WorldWideScience

Sample records for strong local poloidal

  1. Resonance localization and poloidal electric field due to cyclo- tron wave heating in tokamak plasmas

    International Nuclear Information System (INIS)

    Hsu, J.Y.; Chan, V.S.; Harvey, R.W.; Prater, R.; Wong, S.K.

    1984-01-01

    The perpendicular heating in cyclotron waves tends to pile up the resonant particles toward the low magnetic field side with their banana tips localized to the resonant surface. A poloidal electric field with an E x B drift comparable to the ion vertical drift in a toroidal magnetic field may result. With the assumption of anomalous electron and neoclassical ion transport, density variations due to wave heating are discussed

  2. Fault-tolerant design of local controller for the poloidal field converter control system on ITER

    International Nuclear Information System (INIS)

    Shen, Jun; Fu, Peng; Gao, Ge; He, Shiying; Huang, Liansheng; Zhu, Lili; Chen, Xiaojiao

    2016-01-01

    Highlights: • The requirements on the Local Control Cubicles (LCC) for ITER Poloidal Field Converter are analyzed. • Decoupled service-based software architecture is proposed to make control loops on LCC running at varying cycle-time. • Fault detection and recovery methods for the LCC are developed to enhance the system. • The performance of the LCC with or without fault-tolerant feature is tested and compared. - Abstract: The control system for the Poloidal Field (PF) on ITER is a synchronously networked control system, which has several kinds of computational controllers. The Local Control Cubicles (LCC) play a critical role in the networked control system for they are the interface to all input and output signals. Thus, some additional work must be done to guarantee the LCCs proper operation under influence of faults. This paper mainly analyzes the system demands of the LCCs and faults which have been encountered recently. In order to handle these faults, decoupled service-based software architecture has been proposed. Based on this architecture, fault detection and system recovery methods, such as redundancy and rejuvenation, have been incorporated to achieve a fault-tolerant private network with the aid of QNX operating system. Unlike the conventional method, this method requires no additional hardware and can be achieved relatively easily. To demonstrate effectiveness the LCCs have been successfully tested during the recent PF Converter Unit performance tests for ITER.

  3. Fault-tolerant design of local controller for the poloidal field converter control system on ITER

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Jun; Fu, Peng; Gao, Ge; He, Shiying; Huang, Liansheng, E-mail: huangls@ipp.ac.cn; Zhu, Lili; Chen, Xiaojiao

    2016-11-15

    Highlights: • The requirements on the Local Control Cubicles (LCC) for ITER Poloidal Field Converter are analyzed. • Decoupled service-based software architecture is proposed to make control loops on LCC running at varying cycle-time. • Fault detection and recovery methods for the LCC are developed to enhance the system. • The performance of the LCC with or without fault-tolerant feature is tested and compared. - Abstract: The control system for the Poloidal Field (PF) on ITER is a synchronously networked control system, which has several kinds of computational controllers. The Local Control Cubicles (LCC) play a critical role in the networked control system for they are the interface to all input and output signals. Thus, some additional work must be done to guarantee the LCCs proper operation under influence of faults. This paper mainly analyzes the system demands of the LCCs and faults which have been encountered recently. In order to handle these faults, decoupled service-based software architecture has been proposed. Based on this architecture, fault detection and system recovery methods, such as redundancy and rejuvenation, have been incorporated to achieve a fault-tolerant private network with the aid of QNX operating system. Unlike the conventional method, this method requires no additional hardware and can be achieved relatively easily. To demonstrate effectiveness the LCCs have been successfully tested during the recent PF Converter Unit performance tests for ITER.

  4. Evidence for a poloidally localized enhancement of radial transport in the scrape-off layer of the Tore Supra tokamak

    International Nuclear Information System (INIS)

    Gunn, J.P.; Boucher, C.; Dionne, M.; Duran, I.; Fuchs, V.; Loarer, T.; Nanobashvili, I.; Panek, R.; Pascal, J.-Y.; Saint-Laurent, F.; Stoeckel, J.; Rompuy, T. van; Zagorski, R.; Adamek, J.; Bucalossi, J.; Dejarnac, R.; Devynck, P.; Hertout, P.; Hron, M.; Lebrun, G.; Moreau, P.; Rimini, F.; Sarkissian, A.; Oost, G. van

    2007-01-01

    Near-sonic parallel flows are systematically observed in the far scrape-off layer (SOL) of the limiter tokamak Tore Supra, as in many L-mode X-point divertor tokamak plasmas. The poloidal variation of the parallel flow has been measured by moving the contact point of a small circular plasma onto limiters at different poloidal angles. The resulting variations of flow are consistent with the existence of a poloidally localized enhancement of radial transport concentrated in a 30 deg. sector near the outboard midplane. If the plasma contact point is placed on the inboard limiters, then the SOL expands to fill all the space between the plasma and the outboard limiters, with density decay lengths between 10 and 20 cm. On the other hand, if the contact point lies on the outboard limiters, the localized plasma outflux is scraped off and the SOL is very thin with decay lengths around 2-3 cm. The outboard radial transport would have to be about two orders of magnitude stronger than inboard to explain these results

  5. ZEPHYR - poloidal field system

    International Nuclear Information System (INIS)

    Seidel, U.

    1982-04-01

    The basics of the poloidal field system of the ZEPHYR experiment are considered. From the physical data the requirements for the poloidal field are derived. Hence an appropriate coil configuration consisting of coil locations and corresponding currents is obtained. A suitable electrical circuit feeding the coils is described. A preliminary assessment of the dynamic control of the poloidal field system is given. (orig.)

  6. <strong>Size and local democracystrong>

    DEFF Research Database (Denmark)

    Mouritzen, Poul Erik; Rose, Lawrence

    2009-01-01

    The issue of the appropriate scale for local government has regularly appeared on the agenda of public sector reformers. In the empirical work devoted to this issue, the principal focus has been on the implications of size for efficiency in local service provision. Relatively less emphasis has be...

  7. Strong quantum scarring by local impurities

    Science.gov (United States)

    Luukko, Perttu J. J.; Drury, Byron; Klales, Anna; Kaplan, Lev; Heller, Eric J.; Räsänen, Esa

    2016-11-01

    We discover and characterise strong quantum scars, or quantum eigenstates resembling classical periodic orbits, in two-dimensional quantum wells perturbed by local impurities. These scars are not explained by ordinary scar theory, which would require the existence of short, moderately unstable periodic orbits in the perturbed system. Instead, they are supported by classical resonances in the unperturbed system and the resulting quantum near-degeneracy. Even in the case of a large number of randomly scattered impurities, the scars prefer distinct orientations that extremise the overlap with the impurities. We demonstrate that these preferred orientations can be used for highly efficient transport of quantum wave packets across the perturbed potential landscape. Assisted by the scars, wave-packet recurrences are significantly stronger than in the unperturbed system. Together with the controllability of the preferred orientations, this property may be very useful for quantum transport applications.

  8. A STRONG OPTIMIZATION THEOREM IN LOCALLY CONVEX SPACES

    Institute of Scientific and Technical Information of China (English)

    程立新; 腾岩梅

    2003-01-01

    This paper presents a geometric characterization of convex sets in locally convex spaces onwhich a strong optimization theorem of the Stegall-type holds, and gives Collier's theorem ofw* Asplund spaces a localized setting.

  9. Models for poloidal divertors

    International Nuclear Information System (INIS)

    Post, D.E.; Heifetz, D.; Petravic, M.

    1982-07-01

    Recent progress in models for poloidal divertors has both helped to explain current divertor experiments and contributed significantly to design efforts for future large tokamak (INTOR, etc.) divertor systems. These models range in sophistication from zero-dimensional treatments and dimensional analysis to two-dimensional models for plasma and neutral particle transport which include a wide variety of atomic and molecular processes as well as detailed treatments of the plasma-wall interaction. This paper presents a brief review of some of these models, describing the physics and approximations involved in each model. We discuss the wide variety of physics necessary for a comprehensive description of poloidal divertors. To illustrate the progress in models for poloidal divertors, we discuss some of our recent work as typical examples of the kinds of calculations being done

  10. Models for poloidal divertors

    Energy Technology Data Exchange (ETDEWEB)

    Post, D.E.; Heifetz, D.; Petravic, M.

    1982-07-01

    Recent progress in models for poloidal divertors has both helped to explain current divertor experiments and contributed significantly to design efforts for future large tokamak (INTOR, etc.) divertor systems. These models range in sophistication from zero-dimensional treatments and dimensional analysis to two-dimensional models for plasma and neutral particle transport which include a wide variety of atomic and molecular processes as well as detailed treatments of the plasma-wall interaction. This paper presents a brief review of some of these models, describing the physics and approximations involved in each model. We discuss the wide variety of physics necessary for a comprehensive description of poloidal divertors. To illustrate the progress in models for poloidal divertors, we discuss some of our recent work as typical examples of the kinds of calculations being done.

  11. Measurement of Poloidal Velocity on the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ronald E. Bell and Russell Feder

    2010-06-04

    A diagnostic suite has been developed to measure impurity poloidal flow using charge exchange recombination spectroscopy on the National Spherical Torus Experiment. Toroidal and poloidal viewing systems measure all quantities required to determine the radial electric field. Two sets of up/down symmetric poloidal views are used to measure both active emission in the plane of the neutral heating beams and background emission in a radial plane away from the neutral beams. Differential velocity measurements isolate the line-integrated poloidal velocity from apparent flows due to the energy-dependent chargeexchange cross section. Six f/1.8 spectrometers measure 276 spectra to obtain 75 active and 63 background channels every 10 ms. Local measurements from a similar midplane toroidal viewing system are mapped into two dimensions to allow the inversion of poloidal line-integrated measurements to obtain local poloidal velocity profiles. Radial resolution after inversion is 0.6-1.8 cm from the plasma edge to the center.

  12. Measurement of Poloidal Velocity on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Bell, Ronald E.; Feder, Russell

    2010-01-01

    A diagnostic suite has been developed to measure impurity poloidal flow using charge exchange recombination spectroscopy on the National Spherical Torus Experiment. Toroidal and poloidal viewing systems measure all quantities required to determine the radial electric field. Two sets of up/down symmetric poloidal views are used to measure both active emission in the plane of the neutral heating beams and background emission in a radial plane away from the neutral beams. Differential velocity measurements isolate the line-integrated poloidal velocity from apparent flows due to the energy-dependent chargeexchange cross section. Six f/1.8 spectrometers measure 276 spectra to obtain 75 active and 63 background channels every 10 ms. Local measurements from a similar midplane toroidal viewing system are mapped into two dimensions to allow the inversion of poloidal line-integrated measurements to obtain local poloidal velocity profiles. Radial resolution after inversion is 0.6-1.8 cm from the plasma edge to the center.

  13. Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions

    Science.gov (United States)

    Hao, Y.; Zong, Q.; Zhou, X.; Rankin, R.; Chen, X.; Liu, Y.; Fu, S.; Spence, H. E.; Blake, J. B.; Reeves, G. D.

    2017-12-01

    We present an analysis of "boomerang-shaped" pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on June 7th, 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90º pitch angle electrons, the phase change of the flux modulations across energy exceeds 180º, and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact with electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy gain with the modified ULF wave field reproduce the observed boomerang stripes and modulations in the electron energy spectrogram. The study of boomerang stripes and their relationship to drift-resonance taking place at a location different from the observation point adds new understanding of the processes controlling the dynamics of the outer radiation belt.

  14. Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions

    International Nuclear Information System (INIS)

    Hao, Y. X.; Zong, Q.-G.; Zhou, X.-Z.; Rankin, R.; Chen, X. R.

    2017-01-01

    Here, we present an analysis of “boomerang-shaped” pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on 7 June 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90° pitch angle electrons, the phase change of the flux modulations across energy exceeds 180° and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact with electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy gain with the modified ULF wavefield reproduce the observed boomerang stripes and modulations in the electron energy spectrogram. The study of boomerang stripes and their relationship to drift resonance taking place at a location different from the observation point adds new understanding of the processes controlling the dynamics of the outer radiation belt.

  15. A poloidal field measurement technique

    International Nuclear Information System (INIS)

    Jobes, F.C.

    1989-07-01

    The poloidal field of a tokamak can be determined by observing the light emitted by He + ions injected into the plasma by a perpendicular He 0 beam. These ions will orbit in small circles located where the neutral atom became ionized, and they will remain there for a few microseconds. During this time, some of these ions will also emit light at various spectral lines. The observed spectrum of any of these lines will have a peculiar and very wide shape, and it will be offset (Doppler shifted) with respect to the natural line location. The location and width of the spectral pattern provide independent information about the components of the poloidal field which are parallel and perpendicular to the beam velocity, and this information is local to the point where the light is emitted. For a horizontal beam, these components are b x and b y , respectively. The difference in Doppler shift between two measurement points above one another (at the top and bottom of the beam) is directly proportional to δb x , which in turn is proportional to the transform on that flux surface. Thus, this technique provides a means to measure directly local values of q(r). Simulation studies indicate that accurate measurements can be made in milliseconds. 6 refs., 8 figs

  16. Strong Anderson localization in cold atom quantum quenches

    OpenAIRE

    Micklitz, T.; Müller, C. A.; Altland, A.

    2013-01-01

    Signatures of strong Anderson localization in the momentum distribution of a cold atom cloud after a quantum quench are studied. We consider a quasi one-dimensional cloud initially prepared in a well defined momentum state, and expanding for some time in a disorder speckle potential. Anderson localization leads to a formation of a coherence peak in the \\emph{forward} scattering direction (as opposed to the common weak localization backscattering peak). We present a microscopic, and fully time...

  17. Interplay of Anderson localization and strong interaction in disordered systems

    International Nuclear Information System (INIS)

    Henseler, Peter

    2010-01-01

    We study the interplay of disorder localization and strong local interactions within the Anderson-Hubbard model. Taking into account local Mott-Hubbard physics and static screening of the disorder potential, the system is mapped onto an effective single-particle Anderson model, which is studied within the self-consistent theory of electron localization. For fermions, we find rich nonmonotonic behavior of the localization length ξ, particularly in two-dimensional systems, including an interaction-induced exponential enhancement of ξ for small and intermediate disorders and a strong reduction of ξ due to hopping suppression by strong interactions. In three dimensions, we identify for half filling a Mott-Hubbard-assisted Anderson localized phase existing between the metallic and the Mott-Hubbard-gapped phases. For small U there is re-entrant behavior from the Anderson localized phase to the metallic phase. For bosons, the unrestricted particle occupation number per lattice site yields a monotonic enhancement of ξ as a function of decreasing interaction, which we assume to persist until the superfluid Bose-Einstein condensate phase is entered. Besides, we study cold atomic gases expanding, by a diffusion process, in a weak random potential. We show that the density-density correlation function of the expanding gas is strongly affected by disorder and we estimate the typical size of a speckle spot, i.e., a region of enhanced or depleted density. Both a Fermi gas and a Bose-Einstein condensate (in a mean-field approach) are considered. (orig.)

  18. Interplay of Anderson localization and strong interaction in disordered systems

    Energy Technology Data Exchange (ETDEWEB)

    Henseler, Peter

    2010-01-15

    We study the interplay of disorder localization and strong local interactions within the Anderson-Hubbard model. Taking into account local Mott-Hubbard physics and static screening of the disorder potential, the system is mapped onto an effective single-particle Anderson model, which is studied within the self-consistent theory of electron localization. For fermions, we find rich nonmonotonic behavior of the localization length {xi}, particularly in two-dimensional systems, including an interaction-induced exponential enhancement of {xi} for small and intermediate disorders and a strong reduction of {xi} due to hopping suppression by strong interactions. In three dimensions, we identify for half filling a Mott-Hubbard-assisted Anderson localized phase existing between the metallic and the Mott-Hubbard-gapped phases. For small U there is re-entrant behavior from the Anderson localized phase to the metallic phase. For bosons, the unrestricted particle occupation number per lattice site yields a monotonic enhancement of {xi} as a function of decreasing interaction, which we assume to persist until the superfluid Bose-Einstein condensate phase is entered. Besides, we study cold atomic gases expanding, by a diffusion process, in a weak random potential. We show that the density-density correlation function of the expanding gas is strongly affected by disorder and we estimate the typical size of a speckle spot, i.e., a region of enhanced or depleted density. Both a Fermi gas and a Bose-Einstein condensate (in a mean-field approach) are considered. (orig.)

  19. Strong Anderson localization in cold atom quantum quenches.

    Science.gov (United States)

    Micklitz, T; Müller, C A; Altland, A

    2014-03-21

    Signatures of Anderson localization in the momentum distribution of a cold atom cloud after a quantum quench are studied. We consider a quasi-one-dimensional cloud initially prepared in a well-defined momentum state, and expanding for some time in a disorder speckle potential. Quantum interference generates a peak in the forward scattering amplitude which, unlike the common weak localization backscattering peak, is a signature of strong Anderson localization. We present a nonperturbative, and fully time resolved description of the phenomenon, covering the entire diffusion-to-localization crossover. Our results should be observable by present day experiments.

  20. Strong Localization in Disordered Media: Analysis of the Backscattering Cone

    KAUST Repository

    Delgado, Edgar

    2012-06-01

    A very interesting effect in light propagation through a disordered system is Anderson localization of light, this phenomenon emerges as the result of multiple scattering of waves by electric inhomogeneities like spatial variations of index of refraction; as the amount of scattering is increased, light propagation is converted from quasi-diffusive to exponentially localized, with photons confined in a limited spatial region characterized by a fundamental quantity known as localization length. Light localization is strongly related to another interference phenomenon emerged from the multiple scattering effect: the coherent backscattering effect. In multiple scattering of waves, in fact, coherence is preserved in the backscattering direction and produces a reinforcement of the field flux originating an observable peak in the backscattered intensity, known as backscattering cone. The study of this peak provide quantitative information about the transport properties of light in the material. In this thesis we report a complete FDTD ab-initio study of light localization and coherent backscattering. In particular, we consider a supercontinuum pulse impinging on a sample composed of randomly positioned scatterers. We study coherent backscattering by averaging over several realizations of the sample properties. We study then the coherent backscattering cone properties as the relative permittivity of the sample is changed, relating the latter with the light localization inside the sample. We demonstrate important relationships between the width of the backscattering cone and the localization length, which shows a linear proportionality in the strong localization regime.

  1. Strong expectations cancel locality effects: evidence from Hindi.

    Directory of Open Access Journals (Sweden)

    Samar Husain

    Full Text Available Expectation-driven facilitation (Hale, 2001; Levy, 2008 and locality-driven retrieval difficulty (Gibson, 1998, 2000; Lewis & Vasishth, 2005 are widely recognized to be two critical factors in incremental sentence processing; there is accumulating evidence that both can influence processing difficulty. However, it is unclear whether and how expectations and memory interact. We first confirm a key prediction of the expectation account: a Hindi self-paced reading study shows that when an expectation for an upcoming part of speech is dashed, building a rarer structure consumes more processing time than building a less rare structure. This is a strong validation of the expectation-based account. In a second study, we show that when expectation is strong, i.e., when a particular verb is predicted, strong facilitation effects are seen when the appearance of the verb is delayed; however, when expectation is weak, i.e., when only the part of speech "verb" is predicted but a particular verb is not predicted, the facilitation disappears and a tendency towards a locality effect is seen. The interaction seen between expectation strength and distance shows that strong expectations cancel locality effects, and that weak expectations allow locality effects to emerge.

  2. Strong expectations cancel locality effects: evidence from Hindi.

    Science.gov (United States)

    Husain, Samar; Vasishth, Shravan; Srinivasan, Narayanan

    2014-01-01

    Expectation-driven facilitation (Hale, 2001; Levy, 2008) and locality-driven retrieval difficulty (Gibson, 1998, 2000; Lewis & Vasishth, 2005) are widely recognized to be two critical factors in incremental sentence processing; there is accumulating evidence that both can influence processing difficulty. However, it is unclear whether and how expectations and memory interact. We first confirm a key prediction of the expectation account: a Hindi self-paced reading study shows that when an expectation for an upcoming part of speech is dashed, building a rarer structure consumes more processing time than building a less rare structure. This is a strong validation of the expectation-based account. In a second study, we show that when expectation is strong, i.e., when a particular verb is predicted, strong facilitation effects are seen when the appearance of the verb is delayed; however, when expectation is weak, i.e., when only the part of speech "verb" is predicted but a particular verb is not predicted, the facilitation disappears and a tendency towards a locality effect is seen. The interaction seen between expectation strength and distance shows that strong expectations cancel locality effects, and that weak expectations allow locality effects to emerge.

  3. Localized-magnon states in strongly frustrated quantum spin lattices

    International Nuclear Information System (INIS)

    Richter, J.

    2005-01-01

    Recent developments concerning localized-magnon eigenstates in strongly frustrated spin lattices and their effect on the low-temperature physics of these systems in high magnetic fields are reviewed. After illustrating the construction and the properties of localized-magnon states we describe the plateau and the jump in the magnetization process caused by these states. Considering appropriate lattice deformations fitting to the localized magnons we discuss a spin-Peierls instability in high magnetic fields related to these states. Last but not least we consider the degeneracy of the localized-magnon eigenstates and the related thermodynamics in high magnetic fields. In particular, we discuss the low-temperature maximum in the isothermal entropy versus field curve and the resulting enhanced magnetocaloric effect, which allows efficient magnetic cooling from quite large temperatures down to very low ones

  4. Strongly Localized Image States of Spherical Graphitic Particles

    Directory of Open Access Journals (Sweden)

    Godfrey Gumbs

    2014-01-01

    Full Text Available We investigate the localization of charged particles by the image potential of spherical shells, such as fullerene buckyballs. These spherical image states exist within surface potentials formed by the competition between the attractive image potential and the repulsive centripetal force arising from the angular motion. The image potential has a power law rather than a logarithmic behavior. This leads to fundamental differences in the nature of the effective potential for the two geometries. Our calculations have shown that the captured charge is more strongly localized closest to the surface for fullerenes than for cylindrical nanotube.

