activated by Tamoxifen after SCI and the results recently published by investigators in the field.

  5. The new inhibitor of monoamine oxidase, M30, has a neuroprotective effect against dexamethasone-induced brain cell apoptosis

    Directory of Open Access Journals (Sweden)

    Shakevia Johnson

    2010-11-01

    Full Text Available Stress detrimentally affects the brain and body and can lead to or be accompanied by depression. Although stress and depression may contribute to each other, the exact molecular mechanism underlying the effects is unclear. However, there is a correlation between stress and an increase in glucocorticoid secretion which causes a subsequent increase in monoamine oxidase (MAO activity during stress. Consequently, MAO inhibitors have been used as traditional antidepressant drugs. Cellular treatment with the synthetic glucocorticoid, dexamethasone (a cellular stressor, has been reported to markedly increase both MAO A and MAO B catalytic activities, as well as apoptosis. This study compares the neuroprotective abilities of M30 (a new generation inhibitor of both MAO A and MAO B with rasagiline (Azilect®, another new MAO B inhibitor and selegiline (Deprenyl®, a traditional MAO B inhibitor in the prevention of dexamethasone-induced brain cell death and MAO activity in human neuroblastoma cells, SH-SY5Y. M30 demonstrated the highest inhibitory effect on MAO A; however, M30 showed the lowest inhibitory effect on MAO B enzymatic activity in comparison to rasagiline and selegiline. Although, M30 exhibited the greatest neuroprotective effect by decreasing cell death rates and apoptotic DNA damage compared to rasagiline and selegiline, these neuroprotective effects of M30 were, overall, similar to rasagiline. Summarily, M30 has a generally greater impact on neuroprotection than the MAO B inhibitors, selegiline and rasagiline. Our results suggest that M30 may have great potential in alleviating disorders involving increases in both MAO A and MAO B, such as stress-induced disorders.

  6. Post-stroke treatment with 17β-estradiol exerts neuroprotective effects in both normotensive and hypertensive rats.

    Science.gov (United States)

    Stoop, Wendy; De Geyter, Deborah; Verachtert, Sofie; Brouwers, Sofie; Verdood, Peggy; De Keyser, Jacques; Kooijman, Ron

    2017-04-21

    Although ischemic stroke is a major cause of death worldwide and the predominant cause of acquired disability, the only effective drug therapy that has been developed thus far is reperfusion by tissue plasminogen activator. Since most patients do not qualify for this treatment, new methods have to be developed. It is well known that estradiol (E 2 ) exerts neuroprotective effects in different models of cerebral ischemia, but post-stroke treatment after an acute stroke has hardly been investigated. As many patients with an acute ischemic stroke have arterial hypertension, it is also of interest to evaluate the influence of this co-morbidity on the treatment efficacy of E 2 . The effects of E 2 administered 30min after a transient middle cerebral artery occlusion (tMCAO) induced by an intracerebral injection of endothelin-1 were assessed in male normotensive Wistar Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs). Treatment with E 2 reduced infarct size in both WKY and SHRs and decreased the number of degenerating neurons, indicating that acute treatment with E 2 is indeed neuroprotective. To address the role of glia in neuroprotection, the effects of E 2 on the activation of microglia and astrocytes was determined. It appeared that E 2 had no effect on microglial activation, but reduced the activation of astrocytes in SHRs but not in the normotensive controls. We conclude that post-stroke E 2 treatment in both normotensive and hypertensive rats is neuroprotective. Although the presence of hypertension changed the astrocytic response to E 2 , it did not affect treatment efficacy. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Phytochemical allylguaiacol exerts a neuroprotective effect on hippocampal cells and ameliorates scopolamine-induced memory impairment in mice.

    Science.gov (United States)

    Lim, Hye-Sun; Kim, Bu-Yeo; Kim, Yu Jin; Jeong, Soo-Jin

    2018-02-26

    Allylguaiacol is a phytochemical occurring in various plants such as cloves, cinnamon, basil, and nutmeg. Pharmacological effects of allylguaiacol include antimicrobial, anti-inflammatory, anticancer, antioxidant, and neuroprotective activity. Although allylguaiacol is considered to have neuroprotective effects, there is no report on its regulatory mechanisms at the molecular level. In the present study, we investigated the mechanisms of allylguaiacol as an antioxidant and neuroprotective agent using hydrogen peroxide (H 2 O 2 )-treated HT22 hippocampal cells. Allylguaiacol increased the scavenging activities of free radicals 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH), and enhanced the expression of antioxidant enzymes manganese superoxide dismutase (MnSOD) and catalase. In addition, allylguaiacol inhibited H 2 O 2 -induced damage of HT22 with increasing production of brain-derived neurotrophic factor (BDNF), phosphorylation of phosphoinositide 3-kinase (PI3K), and cyclic AMP response element-binding protein (CREB). Furthermore, antibody microarray data revealed that phospho-regulation of nuclear factor kappa B (NF-κB) p65 and death domain-associated protein (DAXX) is involved in protection against neuronal cell damage. In a mouse model of short-term memory impairment, allylguaiacol (2.5 or 5mg/kg) significantly ameliorated scopolamine-mediated cognitive impairment in a passive avoidance task. In addition, allylguaiacol significantly increased the expression of TrkA and B in the hippocampus from scopolamine-treated mice. Taken together, our findings suggest that allylguaiacol exerts a neuroprotective effect through the antioxidant activation and protein regulation of NF-κB p65 and DAXX-related signaling. The ameliorating effect of allylguaiacol may be useful for treatment of memory impairment in Alzheimer's and its related diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Neuroprotective effects of tempol acyl esters against retinal ganglion cell death in a rat partial optic nerve crush model.

    Science.gov (United States)

    Thaler, Sebastian; Fiedorowicz, Michal; Grieb, Pawel; Wypych, Zbigniew; Knap, Narcyz; Borowik, Tomasz; Zawada, Katarzyna; Kaminski, Jaroslaw; Wozniak, Michal; Rejdak, Robert; Zrenner, Eberhart; Schuettauf, Frank

    2011-11-01

    The aim of this study is to search for more effective derivatives of the superoxide dismutase mimetic tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl). Although tempol is neuroprotective in a rat partial optic nerve crush (PONC) model, relatively high doses are required to exert this effect. Tempol acyl esters with different-length fatty acids (tempol-C4, tempol-C8, tempol-C12 and tempol-C16) were synthesized and the following properties were evaluated: water-octanol partition coefficient, liposome-liposome energy transfer, and electron paramagnetic resonance (EPR). Brown Norway rats underwent PONC and received tempol or acyl esters intraperitoneally once daily for 7 consecutive days. We then compared the effects of tempol and its four esters on retinal ganglion cell (RGC) damage using a retrograde labelling method. The water-octanol partition coefficient increased with increasing length of attached acyl chain. However, the energy of the liposome-liposome transfer seemed to be optimal for tempol-C8 and tempol-C12. The EPR signal was very similar for all tested compounds, suggesting similar efficiency of superoxide scavenging. Partial optic nerve crush in vehicle-treated animals reduced RGC numbers by approx. 59% when compared with sham-operated eyes. Tempol did not affect RGC loss at a dose of 1 mg/kg. In contrast, at molar doses equivalent to 1 mg/kg of tempol, tempol-C8 showed a significant neuroprotective effect, whereas tempol-C4, tempol-C12 and tempol-C16 did not act neuroprotectively. Manipulating the hydrophobicity of tempol seems to be a promising tool for developing more potent neuroprotectants in the PONC degeneration model. However, the resulting compounds need further pharmacological evaluation. © 2011 The Authors. Acta Ophthalmologica © 2011 Acta Ophthalmologica Scandinavica Foundation.

  9. Indirect application of near infrared light induces neuro-protection in a mouse model of parkinsonism - an abscopal neuro-protective effective evaluation

    International Nuclear Information System (INIS)

    Johnstone, D.M.; Spana, S.; Purushothuman, S.; Stone, J.; Mitrofanis, J.; Johnstone, D.M.; Spana, S.; Purushothuman, S.; Stone, J.; El Massri, N.; Mitrofanis, J.; Moro, C.; Torres, N.; Chabrol, C.; De Jaeger, X.; Reinhart, F.; Benabid, A.L.; Wang, X.S.

    2014-01-01

    We have previously shown near infrared light (NIr), directed transcranially, mitigates the loss of dopaminergic cells in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-treated mice, a model of parkinsonism. These findings complement others suggesting NIr treatment protects against damage from various insults. However one puzzling feature of NIr treatment is that unilateral exposure can lead to a bilateral healing response, suggesting NIr may have 'indirect' protective effects. We investigated whether remote NIr treatment is neuro-protective by administering different MPTP doses (50-, 75-, 100-mg/kg) to mice and treating with 670-nm light directed specifically at either the head or body. Our results show that, despite no direct irradiation of the damaged tissue, remote NIr treatment produces a significant rescue of tyrosine hydroxylase-positive cells in the substantia nigra pars compacta at the milder MPTP dose of 50-mg/kg (30% increase vs sham-treated MPTP mice, p≤ 0.05). However this protection did not appear as robust as that achieved by direct irradiation of the head (50% increase vs sham-treated MPTP mice, p ≤0.001). There was no quantifiable protective effect of NIr at higher MPTP doses, irrespective of the delivery mode. Astrocyte and microglia cell numbers in substantia nigra pars compacta were not influenced by either mode of NIr treatment. In summary, the findings suggest that treatment of a remote tissue with NIr is sufficient to induce protection of the brain, reminiscent of the 'abscopal effect' sometimes observed in radiation treatment of metastatic cancer. This discovery has implications for the clinical translation of light-based therapies, providing an improved mode of delivery over trans-cranial irradiation. (authors)

  10. Neuroprotective effects of Cassia tora against paraquat-induced neurodegeneration: relevance for Parkinson's disease.

    Science.gov (United States)

    Ravi, Sunil K; Narasingappa, Ramesh B; Joshi, Chandrashekar G; Girish, Talakatta K; Vincent, Bruno

    2017-07-16

    The aim of the present study was to determine whether Cassia tora extracts could reverse the oxidative stress-induced neurodegeneration in a Parkinson's disease in vitro model. The leaves were treated with ethyl acetate (CtEA) or methanol (CtME). The extracts were first analysed by HPLC for their phenolic content and then tested for their neuroprotective effects in human SK-N-SH neuroblastoma cells. Cells were pre-treated with various concentrations of extracts followed by incubation with paraquat (14 μM). Firstly, pre-treatment of SK-N-SH cells with 100 μg/mL of CtEA or CtME significantly reduced the paraquat-induced production of reactive oxygen species. Furthermore, both CtEA and CtME reduced the paraquat-induced apoptosis. Moreover, there was a significant reduction of paraquat-induced DNA damage in SK-N-SH cells pre-treated with CtEA or CtME. Finally, both extracts significantly inhibited paraquat-dependent lipid peroxidation. Altogether, these in vitro data establish C. tora as a possible anti-Parkinson natural remedy.

  11. The Neuroprotective Effect of Glycyrrhizic Acid on an Experimental Model of Focal Cerebral Ischemia in Rats.

    Science.gov (United States)

    Akman, Tarık; Guven, Mustafa; Aras, Adem Bozkurt; Ozkan, Adile; Sen, Halil Murat; Okuyucu, Ali; Kalkan, Yildiray; Sehitoglu, Ibrahim; Silan, Coskun; Cosar, Murat

    2015-08-01

    Cerebral ischemia is still one of the most important topics in neurosciences. Our study aimed to investigate the neuroprotective and anti-oxidant effects of glycyrrhizic acid on focal cerebral ischemia in rats. Twenty-four rats were divided equally into three groups. A middle cerebral artery occlusion model was performed in this study where sham and glycyrrhizic acid were administered intraperitoneally following middle cerebral artery occlusion. Group I was evaluated as control. Malondialdehyde (MDA), superoxide dismutase (SOD), and nuclear respiratory factor-1 (NRF1) levels were analyzed biochemically on the right cerebral hemisphere, while ischemic histopathological studies were completed to investigate the anti-oxidant status. Biochemical results showed that SOD and NRF1 levels were significantly increased in the glycyrrhizic acid group compared with the sham group while MDA levels were significantly decreased. On histopathological examination, cerebral edema, vacuolization, degeneration, and destruction of neurons were decreased in the glycyrrhizic acid group compared with the sham group. Cerebral ischemia was attenuated by glycyrrhizic acid administration. These observations indicate that glycyrrhizic acid may have potential as a therapeutic agent in cerebral ischemia by preventing oxidative stress.

  12. Neuroprotective effect of undecylenic acid extracted from Ricinus communis L. through inhibition of μ-calpain.

    Science.gov (United States)

    Lee, Eunyoung; Eom, Ji-Eun; Kim, Hye-Lin; Kang, Da-Hye; Jun, Kyu-Yeon; Jung, Duk Sang; Kwon, Youngjoo

    2012-05-12

    The key neuropathological features of Alzheimer's disease are abnormal deposition of Aβ plaques and insoluble Aβ peptides in extracellular brain and intracellular neurofibril tangles induced by abnormal tau hyperphosphorylation. μ-Calpain is one of the factors that bridge these Aβ- and hyperphosphorylated tau-mediated pathological pathways. Undecylenic acid (UDA), a naturally occurring unsaturated fatty acid, was discovered as a μ-calpain inhibitor by screening a chemical library using a substrate specific μ-calpain assay method. UDA inhibited Aβ oligomerization and Aβ fibrillation and reversed Aβ-induced neuronal cell death. In addition, UDA scavenged ROS and reversed the levels of proapoptotic proteins induced by ROS in SH-SY5Y cells. UDA inhibited μ-calpain activity with better potency than the known peptide-like μ-calpain inhibitor, MDL28170, in SH-SY5Y and HEK293T cells transfected with the catalytic subunit of μ-calpain. These results suggest that UDA is a novel non-peptide-like μ-calpain inhibitor with good cell permeability and potent neuroprotective effect. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Neuroprotective effects of riluzole: an electrophysiological and histological analysis in an in vitro model of ischemia.

    Science.gov (United States)

    Siniscalchi, A; Zona, C; Sancesario, G; D'Angelo, E; Zeng, Y C; Mercuri, N B; Bernardi, G

    1999-06-01

    The protective effects of riluzole against the neuronal damage caused by O2 and glucose deprivation (ischemia) was investigated in rat cortical slices by recording electrophysiologically the cortico-cortical field potential and by evaluating histologically the severity of neuronal death. Five minutes of ischemia determined an irreversible depression of the amplitude of the field potential. In addition, this insult caused a clear enhancement of the number of death cells that were specifically colored with trypan blue (a vital colorant which stains altered cells). We found that riluzole, which by itself depressed the synaptic transmission, neuroprotected when perfused 15-20 min before and during ischemia. In fact, due to the treatment with riluzole, the ischemia-induced irreversible depression of the field potential recovered and less cells were stained with trypan blue. These findings demonstrate that riluzole prevents neuronal death in an in vitro model of ischemia and suggest a therapeutic use of this drug in order to reduce the pathophysiological outcomes of stroke.

  14. Anti-Inflammatory and Neuroprotective Effects of Constituents Isolated from Rhodiola rosea

    Directory of Open Access Journals (Sweden)

    Yeonju Lee

    2013-01-01

    Full Text Available To determine the biological activity of Rhodiola rosea, the protein expression of iNOS and proinflammatory cytokines was measured after the activation of murine microglial BV2 cells by LPS under the exposure of constituents of Rhodiola rosea: crude extract, rosin, rosarin, and salidroside (each 1–50 μg/mL. The LPS-induced expression of iNOS and cytokines in BV2 cells was suppressed by the constituents of Rhodiola rosea in a concentration-dependent manner. Also the expression of the proinflammatory factors iNOS, IL-1β, and TNF-α in the kidney and prefrontal cortex of brain in mice was suppressed by the oral administration of Rhodiola rosea crude extract (500 mg/kg. To determine the neuroprotective effect of constituents of Rhodiola rosea, neuronal cells were activated by L-glutamate, and neurotoxicity was analyzed. The L-glutamate-induced neurotoxicity was suppressed by the treatment with rosin but not by rosarin. The level of phosphorylated MAPK, pJNK, and pp38 was increased by L-glutamate treatment but decreased by the treatment with rosin and salidroside. These results indicate that Rhodiola rosea may have therapeutic potential for the treatment of inflammation and neurodegenerative disease.

  15. Neuroprotective effect of melatonin on soluble Aβ1-42-induced cortical neurodegeneration via Reelin-Dab1 signaling pathway.

    Science.gov (United States)

    Hu, Chunli; Wang, Pan; Zhang, Shuman; Ren, Lili; Lv, Yiheng; Yin, Rui; Bi, Jing

    2017-07-01

    Soluble Aβ 1-42 oligomers play a vital role in the development and pathogenesis of Alzheimer's disease (AD). Melatonin could delay the progress of AD through multiple mechanisms. Reelin-Dab1 signaling plays an important role in AD, including neuronal function and synaptic plasticity. However, whether melatonin could exert its neuroprotective function against soluble Aβ 1-42 -induced neurotoxicity during AD development through regulating Reelin-Dab1 signaling remains poorly understood. AD rat model was established by soluble Aβ 1-42 repeated intracerebroventricular injection. Using immunohistochemistry and Western blot analyses, the effect of melatonin on synaptic plasticity, neuritic degeneration, and astrocyte activation was investigated in cerebral cortex. Meanwhile, the expression of Reelin and Dab1 was also examined in cerebral cortex. In our in vitro study, Reelin-Dab1 signaling was inhibited by Reelin antibody, and neuroprotective effect of melatonin against Aβ 1-42 was further determined. Melatonin ameliorated the neurotoxiciy and astrocyte activation induced by Aβ 1-42 in the cerebral cortex. Melatonin also blocked the reduction in Reelin and Dab1 expression induced by Aβ 1-42 . Using in vitro study, Reelin inactivation completely abolished the protective effect of melatonin against Aβ 1-42 -induced neurotoxicity. Melatonin might play its neuroprotective role against Aβ 1-42 through mediating Reelin-Dab1 signaling pathway. Melatonin could be a safe and remarkable therapeutic candidate for AD and other aged-associated neurodegenerative diseases.

  16. Epobis is a Nonerythropoietic and Neuroprotective Agonist of the Erythropoietin Receptor with Anti-Inflammatory and Memory Enhancing Effects

    Directory of Open Access Journals (Sweden)

    Oksana Dmytriyeva

    2016-01-01

    Full Text Available The cytokine erythropoietin (EPO stimulates proliferation and differentiation of erythroid progenitor cells. Moreover, EPO has neuroprotective, anti-inflammatory, and antioxidative effects, but the use of EPO as a neuroprotective agent is hampered by its erythropoietic activity. We have recently designed the synthetic, dendrimeric peptide, Epobis, derived from the sequence of human EPO. This peptide binds the EPO receptor and promotes neuritogenesis and neuronal cell survival. Here we demonstrate that Epobis in vitro promotes neuritogenesis in primary motoneurons and has anti-inflammatory effects as demonstrated by its ability to decrease TNF release from activated AMJ2-C8 macrophages and rat primary microglia. When administered systemically Epobis is detectable in both plasma and cerebrospinal fluid, demonstrating that the peptide crosses the blood-brain barrier. Importantly, Epobis is not erythropoietic, but systemic administration of Epobis in rats delays the clinical signs of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, and the peptide has long-term, but not short-term, effects on working memory, detected as an improved social memory 3 days after administration. These data reveal Epobis to be a nonerythropoietic and neuroprotective EPO receptor agonist with anti-inflammatory and memory enhancing properties.

  17. Green tea supplementation produces better neuroprotective effects than red and black tea in Alzheimer-like rat model.

    Science.gov (United States)

    Schimidt, Helen L; Garcia, Alexandre; Martins, Alexandre; Mello-Carpes, Pamela B; Carpes, Felipe P

    2017-10-01

    Green tea from Camellia sinensis plays a neuroprotective role in different neurodegenerative conditions, such as memory deficits in Alzheimer disease (AD). However, whether other teas from Camellia sinensis present similar neuroprotective effect still is not clear. Here we investigate effects of green, red and black tea supplementation on memory and hippocampus oxidative status in a rat model of Alzheimer-like disease (AD-like). Wistar male rats were supplemented with green, red or black tea during 8weeks before Aβ intra-hippocampal injection (2μL of Aβ-25-35, CA1 region). AD and sham rats were submitted to memory tests. After euthanasia, oxidative status in the bilateral hippocampus was quantified. Green and red teas avoid memory deficits in AD rats, but only green tea also avoids oxidative stress and damage in the hippocampus. Green tea was more effective for neuroprotection than red and black teas from the Camellia sinensis in the AD rat model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Neuroprotective Effect and Molecular Mechanism of [6]-Gingerol against Scopolamine-Induced Amnesia in C57BL/6 Mice

    Directory of Open Access Journals (Sweden)

    Chang-Yul Kim

    2018-01-01

    Full Text Available We have investigated the neuroprotective and memory enhancing effect of [6]-gingerol (GIN, a pungent ingredient of ginger, using an animal model of amnesia. To determine the neuroprotective effect of GIN on cognitive dysfunction, scopolamine (SCO, 1 mg/kg, i.p. was injected into C57BL/6 mice, and a series of behavioral tests were conducted. SCO-induced behavior changes and memory impairments, such as decreased alteration (% in Y-maze test, increased mean escape latency in water maze test, diminished step-through latency in passive avoidance test, and shortened freezing time in fear condition test, were significantly prevented and restored by the oral administration of GIN (10 or 25 mg/kg/day. To further verify the neuroprotective mechanism of GIN, we have focused on the brain-derived neurotrophic factor (BDNF. The administration of GIN elevated the protein expression of BDNF, which was mediated via the activation of protein kinase B/Akt- and cAMP-response element binding protein (CREB signaling pathway. These results suggest that GIN may have preventive and/or therapeutic potentials in the management of memory deficit and cognitive impairment in mice with amnesia.

  19. The neuroprotective effects of α-iso-cubebene on dopaminergic cell death: involvement of CREB/Nrf2 signaling.

    Science.gov (United States)

    Park, Sun Young; Son, Beung Gu; Park, Young Hoon; Kim, Cheol-Min; Park, Geuntae; Choi, Young-Whan

    2014-09-01

    As a part of ongoing studies to elucidate pharmacologically active components of Schisandra chinensis, we isolated and studied α-iso-cubebene. The neuroprotective mechanisms of α-iso-cubebene in human neuroblastoma SH-SY5Y cells were investigated. α-Iso-cubebene significantly inhibited cytotoxicity and apoptosis due to 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in dopaminergic SH-SY5Y cells. Pretreatment of cells with α-iso-cubebene reduced intracellular accumulation of ROS and calcium in response to 6-OHDA. The neuroprotective effects of α-iso-cubebene were found to result from protecting the mitochondrial membrane potential. Notably, α-iso-cubebene inhibited the release of apoptosis-inducing factor from the mitochondria into the cytosol and nucleus after 6-OHDA treatment. α-Iso-cubebene also induced the activation of PKA/PKB/CREB/Nrf2 and suppressed 6-OHDA-induced neurotoxicity. α-Iso-cubebene was found to induce phosphorylation of PKA and PKB and activate Nrf2 and CREB signaling pathways in a dose-dependent manner. Additionally, α-iso-cubebene stimulated the expression of the antioxidant response genes NQO1 and HO-1. Finally, α-iso-cubebene-mediated neuroprotective effects were found to be reversible after transfection with CREB and Nrf2 small interfering RNAs.

  20. Neuroprotective effects of andrographolide in a rat model of permanent cerebral ischaemia

    Science.gov (United States)

    Chan, Su Jing; Wong, WS Fred; Wong, Peter TH; Bian, Jin-Song

    2010-01-01

    BACKGROUND AND PURPOSE Andrographolide is a diterpenoid lactone isolated from a traditional medicinal herb, Andrographis paniculata. It possesses potent anti-inflammatory activity. The present study examined potential therapeutic effects of andrographolide on cerebral ischaemia using a rat model with permanent middle cerebral artery occlusion (pMCAO). EXPERIMENTAL APPROACH The MCA in rats was permanently occluded (by cautery), and 24 h later neurological effects were assessed with behavioural scores. Infarct volume and microglial activation were determined histologically. The p65 form of the transcription factor, nuclear factor-κB (NF-κB), was measured by Western blot, and cytokines by immunoassay of brain extracts. KEY RESULTS Andrographolide, given i.p. 1 h after pMCAO, reduced infarct volume with a maximum reduction of approximately 50% obtained at 0.1 mg·kg−1. Neurological deficits were also reduced by andrographolide, reflecting a correlation between infarct volume and neurological deficits. pMCAO was found to induce activation of microglia and elevate tumour necrosis factor (TNF)-α, interleukin (IL)-1β and prostaglandin (PG)E2 in the ischaemic brain areas. Andrographolide (0.1 mg·kg−1) significantly attenuated or abolished these effects. In addition, andrographolide suppressed the translocation of p65 from cytosol to nucleus, indicating reduced NF-κB activation. CONCLUSIONS AND IMPLICATIONS Andrographolide exhibited neuroprotective effects, with accompanying suppression of NF-κB and microglial activation, and reduction in the production of cytokines including TNF-α and IL-1β, and pro-inflammatory factors such as PGE2. Our findings suggest that andrographolide may have therapeutic value in the treatment of stroke. PMID:20880404

  1. Neuroprotective Effects of Germinated Brown Rice in Rotenone-Induced Parkinson's-Like Disease Rats.

    Science.gov (United States)

    Chompoopong, Supin; Jarungjitaree, Sunit; Punbanlaem, Tideeporn; Rungruang, Thanaporn; Chongthammakun, Sukumal; Kettawan, Aikkarach; Taechowisan, Thongchai

    2016-09-01

    The effects of germinated brown rice (GBR) on the motor deficits and the dopaminergic (DA) cell death were investigated in Parkinson's-like disease (PD) rats. Reactive oxidative species generated by chronic subcutaneous injection of rotenone (RT) lead to neuronal apoptosis particularly in the nigrostriatal DA system and produce many features of PD, bradykinesis, postural instability and rigidity. In this study, 4-phenylbutyric acid (4-PBA), previously reported to inhibit RT-induced DA cell death, was used as the positive control. Results show that pretreatment with GBR as well as 4-PBA significantly enhanced the motor activity after RT injection, and GBR affected significantly in open field test, only in the ambulation but not the mobility duration, and ameliorated the time to orient down (t-turn) and total time to descend the pole (t-total) in pole test as compared to RT group, but significantly lowered both t-turn and t-total only in 4-PBA group. The percentage of apoptotic cells in brain measured by flow cytometry and the inflammatory effect measured by ELISA of TNF-α showed significant increase in RT group as compared to the control (CT) group at P < 0.05. Apoptotic cells in RT group (85.98 %) showed a significant (P < 0.05) increase versus CT group (17.50 %), and this effect was attenuated in GBR+RT group by decreasing apoptotic cells (79.32 %), whereas, increased viable cells (17.94 %) versus RT group (10.79 %). GBR in GBR + RT group could decrease TNF-α both in the serum and in brain. In summary, GBR showed a neuroprotective effect in RT-induced PD rats, and it may be useful as a value-added functional food to prevent neurodegenerative disease or PD.

  2. Caffeic acid phenethyl ester, a promising component of propolis with a plethora of biological activities: a review on its anti-inflammatory, neuroprotective, hepatoprotective, and cardioprotective effects.

    Science.gov (United States)

    Tolba, Mai F; Azab, Samar S; Khalifa, Amani E; Abdel-Rahman, Sherif Z; Abdel-Naim, Ashraf B

    2013-08-01

    Caffeic acid phenethyl ester (CAPE) is an important active component of honey bee propolis that possesses a plethora of biological activities. Propolis is used safely in traditional medicine as a dietary supplement for its therapeutic benefits. This review highlights the recently published data about CAPE bioavailability, anti-inflammatory, neuroprotective; hepatoprotective and cardioprotective activities. CAPE showed promising efficacy both in vitro and in vivo studies in animal models with minimum adverse effects. Its effectiveness was demonstrated in multiple target organs. Despite this fact, it has not been yet investigated as a protective agent or a potential therapy in humans. Investigation of CAPE efficacy in clinical trials is strongly encouraged to elucidate its therapeutic benefit for different human diseases after performing full preclinical toxicological studies and gaining more insights into its pharmacokinetics. © 2013 International Union of Biochemistry and Molecular Biology.

  3. Ginger and Propolis Exert Neuroprotective Effects against Monosodium Glutamate-Induced Neurotoxicity in Rats

    Directory of Open Access Journals (Sweden)

    Usama K. Hussein

    2017-11-01

    Full Text Available Central nervous system cytotoxicity is linked to neurodegenerative disorders. The objective of the study was to investigate whether monosodium glutamate (MSG neurotoxicity can be reversed by natural products, such as ginger or propolis, in male rats. Four different groups of Wistar rats were utilized in the study. Group A served as a normal control, whereas group B was orally administered with MSG (100 mg/kg body weight, via oral gavage. Two additional groups, C and D, were given MSG as group B along with oral dose (500 mg/kg body weight of either ginger or propolis (600 mg/kg body weight once a day for two months. At the end, the rats were sacrificed, and the brain tissue was excised and levels of neurotransmitters, ß-amyloid, and DNA oxidative marker 8-OHdG were estimated in the brain homogenates. Further, formalin-fixed and paraffin-embedded brain sections were used for histopathological evaluation. The results showed that MSG increased lipid peroxidation, nitric oxide, neurotransmitters, and 8-OHdG as well as registered an accumulation of ß-amyloid peptides compared to normal control rats. Moreover, significant depletions of glutathione, superoxide dismutase, and catalase as well as histopathological alterations in the brain tissue of MSG-treated rats were noticed in comparison with the normal control. In contrast, treatment with ginger greatly attenuated the neurotoxic effects of MSG through suppression of 8-OHdG and β-amyloid accumulation as well as alteration of neurotransmitter levels. Further improvements were also noticed based on histological alterations and reduction of neurodegeneration in the brain tissue. A modest inhibition of the neurodegenerative markers was observed by propolis. The study clearly indicates a neuroprotective effect of ginger and propolis against MSG-induced neurodegenerative disorders and these beneficial effects could be attributed to the polyphenolic compounds present in these natural products.

  4. Neuroprotective Effects of Pomegranate Peel Extract after Chronic Infusion with Amyloid-β Peptide in Mice

    Science.gov (United States)

    Morzelle, Maressa Caldeira; Salgado, Jocelem Mastrodi; Telles, Milena; Mourelle, Danilo; Bachiega, Patricia; Buck, Hudson Sousa

    2016-01-01

    Alzheimer’s disease is a chronic and degenerative condition that had no treatment until recently. The current therapeutic strategies reduce progression of the disease but are expensive and commonly cause side effects that are uncomfortable for treated patients. Functional foods to prevent and/or treat many conditions, including neurodegenerative diseases, represent a promising field of study currently gaining attention. To this end, here we demonstrate the effects of pomegranate (Punica granatum) peel extract (PPE) regarding spatial memory, biomarkers of neuroplasticity, oxidative stress and inflammation in a mouse model of neurodegeneration. Male C57Bl/6 mice were chronically infused for 35 days with amyloid-β peptide 1–42 (Aβ) or vehicle (control) using mini-osmotic pumps. Another group, also infused with Aβ, was treated with PPE (p.o.– βA+PPE, 800 mg/kg/day). Spatial memory was evaluated in the Barnes maze. Animals treated with PPE and in the control group exhibited a reduction in failure to find the escape box, a finding that was not observed in the Aβ group. The consumption of PPE reduced amyloid plaque density, increased the expression of neurotrophin BDNF and reduced the activity of acetylcholinesterase enzyme. A reduction in lipid peroxidation and in the concentration of the pro-inflammatory cytokine TNF-α was also observed in the PPE group. No hepatic lesions were observed in animals treated with PPE. In conclusion, administration of pomegranate peel extract has neuroprotective effects involving multiple mechanisms to prevent establishment and progression of the neurodegenerative process induced by infusion with amyloid-β peptide in mice. PMID:27829013

  5. Effects of the neuroprotective drugs somatostatin and brimonidine on retinal cell models of diabetic retinopathy.

    Science.gov (United States)

    Beltramo, Elena; Lopatina, Tatiana; Mazzeo, Aurora; Arroba, Ana I; Valverde, Angela M; Hernández, Cristina; Simó, Rafael; Porta, Massimo

    2016-12-01

    Diabetic retinopathy is considered a microvascular disease, but recent evidence has underlined early involvement of the neuroretina with interactions between microvascular and neural alterations. Topical administration of somatostatin (SST), a neuroprotective molecule with antiangiogenic properties, prevents diabetes-induced retinal neurodegeneration in animals. The α 2 -adrenergic receptor agonist brimonidine (BRM) decreases vitreoretinal vascular endothelial growth factor and inhibits blood-retinal barrier breakdown in diabetic rats. However, SST and BRM effects on microvascular cells have not yet been studied. We investigated the behaviour of these drugs on the crosstalk between microvasculature and neuroretina. Expression of SST receptors 1-5 in human retinal pericytes (HRP) was checked. We subsequently evaluated the effects of diabetic-like conditions (high glucose and/or hypoxia) with/without SST/BRM on HRP survival. Endothelial cells (EC) and photoreceptors were maintained in the above conditions and their conditioned media (CM) used to culture HRP. Vice versa, HRP-CM was used on EC and photoreceptors. Survival parameters were assessed. HRP express the SST receptor 1 (SSTR1). Glucose fluctuations mimicking those occurring in diabetic subjects are more damaging for pericytes and photoreceptors than stable high glucose and hypoxic conditions. SST/BRM added to HRP in diabetic-like conditions decrease EC apoptosis. However, neither SST nor BRM changed the response of pericytes and neuroretina-vascular crosstalk under diabetic-like conditions. Retinal pericytes express SSTR1, indicating that they can be a target for SST. Exposure to SST/BRM had no adverse effects, direct or mediated by the neuroretina, suggesting that these molecules could be safely evaluated for the treatment of ocular diseases.

  6. Neuroprotective effects of modafinil in a marmoset Parkinson model: behavioral and neurochemical aspects.

    Science.gov (United States)

    van Vliet, Sanneke A M; Vanwersch, Raymond A P; Jongsma, Marjan J; van der Gugten, Jan; Olivier, Berend; Philippens, Ingrid H C H M

    2006-09-01

    The vigilance-enhancing agent modafinil has neuroprotective properties: it prevents striatal ischemic injury, nigrostriatal pathway deterioration after partial transsection and intoxication with 1-methyl-1,2,3,6-tetrahydropyridine. The present study determines the protective effects of modafinil in the marmoset 1-methyl-1,2,3,6-tetrahydropyridine Parkinson model on behavior and on monoamine levels. Twelve marmoset monkeys were treated with a total dose of 6 mg/kg 1-methyl-1,2,3,6-tetrahydropyridine. Simultaneously, six animals received a daily oral dose of modafinil (100 mg/kg) and six animals received vehicle for 27 days. Behavior was observed daily and the locomotor activity, hand-eye coordination, small fast movements, anxiety-related behavior and startle response of the animals were tested twice a week for 3 weeks. Modafinil largely prevented the 1-methyl-1,2,3,6-tetrahydropyridine-induced change in observed behavior, locomotor activity, hand-eye coordination and small fast movements, whereas the vehicle could not prevent the devastating effects of 1-methyl-1,2,3,6-tetrahydropyridine. Dopamine levels in the striatum of the vehicle+1-methyl-1,2,3,6-tetrahydropyridine-treated animals were reduced to 5% of control levels, whereas the dopamine levels of the modafinil+1-methyl-1,2,3,6-tetrahydropyridine-treated animals were reduced to 41% of control levels. The present data suggest that modafinil prevents decrease of movement-related behavior and dopamine levels after 1-methyl-1,2,3,6-tetrahydropyridine intoxication and can be an efficaceous pharmacological intervention in the treatment of Parkinson's disease.

  7. Neuroprotective Effect of Sodium Butyrate against Cerebral Ischemia/Reperfusion Injury in Mice

    Directory of Open Access Journals (Sweden)

    Jing Sun

    2015-01-01

    Full Text Available Sodium butyrate (NaB is a dietary microbial fermentation product of fiber and serves as an important neuromodulator in the central nervous system. In this study, we further investigated that NaB attenuated cerebral ischemia/reperfusion (I/R injury in vivo and its possible mechanisms. NaB (5, 10 mg/kg was administered intragastrically 3 h after the onset of reperfusion in bilateral common carotid artery occlusion (BCCAO mice. After 24 h of reperfusion, neurological deficits scores were estimated. Morphological examination was performed by electron microscopy and hematoxylin-eosin (H&E staining. The levels of oxidative stress and inflammatory cytokines were assessed. Apoptotic neurons were measured by TUNEL; apoptosis-related protein caspase-3, Bcl-2, Bax, the phosphorylation Akt (p-Akt, and BDNF were assayed by western blot and immunohistochemistry. The results showed that 10 mg/kg NaB treatment significantly ameliorated neurological deficit and histopathology changes in cerebral I/R injury. Moreover, 10 mg/kg NaB treatment markedly restored the levels of MDA, SOD, IL-1β, TNF-α, and IL-8. 10 mg/kg NaB treatment also remarkably inhibited the apoptosis, decreasing the levels of caspase-3 and Bax and increasing the levels of Bcl-2, p-Akt, and BDNF. This study suggested that NaB exerts neuroprotective effects on cerebral I/R injury by antioxidant, anti-inflammatory, and antiapoptotic properties and BDNF-PI3K/Akt pathway is involved in antiapoptotic effect.

  8. Bariatric surgery may reduce the risk of Alzheimer's diseases through GLP-1 mediated neuroprotective effects.

    Science.gov (United States)

    Keshava, Hari B; Mowla, Ashkan; Heinberg, Leslie J; Schauer, Philip R; Brethauer, Stacy A; Aminian, Ali

    2017-07-01

    Obesity and diabetes are associated with deficits in multiple neurocognitive domains and increased risk for dementia. Over the last two decades, there has been a significant increase in bariatric and metabolic surgery worldwide, driven by rising intertwined pandemics of obesity and diabetes, along with improvement in surgical techniques. Patients undergoing bariatric surgery achieve a significant decrease in their excess weight and a multitude of sequela associated with obesity, diabetes, and metabolic syndrome. Glucagon-like peptide 1 (GLP-1) is an intestinal peptide that has been implicated as one of the weight loss-independent mechanisms in how bariatric surgery affects type 2 diabetes. GLP-1 improves insulin secretion, inhibits apoptosis and induce pancreatic islet neogenesis, promotes satiety, and can regulate heart rate and blood pressure. Moreover, numerous studies have demonstrated potential neuroprotective and neurotrophic effects of GLP-1. Increased GLP-1 activity has been shown to increase cortical activity, promote neuronal growth, and inhibit neuronal degeneration. Specifically, in experimental studies on Alzheimer's disease, GLP-1 decreases amyloid deposition and neurofibrillary tangles. Furthermore, recent studies have also suggested that GLP-1 based therapies, new class of antidiabetic drugs, have favorable effects on neurodegenerative disorders such as Alzheimer's disease. We present a hypothesis that bariatric surgery can help delay or even prevent the onset of Alzheimer's disease in long-term by increasing the levels of GLP-1. This hypothesis has a potential for many studies from basic science projects to large population studies to fully understand the neurological and cognitive consequences of bariatric surgery and associated rise in GLP-1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Neuroprotective Effects of Acetylcholinesterase Inhibitory Peptides from Anchovy (Coilia mystus) against Glutamate-Induced Toxicity in PC12 Cells.

    Science.gov (United States)

    Zhao, Tiantian; Su, Guowan; Wang, Shuguang; Zhang, Qi; Zhang, Jianan; Zheng, Lin; Sun, Baoguo; Zhao, Mouming

    2017-12-27

    Ameliorations of cholinergic system dysfunction and oxidative stress in neurodegenerative diseases were main approaches to improve memory disorder. Our previous investigation showed that anchovy protein hydrolysate (APH) could attenuate scopolamine-induced memory deficits in mice by regulating acetylcholinesterase (AChE) activity. Therefore, peptides with AChE inhibitory activity in APH were explored and identified in this study, and their possible neuroprotective mechanisms on glutamate induced apoptosis in PC12 were also elucidated. Two peptides with strong AChE inhibitory capacity were identified as Pro-Ala-Tyr-Cys-Ser (PAYCS) and Cys-Val-Gly-Ser-Tyr (CVGSY) by ultraperformance liquid chromatography coupled with tandem mass spectrometry. The AChE inhibitory was 23.68 ± 0.97% and 6.08 ± 0.41%, respectively. Treatment with PAYCS and CVGSY could significantly (p < 0.05) increase cells viability, reduce lactate dehydrogenase release, reactive oxygen species (ROS) production, malondialdehyde content, and the ratio of Bax/Bcl-2 of glutamate-induced apoptosis PC12 cells (82.78 ± 6.58 and 109.94 ± 7.16% of control, respectively) as well as increase superoxide dismutase and GSH-px activities. In addition, both the peptides could inhibit Ca 2+ influx but have no effects on mitochondrial membrane potential. Results indicated that AChE inhibitory peptides (PAYCS and CVGSY) possibly protected the PC12 cells against glutamate-induced apoptosis via inhibiting ROS production and Ca 2+ influx. PAYCS and CVGSY might be considered as nutraceuticals for alleviating memory deficits.

  10. Neuroprotection without immunomodulation is not sufficient to reduce first relapse severity in experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Hasseldam, Henrik; Johansen, Flemming Fryd

    2010-01-01

    OBJECTIVES: Multiple sclerosis can be characterized by a strong neuroinflammatory and progressive neurodegenerative component leading to prolonged disability. The synthetic compound R(+)WIN55,212-2 is reported to be neuroprotective at moderate doses and both neuroprotective and immunomodulatory...... at high doses, most likely due to differences in receptor affinities. In order to investigate the effects of neuroprotection and immunomodulation in an animal model of multiple sclerosis, we examined the impact of increasing concentrations of R(+)WIN55,212-2 on the inflammatory profile in CNS during first...

  11. Neuroprotective effect of Allium cepa L. in aluminium chloride induced neurotoxicity.

    Science.gov (United States)

    Singh, Tanveer; Goel, Rajesh Kumar

    2015-07-01

    The present study was envisaged to investigate the neuroprotective potential of Allium cepa (A. cepa) in aluminium chloride induced neurotoxicity. Aluminium chloride (50 mg/kg/day) was administered orally in mice supplemented with different doses of A. cepa hydroethanolic extract for a period of 60 days. Various behavioural, biochemical and histopathological parameters were estimated in aluminium exposed animals. Chronic aluminium administration resulted in significant motor incoordination and memory deficits, which were also endorsed biochemically as there was increased oxidative stress as well as elevated acetylcholinesterase (AChE) and aluminium levels in the brain. Supplementation with A. cepa in aluminium exposed animals significantly improved muscle coordination and memory deficits as well as reduced oxidative stress, AChE and decreased abnormal aluminium deposition in the brain. Histopathologically, there was marked deterioration visualized as decreased vacuolated cytoplasm as well as decreased pyramidal cells in the hippocampal area of mice brain which were found to be reversed with A. cepa supplementation. Administration of BADGE (PPARγ antagonist) in aluminium exposed animals reversed the neuroprotective potential of A. cepa as assessed with various behavioural, biochemical, neurochemical and histopathological estimations. In conclusion, finding of this study suggested significant neuroprotective potential of A. cepa in aluminium induced neurotoxicity. Further, the role of PPARγ receptor agonism has also been suggested as a putative neuroprotective mechanism of A. cepa, which needs further studies for confirmation. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Neuroprotective Effect of Zhen Tian Wan on Pial strip-Induced ...

    African Journals Online (AJOL)

    toshiba

    A variety of deficits in learning and memory function have been demonstrated in the brain of animals after injury ... memory in Pial Strip (lesion) –induced amnesia in rat using the Morris water maze. The neuroprotective ..... Hippocampectomy disrupts auditory trace fear conditioning and contextual fear conditioning in the rat.

  13. Strong crystal size effect on deformation twinning

    DEFF Research Database (Denmark)

    Yu, Qian; Shan, Zhi-Wei; Li, Ju

    2010-01-01

    find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal7, 8, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation...... plasticity. Accompanying the transition in deformation mechanism, the maximum flow stress of the submicrometre-sized pillars was observed to saturate at a value close to titanium’s ideal strength9, 10. We develop a ‘stimulated slip’ model to explain the strong size dependence of deformation twinning....... The sample size in transition is relatively large and easily accessible in experiments, making our understanding of size dependence11, 12, 13, 14, 15, 16, 17 relevant for applications....

  14. Neuroprotective and Therapeutic Effect of Caffeine on the Rat Model of Parkinson's Disease Induced by Rotenone.

    Science.gov (United States)

    Khadrawy, Yasser A; Salem, Ahmed M; El-Shamy, Karima A; Ahmed, Emad K; Fadl, Nevein N; Hosny, Eman N

    2017-09-03

    The present study aimed to investigate the protective and therapeutic effects of caffeine on rotenone-induced rat model of Parkinson's disease (PD). Rats were divided into control, PD model induced by rotenone (1.5 mg/kg intraperitoneally (i.p.) for 45 days), protected group injected with caffeine (30 mg/kg, i.p.) and rotenone for 45 days (during the development of PD model), and treated group injected with caffeine (30 mg/kg, i.p.) for 45 days after induction of PD model. The data revealed a state of oxidative and nitrosative stress in the midbrain and the striatum of animal model of PD as indicated from the increased lipid peroxidation and nitric oxide levels and the decreased reduced glutathione level and activities of glutathione-S-transferase and superoxide dismutase. Rotenone induced a decrease in acetylcholinesterase and Na + /K + -ATPase activities and an increase in tumor necrosis factor-α level in the midbrain and the striatum. Protection and treatment with caffeine ameliorated the oxidative stress and the changes in acetylcholinesterase and Na + /K + -ATPase activities induced by rotenone in the midbrain and the striatum. This was associated with improvement in the histopathological changes induced in the two areas of PD model. Caffeine protection and treatment restored the depletion of midbrain and striatal dopamine induced by rotenone and prevented decline in motor activities (assessed by open field test) and muscular strength (assessed by traction and hanging tests) and improved norepinephrine level in the two areas. The present study showed that caffeine offered a significant neuroprotection and treatment against neurochemical, histopathological, and behavioral changes in a rotenone-induced rat model of PD.

  15. Neuroprotective Effects of Theaflavins Against Oxidative Stress-Induced Apoptosis in PC12 Cells.

    Science.gov (United States)

    Zhang, Jing; Cai, Shuxian; Li, Juan; Xiong, Ligui; Tian, Lili; Liu, Jianjun; Huang, Jianan; Liu, Zhonghua

    2016-12-01

    Oxidative stress can induce neuronal apoptosis via the production of superoxide and hydroxyl radicals. This process is as a major pathogenic mechanism in neurodegenerative disorders. In this study, we aimed to clarify whether theaflavins protect PC12 cells from oxidative stress damage induced by H 2 O 2 . A cell model of PC12 cells undergoing oxidative stress was created by exposing cells to 200 μM H 2 O 2 in the presence or absence of varying concentrations of theaflavins (5, 10, and 20 μM). Cell viability was monitored using the MTT assay and Hoechst 33258 staining, showing that 10 μM theaflavins enhanced cell survival following 200 μM H 2 O 2 induced toxicity and increased cell viability by approximately 40 %. Additionally, we measured levels of intracellular reactive oxygen species (ROS) and antioxidant enzyme activity. This suggested that the neuroprotective effect of theaflavins against oxidative stress in PC12 cells is derived from suppression of oxidant enzyme activity. Furthermore, Western blot analyses indicated that theaflavins downregulated the ratio of pro-apoptosis/anti-apoptosis proteins Bax/Bcl-2. Theaflavins also downregulated the expression of caspase-3 compared with a H 2 O 2 -treated group that had not been treated with theaflavins. Interestingly, this is the first study to report that the four main components of theaflavins found in black tea can protect neural cells (PC12) from apoptosis induced by H 2 O 2 . These findings provide the foundations for a new field of using theaflavins or its source, black tea, in the treatment of neurodegenerative diseases caused by oxidative stress.

  16. Neuroprotective effects of Ganoderma lucidum polysaccharides against traumatic spinal cord injury in rats.

    Science.gov (United States)

    Gokce, Emre Cemal; Kahveci, Ramazan; Atanur, Osman Malik; Gürer, Bora; Aksoy, Nurkan; Gokce, Aysun; Sargon, Mustafa Fevzi; Cemil, Berker; Erdogan, Bulent; Kahveci, Ozan

    2015-11-01

    Ganoderma lucidum (G. lucidum) is a mushroom belonging to the polyporaceae family of Basidiomycota and has widely been used as a traditional medicine for thousands of years. G. lucidum has never been studied in traumatic spinal cord injury. The aim of this study is to investigate whether G. lucidum polysaccharides (GLPS) can protect the spinal cord after experimental spinal cord injury. Rats were randomized into five groups of eight animals each: control, sham, trauma, GLPS, and methylprednisolone. In the control group, no surgical intervention was performed. In the sham group, only a laminectomy was performed. In all the other groups, the spinal cord trauma model was created by the occlusion of the spinal cord with an aneurysm clip. In the spinal cord tissue, caspase-3 activity, tumour necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, nitric oxide levels, and superoxide dismutase levels were analysed. Histopathological and ultrastructural evaluations were also performed. Neurological evaluation was performed using the Basso, Beattie, and Bresnahan locomotor scale and the inclined-plane test. After traumatic spinal cord injury, increases in caspase-3 activity, tumour necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, and nitric oxide levels were detected. After the administration of GLPS, decreases were observed in tissue caspase-3 activity, tumour necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, and nitric oxide levels. Furthermore, GLPS treatment showed improved results in histopathological scores, ultrastructural scores, and functional tests. Biochemical, histopathological, and ultrastructural analyses and functional tests reveal that GLPS exhibits meaningful neuroprotective effects against spinal cord injury. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Neuroprotective Effects of the Glucagon-Like Peptide-1 Analog Exenatide After Out-of-Hospital Cardiac Arrest

    DEFF Research Database (Denmark)

    Wiberg, Sebastian; Hassager, Christian; Schmidt, Henrik

    2016-01-01

    BACKGROUND: In-hospital mortality in comatose patients resuscitated from out-of-hospital cardiac arrest (OHCA) is ≈50%. In OHCA patients, the leading cause of death is neurological injury secondary to ischemia and reperfusion. Glucagon-like peptide-1 analogs are approved for type 2 diabetes...... mellitus; preclinical and clinical data have suggested their organ-protective effects in patients with ischemia and reperfusion injury. The aim of this trial was to investigate the neuroprotective effects of the glucagon-like peptide-1 analog exenatide in resuscitated OHCA patients. METHODS: We randomly...

  18. Strong coupling effects in hybrid plexitonic systems

    Science.gov (United States)

    Melnikau, Dzmitry; Esteban, Ruben; Govyadinov, Alexander A.; Savateeva, Diana; Simon, Thomas; Sánchez-Iglesias, Ana; Grzelczak, Marek; Schmidt, Mikolaj K.; Urban, Alexander S.; Liz-Marzán, Luis M.; Feldmann, Jochen; Aizpurua, Javier; Rakovich, Yury P.

    2017-08-01

    We investigated the interactions between localized plasmons in gold nanorods and excitons in J-aggregates and were able to track an anticrossing behavior of the hybridized modes both in the extinction and in the photoluminescence spectra of this hybrid system. We identified the nonlinear optical behavior of this system by transient absorption spectroscopy. Finally using magnetic circular dichroism spectroscopy we showed that nonmagnetic organic molecules exhibit magnetooptical response due to binding to a plasmonic nanoparticles. In our experiments we also studied the effect of detuning as well as the effect of off- and on resonance excitation on the hybrid states

  19. Differences in the Neuroprotective Effect of Orally Administered Virgin Olive Oil (Olea europaea) Polyphenols Tyrosol and Hydroxytyrosol in Rats.

    Science.gov (United States)

    De La Cruz, José Pedro; Ruiz-Moreno, Maria Isabel; Guerrero, Ana; Reyes, José Julio; Benitez-Guerrero, Adela; Espartero, José Luis; González-Correa, José Antonio

    2015-07-01

    The neuroprotective effect of virgin olive oil (VOO) polyphenols has been related to their antioxidant effect. The main objective was to analyze how tyrosol and hydroxytyrosol contribute to the antioxidant and neuroprotective effects of VOO in a model of hypoxia-reoxygenation in rat brain slices. Rats were treated per os (po) (10 or 20 mg/kg/day) with hydroxytyrosol ethyl ether (HTEE), tyrosol ethyl ether (TEE), or 3,4-di-o-methylidene-hydroxytyrosol ethyl ether (MHTEE), used as a negative control for antioxidant effects. Lipid peroxidation was inhibited with HTEE, TEE, and MHTEE (from 5.0 ± 1.5 to 2.6 ± 1.5, 4.5 ± 1.5, and 4.8 ± 1.5 nmol/mg protein, respectively). However, all three compounds had similar neuroprotective effects: from 2.8 ± 0.07 to 1.8 ± 0.02 arbitrary units for HTEE, 1.4 ± 0.09 arbitrary units for TEE, and 1.3 ± 0.2 arbitrary units for MHTEE. All three compounds inhibited 3-nitrotyrosine production (from 3.7 ± 0.3 to 1.2 ± 0.03 nmol/0.1 g tissue for HTEE, 1.0 ± 0.2 nmol/0.1 g tissue for TEE, and 1.3 ± 0.1 nmol/0.1 g tissue for MHTEE), prostaglandin E2 production (from 55.7 ± 2.2 to 46.4 ± 1.9 pg/0.1 g tissue for HTEE, 24.7 ± 1.3 pg/0.1 g tissue for TEE, and 27.6 ± 2.6 pg/0.1 g tissue for MHTEE), whereas only HTEE inhibited IL1β production (from 35.7 ± 1.5 to 21.6 ± 0.8 pg/0.1 g tissue). Pearson correlation coefficients related neuroprotective effect with an antioxidant effect for HTEE (R = 0.72, p < 0.001), and inhibition of nitrosative stress (R = 0.78, 0.67, and 0.66 for HTEE, TEE, and MHTEE, respectively, p < 0.001) and inflammatory mediators (R = 0.72, 0.79, and 0.64 for HTEE, TEE, and MHTEE, respectively, p < 0.001) with all three compounds.

  20. Neuroprotection in glaucoma

    Science.gov (United States)

    Vasudevan, Sushil K; Gupta, Viney; Crowston, Jonathan G

    2011-01-01

    Glaucoma is a neurodegenerative disease characterized by loss of retinal ganglion cells and their axons. Recent evidence suggests that intraocular pressure (IOP) is only one of the many risk factors for this disease. Current treatment options for this disease have been limited to the reduction of IOP; however, it is clear now that the disease progression continues in many patients despite effective lowering of IOP. In the search for newer modalities in treating this disease, much data have emerged from experimental research the world over, suggesting various pathological processes involved in this disease and newer possible strategies to treat it. This review article looks into the current understanding of the pathophysiology of glaucoma, the importance of neuroprotection, the various possible pharmacological approaches for neuroprotection and evidence of current available medications. PMID:21150020

  1. Fingolimod anti-inflammatory and neuroprotective effects modulation of RAGE axis in multiple sclerosis patients.

    Science.gov (United States)

    Sternberg, Zohara; Kolb, Channa; Chadha, Kailash; Nir, Adam; Nir, Raphael; George, Rayan; Johnson, Joseph; Yu, Jinhee; Hojnacki, David

    2018-03-01

    We investigated Fingolimod treatment effects on the RAGE (receptor for advanced glycation endproducts) axis in multiple sclerosis (MS) patients. The primary outcome of the study was whether Fingolimod treatment increases serum levels of the soluble RAGE isoforms, sRAGE and esRAGE - both being considered putative endogenous inhibitors of RAGE signaling. Additional variables were serum levels of RAGE ligands, the high mobility group box (HMGB)1 and pentosidine. Serum levels of the study variables were measured by ELISA, and compared between baseline (before Fingolimod treatment) and 6 and 12 months post-drug treatment in 17 relapsing MS patients. Fingolimod treatment effects on MS disease progression were assessed by comparing pre- and post-Fingolimod values of the EDSS and rate of clinical relapse, and changes in the T1-and T2-enahncing lesions on the MRI scan.methods RESULTS: Twelve months treatment with Fingolimod increased serum levels of sRAGE and esRAGE by 32.4% (P = 0.004) and 48.5% (P = 0.007) respectively. In addition, Fingolimod treatment reduced serum levels of HMGB1 by 71.6% (P = 0.02) and pentosidine serum levels by 41.3% (P = 0.12). EDSS remained stable (baseline: 3.57 ± 1.56; post-Fingolimod: 3.54 ± 1.2, P = 0.96) and the rate of clinical relapse decreased near significantly (P = 0.094). T1-and T2-enhancing lesions remained stable, showing no significant changes pre-vs. post-Fingolimod treatment. Fingolimod mediates modulation of the RAGE axis which apparently contributes to the Fingolimod's anti-inflammatory and neuroprotective effects. These findings may provide a rationale for the clinical efficacy of Fingolimod in pathological states other than MS, where dysregulation of the RAGE axis plays a role. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Nrf2 signaling contributes to the neuroprotective effects of urate against 6-OHDA toxicity.

