WorldWideScience

Sample records for strong multidecadal variability

  1. Cold season Africa-Asia multidecadal teleconnection pattern and its relation to the Atlantic multidecadal variability

    Science.gov (United States)

    Sun, Cheng; Li, Jianping; Ding, Ruiqiang; Jin, Ze

    2017-06-01

    A prominent teleconnection pattern of multidecadal variability of cold season (November to April) upper-level atmospheric circulation over North Africa and Eurasia (NA-EA) is revealed by empirical orthogonal function analysis of the Twentieth Century Reanalysis data. This teleconnection pattern is characterized by an eastward propagating wave train with a zonal wavenumber of 5-6 between 20° and 40°N, extending from the northwest coast of Africa to East Asia, and thus is referred to as the Africa-Asia multidecadal teleconnection pattern (AAMT). One-point correlation maps show that the teleconnectivity of AAMT is strong and further demonstrate the existence of the AAMT. The AAMT shapes the spatial structure of multidecadal change in atmospheric circulation over the NA-EA region, and in particular the AAMT pattern and associated fields show similar structures to the change occurring around the early 1960s. A strong in-phase relationship is observed between the AAMT and Atlantic multidecadal variability (AMV) and this connection is mainly due to Rossby wave dynamics. Barotropic modeling results suggest that the upper-level Rossby wave source generated by the AMV can excite the AAMT wave train, and Rossby wave ray tracing analysis further highlights the role of the Asian jet stream in guiding the wave train to East Asia. The AAMT acts as an atmospheric bridge conveying the influence of AMV onto the downstream multidecadal climate variability. The AMV is closely related to the coordinated change in surface and tropospheric air temperatures over Northwest Africa, the Arabian Peninsula and Central China, which may result from the adiabatic expansion/compression of air associated with the AAMT.

  2. Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation

    Science.gov (United States)

    Kucharski, F.; Sun, C.; Li, J.; Jin, F. F.; Kang, I. S.; Ding, R.

    2017-12-01

    Observational analysis suggests that the western tropical Pacific (WTP) sea surface temperature (SST) shows predominant variability over multidecadal time scales, which is unlikely to be explained by the Interdecadal Pacific Oscillation. Here we show that this variability is largely explained by the remote Atlantic multidecadal oscillation (AMO). A suite of Atlantic Pacemaker experiments successfully reproduces the WTP multidecadal variability and the AMO-WTP SST connection. The AMO warm SST anomaly generates an atmospheric teleconnection to the North Pacific, which weakens the Aleutian low and subtropical North Pacific westerlies. The wind changes induce a subtropical North Pacific SST warming through wind-evaporation-SST effect, and in response to this warming, the surface winds converge towards the subtropical North Pacific from the tropics, leading to anomalous cyclonic circulation and low pressure over the WTP region. The warm SST anomaly further develops due to the SST-sea level pressure-cloud-longwave radiation positive feedback. Our findings suggest that the Atlantic Ocean acts as a key pacemaker for the western Pacific decadal climate variability.

  3. External forcing as a metronome for Atlantic multidecadal variability

    Science.gov (United States)

    Otterå, Odd Helge; Bentsen, Mats; Drange, Helge; Suo, Lingling

    2010-10-01

    Instrumental records, proxy data and climate modelling show that multidecadal variability is a dominant feature of North Atlantic sea-surface temperature variations, with potential impacts on regional climate. To understand the observed variability and to gauge any potential for climate predictions it is essential to identify the physical mechanisms that lead to this variability, and to explore the spatial and temporal characteristics of multidecadal variability modes. Here we use a coupled ocean-atmosphere general circulation model to show that the phasing of the multidecadal fluctuations in the North Atlantic during the past 600 years is, to a large degree, governed by changes in the external solar and volcanic forcings. We find that volcanoes play a particularly important part in the phasing of the multidecadal variability through their direct influence on tropical sea-surface temperatures, on the leading mode of northern-hemisphere atmosphere circulation and on the Atlantic thermohaline circulation. We suggest that the implications of our findings for decadal climate prediction are twofold: because volcanic eruptions cannot be predicted a decade in advance, longer-term climate predictability may prove challenging, whereas the systematic post-eruption changes in ocean and atmosphere may hold promise for shorter-term climate prediction.

  4. Noise induced multidecadal variability in the North Atlantic: excitation of normal modes

    NARCIS (Netherlands)

    Frankcombe, L.M.; Dijkstra, H.A.; von der Heydt, A.S.

    2009-01-01

    In this paper it is proposed that the stochastic excitation of a multidecadal internal ocean mode is at the origin of the multidecadal sea surface temperature variability in the North Atlantic. The excitation processes of the spatial sea surface temperature pattern associated with this multidecadal

  5. North atlantic multidecadal climate variability: An investigation of dominant time scales and processes

    NARCIS (Netherlands)

    Frankcombe, L.M.|info:eu-repo/dai/nl/304829838; von der Heydt, A.S.|info:eu-repo/dai/nl/245567526; Dijkstra, H.A.|info:eu-repo/dai/nl/073504467

    2010-01-01

    The issue of multidecadal variability in the North Atlantic has been an important topic of late. It is clear that there are multidecadal variations in several climate variables in the North Atlantic, such as sea surface temperature and sea level height. The details of this variability, in particular

  6. Insights into Atlantic multidecadal variability using the Last Millennium Reanalysis framework

    Science.gov (United States)

    Singh, Hansi K. A.; Hakim, Gregory J.; Tardif, Robert; Emile-Geay, Julien; Noone, David C.

    2018-02-01

    The Last Millennium Reanalysis (LMR) employs a data assimilation approach to reconstruct climate fields from annually resolved proxy data over years 0-2000 CE. We use the LMR to examine Atlantic multidecadal variability (AMV) over the last 2 millennia and find several robust thermodynamic features associated with a positive Atlantic Multidecadal Oscillation (AMO) index that reveal a dynamically consistent pattern of variability: the Atlantic and most continents warm; sea ice thins over the Arctic and retreats over the Greenland, Iceland, and Norwegian seas; and equatorial precipitation shifts northward. The latter is consistent with anomalous southward energy transport mediated by the atmosphere. Net downward shortwave radiation increases at both the top of the atmosphere and the surface, indicating a decrease in planetary albedo, likely due to a decrease in low clouds. Heat is absorbed by the climate system and the oceans warm. Wavelet analysis of the AMO time series shows a reddening of the frequency spectrum on the 50- to 100-year timescale, but no evidence of a distinct multidecadal or centennial spectral peak. This latter result is insensitive to both the choice of prior model and the calibration dataset used in the data assimilation algorithm, suggesting that the lack of a distinct multidecadal spectral peak is a robust result.

  7. Tropical rainforests dominate multi-decadal variability of the global carbon cycle

    Science.gov (United States)

    Zhang, X.; Wang, Y. P.; Peng, S.; Rayner, P. J.; Silver, J.; Ciais, P.; Piao, S.; Zhu, Z.; Lu, X.; Zheng, X.

    2017-12-01

    Recent studies find that inter-annual variability of global atmosphere-to-land CO2 uptake (NBP) is dominated by semi-arid ecosystems. However, the NBP variations at decadal to multi-decadal timescales are still not known. By developing a basic theory for the role of net primary production (NPP) and heterotrophic respiration (Rh) on NBP and applying it to 100-year simulations of terrestrial ecosystem models forced by observational climate, we find that tropical rainforests dominate the multi-decadal variability of global NBP (48%) rather than the semi-arid lands (35%). The NBP variation at inter-annual timescales is almost 90% contributed by NPP, but across longer timescales is progressively controlled by Rh that constitutes the response from the NPP-derived soil carbon input (40%) and the response of soil carbon turnover rates to climate variability (60%). The NBP variations of tropical rainforests is modulated by the ENSO and the PDO through their significant influences on temperature and precipitation at timescales of 2.5-7 and 25-50 years, respectively. This study highlights the importance of tropical rainforests on the multi-decadal variability of global carbon cycle, suggesting that we need to carefully differentiate the effect of NBP long-term fluctuations associated with ocean-related climate modes on the long-term trend in land sink.

  8. A minimal model of the Atlantic Multidecadal Variability: its genesis and predictability

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Hsien-Wang [Lamont-Doherty Earth Observatory of Columbia University, Department of Earth and Environmental Sciences, Palisades, NY (United States)

    2012-02-15

    Through a box model of the subpolar North Atlantic, we examine the genesis and predictability of the Atlantic Multidecadal Variability (AMV), posited as a linear perturbation sustained by the stochastic atmosphere. Postulating a density-dependent thermohaline circulation (THC), the latter would strongly differentiate the thermal and saline damping, and facilitate a negative feedback between the two fields. This negative feedback preferentially suppresses the low-frequency thermal variance to render a broad multidecadal peak bounded by the thermal and saline damping time. We offer this ''differential variance suppression'' as an alternative paradigm of the AMV in place of the ''damped oscillation'' - the latter generally not allowed by the deterministic dynamics and in any event bears no relation to the thermal peak. With the validated dynamics, we then assess the AMV predictability based on the relative entropy - a difference of the forecast and climatological probability distributions, which decays through both error growth and dynamical damping. Since the stochastic forcing is mainly in the surface heat flux, the thermal noise grows rapidly and together with its climatological variance limited by the THC-aided thermal damping, they strongly curtail the thermal predictability. The latter may be prolonged if the initial thermal and saline anomalies are of the same sign, but even rare events of less than 1% chance of occurrence yield a predictable time that is well short of a decade; we contend therefore that the AMV is in effect unpredictable. (orig.)

  9. CCSM3 simulation of pacific multi-decadal climate variability: the role of subpolar North Pacific Ocean

    International Nuclear Information System (INIS)

    Zhong, Y; Liu, Z

    2008-01-01

    Previous analyses of the CCSM3 standard integration have revealed pronounced multidecadal variability in the Pacific climate system. The purpose of the present work is to investigate the physical mechanism underlying the Pacific multidecadal variability (PMV) using specifically designed sensitivity experiments. A novel mechanism is advanced, characterized by a crucial role of the subpolar North Pacific Ocean. The multidecadal signal in ocean temperature and salinity fields is found to originate from the subsurface of the subpolar North Pacific, as result of the wave adjustment to the preceding basin-scale wind curl forcing. The multidecadal signal then ascends to the surface and is amplified through local temperature/salinity convective feedback. Along the southward Oyashio current, the anomaly travels to the Kuroshio Extension (KOE) region and is further intensified through a similar convective feedback in addition to the wind-evaporation-sea surface temperature feedback. The temperature anomaly in the KOE is able to feed back to the large-scale atmospheric circulation, inducing wind curl anomaly over the subpolar region, which in turn generates anomalous oceanic circulation and causes temperature/salinty variability in the subpolar subsurface. Thereby, a closed loop of PMV is established, in the form of a subpolar delayed oscillator

  10. Synchronous multi-decadal climate variability of the whole Pacific areas revealed in tree rings since 1567

    Science.gov (United States)

    Fang, Keyan; Cook, Edward; Guo, Zhengtang; Chen, Deliang; Ou, Tinghai; Zhao, Yan

    2018-02-01

    Oceanic and atmospheric patterns play a crucial role in modulating climate variability from interannual to multi-decadal timescales by causing large-scale co-varying climate changes. The brevity of the existing instrumental records hinders the ability to recognize climate patterns before the industrial era, which can be alleviated using proxies. Unfortunately, proxy based reconstructions of oceanic and atmospheric modes of the past millennia often have modest agreements with each other before the instrumental period, raising questions about the robustness of the reconstructions. To ensure the stability of climate signals in proxy data through time, we first identified tree-ring datasets from distant regions containing coherent variations in Asia and North America, and then interpreted their climate information. We found that the multi-decadal covarying climate patterns of the middle and high latitudinal regions around the northern Pacific Ocean agreed quite well with the climate reconstructions of the tropical and southern Pacific areas. This indicates a synchronous variability at the multi-decadal timescale of the past 430 years for the entire Pacific Ocean. This pattern is closely linked to the dominant mode of the Pacific sea surface temperature (SST) after removing the warming trend. This Pacific multi-decadal SST variability resembles the Interdecadal Pacific Oscillation.

  11. Atlantic multidecadal oceanic variability and its influence on the atmosphere in a climate model

    Energy Technology Data Exchange (ETDEWEB)

    Msadek, Rym; Frankignoul, Claude [Universite Pierre et Marie Curie, Paris 6, LOCEAN/IPSL, Paris (France)

    2009-07-15

    The mechanisms controlling the decadal to multidecadal variability of the Atlantic Meridional Overturning Circulation (MOC) and its influence on the atmosphere are investigated using a control simulation with the IPSL-CM4 climate model. The multidecadal fluctuations of the MOC are mostly driven by deep convection in the subpolar gyre, which occurs south of Iceland in the model. The latter is primarily influenced by the anomalous advection of salinity due to changes in the East Atlantic Pattern (EAP), which is the second mode of atmospheric variability in the North Atlantic region. The North Atlantic Oscillation is the dominant mode, but it plays a secondary role in the MOC fluctuations. During summer, the MOC variability is shown to have a significant impact on the atmosphere in the North Atlantic-European sector. The MOC influence is due to an interhemispheric sea surface temperature (SST) anomaly with opposite signs in the two hemispheres but largest amplitude in the northern one. The SST pattern driven by the MOC mostly resembles the model Atlantic Multidecadal Oscillation (AMO) and bears some similarity with the observed one. It is shown that the AMO reflects both the MOC influence and the local atmospheric forcing. Hence, the MOC influence on climate is best detected using lagged relations between climatic fields. The atmospheric response resembles the EAP, in a phase that might induce a weak positive feedback on the MOC. (orig.)

  12. Indo-Pacific sea level variability at multidecadal time scales

    Science.gov (United States)

    Merrifield, M. A.; Thompson, P. R.

    2016-12-01

    Long tide gauge and atmospheric pressure measurements are used to infer multidecadal fluctuations in trade wind forcing and the associated Indo-Pacific sea level response along coastal and equatorial waveguides. The trade wind variations are marked by a weakening beginning with the late 1970s climate shift and a subsequent return to mean conditions since the early 1990s. These fluctuations covary with multidecadal wind changes at mid-latitudes, as measured by the Pacific Decadal Oscillation or the North Pacific indices; however, the mid-latitude multidecadal variations prior to 1970 or noticeably absent in the inferred trade wind record. The different behavior of tropical and mid-latitude winds support the notion that multidecadal climate variations in the Pacific result from a combination of processes and not a single coherent mode spanning the basin. In particular, the two-decade long satellite altimeter record represents a period of apparent connection between the two regions that was not exhibited earlier in the century.

  13. Imprint of the Atlantic multidecadal oscillation on tree-ring widths in northeastern Asia since 1568.

    Directory of Open Access Journals (Sweden)

    Xiaochun Wang

    Full Text Available We present a new tree-ring reconstruction of the Atlantic Multidecadal Oscillation (AMO spanning 1568-2007 CE from northeast Asia. Comparison of the instrumental AMO index, an existing tree-ring based AMO reconstruction, and this new record show strongly similar annual to multidecadal patterns of variation over the last 440 years. Warm phases of the AMO are related to increases in growth of Scots pine trees and moisture availability in northeast China and central eastern Siberia. Multi-tape method (MTM and cross-wavelet analyses indicate that robust multidecadal (∼64-128 years variability is present throughout the new proxy record. Our results have important implications concerning the influence of North Atlantic sea surface temperatures on East Asian climate, and provide support for the possibility of an AMO signature on global multidecadal climate variability.

  14. The role of Atlantic-Arctic exchange in North Atlantic multidecadal climate variability

    NARCIS (Netherlands)

    Frankcombe, L.M.; Dijkstra, H.A.

    2011-01-01

    It has recently been suggested that multidecadal variability in North Atlantic sea surface temperature occurs with two dominant periods. In this paper we investigate the origin of these two time scales in a 500 year control run of the GFDL CM2.1 model. We focus on the exchange between the Atlantic

  15. Inter-annual to multi-decadal variability in prairie water resources over the past millennium

    International Nuclear Information System (INIS)

    Sauchyn, D.

    2008-01-01

    In the Prairie Provinces, declining levels have been recently recorded for various rivers and lakes, and further reductions are projected. These trends reflect human impact in terms of increasing water consumption and possibly anthropogenic climate change. From the coupling of hydrological models and climate change scenarios, researchers have projected lower future summer flows as global warming brings shorter warmer winters and longer and generally drier summers to western Canada. However, the detection and interpretation of trends from gauge records and model outputs are constrained by the relatively short perspective of decades and the uncertainties associated with projecting climate change and its impacts on hydrological regimes. A longer perspective on inter-annual to multi-decadal variability in water resources is available from moisture-sensitive tree-ring chronologies. We have established a dense network of low elevation chronologies spanning the headwaters of the Saskatchewan, Missouri, Churchill and Mackenzie River basins. Standardized tree-ring width for a large sample of trees and sites is a strong regional signal of annual and seasonal hydroclimate, and an especially good proxy of low water levels. Proxy streamflow records, up to 800 years in length, show quasi-periodic variability at inter-annual to multi-decadal scales that correspond to the tempo of sea-surface temperature anomalies. The industrial sponsors of our research, Manitoba Hydro and EPCOR, anticipate the use of our tree-ring reconstructions for informing forecasts of future water supplies and planning adaptation to climate change. Engineers from these companies, and more than 50 other water managers and planners from the Prairie Provinces, attended a workshop in March 2008 to explore potential applications of paleo-hydrological records to water resource management. (author)

  16. Greenland ice core evidence for spatial and temporal variability of the Atlantic Multidecadal Oscillation

    NARCIS (Netherlands)

    Chylek, P.; Folland, C.K.; Frankcombe, L.M.; Dijkstra, H.A.; Lesins, G.; Dubey, M.

    2012-01-01

    [1] The Greenland δ18O ice core record is used as a proxy for Greenland surface air temperatures and to interpret Atlantic Multidecadal Oscillation (AMO) variability. An analysis of annual δ18O data from six Arctic ice cores (five from Greenland and one from Canada's Ellesmere Island) suggests a

  17. Multi-decadal Variability of the Wind Power Output

    Science.gov (United States)

    Kirchner Bossi, Nicolas; García-Herrera, Ricardo; Prieto, Luis; Trigo, Ricardo M.

    2014-05-01

    The knowledge of the long-term wind power variability is essential to provide a realistic outlook on the power output during the lifetime of a planned wind power project. In this work, the Power Output (Po) of a market wind turbine is simulated with a daily resolution for the period 1871-2009 at two different locations in Spain, one at the Central Iberian Plateau and another at the Gibraltar Strait Area. This is attained through a statistical downscaling of the daily wind conditions. It implements a Greedy Algorithm as classificator of a geostrophic-based wind predictor, which is derived by considering the SLP daily field from the 56 ensemble members of the longest homogeneous reanalysis available (20CR, 1871-2009). For calibration and validation purposes we use 10 years of wind observations (the predictand) at both sites. As a result, a series of 139 annual wind speed Probability Density Functions (PDF) are obtained, with a good performance in terms of wind speed uncertainty reduction (average daily wind speed MAE=1.48 m/s). The obtained centennial series allow to investigate the multi-decadal variability of wind power from different points of view. Significant periodicities around the 25-yr frequency band, as well as long-term linear trends are detected at both locations. In addition, a negative correlation is found between annual Po at both locations, evidencing the differences in the dynamical mechanisms ruling them (and possible complementary behavior). Furthermore, the impact that the three leading large-scale circulation patterns over Iberia (NAO, EA and SCAND) exert over wind power output is evaluated. Results show distinct (and non-stationary) couplings to these forcings depending on the geographical position and season or month. Moreover, significant non-stationary correlations are observed with the slow varying Atlantic Multidecadal Oscillation (AMO) index for both case studies. Finally, an empirical relationship is explored between the annual Po and the

  18. A Tropical View of Atlantic Multidecadal SST Variability over the Last Two Millennia

    Science.gov (United States)

    Wurtzel, J. B.; Black, D. E.; Thunell, R.; Peterson, L. C.; Tappa, E. J.; Rahman, S.

    2011-12-01

    Instrumental and proxy-reconstructions show the existence of a 60-80 year periodicity in Atlantic sea surface temperature (SST), known as the Atlantic Multidecadal Oscillation (AMO). The AMO is correlated with circum-tropical Atlantic climate phenomena such as Sahel and Nordeste rainfall, as well as Atlantic hurricane patterns. Though it has been suggested that the AMO is controlled by thermohaline circulation, much debate exists as to whether the SST fluctuations are a result of anthropogenic forcing or natural climate variability. Our ability to address this issue has been limited by instrumental SST records that rarely extend back more than 50-100 years and proxy reconstructions that are largely terrestrial-based. Here we present a high-resolution marine sediment-derived reconstruction of seasonal tropical Atlantic SSTs from the Cariaco Basin spanning the past two millennia that is correlated with instrumental SSTs and the AMO for the period of overlap. The full record demonstrates that seasonality is largely controlled by variations in winter/spring SST. Wavelet analysis of the proxy data suggest that variability in the 60-80 year band evolved 250 years ago, while 40-60 year periodicities dominate earlier parts of the record. At least over the last millennia, multidecadal- and centennial- scale SST variability in the tropical Atlantic appears related to Atlantic meridional overturning circulation (AMOC) fluctuations and its associated northward heat transport that in turn may be driven by solar variability. An inverse correlation between the tropical proxy annual average SST record and Δ14C indicates that the tropics experienced positive SST anomalies during times of reduced solar activity, possibly as a result of decreased AMOC strength (Figure 1).

  19. North Atlantic 20th century multidecadal variability in coupled climate models: sea surface temperature and ocean overturning circulation

    Directory of Open Access Journals (Sweden)

    I. Medhaug

    2011-06-01

    Full Text Available Output from a total of 24 state-of-the-art Atmosphere-Ocean General Circulation Models is analyzed. The models were integrated with observed forcing for the period 1850–2000 as part of the Intergovernmental Panel on Climate Change (IPCC Fourth Assessment Report. All models show enhanced variability at multi-decadal time scales in the North Atlantic sector similar to the observations, but with a large intermodel spread in amplitudes and frequencies for both the Atlantic Multidecadal Oscillation (AMO and the Atlantic Meridional Overturning Circulation (AMOC. The models, in general, are able to reproduce the observed geographical patterns of warm and cold episodes, but not the phasing such as the early warming (1930s–1950s and the following colder period (1960s–1980s. This indicates that the observed 20th century extreme in temperatures are due to primarily a fortuitous phasing of intrinsic climate variability and not dominated by external forcing. Most models show a realistic structure in the overturning circulation, where more than half of the available models have a mean overturning transport within the observed estimated range of 13–24 Sverdrup. Associated with a stronger than normal AMOC, the surface temperature is increased and the sea ice extent slightly reduced in the North Atlantic. Individual models show potential for decadal prediction based on the relationship between the AMO and AMOC, but the models strongly disagree both in phasing and strength of the covariability. This makes it difficult to identify common mechanisms and to assess the applicability for predictions.

  20. Marine ecosystem response to the Atlantic Multidecadal Oscillation.

    Directory of Open Access Journals (Sweden)

    Martin Edwards

    Full Text Available Against the backdrop of warming of the Northern Hemisphere it has recently been acknowledged that North Atlantic temperature changes undergo considerable variability over multidecadal periods. The leading component of natural low-frequency temperature variability has been termed the Atlantic Multidecadal Oscillation (AMO. Presently, correlative studies on the biological impact of the AMO on marine ecosystems over the duration of a whole AMO cycle (∼60 years is largely unknown due to the rarity of continuously sustained biological observations at the same time period. To test whether there is multidecadal cyclic behaviour in biological time-series in the North Atlantic we used one of the world's longest continuously sustained marine biological time-series in oceanic waters, long-term fisheries data and historical records over the last century and beyond. Our findings suggest that the AMO is far from a trivial presence against the backdrop of continued temperature warming in the North Atlantic and accounts for the second most important macro-trend in North Atlantic plankton records; responsible for habitat switching (abrupt ecosystem/regime shifts over multidecadal scales and influences the fortunes of various fisheries over many centuries.

  1. Disentangling Global Warming, Multidecadal Variability, and El Niño in Pacific Temperatures

    Science.gov (United States)

    Wills, Robert C.; Schneider, Tapio; Wallace, John M.; Battisti, David S.; Hartmann, Dennis L.

    2018-03-01

    A key challenge in climate science is to separate observed temperature changes into components due to internal variability and responses to external forcing. Extended integrations of forced and unforced climate models are often used for this purpose. Here we demonstrate a novel method to separate modes of internal variability from global warming based on differences in time scale and spatial pattern, without relying on climate models. We identify uncorrelated components of Pacific sea surface temperature variability due to global warming, the Pacific Decadal Oscillation (PDO), and the El Niño-Southern Oscillation (ENSO). Our results give statistical representations of PDO and ENSO that are consistent with their being separate processes, operating on different time scales, but are otherwise consistent with canonical definitions. We isolate the multidecadal variability of the PDO and find that it is confined to midlatitudes; tropical sea surface temperatures and their teleconnections mix in higher-frequency variability. This implies that midlatitude PDO anomalies are more persistent than previously thought.

  2. Coherent Multidecadal Atmospheric and Oceanic Variability in the North Atlantic: Blocking Corresponds with Warm Subpolar Ocean

    Science.gov (United States)

    Hakkinen, Sirpa M.; Rhines, P. B.; Worthen, D. L.

    2012-01-01

    Winters with frequent atmospheric blocking, in a band of latitudes from Greenland to Western Europe, are found to persist over several decades and correspond to a warm North Atlantic Ocean. This is evident in atmospheric reanalysis data, both modern and for the full 20th century. Blocking is approximately in phase with Atlantic multidecadal ocean variability (AMV). Wintertime atmospheric blocking involves a highly distorted jetstream, isolating large regions of air from the westerly circulation. It influences the ocean through windstress-curl and associated air/sea heat flux. While blocking is a relatively high-frequency phenomenon, it is strongly modulated over decadal timescales. The blocked regime (weaker ocean gyres, weaker air-sea heat flux, paradoxically increased transport of warm subtropical waters poleward) contributes to the warm phase of AMV. Atmospheric blocking better describes the early 20thC warming and 1996-2010 warm period than does the NAO index. It has roots in the hemispheric circulation and jet stream dynamics. Subpolar Atlantic variability covaries with distant AMOC fields: both these connections may express the global influence of the subpolar North Atlantic ocean on the global climate system.

  3. Sources of multi-decadal variability in Arctic sea ice extent

    International Nuclear Information System (INIS)

    Day, J J; Hargreaves, J C; Annan, J D; Abe-Ouchi, A

    2012-01-01

    The observed dramatic decrease in September sea ice extent (SIE) has been widely discussed in the scientific literature. Though there is qualitative agreement between observations and ensemble members of the Third Coupled Model Intercomparison Project (CMIP3), it is concerning that the observed trend (1979–2010) is not captured by any ensemble member. The potential sources of this discrepancy include: observational uncertainty, physical model limitations and vigorous natural climate variability. The latter has received less attention and is difficult to assess using the relatively short observational sea ice records. In this study multi-centennial pre-industrial control simulations with five CMIP3 climate models are used to investigate the role that the Arctic oscillation (AO), the Atlantic multi-decadal oscillation (AMO) and the Atlantic meridional overturning circulation (AMOC) play in decadal sea ice variability. Further, we use the models to determine the impact that these sources of variability have had on SIE over both the era of satellite observation (1979–2010) and an extended observational record (1953–2010). There is little evidence of a relationship between the AO and SIE in the models. However, we find that both the AMO and AMOC indices are significantly correlated with SIE in all the models considered. Using sensitivity statistics derived from the models, assuming a linear relationship, we attribute 0.5–3.1%/decade of the 10.1%/decade decline in September SIE (1979–2010) to AMO driven variability. (letter)

  4. Pervasive multidecadal variations in productivity within the Peruvian Upwelling System over the last millennium

    Science.gov (United States)

    Fleury, S.; Martinez, P.; Crosta, X.; Charlier, K.; Billy, I.; Hanquiez, V.; Blanz, T.; Schneider, R. R.

    2015-10-01

    There is no agreement on the pluri-decadal expression of El Niño-Southern Oscillation (ENSO) in the Pacific over the last millennium. Marine records from the Peruvian margin indicate humid conditions (El Niño-like mean conditions) over the Little Ice Age, while precipitation records from the eastern equatorial Pacific infer arid conditions (La Niña-like mean conditions) for the same period. We here studied diatom assemblages, nitrogen isotopes, and major and minor elements at the lamination level in three laminated trigger cores located between 11°S and 15°S on the Peruvian shelf within the oxygen minimum zone (OMZ) to reconstruct precipitation and ocean productivity at the multiannual to multidecadal timescales over the last millennium. We respected the sediment structure, thus providing the first records of the mean climatic conditions at the origin of the lamination deposition, which ones represent several years. Light laminations were deposited under productive and dry conditions, indicative of La Niña-like mean conditions in the system, while dark laminations were deposited under non-productive and humid conditions, representative of El Niño-like mean conditions. La Niña-like mean conditions were predominant during the Medieval Warm Period (MWP; 1000-600 years BP) and Current Warm Period (CWP; 150 years BP to present), while El Niño-like mean conditions prevailed over the Little Ice Age (LIA; 600-150 years BP). We provide evidence for persistent multidecadal variations in productivity over the last millennium, which were disconnected from the mean climate state. Multidecadal variability has been stronger over the last 450 years concomitantly to increased variability in the NAO index. Two intervals of strong multidecadal variability were also observed over the MWP, congruent to decreased solar irradiance and increased volcanic activity.

  5. Holocene Multi-Decadal to Millennial-Scale Hydrologic Variability on the South American Altiplano

    Science.gov (United States)

    Fritz, S. C.; Baker, P. A.; Ekdahl, E.; Burns, S.

    2006-12-01

    On orbital timescales, lacustrine sediment records in the tropical central Andes show massive changes in lake level due to mechanisms related to global-scale drivers, varying at precessional timescales. Here we use stable isotopic and diatom records from two lakes in the Lake Titicaca drainage basin to reconstruct multi- decadal to millennial scale precipitation variability during the last 7000 to 8000 years. The records are tightly coupled at multi-decadal to millennial scales with each other and with lake-level fluctuations in Lake Titicaca, indicating that the lakes are recording a regional climate signal. A quantitative reconstruction of precipitation from stable isotopic data indicates that the central Andes underwent significant wet to dry alternations at multi- centennial frequencies with an amplitude of 30 to 40% of total precipitation. A strong millennial-scale component, similar in duration to periods of increased ice rafted debris flux in the North Atlantic, is observed in both lake records, suggesting that tropical North Atlantic sea-surface temperature (SST) variability may partly control regional precipitation. No clear relationship is evident between these records and the inferred ENSO history from Lago Pallcacocha in the northern tropical Andes. In the instrumental period, regional precipitation variability on inter-annual timescales is clearly influenced by Pacific modes; for example, most El Ninos produce dry and warm conditions in this part of the central Andes. However, on longer timescales, the control of tropical Pacific modes is less clear. Our reconstructions suggest that the cold intervals of the Holocene Bond events are periods of increased precipitation in the central Andes, thus indicating an anti-phasing of precipitation variation in the southern tropics of South America relative to the Northern Hemisphere monsoon region.

  6. Madagascar corals reveal a multidecadal signature of rainfall and river runoff since 1708

    Directory of Open Access Journals (Sweden)

    C. A. Grove

    2013-03-01

    Full Text Available Pacific Ocean sea surface temperatures (SST influence rainfall variability on multidecadal and interdecadal timescales in concert with the Pacific Decadal Oscillation (PDO and Interdecadal Pacific Oscillation (IPO. Rainfall variations in locations such as Australia and North America are therefore linked to phase changes in the PDO. Furthermore, studies have suggested teleconnections exist between the western Indian Ocean and Pacific Decadal Variability (PDV, similar to those observed on interannual timescales related to the El Niño Southern Oscillation (ENSO. However, as instrumental records of rainfall are too short and sparse to confidently assess multidecadal climatic teleconnections, here we present four coral climate archives from Madagascar spanning up to the past 300 yr (1708–2008 to assess such decadal variability. Using spectral luminescence scanning to reconstruct past changes in river runoff, we identify significant multidecadal and interdecadal frequencies in the coral records, which before 1900 are coherent with Asian-based PDO reconstructions. This multidecadal relationship with the Asian-based PDO reconstructions points to an unidentified teleconnection mechanism that affects Madagascar rainfall/runoff, most likely triggered by multidecadal changes in North Pacific SST, influencing the Asian Monsoon circulation. In the 20th century we decouple human deforestation effects from rainfall-induced soil erosion by pairing luminescence with coral geochemistry. Positive PDO phases are associated with increased Indian Ocean temperatures and runoff/rainfall in eastern Madagascar, while precipitation in southern Africa and eastern Australia declines. Consequently, the negative PDO phase that started in 1998 may contribute to reduced rainfall over eastern Madagascar and increased precipitation in southern Africa and eastern Australia. We conclude that multidecadal rainfall variability in Madagascar and the western Indian Ocean needs to be

  7. The Atlantic Multidecadal Variability in surface and deep ocean temperature and salinity fields from unperturbed climate simulations

    Science.gov (United States)

    Zanchettin, D.; Jungclaus, J. H.

    2013-12-01

    Large multidecadal fluctuations in basin-average sea-surface temperature (SST) are a known feature of observed, reconstructed and simulated variability in the North Atlantic Ocean. This phenomenon is often referred to as Multidecadal Atlantic Variability or AMV. Historical AMV fluctuations are associated with analog basin-scale changes in sea-surface salinity, so that warming corresponds to salinification and cooling to freshening [Polyakov et al., 2005]. The surface imprint of the AMV further corresponds to same-sign fluctuations in the shallow ocean and with opposite-sign fluctuations in the deep ocean for both temperature and salinity [Polyakov et al., 2005]. This out-of-phase behavior reflects the thermohaline overturning circulation shaping North Atlantic's low-frequency variability. Several processes contribute to the AMV, involving both ocean-atmosphere coupled processes and deep ocean circulation [e.g., Grossmann and Klotzbach, 2009]. In particular, recirculation in the North Atlantic subpolar gyre region of salinity anomalies from Arctic freshwater export may trigger multidecadal variability in the Atlantic meridional overturning circulation, and therefore may be part of the AMV [Jungclaus et al., 2005; Dima and Lohmann, 2007]. With this contribution, we aim to improve the physical interpretation of the AMV by investigating spatial and temporal patterns of temperature and salinity fields in the shallow and deep ocean. We focus on two unperturbed millennial-scale simulations performed with the Max Planck Institute Earth system model in its paleo (MPI-ESM-P) and low-resolution (MPI-ESM-LR) configurations, which provide reference control climates for assessments of pre-industrial and historical climate simulations. The two model configurations only differ for the presence, in MPI-ESM-LR, of an active module for dynamical vegetation. We use spatial-average indices and empirical orthogonal functions/principal components to track the horizontal and vertical

  8. Multidecadal, centennial, and millennial variability in sardine and anchovy abundances in the western North Pacific and climate-fish linkages during the late Holocene

    Science.gov (United States)

    Kuwae, Michinobu; Yamamoto, Masanobu; Sagawa, Takuya; Ikehara, Ken; Irino, Tomohisa; Takemura, Keiji; Takeoka, Hidetaka; Sugimoto, Takashige

    2017-12-01

    Paleorecords of pelagic fish abundance could better define the nature of fishery productivity dynamics and help understand responses of pelagic fish stocks to long-term climate changes. We report a high-resolution record of sardine and anchovy scale deposition rates (SDRs) from Beppu Bay, Southwest Japan, showing multidecadal and centennial variability in the abundance of Japanese sardine and Japanese anchovy during the last 2850 years. Variations in the sardine SDR showed periodicities at ∼50, ∼100, and ∼300 yr, while variations in the anchovy SDR showed periodicities at ∼30 and ∼260 yr. Comparisons between and correlation analyses of the time series of the sardine and anchovy SDRs demonstrate that there is not a consistent out-of-phase relationship during the last 2850 years. This indicates that the multidecadal alternations in the sardine and anchovy populations commonly seen in the 20th century did not necessarily occur during earlier periods. The Japanese sardine SDR record shows a long-term decreasing trend in the amplitudes of the multidecadal to centennial fluctuations. This decreasing trend may have resulted from an increasing trend in the winter sea surface temperature in the western North Pacific. The multicentennial variability in sardine abundance during the last millennium is consistent with the variabilities in the abnormal snow index in East Asia and the American tree ring-based Pacific Decadal Oscillation index, suggesting a basin-wide or regional climate-marine ecosystem linkage.

  9. Indo-Pacific Variability on Seasonal to Multidecadal Time Scales. Part I: Intrinsic SST Modes in Models and Observations

    Science.gov (United States)

    Slawinska, Joanna; Giannakis, Dimitrios

    2017-07-01

    The variability of Indo-Pacific SST on seasonal to multidecadal timescales is investigated using a recently introduced technique called nonlinear Laplacian spectral analysis (NLSA). Through this technique, drawbacks associated with ad hoc pre-filtering of the input data are avoided, enabling recovery of low-frequency and intermittent modes not previously accessible via classical approaches. Here, a multiscale hierarchy of spatiotemporal modes is identified for Indo-Pacific SST in millennial control runs of CCSM4 and CM3 and in HadISST data. On interannual timescales, a mode with spatiotemporal patterns corresponding to the fundamental component of ENSO emerges, along with ENSO-modulated annual modes consistent with combination mode theory. The ENSO combination modes also feature prominent activity in the Indian Ocean, explaining significant fraction of the SST variance in regions associated with the Indian Ocean dipole. A pattern resembling the tropospheric biennial oscillation emerges in addition to ENSO and the associated combination modes. On multidecadal timescales, the dominant NLSA mode in the model data is predominantly active in the western tropical Pacific. The interdecadal Pacific oscillation also emerges as a distinct NLSA mode, though with smaller explained variance than the western Pacific multidecadal mode. Analogous modes on interannual and decadal timescales are also identified in HadISST data for the industrial era, as well as in model data of comparable timespan, though decadal modes are either absent or of degraded quality in these datasets.

  10. Global multi-decadal ocean climate and small-pelagic fish population

    International Nuclear Information System (INIS)

    Tourre, Yves M; Lluch-Cota, Salvador E; White, Warren B

    2007-01-01

    Ocean climate, environmental and biological conditions vary on several spatio-temporal scales. Besides climate change associated with anthropogenic activity, there is growing evidence of a natural global multi-decadal climate signal in the ocean-atmosphere-biosphere climate system. The spatio-temporal evolution of this signal is thus analyzed during the 20th century and compared to the variability of small-pelagic fish landings. It is argued that the low-frequency global ocean environment and plankton ecosystems must be modified such that small-pelagic populations vary accordingly. A small-pelagic global index or fishing 'regime indicator series' (RIS) (i.e. a small-pelagic abundance indicator) is used. RIS is derived from fish landings data in the four main fishing areas in the Pacific and Atlantic oceans. Global RIS changes phase (from positive to negative values) when SST multi-decadal anomalies are out-of-phase between the eastern Pacific and southern Atlantic. RIS also displays maxima during the mid-30s to early-40s and the late-70s to early-80s when the multi-decadal signal was approximately changing phases (Tourre and White 2006 Geophys. Res. Lett. 33 L06716). It is recognized that other factors may modulate fish stocks, including anthropogenic predation. Nevertheless it is proposed that variable climate and environment, and the low-frequency 'global synchrony' of small-pelagic landings (Schwartzlose et al 1999 S. Afr. J. Mar. Sci. 21 289-347), could be associated with the multi-decadal changes in global ocean climate conditions

  11. Joint spatiotemporal variability of global sea surface temperatures and global Palmer drought severity index values

    Science.gov (United States)

    Apipattanavis, S.; McCabe, G.J.; Rajagopalan, B.; Gangopadhyay, S.

    2009-01-01

    Dominant modes of individual and joint variability in global sea surface temperatures (SST) and global Palmer drought severity index (PDSI) values for the twentieth century are identified through a multivariate frequency domain singular value decomposition. This analysis indicates that a secular trend and variability related to the El Niño–Southern Oscillation (ENSO) are the dominant modes of variance shared among the global datasets. For the SST data the secular trend corresponds to a positive trend in Indian Ocean and South Atlantic SSTs, and a negative trend in North Pacific and North Atlantic SSTs. The ENSO reconstruction shows a strong signal in the tropical Pacific, North Pacific, and Indian Ocean regions. For the PDSI data, the secular trend reconstruction shows high amplitudes over central Africa including the Sahel, whereas the regions with strong ENSO amplitudes in PDSI are the southwestern and northwestern United States, South Africa, northeastern Brazil, central Africa, the Indian subcontinent, and Australia. An additional significant frequency, multidecadal variability, is identified for the Northern Hemisphere. This multidecadal frequency appears to be related to the Atlantic multidecadal oscillation (AMO). The multidecadal frequency is statistically significant in the Northern Hemisphere SST data, but is statistically nonsignificant in the PDSI data.

  12. Influence of climate variability versus change at multi-decadal time scales on hydrological extremes

    Science.gov (United States)

    Willems, Patrick

    2014-05-01

    Recent studies have shown that rainfall and hydrological extremes do not randomly occur in time, but are subject to multidecadal oscillations. In addition to these oscillations, there are temporal trends due to climate change. Design statistics, such as intensity-duration-frequency (IDF) for extreme rainfall or flow-duration-frequency (QDF) relationships, are affected by both types of temporal changes (short term and long term). This presentation discusses these changes, how they influence water engineering design and decision making, and how this influence can be assessed and taken into account in practice. The multidecadal oscillations in rainfall and hydrological extremes were studied based on a technique for the identification and analysis of changes in extreme quantiles. The statistical significance of the oscillations was evaluated by means of a non-parametric bootstrapping method. Oscillations in large scale atmospheric circulation were identified as the main drivers for the temporal oscillations in rainfall and hydrological extremes. They also explain why spatial phase shifts (e.g. north-south variations in Europe) exist between the oscillation highs and lows. Next to the multidecadal climate oscillations, several stations show trends during the most recent decades, which may be attributed to climate change as a result of anthropogenic global warming. Such attribution to anthropogenic global warming is, however, uncertain. It can be done based on simulation results with climate models, but it is shown that the climate model results are too uncertain to enable a clear attribution. Water engineering design statistics, such as extreme rainfall IDF or peak or low flow QDF statistics, obviously are influenced by these temporal variations (oscillations, trends). It is shown in the paper, based on the Brussels 10-minutes rainfall data, that rainfall design values may be about 20% biased or different when based on short rainfall series of 10 to 15 years length, and

  13. Atmospheric multidecadal variations in the North Atlantic realm: proxy data, observations, and atmospheric circulation model studies

    Directory of Open Access Journals (Sweden)

    K. Grosfeld

    2007-01-01

    Full Text Available We investigate the spatial and temporal characteristics of multidecadal climate variability in the North Atlantic realm, using observational data, proxy data and model results. The dominant pattern of multidecadal variability of SST depicts a monopolar structure in the North Atlantic during the instrumental period with cold (warm phases during 1900–1925 and 1970–1990 (1870–1890 and 1940–1960. Two atmospheric general circulation models of different complexity forced with global SST over the last century show SLP anomaly patterns from the warm and cold phases of the North Atlantic similar to the corresponding observed patterns. The analysis of a sediment core from Cariaco Basin, a coral record from the northern Red Sea, and a long-term sea level pressure (SLP reconstruction reveals that the multidecadal mode of the atmospheric circulation characterizes climate variability also in the pre-industrial era. The analyses of SLP reconstruction and proxy data depict a persistent atmospheric mode at least over the last 300 years, where SLP shows a dipolar structure in response to monopolar North Atlantic SST, in a similar way as the models' responses do. The combined analysis of observational and proxy data with model experiments provides an understanding of multidecadal climate modes during the late Holocene. The related patterns are useful for the interpretation of proxy data in the North Atlantic realm.

  14. Twentieth-Century Hydrometeorological Reconstructions to Study the Multidecadal Variations of the Water Cycle Over France

    Science.gov (United States)

    Bonnet, R.; Boé, J.; Dayon, G.; Martin, E.

    2017-10-01

    Characterizing and understanding the multidecadal variations of the continental hydrological cycle is a challenging issue given the limitation of observed data sets. In this paper, a new approach to derive twentieth century hydrological reconstructions over France with an hydrological model is presented. The method combines the results of long-term atmospheric reanalyses downscaled with a stochastic statistical method and homogenized station observations to derive the meteorological forcing needed for hydrological modeling. Different methodological choices are tested and evaluated. We show that using homogenized observations to constrain the results of statistical downscaling help to improve the reproduction of precipitation, temperature, and river flows variability. In particular, it corrects some unrealistic long-term trends associated with the atmospheric reanalyses. Observationally constrained reconstructions therefore constitute a valuable data set to study the multidecadal hydrological variations over France. Thanks to these reconstructions, we confirm that the multidecadal variations previously noted in French river flows have mainly a climatic origin. Moreover, we show that multidecadal variations exist in other hydrological variables (evapotranspiration, snow cover, and soil moisture). Depending on the region, the persistence from spring to summer of soil moisture or snow anomalies generated during spring by temperature and precipitation variations may explain river flows variations in summer, when no concomitant climate variations exist.

  15. The influence of anthropogenic aerosol on multi-decadal variations of historical global climate

    International Nuclear Information System (INIS)

    Wilcox, L J; Highwood, E J; Dunstone, N J

    2013-01-01

    Analysis of single forcing runs from CMIP5 (the fifth Coupled Model Intercomparison Project) simulations shows that the mid-twentieth century temperature hiatus, and the coincident decrease in precipitation, is likely to have been influenced strongly by anthropogenic aerosol forcing. Models that include a representation of the indirect effect of aerosol better reproduce inter-decadal variability in historical global-mean near-surface temperatures, particularly the cooling in the 1950s and 1960s, compared to models with representation of the aerosol direct effect only. Models with the indirect effect also show a more pronounced decrease in precipitation during this period, which is in better agreement with observations, and greater inter-decadal variability in the inter-hemispheric temperature difference. This study demonstrates the importance of representing aerosols, and their indirect effects, in general circulation models, and suggests that inter-model diversity in aerosol burden and representation of aerosol–cloud interaction can produce substantial variation in simulations of climate variability on multi-decadal timescales. (letter)

  16. Relationship between the Arctic oscillation and surface air temperature in multi-decadal time-scale

    Science.gov (United States)

    Tanaka, Hiroshi L.; Tamura, Mina

    2016-09-01

    In this study, a simple energy balance model (EBM) was integrated in time, considering a hypothetical long-term variability in ice-albedo feedback mimicking the observed multi-decadal temperature variability. A natural variability was superimposed on a linear warming trend due to the increasing radiative forcing of CO2. The result demonstrates that the superposition of the natural variability and the background linear trend can offset with each other to show the warming hiatus for some period. It is also stressed that the rapid warming during 1970-2000 can be explained by the superposition of the natural variability and the background linear trend at least within the simple model. The key process of the fluctuating planetary albedo in multi-decadal time scale is investigated using the JRA-55 reanalysis data. It is found that the planetary albedo increased for 1958-1970, decreased for 1970-2000, and increased for 2000-2012, as expected by the simple EBM experiments. The multi-decadal variability in the planetary albedo is compared with the time series of the AO mode and Barents Sea mode of surface air temperature. It is shown that the recent AO negative pattern showing warm Arctic and cold mid-latitudes is in good agreement with planetary albedo change indicating negative anomaly in high latitudes and positive anomaly in mid-latitudes. Moreover, the Barents Sea mode with the warm Barents Sea and cold mid-latitudes shows long-term variability similar to planetary albedo change. Although further studies are needed, the natural variabilities of both the AO mode and Barents Sea mode indicate some possible link to the planetary albedo as suggested by the simple EBM to cause the warming hiatus in recent years.

  17. Extreme conditions over Europe and North America: role of the Atlantic Multidecadal Variability

    Science.gov (United States)

    Ruprich-Robert, Yohan; Msadek, Rym; Delworth, Tom

    2016-04-01

    The Atlantic Multidecadal Variability (AMV) is the result and possibly the source of marked modulations of the climate over many areas of the globe. For instance, the relatively warm and dry climate of North America throughout the 30-yr interval of 1931-60, during which the Dust Bowl and the 1950's drought occurred, has been linked to the concomitant warm phase of the AMV. During this period relative warm and wet conditions prevailed over Europe. After 1960, the Atlantic began to cool, and for almost three decades the North American climate turned wetter and cooler whereas Europe experienced cooler and dryer conditions. However, the shortness of the historical observations compared to the AMV period suggested by longer proxy (~60-80yr) does not allow to firmly conclude on the causal effect of the AMV. We use a model approach to isolate the causal role of the AMV on the occurrence of extreme events over Europe and North America. We present experiments based on two GFDL global climate models, a low resolution version, CM2.1 and a higher resolution model for the atmospheric component, FLOR. In both model experiments sea surface temperatures in the North Atlantic sector are restored to the observed AMV pattern, while the other basins are left fully coupled. In order to explore and robustly isolate the AMV impacts on extreme events, we use large ensemble simulations (100 members for CM2.1 and 50 for FLOR) that we run for 20 years. We find that a positive phase of the AMV increases the frequency of occurrence of drought over North America and of extremely cold/warm conditions over Northern/Central Europe during winter/summer. Interestingly, we find that the AMV impacts on these extreme conditions are modulated by the Pacific response to the AMV itself. Members that develop a weak Pacific response show more extreme events over Europe whereas those that develop a strong Pacific response show more extreme events over North America.

  18. Optimal ranking regime analysis of intra- to multidecadal U.S. climate variability. Part I: Temperature

    Science.gov (United States)

    The Optimal Ranking Regime (ORR) method was used to identify intra- to multi-decadal (IMD) time windows containing significant ranking sequences in U.S. climate division temperature data. The simplicity of the ORR procedure’s output – a time series’ most significant non-overlapping periods of high o...

  19. Multi-decadal modulations in the Aleutian-Icelandic Low seesaw and the axial symmetry of the Arctic Oscillation signature, as revealed in the 20th century reanalysis

    Directory of Open Access Journals (Sweden)

    Ning Shi

    2014-08-01

    Full Text Available Seesaw relationship in intensity between the surface Aleutian and Icelandic Lows (AIS is a manifestation of atmospheric teleconnection that bridges the interannual variability over the Pacific and Atlantic in particular winter months. Analysis of the 20th Century Reanalysis data reveals that the strength and timing of AIS have undergone multi-decadal modulations in conjunction with those in structure of the Arctic Oscillation (AO signature, extracted in the leading mode of interannual sea-level pressure (SLP variability over the extratropical Northern Hemisphere. Specifically, events of what may be called ‘pure AO’, in which SLP anomalies exhibit a high degree of axial symmetry in association with in-phase SLP variability between the midlatitude Atlantic and Pacific, tended to occur during multi-decadal periods in which the inter-basin teleconnection through AIS was active under the enhanced interannual variability of the Aleutian Low. In contrast, the axial symmetry of the AO pattern was apparently reduced during a multi-decadal period in which the AIS teleconnection was inactive under the weakened interannual variability of the Aleutian Low. In this period, the leading mode of interannual SLP variability represented a meridional seesaw between the Atlantic and Arctic, which resembles SLP anomaly pattern associated with the cold-ocean/warm-land (COWL temperature pattern. These multi-decadal modulations in interannual AIS signal and the axial symmetry of the interannual AO pattern occurred under multi-decadal changes in the background state that also represented the polarity changes of the COWL-like anomaly pattern.

  20. Strong Decomposition of Random Variables

    DEFF Research Database (Denmark)

    Hoffmann-Jørgensen, Jørgen; Kagan, Abram M.; Pitt, Loren D.

    2007-01-01

    A random variable X is stongly decomposable if X=Y+Z where Y=Φ(X) and Z=X-Φ(X) are independent non-degenerated random variables (called the components). It is shown that at least one of the components is singular, and we derive a necessary and sufficient condition for strong decomposability...... of a discrete random variable....

  1. Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures

    Science.gov (United States)

    Steinman, Byron A.; Mann, Michael E.; Miller, Sonya K.

    2015-02-01

    The recent slowdown in global warming has brought into question the reliability of climate model projections of future temperature change and has led to a vigorous debate over whether this slowdown is the result of naturally occurring, internal variability or forcing external to Earth’s climate system. To address these issues, we applied a semi-empirical approach that combines climate observations and model simulations to estimate Atlantic- and Pacific-based internal multidecadal variability (termed “AMO” and “PMO,” respectively). Using this method, the AMO and PMO are found to explain a large proportion of internal variability in Northern Hemisphere mean temperatures. Competition between a modest positive peak in the AMO and a substantially negative-trending PMO are seen to produce a slowdown or “false pause” in warming of the past decade.

  2. Bi-decadal variability excited in the coupled ocean-atmosphere system by strong tropical volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Zanchettin, D.; Lorenz, S.; Lohmann, K.; Jungclaus, J.H. [Max Planck Institute for Meteorology, Ocean in the Earth System Department, Hamburg (Germany); Timmreck, C. [Max Planck Institute for Meteorology, Atmosphere in the Earth System Department, Hamburg (Germany); Graf, H.-F. [University of Cambridge, Centre for Atmospheric Science, Cambridge (United Kingdom); Rubino, A. [Ca' Foscari University, Department of Environmental Sciences, Venice (Italy); Krueger, K. [Leibniz-Institute of Marine Sciences, IFM-GEOMAR, Kiel (Germany)

    2012-07-15

    Decadal and bi-decadal climate responses to tropical strong volcanic eruptions (SVEs) are inspected in an ensemble simulation covering the last millennium based on the Max Planck Institute - Earth system model. An unprecedentedly large collection of pre-industrial SVEs (up to 45) producing a peak annual-average top-of-atmosphere radiative perturbation larger than -1.5 Wm{sup -2} is investigated by composite analysis. Post-eruption oceanic and atmospheric anomalies coherently describe a fluctuation in the coupled ocean-atmosphere system with an average length of 20-25 years. The study provides a new physically consistent theoretical framework to interpret decadal Northern Hemisphere (NH) regional winter climates variability during the last millennium. The fluctuation particularly involves interactions between the Atlantic meridional overturning circulation and the North Atlantic gyre circulation closely linked to the state of the winter North Atlantic Oscillation. It is characterized by major distinctive details. Among them, the most prominent are: (a) a strong signal amplification in the Arctic region which allows for a sustained strengthened teleconnection between the North Pacific and the North Atlantic during the first post-eruption decade and which entails important implications from oceanic heat transport and from post-eruption sea ice dynamics, and (b) an anomalous surface winter warming emerging over the Scandinavian/Western Russian region around 10-12 years after a major eruption. The simulated long-term climate response to SVEs depends, to some extent, on background conditions. Consequently, ensemble simulations spanning different phases of background multidecadal and longer climate variability are necessary to constrain the range of possible post-eruption decadal evolution of NH regional winter climates. (orig.)

  3. Multidecadal climate variability in Brazil's Nordeste during the last 3000 years based on speleothem isotope records

    Science.gov (United States)

    Novello, Valdir F.; Cruz, Francisco W.; Karmann, Ivo; Burns, Stephen J.; Stríkis, Nicolás M.; Vuille, Mathias; Cheng, Hai; Lawrence Edwards, R.; Santos, Roberto V.; Frigo, Everton; Barreto, Eline A. S.

    2012-12-01

    We present the first high resolution, approximately ∼4 years sample spacing, precipitation record from northeastern Brazil (hereafter referred to as ‘Nordeste’) covering the last ∼3000 yrs from 230Th-dated stalagmites oxygen isotope records. Our record shows abrupt fluctuations in rainfall tied to variations in the intensity of the South American summer monsoon (SASM), including the periods corresponding to the Little Ice Age (LIA), the Medieval Climate Anomaly (MCA) and an event around 2800 yr B.P. Unlike other monsoon records in southern tropical South America, dry conditions prevailed during the LIA in the Nordeste. Our record suggests that the region is currently undergoing drought conditions that are unprecedented over the past 3 millennia, rivaled only by the LIA period. Using spectral, wavelet and cross-wavelet analyses we show that changes in SASM activity in the region are mainly associated with variations of the Atlantic Multidecadal Oscillation (AMO) and to a lesser degree caused by fluctuations in tropical Pacific SST. Our record also shows a distinct periodicity around 210 years, which has been linked to solar variability.

  4. Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic ocean

    International Nuclear Information System (INIS)

    Peings, Yannick; Magnusdottir, Gudrun

    2014-01-01

    The North Atlantic sea surface temperature exhibits fluctuations on the multidecadal time scale, a phenomenon known as the Atlantic Multidecadal Oscillation (AMO). This letter demonstrates that the multidecadal fluctuations of the wintertime North Atlantic Oscillation (NAO) are tied to the AMO, with an opposite-signed relationship between the polarities of the AMO and the NAO. Our statistical analyses suggest that the AMO signal precedes the NAO by 10–15 years with an interesting predictability window for decadal forecasting. The AMO footprint is also detected in the multidecadal variability of the intraseasonal weather regimes of the North Atlantic sector. This observational evidence is robust over the entire 20th century and it is supported by numerical experiments with an atmospheric global climate model. The simulations suggest that the AMO-related SST anomalies induce the atmospheric anomalies by shifting the atmospheric baroclinic zone over the North Atlantic basin. As in observations, the positive phase of the AMO results in more frequent negative NAO—and blocking episodes in winter that promote the occurrence of cold extreme temperatures over the eastern United States and Europe. Thus, it is plausible that the AMO plays a role in the recent resurgence of severe winter weather in these regions and that wintertime cold extremes will be promoted as long as the AMO remains positive. (paper)

  5. Mechanisms of the atmospheric response to North Atlantic multidecadal variability: a model study

    Energy Technology Data Exchange (ETDEWEB)

    Msadek, Rym [Universite Pierre et Marie Curie-Paris 6, LOCEAN/IPSL, Paris Cedex 05 (France); Princeton University, GFDL/NOAA, AOS Program, Princeton, NJ (United States); Frankignoul, Claude [Universite Pierre et Marie Curie-Paris 6, LOCEAN/IPSL, Paris Cedex 05 (France); Li, Laurent Z.X. [Universite Pierre et Marie Curie-Paris 6, LMD/IPSL, Paris Cedex 05 (France)

    2011-04-15

    , significant impacts are found globally, indicating that the Atlantic ocean can drive a large scale atmospheric variability at decadal timescales. The atmospheric response is highly non-linear in both seasons and is consistent with the strong interaction between transient eddies and the mean flow. This study emphasizes that decadal fluctuations of the MOC can affect the storm tracks in both seasons and lead to weak but significant dynamical changes in the atmosphere. (orig.)

  6. A conditional stochastic weather generator for seasonal to multi-decadal simulations

    Science.gov (United States)

    Verdin, Andrew; Rajagopalan, Balaji; Kleiber, William; Podestá, Guillermo; Bert, Federico

    2018-01-01

    We present the application of a parametric stochastic weather generator within a nonstationary context, enabling simulations of weather sequences conditioned on interannual and multi-decadal trends. The generalized linear model framework of the weather generator allows any number of covariates to be included, such as large-scale climate indices, local climate information, seasonal precipitation and temperature, among others. Here we focus on the Salado A basin of the Argentine Pampas as a case study, but the methodology is portable to any region. We include domain-averaged (e.g., areal) seasonal total precipitation and mean maximum and minimum temperatures as covariates for conditional simulation. Areal covariates are motivated by a principal component analysis that indicates the seasonal spatial average is the dominant mode of variability across the domain. We find this modification to be effective in capturing the nonstationarity prevalent in interseasonal precipitation and temperature data. We further illustrate the ability of this weather generator to act as a spatiotemporal downscaler of seasonal forecasts and multidecadal projections, both of which are generally of coarse resolution.

  7. Multidecadal oscillations in rainfall and hydrological extremes

    Science.gov (United States)

    Willems, Patrick

    2013-04-01

    Many studies have anticipated a worldwide increase in the frequency and intensity of precipitation extremes and floods since the last decade(s). Natural variability by climate oscillations partly determines the observed evolution of precipitation extremes. Based on a technique for the identification and analysis of changes in extreme quantiles, it is shown that hydrological extremes have oscillatory behaviour at multidecadal time scales. Results are based on nearly independent extremes extracted from long-term historical time series of precipitation intensities and river flows. Study regions include Belgium - The Netherlands (Meuse basin), Ethiopia (Blue Nile basin) and Ecuador (Paute basin). For Belgium - The Netherlands, the past 100 years showed larger and more hydrological extremes around the 1910s, 1950-1960s, and more recently during the 1990-2000s. Interestingly, the oscillations for southwestern Europe are anti-correlated with these of northwestern Europe, thus with oscillation highs in the 1930-1940s and 1970s. The precipitation oscillation peaks are explained by persistence in atmospheric circulation patterns over the North Atlantic during periods of 10 to 15 years. References: Ntegeka V., Willems P. (2008), 'Trends and multidecadal oscillations in rainfall extremes, based on a more than 100 years time series of 10 minutes rainfall intensities at Uccle, Belgium', Water Resources Research, 44, W07402, doi:10.1029/2007WR006471 Mora, D., Willems, P. (2012), 'Decadal oscillations in rainfall and air temperature in the Paute River Basin - Southern Andes of Ecuador', Theoretical and Applied Climatology, 108(1), 267-282, doi:0.1007/s00704-011-0527-4 Taye, M.T., Willems, P. (2011). 'Influence of climate variability on representative QDF predictions of the upper Blue Nile Basin', Journal of Hydrology, 411, 355-365, doi:10.1016/j.jhydrol.2011.10.019 Taye, M.T., Willems, P. (2012). 'Temporal variability of hydro-climatic extremes in the Blue Nile basin', Water

  8. Tracking the Atlantic Multidecadal Oscillation through the last 8,000 years

    DEFF Research Database (Denmark)

    Knudsen, Mads Faurschou; Seidenkrantz, Marit-Solveig; Jacobsen, B. H.

    2011-01-01

    Understanding the internal ocean variability and its influence on climate is imperative for society. A key aspect concerns the enigmatic Atlantic Multidecadal Oscillation (AMO), a feature defined by a 60- to 90-year variability in North Atlantic sea-surface temperatures. The nature and origin...... of the AMO is uncertain, and it remains unknown whether it represents a persistent periodic driver in the climate system, or merely a transient feature. Here, we show that distinct, ~55- to 70-year oscillations characterized the North Atlantic ocean-atmosphere variability over the past 8,000 years. We test...... and reject the hypothesis that this climate oscillation was directly forced by periodic changes in solar activity. We therefore conjecture that a quasi-persistent ~55- to 70-year AMO, linked to internal ocean-atmosphere variability, existed during large parts of the Holocene. Our analyses further suggest...

  9. Wave energy fluxes and multi-decadal shoreline changes

    DEFF Research Database (Denmark)

    Kabuth, Alina Kristin; Kroon, Aart

    2014-01-01

    Spatial patterns of multidecadal shoreline changes in two microtidal, low-energetic embayments of southern Zealand, Denmark, were investigated by using the directional distribution of wave energy fluxes. The sites include a barrier island system attached to moraine bluffs, and a recurved spit...... variability of directional distributions of wave energy fluxes furthermore outlined potential sediment sources and sinks for the evolution of the barrier island system and for the evolution of the recurved spit....... adjacent to a cliff coast. The barrier island system is characterized by cross-shore translation and by an alignment of the barrier alongshore alternating directions of barrier-spit progradation in a bidirectional wave field. The recurved spit adjacent to the cliff coast experienced shoreline rotation...

  10. Surface-temperature trends and variability in the low-latitude North Atlantic since 1552

    KAUST Repository

    Saenger, Casey

    2009-06-21

    Sea surface temperature variability in the North Atlantic Ocean recorded since about 1850 has been ascribed to a natural multidecadal oscillation superimposed on a background warming trend1-6. It has been suggested that the multidecadal variability may be a persistent feature6-8, raising the possibility that the associated climate impacts may be predictable7,8. owever, our understanding of the multidecadal ocean variability before the instrumental record is based on interpretations of high-latitude terrestrial proxy records. Here we present an absolutely dated and annually resolved record of sea surface temperature from the Bahamas, based on a 440-year time series of coral growth rates. The reconstruction indicates that temperatures were as warm as today from about 1552 to 1570, then cooled by about 1° C from 1650 to 1730 before warming until the present. Our estimates of background variability suggest that much of the warming since 1900 was driven by anthropogenic forcing. Interdecadal variability with a period of 15-25 years is superimposed on most of the record, but multidecadal variability becomes significant only after 1730. We conclude that the multidecadal variability in sea surface temperatures in the low-latitude western Atlantic Ocean may not be persistent, potentially making accurate decadal climate forecasts more difficult to achieve. © 2009 Macmillan Publishers Limited. All rights reserved.

  11. Surface-temperature trends and variability in the low-latitude North Atlantic since 1552

    KAUST Repository

    Saenger, Casey; Cohen, Anne L.; Oppo, Delia W.; Halley, Robert B.; Carilli, Jessica E.

    2009-01-01

    Sea surface temperature variability in the North Atlantic Ocean recorded since about 1850 has been ascribed to a natural multidecadal oscillation superimposed on a background warming trend1-6. It has been suggested that the multidecadal variability may be a persistent feature6-8, raising the possibility that the associated climate impacts may be predictable7,8. owever, our understanding of the multidecadal ocean variability before the instrumental record is based on interpretations of high-latitude terrestrial proxy records. Here we present an absolutely dated and annually resolved record of sea surface temperature from the Bahamas, based on a 440-year time series of coral growth rates. The reconstruction indicates that temperatures were as warm as today from about 1552 to 1570, then cooled by about 1° C from 1650 to 1730 before warming until the present. Our estimates of background variability suggest that much of the warming since 1900 was driven by anthropogenic forcing. Interdecadal variability with a period of 15-25 years is superimposed on most of the record, but multidecadal variability becomes significant only after 1730. We conclude that the multidecadal variability in sea surface temperatures in the low-latitude western Atlantic Ocean may not be persistent, potentially making accurate decadal climate forecasts more difficult to achieve. © 2009 Macmillan Publishers Limited. All rights reserved.

  12. Contrasting spatial structures of Atlantic Multidecadal Oscillation between observations and slab ocean model simulations

    Science.gov (United States)

    Sun, Cheng; Li, Jianping; Kucharski, Fred; Xue, Jiaqing; Li, Xiang

    2018-04-01

    The spatial structure of Atlantic multidecadal oscillation (AMO) is analyzed and compared between the observations and simulations from slab ocean models (SOMs) and fully coupled models. The observed sea surface temperature (SST) pattern of AMO is characterized by a basin-wide monopole structure, and there is a significantly high degree of spatial coherence of decadal SST variations across the entire North Atlantic basin. The observed SST anomalies share a common decadal-scale signal, corresponding to the basin-wide average (i. e., the AMO). In contrast, the simulated AMO in SOMs (AMOs) exhibits a tripole-like structure, with the mid-latitude North Atlantic SST showing an inverse relationship with other parts of the basin, and the SOMs fail to reproduce the observed strong spatial coherence of decadal SST variations associated with the AMO. The observed spatial coherence of AMO SST anomalies is identified as a key feature that can be used to distinguish the AMO mechanism. The tripole-like SST pattern of AMOs in SOMs can be largely explained by the atmosphere-forced thermodynamics mechanism due to the surface heat flux changes associated with the North Atlantic Oscillation (NAO). The thermodynamic forcing of AMOs by the NAO gives rise to a simultaneous inverse NAO-AMOs relationship at both interannual and decadal timescales and a seasonal phase locking of the AMOs variability to the cold season. However, the NAO-forced thermodynamics mechanism cannot explain the observed NAO-AMO relationship and the seasonal phase locking of observed AMO variability to the warm season. At decadal timescales, a strong lagged relationship between NAO and AMO is observed, with the NAO leading by up to two decades, while the simultaneous correlation of NAO with AMO is weak. This lagged relationship and the spatial coherence of AMO can be well understood from the view point of ocean dynamics. A time-integrated NAO index, which reflects the variations in Atlantic meridional overturning

  13. Forest productivity in southwestern Europe is controlled by coupled North Atlantic and Atlantic Multidecadal Oscillations.

    Science.gov (United States)

    Madrigal-González, Jaime; Ballesteros-Cánovas, Juan A; Herrero, Asier; Ruiz-Benito, Paloma; Stoffel, Markus; Lucas-Borja, Manuel E; Andivia, Enrique; Sancho-García, Cesar; Zavala, Miguel A

    2017-12-20

    The North Atlantic Oscillation (NAO) depicts annual and decadal oscillatory modes of variability responsible for dry spells over the European continent. The NAO therefore holds a great potential to evaluate the role, as carbon sinks, of water-limited forests under climate change. However, uncertainties related to inconsistent responses of long-term forest productivity to NAO have so far hampered firm conclusions on its impacts. We hypothesize that, in part, such inconsistencies might have their origin in periodical sea surface temperature anomalies in the Atlantic Ocean (i.e., Atlantic Multidecadal Oscillation, AMO). Here we show strong empirical evidence in support of this hypothesis using 120 years of periodical inventory data from Iberian pine forests. Our results point to AMO + NAO + and AMO - NAO - phases as being critical for forest productivity, likely due to decreased winter water balance and abnormally low winter temperatures, respectively. Our findings could be essential for the evaluation of ecosystem functioning vulnerabilities associated with increased climatic anomalies under unprecedented warming conditions in the Mediterranean.

  14. Multidecadal shoreline changes in Denmark

    DEFF Research Database (Denmark)

    Kabuth, Alina Kristin; Kroon, Aart; Pedersen, Jørn Bjarke Torp

    2014-01-01

    Multidecadal shoreline changes along ca. 7000 km coastline around Denmark were computed for the time interval between 1862 AD and 2005 AD and were connected with a geomorphological coastal classification. The shoreline data set was based on shoreline positions from historical and modern topograph...... shoreline changes around Denmark, the mapping can contribute to enhanced adaptation and mitigation strategies in response to increased risks of erosion and flooding under a changing climate....

  15. Regional influence of decadal to multidecadal Atlantic Oscillations during the last two millennia in Morocco, inferred from two high resolution δ18O speleothem records

    Science.gov (United States)

    Ait Brahim, Yassine; Sifeddine, Abdelfettah; Khodri, Myriam; Bouchaou, Lhoussaine; Cruz, Francisco W.; Pérez-Zanón, Núria; Wassenburg, Jasper A.; Cheng, Hai

    2017-04-01

    Climate projections predict substantial increase of extreme heats and drought occurrences during the coming decades in Morocco. It is however not clear what can be attributed to natural climate variability and to anthropogenic forcing, as hydroclimate variations observed in areas such as Morocco are highly influenced by the Atlantic climate modes. Since observational data sets are too short to resolve properly natural modes of variability acting on decadal to multidecadal timescales, high resolution paleoclimate reconstructions are the only alternative to reconstruct climate variability in the remote past. Herein, we present two high resolution and well dated speleothems oxygen isotope (δ18O) records sampled from Chaara and Ifoulki caves (located in Northeastern and Southwestern Morocco respectively) to investigate hydroclimate variations during the last 2000 years. Our results are supported by a monitoring network of δ18O in precipitation from 17 stations in Morocco. The new paleoclimate records are discussed in the light of existing continental and marine paleoclimate proxies in Morocco to identify significant correlations at various lead times with the main reconstructed oceanic and atmospheric variability modes and possible climate teleconnections that have potentially influenced the climate during the last two millennia in Morocco. The results reveal substantial decadal to multidecadal swings between dry and humid periods, consistent with regional paleorecords. Evidence of dry conditions exist during the Medieval Climate Anomaly (MCA) period and the Climate Warm Period (CWP) and humid conditions during the Little Ice Age (LIA) period. Statistical analyses suggest that the climate of southwestern Morocco remained under the combined influence of both the Atlantic Multidecadal Oscillation (AMO) and the North Atlantic Oscillation (NAO) over the last two millennia. Interestingly, the generally warmer MCA and colder LIA at longer multidecadal timescales probably

  16. On the Origin of Multidecadal to Centennial Greenland Temperature Anomalies Over the Past 800 yr

    Science.gov (United States)

    Kobashi, T.; Shindell, D. T.; Kodera, K.; Box, J. E.; Nakaegawa, T.; Kawamura, K.

    2013-01-01

    The surface temperature of the Greenland ice sheet is among the most important climate variables for assessing how climate change may impact human societies due to its association with sea level rise. However, the causes of multidecadal-to-centennial temperature changes in Greenland temperatures are not well understood, largely owing to short observational records. To examine these, we calculated the Greenland temperature anomalies (GTA[G-NH]) over the past 800 yr by subtracting the standardized northern hemispheric (NH) temperature from the standardized Greenland temperature. This decomposes the Greenland temperature variation into background climate (NH); polar amplification; and regional variability (GTA[G-NH]). The central Greenland polar amplification factor as expressed by the variance ratio Greenland/NH is 2.6 over the past 161 yr, and 3.3-4.2 over the past 800 yr. The GTA[G-NH] explains 31-35%of the variation of Greenland temperature in the multidecadal-to-centennial time scale over the past 800 yr. We found that the GTA[G-NH] has been influenced by solar-induced changes in atmospheric circulation patterns such as those produced by the North Atlantic Oscillation/Arctic Oscillation (NAO/AO). Climate modeling and proxy temperature records indicate that the anomaly is also likely linked to solar-paced changes in the Atlantic meridional overturning circulation (AMOC) and associated changes in northward oceanic heat transport.

  17. On the origin of multidecadal to centennial Greenland temperature anomalies over the past 800 yr

    Directory of Open Access Journals (Sweden)

    T. Kobashi

    2013-03-01

    Full Text Available The surface temperature of the Greenland ice sheet is among the most important climate variables for assessing how climate change may impact human societies due to its association with sea level rise. However, the causes of multidecadal-to-centennial temperature changes in Greenland temperatures are not well understood, largely owing to short observational records. To examine these, we calculated the Greenland temperature anomalies (GTA[G-NH] over the past 800 yr by subtracting the standardized northern hemispheric (NH temperature from the standardized Greenland temperature. This decomposes the Greenland temperature variation into background climate (NH; polar amplification; and regional variability (GTA[G-NH]. The central Greenland polar amplification factor as expressed by the variance ratio Greenland/NH is 2.6 over the past 161 yr, and 3.3–4.2 over the past 800 yr. The GTA[G-NH] explains 31–35% of the variation of Greenland temperature in the multidecadal-to-centennial time scale over the past 800 yr. We found that the GTA[G-NH] has been influenced by solar-induced changes in atmospheric circulation patterns such as those produced by the North Atlantic Oscillation/Arctic Oscillation (NAO/AO. Climate modeling and proxy temperature records indicate that the anomaly is also likely linked to solar-paced changes in the Atlantic meridional overturning circulation (AMOC and associated changes in northward oceanic heat transport.

  18. The influence of the North Atlantic Ocean variability on the atmosphere in the cold season at seasonal to multidecadal time scales

    Science.gov (United States)

    Frankignoul, C.

    2017-12-01

    Observational evidence of an atmospheric response to the North Atlantic horseshoe SST anomalies has been accumulating since the late 90's, suggesting that it drives a negative NAO response during late fall/early winter. The North Atlantic horseshoe SST anomaly is in part stochastically driven by the atmosphere, but at low frequency it is correlated with the Atlantic Multidecadal Oscillation (AMO). Correspondingly, an atmospheric response to the AMO has been detected at low frequency in winter, with a positive AMO phase leading a negative NAO-like pattern, consistent with sensitivity studies with atmospheric general circulation models. Both the subpolar and tropical components of the AMO seem to contribute to its influence on the atmosphere. As North Atlantic SST changes reflects internally-generated SST fluctuations as well the response to anthropogenic and other external forcing, the AMO is sensitive to the way the forced SST signal is removed; estimates of the natural variability of the AMO vary by as much as a factor of two between estimation methods, leading to possible biases in its alleged impacts. Since an intensification of the Atlantic meridional overturning circulation (AMOC) leads the AMO and drives a negative NAO in many climate models, albeit with different lead times, the relation between AMO and AMOC will be discussed, as well as possible links with the North Pacific and sea ice variability.

  19. Observations of Local Positive Low Cloud Feedback Patterns and Their Role in Internal Variability and Climate Sensitivity

    Science.gov (United States)

    Yuan, Tianle; Oreopoulos, Lazaros; Platnick, Steven E.; Meyer, Kerry

    2018-05-01

    Modeling studies have shown that cloud feedbacks are sensitive to the spatial pattern of sea surface temperature (SST) anomalies, while cloud feedbacks themselves strongly influence the magnitude of SST anomalies. Observational counterparts to such patterned interactions are still needed. Here we show that distinct large-scale patterns of SST and low-cloud cover (LCC) emerge naturally from objective analyses of observations and demonstrate their close coupling in a positive local SST-LCC feedback loop that may be important for both internal variability and climate change. The two patterns that explain the maximum amount of covariance between SST and LCC correspond to the Interdecadal Pacific Oscillation and the Atlantic Multidecadal Oscillation, leading modes of multidecadal internal variability. Spatial patterns and time series of SST and LCC anomalies associated with both modes point to a strong positive local SST-LCC feedback. In many current climate models, our analyses suggest that SST-LCC feedback strength is too weak compared to observations. Modeled local SST-LCC feedback strength affects simulated internal variability so that stronger feedback produces more intense and more realistic patterns of internal variability. To the extent that the physics of the local positive SST-LCC feedback inferred from observed climate variability applies to future greenhouse warming, we anticipate significant amount of delayed warming because of SST-LCC feedback when anthropogenic SST warming eventually overwhelm the effects of internal variability that may mute anthropogenic warming over parts of the ocean. We postulate that many climate models may be underestimating both future warming and the magnitude of modeled internal variability because of their weak SST-LCC feedback.