  5. Crossover in tunneling hops in systems of strongly localized electrons

    International Nuclear Information System (INIS)

    Lien Nguyen, V.; Gamietea, A.D.

    1995-11-01

    Accurate Monte-Carlo simulation data show a consistent crossover in different characters of tunneling hops in two-dimensional systems of strongly localized electrons in the presence of scattering and quantum interference of hopping paths. The results also suggest a negative answer to the question whether there is a two-dimensional sign phase transition. The fractal behaviour observed in the direction perpendicular to the hopping direction is found to be similar to that for eigenstates in one-dimensional localized systems. (author). 16 refs, 6 figs

  6. Spontaneous electromagnetic emission from a strongly localized plasma flow.

    Science.gov (United States)

    Tejero, E M; Amatucci, W E; Ganguli, G; Cothran, C D; Crabtree, C; Thomas, E

    2011-05-06

    Laboratory observations of electromagnetic ion-cyclotron waves generated by a localized transverse dc electric field are reported. Experiments indicate that these waves result from a strong E×B flow inhomogeneity in a mildly collisional plasma with subcritical magnetic field-aligned current. The wave amplitude scales with the magnitude of the applied radial dc electric field. The electromagnetic signatures become stronger with increasing plasma β, and the radial extent of the power is larger than that of the electrostatic counterpart. Near-Earth space weather implications of the results are discussed.

  7. Localized Electron Heating by Strong Guide-Field Magnetic Reconnection

    Science.gov (United States)

    Guo, Xuehan; Sugawara, Takumichi; Inomoto, Michiaki; Yamasaki, Kotaro; Ono, Yasushi; UTST Team

    2015-11-01

    Localized electron heating of magnetic reconnection was studied under strong guide-field (typically Bt 15Bp) using two merging spherical tokamak plasmas in Univ. Tokyo Spherical Tokamak (UTST) experiment. Our new slide-type two-dimensional Thomson scattering system documented for the first time the electron heating localized around the X-point. The region of high electron temperature, which is perpendicular to the magnetic field, was found to have a round shape with radius of 2 [cm]. Also, it was localized around the X-point and does not agree with that of energy dissipation term Et .jt . When we include a guide-field effect term Bt / (Bp + αBt) for Et .jt where α =√{ (vin2 +vout2) /v∥2 } , the energy dissipation area becomes localized around the X-point, suggesting that the electrons are accelerated by the reconnection electric field parallel to the magnetic field and thermalized around the X-point. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus,'' a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.

  8. Many-body-localization: strong disorder perturbative approach for the local integrals of motion

    Science.gov (United States)

    Monthus, Cécile

    2018-05-01

    For random quantum spin models, the strong disorder perturbative expansion of the local integrals of motion around the real-spin operators is revisited. The emphasis is on the links with other properties of the many-body-localized phase, in particular the memory in the dynamics of the local magnetizations and the statistics of matrix elements of local operators in the eigenstate basis. Finally, this approach is applied to analyze the many-body-localization transition in a toy model studied previously from the point of view of the entanglement entropy.

  9. Local condensate depletion at trap center under strong interactions

    Science.gov (United States)

    Yukalov, V. I.; Yukalova, E. P.

    2018-04-01

    Cold trapped Bose-condensed atoms, interacting via hard-sphere repulsive potentials are considered. Simple mean-field approximations show that the condensate distribution inside a harmonic trap always has the shape of a hump with the maximum condensate density occurring at the trap center. However, Monte Carlo simulations at high density and strong interactions display the condensate depletion at the trap center. The explanation of this effect of local condensate depletion at trap center is suggested in the frame of self-consistent theory of Bose-condensed systems. The depletion is shown to be due to the existence of the anomalous average that takes into account pair correlations and appears in systems with broken gauge symmetry.

  10. Strong Local-Nonlocal Coupling for Integrated Fracture Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silling, Stewart A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, John A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Seleson, Pablo D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parks, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turner, Daniel Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burnett, Damon J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ostien, Jakob [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Gunzburger, Max [Florida State Univ., Tallahassee, FL (United States)

    2015-09-01

    Peridynamics, a nonlocal extension of continuum mechanics, is unique in its ability to capture pervasive material failure. Its use in the majority of system-level analyses carried out at Sandia, however, is severely limited, due in large part to computational expense and the challenge posed by the imposition of nonlocal boundary conditions. Combined analyses in which peridynamics is em- ployed only in regions susceptible to material failure are therefore highly desirable, yet available coupling strategies have remained severely limited. This report is a summary of the Laboratory Directed Research and Development (LDRD) project "Strong Local-Nonlocal Coupling for Inte- grated Fracture Modeling," completed within the Computing and Information Sciences (CIS) In- vestment Area at Sandia National Laboratories. A number of challenges inherent to coupling local and nonlocal models are addressed. A primary result is the extension of peridynamics to facilitate a variable nonlocal length scale. This approach, termed the peridynamic partial stress, can greatly reduce the mathematical incompatibility between local and nonlocal equations through reduction of the peridynamic horizon in the vicinity of a model interface. A second result is the formulation of a blending-based coupling approach that may be applied either as the primary coupling strategy, or in combination with the peridynamic partial stress. This blending-based approach is distinct from general blending methods, such as the Arlequin approach, in that it is specific to the coupling of peridynamics and classical continuum mechanics. Facilitating the coupling of peridynamics and classical continuum mechanics has also required innovations aimed directly at peridynamic models. Specifically, the properties of peridynamic constitutive models near domain boundaries and shortcomings in available discretization strategies have been addressed. The results are a class of position-aware peridynamic constitutive laws for

  11. Poloidal flux requirement: Analysis and application to the Ignitor configuration

    International Nuclear Information System (INIS)

    Nassi, M.

    1993-01-01

    The definitions and correlations existing between different terms used by physicists and engineers are clarified in order to deal with the assessment of the poloidal flux requirement in a fusion experiment. The theoretical formulation of both the Faraday and the Poynting methods, for the internal flux evaluation, is briefly reviewed. Heuristic expressions that allow estimates of internal flux consumption are reported for the specific case of an ignition experiment represented by the Ignitor configuration. The analytical and heuristic results for both internal and external poloidal flux requirements are checked against numerical evaluations carried out by using the TSC transport and magnetohydrodynamics code and the TEQ equilibrium code. A fairly good agreement between the different estimates is found. This suggests that simple heuristic expressions can be used to evaluate the poloidal flux requirement of future experiments, even if a detailed simulation of the plasma current penetration process is strongly recommended to correctly assess and optimize the resistive poloidal flux consumption. Finally, the poloidal flux requirement for different plasma scenarios in the Ignitor experiment is compared with the magnetic flux variation that can be delivered by the poloidal field system. 28 refs., 4 figs., 10 tabs

  12. Radial transport of poloidal momentum in ASDEX Upgrade in L-mode and H-mode

    DEFF Research Database (Denmark)

    Schrittwieser, R.; Mehlmann, F.; Naulin, Volker

    2012-01-01

    A reciprocating probe was used for localized measurements of the radial transport of poloidal momentum in the scrape-off layer (SOL) of ASDEX Upgrade (AUG). The probe measured poloidal and radial electric field components and density. We concentrate on three components of the momentum transport: ......: Reynolds stress, convective momentum flux and triple product of the fluctuating components of density, radial and poloidal electric field. For the evaluation we draw mainly on the probability density functions (PDFs)....

  13. Neoclassical impurity transport and observations of poloidal asymmetries in JET

    International Nuclear Information System (INIS)

    Feneberg, W.; Mast, F.K.; Martin, P.; Gottardi, N.

    1986-01-01

    Bolometrically measured asymmetries of emissivity for some characteristic JET discharges are presented and are in good agreement with theoretical results of calculations worked out in the frame of neoclassical theory. Application of theory to the case of strong toroidal rotation as induced with neutral injection shows a sensitive dependance of the impurity transport perpendicular to the magnetic surfaces from the parameter of poloidal rotation. The main result is the existence of a classical flow reversal. Without any poloidal rotation of the background ions, a large inward flow of impurities for co- and counter-injection is always predicted, while poloidal rotation in the direction of the ion diamagnetic drift motion leads to a strong outward drift. (author)

  14. Route to strong localization of light: The role of disorder

    KAUST Repository

    Molinari, Diego P.; Fratalocchi, Andrea

    2012-01-01

    By employing Random Matrix Theory (RMT) and firstprinciple calculations, we investigated the behavior of Anderson localization in 1D, 2D and 3D systems characterized by a varying disorder. In particular, we considered random binary layer sequences in 1D and structurally disordered photonic crystals in two and three dimensions. We demonstrated the existence of a unique optimal degree of disorder that yields the strongest localization possible. In this regime, localized modes are constituted by defect states, which can show subwavelength confinement properties. These results suggest that disorder offers a new avenue for subwavelength light localization in purely dielectric media. © 2012 Optical Society of America.

  15. Strong Loophole-Free Test of Local Realism.

    Science.gov (United States)

    Shalm, Lynden K; Meyer-Scott, Evan; Christensen, Bradley G; Bierhorst, Peter; Wayne, Michael A; Stevens, Martin J; Gerrits, Thomas; Glancy, Scott; Hamel, Deny R; Allman, Michael S; Coakley, Kevin J; Dyer, Shellee D; Hodge, Carson; Lita, Adriana E; Verma, Varun B; Lambrocco, Camilla; Tortorici, Edward; Migdall, Alan L; Zhang, Yanbao; Kumor, Daniel R; Farr, William H; Marsili, Francesco; Shaw, Matthew D; Stern, Jeffrey A; Abellán, Carlos; Amaya, Waldimar; Pruneri, Valerio; Jennewein, Thomas; Mitchell, Morgan W; Kwiat, Paul G; Bienfang, Joshua C; Mirin, Richard P; Knill, Emanuel; Nam, Sae Woo

    2015-12-18

    We present a loophole-free violation of local realism using entangled photon pairs. We ensure that all relevant events in our Bell test are spacelike separated by placing the parties far enough apart and by using fast random number generators and high-speed polarization measurements. A high-quality polarization-entangled source of photons, combined with high-efficiency, low-noise, single-photon detectors, allows us to make measurements without requiring any fair-sampling assumptions. Using a hypothesis test, we compute p values as small as 5.9×10^{-9} for our Bell violation while maintaining the spacelike separation of our events. We estimate the degree to which a local realistic system could predict our measurement choices. Accounting for this predictability, our smallest adjusted p value is 2.3×10^{-7}. We therefore reject the hypothesis that local realism governs our experiment.

  16. Doppler reflectometry for the investigation of poloidally propagating density perturbations

    International Nuclear Information System (INIS)

    Hirsch, M.; Baldzuhn, J.; Kurzan, B.; Holzhauer, E.

    1999-01-01

    A modification of microwave reflectometry is discussed where the direction of observation is tilted with respect to the normal onto the reflecting surface. The experiment is similar to scattering where a finite resolution in k-space exists but keeps the radial localization of reflectometry. The observed poloidal wavenumber is chosen by Bragg's condition via the tilt angle and the resolution in k-space is determined by the antenna pattern. From the Doppler shift of the reflected wave the poloidal propagation velocity of density perturbations is obtained. The diagnostic capabilities of Doppler reflectometry are investigated using full wave code calculations. The method offers the possibility to observe changes in the poloidal propagation velocity of density perturbations and their radial shear with a temporal resolution of about 10μs. (authors)

  17. Local particle flux reversal under strongly sheared flow

    International Nuclear Information System (INIS)

    Terry, P.W.; Newman, D.E.; Ware, A.S.

    2003-01-01

    The advection of electron density by turbulent ExB flow with linearly varying mean yields a particle flux that can reverse sign at certain locations along the direction of magnetic shear. The effect, calculated for strong flow shear, resides in the density-potential cross phase. It is produced by the interplay between the inhomogeneities of magnetic shear and flow shear, but subject to a variety of conditions and constraints. The regions of reversed flux tend to wash out if the turbulence consists of closely spaced modes of different helicities, but survive if modes of a single helicity are relatively isolated. The reversed flux becomes negligible if the electron density response is governed by electron scales while the eigenmode is governed by ion scales. The relationship of these results to experimentally observe flux reversals is discussed

  18. Strong contributions of local background climate to urban heat islands

    Science.gov (United States)

    Zhao, Lei; Lee, Xuhui; Smith, Ronald B.; Oleson, Keith

    2014-07-01

    The urban heat island (UHI), a common phenomenon in which surface temperatures are higher in urban areas than in surrounding rural areas, represents one of the most significant human-induced changes to Earth's surface climate. Even though they are localized hotspots in the landscape, UHIs have a profound impact on the lives of urban residents, who comprise more than half of the world's population. A barrier to UHI mitigation is the lack of quantitative attribution of the various contributions to UHI intensity (expressed as the temperature difference between urban and rural areas, ΔT). A common perception is that reduction in evaporative cooling in urban land is the dominant driver of ΔT (ref. 5). Here we use a climate model to show that, for cities across North America, geographic variations in daytime ΔT are largely explained by variations in the efficiency with which urban and rural areas convect heat to the lower atmosphere. If urban areas are aerodynamically smoother than surrounding rural areas, urban heat dissipation is relatively less efficient and urban warming occurs (and vice versa). This convection effect depends on the local background climate, increasing daytime ΔT by 3.0 +/- 0.3 kelvin (mean and standard error) in humid climates but decreasing ΔT by 1.5 +/- 0.2 kelvin in dry climates. In the humid eastern United States, there is evidence of higher ΔT in drier years. These relationships imply that UHIs will exacerbate heatwave stress on human health in wet climates where high temperature effects are already compounded by high air humidity and in drier years when positive temperature anomalies may be reinforced by a precipitation-temperature feedback. Our results support albedo management as a viable means of reducing ΔT on large scales.

  19. Wave propagation in a strongly nonlinear locally resonant granular crystal

    Science.gov (United States)

    Vorotnikov, K.; Starosvetsky, Y.; Theocharis, G.; Kevrekidis, P. G.

    2018-02-01

    In this work, we study the wave propagation in a recently proposed acoustic structure, the locally resonant granular crystal. This structure is composed of a one-dimensional granular crystal of hollow spherical particles in contact, containing linear resonators. The relevant model is presented and examined through a combination of analytical approximations (based on ODE and nonlinear map analysis) and of numerical results. The generic dynamics of the system involves a degradation of the well-known traveling pulse of the standard Hertzian chain of elastic beads. Nevertheless, the present system is richer, in that as the primary pulse decays, secondary ones emerge and eventually interfere with it creating modulated wavetrains. Remarkably, upon suitable choices of parameters, this interference "distills" a weakly nonlocal solitary wave (a "nanopteron"). This motivates the consideration of such nonlinear structures through a separate Fourier space technique, whose results suggest the existence of such entities not only with a single-side tail, but also with periodic tails on both ends. These tails are found to oscillate with the intrinsic oscillation frequency of the out-of-phase motion between the outer hollow bead and its internal linear attachment.

  20. The ITER poloidal field system

    Energy Technology Data Exchange (ETDEWEB)

    Wesley, J [General Atomics, San Diego, CA (USA); Beljakov, V; Kavin, A; Korshakov, V; Kostenko, A; Roshal, A; Zakharov, L [Kurchatov Inst. of Atomic Energy, Moscow (USSR); Bulmer, R; Kaiser, T; Miller, J R; Pearlstein, L D [Lawrence Livermore National Lab., CA (USA); Hogan, J [Oak Ridge National Lab., TN (USA); Kurihara, K; Shimomura, Y; Sugihara, M; Yoshino, R [Japan Atomic Energy Resea

    1990-12-15

    The ITER poloidal field (PF) system uses superconducting coils to provide the plasma equilibrium fields, slow equilibrium control and plasma flux linkage (V-s) needed for the ITER Operations and Research Program. Double-null (DN) divertor plasmas and operation scenarios for 22 MA Physics (high-Q/ignition) and 15 MA Technology (high-fluence testing) phases are provided. For 22 MA plasmas, total PF flux swing is 333 V-s. This provides inductive current drive (CD) for start-up with 66 V-s of resistive loss and 440-s (330-s minimum) sustained burn. The PF system also allows plasma start-up and shutdown scenarios, and can maintain the plasma configuration during burn over a range of current and pressure profiles. Other capabilities include increased plasma current (25 MA with inductive CD; 28 MA with non-inductive CD assist), divertor separatrix sweeping, and semi-DN and single-null plasmas.

  1. Poloidal rotation induced by injecting lower hybrid waves in tokamak plasma edge

    International Nuclear Information System (INIS)

    Jiao Yiming; Gao Qingdi; Shi Bingren

    2001-01-01

    The poloidal rotation of the magnetized edge plasma in tokamak driven by the ponderomotive force which is generated by injecting lower hybrid wave (LHW) electric field has been studied. The LHW is launched from a waveguide in the plasma edge, and by Brambilla's grill theory, analytic expressions for the wave electric field in the slab model of an inhomogeneous cold plasma have been derived. It is shown that a strong wave electric field will be generated in the plasma edge by injecting LH wave of the power in MW magnitude, and this electric field will induce a poloidal rotation with a sheared poloidal velocity

  2. Demonstration poloidal coil test facility

    International Nuclear Information System (INIS)

    Sato, Masahiko; Kawano, Katumi; Tada, Eisuke

    1989-01-01

    A new compact cryogenic cold compressor was developed by Japan Atomic Energy Research Institute (JAERI) in collaboration with Isikawajima-Harima Heavy Industries Co., Ltd. (IHI) in order to produce the supercritical helium below 4.2 K for Demonstration Poloidal Coils (DPC) which are forced-flow cooled type superconducting pulse coils. This compressor is one of key components for DPC test facility. The cold compressor reduces pressure in liquid helium bath, which contains liquid helium of around 3,000 l, down to 0.5 atm efficiently. Consequently, supercritical helium down to 3.5 K is produced and supplied to the DPC coils. A centrifugal compressor with dynamic gas bearing is selected as a compressor mechanism to realize high adiabatic efficiency and large flow rate. In this performance tests, the compressor was operated for 220 h at saturated condition from 0.5 to 1.0 atm without any failure. High adiabatic efficiency (more than 60 %) is achieved with wide flow range (25-65 g/s) and the design value is fully satisfied. The compressor can rotate up to 80,000 rpm at maximum then the coil supply temperature of supercritical helium is 3.5 K. (author)

  3. Enhancing Homeland Security Efforts by Building Strong Relationships between the Muslim Community and Local Law Enforcement

    National Research Council Canada - National Science Library

    Jensen, Dennis L

    2006-01-01

    ... to follow up on the incident and to prevent future attacks. It is undeniable that building a strong relationship between the local police and the Muslim community is essential in defending America against acts of terrorism...

  4. Predictions of the poloidal asymmetries and transport frequencies in KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Bae, C., E-mail: cbae@nfri.re.kr; Lee, S. G.; Terzolo, L. [National Fusion Research Institute, Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Stacey, W. M. [Fusion Research Center, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2014-01-15

    The extended neoclassical rotation theory formulated in Miller flux surface geometry enables unprecedented neoclassical calculations of the poloidal asymmetries in density, rotation velocities, electrostatic potential along the flux surfaces, and of the inertial (Reynolds stress) and gyroviscous transport frequencies, which are strong functions of these asymmetries. This paper presents such calculations of the poloidal asymmetries and non-negligible inertial and gyroviscous transport frequencies in two KSTAR (Korea Superconducting Tokamak Advanced Research) [Kwon et al., Nucl. Fusion 51, 094006 (2011)] Neutral Beam Injection H-mode discharges. The in-out asymmetries in the velocities are an order of magnitude larger than their up-down asymmetries. The magnitudes of the predicted inertial and gyroviscous transport frequencies depend on the magnitudes of the density and velocity asymmetries. The neoclassically predicted density asymmetries are shown to correspond with the reported measurements in tokamaks and the predicted carbon toroidal velocities agree very well with the measurements in KSTAR.

  5. Stochasticity about a poloidal divertor separatrix

    International Nuclear Information System (INIS)

    Skinner, D.A.; Osborne, T.H.; Prager, S.C.; Park, W.

    1986-10-01

    The stochasticization of the magnetic separatrix due to the presence of a helical perturbation in a poloidal divertor tokamak is illustrated by a numerical computation which traces magnetic field lines

  6. Three-qutrit correlations violate local realism more strongly than those of three qubits

    International Nuclear Information System (INIS)

    Kaszlikowski, Dagomir; Gosal, Darwin; Ling, E.J.; Oh, C.H.; Kwek, L.C.; Zukowski, Marek

    2002-01-01

    We present numerical data showing that three-qutrit correlations for a pure state, which is not maximally entangled, violate local realism more strongly than three-qubit correlations. The strength of violation is measured by the minimal amount of noise that must be admixed to the system so that the noisy correlations have a local and realistic model

  7. Resonance parallel viscosity in the banana regime in poloidally rotating tokamak plasmas

    International Nuclear Information System (INIS)

    Shaing, K.C.; Hsu, C.T.; Dominguez, N.

    1994-01-01

    Parallel viscosity in the banana regime in a poloidally (ExB) rotating tokamak plasma is calculated to include the effects of orbit squeezing and to allow the poloidal ExB Mach number M p to have a value of order unity. Here, E is the electric field and B is the magnetic field. The effects of orbit squeezing not only modify the size of the particle orbit, but also change the fraction of poloidally trapped particles. Resonance between the particle parallel (to B) speed u and the poloidal component of the ExB velocity can only occur for those particles with energy (v/v t ) 2 >M 2 p (with v the particle speed and v t the thermal speed). Thus, the resonance parallel plasma viscosity in the banana regime decreases exponentially with M 2 p when M 2 p ≥1, and has a local maximum of M 2 p ∼1

  8. Proposed tokamak poloidal field system development program

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.D.; Vogel, H.F.; Warren, R.W.; Weldon, D.M.