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    Full Text Available BACKGROUND: Mounting evidence shows that urate may become a biomarker of Parkinson's disease (PD diagnosis and prognosis and a neuroprotectant candidate for PD therapy. However, the cellular and molecular mechanisms underlying its neuroprotective actions remain poorly understood. RESULTS: In this study, we showed that urate pretreatment protected dopaminergic cell line (SH-SY5Y and MES23.5 against 6-hydroxydopamine (6-OHDA- and hydrogen peroxide- induced cell damage. Urate was found to be accumulated into SH-SY5Y cells after 30 min treatment. Moreover, urate induced NF-E2-related factor 2 (Nrf2 accumulation by inhibiting its ubiquitinationa and degradation, and also promoted its nuclear translocation; however, it did not modulate Nrf2 mRNA level or Kelch-like ECH-associated protein 1 (Keap1 expression. In addition, urate markedly up-regulated the transcription and protein expression of γ-glutamate-cysteine ligase catalytic subunit (γ-GCLC and heme oxygenase-1 (HO-1, both of which are controlled by Nrf2 activity. Furthermore, Nrf2 knockdown by siRNA abolished the intracellular glutathione augmentation and the protection exerted by urate pretreatment. CONCLUSION: Our findings demonstrated that urate treatment may result in Nrf2-targeted anti-oxidant genes transcription and expression by reducing Nrf2 ubiquitination and degradation and promoting its nuclear translocation, and thus offer neuroprotection on dopaminergic cells against oxidative stresses.

  3. Neuroprotective effects of the AMPA antagonist PNQX in oxygen-glucose deprivation in mouse hippocampal slice cultures and global cerebral ischemia in gerbils

    DEFF Research Database (Denmark)

    Montero, Maria; Nielsen, Marianne; Rønn, Lars Christian B

    2007-01-01

    PNQX (9-methyl-amino-6-nitro-hexahydro-benzo(F)quinoxalinedione) is a selective AMPA antagonist with demonstrated neuroprotective effects in focal ischemia in rats. Here we report corresponding effects in mouse hippocampal slice cultures subjected to oxygen and glucose deprivation (OGD) and in tr......PNQX (9-methyl-amino-6-nitro-hexahydro-benzo(F)quinoxalinedione) is a selective AMPA antagonist with demonstrated neuroprotective effects in focal ischemia in rats. Here we report corresponding effects in mouse hippocampal slice cultures subjected to oxygen and glucose deprivation (OGD....... For comparison, other cultures were exposed to the NMDA antagonist MK-801 using the same protocol. Both PNQX and MK-801 displayed significant neuroprotective effects in all hippocampal subfields when present during and after OGD. When added just after OGD, only PNQX retained some neuroprotective effect. When...... stained for the neurodegeneration marker Fluoro-Jade B and immunostained for the astroglial marker glial fibrillary acidic protein revealed a significant PNQX-induced decrease in neuronal cell death and astroglial activation. We conclude that, PNQX provided neuroprotection against both global cerebral...

  4. Neuroprotective effects of curcumin on endothelin-1 mediated cell death in hippocampal neurons.

    Science.gov (United States)

    Stankowska, Dorota L; Krishnamoorthy, Vignesh R; Ellis, Dorette Z; Krishnamoorthy, Raghu R

    2017-06-01

    Alzheimer's disease is a progressive neurodegenerative disease characterized by loss of hippocampal neurons leading to memory deficits and cognitive decline. Studies suggest that levels of the vasoactive peptide endothelin-1 (ET-1) are increased in the brain tissue of Alzheimer's patients. Curcumin, the main ingredient of the spice turmeric, has been shown to have anti-inflammatory, anti-cancer, and neuroprotective effects. However, the mechanisms underlying some of these beneficial effects are not completely understood. The objective of this study was to determine if curcumin could protect hippocampal neurons from ET-1 mediated cell death and examine the involvement of c-Jun in this pathway. Primary hippocampal neurons from rat pups were isolated using a previously published protocol. Viability of the cells was measured by the live/dead assay. Immunoblot and immunohistochemical analyses were performed to analyze c-Jun levels in hippocampal neurons treated with either ET-1 or a combination of ET-1 and curcumin. Apoptotic changes were evaluated by immunoblot detection of cleaved caspase-3, cleaved fodrin, and a caspase 3/7 activation assay. ET-1 treatment produced a 2-fold increase in the levels of c-Jun as determined by an immunoblot analysis in hippocampal neurons. Co-treatment with curcumin significantly attenuated the ET-1 mediated increase in c-Jun levels. ET-1 caused increased neuronal cell death of hippocampal neurons indicated by elevation of cleaved caspase-3, cleaved fodrin and an increased activity of caspases 3 and 7 which was attenuated by co-treatment with curcumin. Blockade of JNK, an upstream effector of c-Jun by specific inhibitor SP600125 did not fully protect from ET-1 mediated activation of pro-apoptotic enzymes in primary hippocampal cells. Our data suggests that one mechanism by which curcumin protects against ET-1-mediated cell death is through blocking an increase in c-Jun levels. Other possible mechanisms include decreasing pro

  5. The neuroprotective effects ofTao-Ren-Cheng-Qi Tangagainst embolic stroke in rats.

    Science.gov (United States)

    Hsu, Ling-Wei; Shiao, Wei-Cheng; Chang, Nen-Chung; Yu, Meng-Che; Yen, Ting-Lin; Thomas, Philip Aloysius; Jayakumar, Thanasekaran; Sheu, Joen-Rong

    2017-01-01

    Combinations of the traditional Chinese and Western medicines have been used to treat numerous diseases throughout the world, and there is a growing body of evidence showing that some of the herbs used in traditional Chinese medicine elicit significant pharmacological effects. The aim of this study was to demonstrate the neuroprotective effects of Tao - Ren - Cheng - Qi Tang (TRCQT) in combination with aspirin following middle cerebral artery occlusion (MCAO)-induced embolic stroke in rats. A blood clot was embolized into the middle cerebral artery of rats to induce focal ischemic brain injury. After 24 h of MCAO occlusion, the rats were arbitrarily separated into five groups and subjected to different oral treatment processes with TRCQT and aspirin for 30 days before being evaluated in terms of their neurological behavior using a four-point system. The rats were sacrificed at 30 days after drug treatment and the infarct volumes were measured using a 2,3,5-triphenyltetrazolium chloride staining method. Tumor necrosis factor-α (TNF-α), c-Jun N-terminal kinases (JNK), activated caspase-3 and Bax were detected by western blot analysis. The apoptotic cells were identified by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. ROS generation was also measured by electron spin resonance spectrometry. Rats treated with TRCQT alone or in combination with aspirin showed a significantly reduced infarct volume ( P  < 0.001) and improved neurological outcome compared with those treated with distilled water. Rats treated with TRCQT alone ( P  = 0.021) or in combination with aspirin ( P  = 0.02) also showed significantly reduced MCAO-induced expression levels of TNF-α and pJNK ( P  < 0.001) in their ischemic regions. Rats treated with TRCQT alone or in combination with aspirin showed decreased apoptosis by a reduction in the number of TUNEL positive cells, which inhibited the expression of activated caspase-3 ( P  = 0.038) and Bax ( P

  6. Palmitoylethanolamide exerts neuroprotective effects in mixed neuroglial cultures and organotypic hippocampal slices via peroxisome proliferator-activated receptor-α

    Directory of Open Access Journals (Sweden)

    Scuderi Caterina

    2012-03-01

    Full Text Available Abstract Background In addition to cytotoxic mechanisms directly impacting neurons, β-amyloid (Aβ-induced glial activation also promotes release of proinflammatory molecules that may self-perpetuate reactive gliosis and damage neighbouring neurons, thus amplifying neuropathological lesions occurring in Alzheimer's disease (AD. Palmitoylethanolamide (PEA has been studied extensively for its anti-inflammatory, analgesic, antiepileptic and neuroprotective effects. PEA is a lipid messenger isolated from mammalian and vegetable tissues that mimics several endocannabinoid-driven actions, even though it does not bind to cannabinoid receptors. Some of its pharmacological properties are considered to be dependent on the expression of peroxisome proliferator-activated receptors-α (PPARα. Findings In the present study, we evaluated the effect of PEA on astrocyte activation and neuronal loss in models of Aβ neurotoxicity. To this purpose, primary rat mixed neuroglial co-cultures and organotypic hippocampal slices were challenged with Aβ1-42 and treated with PEA in the presence or absence of MK886 or GW9662, which are selective PPARα and PPARγ antagonists, respectively. The results indicate that PEA is able to blunt Aβ-induced astrocyte activation and, subsequently, to improve neuronal survival through selective PPARα activation. The data from organotypic cultures confirm that PEA anti-inflammatory properties implicate PPARα mediation and reveal that the reduction of reactive gliosis subsequently induces a marked rebound neuroprotective effect on neurons. Conclusions In line with our previous observations, the results of this study show that PEA treatment results in decreased numbers of infiltrating astrocytes during Aβ challenge, resulting in significant neuroprotection. PEA could thus represent a promising pharmacological tool because it is able to reduce Aβ-evoked neuroinflammation and attenuate its neurodegenerative consequences.

  7. Disorder effects in strongly correlated uranium compounds

    International Nuclear Information System (INIS)

    Suellow, S.; Maple, M.B.; Tomuta, D.; Nieuwenhuys, G.J.; Menovsky, A.A.; Mydosh, J.A.; Chau, R.

    2001-01-01

    Moderate levels of crystallographic disorder can dramatically affect the ground-state properties of heavy fermion compounds. In particular, the role of disorder close to a quantum critical point has been investigated in detail. However, crystallographic disorder is equally effective in altering the properties of magnetically ordered heavy fermion compounds like URh 2 Ge 2 , where disorder-induced spin-glass behavior has been observed. In this system, moreover, the magnetic ground state can be tuned from a spin-glass to a long-range ordered antiferromagnetic one by means of an annealing treatment. The transformation of the magnetic state is accompanied by a transition in the transport properties from 'quasi-insulating' (dρ/dT 2 Ge 2 will be discussed. Of particular interest is the resistivity of as-grown URh 2 Ge 2 , which resembles the Non-Fermi-liquid system UCu 4 Pd, suggesting that a common mechanism - the crystallographic disorder - controls the transport properties of these materials

  8. Neuroprotective effects of Polygonum multiflorum extract against glutamate-induced oxidative toxicity in HT22 hippocampal cells.

    Science.gov (United States)

    Kim, Ha Neui; Kim, Yu Ri; Jang, Ji Yeon; Choi, Young Whan; Baek, Jin Ung; Hong, Jin Woo; Choi, Yung Hyun; Shin, Hwa Kyoung; Choi, Byung Tae

    2013-10-28

    Dried roots of Polygonum multiflorum have traditionally been used in the retarding of aging process in East Asian countries and its extracts exhibit anti-oxidative activities. Neuroprotective effects of ethyl acetate extract from Polygonum multiflorum (EEPM) were investigated against glutamate-induced oxidative cell death in HT22 hippocampal cells. Cell viability, cytotoxicity, morphological, flow cytometry, and Western blot assays were performed in order to observe alterations of neuronal cell survival or death related pathways. Pretreatment with EEPM resulted in significantly decreased glutamate-induced neurotoxicity and also resulted in drastically inhibited glutamate-induced apoptotic and necrotic neuronal death. To elucidate possible pathways of neuroprotection by EEPM, we explored the activation of mitogen activated protein kinases (MAPKs), phosphatidylinositol-3-kinase, and cAMP responsive element binding protein (CREB). Treatment with glutamate alone led to activation of extracellular regulated kinase (ERK), Jun N-terminal kinase, and p38 during the late phase after glutamate exposure, but pretreatment with EEPM resulted in significantly attenuated activation of these proteins. Pretreatment with EEPM resulted in increased activation of CREB. The specific inhibitors of ERK and p38, PD98059 and SB203580, abrogated the neuroprotective effects of EEPM. When we evaluated calpain I and striatal-enriched protein tyrosine phosphatase (STEP), active form of calpain I was significantly increased after glutamate exposure, and, along with this, active form of STEP showed a decrease. Pretreatment with EEPM resulted in significant recovery of pro-calpain I and active form of STEP caused by glutamate. Co-treatment with calpain inhibitor ALLN and EEPM had a synergistic effect on neuronal death and contributed to blockade of activation of both ERK and p38 with increased activation of CREB. These results suggest that Polygonum multiflorum extract may have neuroprotective

  9. Exploring the neuroprotective effects of modafinil in a marmoset Parkinson model with immunohistochemistry, magnetic resonance imaging and spectroscopy.

    Science.gov (United States)

    van Vliet, S A M; van Vlieta, S A M; Blezer, E L A; Jongsma, M J; Vanwersch, R A P; Olivier, B; Philippens, I H C H M

    2008-01-16

    Neuroprotective therapeutics stop or slow down the degeneration process in animal models of Parkinson's disease (PD). Neuronal survival in PD animal models is often measured by immunohistochemistry. However, dynamic changes in the pathology of the brain cannot be explored with this technique. Application of proton magnetic resonance (MR) imaging (MRI) and spectroscopy (MRS) can cover this lacuna as these techniques are non-invasive and can be repeated over time in the same animal. Therefore, the sensitivity of both techniques to measure changes in PD-pathology was explored in an experiment studying the neuroprotective effects of the vigilance enhancer modafinil in a marmoset PD model. Eleven marmoset monkeys were treated with the neurotoxin 1-methyl-1,2,3,6-tetrahydropyridine (MPTP). Six of these 11 animals, simultaneously, received a daily oral dose of modafinil (100 mg/kg) and five received vehicle for 27 days. MR experiments were performed at baseline and 1 and 3.5 weeks after the MPTP intoxication period after which brains were analyzed with immunohistochemistry. Tyrosine hydroxylase immunoreactive (TH-IR) staining of dopamine neurons of the substantia nigra pars compacta confirmed that modafinil was able to partially prevent the MPTP-induced neuronal damage. In MRS, N-acetylaspartate (NAA)/phosphocreatine (tCR) ratios confirmed the protective effect indicating that this is a sensitive measure to detect neuroprotection in the MPTP marmoset model. Furthermore, the number of TH-IR positive neurons and the NAA/tCR ratio were significantly correlated to behavioral observations indicating that the changes measured in the brain are also reflected in the behavior and vice versa.

  10. Assessment of the neuroprotective effects of Lavandula angustifolia extract on the contusive model of spinal cord injury in Wistar rats

    Directory of Open Access Journals (Sweden)

    Gholamreza eKaka

    2016-02-01

    Full Text Available IntroductionSpinal cord injury (SCI involves a primary trauma and secondary cellular processes that can lead to severe damage to the nervous system, resulting in long-term spinal deficits. At the cellular level, SCI causes astrogliosis, of which glial fibrillary acidic protein (GFAP is a major index. ObjectiveThe aim of this study was to investigate the neuroprotective effects of Lavandula angustifolia (Lav on the repair of spinal cord injuries in Wistar rats.Materials and MethodsForty-five female rats were randomly divided into six groups of seven rats each: the intact, sham, control (SCI, Lav 100, Lav 200, and Lav 400 groups. Every week after SCI onset, all animals were evaluated for behavior outcomes by the Basso, Beattie, and Bresnahan (BBB score. H&E staining was performed to examine the lesions post-injury. GFAP expression was assessed for astrogliosis. Somatosensory evoked potential (SEP testing was performed to detect the recovery of neural conduction.Results BBB scores were significantly increased and delayed responses on sensory tests were significantly decreased in the Lav 200 and Lav 400 groups compared to the control group. The greatest decrease of GFAP was evident in the Lav 200 and Lav 400 groups. EMG results showed significant improvement in the hindlimbs in the Lav 200 and Lav 400 groups compared to the control group. Cavity areas significantly decreased and the number of ventral motor neurons significantly increased in the Lav 200 and Lav 400 groups.ConclusionLav at doses of 200 mg/kg and 400 mg/kg can promote structural and functional recovery after SCI. The neuroprotective effects of L. angustifolia can lead to improvement in the contusive model of spinal cord injury in Wistar rats.Keywords Spinal cord injury (SCI; Lavandula angustifolia; neuroprotection; Basso, Beattie, and Bresnahan (BBB; glial fibrillary acidic protein (GFAP; somatosensory evoked potential (SEP

  11. Neuroprotective and Memory-Enhancing Effect of the Combined Extract of Purple Waxy Corn Cob and Pandan in Ovariectomized Rats.

    Science.gov (United States)

    Kirisattayakul, Woranan; Wattanathorn, Jintanaporn; Iamsaard, Sittichai; Jittiwat, Jinatta; Suriharn, Bhalang; Lertrat, Kamol

    2017-01-01

    The neuroprotectant and memory enhancer supplement for menopause is required due to the side effects of hormone replacement therapy. Since purple waxy corn cob and pandan leaves exert antioxidant and acetylcholinesterase inhibition (AChEI) effects, we hypothesized that the combined extract of both plants (PCP) might provide synergistic effect leading to the improved brain damage and memory impairment in experimental menopause. To test this hypothesis, female Wistar rats were ovariectomized bilaterally and orally given various doses of the functional drink at doses of 20, 40, and 80 mg/kg for 28 days. The animals were assessed nonspatial memory using object recognition test every 7 days throughout the study period. At the end of study, they were assessed with oxidative stress status, AChEI, neuron density, and ERK1/2 signal in the prefrontal cortex (PFC). Interestingly, all doses of PCP increased object recognition memory and neuron density but decreased oxidative stress status in PFC. Low dose of PCP also decreased AChE activity while medium dose of PCP increased phosphorylation of ERK1/2 in PFC. Therefore, the improved oxidative stress status and cholinergic function together with signal transduction via ERK in PFC might be responsible for the neuroprotective and memory-enhancing effects of PCP.

  12. Neuroprotective and Memory-Enhancing Effect of the Combined Extract of Purple Waxy Corn Cob and Pandan in Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    Woranan Kirisattayakul

    2017-01-01

    Full Text Available The neuroprotectant and memory enhancer supplement for menopause is required due to the side effects of hormone replacement therapy. Since purple waxy corn cob and pandan leaves exert antioxidant and acetylcholinesterase inhibition (AChEI effects, we hypothesized that the combined extract of both plants (PCP might provide synergistic effect leading to the improved brain damage and memory impairment in experimental menopause. To test this hypothesis, female Wistar rats were ovariectomized bilaterally and orally given various doses of the functional drink at doses of 20, 40, and 80 mg/kg for 28 days. The animals were assessed nonspatial memory using object recognition test every 7 days throughout the study period. At the end of study, they were assessed with oxidative stress status, AChEI, neuron density, and ERK1/2 signal in the prefrontal cortex (PFC. Interestingly, all doses of PCP increased object recognition memory and neuron density but decreased oxidative stress status in PFC. Low dose of PCP also decreased AChE activity while medium dose of PCP increased phosphorylation of ERK1/2 in PFC. Therefore, the improved oxidative stress status and cholinergic function together with signal transduction via ERK in PFC might be responsible for the neuroprotective and memory-enhancing effects of PCP.

  13. The neuroprotective effects of an ethanolic turmeric (Curcuma longa L.) extract against trimethyltin-induced oxidative stress in rats.

    Science.gov (United States)

    Yuliani, Sapto; Mustofa; Partadiredja, Ginus

    2018-03-07

    Oxidative stress is known to contribute to the pathogenesis of neurodegenerative disorders. An ethanolic turmeric (Curcuma longa L.) extract containing curcumin has been reported to produce antioxidant effects. The present study aims to investigate the possible neuroprotective effects of the ethanolic turmeric extract against trimethyltin (TMT)-induced oxidative stress in Sprague Dawley rats. The ethanolic turmeric extract and citicoline were administered to the TMT exposed rats from day 1 to day 28 of the experiment. The TMT injection was administered on day 8 of the experiment. The plasma and brain malondialdehyde (MDA) and reduced glutathione (GSH) levels, and the activities of the superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) enzymes in the brain were examined at the end of the experiment. The administration of 200 mg/kg bw of the ethanolic turmeric extract prevented oxidative stress by decreasing the plasma and brain MDA levels and increasing the SOD, CAT, and GPx enzyme activities and GSH levels in the brain. These effects seem to be comparable to those of citicoline. The ethanolic turmeric extract at a dose of 200 mg/kg bw may exert neuroprotective effects on TMT-exposed Sprague Dawley rats by preventing them from oxidative stress.

  14. Neuro-protective effects of growth hormone (GH) after hypoxia-ischemia injury in embryonic chicken cerebellum.

    Science.gov (United States)

    Alba-Betancourt, Clara; Luna-Acosta, José Luis; Ramírez-Martínez, Candy Elizabeth; Avila-González, Daniela; Granados-Ávalos, Estefany; Carranza, Martha; Martínez-Coria, Hilda; Arámburo, Carlos; Luna, Maricela

    2013-03-01

    Neuroprotection is a mechanism within the central nervous system (CNS) that protects neurons from damage as a result of a severe insult. It is known that growth hormone (GH) is involved in cell survival and may inhibit apoptosis in several cell types, including those of the CNS. Both GH and GH-receptor (GHR) genes are expressed in the cerebellum. Thus, we investigated the possible neuroprotective role of GH in this organ, which is very sensitive to hypoxic/ischemic conditions. Endogenous GH levels increased in the brain and cerebellum (30% and 74%, respectively) of 15-day-old chicken embryos exposed to hypoxia during 24h compared to normoxia. In primary embryonic cerebellar neuron cultures treated under hypoxia (0.5% O(2)) and low glucose (1g/L) conditions (HLG) for 1h, GH levels increased 1.16-fold compared to the control. The addition of 1nM recombinant chicken GH (rcGH) to cultures during HLG increased cell viability (1.7-fold) and the expression of Bcl-2 (1.67-fold); in contrast the caspase-3 activity and the proportion of apoptotic cells decreased (37% and 54.2%, respectively) compared to HLG. rcGH activated the PI3K/Akt pathway both under normoxic and HLG conditions, increasing the proportion of phosphorylated Akt (1.7- and 1.4-fold, respectively). These effects were abolished by wortmannin and by immunoneutralization, indicating that GH acts through this signaling pathway. Furthermore, the 15-kDa GH variant (10nM) significantly increased cell viability and decreased caspase-3 activity during HLG condition. Thus GH may act as a paracrine/autocrine neuroprotective factor that preserves cellular viability and inhibits apoptotic cell death. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Neuroprotective effects of Dioscorea opposita on scopolamine-induced memory impairment in in vivo behavioral tests and in vitro assays.

    Science.gov (United States)

    Yang, Min Hye; Yoon, Kee Dong; Chin, Young-Won; Park, Ju Hyun; Kim, Seung Hyun; Kim, Young Choong; Kim, Jinwoong

    2009-01-12

    Plants belong to the genus Dioscorea have long been used as edible tuber crops in many tropical and subtropical areas and as a traditional herbal medicine in oriental countries including China, Japan and Korea. In this study, in vivo and in vitro tests were carried out to evaluate the cognitive enhancing effects of CHCl(3)-soluble extract from Dioscorea opposita against scopolamine-induced amnesic mice and glutamate- and H(2)O(2)-treated cortical neurons of rats. Acute treatment (200 mg/kg body weight, p.o.) and 10 days' daily administration (50 mg/kg body weight, p.o.) of CHCl(3)-soluble extract showed significant spatial learning and memory improvement on mice. Furthermore, the neuroprotective effects on glutamate- and H(2)O(2)-induced neurotoxicity in primary cultured cortical neurons of rats were assessed. Pretreatment with the extract was found to impart significant protection against neurotoxicity. These in vivo and in vitro results suggest that the Dioscorea opposita has neuroprotective effects on memory impairment related neurodegenerative diseases.

  16. Improvement in regional CBF by L-serine contributes to its neuroprotective effect in rats after focal cerebral ischemia.

    Directory of Open Access Journals (Sweden)

    Tao-Jie Ren

    Full Text Available To investigate the mechanisms underlying the neuroprotective effect of L-serine, permanent focal cerebral ischemia was induced by occlusion of the middle cerebral artery while monitoring cerebral blood flow (CBF. Rats were divided into control and L-serine-treated groups after middle cerebral artery occlusion. The neurological deficit score and brain infarct volume were assessed. Nissl staining was used to quantify the cortical injury. L-serine and D-serine levels in the ischemic cortex were analyzed with high performance liquid chromatography. We found that L-serine treatment: 1 reduced the neurological deficit score, infarct volume and cortical neuron loss in a dose-dependent manner; 2 improved CBF in the cortex, and this effect was inhibited in the presence of apamin plus charybdotoxin while the alleviation of both neurological deficit score and infarct volume was blocked; and 3 increased the amount of L-serine and D-serine in the cortex, and inhibition of the conversion of L-serine into D-serine by aminooxyacetic acid did not affect the reduction of neurological deficit score and infarct volume by L-serine. In conclusion, improvement in regional CBF by L-serine may contribute to its neuroprotective effect on the ischemic brain, potentially through vasodilation which is mediated by the small- and intermediate-conductance Ca(2+-activated K(+ channels on the cerebral blood vessel endothelium.

  17. Neuroprotective effects of salidroside through PI3K/Akt pathway activation in Alzheimer’s disease models

    Directory of Open Access Journals (Sweden)

    Zhang B

    2016-04-01

    Full Text Available Bei Zhang,1,2 Ying Wang,1 Hui Li,1 Ran Xiong,1 Zongbo Zhao,1 Xingkun Chu,2 Qiongqiong Li,1 Suya Sun,1 Shengdi Chen1,2 1Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China; 2Laboratory of Neurodegenerative Diseases, The Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China Abstract: Alzheimer’s disease (AD is a devastating neurodegenerative disorder characterized by deposits of aggregated amyloid-β (Aβ peptide and neurofibrillary tangles in the brain parenchyma. Despite considerable research to elucidate the pathological mechanisms and identify therapeutic strategies for AD, effective treatments are still lacking. In the present study, we found that salidroside (Sal, a phenylpropanoid glycoside isolated from Rhodiola rosea L., can protect against Aβ-induced neurotoxicity in four transgenic Drosophila AD models. Both longevity and locomotor activity were improved in Sal-fed Drosophila. Sal also decreased Aβ levels and Aβ deposition in brain and ameliorated toxicity in Aβ-treated primary neuronal culture. The neuroprotective effect of Sal was associated with upregulated phosphatidylinositide 3-kinase (PI3K/Akt signaling. Our findings identify a compound that may possess potential therapeutic benefits for AD and other forms of neurodegeneration. Keywords: Alzheimer’s disease, amyloid-β, salidroside, Drosophila, neuroprotective effect

  18. Prostacyclin mediates endothelial COX-2-dependent neuroprotective effects during excitotoxic brain injury

    Directory of Open Access Journals (Sweden)

    An Y

    2014-05-01

    Full Text Available Ying An,1,2 Natalya Belevych,1,2 Yufen Wang,1,2 Hao Zhang,1 Jason S Nasse,3 Harvey Herschman,4 Qun Chen,1,2 Andrew Tarr,1,2 Xiaoyu Liu,1,2 Ning Quan1,21Institute for Behavior Medicine Research, 2Department of Oral Biology, College of Dentistry, 3Neuroscience Graduate Studies Program, The Ohio State University, Columbus, OH, USA; 4Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, USAAbstract: In a previous study, we found that intracerebral administration of excitotoxin (RS-(tetrazole-5yl glycine caused increased neural damage in the brain in an endothelial COX-2 deleted mouse line (Tie2Cre COX-2flox/flox. In this study, we investigated whether prostacyclin might mediate this endothelial COX-2-dependent neuroprotection. Administration of excitotoxin into the striatum induced the production of prostacyclin (PGI2 in wild type, but not in endothelial COX-2 deleted mice. Inhibition of PGI2 synthase exacerbated brain lesions induced by the excitotoxin in wild type, but not in endothelial COX-2 deleted mice. Administration of a PGI2 agonist reduced neural damage in both wild type and endothelial COX-2 deleted mice. Increased PGI2 synthase expression was found in infiltrating neutrophils. In an ex vivo assay, PGI2 reduced the excitotoxin-induced calcium influx into neurons, suggesting a cellular mechanism for PGI2 mediated neuroprotection. These results reveal that PGI2 mediates endothelial COX-2 dependent neuroprotection.Keywords: neural injury, prostaglandins, neutrophil, conditional COX-2 deletion, PGI2

  19. Nootropic, neuroprotective and neurotrophic effects of phloretin in scopolamine induced amnesia in mice.

    Science.gov (United States)

    Ghumatkar, Priya J; Patil, Sachin P; Jain, Pankaj D; Tambe, Rufi M; Sathaye, Sadhana

    2015-08-01

    Phloretin (PHL), a dihydrochalcone flavonoid usually present in the roots and leaves of apple tree. In vitro study on GT1-7 immortalized hypothalamic neurons exposed to amyloid beta (25-35), demonstrated that PHL significantly influenced membrane fluidity and potential. PHL also significantly decreased excitotoxicity by restoring the calcium homeostasis in the same. Thus, PHL proves to be a promising therapeutic moiety which should be further screened in the treatment of Alzheimer's disease. The objective of the present study was to evaluate the nootropic, neuroprotective and neurotrophic roles of PHL in the subacute scopolamine induced amnesia in mice. In this study, mice were pretreated with PHL 2.5mg/kg, 5mg/kg, 10mg/kg and Donepezil (DON) 1mg/kg intraperitoneally (i.p) for 14days. The last 7days of treatment regimen included daily injection of SCP 1.5mg/kg to induce cognitive deficits. Mice were subjected to behavioral analysis. Biochemical estimation of the brain homogenates for acetylcholinesterase and oxidative stress biomarkers were conducted. Furthermore, immunohistochemical analysis for the brain derived neurotrophic factor (BDNF) was carried out particularly in the hippocampus. PHL was found to significantly improve the performance of mice in Morris water maze test (Pnootropic, neuroprotective and neurotrophic activities in SCP induced memory impaired mice and hence, is a promising therapeutic moiety in the treatment of AD. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Neuroprotective Effects of Oxytocin Hormone after an Experimental Stroke Model and the Possible Role of Calpain-1.

    Science.gov (United States)

    Etehadi Moghadam, Sepideh; Azami Tameh, Abolfazl; Vahidinia, Zeinab; Atlasi, Mohammad Ali; Hassani Bafrani, Hassan; Naderian, Homayoun

    2018-03-01

    Different mechanisms will be activated during ischemic stroke. Calpain proteases play a pivotal role in neuronal death after ischemia damage through apoptosis. Anti-apoptotic activities of the oxytocin (OT) in different ischemic tissues were reported in previous studies. Recently, a limited number of studies have noted the protective effects of OT in the brain. In the present study, the neuroprotective potential of OT in an animal model of transient middle cerebral artery occlusion (tMCAO) and the possible role of calpain-1 in the penumbra region were assessed. Adult male Wistar rats underwent 1 hour of tMCAO and were treated with nasal administration of OT. After 24 hours of reperfusion, infarct size was evaluated by triphenyltetrazolium chloride. Immunohistochemical staining and Western blotting were used to examine the expression of calpain-1. Nissl staining was performed for brain tissue morphology evaluation. OT reduced the infarct volume of the cerebral cortex and striatum compared with the ischemia control group significantly (P < .05). Calpain-1 overexpression, which was caused by ischemia, decreased after OT administration (P < .05). The number of pyknotic nuclei in neurons increased dramatically in the ischemic area and OT attenuated the apoptosis of neurons in the penumbra region (P < .01). We provided evidence for the neuroprotective role of OT after tMCAO through calpain-1 attenuation. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  1. In Vitro and in Vivo Neuroprotective Effects of Walnut (Juglandis Semen in Models of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Jin Gyu Choi

    2016-01-01

    Full Text Available Monoamine oxidase (MAO catalyzes the oxidative deamination of monoamines including dopamine (DA. MAO expression is elevated in Parkinson’s disease (PD. An increase in MAO activity is closely related to age, and this may induce neuronal degeneration in the brain due to oxidative stress. MAO (and particularly monoamine oxidase B (MAO-B participates in the generation of reactive oxygen species (ROS, such as hydrogen peroxide that are toxic to dopaminergic cells and their surroundings. Although the polyphenol-rich aqueous walnut extract (JSE; an extract of Juglandis Semen has been shown to have various beneficial bioactivities, no study has been dedicated to see if JSE is capable to protect dopaminergic neurons against neurotoxic insults in models of PD. In the present study we investigated the neuroprotective potential of JSE against 1-methyl-4-phenylpyridinium (MPP+- or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP-induced neurotoxicities in primary mesencephalic cells and in a mouse model of PD. Here we show that JSE treatment suppressed ROS and nitric oxide productions triggered by MPP+ in primary mesencephalic cells. JSE also inhibited depletion of striatal DA and its metabolites in vivo that resulted in significant improvement in PD-like movement impairment. Altogether our results indicate that JSE has neuroprotective effects in PD models and may have potential for the prevention or treatment of PD.

  2. Neuroprotective effects of scutellarin against hypoxic-ischemic-induced cerebral injury via augmentation of antioxidant defense capacity.

    Science.gov (United States)

    Guo, Hong; Hu, Li-Min; Wang, Shao-Xia; Wang, Yu-Lin; Shi, Fang; Li, Hui; Liu, Yang; Kang, Li-Yuan; Gao, Xiu-Mei

    2011-12-31

    An increasing number of studies has indicated that hypoxic-ischemic-induced cerebral injury is partly mediated via oxidative stress. Recent researches have focused on searching for drug and herbal manipulations to protect against hypoxic-ischemic-induced oxidative cell damage. Scutellarin is a flavonoid derived from the Erigeron breviscapus (vant.) and has been reported to exhibit neuroprotective properties. However, its precise mechanism, particularly its antioxidation mechanism, remains elusive. In the present study, we investigated the neuroprotective effects of scutellarin on middle cerebral artery occlusion (MCAO)-induced brain damage in rats, and oxygen-glucose deprivation (OGD)-induced toxicity in primary culture of rat cortical neurons. In vivo, intraperitoneal injections of scutellarin (20 and 60 mg/kg) improved the neurological score and diminished the percentage of brain infarct volume. At the same time, scutellarin significantly increased superoxide dismutase (SOD), catalase (CAT) activities and glutathione (GSH) level in ischemic brain tissues, enhancing endogenous antioxidant activity. Moreover, pretreatment of scutellarin (25, 50 and 100 μM) protected neurons against lethal stimuli, decreased the percentage of apoptotic cells and inhibited reactive oxygen species (ROS) generation in OGD-induced primary cortical neurons in vitro. These results suggest that the preventive and therapeutic potential of scutellarin in cerebral injury patients is, at least in part, ascribed to augmentation of cellular antioxidant defense capacity.

  3. Neuroprotective effect of tempol (4 hydroxy-tempo) on neuronal death induced by sciatic nerve transection in neonatal rats.

    Science.gov (United States)

    Chiarotto, Gabriela Bortolança; Drummond, Luisa; Cavarretto, Gabriela; Bombeiro, André Luis; de Oliveira, Alexandre Leite Rodrigues

    2014-07-01

    Peripheral nerve injury in newborn rats triggers extensive neuronal death within the spinal cord. Because most neurodegeneration is related to oxidative stress and apoptosis, the use of antioxidants may be of therapeutic interest. Tempol is promising because of its ability to chelate reactive oxygen species and to minimize or even prevent tissue damage. Here, we evaluated neuroprotective effects of tempol following neonatal sciatic nerve transection. Two-day-old pups underwent sciatic nerve axotomy followed by tempol (12, 24 and 48 mg/kg) treatment (i.p.) at 10 min, 6 h, and every 24 h up to 1 week after injury. The rats were then killed for lumbar intumescence analysis. Nissl staining, TUNEL, synaptophysin immunolabeling and qRT-PCR (Caspase 3, Bax and Bcl2) were carried out. The results indicated that tempol treatment, at 24 mg/kg, increased up to 21% spinal cord motoneuron survival (ptempol-treated animals. qRT-PCR results indicated differential increase in Caspase 3 (3-fold), Bax (13-fold) and Bcl2 (28-fold) gene expression, after 12 h following axotomy and tempol treatment. In conclusion, tempol administration has proven to be neuroprotective after neonatal nerve injury, leading to improved motoneuron survival, synapse preservation and minimizing apoptosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Neuroprotective effect of Momordica charantia in global cerebral ischemia and reperfusion induced neuronal damage in diabetic mice.

    Science.gov (United States)

    Malik, Zafar Ahmad; Singh, Manjeet; Sharma, P L

    2011-01-27

    Momordica charantia L. (Cucurbitaceae) fruits have been used traditionally for centuries, especially for treating diabetes and associated complications. The present study was performed to evaluate neuroprotective effect of lyophilized M. charantia fruit juice against global cerebral ischemia and reperfusion induced neuronal injury in diabetic mice. Global cerebral ischemia induced by occluding both common carotid arteries for 10 min followed by 24 h reperfusion was used to induce neuronal injury. Ischemia-reperfusion induced neuronal injury was evaluated in terms of cerebral infarct size, generation of free radicals measured as thiobarbaturic acid reactive substances (TBARS), and neurological functions measured as short term memory and motor activity. The cerebral oxidative stress and damage, and neurological deficits were dose dependently attenuated by pre-treatment with the lyophilized M. charantia juice (200-800 mg/kg, p.o., o.d.). Moreover, M. charantia also exhibited dose dependent antihyperglycemic activity in diabetic mice. These results suggest that M. charantia has potent neuroprotective activity against global cerebral ischemia-reperfusion induced neuronal injury and consequent neurological deficits in diabetic mice. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Neuroprotective effects of germinated brown rice against hydrogen peroxide induced cell death in human SH-SY5Y cells.

    Science.gov (United States)

    Ismail, Norsharina; Ismail, Maznah; Fathy, Siti Farhana; Musa, Siti Nor Asma; Imam, Mustapha Umar; Foo, Jhi Biau; Iqbal, Shahid

    2012-01-01

    The neuroprotective and antioxidative effects of germinated brown rice (GBR), brown rice (BR) and commercially available γ-aminobutyric acid (GABA) against cell death induced by hydrogen peroxide (H(2)O(2)) in human neuroblastoma SH-SY5Y cells have been investigated. Results show that GBR suppressed H(2)O(2)-mediated cytotoxicity and induced G0/G1 phase cell cycle arrest in SH-SY5Y cells. Moreover, GBR reduced mitochondrial membrane potential (MMP) and prevented phosphatidylserine (PS) translocation in SH-SY5Y cells, key features of apoptosis, and subsequent cell death. GBR exhibited better neuroprotective and antioxidative activities as compared to BR and GABA. These results indicate that GBR possesses high antioxidative activities and suppressed cell death in SH-SY5Y cells by blocking the cell cycle re-entry and apoptotic mechanisms. Therefore, GBR could be developed as a value added functional food to prevent neurodegenerative diseases caused by oxidative stress and apoptosis.

  6. Time dependent neuroprotection of mycophenolate mofetil: effects on temporal dynamics in glial proliferation, apoptosis, and scar formation

    Directory of Open Access Journals (Sweden)

    Ebrahimi Fahim

    2012-05-01

    Full Text Available Abstract Background Immunosuppressants such as mycophenolate mofetil (MMF have the capacity to inhibit microglial and astrocytic activation and to reduce the extent of cell death after neuronal injury. This study was designed to determine the effective neuroprotective time frame in which MMF elicits its beneficial effects, by analyzing glial cell proliferation, migration, and apoptosis. Methods Using organotypic hippocampal slice cultures (OHSCs, temporal dynamics of proliferation and apoptosis after N-methyl-D-aspartate (NMDA-mediated excitotoxicity were analyzed by quantitative morphometry of Ki-67 or cleaved caspase-3 immunoreactive glial cells. Treatment on NMDA-lesioned OHSCs with mycophenolate mofetil (MMF100 μg/mL was started at different time points after injury or performed within specific time frames, and the numbers of propidium iodide (PI+ degenerating neurons and isolectin (IB4+ microglial cells were determined. Pre-treatment with guanosine 100 μmol/l was performed to counteract MMF-induced effects. The effects of MMF on reactive astrocytic scar formation were investigated in the scratch-wound model of astrocyte monolayers. Results Excitotoxic lesion induction led to significant increases in glial proliferation rates between 12 and 36 hours after injury and to increased levels of apoptotic cells between 24 and 72 hours after injury. MMF treatment significantly reduced glial proliferation rates without affecting apoptosis. Continuous MMF treatment potently reduced the extent of neuronal cell demise when started within the first 12 hours after injury. A crucial time-frame of significant neuroprotection was identified between 12 and 36 hours after injury. Pre-treatment with the neuroprotective nucleoside guanosine reversed MMF-induced antiproliferative effects on glial cells. In the scratch-wound model, gap closure was reached within 48 hours in controls, and was potently inhibited by MMF. Conclusions Our data indicate that

  7. Anticonvulsive and neuroprotective effects of synergetic combination of phenytoin and gastrodin on the convulsion induced by penicillin in mice.

    Science.gov (United States)

    Zhou, Ziqi; Lin, Yanzhu; Zheng, Hongyi; He, Yuzhong; Xu, Haohua; Zhang, Siheng; Weng, Wen; Li, Wei; Zhu, Linyan; Yang, Haifeng

    2015-08-01

    Phenytoin (PHT) is a commonly prescribed first-line antiepileptic drug. However, long-term administration of PHT can cause memory loss and balance disturbance. Gastrodin (GD) is the major bioactive component in Tianma and has sedative, anticonvulsive, memory strengthening, and neuroprotective effects. To combine the two drugs seems attractive; however, little was known about the efficacy of combination therapy. In this study, convulsive attack was successfully induced by penicillin. Isobolographic analysis, memory and balance behavior test, histopathological examination, and Western blot analysis were used to investigate whether the combination therapy of GD and PHT can enhance anticonvulsive effect and reduce the side effects associated with PHT. The GD alone (950.60 mg/kg) and the PHT alone (45.50 mg/kg) could produce an anticonvulsive effect, while comparable effect could be produced by PHT : GD = 1 : 50 (8.59 : 429.27 mg/kg), which reduce the dose of PHT by 81% and GD by 55%. After the chronic anticonvulsive experiments of 16 days, the balance disturbance and short-/long-term memory loss were observed in the PHT group, while the PHT + GD therapy can protect the normal balance and memory function. The neuron morphology of hippocampus was preserved, and the number of surviving neurons after combination therapy was more than the model group. The amount of NF-κB (p65) expression was increased in combination group. All above suggested the potential of the combination of PHT and GD enhances the anticonvulsive effect and the neuroprotective effect and reduces the PHT-associated memory and balance disturbance. The PHT + GD strategy would provide new possibilities as a novel promising methodology to treat epileptic patients. © 2015 Société Française de Pharmacologie et de Thérapeutique.

  8. The administration of hydrogen sulphide prior to ischemic reperfusion has neuroprotective effects in an acute stroke model.

    Directory of Open Access Journals (Sweden)

    Chul-Woong Woo

    Full Text Available Emerging evidence has suggested that hydrogen sulfide (H2S may alleviate the cellular damage associated with cerebral ischemia/reperfusion (I/R injury. In this study, we assessed using 1H-magnetic resonance imaging/magnetic resonance spectroscopy (1H-MRI/MRS and histologic analysis whether H2S administration prior to reperfusion has neuroprotective effects. We also evaluated for differences in the effects of H2S treatment at 2 time points. 1H-MRI/MRS data were obtained at baseline, and at 3, 9, and 24 h after ischemia from 4 groups: sham, control (I/R injury, sodium hydrosulfide (NaHS-30 and NaHS-1 (NaHS delivery at 30 and 1 min before reperfusion, respectively. The total infarct volume and the midline shift at 24 h post-ischemia were lowest in the NaHS-1, followed by the NaHS-30 and control groups. Peri-infarct volume was significantly lower in the NaHS-1 compared to NaHS-30 and control animals. The relative apparent diffusion coefficient (ADC in the peri-infarct region showed that the NaHS-1 group had significantly lower values compared to the NaHS-30 and control animals and that NaHS-1 rats showed significantly higher relative T2 values in the peri-infarct region compared to the controls. The relative ADC value, relative T2 value, levels of N-acetyl-L-aspartate (NAA, and the NAA, glutamate, and taurine combination score (NGT in the ischemic core region at 24 h post-ischemia did not differ significantly between the 2 NaHS groups and the control except that the NAA and NGT values were higher in the peri-infarct region of the NaHS-1 animals at 9 h post-ischemia. In the ischemic core and peri-infarct regions, the apoptosis rate was lowest in the NaHS-1 group, followed by the NaHS-30 and control groups. Our results suggest that H2S treatment has neuroprotective effects on the peri-infarct region during the evolution of I/R injury. Furthermore, our findings indicate that the administration of H2S immediately prior to reperfusion produces the

  9. OBSERVATION OF STRONG - STRONG AND OTHER BEAM - BEAM EFFECTS IN RHIC

    International Nuclear Information System (INIS)

    FISCHER, W.; BLASKIEWICZ, M.; BRENNAN, J.M.; CAMERON, P.; CONNOLLY, R.; MONTAG, C.; PEGGS, S.; PILAT, F.; PTITSYN, V.; TEPIKIAN, S.; TRBOJEVIC, D.; VAN ZEIJTS, J.

    2003-01-01

    RHIC is currently the only hadron collider in which strong-strong beam-beam effects can be seen. For the first time, coherent beam-beam modes were observed in a bunched beam hadron collider. Other beam-beam effects in RHIC were observed in operation and in dedicated experiments with gold ions, deuterons and protons. Observations include measurements of beam-beam induced tune shifts, lifetime and emittance growth measurements with and without beam-beam interaction, and background rates as a function of tunes. During ramps unequal radio frequencies in the two rings cause the crossing points to move longitudinally. Thus bunches experience beam-beam interactions only in intervals and the tunes are modulated. In this article we summarize the most important beam-beam observations made so far

  10. Neuroprotective effect of melatonin against ischemia is partially mediated by alpha-7 nicotinic receptor modulation and HO-1 overexpression.

    Science.gov (United States)

    Parada, Esther; Buendia, Izaskun; León, Rafael; Negredo, Pilar; Romero, Alejandro; Cuadrado, Antonio; López, Manuela G; Egea, Javier

    2014-03-01

    Melatonin has been widely studied as a protective agent against oxidative stress. However, the molecular mechanisms underlying neuroprotection in neurodegeneration and ischemic stroke are not yet well understood. In this study, we evaluated the neuroprotective/antioxidant mechanism of action of melatonin in organotypic hippocampal cultures (OHCs) as well as in photothrombotic stroke model in vivo. Melatonin (0.1, 1, and 10 μM) incubated postoxygen and glucose deprivation (OGD) showed a concentration-dependent protection; maximum protection was achieved at 10 μM (90% protection). Next, OHCs were exposed to 10 μM melatonin at different post-OGD times; the protective effect of melatonin was maintained at 0, 1, and 2 hr post-OGD treatment, but it was lost at 6 hr post-OGD. The protective effect of melatonin and the reduction in OGD-induced ROS were prevented by luzindole (melatonin antagonist) and α-bungarotoxin (α-Bgt, a selective α7 nAChR antagonist). In Nrf2 knockout mice, the protective effect of melatonin was reduced by 40% compared with controls. Melatonin, incubated 0, 1, and 2 hr post-OGD, increased the expression of heme oxygenase-1 (HO-1), and this overexpression was prevented by luzindole and α-bungarotoxin. Finally, administration of 15 mg/kg melatonin following the induction of photothrombotic stroke in vivo, reduced infarct size (50%), and improved motor skills; this effect was partially lost in 0.1 mg/kg methyllycaconitine (MLA, selective α7 nAChR antagonist)-treated mice. Taken together, these results demonstrate that postincubation of melatonin provides a protective effect that, at least in part, depends on nicotinic receptor activation and overexpression of HO-1. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Neuroprotective Effects and Mechanisms of Curcumin–Cu(II and –Zn(II Complexes Systems and Their Pharmacological Implications

    Directory of Open Access Journals (Sweden)

    Fa-Shun Yan

    2017-12-01

    Full Text Available Alzheimer’s disease (AD is the main form of dementia and has a steadily increasing prevalence. As both oxidative stress and metal homeostasis are involved in the pathogenesis of AD, it would be interesting to develop a dual function agent, targeting the two factors. Curcumin, a natural compound isolated from the rhizome of Curcuma longa, is an antioxidant and can also chelate metal ions. Whether the complexes of curcumin with metal ions possess neuroprotective effects has not been evaluated. Therefore, the present study was designed to investigate the protective effects of the complexes of curcumin with Cu(II or Zn(II on hydrogen peroxide (H2O2-induced injury and the underlying molecular mechanisms. The use of rat pheochromocytoma (PC12 cells, a widely used neuronal cell model system, was adopted. It was revealed that curcumin–Cu(II complexes systems possessed enhanced O2·–-scavenging activities compared to unchelated curcumin. In comparison with unchelated curcumin, the protective effects of curcumin–Cu(II complexes systems were stronger than curcumin–Zn(II system. Curcumin–Cu(II or –Zn(II complexes systems significantly enhanced the superoxide dismutase, catalase, and glutathione peroxidase activities and attenuated the increase of malondialdehyde levels and caspase-3 and caspase-9 activities, in a dose-dependent manner. The curcumin–Cu(II complex system with a 2:1 ratio exhibited the most significant effect. Further mechanistic study demonstrated that curcumin–Cu(II or –Zn(II complexes systems inhibited cell apoptosis via downregulating the nuclear factor κB (NF-κB pathway and upregulating Bcl-2/Bax pathway. In summary, the present study found that curcumin–Cu(II or –Zn(II complexes systems, especially the former, possess significant neuroprotective effects, which indicates the potential advantage of curcumin as a promising agent against AD and deserves further study.

  12. Neuroprotective effects of lentivirus-mediated cystathionine-beta-synthase overexpression against 6-OHDA-induced parkinson's disease rats.

    Science.gov (United States)

    Yin, Wei-Lan; Yin, Wei-Guo; Huang, Bai-Sheng; Wu, Li-Xiang

    2017-09-14

    Parkinson's disease (PD) is age-related neurodegenerative disorder by a progressive loss of dopaminergic(DA) neurons in the substantia nigra (SN) and striatum, which is at least partly associated with α-synuclein protein accumulation in these neurons. Hydrogen sulfide (H 2 S) plays an important role in the nervous system. Studies have shown that H 2 S has a protective effect on PD. However, as a kind of gas molecules, H 2 S is lively, volatile, and not conducive to scientific research and clinical application. Cystathionine-beta-synthase(CBS) is the main enzymes of synthesis of H 2 S in the brain. In order to examine the neuroprotective effects of CBS on PD, we detected the effects of CBS overexpression on 6-Hydroxydopamine (6-OHDA)-lesioned PD rats using lentivirus-mediated gene transfection techniques. In the injured SN of 6-OHDA-induced PD rats, the CBS expression and the endogenous H 2 S level markedly decreased, while administration of lentivirus-mediated CBS overexpression increased the CBS expression and the endogenous H 2 S production.CBS overexpression dramatically reversed apomorphine-induced rotation of the 6-OHDA model rats, decreased the number of TUNEL-positive neurons and the loss of the nigral DA neurons,specifically inhibited 6-OHDA-induced oxidase stress injury, and down-regulated the expression of α-synuclein(α-SYN) in the injured SN. NaHS (an H 2 S donor) had similar effects to CBS overexpression, while Amino-oxyacetate(AOAA, a CBS inhibitor) had opposite effects on PD rats. In summary, we demonstrated that CBS overexpression was able to provide neuroprotective on PD rats and improving the expression of CBS may be a potential therapeutic method for PD. Copyright © 2017. Published by Elsevier B.V.

  13. Neuroprotective Effect of σ1-Receptors on the Cell Model of Huntington's Disease.

    Science.gov (United States)

    Bol'shakova, A V; Kraskovskaya, N A; Gainullina, A N; Kukanova, E O; Vlasova, O L; Bezprozvanny, I B

    2017-12-01

    Huntington's disease is a hereditary neurodegenerative disease that primarily affects striatal neurons. Recent studies demonstrated abnormalities in calcium regulation in striatal neurons in Huntington's disease, which leads to elimination of synaptic connections between cortical and striatal neurons. In the present study, we focused on the neuroprotective properties of σ1-receptor, because one of its main functions is associated with modulation of calcium homeostasis in cells. The application of selective σ1-receptor agonists to the corticostriatal cell culture restores synaptic connections between the cortical and striatal neurons. Based on the obtained data, we assume that σ1-receptor is a promising target for the development of drugs for the therapy of Huntington's disease.

  14. Neuroprotective effects of Rhodiola rosea extracts against excitotoxicity and oxygen-glucose deprivation in hippocampal slice cultures

    DEFF Research Database (Denmark)

    Gramsbergen, Jan Bert; Sindberg, J.; Lundberg, L.

    .g. salidroside) and phenylpropanoid glycosides (e.g. rosavin). Many of these compounds are considered potent antioxidants, but the significance of the various substances for the beneficial effects of roseroot is still largely unknown. Here we tested the neuroprotective effects of crude methanolic extracts of R......The medical plant Rhodiola rosea (roseroot, golden root) is known as a stimulant of mental and physical endurance, increasing resistance to chemical, biological, psychological and physical stressors. Extracts of R. rosea roots contain ?avonoids, phenolic acids, phenylethanol derivatives (e...... pups were grown for 2-3 weeks before exposure to N-methyl-D-aspartate (NMDA, 10 µM, 24 h) or oxygen-glucose deprivation (OGD, 30 or 35 min), with and without presence of R. rosea extracts or compounds during and 24 h after the insult. NMDA- or OGD-induced neuronal cell death was monitored...

  15. Neuroprotective Effect of Coptis chinensis in MPP[Formula: see text] and MPTP-Induced Parkinson's Disease Models.

    Science.gov (United States)

    Friedemann, Thomas; Ying, Yue; Wang, Weigang; Kramer, Edgar R; Schumacher, Udo; Fei, Jian; Schröder, Sven

    2016-01-01

    The rhizome of Coptis chinensis is commonly used in traditional Chinese medicine alone or in combination with other herbs to treat diseases characterized by causing oxidative stress including inflammatory diseases, diabetes mellitus and neurodegenerative diseases. In particular, there is emerging evidence that Coptis chinensis is effective in the treatment of neurodegenerative diseases associated with oxidative stress. Hence, the aim of this study was to investigate the neuroprotective effect of Coptis chinensis in vitro and in vivo using MPP[Formula: see text] and MPTP models of Parkinson's disease. MPP[Formula: see text] treated human SH-SY5Y neuroblastoma cells were used as a cell model of Parkinson's disease. A 24[Formula: see text]h pre-treatment of the cells with the watery extract of Coptis chinensis significantly increased cell viability, as well as the intracellular ATP concentration and attenuated apoptosis compared to the MPP[Formula: see text] control. Further experiments with the main alkaloids of Coptidis chinensis, berberine, coptisine, jaterorrhizine and palmatine revealed that berberine and coptisine were the main active compounds responsible for the observed neuroprotective effect. However, the full extract of Coptis chinensis was more effective than the tested single alkaloids. In the MPTP-induced animal model of Parkinson's disease, Coptis chinensis dose-dependently improved motor functions and increased tyrosine hydroxylase-positive neurons in the substantia nigra compared to the MPTP control. Based on the results of this work, Coptis chinensis and its main alkaloids could be considered potential candidates for the development of new treatment options for Parkinson's disease.