  20. Are North Atlantic Multidecadal SST Anomalies Westward Propagating?

    NARCIS (Netherlands)

    Feng, Qingyi; Dijkstra, Hendrik

    2014-01-01

    The westward propagation of sea surface temperature (SST) anomalies is one of the main characteristics of one of the theories of the Atlantic Multidecadal Oscillation. Here we use techniques from complex network modeling to investigate the existence of the westward propagation in the North Atlantic

  1. Natural variability in the surface ocean carbonate ion concentration

    Science.gov (United States)

    Lovenduski, N. S.; Long, M. C.; Lindsay, K.

    2015-11-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32-]) on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32-] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32-] in the tropical Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [CO32-] variance and autocorrelation suggests that significant anthropogenic trends in the saturation state of aragonite (Ωaragonite) are already or nearly detectable at the sustained, open-ocean time series sites, whereas several decades of observations are required to detect anthropogenic trends in Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of surface [CO32-] variability is primarily driven by variations in the vertical advection of dissolved inorganic carbon (DIC) in association with El Niño-Southern Oscillation. In the North Pacific, surface [CO32-] variability is caused by circulation-driven variations in surface DIC and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at 20-30-year periods. North Atlantic [CO32-] variability is also driven by variations in surface DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these results will aid the interpretation of trends

  2. Multi-Decadal Coastal Behavioural States From A Fusion Of Geohistorical Conceptual Modelling With 2-D Morphodynamic Modelling

    Science.gov (United States)

    Goodwin, I. D.; Mortlock, T.

    2016-02-01

    Geohistorical archives of shoreline and foredune planform geometry provides a unique evidence-based record of the time integral response to coupled directional wave climate and sediment supply variability on annual to multi-decadal time scales. We develop conceptual shoreline modelling from the geohistorical shoreline archive using a novel combination of methods, including: LIDAR DEM and field mapping of coastal geology; a decadal-scale climate reconstruction of sea-level pressure, marine windfields, and paleo-storm synoptic type and frequency, and historical bathymetry. The conceptual modelling allows for the discrimination of directional wave climate shifts and the relative contributions of cross-shore and along-shore sand supply rates at multi-decadal resolution. We present regional examples from south-eastern Australia over a large latitudinal gradient from subtropical Queensland (S 25°) to mid-latitude Bass Strait (S 40°) that illustrate the morphodynamic evolution and reorganization to wave climate change. We then use the conceptual modeling to inform a two-dimensional coupled spectral wave-hydrodynamic-morphodynamic model to investigate the shoreface response to paleo-directional wind and wave climates. Unlike one-line shoreline modelling, this fully dynamical approach allows for the investigation of cumulative and spatial bathymetric change due to wave-induced currents, as well as proxy-shoreline change. The fusion of the two modeling approaches allows for: (i) the identification of the natural range of coastal planform geometries in response to wave climate shifts; and, (ii) the decomposition of the multidecadal coastal change into the cross-shore and along-shore sand supply drivers, according to the best-matching planforms.

  3. Hydroclimate variability: comparing dendroclimatic records and future GCM scenarios

    International Nuclear Information System (INIS)

    Lapp, S.

    2008-01-01

    Drought events of the 20th Century in western North America have been linked to teleconnections that influence climate variability on inter-annual and decadal to multi-decadal time scales. These teleconnections represent the changes sea surface temperatures (SSTs) in the tropical and extra-tropical regions of the Pacific Ocean, ENSO (El-Nino Southern Oscillation) and PDO (Pacific Decadal Oscillation), respectively, and the Atlantic Ocean, AMO (Atlantic Multidecadal Oscillation), and also to atmospheric circulation patterns (PNA: Pacific-North American). A network of precipitation sensitive tree-ring chronologies from Montana, Alberta, Saskatchewan and NWT highly correlate to the climate moisture index (CMI) of precipitation potential evapotranspiration (P-PET), thus, capturing the long-term hydroclimatic variability of the region. Reconstructions of annual and seasonal CMI identify drought events in previous centuries that are more extreme in magnitude, frequency and duration than recorded during the instrumental period. Variability in the future climate will include these natural climate cycles as well as modulations of these cycles affected by human induced global warming. The proxy hydroclimate records derived from tree-rings present information on decadal and multi-decadal hydroclimatic variability for the past millennium; therefore, providing a unique opportunity to validate the climate variability simulated by GCMs (Global Climate Models) on longer time scales otherwise constrained by the shorter observation records. Developing scenarios of future variability depends: 1) on our understanding of the interaction of these teleconnection; and, 2) to identify climate models that are able to accurately simulate the hydroclimatic variability as detected in the instrumental and proxy records. (author)

  4. Relação dos sistemas de monção com as variabilidades tropical interanual e multi-decenal Relations of the monsoon systems to the tropical multi-decadal and interannual variabilities

    Directory of Open Access Journals (Sweden)

    Sâmia Regina Garcia

    2009-03-01

    Full Text Available A variabilidade da circulação tropical, com ênfase nos sistemas monçônicos, é examinada usando diversas variáveis para o período de 1948-1999. A componente monçônica do potencial de velocidade em 200 hPa (χ-transiente, o desvio da média anual do desvio da média zonal, é o parâmetro chave usado para obter os modos monçônicos. A análise de Funções Ortogonais Empíricas (EOF do χ-transiente fornece dois modos separados. O primeiro modo descreve a variabilidade multi-decenal dos sistemas monçônicos da América do Sul e do Pacífico oeste. Esse modo, chamado monçônico multi-decenal (MMD, ocorre por todo o ano e contém a variabilidade multi-decenal relacionada à dinâmica da Oscilação Decenal do Pacífico (ODP. O segundo modo descreve as variações interanuais opostas entre a Ásia, África e oceano Índico e a região do oeste dos Estados Unidos, México e Pacífico leste. Esse modo, chamado modo interanual (MIA apresenta algumas similaridades com o modo tropical interanual El Niño - Oscilação Sul. Alguns aspectos desses modos, incluindo sua circulação e características termodinâmicas são discutidas aqui. Finalmente, índices baseados nos padrões das configurações espaciais desses modos são construídos. A eficiência desses índices para fins de monitoramento é analisada. Logo, trata-se de um novo aspecto não proposto em trabalhos anteriores.Tropical circulation variability, with emphasis on the monsoon systems is examined using several variables for the 1948-1999 period. The monsoon component in the 200 hPa velocity potential (transient-χ, the deviation from the annual mean of the zonal deviation field, is the key parameter used here to obtain the monsoon modes. The Empirical Orthogonal Function (EOF analysis of the transient-χ yields two separate modes. The first mode describes the multi-decadal variability of the monsoon systems in South America and in the western Pacific. This mode, called the multi-decadal

  5. Influences of tropical-extratropical interaction on the multidecadal AMOC variability in the NCEP climate forecast system

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Bohua; Schneider, Edwin K.; Klinger, Barry [Gorge Mason University, Department of Atmospheric, Oceanic, and Earth Sciences, College of Science, Fairfax, VA (United States); Institute of Global Environment and Society, Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); Hu, Zeng-Zhen; Xue, Yan [National Centers for Environmental Prediction/NOAA, Climate Prediction Center, Camp Springs, MD (United States); Wu, Zhaohua [Florida State University, Department of Earth, Ocean, and Atmospheric Science, Center for Ocean-Atmospheric Prediction Studies, Tallahassee, FL (United States)

    2012-08-15

    We have examined the mechanisms of a multidecadal oscillation of the Atlantic Meridional Overturning Circulation (AMOC) in a 335-year simulation of the Climate Forecast System (CFS), the climate prediction model developed at the National Centers for Environmental Prediction (NCEP). Both the mean and seasonal cycle of the AMOC in the CFS are generally consistent with observation-based estimates with a maximum northward volume transport of 16 Sv (10{sup 6} m{sup 3}/s) near 35 N at 1.2 km. The annual mean AMOC shows an intermittent quasi 30-year oscillation. Its dominant structure includes a deep anomalous overturning cell (referred to as the anomalous AMOC) with amplitude of 0.6 Sv near 35 N and an anomalous subtropical cell (STC) of shallow overturning spanning across the equator. The mechanism for the oscillation includes a positive feedback between the anomalous AMOC and surface wind stress anomalies in mid-latitudes and a negative feedback between the anomalous STC and AMOC. A strong AMOC is associated with warm sea surface temperature anomaly (SSTA) centered near 45 N, which generates an anticyclonic easterly surface wind anomaly. This anticyclonic wind anomaly enhances the regional downwelling and reinforces the anomalous AMOC. In the mean time, a wind-evaporation-SST (WES) feedback extends the warm SSTA to the tropics and induces a cyclonic wind stress anomaly there, which drives a tropical upwelling and weakens the STC north of the equator. The STC anomaly, in turn, drives a cold upper ocean heat content anomaly (HCA) in the northern tropical Atlantic and weakens the meridional heat transport from the tropics to the mid-latitude through an anomalous southward western boundary current. The anomalous STC transports cold HCA from the subtropics to the mid-latitudes, weakening the mid-latitude deep overturning. (orig.)

  6. Multidecadal Variability in Surface Albedo Feedback Across CMIP5 Models

    Science.gov (United States)

    Schneider, Adam; Flanner, Mark; Perket, Justin

    2018-02-01

    Previous studies quantify surface albedo feedback (SAF) in climate change, but few assess its variability on decadal time scales. Using the Coupled Model Intercomparison Project Version 5 (CMIP5) multimodel ensemble data set, we calculate time evolving SAF in multiple decades from surface albedo and temperature linear regressions. Results are meaningful when temperature change exceeds 0.5 K. Decadal-scale SAF is strongly correlated with century-scale SAF during the 21st century. Throughout the 21st century, multimodel ensemble mean SAF increases from 0.37 to 0.42 W m-2 K-1. These results suggest that models' mean decadal-scale SAFs are good estimates of their century-scale SAFs if there is at least 0.5 K temperature change. Persistent SAF into the late 21st century indicates ongoing capacity for Arctic albedo decline despite there being less sea ice. If the CMIP5 multimodel ensemble results are representative of the Earth, we cannot expect decreasing Arctic sea ice extent to suppress SAF in the 21st century.

  7. Multi-Decadal to Millennial Scale Holocene Hydrologic Variation in the Southern Hemisphere Tropics of South America

    Science.gov (United States)

    Ekdahl, E. J.; Fritz, S. C.; Baker, P. A.; Burns, S. J.; Coley, K.; Rigsby, C. A.

    2005-12-01

    Numerous sites in the Northern Hemisphere show multi-decadal to millennial scale climate variation during the Holocene, many of which have been correlated with changes in atmospheric radiocarbon production or with changes in North Atlantic oceanic circulation. The manifestation of such climate variability in the hydrology of the Southern Hemisphere tropics of South America is unclear, because of the limited number of records at suitably high resolution. In the Lake Titicaca drainage basin of Bolivia and Peru, high-resolution lacustrine records reveal the overall pattern of Holocene lake-level change, the influence of precessional forcing of the South American Summer Monsoon, and the effects of high-frequency climate variability in records of lake productivity and lake ecology. Precessional forcing of regional precipitation is evident in the Lake Titicaca basin as a massive (ca. 85 m) mid-Holocene decline in lake level beginning about 7800 cal yr BP and a subsequent rise in lake level after 4000 cal yr BP. Here we show that multi-decadal to millennial-scale climate variability, superimposed upon the envelope of change at orbital time scales, is similar in timing and pattern to the ice-rafted debris record of Holocene Bond events in the North Atlantic. A high-resolution carbon isotopic record from Lake Titicaca that spans the entire Holocene suggests that cold intervals of Holocene Bond events are periods of increased precipitation, thus indicating an anti-phasing of precipitation variation on the Altiplano relative to the Northern Hemisphere tropics. A similar pattern of variation is also evident in high-resolution (2-30 yr spacing) diatom and geochemical records that span the last 7000 yr from two smaller lakes, Lagos Umayo and Lagunillas, in the Lake Titicaca drainage basin.

  8. Arctic climate change and decadal variability

    NARCIS (Netherlands)

    Linden, van der Eveline C.

    2016-01-01

    High northern latitudes exhibit enhanced near-surface warming in a climate with increasing greenhouse gases compared to other parts of the globe, indicating an amplified climate response to external forcing. Decadal to multidecadal variability sometimes enhances and at other times reduces the

  9. Multi-decadal responses of a cod (Gadus morhua) population to human-induced trophic changes, fishing, and climate

    DEFF Research Database (Denmark)

    Eero, Margit; MacKenzie, Brian; Köster, Fritz

    2011-01-01

    to changes in fish populations can be analyzed with empirical data. In this study we investigate how climate variability and multiple human impacts (fishing, marine mammal hunting, eutrophication) have affected multi-decadal scale dynamics of cod in the Baltic Sea during the 20th century.We document...... significant climate-driven variations in cod recruitment production at multi-annual timescales, which had major impacts on population dynamics and the yields to commercial fisheries. We also quantify the roles of marine mammal predation, eutrophication, and exploitation on the development of the cod...

  10. Natural variability in the surface ocean carbonate ion concentration

    Directory of Open Access Journals (Sweden)

    N. S. Lovenduski

    2015-11-01

    Full Text Available We investigate variability in the surface ocean carbonate ion concentration ([CO32−] on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [CO32−] variance and autocorrelation suggests that significant anthropogenic trends in the saturation state of aragonite (Ωaragonite are already or nearly detectable at the sustained, open-ocean time series sites, whereas several decades of observations are required to detect anthropogenic trends in Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of surface [CO32−] variability is primarily driven by variations in the vertical advection of dissolved inorganic carbon (DIC in association with El Niño–Southern Oscillation. In the North Pacific, surface [CO32−] variability is caused by circulation-driven variations in surface DIC and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at 20–30-year periods. North Atlantic [CO32−] variability is also driven by variations in surface DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these results

  11. Multi-Decadal Oscillations of the Ocean Active Upper-Layer Heat Content

    Science.gov (United States)

    Byshev, Vladimir I.; Neiman, Victor G.; Anisimov, Mikhail V.; Gusev, Anatoly V.; Serykh, Ilya V.; Sidorova, Alexandra N.; Figurkin, Alexander L.; Anisimov, Ivan M.

    2017-07-01

    Spatial patterns in multi-decadal variability in upper ocean heat content for the last 60 years are examined using a numerical model developed at the Institute of Numerical Mathematics of Russia (INM Model) and sea water temperature-salinity data from the World Ocean Database (in: Levitus, NOAA Atlas NESDIS 66, U.S. Wash.: Gov. Printing Office, 2009). Both the model and the observational data show that the heat content of the Active Upper Layer (AUL) in particular regions of the Atlantic, Pacific and Southern oceans have experienced prominent simultaneous variations on multi-decadal (25-35 years) time scales. These variations are compared earlier revealed climatic alternations in the Northern Atlantic region during the last century (Byshev et al. in Doklady Earth Sci 438(2):887-892, 2011). We found that from the middle of 1970s to the end of 1990s the AUL heat content decreased in several oceanic regions, while the mean surface temperature increased on Northern Hemisphere continents according to IPCC (in: Stocker et al. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, 2013). This means that the climate-forcing effect of the ocean-atmosphere interaction in certain energy-active areas determines not only local climatic processes, but also have an influence on global-scale climate phenomena. Here we show that specific regional features of the AUL thermal structure are in a good agreement with climatic conditions on the adjacent continents. Further, the ocean AUL in the five distinctive regions identified in our study have resumed warming in the first decade of this century. By analogy inference from previous climate scenarios, this may signal the onset of more continental climate over mainlands.

  12. Multidecadal Increase in North Atlantic Coccolithophores and Potential Role of Increasing CO2

    Science.gov (United States)

    Rivero-Calle, S.; Gnanadesikan, A.; del Castillo, C. E.; Balch, W. M.; Guikema, S.

    2016-02-01

    As anthropogenic CO2 emissions acidify the oceans, calcifiers are expected to be negatively impacted. Using data from the Continuous Plankton Recorder, we show that coccolithophore occurrence in the North Atlantic has increased from 2 to over 20% from 1965 through 2010. We used Random Forest models to examine more than 20 possible environmental drivers of this change. CO2 and the Atlantic Multidecadal Oscillation were the best predictors. Since coccolithophore photosynthesis is strongly carbon-limited, we hypothesize that higher CO2 levels might be encouraging growth. A compilation of 41 independent laboratory studies supports our hypothesis. Our study shows a long-term basin-scale increase in coccolithophores and suggests that increasing pCO2 and temperature accelerated the growth rate of a key phytoplankton group for carbon cycling.

  13. Natural variability in the surface ocean carbonate ion concentration

    OpenAIRE

    N. S. Lovenduski; M. C. Long; K. Lindsay

    2015-01-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32−]) on the basis of a long control simulation with a fully-coupled Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical...

  14. Natural variability in the surface ocean carbonate ion concentration

    OpenAIRE

    Lovenduski, N. S.; Long, M. C.; Lindsay, K.

    2015-01-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32−]) on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical Pacific and ...

  15. Low-frequency variability of surface air temperature over the Barents Sea

    NARCIS (Netherlands)

    Linden, van der Eveline C.; Bintanja, Richard; Hazeleger, Wilco; Graversen, R.G.

    2016-01-01

    The predominant decadal to multidecadal variability in the Arctic region is a feature that is not yet well-understood. It is shown that the Barents Sea is a key region for Arctic-wide variability. This is an important topic because low-frequency changes in the ocean might lead to large variations

  16. Connecting Atlantic temperature variability and biological cycling in two earth system models

    Science.gov (United States)

    Gnanadesikan, Anand; Dunne, John P.; Msadek, Rym

    2014-05-01

    Connections between the interdecadal variability in North Atlantic temperatures and biological cycling have been widely hypothesized. However, it is unclear whether such connections are due to small changes in basin-averaged temperatures indicated by the Atlantic Multidecadal Oscillation (AMO) Index, or whether both biological cycling and the AMO index are causally linked to changes in the Atlantic Meridional Overturning Circulation (AMOC). We examine interdecadal variability in the annual and month-by-month diatom biomass in two Earth System Models with the same formulations of atmospheric, land, sea ice and ocean biogeochemical dynamics but different formulations of ocean physics and thus different AMOC structures and variability. In the isopycnal-layered ESM2G, strong interdecadal changes in surface salinity associated with changes in AMOC produce spatially heterogeneous variability in convection, nutrient supply and thus diatom biomass. These changes also produce changes in ice cover, shortwave absorption and temperature and hence the AMO Index. Off West Greenland, these changes are consistent with observed changes in fisheries and support climate as a causal driver. In the level-coordinate ESM2M, nutrient supply is much higher and interdecadal changes in diatom biomass are much smaller in amplitude and not strongly linked to the AMO index.

  17. On which timescales do gas transfer velocities control North Atlantic CO2 flux variability?

    Science.gov (United States)

    Couldrey, Matthew P.; Oliver, Kevin I. C.; Yool, Andrew; Halloran, Paul R.; Achterberg, Eric P.

    2016-05-01

    The North Atlantic is an important basin for the global ocean's uptake of anthropogenic and natural carbon dioxide (CO2), but the mechanisms controlling this carbon flux are not fully understood. The air-sea flux of CO2, F, is the product of a gas transfer velocity, k, the air-sea CO2 concentration gradient, ΔpCO2, and the temperature- and salinity-dependent solubility coefficient, α. k is difficult to constrain, representing the dominant uncertainty in F on short (instantaneous to interannual) timescales. Previous work shows that in the North Atlantic, ΔpCO2 and k both contribute significantly to interannual F variability but that k is unimportant for multidecadal variability. On some timescale between interannual and multidecadal, gas transfer velocity variability and its associated uncertainty become negligible. Here we quantify this critical timescale for the first time. Using an ocean model, we determine the importance of k, ΔpCO2, and α on a range of timescales. On interannual and shorter timescales, both ΔpCO2 and k are important controls on F. In contrast, pentadal to multidecadal North Atlantic flux variability is driven almost entirely by ΔpCO2; k contributes less than 25%. Finally, we explore how accurately one can estimate North Atlantic F without a knowledge of nonseasonal k variability, finding it possible for interannual and longer timescales. These findings suggest that continued efforts to better constrain gas transfer velocities are necessary to quantify interannual variability in the North Atlantic carbon sink. However, uncertainty in k variability is unlikely to limit the accuracy of estimates of longer-term flux variability.

  18. Lake trout otolith chronologies as multidecadal indicators of high-latitude freshwater ecosystems

    Science.gov (United States)

    Black, B.A.; Von Biela, V.R.; Zimmerman, C.E.; Brown, Randy J.

    2013-01-01

    High-latitude ecosystems are among the most vulnerable to long-term climate change, yet continuous, multidecadal indicators by which to gauge effects on biology are scarce, especially in freshwater environments. To address this issue, dendrochronology (tree-ring analysis) techniques were applied to growth-increment widths in otoliths from lake trout (Salvelinus namaycush) from the Chandler Lake system, Alaska (68.23°N, 152.70°W). All otoliths were collected in 1987 and exhibited highly synchronous patterns in growth-increment width. Increments were dated, the widths were measured, and age-related growth declines were removed using standard dendrochronology techniques. The detrended time series were averaged to generate an annually resolved chronology, which continuously spanned 1964–1984. The chronology positively and linearly correlated with August air temperature over the 22-year interval (p otolith chronologies could be used to examine responses between freshwater ecosystems and environmental variability across a range of temporal and spatial scales.

  19. Hydroclimatic variability in the Lake Mondsee region and its relationships with large-scale climate anomaly patterns

    Science.gov (United States)

    Rimbu, Norel; Ionita, Monica; Swierczynski, Tina; Brauer, Achim; Kämpf, Lucas; Czymzik, Markus

    2017-04-01

    Flood triggered detrital layers in varved sediments of Lake Mondsee, located at the northern fringe of the European Alps (47°48'N,13°23'E), provide an important archive of regional hydroclimatic variability during the mid- to late Holocene. To improve the interpretation of the flood layer record in terms of large-scale climate variability, we investigate the relationships between observational hydrological records from the region, like the Mondsee lake level, the runoff of the lake's main inflow Griesler Ache, with observed precipitation and global climate patterns. The lake level shows a strong positive linear trend during the observational period in all seasons. Additionally, lake level presents important interannual to multidecadal variations. These variations are associated with distinct seasonal atmospheric circulation patterns. A pronounced anomalous anticyclonic center over the Iberian Peninsula is associated with high lake levels values during winter. This center moves southwestward during spring, summer and autumn. In the same time, a cyclonic anomaly center is recorded over central and western Europe. This anomalous circulation extends southwestward from winter to autumn. Similar atmospheric circulation patterns are associated with river runoff and precipitation variability from the region. High lake levels are associated with positive local precipitation anomalies in all seasons as well as with negative local temperature anomalies during spring, summer and autumn. A correlation analysis reveals that lake level, runoff and precipitation variability is related to large-scale sea surface temperature anomaly patterns in all seasons suggesting a possible impact of large-scale climatic modes, like the North Atlantic Oscillation and Atlantic Multidecadal Oscillation on hydroclimatic variability in the Lake Mondsee region. The results presented in this study can be used for a more robust interpretation of the long flood layer record from Lake Mondsee sediments

  20. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks

    Science.gov (United States)

    Vogel, Martha Marie; Orth, René; Cheruy, Frederique; Hagemann, Stefan; Lorenz, Ruth; van den Hurk, Bart; Seneviratne, Sonia Isabelle

    2017-04-01

    Regional hot extremes are projected to increase more strongly than global mean temperature, with substantially larger changes than 2°C even if global warming is limited to this level. We investigate here the role of soil moisture-temperature feedbacks for this response based on multi-model experiments for the 21st century with either interactive or fixed (late 20th century mean seasonal cycle) soil moisture. We analyze changes in the hottest days in each year in both sets of experiments, relate them to the global mean temperature increase, and investigate physical processes leading to these changes. We find that soil moisture-temperature feedbacks significantly contribute to the amplified warming of hottest days compared to that of global mean temperature. This contribution reaches more than 70% in Central Europe and Central North America and between 42%-52% in Amazonia, Northern Australia and Southern Africa. Soil moisture trends (multi-decadal soil moisture variability) are more important for this response than short-term (e.g. seasonal, interannual) soil moisture variability. These results are relevant for reducing uncertainties in regional temperature projections. Vogel, M.M. et al.,2017. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophysical Research Letters, accepted.

  1. New Tree-Ring Evidence from the Pyrenees Reveals Western Mediterranean Climate Variability since Medieval Times

    Czech Academy of Sciences Publication Activity Database

    Büntgen, Ulf; Krusic, P. J.; Verstege, A.; Sanguesa-Barreda, G.; Wagner, S.; Camarero, J. J.; Ljungqvist, F. C.; Zorita, E.; Oppenheimer, C.; Konter, O.; Tegel, W.; Gärtner, H.; Cherubini, P.; Reinig, F.; Esper, J.

    2017-01-01

    Roč. 30, č. 14 (2017), s. 5295-5318 ISSN 0894-8755 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : Europe * Volcanoes * Climate variability * Interannual variability * Multidecadal variability * Trends Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 4.161, year: 2016

  2. Strong Laws of Large Numbers for Arrays of Rowwise NA and LNQD Random Variables

    Directory of Open Access Journals (Sweden)

    Jiangfeng Wang

    2011-01-01

    Full Text Available Some strong laws of large numbers and strong convergence properties for arrays of rowwise negatively associated and linearly negative quadrant dependent random variables are obtained. The results obtained not only generalize the result of Hu and Taylor to negatively associated and linearly negative quadrant dependent random variables, but also improve it.

  3. Quantifying the increasing sensitivity of power systems to climate variability

    Science.gov (United States)

    Bloomfield, H. C.; Brayshaw, D. J.; Shaffrey, L. C.; Coker, P. J.; Thornton, H. E.

    2016-12-01

    Large quantities of weather-dependent renewable energy generation are expected in power systems under climate change mitigation policies, yet little attention has been given to the impact of long term climate variability. By combining state-of-the-art multi-decadal meteorological records with a parsimonious representation of a power system, this study characterises the impact of year-to-year climate variability on multiple aspects of the power system of Great Britain (including coal, gas and nuclear generation), demonstrating why multi-decadal approaches are necessary. All aspects of the example system are impacted by inter-annual climate variability, with the impacts being most pronounced for baseload generation. The impacts of inter-annual climate variability increase in a 2025 wind-power scenario, with a 4-fold increase in the inter-annual range of operating hours for baseload such as nuclear. The impacts on peak load and peaking-plant are comparably small. Less than 10 years of power supply and demand data are shown to be insufficient for providing robust power system planning guidance. This suggests renewable integration studies—widely used in policy, investment and system design—should adopt a more robust approach to climate characterisation.

  4. Differential response of continental stock complexes of Atlantic salmon (Salmo salar) to the Atlantic Multidecadal Oscillation

    Science.gov (United States)

    Friedland, Kevin D.; Shank, Burton V.; Todd, Christopher D.; McGinnity, Philip; Nye, Janet A.

    2014-05-01

    Atlantic salmon, Salmo salar, in the North Atlantic are managed as a set of population complexes distributed in North America and Europe. In recent years, these complexes have experienced reduced marine survival and many populations within the complexes are at risk, especially those at the southern ends of the species amphi-Atlantic range. Atlantic salmon is an anadromous fish dividing its life history between residence in freshwater and the marine environment. The freshwater portion of the life history includes spawning and the rearing of juveniles where in-river production has tended to be relatively stable, whereas the first year at sea, termed the post-smolt year, is characterized by more variable rates of mortality. Although their habitats are widely separated geographically along the North Atlantic seaboards, strong recruitment coherence exists between North American and European stock complexes. This recruitment coherence is correlated with ocean temperature variation associated with the Atlantic Multidecadal Oscillation (AMO). The North Atlantic Oscillation (NAO) appears to be relatively unimportant as a driver of salmon abundance. The mechanism determining the link between AMO-related thermal variation and abundance appears to differ fundamentally for the two continental stock groupings. Whereas ocean climate variability during the first springtime months of juvenile salmon migration to sea appears to be important to the survival of North American stocks, summer climate variation appears to be central to adult recruitment variation for European stocks. This contrast in seasonal effects appears to be related to the varying roles of predation pressure and size-related mortality on the continental stock complexes. The anticipated warming due to global climate change will impose thermal conditions on salmon populations outside historical context and challenge the ability of many populations to persist.

  5. Reconstructing the history of the Atlantic Multidecadal Oscillation using high-resolution Mg/Ca paleothermometry from a Cariaco Basin core

    Science.gov (United States)

    Wurtzel, J. B.; Black, D. E.; Rahman, S.; Thunell, R.; Peterson, L. C.; Tappa, E.

    2010-12-01

    Instrumental and proxy-reconstructions show the existence of an approximately 70-year periodicity in Atlantic sea surface temperature (SST), known as the Atlantic Multidecadal Oscillation (AMO). The AMO is correlated with circum-tropical Atlantic climate phenomena such as Sahel and Nordeste rainfall, and Atlantic hurricane patterns. Though it has been suggested that the AMO is controlled by thermohaline circulation, much debate exists as to whether the SST fluctuations are a result of anthropogenic forcing or a natural climate mode, or even if the AMO is a true oscillation at all. Our ability to address this issue has been limited by instrumental SST records that rarely extend back more than 50-100 years and proxy reconstructions that are mostly terrestrial-based. Additionally, the modern instrumental variability likely contains an anthropogenic component that is not easily distinguished from the natural background of the system. From a marine sediment core taken in the Cariaco Basin, we have developed a high-resolution SST reconstruction for the past ca. 1500 years using Mg/Ca paleothermometry on seasonally-representative foraminifera, with the most recent data calibrated to the instrumental record. Previous studies have shown Cariaco Basin Mg/Ca-SSTs to be well-correlated to the Caribbean Sea and much of the western tropical Atlantic, which allows us to create a record that can be used to determine pre-anthropogenic rates and ranges of SST variability and observe how they change over time. Averaging the seasonal temperatures derived from the two foraminiferal species over the instrumental period yields a strong correlation to the AMO index from A. D. 1880 through 1970 (r = 0.44, p<0.0001). Wavelet analysis of the proxy average annual SST data indicates that modern AMO variability is not a consistent feature through time, and may be a function of warm-period climate.

  6. Lake trout otolith chronologies as multidecadal indicators of high-latitude freshwater ecosystems

    Science.gov (United States)

    Black, B.A.; Von Biela, V.R.; Zimmerman, C.E.; Brown, Randy J.

    2013-01-01

    High-latitude ecosystems are among the most vulnerable to long-term climate change, yet continuous, multidecadal indicators by which to gauge effects on biology are scarce, especially in freshwater environments. To address this issue, dendrochronology (tree-ring analysis) techniques were applied to growth-increment widths in otoliths from lake trout (Salvelinus namaycush) from the Chandler Lake system, Alaska (68.23°N, 152.70°W). All otoliths were collected in 1987 and exhibited highly synchronous patterns in growth-increment width. Increments were dated, the widths were measured, and age-related growth declines were removed using standard dendrochronology techniques. The detrended time series were averaged to generate an annually resolved chronology, which continuously spanned 1964–1984. The chronology positively and linearly correlated with August air temperature over the 22-year interval (p fish metabolic rate or lake productivity. Given the broad distribution of lake trout within North America, this study suggests that otolith chronologies could be used to examine responses between freshwater ecosystems and environmental variability across a range of temporal and spatial scales.

  7. Tropical Atlantic Contributions to Strong Rainfall Variability Along the Northeast Brazilian Coast

    Directory of Open Access Journals (Sweden)

    G. A. Hounsou-gbo

    2015-01-01

    Full Text Available Tropical Atlantic (TA Ocean-atmosphere interactions and their contributions to strong variability of rainfall along the Northeast Brazilian (NEB coast were investigated for the years 1974–2008. The core rainy seasons of March-April and June-July were identified for Fortaleza (northern NEB; NNEB and Recife (eastern NEB; ENEB, respectively. Lagged linear regressions between sea surface temperature (SST and pseudo wind stress (PWS anomalies over the entire TA and strong rainfall anomalies at Fortaleza and Recife show that the rainfall variability of these regions is differentially influenced by the dynamics of the TA. When the Intertropical Convergence Zone is abnormally displaced southward a few months prior to the NNEB rainy season, the associated meridional mode increases humidity and precipitation during the rainy season. Additionally, this study shows predictive effect of SST, meridional PWS, and barrier layer thickness, in the Northwestern equatorial Atlantic, on the NNEB rainfall. The dynamical influence of the TA on the June-July ENEB rainfall variability shows a northwestward-propagating area of strong, positively correlated SST from the southeastern TA to the southwestern Atlantic warm pool (SAWP offshore of Brazil. Our results also show predictive effect of SST, zonal PWS, and mixed layer depth, in the SAWP, on the ENEB rainfall.

  8. Interannual to multidecadal climate forcings on groundwater resources of the U.S. West Coast

    Science.gov (United States)

    Velasco, Elzie M.; Gurdak, Jason J.; Dickinson, Jesse; Ferré, T.P.A.; Corona, Claudia

    2017-01-01

    Study regionThe U.S. West Coast, including the Pacific Northwest and California Coastal Basins aquifer systems.Study focusGroundwater response to interannual to multidecadal climate variability has important implications for security within the water–energy–food nexus. Here we use Singular Spectrum Analysis to quantify the teleconnections between AMO, PDO, ENSO, and PNA and precipitation and groundwater level fluctuations. The computer program DAMP was used to provide insight on the influence of soil texture, depth to water, and mean and period of a surface infiltration flux on the damping of climate signals in the vadose zone.New hydrological insights for the regionWe find that PDO, ENSO, and PNA have significant influence on precipitation and groundwater fluctuations across a north-south gradient of the West Coast, but the lower frequency climate modes (PDO) have a greater influence on hydrologic patterns than higher frequency climate modes (ENSO and PNA). Low frequency signals tend to be preserved better in groundwater fluctuations than high frequency signals, which is a function of the degree of damping of surface variable fluxes related to soil texture, depth to water, mean and period of the infiltration flux. The teleconnection patterns that exist in surface hydrologic processes are not necessarily the same as those preserved in subsurface processes, which are affected by damping of some climate variability signals within infiltrating water.

  9. Coralline algal barium as indicator for 20th century northwestern North Atlantic surface ocean freshwater variability.

    Science.gov (United States)

    Hetzinger, S; Halfar, J; Zack, T; Mecking, J V; Kunz, B E; Jacob, D E; Adey, W H

    2013-01-01

    During the past decades climate and freshwater dynamics in the northwestern North Atlantic have undergone major changes. Large-scale freshening episodes, related to polar freshwater pulses, have had a strong influence on ocean variability in this climatically important region. However, little is known about variability before 1950, mainly due to the lack of long-term high-resolution marine proxy archives. Here we present the first multidecadal-length records of annually resolved Ba/Ca variations from Northwest Atlantic coralline algae. We observe positive relationships between algal Ba/Ca ratios from two Newfoundland sites and salinity observations back to 1950. Both records capture episodical multi-year freshening events during the 20th century. Variability in algal Ba/Ca is sensitive to freshwater-induced changes in upper ocean stratification, which affect the transport of cold, Ba-enriched deep waters onto the shelf (highly stratified equals less Ba/Ca). Algal Ba/Ca ratios therefore may serve as a new resource for reconstructing past surface ocean freshwater changes.

  10. Potential and limitations of multidecadal satellite soil moisture observations for selected climate model evaluation studies

    Directory of Open Access Journals (Sweden)

    A. Loew

    2013-09-01

    Full Text Available Soil moisture is an essential climate variable (ECV of major importance for land–atmosphere interactions and global hydrology. An appropriate representation of soil moisture dynamics in global climate models is therefore important. Recently, a first multidecadal, observation-based soil moisture dataset has become available that provides information on soil moisture dynamics from satellite observations (ECVSM, essential climate variable soil moisture. The present study investigates the potential and limitations of this new dataset for several applications in climate model evaluation. We compare soil moisture data from satellite observations, reanalysis and simulations from a state-of-the-art land surface model and analyze relationships between soil moisture and precipitation anomalies in the different dataset. Other potential applications like model parameter optimization or model initialization are not investigated in the present study. In a detailed regional study, we show that ECVSM is capable to capture well the interannual and intraannual soil moisture and precipitation dynamics in the Sahelian region. Current deficits of the new dataset are critically discussed and summarized at the end of the paper to provide guidance for an appropriate usage of the ECVSM dataset for climate studies.

  11. The multidecadal variations of the interannual relationship between the East Asian summer monsoon and ENSO in a coupled model

    Science.gov (United States)

    Liu, Bo; Huang, Gang; Hu, Kaiming; Wu, Renguang; Gong, Hainan; Wang, Pengfei; Zhao, Guijie

    2017-10-01

    This study investigates the multidecadal variations of the interannual relationship between the East Asian summer monsoon (EASM) and El Niño-Southern Oscillation (ENSO) in 1000-year simulation of a coupled climate model. The interannual relationship between ENSO and EASM has experienced pronounced changes throughout the 1000-year simulation. During the periods with significant ENSO-EASM relationship, the ENSO-related circulation anomalies show a Pacific-Japan (PJ)-like pattern with significant wave-activity flux propagating from the tropics to the north in lower troposphere and from the mid-latitudes to the south in upper troposphere. The resultant ENSO-related precipitation anomalies are more (less) than normal over the East Asia (western North Pacific) in the decaying summers of El Niño events. In contrast, the circulation and precipitation anomalies are weak over East Asia-western North Pacific during the periods with weak ENSO-EASM relationship. Based on the energy conversion analysis, the related anomalies achieve barotropic and baroclinic energy from the mean flow during the periods with strong ENSO-EASM relationship. On the contrary, during the low-correlation periods, the energy conversion is too weak to form the link between the tropics and mid-latitudes. The main reason for the multidecadal variations of ENSO-EASM relationship is the amplitude discrepancy of SST anomalies over the Indo-western Pacific Ocean which, in turn, leads to the intensity difference of the western North Pacific anomalous anticyclone (WPAC) and related climate anomalies.

  12. Pacific and Atlantic influences on Mesoamerican climate over the past millennium

    Energy Technology Data Exchange (ETDEWEB)

    Stahle, D.W.; Burnette, D.J.; Fye, F.K.; Cleaveland, M.K. [University of Arkansas, Department of Geosciences, Fayetteville, AR (United States); Diaz, J.V.; Paredes, J.C. [Instituto Nacional de Investigaciones Forestales, Agricolas, y Pecuarias, Laboratorio de Dendrocronologia, Gomez Palacio, Durango (Mexico); Heim, R.R. [NOAA, National Climatic Data Center, Asheville, NC (United States); Soto, R.A. [UNAM, Departamento Microbiologia y Parastologia, Mexico, D.F. (Mexico)

    2012-09-15

    A new tree-ring reconstruction of the Palmer Drought Severity Index (PDSI) for Mesoamerica from AD 771 to 2008 identifies megadroughts more severe and sustained than any witnessed during the twentieth century. Correlation analyses indicate strong forcing of instrumental and reconstructed June PDSI over Mesoamerica from the El Nino/Southern Oscillation (ENSO). Spectral analyses of the 1,238-year reconstruction indicate significant concentrations of variance at ENSO, sub-decadal, bi-decadal, and multidecadal timescales. Instrumental and model-based analyses indicate that the Atlantic Multidecadal Oscillation is important to warm season climate variability over Mexico. Ocean-atmospheric variability in the Atlantic is not strongly correlated with the June PDSI reconstruction during the instrumental era, but may be responsible for the strong multidecadal variance detected in the reconstruction episodically over the past millennium. June drought indices in Mesoamerica are negatively correlated with gridded June PDSI over the United States from 1950 to 2005, based on both instrumental and reconstructed data. Interannual variability in this latitudinal moisture gradient is due in part to ENSO forcing, where warm events favor wet June PDSI conditions over the southern US and northern Mexico, but dryness over central and southern Mexico (Mesoamerica). Strong anti-phasing between multidecadal regimes of tree-ring reconstructed June PDSI over Mesoamerica and reconstructed summer (JJA) PDSI over the Southwest has also been detected episodically over the past millennium, including the 1950-1960s when La Nina and warm Atlantic SSTs prevailed, and the 1980-1990s when El Nino and cold Atlantic SSTs prevailed. Several Mesoamerican megadroughts are reconstructed when wetness prevailed over the Southwest, including the early tenth century Terminal Classic Drought, implicating El Nino and Atlantic SSTs in this intense and widespread drought that may have contributed to social changes

  13. Decadal summer drought frequency in China: the increasing influence of the Atlantic Multi-decadal Oscillation

    International Nuclear Information System (INIS)

    Qian, Chengcheng; Yu, Jin-Yi; Chen, Ge

    2014-01-01

    Decadal variations in summer drought events during 1956–2005 are examined over Eastern China to identify their leading variability modes and their linkages to the Pacific Decadal Oscillation (PDO), Atlantic Multi-decadal Oscillation (AMO), and global warming. The PDO influence is found to dominate China drought frequency from the 1960s to early 1990s via modulating the Western Pacific Subtropical High and the Mongolian High. The four-pole drought pattern produced by the PDO diminished after the early 1990s, being replaced by a dipolar drought pattern that is produced by the AMO via a Eurasian wave train emanating from North Atlantic to China. The increasing influence of the AMO on China drought since the early 1990s is further shown to be a consequence of global warming. This study indicates that the early 1990s is a time when the Atlantic began to exert a stronger influence on climate over China and even larger part of Asia. (letter)

  14. A multi-decadal wind-wave hindcast for the North Sea 1949-2014: coastDat2

    Science.gov (United States)

    Groll, Nikolaus; Weisse, Ralf

    2017-12-01

    Long and consistent wave data are important for analysing wave climate variability and change. Moreover, such wave data are also needed in coastal and offshore design and for addressing safety-related issues at sea. Using the third-generation spectral wave model WAM a multi-decadal wind-wave hindcast for the North Sea covering the period 1949-2014 was produced. The hindcast is part of the coastDat database representing a consistent and homogeneous met-ocean data set. It is shown that despite not being perfect, data from the wave hindcast are generally suitable for wave climate analysis. In particular, comparisons of hindcast data with in situ and satellite observations show on average a reasonable agreement, while a tendency towards overestimation of the highest waves could be inferred. Despite these limitations, the wave hindcast still provides useful data for assessing wave climate variability and change as well as for risk analysis, in particular when conservative estimates are needed. Hindcast data are stored at the World Data Center for Climate (WDCC) and can be freely accessed using the doi:10.1594/WDCC/coastDat-2_WAM-North_Sea Groll and Weisse(2016) or via the coastDat web-page http://www.coastdat.de.

  15. Carbon and nitrogen elemental and isotopic ratios of filter-feeding bivalves along the French coasts: An assessment of specific, geographic, seasonal and multi-decadal variations.

    Science.gov (United States)

    Briant, Nicolas; Savoye, Nicolas; Chouvelon, Tiphaine; David, Valérie; Rodriguez, Samuel; Charlier, Karine; Sonke, Jeroen E; Chiffoleau, Jean François; Brach-Papa, Christophe; Knoery, Joël

    2018-02-01

    Primary consumers play a key role in coastal ecosystems by transferring organic matter from primary producers to predators. Among them, suspension-feeders, like bivalve molluscs are widely used in trophic web studies. The main goal of this study was to investigate variations of C and N elemental and isotopic ratios in common bivalves (M. edulis, M. galloprovincialis, and C. gigas) at large spatial (i.e. among three coastal regions) and different temporal (i.e. from seasonal to multi-decadal) scales in France, in order to identify potential general or specific patterns and speculate on their drivers. The observed spatial variability was related to the trophic status of the coastal regions (oligotrophic Mediterranean Sea versus meso- to eutrophic English Channel and Atlantic ocean), but not to ecosystem typology (estuaries, versus lagoons versus bays versus littoral systems). Furthermore, it highlighted local specificities in terms of the origin of the POM assimilated by bivalves (e.g., mainly continental POM vs. marine phytoplankton vs. microphytobenthic algae). Likewise, seasonal variability was related both to the reproduction cycle for C/N ratios of Mytilus spp. and to changes in trophic resources for δ 13 C of species located close to river mouth. Multi-decadal evolution exhibited shifts and trends for part of the 30-year series with decreases in δ 13 C and δ 15 N. Specifically, shifts appeared in the early 2000's, likely linking bivalve isotopic ratios to a cascade of processes affected by local drivers. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Effect of Modulation of ENSO by Decadal and Multidecadal Ocean-Atmospheric Oscillations on Continental US Streamflows

    Science.gov (United States)

    Singh, S.; Abebe, A.; Srivastava, P.; Chaubey, I.

    2017-12-01

    Evaluation of the influences of individual and coupled oceanic-atmospheric oscillations on streamflow at a regional scale in the United States is the focus of this study. The main climatic oscillations considered in this study are: El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO), and North Atlantic Oscillation (NAO). Unimpacted or minimally impacted by water management streamflow data from the Model Parameter Estimation Experiment (MOPEX) were used in this study. Two robust and novel non-parametric tests, namely, the rank based partial least square (PLS) and the Joint Rank Fit (JRFit) procedures were used to identify the individual and coupled effect of oscillations on streamflow across continental U.S. (CONUS), respectively. Moreover, the interactive effects of ENSO with decadal and multidecadal cycles were tested and quantified using the JRFit interaction test. The analysis of ENSO indicated higher streamflows during La Niña phase compared to the El Niño phase in Northwest, Northeast and the lower part of Ohio Valley while the opposite occurs for rest of the climatic regions in US. Two distinct climate regions (Northwest and Southeast) were identified from the PDO analysis where PDO negative phase results in increased streamflow than PDO positive phase. Consistent negative and positive correlated regions around the CONUS were identified for AMO and NAO, respectively. The interaction test of ENSO with decadal and multidecadal oscillations showed that El Niño is modulated by the negative phase of PDO and NAO, and the positive phase of AMO, respectively, in the Upper Midwest. However, La Niña is modulated by the positive phase of AMO and PDO in Ohio Valley and Northeast while in Southeast and the South it is modulated by AMO negative phase. Results of this study will assist water managers to understand the streamflow change patterns across the CONUS at decadal and multi-decadal time scales. The

  17. Impact of the initialisation on the predictability of the Southern Ocean sea ice at interannual to multi-decadal timescales

    Science.gov (United States)

    Zunz, Violette; Goosse, Hugues; Dubinkina, Svetlana

    2015-04-01

    In this study, we assess systematically the impact of different initialisation procedures on the predictability of the sea ice in the Southern Ocean. These initialisation strategies are based on three data assimilation methods: the nudging, the particle filter with sequential importance resampling and the nudging proposal particle filter. An Earth system model of intermediate complexity is used to perform hindcast simulations in a perfect model approach. The predictability of the Antarctic sea ice at interannual to multi-decadal timescales is estimated through two aspects: the spread of the hindcast ensemble, indicating the uncertainty of the ensemble, and the correlation between the ensemble mean and the pseudo-observations, used to assess the accuracy of the prediction. Our results show that at decadal timescales more sophisticated data assimilation methods as well as denser pseudo-observations used to initialise the hindcasts decrease the spread of the ensemble. However, our experiments did not clearly demonstrate that one of the initialisation methods systematically provides with a more accurate prediction of the sea ice in the Southern Ocean than the others. Overall, the predictability at interannual timescales is limited to 3 years ahead at most. At multi-decadal timescales, the trends in sea ice extent computed over the time period just after the initialisation are clearly better correlated between the hindcasts and the pseudo-observations if the initialisation takes into account the pseudo-observations. The correlation reaches values larger than 0.5 in winter. This high correlation has likely its origin in the slow evolution of the ocean ensured by its strong thermal inertia, showing the importance of the quality of the initialisation below the sea ice.

  18. Interannual-to-multidecadal Hydroclimate Variability and its Sectoral Impacts in northeastern Argentina

    OpenAIRE

    Lovino, Miguel A.; Müller, Omar V.; Müller, Gabriela V.; Sgroi, Leandro C.; Baethgen, Walter E.

    2018-01-01

    This study examines the relation between hydroclimate variability (precipitation, river discharge, temperature) and water resources, agriculture and human settlements at different time scales in northeastern Argentina. It also discusses the impacts on these productive and socio-economic sectors. The leading patterns of variability, their nonlinear trends, and cycles are identified by means of a Principal Component Analysis (PCA) complemented with a Singular Spectrum Analysis (SSA). Interannua...

  19. Beyond the Fe-P-redox connection: preferential regeneration of phosphorus from organic matter as a key control on Baltic Sea nutrient cycles

    NARCIS (Netherlands)

    Jilbert, T.; Slomp, C.P.; Gustafsson, B.G.; Boer, W.

    2011-01-01

    Patterns of regeneration and burial of phosphorus (P) in the Baltic Sea are strongly dependent on redox conditions. Redox varies spatially along water depth gradients and temporally in response to the seasonal cycle and multidecadal hydrographic variability. Alongside the welldocumented link

  20. Multi-decadal Arctic sea ice roughness.

    Science.gov (United States)

    Tsamados, M.; Stroeve, J.; Kharbouche, S.; Muller, J. P., , Prof; Nolin, A. W.; Petty, A.; Haas, C.; Girard-Ardhuin, F.; Landy, J.

    2017-12-01

    The transformation of Arctic sea ice from mainly perennial, multi-year ice to a seasonal, first-year ice is believed to have been accompanied by a reduction of the roughness of the ice cover surface. This smoothening effect has been shown to (i) modify the momentum and heat transfer between the atmosphere and ocean, (ii) to alter the ice thickness distribution which in turn controls the snow and melt pond repartition over the ice cover, and (iii) to bias airborne and satellite remote sensing measurements that depend on the scattering and reflective characteristics over the sea ice surface topography. We will review existing and novel remote sensing methodologies proposed to estimate sea ice roughness, ranging from airborne LIDAR measurement (ie Operation IceBridge), to backscatter coefficients from scatterometers (ASCAT, QUICKSCAT), to multi angle maging spectroradiometer (MISR), and to laser (Icesat) and radar altimeters (Envisat, Cryosat, Altika, Sentinel-3). We will show that by comparing and cross-calibrating these different products we can offer a consistent multi-mission, multi-decadal view of the declining sea ice roughness. Implications for sea ice physics, climate and remote sensing will also be discussed.

  1. Beyond the Fe-P-redox connection: preferential regeneration of phosphorus from organic matter as a key control on Baltic Sea nutriënt cycles

    NARCIS (Netherlands)

    Jilbert, T.; Slomp, C.P.; Gustafsson, B.G.; Boer, W.

    2011-01-01

    Patterns of regeneration and burial of phosphorus (P) in the Baltic Sea are strongly dependent on redox conditions. Redox varies spatially along water depth gradients and temporally in response to the seasonal cycle and multidecadal hydrographic variability. Alongside the well-documented link

  2. Climatic variability and trends in the surface waters of coastal British Columbia

    Science.gov (United States)

    Cummins, Patrick F.; Masson, Diane

    2014-01-01

    Multi-decadal records of monthly sea surface temperature (SST) and sea surface salinity (SSS) collected at a set of lighthouse stations are used to examine climatic variability and trends in the coastal waters of British Columbia. Particular attention is given to relations between the water property anomalies and variability in coastal freshwater discharge and alongshore wind stress. Within the Strait of Georgia, SSS anomalies are closely related to Fraser River discharge anomalies. Along the Pacific coast, anomalies in alongshore wind stress and freshwater runoff have the characteristics of white noise processes. A cross-correlation analysis demonstrates that SST and SSS variability along the open west coast is consistent with the response of a first-order autoregressive process driven by anomalous alongshore wind stress and coastal freshwater discharge, respectively. Thus climatic variability of SST and SSS along the Pacific coast of British Columbia occurs, in part, through the integration of noisy atmospheric forcing and coastal precipitation. Seasonal correlations show that SST is strongly related to wind stress during winter and fall. Conversely, SSS is relatively weakly related to the alongshore wind during spring, suggesting that variability in upwelling makes only a modest contribution to variability of SSS in the nearshore environment. Consistent with previous studies, secular trends indicate long-term warming and freshening of the coastal ocean at most stations. It is shown that long-term SST trends can be obscured by the pronounced climatic variability of these waters, requiring that time series extend for several decades to be reliably detected.

  3. Variability of the North Atlantic summer storm track: mechanisms and impacts on European climate

    International Nuclear Information System (INIS)

    Dong, Buwen; Sutton, Rowan T; Woollings, Tim; Hodges, Kevin

    2013-01-01

    The summertime variability of the extratropical storm track over the Atlantic sector and its links to European climate have been analysed for the period 1948–2011 using observations and reanalyses. The main results are as follows. (1) The dominant mode of the summer storm track density variability is characterized by a meridional shift of the storm track between two distinct paths and is related to a bimodal distribution in the climatology for this region. It is also closely related to the Summer North Atlantic Oscillation (SNAO). (2) A southward shift is associated with a downstream extension of the storm track and a decrease in blocking frequency over the UK and northwestern Europe. (3) The southward shift is associated with enhanced precipitation over the UK and northwestern Europe and decreased precipitation over southern Europe (contrary to the behaviour in winter). (4) There are strong ocean–atmosphere interactions related to the dominant mode of storm track variability. The atmosphere forces the ocean through anomalous surface fluxes and Ekman currents, but there is also some evidence consistent with an ocean influence on the atmosphere, and that coupled ocean–atmosphere feedbacks might play a role. The ocean influence on the atmosphere may be particularly important on decadal timescales, related to the Atlantic Multidecadal Oscillation (AMO). (letter)

  4. AMOC decadal variability in Earth system models: Mechanisms and climate impacts

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, Alexey [Yale Univ., New Haven, CT (United States)

    2017-09-06

    This is the final report for the project titled "AMOC decadal variability in Earth system models: Mechanisms and climate impacts". The central goal of this one-year research project was to understand the mechanisms of decadal and multi-decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) within a hierarchy of climate models ranging from realistic ocean GCMs to Earth system models. The AMOC is a key element of ocean circulation responsible for oceanic transport of heat from low to high latitudes and controlling, to a large extent, climate variations in the North Atlantic. The questions of the AMOC stability, variability and predictability, directly relevant to the questions of climate predictability, were at the center of the research work.

  5. Low-frequency variability in North Sea and Baltic Sea identified through simulations with the 3-D coupled physical–biogeochemical model ECOSMO

    Directory of Open Access Journals (Sweden)

    U. Daewel

    2017-09-01

    Full Text Available Here we present results from a long-term model simulation of the 3-D coupled ecosystem model ECOSMO II for a North Sea and Baltic Sea set-up. The model allows both multi-decadal hindcast simulation of the marine system and specific process studies under controlled environmental conditions. Model results have been analysed with respect to long-term multi-decadal variability in both physical and biological parameters with the help of empirical orthogonal function (EOF analysis. The analysis of a 61-year (1948–2008 hindcast reveals a quasi-decadal variation in salinity, temperature and current fields in the North Sea in addition to singular events of major changes during restricted time frames. These changes in hydrodynamic variables were found to be associated with changes in ecosystem productivity that are temporally aligned with the timing of reported regime shifts in the areas. Our results clearly indicate that for analysing ecosystem productivity, spatially explicit methods are indispensable. Especially in the North Sea, a correlation analysis between atmospheric forcing and primary production (PP reveals significant correlations between PP and the North Atlantic Oscillation (NAO and wind forcing for the central part of the region, while the Atlantic Multi-decadal Oscillation (AMO and air temperature are correlated to long-term changes in PP in the southern North Sea frontal areas. Since correlations cannot serve to identify causal relationship, we performed scenario model runs perturbing the temporal variability in forcing condition to emphasize specifically the role of solar radiation, wind and eutrophication. The results revealed that, although all parameters are relevant for the magnitude of PP in the North Sea and Baltic Sea, the dominant impact on long-term variability and major shifts in ecosystem productivity was introduced by modulations of the wind fields.

  6. Changes of interannual NAO variability in response to greenhouse gases forcing

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Buwen; Sutton, Rowan T.; Woollings, Tim [University of Reading, National Centre for Atmospheric Science, Department of Meteorology, Reading (United Kingdom)

    2011-10-15

    Observations show that there was change in interannual North Atlantic Oscillation (NAO) variability in the mid-1970s. This change was characterized by an eastward shift of the NAO action centres, a poleward shift of zonal wind anomalies and a downstream extension of climate anomalies associated with the NAO. The NAO interannual variability for the period after the mid-1970s has an annular mode structure that penetrates deeply into the stratosphere, indicating a strengthened relationship between the NAO and the Arctic Oscillation (AO) and strengthened stratosphere-troposphere coupling. In this study we have investigated possible causes of these changes in the NAO by carrying out experiments with an atmospheric GCM. The model is forced either by doubling CO{sub 2}, or increasing sea surface temperatures (SST), or both. In the case of SST forcing the SST anomaly is derived from a coupled model simulation forced by increasing CO{sub 2}. Results indicate that SST and CO{sub 2} change both force a poleward and eastward shift in the pattern of interannual NAO variability and the associated poleward shift of zonal wind anomalies, similar to the observations. The effect of SST change can be understood in terms of mean changes in the troposphere. The direct effect of CO{sub 2} change, in contrast, can not be understood in terms of mean changes in the troposphere. However, there is a significant response in the stratosphere, characterized by a strengthened climatological polar vortex with strongly enhanced interannual variability. In this case, the NAO interannual variability has a strong link with the variability over the North Pacific, as in the annular AO pattern, and is also strongly related to the stratospheric vortex, indicating strengthened stratosphere-troposphere coupling. The similarity of changes in many characteristics of NAO interannual variability between the model response to doubling CO{sub 2} and those in observations in the mid-1970s implies that the

  7. Causes of decadal climate variability over the North Pacific and North America

    International Nuclear Information System (INIS)

    Latif, M.; Barnett, T.P.

    1994-01-01

    The cause of decadal climate variability over the North Pacific and North America is investigated by analyzing data from a multi-decadal integration with a state of the art coupled ocean-atmosphere model and observations. About one third of the low-frequency climate variability in the region of interest can be attributed to a cycle involving unstable air-sea interactions between the subtropical gyre circulation in the North Pacific and the Aleutian low pressure system. The existence of this cycle provides a basis for long-range climate forecasting over the western United States at decadal time scales. (orig.)

  8. Increasing Megadrought Risk at the Intersection of Decadal to Centennial Variability and Climate Change

    Science.gov (United States)

    Overpeck, J. T.; Parsons, L. A.; Loope, G. R.; Ault, T.; Cole, J. E.; Otto-Bliesner, B. L.; Buckle, N.; Stevenson, S.; Fasullo, J.

    2016-12-01

    Even more than the 1930's U.S. Dust Bowl Drought, the 20th century Sahel drought stands out as the most unprecedented drought of the instrumental era, in part because it extended over multiple decades. Paleoclimatic evidence makes it clear that this Sahel drought was nonetheless not really unprecedented - droughts many decades long have occurred in sub-Saharan Africa regularly over the last several thousand years, and these constitute what is now increasingly referred to as "megadrought." Paleoclimatic evidence also makes it clear that all drought-prone semi-arid and arid regions of the globe, including southwestern North America, southeastern Australia, and the Mediterranean/Middle Eastern region likely experienced multiple such multidecadal megadroughts in recent pre-Anthropocene Earth history. In other regions of the globe, including parts of South Asia and Amazonia, short but devastating droughts of the last 50-150 years, were also eclipsed in recent Earth history by much more serious megadrought, although these megadroughts were shorter than the multidecadal droughts of Africa or SW North America. In the past, megadroughts have occurred for reasons that are increasingly well understood in terms of ocean-atmosphere dynamics that led to unusually persistent precipitation deficits. Many of these same dynamics are well simulated in state-of-the-art Earth System Models, and yet comparisons between simulated and observed paleohydroclimatic variability suggests the models generally underestimate the risk of megadrought. Paleohydroclimatic records in some cases overestimate drought persistence, but there appear to be other issues at play that need to be better understood and simulated: positive land-atmosphere feedbacks, overly energetic interannual (i.e., ENSO) modes of variability, and insufficient internal multidecadal to centennial coupled climate system variability. Taking these issues and the impact of anthropogenic climate change into account means that the

  9. Tracking multidecadal trends in sea level using coral microatolls

    Science.gov (United States)

    Majewski, Jedrzej; Pham, Dat; Meltzner, Aron; Switzer, Adam; Horton, Benjamin; Heng, Shu Yun; Warrick, David

    2015-04-01

    Tracking multidecadal trends in sea level using coral microatolls Jędrzej M. Majewski 1, Dat T. Pham1, Aron J. Meltzner 1, Adam D. Switzer 1, Benjamin P. Horton2, Shu Yun Heng1, David Warrick3, 1 Earth Observatory of Singapore, Nanyang Technological University, Singapore 2 Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA 3 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA Coral microatolls can be used to study relative sea-level change at multidecadal timescales associated with vertical land movements, climate induced sea-level rise and other oceanographic phenomena such as the El Niño/Southern Oscillation (ENSO) or Indian Ocean Dipole (IOD) with the assumption that the highest level of survival (HLS) of coral microatolls track sea level over the course of their lifetimes. In this study we compare microatoll records covering from as early as 1883 through 2013, from two sites in Indonesia, with long records (>20 years) from proximal tide gauges, satellite altimetry, and other sea-level reconstructions. We compared the HLS time series derived from open-ocean and moated (or ponded) microatolls on tectonically stable Belitung Island and a potentially tectonically active setting in Mapur Island, with sea-level reconstructions for 1950-2011. The sea-level reconstructions are based on ground and satellite measurements, combining a tide model with the Estimating the Circulation and Climate of the Ocean (ECCO) model. Our results confirm that open-ocean microatolls do track low water levels at multi decadal time scales and can be used as a proxy for relative sea level (RSL) over time. However, microatolls that are even partially moated are unsuitable and do not track RSL; rather, their growth patterns likely reflect changes in the elevation of the sill of the local pond, as reported by earlier authors. Our ongoing efforts will include an attempt to recognize similarities in moated

  10. Subtropical Climate Variability since the Last Glacial Maximum from Speleothem Precipitation Reconstructions in Florida

    Science.gov (United States)

    Polk, J.; van Beynen, P.; DeLong, K. L.; Asmerom, Y.; Polyak, V. J.

    2017-12-01

    Teleconnections between the tropical-subtropical regions of the Americas since the Last Glacial Maximum (LGM), particularly the Mid- to Late-Holocene, and high-resolution proxy records refining climate variability over this period continue to receive increasing attention. Here, we present a high-resolution, precisely dated speleothem record spanning multiple periods of time since the LGM ( 30 ka) for the Florida peninsula. The data indicate that the amount effect plays a significant role in determining the isotopic signal of the speleothem calcite. Collectively, the records indicate distinct differences in climate in the region between the LGM, Mid-Holocene, and Late Holocene, including a progressive shift in ocean composition and precipitation isotopic values through the period, suggesting Florida's sensitivity to regional and global climatic shifts. Comparisons between speleothem δ18O values and Gulf of Mexico marine records reveal a strong connection between the Gulf region and the terrestrial subtropical climate in the Late Holocene, while the North Atlantic's influence is clear in the earlier portions of the record. Warmer sea surface temperatures correspond to enhanced evaporation, leading to more intense atmospheric convection in Florida, and thereby modulating the isotopic composition of rainfall above the cave. These regional signals in climate extend from the subtropics to the tropics, with a clear covariance between the speleothem signal and other proxy records from around the region, as well as global agreement during the LGM period with other records. These latter connections appear to be driven by changes in the mean position of the Intertropical Convergence Zone and time series analysis of the δ18O values reveals significant multidecadal periodicities in the record, which are evidenced by agreement with the AMV and other multidecadal influences (NAO and PDO) likely having varying influence throughout the period of record. The climate variability

  11. Present and Future Modes of Low Frequency Climate Variability

    Energy Technology Data Exchange (ETDEWEB)

    Cane, Mark A.

    2014-02-20

    This project addressed area (1) of the FOA, “Interaction of Climate Change and Low Frequency Modes of Natural Climate Variability”. Our overarching objective is to detect, describe and understand the changes in low frequency variability between model simulations of the preindustrial climate and simulations of a doubled CO2 climate. The deliverables are a set of papers providing a dynamical characterization of interannual, decadal, and multidecadal variability in coupled models with attention to the changes in this low frequency variability between pre-industrial concentrations of greenhouse gases and a doubling of atmospheric concentrations of CO2. The principle mode of analysis, singular vector decomposition, is designed to advance our physical, mechanistic understanding. This study will include external natural variability due to solar and volcanic aerosol variations as well as variability internal to the climate system. An important byproduct is a set of analysis tools for estimating global singular vector structures from the archived output of model simulations.

  12. A multi-decadal assessment of the performance of gauge- and model-based rainfall products over Saudi Arabia: Climatology, anomalies and trends

    KAUST Repository

    El Kenawy, Ahmed M.

    2015-05-15

    Many arid and semi-arid regions have sparse precipitation observing networks, which limits the capacity for detailed hydrological modelling, water resources management and flood forecasting efforts. The objective of this work is to evaluate the utility of relatively high-spatial resolution rainfall products to reproduce observed multi-decadal rainfall characteristics such as climatologies, anomalies and trends over Saudi Arabia. Our study compares the statistical characteristics of rainfall from 53 observatories over the reference period 1965-2005, with rainfall data from six widely used gauge-based products, including APHRODITE, GPCC, PRINCETON, UDEL, CRU and PREC/L. In addition, the performance of three global climate models (GCMs), including CCSM4, EC-EARTH and MRI-I-CGCM3, integrated as part of the Fifth Coupled Model Intercomparison Project (CMIP5), was also evaluated. Results indicate that the gauge-based products were generally skillful in reproducing rainfall characteristics in Saudi Arabia. In most cases, the gauge-based products were also able to capture the annual cycle, anomalies and climatologies of observed data, although significant inter-product variability was observed, depending on the assessment metric being used. In comparison, the GCM-based products generally exhibited poor performance, with larger biases and very weak correlations, particularly during the summertime. Importantly, all products generally failed to reproduce the observed long-term seasonal and annual trends in the region, particularly during the dry seasons (summer and autumn). Overall, this work suggests that selected gauge-based products with daily (APHRODITE and PRINCETON) and monthly (GPCC and CRU) resolutions show superior performance relative to other products, implying that they may be the most appropriate data source from which multi-decadal variations of rainfall can be investigated at the regional scale over Saudi Arabia. Discriminating these skillful products is

  13. Variability and predictability of decadal mean temperature and precipitation over China in the CCSM4 last millennium simulation

    Science.gov (United States)

    Ying, Kairan; Frederiksen, Carsten S.; Zheng, Xiaogu; Lou, Jiale; Zhao, Tianbao

    2018-02-01

    The modes of variability that arise from the slow-decadal (potentially predictable) and intra-decadal (unpredictable) components of decadal mean temperature and precipitation over China are examined, in a 1000 year (850-1850 AD) experiment using the CCSM4 model. Solar variations, volcanic aerosols, orbital forcing, land use, and greenhouse gas concentrations provide the main forcing and boundary conditions. The analysis is done using a decadal variance decomposition method that identifies sources of potential decadal predictability and uncertainty. The average potential decadal predictabilities (ratio of slow-to-total decadal variance) are 0.62 and 0.37 for the temperature and rainfall over China, respectively, indicating that the (multi-)decadal variations of temperature are dominated by slow-decadal variability, while precipitation is dominated by unpredictable decadal noise. Possible sources of decadal predictability for the two leading predictable modes of temperature are the external radiative forcing, and the combined effects of slow-decadal variability of the Arctic oscillation (AO) and the Pacific decadal oscillation (PDO), respectively. Combined AO and PDO slow-decadal variability is associated also with the leading predictable mode of precipitation. External radiative forcing as well as the slow-decadal variability of PDO are associated with the second predictable rainfall mode; the slow-decadal variability of Atlantic multi-decadal oscillation (AMO) is associated with the third predictable precipitation mode. The dominant unpredictable decadal modes are associated with intra-decadal/inter-annual phenomena. In particular, the El Niño-Southern Oscillation and the intra-decadal variability of the AMO, PDO and AO are the most important sources of prediction uncertainty.

  14. Multidecadal change of winter cyclonic activity in the Mediterranean associated with AMO and PDO

    Directory of Open Access Journals (Sweden)

    Veronika Nikolaevna Maslova

    2017-01-01

    Full Text Available The paper is devoted to analysis of the cold half-year (October to March frequency of cyclones in the Mediterranean-Black Sea region associated with the global processes in the ocean-atmosphere system - the Pacific Decadal Oscillation (PDO and Atlantic Multidecadal Oscillation (AMO. Firstly, climatic conditions in the North Atlantic-European region during positive and negative phases of these global oscillations were shown using NCEP/NCAR reanalysis data for 1948 - 2016 and data of the NASA GISS Atlas of Exratropical Strom Tracks in 1961 - 1998. Mean monthly values / anomalies (composites for equal periods of the negative and positive AMO and PDO phases were calculated and compared. The results of the study support the idea that the Pacific and Atlantic influence on the climatic (multidecadal scale is realized via change of the large-scale fields of the North Atlantic anomalies typical for the interannual scale. Then spatial distribution of the frequency of cyclones in the Mediterranean-Black Sea region was obtained using global NCEP/NCAR reanalysis data sets on 1000 hPa geopotential height in 1948 - 2013. It was shown that during the positive AMO phase, frequency of cyclones in the Mediterranean was higher by absolute values in November to March over the Tyrrhenian and Ionic Seas and lower over the Anatolian peninsula. During the negative PDO phase, frequency of cyclones over the Anatolian peninsula in January to March is significantly higher than in the positive PDO phase.

  15. Prospects for a prolonged slowdown in global warming in the early 21st century

    Science.gov (United States)

    Knutson, Thomas R.; Zhang, Rong; Horowitz, Larry W.

    2016-11-01

    Global mean temperature over 1998 to 2015 increased at a slower rate (0.1 K decade-1) compared with the ensemble mean (forced) warming rate projected by Coupled Model Intercomparison Project 5 (CMIP5) models (0.2 K decade-1). Here we investigate the prospects for this slower rate to persist for a decade or more. The slower rate could persist if the transient climate response is overestimated by CMIP5 models by a factor of two, as suggested by recent low-end estimates. Alternatively, using CMIP5 models' warming rate, the slower rate could still persist due to strong multidecadal internal variability cooling. Combining the CMIP5 ensemble warming rate with internal variability episodes from a single climate model--having the strongest multidecadal variability among CMIP5 models--we estimate that the warming slowdown (2025 or 2030 with probabilities 16%, 11% and 6%, respectively.

  16. Climate variability in the subarctic area for the last 2 millennia

    Science.gov (United States)

    Nicolle, Marie; Debret, Maxime; Massei, Nicolas; Colin, Christophe; deVernal, Anne; Divine, Dmitry; Werner, Johannes P.; Hormes, Anne; Korhola, Atte; Linderholm, Hans W.

    2018-01-01

    To put recent climate change in perspective, it is necessary to extend the instrumental climate records with proxy data from paleoclimate archives. Arctic climate variability for the last 2 millennia has been investigated using statistical and signal analyses from three regionally averaged records from the North Atlantic, Siberia and Alaska based on many types of proxy data archived in the Arctic 2k database v1.1.1. In the North Atlantic and Alaska, the major climatic trend is characterized by long-term cooling interrupted by recent warming that started at the beginning of the 19th century. This cooling is visible in the Siberian region at two sites, warming at the others. The cooling of the Little Ice Age (LIA) was identified from the individual series, but it is characterized by wide-range spatial and temporal expression of climate variability, in contrary to the Medieval Climate Anomaly. The LIA started at the earliest by around AD 1200 and ended at the latest in the middle of the 20th century. The widespread temporal coverage of the LIA did not show regional consistency or particular spatial distribution and did not show a relationship with archive or proxy type either. A focus on the last 2 centuries shows a recent warming characterized by a well-marked warming trend parallel with increasing greenhouse gas emissions. It also shows a multidecadal variability likely due to natural processes acting on the internal climate system on a regional scale. A ˜ 16-30-year cycle is found in Alaska and seems to be linked to the Pacific Decadal Oscillation, whereas ˜ 20-30- and ˜ 50-90-year periodicities characterize the North Atlantic climate variability, likely in relation with the Atlantic Multidecadal Oscillation. These regional features are probably linked to the sea ice cover fluctuations through ice-temperature positive feedback.

  17. Evidence for the role of the Atlantic multidecadal oscillation and the ocean heat uptake in hiatus prediction

    Science.gov (United States)

    Pasini, Antonello; Triacca, Umberto; Attanasio, Alessandro

    2017-08-01

    The recent hiatus in global temperature at the surface has been analysed by several studies, mainly using global climate models. The common accepted picture is that since the late 1990s, the increase in anthropogenic radiative forcings has been counterbalanced by other factors, e.g., a decrease in natural forcings, augmented ocean heat storage and negative phases of ocean-atmosphere-coupled oscillation patterns. Here, simple vector autoregressive models are used for forecasting the temperature hiatus in the period 2001-2014. This gives new insight into the problem of understanding the ocean contribution (in terms of heat uptake and atmosphere-ocean-coupled oscillations) to the appearance of this recent hiatus. In particular, considering data about the ocean heat content until a depth of 700 m and the Atlantic multidecadal oscillation is necessary for correctly forecasting the hiatus, so catching both trend and interannual variability. Our models also show that the ocean heat uptake is substantially driven by the natural component of the total radiative forcing at a decadal time scale, confining the importance of the anthropogenic influences to a longer range warming of the ocean.

  18. Taking the pulse of mountains: Ecosystem responses to climatic variability

    Science.gov (United States)

    Fagre, Daniel B.; Peterson, David L.; Hessl, Amy E.

    2003-01-01

    An integrated program of ecosystem modeling and field studies in the mountains of the Pacific Northwest (U.S.A.) has quantified many of the ecological processes affected by climatic variability. Paleoecological and contemporary ecological data in forest ecosystems provided model parameterization and validation at broad spatial and temporal scales for tree growth, tree regeneration and treeline movement. For subalpine tree species, winter precipitation has a strong negative correlation with growth; this relationship is stronger at higher elevations and west-side sites (which have more precipitation). Temperature affects tree growth at some locations with respect to length of growing season (spring) and severity of drought at drier sites (summer). Furthermore, variable but predictable climate-growth relationships across elevation gradients suggest that tree species respond differently to climate at different locations, making a uniform response of these species to future climatic change unlikely. Multi-decadal variability in climate also affects ecosystem processes. Mountain hemlock growth at high-elevation sites is negatively correlated with winter snow depth and positively correlated with the winter Pacific Decadal Oscillation (PDO) index. At low elevations, the reverse is true. Glacier mass balance and fire severity are also linked to PDO. Rapid establishment of trees in subalpine ecosystems during this century is increasing forest cover and reducing meadow cover at many subalpine locations in the western U.S.A. and precipitation (snow depth) is a critical variable regulating conifer expansion. Lastly, modeling potential future ecosystem conditions suggests that increased climatic variability will result in increasing forest fire size and frequency, and reduced net primary productivity in drier, east-side forest ecosystems. As additional empirical data and modeling output become available, we will improve our ability to predict the effects of climatic change

  19. Climate variability during the Medieval Climate Anomaly and Little Ice Age based on ostracod faunas and shell geochemistry from Biscayne Bay, Florida: Chapter 14

    Science.gov (United States)

    Cronin, Thomas M.; Wingard, G. Lynn; Dwyer, Gary S.; Swart, Peter K.; Willard, Debra A.; Albietz, Jessica

    2012-01-01

    An 800-year-long environmental history of Biscayne Bay, Florida, is reconstructed from ostracod faunal and shell geochemical (oxygen, carbon isotopes, Mg/Ca ratios) studies of sediment cores from three mudbanks in the central and southern parts of the bay. Using calibrations derived from analyses of modern Biscayne and Florida Bay ostracods, palaeosalinity oscillations associated with changes in precipitation were identified. These oscillations reflect multidecadal- and centennial-scale climate variability associated with the Atlantic Multidecadal Oscillation during the late Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). Evidence suggests wetter regional climate during the MCA and drier conditions during the LIA. In addition, twentieth century anthropogenic modifications to Everglades hydrology influenced bay circulation and/or processes controlling carbon isotopic composition.