    1977-05-01

    A program is proposed to develop poloidal field components for TNS and EPR size tokamak devices and to test these components in realistic circuits. Emphasis is placed upon the development of the most difficult component, the superconducting ohmic-heating coil. Switches must also be developed for testing the coils, and this switching technology is to be extended to meet the requirements for the large scale tokamaks. Test facilities are discussed; power supplies, including a homopolar to drive the coils, are considered; and poloidal field systems studies are proposed.

  9. Strain localization at the margins of strong lithospheric domains: insights from analogue models

    NARCIS (Netherlands)

    Calignano, Elisa; Sokoutis, Dimitrios; Willingshofer, Ernst; Gueydan, Frederic; Cloetingh, Sierd

    The lateral variation of the mechanical properties of continental lithosphere is an important factor controlling the localization of deformation and thus the deformation history and geometry of intra-plate mountain belts. A series of three-layer lithospheric-scale analog models, with a strong domain

  10. Study of rare earth local moment magnetism and strongly correlated phenomena in various crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Tai [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    Benefiting from unique properties of 4f electrons, rare earth based compounds are known for offering a versatile playground for condensed matter physics research as well as industrial applications. This thesis focuses on three specific examples that further explore the rare earth local moment magnetism and strongly correlated phenomena in various crystal structures.

  11. Neoclassical poloidal and toroidal rotation in tokamaks

    International Nuclear Information System (INIS)

    Kim, Y.B.; Diamond, P.H.; Groebner, R.J.

    1991-01-01

    Explicit expressions for the neoclassical poloidal and toroidal rotation speeds of primary ion and impurity species are derived via the Hirshman and Sigmar moment approach. The rotation speeds of the primary ion can be significantly different from those of impurities in various interesting cases. The rapid increase of impurity poloidal rotation in the edge region of H-mode discharges in tokamaks can be explained by a rapid steepening of the primary ion pressure gradient. Depending on ion collisionality, the poloidal rotation speed of the primary ions at the edge can be quite small and the flow direction may be opposite to that of the impurities. This may cast considerable doubts on current L to H bifurcation models based on primary ion poloidal rotation only. Also, the difference between the toroidal rotation velocities of primary ions and impurities is not negligible in various cases. In Ohmic plasmas, the parallel electric field induces a large impurity toroidal rotation close to the magnetic axis, which seems to agree with experimental observations. In the ion banana and plateau regime, there can be non-negligible disparities between primary ion and impurity toroidal rotation velocities due to the ion density and temperature gradients. Detailed analytic expressions for the primary ion and impurity rotation speeds are presented, and the methodology for generalization to the case of several impurity species is also presented for future numerical evaluation

  12. Polarization-gradient laser cooling as a way to create strongly localized structures for atom lithography

    International Nuclear Information System (INIS)

    Prudnikov, O. N.; Taichenachev, A. V.; Tumaikin, A. M.; Yudin, V. I.

    2007-01-01

    Generally, conditions for deep sub-Doppler laser cooling do not match conditions for strong atomic localization, that takes place in a deeper optical potential and leads to higher temperature. Moreover, for a given detuning in a deep optical potential the secular approximation, which is frequently used for a quantum description of laser cooling, fails. Here we investigate the atomic localization in optical potential, using a full quantum approach for atomic density matrix beyond the secular approximation. It is shown that laser cooling in a deep optical potential, created by a light field with polarization gradients, can be used as an alternative method for the formation of high contrast spatially localized structures of atoms for the purposes of atom lithography and atomic nanofabrication. Finally, we analyze possible limits for the width and contrast of localized atomic structures that can be reached in this type of light mask

  13. Neoclassical transport, poloidal rotation and radial electric field at the L-H transition

    International Nuclear Information System (INIS)

    Minardi, E.; Gervasini, G.; Lazzaro, E.

    1993-01-01

    The transition to a high confinement regime in tokamaks operating with a magnetic divertor configuration is accompanied by the strong steepening of the edge temperature profile and the onset of a large positive poloidal mass rotation associated with a negative radial electric field. The latter phenomena are signatures of a neoclassical transport mechanism. We address the question of establishing whether neoclassical transport is indeed sufficient to establish high edge gradients and drive poloidal rotation under strong auxiliary heating. The heat transport equation is solved numerically in a narrow edge layer interfaced to the plasma body through heat flux continuity, but allowing for heat conductivity discontinuity. The results compared with recent experimental measurements support the assumption that a highly sheared neoclassical poloidal velocity profile can suppress the anomalous part of the heat transport, and that the neoclassical residual transport, characterizes the plasma behaviour at the edge during H modes. (author) 3 refs., 4 figs

  14. Poloidal variation of viscous forces in the banana collisionality regime

    International Nuclear Information System (INIS)

    Wang, J.P.; Callen, J.D.

    1992-12-01

    The poloidal variation of the parallel viscous and heat viscous forces are determined for the first time using a rigorous Chapman- Enskog-like approach that has been developed recently. It is shown that the poloidal variation is approximately proportional to the poloidal distribution of the trapped particles, which are concentrated on the outer edge (large major radius side) of the tokamak

  15. Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation

    Czech Academy of Sciences Publication Activity Database

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D.R.; Bellwied, R.; Benedosso, F.; Betancourt, M.J.; Betts, R. R.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielčík, Jaroslav; Bielčíková, Jana; Biritz, B.; Bland, L.C.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bruna, E.; Bueltmann, S.; Burton, T. P.; Bysterský, Michal; Cai, X.Z.; Caines, H.; Sanchez, M.C.D.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M.C.; Chajecki, Z.; Chaloupka, Petr; Chattopadhyay, S.; Chen, H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K.E.; Christie, W.; Clarke, R.F.; Codrington, M.J.M.; Corliss, R.; Cormier, T.M.; Coserea, R. M.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; De Silva, L.C.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A.A.; de Souza, R.D.; Didenko, L.; Djawotho, P.; Dunlop, J.C.; Mazumdar, M.R.D.; Edwards, W.R.; Efimov, L.G.; Elhalhuli, E.; Elnimr, M.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Ganti, M. S.; Gangaharan, D.R.; Garcia-Solis, E.J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y.N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S.M.; Guimaraes, K.S.F.F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Hofman, D.J.; Hollis, R.S.; Huang, H.Z.; Humanic, T.J.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W.W.; Jakl, Pavel; Jena, C.; Jin, F.; Jones, C.L.; Jones, P.G.; Joseph, J.; Judd, E.G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitán, Jan; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V.Yu.; Kikola, D.P.; Kiryluk, J.; Kisiel, A.; Klein, S.R.; Knospe, A.G.; Kocoloski, A.; Koetke, D.D.; Kopytine, M.; Korsch, W.; Kotchenda, L.; Kushpil, Vasilij; Kravtsov, P.; Kravtsov, V.I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M.A.C.; Landgraf, J.M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednický, Richard; Lee, Ch.; Lee, J.H.; Leight, W.; LeVine, M.J.; Li, N.; Li, C.; Li, Y.; Lin, G.; Lindenbaum, S.J.; Lisa, M.A.; Liu, F.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W.J.; Longacre, R.S.; Love, W.A.; Lu, Y.; Ludlam, T.; Ma, G.L.; Ma, Y.G.; Mahapatra, D.P.; Majka, R.; Mall, O.I.; Mangotra, L.K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H.S.; Matulenko, Yu.A.; McShane, T.S.; Meschanin, A.; Milner, R.; Minaev, N.G.; Mioduszewski, S.; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D.A.; Munhoz, M. G.; Nandi, B.K.; Nattrass, C.; Nayak, T. K.; Nelson, J.M.; Netrakanti, P.K.; Ng, M.J.; Nogach, L.V.; Nurushev, S.B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B.S.; Pal, S.K.; Pandit, Y.; Panebratsev, Y.; Panitkin, S.Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S.C.; Poljak, N.; Poskanzer, A.M.; Potukuchi, B.V.K.S.; Prindle, D.; Pruneau, C.; Pruthi, N.K.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R.L.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H.G.; Roberts, J.B.; Rogachevskiy, O.V.; Romero, J.L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M.J.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R.P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S.S.; Shi, X.H.; Sichtermann, E.P.; Simon, F.; Singaraju, R.N.; Skoby, M.J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H.M.; Srivastava, B.; Stadnik, A.; Stanislaus, T.D.S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A.A.P.; Suarez, M.C.; Subba, N.L.; Šumbera, Michal; Sun, X.M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T.J.M.; de Toledo, A. S.; Takahashi, J.; Tang, A.H.; Tang, Z.; Tarnowsky, T.; Thein, D.; Thomas, J.H.; Tian, J.; Timmins, A.R.; Timoshenko, S.; Tokarev, M. V.; Trainor, T.A.; Tram, V.N.; Trattner, A.L.; Trentalange, S.; Tribble, R. E.; Tsai, O.D.; Ulery, J.; Ullrich, T.; Underwood, D.G.; Van Buren, G.; van Leeuwen, M.; Vander Molen, A.M.; Vanfossen, J.A.; Varma, R.; Vasconcelos, G.S.M.; Vasilevski, I.M.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S.E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S.A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, J.S.; Wang, Q.; Wang, X.; Wang, X.L.; Wang, Y.; Webb, G.; Webb, J.C.; Westfall, G.D.; Whitten, C.; Wieman, H.; Wissink, S.W.; Witt, R.; Wu, Y.; Xie, W.; Xu, N.; Xu, Q.H.; Xu, Y.; Xu, Z.; Yang, Y.; Yepes, P.; Yip, K.; Yoo, I.K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, S.; Zhang, W.M.; Zhang, X.P.; Zhang, Y.; Zhang, Z.P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zhu, X.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J.X.; Tlustý, David

    2009-01-01

    Roč. 103, č. 25 (2009), 251601/1-251601/7 ISSN 0031-9007 R&D Projects: GA ČR GA202/07/0079; GA MŠk LC07048; GA MŠk LA09013 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100502 Keywords : heavy-ion collisions * local parity violation * strong interaction Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 7.328, year: 2009

  16. Local strong solutions to the stochastic compressible Navier-Stokes system

    Czech Academy of Sciences Publication Activity Database

    Breit, D.; Feireisl, Eduard; Hofmanová, M.

    2018-01-01

    Roč. 43, č. 2 (2018), s. 313-345 ISSN 0360-5302 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : compressible fluids * local strong solutions * Navier-Stokes system Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.608, year: 2016 https://www.tandfonline.com/doi/full/10.1080/03605302.2018.1442476

  17. Many-body Anderson localization of strongly interacting bosons in random lattices

    International Nuclear Information System (INIS)

    Katzer, Roman

    2015-05-01

    In the present work, we investigate the problem of many-body localization of strongly interacting bosons in random lattices within the disordered Bose-Hubbard model. This involves treating both the local Mott-Hubbard physics as well as the non-local quantum interference processes, which give rise to the phenomenon of Anderson localization, within the same theory. In order to determine the interaction induced transition to the Mott insulator phase, it is necessary to treat the local particle interaction exactly. Therefore, here we use a mean-field approach that approximates only the kinetic term of the Hamiltonian. This way, the full problem of interacting bosons on a random lattice is reduced to a local problem of a single site coupled to a particle bath, which has to be solved self-consistently. In accordance to previous works, we find that a finite disorder width leads to a reduced size of the Mott insulating regions. The transition from the superfluid phase to the Bose glass phase is driven by the non-local effect of Anderson localization. In order to describe this transition, one needs to work within a theory that is non-local as well. Therefore, here we introduce a new approach to the problem. Based on the results for the local excitation spectrum obtained within the mean-field theory, we reduce the full, interacting model to an effective, non-interacting model by applying a truncation scheme to the Hilbert space. Evaluating the long-ranged current density within this approximation, we identify the transition from the Bose glass to the superfluid phase with the Anderson transition of the effective model. Resolving this transition using the self-consistent theory of localization, we obtain the full phase diagram of the disordered Bose-Hubbard model in the regime of strong interaction and larger disorder. In accordance to the theorem of inclusions, we find that the Mott insulator and the superfluid phase are always separated by the compressible, but insulating

  18. Characterisation of the core poloidal flow at ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Lebschy, Alexander [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany); Physik-Department E28, Technische Universitaet Muenchen, D-85748 Garching (Germany); McDermott, Rachael M.; Geiger, Benedikt; Cavedon, Marco; Dunne, Michael G.; Dux, Ralph; Fischer, Rainer; Kappatou, Athina; McCarthy, Patrick J.; Viezzer, Eleonora [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany); Collaboration: the ASDEX Upgrade Team

    2016-07-01

    Plasma rotation has a strong influence on the transport of heat, particles, and momentum in fusion plasmas via a variety of mechanisms, for example, by the stabilization of modes and the suppression of plasma turbulence. In tokamaks, the toroidal rotation (u{sub tor}) is essentially a free parameter that is usually dominated by the external momentum input from neutral beams used to heat the plasma. The poloidal rotation (u{sub pol}), on the other hand, is strongly damped and is predicted to remain at Neoclassical (NC) levels of a few km/s. Measuring the inboard-outboard asymmetry of u{sub tor} with charge exchange recombination spectroscopy enables an indirect measurement of u{sub pol} and, hence, the measurement of the complete plasma flow on a flux surface. In order to characterise the nature of u{sub pol} at ASDEX Upgrade a poloidal rotation database has been built that contains a large variation in the parameters that, according to NC theory, drive u{sub pol}; namely, the main ion temperature and density gradients and collisionality. Initial results from this database and a detailed comparison of u{sub pol} to NC theory in interesting plasma scenarios, are presented in this poster.

  19. Tolerance Evaluation of Poloidal Shear Keys for ITER TF Coil

    International Nuclear Information System (INIS)

    Fu Youkun; Neil, M.; Cees Jong

    2006-01-01

    There are 18 ITER Toroidal Field (TF) Coils. Unlike the other ITER coils, these coils are structurally linked. These links consist of friction between the coil legs in the central vault formed by the inner straight legs of the coils, four outer inter-coil structures (OIS) and one inner inter-coil structure (IIS). The OIS consists essentially of bands around all 18 coils to provide shear support by forming shear panels with the coil case, and the IIS consists of poloidal circular keys placed directly between the coil cases. Global analysis of the 'perfect' coil shape has shown high stresses in the IIS, in the poloidal keyways. Optimization has successfully reduced these stresses to acceptable values as regards the expected fatigue resistance. However it is necessary to confirm that the stresses are still acceptable when realistic values of geometry variations are included (i.e. the effect of coil and case tolerances). Because of the extensive mechanical links between coils the poloidal key stresses can also be affected by tolerances elsewhere in the case. As the first step in assessment of the possible variations in stresses, a substructure technique is being used to develop a local model of the key region. The result of geometry variations between individual coils is a loss in the 18 fold symmetry used to simplify previous analyses. With the new and optimized model it should be possible to relax the 18-fold symmetry, but a full analysis of all 18 coils is still not possible. Systematic ways of representing the tolerance variation in the finite element model have been developed so that parametric studies can be undertaken without a full reconstruction of the model. (author)

  20. Poloidal field equilibrium calculations for JET

    International Nuclear Information System (INIS)

    Khalafallah, A.K.

    1976-01-01

    The structure of the JET 2D Poloidal Field Analysis Package is discussed. The ability to cope with different plasma current density distributions (skin, flat or peaked), each with a range of Beta poloidal values and varying plasma shapes is a new feature of these calculations. It is possible to construct instant-by-instant pictures of equilibrium configurations for various plasma build up scenarios taking into account the level of flux in the iron core and return limbs. The equilibrium configurations are calculated for two possible sequences of plasma build up. Examples of the magnetic field calculations being carried out under contract to JET at the Rutherford Laboratory, using a 3D code, are also given

  1. Quantitative study of two- and three-dimensional strong localization of matter waves by atomic scatterers

    International Nuclear Information System (INIS)

    Antezza, Mauro; Castin, Yvan; Hutchinson, David A. W.

    2010-01-01

    We study the strong localization of atomic matter waves in a disordered potential created by atoms pinned at the nodes of a lattice, for both three-dimensional (3D) and two-dimensional (2D) systems. The localization length of the matter wave, the density of localized states, and the occurrence of energy mobility edges (for the 3D system), are numerically investigated as a function of the effective scattering length between the atomic matter wave and the pinned atoms. Both positive and negative matter wave energies are explored. Interesting features of the density of states are discovered at negative energies, where maxima in the density of bound states for the system can be interpreted in terms of bound states of a matter wave atom with a few pinned atomic scatterers. In 3D we found evidence of up to three mobility edges, one at positive energies, and two at negative energies, the latter corresponding to transitions between extended and localized bound states. In 2D, no mobility edge is found, and a rapid exponential-like increase of the localization length is observed at high energy.

  2. Strong influence of regional species pools on continent-wide structuring of local communities.

    Science.gov (United States)

    Lessard, Jean-Philippe; Borregaard, Michael K; Fordyce, James A; Rahbek, Carsten; Weiser, Michael D; Dunn, Robert R; Sanders, Nathan J

    2012-01-22

    There is a long tradition in ecology of evaluating the relative contribution of the regional species pool and local interactions on the structure of local communities. Similarly, a growing number of studies assess the phylogenetic structure of communities, relative to that in the regional species pool, to examine the interplay between broad-scale evolutionary and fine-scale ecological processes. Finally, a renewed interest in the influence of species source pools on communities has shown that the definition of the source pool influences interpretations of patterns of community structure. We use a continent-wide dataset of local ant communities and implement ecologically explicit source pool definitions to examine the relative importance of regional species pools and local interactions for shaping community structure. Then we assess which factors underlie systematic variation in the structure of communities along climatic gradients. We find that the average phylogenetic relatedness of species in ant communities decreases from tropical to temperate regions, but the strength of this relationship depends on the level of ecological realism in the definition of source pools. We conclude that the evolution of climatic niches influences the phylogenetic structure of regional source pools and that the influence of regional source pools on local community structure is strong.

  3. Strong coupling between localized 5f moments and itinerant quasiparticles in the ferromagnetic superconductor UGe2

    Science.gov (United States)

    Zhang, Wen; Liu, Yi; Wang, Xiaoying; Zhang, Yun; Xie, Donghua

    2018-03-01

    The heavy fermion physics arises from the complex interplay of nearly localized 4f/5f electrons and itinerant band-like ones, yielding heavy quasiparticles with an effective mass about 100 times (or more) of the bare electrons. Recently, experimental and theoretical investigations point out a localized and delocalized dual nature in actinide compounds, where itinerant quasiparticles account for the unconventional superconductivity in the vicinity of a magnetic instability. Here we report the strong coupling between localized 5f moments and itinerant quasiparticles in the ferromagnetic superconductor UGe2. The coupling is nearly antiferromagnetic. As embedded in the ferromagnetic matrix of localized 5f moments below {T}{{C}}≈ 52 {{K}}, this coupling leads to short-range dynamic correlations of heavy quasiparticles, characterized by fluctuations of magnetic clusters. Those cluster-like spins of itinerant quasiparticles show a broad hump of magnetization at {T}X≈ 28 {{K}}, which is typical for the spin-glass freezing. Thus, our results present the direct observation of itinerant quasiparticles coexisting with localized 5f moments by conventional magnetic measurements, providing a new route into the coexistence between ferromagnetism and superconductivity in heavy fermion systems. Project supported by the National Natural Science Foundation of China (Grant No. 11404297), the Science Challenge Project (Grant No. TZ2016004), and the Science and Technology Foundation of China Academy of Engineering Physics (Grant Nos. 2013B0301050 and 2014A0301013).

  4. Superconducting poloidal coils for STARFIRE commercial reactor

    International Nuclear Information System (INIS)

    Wang, S.T.; Evans, K. Jr.; Turner, L.R.; Huang, Y.C.; Prater, R.; Alcorn, J.

    1979-01-01

    STARFIRE is considered to be the tenth commercial tokamak power plant. A preliminary design study on its superconducting poloidal coil system is presented. Key features of the design studies are: the elimination of the ohmic heating coil; the trade-off studies of the equilibrium field coil locations; and the development of a conceptual design for the superconducting equilibrium field coils. Described are the 100 kA cryostable conductor design, the coil structure, and evaluation of the coil forces

  5. Poloidal plasma rotation in the presence of RF waves in tokamaks

    International Nuclear Information System (INIS)

    Weyssow, B.; Liu, Caigen

    2001-01-01

    It is well known that one of the consequences of strong RF heating is the deformation of the equilibrium distribution function that induces a change in plasma transport and plasma rotation. The poloidal plasma rotation during RF wave heating in tokamaks is investigated using a moment approach. A set of closed, self-consistent transport and rotation equations is derived and reduced to a single equation for the poloidal particle flux. The formulas are sufficiently general to apply to heating schemes that can be represented by a quasilinear operator. (author)

  6. Westinghouse compact poloidal divertor reference design

    International Nuclear Information System (INIS)

    Yang, T.F.; Lee, A.Y.; Ruck, G.W.

    1977-08-01

    A feasible compact poloidal divertor system has been designed as an impurity control and vacuum vessel first-wall protection option for the TNS tokamak. The divertor coils are inside the TF coil array and vacuum vessel. The poloidal divertor is formed by a pair of coil sets with zero net current. Each set consists of a number of coils forming a dish-shaped washer-like ring. The magnetic flux in the space between the coil sets is compressed vertically to limit the height and to expand the horizontal width of the particle and energy burial chamber which is located in the gap between the coil sets. The intensity of the poloidal field is increased to make the pitch angle of the flux lines very large so that the diverted particles can be intercepted by a large number of panels oriented at a small angle with respect to the flux lines. They are carefully shaped and designed such that the entire surfaces are exposed to the incident particles and are not shadowed by each other. Large collecting surface areas can be obtained. Flowing liquid lithium film and solid metal panels have been considered as the particle collectors. The power density for the former is designed at 1 MW/m 2 and for the latter 0.5 MW/m 2 . The major mechanical, thermal, and vacuum problems have been evaluated in sufficient detail so that the advantages and difficulties are identified. A complete functional picture is presented

  7. Poloidal profiles and transport during turbulent heating

    International Nuclear Information System (INIS)

    Mascheroni, P.L.