  16. Histological studies of neuroprotective effects of Curcuma longa Linn. on neuronal loss induced by dexamethasone treatment in the rat hippocampus.

    Science.gov (United States)

    Issuriya, Acharaporn; Kumarnsit, Ekkasit; Wattanapiromsakul, Chatchai; Vongvatcharanon, Uraporn

    2014-10-01

    Long term exposure to dexamethasone (Dx) is associated with brain damage especially in the hippocampus via the oxidative stress pathway. Previously, an ethanolic extract from Curcuma longa Linn. (CL) containing the curcumin constituent has been reported to produce antioxidant effects. However, its neuroprotective property on brain histology has remained unexplored. This study has examined the effects of a CL extract on the densities of cresyl violet positive neurons and glial fibrillary acidic protein immunoreactive (GFAP-ir) astrocytes in the hippocampus of Dx treated male rats. It showed that 21 days of Dx treatment (0.5mg/kg, i.p. once daily) significantly reduced the densities of cresyl violet positive neurons in the sub-areas CA1, CA3 and the dentate gyrus, but not in the CA2 area. However, CL pretreatment (100mg/kg, p.o.) was found to significantly restore neuronal densities in the CA1 and dentate gyrus. In addition, Dx treatment also significantly decreased the densities of the GFAP-ir astrocytes in the sub-areas CA1, CA3 and the dentate gyrus. However, CL pretreatment (100mg/kg, p.o.) failed to protect the loss of astrocytes in these sub-areas. These findings confirm the neuroprotective effects of the CL extract and indicate that the cause of astrocyte loss might be partially reduced by a non-oxidative mechanism. Moreover, the detection of neuronal and glial densities was suitable method to study brain damage and the effects of treatment. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. Neuroprotective effect of bee venom is mediated by reduced astrocyte activation in a subchronic MPTP-induced model of Parkinson's disease.

    Science.gov (United States)

    Kim, Mi Eun; Lee, Joo Yeon; Lee, Kyung Moon; Park, Hee Ra; Lee, Eunjin; Lee, Yujeong; Lee, Jun Sik; Lee, Jaewon

    2016-08-01

    Bee venom (BV), also known as apitoxin, is widely used in traditional oriental medicine to treat immune-related diseases. Recent studies suggest that BV could be beneficial for the treatment of neurodegenerative diseases. Parkinson's disease (PD) is the second most common neurodegenerative disease next to Alzheimer's disease, and PD pathologies are closely associated with neuroinflammation. Previous studies have suggested the neuroprotective effects of BV in animal models of PD are due to the modulation of inflammation. However, the molecular mechanisms responsible for the anti-neuroinflammatory effect of BV have not been elucidated in astrocytes. Here, the authors investigated the neuroprotective effects of BV and pramipexole (PPX; a positive control) in a subchronic MPTP-induced murine PD model. Both BV and PPX prevented MPTP-induced impairments in motor performance and reduced dopaminergic neuron loss, and furthermore, these neuroprotective effects of BV and PPX were found to be associated with reduced astroglial activation in vivo PD model. However, in MPP(+) treated primary cultured astrocytes, BV modulated astrocyte activation, whereas PPX did not, indicating that the neuroprotective effects of PPX were not mediated by neuroinflammation. These findings suggest that BV should be considered a potential therapeutic or preventive agent for PD and other neuroinflammatory associated disorders.

  18. Neuroprotective Effects of Psalmotoxin-1, an Acid-Sensing Ion Channel (ASIC) Inhibitor, in Ischemia Reperfusion in Mouse Eyes.

    Science.gov (United States)

    Dibas, Adnan; Millar, Cameron; Al-Farra, Abraham; Yorio, Thomas

    2018-03-29

    The purpose of the current study is to assess changes in the expression of Acid-Sensing Ion Channel (ASIC)1a and ASIC2 in retinal ganglion cells (RGCs) after retinal ischemia and reperfusion (I/R) injury and to test if inhibition of ASIC1a provides RGC neuroprotection. Transient ischemia was induced in one eye of C57BL/6 mice by raising intraocular pressure to 120 mmHg for 60 min followed by retinal reperfusion by restoring normal pressure. RGC function was measured by Pattern electroretinography (PERG). In addition, retinal ASIC1a and ASIC2 were observed by immunohistochemistry and western blot. Changes in calpain, fodrin, heat shock protein 70 (HSP70), Brn3a, super oxide dismutase-1 (SOD1), catalase, and glutathione perioxidase-4 (GPX4) protein levels were assessed by western blot. RGC numbers were measured by immunohistochemistry on whole retinal flat mounts using anti-RNA binding protein with multiple splicing (RBPMS) antibodies. Intravitreal injection of psalmotoxin-1, a selective ASIC1a blocker, was used to assess the neuroprotective effect of ASIC1a inhibition. Levels of ASIC1a and ASIC2 after I/R increased in RGCs. Upregulation of ASIC1a but not ASIC2 was attenuated by intravitreal injection of psalmotoxin-1. I/R induced activation of calpain and degradation of fodrin, HSP70, and reduction in Brn3a. In contrast, while psalmotoxin-1 attenuated calpain activation and increased Brn3a levels, it failed to block HSP70 degradation. Unlike SOD1 protein which was reduced, catalase protein levels increased after I/R. Psalmotoxin-1, although not affecting SOD1 and GPX4, increased catalase levels significantly. Psalmotoxin-1 also increased RBPMS-labeled RGCs following I/R as judged by immunohistochemistry of retinal flat mounts. Finally, psalmotoxin-1 enhanced the amplitude of PERG following I/R, suggesting partial rescue of RGC function. Psalmotoxin-1 appears to exert a neuroprotective effect under ischemic insults and targeting inhibition of ASICs may represent a

  19. Clostridium butyricum exerts a neuroprotective effect in a mouse model of traumatic brain injury via the gut-brain axis.

    Science.gov (United States)

    Li, H; Sun, J; Du, J; Wang, F; Fang, R; Yu, C; Xiong, J; Chen, W; Lu, Z; Liu, J

    2017-11-27

    Traumatic brain injury (TBI) is a common occurrence following gastrointestinal dysfunction. Recently, more and more attentions are being focused on gut microbiota in brain and behavior. Glucagon-like peptide-1 (GLP-1) is considered as a mediator that links the gut-brain axis. The aim of this study was to explore the neuroprotective effects of Clostridium butyricum (Cb) on brain damage in a mouse model of TBI. Male C57BL/6 mice were subjected to a model of TBI-induced by weight-drop impact head injury and were treated intragastrically with Cb. The cognitive deficits, brain water content, neuronal death, and blood-brain barrier (BBB) permeability were evaluated. The expression of tight junction (TJ) proteins, Bcl-2, Bax, GLP-1 receptor (GLP-1R), and phosphorylation of Akt (p-Akt) in the brain were also measured. Moreover, the intestinal barrier permeability, the expression of TJ protein and GLP-1, and IL-6 level in the intestine were detected. Cb treatment significantly improved neurological dysfunction, brain edema, neurodegeneration, and BBB impairment. Meanwhile, Cb treatment also significantly increased the expression of TJ proteins (occludin and zonula occluden-1), p-Akt and Bcl-2, but decreased expression of Bax. Moreover, Cb treatment exhibited more prominent effects on decreasing the levels of plasma d-lactate and colonic IL-6, upregulating expression of Occludin, and protecting intestinal barrier integrity. Furthermore, Cb-treated mice showed increased the secretion of intestinal GLP-1 and upregulated expression of cerebral GLP-1R. Our findings demonstrated the neuroprotective effect of Cb in TBI mice and the involved mechanisms were partially attributed to the elevating GLP-1 secretion through the gut-brain axis. © 2017 John Wiley & Sons Ltd.

  20. Neuroprotective effects of testosterone metabolites and dependency on receptor action on the morphology of somatic motoneurons following the death of neighboring motoneurons.

    Science.gov (United States)

    Cai, Yi; Chew, Cory; Muñoz, Fernando; Sengelaub, Dale R

    2017-06-01

    Partial depletion of spinal motoneuron populations induces dendritic atrophy in neighboring motoneurons, and treatment with testosterone is neuroprotective, attenuating induced dendritic atrophy. In this study we examined whether the protective effects of testosterone could be mediated via its androgenic or estrogenic metabolites. Furthermore, to assess whether these neuroprotective effects were mediated through steroid hormone receptors, we used receptor antagonists to attempt to prevent the neuroprotective effects of hormones after partial motoneuron depletion. Motoneurons innervating the vastus medialis muscles of adult male rats were selectively killed by intramuscular injection of cholera toxin-conjugated saporin. Simultaneously, some saporin-injected rats were treated with either dihydrotestosterone or estradiol, alone or in combination with their respective receptor antagonists, or left untreated. Four weeks later, motoneurons innervating the ipsilateral vastus lateralis muscle were labeled with cholera toxin-conjugated horseradish peroxidase, and dendritic arbors were reconstructed in three dimensions. Compared with intact normal animals, partial motoneuron depletion resulted in decreased dendritic length in remaining quadriceps motoneurons. Dendritic atrophy was attenuated with both dihydrotestosterone and estradiol treatment to a degree similar to that seen with testosterone, and attenuation of atrophy was prevented by receptor blockade. Together, these findings suggest that neuroprotective effects on motoneurons can be mediated by either androgenic or estrogenic hormones and require action via steroid hormone receptors, further supporting a role for hormones as neurotherapeutic agents in the injured nervous system. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 691-707, 2017. © 2016 Wiley Periodicals, Inc.

  1. Evidence for neuroprotective effect of sulbutiamine against oxygen-glucose deprivation in rat hippocampal CA1 pyramidal neurons.

    Science.gov (United States)

    Kwag, Jeehyun; Majid, Aman Shah Abdul; Kang, Kui Dong

    2011-01-01

    Hippocampus is one of the earliest brain regions that gets affected by ischemia, however, no pharmacological therapy exists yet that can fully counteract the ischemic damage. Here we study the effect of sulbutiamine, a synthetic thiamine analogue that can cross the blood-brain barrier easily, on hippocampal neurons under an in vitro model of ischemia, oxygen-glucose deprivation (OGD). We find that exposure to OGD in the presence of sulbutiamine significantly increases neuronal viability and enhances electrophysiological properties such as excitatory synaptic transmissions and intrinsic neuronal membrane input resistance in a concentration-dependent manner. Overall, here we report, for the first time, the neuroprotective evidence of sulbutiamine on hippocampal CA1 pyramidal neurons under OGD, which may have beneficial implications as a possible therapeutic agent/substance against ischemic insult.

  2. Neuroprotective Effect of(−)Δ9-Tetrahydrocannabinol and Cannabidiol in N-Methyl-d-Aspartate-Induced Retinal Neurotoxicity

    Science.gov (United States)

    El-Remessy, Azza B.; Khalil, Ibrahim E.; Matragoon, Suraporn; Abou-Mohamed, Gamal; Tsai, Nai-Jer; Roon, Penny; Caldwell, Ruth B.; Caldwell, Robert W.; Green, Keith; Liou, Gregory I.

    2003-01-01

    In glaucoma, the increased release of glutamate is the major cause of retinal ganglion cell death. Cannabinoids have been demonstrated to protect neuron cultures from glutamate-induced death. In this study, we test the hypothesis that glutamate causes apoptosis of retinal neurons via the excessive formation of peroxynitrite, and that the neuroprotective effect of the psychotropic Δ9-tetrahydroxycannabinol (THC) or nonpsychotropic cannabidiol (CBD) is via the attenuation of this formation. Excitotoxicity of the retina was induced by intravitreal injection of N-methyl-d-aspartate (NMDA) in rats, which also received 4-hydroxy-2,2,6,6-tetramethylpiperidine-n-oxyl (TEMPOL,a superoxide dismutase-mimetic), N-ω-nitro-l-arginine methyl ester (L-NAME, a nitric oxide synthase inhibitor), THC, or CBD. Retinal neuron loss was determined by TDT-mediated dUTP nick-end labeling assay, inner retinal thickness, and quantification of the mRNAs of ganglion cell markers. NMDA induced a dose- and time-dependent accumulation of nitrite/nitrate, lipid peroxidation, and nitrotyrosine (foot print of peroxynitrite), and a dose-dependent apoptosis and loss of inner retinal neurons. Treatment with L-NAME or TEMPOL protected retinal neurons and confirmed the involvement of peroxynitrite in retinal neurotoxicity. The neuroprotection by THC and CBD was because of attenuation of peroxynitrite. The effect of THC was in part mediated by the cannabinoid receptor CB1. These results suggest the potential use of CBD as a novel topical therapy for the treatment of glaucoma. PMID:14578199

  3. Neuroprotective effect of geraniol and curcumin in an acrylamide model of neurotoxicity in Drosophila melanogaster: relevance to neuropathy.

    Science.gov (United States)

    Prasad, Sathya N; Muralidhara

    2014-01-01

    Chronic exposure of acrylamide (ACR) leads to neuronal damage in both experimental animals and humans. The primary focus of this study was to assess the ameliorative effect of geraniol, (a natural monoterpene) against ACR-induced oxidative stress, mitochondrial dysfunction and neurotoxicity in a Drosophila model and compare its efficacy to that of curcumin, a spice active principle with pleiotropic biological activity. Adult male flies (8-10 days) were exposed (7 days) to ACR (5 mM) with or without geraniol and curcumin (5-10 μM) in the medium. Both phytoconstituents significantly reduced the incidence of ACR-induced mortality, rescued the locomotor phenotype and alleviated the enhanced levels of oxidative stress markers in head/body regions. The levels of reduced glutathione (GSH) and total thiols (TSH) resulting from ACR exposure was also restored with concomitant elevation in the activities of detoxifying enzymes. Interestingly, ACR induced mitochondrial dysfunctions (MTT reduction, activities of SDH and citrate synthase enzymes) were alleviated by both phytoconstituents. While ACR elevated the activity of acetylcholinesterase in head/body regions, marked diminution in enzyme activity ensued with co-exposure to phytoconstituents suggesting their potency to mitigate cholinergic function. Furthermore, phytoconstituents also restored the dopamine levels in head/body regions. The neuroprotective effect of geraniol was comparable to curcumin in terms of phenotypic and biochemical markers. Based on our evidences in fly model we hypothesise that geraniol possess significant neuromodulatory propensity and may be exploited for therapeutic application in human pathophysiology associated with neuropathy. However, the precise mechanism/s by which geraniol offers neuroprotection needs to be investigated in appropriate neuronal cell models. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Neuroprotective effects of xiao-xu-ming decoction against ischemic neuronal injury in vivo and in vitro.

    Science.gov (United States)

    Zhu, Xin-Hong; Li, Shu-Ji; Hu, Hong-Hai; Sun, Li-Rong; Das, Manas; Gao, Tian-Ming

    2010-01-08

    Xiao-Xu-Ming decoction (XXMD) has long been employed clinically to treat stroke in traditional Chinese Medicine. To investigate the neuroprotective effects of XXMD in vivo and in vitro stroke models and determine involved mechanisms. Two models (four-vessel occlusion in adult Wistar rats and oxygen-glucose deprivation primary cultured neurons) were employed to mimic ischemia-reperfusion damage, in vivo and in vitro, respectively. The effects of XXMD were investigated with respect to neuronal damage, activity of caspase-3 and expression of Bcl-2 in CA1 region of hippocampus after ischemia. The cognitive ability was measured 7 days after ischemia/reperfusion by using Morris water maze. Oral administration of XXMD significantly increased the density of neurons that survived in the CA1 region of hippocampus on the 3rd and 7th day after transient global ischemia was induced in a dose-dependent manner. XXMD ameliorated severe deficiencies in spatial cognitive performance induced by transient global ischemia. Inhibition of caspase-3 activity and up-regulation of Bcl-2 expression were induced in the high dose of XXMD-treated rats after ischemia. In oxygen-glucose deprivation model, both XXMD extract and drug-containing serum prepared from blood of high dose of XXMD-treated rats inhibited apoptotic neuronal death at 24h after reoxygenation. Our results clearly demonstrated that XXMD is neuroprotective and appears to influence deleterious pathological processes that are activated after the onset of ischemia. Crown Copyright 2009. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Neuroprotective Effects of β-Caryophyllene against Dopaminergic Neuron Injury in a Murine Model of Parkinson’s Disease Induced by MPTP

    Directory of Open Access Journals (Sweden)

    Juan M. Viveros-Paredes

    2017-07-01

    Full Text Available Parkinson’s disease (PD is one of the most common neurodegenerative disorders and is characterized by the loss of dopaminergic neurons in the substantia nigra (SN. Although the causes of PD are not understood, evidence suggests that its pathogenesis is associated with oxidative stress and inflammation. Recent studies have suggested a protective role of the cannabinoid signalling system in PD. β-caryophyllene (BCP is a natural bicyclic sesquiterpene that is an agonist of the cannabinoid type 2 receptor (CB2R. Previous studies have suggested that BCP exerts prophylactic and/or curative effects against inflammatory bowel disease through its antioxidative and/or anti-inflammatory action. The present study describes the neuroprotective effects of BCP in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP-induced murine model of PD, and we report the results of our investigation of its neuroprotective mechanism in neurons and glial cells. In the murine model, BCP pretreatment ameliorated motor dysfunction, protected against dopaminergic neuronal losses in the SN and striatum, and alleviated MPTP-induced glia activation. Additionally, BCP inhibited the levels of inflammatory cytokines in the nigrostriatal system. The observed neuroprotection and inhibited glia activation were reversed upon treatment with the CB2R selective antagonist AM630, confirming the involvement of the CB2R. These results indicate that BCP acts via multiple neuroprotective mechanisms in our murine model and suggest that BCP may be viewed as a potential treatment and/or preventative agent for PD.

  6. Neuroprotective effects of riluzole in early phase Parkinson's disease on clinically relevant parameters in the marmoset MPTP model.

    Science.gov (United States)

    Verhave, Peternella S; Jongsma, Marjan J; Van Den Berg, Roland M; Vanwersch, Raymond A P; Smit, August B; Philippens, Ingrid H C H M

    2012-03-01

    The present study evaluates neuroprotection in a marmoset MPTP (1-methyl-1,2,3,6-tetrahydropyridine) model representing early Parkinson's disease (PD). The anti-glutamatergic compound riluzole is used as a model compound for neuroprotection. The compound is one of the few protective compounds used in the clinic for a neurodegenerative disorder. Marmoset monkeys were randomized into three groups of six: 1) an MPTP group receiving a total MPTP dose of 7 mg/kg (4 injections over two weeks, s.c.) 2) a riluzole group receiving besides MPTP, a twice daily dose of riluzole (10 mg/kg, p.o.), starting one week before MPTP and continuing for one week after the final MPTP injection and 3) a control group receiving saline instead of MPTP and riluzole. The marmosets' Parkinsonian symptoms were scored daily and their activity level, hand-eye coordination, jumping behavior, axial turning and night sleep parameters were tested and recorded weekly. At three weeks following the last MPTP challenge, brains were dissected and dopamine levels in the striatum and the tyrosine hydroxylase (TH) expressing dopamine (DA) neurons in the substantia nigra (SN) were compared. MPTP affected all behavioral parameters and sleep architecture and induced a relatively mild (50%) decline of DA neurons in the substantia nigra (SN). Riluzole relieved the Parkinsonian signs, and improved the hand-eye coordination as well as turning ability. Moreover, riluzole prevented the impact of MPTP on sleep architecture and rapid eye movement behavioral disorder (RBD). Riluzole also increased the number of surviving DA neurons in MPTP-treated marmosets to 75%. However, riluzole did not prevent the MPTP-induced impairments on locomotor activity and jumping activity. In conclusion, reduction of excitotoxicity by riluzole appeared to be effective in reducing progressive neurodegeneration and relieved several clinically relevant PD symptoms in an animal model representing the early phase of PD. Copyright © 2011

  7. Neuroprotective Effects of Etidronate and 2,3,3-Trisphosphonate Against Glutamate-Induced Toxicity in PC12 Cells.

    Science.gov (United States)

    Li, Wen; Cheong, Yuen-Ki; Wang, Hui; Ren, Guogang; Yang, Zhuo

    2016-04-01

    Etidronate is one of the best known bisphosphonates (BP) derivatives. It is often used as a reference drug in research related to hypercalcaemia and other common bone diseases. 2,3,3-trisphosphonate (TrisPP) is brand new analogue of BP, that also contains a 'germinal bisphosphonate' unit with an additional phosphoryl group attached in proximity to the BP unit. It is known that BPs bind to calcium by chemisorptions to form Ca-BP complexes through (O)P-C-P(O) moiety and hydrogen coordinations, and so they suppress calcium flow by interfering with Ca(2+) channel operations. The mechanistic actions of BP, involving interactions and regulations of Ca(2+), are somewhat similar to the pathogenesis of well-known neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease and Huntington's disease. To investigate if neuroprotective effects are exhibited by the compounds of interests, we used a rat adrenal pheochromocytoma cell line (PC12) as our in vitro model to observe any occurrence of neuron inter-reflection. We pre-treated these PC12 cells with etidronate and TrisPP before challenging the cells with a high concentration of the neurotoxin, glutamate. Our data showed that pre-treatment with 100 μM etidronate partially ameliorated the glutamate-induced decrease in cell viability (47 %), whereas pre-treating cells with 10-100 μM TrisPP showed remarkable cell protection (78-86 %). Moreover, pre-treatments of the cells with etidronate or TrisPP attenuated cell apoptosis, reactive oxygen species generation, Ca(2+) overloading and caspase-3 protein expression, which were associated with a remarkable increase in superoxide dismutase activity in our glutamate-injured PC12 cells. Therefore, this study supports the notion that etidronate and TrisPP may be promising neuroprotective agents.

  8. Effect of magnesium sulfate administration for neuroprotection on latency in women with preterm premature rupture of membranes.

    LENUS (Irish Health Repository)

    Horton, Amanda L

    2015-03-01

    This study aims to evaluate whether magnesium sulfate administration for neuroprotection prolongs latency in women with preterm premature rupture of membranes (PPROM) between 24 and 31(6\\/7) weeks\\' gestation.

  9. Neuroprotective Effects of Bioactive Compounds and MAPK Pathway Modulation in “Ischemia”—Stressed PC12 Pheochromocytoma Cells

    Science.gov (United States)

    Lahiani, Adi; Brand-Yavin, Annette; Yavin, Ephraim

    2018-01-01

    This review surveys the efforts taken to investigate in vitro neuroprotective features of synthetic compounds and cell-released growth factors on PC12 clonal cell line temporarily deprived of oxygen and glucose followed by reoxygenation (OGD/R). These cells have been used previously to mimic some of the properties of in vivo brain ischemia-reperfusion-injury (IRI) and have been instrumental in identifying common mechanisms such as calcium overload, redox potential, lipid peroxidation and MAPKs modulation. In addition, they were useful for establishing the role of certain membrane penetrable cocktails of antioxidants as well as potential growth factors which may act in neuroprotection. Pharmacological mechanisms of neuroprotection addressing modulation of the MAPK cascade and increased redox potential by natural products, drugs and growth factors secreted by stem cells, in either undifferentiated or nerve growth factor-differentiated PC12 cells exposed to ischemic conditions are discussed for future prospects in neuroprotection studies. PMID:29419806

  10. Differential effects of ethanol antagonism and neuroprotection in peptide fragment NAPVSIPQ prevention of ethanol-induced developmental toxicity

    OpenAIRE

    Wilkemeyer, Michael F.; Chen, Shao-yu; Menkari, Carrie E.; Brenneman, Douglas E.; Sulik, Kathleen K.; Charness, Michael E.

    2003-01-01

    NAPVSIPQ (NAP), an active fragment of the glial-derived activity-dependent neuroprotective protein, is protective at femtomolar concentrations against a wide array of neural insults and prevents ethanol-induced fetal wastage and growth retardation in mice. NAP also antagonizes ethanol inhibition of L1-mediated cell adhesion (ethanol antagonism). We performed an Ala scanning substitution of NAP to determine the role of ethanol antagonism and neuroprotection in NAP preve...

  11. Nicotinamide riboside, a trace nutrient in foods, is a vitamin B3 with effects on energy metabolism and neuroprotection.

    Science.gov (United States)

    Chi, Yuling; Sauve, Anthony A

    2013-11-01

    This review focuses upon the biology and metabolism of a trace component in foods called nicotinamide riboside. Nicotinamide riboside is a precursor of nicotinamide adenine dinucleotide (NAD), and is a source of Vitamin B3. Evidence indicates that nicotinamide riboside has unique properties as a Vitamin B3. We review knowledge of the metabolism of this substance, as well as recent work suggesting novel health benefits that might be associated with nicotinamide riboside taken in larger quantities than is found naturally in foods. Recent work investigating the effects of nicotinamide riboside in yeast and mammals established that it is metabolized by at least two types of metabolic pathways. The first of these is degradative and produces nicotinamide. The second pathway involves kinases called nicotinamide riboside kinases (Nrk1 and Nrk2, in humans). The likely involvement of the kinase pathway is implicated in the unique effects of nicotinamide riboside in raising tissue NAD concentrations in rodents and for potent effects in eliciting insulin sensitivity, mitochondrial biogenesis, and enhancement of sirtuin functions. Additional studies with nicotinamide riboside in models of Alzheimer's disease indicate bioavailability to brain and protective effects, likely by stimulation of brain NAD synthesis. Initial studies have clarified the potential for a lesser-known Vitamin B3 called nicotinamide riboside that is available in selected foods, and possibly available to humans by supplements. It has properties that are insulin sensitizing, enhancing to exercise, resisting to negative effects of high-fat diet, and neuroprotecting.

  12. Acupuncture elicits neuroprotective effect by inhibiting NAPDH oxidase-mediated reactive oxygen species production in cerebral ischaemia.

    Science.gov (United States)

    Shi, Guang-Xia; Wang, Xue-Rui; Yan, Chao-Qun; He, Tian; Yang, Jing-Wen; Zeng, Xiang-Hong; Xu, Qian; Zhu, Wen; Du, Si-Qi; Liu, Cun-Zhi

    2015-12-10

    In the current study, we aimed to investigate whether NADPH oxidase, a major ROS-producing enzyme, was involved in the antioxidant effect of acupuncture on cognitive impairment after cerebral ischaemia. The cognitive function, infract size, neuron cell loss, level of superoxide anion and expression of NADPH oxidase subunit in hippocampus of two-vessel occlusion (2VO) rats were determined after 2-week acupuncture. Furthermore, the cognitive function and production of O2(-) were determined in the presence and absence of NADPH oxidase agonist (TBCA) and antagonist (Apocynin). The effect of acupuncture on cognitive function after cerebral ischaemia in gp91phox-KO mice was evaluated by Morris water maze. Acupuncture reduced infarct size, attenuated overproduction of O2(-), and reversed consequential cognitive impairment and neuron cell loss in 2VO rats. The elevations of gp91phox and p47phox after 2VO were significantly decreased after acupuncture treatment. However, no differences of gp91phox mRNA were found among any experimental groups. Furthermore, these beneficial effects were reversed by TBCA, whereas apocynin mimicked the effect of acupuncture by improving cognitive function and decreasing O2(-) generation. Acupuncture failed to improve the memory impairment in gp91phox KO mice. Full function of the NADPH oxidase enzyme plays an important role in neuroprotective effects against cognitive impairment via inhibition of NAPDH oxidase-mediated oxidative stress.

  13. Neuroprotective, Anti-Amyloidogenic and Neurotrophic Effects of Apigenin in an Alzheimer’s Disease Mouse Model

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    2013-08-01

    Full Text Available Alzheimer’s disease (AD is a neurodegenerative disorder characterized by extracellular senile plaques and intracellular neurofibrillary tangles in the brain. Amyloid-β peptides (Aβ are considered to play a critical role in the onset and progression of AD. Apigenin (4',5,7-trihydroxyflavone is a pharmacologically active agent. Even though some evidence suggests that it has potential neuroprotective effects, no preexisting study has reported any therapeutic effects of apigenin in AD models. In the present study, we examined the effects of apigenin on cognitive function in APP/PS1 double transgenic AD mice and explored its mechanism(s of action. Three-month oral treatment with apigenin rescued learning deficits and relieved memory retention in APP/PS1 mice. Apigenin also showed effects affecting APP processing and preventing Aβ burden due to the down-regulation of BACE1 and β-CTF levels, the relief of Aβ deposition, and the decrease of insoluble Aβ levels. Moreover, apigenin exhibited superoxide anion scavenging effects and improved antioxidative enzyme activity of superoxide dismutase and glutathione peroxidase. In addition, apigenin restored neurotrophic ERK/CREB/BDNF pathway in the cerebral cortex. In conclusion, apigenin may ameliorate AD-associated learning and memory impairment through relieving Aβ burden, suppressing amyloidogenic process, inhibiting oxidative stress, and restoring ERK/CREB/BDNF pathway. Therefore, apigenin appears to represent an alternative medication for the prevention and/or therapy of AD.

  14. Neuroprotective effect of combining tanshinone IIA with low-dose methylprednisolone following acute spinal cord injury in rats.

    Science.gov (United States)

    Yao, Nian-Wei; Lu, Yuan; Shi, Li-Qi; Xu, Feng; Cai, Xian-Hua

    2017-05-01

    The present study compared the potential neuroprotective effect of tanshinone IIA (TIIA) monotherapy, methylprednisolone (MP) monotherapy and combined treatment in an adult acute spinal cord injury (ASCI) rat model. The current study used the weight-drop method (Allen's Impactor) in the rat model and the mechanical scratch method in primary spinal cord neuron culture to determine whether the combined treatment was able to reduce the required dosage of MP in the treatment of ASCI to produce a similar or improved therapeutic effect. In vivo male Sprague Dawley rats (n=60) were randomly divided into 5 groups, of which 12 rats were selected for the sham group and T9-T11 laminectomies, leading to ASCI, were performed on 48 of the 60 rats using a 10 g ×25 mm weight-drop at the level of T10 spinal cord. Therefore, the ASCI group (n=12) included the 'laminectomy and weight-drop'. The remaining 36 ASCI model animals were subdivided into 3 groups (n=12 each group): TIIA group (30 mg/kg/day), MP group (30 mg/kg) and combined treatment group (TIIA 30 mg/kg/day + MP 20 mg/kg). Neuronal function following ASCI was evaluated using the Basso Beattie Bresnahan (BBB) locomotor rating scale. Levels of the anti-apoptotic factor B-cell lymphoma-2 (Bcl-2), the pro-apoptotic factors Bcl-2 associated protein X (Bax) and caspase-3, and the inflammatory associated factor nuclear factor-κB, were analyzed by western blot analysis. Immunohistochemistry was used to detect caspase-3. To investigate the underlying mechanism, the anti-oxidative effect of combination TIIA and MP treatment was assessed by measuring the activity of malondialdehyde (MDA) and superoxide dismutase (SOD) in ASCI. In agreement with the experiment in vivo , primary neurons were prepared from the spinal cord of one-day-old Sprague-Dawley rats' and co-cultured with astrocytes from the brain cortex. The injury of neurons was induced by mechanical scratch and levels of apoptosis factors were analyzed by western blot analysis

  15. Neuroprotective Effects of α-Tocotrienol on Kainic Acid-Induced Neurotoxicity in Organotypic Hippocampal Slice Cultures

    Directory of Open Access Journals (Sweden)

    Bae Hwan Lee

    2013-09-01

    Full Text Available Vitamin E, such as alpha-tocopherol (ATPH and alpha-tocotrienol (ATTN, is a chain-breaking antioxidant that prevents the chain propagation step during lipid peroxidation. In the present study, we investigated the effects of ATTN on KA-induced neuronal death using organotypic hippocampal slice culture (OHSC and compared the neuroprotective effects of ATTN and ATPH. After 15 h KA (5 µM treatment, delayed neuronal death was detected in the CA3 region and reactive oxygen species (ROS formation and lipid peroxidation were also increased. Both co-treatment and post-treatment of ATPH (100 µM or ATTN (100 µM significantly increased the cell survival and reduced the number of TUNEL-positive cells in the CA3 region. Increased dichlorofluorescein (DCF fluorescence and levels of thiobarbiturate reactive substances (TBARS were decreased by ATPH and ATTN treatment. These data suggest that ATPH and ATTN treatment have protective effects on KA-induced cell death in OHSC. ATTN treatment tended to be more effective than ATPH treatment, even though there was no significant difference between ATPH and ATTN in co-treatment or post-treatment.

  16. Cognitive deficits and decreased locomotor activity induced by single-walled carbon nanotubes and neuroprotective effects of ascorbic acid

    Science.gov (United States)

    Liu, Xudong; Zhang, Yuchao; Li, Jinquan; Wang, Dong; Wu, Yang; Li, Yan; Lu, Zhisong; Yu, Samuel CT; Li, Rui; Yang, Xu

    2014-01-01

    Single-walled carbon nanotubes (SWCNTs) have shown increasing promise in the field of biomedicine, especially in applications related to the nervous system. However, there are limited studies available on the neurotoxicity of SWCNTs used in vivo. In this study, neurobehavioral changes caused by SWCNTs in mice and oxidative stress were investigated. The results of ethological analysis (Morris water maze and open-field test), brain histopathological examination, and assessments of oxidative stress (reactive oxygen species [ROS], malondialdehyde [MDA], and glutathione [GSH]), inflammation (nuclear factor κB, tumor necrosis factor α, interleukin-1β), and apoptosis (cysteine-aspartic acid protease 3) in brains showed that 6.25 and 12.50 mg/kg/day SWCNTs in mice could induce cognitive deficits and decreased locomotor activity, brain histopathological alterations, and increased levels of oxidative stress, inflammation, and apoptosis in mouse brains; however, 3.125 mg/kg/day SWCNTs had zero or minor adverse effects in mice, and these effects were blocked by concurrent administration of ascorbic acid. Down-regulation of oxidative stress, inflammation, and apoptosis were proposed to explain the neuroprotective effects of ascorbic acid. This work suggests SWCNTs could induce cognitive deficits and decreased locomotor activity, and provides a strategy to avoid the adverse effects. PMID:24596461

  17. Isolation of the sapogenin from defatted seeds of Camellia oleifera and its neuroprotective effects on dopaminergic neurons.

    Science.gov (United States)

    Ye, Yong; Fang, Fei; Li, Yue

    2014-07-02

    Sasanqua saponin is a major active compound in the defatted seeds of Camellia oleifera but is always discarded without effective utilization. The sapogenin from hydrolysis of sasanqua saponin was purified, and its amination derivative was investigated on its neuroprotective effects, which were evaluated by animal models of Parkinson disease in mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The results showed that the sapogenin and its derivative increased dopamine content in striatum and tyrosine hydroxylase (TH) positive cells in substantia nigra and relieved inflammation and behavioral disorder, but the effect on movement was reversed by dopamine receptor antagonist haloperidol and was not intervened by adenosine receptor antagonist CGS 15943. Molecular simulation showed the interaction between dopamine receptor and the sapogenin or its derivative. It is proven that the sapogenin can protect dopamine neurons through antineuroinflammation and activation of dopamine receptor rather than adenosine receptor, and its amination improves the effects. This research provides the prospective prodrugs for Parkinson disease and a new medicinal application of sasanqua saponin.

  18. Neuroprotective and Antiamnesic Effects of Mitragyna inermis Willd (Rubiaceae on Scopolamine-Induced Memory Impairment in Mice

    Directory of Open Access Journals (Sweden)

    David Bougolla Pahaye

    2017-01-01

    Full Text Available Aim. To assess memory improvement and neuroprotective and antioxidant effects of Mitragyna inermis (M. inermis leaf decoction on the central nervous system. Methodology. Leaf decoction of M. inermis was tested on learning and memory in normal and scopolamine-induced cognitive impairment in mice using memory behavioral tests such as the Morris water maze, object recognition task, and elevated plus maze. Oxidative stress enzymes—catalase, superoxide dismutase, and the thiobarbituric acid reactive substance, a product of lipid peroxidation—were quantified. In each test, mice 18 to 25 g were divided into groups of 5. Results. The extract reversed the effects of scopolamine in mice. The extract significantly increased discrimination index in the object recognition task test and inflexion ratio in the elevated plus maze test. The times spent in target quadrant in MWM increased while the transfer latency decreased in mice treated by M. inermis at the dose of 196.5 mg/kg. The activity levels of superoxide dismutase and catalase were significantly increased, whereas the thiobarbituric acid reactive substance was significantly decreased after 8 consecutive days of treatment with M. inermis at the dose of 393 mg/kg. Conclusion. These results suggest that M. inermis leaf extract possess potential antiamnesic effects.

  19. Neuroprotective and Antiamnesic Effects ofMitragyna inermisWilld (Rubiaceae) on Scopolamine-Induced Memory Impairment in Mice.

    Science.gov (United States)

    Pahaye, David Bougolla; Bum, Elisabeth Ngo; Taïwé, Germain Sotoing; Ngoupaye, Gwladys Temkou; Sidiki, Neteydji; Moto, Fleur Clarisse Okomolo; Kouemou, Nadège; Njapdounke, Stephanie Jacqueline Kameni; Nkantchoua, Gisele; Kandeda, Antoine; Omam, Jean Pierre Omam; Mairaira, Veronique; Ojong, Josiane Lucie

    2017-01-01

    Aim . To assess memory improvement and neuroprotective and antioxidant effects of Mitragyna inermis ( M. inermis ) leaf decoction on the central nervous system. Methodology . Leaf decoction of M. inermis was tested on learning and memory in normal and scopolamine-induced cognitive impairment in mice using memory behavioral tests such as the Morris water maze, object recognition task, and elevated plus maze. Oxidative stress enzymes-catalase, superoxide dismutase, and the thiobarbituric acid reactive substance, a product of lipid peroxidation-were quantified. In each test, mice 18 to 25 g were divided into groups of 5. Results . The extract reversed the effects of scopolamine in mice. The extract significantly increased discrimination index in the object recognition task test and inflexion ratio in the elevated plus maze test. The times spent in target quadrant in MWM increased while the transfer latency decreased in mice treated by M. inermis at the dose of 196.5 mg/kg. The activity levels of superoxide dismutase and catalase were significantly increased, whereas the thiobarbituric acid reactive substance was significantly decreased after 8 consecutive days of treatment with M. inermis at the dose of 393 mg/kg. Conclusion . These results suggest that M. inermis leaf extract possess potential antiamnesic effects.

  20. The neuroprotective effects of taurine against nickel by reducing oxidative stress and maintaining mitochondrial function in cortical neurons.

    Science.gov (United States)

    Xu, Shangcheng; He, Mindi; Zhong, Min; Li, Li; Lu, Yonghui; Zhang, Yanwen; Zhang, Lei; Yu, Zhengping; Zhou, Zhou

    2015-03-17

    Previous studies have indicated that oxidative stress and mitochondrial dysfunction are involved in the toxicity of nickel. Taurine is recognized as an efficient antioxidant and is essential for mitochondrial function. To investigate whether taurine could protect against the neurotoxicity of nickel, we exposed primary cultured cortical neurons to various concentrations of nickel chloride (NiCl2; 0.5mM, 1mM and 2mM) for 24h or to 1mM NiCl2 for various periods (0 h, 12h, 24h and 48 h). Our results showed that taurine efficiently reduced lactate dehydrogenase (LDH) release induced by NiCl2. Along with this protective effect, taurine pretreatment not only significantly reversed the increase of ROS production and mitochondrial superoxide concentration, but also attenuated the decrease of superoxide dismutase (SOD) activity and glutathione (GSH) concentration in neurons exposed to NiCl2 for 24h. Moreover, nickel exposure reduced ATP production, disrupted the mitochondrial membrane potential and decreased mtDNA content. These types of oxidative damage in the mitochondria were efficiently ameliorated by taurine pretreatment. Taken together, our results indicate that the neuroprotective effects of taurine against the toxicity of nickel might largely depend on its roles in reducing oxidative stress and improving mitochondrial function. Taurine may have great pharmacological potential in treating the adverse effects of nickel in the nervous system. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. A comparative study of neuroprotective effect of angiotensin converting enzyme inhibitors against scopolamine-induced memory impairments in rats

    Directory of Open Access Journals (Sweden)

    Talha Jawaid

    2015-01-01

    Full Text Available The comparative study of neuroprotective effect of angiotensin converting enzyme inhibitors against scopolamine-induced neuroinflammation in albino Wistar rats was studied. Male albino rats were administered with scopolamine to induce memory impairment. The standard nootropic agent, piracetam (200 mg/kg b.w., [i.p.], perindopril (0.1 mg/kg b.w., [i.p.], enalapril (0.1 mg/kg b.w., [i.p.], and ramipril (0.1 mg/kg b.w., [i.p.] were administered in different group of animals for 5 days. On 5 th day, scopolamine (1 mg/kg b.w., i.p. was administered after 60 min of the last dose of test drug. Memory function was evaluated in Morris water maze (MWM test and pole climbing test (PCT. Biochemical estimations like glutathione (GSH, malondialdehyde (MDA, and acetylcholinesterase activity in the brain were estimated after completion of behavior study. All three test groups shows improvement in learning and memory in comparison to control group. Perindopril treated group showed a more effective significant decrease in escape latency time and transfer latency time compared to enalapril and ramipril treated group on day 4 in MWM test and PCT, respectively. Perindopril shows a significant reduction in MDA level and acetylcholinesterase activity and a significant rise in GSH level compared to enalapril and ramipril. The finding of this study indicates that Perindopril is more effective in memory retention compared to enalapril and ramipril.

  2. Enhancing hippocampal blood flow after cerebral ischemia and vasodilating basilar arteries: in vivo and in vitro neuroprotective effect of antihypertensive DDPH

    Directory of Open Access Journals (Sweden)

    Li Sun

    2015-01-01

    Full Text Available 1-(2,6-Dimethylphenoxy-2-(3,4-dimethoxyphenylethylamino-propane hydrochloride (DDPH is a novel antihypertensive agent based on structural characteristics of mexiletine and verapamine. We investigated the effect of DDPH on vasodilatation and neuroprotection in a rat model of cerebral ischemia in vivo, and a rabbit model of isolated basilar arteries in vitro. Our results show that DDPH (10 mg/kg significantly increased hippocampal blood flow in vivo in cerebral ischemic rats, and exerted dose-dependent relaxation of isolated basilar arteries contracted by histamine or KCl in the in vitro rabbit model. DDPH (3 × 10 -5 M also inhibited histamine-stimulated extracellular calcium influx and intracellular calcium release. Our findings suggest that DDPH has a vasodilative effect both in vivo and in vitro, which mediates a neuroprotective effect on ischemic nerve tissue.

  3. Tract-based spatial statistics to assess the neuroprotective effect of early erythropoietin on white matter development in preterm infants.

    Science.gov (United States)

    O'Gorman, Ruth L; Bucher, Hans U; Held, Ulrike; Koller, Brigitte M; Hüppi, Petra S; Hagmann, Cornelia F

    2015-02-01

    Despite improved survival, many preterm infants undergo subsequent neurodevelopmental impairment. To date, no neuroprotective therapies have been implemented into clinical practice. Erythropoietin, a haematopoietic cytokine used for treatment of anaemia of prematurity, has been shown to have neuroprotective and neuroregenerative effects on the brain in many experimental studies. The aim of the study was to assess the effect of recombinant human erythropoietin on the microstructural development of the cerebral white matter using tract-based spatial statistics performed at term equivalent age. A randomized, double-blind placebo-controlled, prospective multicentre study applying recombinant human erythropoietin in the first 42 h after preterm birth entitled 'Does erythropoietin improve outcome in preterm infant' was conducted in Switzerland (NCT00413946). Preterm infants were given recombinant human erythropoietin (3000 IU) or an equivalent volume of placebo (NaCl 0.9%) intravenously before 3 h of age after birth, at 12-18 h and at 36-42 h after birth. High resolution diffusion tensor imaging was obtained at 3 T in 58 preterm infants with mean (standard deviation) gestational age at birth 29.75 (1.44) weeks, and at scanning at 41.1 (2.09) weeks. Imaging was performed at a single centre. Voxel-wise statistical analysis of the fractional anisotropy data was carried out using tract-based spatial statistics to test for differences in fractional anisotropy between infants treated with recombinant human erythropoietin and placebo using a general linear model, covarying for the gestational age at birth and the corrected gestational age at the time of the scan. Preterm infants treated with recombinant human erythropoietin demonstrated increased fractional anisotropy in the genu and splenium of the corpus callosum, the anterior and posterior limbs of the internal capsule, and the corticospinal tract bilaterally. Mean fractional anisotropy was significantly higher in preterm

  4. Strong expectations cancel locality effects: evidence from Hindi.

    Directory of Open Access Journals (Sweden)

    Samar Husain

    Full Text Available Expectation-driven facilitation (Hale, 2001; Levy, 2008 and locality-driven retrieval difficulty (Gibson, 1998, 2000; Lewis & Vasishth, 2005 are widely recognized to be two critical factors in incremental sentence processing; there is accumulating evidence that both can influence processing difficulty. However, it is unclear whether and how expectations and memory interact. We first confirm a key prediction of the expectation account: a Hindi self-paced reading study shows that when an expectation for an upcoming part of speech is dashed, building a rarer structure consumes more processing time than building a less rare structure. This is a strong validation of the expectation-based account. In a second study, we show that when expectation is strong, i.e., when a particular verb is predicted, strong facilitation effects are seen when the appearance of the verb is delayed; however, when expectation is weak, i.e., when only the part of speech "verb" is predicted but a particular verb is not predicted, the facilitation disappears and a tendency towards a locality effect is seen. The interaction seen between expectation strength and distance shows that strong expectations cancel locality effects, and that weak expectations allow locality effects to emerge.

  5. Neuroprotective Effect of Puerarin on Glutamate-Induced Cytotoxicity in Differentiated Y-79 Cells via Inhibition of ROS Generation and Ca(2+) Influx.

    Science.gov (United States)

    Wang, Ke; Zhu, Xue; Zhang, Kai; Wu, Zhifeng; Sun, Song; Zhou, Fanfan; Zhu, Ling

    2016-07-11

    Glutamate toxicity is estimated to be the key cause of photoreceptor degeneration in the pathogenesis of retinal degenerative diseases. Oxidative stress and Ca(2+) influx induced by glutamate are responsible for the apoptosis process of photoreceptor degeneration. Puerarin, a primary component of Kudzu root, has been widely used in the clinical treatment of retinal degenerative diseases in China for decades; however, the detailed molecular mechanism underlying this effect remains unclear. In this study, the neuroprotective effect of puerarin against glutamate-induced cytotoxicity in the differentiated Y-79 cells was first investigated through cytotoxicity assay. Then the molecular mechanism of this effect regarding anti-oxidative stress and Ca(2+) hemostasis was further explored with indirect immunofluorescence, flow cytometric analysis and western blot analysis. Our study showed that glutamate induced cell viability loss, excessive reactive oxygen species (ROS) generation, calcium overload and up-regulated cell apoptosis in differentiated Y-79 cells, which effect was significantly attenuated with the pre-treatment of puerarin in a dose-dependent manner. Furthermore, our data indicated that the neuroprotective effect of puerarin was potentially mediated through the inhibition of glutamate-induced activation of mitochondrial-dependent signaling pathway and calmodulin-dependent protein kinase II (CaMKII)-dependent apoptosis signal-regulating kinase 1(ASK-1)/c-Jun N-terminal kinase (JNK)/p38 signaling pathway. The present study supports the notion that puerarin may be a promising neuroprotective agent in the prevention of retinal degenerative diseases.

  6. 17β-Estradiol augments antidepressant efficacy of escitalopram in ovariectomized rats: Neuroprotective and serotonin reuptake transporter modulatory effects.

    Science.gov (United States)

    Ibrahim, Weam W; Safar, Marwa M; Khattab, Mahmoud M; Agha, Azza M

    2016-12-01

    The prevalence or recurrence of depression is seriously increased in women during the transition to and after menopause. The chronic hypo-estrogenic state of menopause may reduce the response to antidepressants; however the influence of estrogen therapy on their efficacy is still controversial. This study aimed at investigating the effects of combining escitalopram with 17β-estradiol on depression and cognitive impairment induced by ovariectomy, an experimental model of human menopause. Young adult female Wistar rats were subjected to either sham operation or ovariectomy. Ovariectomized animals were treated chronically with escitalopram (10mg/kg/day, i.p) alone or with four doses of 17β-estradiol (40μg/kg, s.c) given prior to the behavioral tests. Co-administration of 17β-estradiol improved escitalopram-induced antidepressant effect in forced swimming test verified as more prominent decrease in the immobility time without opposing its memory enhancing effect in Morris water maze. 17β-estradiol augmented the modulatory effects of escitalopram on the hippocampal levels of brain-derived neurotrophic factor and serotonin reuptake transporter as well as tumor necrosis factor-alpha without altering its effects on the gene expressions of serotonin receptor 1A, estrogen receptors alpha and beta, or acetylcholinestearase content. This combined therapy afforded synergistic protective effects on the brain histopathological architecture, particularly, the hippocampus. The antidepressant effect of 17β-estradiol was abolished by pretreatment with estrogen receptor antagonist, tamoxifen (10mg/kg, p.o). In conclusion, 17β-estradiol-induced antidepressant effect was confined to intracellular estrogen receptors activation. Moreover, 17β-estradiol enhanced escitalopram's efficiency in ameliorating menopausal-like depression, via exerting synergistic neuroprotective and serotonin reuptake transporter modulatory effects, without impeding escitalopram-mediated cognitive

  7. Neuroprotective Effect and Mechanism of Thiazolidinedione on Dopaminergic Neurons In Vivo and In Vitro in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Yanqin Wang

    2017-01-01

    Full Text Available The aim of the present study was to gain insight into the neuroprotection effects and mechanism of thiazolidinedione pioglitazone in both in vitro and in vivo MPP+/MPTP induced PD models. In vivo experimental results showed that oral treatment of pioglitazone resulted in significant improvements in behavior symptoms damaged by MPTP and increase in the survival of TH positive neurons in the pioglitazone intervention groups. In addition, oral treatment of pioglitazone increased the expression of peroxisome proliferator-activated receptor-γ coactivator of 1α (PGC-1α and increased the number of mitochondria, along with an observed improvement in mitochondrial ultrastructure. From in vitro studies, 2,4-thiazolidinedione resulted in increased levels of molecules regulated function of mitochondria, including PGC-1α, nuclear respiratory factor 1 (NRF1, NRF2, and mitochondria fusion 2 (Mfn2, and inhibited mitochondria fission 1 (Fis1. We show that protein levels of Bcl-2 and ERK were reduced in the MPP+-treated group compared with the control group. This effect was observed to be reversed upon treatment with 2,4-thiazolidinedione, as Bcl-2 and ERK expression levels were increased. We also observed that levels of the apoptotic protein Bax showed opposite changes compared to Bcl-2 and ERK levels. The results from this study confirm that pioglitazone/2,4-thiazolidinedione is able to activate PGC-1α and prevent damage of dopaminergic neurons and restore mitochondria ultrastructure through the regulation of mitochondria function.

  8. Neuroprotective Effects of Erucin against 6-Hydroxydopamine-Induced Oxidative Damage in a Dopaminergic-like Neuroblastoma Cell Line

    Directory of Open Access Journals (Sweden)

    Giorgio Cantelli-Forti

    2012-08-01

    Full Text Available Oxidative stress (OS contributes to the cascade leading to the dysfunction or death of dopaminergic neurons during Parkinson’s disease (PD. A strategy to prevent the OS of dopaminergic neurons may be the use of phytochemicals as inducers of endogenous antioxidants and phase 2 enzymes. In this study, we demonstrated that treatment of the dopaminergic-like neuroblastoma SH-SY5Y cell line with isothiocyanate erucin (ER, a compound of cruciferous vegetables, resulted in significant increases of both total glutathione (GSH levels and total antioxidant capacity at the cytosolic level. The increase of GSH levels was associated with an increase in the resistance of SH-SY5Y cells to neuronal death, in terms of apoptosis, induced by 6-hydroxydopamine (6-OHDA. The pretreatment of SH-SY5Y cells with ER was also shown to prevent the redox status impairment, in terms of intracellular ROS and O2•− formation, and loss of mitochondrial membrane potential, early events that are initiators of the apoptotic process, induced by 6-OHDA. Last, the antiapoptotic and antioxidant effects of ER were abolished by buthionine sulfoximine, supporting the main role of GSH in the neuroprotective effects recorded by ER. These results suggest that ER may prevent the oxidative damage induced by 6-OHDA.

  9. Apigetrin from Scutellaria baicalensis Georgi Inhibits Neuroinflammation in BV-2 Microglia and Exerts Neuroprotective Effect in HT22 Hippocampal Cells.

    Science.gov (United States)

    Lim, Hye-Sun; Kim, Ohn-Soon; Kim, Bu-Yeo; Jeong, Soo-Jin

    2016-11-01

    Apigetrin is a flavonoid isolated from various herbal medicines such as Scutellaria baicalensis Georgi, Matricaria chamomilla, Stachys tibetica Vatke, and Teucrium gnaphalodes. In the present study, we investigated the inhibitory effects of apigetrin on neuroinflammation using the BV-2 microglia cell line. Our data revealed that apigetrin significantly reduced secretion and mRNA expression of inflammatory cytokines, tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), in lipopolysaccharide (LPS)-stimulated BV-2 mouse microglia. Apigetrin also significantly decreased LPS-mediated production of prostaglandin E 2 (PGE 2 ) level and nitric oxide (NO) production as well as expression of cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) in BV-2 cells. In addition, apigetrin suppressed nuclear expression of nuclear factor kappa B (NF-κB) in LPS-stimulated BV-2 cells. Furthermore, apigetrin significantly impaired reactive oxygen species (ROS) generation and enhanced expression of antioxidant enzymes, hempxygenase 1 (HO-1) and nuclear factor-like 2 (Nrf2), in BV-2 cells. Apigetrin also increased 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, indicating antioxidative activity of apigetrin. Moreover, we found that apigetrin inhibited hydrogen peroxide (H 2 O 2 )-induced cell death in HT22 hippocampal cells. Overall, our findings indicate that apigetrin has inhibitory effects on neuroinflammation as well as antioxidation and neuroprotection, suggesting the potential prophylactic activity for neurodegenerative diseases through the inter-regulation of neuroinflammation, oxidative stress, and neuronal injury.

  10. Inhibitory Effect on Cerebral Inflammatory Response following Traumatic Brain Injury in Rats: A Potential Neuroprotective Mechanism of N-Acetylcysteine

    Directory of Open Access Journals (Sweden)

    Gang Chen

    2008-01-01

    Full Text Available Although N-acetylcysteine (NAC has been shown to be neuroprotective for traumatic brain injury (TBI, the mechanisms for this beneficial effect are still poorly understood. Cerebral inflammation plays an important role in the pathogenesis of secondary brain injury after TBI. However, it has not been investigated whether NAC modulates TBI-induced cerebral inflammatory response. In this work, we investigated the effect of NAC administration on cortical expressions of nuclear factor kappa B (NF-κB and inflammatory proteins such as interleukin-1β (IL-1β, tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6, and intercellular adhesion molecule-1 (ICAM-1 after TBI. As a result, we found that NF-κB, proinflammatory cytokines, and ICAM-1 were increased in all injured animals. In animals given NAC post-TBI, NF-κB, IL-1β, TNF-α, and ICAM-1 were decreased in comparison to vehicle-treated animals. Measures of IL-6 showed no change after NAC treatment. NAC administration reduced brain edema, BBB permeability, and apoptotic index in the injured brain. The results suggest that post-TBI NAC administration may attenuate inflammatory response in the injured rat brain, and this may be one mechanism by which NAC ameliorates secondary brain damage following TBI.