  20. Oxygen Isotope Speleothem record of Decadal and Multidecadal Atlantic Oscillations over the last millennium in Southwestern Morocco

    Science.gov (United States)

    Ait Brahim, Yassine; Sha, LiJuan; Sifeddine, Abdelfettah; Cheng, Hai; Bouchaou, Lhoussaine; Da Cruz Junior, Francisco William; Khodri, Myriam; Peerbocus, Nawaaz; Mariller, Alexandre; Apaestegui, James; Guyot, Jean-Loup; Auler, Augusto; Hassane Beraaouz, El

    2016-04-01

    In this work, we present a stable oxygen isotope (δ18O) speleothem record from Ifoulki cave located South-West of Morocco (N 30°42'29'', W 09°19'39'' and 1267 meters above sea level). The age model, based on eighteen U-Th dates, reveals that the record covers the AD 790-1953 period with a data resolution of ~1.7 years. Stable oxygen isotope variations show substantial decadal to multi-decadal swings between dry and humid periods. The Medieval Climate Anomaly (MCA) is characterized by the longest period with δ18O values above the average, suggestive of pronounced drying possibly as a response to positive North Atlantic Oscillation (NAO) phases and increased volcanic activity during this period. However, at least two short wet phases are recognized during the MCA in Morocco, with peaks centered on the years AD 1040 and AD 1190 and seem to overlap with negative NAO phases as recorded in a recently published NAO reconstruction for the last millennium. During the next centuries, the NAO again depicts predominantly negative values and the δ18O drops below the average during the Little Ice Age (LIA). Furthermore, a striking resemblance is observed between our record and another recently published stalagmite record from the Piste cave in Northeastern Morocco, which is quite remarkable given the different type of tracers (δ18O vs. Mg and Sr) obtained from different environments (Western High Atlas vs. Northeastern Middle Atlas and ~634 km away). Comparison with regional paleorecords from other studies also reveals the replication of many characteristic climate features from the last millennium, first detected in Northern Morocco and the Iberian Peninsula. In particular, the evidence of generally dry conditions during the MCA and wetter conditions in the LIA, which is confirmed by all the paleorecords. These similarities indicate coherent climate variability in Northwest Africa and the Iberian Peninsula and suggest a strong regional control of the NAO during the last

  1. Strong Stability Preserving Explicit Linear Multistep Methods with Variable Step Size

    KAUST Repository

    Hadjimichael, Yiannis

    2016-09-08

    Strong stability preserving (SSP) methods are designed primarily for time integration of nonlinear hyperbolic PDEs, for which the permissible SSP step size varies from one step to the next. We develop the first SSP linear multistep methods (of order two and three) with variable step size, and prove their optimality, stability, and convergence. The choice of step size for multistep SSP methods is an interesting problem because the allowable step size depends on the SSP coefficient, which in turn depends on the chosen step sizes. The description of the methods includes an optimal step-size strategy. We prove sharp upper bounds on the allowable step size for explicit SSP linear multistep methods and show the existence of methods with arbitrarily high order of accuracy. The effectiveness of the methods is demonstrated through numerical examples.

  2. Past climate variability between 97 and 7 ka reconstructed from a multi proxy speleothem record from Western Cuba

    Science.gov (United States)

    Winterhalder, Sophie; Scholz, Denis; Mangini, Augusto; Spötl, Christoph; Jochum, Klaus Peter; Pajón, Jesús M.

    2016-04-01

    The tropical hydrological cycle plays a key role in regulating global climate, mainly through the export of heat and moisture to higher latitudes, and is highly sensitive to climate change, for instance due to changes in the position of the Intertropical Convergence Zone (ITCZ). Previous work on Caribbean stalagmites suggests a strong connection of precipitation variability to North Atlantic (NA) sea surface temperatures on multidecadal to millenial timescales (Fensterer et al., 2012; Fensterer et al., 2013; Winter et al., 2011). Cold phases in the NA potentially lead to a southward shift of the ITCZ and thus drier conditions in Cuba. On orbital timescales, Cuban stalagmites suggest a relation of speleothem δ18O values with the δ18O value of Caribbean surface waters (Fensterer et al., 2013). Here we present an expansion of the Cuban speleothem record covering the whole last glacial period from the end of MIS5c (97 ka BP) until 7 ka with hiatuses between 93-80 ka, 37-35 ka and 13-10 ka. Stalagmite Cuba medio (CM) has been precisely dated with 60 230Th/U-ages, mainly performed by the MC-ICPMS technique. The δ18O and δ13C records are completed by a continuous, high resolution LA-ICPMS trace element profile. These data allow for the first time to establish a multi-proxy climate reconstruction for the North Western Caribbean at decadal to centennial resolution for this period. The long-term variability of the δ18O values probably reflects rainfall amount in Cuba. The response to some Dansgaard/Oeschger and Heinrich stadials confirms the previously observed correlation between Caribbean and NA climate variability. However, this connection is not clearly imprinted throughout the record. Furthermore, trace elements, such as Mg, do not proof without ambiguity drier conditions in Cuba during NA cold events, such as the Heinrich stadials. This suggests that climate variability in Cuba was more complex during the last 100ka, and that the NA was not the only driving factor

  3. Long-term hydroclimatic variability in monsoon shadow zone of western Himalaya, India

    Science.gov (United States)

    Yadav, Ram R.

    2011-04-01

    Tree-ring-width data of Himalayan cedar [ Cedrus deodara (Roxb.) G. Don] from 11 homogeneous moisture stressed sites in the monsoon shadow zone of the western Himalaya were used to develop a mean chronology extending back to ad 1353. The chronology developed using Regional Curve Standardization method is the first from the Himalayan region of India showing centennial-scale variations. The calibration of ring-width chronology with instrumental precipitation data available from stations close to the tree ring sampling sites showed strong, direct relationship with March-April-May-June (MAMJ) precipitation. This strong relationship was used to supplement the instrumental precipitation data back to ad 1410. The precipitation reconstruction showed extended period of drought in fifteenth and sixteenth centuries. Increasingly pluvial conditions were recorded since eighteenth century, with the highest precipitation in the early part of the nineteenth century. The decreasing trend in reconstructed precipitation in the last decade of the twentieth century, consistent with the instrumental records, is associated with the decreasing trend in frequency of western disturbances. MAMJ precipitation over the monsoon shadow zone in the western Himalaya is directly associated with the North Atlantic Oscillation (NAO) and NINO3-SST index of El Nino-Southern Oscillation (ENSO), the leading modes of climate variability influencing climate over large parts of the Northern Hemisphere. However, the relationship between ENSO and MAMJ precipitation collapsed completely during 1930-1960. The breakdown in this relationship is associated with the warm phase of Atlantic Multidecadal Oscillation (AMO). A spectral analysis of reconstructed MAMJ precipitation indicates frequencies in the range of the variability associated with modes of NAO, ENSO and AMO.

  4. FAST VARIABILITY AND MILLIMETER/IR FLARES IN GRMHD MODELS OF Sgr A* FROM STRONG-FIELD GRAVITATIONAL LENSING

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal; Marrone, Daniel [Steward Observatory and Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Medeiros, Lia [Department of Physics, Broida Hall, University of California, Santa Barbara, Santa Barbara, CA 93106 (United States); Sadowski, Aleksander [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Narayan, Ramesh, E-mail: chanc@email.arizona.edu [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2015-10-20

    We explore the variability properties of long, high-cadence general relativistic magnetohydrodynamic (GRMHD) simulations across the electromagnetic spectrum using an efficient, GPU-based radiative transfer algorithm. We focus on both standard and normal evolution (SANE) and magnetically arrested disk (MAD) simulations with parameters that successfully reproduce the time-averaged spectral properties of Sgr A* and the size of its image at 1.3 mm. We find that the SANE models produce short-timescale variability with amplitudes and power spectra that closely resemble those inferred observationally. In contrast, MAD models generate only slow variability at lower flux levels. Neither set of models shows any X-ray flares, which most likely indicates that additional physics, such as particle acceleration mechanisms, need to be incorporated into the GRMHD simulations to account for them. The SANE models show strong, short-lived millimeter/infrared (IR) flares, with short (≲1 hr) time lags between the millimeter and IR wavelengths, that arise from the combination of short-lived magnetic flux tubes and strong-field gravitational lensing near the horizon. Such events provide a natural explanation for the observed IR flares with no X-ray counterparts.

  5. Prospects for a prolonged slowdown in global warming in the early 21st century

    Science.gov (United States)

    Knutson, Thomas R.; Zhang, Rong; Horowitz, Larry W.

    2016-01-01

    Global mean temperature over 1998 to 2015 increased at a slower rate (0.1 K decade−1) compared with the ensemble mean (forced) warming rate projected by Coupled Model Intercomparison Project 5 (CMIP5) models (0.2 K decade−1). Here we investigate the prospects for this slower rate to persist for a decade or more. The slower rate could persist if the transient climate response is overestimated by CMIP5 models by a factor of two, as suggested by recent low-end estimates. Alternatively, using CMIP5 models' warming rate, the slower rate could still persist due to strong multidecadal internal variability cooling. Combining the CMIP5 ensemble warming rate with internal variability episodes from a single climate model—having the strongest multidecadal variability among CMIP5 models—we estimate that the warming slowdown (<0.1 K decade−1 trend beginning in 1998) could persist, due to internal variability cooling, through 2020, 2025 or 2030 with probabilities 16%, 11% and 6%, respectively. PMID:27901045

  6. Multidecadal trends in the nesting phenology of Pacific and Atlantic leatherback turtles are associated with population demography

    OpenAIRE

    Robinson, Nathan J.; Valentine, Sara E.; Santidrián Tomillo, Pilar; Saba, Vincent S.; Spotila, James R.; Paladino, Frank V.

    2013-01-01

    Knowledge of the mechanisms influencing phenology can provide insights into the adaptability of species to climate change. Here, we investigated the factors influencing multidecadal trends in the nesting phenology of the leatherback turtle Dermochelys coriacea at Playa Grande, Costa Rica, in the eastern Pacific Ocean and at Sandy Point, US Virgin Islands, in the western Atlantic Ocean. Between 1993 and 2013, the median nesting date (MND) at Playa Grande occurred later, at a rate of ~0.3 d yr-...

  7. On the use of Standardized Drought Indices under decadal climate variability: Critical assessment and drought policy implications

    Science.gov (United States)

    Núñez, J.; Rivera, D.; Oyarzún, R.; Arumí, J. L.

    2014-09-01

    Since the recent High Level Meeting on National Drought Policy held in Geneva in 2013, a greater concern about the creation and adaptation of national drought monitoring systems is expected. Consequently, backed by international recommendations, the use of Standardized Drought Indices (SDI), such as the Standardized Precipitation Index (SPI), as an operational basis of drought monitoring systems has been increasing in many parts of the world. Recommendations for the use of the SPI, and consequently, those indices that share its properties, do not take into account the limitations that this type of index can exhibit under the influence of multidecadal climate variability. These limitations are fundamentally related to the lack of consistency among the operational definition expressed by this type of index, the conceptual definition with which it is associated and the political definition it supports. Furthermore, the limitations found are not overcome by the recommendations for their application. This conclusion is supported by the long-term study of the Standardized Streamflow Index (SSI) in the arid north-central region of Chile, under the influence of multidecadal climate variability. The implications of the findings of the study are discussed with regard to their link to aspects of drought policy in the cases of Australia, the United States and Chile.

  8. Photometric variability in a warm, strongly magnetic DQ white dwarf, SDSS J103655.39+652252.2

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kurtis A. [Department of Physics and Astronomy, Texas A and M University-Commerce, P.O. Box 3011, Commerce, TX 75429 (United States); Winget, D. E.; Montgomery, M. H.; Hermes, J. J.; Falcon, Ross E.; Winget, K. I. [Department of Astronomy, University of Texas, 1 University Station C1400, Austin, TX 78712 (United States); Dufour, Patrick [Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, QC H3C 3J7 (Canada); Kepler, S. O. [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500 Porto Alegre 91501-970, RS (Brazil); Bolte, Michael [UCO/Lick Observatory, University of California, 1156 High St., Santa Cruz, CA 95064 (United States); Rubin, Kate H. R. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Liebert, James, E-mail: Kurtis.Williams@tamuc.edu, E-mail: jamesliebert@gmail.com [Emeritus, Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States)

    2013-06-01

    We present the discovery of photometric variability in the DQ white dwarf SDSS J103655.39+652252.2 (SDSS J1036+6522). Time-series photometry reveals a coherent monoperiodic modulation at a period of 1115.64751(67) s with an amplitude 0.442% ± 0.024%; no other periodic modulations are observed with amplitudes ≳ 0.13%. The period, amplitude, and phase of this modulation are constant within errors over 16 months. The spectrum of SDSS J1036+6522 shows magnetic splitting of carbon lines, and we use Paschen-Back formalism to develop a grid of model atmospheres for mixed carbon and helium atmospheres. Our models, while reliant on several simplistic assumptions, nevertheless match the major spectral and photometric properties of the star with a self-consistent set of parameters: T {sub eff} ≈ 15, 500 K, log g ≈ 9, log (C/He) = –1.0, and a mean magnetic field strength of 3.0 ± 0.2 MG. The temperature and abundances strongly suggest that SDSS J1036+6522 is a transition object between the hot, carbon-dominated DQs and the cool, helium-dominated DQs. The variability of SDSS J1036+6522 has characteristics similar to those of the variable hot carbon-atmosphere white dwarfs (DQVs), however, its temperature is significantly cooler. The pulse profile of SDSS J1036+6522 is nearly sinusoidal, in contrast with the significantly asymmetric pulse shapes of the known magnetic DQVs. If the variability in SDSS J1036+6522 is due to the same mechanism as other DQVs, then the pulse shape is not a definitive diagnostic on the absence of a strong magnetic field in DQVs. It remains unclear whether the root cause of the variability in SDSS J1036+6522 and the other hot DQVs is the same.

  9. Photometric variability in a warm, strongly magnetic DQ white dwarf, SDSS J103655.39+652252.2

    International Nuclear Information System (INIS)

    Williams, Kurtis A.; Winget, D. E.; Montgomery, M. H.; Hermes, J. J.; Falcon, Ross E.; Winget, K. I.; Dufour, Patrick; Kepler, S. O.; Bolte, Michael; Rubin, Kate H. R.; Liebert, James

    2013-01-01

    We present the discovery of photometric variability in the DQ white dwarf SDSS J103655.39+652252.2 (SDSS J1036+6522). Time-series photometry reveals a coherent monoperiodic modulation at a period of 1115.64751(67) s with an amplitude 0.442% ± 0.024%; no other periodic modulations are observed with amplitudes ≳ 0.13%. The period, amplitude, and phase of this modulation are constant within errors over 16 months. The spectrum of SDSS J1036+6522 shows magnetic splitting of carbon lines, and we use Paschen-Back formalism to develop a grid of model atmospheres for mixed carbon and helium atmospheres. Our models, while reliant on several simplistic assumptions, nevertheless match the major spectral and photometric properties of the star with a self-consistent set of parameters: T eff ≈ 15, 500 K, log g ≈ 9, log (C/He) = –1.0, and a mean magnetic field strength of 3.0 ± 0.2 MG. The temperature and abundances strongly suggest that SDSS J1036+6522 is a transition object between the hot, carbon-dominated DQs and the cool, helium-dominated DQs. The variability of SDSS J1036+6522 has characteristics similar to those of the variable hot carbon-atmosphere white dwarfs (DQVs), however, its temperature is significantly cooler. The pulse profile of SDSS J1036+6522 is nearly sinusoidal, in contrast with the significantly asymmetric pulse shapes of the known magnetic DQVs. If the variability in SDSS J1036+6522 is due to the same mechanism as other DQVs, then the pulse shape is not a definitive diagnostic on the absence of a strong magnetic field in DQVs. It remains unclear whether the root cause of the variability in SDSS J1036+6522 and the other hot DQVs is the same.

  10. A Generalized Stability Analysis of the AMOC in Earth System Models: Implication for Decadal Variability and Abrupt Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, Alexey V. [Yale Univ., New Haven, CT (United States)

    2015-01-14

    The central goal of this research project was to understand the mechanisms of decadal and multi-decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) as related to climate variability and abrupt climate change within a hierarchy of climate models ranging from realistic ocean models to comprehensive Earth system models. Generalized Stability Analysis, a method that quantifies the transient and asymptotic growth of perturbations in the system, is one of the main approaches used throughout this project. The topics we have explored range from physical mechanisms that control AMOC variability to the factors that determine AMOC predictability in the Earth system models, to the stability and variability of the AMOC in past climates.

  11. Causes of Greenland temperature variability over the past 4000 yr: implications for northern hemispheric temperature changes

    Directory of Open Access Journals (Sweden)

    T. Kobashi

    2013-10-01

    Full Text Available Precise understanding of Greenland temperature variability is important in two ways. First, Greenland ice sheet melting associated with rising temperature is a major global sea level forcing, potentially affecting large populations in coming centuries. Second, Greenland temperatures are highly affected by North Atlantic Oscillation/Arctic Oscillation (NAO/AO and Atlantic multidecadal oscillation (AMO. In our earlier study, we found that Greenland temperature deviated negatively (positively from northern hemispheric (NH temperature trend during stronger (weaker solar activity owing to changes in atmospheric/oceanic changes (e.g. NAO/AO over the past 800 yr (Kobashi et al., 2013. Therefore, a precise Greenland temperature record can provide important constraints on the past atmospheric/oceanic circulation in the region and beyond. Here, we investigated Greenland temperature variability over the past 4000 yr reconstructed from argon and nitrogen isotopes from trapped air in a GISP2 ice core, using a one-dimensional energy balance model with orbital, solar, volcanic, greenhouse gas, and aerosol forcings. The modelled northern Northern Hemisphere (NH temperature exhibits a cooling trend over the past 4000 yr as observed for the reconstructed Greenland temperature through decreasing annual average insolation. With consideration of the negative influence of solar variability, the modelled and observed Greenland temperatures agree with correlation coefficients of r = 0.34–0.36 (p = 0.1–0.04 in 21 yr running means (RMs and r = 0.38–0.45 (p = 0.1–0.05 on a centennial timescale (101 yr RMs. Thus, the model can explain 14 to 20% of variance of the observed Greenland temperature in multidecadal to centennial timescales with a 90–96% confidence interval, suggesting that a weak but persistent negative solar influence on Greenland temperature continued over the past 4000 yr. Then, we estimated the distribution of multidecadal NH and northern high

  12. Changes of extreme precipitation and nonlinear influence of climate variables over monsoon region in China

    KAUST Repository

    Gao, Tao

    2017-07-19

    The El Niño-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO) and Pacific decadal oscillation (PDO) are well understood to be major drivers for the variability of precipitation extremes over monsoon regions in China (MRC). However, research on monsoon extremes in China and their associations with climate variables is limited. In this study, we examine the space-time variations of extreme precipitation across the MRC, and assess the time-varying influences of the climate drivers using Bayesian dynamic linear regression and their combined nonlinear effects through fitting generalized additive models. Results suggest that the central-east and south China is dominated by less frequent but more intense precipitation. Extreme rainfalls show significant positive trends, coupled with a significant decline of dry spells, indicating an increasing chance of occurrence of flood-induced disasters in the MRC during 1960–2014. Majority of the regional indices display some abrupt shifts during the 1990s. The influences of climate variables on monsoon extremes exhibit distinct interannual or interdecadal variations. IOD, ENSO and AMO have strong impacts on monsoon and extreme precipitation, especially during the 1990s, which is generally consistent with the abrupt shifts in precipitation regimes around this period. Moreover, ENSO mainly affects moderate rainfalls and dry spells, while IOD has a more significant impact on precipitation extremes. These findings could be helpful for improving the forecasting of monsoon extremes in China and the evaluations of climate models.

  13. Climate variability in the subarctic area for the last 2 millennia

    Directory of Open Access Journals (Sweden)

    M. Nicolle

    2018-01-01

    Full Text Available To put recent climate change in perspective, it is necessary to extend the instrumental climate records with proxy data from paleoclimate archives. Arctic climate variability for the last 2 millennia has been investigated using statistical and signal analyses from three regionally averaged records from the North Atlantic, Siberia and Alaska based on many types of proxy data archived in the Arctic 2k database v1.1.1. In the North Atlantic and Alaska, the major climatic trend is characterized by long-term cooling interrupted by recent warming that started at the beginning of the 19th century. This cooling is visible in the Siberian region at two sites, warming at the others. The cooling of the Little Ice Age (LIA was identified from the individual series, but it is characterized by wide-range spatial and temporal expression of climate variability, in contrary to the Medieval Climate Anomaly. The LIA started at the earliest by around AD 1200 and ended at the latest in the middle of the 20th century. The widespread temporal coverage of the LIA did not show regional consistency or particular spatial distribution and did not show a relationship with archive or proxy type either. A focus on the last 2 centuries shows a recent warming characterized by a well-marked warming trend parallel with increasing greenhouse gas emissions. It also shows a multidecadal variability likely due to natural processes acting on the internal climate system on a regional scale. A ∼ 16–30-year cycle is found in Alaska and seems to be linked to the Pacific Decadal Oscillation, whereas ∼ 20–30- and ∼ 50–90-year periodicities characterize the North Atlantic climate variability, likely in relation with the Atlantic Multidecadal Oscillation. These regional features are probably linked to the sea ice cover fluctuations through ice–temperature positive feedback.

  14. The Baltic Sea natural long-term variability of salinity

    Science.gov (United States)

    Schimanke, Semjon; Markus Meier, H. E.

    2015-04-01

    The Baltic Sea is one of the largest brackish sea areas of the world. The sensitive state of the Baltic Sea is sustained by a fresh-water surplus by river discharge and precipitation on one hand as well as inflows of highly saline and oxygen-rich water masses from the North Sea on the other. Major inflows which are crucial for the renewal of the deep water occur very intermittent with a mean frequency of approximately one per year. Stagnation periods (periods without major inflows) lead for instance to a reduction of oxygen concentration in the deep Baltic Sea spreading hypoxic conditions. Depending on the amount of salt water inflow and fresh-water supply the deep water salinity of the Baltic Sea varies between 11 to 14 PSU on the decadal scale. The goal of this study is to understand the contribution of different driving factors for the decadal to multi-decadal variability of salinity in the Baltic Sea. Continuous measurement series of salinity exist from the 1950 but are not sufficiently long for the investigation of long-term fluctuations. Therefore, a climate simulation of more than 800 years has been carried out with the Rossby Center Ocean model (RCO). RCO is a biogeochemical regional climate model which covers the entire Baltic Sea. It is driven with atmospheric data dynamical downscaled from a GCM mimicking natural climate variability. The analysis focus on the role of variations in river discharge and precipitation, changes in wind speed and direction, fluctuations in temperature and shifts in large scale pressure patterns (e.g. NAO). Hereby, the length of the simulation will allow to identify mechanisms working on decadal to multi-decadal time scales. Moreover, it will be discussed how likely long stagnation periods are under natural climate variability and if the observed exceptional long stagnation period between 1983-1993 might be related to beginning climate change.

  15. Interhemispheric gradient of atmospheric radiocarbon reveals natural variability of Southern Ocean winds

    Science.gov (United States)

    Rodgers, K. B.; Mikaloff-Fletcher, S. E.; Bianchi, D.; Beaulieu, C.; Galbraith, E. D.; Gnanadesikan, A.; Hogg, A. G.; Iudicone, D.; Lintner, B. R.; Naegler, T.; Reimer, P. J.; Sarmiento, J. L.; Slater, R. D.

    2011-10-01

    Tree ring Δ14C data (Reimer et al., 2004; McCormac et al., 2004) indicate that atmospheric Δ14C varied on multi-decadal to centennial timescales, in both hemispheres, over the period between AD 950 and 1830. The Northern and Southern Hemispheric Δ14C records display similar variability, but from the data alone is it not clear whether these variations are driven by the production of 14C in the stratosphere (Stuiver and Quay, 1980) or by perturbations to exchanges between carbon reservoirs (Siegenthaler et al., 1980). As the sea-air flux of 14CO2 has a clear maximum in the open ocean regions of the Southern Ocean, relatively modest perturbations to the winds over this region drive significant perturbations to the interhemispheric gradient. In this study, model simulations are used to show that Southern Ocean winds are likely a main driver of the observed variability in the interhemispheric gradient over AD 950-1830, and further, that this variability may be larger than the Southern Ocean wind trends that have been reported for recent decades (notably 1980-2004). This interpretation also implies that there may have been a significant weakening of the winds over the Southern Ocean within a few decades of AD 1375, associated with the transition between the Medieval Climate Anomaly and the Little Ice Age. The driving forces that could have produced such a shift in the winds at the Medieval Climate Anomaly to Little Ice Age transition remain unknown. Our process-focused suite of perturbation experiments with models raises the possibility that the current generation of coupled climate and earth system models may underestimate the natural background multi-decadal- to centennial-timescale variations in the winds over the Southern Ocean.

  16. Interhemispheric gradient of atmospheric radiocarbon reveals natural variability of Southern Ocean winds

    Directory of Open Access Journals (Sweden)

    K. B. Rodgers

    2011-10-01

    Full Text Available Tree ring Δ14C data (Reimer et al., 2004; McCormac et al., 2004 indicate that atmospheric Δ14C varied on multi-decadal to centennial timescales, in both hemispheres, over the period between AD 950 and 1830. The Northern and Southern Hemispheric Δ14C records display similar variability, but from the data alone is it not clear whether these variations are driven by the production of 14C in the stratosphere (Stuiver and Quay, 1980 or by perturbations to exchanges between carbon reservoirs (Siegenthaler et al., 1980. As the sea-air flux of 14CO2 has a clear maximum in the open ocean regions of the Southern Ocean, relatively modest perturbations to the winds over this region drive significant perturbations to the interhemispheric gradient. In this study, model simulations are used to show that Southern Ocean winds are likely a main driver of the observed variability in the interhemispheric gradient over AD 950–1830, and further, that this variability may be larger than the Southern Ocean wind trends that have been reported for recent decades (notably 1980–2004. This interpretation also implies that there may have been a significant weakening of the winds over the Southern Ocean within a few decades of AD 1375, associated with the transition between the Medieval Climate Anomaly and the Little Ice Age. The driving forces that could have produced such a shift in the winds at the Medieval Climate Anomaly to Little Ice Age transition remain unknown. Our process-focused suite of perturbation experiments with models raises the possibility that the current generation of coupled climate and earth system models may underestimate the natural background multi-decadal- to centennial-timescale variations in the winds over the Southern Ocean.

  17. Trends and natural variability of North American spring onset as evaluated by a new gridded dataset of spring indices

    Science.gov (United States)

    Ault, Toby R.; Schwartz, Mark D.; Zurita-Milla, Raul; Weltzin, Jake F.; Betancourt, Julio L.

    2015-01-01

    Climate change is expected to modify the timing of seasonal transitions this century, impacting wildlife migrations, ecosystem function, and agricultural activity. Tracking seasonal transitions in a consistent manner across space and through time requires indices that can be used for monitoring and managing biophysical and ecological systems during the coming decades. Here a new gridded dataset of spring indices is described and used to understand interannual, decadal, and secular trends across the coterminous United States. This dataset is derived from daily interpolated meteorological data, and the results are compared with historical station data to ensure the trends and variations are robust. Regional trends in the first leaf index range from 20.8 to 21.6 days decade21, while first bloom index trends are between20.4 and 21.2 for most regions. However, these trends are modulated by interannual to multidecadal variations, which are substantial throughout the regions considered here. These findings emphasize the important role large-scale climate modes of variability play in modulating spring onset on interannual to multidecadal time scales. Finally, there is some potential for successful subseasonal forecasts of spring onset, as indices from most regions are significantly correlated with antecedent large-scale modes of variability.

  18. Rising climate variability and synchrony in North Pacific ecosystems

    Science.gov (United States)

    Black, Bryan

    2017-04-01

    Rising climate variability and synchrony in North Pacific ecosystems Evidence is growing that climate variability of the northeast Pacific Ocean has increased over the last century, culminating in such events as the record-breaking El Niño years 1983, 1998, and 2016 and the unusually persistent 2014/15 North Pacific Ocean heat wave known as "The Blob." Of particular concern is that rising variability could increase synchrony within and among North Pacific ecosystems, which could reduce the diversity of biological responses to climate (i.e. the "portfolio effect"), diminish resilience, and leave populations more prone to extirpation. To test this phenomenon, we use a network of multidecadal fish otolith growth-increment chronologies that were strongly correlated to records of winter (Jan-Mar) sea level. These biological and physical datasets spanned the California Current through the Gulf of Alaska. Synchrony was quantified as directional changes in running (31-year window) mean pairwise correlation within sea level and then within otolith time series. Synchrony in winter sea level at the nine stations with the longest records has increased by more than 40% over the 1950-2015 interval. Likewise, synchrony among the eight longest otolith chronologies has increased more than 100% over a comparable time period. These directional changes in synchrony are highly unlikely due to chance alone, as confirmed by comparing trends in observed data to those in simulated data (n = 10,000 iterations) with time series of identical number, length, and autocorrelation. Ultimately, this trend in rising synchrony may be linked to increased impacts of the El Niño Southern Oscillation (ENSO) on mid-latitude ecosystems of North America, and may therefore reflect a much broader, global-scale signature.

  19. Strong-field Breit–Wheeler pair production in two consecutive laser pulses with variable time delay

    Directory of Open Access Journals (Sweden)

    Martin J.A. Jansen

    2017-03-01

    Full Text Available Photoproduction of electron–positron pairs by the strong-field Breit–Wheeler process in an intense laser field is studied. The laser field is assumed to consist of two consecutive short pulses, with a variable time delay in between. By numerical calculations within the framework of scalar quantum electrodynamics, we demonstrate that the time delay exerts a strong impact on the pair-creation probability. For the case when both pulses are identical, the effect is traced back to the relative quantum phase of the interfering S-matrix amplitudes and explained within a simplified analytical model. Conversely, when the two laser pulses differ from each other, the pair-creation probability depends not only on the time delay but, in general, also on the temporal order of the pulses.

  20. The impact of monsoon intraseasonal variability on renewable power generation in India

    International Nuclear Information System (INIS)

    Dunning, C M; Turner, A G; Brayshaw, D J

    2015-01-01

    India is increasingly investing in renewable technology to meet rising energy demands, with hydropower and other renewables comprising one-third of current installed capacity. Installed wind-power is projected to increase 5-fold by 2035 (to nearly 100GW) under the International Energy Agency's New Policies scenario. However, renewable electricity generation is dependent upon the prevailing meteorology, which is strongly influenced by monsoon variability. Prosperity and widespread electrification are increasing the demand for air conditioning, especially during the warm summer. This study uses multi-decadal observations and meteorological reanalysis data to assess the impact of intraseasonal monsoon variability on the balance of electricity supply from wind-power and temperature-related demand in India. Active monsoon phases are characterized by vigorous convection and heavy rainfall over central India. This results in lower temperatures giving lower cooling energy demand, while strong westerly winds yield high wind-power output. In contrast, monsoon breaks are characterized by suppressed precipitation, with higher temperatures and hence greater demand for cooling, and lower wind-power output across much of India. The opposing relationship between wind-power supply and cooling demand during active phases (low demand, high supply) and breaks (high demand, low supply) suggests that monsoon variability will tend to exacerbate fluctuations in the so-called demand-net-wind (i.e., electrical demand that must be supplied from non-wind sources). This study may have important implications for the design of power systems and for investment decisions in conventional schedulable generation facilities (such as coal and gas) that are used to maintain the supply/demand balance. In particular, if it is assumed (as is common) that the generated wind-power operates as a price-taker (i.e., wind farm operators always wish to sell their power, irrespective of price) then investors

  1. The impact of monsoon intraseasonal variability on renewable power generation in India

    Science.gov (United States)

    Dunning, C. M.; Turner, A. G.; Brayshaw, D. J.

    2015-06-01

    India is increasingly investing in renewable technology to meet rising energy demands, with hydropower and other renewables comprising one-third of current installed capacity. Installed wind-power is projected to increase 5-fold by 2035 (to nearly 100GW) under the International Energy Agency's New Policies scenario. However, renewable electricity generation is dependent upon the prevailing meteorology, which is strongly influenced by monsoon variability. Prosperity and widespread electrification are increasing the demand for air conditioning, especially during the warm summer. This study uses multi-decadal observations and meteorological reanalysis data to assess the impact of intraseasonal monsoon variability on the balance of electricity supply from wind-power and temperature-related demand in India. Active monsoon phases are characterized by vigorous convection and heavy rainfall over central India. This results in lower temperatures giving lower cooling energy demand, while strong westerly winds yield high wind-power output. In contrast, monsoon breaks are characterized by suppressed precipitation, with higher temperatures and hence greater demand for cooling, and lower wind-power output across much of India. The opposing relationship between wind-power supply and cooling demand during active phases (low demand, high supply) and breaks (high demand, low supply) suggests that monsoon variability will tend to exacerbate fluctuations in the so-called demand-net-wind (i.e., electrical demand that must be supplied from non-wind sources). This study may have important implications for the design of power systems and for investment decisions in conventional schedulable generation facilities (such as coal and gas) that are used to maintain the supply/demand balance. In particular, if it is assumed (as is common) that the generated wind-power operates as a price-taker (i.e., wind farm operators always wish to sell their power, irrespective of price) then investors in

  2. Variability of the ocean heat content during the last millennium – an assessment with the ECHO-g Model

    Directory of Open Access Journals (Sweden)

    P. Ortega

    2013-03-01

    Full Text Available Studies addressing climate variability during the last millennium generally focus on variables with a direct influence on climate variability, like the fast thermal response to varying radiative forcing, or the large-scale changes in atmospheric dynamics (e.g. North Atlantic Oscillation. The ocean responds to these variations by slowly integrating in depth the upper heat flux changes, thus producing a delayed influence on ocean heat content (OHC that can later impact low frequency SST (sea surface temperature variability through reemergence processes. In this study, both the externally and internally driven variations of the OHC during the last millennium are investigated using a set of fully coupled simulations with the ECHO-G (coupled climate model ECHAMA4 and ocean model HOPE-G atmosphere–ocean general circulation model (AOGCM. When compared to observations for the last 55 yr, the model tends to overestimate the global trends and underestimate the decadal OHC variability. Extending the analysis back to the last one thousand years, the main impact of the radiative forcing is an OHC increase at high latitudes, explained to some extent by a reduction in cloud cover and the subsequent increase of short-wave radiation at the surface. This OHC response is dominated by the effect of volcanism in the preindustrial era, and by the fast increase of GHGs during the last 150 yr. Likewise, salient impacts from internal climate variability are observed at regional scales. For instance, upper temperature in the equatorial Pacific is controlled by ENSO (El Niño Southern Oscillation variability from interannual to multidecadal timescales. Also, both the Pacific Decadal Oscillation (PDO and the Atlantic Multidecadal Oscillation (AMO modulate intermittently the interdecadal OHC variability in the North Pacific and Mid Atlantic, respectively. The NAO, through its influence on North Atlantic surface heat fluxes and convection, also plays an important role on

  3. The response of the North Pacific Decadal Variability to strong tropical volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tao [Chinese Academy of Sciences, Nansen-Zhu International Research Center, Institute of Atmospheric Physics, Beijing (China); Otteraa, Odd Helge [Uni Bjerknes Centre, Uni Research, Bergen (Norway); Bjerknes Center for Climate Research, Bergen (Norway); Gao, Yongqi [Chinese Academy of Sciences, Nansen-Zhu International Research Center, Institute of Atmospheric Physics, Beijing (China); Bjerknes Center for Climate Research, Bergen (Norway); Nansen Environmental and Remote Sensing Center, Bergen (Norway); Wang, Huijun [Chinese Academy of Sciences, Nansen-Zhu International Research Center, Institute of Atmospheric Physics, Beijing (China); Chinese Academy of Sciences, Climate Change Research Center, Institute of Atmospheric Physics, Beijing (China)

    2012-12-15

    In this study, the effects of volcanic forcing on North Pacific climate variability, on interannual to decadal time scales, are examined using climate model simulations covering the last 600 years. The model used is the Bergen Climate Model, a fully coupled atmosphere-ocean general circulation model. It is found that natural external forcings, such as tropical strong volcanic eruptions (SVEs) and variations in total solar irradiance, play an important role in regulating North Pacific Decadal Variability (NPDV). In response to tropical SVEs the lower stratospheric pole-to-equator temperature gradient is enhanced. The North polar vortex is strengthened, which forces a significant positive Arctic Oscillation. At the same time, dipole zonal wind anomalies associated with strong polar vortex propagate downward from the lower stratosphere. Through positive feedbacks in the troposphere, the surface westerly winds across the central North Pacific are significantly weakened, and positive sea level pressure anomalies are formed in the North Pacific. This anomalous surface circulation results in changes in the net heat fluxes and the oceanic advection across the North Pacific. As a result of this, warm water converges in the subtropical western North Pacific, where the surface waters in addition are heated by significantly reduced latent and sensible heat fluxes from the ocean. In the eastern and high-latitude North Pacific the ocean loses more heat, and large-scale decreases in sea surface temperatures are found. The overall response of this chain of events is that the North Pacific enters a negative phase of the Pacific decadal oscillation (PDO), and this negative phase of the PDO is maintained for several years. It is thus concluded that the volcanic forcing plays a key role in the phasing of the PDO. The model results furthermore highlight the important role of troposphere-stratosphere coupling, tropical-extratropical teleconnections and extratropical ocean

  4. Rainfall variability, climate change and regionalization in the African monsoon region

    International Nuclear Information System (INIS)

    Fontaine, Bernard; Roucou, Pascal; Vigaud, Nicolas; Camara, Moctar; Konare, Abdourahamane; Sanda, Seidou Ibrah; Diedhiou, Arona; Janicot, Serge

    2012-01-01

    This summary recalls some results at the end of the AMMA international experiment (2003-2010) in terms of variability of the African monsoon at the intra-seasonal to multi-decadal scales and of climate prospective. The results confirmed the weight of surface temperatures and marine tele-connections for inter-annual and decadal fluctuations and stressed the importance of atmospheric variability. They also described the dominant modes of intra-seasonal variability as their interactions with the surface. Several hypotheses involving memory effects related to soil water and vegetation, particularly in boreal spring and autumn have also been made. Prospective analysis from model output suggests rainfall surplus around 2050 over the Eastern-central Sahel and relative deficit to the West. Phase 2 of AMMA (2010-2020) will focus more on aspects that have a high social impact in direct collaboration with meteorological services predictability, prediction scores, operational indicators, evaluation of the part of anthropogenic forcing in the current and future variations. (authors)

  5. Enhanced biennial variability in the Pacific due to Atlantic capacitor effect.

    Science.gov (United States)

    Wang, Lei; Yu, Jin-Yi; Paek, Houk

    2017-03-20

    The El Niño-Southern Oscillation (ENSO) and the variability in the Pacific subtropical highs (PSHs) have major impacts on social and ecological systems. Here we present an Atlantic capacitor effect mechanism to suggest that the Atlantic is a key pacemaker of the biennial variability in the Pacific including that in ENSO and the PSHs during recent decades. The 'charging' (that is, ENSO imprinting the North Tropical Atlantic (NTA) sea surface temperature (SST) via an atmospheric bridge mechanism) and 'discharging' (that is, the NTA SST triggering the following ENSO via a subtropical teleconnection mechanism) processes alternate, generating the biennial rhythmic changes in the Pacific. Since the early 1990s, a warmer Atlantic due to the positive phase of Atlantic multidecadal oscillation and global warming trend has provided more favourable background state for the Atlantic capacitor effect, giving rise to enhanced biennial variability in the Pacific that may increase the occurrence frequency of severe natural hazard events.

  6. Multi-Decadal Averages of Basal Melt for Ross Ice Shelf, Antarctica Using Airborne Observations

    Science.gov (United States)

    Das, I.; Bell, R. E.; Tinto, K. J.; Frearson, N.; Kingslake, J.; Padman, L.; Siddoway, C. S.; Fricker, H. A.

    2017-12-01

    Changes in ice shelf mass balance are key to the long term stability of the Antarctic Ice Sheet. Although the most extensive ice shelf mass loss currently is occurring in the Amundsen Sea sector of West Antarctica, many other ice shelves experience changes in thickness on time scales from annual to ice age cycles. Here, we focus on the Ross Ice Shelf. An 18-year record (1994-2012) of satellite radar altimetry shows substantial variability in Ross Ice Shelf height on interannual time scales, complicating detection of potential long-term climate-change signals in the mass budget of this ice shelf. Variability of radar signal penetration into the ice-shelf surface snow and firn layers further complicates assessment of mass changes. We investigate Ross Ice Shelf mass balance using aerogeophysical data from the ROSETTA-Ice surveys using IcePod. We use two ice-penetrating radars; a 2 GHz unit that images fine-structure in the upper 400 m of the ice surface and a 360 MHz radar to identify the ice shelf base. We have identified internal layers that are continuous along flow from the grounding line to the ice shelf front. Based on layer continuity, we conclude that these layers must be the horizons between the continental ice of the outlet glaciers and snow accumulation once the ice is afloat. We use the Lagrangian change in thickness of these layers, after correcting for strain rates derived using modern day InSAR velocities, to estimate multidecadal averaged basal melt rates. This method provides a novel way to quantify basal melt, avoiding the confounding impacts of spatial and short-timescale variability in surface accumulation and firn densification processes. Our estimates show elevated basal melt rates (> -1m/yr) around Byrd and Mullock glaciers within 100 km from the ice shelf front. We also compare modern InSAR velocity derived strain rates with estimates from the comprehensive ground-based RIGGS observations during 1973-1978 to estimate the potential magnitude of

  7. Multidecadal increase in North Atlantic coccolithophores and the potential role of rising CO₂.

    Science.gov (United States)

    Rivero-Calle, Sara; Gnanadesikan, Anand; Del Castillo, Carlos E; Balch, William M; Guikema, Seth D

    2015-12-18

    As anthropogenic carbon dioxide (CO2) emissions acidify the oceans, calcifiers generally are expected to be negatively affected. However, using data from the Continuous Plankton Recorder, we show that coccolithophore occurrence in the North Atlantic increased from ~2 to more than 20% from 1965 through 2010. We used random forest models to examine more than 20 possible environmental drivers of this change, finding that CO2 and the Atlantic Multidecadal Oscillation were the best predictors, leading us to hypothesize that higher CO2 levels might be encouraging growth. A compilation of 41 independent laboratory studies supports our hypothesis. Our study shows a long-term basin-scale increase in coccolithophores and suggests that increasing CO2 and temperature have accelerated the growth of a phytoplankton group that is important for carbon cycling. Copyright © 2015, American Association for the Advancement of Science.

  8. Variability of the Atlantic meridional overturning circulation in the last millennium and two IPCC scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Pablo; Montoya, Marisa; Gonzalez-Rouco, Fidel [Universidad Complutense de Madrid, Ciudad Universitaria, Dpto. Astrofisica y Ciencias de la Atmosfera/Instituto de Geociencias, Facultad de Ciencias Fisicas, Madrid (Spain); Universidad Complutense de Madrid, Ciudad Universitaria, Instituto de Geociencias (UCM-CSIC), Facultad de Ciencias Fisicas, Madrid (Spain); Mignot, Juliette [IPSL/LOCEAN, UPMC/CNRS/IRD/MNHN, Universite Pierre et Marie Curie, Paris Cedex 05 (France); Legutke, Stephanie [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany)

    2012-05-15

    The variability of the Atlantic meridional overturning circulation (AMOC) is investigated in several climate simulations with the ECHO-G atmosphere-ocean general circulation model, including two forced integrations of the last millennium, one millennial-long control run, and two future scenario simulations of the twenty-first century. This constitutes a new framework in which the AMOC response to future climate change conditions is addressed in the context of both its past evolution and its natural variability. The main mechanisms responsible for the AMOC variability at interannual and multidecadal time scales are described. At high frequencies, the AMOC is directly responding to local changes in the Ekman transport, associated with three modes of climate variability: El Nino-Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and the East Atlantic (EA) pattern. At low frequencies, the AMOC is largely controlled by convection activity south of Greenland. Again, the atmosphere is found to play a leading role in these variations. Positive anomalies of convection are preceded in 1 year by intensified zonal winds, associated in the forced runs to a positive NAO-like pattern. Finally, the sensitivity of the AMOC to three different forcing factors is investigated. The major impact is associated with increasing greenhouse gases, given their strong and persistent radiative forcing. Starting in the Industrial Era and continuing in the future scenarios, the AMOC experiences a final decrease of up to 40% with respect to the preindustrial average. Also, a weak but significant AMOC strengthening is found in response to the major volcanic eruptions, which produce colder and saltier surface conditions over the main convection regions. In contrast, no meaningful impact of the solar forcing on the AMOC is observed. Indeed, solar irradiance only affects convection in the Nordic Seas, with a marginal contribution to the AMOC variability in the ECHO-G runs. (orig.)

  9. Multidecadal increase in North Atlantic coccolithophores and the potential role of rising CO2

    Science.gov (United States)

    Rivero-Calle, Sara; Gnanadesikan, Anand; Del Castillo, Carlos E.; Balch, William M.; Guikema, Seth D.

    2015-12-01

    As anthropogenic carbon dioxide (CO2) emissions acidify the oceans, calcifiers generally are expected to be negatively affected. However, using data from the Continuous Plankton Recorder, we show that coccolithophore occurrence in the North Atlantic increased from ~2 to more than 20% from 1965 through 2010. We used random forest models to examine more than 20 possible environmental drivers of this change, finding that CO2 and the Atlantic Multidecadal Oscillation were the best predictors, leading us to hypothesize that higher CO2 levels might be encouraging growth. A compilation of 41 independent laboratory studies supports our hypothesis. Our study shows a long-term basin-scale increase in coccolithophores and suggests that increasing CO2 and temperature have accelerated the growth of a phytoplankton group that is important for carbon cycling.

  10. Warming of the Global Ocean: Spatial Structure and Water-Mass Trends

    Science.gov (United States)

    Hakkinen, Sirpa; Rhines, Peter B.; Worthen, Denise L.

    2016-01-01

    This study investigates the multidecadal warming and interannual-to-decadal heat content changes in the upper ocean (0-700 m), focusing on vertical and horizontal patterns of variability. These results support a nearly monotonic warming over much of the World Ocean, with a shift toward Southern Hemisphere warming during the well-observed past decade. This is based on objectively analyzed gridded observational datasets and on a modeled state estimate. Besides the surface warming, a warming climate also has a subsurface effect manifesting as a strong deepening of the midthermocline isopycnals, which can be diagnosed directly from hydrographic data. This deepening appears to be a result of heat entering via subduction and spreading laterally from the high-latitude ventilation regions of subtropical mode waters. The basin-average multidecadal warming mainly expands the subtropical mode water volume, with weak changes in the temperature-salinity (u-S) relationship (known as ''spice'' variability). However, the spice contribution to the heat content can be locally large, for example in Southern Hemisphere. Multidecadal isopycnal sinking has been strongest over the southern basins and weaker elsewhere with the exception of the Gulf Stream/North Atlantic Current/subtropical recirculation gyre. At interannual to decadal time scales, wind-driven sinking and shoaling of density surfaces still dominate ocean heat content changes, while the contribution from temperature changes along density surfaces tends to decrease as time scales shorten.

  11. Climate variability and extremes, interacting with nitrogen storage, amplify eutrophication risk

    Science.gov (United States)

    Lee, Minjin; Shevliakova, Elena; Malyshev, Sergey; Milly, P.C.D.; Jaffe, Peter R.

    2016-01-01

    Despite 30 years of basin-wide nutrient-reduction efforts, severe hypoxia continues to be observed in the Chesapeake Bay. Here we demonstrate the critical influence of climate variability, interacting with accumulated nitrogen (N) over multidecades, on Susquehanna River dissolved nitrogen (DN) loads, known precursors of the hypoxia in the Bay. We used the process model LM3-TAN (Terrestrial and Aquatic Nitrogen), which is capable of capturing both seasonal and decadal-to-century changes in vegetation-soil-river N storage, and produced nine scenarios of DN-load distributions under different short-term scenarios of climate variability and extremes. We illustrate that after 1 to 3 yearlong dry spells, the likelihood of exceeding a threshold DN load (56 kt yr−1) increases by 40 to 65% due to flushing of N accumulated throughout the dry spells and altered microbial processes. Our analyses suggest that possible future increases in climate variability/extremes—specifically, high precipitation occurring after multiyear dry spells—could likely lead to high DN-load anomalies and hypoxia.

  12. Detailed observations of NGC 4151 with IUE-III. Variability of the strong emission lines from 1978 February to 1980 May

    International Nuclear Information System (INIS)

    Ulrich, M.H.; Boksenberg, A.; Bromage, G.E.

    1983-11-01

    Observations of the variability of the three strong ultraviolet emission lines in the Seyfert galaxy NGC 4151 (CIV, CIII, and MgII) are used to study the structure of the broad line region and the nuclear energy source of this active galaxy. (author)

  13. Atmospheric forcing of decadal Baltic Sea level variability in the last 200 years. A statistical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huenicke, B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Kuestenforschung

    2008-11-06

    This study aims at the estimation of the impact of different atmospheric factors on the past sealevel variations (up to 200 years) in the Baltic Sea by statistically analysing the relationship between Baltic Sea level records and observational and proxy-based reconstructed climatic data sets. The focus lies on the identification and possible quantification of the contribution of sealevel pressure (wind), air-temperature and precipitation to the low-frequency (decadal and multi-decadal) variability of Baltic Sea level. It is known that the wind forcing is the main factor explaining average Baltic Sea level variability at inter-annual to decadal timescales, especially in wintertime. In this thesis it is statistically estimated to what extent other regional climate factors contribute to the spatially heterogeneous Baltic Sea level variations around the isostatic trend at multi-decadal timescales. Although the statistical analysis cannot be completely conclusive, as the potential climate drivers are all statistically interrelated to some degree, the results indicate that precipitation should be taken into account as an explanatory variable for sea-level variations. On the one hand it has been detected that the amplitude of the annual cycle of Baltic Sea level has increased throughout the 20th century and precipitation seems to be the only factor among those analysed (wind through SLP field, barometric effect, temperature and precipitation) that can account for this evolution. On the other hand, precipitation increases the ability to hindcast inter-annual variations of sea level in some regions and seasons, especially in the Southern Baltic in summertime. The mechanism by which precipitation exerts its influence on Baltic Sea level is not ascertained in this statistical analysis due to the lack of long salinity time series. This result, however, represents a working hypothesis that can be confirmed or disproved by long simulations of the Baltic Sea system - ocean

  14. Why are models unable to reproduce multi-decadal trends in lower tropospheric baseline ozone levels?

    Science.gov (United States)

    Hu, L.; Liu, J.; Mickley, L. J.; Strahan, S. E.; Steenrod, S.

    2017-12-01

    Assessments of tropospheric ozone radiative forcing rely on accurate model simulations. Parrish et al (2014) found that three chemistry-climate models (CCMs) overestimate present-day O3 mixing ratios and capture only 50% of the observed O3 increase over the last five decades at 12 baseline sites in the northern mid-latitudes, indicating large uncertainties in our understanding of the ozone trends and their implications for radiative forcing. Here we present comparisons of outputs from two chemical transport models (CTMs) - GEOS-Chem and the Global Modeling Initiative model - with O3 observations from the same sites and from the global ozonesonde network. Both CTMs are driven by reanalysis meteorological data (MERRA or MERRA2) and thus are expected to be different in atmospheric transport processes relative to those freely running CCMs. We test whether recent model developments leading to more active ozone chemistry affect the computed ozone sensitivity to perturbations in emissions. Preliminary results suggest these CTMs can reproduce present-day ozone levels but fail to capture the multi-decadal trend since 1980. Both models yield widespread overpredictions of free tropospheric ozone in the 1980s. Sensitivity studies in GEOS-Chem suggest that the model estimate of natural background ozone is too high. We discuss factors that contribute to the variability and trends of tropospheric ozone over the last 30 years, with a focus on intermodel differences in spatial resolution and in the representation of stratospheric chemistry, stratosphere-troposphere exchange, halogen chemistry, and biogenic VOC emissions and chemistry. We also discuss uncertainty in the historical emission inventories used in models, and how these affect the simulated ozone trends.

  15. Long-Term Trends, Variability and Extremes of In Situ Sea Surface Temperature Measured Along the Eastern Adriatic Coast and its Relationship to Hemispheric Processes

    Science.gov (United States)

    Grbec, Branka; Matić, Frano; Beg Paklar, Gordana; Morović, Mira; Popović, Ružica; Vilibić, Ivica

    2018-02-01

    This paper examines long-term series of in situ sea surface temperature (SST) data measured at nine coastal and one open sea stations along the eastern Adriatic Sea for the period 1959-2015. Monthly and yearly averages were used to document SST trends and variability, while clustering and connections to hemispheric indices were achieved by applying the Principal Component Analysis (PCA) and Self-Organizing Maps (SOM) method. Both PCA and SOM revealed the dominance of temporal changes with respect to the effects of spatial differences in SST anomalies, indicating the prevalence of hemispheric processes over local dynamics, such as bora wind spatial inhomogeneity. SST extremes were connected with blocking atmospheric patterns. A substantial warming between 1979 and 2015, in total exceeding 1 °C, was preceded by a period with a negative SST trend, implying strong multidecadal variability in the Adriatic. The strongest connection was found between yearly SST and the East Atlantic (EA) pattern, while North Atlantic Oscillation (NAO) and East Atlantic/West Russia (EAWR) patterns were found to also affect February SST values. Quantification of the Adriatic SST and their connection to hemispheric indices allow for more precise projections of future SST, considered to be rather important for Adriatic thermohaline circulation, biogeochemistry and fisheries, and sensitive to ongoing climate change.

  16. Hydroclimate variability in NE Brazil over the last 2K

    Science.gov (United States)

    Giselle, Utida; Ioanna, Bouloubassi; Francisco, Cruz; Enno, Schefuβ; Abdel, Sifeddine; Vincent, Klein; Johan, Etourneau; Renata, Zocatelli; André, Zular; Hai, Cheng; Laurence, Edwards R.

    2016-04-01

    Precipitation associated with the South American Summer Monsoon (SASM) and the Intertropical Convergence Zone (ITCZ) supplies more than 70% of tropical South America's annual precipitation and is fundamental in sustaining the water regime for regional socioeconomic activities. Motivated by the fact that the greatest uncertainty in model projections of future precipitation trends lies in the tropics, and particularly in South America, a number of recent proxy and modeling studies have aimed at understanding SASM spatiotemporal variability regarding its dynamics, driving mechanisms and teleconnections. Exact reconstructions of past meridional ITCZ displacements (timing, sign, amplitude), however, are currently lacking, mainly because of the paucity of suited high-resolution archives. This restricts our ability to assess regional rainfall variability at decadal to centennial timescales, especially in the hydroclimatic-sensitive semi-arid Nordeste, needed to understand the interactions between SASM and ITCZ and to evaluate the impact of Pacific-Atlantic climate interactions on the regional rainfall variability at decadal/multi-decadal scale. Here we present two new and complementary high-resolution records of past precipitation over the last 2K from the north area of Nordeste, an area ideally located to track fluctuations in the southernmost edge of ITCZ movement. We present a new δO18 record from a local speleothem and combine it, for the first time, with δD analyses of wax lipids in well-dated sediments from a nearby lake. The two independent records show a remarkable similarity and are characterized by strong decadal to multidecadal variability as well as century-scale changes. The period 250-450 yrs CE appears as the wettest phase over the last 2K, while the Medieval Climate Anomaly (MCA) is characterized by extremely dry conditions. Following the MCA, the Little Ice Age (LIA) is a relatively wetter phase. The data document fluctuations of southern meridional

  17. Impact of climate variability on runoff in the north-central United States

    Science.gov (United States)

    Ryberg, Karen R.; Lin, Wei; Vecchia, Aldo V.

    2014-01-01

    Large changes in runoff in the north-central United States have occurred during the past century, with larger floods and increases in runoff tending to occur from the 1970s to the present. The attribution of these changes is a subject of much interest. Long-term precipitation, temperature, and streamflow records were used to compare changes in precipitation and potential evapotranspiration (PET) to changes in runoff within 25 stream basins. The basins studied were organized into four groups, each one representing basins similar in topography, climate, and historic patterns of runoff. Precipitation, PET, and runoff data were adjusted for near-decadal scale variability to examine longer-term changes. A nonlinear water-balance analysis shows that changes in precipitation and PET explain the majority of multidecadal spatial/temporal variability of runoff and flood magnitudes, with precipitation being the dominant driver. Historical changes in climate and runoff in the region appear to be more consistent with complex transient shifts in seasonal climatic conditions than with gradual climate change. A portion of the unexplained variability likely stems from land-use change.

  18. Atlantic Multidecadal Oscillation footprint on global high cloud cover

    Science.gov (United States)

    Vaideanu, Petru; Dima, Mihai; Voiculescu, Mirela

    2017-12-01

    Due to the complexity of the physical processes responsible for cloud formation and to the relatively short satellite database of continuous data records, cloud behavior in a warming climate remains uncertain. Identifying physical links between climate modes and clouds would contribute not only to a better understanding of the physical processes governing their formation and dynamics, but also to an improved representation of the clouds in climate models. Here, we identify the global footprint of the Atlantic Multidecadal Oscillation (AMO) on high cloud cover, with focus on the tropical and North Atlantic, tropical Pacific and on the circum-Antarctic sector. In the tropical band, the sea surface temperature (SST) and high cloud cover (HCC) anomalies are positively correlated, indicating a dominant role played by convection in mediating the influence of the AMO-related SST anomalies on the HCC field. The negative SST-HCC correlation observed in North Atlantic could be explained by the reduced meridional temperature gradient induced by the AMO positive phase, which would be reflected in less storms and negative HCC anomalies. A similar negative SST-HCC correlation is observed around Antarctica. The corresponding negative correlation around Antarctica could be generated dynamically, as a response to the intensified upward motion in the Ferrel cell. Despite the inherent imperfection of the observed and reanalysis data sets, the AMO footprint on HCC is found to be robust to the choice of dataset, statistical method, and specific time period considered.

  19. An analysis of surface air temperature trends and variability along the Andes

    Science.gov (United States)

    Franquist, Eric S.

    Climate change is difficult to study in mountainous regions such as the Andes since steep changes in elevation cannot always be resolved by climate models. However, it is important to examine temperature trends in this region as rises in surface air temperature are leading to the melting of tropical glaciers. Local communities rely on the glacier-fed streamflow to get their water for drinking, irrigation, and livestock. Moreover, communities also rely on the tourism of hikers who come to the region to view the glaciers. As the temperatures increase, these glaciers are no longer in equilibrium with their current climate and are receding rapidly and decreasing the streamflow. This thesis examines surface air temperature from 858 weather stations across Ecuador, Peru, and Chile in order to analyze changes in trends and variability. Three time periods were studied: 1961--1990, 1971--2000, and 1981--2010. The greatest warming occurred during the period of 1971--2000 with 92% of the stations experiencing positive trends with a mean of 0.24°C/decade. There was a clear shift toward cooler temperatures at all latitudes and below elevations of 500 m during the most recent time period studied (1981--2010). Station temperatures were more strongly correlated with the El Nino Southern Oscillation (ENSO), than the Pacific Decadal Oscillation (PDO), and the Southern Annular Mode (SAM). A principal component analysis confirmed ENSO as the main contributor of variability with the most influence in the lower latitudes. There were clear multidecadal changes in correlation strength for the PDO. The PDO contributed the most to the increases in station temperature trends during the 1961--1990 period, consistent with the PDO shift to the positive phase in the middle of this period. There were many strong positive trends at individual stations during the 1971--2000 period; however, these trends could not fully be attributed to ENSO, PDO, or SAM, indicating anthropogenic effects of

  20. Variability of the Tropical Ocean Surface Temperatures at Decadal-Multidecadal Timescales. Part I: The Atlantic Ocean.

    Science.gov (United States)

    Mehta, Vikram M.

    1998-09-01

    Gridded time series from the Global Ocean Surface Temperature Atlas were analyzed with a variety of techniques to identify spatial structures and oscillation periods of the tropical Atlantic sea surface temperature (SST) variations at decadal timescales, and to develop physical interpretations of statistical patterns of decadal SST variations. Each time series was 110 yr (1882-1991) long. The tropical Atlantic SST variations were compared with decadal variations in a 74-yr-long (1912-85) north Nordeste Brazil rainfall time series and a 106-yr-long (1886-1991) tropical Atlantic cyclone activity index time series. The tropical Atlantic SST variations were also compared with decadal variations in the extratropical Atlantic SST.Multiyear to multidecadal variations in the cross-equatorial dipole pattern identified as a dominant empirical pattern of the tropical Atlantic SST variations in earlier and present studies are shown to be variations in the approximately north-south gradient of SST anomalies. It is also shown that there was no dynamical-thermodynamical, dipole mode of SST variations during the analysis period. There was a distinct decadal timescale (12-13 yr) of SST variations in the tropical South Atlantic, whereas no distinct decadal timescale was found in the tropical North Atlantic SST variations. Approximately 80% of the coherent decadal variance in the cross-equatorial SST gradient was `explained' by coherent decadal oscillations in the tropical South Atlantic SSTs. There were three, possibly physical, modes of decadal variations in the tropical Atlantic SSTs during the analysis period. In the more energetic mode of the North Atlantic decadal SST variations, anomalies traveled into the tropical North Atlantic from the extratropical North Atlantic along the eastern boundary of the basin. The anomalies strengthened and resided in the tropical North Atlantic for several years, then frequently traveled northward into the mid-high-latitude North Atlantic along

  1. Historical fire and multidecadal drought as context for piñon - Juniper woodland restoration in western Colorado

    Science.gov (United States)

    Shinneman, Douglas J.; Baker, William L.

    2009-01-01

    Fire is known to structure tree populations, but the role of broad-scale climate variability is less clear. For example, the influence of climatic “teleconnections” (the relationship between oceanic–atmospheric fluctuations and anomalous weather patterns across broad scales) on forest age structure is relatively unexplored. We sampled semiarid piñon–juniper (Pinus edulis–Juniperus osteosperma) woodlands in western Colorado, USA, to test the hypothesis that woodland age structures are shaped by climate, including links to oceanic–atmospheric fluctuations, and by past fires and livestock grazing. Low-severity surface fire was lacking, as fire scars were absent, and did not influence woodland densities, but stand-replacing fires served as long-rotation (>400–600 years), stand-initiating events. Old-growth stands (>300 years old) were found in 75% of plots, consistent with a long fire rotation. Juniper and piñon age structures suggest contrasting responses during the past several centuries to dry and wet episodes linked to the Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO). Juniper density increased slightly during periods of drought, positive (warm) AMO (after ∼10-year lag), and negative (cool) PDO. In contrast, piñon populations may still be recovering from a long, drought-filled period (AD 1620–1820), with pulses of recovery favored during cool AMO, warm PDO, and above-average moisture periods. Analysis of 20th-century tree establishment and instrumental climate data corroborate the long-term relationships between age structure and climate. After Euro–American settlement (AD 1881), livestock grazing reduced understory grasses and forbs, reducing competition with tree seedlings and facilitating climate-induced increases in piñons. Thus tree populations in these woodlands are in flux, affected by drought and wet periods linked to oceanic–atmospheric variability, Euro–American livestock grazing, and long

  2. Decadal modulation of the ENSO-East Asian winter monsoon relationship by the Atlantic Multidecadal Oscillation

    Science.gov (United States)

    Geng, Xin; Zhang, Wenjun; Stuecker, Malte F.; Liu, Peng; Jin, Fei-Fei; Tan, Guirong

    2017-10-01

    This work investigates the decadal modulation of the El Niño-Southern Oscillation (ENSO)-East Asian winter monsoon (EAWM) relationship by the Atlantic Multidecadal Oscillation (AMO). A stable ENSO-EAWM relationship is found during the positive AMO phase but not during the negative phase. While the impact of El Niño events on the EAWM does not depend on the AMO phase, a different picture is observed for La Niña events. The La Niña boreal winter season coincides with a strengthened EAWM during a positive AMO phase and a weakened EAWM during a negative AMO phase. We suggest that the AMO's modulating effect mainly comprises two pathways that influence ENSO's impact on the EAWM. On one hand, when La Niña coincides with a positive AMO, the warm SST anomalies over the western North Pacific (WNP) are amplified both in intensity and spatial extent, which favors strengthened WNP cyclonic anomalies and an enhanced EAWM. During La Niña with a negative AMO, only very weak SST anomalies occur over the WNP with reduced WNP cyclonic anomalies that are confined to the tropics, thus having little effect on the EAWM. On the other hand, an eastward-propagating Rossby wavetrain across the mid-high latitudes of Eurasia during a warm AMO phase strengthens the Siberian high and thus leads to a strengthened EAWM, while during a cold AMO phase the Siberian high is weakened, leading to a reduced EAWM. In contrast, El Niño and its associated atmospheric responses are relatively strong and stable, independent of the AMO phase. These results carry important implications to the seasonal-to-interannual predictability associated with ENSO.

  3. Abrupt millennial variability and interdecadal-interstadial oscillations in a global coupled model: sensitivity to the background climate state

    Energy Technology Data Exchange (ETDEWEB)

    Arzel, Olivier [The University of New South Wales, Climate Change Research Centre (CCRC), Sydney (Australia); Universite de Bretagne Occidentale, Laboratoire de Physique des Oceans (LPO), Brest (France); England, Matthew H. [The University of New South Wales, Climate Change Research Centre (CCRC), Sydney (Australia); Verdiere, Alain Colin de; Huck, Thierry [Universite de Bretagne Occidentale, Laboratoire de Physique des Oceans (LPO), Brest (France)

    2012-07-15

    The origin and bifurcation structure of abrupt millennial-scale climate transitions under steady external solar forcing and in the absence of atmospheric synoptic variability is studied by means of a global coupled model of intermediate complexity. We show that the origin of Dansgaard-Oeschger type oscillations in the model is caused by the weaker northward oceanic heat transport in the Atlantic basin. This is in agreement with previous studies realized with much simpler models, based on highly idealized geometries and simplified physics. The existence of abrupt millennial-scale climate transitions during glacial times can therefore be interpreted as a consequence of the weakening of the negative temperature-advection feedback. This is confirmed through a series of numerical experiments designed to explore the sensitivity of the bifurcation structure of the Atlantic meridional overturning circulation to increased atmospheric CO{sub 2} levels under glacial boundary conditions. Contrasting with the cold, stadial, phases of millennial oscillations, we also show the emergence of strong interdecadal variability in the North Atlantic sector during warm interstadials. The instability driving these interdecadal-interstadial oscillations is shown to be identical to that found in ocean-only models forced by fixed surface buoyancy fluxes, that is, a large-scale baroclinic instability developing in the vicinity of the western boundary current in the North Atlantic. Comparisons with modern observations further suggest a physical mechanism similar to that driving the 30-40 years time scale associated with the Atlantic multidecadal oscillation. (orig.)

  4. Multidecadal-scale adjustment of the ocean mixed layer heat budget in the tropics: examining ocean reanalyses

    Science.gov (United States)

    Cook, Kerry H.; Vizy, Edward K.; Sun, Xiaoming

    2018-03-01

    Distributions of ocean mixed layer temperature trends and trends in the net heat flux from the atmosphere differ, indicating the important role of the transport of heat within the ocean for determining temperature trends. Annual-mean, linear trends in the components of the tropical ocean mixed layer heat budget for 1980-2015 are diagnosed in 4 ocean reanalyses to improve our physical understanding of multidecadal-scale SST trends. The well-known temperature trend in the tropical Pacific, with cooling in the east and warming in the west, is reproduced in each reanalysis with high statistical significance. Cooling in the east is associated with negative trends in the net heat flux from the atmosphere and enhanced equatorial upwelling related to a strengthening of the subtropical cells. Negative trends in the net heat flux also occur in the western tropical Pacific, but advective warming associated with a strengthening and shoaling of the equatorial undercurrent overwhelms these negative trends. The strengthening of the equatorial undercurrent is consistent with enhanced easterly wind stress, which is applied to the ocean reanalyses, and differential sea level trends that enhance the negative zonal height gradient across the Pacific. The Pacific North Equatorial countercurrent is also strengthening in all 4 reanalyses in association with a strengthening of the sea level trough at 10°N in the central and eastern Pacific. All 4 ocean reanalyses produce warming of 0.1-0.3 K/decade in the North Atlantic with statistical significance levels ranging from below 90-99%. The Atlantic is similar to the Pacific in having the equatorial undercurrent strengthening, but indications of shoaling are less consistent in the reanalyses and the North Equatorial Countercurrent in the Atlantic is not strengthening. Large-scale ocean mixed layer warming trends in the Indian Ocean in the reanalyses are interrupted by some regional cooling close to the equator. Net surface heat flux trends

  5. Multidecadal Scale Detection Time for Potentially Increasing Atlantic Storm Surges in a Warming Climate

    Science.gov (United States)

    Lee, Benjamin Seiyon; Haran, Murali; Keller, Klaus

    2017-10-01

    Storm surges are key drivers of coastal flooding, which generate considerable risks. Strategies to manage these risks can hinge on the ability to (i) project the return periods of extreme storm surges and (ii) detect potential changes in their statistical properties. There are several lines of evidence linking rising global average temperatures and increasingly frequent extreme storm surges. This conclusion is, however, subject to considerable structural uncertainty. This leads to two main questions: What are projections under various plausible statistical models? How long would it take to distinguish among these plausible statistical models? We address these questions by analyzing observed and simulated storm surge data. We find that (1) there is a positive correlation between global mean temperature rise and increasing frequencies of extreme storm surges; (2) there is considerable uncertainty underlying the strength of this relationship; and (3) if the frequency of storm surges is increasing, this increase can be detected within a multidecadal timescale (≈20 years from now).

  6. Sea surface temperature variability in the North Western Mediterranean Sea (Gulf of Lion) during the Common Era

    Science.gov (United States)

    Sicre, Marie-Alexandrine; Jalali, Bassem; Martrat, Belen; Schmidt, Sabine; Bassetti, Maria-Angela; Kallel, Nejib

    2016-12-01

    This study investigates the multidecadal-scale variability of sea surface temperatures (SSTs) in the convection region of the Gulf of Lion (NW Mediterranean Sea) over the full past 2000 yr (Common Era) using alkenone biomarkers. Our data show colder SSTs by 1.7 °C over most of the first millennium (200-800 AD) and by 1.3 °C during the Little Ice Age (LIA; 1400-1850 AD) than the 20th century mean (17.9 °C). Although on average warmer, those of the Medieval Climate Anomaly (MCA) (1000-1200 AD) were lower by 1 °C. We found a mean SST warming of 2 °C/100 yr over the last century in close agreement with the 0.22 and 0.26 °C/decade values calculated for the western Mediterranean Sea from in situ and satellite data, respectively. Our results also reveal strongly fluctuating SSTs characterized by cold extremes followed by abrupt warming during the LIA. We suggest that the coldest decades of the LIA were likely caused by prevailing negative EA states and associated anticyclone blocking over the North Atlantic resulting in cold continental northeasterly winds to blow over Western Europe and the Mediterranean region.

  7. Teleconnected ocean forcing of Western North American droughts and pluvials during the last millennium

    Science.gov (United States)

    Routson, Cody C.; Woodhouse, Connie A.; Overpeck, Jonathan T.; Betancourt, Julio L.; McKay, Nicholas P.

    2016-01-01

    Western North America (WNA) is rich in hydroclimate reconstructions, yet questions remain about the causes of decadal-to-multidecadal hydroclimate variability. Teleconnection patterns preserved in annually-resolved tree-ring reconstructed drought maps, and anomalies in a global network of proxy sea surface temperature (SST) reconstructions, were used to reassess the evidence linking ocean forcing to WNA hydroclimate variability over the past millennium. Potential forcing mechanisms of the Medieval Climate Anomaly (MCA) and individual drought and pluvial events—including two multidecadal-length MCA pluvials—were evaluated. We show strong teleconnection patterns occurred during the driest (wettest) years within persistent droughts (pluvials), implicating SSTs as a potent hydroclimate forcing mechanism. The role of the SSTs on longer timescales is more complex. Pacific teleconnection patterns show little long-term change, whereas low-resolution SST reconstructions vary over decades to centuries. While weaker than the tropical Pacific teleconnections, North Atlantic teleconnection patterns and SST reconstructions also show links to WNA droughts and pluvials, and may in part account for longer-term WNA hydroclimate changes. Nonetheless, evidence linking WNA hydroclimate to SSTs still remains sparse and nuanced—especially over long-timescales with a broader range of hydroclimatic variability than characterized during the 20th century.

  8. Multi-decadal scale variability in the eastern Baltic cod fishery 1550-1860 - Evidence and causes

    DEFF Research Database (Denmark)

    MacKenzie, Brian; Bager, M.; Ojaveer, H.

    2007-01-01

    in the Baltic as developed and implemented by organisations such as the International Council for the Exploration of the Sea (ICES), the Baltic Marine Environment Protection Commission (HELCOM), the nine coastal countries and the European Union includes recovery of the cod population, a reduction in nutrient...... is unknown, as is the relative role of fishing, climate variability/regimes, eutrophication and reduction of marine mammal predator populations. We have begun to investigate whether historical fisheries information (landings, effort, distribution) from before the 1880s is available in Baltic archives...

  9. Evidence for external forcing of the Atlantic Multidecadal Oscillation since termination of the Little Ice Age.

    Science.gov (United States)

    Knudsen, Mads Faurschou; Jacobsen, Bo Holm; Seidenkrantz, Marit-Solveig; Olsen, Jesper

    2014-02-25

    The Atlantic Multidecadal Oscillation (AMO) represents a significant driver of Northern Hemisphere climate, but the forcing mechanisms pacing the AMO remain poorly understood. Here we use the available proxy records to investigate the influence of solar and volcanic forcing on the AMO over the last ~450 years. The evidence suggests that external forcing played a dominant role in pacing the AMO after termination of the Little Ice Age (LIA; ca. 1400-1800), with an instantaneous impact on mid-latitude sea-surface temperatures that spread across the North Atlantic over the ensuing ~5 years. In contrast, the role of external forcing was more ambiguous during the LIA. Our study further suggests that the Atlantic Meridional Overturning Circulation is important for linking external forcing with North Atlantic sea-surface temperatures, a conjecture that reconciles two opposing theories concerning the origin of the AMO.

  10. Decadal Western Pacific Warm Pool Variability: A Centroid and Heat Content Study.

    Science.gov (United States)

    Kidwell, Autumn; Han, Lu; Jo, Young-Heon; Yan, Xiao-Hai

    2017-10-13

    We examine several characteristics of the Western Pacific Warm Pool (WP) in the past thirty years of mixed interannual variability and climate change. Our study presents the three-dimensional WP centroid (WPC) movement, WP heat content anomaly (HC) and WP volume (WPV) on interannual to decadal time scales. We show the statistically significant correlation between each parameter's interannual anomaly and the NINO 3, NINO 3.4, NINO 4, SOI, and PDO indices. The longitudinal component of the WPC is most strongly correlated with NINO 4 (R = 0.78). The depth component of the WPC has the highest correlation (R = -0.6) with NINO3.4. The WPV and NINO4 have an R-Value of -0.65. HC has the highest correlation with NINO3.4 (R = -0.52). During the study period of 1982-2014, the non-linear trends, derived from ensemble empirical mode decomposition (EEMD), show that the WPV, WP depth and HC have all increased. The WPV has increased by 14% since 1982 and the HC has increased from -1 × 10 8  J/m 2 in 1993 to 10 × 10 8  J/m 2 in 2014. While the largest variances in the latitudinal and longitudinal WPC locations are associated with annual and seasonal timescales, the largest variances in the WPV and HC are due to the multi-decadal non-linear trend.

  11. Ocean carbon and heat variability in an Earth System Model

    Science.gov (United States)

    Thomas, J. L.; Waugh, D.; Gnanadesikan, A.

    2016-12-01

    Ocean carbon and heat content are very important for regulating global climate. Furthermore, due to lack of observations and dependence on parameterizations, there has been little consensus in the modeling community on the magnitude of realistic ocean carbon and heat content variability, particularly in the Southern Ocean. We assess the differences between global oceanic heat and carbon content variability in GFDL ESM2Mc using a 500-year, pre-industrial control simulation. The global carbon and heat content are directly out of phase with each other; however, in the Southern Ocean the heat and carbon content are in phase. The global heat mutli-decadal variability is primarily explained by variability in the tropics and mid-latitudes, while the variability in global carbon content is primarily explained by Southern Ocean variability. In order to test the robustness of this relationship, we use three additional pre-industrial control simulations using different mesoscale mixing parameterizations. Three pre-industrial control simulations are conducted with the along-isopycnal diffusion coefficient (Aredi) set to constant values of 400, 800 (control) and 2400 m2 s-1. These values for Aredi are within the range of parameter settings commonly used in modeling groups. Finally, one pre-industrial control simulation is conducted where the minimum in the Gent-McWilliams parameterization closure scheme (AGM) increased to 600 m2 s-1. We find that the different simulations have very different multi-decadal variability, especially in the Weddell Sea where the characteristics of deep convection are drastically changed. While the temporal frequency and amplitude global heat and carbon content changes significantly, the overall spatial pattern of variability remains unchanged between the simulations.

  12. Dynamical and biogeochemical control on the decadal variability of ocean carbon fluxes

    Directory of Open Access Journals (Sweden)

    R. Séférian

    2013-04-01

    Full Text Available Several recent observation-based studies suggest that ocean anthropogenic carbon uptake has slowed down due to the impact of anthropogenic forced climate change. However, it remains unclear whether detected changes over the recent time period can be attributed to anthropogenic climate change or rather to natural climate variability (internal plus naturally forced variability alone. One large uncertainty arises from the lack of knowledge on ocean carbon flux natural variability at the decadal time scales. To gain more insights into decadal time scales, we have examined the internal variability of ocean carbon fluxes in a 1000 yr long preindustrial simulation performed with the Earth System Model IPSL-CM5A-LR. Our analysis shows that ocean carbon fluxes exhibit low-frequency oscillations that emerge from their year-to-year variability in the North Atlantic, the North Pacific, and the Southern Ocean. In our model, a 20 yr mode of variability in the North Atlantic air-sea carbon flux is driven by sea surface temperature variability and accounts for ~40% of the interannual regional variance. The North Pacific and the Southern Ocean carbon fluxes are also characterised by decadal to multi-decadal modes of variability (10 to 50 yr that account for 20–40% of the interannual regional variance. These modes are driven by the vertical supply of dissolved inorganic carbon through the variability of Ekman-induced upwelling and deep-mixing events. Differences in drivers of regional modes of variability stem from the coupling between ocean dynamics variability and the ocean carbon distribution, which is set by large-scale secular ocean circulation.