    1977-01-01

    The current penetration stage of a turbulently heated tokamak is modeled. The basic formulae are written in slab geometry since the dominant anomalous transport has a characteristic frequency much larger than the bounce frequency. Thus, the basic framework is provided by the Maxwell and fluid equations, with classical and anomalous transport. Quasi-neutrality is used. It is shown that the anomalous collision frequency dominates the anomalous viscosity and thermal conductivity, and that the convective wave transport can be neglected. For these numerical estimates, the leading term in the quasi-linear series is used. During the current penetration stage the distribution function for the particles will depart from a single Maxwellian type. Hence, the first objective was to numerically compare calculated poloidal magnetic field profiles with measured, published poloidal profiles. The poloidal magnetic field has been calculated using a code which handles the anomalous collision frequency self-consistently. The agreement is good, and it is concluded that the current penetration stage can be satisfactorily described by this model

  8. Comparison of Poloidal Velocity Meassurements to Neoclassical Theory on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Bell, R.E.; Andre, R.; Kaye, S.M.; Kolesnikov, R.A.; LeBlance, B.P.; Rewolldt, G.; Wang, W.X.; Sabbagh, S.A.

    2010-01-01

    Knowledge of poloidal velocity is necessary for the determination of the radial electric field, Er, which along with its gradient is linked to turbulence suppression and transport barrier formation. Recent measurements of poloidal flow on conventional tokamaks have been reported to be an order of magnitude larger than expected from neoclassical theory. In contrast, recent poloidal velocity measurements on the NSTX spherical torus (S. M. Kaye et al., Phys. Plasmas 8, 1977 (2001)) are near or below neoclassical estimates. A novel charge exchange recombination spectroscopy diagnostic is used, which features active and passive sets of up/down symmetric views to produce line-integrated poloidal velocity measurements that do not need atomic physics corrections. Local profiles are obtained with an inversion. Poloidal velocity measurements are compared with neoclassical values computed with the codes NCLASS (W. A. Houlberg et al., Phys. Plasmas 4, 3230 (1997)) and GTC-Neo (W. X. Wang, et al., Phys. Plasmas 13, 082501 (2006)), which has been updated to handle impurities.

  9. Charging dynamics and strong localization of a two-dimensional electron cloud

    International Nuclear Information System (INIS)

    Dianoux, R; Smilde, H J H; Marchi, F; Buffet, N; Mur, P; Comin, F; Chevrier, J

    2007-01-01

    The dynamics of charge injection in silicon nanocrystals embedded in a silicon dioxide matrix is studied using electrostatic force microscopy. We show that the presence of silicon nanocrystals with a density of 10 11 cm -2 is essential for strong localization of charges, and results in exceptional charge retention properties compared to nanocrystal-free SiO 2 samples. In both systems, a logarithmic dependence of the diameter of the charged area on the injection time is experimentally observed on a timescale between 0.1 and 10 s (voltage≤10 V). A field-emission injection, limited by Coulomb blockade and a lateral charge spreading due to a repulsive radial electric field are used to model the sample charging. Once the tip is retracted, the electron cloud is strongly confined in the nanocrystals and remains static

  10. Measurement of toroidal and poloidal plasma rotation in TCA

    International Nuclear Information System (INIS)

    Duval, B.P.; Joye, B.; Marchal, B.

    1991-01-01

    With optimal observation geometry we have measured both the toroidal and poloidal rotation velocities in the edge and in the bulk of the TCA plasma. Regular calibration and correction for variations in the spectrometer temperature permitted a measurement with an error of ∼0.5 km/s which is an order of magnitude smaller than the range of measured velocities. In general, changes in the velocities are observed to be stronger and faster in the plasma edge than in the plasma bulk. With increasing density, the toroidal velocity is observed to change sign and follow the plasma density, while the poloidal velocity increases. These two effects lead to an increase in the absolute value of the radial electric field. With very strong gas puffing, the toroidal velocity is observed to again reverse and tend to zero, an effect which is stronger as the gradient of the density ramp is increased. Comparison between gas puffing and high power AWH does not show a significant difference in the radial electric field that could be responsible for the large associated density rise, which still remains unexplained. (author) 4 figs., 2 refs

  11. Arbitrary poloidal gyroradius effects in tokamak pedestals and transport barriers

    International Nuclear Information System (INIS)

    Kagan, Grigory; Catto, Peter J

    2008-01-01

    A technique is developed and applied for analyzing pedestal and internal transport barrier (ITB) regions in a tokamak by formulating a special version of gyrokinetics. In contrast to typical gyrokinetic treatments, canonical angular momentum is taken as the gyrokinetic radial variable rather than the radial guiding center location. Such an approach allows strong radial plasma gradients to be treated, while retaining zonal flow and neoclassical (including orbit squeezing) behavior and the effects of turbulence. The new, nonlinear gyrokinetic variables are constructed to higher order than is typically the case. The nonlinear gyrokinetic equation obtained is capable of handling such problems as collisional zonal flow damping with radial wavelengths comparable to the ion poloidal gyroradius, as well as zonal flow and neoclassical transport in the pedestal or ITB. This choice of gyrokinetic variables allows the toroidally rotating Maxwellian solution of the isothermal tokamak limit to be recovered. More importantly, we prove that a physically acceptable solution for the lowest order ion distribution function in the banana regime anywhere in a tokamak and, in particular, in the pedestal must be nearly this same isothermal Maxwellian solution. That is, the ion temperature variation scale must be much greater than the poloidal ion gyroradius. Consequently, in the banana regime the background radial ion temperature profile cannot have a pedestal similar to that of plasma density

  12. Strong contribution of immigration to local population regulation: evidence from a migratory passerine.

    Science.gov (United States)

    Schaub, Michael; Jakober, Hans; Stauber, Wolfgang

    2013-08-01

    A mechanistic understanding of the dynamics of populations requires knowledge about the variation of the underlying demographic rates and about the reasons for their variability. In geographically open populations, immigration is often necessary to prevent declines, but little is known about whether immigration can contribute to its regulation. We studied the dynamics of a Red-backed Shrike population (Lanius collurio) over 36 years in Germany with a Bayesian integrated population model. We estimated mean and temporal variability of population sizes, productivity, apparent survival, and immigration. We assessed how strongly the demographic rates were correlated with population growth to understand the demographic reasons of population change and how strongly the demographic rates were correlated with population size to identify possible density-dependent mechanisms. The shrike population varied between 35 and 74 breeding pairs but did not show a significant trend in population size over time (growth rate 1.002 +/- 0.001 [mean +/- SD]). Apparent survival of females (juveniles 0.06 +/- 0.01; adults 0.37 +/- 0.03) was lower than that of males (juveniles 0.10 +/- 0.01; adults 0.44 +/- 0.02). Immigration rates were substantial and higher in females (0.56 +/- 0.02) than in males (0.43 +/- 0.02), and average productivity was 2.76 +/- 0.14. Without immigration, the Red-backed Shrike population would have declined strongly. Immigration was the strongest driver for the number of females while local recruitment was the most important driver for the number of males. Immigration of both sexes and productivity, but not local recruitment and survival, were subject to density dependence. Density-dependent productivity was not effectively regulating the local population but may have contributed to regulate shrike populations at larger spatial scales. These findings suggest that immigration is not only an important component to prevent a geographically open population from decline

  13. Studies of a poloidal divertor reversed field pinch

    International Nuclear Information System (INIS)

    Sarff, J.S.; Almagri, A.F.; Assadi, S.; Den Hartog, D.J.; Dexter, R.N.; Prager, S.C.; Sprott, J.C.

    1988-07-01

    An attempt has been made to form a reversed field pinch (RFP) in a poloidal divertor configuration which position the plasma far from a conducting wall. In this configuration, the plasma is localized within a magnetic separatrix formed by the combination of toroidal currents in the plasma and four internal aluminum rings. Plasmas were formed with plasma current /approximately/135 kA, toroidal field reversal lasting /approximately/1 msec, line-averaged density /approximately/1--2 /times/ 10 13 cm/sup /minus/3/ and central electron temperature /approximately/55 eV, but a large asymmetry in the magnetic field (δB/B /approximately/40%) onset at about the time the toroidal field reversed at the wall. Symmetric, poloidal divertor RFP equilibria were not formed. This behavior might be expected based on linear MHD stability analysis of a cylindrical plasma bounded by a large vacuum region and distant conducting wall. The symmetric equilibrium before the asymmetry develops and the asymmetry itself are described. 15 refs., 3 figs

  14. A method for determining poloidal rotation from poloidal asymmetry in toroidal rotation (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Chrystal, C., E-mail: chrystal@fusion.gat.com [Department of Physics, University of California-San Diego, 9500 Gilman Dr., La Jolla, California 92093 (United States); Burrell, K. H.; Lao, L. L.; Pace, D. C. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Grierson, B. A. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

    2014-11-15

    A new diagnostic has been developed on DIII-D that determines the impurity poloidal rotation from the poloidal asymmetry in the toroidal angular rotation velocity. This asymmetry is measured with recently added tangential charge exchange viewchords on the high-field side of the tokamak midplane. Measurements are made on co- and counter-current neutral beams, allowing the charge exchange cross section effect to be measured and eliminating the need for atomic physics calculations. The diagnostic implementation on DIII-D restricts the measurement range to the core (r/a < 0.6) where, relative to measurements made with the vertical charge exchange system, the spatial resolution is improved. Significant physics results have been obtained with this new diagnostic; for example, poloidal rotation measurements that significantly exceed neoclassical predictions.

  15. TPX Poloidal Field (PF) power systems simulation

    International Nuclear Information System (INIS)

    Lu, E.; Bronner, G.

    1993-01-01

    This paper describes the modeling and simulation of the PF power system for the Tokamak Physics Experiment (TPX), which is required to supply pulsed DC current to the Poloidal Field (PF) superconducting coil system. An analytical model was developed to simulate the dynamics of the PF power system for any PF current scenario and thereby provide the basis for selection of PF circuit topology, in support of the major design goal of optimizing the use of the existing Tokamak Fusion Test Reactor (TFTR) facilities at the Princeton Plasma Physics Lab (PPPL)

  16. Toroidal and poloidal momentum transport studies in JET

    DEFF Research Database (Denmark)

    Tala, T.; Andrew, Y.; Crombe, K.

    2007-01-01

    that the carbon poloidal velocity can be an order of magnitude above the neo-classical estimate within the ITB. This significantly affects the calculated radial electric field and therefore, the E x B flow shear used for example in transport simulations. Both the Weiland model and GLF23 reproduce the onset......, location and strength of the ITB well when the experimental poloidal velocity is used while they do not predict the formation of the ITB using the neo-classical poloidal velocity in time-dependent transport simulation. The most plausible explanation for the generation of the anomalous poloidal velocity...... is the turbulence driven flow through the Reynolds stress. Both CUTIE and TRB turbulence codes show the existence of an anomalous poloidal velocity, being significantly larger than the neo-classical values. And similarly to experiments, the poloidal velocity profiles peak in the vicinity of the ITB and seem...

  17. Equilibration of a strongly interacting plasma: holographic analysis of local and nonlocal probes

    Directory of Open Access Journals (Sweden)

    Bellantuono Loredana

    2016-01-01

    Full Text Available The relaxation of a strongly coupled plasma towards the hydrodynamic regime is studied by analyzing the evolution of local and nonlocal observables in the holographic approach. The system is driven in an initial anisotropic and far-from equilibrium state through an impulsive time-dependent deformation (quench of the boundary spacetime geometry. Effective temperature and entropy density are related to the position and area of a black hole horizon, which has formed as a consequence of the distortion. The behavior of stress-energy tensor, equal-time correlation functions and Wilson loops of different shapes is examined, and a hierarchy among their thermalization times emerges: probes involving shorter length scales thermalize faster.

  18. Strong influence of regional species pools on continent-wide structuring of local communities

    DEFF Research Database (Denmark)

    Lessard, Jean-Philippe; Borregaard, Michael Krabbe; Fordyce, James A.

    2012-01-01

    pool, to examine the interplay between broad-scale evolutionary and fine-scale ecological processes. Finally, a renewed interest in the influence of species source pools on communities has shown that the definition of the source pool influences interpretations of patterns of community structure. We use...... of communities along climatic gradients. We find that the average phylogenetic relatedness of species in ant communities decreases from tropical to temperate regions, but the strength of this relationship depends on the level of ecological realism in the definition of source pools. We conclude that the evolution...... of climatic niches influences the phylogenetic structure of regional source pools and that the influence of regional source pools on local community structure is strong....

  19. Bounds on poloidal kinetic energy in plane layer convection

    Science.gov (United States)

    Tilgner, A.

    2017-12-01

    A numerical method is presented that conveniently computes upper bounds on heat transport and poloidal energy in plane layer convection for infinite and finite Prandtl numbers. The bounds obtained for the heat transport coincide with earlier results. These bounds imply upper bounds for the poloidal energy, which follow directly from the definitions of dissipation and energy. The same constraints used for computing upper bounds on the heat transport lead to improved bounds for the poloidal energy.

  20. Strong Depletion in Hybrid Perovskite p-n Junctions Induced by Local Electronic Doping.

    Science.gov (United States)

    Ou, Qingdong; Zhang, Yupeng; Wang, Ziyu; Yuwono, Jodie A; Wang, Rongbin; Dai, Zhigao; Li, Wei; Zheng, Changxi; Xu, Zai-Quan; Qi, Xiang; Duhm, Steffen; Medhekar, Nikhil V; Zhang, Han; Bao, Qiaoliang

    2018-04-01

    A semiconductor p-n junction typically has a doping-induced carrier depletion region, where the doping level positively correlates with the built-in potential and negatively correlates with the depletion layer width. In conventional bulk and atomically thin junctions, this correlation challenges the synergy of the internal field and its spatial extent in carrier generation/transport. Organic-inorganic hybrid perovskites, a class of crystalline ionic semiconductors, are promising alternatives because of their direct badgap, long diffusion length, and large dielectric constant. Here, strong depletion in a lateral p-n junction induced by local electronic doping at the surface of individual CH 3 NH 3 PbI 3 perovskite nanosheets is reported. Unlike conventional surface doping with a weak van der Waals adsorption, covalent bonding and hydrogen bonding between a MoO 3 dopant and the perovskite are theoretically predicted and experimentally verified. The strong hybridization-induced electronic coupling leads to an enhanced built-in electric field. The large electric permittivity arising from the ionic polarizability further contributes to the formation of an unusually broad depletion region up to 10 µm in the junction. Under visible optical excitation without electrical bias, the lateral diode demonstrates unprecedented photovoltaic conversion with an external quantum efficiency of 3.93% and a photodetection responsivity of 1.42 A W -1 . © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Plasma residual poloidal rotation in TCABR tokamak

    International Nuclear Information System (INIS)

    Severo, J.H.F.; Nascimento, I.C.; Tsypin, V.S.; Galvao, R.M.O.

    2003-01-01

    This paper reports the first measurement of the radial profiles of plasma poloidal and toroidal rotation performed on the TCABR tokamak for a collisional plasma (Pfirsch-Schluter regime), using Doppler shift of carbon spectral lines, measured with a high precision optical spectrometer. The results for poloidal rotation show a maximum velocity of (4.5±1.0)·10 3 m/s at r ∼ 2/3a, (a - limiter radius), in the direction of the diamagnetic electron drift. Within the error limits, reasonable agreement is obtained with calculations using the neoclassical theory for a collisional plasma, except near the plasma edge, as expected. For toroidal rotation, the radial profile shows that the velocity decreases from a counter-current value of (20 ± 1) · 10 3 m/s for the plasma core to a co-current value of (2.0 ± 1.0) · 10 3 m/s near the limiter. An agreement within a factor 2, for the plasma core rotation, is obtained with calculations using the model proposed by Kim, Diamond and Groebner. (author)

  2. Compact poloidal divertor reference design for TNS

    International Nuclear Information System (INIS)

    Yang, T.F.; Lee, A.Y.; Ruck, G.W.; Lange, W.J.

    1977-01-01

    A compact poloidal divertor concept has been developed for TNS tokamaks and its feasibility has been demonstrated by sufficient detailed magnetic, thermal, mechanical and vacuum analyses. This particular divertor is formed by a pair of opposing coil sets which define a magnetic flux slot where the particle burial chamber is located. The magnetic flux in the space between the coil sets is compressed vertically to limit the height and to expand the horizontal width of the particle and energy burial chamber. The intensity of the poloidal field is increased to make the pitch angle of the flux lines very large so that the diverted particles can be intercepted by a large number of panels oriented at a small angle with respect to the flux lines. Large collecting surface areas can be obtained so that the thermal load and particle flux are reduced to a practical level. Flowing lithium film and solid metal panels have been considered as the particle collector and the latter is preferred. This divertor allows for most economical use of the available space inside the TF coils and thus has minor impact on the overall size of the tokamak. The divertor design is essentially independent of the tokamak system, although analyses were performed based on TNS

  3. Local Magnetism in Strongly Correlated Electron Systems with Orbital Degrees of Freedom

    Science.gov (United States)

    Ducatman, Samuel Charles

    The central aim of my research is to explain the connection between the macroscopic behavior and the microscopic physics of strongly correlated electron systems with orbital degrees of freedom through the use of effective models. My dissertation focuses on the sub-class of these materials where electrons appear to be localized by interactions, and magnetic ions have well measured magnetic moments. This suggests that we can capture the low-energy physics of the material by employing a minimal model featuring localized spins which interact with each other through exchange couplings. I describe Fe1+y Te and beta-Li2IrO3 with effective models primarily focusing on the spins of the magnetic ions, in this case Fe and Ir, respectively. The goal with both materials is to gain insight and make predictions for experimentalists. In chapter 2, I focus on Fe1+yTe. I describe why we believe the magnetic ground state of this material, with an observed Bragg peak at Q +/- pi/2, pi/2), can be described by a Heisenberg model with 1st, 2nd, and 3rd neighbor interactions. I present two possible ground states of this model in the small J1 limit, the bicollinear and plaquette states. In order to predict which ground state the model prefers, I calculate the spin wave spectrum with 1/S corrections, and I find the model naturally selects the "plaquette state." I give a brief description of the ways this result could be tested using experimental techniques such as polarized neutron scattering. In chapter 3, I extend the model used in chapter 2. This is necessary because the Heisenberg model we employed cannot explain why Fe1+yTe undergoes a phase transition as y is increased. We add an additional elements to our calculation; we assume that electrons in some of the Fe 3D orbitals have selectively localized while others remain itinerant. We write a new Hamiltonian, where localized moments acquire a new long-range RKKY-like interaction from interactions with the itinerant electrons. We are

  4. Strong carrier localization in stacking faults in semipolar (11-22) GaN

    Science.gov (United States)

    Okur, Serdal; Monavarian, Morteza; Das, Saikat; Izyumskaya, Natalia; Zhang, Fan; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit

    2015-03-01

    The effects of stacking faults (SFs) on optical processes in epitaxially grown semipolar (1122) GaN on m-sapphire substrate have been investigated in detail using steady-state photoluminescence (PL) and time- and polarization-resolved PL. We demonstrate that the carrier recombination dynamics are substantially influenced due to strong carrier localization in the stacking faults. In addition to nonradiative recombination, carrier trapping/detrapping and carrier transfer between the stacking faults and donors are also found to be among the mechanisms affecting the recombination dynamics at different temperatures. PL decay times of both I1-type BSF and 3.31 eV SF (E-type BSF or prismatic stacking fault) do not show temperature dependence up to 80 K while 3.31 eV SF exhibits longer PL decay times (~3 ns) at low temperatures as compared to I1-type BSF (~1 ns), indicative of lower efficiency for radiative recombination. After 80 K, PL decay times decreased by power of ~-1 and ~-2 for 3.31 eV SF and I1-type BSF, respectively. It is obtained from radiative decay times with respect to temperature that the carrier localization becomes higher in I1-type BSF compared to 3.31 eV SF increasing the temperature. I1-type BSF also shows higher PL intensity, which is attributed to larger density, and therefore, larger contribution to recombination dynamics as compared to other type of stacking faults. Polarization-resolved PL measurements also revealed that the degree of polarization for the I1-type BSF (0.30) was twice that for the 3.31 eV SF.

  5. The poloidal distribution of turbulent fluctuations in the Mega-Ampere Spherical Tokamak

    International Nuclear Information System (INIS)

    Antar, G.Y.; Counsell, G.; Ahn, J.-W.; Yang, Y.; Price, M.; Tabasso, A.; Kirk, A.

    2005-01-01

    Recently, it was shown that intermittency observed in magnetic fusion devices is caused by large-scales events with high radial velocity reaching about 1/10th of the sound speed (called avaloids or blobs) [G. Antar et al., Phys. Rev. Lett. 87 065001 (2001)]. In the present paper, the poloidal distribution of turbulence is investigated on the Mega-Ampere Spherical Tokamak [A. Sykes et al., Phys. Plasmas 8 2101 (2001)]. To achieve our goal, target probes that span the divertor strike points are used and one reciprocating probe at the midplane. Moreover, a fast imaging camera that can reach 10 μs exposure time looks tangentially at the plasma allowing us to view a poloidal cut of the plasma. The two diagnostics allow us to have a rather accurate description of the particle transport in the poloidal plane for L-mode discharges. Turbulence properties at the low-field midplane scrape-off layer are discussed and compared to other poloidal positions. On the low-field target divertor plates, avaloids bursty signature is not detected but still intermittency is observed far from the strike point. This is a consequence of the field line expansion which transforms a structure localized in the poloidal plane into a structure which expands over several tens of centimeters at the divertor target plates. Around the X point and in the high-field side, however, different phenomena enter into play suppressing the onset of convective transport generation. No signs of intermittency are observed in these regions. Accordingly, like 'normal' turbulence, the onset of convective transport is affected by the local magnetic curvature and shear

  6. The Dirac equation in the local representation - contributions to the quantum electrodynamics of strong fields

    International Nuclear Information System (INIS)

    Schlueter, P.