  11. Neuroprotective effect of Cucumis melo Var. flexuosus leaf extract on the brains of rats with streptozotocin-induced diabetes.

    Science.gov (United States)

    Ibrahim, Doaa S

    2017-02-01

    The central nervous system is one of the most vulnerable organs affected by the oxidative stress associated with diabetes mellitus. Healthy food provides an important source for antioxidants. Therefore, the protective effect of Cucumis melo var. flexuosus (C. melo var. flexuosus) leaf extract on the brains of diabetic rats was investigated. Adult male albino rats divided into 5 groups of 6 rats each were assigned into a normal control group and four diabetic groups. Diabetes was induced in rats by a single intraperitoneal injection of streptozotocin (STZ; 60 mg/kg bw). One of the four diabetic groups was left untreated and was considered as a diabetic control group while the three other groups were treated with C. melo var. flexuosus leaf extract at the doses of 30, 60 and 120 mg/kg bw for a period of 30 days. After completion of experimental duration plasma and brains were used for evaluating biochemical changes. The obtained data showed that C. melo var. flexuosus leaf extract treatment lowered blood glucose, glycated hemoglobin, brain tumor necrosis factor-alpha, interleukin levels, brain malondialdehyde content and caspase-3 activity. Furthermore, the treatment resulted in a marked increase in plasma dopamine, melatonin, brain vascular endothelial growth factor-A levels, brain catalase and superoxide dismutase activities. From the present study, it can be concluded that the C. melo var. flexuosus leaf extract exerts a neuroprotective effect against oxidative damage associated with diabetes.

  12. Neuroprotective effect of rapamycin on spinal cord injury via activation of the Wnt/β-catenin signaling pathway

    Directory of Open Access Journals (Sweden)

    Kai Gao

    2015-01-01

    Full Text Available The Wnt/β-catenin signaling pathway plays a crucial role in neural development, axonal guidance, neuropathic pain remission and neuronal survival. In this study, we initially examined the effect of rapamycin on the Wnt/β-catenin signaling pathway after spinal cord injury, by intraperitoneally injecting spinal cord injured rats with rapamycin over 2 days. Western blot analysis and immunofluorescence staining were used to detect the expression levels of β-catenin protein, ca-spase-3 protein and brain-derived neurotrophic factor protein, components of the Wnt/β-catenin signaling pathway. Rapamycin increased the levels of β-catenin and brain-derived neurotrophic factor in the injured spinal cord, improved the pathological morphology at the injury site, reduced the loss of motor neurons, and promoted motor functional recovery in rats after spinal cord injury. Our experimental findings suggest that the neuroprotective effect of rapamycin intervention is mediated through activation of the Wnt/β-catenin signaling pathway after spinal cord injury.

  13. Multiple effects of adenosine in the arterially perfused mammalian eye. Possible mechanisms for the neuroprotective function of adenosine in the retina.

    Science.gov (United States)

    Macaluso, Claudio; Frishman, Laura J; Frueh, Beatrice; Kaelin-Lang, Alain; Onoe, Shoken; Niemeyer, Günter

    2003-01-01

    It has been postulated that the major physiological role of adenosine is protection of the central nervous system in conditions such as ischemia, hypoxia, or prolonged neuronal excitation. Under these conditions adenosine is released, and exerts multiple effects, including vasodilation, inhibition of neuronal activity, and enhancement of glycogenolysis, resulting in neuroprotection. In this article, published as well as unpublished data on the multiple effects of exogenous adenosine and application of adenosine-related agents, performed using the arterially perfused cat eye, will be reviewed and discussed within the framework of the neuroprotective role of adenosine. The isolated, arterially perfused eye preparation has the advantage of combining integrity of the eye structure, exact control of arterial concentration and timing of applied pharmacological agents, and access to electrophysiological parameters of both retina and optic nerve, as well as the ability to control and monitor perfusate flow. The absence of red blood cells in the perfusate prevents adenosine from being metabolized prior to reaching the eye.

  14. Neuroprotective Effect of Arctigenin via Upregulation of P-CREB in Mouse Primary Neurons and Human SH-SY5Y Neuroblastoma Cells

    Directory of Open Access Journals (Sweden)

    Tingguo Kang

    2013-09-01

    Full Text Available Arctigenin (Arc has been shown to act on scopolamine-induced memory deficit mice and to provide a neuroprotective effect on cultured cortical neurons from glutamate-induced neurodegeneration through mechanisms not completely defined. Here, we investigated the neuroprotective effect of Arc on H89-induced cell damage and its potential mechanisms in mouse cortical neurons and human SH-SY5Y neuroblastoma cells. We found that Arc prevented cell viability loss induced by H89 in human SH-SY5Y cells. Moreover, Arc reduced intracellular beta amyloid (Aβ production induced by H89 in neurons and human SH-SY5Y cells, and Arc also inhibited the presenilin 1(PS1 protein level in neurons. In addition, neural apoptosis in both types of cells, inhibition of neurite outgrowth in human SH-SY5Y cells and reduction of synaptic marker synaptophysin (SYN expression in neurons were also observed after H89 exposure. All these effects induced by H89 were markedly reversed by Arc treatment. Arc also significantly attenuated downregulation of the phosphorylation of CREB (p-CREB induced by H89, which may contribute to the neuroprotective effects of Arc. These results demonstrated that Arc exerted the ability to protect neurons and SH-SY5Y cells against H89-induced cell injury via upregulation of p-CREB.

  15. Neuroprotective Effect of Arctigenin via Upregulation of P-CREB in Mouse Primary Neurons and Human SH-SY5Y Neuroblastoma Cells

    Science.gov (United States)

    Zhang, Nan; Wen, Qingping; Ren, Lu; Liang, Wenbo; Xia, Yang; Zhang, Xiaodan; Zhao, Dan; Sun, Dong; Hu, Yv; Hao, Haiguang; Yan, Yaping; Zhang, Guangxian; Yang, Jingxian; Kang, Tingguo

    2013-01-01

    Arctigenin (Arc) has been shown to act on scopolamine-induced memory deficit mice and to provide a neuroprotective effect on cultured cortical neurons from glutamate-induced neurodegeneration through mechanisms not completely defined. Here, we investigated the neuroprotective effect of Arc on H89-induced cell damage and its potential mechanisms in mouse cortical neurons and human SH-SY5Y neuroblastoma cells. We found that Arc prevented cell viability loss induced by H89 in human SH-SY5Y cells. Moreover, Arc reduced intracellular beta amyloid (Aβ) production induced by H89 in neurons and human SH-SY5Y cells, and Arc also inhibited the presenilin 1(PS1) protein level in neurons. In addition, neural apoptosis in both types of cells, inhibition of neurite outgrowth in human SH-SY5Y cells and reduction of synaptic marker synaptophysin (SYN) expression in neurons were also observed after H89 exposure. All these effects induced by H89 were markedly reversed by Arc treatment. Arc also significantly attenuated downregulation of the phosphorylation of CREB (p-CREB) induced by H89, which may contribute to the neuroprotective effects of Arc. These results demonstrated that Arc exerted the ability to protect neurons and SH-SY5Y cells against H89-induced cell injury via upregulation of p-CREB. PMID:24025424

  16. The ameliorating effects of 2,3-dihydroxy-4-methoxyacetophenone on scopolamine-induced memory impairment in mice and its neuroprotective activity.

    Science.gov (United States)

    Weon, Jin Bae; Ko, Hyun-Jeong; Ma, Choong Je

    2013-12-15

    We isolated 2,3-dihydroxy-4-methoxyacetophenone, a neuroprotective compound from Cynenchum paniculatum in our previous study. The present study was conducted to investigate the possible neuroprotective effect of 2,3-dihydroxy-4-methoxyacetophenone that has been previously isolated from Cynenchum paniculatum on hippocampal neuronal cell line, HT22 cells and its possible cognitive-enhancing effect on scopolamine-induced amnesia in mice. Neuroprotective effect against glutamate-induced neurotoxicity in HT22 cells was evaluated by MTT assay. Also, cognitive enhancing effect against scopolamine (1mg/kg, ip) induced learning and memory deficit was measured by Morris water maze test. Oral administered of 2,3-dihydroxy-4-methoxyacetophenone (1, 10, 20, 40 and 50mg/kg) to amnesic mice induced by scopolamine. In Morris water maze test, 2,3-dihydroxy-4-methoxyacetophenone (50mg/kg) improved the impairment of spatial memory induced by scopolamine. 2,3-Dihydroxy-4-methoxyacetophenone protect HT22 cells on glutamate induced cell-death in a dose-dependent manner (EC50 value: 10.94μM). Furthermore, 2,3-dihydroxy-4-methoxyacetophenone was found to inhibit [Ca(2+)] accumulation in HT22 cells and had antioxidantive activity. The results showed that 2,3-dihydroxy-4-methoxyacetophenone exert neuroprotective and cognitive-enhancing activities through its antioxidant activity. We suggest that 2,3-dihydroxy-4-methoxyacetophenone improves cognitive function and may be helpful for the treatment of Alzheimer's disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Neuroprotective effects of a novel single compound 1-methoxyoctadecan-1-ol isolated from Uncaria sinensis in primary cortical neurons and a photothrombotic ischemia model.

    Directory of Open Access Journals (Sweden)

    Ji Yeon Jang

    Full Text Available We identified a novel neuroprotective compound, 1-methoxyoctadecan-1-ol, from Uncaria sinensis (Oliv. Havil and investigated its effects and mechanisms in primary cortical neurons and in a photothrombotic ischemic model. In primary rat cortical neurons against glutamate-induced neurotoxicity, pretreatment with 1-methoxyoctadecan-1-ol resulted in significantly reduced neuronal death in a dose-dependent manner. In addition, treatment with 1-methoxyoctadecan-1-ol resulted in decreased neuronal apoptotic death, as assessed by nuclear morphological approaches. To clarify the neuroprotective mechanism of 1-methoxyoctadecan-1-ol, we explored the downstream signaling pathways of N-methyl-D-aspartate receptor (NMDAR with calpain activation. Treatment with glutamate leads to early activation of NMDAR, which in turn leads to calpain-mediated cleavage of striatal-enriched protein tyrosine phosphatase (STEP and subsequent activation of p38 mitogen activated protein kinase (MAPK. However, pretreatment with 1-methoxyoctadecan-1-ol resulted in significantly attenuated activation of GluN2B-NMDAR and a decrease in calpain-mediated STEP cleavage, leading to subsequent attenuation of p38 MAPK activation. We confirmed the critical role of p38 MAPK in neuroprotective effects of 1-methoxyoctadecan-1-ol using specific inhibitor SB203580. In the photothrombotic ischemic injury in mice, treatment with 1-methoxyoctadecan-1-ol resulted in significantly reduced infarct volume, edema size, and improved neurological function. 1-methoxyoctadecan-1-ol effectively prevents cerebral ischemic damage through down-regulation of calpain-mediated STEP cleavage and activation of p38 MAPK. These results suggest that 1-methoxyoctadecan-1-ol showed neuroprotective effects through down-regulation of calpain-mediated STEP cleavage with activation of GluN2B-NMDAR, and subsequent alleviation of p38 MAPK activation. In addition, 1-methoxyoctadecan-1-ol might be a useful therapeutic agent for

  18. Neuroprotective Effects of Herbal Extract (Rosa canina, Tanacetum vulgare and Urtica dioica) on Rat Model of Sporadic Alzheimer's Disease.

    Science.gov (United States)

    Daneshmand, Parvaneh; Saliminejad, Kioomars; Dehghan Shasaltaneh, Marzieh; Kamali, Koorosh; Riazi, Gholam Hossein; Nazari, Reza; Azimzadeh, Pedram; Khorram Khorshid, Hamid Reza

    2016-01-01

    Sporadic Alzheimer's Disease (SAD) is caused by genetic risk factors, aging and oxidative stresses. The herbal extract of Rosa canina (R. canina), Tanacetum vulgare (T. vulgare) and Urtica dioica (U. dioica) has a beneficial role in aging, as an anti-inflammatory and anti-oxidative agent. In this study, the neuroprotective effects of this herbal extract in the rat model of SAD was investigated. The rats were divided into control, sham, model, herbal extract -treated and ethanol-treated groups. Drug interventions were started on the 21(st) day after modeling and each treatment group was given the drugs by intraperitoneal (I.P.) route for 21 days. The expression levels of the five important genes for pathogenesis of SAD including Syp, Psen1, Mapk3, Map2 and Tnf-α were measured by qPCR between the hippocampi of SAD model which were treated by this herbal extract and control groups. The Morris Water Maze was adapted to test spatial learning and memory ability of the rats. Treatment of the rat model of SAD with herbal extract induced a significant change in expression of Syp (p=0.001) and Psen1 (p=0.029). In Morris Water Maze, significant changes in spatial learning seen in the rat model group were improved in herbal-treated group. This herbal extract could have anti-dementia properties and improve spatial learning and memory in SAD rat model.

  19. Neuroprotective effects of anthocyanin- and proanthocyanidin-rich extracts in cellular models of Parkinson’s disease

    Science.gov (United States)

    Strathearn, Katherine E.; Yousef, Gad G.; Grace, Mary H.; Roy, Susan L.; Tambe, Mitali A.; Ferruzzi, Mario G.; Wu, Qing-Li; Simon, James E.; Lila, Mary Ann; Rochet, Jean-Christophe

    2014-01-01

    Neuropathological evidence indicates that dopaminergic cell death in Parkinson’s disease (PD) involves impairment of mitochondrial complex I, oxidative stress, microglial activation, and the formation of Lewy bodies. Epidemiological findings suggest that the consumption of berries rich in anthocyanins and proanthocyanidins may reduce PD risk. In this study, we investigated whether extracts rich in anthocyanins, proanthocyanidins, or other polyphenols suppress the neurotoxic effects of rotenone in a primary cell culture model of PD. Dopaminergic cell death elicited by rotenone was suppressed by extracts prepared from blueberries, grape seed, hibiscus, blackcurrant, and Chinese mulberry. Extracts rich in anthocyanins and proanthocyanidins exhibited greater neuroprotective activity than extracts rich in other polyphenols, and a number of individual anthocyanins interfered with rotenone neurotoxicity. The blueberry and grape seed extracts rescued rotenone-induced defects in mitochondrial respiration in a dopaminergic cell line, and a purple basal extract attenuated nitrite release from microglial cells stimulated by lipopolysaccharide. These findings suggest that anthocyanin- and proanthocyanidin-rich botanical extracts may alleviate neurodegeneration in PD via enhancement of mitochondrial function. PMID:24502982

  20. Novel fermented chickpea milk with enhanced level of γ-aminobutyric acid and neuroprotective effect on PC12 cells.

    Science.gov (United States)

    Li, Wen; Wei, Mingming; Wu, Junjun; Rui, Xin; Dong, Mingsheng

    2016-01-01

    In this study, novel fermented chickpea milk with high γ -aminobutyric acid (GABA) content and potential neuroprotective activity was developed. Fermentation starter that can produce GABA was selected from 377 strains of lactic acid bacteria isolated from traditional Chinese fermented foods. Among the screened strains, strain M-6 showed the highest GABA-producing capacity in De Man-Rogosa and Sharp (MRS) broth and chickpea milk. M-6 was identified as Lactobacillus plantarum based on Gram staining, API carbohydrate fermentation pattern testing, and 16s rDNA sequencing. The complete gene encoding glutamate decarboxylase was cloned to confirm the presence of the gene in L. plantarum M-6. The fermentation condition was optimized by response surface methodology. Results demonstrated that L. plantarum M-6 produced the highest GABA content of 537.23 mg/L. The optimal condition included an inoculum concentration of 7%, presence of 0.2% (m/v) monosodium glutamate and 55 µ M pyridoxal-5-phosphate, incubation temperature of 39 °C and fermentation time of 48 h . GABA-enriched chickpea milk exerted protective effects on PC12 cells against MnCl2 -induced injury. GABA-enriched chickpea milk improved cell viability and markedly attenuated the release of lactate dehydrogenase compared with the impaired cells.

  1. Novel fermented chickpea milk with enhanced level of γ-aminobutyric acid and neuroprotective effect on PC12 cells

    Directory of Open Access Journals (Sweden)

    Wen Li

    2016-08-01

    Full Text Available In this study, novel fermented chickpea milk with high γ -aminobutyric acid (GABA content and potential neuroprotective activity was developed. Fermentation starter that can produce GABA was selected from 377 strains of lactic acid bacteria isolated from traditional Chinese fermented foods. Among the screened strains, strain M-6 showed the highest GABA-producing capacity in De Man–Rogosa and Sharp (MRS broth and chickpea milk. M-6 was identified as Lactobacillus plantarum based on Gram staining, API carbohydrate fermentation pattern testing, and 16s rDNA sequencing. The complete gene encoding glutamate decarboxylase was cloned to confirm the presence of the gene in L. plantarum M-6. The fermentation condition was optimized by response surface methodology. Results demonstrated that L. plantarum M-6 produced the highest GABA content of 537.23 mg/L. The optimal condition included an inoculum concentration of 7%, presence of 0.2% (m/v monosodium glutamate and 55 µ M pyridoxal-5-phosphate, incubation temperature of 39 °C and fermentation time of 48 h . GABA-enriched chickpea milk exerted protective effects on PC12 cells against MnCl2 -induced injury. GABA-enriched chickpea milk improved cell viability and markedly attenuated the release of lactate dehydrogenase compared with the impaired cells.

  2. Neuroprotective effects of aqueous extracts of Uncaria tomentosa: Insights from 6-OHDA induced cell damage and transgenic Caenorhabditis elegans model.

    Science.gov (United States)

    Shi, Zhenhua; Lu, Zhongbing; Zhao, Yashuo; Wang, Yueqi; Zhao-Wilson, Xi; Guan, Peng; Duan, Xianglin; Chang, Yan-Zhong; Zhao, Baolu

    2013-06-01

    Previous pharmacological studies have indicated that AC11 (a standardized aqueous extract of Uncaria tomentosa) has beneficial effects on DNA repair and immune function. However, its benefits go beyond this. The present study utilized electron spin resonance (ESR) and spin trapping technique, as well as the 6-OHDA-induced cell damage and transgenic Caenorhabditis elegans models, towards exploring the antioxidant and neuroprotective ability of AC11. Our results showed that AC11 could scavenge several types of free radicals, especially hydroxyl radicals (60% of hydroxyl radicals were scavenged by 30 μg/ml of AC11). In SH-SY5Y cells, we found that AC11 could dose dependently protect 6-OHDA induced cell damage by increase cell viability and mitochondrial membrane potential. AC11 pretreatment also significantly decreased the level of lipid peroxidation, intracellular reactive oxygen species and nitric oxide in 6-OHDA treated cells. In NL5901 C. elegans, 10 μg/ml AC11 could reduce the aggregation of α-synuclein by 40%. These findings encourage further investigation on AC11 and its active constituent compounds, as possible therapeutic intervention against Parkinson's disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Anticonvulsant and neuroprotective effects of the novel calcium antagonist NP04634 on kainic acid-induced seizures in rats.

    Science.gov (United States)

    Morales-Garcia, Jose A; Luna-Medina, Rosario; Martinez, Ana; Santos, Angel; Perez-Castillo, Ana

    2009-12-01

    Kainic acid (KA)-induced status epilepticus (SE) is a well-characterized model of excitotoxic neuronal injury. Excitotoxicity results from activation of specific glutamate receptors, with resultant elevation of intracellular Ca(2+). The CA1 and CA3 subregions of the hippocampus are especially vulnerable to KA, and this pattern of neuronal injury resembles that occurring in patients with temporal lobe epilepsy. Calcium plays an essential role in excitotoxicity, and accordingly calcium channel inhibitors have been shown to have protective effects in various experimental models of epilepsy and brain injury. Moreover, they also potentiate the antiseizure efficacy of conventional antiepileptic drugs. This study was undertaken to determine whether NP04634, a novel compound, reported as a non-L-type voltage-sensitive calcium channel (VSCC) inhibitor, could prevent the entrance in SE and the neuronal loss evoked by intraperitoneal injection of KA. Our results show that intragastrical administration of NP04634 reduced the percentage of rats that entered SE after KA injection, increased the latency of SE entry, and significantly reduced the mortality of rats that entered SE. Also, NP04634 prevented the loss of hippocampal CA1 and CA3 pyramidal neurons and reduced the gliosis induced by KA. These results point to a potential anticonvulsant and neuroprotective role for NP04634. Copyright 2009 Wiley-Liss, Inc.

  4. Neuroprotective effect of Buddleja cordata methanolic extract in the 1-methyl-4-phenylpyridinium Parkinson's disease rat model.

    Science.gov (United States)

    Pérez-Barrón, Gabriela; Avila-Acevedo, José Guillermo; García-Bores, Ana María; Montes, Sergio; García-Jiménez, Sara; León-Rivera, Ismael; Rubio-Osornio, Moisés; Monroy-Noyola, Antonio

    2015-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the irreversible loss of dopaminergic neurons in the nigrostriatal pathway with subsequent dopamine deficiency. Environmental causes have been proposed through molecules, such as 1-methyl-4-phenylpyridinium (MPP(+)), to induce oxidative stress. The methanolic extract of plants of the genus Buddleja has been reported to have in vitro and in vivo antioxidant properties to protect against neuronal death. In the present study, the neuroprotective effect of Buddleja cordata methanolic extract in the MPP(+) PD rat model was investigated. Animals were administered orally with 50 or 100 mg/kg of methanolic extract every 24 h for 14 days. Twenty hours later, rats were infused with an intrastriatal stereotaxic microinjection of 10 µg MPP(+) in 8 μl sterile saline solution. Six days later, the animals were treated with 1 mg/kg apomorphine to record ipsilateral rotations for 1 h. All the rats were killed by decapitation and the lesioned striatum was dissected for dopamine and lipid peroxidation quantifications. Both methanolic extract doses led to a significantly lower (P Buddleja cordata methanolic extract in the MPP(+) PD rat model, possibly due to the involvement of phenylpropanoids.

  5. Neuroprotective effect of humanin on cerebral ischemia/reperfusion injury is mediated by a PI3K/Akt pathway

    Science.gov (United States)

    Xu, Xingshun; Chua, Chu Chang; Gao, Jinping; Chua, Kao-Wei; Wang, Hong; Hamdy, Ronald C.; Chua, Balvin H.L.

    2008-01-01

    Humanin (HN) is an anti-apoptotic peptide that suppresses neuronal cell death induced by Alzheimer's disease, prion protein fragments, and serum deprivation. Recently, we demonstrated that Gly14-HN (HNG), a variant of HN in which the 14th amino acid serine is replaced with glycine, can decrease apoptotic neuronal death and reduce infarct volume in a focal cerebral ischemia/reperfusion mouse model. In this study, we postulate that the mechanism of HNG's neuroprotective effect is mediated by the PI3K/Akt pathway. Oxygen-glucose deprivation (OGD) was performed in cultured mouse primary cortical neurons for 60 min. The effect of HNG and PI3K/Akt inhibitors on OGD-induced cell death was examined at 24 h after reperfusion. HNG increased cell viability after OGD in primary cortical neurons, whereas the PI3K/Akt inhibitors wortmannin and Akti-1/2 attenuated the protective effect of HNG. HNG rapidly increased Akt phosphorylation, an effect that was inhibited by wortmannin and Akti-1/2. Mouse brains were injected intraventricularly with HNG before being subjected to middle cerebral artery occlusion (MCAO) for 75 min followed by 24 h reperfusion. HNG treatment significantly elevated p-Akt levels after cerebral I/R injury and decreased infarct volume. The protective effect of HNG on infarct size was attenuated by wortmannin and Akti-1/2. Taken as a whole, these results suggest that PI3K/Akt activation mediates HNG's protective effect against hypoxia/ischemia reperfusion injury. PMID:18590709

  6. Assessment of C-phycocyanin effect on astrocytes-mediated neuroprotection against oxidative brain injury using 2D and 3D astrocyte tissue model.

    Science.gov (United States)

    Min, Seul Ki; Park, Jun Sang; Luo, Lidan; Kwon, Yeo Seon; Lee, Hoo Cheol; Shim, Hyun Jung; Kim, Il-Doo; Lee, Ja-Kyeong; Shin, Hwa Sung

    2015-09-24

    Drugs are currently being developed to attenuate oxidative stress as a treatment for brain injuries. C-phycocyanin (C-Pc) is an antioxidant protein of green microalgae known to exert neuroprotective effects against oxidative brain injury. Astrocytes, which compose many portions of the brain, exert various functions to overcome oxidative stress; however, little is known about how C-Pc mediates the antioxidative effects of astrocytes. In this study, we revealed that C-Pc intranasal administration to the middle cerebral artery occlusion (MCAO) rats ensures neuroprotection of ischemic brain by reducing infarct size and improving behavioral deficits. C-Pc also enhanced viability and proliferation but attenuated apoptosis and reactive oxygen species (ROS) of oxidized astrocytes, without cytotoxicity to normal astrocytes and neurons. To elucidate how C-Pc leads astrocytes to enhance neuroprotection and repair of ischemia brain, we firstly developed 3D oxidized astrocyte model. C-Pc had astrocytes upregulate antioxidant enzymes such as SOD and catalase and neurotrophic factors BDNF and NGF, while alleviating inflammatory factors IL-6 and IL-1β and glial scar. Additionally, C-Pc improved viability of 3D oxidized neurons. In summary, C-Pc was concluded to activate oxidized astrocytes to protect and repair the ischemic brain with the combinatorial effects of improved antioxidative, neurotrophic, and anti-inflammatory mechanisms.

  7. Resveratrol exerts anti-inflammatory and neuroprotective effects to prevent memory deficits in rats exposed to chronic unpredictable mild stress.

    Science.gov (United States)

    Yazir, Yusufhan; Utkan, Tijen; Gacar, Nejat; Aricioglu, Feyza

    2015-01-01

    A number of studies have recently focused on the neuroprotective and anti-inflammatory effects of resveratrol. In prior studies, we described its beneficial effects on scopolamine-induced learning deficits in rats. The aim of this study was to investigate the effects of resveratrol on emotional and spatial cognitive functions, neurotropic factor expression, and plasma levels of proinflammatory cytokines in rats exposed to chronic unpredictable mild stress (CUMS), which is known to induce cognitive deficits. Resveratrol (5 or 20mg/kg) was administered intraperitoneally for 35 days. Rats in the CUMS group and in the 5mg/kg resveratrol+CUMS group performed poorly in tasks designed to assess emotional and spatial learning and memory. The 20mg/kg resveratrol+CUMS group showed improved performance compared to the CUMS group. In addition, the CUMS procedure induced lower expression of brain-derived neurotrophic factor and c-Fos in hippocampal CA1 and CA3 and in the amygdala of stressed rats. These effects were reversed by chronic administration of resveratrol (20mg/kg). In addition, plasma levels of tumor necrosis factor-alpha and interleukin-1 beta were increased by CUMS, but were restored to normal by resveratrol. These results indicate that resveratrol significantly attenuates the deficits in emotional learning and spatial memory seen in chronically stressed rats. These effects may be related to resveratrol-mediated changes in neurotrophin factor expression in hippocampus and in levels of proinflammatory cytokines in circulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. SH3-binding protein 5 mediates the neuroprotective effect of the secreted bioactive peptide humanin by inhibiting c-Jun NH2-terminal kinase.

    Science.gov (United States)

    Takeshita, Yuji; Hashimoto, Yuichi; Nawa, Mikiro; Uchino, Hiroyuki; Matsuoka, Masaaki

    2013-08-23

    Humanin is a secreted bioactive peptide that suppresses cell toxicity caused by a variety of insults. The neuroprotective effect of Humanin against Alzheimer disease (AD)-related death is mediated by the binding of Humanin to its heterotrimeric Humanin receptor composed of ciliary neurotrophic receptor α, WSX-1, and gp130, as well as the activation of intracellular signaling pathways including a JAK2 and STAT3 signaling axis. Despite the elucidation of the signaling pathways by which Humanin mediates its neuroprotection, the transcriptional targets of Humanin that behaves as effectors of Humanin remains undefined. In the present study, Humanin increased the mRNA and protein expression of SH3 domain-binding protein 5 (SH3BP5), which has been known to be a JNK interactor, in neuronal cells. Similar to Humanin treatment, overexpression of SH3BP5 inhibited AD-related neuronal death, while siRNA-mediated knockdown of endogenous SH3BP5 expression attenuated the neuroprotective effect of Humanin. These results indicate that SH3BP5 is a downstream effector of Humanin. Furthermore, biochemical analysis has revealed that SH3BP5 binds to JNK and directly inhibits JNK through its two putative mitogen-activated protein kinase interaction motifs (KIMs).

  9. SH3-binding Protein 5 Mediates the Neuroprotective Effect of the Secreted Bioactive Peptide Humanin by Inhibiting c-Jun NH2-terminal Kinase*

    Science.gov (United States)

    Takeshita, Yuji; Hashimoto, Yuichi; Nawa, Mikiro; Uchino, Hiroyuki; Matsuoka, Masaaki

    2013-01-01

    Humanin is a secreted bioactive peptide that suppresses cell toxicity caused by a variety of insults. The neuroprotective effect of Humanin against Alzheimer disease (AD)-related death is mediated by the binding of Humanin to its heterotrimeric Humanin receptor composed of ciliary neurotrophic receptor α, WSX-1, and gp130, as well as the activation of intracellular signaling pathways including a JAK2 and STAT3 signaling axis. Despite the elucidation of the signaling pathways by which Humanin mediates its neuroprotection, the transcriptional targets of Humanin that behaves as effectors of Humanin remains undefined. In the present study, Humanin increased the mRNA and protein expression of SH3 domain-binding protein 5 (SH3BP5), which has been known to be a JNK interactor, in neuronal cells. Similar to Humanin treatment, overexpression of SH3BP5 inhibited AD-related neuronal death, while siRNA-mediated knockdown of endogenous SH3BP5 expression attenuated the neuroprotective effect of Humanin. These results indicate that SH3BP5 is a downstream effector of Humanin. Furthermore, biochemical analysis has revealed that SH3BP5 binds to JNK and directly inhibits JNK through its two putative mitogen-activated protein kinase interaction motifs (KIMs). PMID:23861391

  10. Strong Gravity Effects of Rotating Black Holes: Quasiperiodic Oscillations

    OpenAIRE

    Aliev, Alikram N.; Esmer, Göksel Daylan; Talazan, Pamir

    2012-01-01

    We explore strong gravity effects of the geodesic motion in the spacetime of rotating black holes in general relativity and braneworld gravity. We focus on the description of the motion in terms of three fundamental frequencies: The orbital frequency, the radial and vertical epicyclic frequencies. For a Kerr black hole, we perform a detailed numerical analysis of these frequencies at the innermost stable circular orbits and beyond them as well as at the characteristic stable orbits, at which ...

  11. New results on strong-interaction effects in antiprotonic hydrogen

    CERN Document Server

    Gotta, D; Augsburger, M A; Borchert, G L; Castelli, C M; Chatellard, D; El-Khoury, P; Egger, J P; Gorke, H; Hauser, P R; Indelicato, P J; Kirch, K; Lenz, S; Nelms, N; Rashid, K; Schult, O W B; Siems, T; Simons, L M

    1999-01-01

    Lyman and Balmer transitions of antiprotonic hydrogen and deuterium have been measured at the low-energy antiproton ring LEAR at CERN in order to determine the strong interaction effects. The X-rays were detected using charge-coupled devices (CCDs) and a reflection type crystal spectrometer. The results of the measurements support the meson-exchange models describing the medium and long range part of the nucleon-antinucleon interaction. (33 refs).

  12. New results on strong-interaction effects in antiprotonic hydrogen

    International Nuclear Information System (INIS)

    Anagnostopoulos, D. F.; Augsburger, M.; Borchert, G.; Castelli, C.; Chatellard, D.; El-Khoury, P.; Egger, J.-P.; Gorke, H.; Gotta, D.; Hauser, P.; Indelicato, P.; Kirch, K.; Lenz, S.; Nelms, N.; Rashid, K.; Schult, O. W. B.; Siems, Th.; Simons, L. M.

    1999-01-01

    Lyman and Balmer transitions of antiprotonic hydrogen and deuterium have been measured at the Low-Energy Antiproton Ring LEAR at CERN in order to determine the strong interaction effects. The X-rays were detected using Charge-Coupled Devices (CCDs) and a reflection type crystal spectrometer. The results of the measurements support the meson-exchange models describing the medium and long range part of the nucleon-antinucleon interaction

  13. Does combined therapy of curcumin and epigallocatechin gallate have a synergistic neuroprotective effect against spinal cord injury?

    Directory of Open Access Journals (Sweden)

    Jiri Ruzicka

    2018-01-01

    Full Text Available Systematic inflammatory response after spinal cord injury (SCI is one of the factors leading to lesion development and a profound degree of functional loss. Anti-inflammatory compounds, such as curcumin and epigallocatechin gallate (EGCG are known for their neuroprotective effects. In this study, we investigated the effect of combined therapy of curcumin and EGCG in a rat model of acute SCI induced by balloon compression. Immediately after SCI, rats received curcumin, EGCG, curcumin + EGCG or saline [daily intraperitoneal doses (curcumin, 6 mg/kg; EGCG 17 mg/kg] and weekly intramuscular doses (curcumin, 60 mg/kg; EGCG 17 mg/kg] for 28 days. Rats were evaluated using behavioral tests (the Basso, Beattie, and Bresnahan (BBB open-field locomotor test, flat beam test. Spinal cord tissue was analyzed using histological methods (Luxol Blue-cresyl violet staining and immunohistochemistry (anti-glial fibrillary acidic protein, anti-growth associated protein 43. Cytokine levels (interleukin-1β, interleukin-4, interleukin-2, interleukin-6, macrophage inflammatory protein 1-alpha, and RANTES were measured using Luminex assay. Quantitative polymerase chain reaction was performed to determine the relative expression of genes (Sort1, Fgf2, Irf5, Mrc1, Olig2, Casp3, Gap43, Gfap, Vegf, NfκB, Cntf related to regenerative processes in injured spinal cord. We found that all treatments displayed significant behavioral recovery, with no obvious synergistic effect after combined therapy of curcumin and ECGC. Curcumin and EGCG alone or in combination increased axonal sprouting, decreased glial scar formation, and altered the levels of macrophage inflammatory protein 1-alpha, interleukin-1β, interleukin-4 and interleukin-6 cytokines. These results imply that although the expected synergistic response of this combined therapy was less obvious, aspects of tissue regeneration and immune responses in severe SCI were evident.

  14. Neuroprotective effect of the natural iron chelator, phytic acid in a cell culture model of Parkinson's disease

    International Nuclear Information System (INIS)

    Xu Qi; Kanthasamy, Anumantha G.; Reddy, Manju B.

    2008-01-01

    Disrupted iron metabolism and excess iron accumulation has been reported in the brains of Parkinson's disease (PD) patients. Because excessive iron can induce oxidative stress subsequently causing degradation of nigral dopaminergic neurons in PD, we determined the protective effect of a naturally occurring iron chelator, phytic acid (IP6), on 1-methyl-4-phenylpyridinium (MPP + )-induced cell death in immortalized rat mesencephalic/dopaminergic cells. Cell death was induced with MPP + in normal and iron-excess conditions and cytotoxicity was measured by thiazolyl blue tetrazolium bromide (MTT assay) and trypan blue staining. Apoptotic cell death was also measured with caspase-3 activity, DNA fragmentation, and Hoechst nuclear staining. Compared to MPP + treatment, IP6 (30 μmol/L) increased cell viability by 19% (P + treatment was decreased by 55% (P < 0.01) and 52% (P < 0.05), respectively with IP6. Cell survival was increased by 18% (P < 0.05) and 42% (P < 0.001) with 30 and 100 μmol/L of IP6, respectively in iron-excess conditions. A 40% and 52% (P < 0.001) protection was observed in caspase-3 activity with 30 and 100 μmol/L IP6, respectively in iron-excess condition. Similarly, a 45% reduction (P < 0.001) in DNA fragmentation was found with 100 μmol/L IP6. In addition, Hoechst nuclear staining results confirmed the protective effect of IP6 against apoptosis. Similar protection was also observed with the differentiated cells. Collectively, our results demonstrate a significant neuroprotective effect of phytate in a cell culture model of PD

  15. Neuroprotective effect of bexarotene in the SOD1G93A mouse model of amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Javier eRiancho

    2015-07-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a neurodegenerative disease characterized by progressive weakness and muscle atrophy related to the loss of upper and lower motor neurons (MNs without a curative treatment. There is experimental evidence suggesting that retinoids may be involved in ALS pathogenesis. Bexarotene (Bxt is a retinoid-X receptor agonist used in the treatment of cutaneous lymphoma with a favourable safety profile whose effects have been recently investigated in other neurodegenerative diseases. In this study, we analyze the potential therapeutic effect of Bxt in the SOD1G93A mouse model of ALS.Mice were treated with Bxt or vehicle five times per week from day 60 onwards. Survival, weight and neuromuscular function studies together with histological and biochemical analyses were performed. Bxt significantly delayed motor function deterioration, ameliorated the loss of body weight and extended mice survival up to 30% of the symptomatic period. Histological analyses of the lumbosacral spinal cord revealed that Bxt markedly delayed the early motor-neuron degeneration occurring at presymptomatic stages in ALS-transgenic mice. Bxt treatment contributed to preserve the MN homeostasis in the SOD1G93A mice. Particularly, it reduced the neuronal loss and the chromatolytic response, induced nucleolar hypertrophy, decreased the formation of ubiquitylated inclusions and modulated the lysosomal response. As an agonist of the retinoic-X receptor pathway (RXR, Bxt notably increased the nuclear expression of the RXRα throughout transcriptionally active euchromatin domains. Bxt also contributed to protect the MN environment by reducing reactive astrogliosis and preserving perisomatic synapsis. Overall, these neuroprotective effects suggest that treatment with Bxt could be useful in ALS, particularly in those cases related to SOD1 mutations.

  16. Neuroprotective Effect of Bexarotene in the SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Riancho, Javier; Ruiz-Soto, María; Berciano, María T.; Berciano, José; Lafarga, Miguel

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive weakness and muscle atrophy related to the loss of upper and lower motor neurons (MNs) without a curative treatment. There is experimental evidence suggesting that retinoids may be involved in ALS pathogenesis. Bexarotene (Bxt) is a retinoid-X receptor agonist used in the treatment of cutaneous lymphoma with a favorable safety profile whose effects have been recently investigated in other neurodegenerative diseases. In this study, we analyze the potential therapeutic effect of Bxt in the SOD1G93A mouse model of ALS. Mice were treated with Bxt or vehicle five times per week from day 60 onward. Survival, weight, and neuromuscular function studies together with histological and biochemical analyses were performed. Bxt significantly delayed motor function deterioration, ameliorated the loss of body weight, and extended mice survival up to 30% of the symptomatic period. Histological analyses of the lumbosacral spinal cord revealed that Bxt markedly delayed the early motor-neuron degeneration occurring at presymptomatic stages in ALS-transgenic mice. Bxt treatment contributed to preserve the MN homeostasis in the SOD1G93A mice. Particularly, it reduced the neuronal loss and the chromatolytic response, induced nucleolar hypertrophy, decreased the formation of ubiquitylated inclusions, and modulated the lysosomal response. As an agonist of the retinoic-X receptor (RXR) pathway, Bxt notably increased the nuclear expression of the RXRα throughout transcriptionally active euchromatin domains. Bxt also contributed to protect the MN environment by reducing reactive astrogliosis and preserving perisomatic synapsis. Overall, these neuroprotective effects suggest that treatment with Bxt could be useful in ALS, particularly in those cases related to SOD1 mutations. PMID:26190974

  17. Regulation of the endoplasmic reticulum stress response and neuroprotective effects of acupuncture on brain injury caused by heroin addiction.

    Science.gov (United States)

    Gao, Yong-Long; Zhang, Yang; Cao, Jiang-Peng; Wu, Sheng-Bing; Cai, Xing-Hui; Zhang, Yan-Chun; Zhang, Rong-Jun; Song, Xiao-Ge; Zhang, Li-Da

    2017-10-01

    To evaluate regulation of the endoplasmic reticulum stress (ERS) response by acupuncture and to investigate its neuroprotective effect on brain injury caused by heroin addiction. A total of 48 male Sprague-Dawley rats were randomly divided into a healthy control group (Control), an untreated heroin exposed group (Heroin) and a heroin exposed group receiving electroacupuncture (EA) treatment at GV14 and GV20 (Heroin+acupuncture) with n=16 rats per group. A rat model of heroin addiction was established by intramuscular injection of incremental doses of heroin for 8 consecutive days. A rat model of heroin relapse was established according to the exposure (addiction) → detoxification method. Apoptotic changes in nerve cells in the hippocampus and ventral tegmental area (VTA) were evaluated in each group of rats using terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay. PERK, eIF2a, CHOP, IRE1 and JNK gene expression and protein expression were measured using quantitative real-time PCR (RT-qPCR) assay and immunohistochemical assay, respectively. The total number of positive nerve cells in the hippocampus and VTA was significantly lower in the Heroin+acupuncture group than in the Heroin group (pHeroin group, mRNA and protein expression of PERK, eIF2a, CHOP, IRE1 and JNK in the hippocampus and VTA were significantly downregulated in the Heroin+acupuncture group (pheroin-addicted rats with brain injury. Inhibition of CHOP and JNK upregulation and reduction of nerve cell apoptosis may be the main mechanisms underlying the effects of acupuncture on heroin addiction-induced brain injury. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Neuroprotective effects of chloroform and petroleum ether extracts of Nigella sativa seeds in stroke model of rat

    Science.gov (United States)

    Akhtar, Mohammad; Maikiyo, Aliyu Muhammad; Najmi, Abul Kalam; Khanam, Razia; Mujeeb, Mohd; Aqil, Mohd

    2013-01-01

    PURPOSE: Stroke still remains a challenge for the researchers and scientists for developing ideal drug. Several new drugs are being evaluated showing excellent results in preclinical studies but when tested in clinical trials, they failed. Many herbal drugs in different indigenous system of medicine claim to have beneficial effects but not extensively evaluated for stroke (cerebral ischemia). AIM: The present study was undertaken to evaluate chloroform and petroleum ether extract of Nigella sativa seeds administered at a dose of 400 mg/kg, per orally for seven days in middle cerebral artery occluded (MCAO) rats for its neuroprotective role in cerebral ischemia. MATERIALS AND METHODS: Focal cerebral ischemia was induced by middle cerebral artery occlusion for two hours followed by reperfusion for 22 hours. After 24 hours, grip strength, locomotor activity tests were performed in different treatment groups of rats. After completing behavioral tests, animals were sacrificed; brains were removed for the measurement of infarct volume followed by the estimation of markers of oxidative stress. RESULTS: Both chloroform and petroleum ether extracts-pretreated rats showed improvement in locomotor activity and grip strength, reduced infarct volume when compared with MCAO rats. MCA occlusion resulted in the elevation of levels of thiobarbituric acid reactive substance (TBARS), while a reduction in the levels of glutathione (GSH) and antioxidant enzymes viz. superoxide dismutase (SOD) and catalase levels were observed. Pre-treatment of both extracts of Nigella sativa showed reduction in TBARS, elevation in glutathione, SOD, and catalase levels when compared with MCAO rats. CONCLUSION: The chloroform and petroleum ether extract of Nigella sativa showed the protective effects in cerebral ischemia. The present study confirms the antioxidant, free radical scavenging, and anti-inflammatory properties of Nigella sativa already reported. PMID:23833517

  19. Neuroprotective effects of JGK-263 in transgenic SOD1-G93A mice of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Ahn, Suk-Won; Jeon, Gye Sun; Kim, Myung-Jin; Shon, Jee-Heun; Kim, Jee-Eun; Shin, Je-Young; Kim, Sung-Min; Kim, Seung Hyun; Ye, In-Hae; Lee, Kwang-Woo; Hong, Yoon-Ho; Sung, Jung-Joon

    2014-05-15

    Glycogen synthase kinase-3β (GSK-3β) activity plays a central role in motor neuron degeneration. GSK-3β inhibitors have been shown to prolong motor neuron survival and suppress disease progression in amyotrophic lateral sclerosis (ALS). In this study, we evaluated the therapeutic effects of a new GSK-3b inhibitor, JGK-263, on ALS in G93A SOD1 transgenic mice. Previously, biochemical efficacy of JGK-263 was observed in normal and mutant (G93A) hSOD1-transfected motor neuronal cell lines (NSC34). Based on these previous results, we administered JGK-263 orally to 93 transgenic mice with the human G93A-mutated SOD1 gene. The mice were divided into three groups: a group administered 20mg/kg JGK-263, a group administered 50mg/kg JGK-263, and a control group not administered with JGK-263. Clinical status, rotarod test, and survival rates of transgenic mice with ALS were evaluated. Sixteen mice from each group were selected for further biochemical study that involved examination of motor neuron count, apoptosis, and cell survival signals. JGK-263 administration remarkably improved motor function and prolonged the time until symptom onset, rotarod failure, and death in transgenic mice with ALS compared to control mice. In JGK-263 groups, choline acetyltransferase (ChAT) staining in the ventral horn of the lower lumbar spinal cord showed a large number of motor neurons, suggesting normal morphology. The neuroprotective effects of JGK-263 in ALS mice were also suggested by western blot analysis of spinal cord tissues in transgenic mice. These results suggest that JGK-263, an oral GSK-3β inhibitor, is promising as a novel therapeutic agent for ALS. Still, further biochemical studies on the underlying mechanisms and safety of JGK-263 are necessary. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Cholinesterase inhibitory, anti-amyloidogenic and neuroprotective effect of the medicinal plant Grewia tiliaefolia - An in vitro and in silico study.

    Science.gov (United States)

    Sheeja Malar, Dicson; Beema Shafreen, Rajamohamed; Karutha Pandian, Shunmugiah; Pandima Devi, Kasi

    2017-12-01

    Grewia tiliaefolia Vahl. (Tiliaceae) is a sub-tropical plant used as an indigenous medicine in India. However, its efficacy has not been evaluated against Alzheimer's disease. The objective of this study is to evaluate cholinesterase inhibitory, anti-aggregation and neuroprotective activity of G. tiliaefolia. Grewia tiliaefolia leaves were collected from Eastern Ghats region, India, and subjected to successive extraction (petroleum ether, chloroform, ethyl acetate, methanol and water). The extracts were subjected to in vitro antioxidant, anticholinesterase and anti-aggregation assays. The active methanol extract (MEGT) was separated using column chromatography. LC-MS analysis was done and the obtained compounds were docked against acetylcholinesterase (AChE) enzyme to identify the active component. Antioxidant assays demonstrated that the MEGT showed significant free radical scavenging activity at the IC 50 value of 71.5 ± 1.12 μg/mL. MEGT also exhibited significant dual cholinesterase inhibition with IC 50 value of 64.26 ± 2.56 and 54 ± 0.7 μg/mL for acetyl and butyrylcholinesterase (BChE), respectively. Also, MEGT showed significant anti-aggregation activity by preventing the oligomerization of Aβ 25-35 . Further, MEGT increased the viability of Neuro2a cells up to 95% against Aβ 25-35 neurotoxicity. LC-MS analysis revealed the presence of 16 compounds including vitexin, ellagic acid, isovitexin, etc. In silico analysis revealed that vitexin binds effectively with AChE through strong hydrogen bonding. These results were further confirmed by evaluating the activity of vitexin in vitro, which showed dual cholinesterase inhibition with IC 50 value of 15.21 ± 0.41 and 19.75 ± 0.16 μM for acetyl and butyrlcholinesterase, respectively. Grewia tiliaefolia can be considered as a promising therapeutic agent for the treatment of AD.

  1. Involvement of PPAR-γ in the neuroprotective and anti-inflammatory effects of angiotensin type 1 receptor inhibition: effects of the receptor antagonist telmisartan and receptor deletion in a mouse MPTP model of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Garrido-Gil Pablo

    2012-02-01

    Full Text Available Abstract Background Several recent studies have shown that angiotensin type 1 receptor (AT1 antagonists such as candesartan inhibit the microglial inflammatory response and dopaminergic cell loss in animal models of Parkinson's disease. However, the mechanisms involved in the neuroprotective and anti-inflammatory effects of AT1 blockers in the brain have not been clarified. A number of studies have reported that AT1 blockers activate peroxisome proliferator-activated receptor gamma (PPAR γ. PPAR-γ activation inhibits inflammation, and may be responsible for neuroprotective effects, independently of AT1 blocking actions. Methods We have investigated whether oral treatment with telmisartan (the most potent PPAR-γ activator among AT1 blockers provides neuroprotection against dopaminergic cell death and neuroinflammation, and the possible role of PPAR-γ activation in any such neuroprotection. We used a mouse model of parkinsonism induced by the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP and co-administration of the PPAR-γ antagonist GW9662 to study the role of PPAR-γ activation. In addition, we used AT1a-null mice lesioned with MPTP to study whether deletion of AT1 in the absence of any pharmacological effect of AT1 blockers provides neuroprotection, and investigated whether PPAR-γ activation may also be involved in any such effect of AT1 deletion by co-administration of the PPAR-γ antagonist GW9662. Results We observed that telmisartan protects mouse dopaminergic neurons and inhibits the microglial response induced by administration of MPTP. The protective effects of telmisartan on dopaminergic cell death and microglial activation were inhibited by co-administration of GW9662. Dopaminergic cell death and microglial activation were significantly lower in AT1a-null mice treated with MPTP than in mice not subjected to AT1a deletion. Interestingly, the protective effects of AT1 deletion were also inhibited by co

  2. Neuroprotection by flavonoids

    Directory of Open Access Journals (Sweden)

    Dajas F.

    2003-01-01

    Full Text Available The high morbidity, high socioeconomic costs and lack of specific treatments are key factors that define the relevance of brain pathology for human health and the importance of research on neuronal protective agents. Epidemiological studies have shown beneficial effects of flavonoids on arteriosclerosis-related pathology in general and neurodegeneration in particular. Flavonoids can protect the brain by their ability to modulate intracellular signals promoting cellular survival. Quercetin and structurally related flavonoids (myricetin, fisetin, luteolin showed a marked cytoprotective capacity in in vitro experimental conditions in models of predominantly apoptotic death such as that induced by medium concentrations (200 µM of H2O2 added to PC12 cells in culture. Nevertheless, quercetin did not protect substantia nigra neurons in vivo from an oxidative insult (6-hydroxydopamine, probably due to difficulties in crossing the blood-brain barrier. On the other hand, treatment of permanent focal ischemia with a lecithin/quercetin preparation decreased lesion volume, showing that preparations that help to cross the blood-brain barrier may be critical for the expression of the effects of flavonoids on the brain. The hypothesis is advanced that a group of quercetin-related flavonoids could become lead molecules for the development of neuroprotective compounds with multitarget anti-ischemic effects.

  3. Curcumin: a potential neuroprotective agent in Parkinson's disease.

    Science.gov (United States)

    Mythri, R B; Bharath, M M Srinivas

    2012-01-01

    Parkinson's disease (PD) is an age-associated neurodegenerative disease clinically characterized as a movement disorder. The motor symptoms in PD arise due to selective degeneration of dopaminergic neurons in the substantia nigra of the ventral midbrain thereby depleting the dopamine levels in the striatum. Most of the current pharmacotherapeutic approaches in PD are aimed at replenishing the striatal dopamine. Although these drugs provide symptomatic relief during early PD, many patients develop motor complications with long-term treatment. Further, PD medications do not effectively tackle tremor, postural instability and cognitive deficits. Most importantly, most of these drugs do not exhibit neuroprotective effects in patients. Consequently, novel therapies involving natural antioxidants and plant products/molecules with neuroprotective properties are being exploited for adjunctive therapy. Curcumin is a polyphenol and an active component of turmeric (Curcuma longa), a dietary spice used in Indian cuisine and medicine. Curcumin exhibits antioxidant, anti-inflammatory and anti-cancer properties, crosses the blood-brain barrier and is neuroprotective in neurological disorders. Several studies in different experimental models of PD strongly support the clinical application of curcumin in PD. The current review explores the therapeutic potential of curcumin in PD.

  4. Neuroprotective and Neuro-restorative Effects of Minocycline and Rasagiline in a Zebrafish 6-Hydroxydopamine Model of Parkinson's Disease.

    Science.gov (United States)

    Cronin, Aileen; Grealy, Maura

    2017-12-26

    Parkinson's disease is a common, debilitating, neurodegenerative disorder for which the current gold standard treatment, levodopa (L-DOPA) is symptomatic. There is an urgent, unmet need for neuroprotective or, ideally, neuro-restorative drugs. We describe a 6-hydroxydopamine (6-OHDA) zebrafish model to screen drugs for neuroprotective and neuro-restorative capacity. Zebrafish larvae at two days post fertilization were exposed to 6-OHDA for three days, with co-administration of test drugs for neuroprotection experiments, or for 32 h, with subsequent treatment with test drugs for neuro-restoration experiments. Locomotor activity was assessed by automated tracking and dopaminergic neurons were visualized by tyrosine hydroxylase immuno-histochemistry. Exposure to 6-OHDA for either 32 h or 3 days induced similar, significant locomotor deficits and neuronal loss in 5-day-old larvae. L-DOPA (1 mM) partially restored locomotor activity, but was neither neuroprotective nor neuro-restorative, mirroring the clinical situation. The calcium channel blocker, isradipine (1 µM) did not prevent or reverse 6-OHDA-induced locomotor deficit or neuronal loss. However, both the tetracycline analog, minocycline (10 µM), and the monoamine oxidase B inhibitor, rasagiline (1 µM), prevented the locomotor deficits and neuronal loss due to three-day 6-OHDA exposure. Importantly, they also reversed the locomotor deficit caused by prior exposure to 6-OHDA; rasagiline also reversed neuronal loss and minocycline partially restored neuronal loss due to prior 6-OHDA, making them candidates for investigation as neuro-restorative treatments for Parkinson's disease. Our findings in zebrafish reflect preliminary clinical findings for rasagiline and minocycline. Thus, we have developed a zebrafish model suitable for high-throughput screening of putative neuroprotective and neuro-restorative therapies for the treatment of Parkinson's disease. Copyright © 2017 IBRO. Published by Elsevier

  5. Mechanisms underlying the perifocal neuroprotective effect of the Nrf2–ARE signaling pathway after intracranial hemorrhage

    Directory of Open Access Journals (Sweden)

    Yin XP

    2015-11-01

    Full Text Available Xiao-ping Yin,1,2 Zhi-ying Chen,2 Jun Zhou,1 Dan Wu,1,3 Bing Bao2 1Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China; 2Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, People’s Republic of China; 3Department of Neurology, The Sixth Hospital of Wuhan, Wuhan, People’s Republic of China Background: It has been found that nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2–ARE signaling pathway plays a role in antioxidative response, anti-inflammatory response, and neuron-protection in intracerebral hemorrhage (ICH. The aim of this study is to explore mechanisms underlying the perifocal neuroprotective effect of the Nrf2–ARE signaling pathway after ICH.Methods: There were a total of 90 rats with basal ganglia hemorrhage, which were randomly divided into the following four groups: ICH (Sprague–Dawley rats with autologous femoral arterial blood injection into the basal ganglia, sulforaphane (SFN (SFN was intraperitoneally administered into rats, retinoic acid (RA (RA was intraperitoneally administered into rats, and dimethyl sulfoxide (the rats were treated with dimethyl sulfoxide. We observed the neurological score of the rats in the different groups, and collected brain tissues for immunofluorescence, Western blot, and reverse transcription polymerase chain reaction to detect expression of Nrf2, heme oxygenase (HO-1, nuclear factor-κB (NF-κB, and tumor necrosis factor-α (TNF-α.Results: The results indicated that neurological dysfunction of rats was significantly improved in the SFN group, and the expressions of Nrf2 and HO-1 in tissues surrounding the hemorrhage were increased. Also, the level of NF-κB and TNF-α were reduced compared to the ICH group. The RA group exhibited more severe neurological dysfunction and lower levels of Nrf2 and HO-1 than the SFN and ICH groups. Compared to the ICH group, the NF

  6. Superconducting proximity effect in the strong-coupling limit

    International Nuclear Information System (INIS)

    Wilvert, W.