  13. Teleconnection stationarity, variability and trends of the Southern Annular Mode (SAM) during the last millennium

    Science.gov (United States)

    Dätwyler, Christoph; Neukom, Raphael; Abram, Nerilie J.; Gallant, Ailie J. E.; Grosjean, Martin; Jacques-Coper, Martín; Karoly, David J.; Villalba, Ricardo

    2017-11-01

    The Southern Annular Mode (SAM) is the leading mode of atmospheric interannual variability in the Southern Hemisphere (SH) extra-tropics. Here, we assess the stationarity of SAM spatial correlations with instrumental and paleoclimate proxy data for the past millennium. The instrumental period shows that temporal non-stationarities in SAM teleconnections are not consistent across the SH land areas. This suggests that the influence of the SAM index is modulated by regional effects. However, within key-regions with good proxy data coverage (South America, Tasmania, New Zealand), teleconnections are mostly stationary over the instrumental period. Using different stationarity criteria for proxy record selection, we provide new austral summer and annual mean SAM index reconstructions over the last millennium. Our summer SAM reconstructions are very robust to changes in proxy record selection and the selection of the calibration period, particularly on the multi-decadal timescale. In contrast, the weaker performance and lower agreement in the annual mean SAM reconstructions point towards changing teleconnection patterns that may be particularly important outside the summer months. Our results clearly portend that the temporal stationarity of the proxy-climate relationships should be taken into account in the design of comprehensive regional and hemispherical climate reconstructions. The summer SAM reconstructions show no significant relationship to solar, greenhouse gas and volcanic forcing, with the exception of an extremely strong negative anomaly following the AD 1257 Samalas eruption. Furthermore, reconstructed pre-industrial summer SAM trends are very similar to trends obtained by model control simulations. We find that recent trends in the summer SAM lie outside the 5-95% range of pre-industrial natural variability.

  14. Asymmetric variations in the tropical ascending branches of Hadley circulations and the associated mechanisms and effects

    Science.gov (United States)

    Sun, Bo

    2018-03-01

    This study investigates the variations in the tropical ascending branches (TABs) of Hadley circulations (HCs) during past decades, using a variety of reanalysis datasets. The northern tropical ascending branch (NTAB) and the southern tropical ascending branch (STAB), which are defined as the ascending branches of the Northern Hemisphere HC and Southern Hemisphere HC, respectively, are identified and analyzed regarding their trends and variability. The reanalysis datasets consistently show a persistent increase in STAB during past decades, whereas they show less consistency in NTAB regarding its decadalto multidecadal variability, which generally features a decreasing trend. These asymmetric trends in STAB and NTAB are attributed to asymmetric trends in the tropical SSTs. The relationship between STAB/NTAB and tropical SSTs is further examined regarding their interannual and decadal- to multidecadal variability. On the interannual time scale, the STAB and NTAB are essentially modulated by the eastern-Pacific type of ENSO, with a strengthened (weakened) STAB (NTAB) under an El Niño condition. On the decadal- to multidecadal time scale, the variability of STAB and NTAB is closely related to the southern tropical SSTs and the meridional asymmetry of global tropical SSTs, respectively. The tropical eastern Pacific SSTs (southern tropical SSTs) dominate the tropical SST-NTAB/STAB relationship on the interannual (decadal- to multidecadal) scale, whereas the NTAB is a passive factor in this relationship. Moreover, a cross-hemispheric relationship between the NTAB/STAB and the HC upper-level meridional winds is revealed.

  15. Temporal energy partitions of Florida extreme sea level events as a function of Atlantic multidecadal oscillation

    Directory of Open Access Journals (Sweden)

    J. Park

    2010-06-01

    Full Text Available An energy-conservative metric based on the discrete wavelet transform is applied to assess the relative energy distribution of extreme sea level events across different temporal scales. The metric is applied to coastal events at Key West and Pensacola Florida as a function of two Atlantic Multidecadal Oscillation (AMO regimes. Under AMO warm conditions there is a small but significant redistribution of event energy from nearly static into more dynamic (shorter duration timescales at Key West, while at Pensacola the AMO-dependent changes in temporal event behaviour are less pronounced. Extreme events with increased temporal dynamics might be consistent with an increase in total energy of event forcings which may be a reflection of more energetic storm events during AMO warm phases. As dynamical models mature to the point of providing regional climate index predictability, coastal planners may be able to consider such temporal change metrics in planning scenarios.

  16. Climatic and anthropogenic controls on Mississippi River floods: a multi-proxy palaeoflood approach

    Science.gov (United States)

    Munoz, S. E.; Therrell, M. D.; Remo, J. W.; Giosan, L.; Donnelly, J. P.

    2017-12-01

    Over the last century, many of the world's major rivers have been modified for the purposes of flood mitigation, power generation, and commercial navigation. Engineering modifications to the Mississippi River system have altered the river's sediment budget and channel morphology, but the influence of these modifications on flood risk is debated. Detecting and attributing changes in river discharge is challenging because instrumental streamflow records are often too short to evaluate the range of natural hydrological variability prior to the establishment of flood mitigation infrastructure. Here we show that multi-decadal trends of flood risk on the lower Mississippi River are strongly modulated by dynamical modes of climate variability, particularly the El Niño-Southern Oscillation (ENSO) and the Atlantic Multidecadal Oscillation (AMO), but that artificial channelization has greatly amplified flood magnitudes over the last century. Our results, based on a multi-proxy reconstruction of flood frequency and magnitude spanning the last five hundred years that combines sedimentary, tree-ring, and instrumental records, reveal that the magnitude of the 100-year flood has increased by 20% over the period of record, with 75% of this increase attributed to river engineering. We conclude that the interaction of human alterations to the Mississippi River system with dynamical modes of climate variability has elevated the current flood risk to levels that are unprecedented within the last five centuries.

  17. Teleconnections in Groundwater of U.S. Principal Aquifers to the Non-Stationarity of ENSO, NAO, PDO, and AMO

    Science.gov (United States)

    Gurdak, J. J.; Kuss, A. M.

    2012-12-01

    Groundwater will play an important role in society's adaptation to climate variability and change. Therefore, it is particularly important to detect and quantify teleconnections in groundwater with non-stationarity in climate variability on interannual to multidecadal timescales because of the tangible and near-term implications for water-resource management. Interannual to multidecadal climate variability partially controls precipitation distribution in space and time, drought frequency and severity, snowmelt runoff, streamflow, and other hydrologic processes that profoundly affects surface-water resources. However, the effects of interannual to multidecadal climate variability on recharge rates and mechanisms and other subsurface hydrologic processes that affect groundwater quantity and quality are largely unknown in most aquifers of the United States (U.S.) and other regions of the world. Here we use singular spectrum analysis (SSA), wavelet coherence analysis, and lag correlation to quantify the effects of the El Niño Southern Oscillation (ENSO) (2-7 year cycle), North Atlantic Oscillation (NAO) (3-6 year cycle), Pacific Decadal Oscillation (PDO) (10-25 year cycle), and Atlantic Multidecadal Oscillation (AMO) (50-70 year cycle) on precipitation, groundwater levels, simulated groundwater pumping, and climate varying recharge rates across the regionally extensive Central Valley (52,000 km2), Basin and Range (700,000 km2), High Plains (450,000 km2), and North Atlantic Coastal Plain (130,000 km2) Principal Aquifers (PAs) of the U.S. The results indicate that precipitation, recharge, and groundwater levels are partially affected by interannual to multidecadal climate variability and groundwater-level fluctuations are not solely a function of temporal patterns in pumping. ENSO and PDO have a greater control than NAO and AMO on variability in precipitation and groundwater levels across the U.S., particularly in the western and central PAs. At many locations, recharge

  18. Multidecadal fCO2 Increase Along the United States Southeast Coastal Margin

    Science.gov (United States)

    Reimer, Janet J.; Wang, Hongjie; Vargas, Rodrigo; Cai, Wei-Jun

    2017-12-01

    Coastal margins could be hotspots for acidification due to terrestrial-influenced CO2 sources. Currently there are no long-term (>20 years) records from biologically important coastal environments that could demonstrate sea surface CO2 fugacity (fCO2) and pH trends. Here, multidecadal fCO2 trends are calculated from underway and moored time series observations along the United States southeast coastal margin, also referred to as the South Atlantic Bight (SAB). fCO2 trends across the SAB, derived from ˜26 years of cruises and ˜9.5 years from a moored time series, range from 3.0 to 4.5 µatm yr-1, and are greater than the open ocean increases. The pH decline related to the fCO2 increases could be as much as -0.004 yr-1; a rate greater than that expected from atmospheric-influenced pH alone. We provide evidence that fCO2 increases and pH decreases on an ocean margin can be faster than those predicted for the open ocean from atmospheric influence alone. We conclude that a substantial fCO2 increase across the marginal SAB is due to both increasing temperature on the middle and outer shelves, but to lateral land-ocean interactions in the coastal zone and on inner shelf.

  19. North American Rocky Mountain Hydroclimate: Holocene patterns and variability at multi-decadal to millennial time scales

    Science.gov (United States)

    Finney, B.; Anderson, L.; Berkelhammer, M. B.; Barron, J. A.; Steinman, B. A.; Abbott, M. B.

    2015-12-01

    A network of western North American lake sediment isotope records (calcium carbonate-δ18O) developed during the past decade provides substantial evidence of Pacific ocean-atmosphere forcing of precipitation variability during the Holocene. We present an overview of the eighteen lake carbonate-δ18O records located in the North American Rocky Mountains with a new compilation of modern lake water isotope measurements to characterize their sensitivity to variations in precipitation-δ18O and fractionation effects by evaporation. Comparative analysis of the carbonate-δ18O records that reflect precipitation isotope (δ18O) values (i.e., precipitation "isometers") indicates a sequence of time-varying in-phase and antiphase patterns between northern and southern regions during the Holocene that provide evidence for a highly non-stationary influence of Pacific ocean-atmosphere processes on the hydroclimate of western North America. We identify a prominent precipitation-δ18O dipole, which was sustained for ~2000 years between ~3.5 and 1.5 ka. The dipole contrasts with divergent earlier Holocene patterns and appears to indicate the onset of linkages between northern and tropical Pacific ocean-atmosphere dynamics as we know them today. These observations are informed by previous research on North Pacific precipitation-δ18O. Further investigation of short (observational) and long (Holocene) time scale patterns are needed to improve our understanding of the processes that 1) drive regional precipitation-δ18O responses to Pacific Ocean-atmosphere variability, and 2) cause varying internal ocean-atmosphere responses to external climate forcing.

  20. Decadal scale droughts over northwestern Thailand over the past 448 years: links to the tropical Pacific and Indian Ocean sectors

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Brendan M. [Lamont-Doherty Earth Observatory, Tree-Ring Laboratory, Palisades, NY (United States); Palakit, Kritsadapan; Duangsathaporn, Khwanchai [Kasetsart University Faculty of Forestry, Laboratory of Tropical Dendrochronology, Bangkok (Thailand); Sanguantham, Prasong; Prasomsin, Patsi [Kasetsart University Faculty of Forestry, Department of Forest Management, Bangkok (Thailand)

    2007-07-15

    A 448-year teak chronology from northwestern Thailand is used to assess past changes in the strength of the summer monsoon. The chronology is based on 30 living trees that extend from 1604 to 2005, and a 47-stump chronology that spans from 1558 to 1903. We used methods of cross dating and chronology building that address problems specifically found in teak. The result is a robust chronology with strong signal strength back to 1600 ad, and with variability retained at the multi-decadal scale. Variability in annual growth in teak from this area is dependent on rainfall and soil moisture availability at both the beginning and end of the monsoon season as confirmed by comparisons with temperature, rainfall and PDSI data. These correlation analyses confirm that our record is a proxy for summer monsoon strength and/or duration, and highlight the importance of soil moisture availability in the seasons of transition. The chronology reveals two prominent periods of decadal-scale drought in the early and mid 1700s that correspond to persistently warm sea surface temperature anomalies in the tropical Pacific as derived from Galapagos Island coral records. Speleothem data from central India also indicate protracted periods of drought for the 1700s. While these broad-scale eighteenth-century persistent droughts may be related to protracted El Nino-like conditions in the tropical Pacific, regional climate forcing over the Indian Ocean and western Pacific sectors appears to be a strong contributor as well. Spectral analyses reveal power in the ENSO range of variability from 2.2 to 4 years, and at the multi-decadal scale at 48.5 years. (orig.)

  1. A Multi-Decadal Sample Return Campaign Will Advance Lunar and Solar System Science and Exploration by 2050

    Science.gov (United States)

    Neal, C. R.; Lawrence, S. J.

    2017-01-01

    There have been 11 missions to the Moon this century, 10 of which have been orbital, from 5 different space agencies. China became the third country to successfully soft-land on the Moon in 2013, and the second to successfully remotely operate a rover on the lunar surface. We now have significant global datasets that, coupled with the 1990s Clementine and Lunar Prospector missions, show that the sample collection is not representative of the lithologies present on the Moon. The M3 data from the Indian Chandrayaan-1 mission have identified lithologies that are not present/under-represented in the sample collection. LRO datasets show that volcanism could be as young as 100 Ma and that significant felsic complexes exist within the lunar crust. A multi-decadal sample return campaign is the next logical step in advancing our understanding of lunar origin and evolution and Solar System processes.

  2. Multi-decadal modulation of the El Nino-Indian monsoon relationship by Indian Ocean variability

    International Nuclear Information System (INIS)

    Ummenhofer, Caroline C; Sen Gupta, Alexander; Li Yue; Taschetto, Andrea S; England, Matthew H

    2011-01-01

    The role of leading modes of Indo-Pacific climate variability is investigated for modulation of the strength of the Indian summer monsoon during the period 1877-2006. In particular, the effect of Indian Ocean conditions on the relationship between the El Nino-Southern Oscillation (ENSO) and the Indian monsoon is explored. Using an extended classification for ENSO and Indian Ocean dipole (IOD) events for the past 130 years and reanalyses, we have expanded previous interannual work to show that variations in Indian Ocean conditions modulate the ENSO-Indian monsoon relationship also on decadal timescales. El Nino events are frequently accompanied by a significantly reduced Indian monsoon and widespread drought conditions due to anomalous subsidence associated with a shift in the descending branch of the zonal Walker circulation. However, for El Nino events that co-occur with positive IOD (pIOD) events, Indian Ocean conditions act to counter El Nino's drought-inducing subsidence by enhancing moisture convergence over the Indian subcontinent, with an average monsoon season resulting. Decadal modulations of the frequency of independent and combined El Nino and pIOD events are consistent with a strengthened El Nino-Indian monsoon relationship observed at the start of the 20th century and the apparent recent weakening of the El Nino-Indian monsoon relationship.

  3. Multi-decadal modulation of the El Nino-Indian monsoon relationship by Indian Ocean variability

    Energy Technology Data Exchange (ETDEWEB)

    Ummenhofer, Caroline C; Sen Gupta, Alexander; Li Yue; Taschetto, Andrea S; England, Matthew H, E-mail: c.ummenhofer@unsw.edu.au [Climate Change Research Centre, University of New South Wales, Sydney (Australia)

    2011-07-15

    The role of leading modes of Indo-Pacific climate variability is investigated for modulation of the strength of the Indian summer monsoon during the period 1877-2006. In particular, the effect of Indian Ocean conditions on the relationship between the El Nino-Southern Oscillation (ENSO) and the Indian monsoon is explored. Using an extended classification for ENSO and Indian Ocean dipole (IOD) events for the past 130 years and reanalyses, we have expanded previous interannual work to show that variations in Indian Ocean conditions modulate the ENSO-Indian monsoon relationship also on decadal timescales. El Nino events are frequently accompanied by a significantly reduced Indian monsoon and widespread drought conditions due to anomalous subsidence associated with a shift in the descending branch of the zonal Walker circulation. However, for El Nino events that co-occur with positive IOD (pIOD) events, Indian Ocean conditions act to counter El Nino's drought-inducing subsidence by enhancing moisture convergence over the Indian subcontinent, with an average monsoon season resulting. Decadal modulations of the frequency of independent and combined El Nino and pIOD events are consistent with a strengthened El Nino-Indian monsoon relationship observed at the start of the 20th century and the apparent recent weakening of the El Nino-Indian monsoon relationship.

  4. An electrical analogy relating the Atlantic multidecadal oscillation to the Atlantic meridional overturning circulation.

    Directory of Open Access Journals (Sweden)

    Bruce E Kurtz

    Full Text Available The Atlantic meridional overturning circulation (AMOC is the northward flow of surface water to subpolar latitudes where deepwater is formed, balanced by southward abyssal flow and upwelling in the vicinity of the Southern Ocean. It is generally accepted that AMOC flow oscillates with a period of 60-80 years, creating a regular variation in North Atlantic sea surface temperature known as the Atlantic multidecadal oscillation (AMO. This article attempts to answer two questions: how is the AMOC driven and why does it oscillate? Using methods commonly employed by chemical engineers for analyzing processes involving flowing liquids, apparently not previously applied to trying to understand the AMOC, an equation is developed for AMOC flow as a function of the meridional density gradient or the corresponding temperature gradient. The equation is based on the similarity between the AMOC and an industrial thermosyphon loop cooler, which circulates a heat transfer liquid without using a mechanical pump. Extending this equation with an analogy between the flow of heat and electricity explains why the AMOC flow oscillates and what determines its period. Calculated values for AMOC flow and AMO oscillation period are in good agreement with measured values.

  5. Impact of strong selection for the PrP major gene on genetic variability of four French sheep breeds (Open Access publication

    Directory of Open Access Journals (Sweden)

    Pantano Thais

    2008-11-01

    Full Text Available Abstract Effective selection on the PrP gene has been implemented since October 2001 in all French sheep breeds. After four years, the ARR "resistant" allele frequency increased by about 35% in young males. The aim of this study was to evaluate the impact of this strong selection on genetic variability. It is focussed on four French sheep breeds and based on the comparison of two groups of 94 animals within each breed: the first group of animals was born before the selection began, and the second, 3–4 years later. Genetic variability was assessed using genealogical and molecular data (29 microsatellite markers. The expected loss of genetic variability on the PrP gene was confirmed. Moreover, among the five markers located in the PrP region, only the three closest ones were affected. The evolution of the number of alleles, heterozygote deficiency within population, expected heterozygosity and the Reynolds distances agreed with the criteria from pedigree and pointed out that neutral genetic variability was not much affected. This trend depended on breed, i.e. on their initial states (population size, PrP frequencies and on the selection strategies for improving scrapie resistance while carrying out selection for production traits.

  6. Strong interactions

    International Nuclear Information System (INIS)

    Froissart, Marcel

    1976-01-01

    Strong interactions are introduced by their more obvious aspect: nuclear forces. In hadron family, the nucleon octet, OMEGA - decuplet, and quark triply are successively considered. Pion wave having been put at the origin of nuclear forces, low energy phenomena are described, the force being explained as an exchange of structure corresponding to a Regge trajectory in a variable rotating state instead of the exchange of a well defined particle. At high energies the concepts of pomeron, parton and stratons are introduced, pionization and fragmentation are briefly differentiated [fr

  7. Research on climate change and variability at the Ab dus Salam International Centre for Theoretical Physics

    International Nuclear Information System (INIS)

    Giorgi, F.; Molteni, F.

    2002-01-01

    The Physics of Weather and Climate Section at the Abdus Salam International Centre for Theoretical Physics, established in 1998, is currently performing research on different aspects of climate variability, dealing with both natural and anthropogenic aspects of climate changes. In addition to performing diagnostic work on multi-decadal observational datasets and climate simulations carried out in major research centres, the PWC section has been developing its own climate modeling capability, which is focused on three main areas: a) modeling of regional climate change; b) seasonal forecasting at global and regional scale; c) development of simplified models of the general circulation. On topic a), research on different aspects of anthropogenic climate change is being carried out using the Regional Climate (RegCM) developed by Giorgi and collaborators at the National Centre for Atmospheric Research. Time-slice experiments with a high-resolution atmospheric GCM, comparing current climate conditions with future climate scenarios in selected decades, are also planned for the near future. On topic b), a strategy based on ensembles of high-resolution simulations with atmospheric GCM's, using sea surface temperature anomalies predicted by lower-resolution coupled models from other institutions, is currently under experimentation. A one-way nesting of RegCM into the GCM simulations will also be tested. On item c), a 5-layer atmospheric GCM with simplified physical parameterizations has been developed. This model has a very small computational cost compared with state-of-the-art GCMs, and is suitable for studies of natural climate variability on inter-decadal and intercentennial time scales. It is planned to couple this model to simplified ocean models of different complexity, from a simple, static mixed layer model, to simplified models of the tropical Pacific circulation suited to the simulation of the El Nino phenomenon. A joint project with the IAEA-MEL Laboratory in

  8. The simulation of medicanes in a high-resolution regional climate model

    Energy Technology Data Exchange (ETDEWEB)

    Cavicchia, Leone [Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna (Italy); Helmholtz-Zentrum Geesthacht, Institute of Coastal Research, Geesthacht (Germany); Ca' Foscari University, Venice (Italy); Storch, Hans von [Helmholtz-Zentrum Geesthacht, Institute of Coastal Research, Geesthacht (Germany); University of Hamburg, Meteorological Institute, Hamburg (Germany)

    2012-11-15

    Medicanes, strong mesoscale cyclones with tropical-like features, develop occasionally over the Mediterranean Sea. Due to the scarcity of observations over sea and the coarse resolution of the long-term reanalysis datasets, it is difficult to study systematically the multidecadal statistics of sub-synoptic medicanes. Our goal is to assess the long-term variability and trends of medicanes, obtaining a long-term climatology through dynamical downscaling of the NCEP/NCAR reanalysis data. In this paper, we examine the robustness of this method and investigate the value added for the study of medicanes. To do so, we performed several climate mode simulations with a high resolution regional atmospheric model (CCLM) for a number of test cases described in the literature. We find that the medicanes are formed in the simulations, with deeper pressures and stronger winds than in the driving global NCEP reanalysis. The tracks are adequately reproduced. We conclude that our methodology is suitable for constructing multi-decadal statistics and scenarios of current and possible future medicane activities. (orig.)

  9. Evaluation of the Atlantic Multidecadal Oscillation Impact on Large-Scale Atmospheric Circulation in the Atlantic Region in Summer

    Science.gov (United States)

    Semenov, V. A.; Cherenkova, E. A.

    2018-02-01

    The influence of the Atlantic Multidecadal Oscillation (AMO) on large-scale atmospheric circulation in the Atlantic region in summer for the period of 1950-2015 is investigated. It is shown that the intensification of the summer North Atlantic Oscillation (NAO) with significant changes in sea level pressure anomalies in the main centers of action (over Greenland and the British Isles) occurred while the North Atlantic was cooler. Sea surface temperature anomalies, which are linked to the AMO in the summer season, affect both the NAO index and fluctuations of the Eastern Atlantic/Western Russia (EAWR) centers of action. The positive (negative) phase of the AMO is characterized by a combination of negative (positive) values of the NAO and EAWR indices. The dominance of the opposite phases of the teleconnection indices in summer during the warm North Atlantic and in its colder period resulted in differences in the regional climate in Europe.

  10. Interdecadal North-Atlantic meridional overturning circulation variability in EC-EARTH

    Energy Technology Data Exchange (ETDEWEB)

    Wouters, Bert; Drijfhout, Sybren; Hazeleger, Wilco

    2012-12-15

    The Atlantic meridional overturning circulation (AMOC) in a 600 years pre-industrial run of the newly developed EC-EARTH model features marked interdecadal variability with a dominant time-scale of 50-60 years. An oscillation of approximately 2 Sverdrup (1 Sv = 10{sup 6} m{sup 3} s{sup -1}) is identified, which manifests itself as a monopole causing the overturning to simultaneously strengthen (/weaken) and deepen (/shallow) as a whole. Eight years before the AMOC peaks, density in the Labrador-Irminger Sea region reaches a maximum, triggering deep water formation. This density change is caused by a counterclockwise advection of temperature and salinity anomalies at lower latitudes, which we relate to the north-south excursions of the subpolar-subtropical gyre boundary and variations in strength and position of the subpolar gyre and the North Atlantic Current. The AMOC fluctuations are not directly forced by the atmosphere, but occur in a delayed response of the ocean to forcing by the North Atlantic Oscillation, which initiates ''intergyre''-gyre fluctuations. Associated with the AMOC is a 60-year sea surface temperature variability in the Atlantic, with a pattern and timescale showing similarities with the real-world Atlantic Multidecadal Variability. This good agreement with observations lends a certain degree of credibility that the mechanism that is described in this article could be seen as representative of the real climate system. (orig.)

  11. Indian Summer Monsoon Rainfall: Implications of Contrasting Trends in the Spatial Variability of Means and Extremes

    Science.gov (United States)

    Ghosh, Subimal; Vittal, H.; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K. S.; Dhanesh, Y.; Sudheer, K. P.; Gunthe, S. S.

    2016-01-01

    India’s agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins. PMID:27463092

  12. Indian Summer Monsoon Rainfall: Implications of Contrasting Trends in the Spatial Variability of Means and Extremes.

    Directory of Open Access Journals (Sweden)

    Subimal Ghosh

    Full Text Available India's agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins.

  13. Comparative Analysis of Upper Ocean Heat Content Variability from Ensemble Operational Ocean Analyses

    Science.gov (United States)

    Xue, Yan; Balmaseda, Magdalena A.; Boyer, Tim; Ferry, Nicolas; Good, Simon; Ishikawa, Ichiro; Rienecker, Michele; Rosati, Tony; Yin, Yonghong; Kumar, Arun

    2012-01-01

    Upper ocean heat content (HC) is one of the key indicators of climate variability on many time-scales extending from seasonal to interannual to long-term climate trends. For example, HC in the tropical Pacific provides information on thermocline anomalies that is critical for the longlead forecast skill of ENSO. Since HC variability is also associated with SST variability, a better understanding and monitoring of HC variability can help us understand and forecast SST variability associated with ENSO and other modes such as Indian Ocean Dipole (IOD), Pacific Decadal Oscillation (PDO), Tropical Atlantic Variability (TAV) and Atlantic Multidecadal Oscillation (AMO). An accurate ocean initialization of HC anomalies in coupled climate models could also contribute to skill in decadal climate prediction. Errors, and/or uncertainties, in the estimation of HC variability can be affected by many factors including uncertainties in surface forcings, ocean model biases, and deficiencies in data assimilation schemes. Changes in observing systems can also leave an imprint on the estimated variability. The availability of multiple operational ocean analyses (ORA) that are routinely produced by operational and research centers around the world provides an opportunity to assess uncertainties in HC analyses, to help identify gaps in observing systems as they impact the quality of ORAs and therefore climate model forecasts. A comparison of ORAs also gives an opportunity to identify deficiencies in data assimilation schemes, and can be used as a basis for development of real-time multi-model ensemble HC monitoring products. The OceanObs09 Conference called for an intercomparison of ORAs and use of ORAs for global ocean monitoring. As a follow up, we intercompared HC variations from ten ORAs -- two objective analyses based on in-situ data only and eight model analyses based on ocean data assimilation systems. The mean, annual cycle, interannual variability and longterm trend of HC have

  14. Influence of North Atlantic modes on European climate extremes

    Science.gov (United States)

    Proemmel, K.; Cubasch, U.

    2017-12-01

    It is well known that the North Atlantic strongly influences European climate. Only few studies exist that focus on its impact on climate extremes. We are interested in these extremes and the processes and mechanisms behind it. For the analysis of the North Atlantic Oscillation (NAO) we use simulations performed with the Max Planck Institute for Meteorology Earth System Model (MPI-ESM). The NAO has a strong impact especially on European winter and the changes in minimum temperature are even larger than in maximum temperature. The impact of the Atlantic Multi-decadal Variability (AMV) on climate extremes is analyzed in ECHAM6 simulations forced with AMV warm and AMV cold sea surface temperature patterns. We analyze different extreme indices and try to understand the processes.

  15. Concurrent variable-interval variable-ratio schedules in a dynamic choice environment.

    Science.gov (United States)

    Bell, Matthew C; Baum, William M

    2017-11-01

    Most studies of operant choice have focused on presenting subjects with a fixed pair of schedules across many experimental sessions. Using these methods, studies of concurrent variable- interval variable-ratio schedules helped to evaluate theories of choice. More recently, a growing literature has focused on dynamic choice behavior. Those dynamic choice studies have analyzed behavior on a number of different time scales using concurrent variable-interval schedules. Following the dynamic choice approach, the present experiment examined performance on concurrent variable-interval variable-ratio schedules in a rapidly changing environment. Our objectives were to compare performance on concurrent variable-interval variable-ratio schedules with extant data on concurrent variable-interval variable-interval schedules using a dynamic choice procedure and to extend earlier work on concurrent variable-interval variable-ratio schedules. We analyzed performances at different time scales, finding strong similarities between concurrent variable-interval variable-interval and concurrent variable-interval variable- ratio performance within dynamic choice procedures. Time-based measures revealed almost identical performance in the two procedures compared with response-based measures, supporting the view that choice is best understood as time allocation. Performance at the smaller time scale of visits accorded with the tendency seen in earlier research toward developing a pattern of strong preference for and long visits to the richer alternative paired with brief "samples" at the leaner alternative ("fix and sample"). © 2017 Society for the Experimental Analysis of Behavior.

  16. A characteristics of East Asian climate using high-resolution regional climate model

    Science.gov (United States)

    Yhang, Y.

    2013-12-01

    Climate research, particularly application studies for water, agriculture, forestry, fishery and energy management require fine scale multi-decadal information of meteorological, oceanographic and land states. Unfortunately, spatially and temporally homogeneous multi-decadal observations of these variables in high horizontal resolution are non-existent. Some long term surface records of temperature and precipitation exist, but the number of observation is very limited and the measurements are often contaminated by changes in instrumentation over time. Some climatologically important variables, such as soil moisture, surface evaporation, and radiation are not even measured over most of East Asia. Reanalysis is one approach to obtaining long term homogeneous analysis of needed variables. However, the horizontal resolution of global reanalysis is of the order of 100 to 200 km, too coarse for many application studies. Regional climate models (RCMs) are able to provide valuable regional finescale information, especially in regions where the climate variables are strongly regulated by the underlying topography and the surface heterogeneity. In this study, we will provide accurately downscaled regional climate over East Asia using the Global/Regional Integrated Model system [GRIMs; Hong et al. 2013]. A mixed layer model is embedded within the GRIMs in order to improve air-sea interaction. A detailed description of the characteristics of the East Asian summer and winter climate will be presented through the high-resolution numerical simulations. The increase in horizontal resolution is expected to provide the high-quality data that can be used in various application areas such as hydrology or environmental model forcing.

  17. Climatic control of Mississippi River flood hazard amplified by river engineering

    Science.gov (United States)

    Munoz, Samuel E.; Giosan, Liviu; Therrell, Matthew D.; Remo, Jonathan W. F.; Shen, Zhixiong; Sullivan, Richard M.; Wiman, Charlotte; O’Donnell, Michelle; Donnelly, Jeffrey P.

    2018-04-01

    Over the past century, many of the world’s major rivers have been modified for the purposes of flood mitigation, power generation and commercial navigation. Engineering modifications to the Mississippi River system have altered the river’s sediment levels and channel morphology, but the influence of these modifications on flood hazard is debated. Detecting and attributing changes in river discharge is challenging because instrumental streamflow records are often too short to evaluate the range of natural hydrological variability before the establishment of flood mitigation infrastructure. Here we show that multi-decadal trends of flood hazard on the lower Mississippi River are strongly modulated by dynamical modes of climate variability, particularly the El Niño–Southern Oscillation and the Atlantic Multidecadal Oscillation, but that the artificial channelization (confinement to a straightened channel) has greatly amplified flood magnitudes over the past century. Our results, based on a multi-proxy reconstruction of flood frequency and magnitude spanning the past 500 years, reveal that the magnitude of the 100-year flood (a flood with a 1 per cent chance of being exceeded in any year) has increased by 20 per cent over those five centuries, with about 75 per cent of this increase attributed to river engineering. We conclude that the interaction of human alterations to the Mississippi River system with dynamical modes of climate variability has elevated the current flood hazard to levels that are unprecedented within the past five centuries.

  18. Anoxic sediments off Central Peru record interannual to multidecadal changes of climate and upwelling ecosystem during the last two centuries

    Science.gov (United States)

    Gutiérrez, D.; Sifeddine, A.; Reyss, J. L.; Vargas, G.; Velazco, F.; Salvatteci, R.; Ferreira, V.; Ortlieb, L.; Field, D.; Baumgartner, T.; Boussafir, M.; Boucher, H.; Valdés, J.; Marinovic, L.; Soler, P.; Tapia, P.

    2006-01-01

    High-resolution paleo-environmental and paleo-ecological archives in laminated sequences are present in selected areas from the upper continental Peruvian margin within the oxygen minimum zone. We present initial results of a multidisciplinary study (the PALEOPECES project) that aims to reconstruct environmental and ecosystem variability during the past 200 years from high-resolution records. We report chronology development, sediment structure, elemental, organic, and mineralogical compositions of a box core collected at 300 m depth off Pisco, central Peru. An average sedimentation rate of 2.2 mm y-1 was estimated from downcore excess 210Pb activities for the last 100-150 years. Extending this rate further downcore indicates that a slump located at 52 cm depth from the top of the core can be correlated with a large tsunami that struck the coast of central Peru in 1746. X-ray analyses reveal laminated structures composed of couplets of light and dark laminae. Observations under polarized microscope show that light laminae are dominated by more dense, detrital and terrigenous material, while dark laminae are less dense with greater concentrations of amorphous biogenic silica. Downcore variations in dry bulk density and X-ray radioscopy of gray level show similar patterns, including a major shift at 34 cm depth (ca. mid-nineteenth century). A finely laminated sequence, which may include annual varves, is present between 34 cm depth and the slump layer. Sediment characteristics of the sequence suggest increased seasonality of terrigenous versus biogenous sedimentation during the corresponding period. In addition to a mid-nineteenth century change and considerable multidecadal variability in TOC, there is a positive trend in the past 50 years. Mineralogical analyses from a Fourier Transformed Infrared Spectroscopy (FTIR) of the upper core covering the last 25 years, indicate higher concentrations of the mineral fraction (quartz, feldspar, kaolinite and illite) in

  19. Anoxic sediments off Central Peru record interannual to multidecadal changes of climate and upwelling ecosystem during the last two centuries

    Directory of Open Access Journals (Sweden)

    D. Gutiérrez

    2006-01-01

    Full Text Available High-resolution paleo-environmental and paleo-ecological archives in laminated sequences are present in selected areas from the upper continental Peruvian margin within the oxygen minimum zone. We present initial results of a multidisciplinary study (the PALEOPECES project that aims to reconstruct environmental and ecosystem variability during the past 200 years from high-resolution records. We report chronology development, sediment structure, elemental, organic, and mineralogical compositions of a box core collected at 300 m depth off Pisco, central Peru. An average sedimentation rate of 2.2 mm y-1 was estimated from downcore excess 210Pb activities for the last 100-150 years. Extending this rate further downcore indicates that a slump located at 52 cm depth from the top of the core can be correlated with a large tsunami that struck the coast of central Peru in 1746. X-ray analyses reveal laminated structures composed of couplets of light and dark laminae. Observations under polarized microscope show that light laminae are dominated by more dense, detrital and terrigenous material, while dark laminae are less dense with greater concentrations of amorphous biogenic silica. Downcore variations in dry bulk density and X-ray radioscopy of gray level show similar patterns, including a major shift at 34 cm depth (ca. mid-nineteenth century. A finely laminated sequence, which may include annual varves, is present between 34 cm depth and the slump layer. Sediment characteristics of the sequence suggest increased seasonality of terrigenous versus biogenous sedimentation during the corresponding period. In addition to a mid-nineteenth century change and considerable multidecadal variability in TOC, there is a positive trend in the past 50 years. Mineralogical analyses from a Fourier Transformed Infrared Spectroscopy (FTIR of the upper core covering the last 25 years, indicate higher concentrations of the mineral fraction (quartz, feldspar, kaolinite and

  20. Strong Stability Preserving Explicit Linear Multistep Methods with Variable Step Size

    KAUST Repository

    Hadjimichael, Yiannis; Ketcheson, David I.; Loczi, Lajos; Né meth, Adriá n

    2016-01-01

    Strong stability preserving (SSP) methods are designed primarily for time integration of nonlinear hyperbolic PDEs, for which the permissible SSP step size varies from one step to the next. We develop the first SSP linear multistep methods (of order

  1. Mismeasurement and the resonance of strong confounders: uncorrelated errors.

    Science.gov (United States)

    Marshall, J R; Hastrup, J L

    1996-05-15

    Greenland first documented (Am J Epidemiol 1980; 112:564-9) that error in the measurement of a confounder could resonate--that it could bias estimates of other study variables, and that the bias could persist even with statistical adjustment for the confounder as measured. An important question is raised by this finding: can such bias be more than trivial within the bounds of realistic data configurations? The authors examine several situations involving dichotomous and continuous data in which a confounder and a null variable are measured with error, and they assess the extent of resultant bias in estimates of the effect of the null variable. They show that, with continuous variables, measurement error amounting to 40% of observed variance in the confounder could cause the observed impact of the null study variable to appear to alter risk by as much as 30%. Similarly, they show, with dichotomous independent variables, that 15% measurement error in the form of misclassification could lead the null study variable to appear to alter risk by as much as 50%. Such bias would result only from strong confounding. Measurement error would obscure the evidence that strong confounding is a likely problem. These results support the need for every epidemiologic inquiry to include evaluations of measurement error in each variable considered.

  2. Upper-Level Mediterranean Oscillation index and seasonal variability of rainfall and temperature

    Science.gov (United States)

    Redolat, Dario; Monjo, Robert; Lopez-Bustins, Joan A.; Martin-Vide, Javier

    2018-02-01

    The need for early seasonal forecasts stimulates continuous research in climate teleconnections. The large variability of the Mediterranean climate presents a greater difficulty in predicting climate anomalies. This article reviews teleconnection indices commonly used for the Mediterranean basin and explores possible extensions of one of them, the Mediterranean Oscillation index (MOi). In particular, the anomalies of the geopotential height field at 500 hPa are analyzed using segmentation of the Mediterranean basin in seven spatial windows: three at eastern and four at western. That is, different versions of an Upper-Level Mediterranean Oscillation index (ULMOi) were calculated, and monthly and annual variability of precipitation and temperature were analyzed for 53 observatories from 1951 to 2015. Best versions were selected according to the Pearson correlation, its related p value, and two measures of standardized error. The combination of the Balearic Sea and Libya/Egypt windows was the best for precipitation and temperature, respectively. The ULMOi showed the highest predictive ability in combination with the Atlantic Multidecadal Oscillation index (AMOi) for the annual temperature throughout the Mediterranean basin. The best model built from the indices presented a final mean error between 15 and 25% in annual precipitation for most of the studied area.

  3. Interactions of Mineral Dust with Clouds, Sea Surface Temperature, and Climate Modes of Variability

    Science.gov (United States)

    DeFlorio, Michael J.

    boundary layer. We find that ENSO exerts a control on North African dust transport during the summer, and CESM suggests that there is strong multi-decadal variability in the strength of the ENSO-dust relationship. Finally, we compare interactive and prescribed aerosol CESM simulations to demonstrate the importance of dust in increasing tropical Atlantic SST variability, and expose deficiencies in CESM's simulation of the Atlantic Meridional Mode.

  4. Atlantic Meridional Overturning Circulation response to idealized external forcing

    Energy Technology Data Exchange (ETDEWEB)

    Park, W.; Latif, M. [Leibniz-Institut fuer Meereswissenschaften an der Universitaet Kiel, Kiel (Germany)

    2012-10-15

    The response of the Atlantic Meridional Overturning Circulation (AMOC) to idealized external (solar) forcing is studied in terms of the internal (unforced) AMOC modes with the Kiel Climate Model (KCM), a coupled atmosphere-ocean-sea ice general circulation model. The statistical investigation of KCM's internal AMOC variability obtained from a multi-millennial control run yields three distinct modes: a multi-decadal mode with a period of about 60 years, a quasi-centennial mode with a period of about 100 years and a multi-centennial mode with a period of about 300-400 years. Most variance is explained by the multi-centennial mode, and the least by the quasi-centennial mode. The solar constant varies sinusoidally with two different periods (100 and 60 years) in forced runs with KCM. The AMOC response to the external forcing is rather complex and nonlinear. It involves strong changes in the frequency structure of the variability. While the control run depicts multi-timescale behavior, the AMOC variability in the experiment with 100 year forcing period is channeled into a relatively narrow band centered near the forcing period. It is the quasi-centennial AMOC mode with a period of just under 100 years which is excited, although it is heavily damped in the control run. Thus, the quasi-centennial mode retains its period which does not correspond exactly to the forcing period. Surprisingly, the quasi-centennial mode is also most strongly excited when the forcing period is set to 60 years, the period of the multi-decadal mode which is rather prominent in the control run. It is largely the spatial structure of the forcing rather than its period that determines which of the three internal AMOC modes is excited. The results suggest that we need to understand the full modal structure of the internal AMOC variability in order to understand the circulation's response to external forcing. This could be a challenge for climate models: we cannot necessarily expect that the

  5. Interannual and Decadal Variability of Landfalling Tropical Cyclones in the Southeast Coastal States of the United States

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The interannual variability of the At lantic tropical cyclone (TC) frequency is well known. Separately,recent studies have also suggested that a much longer, multidecadal (40-60 year) trend might be emerging from the recent increase in Atlantic TC activity. However, the overall structure of the intrinsic frequencies (or temporal modes) of Atlantic TC activity is not yet known. The focus of this study is to systematically analyze the intrinsic frequencies of Atlantic TC activity using hurricane and tropical storm landfall data collected along the southeast coast (SEC) of the United States. Based on an Empirical Mode Decomposition (EMD) analysis of the frequency of landfall TCs along the SEC from 1887-1999, we have found that Atlantic TC activity has four primary, temporal modes. The interannual and multidecadal modes reported in the published literature are two such modes. After identifying all primary modes, the relative importance of each mode and its physical cause can be analyzed. For example, the most energetic mode is the interannual mode (2-7 year period). This mode is known to be associated with the 2-7 year El Nino / La Ni na cycle. The average number of annual landfalling TCs along the SEC decreased by 24% during El Nino years, but did not show significant increase during weak and moderate La Nina years. However, intense La Nina years were generally associated with more than average landfalling TCs along the SEC. The effects of El Nino and La Nina also became more significant when only hurricanes were considered. The significance of the effects of El Nino and La Nina on landfalling TCs and hurricanes in different US southeast coastal states showed significant differences.

  6. Temporal genetic stability in natural populations of the waterflea Daphnia magna in response to strong selection pressure.

    Science.gov (United States)

    Orsini, Luisa; Marshall, Hollie; Cuenca Cambronero, Maria; Chaturvedi, Anurag; Thomas, Kelley W; Pfrender, Michael E; Spanier, Katina I; De Meester, Luc

    2016-12-01

    Studies monitoring changes in genetic diversity and composition through time allow a unique understanding of evolutionary dynamics and persistence of natural populations. However, such studies are often limited to species with short generation times that can be propagated in the laboratory or few exceptional cases in the wild. Species that produce dormant stages provide powerful models for the reconstruction of evolutionary dynamics in the natural environment. A remaining open question is to what extent dormant egg banks are an unbiased representation of populations and hence of the species' evolutionary potential, especially in the presence of strong environmental selection. We address this key question using the water flea Daphnia magna, which produces dormant stages that accumulate in biological archives over time. We assess temporal genetic stability in three biological archives, previously used in resurrection ecology studies showing adaptive evolutionary responses to rapid environmental change. We show that neutral genetic diversity does not decline with the age of the population and it is maintained in the presence of strong selection. In addition, by comparing temporal genetic stability in hatched and unhatched populations from the same biological archive, we show that dormant egg banks can be consulted to obtain a reliable measure of genetic diversity over time, at least in the multidecadal time frame studied here. The stability of neutral genetic diversity through time is likely mediated by the buffering effect of the resting egg bank. © 2016 John Wiley & Sons Ltd.

  7. Evaluating the Impact of Localized GCM Grid Refinement on Regional Tropical Cyclone Climatology and Synoptic Variability using Variable-Resolution CAM-SE

    Science.gov (United States)

    Zarzycki, C.; Jablonowski, C.

    2013-12-01

    Using General Circulation Models (GCMs) to resolve sub-synoptic features in climate simulations has traditionally been difficult due to a multitude of atmospheric processes operating at subgrid scales requiring significant parameterization. For example, at traditional GCM horizontal grid resolutions of 50-300 km, tropical cyclones are generally under-resolved. This paper explores a novel variable-resolution global modeling approach that allows for high spatial resolutions in areas of interest, such as low-latitude ocean basins where tropical cyclogenesis occurs. Such multi-resolution GCM designs allow for targeted use of computing resources at the regional level while maintaining a globally-continuous model domain and may serve to bridge the gap between GCMs with uniform grids and boundary-forced limited area models. A statically-nested, variable-resolution option has recently been introduced into the Community Atmosphere Model's (CAM) Spectral Element (SE) dynamical core. A 110 km CAM-SE grid with a 28 km nest over the Atlantic Ocean has been coupled to land, ocean, and ice components within the Community Earth System Model (CESM). We present the results of a multi-decadal climate simulation using Atmospheric Model Intercomparison Project (AMIP) protocols, which force the model with historical sea surface temperatures and airborne chemical species. To investigate whether refinement improves the representation of tropical cyclones, we compare Atlantic storm statistics to observations with specific focus paid to intensity profiles and track densities. The resolution dependance of both cyclone structure and objective detection between refined and unrefined basins is explored. In addition, we discuss the potential impact of using variable-resolution grids on the large-scale synoptic interannual variability by comparing refined grid simulations to reanalysis data as well as an unrefined, globally-uniform CAM-SE simulation with identical forcing. We also evaluate the

  8. Towards a large deviation theory for strongly correlated systems

    International Nuclear Information System (INIS)

    Ruiz, Guiomar; Tsallis, Constantino

    2012-01-01

    A large-deviation connection of statistical mechanics is provided by N independent binary variables, the (N→∞) limit yielding Gaussian distributions. The probability of n≠N/2 out of N throws is governed by e −Nr , r related to the entropy. Large deviations for a strong correlated model characterized by indices (Q,γ) are studied, the (N→∞) limit yielding Q-Gaussians (Q→1 recovers a Gaussian). Its large deviations are governed by e q −Nr q (∝1/N 1/(q−1) , q>1), q=(Q−1)/(γ[3−Q])+1. This illustration opens the door towards a large-deviation foundation of nonextensive statistical mechanics. -- Highlights: ► We introduce the formalism of relative entropy for a single random binary variable and its q-generalization. ► We study a model of N strongly correlated binary random variables and their large-deviation probabilities. ► Large-deviation probability of strongly correlated model exhibits a q-exponential decay whose argument is proportional to N, as extensivity requires. ► Our results point to a q-generalized large deviation theory and suggest a large-deviation foundation of nonextensive statistical mechanics.

  9. Fives decades of strong temporal variability in the flow of the Brunt Ice Shelf, Antarctica

    Science.gov (United States)

    De Rydt, Jan; Gudmundsson, Hilmar; Nagler, Thomas

    2017-04-01

    The Brunt Ice Shelf, East Antarctica, is a complex conglomerate of meteoric and marine ice, weakly connected to the much larger and faster-flowing Stancomb Wills Glacier Tongue to the east, and pinned down to the seabed in a small area around the McDonalds Ice Rumples in the north. The ice shelf is home to the UK research station Halley, from which changes to the ice shelf have been monitored closely since the 1960s. A unique 50-year record of the flow speed and an intense surveying programme over the past 10 years, have revealed a strong temporal variability in the flow. In particular, the speed of the ice shelf has increased by 10% each year over the past few years. In order to understand these rapid changes, we use a state-of-the-art flow model in combination with a range of satellite, ground-based and airborne radar data, to accurately simulate the historical flow and recent changes. In particular, we model the effects of a recently formed rift that is propagating at a speed of up to 600m/day and threatens to dislodge the ice shelf from its pinning point at the McDonalds Ice Rumples. We also report on the recent reactivation of a large chasm which has prompted the relocation of the station during the 2016/17 austral summer.

  10. Drivers of long-term precipitation and runoff variability in the southeastern USA

    Science.gov (United States)

    Engström, Johanna; Waylen, Peter

    2018-02-01

    The hydroclimatology of the southeastern USA (AL, GA, NC, SC, and TN) is analyzed from a holistic perspective, including multiple climate drivers. Monthly precipitation modeled by the PRISM group and runoff data (1952-2011) from 18 basins are analyzed using a single-field based principal component's analysis. Results indicate that the Atlantic Multidecadal Oscillation and El Niño-Southern Oscillation are the main atmospheric drivers of hydroclimate variability in the region, sometimes operating at several months' lag. Their influence is the strongest in the fall through spring, which corresponds with the dry season in the southern parts of the study area thereby increasing pressure on already limited water resources. The Arctic Oscillation, North Atlantic Oscillation, and Pacific-North American patterns vary on shorter-term bases, and also show a significant, but temporally more sporadic influence. Insight is also brought to the ongoing discussion, confirming the disassociation of the Arctic and North Atlantic Oscillation. Findings can be used in water resources forecasting, giving an indication of expected water volumes several months ahead.

  11. Multidecadal changes in the Etesians-Indian Summer Monsoon teleconnection along the 20th Century

    Science.gov (United States)

    Gómez-Delgado, F. de Paula; Vega, Inmaculada; Gallego, David; Peña-Ortiz, Cristina; Ribera, Pedro; García-Herrera, Ricardo

    2017-04-01

    In this work we made use of historical winds record taken aboard ships to reconstruct a series of the prevalent summer northerly winds (Etesian winds) over the Eastern Mediterranean for the entire 20th century. Previous studies have shown a significant link between the frequency and strength of these winds and the strength of the Indian Summer Monsoon (ISM), but this relationship had only been studied in detail for the second half of the 20th century due to the absence of long and continous series of observed wind in the Eastern Mediterranean for previous periods. In this work, a new climatic index, the so-called " Etesian Wind Index " (EWI), is defined as the percentage of days with prevalent northerly wind (wind blowing from 305° to 35°) in a fixed region [20E-30E, 32N-37N]. By using historical wind observations, we have been able to compute this index for the summer (JJAS) since 1880 and analyze the long term variability of the Etesians, as well as to research into its relation with the ISM at an unprecedent temporal coverage. A running coverage analysis revealed a strong and significant positive correlation between the EWI and the strength of the ISM for the period 1960-1980, more markedly in July and August. This result is in accordance with other recent studies. However, we have found that the correalation fades out in the first half of the 20th century (1900-1950) and in the period 1980-2012, even showing significant negative values around the subperiod 1920-1950. Similar indices to the EWI were computed using two different 20th century reanalysis datasets (ERA20C and 20CR-V2C). Despite the fact that both indices show some discrepancies with the EWI before 1950, the correlation analysis with the ISM revealed similar results, pointing out a strong loss of the EWI-ISM correlation in the first half of the 20th century and from 1980 onwards, as well as a marked positive correlated period between 1960 and 1980, specially in August. In this study, we show that

  12. Strong influence of variable treatment on the performance of numerically defined ecological regions.

    Science.gov (United States)

    Snelder, Ton; Lehmann, Anthony; Lamouroux, Nicolas; Leathwick, John; Allenbach, Karin

    2009-10-01

    Numerical clustering has frequently been used to define hierarchically organized ecological regionalizations, but there has been little robust evaluation of their performance (i.e., the degree to which regions discriminate areas with similar ecological character). In this study we investigated the effect of the weighting and treatment of input variables on the performance of regionalizations defined by agglomerative clustering across a range of hierarchical levels. For this purpose, we developed three ecological regionalizations of Switzerland of increasing complexity using agglomerative clustering. Environmental data for our analysis were drawn from a 400 m grid and consisted of estimates of 11 environmental variables for each grid cell describing climate, topography and lithology. Regionalization 1 was defined from the environmental variables which were given equal weights. We used the same variables in Regionalization 2 but weighted and transformed them on the basis of a dissimilarity model that was fitted to land cover composition data derived for a random sample of cells from interpretation of aerial photographs. Regionalization 3 was a further two-stage development of Regionalization 2 where specific classifications, also weighted and transformed using dissimilarity models, were applied to 25 small scale "sub-domains" defined by Regionalization 2. Performance was assessed in terms of the discrimination of land cover composition for an independent set of sites using classification strength (CS), which measured the similarity of land cover composition within classes and the dissimilarity between classes. Regionalization 2 performed significantly better than Regionalization 1, but the largest gains in performance, compared to Regionalization 1, occurred at coarse hierarchical levels (i.e., CS did not increase significantly beyond the 25-region level). Regionalization 3 performed better than Regionalization 2 beyond the 25-region level and CS values continued to

  13. Hydroclimate variability in Scandinavia over the last millennium - insights from a climate model-proxy data comparison

    Science.gov (United States)

    Seftigen, Kristina; Goosse, Hugues; Klein, Francois; Chen, Deliang

    2017-12-01

    The integration of climate proxy information with general circulation model (GCM) results offers considerable potential for deriving greater understanding of the mechanisms underlying climate variability, as well as unique opportunities for out-of-sample evaluations of model performance. In this study, we combine insights from a new tree-ring hydroclimate reconstruction from Scandinavia with projections from a suite of forced transient simulations of the last millennium and historical intervals from the CMIP5 and PMIP3 archives. Model simulations and proxy reconstruction data are found to broadly agree on the modes of atmospheric variability that produce droughts-pluvials in the region. Despite these dynamical similarities, large differences between simulated and reconstructed hydroclimate time series remain. We find that the GCM-simulated multi-decadal and/or longer hydroclimate variability is systematically smaller than the proxy-based estimates, whereas the dominance of GCM-simulated high-frequency components of variability is not reflected in the proxy record. Furthermore, the paleoclimate evidence indicates in-phase coherencies between regional hydroclimate and temperature on decadal timescales, i.e., sustained wet periods have often been concurrent with warm periods and vice versa. The CMIP5-PMIP3 archive suggests, however, out-of-phase coherencies between the two variables in the last millennium. The lack of adequate understanding of mechanisms linking temperature and moisture supply on longer timescales has serious implications for attribution and prediction of regional hydroclimate changes. Our findings stress the need for further paleoclimate data-model intercomparison efforts to expand our understanding of the dynamics of hydroclimate variability and change, to enhance our ability to evaluate climate models, and to provide a more comprehensive view of future drought and pluvial risks.

  14. Sea surface temperature inter-hemispheric dipole and its relation to tropical precipitation

    International Nuclear Information System (INIS)

    Sun, Cheng; Li, Jianping; Ding, Ruiqiang; Jin, Fei-Fei

    2013-01-01

    Using different SST datasets, the variability of zonal mean SSTs is investigated. Besides the global warming mode, the variability is dominated by one equatorially symmetric mode and one antisymmetric mode. The former is most pronounced in the Pacific and dominated by interannual variability, corresponding to the ENSO signature. The latter features an inter-hemispheric dipole-like pattern and is referred to as the SST inter-hemispheric dipole (SSTID). The SSTID and Atlantic multidecadal oscillation are found to be related but distinct in the spatial pattern. Observational analysis shows that the SSTID significantly influences tropical rainfall and contributes to the north–south asymmetry of tropical precipitation on multidecadal timescales. The observed SSTID and its relation to the tropical rainfall are realistically reproduced in a control simulation with the UKMO-HadCM3 climate model. Results from the UKMO-HadCM3 simulation suggest that the SSTID is related to the variability of the global ocean northward cross-equatorial heat transport. (letter)

  15. All varieties of encoding variability are not created equal: Separating variable processing from variable tasks

    Science.gov (United States)

    Huff, Mark J.; Bodner, Glen E.

    2014-01-01

    Whether encoding variability facilitates memory is shown to depend on whether item-specific and relational processing are both performed across study blocks, and whether study items are weakly versus strongly related. Variable-processing groups studied a word list once using an item-specific task and once using a relational task. Variable-task groups’ two different study tasks recruited the same type of processing each block. Repeated-task groups performed the same study task each block. Recall and recognition were greatest in the variable-processing group, but only with weakly related lists. A variable-processing benefit was also found when task-based processing and list-type processing were complementary (e.g., item-specific processing of a related list) rather than redundant (e.g., relational processing of a related list). That performing both item-specific and relational processing across trials, or within a trial, yields encoding-variability benefits may help reconcile decades of contradictory findings in this area. PMID:25018583

  16. Precipitation, temperature, and teleconnection signals across the combined North American, Monsoon Asia, and Old World Drought Atlases

    Science.gov (United States)

    Smerdon, J. E.; Baek, S. H.; Coats, S.; Williams, P.; Cook, B.; Cook, E. R.; Seager, R.

    2017-12-01

    The tree-ring-based North American Drought Atlas (NADA), Monsoon Asia Drought Atlas (MADA), and Old World Drought Atlas (OWDA) collectively yield a near-hemispheric gridded reconstruction of hydroclimate variability over the last millennium. To test the robustness of the large-scale representation of hydroclimate variability across the drought atlases, the joint expression of seasonal climate variability and teleconnections in the NADA, MADA, and OWDA are compared against two global, observation-based PDSI products. Predominantly positive (negative) correlations are determined between seasonal precipitation (surface air temperature) and collocated tree-ring-based PDSI, with average Pearson's correlation coefficients increasing in magnitude from boreal winter to summer. For precipitation, these correlations tend to be stronger in the boreal winter and summer when calculated for the observed PDSI record, while remaining similar for temperature. Notwithstanding these differences, the drought atlases robustly express teleconnection patterns associated with the El Niño-Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO). These expressions exist in the drought atlas estimates of boreal summer PDSI despite the fact that these modes of climate variability are dominant in boreal winter, with the exception of the Atlantic Multidecadal Oscillation. ENSO and NAO teleconnection patterns in the drought atlases are particularly consistent with their well-known dominant expressions in boreal winter and over the OWDA domain, respectively. Collectively, our findings confirm that the joint Northern Hemisphere drought atlases robustly reflect large-scale patterns of hydroclimate variability on seasonal to multidecadal timescales over the 20th century and are likely to provide similarly robust estimates of hydroclimate variability prior to the existence of widespread instrumental data.

  17. Sea-ice cover anomalies in the Arctic Basin associated with atmospheric variability from multi-decadal trends to intermittent quasi-biennial oscillations

    Directory of Open Access Journals (Sweden)

    Motoyoshi Ikeda

    2012-06-01

    Full Text Available Arctic Ocean sea ice has been diminishing since 1970, as shown by National Snow and Ice Data Center data. In addition to decadal variability, low ice anomalies in the Pacific–Siberian region have been occurring at shorter timescales. The influence of the widely-known Northern Annular Mode (NAM occurs across all seasons. In this study, empirical orthogonal function (EOF analysis was applied to sea-level pressure in National Centers for Environmental Prediction Reanalysis data for 1960–2007, showing the NAM to be the leading mode of variability and the Arctic Dipole Mode (ADM to be the second leading mode. The ADM changes markedly across seasons. In autumn–winter, it has a pole over Siberia and a pole over Greenland, at opposite signs at a several-year scale, whereas the spring–summer ADM (ADMSS has a pole over Europe and a pole over Canada. In the 1980s, the most influential mode shifted from the NAM to the ADM, when the Pacific sector had low ice cover at a 1-year lag from the positive ADM, which was marked by low pressure over Siberia. In years when the ADMSS was pronounced, it was responsible for distinct ice variability over the East Siberian–Laptev seas. The frequency separation in this study identified the contributions of the ADM and ADMSS. Effects of the latter are difficult to predict since it is intermittent and changes its sign biennially. The ADM and ADMSS should be closely watched in relation to the ongoing ice reduction in the Pacific–Siberian region.

  18. Multi-decade biomass dynamics in an old-growth hemlock-northern hardwood forest, Michigan, USA

    Directory of Open Access Journals (Sweden)

    Kerry D. Woods

    2014-09-01

    Full Text Available Trends in living aboveground biomass and inputs to the pool of coarse woody debris (CWD in an undisturbed, old-growth hemlock-northern hardwood forest in northern MI were estimated from multi-decade observations of permanent plots. Growth and demographic data from seven plot censuses over 47 years (1962–2009, combined with one-time measurement of CWD pools, help assess biomass/carbon status of this landscape. Are trends consistent with traditional notions of late-successional forests as equilibrial ecosystems? Specifically, do biomass pools and CWD inputs show consistent long-term trends and relationships, and can living and dead biomass pools and trends be related to forest composition and history? Aboveground living biomass densities, estimated using standard allometric relationships, range from 360–450 Mg/ha among sampled stands and types; these values are among the highest recorded for northeastern North American forests. Biomass densities showed significant decade-scale variation, but no consistent trends over the full study period (one stand, originating following an 1830 fire, showed an aggrading trend during the first 25 years of the study. Even though total above-ground biomass pools are neither increasing nor decreasing, they have been increasingly dominated, over the full study period, by very large (>70 cm dbh stems and by the most shade-tolerant species (Acer saccharum and Tsuga canadensis.CWD pools measured in 2007 averaged 151 m3/ha, with highest values in Acer-dominated stands. Snag densities averaged 27/ha, but varied nearly ten-fold with canopy composition (highest in Tsuga-dominated stands, lowest in Acer-dominated; snags constituted 10–50% of CWD biomass. Annualized CWD inputs from tree mortality over the full study period averaged 1.9–3.2 Mg/ha/yr, depending on stand and species composition. CWD input rates tended to increase over the course of the study. Input rates may be expected to increase over longer

  19. A Zonal Mode in the Indian Ocean over the Past Millennium? Isotopic Evidence from Continental Climate Archives and Model Simulations

    Science.gov (United States)

    Konecky, B.; Russell, J. M.; Vuille, M.; Rodysill, J. R.; Cohen, L. R.; Chuman, A. F.; Huang, Y.

    2011-12-01

    We present new evidence for multi-decadal to millennial scale hydro-climatic change in the continental Indian Ocean region over the past two millennia. We assess regional hydrological variability using new records of the δD of terrestrial plant waxes from the sediments of several lakes in tropical East Africa and Indonesia. We compare these new data to previous δ18O and δD records from the region and interpret these results in light of an isotope-enabled climate model simulation of the past 130 years. Long-term trends in our data support a southward migration of the Intertropical Convergence Zone (ITCZ)'s mean position over the past millennium, bringing progressively wetter conditions and D-depleted waxes to our southernmost site (~8°S) starting around 950 C.E. while maintaining overall wet conditions at our northernmost site (~0°N) until the end of the 19th century. Superimposed on this long-term trend are a series of pronounced, multi-decadal to centennial scale isotopic excursions that are of the same timing but in opposite directions on the two sides of the Indian Ocean. These zonally asymmetric isotopic fluctuations become progressively more pronounced beginning around 1400 C.E., with the onset of Little Ice Age cool conditions recorded in sea surface temperature reconstructions from the Northern Hemisphere and the Indo-Pacific Warm Pool (IPWP). Previous work in the IPWP region suggests cooler SST, reduced boreal summer Asian monsoon intensity, and less ENSO-like activity during the Little Ice Age [Oppo et al., 2009, Nature 460:1113, and references therein], although recent paleolimnological reconstructions from Java indicate punctuated droughts during this time [Rodysill et al., 2010, Eos Trans. AGU, 91(52), Fall Meet. Suppl., Abstract PP51B-04]. Our records suggest that multi-decadal to centennial precipitation variability was in fact enhanced during this time period in parts of equatorial East Africa and western Indonesia. The direction of isotopic

  20. Multi-Decadal Global Cooling and Unprecedented Ozone Loss Following a Regional Nuclear Conflict

    Science.gov (United States)

    Mills, M. J.; Toon, O. B.; Lee-Taylor, J. M.; Robock, A.

    2014-12-01

    We present the first study of the global impacts of a regional nuclear war with an Earth system model including atmospheric chemistry, ocean dynamics, and interactive sea-ice and land models (Mills et al., 2014). A limited, regional nuclear war between India and Pakistan in which each side detonates 50 15-kt weapons could produce about 5 Tg of black carbon. This would self-loft to the stratosphere, where it would spread globally, producing a sudden drop in surface temperatures and intense heating of the stratosphere. Using the Community Earth System Model with the Whole Atmosphere Community Climate Model (CESM1(WACCM)), we calculate an e-folding time of 8.7 years for stratospheric black carbon, compared to 4-6.5 years for previous studies (figure panel a). Our calculations show that global ozone losses of 20-50% over populated areas, levels unprecedented in human history, would accompany the coldest average surface temperatures in the last 1000 years (figure panel c). We calculate summer enhancements in UV indices of 30-80% over Mid-Latitudes, suggesting widespread damage to human health, agriculture, and terrestrial and aquatic ecosystems. Killing frosts would reduce growing seasons by 10-40 days per year for 5 years. Surface temperatures would be reduced for more than 25 years, due to thermal inertia and albedo effects in the ocean and expanded sea ice. The combined cooling and enhanced UV would put significant pressures on global food supplies and could trigger a global nuclear famine. Knowledge of the impacts of 100 small nuclear weapons should motivate the elimination of the more than 17,000 nuclear weapons that exist today. Mills, M. J., O. B. Toon, J. Lee-Taylor, and A. Robock (2014), Multidecadal global cooling and unprecedented ozone loss following a regional nuclear conflict, Earth's Future, 2(4), 161-176, doi:10.1002/2013EF000205.

  1. Modeling key processes causing climate change and variability

    Energy Technology Data Exchange (ETDEWEB)

    Henriksson, S.

    2013-09-01

    Greenhouse gas warming, internal climate variability and aerosol climate effects are studied and the importance to understand these key processes and being able to separate their influence on the climate is discussed. Aerosol-climate model ECHAM5-HAM and the COSMOS millennium model consisting of atmospheric, ocean and carbon cycle and land-use models are applied and results compared to measurements. Topics at focus are climate sensitivity, quasiperiodic variability with a period of 50-80 years and variability at other timescales, climate effects due to aerosols over India and climate effects of northern hemisphere mid- and high-latitude volcanic eruptions. The main findings of this work are (1) pointing out the remaining challenges in reducing climate sensitivity uncertainty from observational evidence, (2) estimates for the amplitude of a 50-80 year quasiperiodic oscillation in global mean temperature ranging from 0.03 K to 0.17 K and for its phase progression as well as the synchronising effect of external forcing, (3) identifying a power law shape S(f) {proportional_to} f-{alpha} for the spectrum of global mean temperature with {alpha} {approx} 0.8 between multidecadal and El Nino timescales with a smaller exponent in modelled climate without external forcing, (4) separating aerosol properties and climate effects in India by season and location (5) the more efficient dispersion of secondary sulfate aerosols than primary carbonaceous aerosols in the simulations, (6) an increase in monsoon rainfall in northern India due to aerosol light absorption and a probably larger decrease due to aerosol dimming effects and (7) an estimate of mean maximum cooling of 0.19 K due to larger northern hemisphere mid- and high-latitude volcanic eruptions. The results could be applied or useful in better isolating the human-caused climate change signal, in studying the processes further and in more detail, in decadal climate prediction, in model evaluation and in emission policy

  2. Factors affecting the inter-annual to centennial timescale variability of Indian summer monsoon rainfall

    Science.gov (United States)

    Malik, Abdul; Brönnimann, Stefan

    2018-06-01

    The Modes of Ocean Variability (MOV) namely Atlantic Multidecadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), and El Niño Southern Oscillation (ENSO) can have significant impacts on Indian Summer Monsoon Rainfall (ISMR) on different timescales. The timescales at which these MOV interacts with ISMR and the factors which may perturb their relationship with ISMR need to be investigated. We employ De-trended Cross-Correlation Analysis (DCCA), and De-trended Partial-Cross-Correlation Analysis (DPCCA) to study the timescales of interaction of ISMR with AMO, PDO, and ENSO using observational dataset (AD 1854-1999), and atmosphere-ocean-chemistry climate model simulations with SOCOL-MPIOM (AD 1600-1999). Further, this study uses De-trended Semi-Partial Cross-Correlation Analysis (DSPCCA) to address the relation between solar variability and the ISMR. We find statistically significant evidence of intrinsic correlations of ISMR with AMO, PDO, and ENSO on different timescales, consistent between model simulations and observations. However, the model fails to capture modulation in intrinsic relationship between ISRM and MOV due to external signals. Our analysis indicates that AMO is a potential source of non-stationary relationship between ISMR and ENSO. Furthermore, the pattern of correlation between ISMR and Total Solar Irradiance (TSI) is inconsistent between observations and model simulations. The observational dataset indicates statistically insignificant negative intrinsic correlation between ISMR and TSI on decadal-to-centennial timescales. This statistically insignificant negative intrinsic correlation is transformed to statistically significant positive extrinsic by AMO on 61-86-year timescale. We propose a new mechanism for Sun-monsoon connection which operates through AMO by changes in summer (June-September; JJAS) meridional gradient of tropospheric temperatures (ΔTTJJAS). There is a negative (positive) intrinsic correlation between ΔTTJJAS (AMO) and

  3. Cataclysmic variables, Hubble-Sandage variables and eta Carinae

    International Nuclear Information System (INIS)

    Bath, G.T.

    1980-01-01

    The Hubble-Sandage variables are the most luminous stars in external galaxies. They were first investigated by Hubble and Sandage (1953) for use as distance indicators. Their main characteristics are high luminosity, blue colour indices, and irregular variability. Spectroscopically they show hydrogen and helium in emission with occasionally weaker FeII and [FeII], and no Balmer jump (Humphreys 1975, 1978). In this respect they closely resemble cataclysmic variables, particularly dwarf novae. In the quiescent state dwarf novae show broad H and HeI, together with a strong UV continuum. In contrast to the spectroscopic similarities, the luminosities could hardly differ more. Rather than being the brightest stars known, quiescent dwarf novae are as faint or fainter than the sun. It is suggested that the close correspondence between the spectral appearance of the two classes combined with the difference in luminosity is well accounted for by a model of Hubble-Sandage variables in which the same physical processes are occurring, but on a larger scale. (Auth.)

  4. Changes in intense tropical cyclone activity for the western North Pacific during the last decades derived from a regional climate model simulation

    Science.gov (United States)

    Barcikowska, Monika; Feser, Frauke; Zhang, Wei; Mei, Wei

    2017-11-01

    An atmospheric regional climate model (CCLM) was employed to dynamically downscale atmospheric reanalyses (NCEP/NCAR 1, ERA 40) over the western North Pacific and South East Asia. This approach is used for the first time to reconstruct a tropical cyclone climatology, which extends beyond the satellite era and serves as an alternative data set for inhomogeneous observation-derived records (Best Track Data sets). The simulated TC climatology skillfully reproduces observations of the recent decades (1978-2010), including spatial patterns, frequency, lifetime, trends, variability on interannual and decadal time scales and their association with the large-scale circulation patterns. These skills, facilitated here with the spectral nudging method, seem to be a prerequisite to understand the factors determining spatio-temporal variability of TC activity over the western North Pacific. Long-term trends (1948-2011 and 1959-2001) in both simulations show a strong increase of intense tropical cyclone activity. This contrasts with pronounced multidecadal variations found in observations. The discrepancy may partly originate from temporal inhomogeneities in atmospheric reanalyses and Best Track Data, which affect both the model-based and observational-based trends. An adjustment, which removes the simulated upward trend, reduces the apparent discrepancy. Ultimately, our observational and modeling analysis suggests an important contribution of multi-decadal fluctuations in the TC activity during the last six decades. Nevertheless, due to the uncertainties associated with the inconsistencies and quality changes of those data sets, we call for special caution when reconstructing long-term TC statistics either from atmospheric reanalyses or Best Track Data.

  5. Simulating the Agulhas system in global ocean models - nesting vs. multi-resolution unstructured meshes

    Science.gov (United States)

    Biastoch, Arne; Sein, Dmitry; Durgadoo, Jonathan V.; Wang, Qiang; Danilov, Sergey

    2018-01-01

    Many questions in ocean and climate modelling require the combined use of high resolution, global coverage and multi-decadal integration length. For this combination, even modern resources limit the use of traditional structured-mesh grids. Here we compare two approaches: A high-resolution grid nested into a global model at coarser resolution (NEMO with AGRIF) and an unstructured-mesh grid (FESOM) which allows to variably enhance resolution where desired. The Agulhas system around South Africa is used as a testcase, providing an energetic interplay of a strong western boundary current and mesoscale dynamics. Its open setting into the horizontal and global overturning circulations also requires global coverage. Both model configurations simulate a reasonable large-scale circulation. Distribution and temporal variability of the wind-driven circulation are quite comparable due to the same atmospheric forcing. However, the overturning circulation differs, owing each model's ability to represent formation and spreading of deep water masses. In terms of regional, high-resolution dynamics, all elements of the Agulhas system are well represented. Owing to the strong nonlinearity in the system, Agulhas Current transports of both configurations and in comparison with observations differ in strength and temporal variability. Similar decadal trends in Agulhas Current transport and Agulhas leakage are linked to the trends in wind forcing.

  6. Feedback-driven response to multidecadal climatic variability at an alpine treeline

    Science.gov (United States)

    Alftine, K.J.; Malanson, G.P.; Fagre, D.B.

    2003-01-01

    The Pacific Decadal Oscillation (PDO) has significant climatological and ecological effects in northwestern North America. Its possible effects and their modification by feedbacks are examined in the forest-tundra ecotone in Glacier National Park, Montana, USA. Tree ring samples were collected to estimate establishment dates in 10 quadrats. Age-diameter regressions were used to estimate the ages of uncored trees. The temporal pattern of establishment and survival was compared to the pattern of the PDO. A wave of establishment began in the mid-1940s, rose to a peak rate in the mid-1970s, and dropped precipitously beginning ca. 1980 to near zero for the 1990s. The period of establishment primarily coincided with the negative phase of the PDO, but the establishment and survival pattern is not correlated with the PDO index. The pattern indicates a period during which establishment was possible and was augmented by positive feedback from surviving trees. Snow may be the most important factor in the feedback, but studies indicate that its effects vary locally. Spatially differentiated analyses of decadal or longer periodicity may elucidate responses to climatic variation. ?? 2003 by V. H. Winston and Son, Inc. All rights reserved.

  7. Future changes to the Indonesian Throughflow and Pacific circulation : The differing role of wind and deep circulation changes

    NARCIS (Netherlands)

    Sen Gupta, Alex; McGregor, Shayne; Van Sebille, Erik; Ganachaud, Alexandre; Brown, Jaclyn N.; Santoso, Agus

    2016-01-01

    Climate models consistently project a substantial decrease in the Indonesian Throughflow (ITF) in response to enhanced greenhouse warming. On interannual timescales ITF changes are largely related to tropical Pacific wind variability. However, on the multidecadal timescales investigated here we

  8. Soil variability in mountain areas

    OpenAIRE

    Zanini, E.; Freppaz, M.; Stanchi, S.; Bonifacio, E.; Egli, M.

    2015-01-01

    The high spatial variability of soils is a relevant issue at local and global scales, and determines the complexity of soil ecosystem functions and services. This variability derives from strong dependencies of soil ecosystems on parent materials, climate, relief and biosphere, including human impact. Although present in all environments, the interactions of soils with these forming factors are particularly striking in mountain areas.

  9. STRONG UV AND X-RAY VARIABILITY OF THE NARROW LINE SEYFERT 1 GALAXY WPVS 007-ON THE NATURE OF THE X-RAY LOW STATE

    Energy Technology Data Exchange (ETDEWEB)

    Grupe, Dirk; Barlow, Brad N. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Komossa, S. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Scharwaechter, Julia [Research School of Astronomy and Astrophysics, Australian National University, Mount Stromlo Observatory, Cotter Road, Weston Creek, ACT 2611 (Australia); Dietrich, Matthias [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Leighly, Karen M.; Lucy, Adrian, E-mail: dxg35@psu.edu, E-mail: julia.scharwaechter@obspm.fr, E-mail: leighly@nhn.ou.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States)

    2013-10-01

    We report on multi-wavelength observations of the X-ray transient Narrow Line Seyfert 1 (NLS1) galaxy WPVS 007. The galaxy was monitored with Swift between 2005 October and 2013 July, after it had previously undergone a dramatic drop in its X-ray flux. For the first time, we are able to repeatedly detect this NLS1 in X-rays again. This increased number of detections in the last couple of years may suggest that the strong absorber that has been found in this active galactic nucleus (AGN) is starting to become leaky and may eventually disappear. The X-ray spectra obtained for WPVS 007 are all consistent with a partial covering absorber model. A spectrum based on the data during the extreme low X-ray flux states shows that the absorption column density is of the order of 4 Multiplication-Sign 10{sup 23} cm{sup -2} with a covering fraction of 95%. WPVS 007 also displays one of the strongest UV variabilities seen in NLS1s. The UV continuum variability anti-correlates with the optical/UV slope {alpha}{sub UV}, which suggests that the variability may be primarily due to reddening. The UV variability timescales are consistent with moving dust ''clouds'' located beyond the dust sublimation radius of R{sub sub} Almost-Equal-To 20 lt-days. We present for the first time near-infrared JHK data of WPVS 007, which reveal a rich emission-line spectrum. Recent optical spectroscopy does not indicate significant variability in the broad permitted and Fe II emission lines, implying that the ionizing continuum seen by those gas clouds has not significantly changed over the last decades. All X-ray and UV observations are consistent with a scenario in which an evolving broad absorption line (BAL) flow obscures the continuum emission. As such, WPVS 007 is an important target for our understanding of BAL flows in low-mass AGNs.