    1985-05-01

    In this work three topics related to the theory of positron creation in heavy ion collisions are investigated. The first of these is concerned with the local representation of the Dirac matrices. It consists of a space dependent similarity transformation of the Dirac matrices which is chosen in such a way that for certain orthogonal coordinate systems the Dirac equation assumes a simple standardized form. This form is well suited for analytical as well as numerical calculations. For all generally used coordinate systems the transformation can be given in closed form. The application of this idea is not restricted to the solution of the two-centre Dirac equation but may be used also for different electro-magnetic potentials. In the second of the above mentioned problems, the question is discussed, whether the recently observed peak structures in positron spectra from U-U collisions can originate from nuclear conversion processes. It is demonstrated that, taking this hypothesis at face value, in the photon or delta-electron spectrum corresponding structures should be observed. Moreover, rather large nuclear excitation probabilities in the order of percents are needed to make this explanation plausible. Finally, the third topic is concerned with a more fundamental question: May it be possible that the interaction of the strongly bound electrons in a critical electric field with the radiation field leads to an energy shift which is big enough to prevent the diving of the 1s-state into the negative energy continuum. (orig./HSI) [de

  7. Optimization of the poloidal transformer of ignitor

    International Nuclear Information System (INIS)

    Andritsos, F.; Angelini, A.

    1989-01-01

    One of the most critical parts of the high field Tokamak IGNITOR, is the inner poloidal transformer coil. This is due not only to the high stresses developed there but also to the large quantities of energy released and the resulting high temperature. It determines the overall cooling time of the machine and thus the maximum attainable number of pulses per year. An optimization, based on a parametric study of the transformer, was performed and configuration parameters were defined. Cooling time was the quantity to be minimized, with main constraints the maximum coil temperatures and the maximum coolant outlet velocities. The cost of the cooling plant was also taken into account. The row of the conductors adjacent to the equatorial plane, which presents the highest stresses, was modeled and checked for maximum stresses. Thermal and magnetic loading, contact nonlinearity and pretensioning were considered. 8 refs., 4 figs., 12 tabs

  8. Poloidal ohmic heating in a multipole

    International Nuclear Information System (INIS)

    Holly, D.J.; Prager, S.C.; Sprott, J.C.

    1982-07-01

    The feasibility of using poloidal currents to heat plasmas confined by a multipole field has been examined experimentally in Tokapole II, operating the machine as a toroidal octupole. The plasma resistivity ranges from Spitzer to about 1500 times Spitzer resistivity, as predicted by mirror-enhanced resistivity theory. This allows large powers (approx. 2 MW) to be coupled to the plasma at modest current levels. However, the confinement time is reduced by the heating, apparently due to a combination of the input power location (near the walls of the vacuum tank) and fluctuation-enhanced transport. Current-driven drift instabilities and resistive MHD instabilities appear to be the most likely causes for the fluctuations

  9. Induction of poloidal rotation by mean of a ponderomotive force

    International Nuclear Information System (INIS)

    Gutierrez T, C.; Martinell, J.

    1999-01-01

    When a plasma is radiated with a radiofrequency wave (RF) with fluxes of energy at hundred megawatts order (MW) the effect the of ponderomotive force (PM) is very important. This force applied to the plasma column can generate a rotation movement by a non-resonant mechanism. Particularly, it is known that the poloidal rotation can be induced by direct action of the PM force poloidal moment. This poloidal rotation of the plasma column can to explain the appearance of high confinement regime (H) in Tokamaks. In this work, it is analysed this mechanism, showing that if it is operated efficiently with the poloidal and parallel components of PM force then could be intensified the poloidal rotation moreover it is showed the form in which the asymptotic value of this rotation is established. (Author)

  10. On steady poloidal and toroidal flows in tokamak plasmas

    International Nuclear Information System (INIS)

    McClements, K. G.; Hole, M. J.

    2010-01-01

    The effects of poloidal and toroidal flows on tokamak plasma equilibria are examined in the magnetohydrodynamic limit. ''Transonic'' poloidal flows of the order of the sound speed multiplied by the ratio of poloidal magnetic field to total field B θ /B can cause the (normally elliptic) Grad-Shafranov (GS) equation to become hyperbolic in part of the solution domain. It is pointed out that the range of poloidal flows for which the GS equation is hyperbolic increases with plasma beta and B θ /B, thereby complicating the problem of determining spherical tokamak plasma equilibria with transonic poloidal flows. It is demonstrated that the calculation of the hyperbolicity criterion can be easily modified when the assumption of isentropic flux surfaces is replaced with the more tokamak-relevant one of isothermal flux surfaces. On the basis of the latter assumption, a simple expression is obtained for the variation of density on a flux surface when poloidal and toroidal flows are simultaneously present. Combined with Thomson scattering measurements of density and temperature, this expression could be used to infer information on poloidal and toroidal flows on the high field side of a tokamak plasma, where direct measurements of flows are not generally possible. It is demonstrated that there are four possible solutions of the Bernoulli relation for the plasma density when the flux surfaces are assumed to be isothermal, corresponding to four distinct poloidal flow regimes. Finally, observations and first principles-based theoretical modeling of poloidal flows in tokamak plasmas are briefly reviewed and it is concluded that there is no clear evidence for the occurrence of supersonic poloidal flows.

  11. Induction of poloidal rotation by mean of a ponderomotive force; Induccion de rotacion poloidal por medio de una fuerza ponderomotriz

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez T, C. [Instituto Nacional de Investigaciones Nucleares, Departamento de Fisica, Salazar, Estado de Mexico, C.P. 52045 (Mexico); Martinell, J. [Instituto de Ciencias Nucleares, UNAM, C.P. 04510, Mexico D.F. (Mexico)

    1999-07-01

    When a plasma is radiated with a radiofrequency wave (RF) with fluxes of energy at hundred megawatts order (MW) the effect the of ponderomotive force (PM) is very important. This force applied to the plasma column can generate a rotation movement by a non-resonant mechanism. Particularly, it is known that the poloidal rotation can be induced by direct action of the PM force poloidal moment. This poloidal rotation of the plasma column can to explain the appearance of high confinement regime (H) in Tokamaks. In this work, it is analysed this mechanism, showing that if it is operated efficiently with the poloidal and parallel components of PM force then could be intensified the poloidal rotation moreover it is showed the form in which the asymptotic value of this rotation is established. (Author)

  12. Poloidal and toroidal heat flux distribution in the CCT tokamak

    International Nuclear Information System (INIS)

    Brown, M.L.; Dhir, V.K.; Taylor, R.J.

    1990-01-01

    Plasma heat flux to the Faraday shield panels of the UCLA Continuous Current Tokamak (CCT) has been measured calorimetrically in order to identify the dominant parameters affecting the spatial distribution of heat deposition. Three heating methods were investigated: audio frequency discharge cleaning, RF heating, and AC ohmic. Significant poloidal asymmetry is present in the heat flux distribution. On the average, the outer panels received 25-30% greater heat flux than the inner ones, with the ratio of maximum to minimum values attaining a difference of more than a factor of 2. As a diagnostic experiment the current to a selected toroidal field coil was reduced in order to locally deflect the toroidal field lines outward in a ripple-like fashion. Greatly enhanced heat deposition (up to a factor of 4) was observed at this location on the outside Faraday panels. The enhancement was greatest for conditions of low toroidal field and low neutral pressure, leading to low plasma densities, for which Coulomb collisions are the smallest. An exponential model based on a heat flux e-folding length describes the experimentally found localization of thermal energy quite adequately. (orig.)

  13. Nonambipolarity, orthogonal conductivity, poloidal flow, and torque

    International Nuclear Information System (INIS)

    Hulbert, G.W.; Perkins, F.W.

    1989-02-01

    Nonambipolar processes, such as neutral injection onto trapped orbits or ripple-diffusion loss of α-particles, act to charge a plasma. A current j/sub r/ across magnetic surfaces must arise in the bulk plasma to maintain charge neutrality. An axisymmetric, neoclassical model of the bulk plasma shows that these currents are carried by the ions and exert a j/sub r/B/sub θ/R/c torque in the toroidal direction. A driven poloidal flow V/sub θ/ = E/sub r/'c/B must also develop. The average current density is related to the radial electric field E/sub r/' = E/sub r/ + v/sub /phi//B/sub θ//c in a frame moving with the plasma via the orthogonal conductivity = σ/sub /perpendicular//E/sub r/', which has the value σ/sub /perpendicular// = (1.65ε/sup 1/2/)(ne 2 ν/sub ii//MΩ/sub θ/ 2 ) in the banana regime. If an ignited plasma loses an appreciable fraction Δ of its thermonuclear α-particles by banana ripple diffusion, then the torque will spin the plasma to sonic rotation in a time /tau//sub s/ ∼ 2/tau//sub E//Δ, /tau//sub E/ being the energy confinement time. 10 refs., 1 fig

  14. Calculation of impurity poloidal rotation from measured poloidal asymmetries in the toroidal rotation of a tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chrystal, C. [University of California-San Diego, La Jolla, California 92186-5608 (United States); Burrell, K. H.; Groebner, R. J.; Kaplan, D. H. [General Atomics, San Diego, California 92186-5608 (United States); Grierson, B. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States)

    2012-10-15

    To improve poloidal rotation measurement capabilities on the DIII-D tokamak, new chords for the charge exchange recombination spectroscopy (CER) diagnostic have been installed. CER is a common method for measuring impurity rotation in tokamak plasmas. These new chords make measurements on the high-field side of the plasma. They are designed so that they can measure toroidal rotation without the need for the calculation of atomic physics corrections. Asymmetry between toroidal rotation on the high- and low-field sides of the plasma is used to calculate poloidal rotation. Results for the main impurity in the plasma are shown and compared with a neoclassical calculation of poloidal rotation.

  15. Calculation of impurity poloidal rotation from measured poloidal asymmetries in the toroidal rotation of a tokamak plasma.

    Science.gov (United States)

    Chrystal, C; Burrell, K H; Grierson, B A; Groebner, R J; Kaplan, D H

    2012-10-01

    To improve poloidal rotation measurement capabilities on the DIII-D tokamak, new chords for the charge exchange recombination spectroscopy (CER) diagnostic have been installed. CER is a common method for measuring impurity rotation in tokamak plasmas. These new chords make measurements on the high-field side of the plasma. They are designed so that they can measure toroidal rotation without the need for the calculation of atomic physics corrections. Asymmetry between toroidal rotation on the high- and low-field sides of the plasma is used to calculate poloidal rotation. Results for the main impurity in the plasma are shown and compared with a neoclassical calculation of poloidal rotation.

  16. Effects of a poloidally asymmetric ionization source on toroidal drift wave stability and the generation of sheared parallel flow

    International Nuclear Information System (INIS)

    Ware, A.S.; Diamond, P.H.

    1993-01-01

    The effects of a poloidally asymmetric ionization source on both dissipative toroidal drift wave stability and the generation of mean sheared parallel flow are examined. The first part of this work extends the development of a local model of ionization-driven drift wave turbulence [Phys. Fluids B 4, 877 (1992)] to include the effects of magnetic shear and poloidal source asymmetry, as well as poloidal mode coupling due to both magnetic drifts and the source asymmetry. Numerical and analytic investigation confirm that ionization effects can destabilize collisional toroidal drift waves. However, the mode structure is determined primarily by the magnetic drifts, and is not overly effected by the poloidal source asymmetry. The ionization source drives a purely inward particle flux, which can explain the anomalously rapid uptake of particles which occurs in response to gas puffing. In the second part of this work, the role poloidal asymmetries in both the source and turbulent particle diffusion play in the generation of sheared mean parallel flow is examined. Analysis indicates that predictions of sonic parallel shear flow [v parallel (r)∼c s ] are an unphysical result of the assumption of purely parallel flow (i.e., v perpendicular =0) and the neglect of turbulent parallel momentum transport. Results indicate that the flow produced is subcritical to the parallel shear flow instability when diamagnetic effects are properly considered

  17. Calculation of poloidal rotation in the edge plasma of limiter tokamaks

    International Nuclear Information System (INIS)

    Gerhauser, H.; Claassen, H.A.

    1987-05-01

    The existing 2-d two-fluid code for computing the plasma profiles in the scrape-off layer of limiter tokamaks has been further developed to include the effect of poloidal rotation in the basic equations. This rotation is produced by radial electric fields which arise in the limiter shadow due to radial gradients in the Langmuir sheath potential in front of the limiter. As a consequence slight deviations from ambipolar motion must occur. A strong increase of rotation near the separatrix is connected with an electric current circuit closed via the limiter edge. The 2-d profiles of all relevant quantities are calculated and discussed for TEXTOR-typical parameters including also the effect of limiter recycled neutrals. The results agree well with the known experimental evidence on poloidal rotation and should be transferable to all limiter tokamaks. (orig.)

  18. Thermal-hydraulic investigations on the CEA-ENEA DEMO relevant helium cooled poloidal blanket

    International Nuclear Information System (INIS)

    Dell'Orco, G.; Polazzi, G.; Vallette, F.; Proust, E.; Eid, M.

    1994-01-01

    The CEA-ENEA design of an Helium Cooled Solid Breeder Blanket (HCSBB) for the DEMO reactor, with a breeder in tube (BIT) poloidal arrangement, is based on the use of lithium ceramic pellets, the ENEA γ-LiAlO 2 or the CEA Li 2 ZrO 3 . Due to the geometry of the DEMO reactor plasma chamber, these breeder bundles are adapted to the Vacuum Vessel with a strong poloidal curvature. This curvature influences the thermal-hydraulic behaviour of the coolant flowing inside the bundle. The paper presents the CEA-ENEA first results of the experimental and theoretical programme, aiming at optimizing the breeder module thermal hydraulic design. (author) 6 refs.; 7 figs.; 1 tab

  19. Poloidal flux loss in a field-reversed theta pinch

    International Nuclear Information System (INIS)

    Hoffman, A.L.; Milroy, R.D.; Steinhauer, L.C.

    1981-01-01

    Poloidal flux loss has been measured in field-reversed configurations and related to anomalous resistivity near the magnetic field null. The results indicate that mechanisms in addition to the lower-hybrid drift instability are affecting transport

  20. Toroidal and poloidal momentum transport studies in Tokamaks

    DEFF Research Database (Denmark)

    Tala, T.; Andrew, Y.; Giroud, C.

    2007-01-01

    to be neo-classical. However, experimental measurements on JET show that the carbon poloidal velocity can be an order of magnitude above the predicted value by the neo-classical theory within the ITB. These large measured poloidal velocities, employed for example in transport simulations, significantly...... codes and also the Weiland model predict the existence of an anomalous poloidal velocity, peaking in the vicinity of the ITB and driven dominantly by the flow due to the Reynold's stress. It is worth noting that these codes and models treat the equilibrium in a simplified way and this affects...... the geodesic curvature effects and geodesic acoustic modes. The neo-classical equilibrium is calculated more accurately in the GEM code and the simulations suggest that the spin-up of poloidal velocity is a consequence of the plasma profiles steepening when the ITB grows, following in particular the growth...

  1. Power supply for coil of poloidal field in a tokamak

    International Nuclear Information System (INIS)

    Kirpichev, I.V.; Spevakova, F.M.

    1984-01-01

    The invention refers to power supply systems of poloidal field winding in tokamaks. The purpose of the invention is the extension of functional capabilities of the circuit by means of use of thyristor and diode keys mounted between convertor sections

  2. Strong influence of regional species pools on continent-wide structuring of local communities

    OpenAIRE

    Lessard, Jean-Philippe; Borregaard, Michael K.; Fordyce, James A.; Rahbek, Carsten; Weiser, Michael D.; Dunn, Robert R.; Sanders, Nathan J.

    2011-01-01

    There is a long tradition in ecology of evaluating the relative contribution of the regional species pool and local interactions on the structure of local communities. Similarly, a growing number of studies assess the phylogenetic structure of communities, relative to that in the regional species pool, to examine the interplay between broad-scale evolutionary and fine-scale ecological processes. Finally, a renewed interest in the influence of species source pools on communities has shown that...

  3. Poloidal asymmetries of flows in the Tore Supra tokamak

    Science.gov (United States)

    Vermare, L.; Hennequin, P.; Gürcan, Ö. D.; Garbet, X.; Honoré, C.; Clairet, F.; Giacalone, J. C.; Morel, P.; Storelli, A.; Tore Supra Team

    2018-02-01

    Simultaneous measurements of binormal velocity of density fluctuations using two separate Doppler backscattering systems at the low field side and at the top of the plasma show significant poloidal asymmetry. The measurements are performed in the core region between the radii 0.7 Supra tokamak. A possible generation mechanism by the ballooned structure of the underlying turbulence, in the form of convective cells, is proposed for explaining the observation of these poloidally asymmetric mean flows.

  4. Effect of limiter recycling on measured poloidal impurity emission profiles in Tore Supra

    International Nuclear Information System (INIS)

    Hogan, J.; DeMichelis, C.; Monier-Garbet, P.; Becoulet, M.; Bush, C.; Ghendrih, P.; Guirlet, R.; Hess, W.; Mattioli, M.; Vallet, J.C.

    2001-01-01

    Poloidal impurity emission profiles measured with the Tore Supra grazing incidence duochromator exhibit a complex spatial structure during ergodic divertor operation with an outboard poloidal guard limiter. As previous measurements with inboard-wall limited plasmas have shown that these profiles give important information about the ergodic field structure, so the contribution of local neon recycling from the limiter-induced plume has been modeled. This permits a discrimination of edge and core transport effects. The BBQ 3D scrape-off layer code calculates the asymmetric contribution to the emission and MIST 1D simulation gives the symmetric part. A systematic increase is observed in the decay rate of neon emission after injection as the ergodic divertor strength is increased. The calculations permit identification of the limiter plume contribution to the profile structure, and, with this identification, the effect of the divertor to enhance impurity efflux can be seen from the decay data

  5. Strong disorder real-space renormalization for the many-body-localized phase of random Majorana models

    Science.gov (United States)

    Monthus, Cécile

    2018-03-01

    For the many-body-localized phase of random Majorana models, a general strong disorder real-space renormalization procedure known as RSRG-X (Pekker et al 2014 Phys. Rev. X 4 011052) is described to produce the whole set of excited states, via the iterative construction of the local integrals of motion (LIOMs). The RG rules are then explicitly derived for arbitrary quadratic Hamiltonians (free-fermions models) and for the Kitaev chain with local interactions involving even numbers of consecutive Majorana fermions. The emphasis is put on the advantages of the Majorana language over the usual quantum spin language to formulate unified RSRG-X rules.

  6. Poloidal field distribution studies in tokamak reactor

    International Nuclear Information System (INIS)

    Ueda, Kojyu; Nishio, Satoshi; Fujisawa, Noboru; Sugihara, Masayoshi; Saito, Seiji

    1983-01-01

    On the design studies with the INTOR plasma equilibrium and poloidal field coil configuration (PFCC) from the Phase I to the Phase II A have been obtained the following main results. Three optimized PFCCs have been obtained: the INTOR-J ''Universal'' with the optimized PFCC for the divertor configuration, the optimized PFCC for the pump limiter, and the INTOR ''Universal'' with the PFCC defined as the INTOR reference. These PFCCs satisfy with the requirements for the porthole size for the remote assembly and maintenance of the device, and the maximum flux swing and current densities of the solenoidal coils. The INTOR-J ''Universal'' will be almost the same as the INTOR ''Universal'' in the reactor size. But the optimized PFCC for the pump limiter will be a little larger than the above two configuration because of being in need of slightly larger radii on the two large coils if the plasma with 1.5 in elongation is unconditionally necessary. The total sum of absolute currents with PFCC, which is used as a parameter for its figure of merit, is found to be given in a range of 80 -- 90 MAT at high beta for the divertor configuration for both of the INTOR-J ''Universal'' and the INTOR ''Universal''. The optimized PFCC for pump limiter has 70 -- 80 MAT in its range. The INTOR-J ''Universal'' and the INTOR ''Universal'' for the pump limiter will have its larger sum than one optimized for pump limiter by several MAT. The ''EF only'' method, where the flux, psi sub(P), necessary for maintaining the plasma current on high beta is provided only by EF coils, seems to give the total sum a little less than the ''EF + OH'' method using EF and OH coils for psi sub(P). (J.P.N.)

  7. Characterization of the core poloidal flow at ASDEX Upgrade

    Science.gov (United States)

    Lebschy, Alexander

    2017-10-01

    An essential result from neoclassical (NC) theory is that the fluid poloidal rotation (upol) of the main ions is strongly damped by magnetic pumping and, therefore, expected to be small (theory has been found at both DIII-D and TCV. This is qualitatively consistent with the edge results from both Alcator C-Mod and ASDEX Upgrade (AUG). At AUG thanks to an upgrade of the core charge exchange recombination spectroscopy (CXRS) diagnostics, the core upol can be evaluated through the inboard-outboard asymmetry of the toroidal rotation with an accuracy of 0.5 - 1 km / s . This measurement also provides the missing ingredient to evaluate the core (E-> × B->) velocity (uE-> × B->) via the radial force balance equation. At AUG the core upol (0.35 × B-> determined from CXRS and the perpendicular velocity measured from turbulence propagation. The difference between these two quantities is the turbulent phase velocity. The gathered dataset indicates that the transition in the turbulence regime occurs after the saturation of the energy confinement time. The author thankfully acknowledges the financial support from the Helmholtz Association of German Research Centers through the Helmholtz Young Investigators Group program.