    1975-01-01

    A generalization of the theory of the superconducting proximity effect is presented which takes into account strong-coupling in the superconductors. The results are found to agree with a model of weak-coupled superconductors with differing Debye frequencies which are in proximity. It is found that logarithmic averaging of phonon frequencies is an improvement on the original McMillan theory (1968). Comparison of the theory with data on thin films and on eutectic alloys is found to give good agreement. 19 references

  7. Strong dynamical effects during stick-slip adhesive peeling.

    Science.gov (United States)

    Dalbe, Marie-Julie; Santucci, Stéphane; Cortet, Pierre-Philippe; Vanel, Loïc

    2014-01-07

    We consider the classical problem of the stick-slip dynamics observed when peeling a roller adhesive tape at a constant velocity. From fast imaging recordings, we extract the dependence of the stick and slip phase durations on the imposed peeling velocity and peeled ribbon length. Predictions of Maugis and Barquins [in Adhesion 12, edited by K. W. Allen, Elsevier ASP, London, 1988, pp. 205-222] based on a quasistatic assumption succeed to describe quantitatively our measurements of the stick phase duration. Such a model however fails to predict the full stick-slip cycle duration, revealing strong dynamical effects during the slip phase.

  8. The Neuroprotective Effect of Cornus mas on Brain Tissue of Wistar Rats

    Directory of Open Access Journals (Sweden)

    Renata Francik

    2014-01-01

    Full Text Available Cornelian cherry (Cornus mas is a valuable source of phenolic antioxidants. Flavonoid derivatives as nonenzymatic antioxidants are important in the pathophysiology of many diseases including neurological disorders (e.g., Alzheimer’s disease or heart disease. In this study, we examined the effect of an addition of freeze-dried fruit of cornelian cherry on three types of diets: control diet, fructose diet, and diet enriched in fats (high-fat diet. This effect was studied by determining the following antioxidant parameters in both brain tissue and plasma in rats: catalase, ferric reducing ability of plasma, paraoxonase, protein carbonyl groups, and free thiol groups. Results indicate that both fructose diet and high-fat diet affect the antioxidant capacity of the organism. Furthermore, an addition of cornelian cherry resulted in increased activity of catalase in brain tissue, while in plasma it caused the opposite effect. In turn, with regard to paraoxonase activity in both brain tissue and plasma, it had a stimulating effect. Adding cornelian cherry to the tested diets increased the activity of PON in both tested tissues. Moreover, protective effect of fruits of this plant was observed in the process of oxidation of proteins by decreasing levels of protein carbonyl groups and thiol groups in brain tissue as well as in plasma.

  9. Effectiveness of Advanced Stay Strong, Stay Healthy in Community Settings

    Directory of Open Access Journals (Sweden)

    Emily M. Crowe MS

    2015-07-01

    Full Text Available The goal of this research was to investigate the effectiveness of the 10-week, University of Missouri (MU Extension strength training program Advanced Stay Strong, Stay Healthy (ASSSH. It was hypothesized that the program can improve strength, balance, agility, and flexibility—all physical measures of falling among seniors. Matched pair t tests were used to compare differences in five physical measures of health, body composition, and percent body fat (%BF. Two-way ANOVA was conducted to examine the age effects on changes in physical health from the start and finish of the exercise program. Following programming, participants significantly improved strength, flexibility, and balance, and significantly reduced %BF ( p < .05. Our data indicate that ASSSH can improve the physical health of senior citizens and can successfully be translated into community practice by MU Extension professionals.

  10. Plastic and Neuroprotective Mechanisms Involved in the Therapeutic Effects of Cannabidiol in Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Alline C. Campos

    2017-05-01

    Full Text Available Beneficial effects of cannabidiol (CBD have been described for a wide range of psychiatric disorders, including anxiety, psychosis, and depression. The mechanisms responsible for these effects, however, are still poorly understood. Similar to clinical antidepressant or atypical antipsychotic drugs, recent findings clearly indicate that CBD, either acutely or repeatedly administered, induces plastic changes. For example, CBD attenuates the decrease in hippocampal neurogenesis and dendrite spines density induced by chronic stress and prevents microglia activation and the decrease in the number of parvalbumin-positive GABA neurons in a pharmacological model of schizophrenia. More recently, it was found that CBD modulates cell fate regulatory pathways such as autophagy and others critical pathways for neuronal survival in neurodegenerative experimental models, suggesting the potential benefit of CBD treatment for psychiatric/cognitive symptoms associated with neurodegeneration. These changes and their possible association with CBD beneficial effects in psychiatric disorders are reviewed here.

  11. A Review on the Possible Neuroprotective Effects of Moringa Oleifera Leaf Extract.

    Science.gov (United States)

    Igado, O O; Olopade, J O

    2017-03-06

    Moringa oleifera is an edible plant that has been reputed to be a miracle plant by numerous authors, with effects on practically every body system. Phytochemical analyses have demonstrated that the leaves are rich in various minerals, vitamins and antioxidants. Its use in some continents dates back to Antiquity. Neurodegeneration are chronic diseases of the nervous system. There is currently an increase in the use of natural products to combat these debilitating diseases. So far, no suitable cure has been found, and conditions are managed and the symptoms treated. This article reviews the literature on the effects of Moringa oleifera leaves on the nervous system in vivo and in vitro.

  12. Cellular and molecular mechanisms involved in the neuroprotective effects of VEGF on motoneurons

    Directory of Open Access Journals (Sweden)

    Jerònia eLladó

    2013-10-01

    Full Text Available Vascular endothelial growth factor (VEGF, originally described as a factor with a regulatory role in vascular growth and development, it is also known for its direct effects on neuronal cells. The discovery in the past decade that transgenic mice expressing reduced levels of VEGF developed late-onset motoneuron pathology, reminiscent of amyotrophic lateral sclerosis (ALS, opened a new field of research on this disease. VEGF has been shown to protect motoneurons from excitotoxic death, which is a relevant mechanism involved in motoneuron degeneration in ALS. Thus, VEGF delays motoneuron degeneration and increases survival in animal models of ALS. VEGF exerts its anti-excitotoxic effects on motoneurons through molecular mechanisms involving the VEGF receptor-2 resulting in the activation of the PI3-K/Akt signaling pathway, upregulation of GluR2 subunit of AMPA receptors, inhibition of p38MAPK and induction of the anti-apoptotic molecule Bcl-2. In addition, VEGF acts on astrocytes to reduce astroglial activation and to induce the release of growth factors. The potential use of VEGF as a therapeutic tool in ALS is counteracted by its vascular effects and by its short effective time frame. More studies are needed to assess the optimal isoform, route of administration and time frame for using VEGF in the treatment of ALS.

  13. Neuroprotective effect of pretreatment with ganoderma lucidum in cerebral ischemia/reperfusion injury in rat hippocampus

    Science.gov (United States)

    Zhang, Wangxin; Zhang, Quiling; Deng, Wen; Li, Yalu; Xing, Guoqing; Shi, Xinjun; Du, Yifeng

    2014-01-01

    Ganoderma lucidum is a traditional Chinese medicine, which has been shown to have both anti-oxidative and anti-inflammatory effects, and noticeably decreases both the infarct area and neuronal apoptosis of the ischemic cortex. This study aimed to investigate the protective effects and mechanisms of pretreatment with ganoderma lucidum (by intragastric administration) in cerebral ischemia/reperfusion injury in rats. Our results showed that pretreatment with ganoderma lucidum for 3 and 7 days reduced neuronal loss in the hippocampus, diminished the content of malondialdehyde in the hippocampus and serum, decreased the levels of tumor necrosis factor-α and interleukin-8 in the hippocampus, and increased the activity of superoxide dismutase in the hippocampus and serum. These results suggest that pretreatment with ganoderma lucidum was protective against cerebral ischemia/reperfusion injury through its anti-oxidative and anti-inflammatory actions. PMID:25317156

  14. Neuroprotective effect of pretreatment with ganoderma lucidum in cerebral ischemia/reperfusion injury in rat hippocampus.

    Science.gov (United States)

    Zhang, Wangxin; Zhang, Quiling; Deng, Wen; Li, Yalu; Xing, Guoqing; Shi, Xinjun; Du, Yifeng

    2014-08-01

    Ganoderma lucidum is a traditional Chinese medicine, which has been shown to have both anti-oxidative and anti-inflammatory effects, and noticeably decreases both the infarct area and neuronal apoptosis of the ischemic cortex. This study aimed to investigate the protective effects and mechanisms of pretreatment with ganoderma lucidum (by intragastric administration) in cerebral ischemia/reperfusion injury in rats. Our results showed that pretreatment with ganoderma lucidum for 3 and 7 days reduced neuronal loss in the hippocampus, diminished the content of malondialdehyde in the hippocampus and serum, decreased the levels of tumor necrosis factor-α and interleukin-8 in the hippocampus, and increased the activity of superoxide dismutase in the hippocampus and serum. These results suggest that pretreatment with ganoderma lucidum was protective against cerebral ischemia/reperfusion injury through its anti-oxidative and anti-inflammatory actions.

  15. Evaluation of neuroprotective effects of natural extracts obtained from portuguese agro-food residues

    OpenAIRE

    Ramos, Rita João Rosado Serranito

    2012-01-01

    Countries are currently faced with problems derived from changes in lifespan and an increase in lifestyle-related diseases. Neurodegenerative disorders such Parkinson’s (PD) and Alzheimer’s (AD) diseases are an increasing problem in aged societies. Data from World Alzheimer Report 2011 indicate that 36 million people worldwide are living with dementia. Oxidative stress has been associated with the development of AD and PD. Therefore there is interest to search for effective compounds or thera...

  16. The neuroprotective effects of cocoa flavanol and its influence on cognitive performance.

    Science.gov (United States)

    Nehlig, Astrid

    2013-03-01

    Cocoa powder and chocolate contain numerous substances among which there is a quite large percentage of antioxidant molecules, mainly flavonoids, most abundantly found in the form of epicatechin. These substances display several beneficial actions on the brain. They enter the brain and induce widespread stimulation of brain perfusion. They also provoke angiogenesis, neurogenesis and changes in neuron morphology, mainly in regions involved in learning and memory. Epicatechin improves various aspects of cognition in animals and humans. Chocolate also induces positive effects on mood and is often consumed under emotional stress. In addition, flavonoids preserve cognitive abilities during ageing in rats, lower the risk for developing Alzheimer's disease and decrease the risk of stroke in humans. In addition to their beneficial effects on the vascular system and on cerebral blood flow, flavonoids interact with signalization cascades involving protein and lipid kinases that lead to the inhibition of neuronal death by apoptosis induced by neurotoxicants such as oxygen radicals, and promote neuronal survival and synaptic plasticity. The present review intends to review the data available on the effects of cocoa and chocolate on brain health and cognitive abilities. © 2012 The Author. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  17. The neuroprotective effects of cocoa flavanol and its influence on cognitive performance

    Science.gov (United States)

    Nehlig, Astrid

    2013-01-01

    Cocoa powder and chocolate contain numerous substances among which there is a quite large percentage of antioxidant molecules, mainly flavonoids, most abundantly found in the form of epicatechin. These substances display several beneficial actions on the brain. They enter the brain and induce widespread stimulation of brain perfusion. They also provoke angiogenesis, neurogenesis and changes in neuron morphology, mainly in regions involved in learning and memory. Epicatechin improves various aspects of cognition in animals and humans. Chocolate also induces positive effects on mood and is often consumed under emotional stress. In addition, flavonoids preserve cognitive abilities during ageing in rats, lower the risk for developing Alzheimer's disease and decrease the risk of stroke in humans. In addition to their beneficial effects on the vascular system and on cerebral blood flow, flavonoids interact with signalization cascades involving protein and lipid kinases that lead to the inhibition of neuronal death by apoptosis induced by neurotoxicants such as oxygen radicals, and promote neuronal survival and synaptic plasticity. The present review intends to review the data available on the effects of cocoa and chocolate on brain health and cognitive abilities. PMID:22775434

  18. Neuroprotective effects of nootkatone from Alpiniae oxyphyllae Fructus against amyloid-β-induced cognitive impairment.

    Science.gov (United States)

    He, Bosai; Xu, Fanxing; Xiao, Feng; Yan, Tingxu; Wu, Bo; Bi, Kaishun; Jia, Ying

    2018-02-01

    The sesquiterpene nootkatone (NKT), isolated from Alpiniae oxyphyllae Fructus, was shown to possess protective effects on neurons. In our study, by using an Alzheimer's disease (AD) model of mice induced by intracerebroventricular (i.c.v.) injection of Aβ 1-42 oligomers, we investigated the effects of NKT on memory impairment and further evaluated the pathological changes of mice. AD mice were treated by i.c.v. injection of NKT (at a dose of 0.02 mg/kg and 0.20 mg/kg) or vehicle (PBS) into the lateral ventricle once daily for 5 consecutive days. The behavioral tasks were performed, and levels of some biochemical indicators and histopathological changes of the brain were evaluated to elucidate the mechanism of NKT in the treatment of AD. The results revealed that NKT significantly improved the neurobehavioral performance of the AD mice in the Y-maze and Morris water maze tests. More importantly, NKT treatment decreased the malondialdehyde (MDA), Aβ as well as the acetylcholin esterase (AChE) levels in the mice brain, while increased the glutathione peroxidase (GSH-Px) levels with improved histopathological changes in the hippocampus. These findings provided evidences for the beneficial role of NKT in Aβ 1-42 -induced mice AD model linking to anti-oxidative and anti-AChE activities with inhibitory effect against Aβ accumulation.

  19. Intravenous administration of mesenchymal stem cells exerts therapeutic effects on parkinsonian model of rats: Focusing on neuroprotective effects of stromal cell-derived factor-1α

    Directory of Open Access Journals (Sweden)

    Tayra Judith

    2010-04-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSCs are pluripotent stem cells derived from bone marrow with secretory functions of various neurotrophic factors. Stromal cell-derived factor-1α (SDF-1α is also reported as one of chemokines released from MSCs. In this research, the therapeutic effects of MSCs through SDF-1α were explored. 6-hydroxydopamine (6-OHDA, 20 μg was injected into the right striatum of female SD rats with subsequent administration of GFP-labeled MSCs, fibroblasts, (i.v., 1 × 107 cells, respectively or PBS at 2 hours after 6-OHDA injection. All rats were evaluated behaviorally with cylinder test and amphetamine-induced rotation test for 1 month with consequent euthanasia for immunohistochemical evaluations. Additionally, to explore the underlying mechanisms, neuroprotective effects of SDF-1α were explored using 6-OHDA-exposed PC12 cells by using dopamine (DA assay and TdT-mediated dUTP-biotin nick-end labeling (TUNEL staining. Results Rats receiving MSC transplantation significantly ameliorated behaviorally both in cylinder test and amphetamine-induced rotation test compared with the control groups. Correspondingly, rats with MSCs displayed significant preservation in the density of tyrosine hydroxylase (TH-positive fibers in the striatum and the number of TH-positive neurons in the substantia nigra pars compacta (SNc compared to that of control rats. In the in vitro study, SDF-1α treatment increased DA release and suppressed cell death induced by 6-OHDA administration compared with the control groups. Conclusions Consequently, MSC transplantation might exert neuroprotection on 6-OHDA-exposed dopaminergic neurons at least partly through anti-apoptotic effects of SDF-1α. The results demonstrate the potentials of intravenous MSC administration for clinical applications, although further explorations are required.

  20. Anticholinesterase, antioxidant, and neuroprotective effects of Tripleurospermum disciforme and Dracocephalum multicaule

    Directory of Open Access Journals (Sweden)

    Ali Mandegary

    2014-01-01

    Full Text Available Background: Nowadays, owing to medicinal plants as a candidate to obtain promising new medicinal agents, there is a renewed interest in the use of these natural sources for drug development. Objective: In the present study, we aimed to assess the anticholinesterase, antioxidant, and neuropotective effects of Tripleurospermum disciforme and Dracocephalum multicaule extracts. Materials and Methods: Methanolic extract of the plants was prepared by maceration method. Anticholinesterase effect of different concentrations of the plants was studied by colorimetric method and antioxidant activity was evaluated using diphenypicrylhydrazil (DPPH assay. Protective effect of the extracts against amyloid β (Aβ-induced toxicity in PC12 cells was determined by MTT (3-(4,5-dimethyl thiazol-2-yl-2,5-diphenyl tetrazolium bromide method. Results: Both T. disciforme and D. multicaule extracts could inhibit acetylcholinesterase (AChE in a dose-dependent manner. The highest inhibition occurred at 5 μg/ml (71.18 ± 4.9 and 79.06 ± 3.1% inhibition respectively by T. disciforme and D. multicaule in comparison to tacrine (86.37 ± 3.24%. The greatest DPPH inhibition of T. disciforme and D. multicaule was shown at 800 μg/ml (89.04 ± 3.9 and 78.5 ± 3.7%, respectively. None of tested extracts induced protection against βA toxicity in PC12 cell. Conclusion: Although the results indicated anticholinesterase and antioxidant of the T. disciforme and D. multicaule, further specific studies and scientific validity are needed.

  1. Neuroprotective Effects of Meloxicam and Selegiline in Scopolamine-Induced Cognitive Impairment and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Puchchakayala Goverdhan

    2012-01-01

    Full Text Available Alzheimer's disease (AD is a progressive neurodegenerative disorder characterized by a gradual decline in memory associated with shrinkage of brain tissue, with localized loss of neurons mainly in the hippocampus and basal forebrain, with diminished level of central cholinergic neurotransmitter-acetylcholine and also reported to be associated with accumulation of ubiquitinated proteins in neuronal inclusions and also with signs of inflammation. In these disorders, the abnormal protein aggregates may themselves trigger the expression of inflammatory mediators, such as cyclooxygenase 2 (COX-2. In the present study, the effects of Meloxicam, Selegiline, and coadministration of these drugs on scopolamine-induced learning and memory impairments in mice were investigated. Rectangular maze test, Morris water maze test, Locomotor activity, and Pole climbing test were conducted to evaluate the learning and memory parameters. Various biochemical parameters such as acetylcholinesterase(AChE, TBARS assay, catalase activity, and DPPH assay were also assessed. The present study demonstrates that Meloxicam, Selegiline, and co-administration of these test drugs had potential therapeutic effects on improving the antiamnesic activity in mice through inhibiting lipid peroxidation, augmenting endogenous antioxidant enzymes, and decreasing acetylcholinesterase activity in brain. The memory enhancing capacity of the drugs was very significant when compared to disease control (P<0.001.

  2. Neuroprotective effects of ginsenoside Rg1-induced neural stem cell transplantation on hypoxic-ischemic encephalopathy

    Directory of Open Access Journals (Sweden)

    Ying-bo Li

    2015-01-01

    Full Text Available Ginsenoside Rg1 is the major pharmacologically active component of ginseng, and is reported to have various therapeutic actions. To determine whether it induces the differentiation of neural stem cells, and whether neural stem cell transplantation after induction has therapeutic effects on hypoxic-ischemic encephalopathy, we cultured neural stem cells in 10-80 µM ginsenoside Rg1. Immunohistochemistry revealed that of the concentrations tested, 20 mM ginsenoside Rg1 had the greatest differentiation-inducing effect and was the concentration used for subsequent experiments. Whole-cell patch clamp showed that neural stem cells induced by 20 µM ginsenoside Rg1 were more mature than non-induced cells. We then established neonatal rat models of hypoxic-ischemic encephalopathy using the suture method, and ginsenoside Rg1-induced neural stem cells were transplanted via intracerebroventricular injection. These tests confirmed that neural stem cells induced by ginsenoside had fewer pathological lesions and had a significantly better behavioral capacity than model rats that received saline. Transplanted neural stem cells expressed neuron-specific enolase, and were mainly distributed in the hippocampus and cerebral cortex. The present data suggest that ginsenoside Rg1-induced neural stem cells can promote the partial recovery of complicated brain functions in models of hypoxic-ischemic encephalopathy.

  3. Neuroprotective Effects of Physical Activity: Evidence from Human and Animal Studies

    Directory of Open Access Journals (Sweden)

    Sergio Chieffi

    2017-05-01

    Full Text Available In the present article, we provide a review of current knowledge regarding the role played by physical activity (PA in preventing age-related cognitive decline and reducing risk of dementia. The cognitive benefits of PA are highlighted by epidemiological, neuroimaging and behavioral studies. Epidemiological studies identified PA as an influential lifestyle factor in predicting rates of cognitive decline. Individuals physically active from midlife show a reduced later risk of cognitive impairment. Neuroimaging studies documented attenuation of age-related brain atrophy, and also increase of gray matter and white matter of brain areas, including frontal and temporal lobes. These structural changes are often associated with improved cognitive performance. Importantly, the brain regions that benefit from PA are also those regions that are often reported to be severely affected in dementia. Animal model studies provided significant information about biomechanisms that support exercise-enhanced neuroplasticity, such as angiogenesis and upregulation of growth factors. Among the growth factors, the brain-derived neurotrophic factor seems to play a significant role. Another putative factor that might contribute to beneficial effects of exercise is the neuropeptide orexin-A. The beneficial effects of PA may represent an important resource to hinder the cognitive decline associated with aging.

  4. The neuroprotective effects of intramuscular insulin-like growth factor-I treatment in brain ischemic rats.

    Directory of Open Access Journals (Sweden)

    Heng-Chih Chang

    these effects could contribute to neuroprotection and improve motor function.

  5. [Neuroprotective effect of erigeron breviscapus (vant) hand-mazz on NMDA-induced retinal neuron injury in the rats].

    Science.gov (United States)

    Shi, Jingming; Jiag, Youqin; Liu, Xuyang

    2004-07-01

    To investigate if Erigeron Breviscapus (vant) Hand-Mazz (EBHM) has a neuroprotective effect against NMDA-induced neuron death in retinal ganglion cell layer (RGCL). Sixty healthy SD rats were randomly divided into four groups. 6 animals were in normal control group (group A). The others were divided as group B (EBHM group), group C (normal saline+NMDA group), group D (EBHM+NMDA group). Each group has 18 rats. 10 nmol NMDA was chosen for intravitreal injection to cause partial damage of the neurons in RGCL in the right eyes of Groups C and D. Same volume PBS was intravitreal injected in the left eyes as self-control. Groups B and D were pre-treated intraperitoneally with 6% EBHM solution at a dose of 15 mg x 100 g(-1) x d(-1) seven days before and after NMDA treatment. Group C were administrated intraperitoneally with 0.9% normal saline at the same time of EBHM injection. Rats were sacrificed in 4, 7, 14 days after NMDA treatment. Flat preparation of whole retinas were stained with 0.5% cresyl violet and neuron counting in RGCL from both eyes. Each subgroup has 6 rats. There was no significant difference between the right eye and the left eye of neuron counting from RGCL in normal control group (group A) (P=0.200). There was no significant difference between normal control group and EBHM group either in the right eyes or in the left eye in 4 days, 7 days and 14 days respectively after intravitreal injection of 10 nmol NMDA in group C and group D. (P=0.636, P=0.193). Neuron counting from RGCL of group C and group D were significant decreased in the NMDA-treated eyes in 4 days, 7 days and 14 days after intravitreal injection (P 0.05). Neuron counting was significantly higher in the EBHM+NMDA group than normal saline+NMDA group at 14 days after intraviteal injection (P=0.044). However,it is obvious that the difference was still significant between normal control group and EBHM+NMDA group (P < 0.05). EBHM has no effect on neuron counting of RGCL when administered alone

  6. Neuroprotective effect of olfactory ensheathing cells co-transfected with Nurr1 and Ngn2 in both in vitro and in vivo models of Parkinson's disease.

    Science.gov (United States)

    Liu, Qingqing; Qin, Qi; Sun, Hongxue; Zhong, Di; An, Ran; Tian, Yushuang; Chen, Hongping; Jin, Jing; Wang, Haining; Li, Guozhong

    2018-02-01

    The aim of the study is to evaluate the neuroprotective effects of olfactory ensheathing cells (OECs) with the overexpression of nuclear receptor-related factor 1 (Nurr1) and neurogenin 2 (Ngn2) in experimental models of Parkinson's disease (PD) and to elucidate the potential mechanism underlying the neuroprotective effects of OECs-Nurr1-Ngn2. In vitro study, OECs-Nurr1-Ngn2 conditioned medium (CM) was added to MPP + -treated PC12 cells for 24h, and then the viability of PC12 cells, oxidative stress and apoptosis were detected. In vivo study, 48 male Sprague-Dawley (SD) rats were randomly divided into four groups. OECs/VMCs and OECs-Nurr1-Ngn2/VMCs groups were transplanted with 2×10 5 cells each of OECs or OECs-Nurr1-Ngn2 and VMCs into the right striatum one week after a unilateral 6-OHDA lesion. Control and PD groups were injected with 0.9% NaCl and 0.2% ascorbic acid into the same region. Rotational behavior was determined at 2, 4, 6 and 8weeks after injection or implantation in all groups. Neuronal differentiation markers, oxidative stress- and apoptosis-related indicators were detected at 8weeks post-grafting. OECs-Nurr1-Ngn2 increased the viability of PC12 cells, inhibited oxidative stress and apoptosis, and these effects could be reversed by pre-treatment of k252a, a TrkB receptor inhibitor. The behavioral deficits of PD rat were ameliorated by the transplantation of OECs-Nurr1-Ngn2/VMCs. These results suggest that OECs-Nurr1-Ngn2 exhibits substantial neuroprotective, anti-oxidant, and anti-apoptotic effects against PD via the up-regulation of the neurotrophic factor-TrkB pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. The neuroprotective effect of post ischemic brief mild hypothermic treatment correlates with apoptosis, but not with gliosis in endothelin-1 treated rats

    Directory of Open Access Journals (Sweden)

    Zgavc Tine

    2012-08-01

    Full Text Available Abstract Background Stroke remains one of the most common diseases with a serious impact on quality of life but few effective treatments exist. Mild hypothermia (33°C is a promising neuroprotective therapy in stroke management. This study investigated whether a delayed short mild hypothermic treatment is still beneficial as neuroprotective strategy in the endothelin-1 (Et-1 rat model for a transient focal cerebral ischemia. Two hours of mild hypothermia (33°C was induced 20, 60 or 120 minutes after Et-1 infusion. During the experiment the cerebral blood flow (CBF was measured via Laser Doppler Flowmetry in the striatum, which represents the core of the infarct. Functional outcome and infarct volume were assessed 24 hours after the insult. In this sub-acute phase following stroke induction, the effects of the hypothermic treatment on apoptosis, phagocytosis and astrogliosis were assessed as well. Apoptosis was determined using caspase-3 immunohistochemistry, phagocytic cells were visualized by CD-68 expression and astrogliosis was studied by glial fibrillary acidic protein (GFAP staining. Results Cooling could be postponed up to 1 hour after the onset of the insult without losing its positive effects on neurological deficit and infarct volume. These results correlated with the caspase-3 staining. In contrast, the increased CD-68 expression post-stroke was reduced in the core of the insult with all treatment protocols. Hypothermia also reduced the increased levels of GFAP staining, even when it was delayed up to 2 hours after the insult. The study confirmed that the induction of the hypothermia treatment in the Et-1 model does not affect the CBF. Conclusions These data indicate that in the Et-1 rat model, a short mild hypothermic treatment delayed for 1 hour is still neuroprotective and correlates with apoptosis. At the same time, hypothermia also establishes a lasting inhibitory effect on the activation of astrogliosis.

  8. Nootropic and Neuroprotective Effects of Dichrocephala integrifolia on Scopolamine Mouse Model of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Nadège E. Kouémou

    2017-11-01

    Full Text Available Alzheimer’s disease the most common form of dementia in the elderly is a neurodegenerative disease that affects 44 millions of people worldwide. The first treatments against Alzheimer’s disease are acetylcholinesterase inhibitors; however, these medications are associated with many side effects. Dichrocephala integrifolia is a traditional herb widely used by indigenous population of Cameroon to treat and prevent Alzheimer’s disease and for memory improvement. In this study, we evaluated the effect of the decoction prepared from leaves of D. integrifolia, on scopolamine-induced memory impairment in mice. Seven groups of six animals were used. The first two groups received distilled water for the distilled water and scopolamine groups. The four test groups received one of the four doses of the decoction of the plant (35, 87.5, 175 or 350 mg/kg p.o. and the positive control group received tacrine (10 mg/kg, a cholinesterase inhibitor used in the treatment of Alzheimer’s disease, during 10 consecutive days. Scopolamine (1 mg/kg, a cholinergic receptor blocker, administered 30 min after treatments, was used to induce memory impairment to all groups except the distilled water group on day 10 of drug treatment. The behavioral paradigms used to evaluate the effects of the treatment were the elevated plus maze for learning and memory, Y maze for spatial short-term memory, the novel object recognition for recognition memory and Morris water maze for the evaluation of spatial long-term memory. After behavioral tests, animals were sacrificed and brains of a subset were used for the assessment of some biomarkers of oxidative stress (malondialdehyde and reduced glutathione levels and for the evaluation of the acetylcholinesterase activity. From the remaining subset brains, histopathological analysis was performed. The results of this study showed that, D. integrifolia at the doses of 87.5 and 350 mg/kg significantly (p < 0.01 improved spatial short

  9. Neuroprotective effect of olive oil in the hippocampus CA1 neurons following ischemia: Reperfusion in mice

    Directory of Open Access Journals (Sweden)

    M Zamani

    2013-01-01

    Full Text Available Introduction: Transient global ischemia induces selective, delayed neuronal death of pyramidal neurons in the hippocampal CA1. Oxidative Stress is considered to be involved in a number of human diseases including ischemia. Preliminary studies confirmed reduction of cell death in brain following treatment with antioxidants. Aim: According to this finding, we study the relationship between consumption of olive oil on cell death and memory disorder in brain ischemia. We studied the protective effect of olive oil against ischemia-reperfusion. Material and Methods: Experimental design includes three groups: Intact (n = 8, ischemic control (n = 8 and treatment groups with olive oil (n = 8. The mice treated with olive oil as pre-treatment for a week. Then, ischemia induced by common carotid artery ligation and following the reduction of inflammation [a week after ischemia], the mice post-treated with olive oil. Nissl staining applied for counting necrotic cells in hippocampus CA1. Tunnel kit was used to quantify apoptotic cell death while to short term memory scale, we apply y-maze and shuttle box tests and for detection the rate of apoptotic and treated cell, we used western blotting test for bax and bcl2 proteins. Results: High rate of apoptosis was seen in ischemic group that significantly associated with short-term memory loss. Cell death was significantly lower when mice treated with olive oil. The memory test results were adjusted with cell death results and bax and bcl2 expression in all groups′ comparison. Ischemia for 15 min induced cell death in hippocampus with more potent effect on CA1. Conclusion: Olive oil intake significantly reduced cell death and decreased memory loss.

  10. Neuroprotective effect of nebivolol against cisplatin-associated depressive-like behavior in rats.

    Science.gov (United States)

    Abdelkader, Noha F; Saad, Muhammed A; Abdelsalam, Rania M

    2017-05-01

    One-third of cancer patients undergoing chemotherapy treatment often display symptoms of depression leading to poor adherence and decreased quality of life. Thus, this study aimed to investigate the possible protective effect of nebivolol against cisplatin-associated depressive symptoms in adult male rats. Nebivolol is a highly cardioselective β-adrenergic receptor blocker that possesses endothelium-dependent vasodilator properties and antioxidant capacities. Animals were allocated into four groups. Group one was given aqueous solution of carboxymethyl cellulose and served as control, group two was given nebivolol (10 mg/kg p.o., daily), group three was given cisplatin (2 mg/kg i.p. once per week) for 10 consecutive weeks and group four was treated with cisplatin concomitantly with nebivolol as per above schedule. Cisplatin-treated rats showed an increase in both depressive-like behaviors in open-field and forced swimming tests. In addition, histopathological examination revealed cortical encephalomalacia along with hippocampal neuronal degeneration and kidney dysfunction. In parallel, cisplatin administration prominently reduced GABA and elevated glutamate levels in the cortical and hippocampal tissues. Furthermore, it resulted in a significant decline in cortical and hippocampal brain-derived neurotrophic factor and nitric oxide contents concomitantly with a marked decrease in endothelial- and an increase in inducible-nitric oxide synthase genes expression. On the other hand, treatment with nebivolol effectively mitigated the aforementioned cisplatin-associated behavioral, biochemical, and histopathological alterations without changing its antitumor activity as evidenced by sulforhodamine B cell survival assay. Taken together, our results suggest that nebivolol may offer a promising approach for alleviating depressive symptoms associated with the use of cisplatin. © 2017 International Society for Neurochemistry.

  11. The neuroprotective effect of a triazine derivative in an Alzheimer's rat model.

    Directory of Open Access Journals (Sweden)

    Fatemeh Alipour

    2015-01-01

    Full Text Available Alzheimer's disease (AD is the most prevalent neurodegenerative disorder. It is characterized by formation of amyloid plaques and neurofibrillary tangles in the brain, degeneration of the cholinergic neurons and neural cell death. This study was aimed to investigate the effect of a triazine derivative, C16H12Cl2N3S, on learning in an Alzheimer's rat model. Animals were divided into seven groups; each group contained seven animals.animals received no surgery and treatment; saline group: animals received normal saline after recovery; sham group: animals received 10% DMSO after recovery; STZ group (Alzheimer's model: animals received streptozotocin (STZ in four and six days after recovery; T5, T10 and T15 groups: animals were treated with triazine derivative, C16H12Cl2N3S, at doses of 5, 10 and 15 µM, respectively. All drugs were injected intracerebroventricular. The spatial learning and histological assessment were performed in all groups. Animals in STZ group had more deficits in spatial learning than the control group in Morris water maze. C16H12Cl2N3S improved spatial learning significantly compared to STZ group. The CA1 pyramidal layer thicknesses in STZ group were reduced significantly compared to control group. C16H12Cl2N3S increased the CA1 pyramidal layer thickness in T15 group compared to STZ group. Current findings suggest C16H12Cl2N3S may have a protective effect on learning deficit and hippocampal structure in AD.

  12. Neuroprotective effect of Spirulina fusiform and amantadine in the 6-OHDA induced Parkinsonism in rats.

    Science.gov (United States)

    Chattopadhyaya, I; Gupta, Sumeet; Mohammed, Asad; Mushtaq, N; Chauhan, S; Ghosh, Saikat; Ghosh, Saikant

    2015-08-25

    Multi-factorial etiology exists in pathophysiology of neurodegenerative diseases. The imbalance of anti-oxidant enzymes and dopamine level leads to Parkinsonism. The objective of this study was to assess the protective effect of Spirulina fusiform alone and in combination with amantadine against Parkinsonism effect in 6-hydroxydopamine (6-OHDA) induced rat model. S. fusiform was administered in different groups (500 mg/kg, once daily and twice daily) and a combination of spirulina (500 mg/kg, once daily) with amantadine (20 mg/kg once daily) for 30 days before and 14 days after a single injection of 6-OHDA into the dorsal striatum. Post lesion produced rotational behavior which was measured at two week intervals (37th and 44th day). Locomotors activity was also done at 44th and muscle coordination at 48th day. Dorsal striatum was isolated from rat brain for evaluating the antioxidant assays and dopamine content at 49th day. Both the body rotations (ipsilateral and contralateral) were found to have a statistically significant (pspirulina (Twice a day) in spirulina treated lesioned group. A higher percentage of improvement was shown in the reduction of ipsilateral (57.34%) and contralateral (78.3%) rotations in combination of spirulina with amantadine treated lesioned group rather than spirulina alone treated lesioned groups when compared with positive control lesioned group. Body movements and locomotor activity were improved statistically (pspirulina with amantadine and spirulina twice daily). Similar results were also seen in anti-oxidant levels which later on reached to the normal value. The levels of dopamine content had a statistically significant (pspirulina with amantadine treated lesioned group. Spirulina is a potent nutraceutical supplement all over the world, so my preclinical study may contribute to give an additional adjuvant drug therapy in aging related disorders (Neurodegenerative as well as diabetes associated neurodegenerative disorders).

  13. Novel fermented chickpea milk with enhanced level of ?-aminobutyric acid and neuroprotective effect on PC12 cells

    OpenAIRE

    Li, Wen; Wei, Mingming; Wu, Junjun; Rui, Xin; Dong, Mingsheng

    2016-01-01

    In this study, novel fermented chickpea milk with high γ -aminobutyric acid (GABA) content and potential neuroprotective activity was developed. Fermentation starter that can produce GABA was selected from 377 strains of lactic acid bacteria isolated from traditional Chinese fermented foods. Among the screened strains, strain M-6 showed the highest GABA-producing capacity in De Man–Rogosa and Sharp (MRS) broth and chickpea milk. M-6 was identified as Lactobacillus plantarum based on Gram stai...

  14. Neuroprotective Effects of Açaí (Euterpe oleracea Mart. against Rotenone In Vitro Exposure

    Directory of Open Access Journals (Sweden)

    Alencar Kolinski Machado

    2016-01-01

    Full Text Available Neuropsychiatric diseases, such as bipolar disorder (BD and schizophrenia (SCZ, have a very complex pathophysiology. Several current studies describe an association between psychiatric illness and mitochondrial dysfunction and consequent cellular modifications, including lipid, protein, and DNA damage, caused by cellular oxidative stress. Euterpe oleracea (açaí is a powerful antioxidant fruit. Açaí is an Amazonian palm fruit primarily found in the lowlands of the Amazonian rainforest, particularly in the floodplains of the Amazon River. Given this proposed association, this study analyzed the potential in vitro neuropharmacological effect of Euterpe oleracea (açaí extract in the modulation of mitochondrial function and oxidative metabolism. SH-SY5Y cells were treated with rotenone to induce mitochondrial complex I dysfunction and before and after we exposed the cells to açaí extract at 5 μg/mL. Treated and untreated cells were then analyzed by spectrophotometric, fluorescent, immunological, and molecular assays. The results showed that açaí extract can potentially increase protein amount and enzyme activity of mitochondrial complex I, mainly through NDUFS7 and NDUFS8 overexpression. Açaí extract was also able to decrease cell reactive oxygen species levels and lipid peroxidation. We thus suggest açaí as a potential candidate for drug development and a possible alternative BD therapy.

  15. Neuroprotective effects of 17β-estradiol in a rat model of neonatal X radiation

    International Nuclear Information System (INIS)

    Caceres, L.G.; Aon, L.; Saraceno, E.; Capani, F.; Guelman, L.R.

    2009-01-01

    Developing Central Nervous System (CNS) is vulnerable to radiation-induced reactive oxygen species (ROS). The consequent oxidative stress has been shown to produce changes at behavioral, biochemical and histological levels in cerebellum (CE) and hippocampus (HIP). The aim of the present work was to test if 17β-estradiol, a potential neuroprotector, was able to counteract these changes. Neonatal male Wistar rats were X-irradiated (5 Gy) in their cephalic ends up to 48hs of postnatal life and a group of this animals was treated with 17β-estradiol (5 g/g). Open field (OF) test, ROS levels, as well as a histological assessment, were performed at 30 postnatal days. Administration of 17β-estradiol improved the short-term habituation and decreased the time spent in the centre in the OF. ROS levels returned to control in HIP and the cytoarchitecture of CE was reconstituted. These results suggest that 17β-estradiol was able to counteract the effects of X-rays at behavioral, biochemical and histological levels, probably acting through an antioxidant mechanism. (authors)

  16. Hippocampal cAMP/PKA/CREB is required for neuroprotective effect of acupuncture.

    Science.gov (United States)

    Li, Qian-Qian; Shi, Guang-Xia; Yang, Jing-Wen; Li, Zhao-Xin; Zhang, Zhen-Hua; He, Tian; Wang, Jing; Liu, Li-Ying; Liu, Cun-Zhi

    2015-02-01

    Acupuncture has beneficial effects in vascular dementia (VaD) patients. The underlying mechanism, however, remains unknown. The present study was designed to investigate whether the cAMP/PKA/CREB cascade is involved in the mechanism of acupuncture in cerebral multi-infarction rats. In this study, cerebral multi-infarction was modeled in adult Wistar rats by homologous blood clot emboli. After a two-week acupuncture treatment at Zusanli (ST36), hippocampal-dependent memory was tested by employing a radial arm maze test. The hippocampus was isolated for analyses of cAMP concentration, phosphodiesterase (PDE) activity and CREB/pCREB and ERK/pERK expressions. The Morris water maze (MWM) task and CREB phosphorylation were evaluated in the presence of PKA-selective peptide inhibitor (H89). The radial arm maze test results demonstrated that acupuncture treatment at ST36 reversed hippocampal-dependent memory in impaired animals. Compared to those of the impaired group, cAMP concentration, PKA activity and pCREB and pERK expressions were increased following acupuncture therapy. Finally, the blockade of PKA reversed the increase in CREB phosphorylation and the improvement in recognitive function induced by acupuncture treatment. These results suggest that acupuncture could improve hippocampus function by modulating the cAMP/PKA/CREB signaling pathway, which represents a molecular mechanism of acupuncture for recognitive function in cerebral multi-infarction rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Neuroprotective effect of hesperidin on aluminium chloride induced Alzheimer's disease in Wistar rats.

    Science.gov (United States)

    Justin Thenmozhi, Arokiasamy; Raja, Tharsius Raja William; Janakiraman, Udaiyappan; Manivasagam, Thamilarasan

    2015-04-01

    The present study was aimed to evaluate the protective effect of hesperidin (Hes) on aluminium chloride (AlCl3) induced neurobehavioral and pathological changes in Alzheimeric rats. Intraperitonial injection of AlCl3 (100 mg/kg body weight) for 60 days significantly elevated the levels of aluminium (Al), activity of acetylcholinesterase (AChE) and protein expressions of amyloid precursor protein (APP), β amyloid (Aβ 1-42), β and γ secretases as compared to control group in hippocampus and cortex of rat brain. Hes administration orally along with AlCl3 injection for 60 days, significantly revert the Al concentration, AChE activity and Aβ synthesis-related molecules in the studied brain regions. Our results showed that aluminum exposure was significantly reduced the spontaneous locomotor and exploratory activities in open field test and enhanced the learning and memory impairments in morris water maze test. The behavioral impairments caused by aluminum were significantly attenuated by Hes. The histopathological studies in the hippocampus and cortex of rat brain also supported that Hes (100 mg/kg) markedly reduced the toxicity of AlCl3 and preserved the normal histoarchitecture pattern of the hippocampus and cortex. From these results, it is concluded that hesperidin can reverse memory loss caused by aluminum intoxication through attenuating AChE activity and amyloidogenic pathway.

  18. Co-administration of subtherapeutic diazepam enhances neuroprotective effect of COX-2 inhibitor, NS-398, after lithium pilocarpine-induced status epilepticus.

    Science.gov (United States)

    Trandafir, C C; Pouliot, W A; Dudek, F E; Ekstrand, J J

    2015-01-22

    Seizures during status epilepticus (SE) cause neuronal death and induce cyclooxygenase-2 (COX-2). Pilocarpine-induced SE was used to determine if COX-2 inhibition with NS-398, when administered alone or with diazepam, decreases the duration and/or intensity of SE and/or reduces neuronal injury in the rat hippocampus. Electroencephalogram (EEG) electrodes were implanted in male Sprague-Dawley rats. SE was induced with lithium-pilocarpine, and continuous EEG and video monitoring were performed for 24 h. Rats were divided into four groups (n=8-14 rats/group) and received NS-398, diazepam, NS-398 and diazepam, or vehicle 30 min after the first motor seizure. Six hours later, NS-398 injection was repeated in the NS-398 and in the NS-398+diazepam groups. The duration of SE (continuous spiking) and the EEG power in the γ-band were analyzed. FluoroJade B staining in the dorsal hippocampus at 24h after SE was analyzed semi-quantitatively in the CA1, CA3 and hilus. The duration and intensity of electrographic SE was not significantly different across the four groups. In rats treated with NS-398 alone, compared to vehicle-treated rats, neuronal damage was significantly lower compared to vehicle-treated rats in the CA3 (27%) and hilus (27%), but neuroprotection was not detected in the CA1. When NS-398 was administered with diazepam, decreased neuronal damage was further obtained in all areas investigated (CA1: 61%, CA3: 63%, hilus: 60%). NS-398, when administered 30 min after the onset of SE with a repeat dose at 6h, decreased neuronal damage in the hippocampus. Administration of diazepam with NS-398 potentiates the neuroprotective effect of the COX-2 inhibitor. These neuroprotective effects occurred with no detectable effect on electrographic SE. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Neuroprotective effect of carvedilol against aluminium induced toxicity: possible behavioral and biochemical alterations in rats.

    Science.gov (United States)

    Kumar, Anil; Prakash, Atish; Dogra, Samrita

    2011-01-01

    Aluminium, is a trace element available in the Earth's crust naturally and has a toxic potential for humans. It has been suggested as a contributing factor in the pathogenesis of Alzheimer's disease. β-Adrenoceptor blocking agents (β-blockers) have been established as therapeutics for the treatment of patients with hypertension, ischemic heart diseases, chronic heart failure, arrhythmias and glaucoma. Over the years, however, β-blockers have been associated with an incidence, albeit low, of central nervous system (CNS) side effects. In addition, noradrenergic receptors play a modulatory role in many nerve functions, including vigilance, attention, reward, learning and memory. Therefore, the present study has been designed to explore the possible role of carvedilol, an adrenergic antagonist against aluminium chloride-induced neurotoxicity in rats. Aluminium chloride (100 mg/kg) was administered daily for six weeks that significantly increased cognitive dysfunction in the Morris water maze and oxidative damage as indicated by a rise in lipid peroxidation and nitrite concentration and depleted reduced glutathione, superoxide dismutase, catalase and glutathione S-transferase activity compared to sham treatment. Chronic aluminium chloride treatment also significantly increased acetylcholinesterase activity and the aluminium concentration in brain compared to sham. Chronic administration of carvedilol (2.5 and 5 mg/kg, po) daily to rats for a period of 6 weeks significantly improved the memory performance tasks of rats in the Morris water maze test, attenuated oxidative stress (reduced lipid peroxidation, nitrite concentration and restored reduced glutathione, superoxide dismutase, catalase and glutathione S-transferase activity), decreased acetylcholinesterase activity and aluminium concentration in aluminium-treated rats compared to control rats (p aluminium chloride-induced cognitive dysfunction and oxidative damage.

  20. Chemical Analysis of Extracts from Newfoundland Berries and Potential Neuroprotective Effects

    Directory of Open Access Journals (Sweden)

    Mohammad Z. Hossain

    2016-10-01

    Full Text Available Various species of berries have been reported to contain several polyphenolic compounds, such as anthocyanins and flavonols, which are known to possess high antioxidant activity and may be beneficial for human health. To our knowledge, a thorough chemical analysis of polyphenolics in species of these plants native to Newfoundland, Canada has not been conducted. The primary objective of this study was to determine the polyphenolic compounds present in commercial extracts from Newfoundland berries, which included blueberries (V. angustifolium, lingonberries (V. vitis-idaea and black currant (Ribes lacustre. Anthocyanin and flavonol glycosides in powdered extracts from Ribes lacustre and the Vaccinium species were identified using the high performance liquid chromatographic (HPLC separation method with mass spectrometric (MS detection. The identified compounds were extracted from dried berries by various solvents via ultrasonication followed by centrifugation. A reverse-phase analytical column was employed to identify the retention time of each chemical component before submission for LC–MS analysis. A total of 21 phenolic compounds were tentatively identified in the three species. Further, we tested the effects of the lingonberry extract for its ability to protect neurons and glia from trauma utilizing an in vitro model of cell injury. Surprisingly, these extracts provided complete protection from cell death in this model. These findings indicate the presence of a wide variety of anthocyanins and flavonols in berries that grow natively in Newfoundland. These powdered extracts maintain these compounds intact despite being processed from berry fruit, indicating their potential use as dietary supplements. In addition, these recent findings and previous data from our lab demonstrate the ability of compounds in berries to protect the nervous system from traumatic insults.

  1. Curcumin Encapsulated into Methoxy Poly(Ethylene Glycol) Poly(ε-Caprolactone) Nanoparticles Increases Cellular Uptake and Neuroprotective Effect in Glioma Cells.

    Science.gov (United States)

    Marslin, Gregory; Sarmento, Bruno Filipe Carmelino Cardoso; Franklin, Gregory; Martins, José Alberto Ribeiro; Silva, Carlos Jorge Ribeiro; Gomes, Andreia Ferreira Castro; Sárria, Marisa Passos; Coutinho, Olga Maria Fernandes Pereira; Dias, Alberto Carlos Pires

    2017-03-01

    Curcumin is a natural polyphenolic compound isolated from turmeric ( Curcuma longa ) with well-demonstrated neuroprotective and anticancer activities. Although curcumin is safe even at high doses in humans, it exhibits poor bioavailability, mainly due to poor absorption, fast metabolism, and rapid systemic elimination. To overcome these issues, several approaches, such as nanoparticle-mediated targeted delivery, have been undertaken with different degrees of success. The present study was conducted to compare the neuroprotective effect of curcumin encapsulated in poly( ε -caprolactone) and methoxy poly(ethylene glycol) poly( ε -caprolactone) nanoparticles in U251 glioblastoma cells. Prepared nanoparticles were physically characterized by laser doppler anemometry, transmission electron microscopy, and X-ray diffraction. The results from laser doppler anemometry confirmed that the size of poly( ε -caprolactone) and poly(ethylene glycol) poly( ε -caprolactone) nanoparticles ranged between 200-240 nm for poly( ε -caprolactone) nanoparticles and 30-70 nm for poly(ethylene glycol) poly( ε -caprolactone) nanoparticles, and transmission electron microscopy images revealed their spherical shape. Treatment of U251 glioma cells and zebrafish embryos with poly( ε -caprolactone) and poly(ethylene glycol) poly( ε -caprolactone) nanoparticles loaded with curcumin revealed efficient cellular uptake. The cellular uptake of poly(ethylene glycol) poly( ε -caprolactone) nanoparticles was higher in comparison to poly( ε -caprolactone) nanoparticles. Moreover, poly(ethylene glycol) poly( ε -caprolactone) di-block copolymer-loaded curcumin nanoparticles were able to protect the glioma cells against tBHP induced-oxidative damage better than free curcumin. Together, our results show that curcumin-loaded poly(ethylene glycol) poly( ε -caprolactone) di-block copolymer nanoparticles possess significantly stronger neuroprotective effect in U251 human glioma cells compared to

  2. Electro-acupuncture at LI11 and ST36 acupoints exerts neuroprotective effects via reactive astrocyte proliferation after ischemia and reperfusion injury in rats.

    Science.gov (United States)

    Tao, Jing; Zheng, Yi; Liu, Weilin; Yang, Shanli; Huang, Jia; Xue, Xiehua; Shang, Guanhao; Wang, Xian; Lin, Ruhui; Chen, Lidian

    2016-01-01

    Reactive astrogliosis is a common phenomenon in central nervous system (CNS) injuries such as ischemic stroke. The present study aimed to deeply investigate the relationships between the neuroprotective effect of electro-acupuncture (EA) and reactive astrocytes following cerebral ischemia. EA treatment at the Quchi (LI11) and Zusanli (ST36) acupoints at Day 3 attenuated neurological deficits and cerebral infarct volume in ischemia and reperfusion (I/R) injured rats. Animal behavior assessments found that the speed of Catwalk gait, equilibrium and coordination of Rotarod test were improved. Furthermore, EA treatment exerted neuroprotective effects via activation of glial fibrillary acidic protein (GFAP), vimentin and nestin positive cells. Simultaneously, an obvious increase in GFAP/vimentin, GFAP/nestin and GFAP/BrdU co-labeling appeared in the peri-infract cortex and striatum, suggesting EA can promote the proliferation of GFAP/vimentin/nestin-positive reactive astrocytes. The expression of cell cycle-associated proteins Cyclin Dl, CDK4 and phospho-Rb were increased in the peri-infract cortex and striatum, indicating proliferated reactive astrocytes-mediated CyclinDl/CDK4 regulation of the transition of the G1-to-S cell cycle phases. In addition, EA enhanced the localized expression of brain-derived neurotrophic factor (BDNF) in the peri-infract cortex and striatum. These results demonstrated that EA treatment at the LI11 and ST36 acupoints on Day 3 exerted neuroprotection via proliferation of GFAP/vimentin/nestin-positive reactive astrocytes and, potentially, secretion of reactive astrocytes-derived BDNF in I/R injured rats. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Early applied electric field stimulation attenuates secondary apoptotic responses and exerts neuroprotective effects in acute spinal cord injury of rats.

    Science.gov (United States)

    Zhang, C; Zhang, G; Rong, W; Wang, A; Wu, C; Huo, X

    2015-04-16

    Injury potential, which refers to a direct current voltage between intact and injured nerve ends, is mainly caused by injury-induced Ca2+ influx. Our previous studies revealed that injury potential increased with the onset and severity of spinal cord injury (SCI), and an application of applied electric field stimulation (EFS) with the cathode distal to the lesion could delay and attenuate injury potential formation. As Ca2+ influx is also considered as a major trigger for secondary injury after SCI, we hypothesize that EFS would protect an injured spinal cord from secondary injury and consequently improve functional and pathological outcomes. In this study, rats were divided into three groups: (1) sham group, laminectomy only; (2) control group, subjected to SCI only; and (3) EFS group, received EFS immediately post-injury with the injury potential modulated to 0±0.5 mV by EFS. Functional recovery of the hind limbs was assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. Results revealed that EFS-treated rats exhibited significantly better locomotor function recovery. Luxol fast blue staining was performed to assess the spared myelin area. Immunofluorescence was used to observe the number of myelinated nerve fibers. Ultrastructural analysis was performed to evaluate the size of myelinated nerve fibers. Findings showed that the EFS group rats exhibited significantly less myelin loss and had larger and more myelinated nerve fibers than the control group rats in dorsal corticospinal tract (dCST) 8 weeks after SCI. Furthermore, we found that EFS inhibited the activation of calpain and caspase-3, as well as the expression of Bax, as detected by Western blot analysis. Moreover, EFS decreased cellular apoptosis, as measured by TUNEL, within 4 weeks post-injury. Results suggest that early EFS could significantly reduce spinal cord degeneration and improve functional and historical recovery. Furthermore, these neuroprotective effects may be related to

  4. Validation of ethnopharmacology of ayurvedic sarasvata ghrita and comparative evaluation of its neuroprotective effect with modern alcoholic and lipid based extracts in β-amyloid induced memory impairment.

    Science.gov (United States)

    Shelar, Madhuri; Nanaware, Sadhana; Arulmozhi, S; Lohidasan, Sathiyanarayanan; Mahadik, Kakasaheb

    2018-03-01

    Sarasvata ghrita (SG), a polyherbal formulation from ayurveda, an ancient medicinal system of India, has been used to improve intelligence and memory, treat speech delay, speaking difficulties and low digestion power in children. Study aimed to validate the ethno use of SG in memory enhancement through systematic scientific protocol. The effect of SG and modern extracts of ingredients of SG was compared on cognitive function and neuroprotection in amyloid-β peptide 25-35(Aβ25-35) induced memory impairment in wistar rats. Further the underlying mechanism for neuroprotective activity was investigated. SG was prepared as per traditional method, ethanolic extract (EE) was prepared by conventional method and lipid based extract was prepared by modern extraction method. All extracts were standardised by newly developed HPLC method with respect to marker compounds. SG, EE and LE were administered orally to male Wistar rats at doses of 100,200 and 400 mg/kg Body Weight by feeding needle for a period of 21 days after the intracerebroventricular administration of Aβ25-35 bilaterally. Spatial memory of rats was tested using Morris water maze (MWM) and Radial arm maze (RAM) test. The possible underlying mechanisms for the cognitive improvement exhibited by SG, EE and LE was investigated through ex-vivo brain antioxidant effect, monoamine level estimation, acetylcholine esterase (AchE) inhibitory effect and Brain-derived neurotropic factor (BDNF) levels estimation. SG, EE and LE were analyzed by HPLC method, results showed that EE extract has high percent of selected phytoconstituents as compared with SG and LE. SG and LE decrease escape latency and searching distance in a dose dependant manner during MWM test. In case of RAM significant decrease in number of errors and increase in number of correct choices indicate an elevation in retention and recall aspects of learning and memory after administration of SG an LE. SG and LE extract can efficiently prevent accumulation of

  5. Possible Involvement of Nitric Oxide Modulatory Mechanisms in the Neuroprotective Effect of Centella asiatica Against Sleep Deprivation Induced Anxiety Like Behaviour, Oxidative Damage and Neuroinflammation.