  10. Relationship between annual precipitation variability and ENSO in Southern California for the Common Era (last 2,000 years)

    Science.gov (United States)

    DU, X.; Hendy, I. L.; Hinnov, L.; Brown, E. T.; Schimmelmann, A.; Pak, D. K.

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) has a major influence on Southern California's hydroclimate as demonstrated by both historical observations and model simulations. Santa Barbara Basin (SBB) off Southern California preserves a unique varved (i.e. annually laminated) marine sedimentary archive of modern and Holocene hydroclimate variability, notably including the transition from the regionally dry Medieval Climate Anomaly (MCA) to the wetter Little Ice Age (LIA). Here we present sub-annually resolved scanning XRF elemental counts for the last 2,000 years in SBB from core SPR0901-03KC. Titanium (associated with silicate minerals) is delivered more efficiently to SBB sediments during times of enhanced river flow and in the Mediterranean climate of Southern California, river flow only occurs after precipitation. The Ti record suggests that the precipitation frequency was reduced during the MCA except for a pluvial episode at CE 1075-1121, but increased during the LIA. Time series analysis of Ti counts indicates ENSO variability robustly increased during the intervals CE 450-520, 650-720, 980-1150, 1380-1550 and 1720-1750, and experienced relatively quiescent intervals between CE 50-150, 250-400, 550-650, 750-950, 1150-1280 and 1580-1620. Generally the LIA in Southern California is characterized by more active ENSO variability with long periodicities (4-7 yr) and multi-decadal variability (54 yr). MCA drought episodes were associated with less active ENSO. Active ENSO variability in Southern California during the last 2,000 years coincided with reconstructed southward migration of the Intertropical Convergence Zone (ITCZ) suggesting the ITCZ may play a role in the waxing and waning of ENSO teleconnections between the central Pacific and the west coast of North America.

  11. Strong diffusion formulation of Markov chain ensembles and its optimal weaker reductions

    Science.gov (United States)

    Güler, Marifi

    2017-10-01

    Two self-contained diffusion formulations, in the form of coupled stochastic differential equations, are developed for the temporal evolution of state densities over an ensemble of Markov chains evolving independently under a common transition rate matrix. Our first formulation derives from Kurtz's strong approximation theorem of density-dependent Markov jump processes [Stoch. Process. Their Appl. 6, 223 (1978), 10.1016/0304-4149(78)90020-0] and, therefore, strongly converges with an error bound of the order of lnN /N for ensemble size N . The second formulation eliminates some fluctuation variables, and correspondingly some noise terms, within the governing equations of the strong formulation, with the objective of achieving a simpler analytic formulation and a faster computation algorithm when the transition rates are constant or slowly varying. There, the reduction of the structural complexity is optimal in the sense that the elimination of any given set of variables takes place with the lowest attainable increase in the error bound. The resultant formulations are supported by numerical simulations.

  12. On the strong law of large numbers for $\\varphi$-subgaussian random variables

    OpenAIRE

    Zajkowski, Krzysztof

    2016-01-01

    For $p\\ge 1$ let $\\varphi_p(x)=x^2/2$ if $|x|\\le 1$ and $\\varphi_p(x)=1/p|x|^p-1/p+1/2$ if $|x|>1$. For a random variable $\\xi$ let $\\tau_{\\varphi_p}(\\xi)$ denote $\\inf\\{a\\ge 0:\\;\\forall_{\\lambda\\in\\mathbb{R}}\\; \\ln\\mathbb{E}\\exp(\\lambda\\xi)\\le\\varphi_p(a\\lambda)\\}$; $\\tau_{\\varphi_p}$ is a norm in a space $Sub_{\\varphi_p}=\\{\\xi:\\;\\tau_{\\varphi_p}(\\xi)1$) there exist positive constants $c$ and $\\alpha$ such that for every natural number $n$ the following inequality $\\tau_{\\varphi_p}(\\sum_{i=1...

  13. Late Holocene Drought Variability in Eastern North America: Evidence From the Peatland Archive

    Science.gov (United States)

    Booth, R. K.; Jackson, S. T.

    2006-12-01

    Tree-ring based drought chronologies from semi-arid regions of western North America have revealed substantial variability in water balance during the past 1000 years, including episodes of persistent drought more severe than any observed during historical times. Delimitation of regional and continental-scale footprints of these past drought events, including their spatial patterning in humid regions where moisture-sensitive paleoclimate records are scarce, is critical to understanding their dynamics and potential causes. Ombrotrophic peatlands are scattered throughout humid regions of North America at mid-latitudes and represent an underutilized source of multidecadal-scale information on past moisture variations. We are developing a spatial network of peatland-derived paleoclimate and paleoecological records in eastern North America, in an effort to 1) determine whether large, decadal to multidecadal droughts of the past several thousand years were spatially and temporally coherent, 2) assess whether the magnitude of past drought events was sufficient to force ecological change in terrestrial ecosystems, and 3) assess the underlying mechanisms and dynamics of widespread drought in North America. We have completed water-level reconstructions based on testate-amoeba assemblages from two ombrotrophic peatlands in mid-continental North America, Hole in the Bog (NC Minnesota) and Minden Bog (SE Michgian). We also have developed reconstructions from three Sphagnum-dominated kettle peatlands, South Rhody Peatland (NC Michigan), Hornet Peatland (NW Wisconsin), and Irwin Smith Peatland (NE Michigan). Although these kettle peatlands are not truly ombrotrophic, high-magnitude water-table fluctuations should still be attributable to climate variability, and we use these records to supplement our interpretation of regional climate history. Our results indicate that all high-magnitude fluctuations in water balance were spatially extensive, affecting bog-surface moisture

  14. Electromotive force in strongly compressible magnetohydrodynamic turbulence

    Science.gov (United States)

    Yokoi, N.

    2017-12-01

    Variable density fluid turbulence is ubiquitous in geo-fluids, not to mention in astrophysics. Depending on the source of density variation, variable density fluid turbulence may be divided into two categories: the weak compressible (entropy mode) turbulence for slow flow and the strong compressible (acoustic mode) turbulence for fast flow. In the strong compressible turbulence, the pressure fluctuation induces a strong density fluctuation ρ ', which is represented by the density variance ( denotes the ensemble average). The turbulent effect on the large-scale magnetic-field B induction is represented by the turbulent electromotive force (EMF) (u': velocity fluctuation, b': magnetic-field fluctuation). In the usual treatment in the dynamo theory, the expression for the EMF has been obtained in the framework of incompressible or weak compressible turbulence, where only the variation of the mean density , if any, is taken into account. We see from the equation of the density fluctuation ρ', the density variance is generated by the large mean density variation ∂ coupled with the turbulent mass flux . This means that in the region where the mean density steeply changes, the density variance effect becomes relevant for the magnetic field evolution. This situation is typically the case for phenomena associated with shocks and compositional discontinuities. With the aid of the analytical theory of inhomogeneous compressible magnetohydrodynamic (MHD) turbulence, the expression for the turbulent electromotive force is investigated. It is shown that, among others, an obliqueness (misalignment) between the mean density gradient ∂ and the mean magnetic field B may contribute to the EMF as ≈χ B×∂ with the turbulent transport coefficient χ proportional to the density variance (χ ). This density variance effect is expected to strongly affect the EMF near the interface, and changes the transport properties of turbulence. In the case of an interface under the MHD slow

  15. Human activities and climate variability drive fast-paced change across the world's estuarine-coastal ecosystems

    Science.gov (United States)

    Cloern, James E.; Abreu, Paulo C.; Carstensen, Jacob; Chauvaud, Laurent; Elmgren, Ragnar; Grall, Jacques; Greening, Holly; Johansson, John O.R.; Kahru, Mati; Sherwood, Edward T.; Xu, Jie; Yin, Kedong

    2016-01-01

    Time series of environmental measurements are essential for detecting, measuring and understanding changes in the Earth system and its biological communities. Observational series have accumulated over the past 2–5 decades from measurements across the world's estuaries, bays, lagoons, inland seas and shelf waters influenced by runoff. We synthesize information contained in these time series to develop a global view of changes occurring in marine systems influenced by connectivity to land. Our review is organized around four themes: (i) human activities as drivers of change; (ii) variability of the climate system as a driver of change; (iii) successes, disappointments and challenges of managing change at the sea-land interface; and (iv) discoveries made from observations over time. Multidecadal time series reveal that many of the world's estuarine–coastal ecosystems are in a continuing state of change, and the pace of change is faster than we could have imagined a decade ago. Some have been transformed into novel ecosystems with habitats, biogeochemistry and biological communities outside the natural range of variability. Change takes many forms including linear and nonlinear trends, abrupt state changes and oscillations. The challenge of managing change is daunting in the coastal zone where diverse human pressures are concentrated and intersect with different responses to climate variability over land and over ocean basins. The pace of change in estuarine–coastal ecosystems will likely accelerate as the human population and economies continue to grow and as global climate change accelerates. Wise stewardship of the resources upon which we depend is critically dependent upon a continuing flow of information from observations to measure, understand and anticipate future changes along the world's coastlines.

  16. Short-timescale variability in cataclysmic binaries

    International Nuclear Information System (INIS)

    Cordova, F.A.; Mason, K.O.

    1982-01-01

    Rapid variability, including flickering and pulsations, has been detected in cataclysmic binaries at optical and x-ray frequencies. In the case of the novalike variable TT Arietis, simultaneous observations reveal that the x-ray and optical flickering activity is strongly correlated, while short period pulsations are observed that occur at the same frequencies in both wavelength bands

  17. Strong versions of Bell's theorem

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1994-01-01

    Technical aspects of a recently constructed strong version of Bell's theorem are discussed. The theorem assumes neither hidden variables nor factorization, and neither determinism nor counterfactual definiteness. It deals directly with logical connections. Hence its relationship with modal logic needs to be described. It is shown that the proof can be embedded in an orthodox modal logic, and hence its compatibility with modal logic assured, but that this embedding weakens the theorem by introducing as added assumptions the conventionalities of the particular modal logic that is adopted. This weakening is avoided in the recent proof by using directly the set-theoretic conditions entailed by the locality assumption

  18. Low-Frequency Temporal Variability in Mira and Semiregular Variables

    Science.gov (United States)

    Templeton, Matthew R.; Karovska, M.; Waagen, E. O.

    2012-01-01

    We investigate low-frequency variability in a large sample of Mira and semiregular variables with long-term visual light curves from the AAVSO International Database. Our aim is to determine whether we can detect and measure long-timescale variable phenomena in these stars, for example photometric variations that might be associated with supergranular convection. We analyzed the long-term light curves of 522 variable stars of the Mira and SRa, b, c, and d classes. We calculated their low-frequency time-series spectra to characterize rednoise with the power density spectrum index, and then correlate this index with other observable characteristics such as spectral type and primary pulsation period. In our initial analysis of the sample, we see that the semiregular variables have a much broader range of spectral index than the Mira types, with the SRb subtype having the broadest range. Among Mira variables we see that the M- and S-type Miras have similarly wide ranges of index, while the C-types have the narrowest with generally shallower slopes. There is also a trend of steeper slope with larger amplitude, but at a given amplitude, a wide range of slopes are seen. The ultimate goal of the project is to identify stars with strong intrinsic red noise components as possible targets for resolved surface imaging with interferometry.

  19. Contributions of Greenhouse Gas Forcing and the Southern Annular Mode to Historical Southern Ocean Surface Temperature Trends

    Science.gov (United States)

    Kostov, Yavor; Ferreira, David; Armour, Kyle C.; Marshall, John

    2018-01-01

    We examine the 1979-2014 Southern Ocean (SO) sea surface temperature (SST) trends simulated in an ensemble of coupled general circulation models and evaluate possible causes of the models' inability to reproduce the observed 1979-2014 SO cooling. For each model we estimate the response of SO SST to step changes in greenhouse gas (GHG) forcing and in the seasonal indices of the Southern Annular Mode (SAM). Using these step-response functions, we skillfully reconstruct the models' 1979-2014 SO SST trends. Consistent with the seasonal signature of the Antarctic ozone hole and the seasonality of SO stratification, the summer and fall SAM exert a large impact on the simulated SO SST trends. We further identify conditions that favor multidecadal SO cooling: (1) a weak SO warming response to GHG forcing, (2) a strong multidecadal SO cooling response to a positive SAM trend, and (3) a historical SAM trend as strong as in observations.

  20. Intelligent control for large-scale variable speed variable pitch wind turbines

    Institute of Scientific and Technical Information of China (English)

    Xinfang ZHANG; Daping XU; Yibing LIU

    2004-01-01

    Large-scale wind turbine generator systems have strong nonlinear multivariable characteristics with many uncertain factors and disturbances.Automatic control is crucial for the efficiency and reliability of wind turbines.On the basis of simplified and proper model of variable speed variable pitch wind turbines,the effective wind speed is estimated using extended Kalman filter.Intelligent control schemes proposed in the paper include two loops which operate in synchronism with each other.At below-rated wind speed,the inner loop adopts adaptive fuzzy control based on variable universe for generator torque regulation to realize maximum wind energy capture.At above-rated wind speed, a controller based on least square support vector machine is proposed to adjust pitch angle and keep rated output power.The simulation shows the effectiveness of the intelligent control.

  1. Late Pleistocene and Holocene Hydroclimate Variability in the Tropical Andes from Alpine Lake Sediments, Cordillera de Mérida, Venezuela

    Science.gov (United States)

    Larsen, D. J.; Abbott, M. B.; Polissar, P. J.

    2014-12-01

    The tropics play a major role in the global hydrologic cycle and changes to tropical rainfall patterns have critical implications for water resources and ecosystem dynamics over large geographic scales. In tropical South America, late Pleistocene and Holocene precipitation variability has been documented in geologic records and associated with numerous external and internal variables, including changes in summer insolation, South American summer monsoon strength, Pacific Ocean sea surface temperatures, continental moisture recycling, and other climate processes. However, there are few records from the northern hemisphere tropical Americas, a key region for understanding interhemispheric linkages and the drivers of tropical hydroclimate variability. Here, we present a ~13 ka record of coupled hydroclimate and environmental changes from Laguna Brava, a small (~0.07 km2), hydrologically closed lake basin situated at 2400 m asl in the Cordillera de Mérida, Venezuela. Sediment cores collected from varying water depths and proximity to shore are placed in a chronologic framework using radiocarbon ages from terrestrial macrofossils, and analyzed for a suite of physical, bulk geochemical, and stable isotopic parameters. Compound specific hydrogen isotope (D/H) measurements of terrestrial plant waxes (long-chain n-alkanes) show a sharp increase in the late Pleistocene, followed by a long-term trend toward more negative values that suggest a ~20‰ decrease in the D/H ratios of South American tropical precipitation during the Holocene. This pattern is consistent in sign and magnitude to other South American precipitation reconstructions from both hemispheres, indicating interhemispheric similarities in tropical hydroclimate variability. Superimposed on this continent-scale trend are changes in moisture balance and environmental conditions in the Venezuelan Andes. We reconstruct these parameters at Laguna Brava at multidecadal and centennial resolution and evaluate this

  2. Santa Ana Winds of Southern California: Their Climatology and Variability Spanning 6.5 Decades from Regional Dynamical Modelling

    Science.gov (United States)

    Guzman-Morales, J.; Gershunov, A.

    2015-12-01

    Santa Ana Winds (SAWs) are an integral feature of the regional climate of Southern California/Northern Baja California region. In spite of their tremendous episodic impacts on the health, economy and mood of the region, climate-scale behavior of SAW is poorly understood. In the present work, we identify SAWs in mesoscale dynamical downscaling of a global reanalysis product and construct an hourly SAW catalogue spanning 65 years. We describe the long-term SAW climatology at relevant time-space resolutions, i.e, we developed local and regional SAW indices and analyse their variability on hourly, daily, annual, and multi-decadal timescales. Local and regional SAW indices are validated with available anemometer observations. Characteristic behaviors are revealed, e.g. the SAW intensity-duration relationship. At interdecadal time scales, we find that seasonal SAW activity is sensitive to prominent large-scale low-frequency modes of climate variability rooted in the tropical and north Pacific ocean-atmosphere system that are also known to affect the hydroclimate of this region. Lastly, we do not find any long-term trend in SAW frequency and intensity as previously reported. Instead, we identify a significant long-term trend in SAW behavior whereby contribution of extreme SAW events to total seasonal SAW activity has been increasing at the expense of moderate events. These findings motivate further investigation on SAW evolution in future climate and its impact on wildfires.

  3. Observation of strong continuous-variable Einstein-Podolsky-Rosen entanglement using shaped local oscillators

    Science.gov (United States)

    Shinjo, Ami; Hashiyama, Naoyuki; Koshio, Akane; Eto, Yujiro; Hirano, Takuya

    2016-10-01

    The continuous-variable (CV) Einstein-Podolsky-Rosen (EPR) paradox and steering are demonstrated using a pulsed light source and waveguides. We shorten the duration of the local oscillator (LO) pulse by using parametric amplification to improve the temporal mode-matching between the entangled pulse and the LO pulse. After correcting for the amplifier noise, the product of the measured conditional variance of the quadrature-phase amplitudes is 0.74 EPR-Reid criterion.

  4. Lake oxygen isotopes as recorders of North American Rocky Mountain hydroclimate: Holocene patterns and variability at multi-decadal to millennial time scales

    Science.gov (United States)

    Anderson, Lesleigh; Berkelhammer, Max; Barron, John A.; Steinman, Byron A.; Finney, Bruce P.; Abbott, Mark B.

    2016-02-01

    Lake sediment oxygen isotope records (calcium carbonate-δ18O) in the western North American Cordillera developed during the past decade provide substantial evidence of Pacific ocean-atmosphere forcing of hydroclimatic variability during the Holocene. Here we present an overview of 18 lake sediment δ18O records along with a new compilation of lake water δ18O and δ2H that are used to characterize lake sediment sensitivity to precipitation-δ18O in contrast to fractionation by evaporation. Of the 18 records, 14 have substantial sensitivity to evaporation. Two records reflect precipitation-δ18O since the middle Holocene, Jellybean and Bison Lakes, and are geographically positioned in the northern and southern regions of the study area. Their comparative analysis indicates a sequence of time-varying north-south precipitation-δ18O patterns that is evidence for a highly non-stationary influence by Pacific ocean-atmosphere processes on the hydroclimate of western North America. These observations are discussed within the context of previous research on North Pacific precipitation-δ18O based on empirical and modeling methods. The Jellybean and Bison Lake records indicate that a prominent precipitation-δ18O dipole (enriched-north and depleted-south) was sustained between ~ 3.5 and 1.5 ka, which contrasts with earlier Holocene patterns, and appears to indicate the onset of a dominant tropical control on North Pacific ocean-atmosphere dynamics. This remains the state of the system today. Higher frequency reversals of the north-south precipitation-δ18O dipole between ~ 2.5 and 1.5 ka, and during the Medieval Climate Anomaly and the Little Ice Age, also suggest more varieties of Pacific ocean-atmosphere modes than a single Pacific Decadal Oscillation (PDO) type analogue. Results indicate that further investigation of precipitation-δ18O patterns on short (observational) and long (Holocene) time scales is needed to improve our understanding of the processes that drive

  5. Lake oxygen isotopes as recorders of North American Rocky Mountain hydroclimate: Holocene patterns and variability at multi-decadal to millennial time scales

    Science.gov (United States)

    Anderson, Lesleigh; Max Berkelhammer,; Barron, John A.; Steinman, Byron A.; Finney, Bruce P.; Abbott, Mark B.

    2016-01-01

    Lake sediment oxygen isotope records (calcium carbonate-δ18O) in the western North American Cordillera developed during the past decade provide substantial evidence of Pacific ocean–atmosphere forcing of hydroclimatic variability during the Holocene. Here we present an overview of 18 lake sediment δ18O records along with a new compilation of lake water δ18O and δ2H that are used to characterize lake sediment sensitivity to precipitation-δ18O in contrast to fractionation by evaporation. Of the 18 records, 14 have substantial sensitivity to evaporation. Two records reflect precipitation-δ18O since the middle Holocene, Jellybean and Bison Lakes, and are geographically positioned in the northern and southern regions of the study area. Their comparative analysis indicates a sequence of time-varying north–south precipitation-δ18O patterns that is evidence for a highly non-stationary influence by Pacific ocean–atmosphere processes on the hydroclimate of western North America. These observations are discussed within the context of previous research on North Pacific precipitation-δ18O based on empirical and modeling methods. The Jellybean and Bison Lake records indicate that a prominent precipitation-δ18O dipole (enriched-north and depleted-south) was sustained between ~ 3.5 and 1.5 ka, which contrasts with earlier Holocene patterns, and appears to indicate the onset of a dominant tropical control on North Pacific ocean–atmosphere dynamics. This remains the state of the system today. Higher frequency reversals of the north–south precipitation-δ18O dipole between ~ 2.5 and 1.5 ka, and during the Medieval Climate Anomaly and the Little Ice Age, also suggest more varieties of Pacific ocean–atmosphere modes than a single Pacific Decadal Oscillation (PDO) type analogue. Results indicate that further investigation of precipitation-δ18O patterns on short (observational) and long (Holocene) time scales is needed to improve our understanding of the

  6. Surfing wave climate variability

    Science.gov (United States)

    Espejo, Antonio; Losada, Iñigo J.; Méndez, Fernando J.

    2014-10-01

    International surfing destinations are highly dependent on specific combinations of wind-wave formation, thermal conditions and local bathymetry. Surf quality depends on a vast number of geophysical variables, and analyses of surf quality require the consideration of the seasonal, interannual and long-term variability of surf conditions on a global scale. A multivariable standardized index based on expert judgment is proposed for this purpose. This index makes it possible to analyze surf conditions objectively over a global domain. A summary of global surf resources based on a new index integrating existing wave, wind, tides and sea surface temperature databases is presented. According to general atmospheric circulation and swell propagation patterns, results show that west-facing low to middle-latitude coasts are more suitable for surfing, especially those in the Southern Hemisphere. Month-to-month analysis reveals strong seasonal variations in the occurrence of surfable events, enhancing the frequency of such events in the North Atlantic and the North Pacific. Interannual variability was investigated by comparing occurrence values with global and regional modes of low-frequency climate variability such as El Niño and the North Atlantic Oscillation, revealing their strong influence at both the global and the regional scale. Results of the long-term trends demonstrate an increase in the probability of surfable events on west-facing coasts around the world in recent years. The resulting maps provide useful information for surfers, the surf tourism industry and surf-related coastal planners and stakeholders.

  7. Using ocean bottom pressure from the gravity recovery and climate experiment (GRACE) to estimate transport variability in the southern Indian Ocean

    Science.gov (United States)

    Makowski, Jessica K.; Chambers, Don P.; Bonin, Jennifer A.

    2015-06-01

    Previous studies have suggested that ocean bottom pressure (OBP) from the Gravity Recovery and Climate Experiment (GRACE) can be used to measure the depth-averaged, or barotropic, transport variability of the Antarctic Circumpolar Current (ACC). Here, we use GRACE OBP observations to calculate transport variability in a region of the southern Indian Ocean encompassing the major fronts of the ACC. We use a statistical analysis of a simulated GRACE-like data set to determine the uncertainty of the estimated transport for the 2003.0-2013.0 time period. We find that when the transport is averaged over 60° of longitude, the uncertainty (one standard error) is close to 1 Sv (1 Sv = 106 m3 s-1) for low-pass filtered transport, which is significantly smaller than the signal and lower than previous studies have found. The interannual variability is correlated with the Southern Annual mode (SAM) (0.61), but more highly correlated with circumpolar zonally averaged winds between 45°S and 65°S (0.88). GRACE transport reflects significant changes in transport between 2007 and 2009 that is observed in the zonal wind variations but not in the SAM index. We also find a statistically significant trend in transport (-1.0 ± 0.4 Sv yr-1, 90% confidence) that is correlated with a local deceleration in zonal winds related to an asymmetry in the SAM on multidecadal periods.

  8. Climatic drivers for multidecadal shifts in solute transport and methane production zones within a large peat basin

    Science.gov (United States)

    Glaser, Paul H.; Siegel, Donald I.; Chanton, Jeffrey P.; Reeve, Andrew S.; Rosenberry, Donald O.; Corbett, J. Elizabeth; Dasgupta, Soumitri; Levy, Zeno

    2016-01-01

    Northern peatlands are an important source for greenhouse gases, but their capacity to produce methane remains uncertain under changing climatic conditions. We therefore analyzed a 43 year time series of the pore-water chemistry to determine if long-term shifts in precipitation altered the vertical transport of solutes within a large peat basin in northern Minnesota. These data suggest that rates of methane production can be finely tuned to multidecadal shifts in precipitation that drive the vertical penetration of labile carbon substrates within the Glacial Lake Agassiz Peatlands. Tritium and cation profiles demonstrate that only the upper meter of these peat deposits was flushed by downwardly moving recharge from 1965 to 1983 during a Transitional Dry-to-Moist Period. However, a shift to a moister climate after 1984 drove surface waters much deeper, largely flushing the pore waters of all bogs and fens to depths of 2 m. Labile carbon compounds were transported downward from the rhizosphere to the basal peat at this time producing a substantial enrichment of methane in Δ14C with respect to the solid-phase peat from 1991 to 2008. These data indicate that labile carbon substrates can fuel deep production zones of methanogenesis that more than doubled in thickness across this large peat basin after 1984. Moreover, the entire peat profile apparently has the capacity to produce methane from labile carbon substrates depending on climate-driven modes of solute transport. Future changes in precipitation may therefore play a central role in determining the source strength of peatlands in the global methane cycle.

  9. Tropical Pacific forcing on decadal-to-centennial NAO-dominated precipitation variability in northern Mediterranean over the past 6500 years

    Science.gov (United States)

    Hu, H. M.; Shen, C. C.; Michel, V.; Jiang, X.; Mii, H. S.; Wang, Y.; Valensi, P.

    2017-12-01

    We present a multi-annual-resolved absolute-dated stalagmite-inferred precipitation record, with age precision as good as ±2 years, from northern Italy, to reflect North Atlantic Oscillation (NAO) dynamics since 6.5 ka (thousand years ago, before 1950 C.E.). Our record features millennial precipitation fluctuations punctuated by several centennial-scale drought periods centered at 5.6, 6.2, 4.2, 3.0 and 2.3 ka. The phase relationship with previous NAO-sensitive records suggests a multi-millennial southward migration of the northern Westerlies and enhanced NAO variability from the middle- to late-Holocene. We also found the multi-decadal to centennial rainfall amount could dramatically vary within few decades, possibly affecting ancient Mediterranean civilizations. Concurrence between northern Mediterranean precipitation and western tropical Pacific sea surface temperature records suggests the remote forcing on this NAO-dominated rainfall. We argue that the irregular NAO change nowadays could be related to high frequency of El Niño-Southern Oscillation events and might cause an inevitable abrupt hydroclimate change and irreparable impacts on the regional human society in the near future.

  10. Strong influence of El Niño Southern Oscillation on flood risk around the world

    NARCIS (Netherlands)

    Ward, P.J.; Jongman, B.; Kummu, M.S.; Dettinger, M.D.; Sperna Weiland, F.C.; Winsemius, H.C.

    2014-01-01

    El Niño Southern Oscillation (ENSO) is the most dominant interannual signal of climate variability and has a strong influence on climate over large parts of the world. In turn, it strongly influences many natural hazards (such as hurricanes and droughts) and their resulting socioeconomic impacts,

  11. Comparing proxy and model estimates of hydroclimate variability and change over the Common Era

    Science.gov (United States)

    Hydro2k Consortium, Pages

    2017-12-01

    Water availability is fundamental to societies and ecosystems, but our understanding of variations in hydroclimate (including extreme events, flooding, and decadal periods of drought) is limited because of a paucity of modern instrumental observations that are distributed unevenly across the globe and only span parts of the 20th and 21st centuries. Such data coverage is insufficient for characterizing hydroclimate and its associated dynamics because of its multidecadal to centennial variability and highly regionalized spatial signature. High-resolution (seasonal to decadal) hydroclimatic proxies that span all or parts of the Common Era (CE) and paleoclimate simulations from climate models are therefore important tools for augmenting our understanding of hydroclimate variability. In particular, the comparison of the two sources of information is critical for addressing the uncertainties and limitations of both while enriching each of their interpretations. We review the principal proxy data available for hydroclimatic reconstructions over the CE and highlight the contemporary understanding of how these proxies are interpreted as hydroclimate indicators. We also review the available last-millennium simulations from fully coupled climate models and discuss several outstanding challenges associated with simulating hydroclimate variability and change over the CE. A specific review of simulated hydroclimatic changes forced by volcanic events is provided, as is a discussion of expected improvements in estimated radiative forcings, models, and their implementation in the future. Our review of hydroclimatic proxies and last-millennium model simulations is used as the basis for articulating a variety of considerations and best practices for how to perform proxy-model comparisons of CE hydroclimate. This discussion provides a framework for how best to evaluate hydroclimate variability and its associated dynamics using these comparisons and how they can better inform

  12. High-resolution lake sediment archives of midcontinental atmospheric and hydroclimate variability during the Medieval Climate Anomaly and Little Ice Age

    Science.gov (United States)

    Bird, B. W.; Wilson, J. J.; Gilhooly, W., III; Steinman, B. A.; Stamps, L. G.; Ahmed, M. N.; Abbott, M. B.; Pompeani, D. P.; Hillman, A. L.; Finkenbinder, M. S.

    2017-12-01

    Hydroclimate variability in the midcontinental United States (US) during the last 2000 years is not well characterized because there are few high-resolution paleoclimate records from the region. The majority of information about late Holocene midcontinental hydroclimate variability comes from scattered lake and bog sediment archives (primarily north of 42˚N) and gridded Palmer Drought Severity Index (PDSI) data calculated from a network of tree-ring records. The density of tree-ring records is lowest in the midcontinent, however, and decreases precipitously with time. In order to address this midcontinental paleoclimate data gap, we are developing a series of new lake-sediment-based hydroclimate records spanning 85˚ to 98˚W and 38˚ to 45˚N. New results from the eastern and central portions of the study area indicate large hydroclimate changes during the last 2000 years. Specifically, the Ohio and central Mississippi River valleys were wetter during the Medieval Climate Anomaly (MCA; 950-1250 CE), but drier during the Little Ice Age (LIA; 1350-1850 CE) with an especially severe, multi-decadal drought between 1350-1450 CE. Comparison with western (west of 96˚W) drought and fire records supports the existence of a hydroclimate dipole, with opposite hydroclimate conditions west and east of 96˚W. Isotopic changes in precipitation during the MCA and LIA suggest hydroclimate anomalies during these events were associated with mean state atmospheric circulation changes that resemble modern Pacific North American Mode (PNA) variability. Midcontinental Native American populations appear to have responded to MCA and LIA hydroclimate variability, with the latter event contributing to midcontinental depopulation between 1350-1500 CE.

  13. Changes in Greenland’s peripheral glaciers linked to the North Atlantic Oscillation

    DEFF Research Database (Denmark)

    Bjørk, A. A.; Aagaard, S.; Lütt, A.

    2018-01-01

    Glaciers and ice caps peripheral to the main Greenland Ice Sheet contribute markedly to sea-level rise1,2,3. Their changes and variability, however, have been difficult to quantify on multi-decadal timescales due to an absence of long-term data4. Here, using historical aerial surveys, expedition...

  14. Input variable selection for interpolating high-resolution climate ...

    African Journals Online (AJOL)

    Although the primary input data of climate interpolations are usually meteorological data, other related (independent) variables are frequently incorporated in the interpolation process. One such variable is elevation, which is known to have a strong influence on climate. This research investigates the potential of 4 additional ...

  15. Global Ocean Evaporation: How Well Can We Estimate Interannual to Decadal Variability?

    Science.gov (United States)

    Robertson, Franklin R.; Bosilovich, Michael G.; Roberts, Jason B.; Wang, Hailan

    2015-01-01

    Evaporation from the world's oceans constitutes the largest component of the global water balance. It is important not only as the ultimate source of moisture that is tied to the radiative processes determining Earth's energy balance but also to freshwater availability over land, governing habitability of the planet. Here we focus on variability of ocean evaporation on scales from interannual to decadal by appealing to three sources of data: the new MERRA-2 (Modern-Era Retrospective analysis for Research and Applications -2); climate models run with historical sea-surface temperatures, ice and atmospheric constituents (so-called AMIP experiments); and state-of-the-art satellite retrievals from the Seaflux and HOAPS (Hamburg Ocean-Atmosphere Parameters and Fluxes from Satellite) projects. Each of these sources has distinct advantages as well as drawbacks. MERRA-2, like other reanalyses, synthesizes evaporation estimates consistent with observationally constrained physical and dynamical models-but data stream discontinuities are a major problem for interpreting multi-decadal records. The climate models used in data assimilation can also be run with lesser constraints such as with SSTs and sea-ice (i.e. AMIPs) or with additional, minimal observations of surface pressure and marine observations that have longer and less fragmentary observational records. We use the new ERA-20C reanalysis produced by ECMWF embodying the latter methodology. Still, the model physics biases in climate models and the lack of a predicted surface energy balance are of concern. Satellite retrievals and comparisons to ship-based measurements offer the most observationally-based estimates, but sensor inter-calibration, algorithm retrieval assumptions, and short records are dominant issues. Our strategy depends on maximizing the advantages of these combined records. The primary diagnostic tool used here is an analysis of bulk aerodynamic computations produced by these sources and uses a first

  16. Wavelet Correlation Coefficient of 'strongly correlated' financial time series

    OpenAIRE

    Razdan, Ashok

    2003-01-01

    In this paper we use wavelet concepts to show that correlation coefficient between two financial data's is not constant but varies with scale from high correlation value to strongly anti-correlation value This studies is important because correlation coefficient is used to quantify degree of independence between two variables. In econophysics correlation coefficient forms important input to evolve hierarchial tree and minimum spanning tree of financial data.

  17. X-ray spectra and time variability of active galactic nuclei

    International Nuclear Information System (INIS)

    Mushotzky, R.F.

    1984-02-01

    The X-ray spectra of broad line active galactic nuclei (AGN) of all types (Seyfert I's, NELG's, broadline radio galaxies) are well fit by a power law in the .5 to 100 keV band of man energy slope alpha .68 + or - .15. There is, as yet, no strong evidence for time variability of this slope in a given object. The constraints that this places on simple models of the central energy source are discussed. BL Lac objects have quite different X-ray spectral properties and show pronounced X-ray spectral variability. On time scales longer than 12 hours most radio quiet AGN do not show strong, delta I/I .5, variability. The probability of variability of these AGN seems to be inversely related to their luminosity. However characteristics timescales for variability have not been measured for many objects. This general lack of variability may imply that most AGN are well below the Eddington limit. Radio bright AGN tend to be more variable than radio quiet AGN on long, tau approx 6 month, timescales

  18. Phase diagram of strongly correlated Fermi systems

    International Nuclear Information System (INIS)

    Zverev, M.V.; Khodel', V.A.; Baldo, M.

    2000-01-01

    Phase transitions in uniform Fermi systems with repulsive forces between the particles caused by restructuring of quasiparticle filling n(p) are analyzed. It is found that in terms of variables, i.e. density ρ, nondimensional binding constant η, phase diagram of a strongly correlated Fermi system for rather a wide class of interactions reminds of a puff-pastry pie. Its upper part is filled with fermion condensate, the lower one - with normal Fermi-liquid. They are separated by a narrow interlayer - the Lifshits phase, characterized by the Fermi multibound surface [ru

  19. Long-term variabilities of meridional geostrophic volumn transport in North Pacific Ocean

    Science.gov (United States)

    Zhou, H.; Yuan, D.; Dewar, W. K.

    2016-02-01

    The meridional geostrophic volumn transport (MGVT) by the ocean plays a very important role in the climatic water mass and heat balance because of its large heat capacity which enables the oceans to store the large amount of radiation received in the summer and to release it in winter. Better understanding of the role of the oceans in climate variability is essential to assess the likely range of future climate fluctuations. In the last century the North Pacific Ocean experienced considerable climate variability, especially on decadal time scale. Some studies have shown that the North Pacific Ocean is the origin of North Pacific multidecadal variability (Latif and Barnett, 1994; Barnett et al., 1999). These fluctuations were associated with large anomalies in sea level, temperature, storminess and rainfall, the heat transport and other extremes are changing as well. If the MGVT of the ocean is well-determined, it can be used as a test of the validity of numerical, global climate models. In this paper, we investigate the long-term variability of the MGVT in North Pacific ocean based on 55 years long global ocean heat and salt content data (Levitus et al., 2012). Very clear inter-decadal variations can be seen in tropical , subtropical and subpolar regions of North Pacific Ocean. There are very consistent variations between the MGVT anomalies and the inter-decadal pacific oscillation (IPO) index in the tropical gyre with cold phase of IPO corresponding to negative MGVT anomalies and warm phase corresponding to positive MGVT anomalies. The subtropical gyre shows more complex variations, and the subpolar gyre shows a negative MGVT anomaly before late 1970's and a positive anomaly after that time. The geostrophic velocities of North Pacific Ocean show significantly different anomalies during the two IPO cold phases of 1955-1976 and 1999 to present, which suggests a different mechanism of the two cold phases. The long term variations of Sverdrup transport compares well

  20. Relations between segmental and motor variability in prosodically complex nonword sequences.

    Science.gov (United States)

    Goffman, Lisa; Gerken, Louann; Lucchesi, Julie

    2007-04-01

    To assess how prosodic prominence and hierarchical foot structure influence segmental and articulatory aspects of speech production, specifically segmental accuracy and variability, and oral movement trajectory variability. Thirty individuals participated: 10 young adults, 10 children who are normally developing, and 10 children diagnosed with specific language impairment. Segmental error and segmental variability and movement trajectory variability were compared in low and high prosodic prominence conditions (i.e., strong and weak syllables) and in different prosodic foot structures. Between-participants findings were that both groups of children showed more segmental error and segmental variability and more movement trajectory variability than did adults. A similar within-participant pattern of results was observed for all 3 groups. Prosodic prominence influenced both segmental and motor levels of analysis, with weak syllables produced less accurately and with more lip and jaw movement trajectory variability than strong syllables. However, hierarchical foot structure affected segmental but not motor measures of speech production accuracy and variability. Motor and segmental variables were not consistently aligned. This pattern of results has clinical implications because inferences about motor variability may not directly follow from observations of segmental variability.

  1. The long view: Causes of climate change over the instrumental period

    Science.gov (United States)

    Hegerl, G. C.; Schurer, A. P.; Polson, D.; Iles, C. E.; Bronnimann, S.

    2016-12-01

    The period of instrumentally recorded data has seen remarkable changes in climate, with periods of rapid warming, and periods of stagnation or cooling. A recent analysis of the observed temperature change from the instrumental record confirms that most of the warming recorded since the middle of the 20rst century has been caused by human influences, but shows large uncertainty in separating greenhouse gas from aerosol response if accounting for model uncertainty. The contribution by natural forcing and internal variability to the recent warming is estimated to be small, but becomes more important when analysing climate change over earlier or shorter time periods. For example, the enigmatic early 20th century warming was a period of strong climate anomalies, including the US dustbowl drought and exceptional heat waves, and pronounced Arctic warming. Attribution results suggests that about half of the global warming 1901-1950 was forced by greenhouse gases increases, with an anomalously strong contribution by climate variability, and contributions by natural forcing. Long term variations in circulation are important for some regional climate anomalies. Precipitation is important for impacts of climate change and precipitation changes are uncertain in models. Analysis of the instrumental record suggests a human influence on mean and heavy precipitation, and supports climate model estimates of the spatial pattern of precipitation sensitivity to warming. Broadly, and particularly over ocean, wet regions are getting wetter and dry regions are getting drier. In conclusion, the historical record provides evidence for a strong response to external forcings, supports climate models, and raises questions about multi-decadal variability.

  2. Multi-species coral Sr/Ca-based sea-surface temperature reconstruction using Orbicella faveolata and Siderastrea siderea from the Florida Straits

    Science.gov (United States)

    Flannery, Jennifer A.; Richey, Julie N.; Thirumalai, Kaustubh; Poore, Richard Z.; DeLong, Kristine L.

    2017-01-01

    We present new, monthly-resolved Sr/Ca-based sea-surface temperature (SST) records from two species of massive coral, Orbicella faveolata and Siderastrea siderea, from the Dry Tortugas National Park, FL, USA (DTNP). We combine these new records with published data from three additional S. siderea coral colonies to generate a 278-year long multi-species stacked Sr/Ca-SST record from DTNP. The composite record of mean annual Sr/Ca-SST at DTNP shows pronounced decadal-scale variability with a range of 1 to 2°C. Notable cool intervals in the Sr/Ca-derived SST lasting about a decade centered at ~1845, ~1935, and ~1965 are associated with reduced summer Sr/Ca-SST (monthly maxima < 29°C), and imply a reduction in the spatial extent of the Atlantic Warm Pool (AWP). There is significant coherence between the composite DTNP Sr/Ca-SST record and the Atlantic Multidecadal Oscillation (AMO) index, with the AMO lagging Sr/Ca-SST at DTNP by 9 years. Low frequency variability in the Gulf Stream surface transport, which originates near DTNP, may provide a link for the lagged relationship between multidecadal variability at DTNP and the AMO.

  3. Seasonal variability of Dinophysis spp. and Protoceratium reticulatum associated to lipophilic shellfish toxins in a strongly stratified Chilean fjord

    Science.gov (United States)

    Alves-de-Souza, Catharina; Varela, Daniel; Contreras, Cristóbal; de La Iglesia, Pablo; Fernández, Pamela; Hipp, Byron; Hernández, Cristina; Riobó, Pilar; Reguera, Beatriz; Franco, José M.; Diogène, Jorge; García, Carlos; Lagos, Néstor

    2014-03-01

    The fine scale vertical distribution of Dinophysis spp. and Protoceratium reticulatum (potential producers of lipophilic shellfish toxins, LSTs) and its relation with LSTs in shellfish was studied in Reloncaví fjord, a strongly stratified system in Southern Chile. Samples were taken over two years from late spring to early autumn (2007-2008 period) and from early spring to late summer (2008-2009 period). Dinophysis spp., in particular Dinophysis acuminata, were always detected, often forming thin layers in the region of the salinity driven pycnocline, with cell maxima for D. acuminata of 28.5×103 cells L-1 in March 2008 and 17.1×103 cells L-1 in November 2008. During the 2008-2009 sampling period, blooms of D. acuminata co-occurred with high densities of cryptophyceans and the ciliate Mesodinium spp. The highest levels of pectenotoxin-2 (PTX-2; 2.2 ng L-1) were found in the plankton in February 2009, associated with moderate densities of D. acuminata, Dinophysis tripos and Dinophysis subcircularis (0.1-0.6×103 cells L-1). However, only trace levels of PTX-2 were observed in bivalves at that time. Dinophysistoxin (DTX-1 and DTX-3) levels in bivalves and densities of Dinophysis spp. were not well correlated. Low DTX levels in bivalves observed during a major bloom of D. acuminata in March 2008 suggested that there is a large seasonal intraspecific variability in toxin content of Dinophysis spp. driven by changes in population structure associated with distinct LST toxin profiles in Reloncaví fjord during the study period. A heterogeneous vertical distribution was also observed for P. reticulatum, whose presence was restricted to summer months. A bloom of this species of 2.2×103 cells L-1 at 14 m depth in February 2009 was positively correlated with high concentrations of yessotoxins in bivalves (51-496 ng g-1) and plankton samples (3.2 ng L-1). Our results suggest that a review of monitoring strategies for Dinophysis spp. in strongly stratified fjord systems

  4. Climatic Drivers for Multi-Decadal Shifts in Solute Transport and Methane Production Zones within a Large Peat Basin

    Science.gov (United States)

    Glaser, Paul H.; Siegel, Donald I.; Chanton, Jeffrey P.; Reeve, Andrew S.; Rosenberry, Donald O.; Corbett, J. Elizabeth; Dasgupta, Soumitri; Levy, Zeno

    2016-01-01

    Northern peatlands are an important source for greenhouse gases but their capacity to produce methane remains uncertain under changing climatic conditions. We therefore analyzed a 43-year time series of pore-water chemistry to determine if long-term shifts in precipitation altered the vertical transport of solutes within a large peat basin in northern Minnesota. These data suggest that rates of methane production can be finely tuned to multi-decadal shifts in precipitation that drive the vertical penetration of labile carbon substrates within the Glacial Lake Agassiz Peatlands. Tritium and cation profiles demonstrate that only the upper meter of these peat deposits was flushed by downwardly moving recharge from 1965 through 1983 during a Transitional Dry-to-Moist Period. However, a shift to a moister climate after 1984 drove surface waters much deeper, largely flushing the pore waters of all bogs and fens to depths of 2 m. Labile carbon compounds were transported downward from the rhizosphere to the basal peat at this time producing a substantial enrichment of methane in Delta C-14 with respect to the solid-phase peat from 1991 to 2008. These data indicate that labile carbon substrates can fuel deep production zones of methanogenesis that more than doubled in thickness across this large peat basin after 1984. Moreover, the entire peat profile apparently has the capacity to produce methane from labile carbon substrates depending on climate-driven modes of solute transport. Future changes in precipitation may therefore play a central role in determining the source strength of peatlands in the global methane cycle.

  5. Variability of tropical cyclone rapid intensification in the North Atlantic and its relationship with climate variations

    Science.gov (United States)

    Wang, Chunzai; Wang, Xidong; Weisberg, Robert H.; Black, Michael L.

    2017-12-01

    The paper uses observational data from 1950 to 2014 to investigate rapid intensification (RI) variability of tropical cyclones (TCs) in the North Atlantic and its relationships with large-scale climate variations. RI is defined as a TC intensity increase of at least 15.4 m/s (30 knots) in 24 h. The seasonal RI distribution follows the seasonal TC distribution, with the highest number in September. Although an RI event can occur anywhere over the tropical North Atlantic (TNA), there are three regions of maximum RI occurrence: (1) the western TNA of 12°N-18°N and 60°W-45°W, (2) the Gulf of Mexico and the western Caribbean Sea, and (3) the open ocean southeast and east of Florida. RI events also show a minimum value in the eastern Caribbean Sea north of South America—a place called a hurricane graveyard due to atmospheric divergence and subsidence. On longer time scales, RI displays both interannual and multidecadal variability, but RI does not show a long-term trend due to global warming. The top three climate indices showing high correlations with RI are the June-November ENSO and Atlantic warm pool indices, and the January-March North Atlantic oscillation index. It is found that variabilities of vertical wind shear and TC heat potential are important for TC RI in the hurricane main development region, whereas relative humidity at 500 hPa is the main factor responsible for TC RI in the eastern TNA. However, the large-scale oceanic and atmospheric variables analyzed in this study do not show an important role in TC RI in the Gulf of Mexico and the open ocean southeast and east of Florida. This suggests that other factors such as small-scale changes of oceanic and atmospheric variables or TC internal processes may be responsible for TC RI in these two regions. Additionally, the analyses indicate that large-scale atmospheric and oceanic variables are not critical to TC genesis and formation; however, once a tropical depression forms, large-scale climate

  6. Strong but variable associations between social dominance and clutch sex ratio in a colonial corvid

    NARCIS (Netherlands)

    Salomons, H. M.; Dijkstra, C.; Verhulst, S.

    2008-01-01

    We studied primary sex ratio of clutches in relation to social dominance for 6 years in a colony of free-living jackdaws, a small corvid. Social dominance was strongly associated with clutch sex ratio, with the difference in clutch sex ratio between the most and least dominant pairs being 30-40%. To

  7. Beyond the Fe-P-redox connection: preferential regeneration of phosphorus from organic matter as a key control on Baltic Sea nutrient cycles

    Directory of Open Access Journals (Sweden)

    T. Jilbert

    2011-06-01

    Full Text Available Patterns of regeneration and burial of phosphorus (P in the Baltic Sea are strongly dependent on redox conditions. Redox varies spatially along water depth gradients and temporally in response to the seasonal cycle and multidecadal hydrographic variability. Alongside the well-documented link between iron oxyhydroxide dissolution and release of P from Baltic Sea sediments, we show that preferential remineralization of P with respect to carbon (C and nitrogen (N during degradation of organic matter plays a key role in determining the surplus of bioavailable P in the water column. Preferential remineralization of P takes place both in the water column and upper sediments and its rate is shown to be redox-dependent, increasing as reducing conditions become more severe at greater water-depth in the deep basins. Existing Redfield-based biogeochemical models of the Baltic may therefore underestimate the imbalance between N and P availability for primary production, and hence the vulnerability of the Baltic to sustained eutrophication via the fixation of atmospheric N. However, burial of organic P is also shown to increase during multidecadal intervals of expanded hypoxia, due to higher net burial rates of organic matter around the margins of the deep basins. Such intervals may be characterized by basin-scale acceleration of all fluxes within the P cycle, including productivity, regeneration and burial, sustained by the relative accessibility of the water column P pool beneath a shallow halocline.

  8. Multidecadal change in streamflow associated with anthropogenic disturbances in the tropical Andes

    Science.gov (United States)

    Molina, A.; Vanacker, V.; Brisson, E.; Mora, D.; Balthazar, V.

    2015-10-01

    Andean headwater catchments are an important source of freshwater for downstream water users. However, few long-term studies exist on the relative importance of climate change and direct anthropogenic perturbations on flow regimes in these catchments. In this paper, we assess change in streamflow based on long time series of hydrometeorological data (1974-2008) and land cover reconstructions (1963-2009) in the Pangor catchment (282 km2) located in the tropical Andes. Three main land cover change trajectories can be distinguished during the period 1963-2009: (1) expansion of agricultural land by an area equal to 14 % of the catchment area (or 39 km2) in 46 years' time, (2) deforestation of native forests by 11 % (or -31 km2) corresponding to a mean rate of 67 ha yr-1, and (3) afforestation with exotic species in recent years by about 5 % (or 15 km2). Over the time period 1963-2009, about 50 % of the 64 km2 of native forests was cleared and converted to agricultural land. Given the strong temporal variability of precipitation and streamflow data related to El Niño-Southern Oscillation, we use empirical mode decomposition techniques to detrend the time series. The long-term increasing trend in rainfall is remarkably different from the observed changes in streamflow, which exhibit a decreasing trend. Hence, observed changes in streamflow are not the result of long-term change in precipitation but very likely result from anthropogenic disturbances associated with land cover change.

  9. Next-to-next-to-leading order calculation of the strong coupling ...

    Indian Academy of Sciences (India)

    It is observed that the NNLO correction gives a better agreement between the theory and the experimental data. Also, by using the above observables, the strong coupling constant () is determined and how much its value is affected by the NNLO correction is demonstrated. By combining the results for all variables at ...

  10. Evaluation and application of multi-decadal visibility data for trend analysis of atmospheric haze

    Directory of Open Access Journals (Sweden)

    C. Li

    2016-03-01

    Full Text Available There are few multi-decadal observations of atmospheric aerosols worldwide. This study applies global hourly visibility (Vis observations at more than 3000 stations to investigate historical trends in atmospheric haze over 1945–1996 for the US, and over 1973–2013 for Europe and eastern Asia. A comprehensive data screening and processing framework is developed and applied to minimize uncertainties and construct monthly statistics of inverse visibility (1/Vis. This data processing includes removal of relatively clean cases with high uncertainty, and change point detection to identify and separate methodological discontinuities such as the introduction of instrumentation. Although the relation between 1/Vis and atmospheric extinction coefficient (bext varies across different stations, spatially coherent trends of the screened 1/Vis data exhibit consistency with the temporal evolution of collocated aerosol measurements, including the bext trend of −2.4 % yr−1 (95 % CI: −3.7, −1.1 % yr−1 vs. 1/Vis trend of −1.6 % yr−1 (95 % CI: −2.4, −0.8 % yr−1 over the US for 1989–1996, and the fine aerosol mass (PM2.5 trend of −5.8 % yr−1 (95 % CI: −7.8, −4.2 % yr−1 vs. 1/Vis trend of −3.4 % yr−1 (95 % CI: −4.4, −2.4 % yr−1 over Europe for 2006–2013. Regional 1/Vis and Emissions Database for Global Atmospheric Research (EDGAR sulfur dioxide (SO2 emissions are significantly correlated over the eastern US for 1970–1995 (r = 0.73, over Europe for 1973–2008 (r ∼ 0.9 and over China for 1973–2008 (r ∼ 0.9. Consistent "reversal points" from increasing to decreasing in SO2 emission data are also captured by the regional 1/Vis time series (e.g., late 1970s for the eastern US, early 1980s for western Europe, late 1980s for eastern Europe, and mid 2000s for China. The consistency of 1/Vis trends with other in situ measurements and emission data demonstrates promise in applying these quality assured 1/Vis data

  11. Testing strong factorial invariance using three-level structural equation modeling

    Directory of Open Access Journals (Sweden)

    Suzanne eJak

    2014-07-01

    Full Text Available Within structural equation modeling, the most prevalent model to investigate measurement bias is the multigroup model. Equal factor loadings and intercepts across groups in a multigroup model represent strong factorial invariance (absence of measurement bias across groups. Although this approach is possible in principle, it is hardly practical when the number of groups is large or when the group size is relatively small. Jak, Oort and Dolan (2013 showed how strong factorial invariance across large numbers of groups can be tested in a multilevel structural equation modeling framework, by treating group as a random instead of a fixed variable. In the present study, this model is extended for use with three-level data. The proposed method is illustrated with an investigation of strong factorial invariance across 156 school classes and 50 schools in a Dutch dyscalculia test, using three-level structural equation modeling.

  12. Strong Convergence Bound of the Pareto Index Estimator under Right Censoring

    Directory of Open Access Journals (Sweden)

    Peng Zuoxiang

    2010-01-01

    Full Text Available Let be a sequence of positive independent and identically distributed random variables with common Pareto-type distribution function as , where represents a slowly varying function at infinity. In this note we study the strong convergence bound of a kind of right censored Pareto index estimator under second-order regularly varying conditions.

  13. Imprints of climate forcings in global gridded temperature data

    Czech Academy of Sciences Publication Activity Database

    Mikšovský, Jiří; Holtanová, E.; Pišoft, P.

    2016-01-01

    Roč. 7, č. 1 (2016), s. 231-249 ISSN 2190-4979 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : atlantic multidecadal osciallation * pacific decadal oscillation * surface-temperature * 20th century reanalysis * southern-oscilation * internal variability * irradiance Subject RIV: EH - Ecology, Behaviour Impact factor: 3.635, year: 2016

  14. The temporal variability of species densities

    International Nuclear Information System (INIS)

    Redfearn, A.; Pimm, S.L.

    1993-01-01

    Ecologists use the term 'stability' to mean to number of different things (Pimm 1984a). One use is to equate stability with low variability in population density over time (henceforth, temporal variability). Temporal variability varies greatly from species to species, so what effects it? There are at least three sets of factors: the variability of extrinsic abiotic factors, food web structure, and the intrinsic features of the species themselves. We can measure temporal variability using at least three statistics: the coefficient of variation of density (CV); the standard deviation of the logarithms of density (SDL); and the variance in the differences between logarithms of density for pairs of consecutive years (called annual variability, hence AV, b y Wolda 1978). There are advantages and disadvantages to each measure (Williamson 1984), though in our experience, the measures are strongly correlated across sets of taxonomically related species. The increasing availability of long-term data sets allows one to calculate these statistics for many species and so to begin to understand the various causes of species differences in temporal variability

  15. The role of dynamically induced variability in the recent warming trend slowdown over the Northern Hemisphere.

    Science.gov (United States)

    Guan, Xiaodan; Huang, Jianping; Guo, Ruixia; Lin, Pu

    2015-07-30

    Since the slowing of the trend of increasing surface air temperature (SAT) in the late 1990 s, intense interest and debate have arisen concerning the contribution of human activities to the warming observed in previous decades. Although several explanations have been proposed for the warming-trend slowdown (WTS), none has been generally accepted. We investigate the WTS using a recently developed methodology that can successfully identify and separate the dynamically induced and radiatively forced SAT changes from raw SAT data. The dynamically induced SAT changes exhibited an obvious cooling effect relative to the warming effect of the adjusted SAT in the hiatus process. A correlation analysis suggests that the changes are dominated primarily by the North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO). Our results confirm that dynamically induced variability caused the WTS. The radiatively forced SAT changes are determined mainly by anthropogenic forcing, indicating the warming influence of greenhouse gases (GHGs), which reached levels of 400 ppm during the hiatus period. Therefore, the global SAT will not remain permanently neutral. The increased radiatively forced SAT will be amplified by increased dynamically induced SAT when the natural mode returns to a warming phase in the next period.

  16. Continuous non-marine inputs of per- and polyfluoroalkyl substances to the High Arctic: a multi-decadal temporal record

    Science.gov (United States)

    Pickard, Heidi M.; Criscitiello, Alison S.; Spencer, Christine; Sharp, Martin J.; Muir, Derek C. G.; De Silva, Amila O.; Young, Cora J.

    2018-04-01

    Perfluoroalkyl acids (PFAAs) are persistent, in some cases, bioaccumulative compounds found ubiquitously within the environment. They can be formed from the atmospheric oxidation of volatile precursor compounds and undergo long-range transport (LRT) through the atmosphere and ocean to remote locations. Ice caps preserve a temporal record of PFAA deposition making them useful in studying the atmospheric trends in LRT of PFAAs in polar or mountainous regions, as well as in understanding major pollutant sources and production changes over time. A 15 m ice core representing 38 years of deposition (1977-2015) was collected from the Devon Ice Cap in Nunavut, providing us with the first multi-decadal temporal ice record in PFAA deposition to the Arctic. Ice core samples were concentrated using solid phase extraction and analyzed by liquid and ion chromatography methods. Both perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) were detected in the samples, with fluxes ranging from air mass transport densities, and comparing temporal trends in deposition with production changes of possible sources, we find that Eurasian sources, particularly from Continental Asia, are large contributors to the global pollutants impacting the Devon Ice Cap. Comparison of PFAAs to their precursors and correlations of PFCA pairs showed that deposition of PFAAs is dominated by atmospheric formation from volatile precursor sources. Major ion analysis confirmed that marine aerosol inputs are unimportant to the long-range transport mechanisms of these compounds. Assessments of deposition, homologue profiles, ion tracers, air mass transport models, and production and regulation trends allow us to characterize the PFAA depositional profile on the Devon Ice Cap and further understand the LRT mechanisms of these persistent pollutants.

  17. Long-duration drought variability and impacts on ecosystem services: A case study from Glacier National Park, Montana

    Science.gov (United States)

    Pederson, Gregory T.; Gray, Stephen T.; Fagre, Daniel B.; Graumlich, Lisa J.

    2006-01-01

    Instrumental climate records suggest that summer precipitation and winter snowpack in Glacier National Park (Glacier NP), Montana, vary significantly over decadal to multidecadal time scales. Because instrumental records for the region are limited to the twentieth century, knowledge of the range of variability associated with these moisture anomalies and their impacts on ecosystems and physical processes are limited. The authors developed a reconstruction of summer (June–August) moisture variability spanning a.d. 1540–2000 from a multispecies network of tree-ring chronologies in Glacier NP. Decadal-scale drought and pluvial regimes were defined as any event lasting 10 yr or greater, and the significance of each potential regime was assessed using intervention analysis. Intervention analysis prevents single intervening years of average or opposing moisture conditions from ending what was otherwise a sustained moisture regime. The reconstruction shows numerous decadal-scale shifts between persistent drought and wet events prior to the instrumental period (before a.d. 1900). Notable wet events include a series of three long-duration, high-magnitude pluvial regimes spanning the end of the Little Ice Age (a.d. 1770–1840). Though the late-nineteenth century was marked by a series of >10 yr droughts, the single most severe dry event occurred in the early-twentieth century (a.d. 1917–41). These decadal-scale dry and wet events, in conjunction with periods of high and low snowpack, have served as a driver of ecosystem processes such as forest fires and glacial dynamics in the Glacier NP region.

  18. Analysis of the Relationship Between Climate and NDVI Variability at Global Scales

    Science.gov (United States)

    Zeng, Fan-Wei; Collatz, G. James; Pinzon, Jorge; Ivanoff, Alvaro

    2011-01-01

    interannual variability in modeled (CASA) C flux is in part caused by interannual variability in Normalized Difference Vegetation Index (NDVI) Fraction of Photosynthetically Active Radiation (FPAR). This study confirms a mechanism producing variability in modeled NPP: -- NDVI (FPAR) interannual variability is strongly driven by climate; -- The climate driven variability in NDVI (FPAR) can lead to much larger fluctuation in NPP vs. the NPP computed from FPAR climatology

  19. <strong>Mini-project>

    DEFF Research Database (Denmark)

    Katajainen, Jyrki

    2008-01-01

    In this project the goal is to develop the safe * family of containers for the CPH STL. The containers to be developed should be safer and more reliable than any of the existing implementations. A special focus should be put on strong exception safety since none of the existing prototypes available...

  20. A Survey of U.S. Atlanta and Nagano Olympians: Variables Perceived to Influence Performance.

    Science.gov (United States)

    Gould, Daniel; Greenleaf, Christy; Chung, Yongchul; Guinan, Diane

    2002-01-01

    Examined the frequency and magnitude of specific variables perceived to have affected U.S. Olympic athletes' performance. Respondents perceived that performance was influenced by: performance variables (e.g., preparation for distraction); team variables (e.g., strong cohesion); coaching variables (e.g., coaching expectations); family-friend…

  1. On climate prediction: how much can we expect from climate memory?

    Science.gov (United States)

    Yuan, Naiming; Huang, Yan; Duan, Jianping; Zhu, Congwen; Xoplaki, Elena; Luterbacher, Jürg

    2018-03-01

    Slowing variability in climate system is an important source of climate predictability. However, it is still challenging for current dynamical models to fully capture the variability as well as its impacts on future climate. In this study, instead of simulating the internal multi-scale oscillations in dynamical models, we discussed the effects of internal variability in terms of climate memory. By decomposing climate state x(t) at a certain time point t into memory part M(t) and non-memory part ɛ (t) , climate memory effects from the past 30 years on climate prediction are quantified. For variables with strong climate memory, high variance (over 20% ) in x(t) is explained by the memory part M(t), and the effects of climate memory are non-negligible for most climate variables, but the precipitation. Regarding of multi-steps climate prediction, a power law decay of the explained variance was found, indicating long-lasting climate memory effects. The explained variances by climate memory can remain to be higher than 10% for more than 10 time steps. Accordingly, past climate conditions can affect both short (monthly) and long-term (interannual, decadal, or even multidecadal) climate predictions. With the memory part M(t) precisely calculated from Fractional Integral Statistical Model, one only needs to focus on the non-memory part ɛ (t) , which is an important quantity that determines climate predictive skills.

  2. Macroweather Predictions and Climate Projections using Scaling and Historical Observations

    Science.gov (United States)

    Hébert, R.; Lovejoy, S.; Del Rio Amador, L.

    2017-12-01

    There are two fundamental time scales that are pertinent to decadal forecasts and multidecadal projections. The first is the lifetime of planetary scale structures, about 10 days (equal to the deterministic predictability limit), and the second is - in the anthropocene - the scale at which the forced anthropogenic variability exceeds the internal variability (around 16 - 18 years). These two time scales define three regimes of variability: weather, macroweather and climate that are respectively characterized by increasing, decreasing and then increasing varibility with scale.We discuss how macroweather temperature variability can be skilfully predicted to its theoretical stochastic predictability limits by exploiting its long-range memory with the Stochastic Seasonal and Interannual Prediction System (StocSIPS). At multi-decadal timescales, the temperature response to forcing is approximately linear and this can be exploited to make projections with a Green's function, or Climate Response Function (CRF). To make the problem tractable, we exploit the temporal scaling symmetry and restrict our attention to global mean forcing and temperature response using a scaling CRF characterized by the scaling exponent H and an inner scale of linearity τ. An aerosol linear scaling factor α and a non-linear volcanic damping exponent ν were introduced to account for the large uncertainty in these forcings. We estimate the model and forcing parameters by Bayesian inference using historical data and these allow us to analytically calculate a median (and likely 66% range) for the transient climate response, and for the equilibrium climate sensitivity: 1.6K ([1.5,1.8]K) and 2.4K ([1.9,3.4]K) respectively. Aerosol forcing typically has large uncertainty and we find a modern (2005) forcing very likely range (90%) of [-1.0, -0.3] Wm-2 with median at -0.7 Wm-2. Projecting to 2100, we find that to keep the warming below 1.5 K, future emissions must undergo cuts similar to Representative

  3. Drivers of annual to decadal streamflow variability in the lower Colorado River Basin

    Science.gov (United States)

    Lambeth-Beagles, R. S.; Troch, P. A.

    2010-12-01

    increasing evaporation and transpiration processes. Second, annual variability in streamflow is not statistically correlated with annual temperature variability but appears to be highly correlated with annual precipitation variability. This implies that on a year-to-year basis, changes in streamflow volumes are directly affected by precipitation and not temperature. Future development of a predictive streamflow model will need to take into consideration these two processes to obtain accurate results. In order to extend predictive skill to the multi-year scale relationships between precipitation, temperature and persistent climate indices such as the Pacific Decadal Oscillation, Atlantic Multidecadal Oscillation and El Nino/Southern Oscillation will need to be examined.

  4. Reconstructed storm tracks reveal three centuries of changing moisture delivery to North America.

    Science.gov (United States)

    Wise, Erika K; Dannenberg, Matthew P

    2017-06-01

    Moisture delivery to western North America is closely linked to variability in the westerly storm tracks of midlatitude cyclones, which are, in turn, modified by larger-scale features such as the El Niño-Southern Oscillation system. Instrumental and modeling data suggest that extratropical storm tracks may be intensifying and shifting poleward due to anthropogenic climate change, but it is difficult to separate recent trends from natural variability because of the large amount of decadal and longer variation in storm tracks and their limited instrumental record. We reconstruct cool-season, midlatitude Pacific storm-track position and intensity from 1693 to 1995 CE using existing tree-ring chronologies along with a network of newly developed chronologies from the U.S. Pacific Northwest, where small variations in storm-track position can have a major influence on hydroclimate patterns. Our results show high interannual-to-multidecadal variability in storm-track position and intensity over the past 303 years, with spectral signatures characteristic of tropical and northern Pacific influences. Comparison with reconstructions of precipitation and tropical sea surface temperature confirms the relationship between shifting drought patterns in the Pacific Northwest and storm-track variability through time and demonstrates the long-term influence of El Niño. These results allow us to place recent storm-track changes in the context of decadal and multidecadal fluctuations across the long-term record, showing that recent changes in storm-track intensity likely represent a warming-related increase amplified by natural decadal variability.

  5. Student understanding of control of variables: Deciding whether or not a variable influences the behavior of a system

    Science.gov (United States)

    Boudreaux, Andrew; Shaffer, Peter S.; Heron, Paula R. L.; McDermott, Lillian C.

    2008-02-01

    The ability of adult students to reason on the basis of the control of variables was the subject of an extended investigation. This paper describes the part of the study that focused on the reasoning required to decide whether or not a given variable influences the behavior of a system. The participants were undergraduates taking introductory Physics and K-8 teachers studying physics and physical science in inservice institutes and workshops. Although most of the students recognized the need to control variables, many had significant difficulty with the underlying reasoning. The results indicate serious shortcomings in the preparation of future scientists and in the education of a scientifically literate citizenry. There are also strong implications for the professional development of teachers, many of whom are expected to teach control of variables to young students.

  6. Variable Permanent Magnet Quadrupole

    International Nuclear Information System (INIS)

    Mihara, T.; Iwashita, Y.; Kyoto U.; Kumada, M.; NIRS, Chiba; Spencer, C.M.; SLAC

    2007-01-01

    A permanent magnet quadrupole (PMQ) is one of the candidates for the final focus lens in a linear collider. An over 120 T/m strong variable permanent magnet quadrupole is achieved by the introduction of saturated iron and a 'double ring structure'. A fabricated PMQ achieved 24 T integrated gradient with 20 mm bore diameter, 100 mm magnet diameter and 20 cm pole length. The strength of the PMQ is adjustable in 1.4 T steps, due to its 'double ring structure': the PMQ is split into two nested rings; the outer ring is sliced along the beam line into four parts and is rotated to change the strength. This paper describes the variable PMQ from fabrication to recent adjustments

  7. Constraining 20th Century Pacific Trade-Wind Variability Using Coral Mn/Ca

    Science.gov (United States)

    Sayani, H. R.; Thompson, D. M.; Carilli, J.; Ireland, T. J.; Cobb, K. M.; Atwood, A. R.; Grothe, P. R.; Miller, S. J.; Hitt, N. T.; O'Connor, G.

    2017-12-01

    Global mean surface temperatures during the 20th century are characterized by multidecadal periods of either accelerated or reduced rates of warming that cannot be explained by external forcings alone. Both observations and modeling studies suggest that the reduced rate of global surface warming during the early-2000s can be largely explained by decadal climate variability in the tropical Pacific, specifically changes in trade-wind strength [e.g. Meehl et al., 2016]. However, the relationship between Pacific trade-wind strength and global surface warming is poorly constrained due to the lack of instrumental wind observations prior to the 1970s. Surface corals are now routinely used to generate records of past sea-surface temperature (SST) change, and have dramatically improved our understanding of oceanic variability in the tropical Pacific. Yet, there are few direct measurements of the atmospheric response to this SST variability. Skeletal Mn/Ca ratios in corals from Tarawa Atoll (1.3˚N, 173˚E) have been shown to track El Niño-related westerly wind events on interannual timescales [Shen et al., 1992], and the strength of Pacific trade winds on decadal timescales [Thompson et al., 2015]. Here, we investigate the utility of this novel wind proxy at Kiritimati Atoll (Christmas Island; 2˚N, 157.5˚W), a site that is hydrographically similar to Tarawa. We use a series of seawater samples collected across the 2015/16 El Niño to characterize and quantify the relationship between westerly wind events and seawater Mn variability around Kiritimati. Anchored by this modern-day calibration, we present a new reconstruction of westerly winds across the late-20thcentury from Kiritimati Atoll. We also assess the reproducibility of coral Mn/Ca across cores collected at varying distances from the lagoon, which represents the primary source of seawater Mn to the reef at our site. Lastly, we discuss the strengths and limitations of this novel proxy, as well as the potential for

  8. Hydroclimatic variability and predictability: a survey of recent research

    Directory of Open Access Journals (Sweden)

    R. D. Koster

    2017-07-01

    Full Text Available Recent research in large-scale hydroclimatic variability is surveyed, focusing on five topics: (i variability in general, (ii droughts, (iii floods, (iv land–atmosphere coupling, and (v hydroclimatic prediction. Each surveyed topic is supplemented by illustrative examples of recent research, as presented at a 2016 symposium honoring the career of Professor Eric Wood. Taken together, the recent literature and the illustrative examples clearly show that current research into hydroclimatic variability is strong, vibrant, and multifaceted.

  9. TEC variability over Havana

    International Nuclear Information System (INIS)

    Lazo, B.; Alazo, K.; Rodriguez, M.; Calzadilla, A.

    2003-01-01

    The variability of total electron content (TEC) measured over Havana using ATS-6, SMS-1 and GOES-3 geosynchronous satellite signals has been investigated for low, middle and high solar activity periods from 1974 to 1982. The obtained results show that standard deviation is smooth during nighttime hours and maximum at noon or postnoon hours. Strong solar activity dependence of standard deviation with a maximum values during HSA has been found. (author)

  10. The impact of macroeconomic variables on SMEs in Malaysia

    Science.gov (United States)

    Halim, F. A.; Malim, M. R.; Derasit, Z.; Rani, R. M.; Rashid, S. S.

    2017-09-01

    Small and Medium Enterprises (SMEs) in Malaysia have gained a prominent role as the significant contributor to the economic growth. However, the world nowadays is heading towards economic downturn. The stability of macroeconomic variables promotes profitability of SMEs which propels them to a stage where they can access financing for sustaining growth. Therefore, it is apparent that the behaviour of the macroeconomic variables plays a major part in determining the nation’s backbone in surviving the economic downturn. The objective of this study is to evaluate the impact of macroeconomic variables on the profitability of SMEs in Malaysia using multiple regression analysis. The findings revealed that the exchange rate has a small positive impact on SME GDP growth rate (10.81%), the interest rate has a strong positive impact (60.74%), while the inflation rate has a strong negative impact (-53.89%). Therefore, it can be concluded that the interest rate and inflation rate have significant impacts on the profitability of SMEs in Malaysia.

  11. Quantum group random walks in strongly correlated 2+1 D spin systems

    International Nuclear Information System (INIS)

    Protogenov, A.P.; Rostovtsev, Yu.V.; Verbus, V.A.

    1994-06-01

    We consider the temporal evolution of strong correlated degrees of freedom in 2+1 D spin systems using the Wilson operator eigenvalues as variables. It is shown that the quantum-group diffusion equation at deformation parameter q being the k-th root of unity has the polynomial solution of degree k. (author). 20 refs, 1 tab

  12. A canonical neural mechanism for behavioral variability

    Science.gov (United States)

    Darshan, Ran; Wood, William E.; Peters, Susan; Leblois, Arthur; Hansel, David

    2017-05-01

    The ability to generate variable movements is essential for learning and adjusting complex behaviours. This variability has been linked to the temporal irregularity of neuronal activity in the central nervous system. However, how neuronal irregularity actually translates into behavioural variability is unclear. Here we combine modelling, electrophysiological and behavioural studies to address this issue. We demonstrate that a model circuit comprising topographically organized and strongly recurrent neural networks can autonomously generate irregular motor behaviours. Simultaneous recordings of neurons in singing finches reveal that neural correlations increase across the circuit driving song variability, in agreement with the model predictions. Analysing behavioural data, we find remarkable similarities in the babbling statistics of 5-6-month-old human infants and juveniles from three songbird species and show that our model naturally accounts for these `universal' statistics.

  13. Impacts of ozone air pollution and temperature extremes on crop yields: Spatial variability, adaptation and implications for future food security

    Science.gov (United States)

    Tai, Amos P. K.; Val Martin, Maria

    2017-11-01

    Ozone air pollution and climate change pose major threats to global crop production, with ramifications for future food security. Previous studies of ozone and warming impacts on crops typically do not account for the strong ozone-temperature correlation when interpreting crop-ozone or crop-temperature relationships, or the spatial variability of crop-to-ozone sensitivity arising from varietal and environmental differences, leading to potential biases in their estimated crop losses. Here we develop an empirical model, called the partial derivative-linear regression (PDLR) model, to estimate the spatial variations in the sensitivities of wheat, maize and soybean yields to ozone exposures and temperature extremes in the US and Europe using a composite of multidecadal datasets, fully correcting for ozone-temperature covariation. We find generally larger and more spatially varying sensitivities of all three crops to ozone exposures than are implied by experimentally derived concentration-response functions used in most previous studies. Stronger ozone tolerance is found in regions with high ozone levels and high consumptive crop water use, reflecting the existence of spatial adaptation and effect of water constraints. The spatially varying sensitivities to temperature extremes also indicate stronger heat tolerance in crops grown in warmer regions. The spatial adaptation of crops to ozone and temperature we find can serve as a surrogate for future adaptation. Using the PDLR-derived sensitivities and 2000-2050 ozone and temperature projections by the Community Earth System Model, we estimate that future warming and unmitigated ozone pollution can combine to cause an average decline in US wheat, maize and soybean production by 13%, 43% and 28%, respectively, and a smaller decline for European crops. Aggressive ozone regulation is shown to offset such decline to various extents, especially for wheat. Our findings demonstrate the importance of considering ozone regulation

  14. Independent Subspace Analysis of the Sea Surface Temperature Variability: Non-Gaussian Sources and Sensitivity to Sampling and Dimensionality

    Directory of Open Access Journals (Sweden)

    Carlos A. L. Pires

    2017-01-01

    Full Text Available We propose an expansion of multivariate time-series data into maximally independent source subspaces. The search is made among rotations of prewhitened data which maximize non-Gaussianity of candidate sources. We use a tensorial invariant approximation of the multivariate negentropy in terms of a linear combination of squared coskewness and cokurtosis. By solving a high-order singular value decomposition problem, we extract the axes associated with most non-Gaussianity. Moreover, an estimate of the Gaussian subspace is provided by the trailing singular vectors. The independent subspaces are obtained through the search of “quasi-independent” components within the estimated non-Gaussian subspace, followed by the identification of groups with significant joint negentropies. Sources result essentially from the coherency of extremes of the data components. The method is then applied to the global sea surface temperature anomalies, equatorward of 65°, after being tested with non-Gaussian surrogates consistent with the data anomalies. The main emerging independent components and subspaces, supposedly generated by independent forcing, include different variability modes, namely, The East-Pacific, the Central Pacific, and the Atlantic Niños, the Atlantic Multidecadal Oscillation, along with the subtropical dipoles in the Indian, South Pacific, and South-Atlantic oceans. Benefits and usefulness of independent subspaces are then discussed.