  8. Direct evidence of strong local ferroelectric ordering in a thermoelectric semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Leena; Sekhon, Jagmeet S.; Arora, Ashima; Sheet, Goutam, E-mail: goutam@iisermohali.ac.in [Department of Physical Sciences, Indian Institute of Science Education and Research Mohali (IISER M), Sector 81, S. A. S. Nagar, Manauli PO-140306 (India); Guin, Satya N.; Negi, Devendra S.; Datta, Ranjan; Biswas, Kanishka, E-mail: kanishka@jncasr.ac.in [New Chemistry Unit and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064 (India)

    2014-09-15

    It is thought that the proposed new family of multi-functional materials, namely, the ferroelectric thermoelectrics may exhibit enhanced functionalities due to the coupling of the thermoelectric parameters with ferroelectric polarization in solids. Therefore, the ferroelectric thermoelectrics are expected to be of immense technological and fundamental significance. As a first step towards this direction, it is most important to identify the existing high performance thermoelectric materials exhibiting ferroelectricity. Herein, through the direct measurement of local polarization switching, we show that the recently discovered thermoelectric semiconductor AgSbSe{sub 2} has local ferroelectric ordering. Using piezo-response force microscopy, we demonstrate the existence of nanometer scale ferroelectric domains that can be switched by external electric field. These observations are intriguing as AgSbSe{sub 2} crystalizes in cubic rock-salt structure with centro-symmetric space group (Fm–3m), and therefore, no ferroelectricity is expected. However, from high resolution transmission electron microscopy measurement, we found the evidence of local superstructure formation which, we believe, leads to local distortion of the centro-symmetric arrangement in AgSbSe{sub 2} and gives rise to the observed ferroelectricity. Stereochemically active 5S{sup 2} lone-pair of Sb may also give rise to local structural distortion thereby creating ferroelectricity in AgSbSe{sub 2}.

  9. Numerical prediction of local transitional features of turbulent forced gas flows in circular tubes with strong heating

    International Nuclear Information System (INIS)

    Ezato, Koichiro; Kunugi, Tomoaki; Shehata, A.M.; McEligot, D.M.

    1997-03-01

    Previous numerical simulation for the laminarization due to heating of the turbulent flow in pipe were assessed by comparison with only macroscopic characteristics such as heat transfer coefficient and pressure drop, since no experimental data on the local distributions of the velocity and temperature in such flow situation was available. Recently, Shehata and McEligot reported the first measurements of local distributions of velocity and temperature for turbulent forced air flow in a vertical circular tube with strongly heating. They carried out the experiments in three situations from turbulent flow to laminarizing flow according to the heating rate. In the present study, we analyzed numerically the local transitional features of turbulent flow evolving laminarizing due to strong heating in their experiments by using the advanced low-Re two-equation turbulence model. As the result, we successfully predicted the local distributions of velocity and temperature as well as macroscopic characteristics in three turbulent flow conditions. By the present study, a numerical procedure has been established to predict the local characteristics such as velocity distribution of the turbulent flow with large thermal-property variation and laminarizing flow due to strong heating with enough accuracy. (author). 60 refs

  10. Finite strain logarithmic hyperelasto-plasticity with softening: a strongly non-local implicit gradient framework

    NARCIS (Netherlands)

    Geers, M.G.D.

    2004-01-01

    This paper addresses the extension of a Eulerian logarithmic finite strain hyperelasto-plasticity model in order to incorporate an isotropic plastic damage variable that leads to softening and failure of the plastic material. It is shown that a logarithmic elasto-plastic model with a strongly

  11. Poloidal and toroidal plasmons and fields of multilayer nanorings

    International Nuclear Information System (INIS)

    Garapati, K. V.; Salhi, M.; Kouchekian, S.; Siopsis, G.

    2017-01-01

    Composite and janus type metallodielectric nanoparticles are increasingly considered as a means to control the spatial and temporal behavior of electromagnetic fields in diverse applications such as coupling to quantum emitters, achieving invisibility cloaks, and obtaining quantum correlations between qubits. We investigate the surface modes of a toroidal nanostructure and obtain the canonical plasmon dispersion relations and resonance modes for arbitrarily layered nanorings. Unlike particle plasmon eigenmodes in other geometries, the amplitudes of the eigenmodes of tori exhibit a distinct forward and backward coupling. We present the plasmon dispersion relations for several relevant toroidal configurations in the quasistatic limit and obtain the dominant retarded dispersion relations of a single ring for comparison, discuss mode complementarity and hybridization, and introduce two new types of toroidal particles in the form of janus nanorings. The resonance frequencies for the first few dominant modes of a ring composed of plasmon supporting materials such as gold, silver, and aluminum are provided and compared to those for a silicon ring. A generalized Green's function is obtained for multilayer tori allowing for calculation of the scattering response to interacting fields. Employing the Green's function, the scalar electric potential distribution corresponding to individual poloidal and toroidal modes in response to an arbitrarily polarized external field and the field of electrons is obtained. The results are applied to obtain the local density of states and decay rate of a dipole near the center of the torus.

  12. Poloidal and toroidal plasmons and fields of multilayer nanorings

    Science.gov (United States)

    Garapati, K. V.; Salhi, M.; Kouchekian, S.; Siopsis, G.; Passian, A.

    2017-04-01

    Composite and janus type metallodielectric nanoparticles are increasingly considered as a means to control the spatial and temporal behavior of electromagnetic fields in diverse applications such as coupling to quantum emitters, achieving invisibility cloaks, and obtaining quantum correlations between qubits. We investigate the surface modes of a toroidal nanostructure and obtain the canonical plasmon dispersion relations and resonance modes for arbitrarily layered nanorings. Unlike particle plasmon eigenmodes in other geometries, the amplitudes of the eigenmodes of tori exhibit a distinct forward and backward coupling. We present the plasmon dispersion relations for several relevant toroidal configurations in the quasistatic limit and obtain the dominant retarded dispersion relations of a single ring for comparison, discuss mode complementarity and hybridization, and introduce two new types of toroidal particles in the form of janus nanorings. The resonance frequencies for the first few dominant modes of a ring composed of plasmon supporting materials such as gold, silver, and aluminum are provided and compared to those for a silicon ring. A generalized Green's function is obtained for multilayer tori allowing for calculation of the scattering response to interacting fields. Employing the Green's function, the scalar electric potential distribution corresponding to individual poloidal and toroidal modes in response to an arbitrarily polarized external field and the field of electrons is obtained. The results are applied to obtain the local density of states and decay rate of a dipole near the center of the torus.

  13. Finite element modeling of TFTR poloidal field coils

    International Nuclear Information System (INIS)

    Baumgartner, J.A.; O'Toole, J.A.

    1986-01-01

    The Tokamak Fusion Test Reactor (TFTR) Poloidal Field (PF) coils were originally analyzed to TFTR design conditions. The coils have been reanalyzed by PPPL and Grumman to determine operating limits under as-built conditions. Critical stress levels, based upon data obtained from the reanalysis of each PF coil, are needed for input to the TFTR simulation code algorithms. The primary objective regarding structural integrity has been to ascertain the magnitude and location of critical internal stresses in each PF coil due to various combinations of electromagnetic and thermally induced loads. For each PF coil, a global finite element model (FEM) of a coil sector is being analyzed to obtain the basic coil internal loads and displacements. Subsequent fine mesh local models of the coil lead stem and lead spur regions produce the magnitudes and locations of peak stresses. Each copper turn and its surrounding insulation are modeled using solid finite elements. The corresponding electromagnetic and thermal analyses are similarly modeled. A series of test beams were developed to determine the best combination of MSC/NASTRAN-type finite elements for use in PF coil analysis. The results of this analysis compare favorably with those obtained by the earlier analysis which was limited in scope

  14. Local Self-Government in Central and Eastern Europe: a Strong and Independent Local-Level Management Tool or Just a Paper Tiger?

    Directory of Open Access Journals (Sweden)

    Vjekoslav Bratić

    2008-06-01

    Full Text Available The onset of the independence process in Central and Eastern European (CEE countries during the 1990s was marked by tremendous optimism and a declared wish for stronger fiscal decentralisation and the transfer of powers, responsibilities and resources to the units of local and regional self-government that were supposed to be closest to citizens in resolving their daily problems. However, this has not happened in these countries, at least not according to the basic financial decentralisation indicators, and this is the main thesis of this work. Despite numerous adjustments made in the local self-government organisation in the observed countries, an optimum level of local and regional self-government organisation has still not been achieved. The units of local and regional self-government are still heavily dependent on, or rather restricted by, the strong central governments, which reduces their autonomy and their influence on the local social and economic development.

  15. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe

    DEFF Research Database (Denmark)

    Lenoir, Jonathan; Graae, Bente; Aarrestad, Per

    2013-01-01

    -change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine-grained thermal variability across a 2500-km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community...... data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within community-inferred temperatures: CiT). We...... temperature indicator values in combination with plant assemblages explained 46-72% of variation in LmT and 92-96% of variation in GiT during the growing season (June, July, August). Growing-season CiT range within 1-km(2) units peaked at 60-65°N and increased with terrain roughness, averaging 1.97 °C (SD = 0...

  16. Observation of strong continuous-variable Einstein-Podolsky-Rosen entanglement using shaped local oscillators

    Science.gov (United States)

    Shinjo, Ami; Hashiyama, Naoyuki; Koshio, Akane; Eto, Yujiro; Hirano, Takuya

    2016-10-01

    The continuous-variable (CV) Einstein-Podolsky-Rosen (EPR) paradox and steering are demonstrated using a pulsed light source and waveguides. We shorten the duration of the local oscillator (LO) pulse by using parametric amplification to improve the temporal mode-matching between the entangled pulse and the LO pulse. After correcting for the amplifier noise, the product of the measured conditional variance of the quadrature-phase amplitudes is 0.74 EPR-Reid criterion.

  17. Strong violations of locality by testing Bell’s inequality with improved entangled-photon systems

    International Nuclear Information System (INIS)

    Wang Yao; Fan Dai-He; Guo Wei-Jie; Wei Lian-Fu

    2015-01-01

    Bell’s theorem states that quantum mechanics cannot be accounted for by any local theory. One of the examples is the existence of quantum non-locality is essentially violated by the local Bell’s inequality. Therefore, the violation of Bell’s inequality (BI) has been regarded as one of the robust evidences of quantum mechanics. Until now, BI has been tested by many experiments, but the maximal violation (i.e., Cirel’son limit) has never been achieved. By improving the design of entangled sources and optimizing the measurement settings, in this work we report the stronger violations of the Clauser–Horne–Shimony–Holt (CHSH)-type Bell’s inequality. The biggest value of Bell’s function in our experiment reaches to a significant one: S = 2.772± 0.063, approaching to the so-called Cirel’son limit in which the Bell function value is . Further improvement is possible by optimizing the entangled-photon sources. (paper)

  18. Spatial and temporal characteristics of poloidal waves in the terrestrial plasmasphere: a CLUSTER case study

    Directory of Open Access Journals (Sweden)

    S. Schäfer

    2007-05-01

    Full Text Available Oscillating magnetic field lines are frequently observed by spacecraft in the terrestrial and other planetary magnetospheres. The CLUSTER mission is a very suitable tool to further study these Alfvén waves as the four CLUSTER spacecraft provide for an opportunity to separate spatial and temporal structures in the terrestrial magnetosphere. Using a large scaled configuration formed by the four spacecraft we are able to detect a poloidal Ultra-Low-Frequency (ULF pulsation of the magnetic and electric field in order to analyze its temporal and spatial structures. For this purpose the measurements are transformed into a specific field line related coordinate system to investigate their specific amplitude pattern depending on the path of the CLUSTER spacecraft across oscillating field lines. These measurements are then compared with modeled spacecraft observations across a localized poloidal wave resonator in the dayside plasmasphere. A detailed investigation of theoretically expected poloidal eigenfrequencies allows us to specify the observed 16 mHz pulsation as a third harmonic oscillation. Based on this we perform a case study providing a clear identification of wave properties such as an spatial scale structure of about 0.67 RE, the azimuthal wave number m≈30, temporal evolution, and energy transport in the detected ULF pulsations.

  19. Network analysis reveals strongly localized impacts of El Niño

    Science.gov (United States)

    Fan, Jingfang; Meng, Jun; Ashkenazy, Yosef; Havlin, Shlomo; Schellnhuber, Hans Joachim

    2017-07-01

    Climatic conditions influence the culture and economy of societies and the performance of economies. Specifically, El Niño as an extreme climate event is known to have notable effects on health, agriculture, industry, and conflict. Here, we construct directed and weighted climate networks based on near-surface air temperature to investigate the global impacts of El Niño and La Niña. We find that regions that are characterized by higher positive/negative network “in”-weighted links are exhibiting stronger correlations with the El Niño basin and are warmer/cooler during El Niño/La Niña periods. In contrast to non-El Niño periods, these stronger in-weighted activities are found to be concentrated in very localized areas, whereas a large fraction of the globe is not influenced by the events. The regions of localized activity vary from one El Niño (La Niña) event to another; still, some El Niño (La Niña) events are more similar to each other. We quantify this similarity using network community structure. The results and methodology reported here may be used to improve the understanding and prediction of El Niño/La Niña events and also may be applied in the investigation of other climate variables.

  20. CONAN—The cruncher of local exchange coefficients for strongly interacting confined systems in one dimension

    DEFF Research Database (Denmark)

    Loft, Niels Jakob Søe; Kristensen, Lasse Bjørn; Thomsen, Anders

    2016-01-01

    We consider a one-dimensional system of particles with strong zero-range interactions. This system can be mapped onto a spin chain of the Heisenberg type with exchange coefficients that depend on the external trap. In this paper, we present an algorithm that can be used to compute these exchange...... coefficients. We introduce an open source code CONAN (Coefficients of One-dimensional N-Atom Networks) which is based on this algorithm. CONAN works with arbitrary external potentials and we have tested its reliability for system sizes up to around 35 particles. As illustrative examples, we consider a harmonic...... trap and a box trap with a superimposed asymmetric tilted potential. For these examples, the computation time typically scales with the number of particles as O(N3.5±0.4). Computation times are around 10 s for N=10 particles and less than 10 min for N=20 particles....

  1. Experimental result of poloidal limiter baking of Aditya tokamak

    International Nuclear Information System (INIS)

    Jadeja, K.A.; Arambhadiya, B.G.; Bhatt, S.B.; Bora, D.

    2005-01-01

    In tokamak Aditya, Poloidal limiter function as the operational limiter and are subjected to very high particles load and heat flux during plasma discharge. In addition, Poloidal limiter is the first material surface to come in contact with the hot plasma. In plasma discharge, the impurity generations from limiter are mostly by adsorbed particles. The baking of limiter provides high degassing rate and thermal desorption of adsorbed particles of limiter to reduce impurities from the limiter tiles. The series of experiments are done with different conditions like, Baking of limiter SS ring by heating element with and without limiter tiles in atmosphere and vacuum. Than Poloidal limiter is structured with 14 numbers of graphite tiles and electrical isolated to the vessel and support structure. As a heating element and for electrical isolation, Nychrome wire and ceramic block with ceramic tubes are used. In addition, Thermo couple and two DC power supply (0-10 Ampere) are used for limiter baking. Mass analyzer gives partial pressures of different species to observe effect of limiter baking. For the period of Poloidal limiter baking in Aditya, the partial pressures of different species like hydrogen, water vapor, and oxygen are extremely increased with time duration. This paper presents series of experimental results of poloidal limiter baking. (author)

  2. Conceptual Design of Alborz Tokamak Poloidal Coils System

    Science.gov (United States)

    Mardani, M.; Amrollahi, R.

    2013-04-01

    The Alborz tokamak is a D-shape cross section tokamak that is under construction in Amirkabir University of Technology. One of the most important parts of tokamak design is the design of the poloidal field system. This part includes the numbers, individual position, currents and number of coil turns of the magnetic field coils. Circular cross section tokamaks have Vertical Field system but since the elongation and triangularity of plasma cross section shaping are important in improving the plasma performance and stability, the poloidal field coils are designed to have a shaped plasma configuration. In this paper the design of vertical field system and the magnetohydrodynamic equilibrium of axisymmetric plasma, as given by the Grad-Shafranov equation will be discussed. The poloidal field coils system consists of 12 circular coils located symmetrically about the equator plane, six inner PF coils and six outer PF coils. Six outer poloidal field coils (PF) are located outside of the toroidal field coils (TF), and six inner poloidal field coils are wound on the inner legs and are located outside of a vacuum vessel.

  3. On strong-coupling correlation functions of circular Wilson loops and local operators

    International Nuclear Information System (INIS)

    Alday, Luis F; Tseytlin, Arkady A

    2011-01-01

    Motivated by the problem of understanding 3-point correlation functions of gauge-invariant operators in N=4 super Yang-Mills theory we consider correlators involving Wilson loops and a 'light' operator with fixed quantum numbers. At leading order in the strong-coupling expansion such correlators are given by the 'light' vertex operator evaluated on a semiclassical string world surface ending on the corresponding loops at the boundary of AdS 5 x S 5 . We study in detail the example of a correlator of two concentric circular Wilson loops and a dilaton vertex operator. The resulting expression is given by an integral of combinations of elliptic functions and can be computed analytically in some special limits. We also consider a generalization of the minimal surface ending on two circles to the case of non-zero angular momentum J in S 5 and discuss a special limit when one of the Wilson loops is effectively replaced by a 'heavy' operator with charge J. (paper)

  4. Functional structure of the bromeliad tank microbiome is strongly shaped by local geochemical conditions.

    Science.gov (United States)

    Louca, Stilianos; Jacques, Saulo M S; Pires, Aliny P F; Leal, Juliana S; González, Angélica L; Doebeli, Michael; Farjalla, Vinicius F

    2017-08-01

    Phytotelmata in tank-forming Bromeliaceae plants are regarded as potential miniature models for aquatic ecology, but detailed investigations of their microbial communities are rare. Hence, the biogeochemistry in bromeliad tanks remains poorly understood. Here we investigate the structure of bacterial and archaeal communities inhabiting the detritus within the tanks of two bromeliad species, Aechmea nudicaulis and Neoregelia cruenta, from a Brazilian sand dune forest. We used metagenomic sequencing for functional community profiling and 16S sequencing for taxonomic profiling. We estimated the correlation between functional groups and various environmental variables, and compared communities between bromeliad species. In all bromeliads, microbial communities spanned a metabolic network adapted to oxygen-limited conditions, including all denitrification steps, ammonification, sulfate respiration, methanogenesis, reductive acetogenesis and anoxygenic phototrophy. Overall, CO2 reducers dominated in abundance over sulfate reducers, and anoxygenic phototrophs largely outnumbered oxygenic photoautotrophs. Functional community structure correlated strongly with environmental variables, between and within a single bromeliad species. Methanogens and reductive acetogens correlated with detrital volume and canopy coverage, and exhibited higher relative abundances in N. cruenta. A comparison of bromeliads to freshwater lake sediments and soil from around the world, revealed stark differences in terms of taxonomic as well as functional microbial community structure. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Capacity theory with local rationality the strong Fekete-Szegö theorem on curves

    CERN Document Server

    Rumely, Robert

    2013-01-01

    This book is devoted to the proof of a deep theorem in arithmetic geometry, the Fekete-Szegö theorem with local rationality conditions. The prototype for the theorem is Raphael Robinson's theorem on totally real algebraic integers in an interval, which says that if [a,b] is a real interval of length greater than 4, then it contains infinitely many Galois orbits of algebraic integers, while if its length is less than 4, it contains only finitely many. The theorem shows this phenomenon holds on algebraic curves of arbitrary genus over global fields of any characteristic, and is valid for a broad class of sets. The book is a sequel to the author's work Capacity Theory on Algebraic Curves and contains applications to algebraic integers and units, the Mandelbrot set, elliptic curves, Fermat curves, and modular curves. A long chapter is devoted to examples, including methods for computing capacities. Another chapter contains extensions of the theorem, including variants on Berkovich curves. The proof uses both alg...

  6. Measurements of strongly localized potential well profiles in an inertial electrostatic fusion neutron source

    International Nuclear Information System (INIS)

    Yoshikawa, K.; Takiyama, K.; Koyama, T.

    2001-01-01

    Direct measurements of localized electric fields are made by the laser-induced fluorescence (LIF) method by use of the Stark effects in the central cathode core region of an Inertial-Electrostatic Confinement Fusion (IECF) neutron (proton) source, which is expected for various applications, such as luggage security inspection, non-destructive testing, land mine detector, or positron emitter production for cancer detection, currently producing continuously about 10 7 n/sec D-D neutrons. Since 1967 when the first fusion reaction was successfully proved experimentally in a very compact IECF device, potential well formation due to space charge associated with spherically converging ion beams has been a central key issue to be clarified in the beam-beam colliding fusion, which is the major mechanism of the IECF neutron source. Many experiments, but indirect, were made so far to clarify the potential well, but none of them produced definitive evidence, however. Results by the present LIF method show a double well potential profile with a slight concave for ion beams with relatively larger angular momenta, whereas for ions with smaller angular momenta, potential but much steeper peak to develop. (author)

  7. Field emission properties and strong localization effect in conduction mechanism of nanostructured perovskite LaNiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kamble, Ramesh B., E-mail: rbk.physics@coep.ac.in [Department of Physics, Indian Institute of Science, Bangalore 560012, Karnataka (India); Department of Physics, College of Engineering, Pune 411005, Maharashtra (India); Tanty, Narendra; Patra, Ananya; Prasad, V. [Department of Physics, Indian Institute of Science, Bangalore 560012, Karnataka (India)

    2016-08-22

    We report the potential field emission of highly conducting metallic perovskite lanthanum nickelate (LaNiO{sub 3}) from the nanostructured pyramidal and whisker shaped tips as electron emitters. Nano particles of lanthanum nickelate (LNO) were prepared by sol-gel route. Structural and morphological studies have been carried out. Field emission of LNO exhibited high emission current density, J = 3.37 mA/cm{sup 2} at a low threshold electric field, E{sub th} = 16.91 V/μm, obeying Fowler–Nordheim tunneling. The DC electrical resistivity exhibited upturn at 11.6 K indicating localization of electron at low temperature. Magnetoresistance measurement at different temperatures confirmed strong localization in nanostructured LNO obeying Anderson localization effect at low temperature.