    Science.gov (United States)

    Chanana, Priyanka; Kumar, Anil

    2016-04-01

    Sleep deprivation (SD) is an experience of inadequate or poor quality of sleep that may produce significant alterations in multiple neural systems. Centella asiatica (CA) is a psychoactive medicinal herb with immense therapeutic potential. The present study was designed to explore the possible nitric oxide (NO) modulatory mechanism in the neuroprotective effect of CA against SD induced anxiety like behaviour, oxidative damage and neuroinflammation. Male laca mice were sleep deprived for 72 h, and CA (150 and 300 mg/kg) was administered alone and in combination with NO modulators for 8 days, starting five days before 72-h SD exposure. Various behavioural (locomotor activity, elevated plus maze) and biochemical (lipid peroxidation, reduced glutathione, catalase, nitrite levels and superoxide dismutase activity), neuroinflammation marker (TNF-alpha) were assessed subsequently. CA (150 and 300 mg/kg) treatment for 8 days significantly improved locomotor activity, anti-anxiety like effect and attenuated oxidative damage and TNF α level as compared to sleep-deprived 72-h group. Also while the neuroprotective effect of CA was increased by NO antagonists, it was diminished by NO agonists. The present study suggests that NO modulatory mechanism could be involved in the protective effect of CA against SD-induced anxiety-like behaviour, oxidative damage and neuroinflammation in mice. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Statins: Mechanisms of neuroprotection

    NARCIS (Netherlands)

    van der Most, Peter J.; Dolga, Amalia; Nijholt, Ingrid M.; Luiten, Paul G. M.; Eisel, Ulrich L. M.

    Clinical trials report that the class of drugs known as statins may be neuroprotective in Alzheimer's and Parkinson's disease, and further trials are currently underway to test whether these drugs are also beneficial in multiple sclerosis and acute stroke treatment. Since statins are well tolerated

  7. Breathing, feeding, and neuroprotection

    National Research Council Canada - National Science Library

    Homma, Ikuo; Shioda, S

    2006-01-01

    ... of knowledge of brain functions and morphology. Akiyoshi Hosoyamada, M.D., Ph.D. President Showa University, Tokyo 142-8555, Japan December 2005Preface Brain research is on the march, with several advanced technical developments and new findings uncovered almost daily. Within the brain-research fields, we focus on breathing, neuroprotection, an...

  8. Sustained-release of FGF-2 from a hybrid hydrogel of heparin-poloxamer and decellular matrix promotes the neuroprotective effects of proteins after spinal injury

    Directory of Open Access Journals (Sweden)

    Xu HL

    2018-02-01

    Full Text Available  He-Lin Xu,1,* Fu-Rong Tian,1,* Jian Xiao,1,* Pian-Pian Chen,1 Jie Xu,1 Zi-Liang Fan,1 Jing-Jing Yang,1 Cui-Tao Lu,1 Ying-Zheng Zhao1,2 1Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 2Hainan Medical College, Haikou, China *These authors contributed equally to this work Introduction: The short lifetime of protein-based therapies has largely limited their therapeutic efficacy in injured nervous post-spinal cord injury (post-SCI. Methods: In this study, an affinity-based hydrogel delivery system provided sustained-release of proteins, thereby extending the efficacy of such therapies. The affinity-based hydrogel was constructed using a novel polymer, heparin-poloxamer (HP, as a temperature-sensitive bulk matrix and decellular spinal cord extracellular matrix (dscECM as an affinity depot of drug. By tuning the concentration of HP in formulation, the cold ternary fibroblast growth factor-2 (FGF2-dscECM-HP solution could rapidly gelatinize into a hydrogel at body temperature. Due to the strong affinity for FGF2, hybrid FGF2-dscECM-HP hydrogel enabled sustained-release of encapsulated FGF2 over an extended period in vitro. Results: Compared to free FGF2, it was observed that both neuron functions and tissue morphology after SCI were clearly recovered in rats treated with FGF2-dscECM-HP hydrogel. Moreover, the expression of neurofilament protein and the density of axons were increased after treatment with hybrid FGF2-dscECM-HP. In addition, the neuroprotective effects of FGF2-dscECM-HP were related to inhibition of chronic endoplasmic reticulum stress-induced apoptosis.Conclusion: The results revealed that a hybrid hydrogel system may be a potential carrier to deliver macromolecular proteins to the injured site and enhance the therapeutic effects of proteins.Keywords: spinal cord injury, decellularized extracellular matrix, thermosensitive hydrogel, adsorption, basic fibroblast growth factor

  9. Neuroprotective Effects of Jitai Tablet, a Traditional Chinese Medicine, on the MPTP-Induced Acute Model of Parkinson’s Disease: Involvement of the Dopamine System

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2014-01-01

    Full Text Available Jitai tablet (JTT is a traditional Chinese medicine used to treat neuropsychiatric disorders. We previously demonstrated that JTT treatment led to increased level of dopamine transporter (DAT in the striatum, thus indicating that JTT might have therapeutic potential for Parkinson’s disease (PD, which is characterized by dysregulated dopamine (DA transmission and decreased striatal DAT expression. The aim of this study was to investigate the neuroprotective effect of JTT on MPTP-induced PD mice. Using locomotor activity test and rotarod test, we evaluated the effects of JTT (0.50, 0.15, or 0.05 g/kg on MPTP-induced behavioral impairments. Tyrosine hydroxylase TH-positive neurons in the substantia nigra and DAT and dopamine D2 receptor (D2R levels in the striatum were detected by immunohistochemical staining and/or autoradiography. Levels of DA and its metabolites were determined by HPLC. In MPTP-treated mice, behavioral impairments were alleviated by JTT treatment. Moreover, JTT protected against impairment of TH-positive neurons and attenuated the MPTP-induced decreases in DAT and D2R. Finally, high dose of JTT (0.50 g/kg inhibited the MPTP-induced increase in DA metabolism rate. Taken together, results from our present study provide evidence that JTT offers neuroprotective effects against the neurotoxicity of MPTP and thus might be a potential treatment for PD.

  10. Neuroprotective effects of honokiol against beta-amyloid-induced neurotoxicity via GSK-3β and β-catenin signaling pathway in PC12 cells.

    Science.gov (United States)

    Xian, Yan-Fang; Ip, Siu-Po; Mao, Qing-Qiu; Lin, Zhi-Xiu

    2016-07-01

    Beta-amyloid (Aβ) accumulation, one of the most important pathogenic traits of Alzheimer's disease (AD), has been reported to induce neurotoxicity in vitro as well as in vivo. Honokiol, isolated from the bark of Magnolia officinalis, has neuroprotective effects in different models of AD in vivo and in vitro. However, the exact mechanism for its neuroprotective effect is not well understood. The present study aimed to investigate the molecular mechanisms underlying the protective action of honokiol against Aβ1-42-induced neurotoxicity in cultured rat pheochromocytoma (PC12) cells. The results revealed that honokiol protected PC12 cells from Aβ1-42 induced cytotoxicity with increases in cell viability, GSH production and Bcl-2 expression, but decreases in the release of lactate dehydrogenase and cytochrome c, the amount of DNA fragmentation and MDA level, as well as Bax expression. Mechanistic study showed that honokiol could inhibit the activation of glycogen synthase kinase (GSK)-3β, attenuate the nuclear accumulation of β-catenin and suppress the phosphorylation of β-catenin (Ser33/Ser37/Thr41 site) in the Aβ1-42-treated PC12 cells. These results indicate that the anti-oxidative and anti-apoptotic effects of honokiol in Aβ1-42-treated PC12 cells may be mediated, at least in part, by regulation the GSK-3β and β-catenin signaling pathways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. In vivo longitudinal proton magnetic resonance spectroscopy on neonatal hypoxic-ischemic rat brain injury – Neuroprotective effects of acetyl-L-carnitine

    Science.gov (United States)

    Xu, Su; Waddell, Jaylyn; Zhu, Wenjun; Shi, Da; Marshall, Andrew D; McKenna, Mary C; Gullapalli, Rao P

    2014-01-01

    Purpose This study evaluated the longitudinal metabolic alterations after neonatal hypoxia-ischemia (HI) in rats and tested the neuroprotective effect of acetyl-L-carnitine (ALCAR) using in vivo proton short-TE Point-RESolved Spectroscopy method. Methods Rice-Vannucci model was used on 7-day-old Sprague-Dawley rats. Data were acquired from contralateral and ipsilateral cortex and hippocampus, respectively at 4 time points (24-h, 72-h, 7-d, 28-d) post-HI. The effect of subcutaneous administration of ALCAR (100 mg/kg) immediately after HI, at 4-h, 24-h, and 48-h post-HI was determined. Results Significant reductions in glutathione (p < 0.005), myo-inositol (p < 0.002), taurine (p < 0.001), and total creatine (p < 0.005) were observed at 24-h post injury compared to the control group in the ipsilateral hippocampus of the HI rat pups. ALCAR-treated-HI rats had lower levels of lactate and maintained total creatine at 24-h and had smaller lesion size compared to the HI only rats. Conclusion Severe oxidative, osmotic stress, impaired phosphorylation, and a preference for anaerobic glycolysis were found in the ipsilateral hippocampus in the HI pups at 24-h post injury. ALCAR appeared to have a neuroprotective effect if administered early after HI by serving as an energy substrate and promote oxidative cerebral energy producing and minimize anaerobic glycolysis. PMID:25461739

  12. Neuroprotective Effect of Gui Zhi (Ramulus Cinnamomi on Ma Huang- (Herb Ephedra- Induced Toxicity in Rats Treated with a Ma Huang-Gui Zhi Herb Pair

    Directory of Open Access Journals (Sweden)

    Fang-hao Zheng

    2015-01-01

    Full Text Available Herb Ephedra (Ma Huang in Chinese and Ramulus Cinnamomi (Gui Zhi in Chinese are traditional Chinese herbs, often used together to treat asthma, nose and lung congestion, and fever with anhidrosis. Due to the adverse effects of ephedrine, clinical use of Ma Huang is restricted. However, Gui Zhi extract has been reported to decrease spontaneous activity in rats and exert anti-inflammatory and neuroprotective effects. The present study explored the possible inhibitory effect of Gui Zhi on Ma Huang-induced neurotoxicity in rats when the two herbs were used in combination. All Ma Huang and Ma Huang-Gui Zhi herb pair extracts were prepared using methods of traditional Chinese medicine and were normalized based on the ephedrine content. Two-month-old male Sprague-Dawley rats (n=6 rats/group were administered Ma Huang or the Ma Huang-Gui Zhi herb pair extracts for 7 days (ephedrine = 48 mg/kg, and locomotor activity was measured. After 7 days, oxidative damage in the prefrontal cortex was measured. Gui Zhi decreased hyperactivity and sensitization produced by repeated Ma Huang administration and attenuated oxidative stress induced by Ma Huang. The results of this study demonstrate the neuroprotective potential of Gui Zhi in Ma Huang-induced hyperactivity and oxidative damage in the prefrontal cortex of rats when used in combination.

  13. Effect of random charge fluctuation on strongly coupled dusty Plasma

    Science.gov (United States)

    Issaad, M.; Rouiguia, L.; Djebli, M.

    2008-09-01

    Modeling the interaction between particles is an open issue in dusty plasma. We dealt with strongly coupled dust particles in two dimensional confined system. For small number of clusters, we investigate the effect of random charge fluctuation on background configuration. The study is conducted for a short rang as well as a long rang potential interaction. Numerical simulation is performed using Monte-Carlo simulation in the presence of parabolic confinement and at low temperature. We have studied the background configurations for a dust particles with constant charge and in the presence of random charge fluctuation due to the discrete nature of charge carriers. The latter is studied for a positively charged dust when the dominant charging process is due to photo-emission from the dust surface. It is found, for small classical cluster consisting of small number of particles, short rang potential gives the same result as long rang one. It is also found that the random charge fluctuation affect the background configurations.

  14. Wine Polyphenols: Potential Agents in Neuroprotection

    Science.gov (United States)

    Basli, Abdelkader; Soulet, Stéphanie; Chaher, Nassima; Mérillon, Jean-Michel; Chibane, Mohamed; Monti, Jean-Pierre; Richard, Tristan

    2012-01-01

    There are numerous studies indicating that a moderate consumption of red wine provides certain health benefits, such as the protection against neurodegenerative diseases. This protective effect is most likely due to the presence of phenolic compounds in wine. Wine polyphenolic compounds are well known for the antioxidant properties. Oxidative stress is involved in many forms of cellular and molecular deterioration. This damage can lead to cell death and various neurodegenerative disorders, such as Parkinson's or Alzheimer's diseases. Extensive investigations have been undertaken to determine the neuroprotective effects of wine-related polyphenols. In this review we present the neuroprotective abilities of the major classes of wine-related polyphenols. PMID:22829964

  15. In vitro and in vivo evidences that antioxidant action contributes to the neuroprotective effects of the neuronal nitric oxide synthase and monoamine oxidase-B inhibitor, 7-nitroindazole.

    Science.gov (United States)

    Thomas, Bobby; Saravanan, Karuppagounder S; Mohanakumar, Kochupurackal P

    2008-05-01

    The neuronal nitric oxide synthase (nNOS) inhibitor, 7-nitroindazole (7-NI) is neuroprotective against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Monoamine oxidase (MAO)-B inhibitory action partially contributes to this effect. We tested the hypothesis that 7-NI could be a powerful hydroxyl radical (OH) scavenger, and interferes with oxidative stress caused by MPTP. We measured OH, reduced glutathione (GSH), as well as superoxide dismutase (SOD) and catalase activities in the nucleus caudatus putamen and substantia nigra of Balb/c mice following MPTP and/or 7-NI administration. The nNOS inhibitor caused dose-dependent inhibition in the production of OH in (i) Fenton-like reaction employing ferrous citrate in a cell-free system in test tubes, (ii) in isolated mitochondrial preparation in presence of MPP+, and (iii) in the striatum of mice systemically treated with MPTP. An MPTP-induced depletion of GSH in both the nuclei was blocked by 7-NI, which was dose-dependent (10-50mg/kg), but independent of MAO-B inhibition. The nNOS-mediated recovery of GSH paralleled attenuation of MPTP-induced depletion of striatal dopamine. MPTP-induced increase in the activities of striatal or nigral SOD and catalase were significantly attenuated by 7-NI treatment. These results suggest potent antioxidant action of 7-NI in its neuroprotective effects against MPTP-induced neurotoxicity.

  16. Neuroprotective Effects of Hesperidin, a Plant Flavanone, on Rotenone-Induced Oxidative Stress and Apoptosis in a Cellular Model for Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Kuppusamy Tamilselvam

    2013-01-01

    Full Text Available Rotenone a widely used pesticide that inhibits mitochondrial complex I has been used to investigate the pathobiology of PD both in vitro and in vivo. Studies have shown that the neurotoxicity of rotenone may be related to its ability to generate reactive oxygen species (ROS, leading to neuronal apoptosis. The current study was carried out to investigate the neuroprotective effects of hesperidin, a citrus fruit flavanol, against rotenone-induced apoptosis in human neuroblastoma SK-N-SH cells. We assessed cell death, mitochondrial membrane potential, ROS generation, ATP levels, thiobarbituric acid reactive substances, reduced glutathione (GSH levels, and the activity of catalase, superoxide dismutase (SOD and glutathione peroxidase (GPx using well established assays. Apoptosis was determined in normal, rotenone, and hesperidin treated cells, by measuring the protein expression of cytochrome c (cyt c, caspases 3 and 9, Bax, and Bcl-2 using the standard western blotting technique. The apoptosis in rotenone-induced SK-N-SH cells was accompanied by the loss of mitochondrial membrane potential, increased ROS generation, the depletion of GSH, enhanced activities of enzymatic antioxidants, upregulation of Bax, cyt c, and caspases 3 and 9, and downregulation of Bcl-2, which were attenuated in the presence of hesperidin. Our data suggests that hesperidin exerts its neuroprotective effect against rotenone due to its antioxidant, maintenance of mitochondrial function, and antiapoptotic properties in a neuroblastoma cell line.

  17. Neuroprotective Mechanisms of Taurine against Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Janet Menzie

    2013-06-01

    Full Text Available Ischemic stroke exhibits a multiplicity of pathophysiological mechanisms. To address the diverse pathophysiological mechanisms observed in ischemic stroke investigators seek to find therapeutic strategies that are multifaceted in their action by either investigating multipotential compounds or by using a combination of compounds. Taurine, an endogenous amino acid, exhibits a plethora of physiological functions. It exhibits antioxidative properties, stabilizes membrane, functions as an osmoregulator, modulates ionic movements, reduces the level of pro-inflammators, regulates intracellular calcium concentration; all of which contributes to its neuroprotective effect. Data are accumulating that show the neuroprotective mechanisms of taurine against stroke pathophysiology. In this review, we describe the neuroprotective mechanisms employed by taurine against ischemic stroke and its use in clinical trial for ischemic stroke.

  18. The neuroprotective effects and possible mechanism of action of a methanol extract from Asparagus cochinchinensis: In vitro and in vivo studies.

    Science.gov (United States)

    Jalsrai, A; Numakawa, T; Kunugi, H; Dieterich, D C; Becker, A

    2016-05-13

    Extracts of Asparagus cochinchinensis (AC) have antitumor, anti-inflammatory, and immunostimulant effects. The neurobiological mechanisms underlying the effects of AC have not been sufficiently explored. Thus we performed in vivo and in vitro experiments to further characterize potential therapeutic effects and to clarify the underlying mechanisms. In the tail suspension test immobility time was significantly reduced after administration of AC which suggests antidepressant-like activity without effect on body core temperature. Moreover, in animals pretreated with AC infarct size after occlusion of the middle cerebral artery was reduced. In vitro experiments confirmed neuroprotective effects. Total saponin obtained from AC significantly inhibited H2O2-induced cell death in cultured cortical neurons. The survival-promoting effect by AC saponins was partially blocked by inhibitors for extracellular signal-regulated kinase (ErK) and phosphoinositide 3-kinase Akt (PI3K/Akt) cascades, both of which are known as survival-promoting signaling molecules. Furthermore, phosphorylation of Scr homology-2 (SH2) domain-containing phosphatase 2 (Shp-2) was induced by AC, and the protective effect of AC was abolished by NSC87877, an inhibitor for Shp-2, suggesting an involvement of Shp-2 mediated intracellular signaling in AC saponins. Moreover, AC-induced activation of pShp-2 and ErK1/2 were blocked by NSC87877 indicating that activation of these signaling pathways was mediated by the Shp-2 signaling pathway. These effects appear to be associated with activation of the Shp-2, ErK1/2 and Akt signaling pathways. Our results suggest that AC has antidepressant-like and neuroprotective (reducing infarct size) effects and that activation of pShp-2 and pErK1/2 pathways may be involved in the effects. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Neuroprotective effect of Manasamitra vatakam against aluminium induced cognitive impairment and oxidative damage in the cortex and hippocampus of rat brain.

    Science.gov (United States)

    Thirunavukkarasu, Sathiravada Veerasamy; Venkataraman, Subramanium; Raja, Sundararajan; Upadhyay, Lokesh

    2012-01-01

    Manasamitra vatakam (MMV) has long been used as a traditional medicine in India for the treatment of psychosomatic diseases, anxiety neurosis, and stress. The present study was designed to examine the neuroprotective effect of MMV against aluminum (Al)-induced memory impairment and oxidative damage in rats. Neurotoxicity was induced by the administration of Al [100 mg/kg body weight (b.w.) per oral (p.o.)/day] to Wistar albino rats for 90 days. Al administration induced neurotoxicity as well as oxidative stress by affecting the active avoidance and memory impairment, as well as altering antioxidants, such as HSP70 protein, superoxide dismutase, catalase, reduced glutathione, glutathione peroxidase, and acetylcholinesterase. It was observed that the administration of MMV (100 mg/kg b.w./p.o./day) along with AlCl(3) improves memory performance and antioxidant activity against Al-induced neurotoxicity in rats. In conclusion, these data suggest that MMV can prevent brain damage from Al-induced neurotoxicity in rats and thus can be used as a neuroprotective agent.

  20. Neuroprotective Effect of Total and Sequential Extract of Scrophularia striata Boiss. in Rat Cerebellar Granule Neurons Following Glutamate- Induced Neurotoxicity: An In-vitro Study

    Science.gov (United States)

    Salavati, Parvin; Ramezani, Mina; Monsef-Esfahani, Hamid R; Hajiagha, Reza; Parsa, Maliheh; Tavajohi, Shoreh; Ostad, Seyed Nasser

    2013-01-01

    Neuroprotective effect of the extract from aerial parts of Scrophularia striata Boiss (Scrophulariaceae) was investigated against glutamate-induced neurotoxicity on cultured rat pups Cerebellar Granule Neurons (CGNs). CGNs from 8 days old Sprague-Dawley rat were prepared and cultured. The experiments were performed after 8 days in culture. The plant was collected from the northeastern part (Ruin region) of Iran and air-dried at room temperature. The total extract was prepared with maceration of prepared powder in ethanol 80% for three times. Sequential extracts were obtained using dried and powdered aerial parts with increasingly polar solvents: petroleum ether, chloroform, ethyl acetate and methanol 80% solution. Cultured cells were exposed to 125 μM of glutamate for 12 h following a 24 h of incubation with test fractions at concentration of 10 mcg/mL. Morphological assay was performed using invert light microscope after fixation and staining with haematoxylin. Neuronal viability was measured using MTT assay. Statistical analysis was done using SPSS software. One way analysis of variance (ANOVA) was performed by Tukey post-hoc test. Values were considered statistically significant when p-value ≤ 0.05. Results of this study showed a significant neuroprotective activity of high polarity methanolic fraction of aerial parts of Scrophularia striata against glutamate-induced neurotoxicity in a dosedependent manner. Treatment with 10 mcg/mL of the fractions showed the best result. PMID:24250613

  1. A Systematic, Integrated Study on the Neuroprotective Effects of Hydroxysafflor Yellow A Revealed by H1 NMR-Based Metabonomics and the NF-κB Pathway

    Directory of Open Access Journals (Sweden)

    Yuanyan Liu

    2013-01-01

    Full Text Available Hydroxysafflor yellow A (HSYA is the main active component of the Chinese herb Carthamus tinctorius L.. Purified HSYA is used as a neuroprotective agent to prevent cerebral ischemia. Injectable safflor yellow (50 mg, containing 35 mg HSYA is widely used to treat patients with ischemic cardiocerebrovascular disease. However, it is unknown how HSYA exerts a protective effect on cerebral ischemia at the molecular level. A systematical integrated study, including histopathological examination, neurological evaluation, blood-brain barrier (BBB, metabonomics, and the nuclear factor-κB (NF-κB pathway, was applied to elucidate the pathophysiological mechanisms of HSYA neuroprotection at the molecular level. HSYA could travel across the BBB, significantly reducing the infarct volume and improving the neurological functions of rats with ischemia. Treatment with HSYA could lead to relative corrections of the impaired metabolic pathways through energy metabolism disruption, excitatory amino acid toxicity, oxidative stress, and membrane disruption revealed by 1H NMR-based metabonomics. Meanwhile, HSYA treatment inhibits the NF-κB pathway via suppressing proinflammatory cytokine expression and p65 translocation and binding activity while upregulating an anti-inflammatory cytokine.

  2. Certain relativistic effects due to strong electromagnetic fields in plasmas

    International Nuclear Information System (INIS)

    Tsintsadze, N.L.

    1974-01-01

    It is shown that the propagation of a strong electromagnetic wave in an electron plasma can lead to a generation of a constant electron current along the direction of propagation and to a large increase in the average electron density. (Auth.)

  3. Neuroprotective Drug for Nerve Trauma Revealed Using Artificial Intelligence.

    Science.gov (United States)

    Romeo-Guitart, David; Forés, Joaquim; Herrando-Grabulosa, Mireia; Valls, Raquel; Leiva-Rodríguez, Tatiana; Galea, Elena; González-Pérez, Francisco; Navarro, Xavier; Petegnief, Valerie; Bosch, Assumpció; Coma, Mireia; Mas, José Manuel; Casas, Caty

    2018-01-30

    Here we used a systems biology approach and artificial intelligence to identify a neuroprotective agent for the treatment of peripheral nerve root avulsion. Based on accumulated knowledge of the neurodegenerative and neuroprotective processes that occur in motoneurons after root avulsion, we built up protein networks and converted them into mathematical models. Unbiased proteomic data from our preclinical models were used for machine learning algorithms and for restrictions to be imposed on mathematical solutions. Solutions allowed us to identify combinations of repurposed drugs as potential neuroprotective agents and we validated them in our preclinical models. The best one, NeuroHeal, neuroprotected motoneurons, exerted anti-inflammatory properties and promoted functional locomotor recovery. NeuroHeal endorsed the activation of Sirtuin 1, which was essential for its neuroprotective effect. These results support the value of network-centric approaches for drug discovery and demonstrate the efficacy of NeuroHeal as adjuvant treatment with surgical repair for nervous system trauma.

  4. Lactoferrin-modified rotigotine nanoparticles for enhanced nose-to-brain delivery: LESA-MS/MS-based drug biodistribution, pharmacodynamics, and neuroprotective effects

    Directory of Open Access Journals (Sweden)

    Yan X

    2018-01-01

    Full Text Available Xiuju Yan,1,* Lixiao Xu,1,* Chenchen Bi,1 Dongyu Duan,1 Liuxiang Chu,1 Xin Yu,1 Zimei Wu,1 Aiping Wang,1,2 Kaoxiang Sun1,2 1School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University, Ministry of Education, Yantai University, Yantai, Shandong Province, 2State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co., Ltd, Yantai, Shandong Province, People’s Republic of China *These authors contributed equally to this work Introduction: Efficient delivery of rotigotine into the brain is crucial for obtaining maximum therapeutic efficacy for Parkinson’s disease (PD. Therefore, in the present study, we prepared lactoferrin-modified rotigotine nanoparticles (Lf-R-NPs and studied their biodistribution, pharmacodynamics, and neuroprotective effects following nose-to-brain delivery in the rat 6-hydroxydopamine model of PD.Materials and methods: The biodistribution of rotigotine nanoparticles (R-NPs and Lf-R-NPs after intranasal administration was assessed by liquid extraction surface analysis coupled with tandem mass spectrometry. Contralateral rotations were quantified to evaluate pharmacodynamics. Tyrosine hydroxylase and dopamine transporter immunohistochemistry were performed to compare the neuroprotective effects of levodopa, R-NPs, and Lf-R-NPs.Results: Liquid extraction surface analysis coupled with tandem mass spectrometry analysis, used to examine rotigotine biodistribution, showed that Lf-R-NPs more efficiently supplied rotigotine to the brain (with a greater sustained amount of the drug delivered to this organ, and with more effective targeting to the striatum than R-NPs. The pharmacodynamic study revealed a significant difference (P<0.05 in contralateral rotations between rats treated with Lf-R-NPs and those treated with R-NPs. Furthermore, Lf

  5. Effective Field Theories and Strong Interactions. Final Technical Report

    International Nuclear Information System (INIS)

    Fleming, Sean

    2011-01-01

    The framework of Effective Field Theories (EFTs) allows us to describe strong interactions in terms of degrees of freedom relevant to the energy regimes of interest, in the most general way consistent with the symmetries of QCD. Observables are expanded systematically in powers of M lo /M hi , where M lo (M hi ) denotes a low-(high-)energy scale. This organizational principle is referred to as 'power counting'. Terms of increasing powers in the expansion parameter are referred to as leading order (LO), next-to-leading order (NLO), etc. Details of the QCD dynamics not included explicitly are encoded in interaction parameters, or 'low-energy constants' (LECs), which can in principle be calculated from an explicit solution of QCD - for example via lattice simulations- but can also be determined directly from experimental data. QCD has an intrinsic scale M QCD ≅ 1 GeV, at which the QCD coupling constant α s (M QCD ) becomes large and the dynamics becomes non-perturbative. As a consequence M QCD sets the scale for the masses of most hadrons, such as the nucleon mass m N ≅ 940 MeV. EFTs can roughly be divided into two categories: those that can be matched onto QCD in perturbation theory, which we call high-energy EFTs, and those that cannot be matched perturbatively, which we call low-energy EFTs. In high-energy EFTs, M QCD typically sets the low-energy scale, and all the dynamics associated with this scale reside in matrix elements of EFT operators. These non-perturbative matrix elements are the LECs and are also referred to as long-distance contributions. Each matrix element is multiplied by a short-distance coefficient, which contains the dynamics from the high scale M hi . Since M hi >> M QCD , α s (M hi ) hi ∼ M Q , the heavy-quark mass, and in addition to M QCD there are low scales associated with the typical relative momentum ∼ M Q v and energy ∼ M Q v 2 of the heavy quarks. Depending on the sizes of M Q and the heavy-quark velocity v these scales can

  6. How strong and generalisable is the Generation Y effect?

    DEFF Research Database (Denmark)

    Mueller, Simone; Remaud, Hervé; Chabin, Yann

    2011-01-01

    alcoholic beverage consumption. A number of noticeable differences appeared between countries: wine involvement and consumption increases with age in traditional European wine markets, while they decrease in North America; environmental concerns and purchase channel usage hardly differ between generations......Purpose – This study aims to investigate how strongly Generation Y consumers differ in their values, attitudes and wine and alcoholic beverage consumption behaviour from older generations. The comparison spans seven culturally different markets. Design/methodology/approach – Large representative...

  7. Neuroprotective effect of Picholine virgin olive oil and its hydroxycinnamic acids component against β-amyloid-induced toxicity in SH-SY5Y neurotypic cells.

    Science.gov (United States)

    Villareal, Myra O; Sasaki, Kazunori; Margout, Delphine; Savry, Coralie; Almaksour, Ziad; Larroque, Michel; Isoda, Hiroko

    2016-12-01

    The health benefits of Mediterranean diet has long been reported and attributed to the consumption of virgin olive oil (VOO). Here, we evaluated the neuroprotective effect of VOO against Alzheimer's disease by determining its effect on β-amyloid (Aβ)-induced cytotoxicity and oxidative stress, and explored the possibility that its hydroxycinnamic acids (Hc acids) content contribute significantly to this effect. SH-SY5Y cells treated with or without Aβ and with VOO or Hc acids (mixture of p-coumaric acid, ferulic acid, vanillic acid, and caffeic acid) were subjected to MTT assay and the results showed that both samples alleviated Aβ-induced cytotoxicity. Furthermore, both VOO and Hc acids decreased the reactive oxygen species level. Using western blot to determine the effect of these samples on Aβ-induced activation of pERK1/2, p38, and JNK MAPKs, results revealed that both VOO and Hc acids inhibited the activation of pERK1/2 and p-p38 MAPK, but not JNK. Moreover, VOO upregulated the glycolytic enzymes genes hexokinase (HK1), and phosphofructokinase (PFKM) expression which means that VOO enhanced the energy metabolism of the neurotypic cells, and therefore suggests another mechanism by which VOO could provide protection against Aβ-induced cytotoxicity. The findings in this study suggest that VOO has a neuroprotective effect, attributable to its hydroxycinnamic acids component, against Aβ-induced cytotoxicity and oxidative stress through the inhibition of the activation of MAPKs ERK and p38 and by enhancing the energy metabolism of the neurotypic cells.

  8. Cannabidiol, neuroprotection and neuropsychiatric disorders.

    Science.gov (United States)

    Campos, Alline C; Fogaça, Manoela V; Sonego, Andreza B; Guimarães, Francisco S

    2016-10-01

    Cannabidiol (CBD) is a non-psychotomimetic phytocannabinoid derived from Cannabis sativa. It has possible therapeutic effects over a broad range of neuropsychiatric disorders. CBD attenuates brain damage associated with neurodegenerative and/or ischemic conditions. It also has positive effects on attenuating psychotic-, anxiety- and depressive-like behaviors. Moreover, CBD affects synaptic plasticity and facilitates neurogenesis. The mechanisms of these effects are still not entirely clear but seem to involve multiple pharmacological targets. In the present review, we summarized the main biochemical and molecular mechanisms that have been associated with the therapeutic effects of CBD, focusing on their relevance to brain function, neuroprotection and neuropsychiatric disorders. Copyright © 2016. Published by Elsevier Ltd.

  9. Neuroprotective effect of G14-humanin on global cerebral ischemia/reperfusion by activation of SOCS3 - STAT3 - MCL-1 signal transduction pathway in rats.

    Science.gov (United States)

    Gao, Guangsheng; Fan, Huaihai; Zhang, Xiaoying; Zhang, Fusen; Wu, Haiyan; Qi, Feng; Zhao, Lei; Li, Yun

    2017-10-01

    Humanin (HN) has been identified to suppress neuron death. Gly 14 -HN (HNG), as a variant of HN, can decrease infarct volume after ischemia/reperfusion (I/R) injury. This study aimed to investigate the neuroprotective mechanism of HNG on global cerebral I/R (GI) in rats. Rats were randomly divided into 13 groups: Sham group, GI groups and HNG groups. Both GI group and HNG groups included six time points (1, 3, 6, 12, 24, and 72 h). At 24 h after reperfusion, Nissl staining was used to observe positive neurons, and p-STAT3, MCL-1, SOCS3, Bax and Caspase-3 in different groups were detected by immunohistochemistry. qRT-PCR and western blot were used to evaluate the expression of STAT3, p-STAT3, MCL-1, and SOCS3. The immunohistochemistry also showed a significant increase in Bax (0.29 ± 0.007 vs. 0.22 ± 0.007, P < 0.01) and Caspase-3 (0.24 ± 0.02 vs. 0.18 ± 0.006, P < 0.01) in GI group compared with Sham group, while Bax (0.26 ± 0.01 vs. 0.29 ± 0.008, P < 0.01) and Caspase-3 (0.20 ± 0.008 vs. 0.24 ± 0.02, P < 0.01) were significantly decreased by HNG-treatment compared with GI group. Along with immunohistochemistry, western blot and qRT-PCR indicated that the protein and mRNA levels of STAT3, MCL-1, and SOCS3 were up-regulated after administration of HNG at six time points after global cerebral I/R in rat. HNG might exert neuroprotective effects through alleviating apoptosis and activating of SOCS3 - STAT3 - MCL-1 signal transduction pathway. Highlights (1) Cerebral ischemia led to neuronal loss in hippocampal CA1 region of rats. (2) HNG had neuroprotective effects on ischemia/reperfusion rats. (3) The protective effect of HNG might be related to the SOCS3 - STAT3 - MCL-1 pathway.

  10. Neuroprotective Effect of Nanodiamond in Alzheimer's Disease Rat Model: a Pivotal Role for Modulating NF-κB and STAT3 Signaling.

    Science.gov (United States)

    Alawdi, Shawqi H; El-Denshary, Ezzeldin S; Safar, Marwa M; Eidi, Housam; David, Marie-Odile; Abdel-Wahhab, Mosaad A

    2017-04-01

    Current therapeutic approaches of Alzheimer's disease (AD) are symptomatic and of modest efficacy, and there is no available effective cure or prevention of AD; hence, the need arise to search for neuroprotective agents to combat AD. The current study aimed at investigating the neuroprotective effect of nanodiamond (ND), adamantine-based nanoparticles, in aluminum-induced cognitive impairment in rats, an experimental model of AD. AD was induced by aluminum chloride (17 mg/kg, p.o. for 6 weeks) and confirmed by Morris water maze and Y-maze behavioral tests. Biochemical and histological analyses of the hippocampus were also performed. Aluminum-treated rats showed behavioral, biochemical, and histological changes similar to those associated with AD. ND improved learning and memory and reversed histological alterations. At the molecular levels, ND mitigated the increase of hippocampal beta-amyloid (Aβ 42 ) and beta-site amyloid precursor protein cleaving enzyme-1 (BACE1) together with down-regulation of phosphorylated tau protein. It also modulated the excitatory glutamate neurotransmitter level. Furthermore, ND boosted the brain-derived neurotrophic factor (BDNF) and mitochondrial transcription factor-A (TFAM), suppressed the proinflammatory cytokine tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and curbed oxidative stress by hampering of inducible nitric oxide synthase (iNOS). Moreover, ND augmented the hippocampal levels of phosphorylated signal transducer and activator of transcription-3 (p-STAT3) and B cell leukemia/lymphoma-2 (Bcl-2) anti-apoptotic protein while diminished nuclear factor-kappaB (NF-κB) and caspase-3 (casp-3) expression. These findings indicate the protective effect of ND against memory deficits and AD-like pathological aberrations probably via modulating NF-kB and STAT3 signaling, effects mediated likely by modulating N-methyl-D-aspartate (NMDA) receptors.

  11. Anti-inflammatory and neuroprotective effects of an orally active apocynin derivative in pre-clinical models of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Ghosh Anamitra

    2012-10-01

    Full Text Available Abstract Background Parkinson’s disease (PD is a devastating neurodegenerative disorder characterized by progressive motor debilitation, which affects several million people worldwide. Recent evidence suggests that glial cell activation and its inflammatory response may contribute to the progressive degeneration of dopaminergic neurons in PD. Currently, there are no neuroprotective agents available that can effectively slow the disease progression. Herein, we evaluated the anti-inflammatory and antioxidant efficacy of diapocynin, an oxidative metabolite of the naturally occurring agent apocynin, in a pre-clinical 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP mouse model of PD. Methods Both pre-treatment and post-treatment of diapocynin were tested in the MPTP mouse model of PD. Diapocynin was administered via oral gavage to MPTP-treated mice. Following the treatment, behavioral, neurochemical and immunohistological studies were performed. Neuroinflammatory markers, such as ionized calcium binding adaptor molecule 1 (Iba-1, glial fibrillary acidic protein (GFAP, gp91phox and inducible nitric oxide synthase (iNOS, were measured in the nigrostriatal system. Nigral tyrosine hydroxylase (TH-positive neurons as well as oxidative markers 3-nitrotyrosine (3-NT, 4-hydroxynonenal (4-HNE and striatal dopamine levels were quantified for assessment of the neuroprotective efficacy of diapocynin. Results Oral administration of diapocynin significantly attenuated MPTP-induced microglial and astroglial cell activation in the substantia nigra (SN. MPTP-induced expression of gp91phox and iNOS activation in the glial cells of SN was also completely blocked by diapocynin. Notably, diapocynin markedly inhibited MPTP-induced oxidative markers including 3-NT and 4-HNE levels in the SN. Treatment with diapocynin also significantly improved locomotor activity, restored dopamine and its metabolites, and protected dopaminergic neurons and their nerve terminals in

  12. Neuroprotective Effects of a Standardized Flavonoid Extract from Safflower against a Rotenone-Induced Rat Model of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Nuramatjan Ablat

    2016-08-01

    Full Text Available Parkinson’s disease (PD is a major age-related neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra par compacta (SNpc. Rotenone is a neurotoxin that is routinely used to model PD to aid in understanding the mechanisms of neuronal death. Safflower (Carthamus tinctorius. L. has long been used to treat cerebrovascular diseases in China. This plant contains flavonoids, which have been reported to be effective in models of neurodegenerative disease. We previously reported that kaempferol derivatives from safflower could bind DJ-1, a protein associated with PD, and that a flavonoid extract from safflower exhibited neuroprotective effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of PD. In this study, a standardized safflower flavonoid extract (SAFE was isolated from safflower and found to primarily contain flavonoids. The aim of the current study was to confirm the neuroprotective effects of SAFE in rotenone-induced Parkinson rats. The results showed that SAFE treatment increased body weight and improved rearing behavior and grip strength. SAFE (35 or 70 mg/kg/day treatment reversed the decreased protein expression of tyrosine hydroxylase, dopamine transporter and DJ-1 and increased the levels of dopamine and its metabolite. In contrast, acetylcholine levels were decreased. SAFE treatment also led to partial inhibition of PD-associated changes in extracellular space diffusion parameters. These changes were detected using a magnetic resonance imaging (MRI tracer-based method, which provides novel information regarding neuronal loss and astrocyte activation. Thus, our results indicate that SAFE represents a potential therapeutic herbal treatment for PD.

  13. The Neuroprotective Effect of Alcoholic Extract of Cannabis Sativa on Neuronal Density of Spinal Cord Alpha Motoneurons after Sciatic Nerve Injury in Rats

    Directory of Open Access Journals (Sweden)

    M Tehranipour

    2011-07-01

    Full Text Available Introduction: Injuries of the peripheral nerve system affect the neurons cell body leading to axon injury. Cannabis sativa plant has anti oxidant and anti apoptotic effects. Therefore the aim of present study was to study the neuroprotective effect of alcoholic extract of cannabis sativa leaves on neuronal density of alpha motoneurons in spinal cord after sciatic nerve injury in rats. Methods: In this experimental research, animals were divided into four groups; A: control, B: compression, C: compression+ treatment with 25 mg/kg alcoholic extract, D: compression + treatment with 50 mg/kg extract (n=8. At first, sciatic nerve compression in B, C and D groups was achieved for 60 seconds using locker pincers. Alcoholic extract was injected intra peritoneally in the first and second weeks after compression. Then 28 days after compression, under profusion method, the lumbar spinal cord was sampled and the numerical density in each group was compared with the compression group. The data was analyzed with the use of Minitab 14 software and ANOVA statistical test. Results: Neuronal density showed a meaningful difference in the compression and control groups(P<0.001. Neuronal density in treatment groups(25, 50 mg/kg also had a meaningful increase(P<0.001 as compared to the compression group. Conclusion: Alcoholic extract of cannabis sativa leaves has a neuroprotective effect on spinal cord alpha motoneurons after injury. This could be due to growth and regeneration factors present in the alcoholic extract of cannabis sativa leaves that induce regeneration process in injured neurons or prevent degeneration.

  14. Spin effects in strong-field laser-electron interactions

    International Nuclear Information System (INIS)

    Ahrens, S; Bauke, H; Müller, T-O; Villalba-Chávez, S; Müller, C

    2013-01-01

    The electron spin degree of freedom can play a significant role in relativistic scattering processes involving intense laser fields. In this contribution we discuss the influence of the electron spin on (i) Kapitza-Dirac scattering in an x-ray laser field of high intensity, (ii) photo-induced electron-positron pair production in a strong laser wave and (iii) multiphoton electron-positron pair production on an atomic nucleus. We show that in all cases under consideration the electron spin can have a characteristic impact on the process properties and their total probabilities. To this end, spin-resolved calculations based on the Dirac equation in the presence of an intense laser field are performed. The predictions from Dirac theory are also compared with the corresponding results from the Klein-Gordon equation.

  15. Hesperidin potentiates the neuroprotective effects of diazepam and gabapentin against pentylenetetrazole-induced convulsions in mice: Possible behavioral, biochemical and mitochondrial alterations

    Science.gov (United States)

    Kumar, Anil; Lalitha, Sree; Mishra, Jitendriya

    2014-01-01

    Aim: Epilepsy is a chronic neurological disorder with complex pathophysiology. Several evidences suggest a role of oxidative stress and mitochondrial dysfunction in pathophysiology of epilepsy. Hesperidin (Hesp) acts as a powerful anti-oxidant agent against superoxide, singlet oxygen, and hydroxyl radicals. Thus, this study was undertaken to evaluate the possible neuroprotective mechanism of Hesp against pentylenetetrazole (PTZ)-induced convulsions in mice. Materials and Methods: Sixty males Laca mice (20-25 g) were randomly divided into 10 treatment groups (n = 6). Seven days pretreatment of Hesp (100, 200 mg/kg, p.o.) was carried out before PTZ (80 mg/kg, intraperitoneal [i.p.]) challenge, whereas diazepam (DZP) (0.2, 0.5 mg/kg) and gabapentin (Gbp) (10, 20 mg/kg) were administered i.p. 30 min before PTZ administration, that is, on 7th day. Following PTZ challenge, severity of convulsions (onset of jerks, myoclonic seizures, extensor phase and death), brain anti-oxidant enzyme levels and mitochondrial complex enzymes activities were estimated. Results: Single i.p. PTZ (80 mg/kg) challenge demonstrated severe convulsions, oxidative damage (raised lipid peroxidation [LPO], nitrite concentration as well as depleted reduced glutathione, superoxide dismutase and catalase levels), and depletion of mitochondrial enzyme Complex (I, II, IV) activities. Hesp (200 mg/kg), DZP (0.5 mg/kg) and Gbp (20 mg/kg) pretreatments attenuated PTZ induced behavioral, biochemical and mitochondrial alterations. However, administration of Hesp (100 mg/kg) in combination with DZP (0.2 mg/kg) or Gbp (10 mg/kg) potentiated their neuroprotective effect, which was significant as compared to their effects in PTZ treated animals. Conclusion: Hesp possesses potent anticonvulsant activity which might be mediated through modulation of gamma-amino butyric acid/benzodiazepine receptor action. PMID:24987179

  16. Neuroprotective effects of the Phellinus linteus ethyl acetate extract against H2O2-induced apoptotic cell death of SK-N-MC cells.

    Science.gov (United States)

    Choi, Doo Jin; Cho, Sarang; Seo, Jeong Yeon; Lee, Hyang Burm; Park, Yong Il

    2016-01-01

    Numerous studies have suggested that neuronal cells are protected against oxidative stress-induced cell damage by antioxidants, such as polyphenolic compounds. Phellinus linteus (PL) has traditionally been used to treat various symptoms in East Asian countries. In the present study, we prepared an ethyl acetate extract from the fruiting bodies of PL (PLEA) using hot water extraction, ethanol precipitation, and ethyl acetate extraction. The PLEA contained polyphenols as its major chemical component, and thus, we predicted that it may exhibit antioxidant and neuroprotective effects against oxidative stress. The results showed that the pretreatment of human brain neuroblastoma SK-N-MC cells with the PLEA (0.1-5 μg/mL) significantly and dose-dependently reduced the cytotoxicity of H2O2 and the intracellular ROS levels and enhanced the expression of HO-1 (heme oxygenase-1) and antioxidant enzymes, such as CAT (catalase), GPx-1 (glutathione peroxidase-1), and SOD-1 and -2 (superoxide dismutase-1 and -2). The PLEA also directly scavenged free radicals. PLEA pretreatment also significantly attenuated DNA fragmentation and suppressed the mRNA expression and activation of mitogen-activated protein kinases extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 kinase, which are induced by oxidative stress and lead to cell death. PLEA pretreatment inhibited the activation of the apoptosis-related proteins caspase-3 and poly (ADP-ribose) polymerase. These results demonstrate that the PLEA has neuroprotective effects against oxidative stress (H2O2)-induced neuronal cell death via its antioxidant and anti-apoptotic properties. PLEA should be investigated in an in vivo model on its potential to prevent or ameliorate neurodegenerative disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Mesenchymal stem cells in a transgenic mouse model of multiple system atrophy: immunomodulation and neuroprotection.

    Directory of Open Access Journals (Sweden)

    Sylvia Stemberger

    Full Text Available Mesenchymal stem cells (MSC are currently strong candidates for cell-based therapies. They are well known for their differentiation potential and immunoregulatory properties and have been proven to be potentially effective in the treatment of a large variety of diseases, including neurodegenerative disorders. Currently there is no treatment that provides consistent long-term benefits for patients with multiple system atrophy (MSA, a fatal late onset α-synucleinopathy. Principally neuroprotective or regenerative strategies, including cell-based therapies, represent a powerful approach for treating MSA. In this study we investigated the efficacy of intravenously applied MSCs in terms of behavioural improvement, neuroprotection and modulation of neuroinflammation in the (PLP-αsynuclein (αSYN MSA model.MSCs were intravenously applied in aged (PLP-αSYN transgenic mice. Behavioural analyses, defining fine motor coordination and balance capabilities as well as stride length analysis, were performed to measure behavioural outcome. Neuroprotection was assessed by quantifying TH neurons in the substantia nigra pars compacta (SNc. MSC treatment on neuroinflammation was analysed by cytokine measurements (IL-1α, IL-2, IL-4, IL-5, IL-6, IL-10, IL-17, GM-CSF, INFγ, MCP-1, TGF-β1, TNF-α in brain lysates together with immunohistochemistry for T-cells and microglia. Four weeks post MSC treatment we observed neuroprotection in the SNc, as well as downregulation of cytokines involved in neuroinflammation. However, there was no behavioural improvement after MSC application.To our knowledge this is the first experimental approach of MSC treatment in a transgenic MSA mouse model. Our data suggest that intravenously infused MSCs have a potent effect on immunomodulation and neuroprotection. Our data warrant further studies to elucidate the efficacy of systemically administered MSCs in transgenic MSA models.

  18. Radiation effects on relativistic electrons in strong external fields

    International Nuclear Information System (INIS)

    Iqbal, Khalid

    2013-01-01

    The effects of radiation of high energy electron beams are a major issue in almost all types of charged particle accelerators. The objective of this thesis is both the analytical and numerical study of radiation effects. Due to its many applications the study of the self force has become a very active and productive field of research. The main part of this thesis is devoted to the study of radiation effects in laser-based plasma accelerators. Analytical models predict the existence of radiation effects. The investigation of radiation reaction show that in laser-based plasma accelerators, the self force effects lower the energy gain and emittance for moderate energies electron beams and increase the relative energy spread. However, for relatively high energy electron beams, the self radiation and retardation (radiation effects of one electron on the other electron of the system) effects increase the transverse emittance of the beam. The energy gain decreases to even lower value and relative energy spread increases to even higher value due to high radiation losses. The second part of this thesis investigates with radiation reaction in focused laser beams. Radiation effects are very weak even for high energy electrons. The radiation-free acceleration and the simple practical setup make direct acceleration in a focused laser beam very attractive. The results presented in this thesis can be helpful for the optimization of future electron acceleration experiments, in particular in the case of laser-plasma accelerators.

  19. Effective magnetic moment of neutrinos in strong magnetic fields

    CERN Document Server

    Pérez, A; Masood, S S; Gaitan, R; Rodríguez, S

    2002-01-01

    In this paper we compute the effective magnetic moment of neutrinos propagating in dense high magnetized medium. Taking typical values of magnetic field and densities of astrophysical objects (such as the cores of supernovae and neutron stars) we obtain an effective type of dipole magnetic moment in agreement with astrophysical and cosmological bounds. (Author)

  20. The Connect Effect Building Strong Personal, Professional, and Virtual Networks

    CERN Document Server

    Dulworth, Michael

    2008-01-01

    Entrepreneur and executive development expert Mike Dulworth's THE CONNECT EFFECT provides readers with a simple framework and practical tools for developing that crucial competitive advantage: a high-quality personal, professional/organizational and virtual network.

  1. Neuroprotective effect of the methanolic extract of Hibiscus asper leaves in 6-hydroxydopamine-lesioned rat model of Parkinson's disease.

    Science.gov (United States)

    Hritcu, Lucian; Foyet, Harquin Simplice; Stefan, Marius; Mihasan, Marius; Asongalem, Acha Emmanuel; Kamtchouing, Pierre

    2011-09-01

    While the Hibiscus asper Hook.f. (Malvaceae) is a traditional herb largely used in tropical region of the Africa as vegetable, potent sedative, tonic and restorative, anti-inflammatory and antidepressive drug, there is very little scientific data concerning the efficacy of this. The antioxidant and antiapoptotic activities of the methanolic extract of Hibiscus asper leaves (50 and 100 mg/kg) were assessed using superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase (CAT) specific activities, total glutathione (GSH) content, malondialdehyde (MDA) level (lipid peroxidation) and DNA fragmentation assays in male Wistar rats subjected to unilateral 6-hydroxydopamine (6-OHDA)-lesion. In 6-OHDA-lesioned rats, methanolic extract of Hibiscus asper leaves showed potent antioxidant and antiapoptotic activities. Chronic administration of the methanolic extract (50 and 100 mg/kg, i.p., daily, for 7 days) significantly increased antioxidant enzyme activities (SOD, GPX and CAT), total GSH content and reduced lipid peroxidation (MDA level) in rat temporal lobe homogenates, suggesting antioxidant activity. Also, DNA cleavage patterns were absent in the 6-OHDA-lesioned rats treated with methanolic extract of Hibiscus asper leaves, suggesting antiapoptotic activity. Taken together, our results suggest that the methanolic extract of Hibiscus asper leaves possesses neuroprotective activity against 6-OHDA-induced toxicity through antioxidant and antiapoptotic activities in Parkinson's disease model. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Neuroprotective effects of Activin A on endoplasmic reticulum stress-mediated apoptotic and autophagic PC12 cell death

    Directory of Open Access Journals (Sweden)

    Long-xing Xue

    2017-01-01

    Full Text Available Activin A, a member of the transforming growth factor-beta superfamily, plays a neuroprotective role in multiple neurological diseases. Endoplasmic reticulum (ER stress-mediated apoptotic and autophagic cell death is implicated in a wide range of diseases, including cerebral ischemia and neurodegenerative diseases. Thapsigargin was used to induce PC12 cell death, and Activin A was used for intervention. Our results showed that Activin A significantly inhibited morphological changes in thapsigargin-induced apoptotic cells, and the expression of apoptosis-associated proteins [cleaved-caspase-12, C/EBP homologous protein (CHOP and cleaved-caspase-3] and biomarkers of autophagy (Beclin-1 and light chain 3, and downregulated the expression of thapsigargin-induced ER stress-associated proteins [inositol requiring enzyme-1 (IRE1, tumor necrosis factor receptor-associated factor 2 (TRAF2, apoptosis signal-regulating kinase 1 (ASK1, c-Jun N-terminal kinase (JNK and p38]. The inhibition of thapsigargin-induced cell death was concentration-dependent. These findings suggest that administration of Activin A protects PC12 cells against ER stress-mediated apoptotic and autophagic cell death by inhibiting the activation of the IRE1-TRAF2-ASK1-JNK/p38 cascade.

  3. Effective bounds on strong unicity in L1-approximation

    DEFF Research Database (Denmark)

    Kohlenbach, Ulrich; Oliva, Paulo B.

    In this paper we present another case study in the general project of Proof Mining which means the logical analysis of prima facie non-effective proofs with the aim of extracting new computationally relevant data. We use techniques based on monotone functional interpretation (developed in [17]) t...

  4. Refocusing Neuroprotection in Cerebral Reperfusion Era: New Challenges and Strategies

    Directory of Open Access Journals (Sweden)

    Xiao-Yi Xiong

    2018-04-01

    Full Text Available Pathophysiological processes of stroke have revealed that the damaged brain should be considered as an integral structure to be protected. However, promising neuroprotective drugs have failed when translated to clinical trials. In this review, we evaluated previous studies of neuroprotection and found that unsound patient selection and evaluation methods, single-target treatments, etc., without cerebral revascularization may be major reasons of failed neuroprotective strategies. Fortunately, this may be reversed by recent advances that provide increased revascularization with increased availability of endovascular procedures. However, the current improved effects of endovascular therapy are not able to match to the higher rate of revascularization, which may be ascribed to cerebral ischemia/reperfusion injury and lacking of neuroprotection. Accordingly, we suggest various research strategies to improve the lower therapeutic efficacy for ischemic stroke treatment: (1 multitarget neuroprotectant combinative therapy (cocktail therapy should be investigated and performed based on revascularization; (2 and more efforts should be dedicated to shifting research emphasis to establish recirculation, increasing functional collateral circulation and elucidating brain–blood barrier damage mechanisms to reduce hemorrhagic transformation. Therefore, we propose that a comprehensive neuroprotective strategy before and after the endovascular treatment may speed progress toward improving neuroprotection after stroke to protect against brain injury.