  15. On the Interpretation of Instrumental Variables in the Presence of Specification Errors

    Directory of Open Access Journals (Sweden)

    P.A.V.B. Swamy

    2015-01-01

    Full Text Available The method of instrumental variables (IV and the generalized method of moments (GMM, and their applications to the estimation of errors-in-variables and simultaneous equations models in econometrics, require data on a sufficient number of instrumental variables that are both exogenous and relevant. We argue that, in general, such instruments (weak or strong cannot exist.

  16. Finite strain logarithmic hyperelasto-plasticity with softening: a strongly non-local implicit gradient framework

    NARCIS (Netherlands)

    Geers, M.G.D.

    2004-01-01

    This paper addresses the extension of a Eulerian logarithmic finite strain hyperelasto-plasticity model in order to incorporate an isotropic plastic damage variable that leads to softening and failure of the plastic material. It is shown that a logarithmic elasto-plastic model with a strongly

  17. Action-angle variable for the Gel'fand-Dikii flows

    International Nuclear Information System (INIS)

    Beals, R.; Sattinger, D.H.

    1992-01-01

    Using the scattering transform for nth order linear scalar operators, the Poisson bracket found by Gel'fans and Dikii, which generalizes the Gardner Poisson bracket for the KdV hierarchy, is computed on the scattering side. Action-angle variables are then constructed. Using this, complete integrability is demonstrated in the strong sense. Real action-angle variables are constructed in the self-adjoint case. (orig.)

  18. Thermalization and confinement in strongly coupled gauge theories

    Directory of Open Access Journals (Sweden)

    Ishii Takaaki

    2016-01-01

    Full Text Available Quantum field theories of strongly interacting matter sometimes have a useful holographic description in terms of the variables of a gravitational theory in higher dimensions. This duality maps time dependent physics in the gauge theory to time dependent solutions of the Einstein equations in the gravity theory. In order to better understand the process by which “real world” theories such as QCD behave out of thermodynamic equilibrium, we study time dependent perturbations to states in a model of a confining, strongly coupled gauge theory via holography. Operationally, this involves solving a set of non-linear Einstein equations supplemented with specific time dependent boundary conditions. The resulting solutions allow one to comment on the timescale by which the perturbed states thermalize, as well as to quantify the properties of the final state as a function of the perturbation parameters. We comment on the influence of the dual gauge theory’s confinement scale on these results, as well as the appearance of a previously anticipated universal scaling regime in the “abrupt quench” limit.

  19. Diagnosing a Strong-Fault Model by Conflict and Consistency

    Directory of Open Access Journals (Sweden)

    Wenfeng Zhang

    2018-03-01

    Full Text Available The diagnosis method for a weak-fault model with only normal behaviors of each component has evolved over decades. However, many systems now demand a strong-fault models, the fault modes of which have specific behaviors as well. It is difficult to diagnose a strong-fault model due to its non-monotonicity. Currently, diagnosis methods usually employ conflicts to isolate possible fault and the process can be expedited when some observed output is consistent with the model’s prediction where the consistency indicates probably normal components. This paper solves the problem of efficiently diagnosing a strong-fault model by proposing a novel Logic-based Truth Maintenance System (LTMS with two search approaches based on conflict and consistency. At the beginning, the original a strong-fault model is encoded by Boolean variables and converted into Conjunctive Normal Form (CNF. Then the proposed LTMS is employed to reason over CNF and find multiple minimal conflicts and maximal consistencies when there exists fault. The search approaches offer the best candidate efficiency based on the reasoning result until the diagnosis results are obtained. The completeness, coverage, correctness and complexity of the proposals are analyzed theoretically to show their strength and weakness. Finally, the proposed approaches are demonstrated by applying them to a real-world domain—the heat control unit of a spacecraft—where the proposed methods are significantly better than best first and conflict directly with A* search methods.

  20. Diagnosing a Strong-Fault Model by Conflict and Consistency.

    Science.gov (United States)

    Zhang, Wenfeng; Zhao, Qi; Zhao, Hongbo; Zhou, Gan; Feng, Wenquan

    2018-03-29

    The diagnosis method for a weak-fault model with only normal behaviors of each component has evolved over decades. However, many systems now demand a strong-fault models, the fault modes of which have specific behaviors as well. It is difficult to diagnose a strong-fault model due to its non-monotonicity. Currently, diagnosis methods usually employ conflicts to isolate possible fault and the process can be expedited when some observed output is consistent with the model's prediction where the consistency indicates probably normal components. This paper solves the problem of efficiently diagnosing a strong-fault model by proposing a novel Logic-based Truth Maintenance System (LTMS) with two search approaches based on conflict and consistency. At the beginning, the original a strong-fault model is encoded by Boolean variables and converted into Conjunctive Normal Form (CNF). Then the proposed LTMS is employed to reason over CNF and find multiple minimal conflicts and maximal consistencies when there exists fault. The search approaches offer the best candidate efficiency based on the reasoning result until the diagnosis results are obtained. The completeness, coverage, correctness and complexity of the proposals are analyzed theoretically to show their strength and weakness. Finally, the proposed approaches are demonstrated by applying them to a real-world domain-the heat control unit of a spacecraft-where the proposed methods are significantly better than best first and conflict directly with A* search methods.

  1. Assessing Intraseasonal Variability Produced by Several Deep Convection Schemes in the NCAR CCM3.6

    Science.gov (United States)

    Maloney, E. D.

    2001-05-01

    The Hack, Zhang/McFarlane, and McRAS convection schemes produce very different simulations of intraseasonal variability in the NCAR CCM3.6. A robust analysis of simulation performance requires an expanded set of diagnostics. The use of only one criterion to analyze model Madden-Julian oscillation (MJO) variability, such as equatorial zonal wind variability, may give a misleading impression of model performance. Schemes that produce strong variability in zonal winds may sometimes lack a corresponding coherent signal in precipitation, suggesting that model convection and the large-scale circulation are not as strongly coupled as observed. The McRAS scheme, which includes a parametrization of unsaturated convective downdrafts, produces the best simulation of intraseasonal variability of the three schemes used. Downdrafts in McRAS create a moister equatorial troposphere, which increases equatorial convection. Composite analysis indicates a strong dependence of model intraseasonal variability on the frictional convergence mechanism, which may also be important in nature. The McRAS simulation has limitations, however. Indian Ocean variability is weak, and anomalous convection extends too far east across the Pacific. The dependence of convection on surface friction is too strong, and causes enhanced MJO convection to be associated with low-level easterly wind perturbations, unlike observed MJO convection. Anomalous vertical advection associated with surface convergence influences model convection by moistening the lower troposphere. Based on the work of Hendon (2000), coupling to an interactive ocean is unlikely to change the performance of the CCM3 with McRAS, due to the phase relationship between anomalous convection and zonal winds. Use of the analysis tools presented here indicates areas for improvement in the parametrization of deep convection by atmospheric GCMs.

  2. Factors influencing the potential for strong brand relationships with consumer product brands: An overview and research agenda

    DEFF Research Database (Denmark)

    Bech-Larsen, Tino; Bergkvist, Lars; Francis, Julie

    Based on the premise that consumer product brands are different with respect to their potential to form strong long-term relationships with consumers, this paper aims to identify factors that influence brands' potential for strong long-term relationships and to suggest how these can be empirically...... investigated. The paper reviews brand-centric and consumer-centric research and identifies twelve brand variables that may influence the relationship potential of consumer product brands. A research agenda is suggested and a number of issues that needs to be resolved before empirical research can be carried...... out are discussed. The paper concludes by speculating on possible outcomes in future empirical studies and it is suggested that multiple brand variables will have to be employed to evaluate the relationship potential of brands....

  3. The MASIV Survey - IV. Relationship between intra-day scintillation and intrinsic variability of radio AGNs

    Science.gov (United States)

    Koay, J. Y.; Macquart, J.-P.; Jauncey, D. L.; Pursimo, T.; Giroletti, M.; Bignall, H. E.; Lovell, J. E. J.; Rickett, B. J.; Kedziora-Chudczer, L.; Ojha, R.; Reynolds, C.

    2018-03-01

    We investigate the relationship between 5 GHz interstellar scintillation (ISS) and 15 GHz intrinsic variability of compact, radio-selected active galactic nuclei (AGNs) drawn from the Microarcsecond Scintillation-Induced Variability (MASIV) Survey and the Owens Valley Radio Observatory blazar monitoring program. We discover that the strongest scintillators at 5 GHz (modulation index, m5 ≥ 0.02) all exhibit strong 15 GHz intrinsic variability (m15 ≥ 0.1). This relationship can be attributed mainly to the mutual dependence of intrinsic variability and ISS amplitudes on radio core compactness at ˜ 100 μas scales, and to a lesser extent, on their mutual dependences on source flux density, arcsec-scale core dominance and redshift. However, not all sources displaying strong intrinsic variations show high amplitude scintillation, since ISS is also strongly dependent on Galactic line-of-sight scattering properties. This observed relationship between intrinsic variability and ISS highlights the importance of optimizing the observing frequency, cadence, timespan and sky coverage of future radio variability surveys, such that these two effects can be better distinguished to study the underlying physics. For the full MASIV sample, we find that Fermi-detected gamma-ray loud sources exhibit significantly higher 5 GHz ISS amplitudes than gamma-ray quiet sources. This relationship is weaker than the known correlation between gamma-ray loudness and the 15 GHz variability amplitudes, most likely due to jet opacity effects.

  4. Strong Convergence Bound of the Pareto Index Estimator under Right Censoring

    Directory of Open Access Journals (Sweden)

    Bao Tao

    2010-01-01

    Full Text Available Let {Xn,n≥1} be a sequence of positive independent and identically distributed random variables with common Pareto-type distribution function F(x=1−x−1/γlF(x as γ>0, where lF(x represents a slowly varying function at infinity. In this note we study the strong convergence bound of a kind of right censored Pareto index estimator under second-order regularly varying conditions.

  5. Diverse multi-decadal changes in streamflow within a rapidly urbanizing region

    Science.gov (United States)

    Diem, Jeremy E.; Hill, T. Chee; Milligan, Richard A.

    2018-01-01

    The impact of urbanization on streamflow depends on a variety of factors (e.g., climate, initial land cover, inter-basin transfers, water withdrawals, wastewater effluent, etc.). The purpose of this study is to examine trends in streamflow from 1986 to 2015 in a range of watersheds within the rapidly urbanizing Atlanta, GA metropolitan area. This study compares eight watersheds over three decades, while minimizing the influence of inter-annual precipitation variability. Population and land-cover data were used to analyze changes over approximately twenty years within the watersheds. Precipitation totals for the watersheds were estimated using precipitation totals at nearby weather stations. Multiple streamflow variables, such as annual streamflow, frequencies of high-flow days (HFDs), flashiness, and precipitation-adjusted streamflow, for the eight streams were calculated using daily streamflow data. Variables were tested for significant trends from 1986 to 2015 and significant differences between 1986-2000 and 2001-2015. Flashiness increased for all streams without municipal water withdrawals, and the four watersheds with the largest increase in developed land had significant increases in flashiness. Significant positive trends in precipitation-adjusted mean annual streamflow and HFDs occurred for the two watersheds (Big Creek and Suwanee Creek) that experienced the largest increases in development, and these were the only watersheds that went from majority forest land in 1986 to majority developed land in 2015. With a disproportionate increase in HFD occurrence during summer, Big Creek and Suwannee Creek also had a reduction in intra-annual variability of HFD occurrence. Watersheds that were already substantially developed at the beginning of the period and did not have wastewater discharge had declining streamflow. The most urbanized watershed (Peachtree Creek) had a significant decrease in streamflow, and a possible cause of the decrease was increasing

  6. Search for rapid variability of 53 Cam

    International Nuclear Information System (INIS)

    Zverko, J.

    1982-01-01

    Photoelectric observations of magnetic Ap star 53 Cam made at the Skalnate Pleso Observatory in 1978 and 1979 are analyzed from the point of view of rapid variability. The observations were made with an intermediate passband filter, effective wavelength 526 nm. Besides the differences msub(53Cam)-msub(Comp), the behaviour was also investigated of the deflections for the comparison star during the observation runs. A strong correlation between the behaviour of the comparison and variable star light curve was found and the appearance differs from night to night depending on atmospheric conditions. Each observation run is analyzed in detail and it was concluded that all observed variations are only apparent and due to the variability of atmospheric extinction above the observation site. (author)

  7. Pitch Angle Control for Variable Speed Wind Turbines

    DEFF Research Database (Denmark)

    Chen, Zhe; Zhang, Jianzhong; Cheng, M

    2008-01-01

    Pitch angle control is the most common means for adjusting the aerodynamic torque of the wind turbine when wind speed is above rated speed and various controlling variables may be chosen, such as wind speed, generator speed and generator power. As conventional pitch control usually use PI...... controller, the mathematical model of the system should be known well. A fuzzy logic pitch angle controller is developed in this paper, in which it does not need well known about the system and the mean wind speed is used to compensate the non-linear sensitivity. The fuzzy logic control strategy may have...... the potential when the system contains strong non-linearity, such as wind turbulence is strong, or the control objectives include fatigue loads. The design of the fuzzy logic controller and the comparisons with conversional pitch angle control strategies with various controlling variables are carried out...

  8. The sensitivity of the atmospheric branch of the global water cycle to temperature fluctuations at synoptic to decadal time-scales in different satellite- and model-based products

    Science.gov (United States)

    Nogueira, Miguel

    2018-02-01

    Spectral analysis of global-mean precipitation, P, evaporation, E, precipitable water, W, and surface temperature, Ts, revealed significant variability from sub-daily to multi-decadal time-scales, superposed on high-amplitude diurnal and yearly peaks. Two distinct regimes emerged from a transition in the spectral exponents, β. The weather regime covering time-scales 1-2 years, while at time-scales global-ocean and full-globe averages, ρDCCA showed large spread of the C-C importance for P and E variability amongst different datasets at multi-year time-scales, ranging from negligible (governing mechanisms.

  9. Role of tropical Indian and Atlantic Oceans variability on ENSO

    Science.gov (United States)

    Prodhomme, Chloé; Terray, Pascal; Masson, Sebastien; Boschat, Ghyslaine

    2014-05-01

    There are strong evidences of an interaction between tropical Indian, Atlantic and Pacific Oceans. Nevertheless, these interactions remain deeply controversial. While some authors claim the tropical Indian and Atlantic oceans only play a passive role with respect to ENSO, others suggest a driving role for these two basins on ENSO. The mecanisms underlying these relations are not fully understood and, in the Indian Ocean, the possible role of both modes of tropical variability (the Indian Ocean Dipole (IOD) and the Indian Ocean Basin mode (IOB)) remain unclear. To better quantify and understand how the variability of the tropical Indian and Atlantic Oceans impact ENSO variability, we performed two sensitivity experiments using the SINTEX-F2 coupled model. For each experiment, we suppressed the variability of SST and the air-sea coupling in either the tropical Indian Ocean or tropical Atlantic Ocean by applying a strong nudging of the SST to the observed SST climatology. In both experiments, the ENSO periodicity increases. In the Atlantic experiment, our understanding of this increased periodicity is drastically limited by the strongly biased mean state in this region. Conversely, in the Indian Ocean experiment, the increase of ENSO periodicity is related to the absence of the IOB following the El Niño peak, which leads to a decrease of westerly winds in the western Pacific during late winter and spring after the peak. These weaker westerlies hinders the transition to a La Niña phase and thus increase the duration and periodicity of the event.

  10. Determinants of cell-to-cell variability in protein kinase signaling.

    Science.gov (United States)

    Jeschke, Matthias; Baumgärtner, Stephan; Legewie, Stefan

    2013-01-01

    Cells reliably sense environmental changes despite internal and external fluctuations, but the mechanisms underlying robustness remain unclear. We analyzed how fluctuations in signaling protein concentrations give rise to cell-to-cell variability in protein kinase signaling using analytical theory and numerical simulations. We characterized the dose-response behavior of signaling cascades by calculating the stimulus level at which a pathway responds ('pathway sensitivity') and the maximal activation level upon strong stimulation. Minimal kinase cascades with gradual dose-response behavior show strong variability, because the pathway sensitivity and the maximal activation level cannot be simultaneously invariant. Negative feedback regulation resolves this trade-off and coordinately reduces fluctuations in the pathway sensitivity and maximal activation. Feedbacks acting at different levels in the cascade control different aspects of the dose-response curve, thereby synergistically reducing the variability. We also investigated more complex, ultrasensitive signaling cascades capable of switch-like decision making, and found that these can be inherently robust to protein concentration fluctuations. We describe how the cell-to-cell variability of ultrasensitive signaling systems can be actively regulated, e.g., by altering the expression of phosphatase(s) or by feedback/feedforward loops. Our calculations reveal that slow transcriptional negative feedback loops allow for variability suppression while maintaining switch-like decision making. Taken together, we describe design principles of signaling cascades that promote robustness. Our results may explain why certain signaling cascades like the yeast pheromone pathway show switch-like decision making with little cell-to-cell variability.

  11. Photometry of red variables in 47 Tucanae

    International Nuclear Information System (INIS)

    Fox, M.W.

    1982-01-01

    BVRI observations of known and suspected variables in the globular cluster 47 Tuc are described. Twelve period determinations were made, seven of which are new. The non-Mira stars are found to vary in a semi-regular manner, regardless of period. Values of Tsub(eff), Msub(bol) and Q, the pulsation constant, are derived by combining the BVRI with JHKL observations made near the same epoch. The results strongly favour pulsation in an overtone mode for both the Mira and semi-regular variables in 47 Tuc. There is also evidence of mode 'switching' for V4. (author)

  12. Fire-regime variability impacts forest carbon dynamics for centuries to millennia

    Science.gov (United States)

    Hudiburg, Tara W.; Higuera, Philip E.; Hicke, Jeffrey A.

    2017-08-01

    Wildfire is a dominant disturbance agent in forest ecosystems, shaping important biogeochemical processes including net carbon (C) balance. Long-term monitoring and chronosequence studies highlight a resilience of biogeochemical properties to large, stand-replacing, high-severity fire events. In contrast, the consequences of repeated fires or temporal variability in a fire regime (e.g., the characteristic timing or severity of fire) are largely unknown, yet theory suggests that such variability could strongly influence forest C trajectories (i.e., future states or directions) for millennia. Here we combine a 4500-year paleoecological record of fire activity with ecosystem modeling to investigate how fire-regime variability impacts soil C and net ecosystem carbon balance. We found that C trajectories in a paleo-informed scenario differed significantly from an equilibrium scenario (with a constant fire return interval), largely due to variability in the timing and severity of past fires. Paleo-informed scenarios contained multi-century periods of positive and negative net ecosystem C balance, with magnitudes significantly larger than observed under the equilibrium scenario. Further, this variability created legacies in soil C trajectories that lasted for millennia. Our results imply that fire-regime variability is a major driver of C trajectories in stand-replacing fire regimes. Predicting carbon balance in these systems, therefore, will depend strongly on the ability of ecosystem models to represent a realistic range of fire-regime variability over the past several centuries to millennia.

  13. Current flow in random resistor networks: the role of percolation in weak and strong disorder.

    Science.gov (United States)

    Wu, Zhenhua; López, Eduardo; Buldyrev, Sergey V; Braunstein, Lidia A; Havlin, Shlomo; Stanley, H Eugene

    2005-04-01

    We study the current flow paths between two edges in a random resistor network on a L X L square lattice. Each resistor has resistance e(ax) , where x is a uniformly distributed random variable and a controls the broadness of the distribution. We find that: (a) The scaled variable u identical with u congruent to L/a(nu) , where nu is the percolation connectedness exponent, fully determines the distribution of the current path length l for all values of u . For u > 1, the behavior corresponds to the weak disorder limit and l scales as l approximately L, while for u < 1 , the behavior corresponds to the strong disorder limit with l approximately L(d(opt) ), where d(opt) =1.22+/-0.01 is the optimal path exponent. (b) In the weak disorder regime, there is a length scale xi approximately a(nu), below which strong disorder and critical percolation characterize the current path.

  14. Strongly coupled single-phase flow problems: Effects of density variation, hydrodynamic dispersion, and first order decay

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, C.M.; Pruess, K. [Lawrence Berkeley Laboratory, Berkeley, CA (United States)

    1995-03-01

    We have developed TOUGH2 modules for strongly coupled flow and transport that include full hydrodynamic dispersion. T2DM models tow-dimensional flow and transport in systems with variable salinity, while T32DMR includes radionuclide transport with first-order decay of a parent-daughter chain of radionuclide components in variable salinity systems. T2DM has been applied to a variety of coupled flow problems including the pure solutal convection problem of Elder and the mixed free and forced convection salt-dome flow problem. In the Elder and salt-dome flow problems, density changes of up to 20% caused by brine concentration variations lead to strong coupling between the velocity and brine concentration fields. T2DM efficiently calculates flow and transport for these problems. We have applied T2DMR to the dispersive transport and decay of radionuclide tracers in flow fields with permeability heterogeneities and recirculating flows. Coupling in these problems occurs by velocity-dependent hydrodynamic dispersion. Our results show that the maximum daughter species concentration may occur fully within a recirculating or low-velocity region. In all of the problems, we observe very efficient handling of the strongly coupled flow and transport processes.

  15. Regional hydro-climatic impacts of contemporary Amazonian deforestation

    Science.gov (United States)

    Khanna, Jaya

    More than 17% of the Amazon rainforest has been cleared in the past three decades triggering important climatological and societal impacts. This thesis is devoted to identifying and explaining the regional hydroclimatic impacts of this change employing multidecadal satellite observations and numerical simulations providing an integrated perspective on this topic. The climatological nature of this study motivated the implementation and application of a cloud detection technique to a new geostationary satellite dataset. The resulting sub daily, high spatial resolution, multidecadal time series facilitated the detection of trends and variability in deforestation triggered cloud cover changes. The analysis was complemented by satellite precipitation, reanalysis and ground based datasets and attribution with the variable resolution Ocean-Land-Atmosphere-Model. Contemporary Amazonian deforestation affects spatial scales of hundreds of kilometers. But, unlike the well-studied impacts of a few kilometers scale deforestation, the climatic response to contemporary, large scale deforestation is neither well observed nor well understood. Employing satellite datasets, this thesis shows a transition in the regional hydroclimate accompanying increasing scales of deforestation, with downwind deforested regions receiving 25% more and upwind deforested regions receiving 25% less precipitation from the deforested area mean. Simulations robustly reproduce these shifts when forced with increasing deforestation alone, suggesting a negligible role of large-scale decadal climate variability in causing the shifts. Furthermore, deforestation-induced surface roughness variations are found necessary to reproduce the observed spatial patterns in recent times illustrating the strong scale-sensitivity of the climatic response to Amazonian deforestation. This phenomenon, inconsequential during the wet season, is found to substantially affect the regional hydroclimate in the local dry and parts of

  16. Intensive Variables & Nanostructuring in Magnetostructural Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Laura

    2014-08-13

    Over the course of this project, fundamental inquiry was carried out to investigate, understand and predict the effects of intensive variables, including the structural scale, on magnetostructural phase transitions in the model system of equiatomic FeRh. These transitions comprise simultaneous magnetic and structural phase changes that have their origins in very strong orbital-lattice coupling and thus may be driven by a plurality of effects.

  17. Variable accretion of stellar winds onto Sgr A*

    Science.gov (United States)

    Cuadra, Jorge; Nayakshin, Sergei

    2006-12-01

    We report a 3-dimensional numerical study of the accretion of stellar winds onto Sgr A*, the super-massive black hole at the centre of our Galaxy. Compared with previous investigations, we allow the stars to be on realistic orbits, include the recently discovered slow wind sources, and allow for optically thin radiative cooling. We frst show the strong inflience of the stellar dynamics on the accretion onto the central black hole. We then present more realistic simulations of Sgr A* accretion and frid that the slow winds shock and rapidly cool, forming cold gas clumps and flaments that coexist with the hot X-ray emitting gas. The accretion rate in this case is highly variable on time-scales of tens to hundreds of years. Such variability can in principle lead to a strongly non-linear response through accretion fbw physics not resolved here, making Sgr A* an important energy source for the Galactic centre.

  18. Variable accretion of stellar winds onto Sgr A*

    Energy Technology Data Exchange (ETDEWEB)

    Cuadra, Jorge [Max-Planck-Institut fuer Astrophysik, D-85741 Garching (Germany); Nayakshin, Sergei [Department of Physics and Astronomy, University of Leicester, LEI 7RH (United Kingdom)

    2006-12-15

    We report a 3-dimensional numerical study of the accretion of stellar winds onto Sgr A*, the super-massive black hole at the centre of our Galaxy. Compared with previous investigations, we allow the stars to be on realistic orbits, include the recently discovered slow wind sources, and allow for optically thin radiative cooling. We frst show the strong inflience of the stellar dynamics on the accretion onto the central black hole. We then present more realistic simulations of Sgr A* accretion and frid that the slow winds shock and rapidly cool, forming cold gas clumps and flaments that coexist with the hot X-ray emitting gas. The accretion rate in this case is highly variable on time-scales of tens to hundreds of years. Such variability can in principle lead to a strongly non-linear response through accretion fbw physics not resolved here, making Sgr A* an important energy source for the Galactic centre.

  19. Variable accretion of stellar winds onto Sgr A*

    International Nuclear Information System (INIS)

    Cuadra, Jorge; Nayakshin, Sergei

    2006-01-01

    We report a 3-dimensional numerical study of the accretion of stellar winds onto Sgr A*, the super-massive black hole at the centre of our Galaxy. Compared with previous investigations, we allow the stars to be on realistic orbits, include the recently discovered slow wind sources, and allow for optically thin radiative cooling. We frst show the strong inflience of the stellar dynamics on the accretion onto the central black hole. We then present more realistic simulations of Sgr A* accretion and frid that the slow winds shock and rapidly cool, forming cold gas clumps and flaments that coexist with the hot X-ray emitting gas. The accretion rate in this case is highly variable on time-scales of tens to hundreds of years. Such variability can in principle lead to a strongly non-linear response through accretion fbw physics not resolved here, making Sgr A* an important energy source for the Galactic centre

  20. Tropical intraseasonal rainfall variability in the CFSR

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiande [I.M. System Group Inc. at NOAA/NCEP/EMC, Camp Springs, MD (United States); Wang, Wanqiu [NOAA/NCEP/CPC, Camp Springs, MD (United States); Fu, Xiouhua [University of Hawaii at Manoa, IPRC, SOEST, Honolulu, HI (United States); Seo, Kyong-Hwan [Pusan National University, Department of Atmospheric Sciences, Busan (Korea, Republic of)

    2012-06-15

    While large-scale circulation fields from atmospheric reanalyses have been widely used to study the tropical intraseasonal variability, rainfall variations from the reanalyses are less focused. Because of the sparseness of in situ observations available in the tropics and strong coupling between convection and large-scale circulation, the accuracy of tropical rainfall from the reanalyses not only measures the quality of reanalysis rainfall but is also to some extent indicative of the accuracy of the circulations fields. This study analyzes tropical intraseasonal rainfall variability in the recently completed NCEP Climate Forecast System Reanalysis (CFSR) and its comparison with the widely used NCEP/NCAR reanalysis (R1) and NCEP/DOE reanalysis (R2). The R1 produces too weak rainfall variability while the R2 generates too strong westward propagation. Compared with the R1 and R2, the CFSR produces greatly improved tropical intraseasonal rainfall variability with the dominance of eastward propagation and more realistic amplitude. An analysis of the relationship between rainfall and large-scale fields using composites based on Madden-Julian Oscillation (MJO) events shows that, in all three NCEP reanalyses, the moisture convergence leading the rainfall maximum is near the surface in the western Pacific but is above 925 hPa in the eastern Indian Ocean. However, the CFSR produces the strongest large-scale convergence and the rainfall from CFSR lags the column integrated precipitable water by 1 or 2 days while R1 and R2 rainfall tends to lead the respective precipitable water. Diabatic heating related to the MJO variability in the CFSR is analyzed and compared with that derived from large-scale fields. It is found that the amplitude of CFSR-produced total heating anomalies is smaller than that of the derived. Rainfall variability from the other two recently produced reanalyses, the ECMWF Re-Analysis Interim (ERAI), and the Modern Era Retrospective-analysis for Research and

  1. Non-uniform interhemispheric temperature trends over the past 550 years

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Richard P. [Landcare Research, PO Box 40, Lincoln (New Zealand); Lincoln University, Bio-Protection Research Centre, PO Box 84, Lincoln (New Zealand); Fenwick, Pavla; Palmer, Jonathan G. [Gondwana Tree-ring Laboratory, PO Box 14, Canterbury (New Zealand); McGlone, Matt S. [Landcare Research, PO Box 40, Lincoln (New Zealand); Turney, Chris S.M. [University of Exeter, School of Geography, Exeter (United Kingdom)

    2010-12-15

    The warming trend over the last century in the northern hemisphere (NH) was interrupted by cooling from ad 1940 to 1975, a period during which the southern hemisphere experienced pronounced warming. The cause of these departures from steady warming at multidecadal timescales are unclear; the prevailing explanation is that they are driven by non-uniformity in external forcings but recent models suggest internal climate drivers may play a key role. Paleoclimate datasets can help provide a long-term perspective. Here we use tree-rings to reconstruct New Zealand mean annual temperature over the last 550 years and demonstrate that this has frequently cycled out-of-phase with NH mean annual temperature at a periodicity of around 30-60 years. Hence, observed multidecadal fluctuations around the recent warming trend have precedents in the past, strongly implicating natural climate variation as their cause. We consider the implications of these changes in understanding and modelling future climate change. (orig.)

  2. Variability of basin-scale terrestrial water storage from a novel application of the water budget equation: the Amazon and the Mississippi

    Science.gov (United States)

    Yoon, J.; Zeng, N.; Mariotti, A.; Swenson, S.

    2007-12-01

    , simple error analysis using 3 precipitation datasets and 3 evaporation estimates suggest that the multi-decadal amplitude can be uncertain up to a factor of 2, while the agreement is high on interannual timescales. The large TWS variability implies the remarkable capacity of land-surface in storing and taking up water that may be under-represented in models. The results also suggest the existence of water storage memories on multi-year time scales, significantly longer than typically assumed seasonal timescales associated with surface soil moisture.

  3. On the Temporal Variability of Low-Mode Internal Tides in the Deep Ocean

    Science.gov (United States)

    Ray, Richard D.; Zaron, E. D.

    2010-01-01

    In situ measurements of internal tides are typically characterized by high temporal variability, with strong dependence on stratification, mesoscale eddies, and background currents commonly observed. Thus, it is surprising to find phase-locked internal tides detectable by satellite altimetry. An important question is how much tidal variability is missed by altimetry. We address this question in several ways. We subset the altimetry by season and find only very small changes -- an important exception being internal tides in the South China Sea where we observe strong seasonal dependence. A wavenumber-domain analysis confirms that throughout most of the global ocean there is little temporal variability in altimetric internal-tide signals, at least in the first baroclinic mode, which is the mode that dominates surface elevation. The analysis shows higher order modes to be significantly more variable. The results of this study have important practical implications for the anticipated SWOT wide-swath altimeter mission, for which removal of internal tide signals is critical for observing non-tidal submesoscale phenomena.

  4. A semi-empirical analysis of strong-motion peaks in terms of seismic source, propagation path, and local site conditions

    Science.gov (United States)

    Kamiyama, M.; Orourke, M. J.; Flores-Berrones, R.

    1992-09-01

    A new type of semi-empirical expression for scaling strong-motion peaks in terms of seismic source, propagation path, and local site conditions is derived. Peak acceleration, peak velocity, and peak displacement are analyzed in a similar fashion because they are interrelated. However, emphasis is placed on the peak velocity which is a key ground motion parameter for lifeline earthquake engineering studies. With the help of seismic source theories, the semi-empirical model is derived using strong motions obtained in Japan. In the derivation, statistical considerations are used in the selection of the model itself and the model parameters. Earthquake magnitude M and hypocentral distance r are selected as independent variables and the dummy variables are introduced to identify the amplification factor due to individual local site conditions. The resulting semi-empirical expressions for the peak acceleration, velocity, and displacement are then compared with strong-motion data observed during three earthquakes in the U.S. and Mexico.

  5. Megadroughts in Southwestern North America in ECHO-G Millennial Simulations and Their Comparison to Proxy Drought Reconstructions

    Science.gov (United States)

    Coats, Sloan; Smerdon, Jason E.; Seager, Richard; Cook, Benjamin I.; Gozalez-Rouco, J. F.

    2013-01-01

    Simulated hydroclimate variability in millennium-length forced transient and control simulations from the ECHAM and the global Hamburg Ocean Primitive Equation (ECHO-G) coupled atmosphere-ocean general circulation model (AOGCM) is analyzed and compared to 1000 years of reconstructed Palmer drought severity index (PDSI) variability from the North American Drought Atlas (NADA). The ability of the model to simulate megadroughts in the North American southwest is evaluated. (NASW: 25deg42.5degN, 125deg-105degW). Megadroughts in the ECHO-G AOGCM are found to be similar in duration and magnitude to those estimated from the NADA. The droughts in the forced simulation are not, however, temporally synchronous with those in the paleoclimate record, nor are there significant differences between the drought features simulated in the forced and control runs. These results indicate that model-simulated megadroughts can result from internal variability of the modeled climate system rather than as a response to changes in exogenous forcings. Although the ECHO-G AOGCM is capable of simulating megadroughts through persistent La Nina-like conditions in the tropical Pacific, other mechanisms can produce similarly extreme NASW moisture anomalies in the model. In particular, the lack of low-frequency coherence between NASW soil moisture and simulated modes of climate variability like the El Nino-Southern Oscillation, Pacific decadal oscillation, and Atlantic multidecadal oscillation during identified drought periods suggests that stochastic atmospheric variability can contribute significantly to the occurrence of simulated megadroughts in the NASW. These findings indicate that either an expanded paradigm is needed to understand multidecadal hydroclimate variability in the NASW or AOGCMs may incorrectly simulate the strength and/or dynamics of the connection between NASW hydroclimate variability and the tropical Pacific.

  6. Interannual SST Variability in the Japan/East Sea and Relationship with Environmental Variables

    Science.gov (United States)

    2006-01-01

    Soya Strait (SS), and Tartar Strait (TTS). (b) Regional geography. Interannual SST Variability in the Japan/East Sea 117 200 interruptions due to...caused by differential seasonal forcing. During the summer strong solar radiation penetrates into the entire Longitude(oE) La tit ud e( o N ) 50 50 100...1988.6 1988.8 1989 1989.2 1989.4 1989.6 1989.8 1990 1990.2 -3 -2 -1 0 1 2 3 Time(year) Te m pe ra tu re (o C ) Longitude(oE) La tit ud e( o N ) (a) 5

  7. Strong-back safety latch

    International Nuclear Information System (INIS)

    DeSantis, G.N.

    1995-01-01

    The calculation decides the integrity of the safety latch that will hold the strong-back to the pump during lifting. The safety latch will be welded to the strong-back and will latch to a 1.5-in. dia cantilever rod welded to the pump baseplate. The static and dynamic analysis shows that the safety latch will hold the strong-back to the pump if the friction clamps fail and the pump become free from the strong-back. Thus, the safety latch will meet the requirements of the Lifting and Rigging Manual for under the hook lifting for static loading; it can withstand shock loads from the strong-back falling 0.25 inch

  8. Regional impacts of ocean color on tropical Pacific variability

    OpenAIRE

    W. Anderson; A. Gnanadesikan; A. Wittenberg

    2009-01-01

    The role of the penetration length scale of shortwave radiation into the surface ocean and its impact on tropical Pacific variability is investigated with a fully coupled ocean, atmosphere, land and ice model. Previous work has shown that removal of all ocean color results in a system that tends strongly towards an El Niño state. Results from a suite of surface chlorophyll perturbation experiments show that the mean state and variability of the tropical Pacific is highly se...

  9. Quantum Thermodynamics at Strong Coupling: Operator Thermodynamic Functions and Relations

    Directory of Open Access Journals (Sweden)

    Jen-Tsung Hsiang

    2018-05-01

    Full Text Available Identifying or constructing a fine-grained microscopic theory that will emerge under specific conditions to a known macroscopic theory is always a formidable challenge. Thermodynamics is perhaps one of the most powerful theories and best understood examples of emergence in physical sciences, which can be used for understanding the characteristics and mechanisms of emergent processes, both in terms of emergent structures and the emergent laws governing the effective or collective variables. Viewing quantum mechanics as an emergent theory requires a better understanding of all this. In this work we aim at a very modest goal, not quantum mechanics as thermodynamics, not yet, but the thermodynamics of quantum systems, or quantum thermodynamics. We will show why even with this minimal demand, there are many new issues which need be addressed and new rules formulated. The thermodynamics of small quantum many-body systems strongly coupled to a heat bath at low temperatures with non-Markovian behavior contains elements, such as quantum coherence, correlations, entanglement and fluctuations, that are not well recognized in traditional thermodynamics, built on large systems vanishingly weakly coupled to a non-dynamical reservoir. For quantum thermodynamics at strong coupling, one needs to reexamine the meaning of the thermodynamic functions, the viability of the thermodynamic relations and the validity of the thermodynamic laws anew. After a brief motivation, this paper starts with a short overview of the quantum formulation based on Gelin & Thoss and Seifert. We then provide a quantum formulation of Jarzynski’s two representations. We show how to construct the operator thermodynamic potentials, the expectation values of which provide the familiar thermodynamic variables. Constructing the operator thermodynamic functions and verifying or modifying their relations is a necessary first step in the establishment of a viable thermodynamics theory for

  10. Determinants of cell-to-cell variability in protein kinase signaling.

    Directory of Open Access Journals (Sweden)

    Matthias Jeschke

    Full Text Available Cells reliably sense environmental changes despite internal and external fluctuations, but the mechanisms underlying robustness remain unclear. We analyzed how fluctuations in signaling protein concentrations give rise to cell-to-cell variability in protein kinase signaling using analytical theory and numerical simulations. We characterized the dose-response behavior of signaling cascades by calculating the stimulus level at which a pathway responds ('pathway sensitivity' and the maximal activation level upon strong stimulation. Minimal kinase cascades with gradual dose-response behavior show strong variability, because the pathway sensitivity and the maximal activation level cannot be simultaneously invariant. Negative feedback regulation resolves this trade-off and coordinately reduces fluctuations in the pathway sensitivity and maximal activation. Feedbacks acting at different levels in the cascade control different aspects of the dose-response curve, thereby synergistically reducing the variability. We also investigated more complex, ultrasensitive signaling cascades capable of switch-like decision making, and found that these can be inherently robust to protein concentration fluctuations. We describe how the cell-to-cell variability of ultrasensitive signaling systems can be actively regulated, e.g., by altering the expression of phosphatase(s or by feedback/feedforward loops. Our calculations reveal that slow transcriptional negative feedback loops allow for variability suppression while maintaining switch-like decision making. Taken together, we describe design principles of signaling cascades that promote robustness. Our results may explain why certain signaling cascades like the yeast pheromone pathway show switch-like decision making with little cell-to-cell variability.

  11. Strong negative self regulation of Prokaryotic transcription factors increases the intrinsic noise of protein expression

    Directory of Open Access Journals (Sweden)

    Jenkins Dafyd J

    2008-01-01

    Full Text Available Abstract Background Many prokaryotic transcription factors repress their own transcription. It is often asserted that such regulation enables a cell to homeostatically maintain protein abundance. We explore the role of negative self regulation of transcription in regulating the variability of protein abundance using a variety of stochastic modeling techniques. Results We undertake a novel analysis of a classic model for negative self regulation. We demonstrate that, with standard approximations, protein variance relative to its mean should be independent of repressor strength in a physiological range. Consequently, in that range, the coefficient of variation would increase with repressor strength. However, stochastic computer simulations demonstrate that there is a greater increase in noise associated with strong repressors than predicted by theory. The discrepancies between the mathematical analysis and computer simulations arise because with strong repressors the approximation that leads to Michaelis-Menten-like hyperbolic repression terms ceases to be valid. Because we observe that strong negative feedback increases variability and so is unlikely to be a mechanism for noise control, we suggest instead that negative feedback is evolutionarily favoured because it allows the cell to minimize mRNA usage. To test this, we used in silico evolution to demonstrate that while negative feedback can achieve only a modest improvement in protein noise reduction compared with the unregulated system, it can achieve good improvement in protein response times and very substantial improvement in reducing mRNA levels. Conclusion Strong negative self regulation of transcription may not always be a mechanism for homeostatic control of protein abundance, but instead might be evolutionarily favoured as a mechanism to limit the use of mRNA. The use of hyperbolic terms derived from quasi-steady-state approximation should also be avoided in the analysis of stochastic

  12. Equatorial Indian Ocean subsurface current variability in an Ocean General Circulation Model

    Science.gov (United States)

    Gnanaseelan, C.; Deshpande, Aditi

    2018-03-01

    The variability of subsurface currents in the equatorial Indian Ocean is studied using high resolution Ocean General Circulation Model (OGCM) simulations during 1958-2009. February-March eastward equatorial subsurface current (ESC) shows weak variability whereas strong variability is observed in northern summer and fall ESC. An eastward subsurface current with maximum amplitude in the pycnocline is prominent right from summer to winter during strong Indian Ocean Dipole (IOD) years when air-sea coupling is significant. On the other hand during weak IOD years, both the air-sea coupling and the ESC are weak. This strongly suggests the role of ESC on the strength of IOD. The extension of the ESC to the summer months during the strong IOD years strengthens the oceanic response and supports intensification and maintenance of IODs through modulation of air sea coupling. Although the ESC is triggered by equatorial winds, the coupled air-sea interaction associated with IODs strengthens the ESC to persist for several seasons thereby establishing a positive feedback cycle with the surface. This suggests that the ESC plays a significant role in the coupled processes associated with the evolution and intensification of IOD events by cooling the eastern basin and strengthening thermocline-SST (sea surface temperature) interaction. As the impact of IOD events on Indian summer monsoon is significant only during strong IOD years, understanding and monitoring the evolution of ESC during these years is important for summer monsoon forecasting purposes. There is a westward phase propagation of anomalous subsurface currents which persists for a year during strong IOD years, whereas such persistence or phase propagation is not seen during weak IOD years, supporting the close association between ESC and strength of air sea coupling during strong IOD years. In this study we report the processes which strengthen the IOD events and the air sea coupling associated with IOD. It also unravels

  13. Study of the Variability of the Reflection Component in Seyfert 1 Galaxies: Connecting the Fe K Variability with the Compton Hump

    Science.gov (United States)

    Ponti, G.; Miniutti, G.; Malaguti, G.; Gallo, L.; Goldwurm, A.

    2009-05-01

    We present preliminary results of an ongoing project devoted to the study of the continuum and Fe K band variability in a sample of bright AGNs. These kind of studies may break the spectral degeneracy between the different absorption/emission models, allowing ``safe'' measurements of the disc and black hole properties from the broad line shapes. In fact, the Fe K band, alone, allows a first separation between the different components. Here we show the case of NGC 3783 which shows both a constant and a variable reflection component as well as strong ionized absorption. We show that a fundamental contribution will be given by Simbol-X that will allow to simultaneously measure not only the Fe K variability, but also the connected reflection hump variations.

  14. Variability in Adaptive Behavior in Autism: Evidence for the Importance of Family History

    Science.gov (United States)

    Mazefsky, Carla A.; Williams, Diane L.; Minshew, Nancy J.

    2008-01-01

    Adaptive behavior in autism is highly variable and strongly related to prognosis. This study explored family history as a potential source of variability in adaptive behavior in autism. Participants included 77 individuals (mean age = 18) with average or better intellectual ability and autism. Parents completed the Family History Interview about…

  15. Spatial and Temporal Variability and Trends in 2001-2016 Global Fire Activity

    Science.gov (United States)

    Earl, Nick; Simmonds, Ian

    2018-03-01

    Fire regimes across the globe have great spatial and temporal variability, and these are influence by many factors including anthropogenic management, climate, and vegetation types. Here we utilize the satellite-based "active fire" product, from Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, to statistically analyze variability and trends in fire activity from the global to regional scales. We split up the regions by economic development, region/geographical land use, clusters of fire-abundant areas, or by religious/cultural influence. Weekly cycle tests are conducted to highlight and quantify part of the anthropogenic influence on fire regime across the world. We find that there is a strong statistically significant decline in 2001-2016 active fires globally linked to an increase in net primary productivity observed in northern Africa, along with global agricultural expansion and intensification, which generally reduces fire activity. There are high levels of variability, however. The large-scale regions exhibit either little change or decreasing in fire activity except for strong increasing trends in India and China, where rapid population increase is occurring, leading to agricultural intensification and increased crop residue burning. Variability in Canada has been linked to a warming global climate leading to a longer growing season and higher fuel loads. Areas with a strong weekly cycle give a good indication of where fire management is being applied most extensively, for example, the United States, where few areas retain a natural fire regime.

  16. Single-Station Sigma for the Iranian Strong Motion Stations

    Science.gov (United States)

    Zafarani, H.; Soghrat, M. R.

    2017-11-01

    In development of ground motion prediction equations (GMPEs), the residuals are assumed to have a log-normal distribution with a zero mean and a standard deviation, designated as sigma. Sigma has significant effect on evaluation of seismic hazard for designing important infrastructures such as nuclear power plants and dams. Both aleatory and epistemic uncertainties are involved in the sigma parameter. However, ground-motion observations over long time periods are not available at specific sites and the GMPEs have been derived using observed data from multiple sites for a small number of well-recorded earthquakes. Therefore, sigma is dominantly related to the statistics of the spatial variability of ground motion instead of temporal variability at a single point (ergodic assumption). The main purpose of this study is to reduce the variability of the residuals so as to handle it as epistemic uncertainty. In this regard, it is tried to partially apply the non-ergodic assumption by removing repeatable site effects from total variability of six GMPEs driven from the local, Europe-Middle East and worldwide data. For this purpose, we used 1837 acceleration time histories from 374 shallow earthquakes with moment magnitudes ranging from M w 4.0 to 7.3 recorded at 370 stations with at least two recordings per station. According to estimated single-station sigma for the Iranian strong motion stations, the ratio of event-corrected single-station standard deviation ( Φ ss) to within-event standard deviation ( Φ) is about 0.75. In other words, removing the ergodic assumption on site response resulted in 25% reduction of the within-event standard deviation that reduced the total standard deviation by about 15%.

  17. A 305-year continuous monthly rainfall series for the island of Ireland (1711–2016

    Directory of Open Access Journals (Sweden)

    C. Murphy

    2018-03-01

    Full Text Available A continuous 305-year (1711–2016 monthly rainfall series (IoI_1711 is created for the Island of Ireland. The post 1850 series draws on an existing quality assured rainfall network for Ireland, while pre-1850 values come from instrumental and documentary series compiled, but not published by the UK Met Office. The series is evaluated by comparison with independent long-term observations and reconstructions of precipitation, temperature and circulation indices from across the British–Irish Isles. Strong decadal consistency of IoI_1711 with other long-term observations is evident throughout the annual, boreal spring and autumn series. Annually, the most recent decade (2006–2015 is found to be the wettest in over 300 years. The winter series is probably too dry between the 1740s and 1780s, but strong consistency with other long-term observations strengthens confidence from 1790 onwards. The IoI_1711 series has remarkably wet winters during the 1730s, concurrent with a period of strong westerly airflow, glacial advance throughout Scandinavia and near unprecedented warmth in the Central England Temperature record – all consistent with a strongly positive phase of the North Atlantic Oscillation. Unusually wet summers occurred in the 1750s, consistent with proxy (tree-ring reconstructions of summer precipitation in the region. Our analysis shows that inter-decadal variability of precipitation is much larger than previously thought, while relationships with key modes of climate variability are time-variant. The IoI_1711 series reveals statistically significant multi-centennial trends in winter (increasing and summer (decreasing seasonal precipitation. However, given uncertainties in the early winter record, the former finding should be regarded as tentative. The derived record, one of the longest continuous series in Europe, offers valuable insights for understanding multi-decadal and centennial rainfall variability in Ireland, and provides a

  18. Analysis of Modal Travel Time Variability Due to Mesoscale Ocean Structure

    National Research Council Canada - National Science Library

    Smith, Amy

    1997-01-01

    .... First, for an open ocean environment away from strong boundary currents, the effects of randomly phased linear baroclinic Rossby waves on acoustic travel time are shown to produce a variable overall...

  19. Gender differences in the variables of exercise treadmill test in type ...

    African Journals Online (AJOL)

    Background: Exercise capacity, like some other variables of exercise stress test, is a strong predictor of cardiovascular and overall ..... plan, and guide cardiac rehabilitation. .... peripheral vascular disease, peripheral neuropathy, physical ...

  20. ClustOfVar: An R Package for the Clustering of Variables

    Directory of Open Access Journals (Sweden)

    Marie Chavent

    2012-09-01

    Full Text Available Clustering of variables is as a way to arrange variables into homogeneous clusters, i.e., groups of variables which are strongly related to each other and thus bring the same information. These approaches can then be useful for dimension reduction and variable selection. Several specific methods have been developed for the clustering of numerical variables. However concerning qualitative variables or mixtures of quantitative and qualitative variables, far fewer methods have been proposed. The R package ClustOfVar was specifically developed for this purpose. The homogeneity criterion of a cluster is defined as the sum of correlation ratios (for qualitative variables and squared correlations (for quantitative variables to a synthetic quantitative variable, summarizing ``as good as possible'' the variables in the cluster. This synthetic variable is the first principal component obtained with the PCAMIX method. Two clustering algorithms are proposed to optimize the homogeneity criterion: iterative relocation algorithm and ascendant hierarchical clustering. We also propose a bootstrap approach in order to determine suitable numbers of clusters. We illustrate the methodologies and the associated package on small datasets.

  1. Reconstruction of precipitation variability in the Strait of Yucatan associated with latitudinal shifts in the position of the Intertropical Convergence Zone since the Last Glacial Maximum

    Science.gov (United States)

    Staines-Urías, Francisca; Seidenkrantz, Marit-Solveig; Fischel, Andrea; Kuijpers, Antoon

    2017-04-01

    The elemental composition of sediments from gravity core HOLOVAR11-03 provides a ca. 40 ka record of past climate variability in the Strait of Yucatan, between the Caribbean Sea and the Gulf of Mexico, a region where precipitation variability is determined by the seasonal position of the Intertropical Convergence Zone (ITCZ). Within this region, sea level pressure decreases and rainfall increases as the ITCZ moves north of the equator in response to increased solar insolation in the Northern Hemisphere during boreal summer. In contrast, as the ITCZ retracts southward towards the equator during boreal winter, rainfall diminishes and the regional sea level pressure gradient strengthens. On interannual, multidecadal and millennial timescales, fluctuations in the average latitudinal position of the ITCZ in response to insolation forcing modulate the intensity and duration of the seasonal regimens, determining average regional precipitation and, ultimately, the elemental composition of the marine sedimentary record. Regionally, higher titanium and iron content in marine sediments reflect greater terrigenous input from inland runoff, indicating greater precipitation, hence a more northerly position of the ITCZ. Correspondingly, Ti and Fe concentration data were used to reconstruct regional rainfall variability since the Last Glacial Maxima (LGM ˜24 cal ka BP). HOLOVAR11-03 age model (based on 4 AMS 14C dates obtained from multi-specific samples of planktic foraminifera) shows stable sedimentation rates in the area throughout the cored period. Nonetheless, higher terrestrial mineral input is observed since the LGM and all through the last glacial termination (24 to 12 cal ka BP), indicating a period of increased precipitation. In contrast, lower Ti and Fe values are typical for the period between 12 and 8 cal ka BP, indicating reduced precipitation. A positive trend characterizes the following interval, showing a return to wetter conditions lasting until 5 cal ka BP

  2. Decadal variability on the Northwest European continental shelf

    Science.gov (United States)

    Jones, Sam; Cottier, Finlo; Inall, Mark; Griffiths, Colin

    2018-02-01

    Decadal scale time series of the shelf seas are important for understanding both climate and process studies. Despite numerous investigations of long-term temperature variability in the shelf seas, studies of salinity variability are few. Salt is a more conservative tracer than temperature in shallow seas, and it can reveal changes in local hydrographic conditions as well as transmitted basin-scale changes. Here, new inter-annual salinity time series on the northwest European shelf are developed and a 13 year high resolution salinity record from a coastal mooring in western Scotland is presented and analysed. We find strong temporal variability in coastal salinity on timescales ranging from tidal to inter-annual, with the magnitude of variability greatest during winter months. There is little seasonality and no significant decadal trend in the coastal time series of salinity. We propose 4 hydrographic states to explain salinity variance in the shelf area west of Scotland based on the interaction between a baroclinic coastal current and wind-forced barotropic flow: while wind forcing is important, we find that changes in the buoyancy-driven flow are more likely to influence long-term salinity observations. We calculate that during prevailing westerly wind conditions, surface waters in the Sea of the Hebrides receive a mix of 62% Atlantic origin water to 38% coastal sources. This contrasts with easterly wind conditions, during which the mix is 6% Atlantic to 94% coastal sources on average. This 'switching' between hydrographic states is expected to impact nutrient transport and therefore modify the level of primary productivity on the shelf. This strong local variability in salinity is roughly an order of magnitude greater than changes in the adjacent ocean basin, and we infer from this that Scottish coastal waters are likely to be resilient to decadal changes in ocean climate.

  3. Examining cross-equatorial precipitation variability in the western Indian Ocean using stalagmites from Madagascar

    Science.gov (United States)

    Scroxton, N.; Burns, S. J.; McGee, D.; Hardt, B. F.; Godfrey, L.; Ranivoharimanana, L.; Faina, P.

    2017-12-01

    The behavior of the world's monsoon systems and the position of the Inter Tropical Convergence Zone (ITCZ) resulting from large global climatic changes is reasonably well understood at orbital and millennial timescales. However, under the boundary conditions and relatively modest forcing of the last 2000 years it is not yet clear how tropical monsoon systems changed and why. The traditional schema of north-south translation of the ITCZ is being challenged by new theories relating to meridional expansion and contraction of the tropical rain belt, and/or to changes in zonal circulation patterns resembling modern El-Niño Southern Oscillation end members. Located at a hotspot of zonal and meridional climate forcing, stalagmites from the western Indian Ocean can provide new insights into past rainfall variability and uncover the driving mechanisms. Here, we present results from a new southern hemisphere speleothem record from Anjohibe cave, northwestern Madagascar, covering the last 1,700 years. We demonstrate that our quasi-annual, precisely dated, stable oxygen isotope record serves as a proxy for the strength of the northwestern Madagascan monsoon. The record shows a multi-decadal, in-phase relationship with its northern hemisphere monsoon counterpart from Oman - contrary to the expected antiphase relationship that would result from north-south ITCZ translation. At the centennial scale, the Madagascan record correlates well with precipitation records from Eastern Africa. We discuss the potential causes of western Indian Ocean precipitation coherency, and how it relates to either symmetrical changes in continental sensible heating, or to a low frequency zonal sea-surface temperature mode.

  4. The Charlie-Gibbs Fracture Zone: A Crossroads of the Atlantic Meridional Overturning Circulation

    Science.gov (United States)

    Bower, A. S.; Furey, H. H.; Xu, X.

    2016-02-01

    The Charlie-Gibbs Fracture Zone (CGFZ), a deep gap in the Mid-Atlantic Ridge at 52N, is the primary conduit for westward-flowing Iceland-Scotland Overflow Water (ISOW), which merges with Denmark Strait Overflow Water to form the Deep Western Boundary Current. The CGFZ has also been shown to "funnel" the path of the northern branch of the eastward-flowing North Atlantic Current (NAC), thereby bringing these two branches of the AMOC into close proximity. A recent two-year time series of hydrographic properties and currents from eight tall moorings across the CGFZ offers the first opportunity to investigate the NAC as a source of variability for ISOW transport. The two-year mean and standard deviation of ISOW transport was -1.7 ± 1.5 Sv, compared to -2.4 ± 3.0 Sv reported by Saunders for a 13-month period in 1988-1989. Differences in the two estimates are partly explained by limitations of the Saunders array, but more importantly reflect the strong low-frequency variability in ISOW transport through CGFZ (which includes complete reversals). Both the observations and output from a multi-decadal simulation of the North Atlantic using the Hybrid Coordinate Ocean Model (HYCOM) forced with interannually varying wind and buoyancy fields indicate a strong positive correlation between ISOW transport and the strength of the NAC through the CGFZ (stronger eastward NAC related to weaker westward ISOW transport). Vertical structure of the low-frequency current variability and water mass structure in the CGFZ will also be discussed. The results have implications regarding the interaction of the upper and lower limbs of the AMOC, and downstream propagation of ISOW transport variability in the Deep Western Boundary Current.

  5. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice.

    Science.gov (United States)

    Li, Xichen; Holland, David M; Gerber, Edwin P; Yoo, Changhyun

    2014-01-23

    In recent decades, Antarctica has experienced pronounced climate changes. The Antarctic Peninsula exhibited the strongest warming of any region on the planet, causing rapid changes in land ice. Additionally, in contrast to the sea-ice decline over the Arctic, Antarctic sea ice has not declined, but has instead undergone a perplexing redistribution. Antarctic climate is influenced by, among other factors, changes in radiative forcing and remote Pacific climate variability, but none explains the observed Antarctic Peninsula warming or the sea-ice redistribution in austral winter. However, in the north and tropical Atlantic Ocean, the Atlantic Multidecadal Oscillation (a leading mode of sea surface temperature variability) has been overlooked in this context. Here we show that sea surface warming related to the Atlantic Multidecadal Oscillation reduces the surface pressure in the Amundsen Sea and contributes to the observed dipole-like sea-ice redistribution between the Ross and Amundsen-Bellingshausen-Weddell seas and to the Antarctic Peninsula warming. Support for these findings comes from analysis of observational and reanalysis data, and independently from both comprehensive and idealized atmospheric model simulations. We suggest that the north and tropical Atlantic is important for projections of future climate change in Antarctica, and has the potential to affect the global thermohaline circulation and sea-level change.

  6. Trends and Variability of North Pacific Polar Lows

    Directory of Open Access Journals (Sweden)

    Fei Chen

    2013-01-01

    Full Text Available The 6-hourly 1948–2010 NCEP 1 reanalyses have been dynamically downscaled for the region of the North Pacific. With a detecting-and-tracking algorithm, the climatology of North Pacific Polar Lows has been constructed. This derived climatology is consistent with the limited observational evidence in terms of frequency and spatial distribution. The climatology exhibits strong year-to-year variability but weak decadal variability and a small positive trend. A canonical correlation analysis describes the conditioning of the formation of Polar Lows by characteristic seasonal mean flow regimes, which favor, or limit, cold air outbreaks and upper air troughs.

  7. Effect of environmental change on the morphology of tidally influenced deltas over multi-decadal timescale

    Science.gov (United States)

    Angamuthu, Balaji; Darby, Stephen; Nicholls, Robert

    2017-04-01

    An understanding of the geomorphological processes affecting deltas is essential to improve our understanding of the risks that deltas face, especially as human impacts are likely to intensify in the future. Unfortunately, there is limited reliable data on river deltas, meaning that the task of demonstrating the links between morphodynamic and environmental change is challenging. This presentation aims to answer the questions of how delta morphology evolves over multi-decadal timescales under multiple drivers, focussing on tidally-influenced deltas, as some of these, such as the Ganges-Brahmaputra-Meghna (GBM) delta are heavily populated. A series of idealised model simulations over 102 years were used to explore the influence of three key drivers on delta morphodynamics, both individually and together: (i) varying combinations of water and sediment discharges from the upstream catchment, (ii) varying rates of relative sea-level rise (RSLR), and (iii) selected human interventions within the delta, such as polders, cross-dams and changing land cover. Model simulations revealed that delta progradation rates are more sensitive to variations in water discharge than variations in fluvial sediment supply. Unlike mere aggradation during RSLR, the delta front experienced aggradational progradation due to tides. As expected, the area of the simulated sub-aerial delta increases with increasing sediment discharge, but decreases with increasing water discharge. But, human modifications are important. For example, the sub-aerial delta shrinks with increasing RSLR, but it does not when the sub-aerial delta is polderised, provided the polders are restricted from erosion. However, the polders are vulnerable to flooding as they lose relative elevation and can make the delta building process unsustainable. Cross-dams built to steer zones of land accretion within the delta accomplish their local goal, but may not result in net land gain at the scale of the delta. Applying these

  8. Strong Langmuir turbulence

    International Nuclear Information System (INIS)

    Goldman, M.V.

    1984-01-01

    After a brief discussion of beam-excited Langmuir turbulence in the solar wind, we explain the criteria for wave-particle, three-wave and strong turbulence interactions. We then present the results of a numerical integration of the Zakharov equations, which describe the strong turbulence saturation of a weak (low-density) high energy, bump-on-tail beam instability. (author)

  9. Strong Motion Earthquake Data Values of Digitized Strong-Motion Accelerograms, 1933-1994

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Strong Motion Earthquake Data Values of Digitized Strong-Motion Accelerograms is a database of over 15,000 digitized and processed accelerograph records from...

  10. Climate Variability and Phytoplankton in the Pacific Ocean

    Science.gov (United States)

    Rousseaux, Cecile

    2012-01-01

    The effect of climate variability on phytoplankton communities was assessed for the tropical and sub-tropical Pacific Ocean between 1998 and 2005 using an established biogeochemical assimilation model. The phytoplankton communities exhibited wide range of responses to climate variability, from radical shifts in the Equatorial Pacific, to changes of only a couple of phytoplankton groups in the North Central Pacific, to no significant changes in the South Pacific. In the Equatorial Pacific, climate variability dominated the variability of phytoplankton. Here, nitrate, chlorophyll and all but one of the 4 phytoplankton types (diatoms, cyanobacteria and coccolithophores) were strongly correlated (pphytoplankton groups (chlorophytes and coccolithophores). Ocean biology in the South Pacific was not significantly correlated with MEI. During La Nina events, diatoms increased and expanded westward along the cold tongue (correlation with MEI, r=-0.81), while cyanobacteria concentrations decreased significantly (r=0.78). El Nino produced the reverse pattern, with cyanobacteria populations increasing while diatoms plummeted. The diverse response of phytoplankton in the different major basins of the Pacific suggests the different roles climate variability can play in ocean biology.

  11. Thermal ignition in a reactive variable viscosity Poiseuille flow ...

    African Journals Online (AJOL)

    In this paper, we investigate the thermal ignition in a strongly exothermic reaction of a variable viscosity combustible material flowing through a channel with isothermal walls under Arrhenius kinetics, neglecting the consumption of the material. Analytical solutions are constructed for the governing nonlinear boundary-value ...

  12. Temperature variability over the tropical middle atmosphere

    Directory of Open Access Journals (Sweden)

    K. Mohanakumar

    1994-04-01

    Full Text Available A study on the variability of temperature in the tropical middle atmosphere over Thumba (8 32' N, 76 52' E, located at the southern part of India, has been carried out based on rocket observations for a period of 20 years, extending from 1970 to 1990. The rocketsonde-derived mean temperatures over Thumba are corrected prior to 1978 and then compared with the middle atmospheric reference model developed from satellite observations and Solar Mesosphere Explorer (SME satellite data. Temperature variability at every 1 km interval in the 25-75 km region was analysed. The tropical stratosphere is found to be highly stable, whereas considerable variability is noted in the middle mesosphere. The effect of seasonal cycle is least in the lower stratosphere. Annual and semi-annual oscillations in temperature are the primary oscillations in the tropical middle atmosphere. Annual temperature oscillations are dominant in the mesosphere and semi-annual oscillations are strong in the stratosphere. The stratopause region is noted to be the part of the middle atmosphere least sensitive to the changes in solar activity and long-term variability.

  13. Natural and Anthropogenic Influences on Atmospheric Aerosol Variability

    Energy Technology Data Exchange (ETDEWEB)

    Asmi, A.

    2012-07-01

    Aerosol particles are everywhere in the atmosphere. They are a key factor in many important processes in the atmosphere, including cloud formation, scattering of incoming solar radiation and air chemistry. The aerosol particles have relatively short lifetimes in lower atmosphere, typically from days to weeks, and thus they have a high spatial and temporal variability. This thesis concentrates on the extent and reasons of sub-micron aerosol particle variability in the lower atmosphere, using both global atmospheric models and analysis of observational data. Aerosol number size distributions in the lower atmosphere are affected strongly by the new particle formation. Perhaps more importantly, a strong influence new particle formation is also evident in the cloud condensation nuclei (CCN) concentrations, suggesting a major role of the sulphuric acid driven new particle formation in the climate system. In this thesis, the sub-micron aerosol number size distributions in the European regional background air were characterized for the first time from consistent, homogenized and comparable datasets. Some recent studies have suggested that differences in aerosol emissions between weekdays could also affect the weather via aerosol-cloud interactions. In this thesis, the weekday-to-weekday variation of CCN sized aerosol number concentrations in Europe were found to be much smaller than expected from earlier studies, based on particle mass measurements. This result suggests that a lack of week-day variability in meteorology is not necessarily a sign of weak aerosol-cloud interactions. An analysis of statistically significant trends in past decades of measured aerosol number concentrations from Europe, North America, Pacific islands and Antarctica generally show decreases in concentrations. The analysis of these changes show that a potential explanation for the decreasing trends is the general reduction of anthropogenic emissions, especially SO{sub 2}, although a combination of

  14. Nonlinear interaction of charged particles with strong laser pulses in a gaseous media

    Directory of Open Access Journals (Sweden)

    H. K. Avetissian

    2007-07-01

    Full Text Available The charged particles nonlinear dynamics in the field of a strong electromagnetic wave pulse of finite duration and certain form of the envelope, in the refractive medium with a constant and variable refraction indexes, is investigated by means of numerical integration of the classical relativistic equations of motion. The particle energy dependence on the pulse intensity manifests the nonlinear threshold phenomenon of a particle reflection and capture by actual laser pulses in dielectric-gaseous media that takes place for a plane electromagnetic wave in the induced Cherenkov process. Laser acceleration of the particles in the result of the reflection from the pulse envelope and in the capture regime with the variable refraction index along the pulse propagation direction is investigated.

  15. Strong monogamy of bipartite and genuine multipartite entanglement: the Gaussian case.

    Science.gov (United States)

    Adesso, Gerardo; Illuminati, Fabrizio

    2007-10-12

    We demonstrate the existence of general constraints on distributed quantum correlations, which impose a trade-off on bipartite and multipartite entanglement at once. For all N-mode Gaussian states under permutation invariance, we establish exactly a monogamy inequality, stronger than the traditional one, that by recursion defines a proper measure of genuine N-partite entanglement. Strong monogamy holds as well for subsystems of arbitrary size, and the emerging multipartite entanglement measure is found to be scale invariant. We unveil its operational connection with the optimal fidelity of continuous variable teleportation networks.

  16. Broad-band properties of the CfA Seyfert galaxies. III - Ultraviolet variability

    Science.gov (United States)

    Edelson, R. A.; Pike, G. F.; Krolik, J. H.

    1990-01-01

    A total of 657 archived IUE spectra are used to study the UV variability properties of six members of the CfA Seyfert I galaxy sample. All show strong evidence for continuum and line variations and a tendency for less luminous objects to be more strongly variable. Most objects show a clear correlation at zero lag between UV spectral index and luminosity, evidence that the variable component is an accretion disk around a black hole which is systematically smaller in less luminous sources. No correlation is seen between the continuum luminosity and equivalent width of the C IV, Mg II, and semiforbidden C III emission lines when the entire sample is examined, but a clear anticorrelation is present when only repeated observations of individual objects are considered. This is due to a combination of light-travel time effects in the broad-line region and the nonlinear responses of lines to continuum fluctuations.

  17. An improved and explicit surrogate variable analysis procedure by coefficient adjustment.

    Science.gov (United States)

    Lee, Seunggeun; Sun, Wei; Wright, Fred A; Zou, Fei

    2017-06-01

    Unobserved environmental, demographic, and technical factors can negatively affect the estimation and testing of the effects of primary variables. Surrogate variable analysis, proposed to tackle this problem, has been widely used in genomic studies. To estimate hidden factors that are correlated with the primary variables, surrogate variable analysis performs principal component analysis either on a subset of features or on all features, but weighting each differently. However, existing approaches may fail to identify hidden factors that are strongly correlated with the primary variables, and the extra step of feature selection and weight calculation makes the theoretical investigation of surrogate variable analysis challenging. In this paper, we propose an improved surrogate variable analysis using all measured features that has a natural connection with restricted least squares, which allows us to study its theoretical properties. Simulation studies and real data analysis show that the method is competitive to state-of-the-art methods.

  18. On the intra-seasonal variability within the extratropics in the ECHAM3 general circulation model

    International Nuclear Information System (INIS)

    May, W.

    1994-01-01

    First we consider the GCM's capability to reproduce the midlatitude variability on intra-seasonal time scales by a comparison with observational data (ECMWF analyses). Secondly we assess the possible influence of Sea Surface Temperatures on the intra-seasonal variability by comparing estimates obtained from different simulations performed with ECHAM3 with varying and fixed SST as boundary forcing. The intra-seasonal variability as simulated by ECHAM3 is underestimated over most of the Northern Hemisphere. While the contributions of the high-frequency transient fluctuations are reasonably well captured by the model, ECHAM3 fails to reproduce the observed level of low-frequency intra-seasonal variability. This is mainly due to the underestimation of the variability caused by the ultra-long planetary waves in the Northern Hemisphere midlatitudes by the model. In the Southern Hemisphere midlatitudes, on the other hand, the intra-seasonal variability as simulated by ECHAM3 is generally underestimated in the area north of about 50 southern latitude, but overestimated at higher latitudes. This is the case for the contributions of the high-frequency and the low-frequency transient fluctuations as well. Further, the model indicates a strong tendency for zonal symmetry, in particular with respect to the high-frequency transient fluctuations. While the two sets of simulations with varying and fixed Sea Surface Temepratures as boundary forcing reveal only small regional differences in the Southern Hemisphere, there is a strong response to be found in the Northern Hemisphere. The contributions of the high-frequency transient fluctuations to the intra-seasonal variability are generally stronger in the simulations with fixed SST. Further, the Pacific storm track is shifted slightly poleward in this set of simulations. For the low-frequency intra-seasonal variability the model gives a strong, but regional response to the interannual variations of the SST. (orig.)

  19. Reconstructed droughts for the southeastern Tibetan Plateau over the past 568 years and its linkages to the Pacific and Atlantic Ocean climate variability

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Keyan [Lanzhou University, Key Laboratory of Western China' s Environmental Systems (MOE), Lanzhou (China); Lamont-Doherty Earth Observatory of Columbia University, Tree-Ring Laboratory, New York, NY (United States); Gou, Xiaohua; Chen, Fahu; Yang, Tao [Lanzhou University, Key Laboratory of Western China' s Environmental Systems (MOE), Lanzhou (China); Li, Jinbao; D' Arrigo, Rosanne; Cook, Edward; Davi, Nicole [Lamont-Doherty Earth Observatory of Columbia University, Tree-Ring Laboratory, New York, NY (United States)

    2010-09-15

    We present a Palmer Drought Severity Index reconstruction (r=0.61, P<0.01) from 1440 to 2007 for the southeastern Tibetan Plateau, based on tree rings of the forest fir (Abies forrestii). Persistent decadal dry intervals were found in the 1440s-1460s, 1560s-1580s, 1700s, 1770s, 1810s, 1860s and 1980s, and the extreme wet epochs were the 1480s-1490s, 1510s-1520s, 1590s, 1610s-1630s, 1720s-1730s, 1800s, 1830s, 1870s, 1930s, 1950s and after the 1990s. Comparisons of our record with those identified in other moisture related reconstructions for nearby regions showed that our reconstructed droughts were relatively consistent with those found in other regions of Indochina, suggesting similar drought regimes. Spectral peaks of 2.3-5.5 years may be indicative of ENSO activity, as also suggested by negative correlations with SSTs in the eastern equatorial and southeastern Pacific Ocean. Significant multidecadal spectral peaks of 29.2-40.9 and 56.8-60.2 years were identified. As indicated by the spatial correlation patterns, the decadal-scale variability may be linked to SST variations in the northern Pacific and Atlantic Oceans. (orig.)

  20. Reducing Variability in Stress Drop with Root-Mean Acceleration

    Science.gov (United States)

    Crempien, J.; Archuleta, R. J.

    2012-12-01

    Stress drop is a fundamental property of the earthquake source. For a given tectonic region stress drop is assumed to be constant allowing for the scaling of earthquake spectra. However, the variability of the stress drop, either for worldwide catalogs or regional catalogs, is quite large. The variability around the median value is on the order of 1.5 in log10 units. One question that continues to pervade the analysis of stress drop is whether this variability is an inherent characteristic of the Earth or is an artifact of the determination of stress drop via the use of the spectral analysis. It is simple to see that the stress drop determined by seismic moment times corner frequency cubed that errors in the corner frequency will strongly influence the variability in the stress drop. To avoid this strong dependence on corner frequency cubed, we have examined the determination of stress drop based on the approach proposed by Hanks (1979), namely using the root-mean-square acceleration. The stress drop determined using rms acceleration may be advantageous because the stress drop is only affected by the square root of the corner frequency. To test this approach we have determined stress drops for the 2000 Tottori earthquake and its aftershocks. We use both the classic method of fitting to a spectrum as well as using rms acceleration. For a preliminary analysis of eight aftershocks and the mainshock we find that the variability in stress drop is reduced by about a factor of two. This approach needs more careful analysis of more events, which will be shown at the meeting.

  1. Identifying causal linkages between environmental variables and African conflicts

    Science.gov (United States)

    Nguy-Robertson, A. L.; Dartevelle, S.

    2017-12-01

    Environmental variables that contribute to droughts, flooding, and other natural hazards are often identified as factors contributing to conflict; however, few studies attempt to quantify these causal linkages. Recent research has demonstrated that the environment operates within a dynamical system framework and the influence of variables can be identified from convergent cross mapping (CCM) between shadow manifolds. We propose to use CCM to identify causal linkages between environmental variables and incidences of conflict. This study utilizes time series data from Climate Forecast System ver. 2 and MODIS satellite sensors processed using Google Earth Engine to aggregate country and regional trends. These variables are then compared to Armed Conflict Location & Event Data Project observations at similar scales. Results provide relative rankings of variables and their linkage to conflict. Being able to identify which factors contributed more strongly to a conflict can allow policy makers to prepare solutions to mitigate future crises. Knowledge of the primary environmental factors can lead to the identification of other variables to examine in the causal network influencing conflict.

  2. Analysis of Sea Level Rise in Singapore Strait

    Science.gov (United States)

    Tkalich, Pavel; Luu, Quang-Hung

    2013-04-01

    Sea level in Singapore Strait is governed by various scale phenomena, from global to local. Global signals are dominated by the climate change and multi-decadal variability and associated sea level rise; at regional scale seasonal sea level variability is caused by ENSO-modulated monsoons; locally, astronomic tides are the strongest force. Tide gauge records in Singapore Strait are analyzed to derive local sea level trend, and attempts are made to attribute observed sea level variability to phenomena at various scales, from global to local. It is found that at annual scale, sea level anomalies in Singapore Strait are quasi-periodic, of the order of ±15 cm, the highest during northeast monsoon and the lowest during southwest monsoon. Interannual regional sea level falls are associated with El Niño events, while the rises are related to La Niña episodes; both variations are in the range of ±9 cm. At multi-decadal scale, sea level in Singapore Strait has been rising at the rate 1.2-1.9 mm/year for the period 1975-2009, 2.0±0.3 mm/year for 1984-2009, and 1.3-4.7 mm/year for 1993-2009. When compared with the respective global trends of 2.0±0.3, 2.4, and 2.8±0.8 mm/year, Singapore Strait sea level rise trend was weaker at the earlier period and stronger at the recent decade.

  3. A Review of ENSO Influence on the North Atlantic. A Non-Stationary Signal

    Directory of Open Access Journals (Sweden)

    Belén Rodríguez-Fonseca

    2016-06-01

    Full Text Available The atmospheric seasonal cycle of the North Atlantic region is dominated by meridional movements of the circulation systems: from the tropics, where the West African Monsoon and extreme tropical weather events take place, to the extratropics, where the circulation is dominated by seasonal changes in the jetstream and extratropical cyclones. Climate variability over the North Atlantic is controlled by various mechanisms. Atmospheric internal variability plays a crucial role in the mid-latitudes. However, El Niño-Southern Oscillation (ENSO is still the main source of predictability in this region situated far away from the Pacific. Although the ENSO influence over tropical and extra-tropical areas is related to different physical mechanisms, in both regions this teleconnection seems to be non-stationary in time and modulated by multidecadal changes of the mean flow. Nowadays, long observational records (greater than 100 years and modeling projects (e.g., CMIP permit detecting non-stationarities in the influence of ENSO over the Atlantic basin, and further analyzing its potential mechanisms. The present article reviews the ENSO influence over the Atlantic region, paying special attention to the stability of this teleconnection over time and the possible modulators. Evidence is given that the ENSO–Atlantic teleconnection is weak over the North Atlantic. In this regard, the multidecadal ocean variability seems to modulate the presence of teleconnections, which can lead to important impacts of ENSO and to open windows of opportunity for seasonal predictability.