  8. On Strong Positive Frequency Dependencies of Quality Factors in Local-Earthquake Seismic Studies

    Science.gov (United States)

    Morozov, Igor B.; Jhajhria, Atul; Deng, Wubing

    2018-03-01

    Many observations of seismic waves from local earthquakes are interpreted in terms of the frequency-dependent quality factor Q( f ) = Q0 f^{η } , where η is often close to or exceeds one. However, such steep positive frequency dependencies of Q require careful analysis with regard to their physical consistency. In particular, the case of η = 1 corresponds to frequency-independent (elastic) amplitude decays with time and consequently requires no Q-type attenuation mechanisms. For η > 1, several problems with physical meanings of such Q-factors occur. First, contrary to the key premise of seismic attenuation, high-frequency parts of the wavefield are enhanced with increasing propagation times relative to the low-frequency ones. Second, such attenuation cannot be implemented by mechanical models of wave-propagating media. Third, with η > 1, the velocity dispersion associated with such Q(f) occurs over unrealistically short frequency range and has an unexpected oscillatory shape. Cases η = 1 and η > 1 are usually attributed to scattering; however, this scattering must exhibit fortuitous tuning into the observation frequency band, which appears unlikely. The reason for the above problems is that the inferred Q values are affected by the conventional single-station measurement procedure. Both parameters Q 0 and are apparent, i.e., dependent on the selected parameterization and inversion method, and they should not be directly attributed to the subsurface. For η ≈ 1, parameter Q 0 actually describes the frequency-independent amplitude decay in access of some assumed geometric spreading t -α , where α is usually taken equal one. The case η > 1 is not allowed physically and could serve as an indicator of problematic interpretations. Although the case 0 < η < 1 is possible, its parameters Q 0 and may also be biased by the measurement procedure. To avoid such difficulties of Q-based approaches, we recommend measuring and interpreting the amplitude-decay rates

  9. Ceramic BOT type blanket with poloidal helium cooling

    International Nuclear Information System (INIS)

    Cardella, A.; Daenenr, W.; Iseli, M.; Ferrari, M.; Gallina, M.; Rado, V.; Simbolotti, G.; Violante, V.

    1989-01-01

    This paper briefly describes the work done and results achieved over the past two years on the ceramic breeder BOT blanket with poloidal helium cooling. A conclusive remark on the brick/plate option described previously is followed by short descriptions of the low and high performance pebble bed options elaborated as alternatives for both NET and DEMO. The results show, togethre with those about the poloidal cooling of the First Wall, good prospects for this blanket type provided that the questions connected wiht an extensive use of beryllium find a satisfactor answer. (author). 5 refs.; 7 figs.; 1 tab

  10. Ideal MHD beta-limits of poloidally asymmetric equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Todd, A.M.M.; Miller, A.E.; Grimm, R.C.; Okabayashi, M.; Dalhed, H.E. Jr.

    1981-05-01

    The ideal MHD stability of poloidally asymmetric equilibria, which are typical of a tokamak reactor design with a single-null poloidal divertor is examined. As with symmetric equilibria, stability to non-axisymmetric modes improves with increasing triangularity and ellipticity, and with lower edge safety factor. Pressure profiles optimized with respect to ballooning stability are obtained for an asymmetric shape, resulting in ..beta../sub critical/ approx. = 5.7%. The corresponding value for an equivalent symmetric shape is ..beta../sub critical/ approx. = 6.5%.

  11. Ideal MHD beta-limits of poloidally asymmetric equilibria

    International Nuclear Information System (INIS)

    Todd, A.M.M.; Miller, A.E.; Grimm, R.C.; Okabayashi, M.; Dalhed, H.E. Jr.

    1981-05-01

    The ideal MHD stability of poloidally asymmetric equilibria, which are typical of a tokamak reactor design with a single-null poloidal divertor is examined. As with symmetric equilibria, stability to non-axisymmetric modes improves with increasing triangularity and ellipticity, and with lower edge safety factor. Pressure profiles optimized with respect to ballooning stability are obtained for an asymmetric shape, resulting in β/sub critical/ approx. = 5.7%. The corresponding value for an equivalent symmetric shape is β/sub critical/ approx. = 6.5%

  12. On the interplay between turbulence and poloidal flows in plasmas

    International Nuclear Information System (INIS)

    Hidalgo, C.; Pedrosa, M.A.; Garcia-Cortes, I.

    1999-01-01

    The radial profile of Reynolds stress has been measured in the plasma boundary region of tokamaks and stellarator plasmas. The electrostatic Reynolds stress (proportional to r E-tilde θ >) shows a radial gradient close to the velocity shear layer location, showing that this mechanism can drive significant poloidal flows in the plasma boundary region of fusion plasmas. The generation of poloidal flows by Ion Bernstein Wave (IBW) is under investigation in toroidal plasmas. The radial gradient in the Reynolds stress increases with RF power and radial electric fields are modified at the RF resonance layer. (author)

  13. Magnetohydrodynamic stability of tokamak plasmas with poloidal mode coupling

    International Nuclear Information System (INIS)

    Shigueoka, H.; Sakanaka, P.H.

    1987-01-01

    The stability behavior with respect to internal modes is examined for a class of tokamak equilibria with non-circular cross sections. The surfaces of the constant poloidal magnetic flux ψ (R,Z) are obtained numerically by solving the Grad-Shafranov's equation with a specified shape for the outmost plasma surface. The equation of motion for ideal MHD stability is written in a ortogonal coordinate system (ψ, χ, φ). Th e stability analysis is performance numerically in a truncated set of coupled m (poloidal wave number) equations. The calculations involve no approximations, and so all parameters of the equilibrium solution can be arbitrarily varied. (author) [pt

  14. Poloidal rotation velocity measurement in toroidal plasmas via microwave reflectometry

    International Nuclear Information System (INIS)

    Pavlichenko, O.S.; Skibenko, A.I.; Fomin, I.P.; Pinos, I.B.; Ocheretenko, V.L.; Berezhniy, V.L.

    2001-01-01

    Results of experiment modeling backscattering of microwaves from rotating plasma layer perturbed by fluctuations are presented. It was shown that auto- and crosscorrelation of reflected power have a periodicity equal to rotation period. Such periodicity was observed by microwave reflectometry in experiments on RF plasma production on U-3M torsatron and was used for measurement of plasma poloidal rotation velocity. (author)

  15. Thermal convection in a toroidal duct of a liquid metal blanket. Part I. Effect of poloidal magnetic field

    International Nuclear Information System (INIS)

    Zhang, Xuan; Zikanov, Oleg

    2017-01-01

    Highlights: • 2D convection flow develops with internal heating and strong axial magnetic field. • Poloidal magnetic field suppresses turbulence at high Hartmann number. • Flow structure is dominated by large-scale counter-rotation vortices. • Effective heat transfer is maintained by surviving convection structures. - Abstract: We explore the effect of poloidal magnetic field on the thermal convection flow in a toroidal duct of a generic liquid metal blanket. Non-uniform strong heating (the Grashof number up to 10 11 ) arising from the interaction of high-speed neutrons with the liquid breeder, and strong magnetic field (the Hartmann number up to 10 4 ) corresponding to the realistic reactor conditions are considered. The study continues our earlier work , where the problem was solved for a purely toroidal magnetic field and the convection was found to result in two-dimensional turbulence and strong mixing within the duct. Here, we find that the poloidal component of the magnetic field suppresses turbulence, reduces the flow's kinetic energy and high-amplitude temperature fluctuations, and, at high values of Hartmann number, leads to a steady-state flow. At the same time, the intense mixing by the surviving convection structures remains able to maintain effective heat transfer between the liquid metal and the walls.

  16. Heat loads on poloidal and toroidal edges of castellated plasma-facing components in COMPASS

    Science.gov (United States)

    Dejarnac, R.; Corre, Y.; Vondracek, P.; Gaspar, J.; Gauthier, E.; Gunn, J. P.; Komm, M.; Gardarein, J.-L.; Horacek, J.; Hron, M.; Matejicek, J.; Pitts, R. A.; Panek, R.

    2018-06-01

    Dedicated experiments have been performed in the COMPASS tokamak to thoroughly study the power deposition processes occurring on poloidal and toroidal edges of castellated plasma-facing components in tokamaks during steady-state L-mode conditions. Surface temperatures measured by a high resolution infra-red camera are compared with reconstructed synthetic data from a 2D thermal model using heat flux profiles derived from both the optical approximation and 2D particle-in-cell (PIC) simulations. In the case of poloidal leading edges, when the contribution from local radiation is taken into account, the parallel heat flux deduced from unperturbed, upstream measurements is fully consistent with the observed temperature increase at the leading edges of various heights, respecting power balance assuming simple projection of the parallel flux density. Smoothing of the heat flux deposition profile due to finite ion Larmor radius predicted by the PIC simulations is found to be weak and the power deposition on misaligned poloidal edges is better described by the optical approximation. This is consistent with an electron-dominated regime associated with a non-ambipolar parallel current flow. In the case of toroidal gap edges, the different contributions of the total incoming flux along the gap have been observed experimentally for the first time. They confirm the results of recent numerical studies performed for ITER showing that in specific cases the heat deposition does not necessarily follow the optical approximation. Indeed, ions can spiral onto the magnetically shadowed toroidal edge. Particle-in-cell simulations emphasize again the role played by local non-ambipolarity in the deposition pattern.

  17. Development of a new lower hybrid antenna module using a poloidal power divider

    International Nuclear Information System (INIS)

    Maebara, S.; Imai, T.; Seki, M.; Suganuma, K.; Goniche, M.; Bibet, Ph.; Berio, S.; Brossaud, J.; Rey, G.; Tonon, G.

    1997-03-01

    A realistic antenna module using a poloidal divider for lower hybrid current drive (LHCD) experiment, is modelled and fabricated. In this antenna module test II, three types of poloidal dividers, which split the power in 3, are tested. (author)

  18. Poloidal rotation driven by electron cyclotron resonance wave in tokamak plasmas

    Directory of Open Access Journals (Sweden)

    Qing Zhou

    2017-10-01

    Full Text Available The poloidal electric filed, which is the drive field of poloidal rotation, has been observed and increases obviously after the injection of electron cyclotron resonance wave in HL-2A experiment, and the amplitude of the poloidal electric field is in the order of 103 V/m. Through theoretical analysis using Stringer rotation model, the observed poloidal electric field is of the same order as the theoretical calculation value. In addition, the magnetic pump damping which would damp the poloidal rotation is calculated numerically and the calculation results show that the closer to the core plasmas, the stronger the magnetic pump damping will be. Meanwhile, according to the value of the calculated magnetic pump damping, the threshold of the poloidal electric field which could overcome magnetic pump damping and drive poloidal rotation in tokamak plasmas is given out. Finally, the poloidal rotation velocity over time at different minor radius is studied theoretically.

  19. Genuine multipartite entanglement of symmetric Gaussian states: Strong monogamy, unitary localization, scaling behavior, and molecular sharing structure

    Science.gov (United States)

    Adesso, Gerardo; Illuminati, Fabrizio

    2008-10-01

    We investigate the structural aspects of genuine multipartite entanglement in Gaussian states of continuous variable systems. Generalizing the results of Adesso and Illuminati [Phys. Rev. Lett. 99, 150501 (2007)], we analyze whether the entanglement shared by blocks of modes distributes according to a strong monogamy law. This property, once established, allows us to quantify the genuine N -partite entanglement not encoded into 2,…,K,…,(N-1) -partite quantum correlations. Strong monogamy is numerically verified, and the explicit expression of the measure of residual genuine multipartite entanglement is analytically derived, by a recursive formula, for a subclass of Gaussian states. These are fully symmetric (permutation-invariant) states that are multipartitioned into blocks, each consisting of an arbitrarily assigned number of modes. We compute the genuine multipartite entanglement shared by the blocks of modes and investigate its scaling properties with the number and size of the blocks, the total number of modes, the global mixedness of the state, and the squeezed resources needed for state engineering. To achieve the exact computation of the block entanglement, we introduce and prove a general result of symplectic analysis: Correlations among K blocks in N -mode multisymmetric and multipartite Gaussian states, which are locally invariant under permutation of modes within each block, can be transformed by a local (with respect to the partition) unitary operation into correlations shared by K single modes, one per block, in effective nonsymmetric states where N-K modes are completely uncorrelated. Due to this theorem, the above results, such as the derivation of the explicit expression for the residual multipartite entanglement, its nonnegativity, and its scaling properties, extend to the subclass of non-symmetric Gaussian states that are obtained by the unitary localization of the multipartite entanglement of symmetric states. These findings provide strong

  20. Extension and comparison of neoclassical models for poloidal rotation in tokamaks

    International Nuclear Information System (INIS)

    Stacey, W. M.

    2008-01-01

    Several neoclassical models for the calculation of poloidal rotation in tokamaks were rederived within a common framework, extended to include additional physics and numerically compared. The importance of new physics phenomena not usually included in poloidal rotation calculations (e.g., poloidal electric field, VxB force resulting from enhanced radial particle flow arising from the ionization of recycling neutrals) was examined. Extensions of the Hirshman-Sigmar, Kim-Diamond-Groebner, and Stacey-Sigmar poloidal rotation models are presented

  1. Stability of strong species interactions resist the synergistic effects of local and global pollution in kelp forests.

    Directory of Open Access Journals (Sweden)

    Laura J Falkenberg

    Full Text Available Foundation species, such as kelp, exert disproportionately strong community effects and persist, in part, by dominating taxa that inhibit their regeneration. Human activities which benefit their competitors, however, may reduce stability of communities, increasing the probability of phase-shifts. We tested whether a foundation species (kelp would continue to inhibit a key competitor (turf-forming algae under moderately increased local (nutrient and near-future forecasted global pollution (CO(2. Our results reveal that in the absence of kelp, local and global pollutants combined to cause the greatest cover and mass of turfs, a synergistic response whereby turfs increased more than would be predicted by adding the independent effects of treatments (kelp absence, elevated nutrients, forecasted CO(2. The positive effects of nutrient and CO(2 enrichment on turfs were, however, inhibited by the presence of kelp, indicating the competitive effect of kelp was stronger than synergistic effects of moderate enrichment of local and global pollutants. Quantification of physicochemical parameters within experimental mesocosms suggests turf inhibition was likely due to an effect of kelp on physical (i.e. shading rather than chemical conditions. Such results indicate that while forecasted climates may increase the probability of phase-shifts, maintenance of intact populations of foundation species could enable the continued strength of interactions and persistence of communities.

  2. Strong Light Localization and a Peculiar Feature of Light Leakage in the Negative Curvature Hollow Core Fibers

    Directory of Open Access Journals (Sweden)

    Andrey D. Pryamikov

    2017-11-01

    Full Text Available In this paper we would like to continue a discussion started in our previous work and devoted to the mechanism of light localization in hollow core microstructured fibers with a noncircular core-cladding boundary. It has been shown in many works that, for waveguide microstructures with different types of core-cladding boundary shape, the positions of the transmission bands’ edges can be predicted by applying the well-known anti–resonant reflecting optical waveguide (ARROW model. At the same time, the ARROW model cannot explain the strong light localization and guiding at high material loss inside the transmission bands which are observed in negative curvature hollow core fibers, for example. In this paper we want to clarify our previous findings and consider the light localization process from another point of view, namely, by comparing the light leakage process in waveguide microstructures with different shapes of the core-cladding boundary. The results are discussed based on the ARROW model and a new approach associated with the consideration of spatial dispersion occurring under the interaction of the air core mode with the core-cladding boundary.

  3. Female Choice Undermines the Emergence of Strong Sexual Isolation between Locally Adapted Populations of Atlantic Mollies (Poecilia mexicana

    Directory of Open Access Journals (Sweden)

    Claudia Zimmer

    2018-05-01

    Full Text Available Divergent selection between ecologically dissimilar habitats promotes local adaptation, which can lead to reproductive isolation (RI. Populations in the Poecilia mexicana species complex have independently adapted to toxic hydrogen sulfide and show varying degrees of RI. Here, we examined the variation in the mate choice component of prezygotic RI. Mate choice tests across drainages (with stimulus males from another drainage suggest that specific features of the males coupled with a general female preference for yellow color patterns explain the observed variation. Analyses of male body coloration identified the intensity of yellow fin coloration as a strong candidate to explain this pattern, and common-garden rearing suggested heritable population differences. Male sexual ornamentation apparently evolved differently across sulfide-adapted populations, for example because of differences in natural counterselection via predation. The ubiquitous preference for yellow color ornaments in poeciliid females likely undermines the emergence of strong RI, as female discrimination in favor of own males becomes weaker when yellow fin coloration in the respective sulfide ecotype increases. Our study illustrates the complexity of the (partly non-parallel pathways to divergence among replicated ecological gradients. We suggest that future work should identify the genomic loci involved in the pattern reported here, making use of the increasing genomic and transcriptomic datasets available for our study system.

  4. Strong guided mode resonant local field enhanced visible harmonic generation in an azo-polymer resonant waveguide grating.

    Science.gov (United States)

    Lin, Jian Hung; Tseng, Chun-Yen; Lee, Ching-Ting; Young, Jeff F; Kan, Hung-Chih; Hsu, Chia Chen

    2014-02-10

    Guided mode resonance (GMR) enhanced second- and third-harmonic generation (SHG and THG) is demonstrated in an azo-polymer resonant waveguide grating (RWG), comprised of a poled azo-polymer layer on top of a textured SU8 substrate with a thin intervening layer of TiO2. Strong SHG and THG outputs are observed by matching either in-coming fundamental- or out-going harmonic-wavelength to the GMR wavelengths of the azo-polymer RWG. Without the azo-polymer coating, pure TiO2 RWGs, do not generate any detectable SHG using a fundamental beam peak intensity of 2 MW/cm(2). Without the textured TiO2 layer, a planar poled azo-polymer layer results in 3650 times less SHG than the full nonlinear RWG structure under identical excitation conditions. Rigorous coupled-wave analysis calculations confirm that this enhancement of the nonlinear conversion is due to strong local electric fields that are generated at the interfaces of the TiO2 and azo-polymer layers when the RWG is excited at resonant wavelengths associated with both SHG and THG conversion processes.

  5. Localized surface disruptions observed by InSAR during strong earthquakes in Java and Hawai'i

    Science.gov (United States)

    Poland, M.

    2010-01-01

    Interferometric Synthetic Aperture Radar data spanning strong earthquakes on the islands of Java and Hawai‘i in 2006 reveal patches of subsidence and incoherence indicative of localized ground failure. Interferograms spanning the 26 May 2006 Java earthquake suggest an area of about 7.5 km2 of subsidence (~2 cm) and incoherence south of the city of Yogyakarta that correlates with significant damage to housing, high modeled peak ground accelerations, and poorly consolidated geologic deposits. The subsidence and incoherence is inferred to be a result of intense shaking and/or damage. At least five subsidence patches on the west side of the Island of Hawai‘i, ranging 0.3–2.2 km2 in area and 3–8 cm in magnitude, occurred as a result of a pair of strong earthquakes on 15 October 2006. Although no felt reports or seismic data are available from the areas in Hawai‘i, the Java example suggests that the subsidence patches indicate areas of amplified earthquake shaking. Surprisingly, all subsidence areas in Hawai‘i were limited to recent, and supposedly stable, lava flows and may reflect geological conditions not detectable at the surface. In addition, two ‘a‘ā lava flows in Hawai‘i were partially incoherent in interferograms spanning the earthquakes, indicating surface disruption as a result of the earthquake shaking. Coearthquake incoherence of rubbly deposits, like ‘a‘ā flows, should be explored as a potential indicator of earthquake intensity and past strong seismic activity.

  6. Superconducting poloidal field magnet engineering for the ARIES-ST

    International Nuclear Information System (INIS)

    Bromberg, Leslie; Pourrahimi, S.; Schultz, J.H.; Titus, P.; Jardin, S.; Kessel, C.; Reiersen, W.

    2003-01-01

    The critical issues of the poloidal systems for the ARIES-ST design have been presented in this paper. Because of the large plasma current and the need of highly shaped plasmas, the poloidal field (PF) coils should be located inside the toroidal field in order to reduce their current. Even then, the divertor coils carry large currents. The ARIES-ST PF coils are superconducting using the internally cooled cable-in-conduit conductor. The peak self field in the divertor coils is about 15 T and the highest field in the non-divertor coils is about 6 T. The PF magnets have built-in margins that are sufficient to survive disruptions without quenching. The costing study indicates that the specific cost of the PF system is $80/kg. Detailed design and trade-off studies of ARIES-ST are presented and remaining R and D issues are identified

  7. Development of superconducting pulsed poloidal coil in JAERI

    International Nuclear Information System (INIS)

    Shimamoto, S.; Okuno, K.; Ando, T.; Tsuji, H.

    1990-01-01

    In the Japan Atomic Energy Research Institute, (JAERI), development work on pulsed superconductors and coils started in 1979, aiming at the demonstration of the applicability of superconducting technologies to pulsed poloidal coils in a fusion reactor. Initially our effort was concentrated mainly on the development of pool-cooled large-current pulsed conductors. Over the past ten years, superconducting technology has made great progress and the forced-flow cooled coil has assumed great importance in the development work. Now the Demo Poloidal Coil Project is in progress in JAERI, and three large forced-flow cooled coils have so far been fabricated and tested. Many improvements have been achieved in ac-loss performance and mechanical characteristics. (author)

  8. KT-2 poloidal-field(PF) system design

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jang Min; Hong, Bong Keun; Hwang, Chul Kyu; Song, Woo Sub; Kim, Sung Kyu; Lee, Kwang Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-12-01

    KT-2 poloidal-field (PF) system design is described. The PF coil system is designed for both up-down symmetric double-null (DN) and up-down asymmetric single-null (SN) configurations. Three sets of `design-basis` scenarios, which describe the ohmic heating (OH), the 5MW and the high bootstrap (HIBS) baseline modes, are represented. In these cases, the power and energy required from external power supplies are calculated. 8 tabs., 54 figs., 14 refs. (Author).

  9. The ITER poloidal field system: control and power supplies

    International Nuclear Information System (INIS)

    Mondino, P.L.; Benfatto, I.; Gribov, Y.; Matsukawa, M.; Odajima, K.; Portone, A.; Roshal, A.; Bareyt, B.; Bertolini, E.; Bottereau, J.M.; Huart, M.; Maschio, A.; Bulgakov, S.; Kuchinski, V.