  5. Strong delayed interactive effects of metal exposure and warming

    DEFF Research Database (Denmark)

    Debecker, Sara; Dinh, Khuong Van; Stoks, Robby

    2017-01-01

    As contaminants are often more toxic at higher temperatures, predicting their impact under global warming remains a key challenge for ecological risk assessment. Ignoring delayed effects, synergistic interactions between contaminants and warming, and differences in sensitivity across species......’ ranges could lead to an important underestimation of the risks. We addressed all three mechanisms by studying effects of larval exposure to zinc and warming before, during, and after metamorphosis in Ischnura elegans damselflies from high- and lowlatitude populations. By integrating these mechanisms...... was especially remarkable in high-latitude animals, as they appeared almost insensitive to zinc during the larval stage. Second, the well-known synergism between metals and warming was manifested not only during the larval stage but also after metamorphosis, yet notably only in low-latitude damselflies...

  6. Effect of strong fragrance on olfactory detection threshold.

    Science.gov (United States)

    Fasunla, Ayotunde James; Douglas, David Dayo; Adeosun, Aderemi Adeleke; Steinbach, Silke; Nwaorgu, Onyekwere George Benjamin

    2014-09-01

    To assess the olfactory threshold of healthy volunteers at the University College Hospital, Ibadan and to investigate the effect of perfume on their olfactory detection thresholds. A quasi-experimental study on olfactory detection thresholds of healthy volunteers from September 2013 to November 2013. Tertiary health institution. A structured questionniare was administered to the participants in order to obtain information on sociodemographics, occupation, ability to perceive smell, use of perfume, effects of perfume on appetite and self-confidence, history of allergy, and previous nasal surgery. Participants subjectively rated their olfactory performance. Subsequently, they had olfactory detection threshold testing done at baseline and after exposure to perfume with varied concentrations of n-butanol in a forced triple response and staircase fashion. Healthy volunteers, 37 males and 63 females, were evaluated. Their ages ranged from 19 to 59 years with a mean of 31 years ± 8. Subjectively, 94% of the participants had excellent olfactory function. In the pre-exposure forced triple response, 88% were able to detect the odor at ≤.25 mmol/l concentration while in the post-exposure forced triple response, only 66% were able to detect the odor at ≤.25 mmol/l concentration. There is also a statistical significant difference in the olfactory detection threshold score between the pre-exposure and post-exposure period in the participants (P fragrances affects the olfactory detection threshold. Therefore patients and clinicians should be aware of this and its effects on the outcome of test of olfaction. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  7. Stirling engines using working fluids with strong real gas effects

    International Nuclear Information System (INIS)

    Invernizzi, Costante M.

    2010-01-01

    Real gas effects typical of the critical region of working fluids are a powerful tool to increase the energy performances of Stirling cycles, mainly at low top temperatures. To carry out the compression near the critical region the working fluids must have a critical temperature near environmental conditions and the use of organic working substances (pure or in suitable mixtures) as a matter of fact begins compulsory. The moderate thermal stability of the organic working fluids limits the maximum temperatures to 300-400 deg. C and as a consequence, the achievable cycles efficiencies result rather low. Carbon dioxide, with a critical temperature of 31 deg. C, is, among the traditionally inorganic gases, an exception and is considered here in comparison with organic substances. But the good thermodynamics of the cycles allows, in the considered cases, conversion efficiencies of about 20%, with good specific powers. The good energy performance of real gas Stirling cycles is obtained at the cost of high maximum cycle pressure, in the range of at least 100-300 bar. These high pressures nevertheless have large positive effects on the heat power transferred per unit of pumping mechanical power, and the low top temperatures have a positive influence on the material problems for the hottest engine parts.

  8. Strong surface effect on direct bulk flexoelectric response in solids

    International Nuclear Information System (INIS)

    Yurkov, A. S.; Tagantsev, A. K.

    2016-01-01

    In the framework of a continuum theory, it is shown that the direct bulk flexoelectric response of a finite sample essentially depends on the surface polarization energy, even in the thermodynamic limit where the body size tends to infinity. It is found that a modification of the surface energy can lead to a change in the polarization response by a factor of two. The origin of the effect is an electric field produced by surface dipoles induced by the strain gradient. The unexpected sensitivity of the polarization response to the surface energy in the thermodynamic limit is conditioned by the fact that the moments of the surface dipoles may scale as the body size

  9. Evaluation of the neuroprotective effect of taurine and green tea extract against oxidative stress induced by pilocarpine during status epilepticus

    Directory of Open Access Journals (Sweden)

    Neveen A. Noor

    2015-10-01

    Full Text Available Status epilepticus (SE has functional and structural consequences resulting in brain damage. The present study aims to investigate the role of taurine and green tea extract in the neuroprotection against oxidative stress and changes in acetylcholinesterase (AChE and Na+,K+-ATPase activities during SE induced by pilocarpine in the hippocampus of adult male rats. Animals received an oral administration of either taurine (100 mg/kg or green tea extract containing 100 mg/kg epigallocatechin gallate for 3 days before the induction of SE with pilocarpine (380 mg/kg, i.p. and were sacrificed 1 h after pilocarpine injection. Data indicated that a state of oxidative stress has evolved during SE as evident from the significant increase in lipid peroxidation level and significant decrease in reduced glutathione (GSH level. Significant decreases in AChE and Na+,K+-ATPase activities were also recorded. Pretreatment of rats with taurine exaggerated the increase in lipid peroxidation and failed to prevent the decrease in Na+,K+-ATPase activity resulting from pilocarpine. However, taurine pretreatment prevented the reduced activity of hippocampal AChE induced by pilocarpine during SE. Pretreatment of rats with green tea extract prevented the increase in lipid peroxidation occurring during SE. However, it failed to inhibit the decrease in Na+,K+-ATPase activity. In conclusion, taurine pretreatment failed to reduce the oxidative stress induced during SE. In contrast, pretreatment of rats with green tea extract ameliorated the oxidative stress induced by pilocarpine and this may assist in reducing the insults of hyperexcitability and excitotoxicity that occur during SE and thereby reduce neuronal damage.

  10. The Neuroprotective Effects of Brazilian Green Propolis on Neurodegenerative Damage in Human Neuronal SH-SY5Y Cells

    Directory of Open Access Journals (Sweden)

    Junjun Ni

    2017-01-01

    Full Text Available Oxidative stress and synapse dysfunction are the major neurodegenerative damage correlated to cognitive impairment in Alzheimer’s disease (AD. We have found that Brazilian green propolis (propolis improves the cognitive functions of mild cognitive impairment patients living at high altitude; however, mechanism underlying the effects of propolis is unknown. In the present study, we investigated the effects of propolis on oxidative stress, expression of brain-derived neurotrophic factor (BDNF, and activity-regulated cytoskeleton-associated protein (Arc, the critical factors of synapse efficacy, using human neuroblastoma SH-SY5Y cells. Pretreatment with propolis significantly ameliorated the hydrogen peroxide- (H2O2- induced cytotoxicity in SH-SY5Y cells. Furthermore, propolis significantly reduced the H2O2-generated reactive oxygen species (ROS derived from mitochondria and 8-oxo-2′-deoxyguanosine (8-oxo-dG, the DNA oxidative damage marker but significantly reversed the fibrillar β-amyloid and IL-1β-impaired BDNF-induced Arc expression in SH-SY5Y cells. Furthermore, propolis significantly upregulated BDNF mRNA expression in time- and dose-dependent manners. In addition, propolis induced Arc mRNA and protein expression via phosphoinositide-3 kinase (PI3K. These observations strongly suggest that propolis protects from the neurodegenerative damage in neurons through the properties of various antioxidants. The present study provides a potential molecular mechanism of Brazilian green propolis in prevention of cognitive impairment in AD as well as aging.

  11. Evidence supporting neuroprotective effect of adipose derived stem cells on PC12 cells against oxidative stress induced by H2O2.

    Science.gov (United States)

    Ghorabi, M T; Aliaghaei, A; Sadeghi, Y; Shaerzadeh, F; Rad, A A; Mohamadi, R; J Ebrahimi, M

    2017-03-31

    Adipose-derived stem cells (ADSCs) are a population of cells derived from adipose tissue. ADSCs exhibit multilineage development potential and are able to secrete various factors, which influence adjacent cells. The present study examined the protective effect of ADSC's conditioned media (ADSC-CM) on PC12 cells exposed to H2O2, an oxidative injury model. After isolation, ADSCs were cultured and their osteogenic and adipogenic differentiation confirmed. Then, PC12 cells were co-treated with ADSC-CM and H2O2. Next, the effects of ADSC-CM on neurite outgrowth and cell differentiation in the presence of H2O2 were determined. Moreover, cell viability and apoptotic cell death percentage were evaluated using MTT assay, Hoechst staining and flow cytometry. Our results indicated the neuroprotective effects of ADSC-CM on morphological and morphometrical properties of neuron-like PC12 cells. Additionally, the profound decrease in percentage of apoptotic cells confirmed the protective effects of conditioned media from ADSCs that may be related to the release of trophic factors.

  12. Anticonvulsant, neuroprotective and behavioral effects of organic and conventional yerba mate (Ilex paraguariensis St. Hil.) on pentylenetetrazol-induced seizures in Wistar rats.

    Science.gov (United States)

    Branco, Cátia Dos Santos; Scola, Gustavo; Rodrigues, Adriana Dalpicolli; Cesio, Verónica; Laprovitera, Mariajosé; Heinzen, Horacio; Dos Santos, Maitê Telles; Fank, Bruna; de Freitas, Suzana Cesa Vieira; Coitinho, Adriana Simon; Salvador, Mirian

    2013-03-01

    Epilepsy, which is one of the most common neurological disorders, involves the occurrence of spontaneous and recurrent seizures that alter the performance of the brain and affect several sensory and behavioral functions. Oxidative damage has been associated with post-seizure neuronal injury, thereby increasing an individual's susceptibility to the occurrence of neurodegenerative disorders. The present study investigated the possible anticonvulsive and neuroprotective effects of organic and conventional yerba mate (Ilex paraguariensis), a plant rich in polyphenols, on pentylenetetrazol (PTZ)-induced seizures in Wistar rats. The behavioral and polyphenolic profiles of the yerba mate samples were also evaluated. Infusions of yerba mate (50mg/kg) or distilled water were given to rats for fifteen days by oral gavage. On the 15th day the animals were subjected to open field test, and exploratory behavior was assessed. Subsequently, 60mg/kg PTZ (i.p.) was administered, and animals were observed for the appearance of convulsions for 30min. Latency for the first seizure, tonic-clonic and generalized seizures time, frequency of seizures and mortality induced by PTZ were recorded. The animals were then sacrificed, and the cerebellum, cerebral cortex and hippocampus were quickly removed and frozen to study the neuroprotective effects of yerba mate. The oxidative damage in lipids and proteins, nitric oxide levels, the activities of the antioxidant enzymes superoxide dismutase (Sod) and catalase (Cat) and non-enzymatic cellular defense (sulfhydryl protein) were quantified in all the tissues. The results showed that organic and conventional yerba mate infusions were able to reduce the frequency of seizures when compared to the PTZ group. Besides, organic yerba mate infusion decreases the tonic-clonic seizures time in relation to the PTZ group. It was also shown that organic and conventional yerba mate infusions reduced the oxidative damage in lipids and proteins and nitric oxide

  13. Wine Polyphenols: Potential Agents in Neuroprotection

    Directory of Open Access Journals (Sweden)

    Abdelkader Basli

    2012-01-01

    Full Text Available There are numerous studies indicating that a moderate consumption of red wine provides certain health benefits, such as the protection against neurodegenerative diseases. This protective effect is most likely due to the presence of phenolic compounds in wine. Wine polyphenolic compounds are well known for the antioxidant properties. Oxidative stress is involved in many forms of cellular and molecular deterioration. This damage can lead to cell death and various neurodegenerative disorders, such as Parkinson’s or Alzheimer’s diseases. Extensive investigations have been undertaken to determine the neuroprotective effects of wine-related polyphenols. In this review we present the neuroprotective abilities of the major classes of wine-related polyphenols.

  14. Neuroprotection against oxidative stress by serum from heat acclimated rats.

    Science.gov (United States)

    Beit-Yannai, E; Trembovler, V; Horowitz, M; Lazarovici, P; Kohen, R; Shohami, E

    1998-09-25

    Exposure of PC12 cells, to 1% serum derived from normothermic (CON) rats resulted in 79% cell death. Sister cultures treated with 1% serum derived from heat acclimated (ACC) rats, were neuroprotected and expressed a significant reduction in cell death. In PC12 cells exposed to a free radical generator causing an oxidative stress, 90% cell death was measured in CON serum treated cultures, while ACC serum treated cultures were neuroprotected. Xanthine oxidase activity and uric acid (UA) levels were lower in ACC serum compared to CON. Addition of UA to both sera abolished the difference in cell viability, and toxicity of ACC serum reached that of CON. These findings suggest a causal relationship between the lower levels of UA in ACC and the neuroprotective effect observed. The present study proposes heat acclimation as an experimental and/or clinical tool for the achievement of neuroprotection.

  15. Neuroprotective effects of 2,3,5,4'-tetrahydoxystilbene-2-O-β-D-glucoside from Polygonum multiflorum against glutamate-induced oxidative toxicity in HT22 cells.

    Science.gov (United States)

    Lee, Sun Young; Ahn, Sung Min; Wang, Ziyu; Choi, Young Whan; Shin, Hwa Kyoung; Choi, Byung Tae

    2017-01-04

    Since ancient times, Polygonum multiflorum Thunb. has been used to treat premature grey hair, dizziness, and blurred vision in East Asia. A major bioactive constituent of this medicinal herb, 2,3,5,4'-tetrahydoxystilbene-2-O-β-D-glucoside (THSG), has antioxidant activity and exerts beneficial effects on cognition and memory. The purpose of the current study was to determine if THSG affects hippocampal neuronal cell death and mitochondrial function following exposure to oxidative stress. HT22 hippocampal cells with or without THSG pretreatment were exposed to glutamate, and the effects on cell viability and expression of molecules related to apoptotic cell death were examined using biochemical techniques, flow cytometry, western immunoblotting, and real-time polymerase chain reaction. Pretreatment with THSG significantly attenuated glutamate-induced loss of cell viability and release of lactate dehydrogenase as well as apoptotic cell death. THSG inhibited generation of reactive oxygen species (ROS), expression of heme oxygenase-1, and activation of caspase-3 and calpain-1 proteases, all of which were increased by glutamate. THSG inhibited glutamate-induced disruption of mitochondrial membrane potential (MMP) and voltage-dependent anion channel-1. It also regulated the ratio of Bax to Bcl-2. These results indicate that THSG has a marked neuroprotective effect against glutamate-induced hippocampal damage by decreasing ROS production and stabilizing MMP. These findings suggest the potential of THSG as a new therapeutic agent for the treatment of cognitive disorders. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. The neuroprotective effect of miRNA-132 against amyloid β-protein-induced neuronal damage via upregulation of brain-derived neurotrophic factor

    Directory of Open Access Journals (Sweden)

    Lei XIANG

    2016-08-01

    Full Text Available Background Brain-derived neurotrophic factor (BDNF plays a crucial role in the pathogenesis of Alzheimer's disease (AD. MicroRNA (miRNA-132, which is widely expressed in neurons, is involved in BDNF-mediated neural development by regulating the expression of target gene. This study aims to investigate the effect of miRNA-132 on BDNF and its neuroprotective effect.  Methods The hippocampal neurons were transfected by miRNA-132 after 72 h in vitro, then exposed to amyloid β-protein (Aβ on the 7th day to build AD models. The difference of miRNA-132 expression between AD group and control group was detected by real-time fluorescent quantitative polymerase chain reaction (PCR. The alterations of BDNF mRNA were observed in the neurons of different groups. Finally, the cell viability was observed by methyl thiazolyl tetrazolium (MTT assay in AD neurons transfected with miRNA-132 or incubated with BDNF. Results 1 MiRNA-132 was significantly decreased (t = 13.888, P = 0.000, and the expression of BDNF mRNA was also reduced in AD group (t = -12.274, P = 0.000. 2 Green fluorescence was clearly visible by inverted phase-contrast fluorescence microscopy after transfected with miRNA-132. BDNF mRNA was upregulated when miRNA-132 overexpression both in control group (t = 16.135, P = 0.000 and AD group (t = 8.656, P = 0.000. 3 Cell viability was obviously decreased in neurons exposed to Aβ (t = -6.023, P = 0.000, which was improved when transfected with miRNA-132 (t = 3.385, P = 0.007 or incubated with BDNF (t = 3.672, P = 0.004.  Conclusions The expression of miRNA-132 and BDNF was reduced in neuronal AD model. MiRNA-132 played an important role on neuroprotection against A β-induced neuronal damage via upregulation of BDNF. It could be expected to provide new perspective for the diagnosis and treatment of AD. DOI: 10.3969/j.issn.1672-6731.2016.07.009

  17. Neuroprotective effects of Coptis chinensis Franch polysaccharide on amyloid-beta (Aβ)-induced toxicity in a transgenic Caenorhabditis elegans model of Alzheimer's disease (AD).

    Science.gov (United States)

    Li, Yujuan; Guan, Shuwen; Liu, Cong; Chen, Xinhua; Zhu, Yuemei; Xie, Yutong; Wang, Jianbin; Ji, Xue; Li, Liqin; Li, Zhuohan; Zhang, Yue; Zeng, Xiangzhi; Li, Mingquan

    2018-03-07

    This study aims to investigate the neuroprotective effects of Coptis chinensis Franch polysaccharide (CCP) on Aβ 1-42 transgenic CL4176 Caenorhabditis elegans, as well as its mechanism of action. The results in life span experiment showed that CCP could significantly increase the lifespan of C. elegans and the effect is in the descending order of 100 mg/L > 500 mg/L > 200 mg/L. The behavioral experiments also demonstrated that CCP at the concentration of 100 mg/L could delay the paralysis rate of C. elegans, which was significantly different from the control group. In terms of Aβ toxicity in C. elegans, morphological observation using Thioflavin S staining method indicated that the deposition of Aβ protein in the head area of the untreated C. elegans was much more than those in the CCP (100 mg/L)-treated CL4176. In line with this finding, fluorogenic quantitative real-time PCR confirmed that the transcriptional levels of HSP16.2 (Y46H3A.D) and HSP16.41 (Y46H3A.E) in C. elegans was 21 times and 79 times higher than those in untreated control. Thus, these data demonstrate that CCP could reduce Aβ-induced toxicity by delaying the aging, decreasing the rate of paralysis, inhibiting the deposition of Aβ, and increasing the expression levels of HSP genes in transgenic C. elegans. Copyright © 2017. Published by Elsevier B.V.

  18. trans-Resveratrol as A Neuroprotectant

    Directory of Open Access Journals (Sweden)

    Ellen L. Robb

    2010-03-01

    Full Text Available Epidemiological evidence indicates that nutritionally-derived polyphenols such as resveratrol (RES have neuroprotective properties. Administration of RES to culture media protects a wide variety of neuronal cell types from stress-induced death. Dietary supplementation of RES can ameliorate neuronal damage and death resulting from both acute and chronic stresses in rodents. The specific molecular mechanisms by which RES acts at the cellular level remain incompletely understood. However, many experimental data indicate that RES reduces or prevents the occurrence of oxidative damage. Here we discuss possible mechanisms by which RES might exert protection against oxidative damage and cell death. Evidence suggesting that RES’s chemical antioxidant potential is not sufficient explanation for its effects is discussed. Putative biological activities, including interactions with estrogen receptors and sirtuins are critically discussed. We provide a synthesis of how RES’s phytoestrogenic properties might mediate the neuronal stress resistance underlying its observed neuroprotective properties.

  19. Alpha-lipoic acid potently inhibits peroxynitrite-mediated DNA strand breakage and hydroxyl radical formation: implications for the neuroprotective effects of alpha-lipoic acid.

    Science.gov (United States)

    Jia, Zhenquan; Zhu, Hong; Vitto, Michael J; Misra, Bhaba R; Li, Yunbo; Misra, Hara P

    2009-03-01

    Alpha-lipoic acid (LA) has recently been reported to afford protection against neurodegenerative disorders in humans and experimental animals. However, the mechanisms underlying LA-mediated neuroprotection remain an enigma. Because peroxynitrite has been extensively implicated in the pathogenesis of various forms of neurodegenerative disorders, this study was undertaken to investigate the effects of LA in peroxynitrite-induced DNA strand breaks, a critical event leading to peroxynitrite-elicited cytotoxicity. Incubation of phi X-174 plasmid DNA with the 3-morpholinosydnonimine (SIN-1), a peroxynitrite generator, led to the formation of both single- and double-stranded DNA breaks in a concentration- and time-dependent fashion. The presence of LA at 100-1,600 microM was found to significantly inhibit SIN-1-induced DNA strand breaks in a concentration-dependent manner. The consumption of oxygen induced by 250 microM SIN-1 was found to be decreased in the presence of high concentrations of LA (400-1,600 microM), indicating that LA at these concentrations may affect the generation of peroxynitrite from auto-oxidation of SIN-1. It is observed that incubation of the plasmid DNA with authentic peroxynitrite resulted in a significant formation of DNA strand breaks, which could also be dramatically inhibited by the presence of LA (100-1,600 microM). EPR spectroscopy in combination with spin-trapping experiments, using 5,5-dimethylpyrroline-N-oxide (DMPO) as spin trap, resulted in the formation of DMPO-hydroxyl radical adduct (DMPO-OH) from authentic peroxynitrite and LA at 50-1,600 microM inhibited the adduct signal. Taken together, these studies demonstrate for the first time that LA can potently inhibit peroxynitrite-mediated DNA strand breakage and hydroxyl radical formation. In view of the critical involvement of peroxynitrite in the pathogenesis of various neurodegenerative diseases, the inhibition of peroxynitrite-mediated DNA damage by LA may be responsible, at least

  20. Evaluation of Polyphenol Anthocyanin-Enriched Extracts of Blackberry, Black Raspberry, Blueberry, Cranberry, Red Raspberry, and Strawberry for Free Radical Scavenging, Reactive Carbonyl Species Trapping, Anti-Glycation, Anti-β-Amyloid Aggregation, and Microglial Neuroprotective Effects

    Directory of Open Access Journals (Sweden)

    Hang Ma

    2018-02-01

    Full Text Available Glycation is associated with several neurodegenerative disorders, including Alzheimer’s disease (AD, where it potentiates the aggregation and toxicity of proteins such as β-amyloid (Aβ. Published studies support the anti-glycation and neuroprotective effects of several polyphenol-rich fruits, including berries, which are rich in anthocyanins. Herein, blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts were evaluated for: (1 total phenolic and anthocyanins contents, (2 free radical (DPPH scavenging and reactive carbonyl species (methylglyoxal; MGO trapping, (3 anti-glycation (using BSA-fructose and BSA-MGO models, (4 anti-Aβ aggregation (using thermal- and MGO-induced fibrillation models, and, (5 murine microglia (BV-2 neuroprotective properties. Berry crude extracts (CE were fractionated to yield anthocyanins-free (ACF and anthocyanins-enriched (ACE extracts. The berry ACEs (at 100 μg/mL showed superior free radical scavenging, reactive carbonyl species trapping, and anti-glycation effects compared to their respective ACFs. The berry ACEs (at 100 μg/mL inhibited both thermal- and MGO-induced Aβ fibrillation. In addition, the berry ACEs (at 20 μg/mL reduced H2O2-induced reactive oxygen species production, and lipopolysaccharide-induced nitric oxide species in BV-2 microglia as well as decreased H2O2-induced cytotoxicity and caspase-3/7 activity in BV-2 microglia. The free radical scavenging, reactive carbonyl trapping, anti-glycation, anti-Aβ fibrillation, and microglial neuroprotective effects of these berry extracts warrant further in vivo studies to evaluate their potential neuroprotective effects against AD.

  1. Neuroprotective Effects of Herbal Extract (Rosa canina, Tanacetum vulgare and Urtica dioica) on Rat Model of Sporadic Alzheimer’s Disease

    Science.gov (United States)

    Daneshmand, Parvaneh; Saliminejad, Kioomars; Dehghan Shasaltaneh, Marzieh; Kamali, Koorosh; Riazi, Gholam Hossein; Nazari, Reza; Azimzadeh, Pedram; Khorram Khorshid, Hamid Reza

    2016-01-01

    Background: Sporadic Alzheimer’s Disease (SAD) is caused by genetic risk factors, aging and oxidative stresses. The herbal extract of Rosa canina (R. canina), Tanacetum vulgare (T. vulgare) and Urtica dioica (U. dioica) has a beneficial role in aging, as an anti-inflammatory and anti-oxidative agent. In this study, the neuroprotective effects of this herbal extract in the rat model of SAD was investigated. Methods: The rats were divided into control, sham, model, herbal extract -treated and ethanol-treated groups. Drug interventions were started on the 21st day after modeling and each treatment group was given the drugs by intraperitoneal (I.P.) route for 21 days. The expression levels of the five important genes for pathogenesis of SAD including Syp, Psen1, Mapk3, Map2 and Tnf-α were measured by qPCR between the hippocampi of SAD model which were treated by this herbal extract and control groups. The Morris Water Maze was adapted to test spatial learning and memory ability of the rats. Results: Treatment of the rat model of SAD with herbal extract induced a significant change in expression of Syp (p=0.001) and Psen1 (p=0.029). In Morris Water Maze, significant changes in spatial learning seen in the rat model group were improved in herbal-treated group. Conclusion: This herbal extract could have anti-dementia properties and improve spatial learning and memory in SAD rat model. PMID:27563424

  2. The Neuroprotective Effect of Methanol Extract of Gagamjungjihwan and Fructus Euodiae on Ischemia-Induced Neuronal and Cognitive Impairment in the Rat

    Directory of Open Access Journals (Sweden)

    Bombi Lee

    2011-01-01

    Full Text Available Gagamjungjihwan (GJ, a decoction consisting of five herbs including ginseng, Acori Graminei Rhizoma, Uncariae Ramulus et Uncus, Polygalae Radic and Frustus Euodiae (FE, has been widely used as herbal treatment for ischemia. In order to investigate the neuroprotective action of this novel prescription, we examined the influence of GJ and FE on learning and memory using the Morris water maze and studied their affects on the central cholinergic system in the hippocampus with neuronal and cognitive impairment. After middle cerebral artery occlusion was applied for 2 h, rats were administered GJ (200 mg kg−1, p.o. or FE (200 mg kg−1, p.o. daily for 2 weeks, followed by training and performance of the Morris water maze tasks. Rats with ischemic insults showed impaired learning and memory of the tasks. Pre-treatment with GJ and FE produced improvement in the escape latency to find the platform. Pre-treatments with GJ and FE also reduced the loss of cholinergic immunoreactivity in the hippocampus. The results demonstrated that GJ and FE have a protective effect against ischemia-induced neuronal and cognitive impairment. Our results suggest that GJ and FE might be useful in the treatment of vascular dementia.

  3. [Effect of the novel nootropic and neuroprotective dipeptide noopept on the streptozotocin-induced model of sporadic Alzheimer disease in rats].

    Science.gov (United States)

    Ostrovskaia, R U; Tsaplina, A P; Vakhitova, Iu V; Salimgareeva, M Kh; Iamidanov, R S

    2010-01-01

    Streptozotocin-intracerebroventricularly treated rats are proposed as an experimental model of sporadic Alzheimer disease (AD). Diabetogenic toxin streptozotocin (STZ) administered in both cerebral ventricles in a dose of 3 mg/kg decreases the expression of NGF and BDNF mainly in the hippocampus and increases the content of malonic dialdehyde (MDA)--a product of lipid peroxidation--in the brain tissues. These metabolic changes are accompanied by a pronounced cognitive deficiency, which is manifested by long-term memory deterioration in the passive avoidance test. These manifestations of pathology are not accompanied by hyperglycemia in the case of intraventricular STZ administration, in contrast to the systemic (in particular, intraperitoneal) route of introduction that causes a pronounced increase in the blood glucose level. These results are consistent with the existing notions that (i) STZ administered intraventricularly provokes a complex of changes imitating the sporadic AD and (ii) this disease can be considered as a manifestation of type-III diabetes. The new original cognition enhancing and neuroprotective dipeptide noopept decreases the aforementioned metabolic changes and the accompanying long-term deterioration of the memory. Previously, this systemically active dipeptide was shown to be capable of increasing expression of NGF and BDNF in the hippocampus, stimulating the antibody production to beta-amyloid, inhibiting the lipid peroxidation, activating the endogenous antioxidant systems, and decreasing the rate of glutamate release (cholinopositive effect). Taken together, these data indicate that noopept can be considered as a multipotent substance acting upon several important pathogenic chainsof the sporadic AD.

  4. Neuroprotective effects of adenosine isolated from Cordyceps cicadae against oxidative and ER stress damages induced by glutamate in PC12 cells.

    Science.gov (United States)

    Olatunji, Opeyemi J; Feng, Yan; Olatunji, Oyenike O; Tang, Jian; Ouyang, Zhen; Su, Zhaoliang; Wang, Dujun; Yu, Xiaofeng

    2016-06-01

    Glutamate has been proven to induce oxidative stress through the formation of reactive oxygen species (ROS) and increased calcium overload which results in neuronal injury, development of neurodegenerative diseases and death. Adenosine is one of the bioactive nucleosides found in Cordyceps cicadae and it has displayed several pharmacological activities including neuroprotection. In this study, the protective effects of adenosine from C. cicadae against glutamate-induce oxidative stress in PC12 cells were evaluated. The exposure of PC12 cells to glutamate (5mM) induced the formation of ROS, increased Ca(2+) influx, endoplasmic reticulum (ER) stress and up regulated the expression of pro-apoptotic factor Bax. However, pretreatment with adenosine markedly increased cell viability, decreased the elevated levels of ROS and Ca(2+) induced by glutamate. Furthermore adenosine increased the activities of GSH-Px and SOD, as well as retained mitochondria membrane potential (MMP), increased Bcl-2/Bax ratio, and reduced the expression of ERK, p38, and JNK. Overall, our results suggest that adenosine may be a promising potential therapeutic agent for the prevention and treatment of neurodegenerative disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Neuroprotective Effects of 1,2-Diarylpropane Type Phenylpropanoid Enantiomers from Red Raspberry against H2O2-Induced Oxidative Stress in Human Neuroblastoma SH-SY5Y Cells.

    Science.gov (United States)

    Zhou, Le; Yao, Guo-Dong; Song, Xiao-Yu; Wang, Jie; Lin, Bin; Wang, Xiao-Bo; Huang, Xiao-Xiao; Song, Shao-Jiang

    2018-01-10

    Red raspberry (Rubus idaeus L.) is an edible fruit-producing species belonging to the Rosaceae family. In our search for the health-promoting constituents from this fruit, four pairs of enantiomeric phenylpropanoids (1a/1b-4a/4b), including three new compounds (1a and 2a/2b), were isolated from red raspberry. Their structures were elucidated by a combination of the extensive NMR spectroscopic data analyses, high-resolution electrospray ionization mass spectrometry and comparison between the experimental measurements of electronic circular dichroism (ECD) and calculated ECD spectra by time-dependent density functional theory (TDDFT). In addition, their neuroprotective effects against H 2 O 2 -induced oxidative stress in human neuroblastoma SH-SY5Y cells were investigated, and the results showed enantioselectivity, in which that 3a exhibited noticeable neuroprotective activity, while its enatiomer 3b exhibited no obvious protective effect. Further study demonstrated that 3a could selectively inhibit the apoptosis induction and reactive oxygen species (ROS) accumulation by enhancing the activity of catalase (CAT) in H 2 O 2 -treated human neuroblastoma SH-SY5Y cells. These findings shed much light on a better understanding of the neuroprotective effects of these enantiomers and provide new insights into developing better treatment of neurodegenerative diseases in the future.

  6. Centella asiatica (L.) Urban: From Traditional Medicine to Modern Medicine with Neuroprotective Potential

    OpenAIRE

    Ilkay Erdogan Orhan

    2012-01-01

    This paper covers the studies relevant to neuroprotective activity of Centella asiatica (L.) Urban, also known as “Gotu Kola.” The plant is native to the Southeast Asia and has been used traditionally as brain tonic in ayurvedic medicine. The neuroprotective effect of C. asiatica has been searched using the key words “Centella, Centella asiatica, gotu kola, Asiatic pennywort, neuroprotection, and memory” through the electronic databases including Sciencedirect, Web of Science, Scopus, Pubmed,...

  7. Neuroprotective effects of hydrated fullerene C60: cortical and hippocampal EEG interplay in an amyloid-infused rat model of Alzheimer's disease.

    Science.gov (United States)

    Vorobyov, Vasily; Kaptsov, Vladimir; Gordon, Rita; Makarova, Ekaterina; Podolski, Igor; Sengpiel, Frank

    2015-01-01

    We studied the effects of fullerene C60 nanoparticles, namely hydrated fullerene C60 (C60HyFn), on interrelations between EEG frequency spectra from the frontal cortex and the dorsal hippocampus (CA1) on an amyloid-β (Aβ) rat model of Alzheimer's disease (AD). Infusion of Aβ1-42 protein (1.5 μl) into the CA1 region two weeks before EEG testing diminished hippocampal theta (3.8-8.4 Hz) predominance and eliminated cortical beta (12.9-26.2 Hz) predominance observed in baseline EEG of rats infused with saline (control) or with C60HyFn alone. In contrast, these Aβ1-42 effects were abolished in rats pretreated with C60HyFn, 30 min apart. Dopaminergic mediation in AD has been shown to be involved in neuronal plasticity and Aβ transformation in different ways. To clarify its role in the cortex-hippocampus interplay in the Aβ model of AD, we used peripheral injection of a dopamine agonist, apomorphine (APO), at a low dose (0.1 mg/kg). In rats infused with C60HyFn or Aβ1-42 alone, APO attenuated the cortical beta predominance, with immediate and delayed phases evident in the Aβ1-42-rats. Pretreatment with C60HyFn diminished the APO effect in the Aβ1-42-treated rats. Thus, we show that intrahippocampal injection of Aβ1-42 dramatically disrupts cortical versus hippocampal EEG interrelations and that pretreatment with the fullerene eliminates this abnormality. We suggest that some effects of C60HyFn may be mediated through presynaptic dopamine receptors and that water-soluble C60 fullerenes have a neuroprotective potential.

  8. Neuroprotective effects of orientin on oxygen-glucose deprivation/reperfusion-induced cell injury in primary culture of rat cortical neurons.

    Science.gov (United States)

    Tian, Tian; Zeng, Junan; Zhao, Guangyu; Zhao, Wenjing; Gao, Songyi; Liu, Li

    2018-01-01

    together, these results demonstrated that orientin has significant neuroprotective effects against OGD/RP-induced cell injury via JNK and ERK1/2 signaling pathways in primary culture of rat cortical neurons. Impact statement Orientin has been used in traditional eastern medicine and reported to possess antioxidant properties. However, the effects of orientin on neonatal ischemic brain injury and the underlying mechanisms involved have not been studied. Our results showed that orientin exerts significant neuroprotective effects on cell injury caused by oxygen-glucose deprivation/reperfusion via the JNK and ERK1/2 signaling pathways in primary culture of rat cortical neurons, implying the potential therapeutic application of orientin via the suppression of oxidative stress and cell apoptosis. This research suggested that orientin may be used as a therapeutic and preventive option for newborn cerebral ischemia/reperfusion injury.

  9. Pioglitazone Confers Neuroprotection Against Ischemia-Induced Pyroptosis due to its Inhibitory Effects on HMGB-1/RAGE and Rac1/ROS Pathway by Activating PPAR-ɤ

    Directory of Open Access Journals (Sweden)

    Pingping Xia

    2018-03-01

    Full Text Available Background/Aims: Recent researches highlighted the protective potential of pioglitazone, a PPAR-γ agonist, in the progression of cerebral ischemia-reperfusion injury. However, there has been no study on the application of pioglitazone in treating ischemic stroke through mechanisms involving pyroptosis. Methods: The cerebral injury was established by middle cerebral artery occlusion (MCAO. in vitro ischemia in primary cultured astrocytes was induced by the oxygen-glucose deprivation (OGD. ELISA and Western Blot analysis were employed to the levels of PPAR-γ, pyroptosis-related biomarkers and cytoplasmic translocation of HMGB-1 and RAGE expression as well as Rac1 activity, respectively. Results: We demonstrated that repeated intraperitoneal administration of pioglitazone remarkably reduced the infarct volume, improved neurological deficits and suppressed the Rac1 activity with significant reduction of excessive ROS in rat model of middle cerebral artery occlusion (MCAO. Moreover, pioglitazone alleviated the up-regulation of pyroptosis-related biomarkers and the increased cytoplasmic translocation of HMGB-1 and RAGE expression in cerebral penumbra cortex. Similarly, the protective effects of pioglitazone on cultured astrocytes were characterized by reduced Rac1 activity, pyroptosis related protein expressions and lactate dehydrogenase (LDH release. However, these protective effects of pioglitazone were neutralized with the use of GW9662, a PPAR-γ inhibitor. Interestingly, Rac1 knockdown in lentivirus with the Rac1 small hair RNA (shRNA could inhibit the OGD-induced pyroptosis of primary cultured astrocytes. Furthermore, the combination of Rac1-shRNA and pioglitazone can further strengthen the inhibitory effects on pyroptosis induced by OGD. Conclusion: The neuroprotection of pioglitazone was attributable to the alleviated ischemia/hypoxia-induced pyroptosis and was also associated with the PPARγ-mediated suppression of HGMB-1/RAGE signaling

  10. Pioglitazone Confers Neuroprotection Against Ischemia-Induced Pyroptosis due to its Inhibitory Effects on HMGB-1/RAGE and Rac1/ROS Pathway by Activating PPAR-ɤ.

    Science.gov (United States)

    Xia, Pingping; Pan, Yundan; Zhang, Fan; Wang, Na; Wang, E; Guo, Qulian; Ye, Zhi

    2018-01-01

    Recent researches highlighted the protective potential of pioglitazone, a PPAR-γ agonist, in the progression of cerebral ischemia-reperfusion injury. However, there has been no study on the application of pioglitazone in treating ischemic stroke through mechanisms involving pyroptosis. The cerebral injury was established by middle cerebral artery occlusion (MCAO). in vitro ischemia in primary cultured astrocytes was induced by the oxygen-glucose deprivation (OGD). ELISA and Western Blot analysis were employed to the levels of PPAR-γ, pyroptosis-related biomarkers and cytoplasmic translocation of HMGB-1 and RAGE expression as well as Rac1 activity, respectively. We demonstrated that repeated intraperitoneal administration of pioglitazone remarkably reduced the infarct volume, improved neurological deficits and suppressed the Rac1 activity with significant reduction of excessive ROS in rat model of middle cerebral artery occlusion (MCAO). Moreover, pioglitazone alleviated the up-regulation of pyroptosis-related biomarkers and the increased cytoplasmic translocation of HMGB-1 and RAGE expression in cerebral penumbra cortex. Similarly, the protective effects of pioglitazone on cultured astrocytes were characterized by reduced Rac1 activity, pyroptosis related protein expressions and lactate dehydrogenase (LDH) release. However, these protective effects of pioglitazone were neutralized with the use of GW9662, a PPAR-γ inhibitor. Interestingly, Rac1 knockdown in lentivirus with the Rac1 small hair RNA (shRNA) could inhibit the OGD-induced pyroptosis of primary cultured astrocytes. Furthermore, the combination of Rac1-shRNA and pioglitazone can further strengthen the inhibitory effects on pyroptosis induced by OGD. The neuroprotection of pioglitazone was attributable to the alleviated ischemia/hypoxia-induced pyroptosis and was also associated with the PPARγ-mediated suppression of HGMB-1/RAGE signaling pathway. Moreover, the inhibition of Rac1 promoted this function

  11. Neuroprotective effect of the active components of three Chinese herbs on brain iron load in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Dong, Xian-Hui; Gao, Wei-Juan; Kong, Wei-Na; Xie, Hong-Lin; Peng, Yan; Shao, Tie-Mei; Yu, Wen-Guo; Chai, Xi-Qing

    2015-04-01

    Alzheimer's disease (AD) is a neurodegenerative brain disorder and the most common cause of dementia. New treatments for AD are required due to its increasing prevalence in aging populations. The present study evaluated the effects of the active components of Epimedium , Astragalus and Radix Puerariae on learning and memory impairment, β-amyloid (Aβ) reduction and brain iron load in an APP swe /PS1 ΔE9 transgenic mouse model of AD. Increasing evidence indicates that a disturbance of normal iron homeostasis may contribute to the pathology of AD. However, the underlying mechanisms resulting in abnormal iron load in the AD brain remain unclear. It has been hypothesized that the brain iron load is influenced by the deregulation of certain proteins associated with brain iron metabolism, including divalent metal transporter 1 (DMT1) and ferroportin 1 (FPN1). The present study investigated the effects of the active components of Epimedium , Astragalus and Radix Puerariae on the expression levels of DMT1 and FPN1. The treatment with the active components reduced cognitive deficits, inhibited Aβ plaque accumulation, reversed Aβ burden and reduced the brain iron load in AD model mice. A significant increase was observed in the levels of DMT1-iron-responsive element (IRE) and DMT1-nonIRE in the hippocampus of the AD mouse brain, which was reduced by treatment with the active components. In addition, the levels of FPN1 were significantly reduced in the hippocampus of the AD mouse brain compared with those of control mice, and these levels were increased following treatment with the active components. Thus, the present study indicated that the active components of Epimedium , Astragalus and Radix Puerariae may exert a neuroprotective effect against AD by reducing iron overload in the AD brain and may provide a novel approach for the development of drugs for the treatment of AD.

  12. Neuroprotective effect of physical exercise in a mouse model of Alzheimer's disease induced by β-amyloid₁₋₄₀ peptide.

    Science.gov (United States)

    Souza, Leandro C; Filho, Carlos B; Goes, André T R; Fabbro, Lucian Del; de Gomes, Marcelo G; Savegnago, Lucielli; Oliveira, Mauro Schneider; Jesse, Cristiano R

    2013-08-01

    This study was designed to investigate the potential neuroprotective effect of exercise in a mouse model of Alzheimer's disease (AD) induced by intracerebroventricular (i.c.v.) injection of beta-amyloid₁₋₄₀ (Aβ₁₋₄₀) peptide. For this aim, male Swiss Albino mice were submitted to swimming training (ST) with progressive increase in intensity and duration for 8 weeks before Aβ₁₋₄₀ administration (400 pmol/animal; 3 μl/site, i.c.v. route). The cognitive behavioral, oxidative stress, and neuroinflammatory markers in hippocampus and prefrontal cortex of mice were assessed 7 days after Aβ₁₋₄₀ administration. Our results demonstrated that ST was effective in preventing impairment in short- and long-term memories in the object recognition test. ST attenuated the increased levels of reactive species and decreased non-protein thiol levels in hippocampus and prefrontal cortex induced by Aβ₁₋₄₀. Also, Aβ₁₋₄₀ inhibited superoxide dismutase activity and increased glutathione peroxidase, glutathione reductase, and glutathione S-transferase activities in hippocampus and prefrontal cortex-alterations that were mitigated by ST. In addition, ST was effective against the increase of tumor necrosis factor-alpha and interleukin-1 beta levels and the decrease of interleukin-10 levels in hippocampus and prefrontal cortex. This study confirmed the hypothesis that exercise is able to protect against some mechanisms of Aβ₁₋₄₀-induced neurotoxicity. In conclusion, we suggest that exercise can prevent the cognitive decline, oxidative stress, and neuroinflammation induced by Aβ₁₋₄₀ in mice supporting the hypothesis that exercise can be used as a non-pharmacological tool to reduce the symptoms of AD.

  13. Implantable porous gelatin microspheres sustained release of bFGF and improved its neuroprotective effect on rats after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Li Lan

    Full Text Available In this study, porous gelatin microspheres (GMSs were constructed to improve the neuroprotective effect of basic fibroblast growth factor (bFGF on spinal cord injury. GMSs were prepared by a W/O emulsion template, followed by cross-linking, washing and drying. The particle sizes and surface porosity of the blank GMSs were carefully characterized by scan electronic microscopy. The blank GMSs have a mean particle size of 35μm and theirs surface was coarse and porous. bFGF was easily encapsulated inside the bulk GMSs through diffusion along the porous channel. 200μg of bFGF was completely encapsulated in 100mg of GMSs. The bFGF-loaded GMSs displayed a continuous drug release pattern without an obvious burst release over two weeks in vitro. Moreover, the therapeutic effects of bFGF-loaded GMSs were also evaluated in spinal cord injury rat model. After implantation of bFGF-loaded GMSs, the recovery of the motor function of SCI rats were evaluated by behavioral score and foot print experiment. The motor function of SCI rats treated with bFGF-loaded GMSs was more obvious than that treated with free bFGF solution (P<0.05. At the 28th days after treatment, rats were sacrificed and the injured spinal were removed for histopathological and apoptosis examination. Compared with treatment with free bFGF solution, treatment with bFGF-loaded GMSs resulted in a less necrosis, less infiltration of leukocytes, and a reduced the cavity ratio and less apoptotic cells in injured spinal(P<0.01, indicating its better therapeutic effect. Implantable porous GMSs may be a potential carrier to deliver bFGF for therapy of spinal cord injury.

  14. Implantable porous gelatin microspheres sustained release of bFGF and improved its neuroprotective effect on rats after spinal cord injury

    Science.gov (United States)

    ZhuGe, Qi-Chuan; Shen, Bi-Xin; Jin, Bing-Hui; Huang, Jian-Ping; Wu, Ming-Ze; Fan, Lu-Xin; Zhao, Ying-Zheng; Xu, He-Lin

    2017-01-01

    In this study, porous gelatin microspheres (GMSs) were constructed to improve the neuroprotective effect of basic fibroblast growth factor (bFGF) on spinal cord injury. GMSs were prepared by a W/O emulsion template, followed by cross-linking, washing and drying. The particle sizes and surface porosity of the blank GMSs were carefully characterized by scan electronic microscopy. The blank GMSs have a mean particle size of 35μm and theirs surface was coarse and porous. bFGF was easily encapsulated inside the bulk GMSs through diffusion along the porous channel. 200μg of bFGF was completely encapsulated in 100mg of GMSs. The bFGF-loaded GMSs displayed a continuous drug release pattern without an obvious burst release over two weeks in vitro. Moreover, the therapeutic effects of bFGF-loaded GMSs were also evaluated in spinal cord injury rat model. After implantation of bFGF-loaded GMSs, the recovery of the motor function of SCI rats were evaluated by behavioral score and foot print experiment. The motor function of SCI rats treated with bFGF-loaded GMSs was more obvious than that treated with free bFGF solution (P<0.05). At the 28th days after treatment, rats were sacrificed and the injured spinal were removed for histopathological and apoptosis examination. Compared with treatment with free bFGF solution, treatment with bFGF-loaded GMSs resulted in a less necrosis, less infiltration of leukocytes, and a reduced the cavity ratio and less apoptotic cells in injured spinal(P<0.01), indicating its better therapeutic effect. Implantable porous GMSs may be a potential carrier to deliver bFGF for therapy of spinal cord injury. PMID:28291798

  15. Diet-induced obesity has neuroprotective effects in murine gastric enteric nervous system: involvement of leptin and glial cell line-derived neurotrophic factor.

    Science.gov (United States)

    Baudry, Charlotte; Reichardt, François; Marchix, Justine; Bado, André; Schemann, Michael; des Varannes, Stanislas Bruley; Neunlist, Michel; Moriez, Raphaël

    2012-02-01

    Nutritional factors can induce profound neuroplastic changes in the enteric nervous system (ENS), responsible for changes in gastrointestinal (GI) motility. However, long-term effects of a nutritional imbalance leading to obesity, such as Western diet (WD), upon ENS phenotype and control of GI motility remain unknown. Therefore, we investigated the effects of WD-induced obesity (DIO) on ENS phenotype and function as well as factors involved in functional plasticity. Mice were fed with normal diet (ND) or WD for 12 weeks. GI motility was assessed in vivo and ex vivo. Myenteric neurons and glia were analysed with immunohistochemical methods using antibodies against Hu, neuronal nitric oxide synthase (nNOS), Sox-10 and with calcium imaging techniques. Leptin and glial cell line-derived neurotrophic factor (GDNF) were studied using immunohistochemical, biochemical or PCR methods in mice and primary culture of ENS. DIO prevented the age-associated decrease in antral nitrergic neurons observed in ND mice. Nerve stimulation evoked a stronger neuronal Ca(2+) response in WD compared to ND mice. DIO induced an NO-dependent increase in gastric emptying and neuromuscular transmission in the antrum without any change in small intestinal transit. During WD but not ND, a time-dependent increase in leptin and GDNF occurred in the antrum. Finally, we showed that leptin increased GDNF production in the ENS and induced neuroprotective effects mediated in part by GDNF. These results demonstrate that DIO induces neuroplastic changes in the antrum leading to an NO-dependent acceleration of gastric emptying. In addition, DIO induced neuroplasticity in the ENS is likely to involve leptin and GDNF.

  16. Hepatic branch vagus nerve plays a critical role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A.

    Directory of Open Access Journals (Sweden)

    Shinichi Harada

    Full Text Available Orexin-A (a neuropeptide in the hypothalamus plays an important role in many physiological functions, including the regulation of glucose metabolism. We have previously found that the development of post-ischemic glucose intolerance is one of the triggers of ischemic neuronal damage, which is suppressed by hypothalamic orexin-A. Other reports have shown that the communication system between brain and peripheral tissues through the autonomic nervous system (sympathetic, parasympathetic and vagus nerve is important for maintaining glucose and energy metabolism. The aim of this study was to determine the involvement of the hepatic vagus nerve on hypothalamic orexin-A-mediated suppression of post-ischemic glucose intolerance development and ischemic neuronal damage. Male ddY mice were subjected to middle cerebral artery occlusion (MCAO for 2 h. Intrahypothalamic orexin-A (5 pmol/mouse administration significantly suppressed the development of post-ischemic glucose intolerance and neuronal damage on day 1 and 3, respectively after MCAO. MCAO-induced decrease of hepatic insulin receptors and increase of hepatic gluconeogenic enzymes on day 1 after was reversed to control levels by orexin-A. This effect was reversed by intramedullary administration of the orexin-1 receptor antagonist, SB334867, or hepatic vagotomy. In the medulla oblongata, orexin-A induced the co-localization of cholin acetyltransferase (cholinergic neuronal marker used for the vagus nerve with orexin-1 receptor and c-Fos (activated neural cells marker. These results suggest that the hepatic branch vagus nerve projecting from the medulla oblongata plays an important role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A.

  17. The Biochemical, Histopathological and Clinical Comparison of the Neuroprotective Effects of Subcutaneous Adalimumab and Intravenous Methylprednisolone in an Experimental Compressive Spinal Cord Trauma Model.

    Science.gov (United States)

    Celik, Haydar; Karatay, Mete; Erdem, Yavuz; Yildirim, Ali Erdem; Sertbas, Idris; Karatay, Eylem; Kul, Halil; Guvenc, Yahya; Koksal, Ismet; Menekse, Guner; Alagoz, Fatih; Kertmen, Huseyin Hayri; Caydere, Muzaffer

    To evaluate the neuroprotective effects of adalimumab in an experimental spinal cord injury model and compare them with those of the widely-used methylprednisolone. Forty male Wistar rats were divided into 5 as the sham, trauma, adalimumab, methylprednisolone, and adalimumab+methylprednisolone groups. Only laminectomy was performed in the sham group. Laminectomy and trauma was performed to the trauma group but no treatment was given. A single dose of 40 mg/kg subcutaneous adalimumab was administered after the laminectomy and trauma to group 3. A single dose of intravenous 30 mg/kg methylprednisolone was administered right after laminectomy and trauma to group 4. Single doses of 40 mg/kg adalimumab and 30 mg/kg methylprednisolone were administered together after laminectomy and trauma to group 5. Serum malondialdehyde (MDA), TNF-α, IL-1β and IL-6 levels were measured and sections were obtained for histopathological study at the end of the 7 th day. MDA, TNF-α, IL-1β and IL-6 levels in serum were significantly decreased in the adalimumab group with clinical and histopathological improvement not less than the methylprednisolone group. The serum MDA levels were similar when the two drugs were given together or separately but there was a statistically quite significant decrease in TNF-α, IL-1β and IL-6 levels with concurrent use. Statistically significantly better results were obtained on histopathological evaluation with the use of both drugs together. This study revealed that adalimumab is as effective as methylprednisolone in compressive spinal cord injury in rats.

  18. Effect of strong electrolytes on edible oils part III: viscosity of canola ...

    African Journals Online (AJOL)

    Effect of strong electrolytes on the viscosity of canola oil in 1,4 dioxane was undertaken. The viscosity of oil in 1,4 dioxane was found to increase with the concentration of oil and decrease with rise in temperature. Strong electrolytes reduce the rate of flow of oil in 1,4 dioxane. It was noted that amongst these electrolytes, ...

  19. Anomalous Josephson effect in semiconductor nanowire with strong spin-orbit interaction and Zeeman effect

    Science.gov (United States)

    Yokoyama, Tomohiro; Eto, Mikio; Nazarov, Yuli

    2014-03-01

    We theoretically investigate the Josephson junction using quasi-one dimensional semiconductor nanowires with strong spin-orbit (SO) interaction, e.g., InSb. First, we examine a simple model using a single scatterer to describe the elastic scattering due to impurities and SO interaction in the normal region.[1] The Zeeman effect is taken into account by the spin-dependent phase shift of electron and hole through the system. The interplay between SO interaction and Zeeman effect results in a finite supercurrent even when the phase difference between two superconductors is zero. Moreover, the critical current depends on its current direction if more than one conduction channel is present in the nanowire. Next, we perform a numerical simulation by the tight-binding model for the nanowire to confirm our simple model. Then, we show that a spin-dependent Fermi velocity due to the SO interaction causes the anomalous Josephson effect.

  20. Role of histidine/histamine in carnosine-induced neuroprotection during ischemic brain damage.

    Science.gov (United States)

    Bae, Ok-Nam; Majid, Arshad

    2013-08-21

    Urgent need exists for new therapeutic options in ischemic stroke. We recently demonstrated that carnosine, an endogenous dipeptide consisting of alanine and histidine, is robustly neuroprotective in ischemic brain injury and has a wide clinically relevant therapeutic time window. The precise mechanistic pathways that mediate this neuroprotective effect are not known. Following in vivo administration, carnosine is hydrolyzed into histidine, a precursor of histamine. It has been hypothesized that carnosine may exert its neuroprotective activities through the histidine/histamine pathway. Herein, we investigated whether the neuroprotective effect of carnosine is mediated by the histidine/histamine pathway using in vitro primary astrocytes and cortical neurons, and an in vivo rat model of ischemic stroke. In primary astrocytes, carnosine significantly reduced ischemic cell death after oxygen-glucose deprivation, and this effect was abolished by histamine receptor type I antagonist. However, histidine or histamine did not exhibit a protective effect on ischemic astrocytic cell death. In primary neuronal cultures, carnosine was found to be neuroprotective but histamine receptor antagonists had no effect on the extent of neuroprotection. The in vivo effect of histidine and carnosine was compared using a rat model of ischemic stroke; only carnosine exhibited neuroprotection. Taken together, our data demonstrate that although the protective effects of carnosine may be partially mediated by activity at the histamine type 1 receptor on astrocytes, the histidine/histamine pathway does not appear to play a critical role in carnosine induced neuroprotection. Copyright © 2013. Published by Elsevier B.V.