  4. Mismeasurement and the resonance of strong confounders: correlated errors.

    Science.gov (United States)

    Marshall, J R; Hastrup, J L; Ross, J S

    1999-07-01

    Confounding in epidemiology, and the limits of standard methods of control for an imperfectly measured confounder, have been understood for some time. However, most treatments of this problem are based on the assumption that errors of measurement in confounding and confounded variables are independent. This paper considers the situation in which a strong risk factor (confounder) and an inconsequential but suspected risk factor (confounded) are each measured with errors that are correlated; the situation appears especially likely to occur in the field of nutritional epidemiology. Error correlation appears to add little to measurement error as a source of bias in estimating the impact of a strong risk factor: it can add to, diminish, or reverse the bias induced by measurement error in estimating the impact of the inconsequential risk factor. Correlation of measurement errors can add to the difficulty involved in evaluating structures in which confounding and measurement error are present. In its presence, observed correlations among risk factors can be greater than, less than, or even opposite to the true correlations. Interpretation of multivariate epidemiologic structures in which confounding is likely requires evaluation of measurement error structures, including correlations among measurement errors.

  5. Usage of machine learning for the separation of electroweak and strong $Z_{\\gamma}$ production at the LHC experiments

    OpenAIRE

    Petukhov, A M; Yu Soldatov, E

    2017-01-01

    Separation of electroweak component from strong component of associated Zγ production on hadron colliders is a very challenging task due to identical final states of such processes. The only difference is the origin of two leading jets in these two processes. Rectangular cuts on jet kinematic variables from ATLAS/CMS 8 TeV Zγ experimental analyses were improved using machine learning techniques. New selection variables were also tested. The expected significance of separation for LHC experime...

  6. Abelian color cycles: A new approach to strong coupling expansion and dual representations for non-abelian lattice gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Gattringer, Christof, E-mail: christof.gattringer@uni-graz.at; Marchis, Carlotta, E-mail: carla.marchis@uni-graz.at

    2017-03-15

    We propose a new approach to strong coupling series and dual representations for non-abelian lattice gauge theories using the SU(2) case as an example. The Wilson gauge action is written as a sum over “abelian color cycles” (ACC) which correspond to loops in color space around plaquettes. The ACCs are complex numbers which can be commuted freely such that the strong coupling series and the dual representation can be obtained as in the abelian case. Using a suitable representation of the SU(2) gauge variables we integrate out all original gauge links and identify the constraints for the dual variables in the SU(2) case. We show that the construction can be generalized to the case of SU(2) gauge fields with staggered fermions. The result is a strong coupling series where all gauge integrals are known in closed form and we discuss its applicability for possible dual simulations. The abelian color cycle concept can be generalized to other non-abelian gauge groups such as SU(3).

  7. Pathogen prevalence predicts human cross-cultural variability in individualism/collectivism.

    Science.gov (United States)

    Fincher, Corey L; Thornhill, Randy; Murray, Damian R; Schaller, Mark

    2008-06-07

    Pathogenic diseases impose selection pressures on the social behaviour of host populations. In humans (Homo sapiens), many psychological phenomena appear to serve an antipathogen defence function. One broad implication is the existence of cross-cultural differences in human cognition and behaviour contingent upon the relative presence of pathogens in the local ecology. We focus specifically on one fundamental cultural variable: differences in individualistic versus collectivist values. We suggest that specific behavioural manifestations of collectivism (e.g. ethnocentrism, conformity) can inhibit the transmission of pathogens; and so we hypothesize that collectivism (compared with individualism) will more often characterize cultures in regions that have historically had higher prevalence of pathogens. Drawing on epidemiological data and the findings of worldwide cross-national surveys of individualism/collectivism, our results support this hypothesis: the regional prevalence of pathogens has a strong positive correlation with cultural indicators of collectivism and a strong negative correlation with individualism. The correlations remain significant even when controlling for potential confounding variables. These results help to explain the origin of a paradigmatic cross-cultural difference, and reveal previously undocumented consequences of pathogenic diseases on the variable nature of human societies.

  8. Iterative solutions of nonlinear equations with strongly accretive or strongly pseudocontractive maps

    International Nuclear Information System (INIS)

    Chidume, C.E.

    1994-03-01

    Let E be a real q-uniformly smooth Banach space. Suppose T is a strongly pseudo-contractive map with open domain D(T) in E. Suppose further that T has a fixed point in D(T). Under various continuity assumptions on T it is proved that each of the Mann iteration process or the Ishikawa iteration method converges strongly to the unique fixed point of T. Related results deal with iterative solutions of nonlinear operator equations involving strongly accretive maps. Explicit error estimates are also provided. (author). 38 refs

  9. Caribbean Brain coral tracks the Atlantic Multidecadal Oscillation and Past Hurricane Intensity

    NARCIS (Netherlands)

    Hetzinger, S.; Pfeiffer, M.; Dullo, W.-C.; Keenlyside, N.; Latif, M.; Zinke, J.

    2008-01-01

    It is highly debated whether global warming contributed to the strong hurricane activity observed during the last decade. The crux of the recent debate is the limited length of the reliable instrumental record that exacerbates the detection of possible long-term changes in hurricane activity, which

  10. Long time scale hard X-ray variability in Seyfert 1 galaxies

    Science.gov (United States)

    Markowitz, Alex Gary

    This dissertation examines the relationship between long-term X-ray variability characteristics, black hole mass, and luminosity of Seyfert 1 Active Galactic Nuclei. High dynamic range power spectral density functions (PSDs) have been constructed for six Seyfert 1 galaxies. These PSDs show "breaks" or characteristic time scales, typically on the order of a few days. There is resemblance to PSDs of lower-mass Galactic X-ray binaries (XRBs), with the ratios of putative black hole masses and variability time scales approximately the same (106--7) between the two classes of objects. The data are consistent with a linear correlation between Seyfert PSD break time scale and black hole mass estimate; the relation extrapolates reasonably well over 6--7 orders of magnitude to XRBs. All of this strengthens the case for a physical similarity between Seyfert galaxies and XRBs. The first six years of RXTE monitoring of Seyfert 1s have been systematically analyzed to probe hard X-ray variability on multiple time scales in a total of 19 Seyfert is in an expansion of the survey of Markowitz & Edelson (2001). Correlations between variability amplitude, luminosity, and black hole mass are explored, the data support the model of PSD movement with black hole mass suggested by the PSD survey. All of the continuum variability results are consistent with relatively more massive black holes hosting larger X-ray emission regions, resulting in 'slower' observed variability. Nearly all sources in the sample exhibit stronger variability towards softer energies, consistent with softening as they brighten. Direct time-resolved spectral fitting has been performed on continuous RXTE monitoring of seven Seyfert is to study long-term spectral variability and Fe Kalpha variability characteristics. The Fe Kalpha line displays a wide range of behavior but varies less strongly than the broadband continuum. Overall, however, there is no strong evidence for correlated variability between the line and

  11. Magnetized Langmuir wave packets excited by a strong beam-plasma interaction

    International Nuclear Information System (INIS)

    Pelletier, G.; Sol, H.; Asseo, E.

    1988-01-01

    The physics of beam-plasma interaction, which has been investigated for a long time mostly in relation with solar bursts, is now more widely invoked in various astrophysical contexts such as pulsars, active galactic nuclei, close binaries, cataclysmic variables, γ bursters, and so on. In these situations the interaction is more likely in the spirit of strong Langmuir turbulence rather than in the spirit of quasilinear theory. Many investigations have been done for two opposite extremes, namely, in very weak and in very strong magnetic fields. Very few properties of the strong Langmuir turbulence are known in the most usual astrophysical situation where the magnetic field plays a significant role but is not strong enough to force the electrons into one-dimensional motion. For this case, we analyze the dynamics of Langmuir wave packets and provide new results about the stability of the solitons against transverse perturbations. It turns out that both the averaged Lagrangian method and the adiabatic perturbation method derived from the inverse scattering transform give exactly the same results (which is not obvious in soliton perturbation theory). In particular, they predict the stability of the solitons as long as the electron gyrofrequency is greater than the plasma frequency (strong magnetic field) and their instability against transverse self-modulation in the opposite case (weak magnetic field); moreover, they allow one to deduce the self-similar collapsing oblate cavitons in the latter case. The laws governing the collapse of the wave packets determine the relaxation of the beam in the surrounding medium and we derive a useful formula giving the power loss of the beam. We outline the astrophysical consequences of this investigation

  12. Singular-perturbation--strong-coupling field theory and the moments problem

    International Nuclear Information System (INIS)

    Handy, C.R.

    1981-01-01

    Motivated by recent work of Bender, Cooper, Guralnik, Mjolsness, Rose, and Sharp, a new technique is presented for solving field equations in terms of singular-perturbation--strong-coupling expansions. Two traditional mathematical tools are combined into one effective procedure. Firstly, high-temperature lattice expansions are obtained for the corresponding power moments of the field solution. The approximate continuum-limit power moments are subsequently obtained through the application of Pade techniques. Secondly, in order to reconstruct the corresponding approximate global field solution, one must use function-moments reconstruction techniques. The latter involves reconsidering the traditional ''moments problem'' of interest to pure and applied mathematicians. The above marriage between lattice methods and moments reconstruction procedures for functions yields good results for the phi 4 field-theory kink, and the sine-Gordon kink solutions. It is argued that the power moments are the most efficient dynamical variables for the generation of strong-coupling expansions. Indeed, a momentum-space formulation is being advocated in which the long-range behavior of the space-dependent fields are determined by the small-momentum, infrared, domain

  13. Discrete variable theory of triatomic photodissociation

    International Nuclear Information System (INIS)

    Heather, R.W.; Light, J.C.

    1983-01-01

    The coupled equations describing the photodissociation process are expressed in the discrete variable representation (DVR) in which the coupled equations are labeled by quadrature points rather than by internal basis functions. A large reduction in the dimensionality of the coupled equations can be realized since the spatially localized bound state nuclear wave function vanishes at most of the quadrature points, making only certain orientations of the fragments important in the region of strong interaction (small separation). The discrete variable theory of photodissociation is applied to the model dissociation of bent HCN in which the CN fragment is treated as a rigid rotor. The truncated DVR rotational distributions are compared with the exact close coupled rotational distributions, and excellent agreement with greatly reduced dimensionality of the equations is found

  14. Strong cosmic censorship for solutions of the Einstein-Maxwell field equations with polarized Gowdy symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Nungesser, Ernesto; Rendall, Alan D [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, 14476 Potsdam (Germany)

    2009-05-21

    A proof of strong cosmic censorship is presented for a class of solutions of the Einstein-Maxwell equations, those with polarized Gowdy symmetry. A key element of the argument is the observation that by means of a suitable choice of variables the central equations in this problem can be written in a form where they are identical to the central equations for general (i.e. non-polarized) vacuum Gowdy spacetimes. Using this, it is seen that the deep results of Ringstroem on strong cosmic censorship in the vacuum case have implications for the Einstein-Maxwell case. Working out the geometrical meaning of these analytical results leads to the main conclusion.

  15. Strong cosmic censorship for solutions of the Einstein-Maxwell field equations with polarized Gowdy symmetry

    International Nuclear Information System (INIS)

    Nungesser, Ernesto; Rendall, Alan D

    2009-01-01

    A proof of strong cosmic censorship is presented for a class of solutions of the Einstein-Maxwell equations, those with polarized Gowdy symmetry. A key element of the argument is the observation that by means of a suitable choice of variables the central equations in this problem can be written in a form where they are identical to the central equations for general (i.e. non-polarized) vacuum Gowdy spacetimes. Using this, it is seen that the deep results of Ringstroem on strong cosmic censorship in the vacuum case have implications for the Einstein-Maxwell case. Working out the geometrical meaning of these analytical results leads to the main conclusion.

  16. Predator persistence through variability of resource productivity in Tritrophic systems

    DEFF Research Database (Denmark)

    Soudijn, Floor Helena; de Roos, Andre M.

    2017-01-01

    The trophic structure of species communities depends on the energy transfer between trophic levels. Primary productivity varies strongly through time, challenging the persistence of species at higher trophic levels. Yet resource variability has mostly been studied in systems with only one or two ...

  17. Tsunami inundation variability from stochastic rupture scenarios: Application to multiple inversions of the 2011 Tohoku, Japan earthquake

    KAUST Repository

    Mori, Nobuhito; Mai, Paul Martin; Goda, Katsuichiro; Yasuda, Tomohiro

    2017-01-01

    earthquake in the Tohoku region to conduct thorough sensitivity analyses and to quantify the inundation variability. The numerical results indicate a strong influence of the reference source models on inundation variability, and demonstrate significant

  18. A comprehensive sensitivity analysis of microarray breast cancer classification under feature variability

    Directory of Open Access Journals (Sweden)

    Reinders Marcel JT

    2009-11-01

    Full Text Available Abstract Background Large discrepancies in signature composition and outcome concordance have been observed between different microarray breast cancer expression profiling studies. This is often ascribed to differences in array platform as well as biological variability. We conjecture that other reasons for the observed discrepancies are the measurement error associated with each feature and the choice of preprocessing method. Microarray data are known to be subject to technical variation and the confidence intervals around individual point estimates of expression levels can be wide. Furthermore, the estimated expression values also vary depending on the selected preprocessing scheme. In microarray breast cancer classification studies, however, these two forms of feature variability are almost always ignored and hence their exact role is unclear. Results We have performed a comprehensive sensitivity analysis of microarray breast cancer classification under the two types of feature variability mentioned above. We used data from six state of the art preprocessing methods, using a compendium consisting of eight diferent datasets, involving 1131 hybridizations, containing data from both one and two-color array technology. For a wide range of classifiers, we performed a joint study on performance, concordance and stability. In the stability analysis we explicitly tested classifiers for their noise tolerance by using perturbed expression profiles that are based on uncertainty information directly related to the preprocessing methods. Our results indicate that signature composition is strongly influenced by feature variability, even if the array platform and the stratification of patient samples are identical. In addition, we show that there is often a high level of discordance between individual class assignments for signatures constructed on data coming from different preprocessing schemes, even if the actual signature composition is identical

  19. Strong intrinsic motivation

    OpenAIRE

    Dessi, Roberta; Rustichini, Aldo

    2015-01-01

    A large literature in psychology, and more recently in economics, has argued that monetary rewards can reduce intrinsic motivation. We investigate whether the negative impact persists when intrinsic motivation is strong, and test this hypothesis experimentally focusing on the motivation to undertake interesting and challenging tasks, informative about individual ability. We find that this type of task can generate strong intrinsic motivation, that is impervious to the effect of monetary incen...

  20. Increased rainfall variability and N addition accelerate litter decomposition in a restored prairie.

    Science.gov (United States)

    Schuster, Michael J

    2016-03-01

    Anthropogenic nitrogen deposition and projected increases in rainfall variability (the frequency of drought and heavy rainfall events) are expected to strongly influence ecosystem processes such as litter decomposition. However, how these two global change factors interact to influence litter decomposition is largely unknown. I examined how increased rainfall variability and nitrogen addition affected mass and nitrogen loss of litter from two tallgrass prairie species, Schizachyrium scoparium and Solidago canadensis, and isolated the effects of each during plant growth and during litter decomposition. I increased rainfall variability by consolidating ambient rainfall into larger events and simulated chronic nitrogen deposition using a slow-release urea fertilizer. S. scoparium litter decay was more strongly regulated by the treatments applied during plant growth than by those applied during decomposition. During plant growth, increased rainfall variability resulted in S. scoparium litter that subsequently decomposed more slowly and immobilized more nitrogen than litter grown under ambient conditions, whereas nitrogen addition during plant growth accelerated subsequent mass loss of S. scoparium litter. In contrast, S. canadensis litter mass and N losses were enhanced under either N addition or increased rainfall variability both during plant growth and during decomposition. These results suggest that ongoing changes in rainfall variability and nitrogen availability are accelerating nutrient cycling in tallgrass prairies through their combined effects on litter quality, environmental conditions, and plant community composition.

  1. Predator persistence through variability of resource productivity in Tritrophic systems

    DEFF Research Database (Denmark)

    Soudijn, Floor Helena; de Roos, Andre M.

    2017-01-01

    The trophic structure of species communities depends on the energy transfer between trophic levels. Primary productivity varies strongly through time, challenging the persistence of species at higher trophic levels. Yet resource variability has mostly been studied in systems with only one or two...... trophic levels. We test the effect of variability in resource productivity in a tritrophic model system including a resource, a size-structured consumer, and a size-specific predator. The model complies with fundamental principles of mass conservation and the body-size dependence of individual......-level energetics and predator-prey interactions. Surprisingly, we find that resource variability may promote predator persistence. The positive effect of variability on the predator arises through periods with starvation mortality of juvenile prey, which reduces the intraspecific competition in the prey population...

  2. Indian monsoon variability on millennial-orbital timescales.

    Science.gov (United States)

    Kathayat, Gayatri; Cheng, Hai; Sinha, Ashish; Spötl, Christoph; Edwards, R Lawrence; Zhang, Haiwei; Li, Xianglei; Yi, Liang; Ning, Youfeng; Cai, Yanjun; Lui, Weiguo Lui; Breitenbach, Sebastian F M

    2016-04-13

    The Indian summer monsoon (ISM) monsoon is critical to billions of people living in the region. Yet, significant debates remain on primary ISM drivers on millennial-orbital timescales. Here, we use speleothem oxygen isotope (δ(18)O) data from Bittoo cave, Northern India to reconstruct ISM variability over the past 280,000 years. We find strong coherence between North Indian and Chinese speleothem δ(18)O records from the East Asian monsoon domain, suggesting that both Asian monsoon subsystems exhibit a coupled response to changes in Northern Hemisphere summer insolation (NHSI) without significant temporal lags, supporting the view that the tropical-subtropical monsoon variability is driven directly by precession-induced changes in NHSI. Comparisons of the North Indian record with both Antarctic ice core and sea-surface temperature records from the southern Indian Ocean over the last glacial period do not suggest a dominant role of Southern Hemisphere climate processes in regulating the ISM variability on millennial-orbital timescales.

  3. Evaluating the underlying factors behind variable rate debt.

    Science.gov (United States)

    McCue, Michael J; Kim, Tae Hyun Tanny

    2007-01-01

    Recent trends show a greater usage of variable rate debt among health care bond issues. In 2004, 63.4% of the total health care bonds issued were variable rate compared with 30.6% in 1995 (Fitch Ratings, 2005). The purpose of this study is to gain a better understanding of the underlying factors, credit spread, issue characteristics, and issuer factors behind why hospitals and health system borrowers select variable rate debt compared with fixed rate debt. From 2000 to 2004, this study sampled 230 newly issued tax-exempt bonds issued by acute care hospitals and health care systems that included both variable and fixed rate debt issues. Using a logistic regression model, hospitals with variable rate debt issues were assigned a value of 1, whereas hospitals with fixed rate debt issues were assigned a value of 0. This study found a positive association between bond insurance and variable rate debt and a negative association between callable feature and variable rate debt. Facilities located in certificate-of-need states that possessed higher case mix acuity, earned higher profit margins, generated higher debt service coverage, and held less debt were more likely to issue variable rate debt. Overall, hospital managers and board members of hospitals possessing a strong financial performance have an interest in utilizing variable rate debt to lower their cost of capital. In addition, this outcome may also reflect that investment bankers are doing a better job in educating senior hospital management about the interest rate savings benefit of variable rate compared with fixed rate debt.

  4. Step-by-step variability of swing phase trajectory area during steady state walking at a range of speeds

    Science.gov (United States)

    Hurt, Christopher P.; Brown, David A.

    2018-01-01

    Background Step kinematic variability has been characterized during gait using spatial and temporal kinematic characteristics. However, people can adopt different trajectory paths both between individuals and even within individuals at different speeds. Single point measures such as minimum toe clearance (MTC) and step length (SL) do not necessarily account for the multiple paths that the foot may take during the swing phase to reach the same foot fall endpoint. The purpose of this study was to test a step-by-step foot trajectory area (SBS-FTA) variability measure that is able to characterize sagittal plane foot trajectories of varying areas, and compare this measure against MTC and SL variability at different speeds. We hypothesize that the SBS-FTA variability would demonstrate increased variability with speed. Second, we hypothesize that SBS-FTA would have a stronger curvilinear fit compared with the CV and SD of SL and MTC. Third, we hypothesize SBS-FTA would be more responsive to change in the foot trajectory at a given speed compared to SL and MTC. Fourth, SBS-FTA variability would not strongly co-vary with SL and MTC variability measures since it represents a different construct related to foot trajectory area variability. Methods We studied 15 nonimpaired individuals during walking at progressively faster speeds. We calculated SL, MTC, and SBS-FTA area. Results SBS-FTA variability increased with speed, had a stronger curvilinear fit compared with the CV and SD of SL and MTC, was more responsive at a given speed, and did not strongly co-vary with SL and MTC variability measures. Conclusion SBS foot trajectory area variability was sensitive to change with faster speeds, captured a relationship that the majority of the other measures did not demonstrate, and did not co-vary strongly with other measures that are also components of the trajectory. PMID:29370202

  5. Phylogenetic assemblage structure of North American trees is more strongly shaped by glacial–interglacial climate variability in gymnosperms than in angiosperms

    DEFF Research Database (Denmark)

    Ma, Ziyu; Sandel, Brody Steven; Svenning, Jens-Christian

    2016-01-01

    and tropical niche conservatism. However, the role of glacial-interglacial climate variability remains to be determined, and little is known about any of these relationships for gymnosperms. Moreover, phylogenetic edemism, patterns of unique lineages in restricted ranges is also related to glacial...... to recolonization to quantify glacial-interglacial climate variability. We found: i) Current climate is the dominant factor explaining the overall patterns, with more clustered angiosperm assemblages towards lower temperature, consistent with tropical niche conservatism. ii) Long-term climate stability...

  6. Recent SPIRITS discoveries of Infrared Transients and Variables with Spitzer/IRAC

    Science.gov (United States)

    Jencson, J. E.; Kasliwal, M. M.; Adams, S.; Cook, D.; Tinyanont, S.; Kwan, S.; Prince, T.; Lau, R. M.; Perley, D.; Masci, F.; Helou, G.; Armus, L.; Surace, J.; Dyk, S. D. Van; Cody, A.; Boyer, M. L.; Bond, H. E.; Monson, A.; Bally, J.; Khan, R.; Levesque, E.; Fox, O.; Williams, R.; Whitelock, P. A.; Mohamed, S.; Gehrz, R. D.; Amodeo, S.; Shenoy, D.; Carlon, R.; Cass, A.; Corgan, D.; Dykhoff, D.; Faella, J.; Gburek, T.; Smith, N.; Cantiello, M.; Langer, N.; Ofek, E.; Johansson, J.; Parthasarathy, M.; Hsiao, E.; Phillips, M.; Morrell, N.; Gonzalez, C.; Contreras, C.

    2018-04-01

    We report the discoveries of mid-infrared transients/strong variables found in the course of the Spitzer InfraRed Intensive Transients Survey (SPIRITS) using Spitzer Early Release Data (ATel #6644, #7929, #8688, #8940, #9434, #10171, #10172, #10488, #10903).

  7. Testing strong interaction theories

    International Nuclear Information System (INIS)

    Ellis, J.

    1979-01-01

    The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)

  8. Monsoon-driven variability in the southern Red Sea and the exchange with the Indian Ocean

    Science.gov (United States)

    Sofianos, S. S.; Papadopoulos, V. P.; Abualnaja, Y.; Nenes, A.; Hoteit, I.

    2016-02-01

    Although progress has been achieved in describing and understanding the mean state and seasonal cycle of the Red Sea dynamics, their interannual variability is not yet well evaluated and explained. The thermohaline characteristics and the circulation patterns present strong variability at various time scales and are affected by the strong and variable atmospheric forcing and the exchange with the Indian Ocean and the gulfs located at the northern end of the basin. Sea surface temperature time-series, derived from satellite observations, show considerable trends and interannual variations. The spatial variability pattern is very diverse, especially in the north-south direction. The southern part of the Red Sea is significantly influenced by the Indian Monsoon variability that affects the sea surface temperature through the surface fluxes and the circulation patterns. This variability has also a strong impact on the lateral fluxes and the exchange with the Indian Ocean through the strait of Bab el Mandeb. During summer, there is a reversal of the surface flow and an intermediate intrusion of a relatively cold and fresh water mass. This water originates from the Gulf of Aden (the Gulf of Aden Intermediate Water - GAIW), is identified in the southern part of the basin and spreads northward along the eastern Red Sea boundary to approximately 24°N and carried across the Red Sea by basin-size eddies. The GAIW intrusion plays an important role in the heat and freshwater budget of the southern Red Sea, especially in summer, impacting the thermohaline characteristics of the region. It is a permanent feature of the summer exchange flow but it exhibits significant variation from year to year. The intrusion is controlled by a monsoon-driven pressure gradient in the two ends of the strait and thus monsoon interannual variability can laterally impose its signal to the southern Red Sea thermohaline patterns.

  9. Operating wind turbines in strong wind conditions by using feedforward-feedback control

    International Nuclear Information System (INIS)

    Feng, Ju; Sheng, Wen Zhong

    2014-01-01

    Due to the increasing penetration of wind energy into power systems, it becomes critical to reduce the impact of wind energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run wind turbines in strong wind conditions based on optimization method and standard PI feedback control, which can prevent the typical shutdowns of wind turbines when reaching the cut-out wind speed. In this paper, a new control strategy combing the standard PI feedback control with feedforward controls using the optimization results is investigated for the operation of variable-speed pitch-regulated wind turbines in strong wind conditions. It is shown that the developed control strategy is capable of smoothening the power output of wind turbine and avoiding its sudden showdown at high wind speeds without worsening the loads on rotor and blades

  10. A Simultaneous Measurement of the QCD Colour Factors and the Strong Coupling

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Ball, H.; Barberio, E.; Barlow, Roger J.; Batley, R.J.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bohme, J.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Cammin, J.; Capiluppi, P.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Couchman, J.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; De Roeck, A.; De Wolf, E.A.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fanti, M.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Glenzinski, D.; Goldberg, J.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Ishii, K.; Jawahery, A.; Jeremie, H.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Komamiya, S.; Kowalewski, Robert V.; Kamer, T.; Kress, T.; Krieger, P.; von Krogh, J.; Krop, D.; Kuhl, T.; Kupper, M.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lawson, I.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; Lillich, J.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Macchiolo, A.; Macpherson, A.; Mader, W.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Spano, F.; Sproston, M.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Stumpf, L.; Surrow, B.; Talbot, S.D.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomas, J.; Thomson, M.A.; Torrence, E.; Towers, S.; Toya, D.; Trefzger, T.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Vachon, B.; Vollmer, C.F.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Zacek, V.; Zer-Zion, D.

    2001-01-01

    Using data from e+e- annihilation into hadrons, taken with the OPAL detector at LEP at the Z pole between 1991 and 1995, we performed a simultaneous measurement of the colour factors of the underlying gauge group of the strong interaction, CF and CA, and the strong coupling, alpha(s). The measurement was carried out by fitting next-to-leading order perturbative predictions to measured angular correlations of 4-jet events together with multi-jet related variables. Our results, CA = 3.02 +/- 0.25 (stat.) +/- 0.49 (syst.) CF = 1.34 +/- 0.13 (stat.) +/- 0.22 (syst.), alpha(s)(M_Z) = 0.120 +/- 0.011 (stat.) +/- 0.020 (syst.), provide a test of perturbative QCD in which the only assumptions are non-abelian gauge symmetry and standard hadronization models. The measurements are in agreement with SU(3) expectations for CF and CA and the world average of alpha(s)(M_Z).

  11. Noise Radiation Of A Strongly Pulsating Tailpipe Exhaust

    Science.gov (United States)

    Peizi, Li; Genhua, Dai; Zhichi, Zhu

    1993-11-01

    The method of characteristics is used to solve the problem of the propagation of a strongly pulsating flow in an exhaust system tailpipe. For a strongly pulsating exhaust, the flow may shock at the pipe's open end at some point in a pulsating where the flow pressure exceeds its critical value. The method fails if one insists on setting the flow pressure equal to the atmospheric pressure as the pipe end boundary condition. To solve the problem, we set the Mach number equal to 1 as the boundary condition when the flow pressure exceeds its critical value. For a strongly pulsating flow, the fluctuations of flow variables may be much higher than their respective time averages. Therefore, the acoustic radiation method would fail in the computation of the noise radiation from the pipe's open end. We simulate the exhaust flow out of the open end as a simple sound source to compute the noise radiation, which has been successfully applied in reference [1]. The simple sound source strength is proportional to the volume acceleration of exhaust gas. Also computed is the noise radiation from the turbulence of the exhaust flow, as was done in reference [1]. Noise from a reciprocating valve simulator has been treated in detail. The radiation efficiency is very low for the pressure range considered and is about 10 -5. The radiation efficiency coefficient increases with the square of the frequency. Computation of the pipe length dependence of the noise radiation and mass flux allows us to design a suitable length for an aerodynamic noise generator or a reciprocating internal combustion engine. For the former, powerful noise radiation is preferable. For the latter, maximum mass flux is desired because a freer exhaust is preferable.

  12. 318-MHz variability of complete samples of extragalactic radio sources. II

    International Nuclear Information System (INIS)

    Dennison, B.; Broderick, J.J.; Ledden, J.E.; O'Dell, S.L.; Condon, J.J.

    1981-01-01

    We report the remainder of two- and three-epoch 318-MHz observations of extragalactic sources in samples complete to 3 Jy at 1400 MHz and 1 Jy at 5000 MHz. From analysis of this low-frequency variability survey, we find that steep-spectrum (α> or =0.5) sources do not appear to vary, but about 40% of all flat-spectrum (α<0.5) sources exhibit low-frequency variability exceeding 8% over approx.5 yr. Among the flat-spectrum sources, those with inverted spectra show the largest fractional variations. We also find that the incidence of low-frequency variability is strongly correlated with the determination that a source is an optically violent variable. These statistical properties are consistent with models invoking relativistic beaming of radio and optical emission

  13. Spatiotemporal variability in carbon exchange fluxes across the Sahel

    DEFF Research Database (Denmark)

    Tagesson, Håkan Torbern; Fensholt, Rasmus; Cappelaere, Bernard

    2016-01-01

    for semi-arid ecosystems. We have synthesized data on the land-atmosphere exchange of CO2 measured with the eddy covariance technique from the six existing sites across the Sahel, one of the largest semi-arid regions in the world. The overall aim of the study is to analyse and quantify the spatiotemporal...... variability in these fluxes and to analyse to which degree spatiotemporal variation can be explained by hydrological, climatic, edaphic and vegetation variables. All ecosystems were C sinks (average ± total error -162 ± 48 g C m-2 y-1), but were smaller when strongly impacted by anthropogenic influences...

  14. X-RAY SPECTRAL VARIABILITY IN NGC 3783

    International Nuclear Information System (INIS)

    Reis, R. C.; Miller, J. M.; Fabian, A. C.; Walton, D. J.; Reynolds, C. S.; Trippe, M.; Mushotzky, R. F.; Brenneman, L. W.; Nowak, M. A.

    2012-01-01

    NGC 3783 was observed for approximately 210 ks by Suzaku and in this time showed significant spectral and flux variability at both short (20 ks) and long (100 ks) timescales. The full observation is found to consist of approximately six 'spectral periods' where the behavior of the soft (0.3-1.0 keV) and hard (2-10 keV) bands are somewhat distinct. Using a variety of methods we find that the strong warm absorber present in this source does not change on these timescales, confirming that the broadband variability is intrinsic to the central source. The time-resolved difference-spectra are well modeled with an absorbed power law below 10 keV, but show an additional hard excess at ≈20 keV in the latter stages of the observation. This suggests that, in addition to the variable power law, there is a further variable component that varies with time but not monotonically with flux. We show that a likely interpretation is that this further component is associated with variations in the reflection fraction or possibly ionization state of the accretion disk a few gravitational radii from the black hole.

  15. Effects of climate variability on global scale flood risk

    Science.gov (United States)

    Ward, P.; Dettinger, M. D.; Kummu, M.; Jongman, B.; Sperna Weiland, F.; Winsemius, H.

    2013-12-01

    In this contribution we demonstrate the influence of climate variability on flood risk. Globally, flooding is one of the worst natural hazards in terms of economic damages; Munich Re estimates global losses in the last decade to be in excess of $240 billion. As a result, scientifically sound estimates of flood risk at the largest scales are increasingly needed by industry (including multinational companies and the insurance industry) and policy communities. Several assessments of global scale flood risk under current and conditions have recently become available, and this year has seen the first studies assessing how flood risk may change in the future due to global change. However, the influence of climate variability on flood risk has as yet hardly been studied, despite the fact that: (a) in other fields (drought, hurricane damage, food production) this variability is as important for policy and practice as long term change; and (b) climate variability has a strong influence in peak riverflows around the world. To address this issue, this contribution illustrates the influence of ENSO-driven climate variability on flood risk, at both the globally aggregated scale and the scale of countries and large river basins. Although it exerts significant and widespread influences on flood peak discharges in many parts of the world, we show that ENSO does not have a statistically significant influence on flood risk once aggregated to global totals. At the scale of individual countries, though, strong relationships exist over large parts of the Earth's surface. For example, we find particularly strong anomalies of flood risk in El Niño or La Niña years (compared to all years) in southern Africa, parts of western Africa, Australia, parts of Central Eurasia (especially for El Niño), the western USA (especially for La Niña), and parts of South America. These findings have large implications for both decadal climate-risk projections and long-term future climate change

  16. A new approach to tracer transport analysis: From fracture systems to strongly heterogeneous porous media

    International Nuclear Information System (INIS)

    Tsang, Chin-Fu.

    1989-02-01

    Many current development and utilization of groundwater resources include a study of their flow and transport properties. These properties are needed in evaluating possible changes in groundwater quality and potential transport of hazardous solutes through the groundwater system. Investigation of transport properties of fractured rocks is an active area of research. Most of the current approaches to the study of flow and transport in fractured rocks cannot be easily used for analysis of tracer transport field data. A new approach is proposed based on a detailed study of transport through a fracture of variable aperture. This is a two-dimensional strongly heterogeneous permeable system. It is suggested that tracer breakthrough curves can be analyzed based on an aperture or permeability probability distribution function that characterizes the tracer flow through the fracture. The results are extended to a multi-fracture system and can be equally applied to a strongly heterogeneous porous medium. Finally, the need for multi-point or line and areal tracer injection and observation tests is indicated as a way to avoid the sensitive dependence of point measurements on local permeability variability. 30 refs., 15 figs

  17. Regional impacts of ocean color on tropical Pacific variability

    Science.gov (United States)

    Anderson, W.; Gnanadesikan, A.; Wittenberg, A.

    2009-08-01

    The role of the penetration length scale of shortwave radiation into the surface ocean and its impact on tropical Pacific variability is investigated with a fully coupled ocean, atmosphere, land and ice model. Previous work has shown that removal of all ocean color results in a system that tends strongly towards an El Niño state. Results from a suite of surface chlorophyll perturbation experiments show that the mean state and variability of the tropical Pacific is highly sensitive to the concentration and distribution of ocean chlorophyll. Setting the near-oligotrophic regions to contain optically pure water warms the mean state and suppresses variability in the western tropical Pacific. Doing the same above the shadow zones of the tropical Pacific also warms the mean state but enhances the variability. It is shown that increasing penetration can both deepen the pycnocline (which tends to damp El Niño) while shifting the mean circulation so that the wind response to temperature changes is altered. Depending on what region is involved this change in the wind stress can either strengthen or weaken ENSO variability.

  18. Impulse-variability theory: implications for ballistic, multijoint motor skill performance.

    Science.gov (United States)

    Urbin, M A; Stodden, David F; Fischman, Mark G; Weimar, Wendi H

    2011-01-01

    Impulse-variability theory (R. A. Schmidt, H. N. Zelaznik, B. Hawkins, J. S. Frank, & J. T. Quinn, 1979) accounts for the curvilinear relationship between the magnitude and resulting variability of the muscular forces that influence the success of goal-directed limb movements. The historical roots of impulse-variability theory are reviewed in the 1st part of this article, including the relationship between movement speed and spatial error. The authors then address the relevance of impulse-variability theory for the control of ballistic, multijoint skills, such as throwing, striking, and kicking. These types of skills provide a stark contrast to the relatively simple, minimal degrees of freedom movements that characterized early research. However, the inherent demand for ballistic force generation is a strong parallel between these simple laboratory tasks and multijoint motor skills. Therefore, the authors conclude by recommending experimental procedures for evaluating the adequacy of impulse variability as a theoretical model within the context of ballistic, multijoint motor skill performance. Copyright © Taylor & Francis Group, LLC

  19. Twelve-Month Prostate-Specific Antigen Values and Perineural Invasion as Strong Independent Prognostic Variables of Long-Term Biochemical Outcome After Prostate Seed Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, William, E-mail: billyding888@gmail.com [Department of Radiation Oncology, California Pacific Medical Center, San Francisco, California (United States); Lee, John [Department of Radiation Oncology, California Pacific Medical Center, San Francisco, California (United States); Chamberlain, David [Department of Radiation Oncology, St. Mary' s Regional Medical Center, Reno, Nevada (United States); Cunningham, James [Carson Urology, Carson City, Nevada (United States); Yang Lixi [Department of Radiation Oncology, California Pacific Medical Center, San Francisco, California (United States); Tay, Jonathan [Department of Radiation Oncology, St. Mary' s Regional Medical Center, Reno, Nevada (United States)

    2012-11-15

    Purpose: To determine whether post-treatment prostate-specific antigen (ptPSA) values at 12 months and other clinical parameters predict long-term PSA relapse-free survival (PRFS) following prostate seed brachytherapy. Methods and Materials: Records of 204 hormone-naieve patients with localized adenocarcinoma of the prostate treated at St. Mary's Regional Medical Center in Reno, NV, and at Carson Tahoe Regional Medical Center in Carson City, NV, between 1998 and 2003, using I-125 or Pd-103 seed brachytherapy, were retrospectively analyzed. Treatment planning was done using a preplanned, modified peripheral loading technique. A total of 185 of 204 patients had PSA records at 12 months after implant. Variables included were age, initial pretreatment PSA, Gleason score, T stage, National Comprehensive Cancer Network (NCCN) risk group (RG), perineural invasion (PNI), external beam boost, dose, and ptPSA levels at 12 months with cutpoints at {<=}1, 1.01 to 2.00, 2.01 to 3.00, and >3.00 ng/ml. Results: Median follow-up was 80 months, and median age was 69 years. The numbers of patients stratified by NCCN low, intermediate, and high RG were 110:65:10, respectively. Monotherapy and boost prescription doses were 145 Gy and 110 Gy for I-125, and 125 Gy and 100 Gy for Pd-103 seeds, respectively. The median dose (D90) was 95.4% of the prescribed dose. The 5-year PRFS at the 12-months ptPSA levels of {<=}1, 1.01 to 2.00, 2.01 to 3.00, and >3.00 ng/ml were 98.5%, 85.7%, 61.5%, and 22.2%, respectively. The 10-year PRFS at the 12-months ptPSA levels of {<=}1 and 1.01 to 2.00 ng/ml were 90.5% and 85.7%, respectively. In multivariate analysis, both ptPSA and PNI were significant independent predictors of PRFS. Hazard ratios (HR) for ptPSA levels at {<=}1, 1.01 to 2.00, 2.01 to 3.00, and >3.00 ng/ml at 12 months were 1, 4.96, 27.57, and 65.10, respectively. PNI had an HR of 6.1 (p = 0.009). Conclusions: Presence of PNI and ptPSA values at 12 months are strong prognostic

  20. Twelve-Month Prostate-Specific Antigen Values and Perineural Invasion as Strong Independent Prognostic Variables of Long-Term Biochemical Outcome After Prostate Seed Brachytherapy

    International Nuclear Information System (INIS)

    Ding, William; Lee, John; Chamberlain, David; Cunningham, James; Yang Lixi; Tay, Jonathan

    2012-01-01

    Purpose: To determine whether post-treatment prostate-specific antigen (ptPSA) values at 12 months and other clinical parameters predict long-term PSA relapse-free survival (PRFS) following prostate seed brachytherapy. Methods and Materials: Records of 204 hormone-naïve patients with localized adenocarcinoma of the prostate treated at St. Mary’s Regional Medical Center in Reno, NV, and at Carson Tahoe Regional Medical Center in Carson City, NV, between 1998 and 2003, using I-125 or Pd-103 seed brachytherapy, were retrospectively analyzed. Treatment planning was done using a preplanned, modified peripheral loading technique. A total of 185 of 204 patients had PSA records at 12 months after implant. Variables included were age, initial pretreatment PSA, Gleason score, T stage, National Comprehensive Cancer Network (NCCN) risk group (RG), perineural invasion (PNI), external beam boost, dose, and ptPSA levels at 12 months with cutpoints at ≤1, 1.01 to 2.00, 2.01 to 3.00, and >3.00 ng/ml. Results: Median follow-up was 80 months, and median age was 69 years. The numbers of patients stratified by NCCN low, intermediate, and high RG were 110:65:10, respectively. Monotherapy and boost prescription doses were 145 Gy and 110 Gy for I-125, and 125 Gy and 100 Gy for Pd-103 seeds, respectively. The median dose (D90) was 95.4% of the prescribed dose. The 5-year PRFS at the 12-months ptPSA levels of ≤1, 1.01 to 2.00, 2.01 to 3.00, and >3.00 ng/ml were 98.5%, 85.7%, 61.5%, and 22.2%, respectively. The 10-year PRFS at the 12-months ptPSA levels of ≤1 and 1.01 to 2.00 ng/ml were 90.5% and 85.7%, respectively. In multivariate analysis, both ptPSA and PNI were significant independent predictors of PRFS. Hazard ratios (HR) for ptPSA levels at ≤1, 1.01 to 2.00, 2.01 to 3.00, and >3.00 ng/ml at 12 months were 1, 4.96, 27.57, and 65.10, respectively. PNI had an HR of 6.1 (p = 0.009). Conclusions: Presence of PNI and ptPSA values at 12 months are strong prognostic variables for

  1. Continuous variable quantum key distribution with modulated entangled states

    DEFF Research Database (Denmark)

    Madsen, Lars S; Usenko, Vladyslav C.; Lassen, Mikael

    2012-01-01

    Quantum key distribution enables two remote parties to grow a shared key, which they can use for unconditionally secure communication over a certain distance. The maximal distance depends on the loss and the excess noise of the connecting quantum channel. Several quantum key distribution schemes...... based on coherent states and continuous variable measurements are resilient to high loss in the channel, but are strongly affected by small amounts of channel excess noise. Here we propose and experimentally address a continuous variable quantum key distribution protocol that uses modulated fragile...... entangled states of light to greatly enhance the robustness to channel noise. We experimentally demonstrate that the resulting quantum key distribution protocol can tolerate more noise than the benchmark set by the ideal continuous variable coherent state protocol. Our scheme represents a very promising...

  2. Biological and climate controls on North Atlantic marine carbon dynamics over the last millennium: Insights from an absolutely-dated shell based record from the North Icelandic Shelf

    Science.gov (United States)

    Hall, I. R.; Reynolds, D.; Scourse, J. D.; Richardson, C.; Wanamaker, A. D.; Butler, P. G.

    2017-12-01

    Given the rapid increase in atmospheric carbon dioxide concentrations (pCO2) over the industrial era there is a pressing need to construct longterm records of natural carbon cycling prior to this perturbation and to develop a more robust understanding of the role the oceans play in the sequestration of atmospheric carbon. Here we reconstruct the historical biological and climatic controls on the carbon isotopic (δ13C-shell) composition of the North Icelandic shelf waters over the last millennium derived from the shells of the long-lived marine bivalve mollusc Arctica islandica. Variability in the annually resolved δ13C-shell record is dominated by multi-decadal variability with a negative trend (-0.003±0.002‰yr-1) over the industrial era (1800-2000). This trend is consistent with the marine Suess effect brought about by the sequestration of isotopically light carbon (δ13C of CO2) derived from the burning of fossil fuels. Comparison of the δ13C-shell record with contemporary proxy archives, over the last millennium, and instrumental data over the 20th century, suggests that primary productivity and climate conditions over the sub-polar North Atlantic region played a vital role in driving inter-annual to multi-decadal scale variability in the δ13C-shell record. Our results highlight that relative shifts in the proportion of sub-polar mode waters and Arctic intermediate waters entrained onto the North Icelandic shelf, coupled with atmospheric circulation patterns associated with the winter North Atlantic Oscillation (wNAO), are the likely physical mechanisms that drive natural variations in seawater δ13C variability on the North Icelandic shelf.

  3. Variables influencing medical student learning in the operating room.

    Science.gov (United States)

    Schwind, Cathy J; Boehler, Margaret L; Rogers, David A; Williams, Reed G; Dunnington, Gary; Folse, Roland; Markwell, Stephen J

    2004-02-01

    The operating room (OR) is an important venue where surgeons do much of medical student teaching and yet there has been little work evaluating variables that influence learning in this unique environment. We designed this study to identify variables that affected medical student learning in the OR. We developed a questionnaire based on surgery faculty observations of learning in the OR. The medical students completed the questionnaire on 114 learning episodes in the OR. Pearson correlation coefficient was used to establish the strength of association between various variables and the student's overall perception of learning. The students evaluated 27 variables that might impact their learning in the OR. Strong correlations were identified between the attending physician's attitude, interactions and teaching ability in the OR and the environment being conducive to learning. Surgical faculty behavior is a powerful determinant of student perceptions of what provides for a favorable learning environment in the OR.

  4. Coherent tropical Indo-Pacific interannual climate variability

    OpenAIRE

    Wieners, C.E.; de Ruijter, W.P.M.; Ridderinkhof, W.; von der Heydt, A.S.; Dijkstra, H.A.

    2016-01-01

    A multichannel singular spectrum analysis (MSSA) applied simultaneously to tropical sea surface temperature (SST), zonal wind, and burstiness (zonal wind variability) reveals three significant oscillatory modes. They all show a strong ENSO signal in the eastern Pacific Ocean (PO) but also a substantial SST signal in the western Indian Ocean (IO). A correlation-based analysis shows that the western IO signal contains linearly independent information on ENSO. Of the three Indo-Pacific ENSO mode...

  5. Strong contribution of immigration to local population regulation: evidence from a migratory passerine.

    Science.gov (United States)

    Schaub, Michael; Jakober, Hans; Stauber, Wolfgang

    2013-08-01

    A mechanistic understanding of the dynamics of populations requires knowledge about the variation of the underlying demographic rates and about the reasons for their variability. In geographically open populations, immigration is often necessary to prevent declines, but little is known about whether immigration can contribute to its regulation. We studied the dynamics of a Red-backed Shrike population (Lanius collurio) over 36 years in Germany with a Bayesian integrated population model. We estimated mean and temporal variability of population sizes, productivity, apparent survival, and immigration. We assessed how strongly the demographic rates were correlated with population growth to understand the demographic reasons of population change and how strongly the demographic rates were correlated with population size to identify possible density-dependent mechanisms. The shrike population varied between 35 and 74 breeding pairs but did not show a significant trend in population size over time (growth rate 1.002 +/- 0.001 [mean +/- SD]). Apparent survival of females (juveniles 0.06 +/- 0.01; adults 0.37 +/- 0.03) was lower than that of males (juveniles 0.10 +/- 0.01; adults 0.44 +/- 0.02). Immigration rates were substantial and higher in females (0.56 +/- 0.02) than in males (0.43 +/- 0.02), and average productivity was 2.76 +/- 0.14. Without immigration, the Red-backed Shrike population would have declined strongly. Immigration was the strongest driver for the number of females while local recruitment was the most important driver for the number of males. Immigration of both sexes and productivity, but not local recruitment and survival, were subject to density dependence. Density-dependent productivity was not effectively regulating the local population but may have contributed to regulate shrike populations at larger spatial scales. These findings suggest that immigration is not only an important component to prevent a geographically open population from decline

  6. A Strong High Altitude Narrow Jet At Saturn'S Equator From Cassini/ISS Images

    Science.gov (United States)

    Garcia-Melendo, Enrique; Sánchez-Lavega, A.; Legarreta, J.; Pérez-Hoyos, S.; Hueso, R.

    2010-10-01

    The intense equatorial eastward jets observed at cloud level in Jupiter and Saturn, represent a major challenge for geophysical fluid dynamics. Saturn's equatorial jet is of particular interest in view of its three dimensional structure, suspected large temporal variability, and related stratospheric semiannual oscillation. Here we report the discovery at the upper cloud level of an extremely narrow and strong jet centered in the middle of the broad equatorial jet. Previously published works on Saturn's equatorial winds at cloud level provided only a partial coverage. Automatic correlation of brightness scans and manually tracked cloud features, retrieved from images obtained by the Cassini Imaging Science Subsystem (ISS), show that the jet reaches 430 ms-1 with a peak speed difference of 180 ms-1 relative to nearby latitudes at 60 mbar and 390 ms-1 at depths > 500 mbar. Images were obtained in two filters: MT3, centred at the 889nm strong methane absorption band, and CB3 centred at the near infrared 939nm continuum, which are sensitive to different altitude levels at the upper clouds and hazes. Contrarily to what is observed in other latitudes, its velocity increases with altitude. Our findings helps to extend the view we have of the equatorial stratospheric dynamics of fast rotating planets beyond the best known terrestrial environment, and extract more general consequences of the interaction between waves and mean flow. It remains to be known if this equatorial jet structure, now determined in detail in three dimensions, is permanent or variable with the seasonal solar insolation cycle, including the variable shadow cast by the rings. EGM, ASL, JL, SPH, and RH have been funded by the Spanish MICIIN AYA2009-10701 with FEDER support and ASL, JL, SPH, and RH by Grupos Gobierno Vasco IT-464-07

  7. Probability, random variables, and random processes theory and signal processing applications

    CERN Document Server

    Shynk, John J

    2012-01-01

    Probability, Random Variables, and Random Processes is a comprehensive textbook on probability theory for engineers that provides a more rigorous mathematical framework than is usually encountered in undergraduate courses. It is intended for first-year graduate students who have some familiarity with probability and random variables, though not necessarily of random processes and systems that operate on random signals. It is also appropriate for advanced undergraduate students who have a strong mathematical background. The book has the following features: Several app

  8. Abortion: Strong's counterexamples fail

    DEFF Research Database (Denmark)

    Di Nucci, Ezio

    2009-01-01

    This paper shows that the counterexamples proposed by Strong in 2008 in the Journal of Medical Ethics to Marquis's argument against abortion fail. Strong's basic idea is that there are cases--for example, terminally ill patients--where killing an adult human being is prima facie seriously morally...

  9. Strong influence of El Niño Southern Oscillation on flood risk around the world

    Science.gov (United States)

    Ward, Philip J.; Jongman, Brenden; Kummu, Matti; Dettinger, Michael D.; Sperna Weiland, Frederiek C.; Winsemius, Hessel C.

    2014-01-01

    El Niño Southern Oscillation (ENSO) is the most dominant interannual signal of climate variability and has a strong influence on climate over large parts of the world. In turn, it strongly influences many natural hazards (such as hurricanes and droughts) and their resulting socioeconomic impacts, including economic damage and loss of life. However, although ENSO is known to influence hydrology in many regions of the world, little is known about its influence on the socioeconomic impacts of floods (i.e., flood risk). To address this, we developed a modeling framework to assess ENSO’s influence on flood risk at the global scale, expressed in terms of affected population and gross domestic product and economic damages. We show that ENSO exerts strong and widespread influences on both flood hazard and risk. Reliable anomalies of flood risk exist during El Niño or La Niña years, or both, in basins spanning almost half (44%) of Earth’s land surface. Our results show that climate variability, especially from ENSO, should be incorporated into disaster-risk analyses and policies. Because ENSO has some predictive skill with lead times of several seasons, the findings suggest the possibility to develop probabilistic flood-risk projections, which could be used for improved disaster planning. The findings are also relevant in the context of climate change. If the frequency and/or magnitude of ENSO events were to change in the future, this finding could imply changes in flood-risk variations across almost half of the world’s terrestrial regions. PMID:25331867

  10. Strong influence of El Niño Southern Oscillation on flood risk around the world

    Science.gov (United States)

    Ward, Philip J.; Jongman, B; Kummu, M.; Dettinger, Mike; Sperna Weiland, F.C; Winsemius, H.C

    2014-01-01

    El Niño Southern Oscillation (ENSO) is the most dominant interannual signal of climate variability and has a strong influence on climate over large parts of the world. In turn, it strongly influences many natural hazards (such as hurricanes and droughts) and their resulting socioeconomic impacts, including economic damage and loss of life. However, although ENSO is known to influence hydrology in many regions of the world, little is known about its influence on the socioeconomic impacts of floods (i.e., flood risk). To address this, we developed a modeling framework to assess ENSO’s influence on flood risk at the global scale, expressed in terms of affected population and gross domestic product and economic damages. We show that ENSO exerts strong and widespread influences on both flood hazard and risk. Reliable anomalies of flood risk exist during El Niño or La Niña years, or both, in basins spanning almost half (44%) of Earth’s land surface. Our results show that climate variability, especially from ENSO, should be incorporated into disaster-risk analyses and policies. Because ENSO has some predictive skill with lead times of several seasons, the findings suggest the possibility to develop probabilistic flood-risk projections, which could be used for improved disaster planning. The findings are also relevant in the context of climate change. If the frequency and/or magnitude of ENSO events were to change in the future, this finding could imply changes in flood-risk variations across almost half of the world’s terrestrial regions.

  11. Historical droughts in northern Vietnam captured by variability in speleothem δ18O

    Science.gov (United States)

    Hardt, B. F.; McGee, D.; Burns, S. J.; Hieu, N.; Hieu, D. T.

    2015-12-01

    Speleothem records overlapping with the historical period offer valuable comparisons of documentary evidence with speleothem proxy data. These records provide opportunities to 'ground-truth' the paleo-record, fill in gaps in the historical record, and more confidently extent the paleo-record into deeper time. Here we present isotopic results from a stalagmite collected in northern Vietnam spanning 1200 to 1950 CE, a period with a rich historical record in Vietnam. This sample adds significantly to the relatively sparse paleoclimate record from Southeast Asia. The record includes several multi-decadal positive excursions of ≥1 per mille in calcite δ18O. A preliminary age model, based on six U/Th ages, suggests possible correspondence to noted droughts from the historical record, including the Angkor Droughts, the Ming Dynasty Drought, the Strange Parallels Drought, and the Victorian Holocaust Drought. As modeling studies indicate a strong correlation between rainfall δ18O and both the intensity of summer monsoon winds and summer rainfall over northern Vietnam (e.g., Liu et al., 2014), these excursions are consistent with a decrease in regional precipitation. The Vietnam record shows an overall negative trend during the Little Ice Age. The study site is located well south of the westerly wind belt, ruling out a shift between monsoonal and mid-latitude circulation systems as a likely explanation for the northern Vietnam record. We explore the correspondence between our record and other proxy data from Southeast Asia and suggest possible implications of the differences between Vietnamese and Chinese speleothem records during the Little Ice Age. References cited: Liu Z., Wen X., Brady E. C., Otto-Bliesner B., Yu G., Lu H., Cheng H., Wang Y., Zheng W., Ding Y., Edwards R. L., Cheng J., Liu W. and Yang H. (2014) Chinese cave records and the East Asia Summer Monsoon. Quaternary Science Reviews 83, 115-128.

  12. Small-scale variability in tropical tropopause layer humidity

    Science.gov (United States)

    Jensen, E. J.; Ueyama, R.; Pfister, L.; Karcher, B.; Podglajen, A.; Diskin, G. S.; DiGangi, J. P.; Thornberry, T. D.; Rollins, A. W.; Bui, T. V.; Woods, S.; Lawson, P.

    2016-12-01

    Recent advances in statistical parameterizations of cirrus cloud processes for use in global models are highlighting the need for information about small-scale fluctuations in upper tropospheric humidity and the physical processes that control the humidity variability. To address these issues, we have analyzed high-resolution airborne water vapor measurements obtained in the Airborne Tropical TRopopause EXperiment over the tropical Pacific between 14 and 20 km. Using accurate and precise 1-Hz water vapor measurements along approximately-level aircraft flight legs, we calculate structure functions spanning horizontal scales ranging from about 0.2 to 50 km, and we compare the water vapor variability in the lower (about 14 km) and upper (16-19 km) Tropical Tropopause Layer (TTL). We also compare the magnitudes and scales of variability inside TTL cirrus versus in clear-sky regions. The measurements show that in the upper TTL, water vapor concentration variance is stronger inside cirrus than in clear-sky regions. Using simulations of TTL cirrus formation, we show that small variability in clear-sky humidity is amplified by the strong sensitivity of ice nucleation rate to supersaturation, which results in highly-structured clouds that subsequently drive variability in the water vapor field. In the lower TTL, humidity variability is correlated with recent detrainment from deep convection. The structure functions indicate approximately power-law scaling with spectral slopes ranging from about -5/3 to -2.

  13. 77 FR 16131 - Establishing a White House Council on Strong Cities, Strong Communities

    Science.gov (United States)

    2012-03-20

    ... Order 13602 of March 15, 2012 Establishing a White House Council on Strong Cities, Strong Communities By... enable them to develop and implement economic strategies to become more competitive, sustainable, and... resources to develop and implement their economic vision and strategies. Sec. 2. White House Council on...

  14. Marine proxy evidence linking decadal North Pacific and Atlantic climate

    Energy Technology Data Exchange (ETDEWEB)

    Hetzinger, S. [University of Toronto Mississauga, CPS-Department, Mississauga, ON (Canada); Leibniz Institute of Marine Sciences, IFM-GEOMAR, Kiel (Germany); Halfar, J. [University of Toronto Mississauga, CPS-Department, Mississauga, ON (Canada); Mecking, J.V.; Keenlyside, N.S. [Leibniz Institute of Marine Sciences, IFM-GEOMAR, Kiel (Germany); University of Bergen, Geophysical Institute and Bjerknes Centre for Climate Research, Bergen (Norway); Kronz, A. [University of Goettingen, Geowissenschaftliches Zentrum, Goettingen (Germany); Steneck, R.S. [University of Maine, Darling Marine Center, Walpole, ME (United States); Adey, W.H. [Smithsonian Institution, Department of Botany, Washington, DC (United States); Lebednik, P.A. [ARCADIS U.S. Inc., Walnut Creek, CA (United States)

    2012-09-15

    Decadal- to multidecadal variability in the extra-tropical North Pacific is evident in 20th century instrumental records and has significant impacts on Northern Hemisphere climate and marine ecosystems. Several studies have discussed a potential linkage between North Pacific and Atlantic climate on various time scales. On decadal time scales no relationship could be confirmed, potentially due to sparse instrumental observations before 1950. Proxy data are limited and no multi-centennial high-resolution marine geochemical proxy records are available from the subarctic North Pacific. Here we present an annually-resolved record (1818-1967) of Mg/Ca variations from a North Pacific/Bering Sea coralline alga that extends our knowledge in this region beyond available data. It shows for the first time a statistically significant link between decadal fluctuations in sea-level pressure in the North Pacific and North Atlantic. The record is a lagged proxy for decadal-scale variations of the Aleutian Low. It is significantly related to regional sea surface temperature and the North Atlantic Oscillation (NAO) index in late boreal winter on these time scales. Our data show that on decadal time scales a weaker Aleutian Low precedes a negative NAO by several years. This atmospheric link can explain the coherence of decadal North Pacific and Atlantic Multidecadal Variability, as suggested by earlier studies using climate models and limited instrumental data. (orig.)

  15. Instabilities in strongly coupled plasmas

    CERN Document Server

    Kalman, G J

    2003-01-01

    The conventional Vlasov treatment of beam-plasma instabilities is inappropriate when the plasma is strongly coupled. In the strongly coupled liquid state, the strong correlations between the dust grains fundamentally affect the conditions for instability. In the crystalline state, the inherent anisotropy couples the longitudinal and transverse polarizations, and results in unstable excitations in both polarizations. We summarize analyses of resonant and non-resonant, as well as resistive instabilities. We consider both ion-dust streaming and dust beam-plasma instabilities. Strong coupling, in general, leads to an enhancement of the growth rates. In the crystalline phase, a resonant transverse instability can be excited.

  16. SPECTROSCOPIC VARIABILITY OF IRAS 22272+5435

    International Nuclear Information System (INIS)

    Začs, Laimons; Grankina, Aija; Musaev, Faig; Kaminsky, Bogdan; Pavlenko, Yakiv; Sperauskas, Julius; Hrivnak, Bruce J.

    2016-01-01

    A time series of high-resolution spectra was observed in the optical wavelength region for the bright proto-planetary nebula IRAS 22272+5435 (HD 235858), along with a simultaneous monitoring of its radial velocity and BV R C magnitudes. The object is known to vary in light, color, and velocity owing to pulsation with a period of 132 days. The light and color variations are accompanied by significant changes in spectral features, most of which are identified as lines of carbon-bearing molecules. According to the observations, the C 2 Swan system and CN Red system lines are stronger near the light minimum. A photospheric spectrum of the central star was calculated using new self-consistent atmospheric models. The observed intensity variations in the C 2 Swan system and CN Red system lines were found to be much larger than expected if due solely to the temperature variation in the atmosphere of the pulsating star. In addition, the molecular lines are blueshifted relative to the photospheric velocity. The site of formation of the strong molecular features appears to be a cool outflow triggered by the pulsation. The variability in atomic lines seems to be mostly due variations of the effective temperature during the pulsation cycle. The profiles of strong atomic lines are split, and some of them are variable in a timescale of a week or so, probably because of shock waves in the outer atmosphere

  17. Role of Strong versus Weak Networks in Small Business Growth in an Emerging Economy

    Directory of Open Access Journals (Sweden)

    M. Kamil Kozan

    2014-02-01

    Full Text Available The study tests whether strong rather than weak ties account for small business growth in Turkey. Data were collected by means of a questionnaire filled out by the owners of small firms operating in four cities. Growth is comprised of two main areas, production expansion and knowledge acquisition. Results show that strong ties are positively related to both types of growth. In contrast, loose ties have no effect on small business growth in either area. This finding is attributed to the influence of the collectivistic nature of the mainstream Turkish culture, where owners of small businesses are likely to rely on in-groups rather than out-groups for advice and for financial support. Implications of relative absence of weak ties for small business growth and innovation in emerging economies are discussed. The findings suggest that culture should be included as a contingency variable in future studies of network strength and growth relationship. The paper also discusses the possible moderating role of affective and cognition-based trust in the relation of strong and weak ties to small business growth.

  18. ULTRA-LOW AMPLITUDE VARIABLES IN THE LARGE MAGELLANIC CLOUD-CLASSICAL CEPHEIDS, POP. II CEPHEIDS, RV TAU STARS, AND BINARY VARIABLES

    International Nuclear Information System (INIS)

    Robert Buchler, J.; Wood, Peter R.; Soszynski, Igor

    2009-01-01

    A search for variable stars with ultra-low amplitudes (ULAs), in the millimagnitude range, has been made in the combined MACHO and OGLE databases in the broad vicinity of the Cepheid instability strip in the HR diagram. A total of 25 singly periodic and 4 multiply periodic ULA objects have been uncovered. Our analysis does not allow us to distinguish between pulsational and ellipsoidal (binary) variabilities, nor between Large Magellanic Cloud (LMC) and foreground objects. However, the objects are strongly clustered and appear to be associated with the pulsational instability strips of LMC Pop. I and II variables. When combined with the ULA variables of Buchler et al., a total of 20 objects fall close to the classical Cepheid instability strip. However, they appear to fall on parallel period-magnitude (PM) relations that are shifted to slightly higher magnitude which would confer them a different evolutionary status. Low-amplitude RV Tauri and Pop. II Cepheids have been uncovered that do not appear in the MACHO or OGLE catalogs. Interestingly, a set of binaries seem to lie on a PM relation that is essentially parallel to that of the RV Tauri/Pop. II Cepheids.

  19. Poppers, Kaposi's sarcoma, and HIV infection: empirical example of a strong confounding effect?

    Science.gov (United States)

    Morabia, A

    1995-01-01

    Are there empirical examples of strong confounding effects? Textbooks usually show examples of weak confounding or use hypothetical examples of strong confounding to illustrate the paradoxical consequences of not separating out the effect of the studied exposure from that of second factor acting as a confounder. HIV infection is a candidate strong confounder of the spuriously high association reported between consumption of poppers, a sexual stimulant, and risk of Kaposi's sarcoma in the early phase of the AIDS epidemic. To examine this hypothesis, assumptions must be made on the prevalence of HIV infection among cases of Kaposi's sarcoma and on the prevalence of heavy popper consumption according to HIV infection in cases and controls. Results show that HIV infection may have confounded the poppers-Kaposi's sarcoma association. However, it cannot be ruled out that HIV did not qualify as a confounder because it was either an intermediate variable or an effect modifier of the association between popper inhalation and Kaposi's sarcoma. This example provides a basis to discuss the mechanism by which confounding occurs as well as the practical importance of confounding in epidemiologic research.

  20. Mass transfer and the period gap of cataclysmic variables

    International Nuclear Information System (INIS)

    Verbunt, F.

    1984-01-01

    Three different explanations for the period gap of cataclysmic variables are investigated in some detail, and compared with the observations. The static picture is ruled out; strong continued magnetic braking is shown to be unlikely; disrupted magnetic braking is shown to provide a good explanation. A simple derivation is given for the magnetic braking of a star as a function of the magnetic-field strength and the wind mass flux. A field strength of >= 100 gauss and a wind of 10 -10 Msub(solar mass) yr -1 are needed for the secondary of a cataclysmic variable to explain the braking. These values are rather high, but perhaps not unfeasible. (author)

  1. Detecting influences on California drought intervals using isotopes in tree-ring cellulose

    Science.gov (United States)

    Kanner, L. C.; Buenning, N. H.; Stott, L. D.; Stahle, D. W.

    2012-12-01

    Multi-decadal drought events have characterized climate variability in California over the last century. However, the causes of interannual precipitation variability and the origins of multi-decadal drought in California remain unclear. We utilize the oxygen isotopic composition (δ18O) of tree-ring cellulose in combination with previously developed ring-width measurements to trace the delivery of moisture to the region and investigate ocean-atmosphere patterns that might generate prolonged drought. Of the 36 Quercus douglasii (blue oak) sites in the California central valley, we have focused our work at two locations - one north of Los Angeles (34.74°N, 120°W, 1036 masl) and the other east of San Francisco (37.88°N 121.97°W, 182 masl). Using cores from at least five different trees at each location, tree-ring cellulose δ18O was measured for each year of growth from 1954 to 2004. The δ18O values of tree-ring cellulose range from 29‰ to 34‰ (VSMOW) at both sites and exhibit shared interannual variance (r = 0.43, p shifts in the moisture source region are of primary importance because moisture from high latitude sources has a lower isotopic composition compared to subtropical regions. Using NCAR reanalysis data, wind field anomalies suggest that moisture is derived from the north during dry years (low δ18O) and from the subtropics during wet years (high δ18O). Additional processes such as condensation height and post-condensation effects may also be important in controlling isotopic variability.

  2. North American Megadroughts in the Common Era: Reconstructions and Simulations

    Science.gov (United States)

    Cook, Benjamin I.; Cook, Edward R.; Smerdon, Jason E.; Seager, Richard; Williams, A. Park; Coats, Sloan; Stahle, David W.; Villanueva Diaz, Jose

    2016-01-01

    During the Medieval Climate Anomaly (MCA), Western North America experienced episodes of intense aridity that persisted for multiple decades or longer. These megadroughts are well documented in many proxy records, but the causal mechanisms are poorly understood. General circulation models (GCMs) simulate megadroughts, but do not reproduce the temporal clustering of events during the MCA, suggesting they are not caused by the time history of volcanic or solar forcing. Instead, GCMs generate megadroughts through (1) internal atmospheric variability, (2) sea-surface temperatures, and (3) land surface and dust aerosol feedbacks. While no hypothesis has been definitively rejected, and no GCM has accurately reproduced all features (e.g., timing, duration, and extent) of any specific megadrought, their persistence suggests a role for processes that impart memory to the climate system (land surface and ocean dynamics). Over the 21st century, GCMs project an increase in the risk of megadrought occurrence through greenhouse gas forced reductions in precipitation and increases in evaporative demand. This drying is robust across models and multiple drought indicators, but major uncertainties still need to be resolved. These include the potential moderation of vegetation evaporative losses at higher atmospheric [CO2], variations in land surface model complexity, and decadal to multidecadal modes of natural climate variability that could delay or advance onset of aridification over the the next several decades. Because future droughts will arise from both natural variability and greenhouse gas forced trends in hydroclimate, improving our understanding of the natural drivers of persistent multidecadal megadroughts should be a major research priority.

  3. Strongly interacting Fermi gases

    Directory of Open Access Journals (Sweden)

    Bakr W.

    2013-08-01

    Full Text Available Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly, we discuss high-precision measurements on the thermodynamics of a strongly interacting Fermi gas across the superfluid transition. The onset of superfluidity is directly observed in the compressibility, the chemical potential, the entropy, and the heat capacity. Our measurements provide benchmarks for current many-body theories on strongly interacting fermions. Secondly, we have studied the evolution of fermion pairing from three to two dimensions in these gases, relating to the physics of layered superconductors. In the presence of p-wave interactions, Fermi gases are predicted to display toplogical superfluidity carrying Majorana edge states. Two possible avenues in this direction are discussed, our creation and direct observation of spin-orbit coupling in Fermi gases and the creation of fermionic molecules of 23Na 40K that will feature strong dipolar interactions in their absolute ground state.

  4. STRONG SOLAR WIND DYNAMIC PRESSURE PULSES: INTERPLANETARY SOURCES AND THEIR IMPACTS ON GEOSYNCHRONOUS MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi; Xie, Yanqiong; Xu, Xiaojun

    2015-01-01

    In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs at different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector

  5. STRONG SOLAR WIND DYNAMIC PRESSURE PULSES: INTERPLANETARY SOURCES AND THEIR IMPACTS ON GEOSYNCHRONOUS MAGNETIC FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi [SIGMA Weather Group, State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing (China); Xie, Yanqiong [College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing (China); Xu, Xiaojun, E-mail: pbzuo@spaceweather.ac.cn, E-mail: fengx@spaceweather.ac.cn [Space Science Institute, Macau University of Science and Technology, Macao (China)

    2015-10-20

    In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs at different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector.

  6. Combining clinical variables to optimize prediction of antidepressant treatment outcomes.

    Science.gov (United States)

    Iniesta, Raquel; Malki, Karim; Maier, Wolfgang; Rietschel, Marcella; Mors, Ole; Hauser, Joanna; Henigsberg, Neven; Dernovsek, Mojca Zvezdana; Souery, Daniel; Stahl, Daniel; Dobson, Richard; Aitchison, Katherine J; Farmer, Anne; Lewis, Cathryn M; McGuffin, Peter; Uher, Rudolf

    2016-07-01

    The outcome of treatment with antidepressants varies markedly across people with the same diagnosis. A clinically significant prediction of outcomes could spare the frustration of trial and error approach and improve the outcomes of major depressive disorder through individualized treatment selection. It is likely that a combination of multiple predictors is needed to achieve such prediction. We used elastic net regularized regression to optimize prediction of symptom improvement and remission during treatment with escitalopram or nortriptyline and to identify contributing predictors from a range of demographic and clinical variables in 793 adults with major depressive disorder. A combination of demographic and clinical variables, with strong contributions from symptoms of depressed mood, reduced interest, decreased activity, indecisiveness, pessimism and anxiety significantly predicted treatment outcomes, explaining 5-10% of variance in symptom improvement with escitalopram. Similar combinations of variables predicted remission with area under the curve 0.72, explaining approximately 15% of variance (pseudo R(2)) in who achieves remission, with strong contributions from body mass index, appetite, interest-activity symptom dimension and anxious-somatizing depression subtype. Escitalopram-specific outcome prediction was more accurate than generic outcome prediction, and reached effect sizes that were near or above a previously established benchmark for clinical significance. Outcome prediction on the nortriptyline arm did not significantly differ from chance. These results suggest that easily obtained demographic and clinical variables can predict therapeutic response to escitalopram with clinically meaningful accuracy, suggesting a potential for individualized prescription of this antidepressant drug. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Optimal no-go theorem on hidden-variable predictions of effect expectations

    Science.gov (United States)

    Blass, Andreas; Gurevich, Yuri

    2018-03-01

    No-go theorems prove that, under reasonable assumptions, classical hidden-variable theories cannot reproduce the predictions of quantum mechanics. Traditional no-go theorems proved that hidden-variable theories cannot predict correctly the values of observables. Recent expectation no-go theorems prove that hidden-variable theories cannot predict the expectations of observables. We prove the strongest expectation-focused no-go theorem to date. It is optimal in the sense that the natural weakenings of the assumptions and the natural strengthenings of the conclusion make the theorem fail. The literature on expectation no-go theorems strongly suggests that the expectation-focused approach is more general than the value-focused one. We establish that the expectation approach is not more general.

  8. Fixed and variable cost of automobiles

    DEFF Research Database (Denmark)

    Mulalic, Ismir; Rouwendal, Jan

    costs of various quality aspects using an extensive Danish data set. We show that under suitable assumptions the marginal willingness to pay for quality aspects is a structural parameter of the consumer’s preference. We use our results to investigate this structural parameter and study its relationship......Recent empirical analyses have found strong reactions of car prices to changes in fuel costs. We develop a model of car quality choice to further investigate this relationship. We show that in the empirically relevant case quality characteristics increase fixed as well as variable costs, and our...

  9. Mediterranean climate modelling: variability and climate change scenarios

    International Nuclear Information System (INIS)

    Somot, S.

    2005-12-01

    Air-sea fluxes, open-sea deep convection and cyclo-genesis are studied in the Mediterranean with the development of a regional coupled model (AORCM). It accurately simulates these processes and their climate variabilities are quantified and studied. The regional coupling shows a significant impact on the number of winter intense cyclo-genesis as well as on associated air-sea fluxes and precipitation. A lower inter-annual variability than in non-coupled models is simulated for fluxes and deep convection. The feedbacks driving this variability are understood. The climate change response is then analysed for the 21. century with the non-coupled models: cyclo-genesis decreases, associated precipitation increases in spring and autumn and decreases in summer. Moreover, a warming and salting of the Mediterranean as well as a strong weakening of its thermohaline circulation occur. This study also concludes with the necessity of using AORCMs to assess climate change impacts on the Mediterranean. (author)

  10. Climate variability in a coupled GCM. Pt. 2

    International Nuclear Information System (INIS)

    Latif, M.; Sterl, A.; Assenbaum, M.; Junge, M.M.; Maier-Reimer, E.

    1993-01-01

    The seasonal cycle and the interannual variability of the tropical Indian Ocean circulation are investigated and the Indian Summer Monsoon is simulated by a coupled ocean-atmosphere general circulation model in a 26 year integration. Although the model exhibits significant climate drift, it simulates realistically the seasonal changes in the tropical Indian Ocean and the onset and evolution of the Indian Summer Monsoon. The amplitudes of the seasonal changes, however, are somewhat underestimated. The coupled GCM also simulates considerable interannual variability in the tropical Indian Ocean circulation which is partly related to the El Nino/Southern Oscillation (ENSO) phenomenon and the associated changes in the Walker Circulation. Changes in the surface wind stress appear to be crucial in forcing interannual variations in the Indian Ocean SST. As in the Pacific Ocean, the net surface heat flux acts as a negative feedback on the SST anomalies. The interannual variability in Monsoon rainfall is simulated by the coupled GCM only about half as strongly as observed. (orig.)

  11. Quantum electrodynamics of strong fields

    International Nuclear Information System (INIS)

    Greiner, W.

    1983-01-01

    Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund

  12. Contingent Pacific-Atlantic Ocean influence on multicentury wildfire synchrony over western North America.

    Science.gov (United States)

    Kitzberger, Thomas; Brown, Peter M; Heyerdahl, Emily K; Swetnam, Thomas W; Veblen, Thomas T

    2007-01-09

    Widespread synchronous wildfires driven by climatic variation, such as those that swept western North America during 1996, 2000, and 2002, can result in major environmental and societal impacts. Understanding relationships between continental-scale patterns of drought and modes of sea surface temperatures (SSTs) such as El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO) may explain how interannual to multidecadal variability in SSTs drives fire at continental scales. We used local wildfire chronologies reconstructed from fire scars on tree rings across western North America and independent reconstructions of SST developed from tree-ring widths at other sites to examine the relationships of multicentury patterns of climate and fire synchrony. From 33,039 annually resolved fire-scar dates at 238 sites (the largest paleofire record yet assembled), we examined forest fires at regional and subcontinental scales. Since 1550 CE, drought and forest fires covaried across the West, but in a manner contingent on SST modes. During certain phases of ENSO and PDO, fire was synchronous within broad subregions and sometimes asynchronous among those regions. In contrast, fires were most commonly synchronous across the West during warm phases of the AMO. ENSO and PDO were the main drivers of high-frequency variation in fire (interannual to decadal), whereas the AMO conditionally changed the strength and spatial influence of ENSO and PDO on wildfire occurrence at multidecadal scales. A current warming trend in AMO suggests that we may expect an increase in widespread, synchronous fires across the western U.S. in coming decades.