  1. Differential neuroprotective activity of two different grape seed extracts.

    Directory of Open Access Journals (Sweden)

    Keishi Narita

    Full Text Available Glutamate excitotoxicity is one of the major events that takes place during various neurotoxic injuries such as brain ischemia. We prepared grape seed extracts, from two different varieties, containing high amounts of polyphenols but little resveratrol. Their neuroprotective effects were investigated using primary culture of neonatal mouse hippocampal neurons treated with an excitotoxic concentration of glutamate. Koshu, a white, local variety of V. vinifera, alleviated the acute inactivation of Erk1/2 and dendrite retraction in cultured hippocampal neurons exposed to a toxic concentration of glutamate (1.0 ng/ml. By contrast, Muscat Bailey A, a red, hybrid variety (Muscat Humburg × Bailey, failed to show any neuroprotective effect. Unlike brain-derived neurotrophic factor and other neuroprotective cytokines, Koshu extract did not induce Akt phosphorylation. Koshu extract also augmented neuron survival rate 24 hours after glutamate toxicity. The comparison of polyphenols between the two samples by liquid chromatography/time-of-flight mass spectrometry demonstrated that Koshu had higher amounts of low molecular weight polyphenols along with several Koshu-specific procyanidin oligomers. These data suggest the presence of high affinity molecular targets for polyphenols in hippocampal neurons, which induce neuroprotective effects in a manner different from BDNF, and the importance of low molecular weight polyphenols and/or procyanidin oligomers for neuroprotection.

  2. Human Adipose-Derived Stem Cells Delay Retinal Degeneration in Royal College of Surgeons Rats Through Anti-Apoptotic and VEGF-Mediated Neuroprotective Effects.

    Science.gov (United States)

    Li, Z; Wang, J; Gao, F; Zhang, J; Tian, H; Shi, X; Lian, C; Sun, Y; Li, W; Xu, J-Y; Li, P; Zhang, J; Gao, Z; Xu, J; Wang, F; Lu, L; Xu, G-T

    2016-01-01

    Vegf expression level decreased over time in RCS rats. The treatment of AAV2-VEGF showed comparable therapeutic effects as hADSCs but siRNA knockdown of VEGF in hADSCs essentially abolished the therapeutic effects. Subretinal transplantation of hADSCs in RCS rats effectively delayed the retinal degeneration, enhanced the retinal cell survival and improved the visual function. Mechanistically this was mainly due to hADSC dependent anti-apoptotic and neuroprotective effects through its secretion of growth and neurotrophic factors including VEGF. Clinical application of hADSCs merits further investigation.

  3. Strong Effect of Azodye Layer Thickness on RM-Stabilized Photoalignment

    Science.gov (United States)

    2017-05-21

    Strong Effect of Azodye Layer Thickness on RM-Stabilized Photoalignment Colin McGinty*, Valerie Finnemeyer**, Robert Reich**, Harry Clark...vertical alignment on these substrates. For the thinner BY layers, we do not see this strong evidence of out of plane reorientation. The out of...In this report we show the surprising effect that thin azodye layers demonstrate improved stability over those that are thicker. Figure 6

  4. Neuroprotection in Glaucoma: A Review

    African Journals Online (AJOL)

    Alasia Datonye

    preventable visual disability, is a progressive neurodegenerative .... Glutamate Excitotoxicity. Oxidative Stress. Protein Misfolding. Awoyesuku E.A, Fiebai B — Neuroprotection in Glaucoma feature of many neurodegenerative diseases, including ... facilitate nascent and stress-induced protein folding and unfolding, and ...

  5. Neuroprotective properties of GLP-1

    DEFF Research Database (Denmark)

    Holst, Jens Juul; Burcelin, Remy; Nathanson, Esther

    2011-01-01

    emptying. Furthermore, data are beginning to emerge that indicate a potential role for GLP-1 in neuroprotection. The increased risk of Alzheimer's disease, Parkinson's disease and stroke in people with type 2 diabetes suggests that shared mechanisms/pathways of cell death, possibly related to insulin...

  6. Neuroprotective effect of safranal, an active ingredient of Crocus sativus , in a rat model of transient cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Hamid R. Sadeghnia

    2017-09-01

    Full Text Available Safranal is a monoterpene aldehyde found in saffron (Crocus sativus L. petals. It has been previously reported that safranal has a wide range of activities such as antioxidant and anti-inflammatory effects. In this study, we examined the effect of safranal on brain injuries in a transient model of focal cerebral ischemia. Transient focal cerebral ischemia was induced by middle cerebral artery occlusion for 30 min, followed by 24 h of reperfusion. Safranal in the doses of 72.5 and 145 mg/kg was administered intraperitoneally at 0, 3, and 6 h after reperfusion. Neurobehavioral deficit, infarct volume, hippocampal cell loss and markers of oxidative stress including thiobarbituric acid reactive substances (TBARS, total sulfhydryl (SH content, and antioxidant capacity (using FRAP assay were also assessed. The focal cerebral ischemia induced a significant increase in the neurological score, infarct volume and neuronal cell loss in the ipsilateral hippocampal CA1 and CA3 subfields (p < 0.001 and also oxidative stress markers (p < 0.01. Following safranal administration, the total SH content and antioxidant capacity significantly increased, while marked decreases were observed in the neurological score, infarct volume and hippocampal cell loss, as well as TBARS level. This study concluded that safranal had protective effects on ischemic reperfusion injury in the rat model of stroke. Such effects of safranal may have been exerted mainly by suppressing the production of free radicals and increasing antioxidant activity.

  7. Enzyme-treated Asparagus officinalis extract shows neuroprotective effects and attenuates cognitive impairment in senescence-accelerated mice.

    Science.gov (United States)

    Sakurai, Takuya; Ito, Tomohiro; Wakame, Koji; Kitadate, Kentaro; Arai, Takashi; Ogasawara, Junetsu; Kizaki, Takako; Sato, Shogo; Ishibashi, Yoshinaga; Fujiwara, Tomonori; Akagawa, Kimio; Ishida, Hitoshi; Ohno, Hideki

    2014-01-01

    Increases in the number of patients with dementia involving Alzheimer's disease (AD) are seen as a grave public health problem. In neurodegenerative disorders involving AD, biological stresses, such as oxidative and inflammatory stress, induce neural cell damage. Asparagus (Asparagus officinalis) is a popular vegetable, and an extract prepared from this reportedly possesses various beneficial biological activities. In the present study, we investigated the effects of enzyme-treated asparagus extract (ETAS) on neuronal cells and early cognitive impairment of senescence-accelerated mouse prone 8 (SAMP8) mice. The expression of mRNAs for factors that exert cytoprotective and anti-apoptotic functions, such as heat-shock protein 70 and heme oxygenase-1, was upregulated in NG108-15 neuronal cells by treatment with ETAS. Moreover, when release of lactate dehydrogenase from damaged NG108-15 cells was increased for cells cultured in medium containing either the nitric oxide donor sodium nitroprusside or the hypoxia mimic reagent cobalt chloride, ETAS significantly attenuated this cell damage. Also, when contextual fear memory, which is considered to be a hippocampus-dependent memory, was significantly impaired in SAMP8 mice, ETAS attenuated the cognitive impairment. These results suggest that ETAS produces cytoprotective effects in neuronal cells and attenuates the effects on the cognitive impairment of SAMP8 mice.

  8. Neuroprotective Effect of Brassica oleracea Sprouts Crude Juice in a Cellular Model of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Alessandra Masci

    2015-01-01

    Full Text Available β-Amyloid peptide (Aβ aberrant production and aggregation are major factors implicated in the pathogenesis of Alzheimer’s disease (AD, causing neuronal death via oxidative stress. Several studies have highlighted the importance of polyphenolic antioxidant compounds in the treatment of AD, but complex food matrices, characterized by a different relative content of these phytochemicals, have been neglected. In the present study, we analyzed the protective effect on SH-SY5Y cells treated with the fragment Aβ25–35 by two crude juices of broccoli sprouts containing different amounts of phenolic compounds as a result of different growth conditions. Both juices protected against Aβ-induced cytotoxicity and apoptotic cell death as evidenced by cell viability, nuclear chromatin condensation, and apoptotic body formation measurements. These effects were mediated by the modulation of the mitochondrial function and of the HSP70 gene transcription and expression. Furthermore, the juices upregulated the intracellular glutathione content and mRNA levels or activity of antioxidant enzymes such as heme oxygenase-1, thioredoxin, thioredoxin reductase, and NAD(PH:quinone oxidoreductase 1 via activation of NF-E2-related factor 2 (Nrf2. Although the effects of the two juices were similar, the juice enriched in phenolic compounds showed a greater efficacy in inducing the activation of the Nrf2 signalling pathway.

  9. The Neuroprotective Functions of Transforming Growth Factor Beta Proteins

    Directory of Open Access Journals (Sweden)

    Gábor Lovas

    2012-07-01

    Full Text Available Transforming growth factor beta (TGF-β proteins are multifunctional cytokines whose neural functions are increasingly recognized. The machinery of TGF-β signaling, including the serine kinase type transmembrane receptors, is present in the central nervous system. However, the 3 mammalian TGF-β subtypes have distinct distributions in the brain suggesting different neural functions. Evidence of their involvement in the development and plasticity of the nervous system as well as their functions in peripheral organs suggested that they also exhibit neuroprotective functions. Indeed, TGF-β expression is induced following a variety of types of brain tissue injury. The neuroprotective function of TGF-βs is most established following brain ischemia. Damage in experimental animal models of global and focal ischemia was shown to be attenuated by TGF-βs. In addition, support for their neuroprotective actions following trauma, sclerosis multiplex, neurodegenerative diseases, infections, and brain tumors is also accumulating. The review will also describe the potential mechanisms of neuroprotection exerted by TGF-βs including anti-inflammatory, -apoptotic, -excitotoxic actions as well as the promotion of scar formation, angiogenesis, and neuroregeneration. The participation of these mechanisms in the neuroprotective effects of TGF-βs during different brain lesions will also be discussed.

  10. Inhalation gases or gaseous mediators as neuroprotectants for cerebral ischaemia.

    Science.gov (United States)

    Sutherland, Brad A; Harrison, Joanne C; Nair, Shiva M; Sammut, Ivan A

    2013-01-01

    Ischaemic stroke is one of the leading causes of morbidity and mortality worldwide. While recombinant tissue plasminogen activator can be administered to produce thrombolysis and restore blood flow to the ischaemic brain, therapeutic benefit is only achieved in a fraction of the subset of patients eligible for fibrinolytic intervention. Neuroprotective therapies attempting to restrict the extent of brain injury following cerebral ischaemia have not been successfully translated into the clinic despite overwhelming pre-clinical evidence of neuroprotection. Therefore, an adequate treatment for the majority of acute ischaemic stroke patients remains elusive. In the stroke literature, the use of therapeutic gases has received relatively little attention. Gases such as hyperbaric and normobaric oxygen, xenon, hydrogen, helium and argon all possess biological effects that have shown to be neuroprotective in pre-clinical models of ischaemic stroke. There are significant advantages to using gases including their relative abundance, low cost and feasibility for administration, all of which make them ideal candidates for a translational therapy for stroke. In addition, modulating cellular gaseous mediators including nitric oxide, carbon monoxide, and hydrogen sulphide may be an attractive option for ischaemic stroke therapy. Inhalation of these gaseous mediators can also produce neuroprotection, but this strategy remains to be confirmed as a viable therapy for ischaemic stroke. This review highlights the neuroprotective potential of therapeutic gas therapy and modulation of gaseous mediators for ischaemic stroke. The therapeutic advantages of gaseous therapy offer new promising directions in breaking the translational barrier for ischaemic stroke.

  11. The Neuroprotective Functions of Transforming Growth Factor Beta Proteins

    Science.gov (United States)

    Dobolyi, Arpád; Vincze, Csilla; Pál, Gabriella; Lovas, Gábor

    2012-01-01

    Transforming growth factor beta (TGF-β) proteins are multifunctional cytokines whose neural functions are increasingly recognized. The machinery of TGF-β signaling, including the serine kinase type transmembrane receptors, is present in the central nervous system. However, the 3 mammalian TGF-β subtypes have distinct distributions in the brain suggesting different neural functions. Evidence of their involvement in the development and plasticity of the nervous system as well as their functions in peripheral organs suggested that they also exhibit neuroprotective functions. Indeed, TGF-β expression is induced following a variety of types of brain tissue injury. The neuroprotective function of TGF-βs is most established following brain ischemia. Damage in experimental animal models of global and focal ischemia was shown to be attenuated by TGF-βs. In addition, support for their neuroprotective actions following trauma, sclerosis multiplex, neurodegenerative diseases, infections, and brain tumors is also accumulating. The review will also describe the potential mechanisms of neuroprotection exerted by TGF-βs including anti-inflammatory, -apoptotic, -excitotoxic actions as well as the promotion of scar formation, angiogenesis, and neuroregeneration. The participation of these mechanisms in the neuroprotective effects of TGF-βs during different brain lesions will also be discussed. PMID:22942700

  12. Neuroprotective effect of Valeriana wallichii rhizome extract against the neurotoxin MPTP in C57BL/6 mice.

    Science.gov (United States)

    Sridharan, Subhashree; Mohankumar, Kumaravel; Jeepipalli, Syam Praveen Kumar; Sankaramourthy, Divya; Ronsard, Larance; Subramanian, Kavimani; Thamilarasan, Manivasagam; Raja, Kumar; Chandra, Varshney Khub; Sadras, Sudha Rani

    2015-12-01

    Oxidative stress and inflammation are some of the contributing factors for dopaminergic neurodegeneration in Parkinson's disease (PD). Though Valeriana wallichii D.C. is known for its nervine activities its effect against PD is yet to be studied. This is the first report on the antioxidant and anti-inflammatory effect of V. wallichii rhizome extract (VWE) in MPTP induced PD mice. GC-MS analysis of VWE indicated the presence of phytoconstituents like isovaleric acid and acacetin. PD induced mice were treated orally with three different doses (50, 100 and 200mg/kg body weight (BW)) of VWE for 14 days and their behavioural changes were studied on days 0, 8, 13 and 21. The levels of striatal dopamine, mid brain tyrosine hydroxylase positive (TH(+)) cell count, TH protein expression, reactive oxygen species (ROS), lipid peroxidation (LPO), antioxidants and inflammatory cytokines were analysed. Mid brain glial fibrillary acidic protein (GFAP) expression was assessed by immunohistochemistry and western blotting. Also mid brain histopathological analysis was performed. VWE treatment significantly recuperated the altered behavioural test scores, striatal dopamine levels, mid brain TH(+) cell count and TH protein levels, increased GFAP expression and the histopathological changes observed in PD mice. Similarly, diminished levels of antioxidants, elevated levels of ROS, LPO and inflammatory cytokines were also significantly ameliorated following VWE treatment. The effective dose of VWE was found to be 200mg/kg BW. Conclusively, V. wallichii rhizome extract has the potential to mitigate oxidative stress and inflammatory damage in PD. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Neuroprotective effect of bispectral index-guided fast-track anesthesia using sevoflurane combined with dexmedetomidine for intracranial aneurysm embolization

    Directory of Open Access Journals (Sweden)

    Chao-liang Tang

    2018-01-01

    Full Text Available Dexmedetomidine has sedative, anxiolytic, analgesic, anti-sympathetic, and anti-shivering effects. Dexmedetomidine might be effective in combination with sevoflurane for anesthesia, but prospective randomized controlled clinical trials with which to verify this hypothesis are lacking. In total, 120 patients who underwent embolization of an intracranial aneurysm were recruited from Anhui Provincial Hospital and Renmin Hospital of Wuhan University of China and randomly allocated to two groups. After intraoperative administration of 2% to 3% sevoflurane inhalation, one group of patients received pump-controlled intravenous injection of 1.0 μg/kg dexmedetomidine for 15 minutes followed by maintenance with 0.3 μg/kg/h until the end of surgery; the other group of patients only underwent pump-controlled infusion of saline. Bispectral index monitoring revealed that dexmedetomidine-assisted anesthesia can shorten the recovery time of spontaneous breathing, time to eye opening, and time to laryngeal mask removal. Before anesthetic induction and immediately after laryngeal mask airway removal, the glucose and lactate levels were low, the S100β and neuron-specific enolase levels were low, the perioperative blood pressure and heart rate were stable, and postoperative delirium was minimal. These findings indicate that dexmedetomidine can effectively assist sevoflurane for anesthesia during surgical embolization of intracranial aneurysms, shorten the time to consciousness and extubation, reduce the stress response and energy metabolism, stabilize hemodynamic parameters, and reduce adverse reactions, thereby reducing the damage to the central nervous system. This trial was registered at the Chinese Clinical Trial Registry (http://www.chictr.org.cn/ (registration number: ChiCTR-IPR-16008113.

  14. Neuroprotective effects of electroacupuncture on hypoxic-ischemic encephalopathy in newborn rats association with increased expression of mTOR

    Directory of Open Access Journals (Sweden)

    Tao Xu

    2016-04-01

    Full Text Available In this study, we observed the therapeutic effects of acupuncture and investigated the underlying molecular mechanisms by constructed a hypoxic-ischemic encephalopathy (HIE animal model. In the electroacupuncture group, mTOR expression increased since 1d, and continued to rise till the 21st day. All of the differences were significantly (p<0.05 vs the model group. Meanwhile, mTOR expression was analyzed by Western blotting. There was statistical significance between the model group and the electroacupuncture group in the four time periods (p<0.05. The results provide evidence that electroacupuncture treatment protected cortical neurons against HIE-induced neuronal damage and degenerative changes in rats, which is in association with activation of mTOR both at the mRNA level and protein level. Therefore, electroacupuncture may become a potential therapeutic strategy for HIE of newborn.

  15. Nontrivial effects of high-frequency excitation for strongly damped mechanical systems

    DEFF Research Database (Denmark)

    Fidlin, Alexander; Thomsen, Jon Juel

    Some nontrivial effects are investigated, which can occur if strongly damped mechanical systems are subjected to strong high-frequency (HF) excitation. The main result is a theoretical prediction, supported by numerical simulation, that for such systems the (quasi-)equilibrium states can change...... that can be substantial (depending on the strength of the HF excitation) for finite values of the damping. The analysis is focused on the differences between the classic results for weakly damped systems, and new effects for which the strong damping terms are responsible. The analysis is based...... on a slightly modified averaging technique, and includes an elementary example of an elliptically excited pendulum for illustration, alongside with a generalization to a broader class of strongly damped dynamical systems with HF excitation. As an application example, the nontrivial behavior of a classical...

  16. Nontrivial effects of high-frequency excitation for strongly damped mechanical systems

    DEFF Research Database (Denmark)

    Fidlin, Alexander; Thomsen, Jon Juel

    2008-01-01

    Some non-trivial effects are investigated, which can occur if strongly damped mechanical systems are subjected to strong high-frequency (HF) excitation. The main result is a theoretical prediction, supported by numerical simulation, that for such systems the (quasi-)equilibrium states can change...... that can be substantial depending on the strength of the HF excitation) for finite values of the damping. The analysis is focused on the differences between the classic results for weakly damped systems, and new effects for which the strong damping terms are responsible. The analysis is based on a slightly...... modified averaging technique, and includes an elementary example of an elliptically excited pendulum for illustration, alongside with a generalization to a broader class of strongly damped dynamical systems with HF excitation. As an application example, the nontrivial behavior of a classical optimally...

  17. <strong>Effectiveness of Orthoses and Foot Training in patients with Patellofemoral Pain and hyperpronationstrong>

    DEFF Research Database (Denmark)

    Mølgaard, Carsten; Kaalund, Søren; Christensen, Marianne

    of treatment with functional foot orthoses, exercises, or orthoses with exercises. The intrinsic pedal muscles play an important role in support of the medial longitudinal arch. (2) There are however very little information of the effect from specific foot exercise as an imperative part of exercise program...... adolescent females (3). Soft foot orhtoses in addition to an exercise program resulted in significantly greater improvements in pain than treatment with flat insoles and exercises over eight weeks. A study from 2004 by Wiener-Ogilvie & Jones (4) found however no difference in outcome between 8 weeks...... to PFPS patients. The purpose of this prospective single blinded randomised study was to determine the effectiveness of a standardized foot training program combined with foot orthoses in patients with patellofemoral pain. This treatment was additional to a regular conservative patellofemoral regime...

  18. Neuroprotective Effects of the Cultivated Chondrus crispus in a C. elegans Model of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Jinghua Liu

    2015-04-01

    Full Text Available Parkinson’s disease (PD is the second most common neurodegenerative disorder in the elderly people, currently with no cure. Its mechanisms are not well understood, thus studies targeting cause-directed therapy or prevention are needed. This study uses the transgenic Caenorhabditis elegans PD model. We demonstrated that dietary supplementation of the worms with an extract from the cultivated red seaweed Chondrus crispus decreased the accumulation of α-synulein and protected the worms from the neuronal toxin-, 6-OHDA, induced dopaminergic neurodegeneration. These effects were associated with a corrected slowness of movement. We also showed that the enhancement of oxidative stress tolerance and an up-regulation of the stress response genes, sod-3 and skn-1, may have served as the molecular mechanism for the C. crispus-extract-mediated protection against PD pathology. Altogether, apart from its potential as a functional food, the tested red seaweed, C. crispus, might find promising pharmaceutical applications for the development of potential novel anti-neurodegenerative drugs for humans.

  19. Neuroprotective effects of bajijiasu against cognitive impairment induced by amyloid-β in APP/PS1 mice.

    Science.gov (United States)

    Cai, Haobin; Wang, Yijie; He, Jiayang; Cai, Tiantian; Wu, Jun; Fang, Jiansong; Zhang, Rong; Guo, Zhouke; Guan, Li; Zhan, Qinkai; Lin, Li; Xiao, Yao; Pan, Huafeng; Wang, Qi

    2017-11-03

    Alzheimer's disease (AD) is a progressive neurological degenerative disease. The main clinical manifestations of AD include progressive cognitive impairment and alteration of personality. Senile plaques, neuroinflammation, and destruction of synapse structure stability are the main pathological features of AD. Bajijiasu(BJJS) is extracted from Morinda Officinalis, a Chinese herb. In this study, we explored the effect of BJJS on AD from many aspects in APPswe/PSEN1ΔE9 (APP/PS1) double transgenic mice. The Morris water maze and novel object recognition tests results showed that BJJS could significantly improve the learning and memory abilities in APP/PS1 mice. BJJS treatment increased the level of insulin degradation enzyme (IDE) and neprilysin (NEP) and decreased the level of β-site app cleaving enzyme 1(BACE1) in the brain of APP/PS1 mice. BJJS-treated APP/PS1 mice appeared to have reductions of Aβ deposition and senile plaques, and showed higher levels of neurotrophic factors in the brain. We also found that BJJS had an inhibitory function on neuroinflammation in APP/PS1 mice. In addition, the synapse structure relevant proteins were elevated in the brain of BJJS-treated APP/PS1 mice. The present results indicated that BJJS could attenuate cognitive impairment via ameliorating the AD-related pathological alterations in APP/PS1 mice. These findings suggest that BJJS may be a potential therapeutic strategy in Alzheimer's disease.

  20. Neuroprotective effect of hyperbaric oxygen therapy in a juvenile rat model of repetitive mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Lei Huang

    2016-01-01

    Full Text Available Repetitive mild traumatic brain injury (rmTBI is an important medical concern for adolescent athletes that can lead to long-term disabilities. Multiple mild injuries may exacerbate tissue damage resulting in cumulative brain injury and poor functional recovery. In the present study, we investigated the increased brain vulnerability to rmTBI and the effect of hyperbaric oxygen treatment using a juvenile rat model of rmTBI. Two episodes of mild cortical controlled impact (3 days apart were induced in juvenile rats. Hyperbaric oxygen (HBO was applied 1 hour/day × 3 days at 2 atmosphere absolute consecutively, starting at 1 day after initial mild traumatic brain injury (mTBI. Neuropathology was assessed by multi-modal magnetic resonance imaging (MRI and tissue immunohistochemistry. After repetitive mTBI, there were increases in T2-weighted imaging-defined cortical lesions and susceptibility weighted imaging-defined cortical microhemorrhages, correlated with brain tissue gliosis at the site of impact. HBO treatment significantly decreased the MRI-identified abnormalities and tissue histopathology. Our findings suggest that HBO treatment improves the cumulative tissue damage in juvenile brain following rmTBI. Such therapy regimens could be considered in adolescent athletes at the risk of repeated concussions exposures.

  1. Neuroprotective effect of pretreatment with Lavandula officinalis ethanolic extract on blood-brain barrier permeability in a rat stroke model.

    Science.gov (United States)

    Rabiei, Zahra; Rafieian-Kopaei, Mahmoud

    2014-09-01

    To evaluate the protective effect of Lavandula officinalis (L. officinalis) extract against blood-brain barrier (BBB) permeability and its possible mechanisms in an experimental model of stroke. Focal cerebral ischemia was induced by the transient occlusion of the middle cerebral artery for 1 h in rats. Lavender extract (100, 200 mg/kg i.p.) was injected for 20 consecutive days. BBB permeability and oxidative stress biomarkers were evaluated using standard methods. The results of this study showed that L. officinalis ethanolic extract significantly reduced the BBB permeability in experimental groups when compared with ischemia group. The lavender extract significantly reduced malondialdehyde levels of plasma and brain tissue in intact group when compared with control group. L. officinalis extract reduced blood brain barrier permeability and alleviated neurological function in rats, and the mechanism may be related to augmentation in endogenous antioxidant defense and inhibition of oxidative stress in the rat brain. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  2. Compositions, Formation Mechanism, and Neuroprotective Effect of Compound Precipitation from the Traditional Chinese Prescription Huang-Lian-Jie-Du-Tang

    Directory of Open Access Journals (Sweden)

    Chenze Zhang

    2016-08-01

    Full Text Available Compounds in the form of precipitation (CFP are universally formed during the decocting of Chinese prescriptions, such as Huang-Lian-Jie-Du-Tang (HLJDT. The formation rate of HLJDT CFP even reached 2.63% ± 0.20%. The identification by liquid chromatography mass spectrometry (LC-MSn proved that the main chemical substances of HLJDT CFP are baicalin and berberine, which is coincident with the theory that the CFP might derive from interaction between acidic and basic compounds. To investigate the formation mechanism of HLJDT CFP, baicalin and berberine were selected to synthesize a simulated precipitation and then the baicalin–berberine complex was obtained. Results indicated that the melting point of the complex interposed between baicalin and berberine, and the UV absorption, was different from the mother material. In addition, 1H-NMR integral and high-resolution mass spectroscopy (HR-MS can validate that the binding ratio was 1:1. Compared with baicalin, the chemical shifts of H and C on glucuronide had undergone significant changes by 1H-, 13C-NMR, which proved that electron transfer occurred between the carboxylic proton and the lone pair of electrons on the N atom. Both HLJDT CFP and the baicalin–berberine complex showed protective effects against cobalt chloride-induced neurotoxicity in differentiated PC12 cells. It is a novel idea, studying the material foundation of CFP in Chinese prescriptions.

  3. Neuroprotective effect of intracarotid cold saline infusion following cardiopulmonary resuscitation in a hypothermic cardiac arrest canine model

    Directory of Open Access Journals (Sweden)

    Wei-zheng SHUAI

    2017-11-01

    Full Text Available Objective To evaluate the effect of intracarotid cold saline infusion (ICSI on neurological outcomes in canines with cardiac arrest (CA introduced by severe hypothermia. Methods Restoration of spontaneous circulation (ROSC after hypothermic CA was induced in 10 Beagle dogs. These 10 dogs were randomly divided into 2 groups (5 each. Dogs in control group were rewarmed using warn water bath, and dogs in experimental group received the bath rewarming plus ICSI for 6 hours to maintain the brain temperature <36℃. In both groups, the Neurologic Disability Scores (NDS were recorded at 24h after the ROSC, and their brains were removed for pathologic analysis using hematoxylin and eosin stain. The brain water content and s100β of serum level were also measured. Results The water content (79.43%±0.72% vs. 80.79%±1.06%, P<0.05 and serum level of s100β (119.83±42.93pg/ml vs. 329.82±190.39pg/ml, P<0.05 were significantly lower in experimental group than in the control group. Control group presented obvious pathological damage of the hippocampal pyramidal cells. There was no significant difference in NDS between the two groups. Conclusion ICSI could reduce the production of s100β and pathological brain damage in post-arrest hypothermic canines. DOI: 10.11855/j.issn.0577-7402.2017.10.08

  4. Neuroprotective effects of bajijiasu against cognitive impairment induced by amyloid-β in APP/PS1 mice

    Science.gov (United States)

    Cai, Haobin; Wang, Yijie; He, Jiayang; Cai, Tiantian; Wu, Jun; Fang, Jiansong; Zhang, Rong; Guo, Zhouke; Guan, Li; Zhan, Qinkai; Lin, Li; Xiao, Yao; Pan, Huafeng; Wang, Qi

    2017-01-01

    Alzheimer's disease (AD) is a progressive neurological degenerative disease. The main clinical manifestations of AD include progressive cognitive impairment and alteration of personality. Senile plaques, neuroinflammation, and destruction of synapse structure stability are the main pathological features of AD. Bajijiasu(BJJS) is extracted from Morinda Officinalis, a Chinese herb. In this study, we explored the effect of BJJS on AD from many aspects in APPswe/PSEN1ΔE9 (APP/PS1) double transgenic mice. The Morris water maze and novel object recognition tests results showed that BJJS could significantly improve the learning and memory abilities in APP/PS1 mice. BJJS treatment increased the level of insulin degradation enzyme (IDE) and neprilysin (NEP) and decreased the level of β-site app cleaving enzyme 1(BACE1) in the brain of APP/PS1 mice. BJJS-treated APP/PS1 mice appeared to have reductions of Aβ deposition and senile plaques, and showed higher levels of neurotrophic factors in the brain. We also found that BJJS had an inhibitory function on neuroinflammation in APP/PS1 mice. In addition, the synapse structure relevant proteins were elevated in the brain of BJJS-treated APP/PS1 mice. The present results indicated that BJJS could attenuate cognitive impairment via ameliorating the AD-related pathological alterations in APP/PS1 mice. These findings suggest that BJJS may be a potential therapeutic strategy in Alzheimer's disease. PMID:29190943

  5. Neuroprotective Effects of Exercise on Brain Edema and Neurological Movement Disorders Following the Cerebral Ischemia and Reperfusion in Rats.

    Science.gov (United States)

    Shamsaei, Nabi; Erfani, Soheila; Fereidoni, Masoud; Shahbazi, Ali

    2017-01-01

    Cerebral ischemia and reperfusion causes physiological and biochemical changes in the neuronal cells that will eventually lead to cell damage. Evidence indicates that exercise reduces the ischemia and reperfusion-induced brain damages in animal models of stroke. In the present study, the effect of exercise preconditioning on brain edema and neurological movement disorders following the cerebral ischemia and reperfusion in rats was investigated. Twenty-one adult male wistar rats (weighing 260-300 g) were randomly divided into three groups: sham operated, exercise plus ischemia, and ischemia group (7 rats per group). The rats in exercise group were trained to run on a treadmill 5 days a week for 4 weeks. Transient focal cerebral ischemia and reperfusion were induced by middle cerebral artery occlusion (MCAO) for 60 minutes, followed by reperfusion for 23 hours. After 24 hours ischemia, movement disorders were tested by a special neurological examination. Also, cerebral edema was assessed by determining the brain water content. The results showed that pre-ischemic exercise significantly reduced brain edema (Pedema and movement disorders. Thus, it could be considered as a useful strategy for prevention of ischemic injuries, especially in people at risk.

  6. Neuroprotective Effect of a DJ-1 Based Peptide in a Toxin Induced Mouse Model of Multiple System Atrophy.

    Directory of Open Access Journals (Sweden)

    Micaela Johanna Glat

    Full Text Available Multiple System Atrophy (MSA is a sporadic neurodegenerative disorder characterized by parkinsonism, cerebellar ataxia and dysautonomia, in various combinations. In MSA with parkinsonism (MSA-P, the degeneration is mainly restricted to the substantia nigra pars compacta and putamen. Studies have identified alterations in DJ-1 (PARK7, a key component of the anti-oxidative stress response, in Parkinson's disease (PD and MSA patients. Previously we have shown that a short DJ-1-based peptide named ND-13, protected cultured cells against neurotoxic insults and improved behavioral outcome in animal models of Parkinson's disease (PD. In this study, we used the 3-Nitropropionic acid (3-NP-induced mouse model of MSA and treated the animals with ND-13 in order to evaluate its therapeutic effects. Our results show that ND-13 protects cultured cells against oxidative stress generated by the mitochondrial inhibitor, 3-NP. Moreover, we show that ND-13 attenuates nigrostriatal degeneration and improves performance in motor-related behavioral tasks in 3-NP-treated mice. Our findings suggest a rationale for using ND-13 as a promising therapeutic approach for treatment of MSA.

  7. Neuroprotective Effect of Ginseng against Alteration of Calcium Binding Proteins Immunoreactivity in the Mice Hippocampus after Radiofrequency Exposure

    Directory of Open Access Journals (Sweden)

    Dhiraj Maskey

    2013-01-01

    Full Text Available Calcium binding proteins (CaBPs such as calbindin D28-k, parvalbumin, and calretinin are able to bind Ca2+ with high affinity. Changes in Ca2+ concentrations via CaBPs can disturb Ca2+ homeostasis. Brain damage can be induced by the prolonged electromagnetic field (EMF exposure with loss of interacellular Ca2+ balance. The present study investigated the radioprotective effect of ginseng in regard to CaBPs immunoreactivity (IR in the hippocampus through immunohistochemistry after one-month exposure at 1.6 SAR value by comparing sham control with exposed and ginseng-treated exposed groups separately. Loss of dendritic arborization was noted with the CaBPs in the Cornu Ammonis areas as well as a decrease of staining intensity of the granule cells in the dentate gyrus after exposure while no loss was observed in the ginseng-treated group. A significant difference in the relative mean density was noted between control and exposed groups but was nonsignificant in the ginseng-treated group. Decrease in CaBP IR with changes in the neuronal staining as observed in the exposed group would affect the hippocampal trisynaptic circuit by alteration of the Ca2+ concentration which could be prevented by ginseng. Hence, ginseng could contribute as a radioprotective agent against EMF exposure, contributing to the maintenance of Ca2+ homeostasis by preventing impairment of intracellular Ca2+ levels in the hippocampus.

  8. Phosphodiesterase 5 inhibition at disease onset prevents experimental autoimmune encephalomyelitis progression through immunoregulatory and neuroprotective actions.

    Science.gov (United States)

    Pifarré, Paula; Gutierrez-Mecinas, María; Prado, Judith; Usero, Lorena; Roura-Mir, Carme; Giralt, Mercedes; Hidalgo, Juan; García, Agustina

    2014-01-01

    In addition to detrimental inflammation, widespread axon degeneration is an important feature of multiple sclerosis (MS) pathology and a major correlate for permanent clinical deficits. Thus, treatments that combine immunomodulatory and neuroprotective effects are beneficial for MS. Using myelin oligodendrocyte glycoprotein peptide 35-55 (MOG)-induced experimental autoimmune encephalomyelitis (EAE) as a model of MS, we recently showed that daily treatment with the phosphodiesterase 5 (PDE5) inhibitor sildenafil at peak disease rapidly ameliorates clinical symptoms and neuropathology (Pifarre et al., 2011). We have now investigated the immunomodulatory and neuroprotective actions of sildenafil treatment from the onset of EAE when the immune response prevails and show that early administration of the drug prevents disease progression. Ultrastructural analysis of spinal cord evidenced that sildenafil treatment preserves axons and myelin and increases the number of remyelinating axons. Immunostaining of oligodendrocytes at different stages of differentiation showed that sildenafil protects immature and mature myelinating oligodendrocytes. Brain-derived neurotrophic factor (BDNF), a recognized neuroprotectant in EAE, was up-regulated by sildenafil in immune and neural cells suggesting its implication in the beneficial effects of the drug. RNA microarray analysis of spinal cord revealed that sildenafil up-regulates YM-1, a marker of the alternative macrophage/microglial M2 phenotype that has neuroprotective and regenerative properties. Immunostaining confirmed up-regulation of YM-1 while the classical macrophage/microglial activation marker Iba-1 was down-regulated. Microarray analysis also showed a notable up-regulation of several members of the granzyme B cluster (GrBs). Immunostaining revealed expression of GrBs in Foxp3+-T regulatory cells (Tregs) suggesting a role for these proteases in sildenafil-induced suppression of T effector cells (Teffs). In vitro analysis of

  9. Neuroprotective targets through which 6-acetyl-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one (SN79), a sigma receptor ligand, mitigates the effects of methamphetamine in vitro

    Science.gov (United States)

    Kaushal, Nidhi; Robson, Matthew J.; Rosen, Abagail; McCurdy, Christopher R.; Matsumoto, Rae R.

    2014-01-01

    Exposure to high or repeated doses of methamphetamine can cause hyperthermia and neurotoxicity, which are thought to increase the risk of developing a variety of neurological conditions. Sigma receptor antagonism can prevent methamphetamine-induced hyperthermia and neurotoxicity, but the underlying cellular targets through which the neuroprotection is conveyed remain unknown. Differentiated NG108-15 cells were thus used as a model system to begin elucidating the neuroprotective mechanisms targeted by sigma receptor antagonists to mitigate the effects of methamphetamine. In differentiated NG108-15 cells, methamphetamine caused the generation of reactive oxygen/nitrogen species, an increase in PERK-mediated endoplasmic reticulum stress and the activation of caspase-3, -8 and -9, ultimately resulting in apoptosis at micromolar concentrations, and necrotic cell death at higher concentrations. The sigma receptor antagonist, 6-acetyl-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one (SN79), attenuated methamphetamine-induced increases in reactive oxygen/nitrogen species, activation of caspase-3,-8 and-9 and accompanying cellular toxicity. In contrast, 1,3-di(2-tolyl)-guanidine (DTG), a sigma receptor agonist, shifted the dose response curve of methamphetamine-induced cell death towards the left. To probe the effect of temperature on neurotoxicity, NG108-15 cells maintained at an elevated temperature (40 °C) exhibited a significant and synergistic increase in cell death in response to methamphetamine, compared to cells maintained at a normal cell culture temperature (37 °C). SN79 attenuated the enhanced cell death observed in the methamphetamine-treated cells at 40 °C. Together, the data demonstrate that SN79 reduces methamphetamine-induced reactive oxygen/nitrogen species generation and caspase activation, thereby conveying neuroprotective effects against methamphetamine under regular and elevated temperature conditions. PMID:24380829

  10. Neuroprotective effects of Caralluma tuberculata on ameliorating cognitive impairment in a d-galactose-induced mouse model.

    Science.gov (United States)

    Khan, Muhammad Zahid; Atlas, Nagina; Nawaz, Waqas

    2016-12-01

    Cognitive deficiency and oxidative stress have been well documented in aging disorders including Alzheimer's disease. The aim of this study was to investigate the therapeutic efficacy of Caralluma tuberculata methanolic extract (CTME) on cognitive impairment in mice induced with d-galactose. In this study we assessed the therapeutic efficacy of CTME on cognitive impairment in mice induced with d-galactose by conduction of behavioral and cognitive performance tests. In order to explore the possible role of CTME against d-galactose-induced oxidative damages, various biochemical indicators were assessed. Chronic administration of d-galactose (150mg/kgd, s.c.) for 7 weeks significantly impaired cognitive performance (in step-through passive, active avoidance test, Hole-Board test, Novel object recognition task and Morris water maze) and oxidative defense as compared to the control group. The results revealed that CTME treatment for two weeks (100, 200 and 300mg/kg p.o) significantly ameliorated cognitive performance and oxidative defense. All groups of CTME enhanced the learning and memory ability in step-through passive, active avoidance test, Hole-Board test Novel object recognition task and Morris water maze. Furthermore, high and middle level of CTME (300 and 200mg/kg p.o) significantly increased Total antioxidative capacity (T-AOC), Glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) activity, neprilysin (NEP), and β-site AβPP cleaving enzyme 1 (BACE1) expression while Nitric Oxide (NO), Nitric Oxide Synthase (NOS) activity and Malondialdehyde (MDA) concentration, and the level of Aβ1-42 and presenilin 1 (PS1) were decreased. The present study showed that CTME have a significant relieving effect on learning, memory and spontaneous activities in d-galactose-induced mice model, and ameliorates cognitive impairment and biochemical dysfunction in mice. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Neurite Outgrowth and Neuroprotective Effects of Quercetin from Caesalpinia mimosoides Lamk. on Cultured P19-Derived Neurons

    Directory of Open Access Journals (Sweden)

    Napat Tangsaengvit

    2013-01-01

    Full Text Available Quercetin has been isolated for the first time from ethyl acetate extract of Caesalpinia mimosoides Lamk. C. mimosoides Lamk. (Fabaceae or Cha rueat (Thai name is an indigenous plant found in mixed deciduous forest in northern and north-eastern parts of Thailand. Thai rural people consume its young shoots and leaves as a fresh vegetable, as well as it is used for medicinal purposes.The antioxidant capacity in terms of radical scavenging activity of quercetin was determined as IC50 of 3.18 ± 0.07 µg/mL, which was higher than that of Trolox and ascorbic acid (12.54 ± 0.89 and 10.52 ± 0.48 µg/mL, resp.. The suppressive effect of quercetin on both purified and cellular acetylcholinesterase (AChE enzymes was investigated as IC50 56.84 ± 2.64 and 36.60 ± 2.78 µg/mL, respectively. In order to further investigate the protective ability of quercetin on neuronal cells, P19-derived neurons were used as a neuronal model in this study. As a result, quercetin at a very low dose of 1 nM enhanced survival and induced neurite outgrowth of P19-derived neurons. Furthermore, this flavonoid also possessed significant protection against oxidative stress induced by serum deprivation. Altogether, these findings suggest that quercetin is a multifunctional compound and promising valuable drugs candidate for the treatment of neurodegenerative disease.

  12. Centella asiatica (L.) Urban: From Traditional Medicine to Modern Medicine with Neuroprotective Potential

    Science.gov (United States)

    Orhan, Ilkay Erdogan

    2012-01-01

    This paper covers the studies relevant to neuroprotective activity of Centella asiatica (L.) Urban, also known as “Gotu Kola.” The plant is native to the Southeast Asia and has been used traditionally as brain tonic in ayurvedic medicine. The neuroprotective effect of C. asiatica has been searched using the key words “Centella, Centella asiatica, gotu kola, Asiatic pennywort, neuroprotection, and memory” through the electronic databases including Sciencedirect, Web of Science, Scopus, Pubmed, and Google Scholar. According to the literature survey, C. asiatica (gotu kola) has been reported to have a comprehensive neuroprotection by different modes of action such as enzyme inhibition, prevention of amyloid plaque formation in Alzheimer's disease, dopamine neurotoxicity in Parkinson's disease, and decreasing oxidative stress. Therefore, C. asiatica could be suggested to be a desired phytopharmaceutical with neuroprotective effect emerged from traditional medicine. PMID:22666298

  13. Centella asiatica (L. Urban: From Traditional Medicine to Modern Medicine with Neuroprotective Potential

    Directory of Open Access Journals (Sweden)

    Ilkay Erdogan Orhan

    2012-01-01

    Full Text Available This paper covers the studies relevant to neuroprotective activity of Centella asiatica (L. Urban, also known as “Gotu Kola.” The plant is native to the Southeast Asia and has been used traditionally as brain tonic in ayurvedic medicine. The neuroprotective effect of C. asiatica has been searched using the key words “Centella, Centella asiatica, gotu kola, Asiatic pennywort, neuroprotection, and memory” through the electronic databases including Sciencedirect, Web of Science, Scopus, Pubmed, and Google Scholar. According to the literature survey, C. asiatica (gotu kola has been reported to have a comprehensive neuroprotection by different modes of action such as enzyme inhibition, prevention of amyloid plaque formation in Alzheimer’s disease, dopamine neurotoxicity in Parkinson’s disease, and decreasing oxidative stress. Therefore, C. asiatica could be suggested to be a desired phytopharmaceutical with neuroprotective effect emerged from traditional medicine.

  14. Computing effective properties of nonlinear structures exposed to strong high-frequency loading at multiple frequencies

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2006-01-01

    Effects of strong high-frequency excitation at multiple frequencies (multi-HFE) are analyzed for a class of generally nonlinear systems. The effects are illustrated for a simple pendulum system with a vibrating support, and for a parametrically excited flexible beam. For the latter, theoretical...

  15. Resveratrol Neuroprotection in a Chronic Mouse Model of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Zoe eFonseca-Kelly

    2012-05-01

    Full Text Available Resveratrol is a naturally-occurring polyphenol that activates SIRT1, an NAD-dependent deacetylase. SRT501, a pharmaceutical formulation of resveratrol with enhanced systemic absorption, prevents neuronal loss without suppressing inflammation in mice with relapsing experimental autoimmune encephalomyelitis (EAE, a model of multiple sclerosis. In contrast, resveratrol has been reported to suppress inflammation in chronic EAE, although neuroprotective effects were not evaluated. The current studies examine potential neuroprotective and immunomodulatory effects of resveratrol in chronic EAE induced by immunization with myelin oligodendroglial glycoprotein peptide in C57/Bl6 mice. Effects of two distinct formulations of resveratrol administered daily orally were compared. Resveratrol delayed the onset of EAE compared to vehicle-treated EAE mice, but did not prevent or alter the phenotype of inflammation in spinal cords or optic nerves. Significant neuroprotective effects were observed, with higher numbers of retinal ganglion cells found in eyes of resveratrol-treated EAE mice with optic nerve inflammation. Results demonstrate that resveratrol prevents neuronal loss in this chronic demyelinating disease model, similar to its effects in relapsing EAE. Differences in immunosuppression compared with prior studies suggest that immunomodulatory effects may be limited and may depend on specific immunization parameters or timing of treatment. Importantly, neuroprotective effects can occur without immunosuppression, suggesting a potential additive benefit of resveratrol in combination with anti-inflammatory therapies for multiple sclerosis.

  16. An Involvement of PI3-K/Akt Activation and Inhibition of AIF Translocation in Neuroprotective Effects of Undecylenic Acid (UDA) Against Pro-Apoptotic Factors-Induced Cell Death in Human Neuroblastoma SH-SY5Y Cells.

    Science.gov (United States)

    Jantas, Danuta; Piotrowski, Marek; Lason, Wladyslaw

    2015-12-01

    Undecylenic acid (UDA), a naturally occurring 11-carbon unsaturated fatty acid, has been used for several years as an economical antifungal agent and a nutritional supplement. Recently, the potential usefulness of UDA as a neuroprotective drug has been suggested based on the ability of this agent to inhibit μ-calpain activity. In order to verify neuroprotective potential of UDA, we tested protective efficacy of this compound against cell damage evoked by pro-apoptotic factors (staurosporine and doxorubicin) and oxidative stress (hydrogen peroxide) in human neuroblastoma SH-SY5Y cells. We showed that UDA partially protected SH-SY5Y cells against the staurosporine- and doxorubicin-evoked cell death; however, this effect was not connected with its influence on caspase-3 activity. UDA decreased the St-induced changes in mitochondrial and cytosolic AIF level, whereas in Dox-model it affected only the cytosolic AIF content. Moreover, UDA (1-40 μM) decreased the hydrogen peroxide-induced cell damage which was connected with attenuation of hydrogen peroxide-mediated necrotic (PI staining, ADP/ATP ratio) and apoptotic (mitochondrial membrane potential, caspase-3 activation, AIF translocation) changes. Finally, we demonstrated that an inhibitor of PI3-K/Akt (LY294002) but not MAPK/ERK1/2 (U0126) pathway blocked the protection mediated by UDA in all tested models of SH-SY5Y cell injury. These in vitro data point to UDA as potentially effective neuroprotectant the utility of which should be further validated in animal studies. © 2015 Wiley Periodicals, Inc.

  17. Investigation of the neuroprotective effects of bee-venom acupuncture in a mouse model of Parkinson's disease by using immunohistochemistry and In-vivo 1H magnetic resonance spectroscopy at 9.4 T

    Science.gov (United States)

    Yoon, Moon-Hyun; Lee, Do-Wan; Kim, Hyun-Jin; Chung, Jin-Yeung; Doo, Ah-Reum; Park, Hi-Joon; Kim, Seung-Nam; Choe, Bo-Young

    2013-01-01

    Neuroprotective therapeutics slows down the degeneration process in animal models of Parkinson's disease (PD). The neuronal survival in PD animal models is often measured by using immunohistochemistry. However, dynamic changes in the pathology of the brain cannot be explored with this technique. Application of in-vivo 1H magnetic resonance spectroscopy (1H MRS) can cover this shortcoming, as these techniques are non-invasive and can be repeated over time in the same animal. Thus, the sensitivity of both techniques to measure changes in the PD pathology was explored in an experiment studying the neuroprotective effects of the vigilance enhancer bee-venom (BV) in a mouse model of PD. The mice were pre-treated with 0.02-ml BV administered to the acupuncture point GB34 (Yangneungcheon) once every 3 days for 2 weeks. Three groups were classified as control, MPTP-intoxicated PD model and BV-treated mice. Outer volume suppression combined with the ultra-short echo-time STEAM (TE = 2.2 ms, TM = 20 ms, TR = 5000 ms) was used for localized in-vivo 1H MRS. Based on the 1H MRS spectral analysis, substantial changes of the neurochemical profiles were evaluated in the three investigated groups. In particular, the glutamate complex (Glx)/creatine (Cr) ratio (7.72 ± 1.25) in the PD group was significantly increased compared to that in the control group (3.93 ± 2.21, P = 0.001). Compared to the baseline values, the Glx/Cr ratio of the BV-treated group was significantly decreased 2 weeks after MPTP intoxication (one-way ANOVA, p < 0.05). In conclusion, the present study demonstrated that neurochemical alterations occurred in the three groups and that the neuroprotective effects of the BV acupuncture in a mouse model of PD could be quantified by using immunohistochemistry and 1H MRS.

  18. Neuroprotective effects of the Sigma-1 receptor (S1R) agonist PRE-084, in a mouse model of motor neuron disease not linked to SOD1 mutation.

    Science.gov (United States)

    Peviani, Marco; Salvaneschi, Eleonora; Bontempi, Leonardo; Petese, Alessandro; Manzo, Antonio; Rossi, Daniela; Salmona, Mario; Collina, Simona; Bigini, Paolo; Curti, Daniela

    2014-02-01

    The identification of novel molecular targets crucially involved in motor neuron degeneration/survival is a necessary step for the development of hopefully more effective therapeutic strategies for amyotrophic lateral sclerosis (ALS) patients. In this view, S1R, an endoplasmic reticulum (ER)-resident receptor with chaperone-like activity, has recently attracted great interest. S1R is involved in several processes leading to acute and chronic neurodegeneration, including ALS pathology. Treatment with the S1R agonist PRE-084 improves locomotor function and motor neuron survival in presymptomatic and early symptomatic mutant SOD1-G93A ALS mice. Here, we tested the efficacy of PRE-084 in a model of spontaneous motor neuron degeneration, the wobbler mouse (wr) as a proof of concept that S1R may be regarded as a key therapeutic target also for ALS cases not linked to SOD1 mutation. Increased staining for S1R was detectable in morphologically spared cervical spinal cord motor neurons of wr mice both at early (6th week) and late (12th week) phases of clinical progression. S1R signal was also detectable in hypertrophic astrocytes and reactive microglia of wr mice. Chronic treatment with PRE-084 (three times a week, for 8weeks), starting at symptom onset, significantly increased the levels of BDNF in the gray matter, improved motor neuron survival and ameliorated paw abnormality and grip strength performance. In addition, the treatment significantly reduced the number of reactive astrocytes whereas, that of CD11b+ microglial cells was increased. A deeper evaluation of microglial markers revealed significant increased number of cells positive for the pan-macrophage marker CD68 and of CD206+ cells, involved in tissue restoration, in the white matter of PRE-084-treated mice. The mRNA levels of TNF-α and IL-1β were not affected by PRE-084 treatment. Thus, our results support pharmacological manipulation of S1R as a promising strategy to cure ALS and point to increased

  19. Neuroprotective effects of Nigella sativa extract on cell death in hippocampal neurons following experimental global cerebral ischemia-reperfusion injury in rats.

    Science.gov (United States)

    Hobbenaghi, R; Javanbakht, J; Sadeghzadeh, Sh; Kheradmand, D; Abdi, F S; Jaberi, M H; Mohammadiyan, M R; Khadivar, F; Mollaei, Y

    2014-02-15

    Global cerebral ischemia followed by reperfusion, leads to extensive neuronal damage, particularly the neurons in the hippocampal CA region. Recent studies have demonstrated that pharmacological agents, such as Nigella sativa L. (Ranunculaceae) that is an annual herbaceous flowering plant, given at the time of reperfusion afforded protection against ischemia, which is referred to as pharmacological post conditioning. The aim of this study was to evaluate the neuroprotective effects of Nigella sativa in the hippocampus neurons of rats exposed to global ischemia/reperfusion. In the present study 30 Wister rats (200-250 g) were divided into 5 groups namely sham (operated without treatment), control (operation with normal saline treatment), and 3 treatment groups with Nigella sativa 1mg/kg, 10mg/kg and 50mg/kg. Firstly, the animals were anesthetized by ketamin and xylazine, and then the right carotid artery was operated upon dissection of the soft tissues around it and ligation by a clamp for 20 min. The Nigella sativa extraction was used during surgery through IP route and after 72 h the animals were euthanized and their brain removed, fixed and prepared for histopathological examinations. In treatment group (1mg/kg) the interstitial neuron frequency which contains cytoplasmic edema, along with CA, was 28 cells, whereas the edematous astrocyte number along with CA in this group was 115 cells. In the treatment group (10mg/kg) the interstitial neurons of cornua ammonis (CA) were 15 and the edematous astrocytes were 122 cells and in the treatment group (50mg/kg) the number of edematous interstitial neurons was 7 cells in distance of 2900 μ of CA. In such group the number of edematous interstitial neurons was less as well. In this group the appearance of CA cells was more similar to control group, not only the edema decreased in interstitial and astrocyte cells, but it dramatically decreased in pyramidal cells. Our study revealed that the Nigella sativa extraction could

  20. SUNYAEV-ZEL'DOVICH EFFECT OBSERVATIONS OF STRONG LENSING GALAXY CLUSTERS: PROBING THE OVERCONCENTRATION PROBLEM

    International Nuclear Information System (INIS)

    Gralla, Megan B.; Gladders, Michael D.; Marrone, Daniel P.; Bayliss, Matthew; Carlstrom, John E.; Greer, Christopher; Hennessy, Ryan; Koester, Benjamin; Leitch, Erik; Sharon, Keren; Barrientos, L. Felipe; Bonamente, Massimiliano; Bulbul, Esra; Hasler, Nicole; Culverhouse, Thomas; Hawkins, David; Lamb, James; Gilbank, David G.; Joy, Marshall; Miller, Amber

    2011-01-01

    We have measured the Sunyaev-Zel'dovich (SZ) effect for a sample of 10 strong lensing selected galaxy clusters using the Sunyaev-Zel'dovich Array (SZA). The SZA is sensitive to structures on spatial scales of a few arcminutes, while the strong lensing mass modeling constrains the mass at small scales (typically <30''). Combining the two provides information about the projected concentrations of the strong lensing clusters. The Einstein radii we measure are twice as large as expected given the masses inferred from SZ scaling relations. A Monte Carlo simulation indicates that a sample randomly drawn from the expected distribution would have a larger median Einstein radius than the observed clusters about 3% of the time. The implied overconcentration has been noted in previous studies and persists for this sample, even when we take into account that we are selecting large Einstein radius systems, suggesting that the theoretical models still do not fully describe the observed properties of strong lensing clusters.

  1. Nutraceutical Antioxidants as Novel Neuroprotective Agents

    Directory of Open Access Journals (Sweden)

    Daniel A. Linseman

    2010-11-01

    Full Text Available A variety of antioxidant compounds derived from natural products (nutraceuticals have demonstrated neuroprotective activity in either in vitro or in vivo models of neuronal cell death or neurodegeneration, respectively. These natural antioxidants fall into several distinct groups based on their chemical structures: (1 flavonoid polyphenols like epigallocatechin 3-gallate (EGCG from green tea and quercetin from apples; (2 non-flavonoid polyphenols such as curcumin from tumeric and resve