  13. New direct estimates of Iceland-Scotland Overflow Water transport through the Charlie-Gibbs Fracture Zone and its relationship to the North Atlantic Current

    Science.gov (United States)

    Bower, Amy; Furey, Heather; Xu, Xiaobiao

    2015-04-01

    Detailed observations of the pathways, transports and water properties of dense overflows associated with the Atlantic Meridional Overturning Circulation (AMOC) provide critical benchmarks for climate models and mixing parameterizations. A recent two-year time series from eight moorings offers the first long-term simultaneous observations of the hydrographic properties and transport of Iceland-Scotland Overflow Water (ISOW) flowing westward through the Charlie-Gibbs Fracture Zone (CGFZ), a major deep gap in the Mid-Atlantic Ridge (MAR) connecting the eastern and western basins of the North Atlantic. In addition, current meters up to 500-m depth and satellite altimetry allow us to investigate the overlying North Atlantic Current (NAC) as a source of ISOW transport variability. Using the isohaline 34.94 to define the ISOW layer, the two year mean and standard deviation of ISOW transport was -1.7 ± 1.5 Sv, compared to -2.4 ± 3.0 Sv reported by Saunders for a 13-month period in 1988-1989 using the same isohaline. Differences in the two estimates are partly explained by limitations of the Saunders array, but more importantly reflect the strong low-frequency variability in ISOW transport through CGFZ (which includes complete reversals). Both the observations and output from a multi-decadal simulation of the North Atlantic using the Hybrid Coordinate Ocean Model (HYCOM) forced with interannually varying wind and buoyancy fields indicate a strong positive correlation between ISOW transport and the strength of the NAC through the CGFZ. This result raises new questions regarding the interaction of the upper and lower limbs of the AMOC, downstream propagation of ISOW transport variability in the Deep Western Boundary Current and alternative pathways of ISOW across the MAR.

  14. Regional impacts of ocean color on tropical Pacific variability

    Directory of Open Access Journals (Sweden)

    W. Anderson

    2009-08-01

    Full Text Available The role of the penetration length scale of shortwave radiation into the surface ocean and its impact on tropical Pacific variability is investigated with a fully coupled ocean, atmosphere, land and ice model. Previous work has shown that removal of all ocean color results in a system that tends strongly towards an El Niño state. Results from a suite of surface chlorophyll perturbation experiments show that the mean state and variability of the tropical Pacific is highly sensitive to the concentration and distribution of ocean chlorophyll. Setting the near-oligotrophic regions to contain optically pure water warms the mean state and suppresses variability in the western tropical Pacific. Doing the same above the shadow zones of the tropical Pacific also warms the mean state but enhances the variability. It is shown that increasing penetration can both deepen the pycnocline (which tends to damp El Niño while shifting the mean circulation so that the wind response to temperature changes is altered. Depending on what region is involved this change in the wind stress can either strengthen or weaken ENSO variability.

  15. The scales of variability of stream fish assemblage at tributary confluences

    Directory of Open Access Journals (Sweden)

    István Czeglédi

    2015-12-01

    Full Text Available Tributary confluences play an important role in the dispersal of organisms, and consequently, in shaping regional scale diversity in stream networks. Despite their importance in dispersal processes, little is known about how ecological assemblages are organized in these habitats. We studied the scales of variability of stream fish assemblages over three seasons using a hierarchical sampling design, which incorporated three tributaries, three sites at the mouth of each tributary and using four sampling units at each site. We found strong scale dependent variability in species richness, composition and relative abundance. Most of the variation was accounted for by the interactive effect of season, between stream and between site effects, while habitat structure of the sampling units had a relatively minor role. Species richness showed a continuous decrease from the mainstem river in most cases, while species composition and relative abundance changed less consistently along the longitudinal profile. Consequently, we found that not only the junctions presented a strong filter on the species pool, but some species were filtered out if they passed this critical habitat bottleneck. Spatial position of the tributaries along the river also contributed to assemblage variability in the confluences. Overall, our results suggest high variability in fish assemblages across multiple scales at tributary confluences. Environmental management should take a more critical care on the filtering role of tributary confluences in species dispersal, for better understanding patterns and processes in the branches of dendritic stream networks.

  16. Effects of Atlantic warm pool variability over climate of South America tropical transition zone

    Science.gov (United States)

    Ricaurte Villota, Constanza; Romero-Rodríguez, Deisy; Andrés Ordoñez-Zuñiga, Silvio; Murcia-Riaño, Magnolia; Coca-Domínguez, Oswaldo

    2016-04-01

    Colombia is located in the northwestern corner of South America in a climatically complex region due to the influence processes modulators of climate both the Pacific and Atlantic region, becoming in a transition zone between phenomena of northern and southern hemisphere. Variations in the climatic conditions of this region, especially rainfall, have been attributed to the influence of the El Nino Southern Oscillation (ENSO), but little is known about the interaction within Atlantic Ocean and specifically Caribbean Sea with the environmental conditions of this region. In this work We studied the influence of the Atlantic Warm Pool (AWP) on the Colombian Caribbean (CC) climate using data of Sea Surface Temperature (SST) between 1900 - 2014 from ERSST V4, compared with in situ data SIMAC (National System for Coral Reef Monitoring in Colombia - INVEMAR), rainfall between 1953-2013 of meteorological stations located at main airports in the Colombian Caribbean zone, administered by IDEAM, and winds data between 2003 - 2014 from WindSat sensor. The parameters analyzed showed spatial differences throughout the study area. SST anomalies, representing the variability of the AWP, showed to be associated with Multidecadal Atlantic Oscillation (AMO) and with the index of sea surface temperature of the North-tropical Atlantic (NTA), the variations was on 3 to 5 years on the ENSO scale and of approximately 11 years possibly related to solar cycles. Rainfall anomalies in the central and northern CC respond to changes in SST, while in the south zone these are not fully engage and show a high relationship with the ENSO. Finally, the winds also respond to changes in SST and showed a signal approximately 90 days possibly related to the Madden-Julian Oscillation, whose intensity depends on the CC region being analyzed. The results confirm that region is a transition zone in which operate several forcing, the variability of climate conditions is difficult to attribute only one, as ENSO

  17. Variability of the soft excess in the Seyfert I galaxy Mkn 335

    International Nuclear Information System (INIS)

    Turner, T.J.; Pounds, K.A.

    1988-01-01

    The luminous Seyfert 1 galaxy Mkn 335 was observed by EXOSAT on six occasions between 1983 November 5 and 1985 December 24. A previous analysis of the 1984 December 6 observation revealed a two-component spectrum, with a hard power law dominant above ∼ 2 keV on which was superimposed a strong soft X-ray excess in the 0.1-2 keV band of the EXOSAT low-energy (LE) detectors. The hard X-ray component was seen to vary strongly over time-scales of 1-2 hr in this 1984 observation. The more recent observations of Mkn 335, reported here, have shown the soft spectral excess to be a persistent feature, and the continuing presence of rapid variability in the hard X-ray component. An extended observation on 1985 July 21-22 has also revealed a strong variation in the LE band on a time-scale of ∼ 10 hr. This is the first report of distinctive short-term variability in the soft X-ray excess of an AGN, strengthening its proposed identification with the thermal emission from an accretion disc. (author)

  18. Population-level consequences of herbivory, changing climate, and source-sink dynamics on a long-lived invasive shrub.

    Science.gov (United States)

    van Klinken, R D; Pichancourt, J B

    2015-12-01

    dispersal under the current climate. Seed input wasn't required to form dense infestations under a wetter climate. Each factor we considered (ongoing herbivory, changing climate, and source-sink dynamics) has a strong bearing on how this invasive species should be managed, highlighting the need for considering both ecological context (in this case, source-sink dynamics) and the effect of climate variability at relevant temporal scales (daily, multi-decadal, and anthropogenic) when deriving management recommendations for long-lived species.

  19. Statistical validity of using ratio variables in human kinetics research.

    Science.gov (United States)

    Liu, Yuanlong; Schutz, Robert W

    2003-09-01

    The purposes of this study were to investigate the validity of the simple ratio and three alternative deflation models and examine how the variation of the numerator and denominator variables affects the reliability of a ratio variable. A simple ratio and three alternative deflation models were fitted to four empirical data sets, and common criteria were applied to determine the best model for deflation. Intraclass correlation was used to examine the component effect on the reliability of a ratio variable. The results indicate that the validity, of a deflation model depends on the statistical characteristics of the particular component variables used, and an optimal deflation model for all ratio variables may not exist. Therefore, it is recommended that different models be fitted to each empirical data set to determine the best deflation model. It was found that the reliability of a simple ratio is affected by the coefficients of variation and the within- and between-trial correlations between the numerator and denominator variables. It was recommended that researchers should compute the reliability of the derived ratio scores and not assume that strong reliabilities in the numerator and denominator measures automatically lead to high reliability in the ratio measures.

  20. Strong-coupling theory of superconductivity

    International Nuclear Information System (INIS)

    Rainer, D.; Sauls, J.A.

    1995-01-01

    The electronic properties of correlated metals with a strong electron-phonon coupling may be understood in terms of a combination of Landau''s Fermi liquid theory and the strong-coupling theory of Migdal and Eliashberg. In these lecture notes we discuss the microscopic foundations of this phenomenological Fermi-liquid model of correlated, strong-coupling metals. We formulate the basic equations of the model, which are quasiclassical transport equations that describe both equilibrium and non-equilibrium phenomena for the normal and superconducting states of a metal. Our emphasis is on superconductors close to equilibrium, for which we derive the general linear response theory. As an application we calculate the dynamical conductivity of strong-coupling superconductors. (author)

  1. Strong Bisimilarity of Simple Process Algebras

    DEFF Research Database (Denmark)

    Srba, Jirí

    2003-01-01

    We study bisimilarity and regularity problems of simple process algebras. In particular, we show PSPACE-hardness of the following problems: (i) strong bisimilarity of Basic Parallel Processes (BPP), (ii) strong bisimilarity of Basic Process Algebra (BPA), (iii) strong regularity of BPP, and (iv......) strong regularity of BPA. We also demonstrate NL-hardness of strong regularity problems for the normed subclasses of BPP and BPA. Bisimilarity problems of simple process algebras are introduced in a general framework of process rewrite systems, and a uniform description of the new techniques used...

  2. ANTI-CORRELATED OPTICAL FLUX AND POLARIZATION VARIABILITY IN BL LAC

    Energy Technology Data Exchange (ETDEWEB)

    Gaur, Haritma [Inter-University Centre for Astronomy and Astrophysics (IUCAA), Ganeshkhind, Pune 411 007 (India); Gupta, Alok C. [Aryabhatta Research Institute of Observational Sciences (ARIES), Manora Peak, Nainital 263 129 (India); Wiita, Paul J. [Department of Physics, The College of New Jersey, P.O. Box 7718, Ewing, NJ 08628-0718 (United States); Uemura, Makoto; Itoh, Ryosuke; Sasada, Mahito, E-mail: haritma@iucaa.ernet.in [Hiroshima Astrophysical Science Center, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526 (Japan)

    2014-01-20

    We present the results of photometric (V band) and polarimetric observations of the blazar BL Lac during 2008-2010 using TRISPEC attached to the KANATA 1.5 m telescope in Japan. The data reveal a great deal of variability ranging from days to months with detection of strong variations in fractional polarization. The V band flux strongly anticorrelates with the degree of polarization during the first of two observing seasons but not during the second. The direction of the electric vector, however, remained roughly constant during all of our observations. These results are consistent with a model with at least two emission regions being present, with the more variable component having a polarization direction nearly perpendicular to that of the relatively quiescent region so that a rising flux can produce a decline in degree of polarization. We also computed models involving helical jet structures and single transverse shocks in jets and show that they might also be able to agree with the anticorrelations between flux and fractional polarization.

  3. BENEFITS AND CHALLENGES OF VARIABLE COMPRESSION RATIO AT DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Radivoje B Pešić

    2010-01-01

    Full Text Available The compression ratio strongly affects the working process and provides an exceptional degree of control over engine performance. In conventional internal combustion engines, the compression ratio is fixed and their performance is therefore a compromise between conflicting requirements. One fundamental problem is that drive units in the vehicles must successfully operate at variable speeds and loads and in different ambient conditions. If a diesel engine has a fixed compression ratio, a minimal value must be chosen that can achieve a reliable self-ignition when starting the engine in cold start conditions. In diesel engines, variable compression ratio provides control of peak cylinder pressure, improves cold start ability and low load operation, enabling the multi-fuel capability, increase of fuel economy and reduction of emissions. This paper contains both theoretical and experimental investigation of the impact that automatic variable compression ratios has on working process parameters in experimental diesel engine. Alternative methods of implementing variable compression ratio are illustrated and critically examined.

  4. Superior intraparietal sulcus controls the variability of visual working memory precision

    NARCIS (Netherlands)

    Galeano Weber, E.M.; Peters, B.; Hahn, T.; Bledowski, C.; Fiebach, C.J.

    2016-01-01

    Limitations of working memory (WM) capacity depend strongly on the cognitive resources that are available for maintaining WM contents in an activated state. Increasing the number of items to be maintained in WM was shown to reduce the precision of WM and to increase the variability of WM precision

  5. A transformation technique to treat strong vibrating absorbers

    International Nuclear Information System (INIS)

    Sahni, D.C.; Garis, N.S.; Pazsit, I.

    1998-06-01

    Calculation of the neutron noise, induced by small amplitude vibrations of a strong absorber, is a difficult task because the traditional linearization technique cannot be applied. Two methods, based on two different representations of the absorber, were developed earlier to solve the problem. In both methods the rod displacements are described by a Taylor expansion, such that the boundary condition needs only to be considered at the surface of a static rod. Only one of the methods is applicable in two dimensions. In this paper an alternative method is developed and used for the solution of the problem. The essence of the method is a variable transformation by which the moving boundary is transformed into a static one without Taylor expansion. The corresponding equations are solved in a linear manner and the solution is transformed back to the original parameter space. The method is equally applicable in one and two dimensions. The solutions are in complete agreement with those of the previous methods

  6. Strong cosmic censorship and the strong curvature singularities

    International Nuclear Information System (INIS)

    Krolak, A.

    1987-01-01

    Conditions are given under which any asymptotically simple and empty space-time that has a partial Cauchy surface with an asymptotically simple past is globally hyperbolic. It is shown that this result suggests that the Cauchy horizons of the type occurring in Reissner--Nordstroem and Kerr space-times are unstable. This in turn gives support for the validity of the strong cosmic censorship hypothesis

  7. Debunking vaccination myths: strong risk negations can increase perceived vaccination risks.

    Science.gov (United States)

    Betsch, Cornelia; Sachse, Katharina

    2013-02-01

    Information about risks is often contradictory, especially in the health domain. A vast amount of bizarre information on vaccine-adverse events (VAE) can be found on the Internet; most are posted by antivaccination activists. Several actors in the health sector struggle against these statements by negating claimed risks with scientific explanations. The goal of the present work is to find optimal ways of negating risk to decrease risk perceptions. In two online experiments, we varied the extremity of risk negations and their source. Perception of the probability of VAE, their expected severity (both variables serve as indicators of perceived risk), and vaccination intentions. Paradoxically, messages strongly indicating that there is "no risk" led to a higher perceived vaccination risk than weak negations. This finding extends previous work on the negativity bias, which has shown that information stating the presence of risk decreases risk perceptions, while information negating the existence of risk increases such perceptions. Several moderators were also tested; however, the effect occurred independently of the number of negations, recipient involvement, and attitude. Solely the credibility of the information source interacted with the extremity of risk negation: For credible sources (governmental institutions), strong and weak risk negations lead to similar perceived risk, while for less credible sources (pharmaceutical industries) weak negations lead to less perceived risk than strong negations. Optimal risk negation may profit from moderate rather than extreme formulations as a source's trustworthiness can vary.

  8. Interhemispheric Changes in Atlantic Ocean Heat Content and Their Link to Global Monsoons

    Science.gov (United States)

    Lopez, H.; Lee, S. K.; Dong, S.; Goni, G. J.

    2015-12-01

    This study tested the hypothesis whether low frequency decadal variability of the South Atlantic meridional heat transport (SAMHT) influences decadal variability of the global monsoons. A multi-century run from a state-of-the-art coupled general circulation model is used as basis for the analysis. Our findings indicate that multi-decadal variability of the South Atlantic Ocean plays a key role in modulating atmospheric circulation via interhemispheric changes in Atlantic Ocean heat content. Weaker SAMHT produces anomalous ocean heat divergence over the South Atlantic resulting in negative ocean heat content anomaly about 15 years later. This, in turn, forces a thermally direct anomalous interhemispheric Hadley circulation in the atmosphere, transporting heat from the northern hemisphere (NH) to the southern hemisphere (SH) and moisture from the SH to the NH, thereby intensify (weaken) summer (winter) monsoon in the NH and winter (summer) monsoon in the SH. Results also show that anomalous atmospheric eddies, both transient and stationary, transport heat northward in both hemispheres producing eddy heat flux convergence (divergence) in the NH (SH) around 15-30°, reinforcing the anomalous Hadley circulation. The effect of eddies on the NH (SH) poleward of 30° is opposite with heat flux divergence (convergence), which must be balanced by sinking (rising) motion, consistent with a poleward (equatorward) displacement of the jet stream and mean storm track. The mechanism described here could easily be interpreted for the case of strong SAMHT, with the reverse influence on the interhemispheric atmospheric circulation and monsoons. Overall, SAMHT decadal variability leads its atmospheric response by about 15 years, suggesting that the South Atlantic is a potential predictor of global climate variability.

  9. Spectral Variability of Quasar SDSS J030639.57+000343.1 ...

    Indian Academy of Sciences (India)

    variability of emission lines and continuum luminosity. In this paper, we present the results of SDSS J030639.57 +000343.1. We found a strong anticorrelation between the continuum luminosity at 5100 Å and the spec- tral index, implying a bluer-when-brighter trend. The luminosity of the broad Hα line is in proportion to the ...

  10. Numerical Calculation of the Phase Space Density for the Strong-Strong Beam-Beam Interaction

    International Nuclear Information System (INIS)

    Sobol, A.; Ellison, J.A.

    2003-01-01

    We developed a parallel code to calculate the evolution of the 4D phase space density of two colliding beams, which are coupled via the collective strong-strong beam-beam interaction, in the absence of diffusion and damping, using the Perron-Frobenius (PF) operator technique

  11. Historical analysis of interannual rainfall variability and trends in southeastern Brazil based on observational and remotely sensed data

    Science.gov (United States)

    Vásquez P., Isela L.; de Araujo, Lígia Maria Nascimento; Molion, Luiz Carlos Baldicero; de Araujo Abdalad, Mariana; Moreira, Daniel Medeiros; Sanchez, Arturo; Barbosa, Humberto Alves; Rotunno Filho, Otto Corrêa

    2018-02-01

    The Brazilian Southeast is considered a humid region. It is also prone to landslides and floods, a result of significant increases in rainfall during spring and summer caused by the South Atlantic Convergence Zone (SACZ). Recently, however, the region has faced a striking rainfall shortage, raising serious concerns regarding water availability. The present work endeavored to explain the meteorological drought that has led to hydrological imbalance and water scarcity in the region. Hodrick-Prescott smoothing and wavelet transform techniques were applied to long-term hydrologic and sea surface temperature (SST)—based climate indices monthly time series data in an attempt to detect cycles and trends that could help explain rainfall patterns and define a framework for improving the predictability of extreme events in the region. Historical observational hydrologic datasets available include monthly precipitation amounts gauged since 1888 and 1940 and stream flow measured since the 1930s. The spatial representativeness of rain gauges was tested against gridded rainfall satellite estimates from 2000 to 2015. The analyses revealed variability in four time scale domains—infra-annual, interannual, quasi-decadal and inter-decadal or multi-decadal. The strongest oscillations periods revealed were: for precipitation—8 months, 2, 8 and 32 years; for Pacific SST in the Niño-3.4 region—6 months, 2, 8 and 35.6 years, for North Atlantic SST variability—6 months, 2, 8 and 32 years and for Pacific Decadal Oscillation (PDO) index—6.19 months, 2.04, 8.35 and 27.31 years. Other periodicities less prominent but still statistically significant were also highlighted.

  12. INFLUENCIA DE LAS VARIABLES CONTEXTUALES EN EL RENDIMIENTO FÍSICO EN EL FÚTBOL DE ALTO NIVEL

    Directory of Open Access Journals (Sweden)

    C. Lago

    2010-09-01

    Full Text Available

     

    <strong>RESUMEN>

    El objetivo de este estudio consistió en examinar el efecto de la localización del partido, el nivel del oponente y el marcador sobre la actividad física de los jugadores en el fútbol de alto nivel. Para ello fueron analizados 27 partidos disputados por un equipo de fútbol profesional en la temporada 2005-2006 de la Liga Española de Fútbol de Primera División utilizando un sistema computerizado de análisis del juego. La variable dependiente consistió en la distancia cubierta por los jugadores a diferentes intensidades. Los datos fueron analizados mediante un análisis de regresión lineal que incorporó cuatro variables independientes: el marcador del partido, la localización del encuentro (casa o fuera, el nivel del oponente y el puesto específico de los jugadores. Los resultados indican que la distancia cubierta por los jugadores a diferentes intensidades estuvo influida por una o más variables contextuales, con la localización del partido y, sobre todo, el marcador como aspectos más relevantes. Los futbolistas recorrieron menos distancia a alta intensidad (>19.1 km/h cuando tuvieron el marcador a favor que cuando iban perdiendo. Los jugadores que jugaron en casa cubrieron una distancia mayor que los visitantes a baja intensidad (< 14.1 km/h, pero no se apreciaron diferencias a media, submáxima o máxima intensidad .No hubo diferencias entre ningún puesto específico cuando se comparó la distancia cubierta a baja intensidad. Sin embargo, los delanteros y los interiores laterales cubrieron una distancia mayor que los defensas y los mediocentros a submáxima y máxima intensidad.
    <strong>Palabras Clave: strong>análisis del juego, variables contextuales, fútbol. rendimiento físico.

     

    <strong>ABSTRACT>

    The aim of this

  13. Long-Term Variability of Surface Albedo and Its Correlation with Climatic Variables over Antarctica

    Directory of Open Access Journals (Sweden)

    Minji Seo

    2016-11-01

    Full Text Available The cryosphere is an essential part of the earth system for understanding climate change. Components of the cryosphere, such as ice sheets and sea ice, are generally decreasing over time. However, previous studies have indicated differing trends between the Antarctic and the Arctic. The South Pole also shows internal differences in trends. These phenomena indicate the importance of continuous observation of the Polar Regions. Albedo is a main indicator for analyzing Antarctic climate change and is an important variable with regard to the radiation budget because it can provide positive feedback on polar warming and is related to net radiation and atmospheric heating in the mainly snow- and ice-covered Antarctic. Therefore, in this study, we analyzed long-term temporal and spatial variability of albedo and investigated the interrelationships between albedo and climatic variables over Antarctica. We used broadband surface albedo data from the Satellite Application Facility on Climate Monitoring and data for several climatic variables such as temperature and Antarctic oscillation index (AAO during the period of 1983 to 2009. Time series analysis and correlation analysis were performed through linear regression using albedo and climatic variables. The results of this research indicated that albedo shows two trends, west trend and an east trend, over Antarctica. Most of the western side of Antarctica showed a negative trend of albedo (about −0.0007 to −0.0015 year−1, but the other side showed a positive trend (about 0.0006 year−1. In addition, albedo and surface temperature had a negative correlation, but this relationship was weaker in west Antarctica than in east Antarctica. The correlation between albedo and AAO revealed different relationships in the two regions; west Antarctica had a negative correlation and east Antarctica showed a positive correlation. In addition, the correlation between albedo and AAO was weaker in the west. This

  14. Phylogenetic assemblage structure of North American trees is more strongly shaped by glacial-interglacial climate variability in gymnosperms than in angiosperms.

    Science.gov (United States)

    Ma, Ziyu; Sandel, Brody; Svenning, Jens-Christian

    2016-05-01

    How fast does biodiversity respond to climate change? The relationship of past and current climate with phylogenetic assemblage structure helps us to understand this question. Studies of angiosperm tree diversity in North America have already suggested effects of current water-energy balance and tropical niche conservatism. However, the role of glacial-interglacial climate variability remains to be determined, and little is known about any of these relationships for gymnosperms. Moreover, phylogenetic endemism, the concentration of unique lineages in restricted ranges, may also be related to glacial-interglacial climate variability and needs more attention. We used a refined phylogeny of both angiosperms and gymnosperms to map phylogenetic diversity, clustering and endemism of North American trees in 100-km grid cells, and climate change velocity since Last Glacial Maximum together with postglacial accessibility to recolonization to quantify glacial-interglacial climate variability. We found: (1) Current climate is the dominant factor explaining the overall patterns, with more clustered angiosperm assemblages toward lower temperature, consistent with tropical niche conservatism. (2) Long-term climate stability is associated with higher angiosperm endemism, while higher postglacial accessibility is linked to to more phylogenetic clustering and endemism in gymnosperms. (3) Factors linked to glacial-interglacial climate change have stronger effects on gymnosperms than on angiosperms. These results suggest that paleoclimate legacies supplement current climate in shaping phylogenetic patterns in North American trees, and especially so for gymnosperms.

  15. Generalized ensemble method applied to study systems with strong first order transitions

    Science.gov (United States)

    Małolepsza, E.; Kim, J.; Keyes, T.

    2015-09-01

    At strong first-order phase transitions, the entropy versus energy or, at constant pressure, enthalpy, exhibits convex behavior, and the statistical temperature curve correspondingly exhibits an S-loop or back-bending. In the canonical and isothermal-isobaric ensembles, with temperature as the control variable, the probability density functions become bimodal with peaks localized outside of the S-loop region. Inside, states are unstable, and as a result simulation of equilibrium phase coexistence becomes impossible. To overcome this problem, a method was proposed by Kim, Keyes and Straub [1], where optimally designed generalized ensemble sampling was combined with replica exchange, and denoted generalized replica exchange method (gREM). This new technique uses parametrized effective sampling weights that lead to a unimodal energy distribution, transforming unstable states into stable ones. In the present study, the gREM, originally developed as a Monte Carlo algorithm, was implemented to work with molecular dynamics in an isobaric ensemble and coded into LAMMPS, a highly optimized open source molecular simulation package. The method is illustrated in a study of the very strong solid/liquid transition in water.

  16. Strong gravity and supersymmetry

    International Nuclear Information System (INIS)

    Chamseddine, Ali H.; Salam, A.; Strathdee, J.

    1977-11-01

    A supersymmetric theory is constructed for a strong f plus a weak g graviton, together with their accompanying massive gravitinos, by gaugin the gradel 0Sp(2,2,1)x 0Sp(2,2,1) structure. The mixing term between f and g fields, which makes the strong graviton massive, can be introduced through a spontaneous symmetry-breaking mechanism implemented in this note by constructing a non-linear realization of the symmetry group

  17. PREFACE: Strongly correlated electron systems Strongly correlated electron systems

    Science.gov (United States)

    Saxena, Siddharth S.; Littlewood, P. B.

    2012-07-01

    This special section is dedicated to the Strongly Correlated Electron Systems Conference (SCES) 2011, which was held from 29 August-3 September 2011, in Cambridge, UK. SCES'2011 is dedicated to 100 years of superconductivity and covers a range of topics in the area of strongly correlated systems. The correlated electronic and magnetic materials featured include f-electron based heavy fermion intermetallics and d-electron based transition metal compounds. The selected papers derived from invited presentations seek to deepen our understanding of the rich physical phenomena that arise from correlation effects. The focus is on quantum phase transitions, non-Fermi liquid phenomena, quantum magnetism, unconventional superconductivity and metal-insulator transitions. Both experimental and theoretical work is presented. Based on fundamental advances in the understanding of electronic materials, much of 20th century materials physics was driven by miniaturisation and integration in the electronics industry to the current generation of nanometre scale devices. The achievements of this industry have brought unprecedented advances to society and well-being, and no doubt there is much further to go—note that this progress is founded on investments and studies in the fundamentals of condensed matter physics from more than 50 years ago. Nevertheless, the defining challenges for the 21st century will lie in the discovery in science, and deployment through engineering, of technologies that can deliver the scale needed to have an impact on the sustainability agenda. Thus the big developments in nanotechnology may lie not in the pursuit of yet smaller transistors, but in the design of new structures that can revolutionise the performance of solar cells, batteries, fuel cells, light-weight structural materials, refrigeration, water purification, etc. The science presented in the papers of this special section also highlights the underlying interest in energy-dense materials, which

  18. Strong Ideal Convergence in Probabilistic Metric Spaces

    Indian Academy of Sciences (India)

    In the present paper we introduce the concepts of strongly ideal convergent sequence and strong ideal Cauchy sequence in a probabilistic metric (PM) space endowed with the strong topology, and establish some basic facts. Next, we define the strong ideal limit points and the strong ideal cluster points of a sequence in this ...

  19. Engaging Military Fathers in a Reflective Parenting Program: Lessons from Strong Families Strong Forces

    Science.gov (United States)

    DeVoe, Ellen R.; Paris, Ruth

    2015-01-01

    Through Strong Families Strong Forces, a reflective parenting program for military families with young children, we were privileged to work with contemporary military fathers who served in the post-9/11 conflicts in Afghanistan and Iraq. Due to this work, the authors gained valuable insight into the complexity of fathering during wartime, the…

  20. [Modelling the effect of local climatic variability on dengue transmission in Medellin (Colombia) by means of time series analysis].

    Science.gov (United States)

    Rúa-Uribe, Guillermo L; Suárez-Acosta, Carolina; Chauca, José; Ventosilla, Palmira; Almanza, Rita

    2013-09-01

    Dengue fever is a major impact on public health vector-borne disease, and its transmission is influenced by entomological, sociocultural and economic factors. Additionally, climate variability plays an important role in the transmission dynamics. A large scientific consensus has indicated that the strong association between climatic variables and disease could be used to develop models to explain the incidence of the disease. To develop a model that provides a better understanding of dengue transmission dynamics in Medellin and predicts increases in the incidence of the disease. The incidence of dengue fever was used as dependent variable, and weekly climatic factors (maximum, mean and minimum temperature, relative humidity and precipitation) as independent variables. Expert Modeler was used to develop a model to better explain the behavior of the disease. Climatic variables with significant association to the dependent variable were selected through ARIMA models. The model explains 34% of observed variability. Precipitation was the climatic variable showing statistically significant association with the incidence of dengue fever, but with a 20 weeks delay. In Medellin, the transmission of dengue fever was influenced by climate variability, especially precipitation. The strong association dengue fever/precipitation allowed the construction of a model to help understand dengue transmission dynamics. This information will be useful to develop appropriate and timely strategies for dengue control.

  1. A multi-scale study of the dynamical processes of the tropical Pacific Ocean

    Science.gov (United States)

    Kidwell, Autumn Noel

    In recent years, it has been observed that there are different types of El Nino events. The warm events can be divided into two categories: those centered in the central Pacific (CP) and those centered in the eastern Pacific (EP). We examined the variability of western Pacific warm pool (WP) horizontal migration and size from January 1982 to December 2011 by applying Ensemble Empirical Mode Decomposition (EEMD) and Hilbert Huang Spectrum (HHS) to the optimally interpolated sea surface temperature (OISST) data set. The analysis shows that the long-term residual trend of the zonal centroid movement is migrating to the west by 3.78 from the mean location during the past 30 years. The size of the warm pool has also increased 18% during this period. These analysis techniques isolated two separate time series for the migration of the zonal component of the WPWP for both CP and EP events and showed that these two types of El Nino generally operate at different time-scales. The EP time-series shows the strong traditional EP El Nino and the transition between strong El Nino conditions and La Nina conditions. The CP time-series shows that CP El Ninos occur more often than EP El Ninos. The changes of the El Nino type in conjunction with westward drift and increasing warm pool size shows an interesting multidecadal change in the warm pool.

  2. Comparing forest measurements from tree rings and a space-based index of vegetation activity in Siberia

    International Nuclear Information System (INIS)

    Bunn, Andrew G; Hughes, Malcolm K; Losleben, Mark; Kirdyanov, Alexander V; Shishov, Vladimir V; Vaganov, Eugene A; Berner, Logan T; Oltchev, Alexander

    2013-01-01

    Different methods have been developed for measuring carbon stocks and fluxes in the northern high latitudes, ranging from intensively measured small plots to space-based methods that use reflectance data to drive production efficiency models. The field of dendroecology has used samples of tree growth from radial increments to quantify long-term variability in ecosystem productivity, but these have very limited spatial domains. Since the cambium material in tree cores is itself a product of photosynthesis in the canopy, it would be ideal to link these two approaches. We examine the associations between the normalized differenced vegetation index (NDVI) and tree growth using 19 pairs of tree-ring widths (TRW) and maximum latewood density (MXD) across much of Siberia. We find consistent correlations between NDVI and both measures of tree growth and no systematic difference between MXD and TRW. At the regional level we note strong correspondence between the first principal component of tree growth and NDVI for MXD and TRW in a temperature-limited bioregion, indicating that canopy reflectance and cambial production are broadly linked. Using a network of 21 TRW chronologies from south of Lake Baikal, we find a similarly strong regional correspondence with NDVI in a markedly drier region. We show that tree growth is dominated by variation at decadal and multidecadal time periods, which the satellite record is incapable of recording given its relatively short record. (letter)

  3. Bitcoin Meets Strong Consistency

    OpenAIRE

    Decker, Christian; Seidel, Jochen; Wattenhofer, Roger

    2014-01-01

    The Bitcoin system only provides eventual consistency. For everyday life, the time to confirm a Bitcoin transaction is prohibitively slow. In this paper we propose a new system, built on the Bitcoin blockchain, which enables strong consistency. Our system, PeerCensus, acts as a certification authority, manages peer identities in a peer-to-peer network, and ultimately enhances Bitcoin and similar systems with strong consistency. Our extensive analysis shows that PeerCensus is in a secure state...

  4. DISCOVERY OF A WOLF-RAYET STAR THROUGH DETECTION OF ITS PHOTOMETRIC VARIABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Littlefield, Colin [Law School, University of Notre Dame, Notre Dame, IN 46556 (United States); Garnavich, Peter; McClelland, Colin; Rettig, Terrence [Physics Department, University of Notre Dame, Notre Dame, IN 46556 (United States); Marion, G. H. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Vinko, Jozsef [Department of Optics, University of Szeged (Hungary); Wheeler, J. Craig [Astronomy Department, University of Texas, Austin, TX 78712 (United States)

    2012-06-15

    We report the serendipitous discovery of a heavily reddened Wolf-Rayet star that we name WR 142b. While photometrically monitoring a cataclysmic variable, we detected weak variability in a nearby field star. Low-resolution spectroscopy revealed a strong emission line at 7100 A, suggesting an unusual object and prompting further study. A spectrum taken with the Hobby-Eberly Telescope confirms strong He II emission and an N IV 7112 A line consistent with a nitrogen-rich Wolf-Rayet star of spectral class WN6. Analysis of the He II line strengths reveals no detectable hydrogen in WR 142b. A blue-sensitive spectrum obtained with the Large Binocular Telescope shows no evidence for a hot companion star. The continuum shape and emission line ratios imply a reddening of E(B - V) = 2.2-2.6 mag. We estimate that the distance to WR 142b is 1.4 {+-} 0.3 kpc.

  5. DISCOVERY OF A WOLF-RAYET STAR THROUGH DETECTION OF ITS PHOTOMETRIC VARIABILITY

    International Nuclear Information System (INIS)

    Littlefield, Colin; Garnavich, Peter; McClelland, Colin; Rettig, Terrence; Marion, G. H.; Vinkó, József; Wheeler, J. Craig

    2012-01-01

    We report the serendipitous discovery of a heavily reddened Wolf-Rayet star that we name WR 142b. While photometrically monitoring a cataclysmic variable, we detected weak variability in a nearby field star. Low-resolution spectroscopy revealed a strong emission line at 7100 Å, suggesting an unusual object and prompting further study. A spectrum taken with the Hobby-Eberly Telescope confirms strong He II emission and an N IV 7112 Å line consistent with a nitrogen-rich Wolf-Rayet star of spectral class WN6. Analysis of the He II line strengths reveals no detectable hydrogen in WR 142b. A blue-sensitive spectrum obtained with the Large Binocular Telescope shows no evidence for a hot companion star. The continuum shape and emission line ratios imply a reddening of E(B – V) = 2.2-2.6 mag. We estimate that the distance to WR 142b is 1.4 ± 0.3 kpc.

  6. Internal and external North Atlantic Sector variability in the Kiel climate model

    Energy Technology Data Exchange (ETDEWEB)

    Latif, Mojib; Park, Wonsun; Ding, Hui; Keenlyside, Noel S. [Leibniz-Inst. fuer Meereswissenschaften, Kiel (Germany)

    2009-08-15

    The internal and external North Atlantic Sector variability is investigated by means of a multimillennial control run and forced experiments with the Kiel Climate Model (KCM). The internal variability is studied by analyzing the control run. The externally forced variability is investigated in a run with periodic millennial solar forcing and in greenhouse warming experiments with enhanced carbon dioxide concentrations. The surface air temperature (SAT) averaged over the Northern Hemisphere simulated in the control run displays enhanced variability relative to the red background at decadal, centennial, and millennial timescales. Special emphasis is given to the variability of the Meridional Overturning Circulation (MOC). The MOC plays an important role in the generation of internal climate modes. Furthermore, the MOC provides a strong negative feedback on the Northern Hemisphere SAT in both the solar and greenhouse warming experiments, thereby moderating the direct effects of the external forcing in the North Atlantic. The implications of the results for decadal predictability are discussed. (orig.)

  7. Strong inbreeding depression and individually variable mating system in the narrow endemic Erodium cazorlanum (Geraniaceae

    Directory of Open Access Journals (Sweden)

    Alonso, Conchita

    2013-06-01

    Full Text Available Angiosperms evolved different systems to attract effective pollinators while reducing selfing in hermaphroditic flowers. Selfing ability can be advantageous when pollinators and/or mates are scarce, although inbreeding depression may largely reduce those advantages. Recent comparative analyses suggested endemic species tend to evolve self-compatibility but a better understanding of the associated reproductive and genetic tradeoffs is required. Experimental hand-pollinations under greenhouse conditions were conducted to investigate the selfing ability and estimate inbreeding depression up to the offspring’ first reproductive event in Ero dium cazorlanum, a narrow endemic species restricted to dolomite outcrops in SE Spanish mountains. We found autonomous selfing ineffective. Further, when experimentally applied, pollen of the same flower produced significantly fewer fruits and seeds compared to geitonogamous and cross pollinations. The number of seeds per fruit was significantly higher after cross pollinations and strong inbreeding depression accumulated through the life-cycle. Interestingly, individual plants exhibited broad variation in selfing ability with six out of 14 individuals producing no seed after geitonogamy. Understanding the consequences of individual variation in self compatibility deserves further investigation in the field now that we know that strong inbreeding depression may limit recruitment of selfed progeny.Las Angiospermas han desarrollado diversos sistemas para atraer polinizadores eficientes y al mismo tiempo reducir la posibilidad de autopolinización asociada al hermafroditismo. La capacidad de autopolinización puede ser ventajosa en situaciones de escasez de polinizadores y/o individuos reproductores, beneficios que pueden reducirse ampliamente a causa de la depresión por endogamia. Análisis filogenéticos recientes indicaron que las especies endémicas tienden a presentar sistemas de autocompatibilidad, por tanto

  8. Quantitative variability of renewable energy resources in Norway

    Science.gov (United States)

    Christakos, Konstantinos; Varlas, George; Cheliotis, Ioannis; Aalstad, Kristoffer; Papadopoulos, Anastasios; Katsafados, Petros; Steeneveld, Gert-Jan

    2017-04-01

    Based on European Union (EU) targets for 2030, the share of renewable energy (RE) consumption should be increased at 27%. RE resources such as hydropower, wind, wave power and solar power are strongly depending on the chaotic behavior of the weather conditions and climate. Due to this dependency, the prediction of the spatiotemporal variability of the RE resources is more crucial factor than in other energy resources (i.e. carbon based energy). The fluctuation of the RE resources can affect the development of the RE technologies, the energy grid, supply and prices. This study investigates the variability of the potential RE resources in Norway. More specifically, hydropower, wind, wave, and solar power are quantitatively analyzed and correlated with respect to various spatial and temporal scales. In order to analyze the diversities and their interrelationships, reanalysis and observational data of wind, precipitation, wave, and solar radiation are used for a quantitative assessment. The results indicate a high variability of marine RE resources in the North Sea and the Norwegian Sea.

  9. Solutrean Chronology & Lithic Variability in Vasco-Cantabrian Spain

    Directory of Open Access Journals (Sweden)

    Lawrence Guy STRAUS

    2009-10-01

    Full Text Available RESUMEN: Recientes excavaciones en la zona cantábrica suministran datos que apuntan a una variabilidad en las industrias del Solutrense. Basado en pruebas de radiocarbono parece evidenciarse una contemporaneidad entre el fenómeno solutrense de la España Cantábrica y el Rhone Valley. La industria de puntas diagnostican un resultado de un proceso tecnológico convergente.ABSTRACT: Recent excavations in Cantabrian cave deposits provide evidence of Solutrean industrial variability and provocative chronological information. On the basis of radiocarbon there is strong evidence for contemporeanity between the Solutrean phenomena of Cantabrian Spain and in the Rhone Valley. The stone-points diagnostic would probably be the result of convergent technology. There is considerable evidence for variability among artifacts assemblages (shown in their respective coefficients of variation. It is therefore difficult to characterize Cantabrian collections from the time range in question in a general way. It seems more fruitful to try and demonstrate the existence of functional parameters for observed artifact variability.

  10. Strong Statistical Convergence in Probabilistic Metric Spaces

    OpenAIRE

    Şençimen, Celaleddin; Pehlivan, Serpil

    2008-01-01

    In this article, we introduce the concepts of strongly statistically convergent sequence and strong statistically Cauchy sequence in a probabilistic metric (PM) space endowed with the strong topology, and establish some basic facts. Next, we define the strong statistical limit points and the strong statistical cluster points of a sequence in this space and investigate the relations between these concepts.

  11. Corporate Governance Against Recommendations: The Cases of the Strong Executive and the Strong Ownership

    Directory of Open Access Journals (Sweden)

    Král Pavel

    2012-09-01

    Full Text Available There are several basic configurations of corporate governance according to the separation of ownership and control (Jensen’s theory. Effective governance is described as a situation whenan owner (or group of owners keeps the right to ratify and monitor strategic decisions while management has the right to initiate and implement those decisions. There are two particular situations how this recommendation is partially broken and both situations are linked to CEO duality. The first case happens when an owner loses or does not exercise the right to monitor management of the organization and is termed as the strong executive. The second case is calledthe strong ownership and is distinguished by an owner taking over implementations of the decisions. The focus of the study was to explore particularly configurations of the strong executive and the strong governance. A mixed method research design was chosen to explore the differences between the basic governance configurations. The sample was chosen by purposive sampling and covered a hundred for-profit organizations of all size and from all sectors of economy.The data were collected through interviews with representatives, mainly members of top management. We revealed that both of these configurations can bear good corporate performance but also bigger risks. The strong executive is typical for organizations with dispersed ownership or a publicly owned organization and the performance of the organization is fully dependent on competencies but also personalities of managers. This configuration contains a high risk of misuse of authority. The strong ownership is effective in small organizations while in a larger organization leads to an overexertion of owners and low performance because they usually faceproblems to keep focus on the strategic issues of the organization.

  12. Downscaled Climate Change Projections for the Southern Colorado Plateau: Variability and Implications for Vegetation Changes

    Science.gov (United States)

    Garfin, G. M.; Eischeid, J. K.; Cole, K. L.; Ironside, K.; Cobb, N. S.

    2008-12-01

    most striking aspect of projections of future precipitation is steadily decreasing May-June precipitation during the twenty-first century. Though absolute precipitation during this season is small, declining moisture during the arid pre-monsoon will likely decrease soil moisture, and increase drought stress - consequently, increasing vegetation susceptibility the insect outbreaks and disease. Summer precipitation projections show considerable multi-decade variability, but no substantial trends. Winter precipitation shows little interannual variability and no strong trends. By 2090, annual precipitation is projected to decline by 1-5% across much of the region, with greater declines in the southern part of the domain and increases of 1-5% in the northwestern and northeastern parts of the domain. As part of a National Institute for Climate Change Research project, these projected changes will be input into a USDA-FS vegetation response model, in order to estimate species-specific responses to projected climate changes. We expect increasing temperatures, declining annual precipitation, and extreme declines in pre-monsoon season precipitation to generate significant redistribution of some plant species in the Southern Colorado Plateau.

  13. Usage of machine learning for the separation of electroweak and strong Zγ production at the LHC experiments

    Science.gov (United States)

    Petukhov, A. M.; Soldatov, E. Yu

    2017-12-01

    Separation of electroweak component from strong component of associated Zγ production on hadron colliders is a very challenging task due to identical final states of such processes. The only difference is the origin of two leading jets in these two processes. Rectangular cuts on jet kinematic variables from ATLAS/CMS 8 TeV Zγ experimental analyses were improved using machine learning techniques. New selection variables were also tested. The expected significance of separation for LHC experiments conditions at the second datataking period (Run2) and 120 fb-1 amount of data reaches more than 5σ. Future experimental observation of electroweak Zγ production can also lead to the observation physics beyond Standard Model.

  14. Putting the cart before the horse. A comment on Wagstaff on inequality measurement in the presence of binary variables

    NARCIS (Netherlands)

    G. Erreygers (Guido); T.G.M. van Ourti (Tom)

    2011-01-01

    textabstractAdam Wagstaff's (2011) recent paper sends a strong reminder that binary variables occur frequently in health inequality studies and that it is important to examine whether the standard measurement tools can be applied without any modification when the health variable happens to be

  15. Sea Surface Temperature Records Using Sr/Ca Ratios in a Siderastrea siderea Coral from SE Cuba

    Science.gov (United States)

    Fargher, H. A.; Hughen, K. A.; Ossolinski, J. E.; Bretos, F.; Siciliano, D.; Gonzalez, P.

    2015-12-01

    Sea surface temperature (SST) variability from Cuba remains relatively unknown compared to the rest of the Caribbean. Cuba sits near an inflection point in the spatial pattern of SST from the North Atlantic Oscillation (NAO), and long SST records from the region could reveal changes in the influence of this climate system through time. A Siderastrea siderea coral from the Jardínes de la Reina in southern Cuba was drilled to obtain a 220 year long archive of environmental change. The genus Siderastrea has not been extensively studied as an SST archive, yet Sr/Ca ratios in the Cuban core show a clear seasonal signal and strong correlation to instrumental SST data (r2 = 0.86 and 0.36 for monthly and interannual (winter season) timescales, respectively). Annual growth rates (linear extension) of the coral are observed to have a minor influence on Sr/Ca variability, but do not show a direct correlation to SST on timescales from annual to multidecadal. Sr/Ca measurements from the Cuban coral are used to reconstruct monthly and seasonal (winter, summer) SST extending back more than two centuries. Wintertime SST in southern Cuba is compared to other coral Sr/Ca records of winter-season SST from locations sensitive to the NAO in order to investigate the stationarity of the NAO SST 'fingerprint' through time.

  16. Southern Annular Mode drives multicentury wildfire activity in southern South America.

    Science.gov (United States)

    Holz, Andrés; Paritsis, Juan; Mundo, Ignacio A; Veblen, Thomas T; Kitzberger, Thomas; Williamson, Grant J; Aráoz, Ezequiel; Bustos-Schindler, Carlos; González, Mauro E; Grau, H Ricardo; Quezada, Juan M

    2017-09-05

    The Southern Annular Mode (SAM) is the main driver of climate variability at mid to high latitudes in the Southern Hemisphere, affecting wildfire activity, which in turn pollutes the air and contributes to human health problems and mortality, and potentially provides strong feedback to the climate system through emissions and land cover changes. Here we report the largest Southern Hemisphere network of annually resolved tree ring fire histories, consisting of 1,767 fire-scarred trees from 97 sites (from 22 °S to 54 °S) in southern South America (SAS), to quantify the coupling of SAM and regional wildfire variability using recently created multicentury proxy indices of SAM for the years 1531-2010 AD. We show that at interannual time scales, as well as at multidecadal time scales across 37-54 °S, latitudinal gradient elevated wildfire activity is synchronous with positive phases of the SAM over the years 1665-1995. Positive phases of the SAM are associated primarily with warm conditions in these biomass-rich forests, in which widespread fire activity depends on fuel desiccation. Climate modeling studies indicate that greenhouse gases will force SAM into its positive phase even if stratospheric ozone returns to normal levels, so that climate conditions conducive to widespread fire activity in SAS will continue throughout the 21st century.

  17. Geospatial Method for Computing Supplemental Multi-Decadal U.S. Coastal Land-Use and Land-Cover Classification Products, Using Landsat Data and C-CAP Products

    Science.gov (United States)

    Spruce, J. P.; Smoot, James; Ellis, Jean; Hilbert, Kent; Swann, Roberta

    2012-01-01

    This paper discusses the development and implementation of a geospatial data processing method and multi-decadal Landsat time series for computing general coastal U.S. land-use and land-cover (LULC) classifications and change products consisting of seven classes (water, barren, upland herbaceous, non-woody wetland, woody upland, woody wetland, and urban). Use of this approach extends the observational period of the NOAA-generated Coastal Change and Analysis Program (C-CAP) products by almost two decades, assuming the availability of one cloud free Landsat scene from any season for each targeted year. The Mobile Bay region in Alabama was used as a study area to develop, demonstrate, and validate the method that was applied to derive LULC products for nine dates at approximate five year intervals across a 34-year time span, using single dates of data for each classification in which forests were either leaf-on, leaf-off, or mixed senescent conditions. Classifications were computed and refined using decision rules in conjunction with unsupervised classification of Landsat data and C-CAP value-added products. Each classification's overall accuracy was assessed by comparing stratified random locations to available reference data, including higher spatial resolution satellite and aerial imagery, field survey data, and raw Landsat RGBs. Overall classification accuracies ranged from 83 to 91% with overall Kappa statistics ranging from 0.78 to 0.89. The accuracies are comparable to those from similar, generalized LULC products derived from C-CAP data. The Landsat MSS-based LULC product accuracies are similar to those from Landsat TM or ETM+ data. Accurate classifications were computed for all nine dates, yielding effective results regardless of season. This classification method yielded products that were used to compute LULC change products via additive GIS overlay techniques.

  18. OBSERVATION OF STRONG - STRONG AND OTHER BEAM - BEAM EFFECTS IN RHIC

    International Nuclear Information System (INIS)

    FISCHER, W.; BLASKIEWICZ, M.; BRENNAN, J.M.; CAMERON, P.; CONNOLLY, R.; MONTAG, C.; PEGGS, S.; PILAT, F.; PTITSYN, V.; TEPIKIAN, S.; TRBOJEVIC, D.; VAN ZEIJTS, J.

    2003-01-01

    RHIC is currently the only hadron collider in which strong-strong beam-beam effects can be seen. For the first time, coherent beam-beam modes were observed in a bunched beam hadron collider. Other beam-beam effects in RHIC were observed in operation and in dedicated experiments with gold ions, deuterons and protons. Observations include measurements of beam-beam induced tune shifts, lifetime and emittance growth measurements with and without beam-beam interaction, and background rates as a function of tunes. During ramps unequal radio frequencies in the two rings cause the crossing points to move longitudinally. Thus bunches experience beam-beam interactions only in intervals and the tunes are modulated. In this article we summarize the most important beam-beam observations made so far

  19. Variability of North Sea pH and CO2 in response to North Atlantic Oscillation forcing

    DEFF Research Database (Denmark)

    Salt, Lesley A.; Thomas, Helmuth; Prowe, Friederike

    2013-01-01

    [1] High biological activity causes a distinct seasonality of surface water pH in the North Sea, which is a strong sink for atmospheric CO2 via an effective shelf pump. The intimate connection between the North Sea and the North Atlantic Ocean suggests that the variability of the CO2 system...... of the North Atlantic Ocean may, in part, be responsible for the observed variability of pH and CO2 in the North Sea. In this work, we demonstrate the role of the North Atlantic Oscillation (NAO), the dominant climate mode for the North Atlantic, in governing this variability. Based on three extensive...... observational records covering the relevant levels of the NAO index, we provide evidence that the North Sea pH and CO2 system strongly responds to external and internal expressions of the NAO. Under positive NAO, the higher rates of inflow of water from the North Atlantic Ocean and the Baltic outflow lead...

  20. Seismic switch for strong motion measurement

    Science.gov (United States)

    Harben, P.E.; Rodgers, P.W.; Ewert, D.W.

    1995-05-30

    A seismic switching device is described that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period. 11 figs.

  1. Correlation Between Fracture Network Properties and Stress Variability in Geological Media

    Science.gov (United States)

    Lei, Qinghua; Gao, Ke

    2018-05-01

    We quantitatively investigate the stress variability in fractured geological media under tectonic stresses. The fracture systems studied include synthetic fracture networks following power law length scaling and natural fracture patterns based on outcrop mapping. The stress field is derived from a finite-discrete element model, and its variability is analyzed using a set of mathematical formulations that honor the tensorial nature of stress data. We show that local stress perturbation, quantified by the Euclidean distance of a local stress tensor to the mean stress tensor, has a positive, linear correlation with local fracture intensity, defined as the total fracture length per unit area within a local sampling window. We also evaluate the stress dispersion of the entire stress field using the effective variance, that is, a scalar-valued measure of the overall stress variability. The results show that a well-connected fracture system under a critically stressed state exhibits strong local and global stress variabilities.

  2. The gait standard deviation, a single measure of kinematic variability.

    Science.gov (United States)

    Sangeux, Morgan; Passmore, Elyse; Graham, H Kerr; Tirosh, Oren

    2016-05-01

    Measurement of gait kinematic variability provides relevant clinical information in certain conditions affecting the neuromotor control of movement. In this article, we present a measure of overall gait kinematic variability, GaitSD, based on combination of waveforms' standard deviation. The waveform standard deviation is the common numerator in established indices of variability such as Kadaba's coefficient of multiple correlation or Winter's waveform coefficient of variation. Gait data were collected on typically developing children aged 6-17 years. Large number of strides was captured for each child, average 45 (SD: 11) for kinematics and 19 (SD: 5) for kinetics. We used a bootstrap procedure to determine the precision of GaitSD as a function of the number of strides processed. We compared the within-subject, stride-to-stride, variability with the, between-subject, variability of the normative pattern. Finally, we investigated the correlation between age and gait kinematic, kinetic and spatio-temporal variability. In typically developing children, the relative precision of GaitSD was 10% as soon as 6 strides were captured. As a comparison, spatio-temporal parameters required 30 strides to reach the same relative precision. The ratio stride-to-stride divided by normative pattern variability was smaller in kinematic variables (the smallest for pelvic tilt, 28%) than in kinetic and spatio-temporal variables (the largest for normalised stride length, 95%). GaitSD had a strong, negative correlation with age. We show that gait consistency may stabilise only at, or after, skeletal maturity. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Experimental and numerical study of the strong interaction between wakes of cylindrical obstacles

    International Nuclear Information System (INIS)

    Brun, Ch.

    1998-01-01

    In the context of thermal-hydraulics of nuclear reactors, strong interaction between wakes is encountered in the bottom of reactor vessels where control and measurement rods of variable size and disposition interact with the overall wakes generated in these flow zones. This study deals with the strong interaction between two wakes developed downstream of two parallel cylinders with a small spacing. The analysis focusses on the effect of the Reynolds regime which controls the equilibrium between the inertia and viscosity forces of the fluid and influences the large scale behaviour of the flow with the development of hydrodynamic instabilities and turbulence. The document is organized as follows: the characteristic phenomena of wakes formation downstream of cylindrical obstacles are recalled in the first chapter (single cylinder, interaction between two tubes, case of a bundle of tubes perpendicular to the flow). The experimental setup (hydraulic loop, velocity and pressure measurement instrumentation) and the statistical procedures applied to the signals measured are detailed in chapters 2 and 3. Chapter 4 is devoted to the experimental study of the strong interaction between two tubes. Laser Doppler velocity measurements in the wakes close to cylinders and pressure measurements performed on tube walls are reported in this chapter. In chapter 5, a 2-D numerical simulation of two typical cases of interaction (Re = 1000 and Re = 5000) is performed. In the last chapter, a more complex application of strong interactions inside and downstream of a bunch of staggered tubes is analyzed experimentally for equivalent Reynolds regimes. (J.S.)

  4. The predicted CLARREO sampling error of the inter-annual SW variability

    Science.gov (United States)

    Doelling, D. R.; Keyes, D. F.; Nguyen, C.; Macdonnell, D.; Young, D. F.

    2009-12-01

    The NRC Decadal Survey has called for SI traceability of long-term hyper-spectral flux measurements in order to monitor climate variability. This mission is called the Climate Absolute Radiance and Refractivity Observatory (CLARREO) and is currently defining its mission requirements. The requirements are focused on the ability to measure decadal change of key climate variables at very high accuracy. The accuracy goals are set using anticipated climate change magnitudes, but the accuracy achieved for any given climate variable must take into account the temporal and spatial sampling errors based on satellite orbits and calibration accuracy. The time period to detect a significant trend in the CLARREO record depends on the magnitude of the sampling calibration errors relative to the current inter-annual variability. The largest uncertainty in climate feedbacks remains the effect of changing clouds on planetary energy balance. Some regions on earth have strong diurnal cycles, such as maritime stratus and afternoon land convection; other regions have strong seasonal cycles, such as the monsoon. However, when monitoring inter-annual variability these cycles are only important if the strength of these cycles vary on decadal time scales. This study will attempt to determine the best satellite constellations to reduce sampling error and to compare the error with the current inter-annual variability signal to ensure the viability of the mission. The study will incorporate Clouds and the Earth's Radiant Energy System (CERES) (Monthly TOA/Surface Averages) SRBAVG product TOA LW and SW climate quality fluxes. The fluxes are derived by combining Terra (10:30 local equator crossing time) CERES fluxes with 3-hourly 5-geostationary satellite estimated broadband fluxes, which are normalized using the CERES fluxes, to complete the diurnal cycle. These fluxes were saved hourly during processing and considered the truth dataset. 90°, 83° and 74° inclination precessionary orbits as

  5. Effect of Rainfall Variability on Water Supply in Ikeduru L.G.A. of Imo ...

    African Journals Online (AJOL)

    User

    alternatives, which are that there is a strong relationship between rural water supply in ... Rainfall is a renewable resource, highly variable in space and time and ..... Due to the total dependence on the immediate environment for water supply,.

  6. Sea Level Trend and Variability in the Straits of Singapore and Malacca

    Science.gov (United States)

    Luu, Q.; Tkalich, P.

    2013-12-01

    The Straits of Singapore and Malacca (SSM) connect the Andaman Sea located northeast of the Indian Ocean to the South China Sea, the largest marginal sea situated in the tropical Pacific Ocean. Consequently, sea level in the SSM is assumed to be governed by various regional phenomena associated with the adjacent parts of Indian and Pacific Oceans. At annual scale sea level variability is dominant by the Asian monsoon. Interannual sea level signals are modulated by the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). In the long term, regional sea level is driven by the global climate change. However, relative impacts of these multi-scale phenomena on regional sea level in the SSM are yet to be quantified. In present study, publicly available tide gauge records and satellite altimetry data are used to derive long-term sea level trend and variability in SSM. We used the data from research-quality stations, including four located in the Singapore Strait (Tanjong Pagar, Raffles Lighthouse, Sultan Shoal and Sembawang) and seven situated in the Malacca Strait (Kelang, Keling, Kukup, Langkawji, Lumut, Penang and Ko Taphao Noi), each one having 25-39 year data up to the year 2011. Harmonic analysis is performed to filter out astronomic tides from the tide gauge records when necessary; and missing data are reconstructed using identified relationships between sea level and the governing phenomena. The obtained sea level anomalies (SLAs) and reconstructed mean sea level are then validated against satellite altimetry data from AVISO. At multi-decadal scale, annual measured sea level in the SSM is varying with global mean sea level, rising for the period 1984-2009 at the rate 1.8-2.3 mm/year in the Singapore Strait and 1.1-2.8 mm/year in the Malacca Strait. Interannual regional sea level drops are associated with El Niño events, while the rises are correlated with La Niña episodes; both variations are in the range of ×5 cm with correlation coefficient

  7. Coral bleaching pathways under the control of regional temperature variability

    Science.gov (United States)

    Langlais, C. E.; Lenton, A.; Heron, S. F.; Evenhuis, C.; Sen Gupta, A.; Brown, J. N.; Kuchinke, M.

    2017-11-01

    Increasing sea surface temperatures (SSTs) are predicted to adversely impact coral populations worldwide through increasing thermal bleaching events. Future bleaching is unlikely to be spatially uniform. Therefore, understanding what determines regional differences will be critical for adaptation management. Here, using a cumulative heat stress metric, we show that characteristics of regional SST determine the future bleaching risk patterns. Incorporating observed information on SST variability, in assessing future bleaching risk, provides novel options for management strategies. As a consequence, the known biases in climate model variability and the uncertainties in regional warming rate across climate models are less detrimental than previously thought. We also show that the thresholds used to indicate reef viability can strongly influence a decision on what constitutes a potential refugia. Observing and understanding the drivers of regional variability, and the viability limits of coral reefs, is therefore critical for making meaningful projections of coral bleaching risk.

  8. Groundwater variability across temporal and spatial scales in the central and northeastern U.S.

    OpenAIRE

    Li, B; Rodell, M; Famiglietti, JS

    2015-01-01

    © 2015 Elsevier B.V. Depth-to-water measurements from 181 monitoring wells in unconfined or semi-confined aquifers in nine regions of the central and northeastern U.S. were analyzed. Groundwater storage exhibited strong seasonal variations in all regions, with peaks in spring and lows in autumn, and its interannual variability was nearly unbounded, such that the impacts of droughts, floods, and excessive pumping could persist for many years. We found that the spatial variability of groundwate...

  9. Improving seasonal forecasts of hydroclimatic variables through the state of multiple large-scale climate signals

    Science.gov (United States)

    Castelletti, A.; Giuliani, M.; Block, P. J.

    2017-12-01

    Increasingly uncertain hydrologic regimes combined with more frequent and intense extreme events are challenging water systems management worldwide, emphasizing the need of accurate medium- to long-term predictions to timely prompt anticipatory operations. Despite modern forecasts are skillful over short lead time (from hours to days), predictability generally tends to decrease on longer lead times. Global climate teleconnection, such as El Niño Southern Oscillation (ENSO), may contribute in extending forecast lead times. However, ENSO teleconnection is well defined in some locations, such as Western USA and Australia, while there is no consensus on how it can be detected and used in other regions, particularly in Europe, Africa, and Asia. In this work, we generalize the Niño Index Phase Analysis (NIPA) framework by contributing the Multi Variate Niño Index Phase Analysis (MV-NIPA), which allows capturing the state of multiple large-scale climate signals (i.e. ENSO, North Atlantic Oscillation, Pacific Decadal Oscillation, Atlantic Multi-decadal Oscillation, Indian Ocean Dipole) to forecast hydroclimatic variables on a seasonal time scale. Specifically, our approach distinguishes the different phases of the considered climate signals and, for each phase, identifies relevant anomalies in Sea Surface Temperature (SST) that influence the local hydrologic conditions. The potential of the MV-NIPA framework is demonstrated through an application to the Lake Como system, a regulated lake in northern Italy which is mainly operated for flood control and irrigation supply. Numerical results show high correlations between seasonal SST values and one season-ahead precipitation in the Lake Como basin. The skill of the resulting MV-NIPA forecast outperforms the one of ECMWF products. This information represents a valuable contribution to partially anticipate the summer water availability, especially during drought events, ultimately supporting the improvement of the Lake Como

  10. Short proofs of strong normalization

    OpenAIRE

    Wojdyga, Aleksander

    2008-01-01

    This paper presents simple, syntactic strong normalization proofs for the simply-typed lambda-calculus and the polymorphic lambda-calculus (system F) with the full set of logical connectives, and all the permutative reductions. The normalization proofs use translations of terms and types to systems, for which strong normalization property is known.

  11. Variability in global ocean phytoplankton distribution over 1979-2007

    Science.gov (United States)

    Masotti, I.; Alvain, S.; Moulin, C.; Antoine, D.

    2009-04-01

    Recently, reanalysis of long-term ocean color data (CZCS and SeaWiFS; Antoine et al., 2005) has shown that world ocean average phytoplankton chlorophyll levels show an increase of 20% over the last two decades. It is however unknown whether this increase is associated with a change in the distribution of phytoplankton groups or if it simply corresponds to an increase of the productivity. Within the framework of the GLOBPHY project, the distribution of the phytoplankton groups was monitored by applying the PHYSAT method (Alvain et al., 2005) to the historical ocean color data series from CZCS, OCTS and SeaWiFS sensors. The PHYSAT algorithm allows identification of several phytoplankton, like nanoeucaryotes, prochlorococcus, synechococcus and diatoms. Because both sensors (OCTS-SeaWiFS) are very similar, OCTS data were processed with the standard PHYSAT algorithm to cover the 1996-1997 period during which a large El Niño event occurred, just before the SeaWiFS era. Our analysis of this dataset (1996-2006) evidences a strong variability in the distribution of phytoplankton groups at both regional and global scales. In the equatorial region (0°-5°S), a three-fold increase of nanoeucaryotes frequency was detected in opposition to a two-fold decrease of synechococcus during the early stages of El Niño conditions (May-June 1997, OCTS). The impact of this El Niño is however not confined to the Equatorial Pacific and has affected the global ocean. The processing of CZCS data with PHYSAT has required several adaptations of this algorithm due to the lower performances and the reduced number of spectral bands of the sensor. Despites higher uncertainties, the phytoplankton groups distribution obtained with CZCS is globally consistent with that of SeaWiFS. A comparison of variability in global phytoplankton distribution between 1979-1982 (CZCS) and 1999-2002 (SeaWiFS) suggests an increase in nanoeucaryotes at high latitudes (>40°) and in the equatorial region (10°S-10

  12. Extreme Radio Flares and Associated X-Ray Variability from Young Stellar Objects in the Orion Nebula Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Forbrich, Jan [Centre for Astrophysics Research, School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Reid, Mark J.; Wolk, Scott J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138 (United States); Menten, Karl M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Rivilla, Victor M. [Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125, Firenze (Italy); Rau, Urvashi; Chandler, Claire J. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States)

    2017-08-01

    Young stellar objects are known to exhibit strong radio variability on timescales of weeks to months, and a few reports have documented extreme radio flares with at least an order of magnitude change in flux density on timescales of hours to days. However, there have been few constraints on the occurrence rate of such radio flares or on the correlation with pre-main sequence X-ray flares, although such correlations are known for the Sun and nearby active stars. Here we report simultaneous deep VLA radio and Chandra X-ray observations of the Orion Nebula Cluster, targeting hundreds of sources to look for the occurrence rate of extreme radio variability and potential correlation with the most extreme X-ray variability. We identify 13 radio sources with extreme radio variability, with some showing an order of magnitude change in flux density in less than 30 minutes. All of these sources show X-ray emission and variability, but we find clear correlations with extreme radio flaring only on timescales <1 hr. Strong X-ray variability does not predict the extreme radio sources and vice versa. Radio flares thus provide us with a new perspective on high-energy processes in YSOs and the irradiation of their protoplanetary disks. Finally, our results highlight implications for interferometric imaging of sources violating the constant-sky assumption.

  13. Separating the Effects of Tropical Atlantic and Pacific SST-driven Climate Variability on Amazon Carbon Exchange

    Science.gov (United States)

    Liptak, J.; Keppel-Aleks, G.

    2016-12-01

    Amazon forests store an estimated 25% percent of global terrestrial carbon per year1, 2, but the responses of Amazon carbon uptake to climate change is highly uncertain. One source of this uncertainty is tropical sea surface temperature variability driven by teleconnections. El Nino-Southern Oscillation (ENSO) is a key driver of year-to-year Amazon carbon exchange, with associated temperature and precipitation changes favoring net carbon storage in La Nina years, and net carbon release during El Nino years3. To determine how Amazon climate and terrestrial carbon fluxes react to ENSO alone and in concert with other SST-driven teleconnections such as the Atlantic Multidecadal Oscillation (AMO), we force the atmosphere (CAM5) and land (CLM4) components of the CESM(BGC) with prescribed monthly SSTs over the period 1950—2014 in a Historical control simulation. We then run an experiment (PAC) with time-varying SSTs applied only to the tropical equatorial Pacific Ocean, and repeating SST seasonal cycle climatologies elsewhere. Limiting SST variability to the equatorial Pacific indicates that other processes enhance ENSO-driven Amazon climate anomalies. Compared to the Historical control simulation, warming, drying and terrestrial carbon loss over the Amazon during El Nino periods are lower in the PAC simulation, especially prior to 1990 during the cool phase of the AMO. Cooling, moistening, and net carbon uptake during La Nina periods are also reduced in the PAC simulation, but differences are greater after 1990 during the warm phase of the AMO. By quantifying the relationships among climate drivers and carbon fluxes in the Historical and PAC simulations, we both assess the sensitivity of these relationships to the magnitude of ENSO forcing and quantify how other teleconnections affect ENSO-driven Amazon climate feedbacks. We expect that these results will help us improve hypotheses for how Atlantic and Pacific climate trends will affect future Amazon carbon carbon

  14. Optically Variable Inks (OVI): versatility in formulation and usage

    Science.gov (United States)

    Degott, Pierre

    2000-04-01

    Optically Variable Inks (OVI) are printing inks containing high precision, multi-layer interference filters as their constituent pigment. They display a strong and unique color change form a normal to an angled viewing position. During the last 10 years OVI has gained wide acceptance as an overt protection for numerous value documents including banknotes and ID cards. Meanwhile, continuous improvement has taken place over the last two years in a variety of areas.

  15. Discovery of a strong soft X-ray excess in Mkn 335 -evidence for an accretion disc

    International Nuclear Information System (INIS)

    Pounds, K.A.; Stanger, V.J.; Turner, T.J.; King, A.R.; Czerny, B.

    1987-01-01

    EXOSAT observations of Mkn 335 reveal a hard power-law spectrum above approx. 1 keV, typical for Seyfert 1 galaxies, but with unusually strong variability on time-scales of approx. 1-2 hr. In addition an intense soft X-ray component is found to dominate the overall spectrum of Mkn 335 below approx. 0.6 keV. Both soft and hard components increased in strength by a factor approx. 6 between 1983 November and 1984 December. These observations are discussed in terms of models in which an accretion disc feeds a central massive black hole. It is found that radiation pressure only allows a thermal origin for the soft X-radiation if the black hole mass is 7 solar masses, as suggested also by the observed variability time-scale. (author)

  16. Partial differential equations in several complex variables

    CERN Document Server

    Chen, So-Chin

    2001-01-01

    This book is intended both as an introductory text and as a reference book for those interested in studying several complex variables in the context of partial differential equations. In the last few decades, significant progress has been made in the fields of Cauchy-Riemann and tangential Cauchy-Riemann operators. This book gives an up-to-date account of the theories for these equations and their applications. The background material in several complex variables is developed in the first three chapters, leading to the Levi problem. The next three chapters are devoted to the solvability and regularity of the Cauchy-Riemann equations using Hilbert space techniques. The authors provide a systematic study of the Cauchy-Riemann equations and the \\bar\\partial-Neumann problem, including L^2 existence theorems on pseudoconvex domains, \\frac 12-subelliptic estimates for the \\bar\\partial-Neumann problems on strongly pseudoconvex domains, global regularity of \\bar\\partial on more general pseudoconvex domains, boundary ...

  17. Changes in precipitation-streamflow transformation around the world: interdecadal variability and trends.

    Science.gov (United States)

    Saft, M.; Peel, M. C.; Andreassian, V.; Parajka, J.; Coxon, G.; Freer, J. E.; Woods, R. A.

    2017-12-01

    Accurate prediction of hydrologic response to potentially changing climatic forcing is a key current challenge in hydrology. Recent studies exploring decadal to multidecadal climate drying in the African Sahel and south-eastern and south-western Australia demonstrated that long dry periods also had an indirect cumulative impact on streamflow via altered catchment biophysical properties. As a result, hydrologic response to persisting change in climatic conditions, i.e. precipitation, cannot be confidently inferred from the hydrologic response to short-term interannual climate fluctuations of similar magnitude. This study aims to characterise interdecadal changes in precipitation-runoff conversion processes globally. The analysis is based on long continuous records from near-natural baseline catchments in North America, Europe, and Australia. We used several complimentary metrics characterising precipitation-runoff relationship to assess how partitioning changed over recent decades. First, we explore the hypothesis that during particularly dry or wet decades the precipitation elasticity of streamflow increases over what can be expected from inter-annual variability. We found this hypothesis holds for both wet and dry periods in some regions, but not everywhere. Interestingly, trend-like behaviour in the precipitation-runoff partitioning, unrelated to precipitation changes, offset the impact of persisting precipitation change in some regions. Therefore, in the second part of this study we explored longer-term trends in precipitation-runoff partitioning, and related them to climate and streamflow changes. We found significant changes in precipitation-runoff relationship around the world, which implies that runoff response to a given precipitation can vary over decades even in near-natural catchments. When significant changes occur, typically less runoff is generated for a given precipitation over time - even when precipitation is increasing. We discuss the consistency

  18. A possible interrelation between Earth rotation and climatic variability at decadal time-scale

    Directory of Open Access Journals (Sweden)

    Leonid Zotov

    2016-05-01

    Full Text Available Using multichannel singular spectrum analysis (MSSA we decomposed climatic time series into principal components, and compared them with Earth rotation parameters. The global warming trends were initially subtracted. Similar quasi 60 and 20 year periodic oscillations have been found in the global mean Earth temperature anomaly (HadCRUT4 and global mean sea level (GMSL. Similar cycles were also found in Earth rotation variation. Over the last 160 years multi-decadal change of Earth's rotation velocity is correlated with the 60-year temperature anomaly, and Chandler wobble envelope reproduces the form of the 60-year oscillation noticed in GMSL. The quasi 20-year oscillation observed in GMSL is correlated with the Chandler wobble excitation. So, we assume that Earth's rotation and climate indexes are connected. Despite of all the clues hinting this connection, no sound conclusion can be done as far as ocean circulation modelling is not able to correctly catch angular momentum of the oscillatory modes.

  19. Application of strong phosphoric acid to radiochemistry

    International Nuclear Information System (INIS)

    Terada, Kikuo

    1977-01-01

    Not only inorganic and organic compounds but also natural substrances, such as accumulations in soil, are completely decomposed and distilled by heating with strong phosphoric acid for 30 to 50 minutes. As applications of strong phosphoric acid to radiochemistry, determination of uranium and boron by use of solubilization effect of this substance, titration of uranyl ion by use of sulfuric iron (II) contained in this substance, application to tracer experiment, and determination of radioactive ruthenium in environmental samples are reviewed. Strong phosphoric acid is also applied to activation analysis, for example, determination of N in pyrographite with iodate potassium-strong phosphoric acid method, separation of Os and Ru with sulfuric cerium (IV) - strong phosphoric acid method or potassium dechromate-strong phosphoric acid method, analysis of Se, As and Sb rocks and accumulations with ammonium bromide, sodium chloride and sodium bromide-strong phosphoric acid method. (Kanao, N.)

  20. Spatio-temporal variability of aerosols in the tropics relationship with atmospheric and oceanic environments

    Science.gov (United States)

    Zuluaga-Arias, Manuel D.

    2011-12-01

    Earth's radiation budget is directly influenced by aerosols through the absorption of solar radiation and subsequent heating of the atmosphere. Aerosols modulate the hydrological cycle indirectly by modifying cloud properties, precipitation and ocean heat storage. In addition, polluting aerosols impose health risks in local, regional and global scales. In spite of recent advances in the study of aerosols variability, uncertainty in their spatio-temporal distributions still presents a challenge in the understanding of climate variability. For example, aerosol loading varies not only from year to year but also on higher frequency intraseasonal time scales producing strong variability on local and regional scales. An assessment of the impact of aerosol variability requires long period measurements of aerosols at both regional and global scales. The present dissertation compiles a large database of remotely sensed aerosol loading in order to analyze its spatio-temporal variability, and how this load interacts with different variables that characterize the dynamic and thermodynamic states of the environment. Aerosol Index (AI) and Aerosol Optical Depth (AOD) were used as measures of the atmospheric aerosol load. In addition, atmospheric and oceanic satellite observations, and reanalysis datasets is used in the analysis to investigate aerosol-environment interactions. A diagnostic study is conducted to produce global and regional aerosol satellite climatologies, and to analyze and compare the validity of aerosol retrievals. We find similarities and differences between the aerosol distributions over various regions of the globe when comparing the different satellite retrievals. A nonparametric approach is also used to examine the spatial distribution of the recent trends in aerosol concentration. A significant positive trend was found over the Middle East, Arabian Sea and South Asian regions strongly influenced by increases in dust events. Spectral and composite analyses