    1995-01-01

    The paper reports the preliminary scenario of the ITER Poloidal Field (PF) system operation, the method used to evaluate the installed power, the basic structure of the circuits and finally the concepts of the preliminary design of control and power supply. The superconducting coils are energized from the HV Grid with conventional AC/DC converters. R and D is required for circuit breakers, make switches and resistors, the basic components of both the switching networks and the discharge circuits. (orig.)

  10. Disruption-induced poloidal currents in the tokamak wall

    International Nuclear Information System (INIS)

    Pustovitov, V.D.

    2017-01-01

    Highlights: • Induction effects during disruptions and rapid transient events in tokamaks. • Plasma-wall electromagnetic interaction. • Flux-conserving evolution of plasma equilibrium. • Poloidal current induced in the vacuum vessel wall in a tokamak. • Complete analytical derivations and estimates. - Abstract: The poloidal current induced in the tokamak wall during fast transient events is analytically evaluated. The analysis is based on the electromagnetic relations coupled with plasma equilibrium equations. The derived formulas describe the consequences of both thermal and current quenches. In the final form, they give explicit dependence of the wall current on the plasma pressure and current. A comparison with numerical results of Villone et al. [F. Villone, G. Ramogida, G. Rubinacci, Fusion Eng. Des. 93, 57 (2015)] for IGNITOR is performed. Our analysis confirms the importance of the effects described there. The estimates show that the disruption-induced poloidal currents in the wall should be necessarily taken into account in the studies of disruptions and disruption mitigation in ITER.

  11. Initial results from the Tokapole-II poloidal divertor device

    International Nuclear Information System (INIS)

    Biddle, A.P.; Dexter, R.N.; Groebner, R.J.; Holly, D.J.; Lipschultz, B.; Phillips, M.W.; Prager, S.C.; Sprott, J.C.

    1979-01-01

    The latest in a series of internal-ring devices, called Tokapole II, has recently begun operation at the University of Wisconsin. Its purpose is to permit the study of the production and confinement of hot, dense plasmas in either a toroidal octupole (with or without toroidal field) or a tokamak with a four-node poloidal divertor. The characteristics of the device and the results of its initial operation are described here. Quantitative measurements of impurity concentration and radiated power have been made. Poloidal divertor equilibria of square and dee shapes have been produced, and an axisymmetric instability has been observed with the inverse dee. Electron cyclotron resonance heating is used to initiate the breakdown near the axis and to control the initial influx of impurities. A 2-MW RF source at the second harmonic of the ion cyclotron frequency is available and has been used to double the ion temperature when operated at low power with an unoptimized antenna. Initial results of operation as a pure octupole with poloidal Ohmic heating suggest a tokamak-like scaling of density (n proportional to Bsub(p)) and confinement time (tau proportional to n). (author)

  12. Disruption-induced poloidal currents in the tokamak wall

    Energy Technology Data Exchange (ETDEWEB)

    Pustovitov, V.D., E-mail: Pustovitov_VD@nrcki.ru [National Research Centre ‘Kurchatov Institute’, Pl. Kurchatova 1, Moscow 123182 (Russian Federation); National Research Nuclear University MEPhI, Kashirskoe sh. 31, Moscow 115409, Russia (Russian Federation)

    2017-04-15

    Highlights: • Induction effects during disruptions and rapid transient events in tokamaks. • Plasma-wall electromagnetic interaction. • Flux-conserving evolution of plasma equilibrium. • Poloidal current induced in the vacuum vessel wall in a tokamak. • Complete analytical derivations and estimates. - Abstract: The poloidal current induced in the tokamak wall during fast transient events is analytically evaluated. The analysis is based on the electromagnetic relations coupled with plasma equilibrium equations. The derived formulas describe the consequences of both thermal and current quenches. In the final form, they give explicit dependence of the wall current on the plasma pressure and current. A comparison with numerical results of Villone et al. [F. Villone, G. Ramogida, G. Rubinacci, Fusion Eng. Des. 93, 57 (2015)] for IGNITOR is performed. Our analysis confirms the importance of the effects described there. The estimates show that the disruption-induced poloidal currents in the wall should be necessarily taken into account in the studies of disruptions and disruption mitigation in ITER.

  13. <strong>Non-state security governances and the implications for local-level citizenship in Danish semi-public city spacesstrong>

    DEFF Research Database (Denmark)

    Jensen, Thomas Søgaard

    directed at promoting peace and restoring the feel good factor - in public city space in Denmark. What precisely "security" is, what it should mean, and what should be done to guarantee it, has always been contested on an empirically level. The reason for this is that security often deals with social order......, being both the ontological condition of order, in the sense of absence of "real" and culturally constructed dangers, risks, and anxieties, and the political means to ensure this order. Based on a 5 month ethnographic field work among private security guards policing new kinds of public city spaces...... the globalisation and privatisation/commercialisation of security provision and how this development can be explained. Drawing on my own empirical data I hereafter argue that commercial security governance and local understandings of threats to (feelings of) security are not so much shaped by imaginaries...

  14. An Early Look at Families and Local Programs in the Mother and Infant Home Visiting Program Evaluation-Strong Start: Third Annual Report. OPRE Report 2016-37

    Science.gov (United States)

    Lee, Helen; Crowne, Sarah; Faucetta, Kristen; Hughes, Rebecca

    2016-01-01

    The Mother and Infant Home Visiting Program Evaluation-Strong Start (MIHOPE-Strong Start) is the largest random assignment study to date to examine the effectiveness of home visiting services on improving birth outcomes and infant and maternal health care use for expectant mothers. The study includes local home visiting programs that use one of…

  15. Energy deposition on the FTU poloidal limiter during disruptions

    International Nuclear Information System (INIS)

    Ciotti, M.; Franzoni, G.; Maddaluno, G.

    1994-01-01

    The first results of the program for the characterization of the thermal flux on the FTU poloidal limiter during disruptions are presented. Data on power fluxes are obtained by using an infrared detector and a set of thermocouples. Two peaks in the limiter thermal load, corresponding to the thermal (up to 500 MW/m2) and magnetic quenches, are well resolved by the infrared detector allowing the time correlation with other first diagnostic measurements. The dependence on the main plasma parameters of the intensity and time evolution of the thermal flux to the limiter is discussed

  16. Axisymmetric stability of vertically asymmetric tokamaks at large beta poloidal

    International Nuclear Information System (INIS)

    Yamazaki, K.; Fishman, H.; Okabayashi, M.; Todd, A.M.M.

    1981-09-01

    The stability of high-β vertically asymmetric tokamak equilibria to rigid displacements is investigated analytically. It is found that vertical stability at large beta poloidal is mainly determined by a coupling between the shape of the plasma surface and the Shafranov shift of the magnetic axis. To the lowest order, symmetric components of the plasma surface shape are found to be the critical destabilizing elements. Asymmetric components have little effect. The inclusion of higher order terms in the high β tokamak expansion leads to further destabilization. Qualitative agreement between these analytic results and numerical stability calculations using the PEST code is demonstrated

  17. Poloidal variations in toroidal fusion reactor wall power loadings

    International Nuclear Information System (INIS)

    Carroll, M.C.; Miley, G.H.

    1985-01-01

    A geometric formulation is developed by the authors for determining poloidal variations in bremmstrahlung, cyclotron radiation, and neutron wall power loadings in toroidal fusion devices. Assuming toroidal symmetry and utilizing a numerical model which partitions the plasma into small cells, it was generally found that power loadings are highest on the outer surface of the torus, although variations are not as large as some have predicted. Results are presented for various plasma power generation configurations, plasma volume fractions, and toroidal aspect ratios, and include plasma and wall blockage effects

  18. Poloidal polarimeter for current density measurements in ITER

    International Nuclear Information System (INIS)

    Donne, A.J.H.; Graswinckel, M.F.; Cavinato, M.; Giudicotti, L.; Zilli, E.; Gil, C.; Koslowski, H.R.; McCarthy, P.; Nyhan, C.; Prunty, S.; Spillane, M.; Walker, C.

    2004-01-01

    One of the systems envisaged for measuring the current density profile in the ITER is a 118 μm poloidal polarimeter system. The proposed system has two independent views: one fan of chords observes the plasma via an equatorial port and a second fan views down from an upper port. This article will present the status of the on-going work and will address issues as sensitivity and accuracy, refraction, Gaussian beam ray-tracing, alignment, and calibration as well as some specific design details

  19. The poloidal OHM's law and a profile constraint in tokamaks

    International Nuclear Information System (INIS)

    Segre, S.E.; Zanza, V.

    1991-01-01

    Explicit use of the poloidal Ohm's law, together with the radial plasma velocity (obtained from the distribution of plasma sources), leads to a very general constraint on the possible radial profiles of plasma density and temperature. The constraint does not require any ad hoc assumption; it can place severe restrictions on the allowed profiles and is independent of energy and particle transport; also, it may be the underlying principle of profile consistency. The constraint is discussed in the framework of neoclassical theory, using results from the Frascati tokamak. (author). 23 refs, 7 figs

  20. Local-duality QCD sum rules for strong isospin breaking in the decay constants of heavy-light mesons

    Energy Technology Data Exchange (ETDEWEB)

    Lucha, Wolfgang [Austrian Academy of Sciences, Institute for High Energy Physics, Vienna (Austria); Melikhov, Dmitri [Austrian Academy of Sciences, Institute for High Energy Physics, Vienna (Austria); M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); University of Vienna, Faculty of Physics, Vienna (Austria); Simula, Silvano [Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, Rome (Italy)

    2018-02-15

    We discuss the leptonic decay constants of heavy-light mesons by means of Borel QCD sum rules in the local-duality (LD) limit of infinitely large Borel mass parameter. In this limit, for an appropriate choice of the invariant structures in the QCD correlation functions, all vacuum-condensate contributions vanish and all nonperturbative effects are contained in only one quantity, the effective threshold. We study properties of the LD effective thresholds in the limits of large heavy-quark mass m{sub Q} and small light-quark mass m{sub q}. In the heavy-quark limit, we clarify the role played by the radiative corrections in the effective threshold for reproducing the pQCD expansion of the decay constants of pseudoscalar and vector mesons. We show that the dependence of the meson decay constants on m{sub q} arises predominantly (at the level of 70-80%) from the calculable m{sub q}-dependence of the perturbative spectral densities. Making use of the lattice QCD results for the decay constants of nonstrange and strange pseudoscalar and vector heavy mesons, we obtain solid predictions for the decay constants of heavy-light mesons as functions of m{sub q} in the range from a few to 100 MeV and evaluate the corresponding strong isospin-breaking effects: f{sub D{sup +}} - f{sub D{sup 0}} = (0.96 ± 0.09) MeV, f{sub D}{sup {sub *}{sub +}} - f{sub D}{sup {sub *}{sub 0}} = (1.18 ± 0.35) MeV, f{sub B{sup 0}} - f{sub B{sup +}} = (1.01 ± 0.10) MeV, f{sub B}{sup {sub *}{sub 0}} - f{sub B}{sup {sub *}{sub +}} = (0.89 ± 0.30) MeV. (orig.)

  1. Experimental study of poloidal flow effect on magnetic island dynamics in LHD and TJ-II

    International Nuclear Information System (INIS)

    Narushima, Y.; Sakakibara, S.; Castejon, F.

    2010-11-01

    The dynamics of a magnetic island are studied by focusing on the poloidal flows in the helical devices LHD and TJ-II. The temporal increment of the ExB poloidal flow prior to the magnetic island transition from growth to healing is observed. The direction of the poloidal flow is in the electron-diamagnetic direction in LHD and in the ion-diamagnetic direction in TJ-II. From the magnetic diagnostics, it is observed that a current structure flowing in the plasma moves ∼π rad poloidally in the electron-diamagnetic direction during the transition in LHD experiments. These experimental observations from LHD and TJ-II show that the temporal increment of the poloidal flow is followed by the transition (growth to healing) of the magnetic island regardless of the flow direction and clarify the fact that significant poloidal flow affects the magnetic island dynamics. (author)

  2. Poloidal spin up and electric-field generation related to displacement current and neoclassical transport

    International Nuclear Information System (INIS)

    Gervasini, G.; Lazzaro, E.; Minardi, E.

    1996-01-01

    In accordance with the conventional ordering of neoclassical theory, poloidal and toroidal accelerations with constant parallel flow can be driven by heat transport in the absence of external momentum input and with vanishing parallel viscous stress. In a transient phase in which the heat transport is the primary source of the time dependence, the torque generating the rotation is provided at third order in the adiabatic expansion by the surface-averaged (non ambipolar) displacement current, which in also responsible for charge build-up and for the radial electric field. The heat transport equation has been solved in a narrow layer interfaced with the intensely heated plasma core through heat flux continuity, assuming neoclassical multi collisional coefficients with self-consistent suppression mechanism of anomalous transport. Starting from low temperature in the edge layer, a strong temperature gradient, a mass poloidal rotation in the ion direction and a strongly negative sheared radial electric field can be generated, in agreement with the observations, and reach a stationary state after a displacement current-dominated triggering phase (intrinsically non-ambipolar) lasting few milliseconds. Momentum input becomes important on longer time scale and is responsible for the toroidal rotation, decoupled from temperature gradient and for a further development of the radial electric field. The results show the ability of edge transport processes to adapt flexibly to a high temperature imposed on the inner side of the edge layer and support the view that the edge processes are a integral part of a more fundamental global process involving possibly an internal bifurcation of state

  3. Transition of poloidal viscosity by electrode biasing in the Large Helical Device

    International Nuclear Information System (INIS)

    Kitajima, S.; Ishii, K.; Takahashi, H.

    2012-11-01

    Electrode biasing experiments were tried in various magnetic configurations on the Large Helical Device (LHD). The transitions of poloidal viscosity, which were accompanied with bifurcation phenomena characterized by a negative resistance, were clearly observed on LHD by the electrode biasing. The critical external driving force required for transition were compared with the local maximum in ion viscosity, and the radial resistivity before the transition also compared with the expected value from a neoclassical theory. The critical driving force increased and the radial resistivity decreased with the major radius of the magnetic axis R ax going outward. The configuration dependence of the transition condition and the radial resistivity qualitatively agreed with neoclassical theories. The radial electric field and the viscosity were also evaluated by the neoclassical transport code for a non-axisymmetric system, and estimated electrode voltage required for the transition, which was consistent with the experimental results. (author)

  4. Transition of poloidal viscosity by electrode biasing in the Large Helical Device

    International Nuclear Information System (INIS)

    Kitajima, S.; Ishii, K.; Sato, Y.; Kanno, M.; Tachibana, J.; Okamoto, A.; Sasao, M.; Takahashi, H.; Masuzaki, S.; Shoji, M.; Ashikawa, N.; Tokitani, M.; Yokoyama, M.; Suzuki, Y.; Satake, S.; Ido, T.; Shimizu, A.; Suzuki, C.; Inagaki, S.; Takayama, M.

    2013-01-01

    Electrode biasing experiments were carried out in various magnetic configurations on the Large Helical Device (LHD). The transitions of poloidal viscosity, which were accompanied with bifurcation phenomena characterized by a negative resistance in an electrode characteristic, were clearly observed on LHD by the electrode biasing. The critical external driving force required for transition was compared with the local maximum in ion viscosity, and the radial resistivity before the transition also compared with the expected value from a neoclassical theory. The critical driving force increased and the radial resistivity decreased with the major radius of the magnetic axis R ax going outwards. The configuration dependence of the transition condition and the radial resistivity qualitatively agreed with neoclassical theories. The radial electric field and the viscosity were also evaluated by the neoclassical transport code for a non-axisymmetric system, and estimated electrode voltage required for the transition, which was consistent with the experimental results. (paper)

  5. Vertical poloidal asymmetries of low-Z element radiation in the PDX tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Brau, K.; Suckewer, S.; Wong, S.K.

    1983-06-01

    Vertical poloidal asymmetries of hydrogen isotopes and low-Z impurity radiation in the PDX tokamak may be caused by poloidally asymmetric sources of these elements at gas inlet valves, limiters or vacuum vessel walls, asymmetric magnetic field geometry in the region beyond the plasma boundary, or by ion curvature drifts. Low ionization states of carbon (C II- C IV) are more easily influenced by edge conditions than is CV. Vertical poloidal asymmetries of CV are correlated with the direction of the toroidal field. The magnitude of the asymmetry agrees with the predictions of a quasifluid neoclassical model. Experimental data and numerical simulations are presented to investigate different models of impurity poloidal asymmetries.

  6. Vertical poloidal asymmetries of low-Z element radiation in the PDX tokamak

    International Nuclear Information System (INIS)

    Brau, K.; Suckewer, S.; Wong, S.K.

    1983-06-01

    Vertical poloidal asymmetries of hydrogen isotopes and low-Z impurity radiation in the PDX tokamak may be caused by poloidally asymmetric sources of these elements at gas inlet valves, limiters or vacuum vessel walls, asymmetric magnetic field geometry in the region beyond the plasma boundary, or by ion curvature drifts. Low ionization states of carbon (C II- C IV) are more easily influenced by edge conditions than is CV. Vertical poloidal asymmetries of CV are correlated with the direction of the toroidal field. The magnitude of the asymmetry agrees with the predictions of a quasifluid neoclassical model. Experimental data and numerical simulations are presented to investigate different models of impurity poloidal asymmetries

  7. Equilibrium modeling of the TFCX poloidal field coil system

    International Nuclear Information System (INIS)

    Strickler, D.J.; Miller, J.B.; Rothe, K.E.; Peng, Y.K.M.

    1984-04-01

    The Toroidal Fusion Core Experiment (TFCX) isproposed to be an ignition device with a low safety factor (q approx. = 2.0), rf or rf-assisted startup, long inductive burn pulse (approx. 300 s), and an elongated plasma cross section (kappa = 1.6) with moderate triangularity (delta = 0.3). System trade studies have been carried out to assist in choosing an appropriate candidate for TFCX conceptual design. This report describes an important element in these system studies - the magnetohydrodynamic (MHD) equilibrium modeling of the TFCX poloidal field (PF) coil system and its impact on the choice of machine size. Reference design points for the all-super-conducting toroidal field (TF) coil (TFCX-S) and hybrid (TFCX-H) options are presented that satisfy given PF system criteria, including volt-second requirements during burn, mechanical configuration constraints, maximum field constraints at the superconducting PF coils, and plasma shape parameters. Poloidal coil current waveforms for the TFCX-S and TFCX-H reference designs consistent with the equilibrium requirements of the plasma startup, heating, and burn phases of a typical discharge scenario are calculated. Finally, a possible option for quasi-steady-state operation is discussed

  8. Anderson localization and ballooning eigenfunctions

    International Nuclear Information System (INIS)

    Dewar, R.L.; Cuthbert, P.

    1999-01-01

    In solving the ballooning eigenvalue for a low-aspect-ratio stellarator equilibrium it is found that the quasiperiodic behaviour of the equilibrium quantities along a typical magnetic field line can lead to localization of the ballooning eigenfunction (Anderson localization) even in the limit of zero shear. This localization leads to strong field-line dependence of the ballooning eigenvalue, with different branches attaining their maximum growth rates on different field lines. A method is presented of estimating the field-line dependence of various eigenvalue branches by using toroidal and poloidal symmetry operations on the shear-free ballooning equation to generate an approximate set of eigenfunctions. These zero-shear predictions are compared with accurate numerical solutions for the H-1 Heliac and are shown to give a qualitatively correct picture, but finite shear corrections will be needed to give quantitative predictions

  9. Variation of the poloidal field during a disruption and consequences on the vacuum chamber, the poloidal system and the toroidal magnet (Tore II)

    International Nuclear Information System (INIS)

    Gatineau, F.; Leloup, C.; Pariente, M.

    1977-12-01

    The currents induced into the vacuum vessel and into the poloidal field coils and the overvoltages on the generators during a plasma current disruption are calculated. The subsequent applied mechanical forces and the poloidal field variations at the toroidal field conductor are deduced. The current decrease rate considered, during a disruption, ranges from d Ip/dt=0.810 9 A/s to 0.410 11 A/s [fr

  10. Poloidal asymmetries in the scrape-off layer plasma of the Alcator C tokamak

    International Nuclear Information System (INIS)

    LaBombard, B.; Lipschultz, B.

    1987-01-01

    Large poloidal asymmetries in density, electron temperature, radial density e-folding length and floating potential have been measured in the plasma existing between the limiter radius and the wall of the Alcator C tokamak. Typically, variations in density by factors of about 4-20 and variations in radial density e-folding length by factors of about 3-8 are recorded in discharges which are bounded by poloidally symmetric ring limiters. These poloidal asymmetries show that pressure is a function of poloidal angle on open magnetic flux surfaces in this region of the plasma. Observations of toroidally symmetric MARFE (multifaceted asymmetric radiation from the edge) phenomena further imply that density and perhaps pressure are also a function of poloidal angle on closed flux surfaces existing just inside the limiter radius. The magnitude of these poloidal asymmetries and their dependence on poloidal angle persists independent of machine parameters (central plasma density, plasma current, toroidal field, MARFE versus non-MARFE discharges). Analysis of the data indicates that these asymmetries are caused by poloidal variations in perpendicular particle and heat transport in both the main plasma and the scrape-off layer. A number of possible asymmetric perpendicular transport processes in the scrape-off layer plasma are examined, including diffusion and E-vectorxB-vector plasma convection. (author)

  11. The ITER poloidal field configuration and operation scenario

    International Nuclear Information System (INIS)

    Gribov, Y.; Portone, A.; Mondino, P.L.

    1995-01-01

    The ITER Poloidal Field (PF) system must satisfy the following requirements. (1) ITER must have a well-controlled, single null divertor magnetic configuration with nominal plasma current 21MA and moderate plasma elongation k95 < 1.65. (2) For a variety of plasma scenarios the ITER PF system must provide: inductive breakdown and start-up in an expanding-aperture limiter configuration near the outboard first wall; an inductive current ramp-up to the nominal plasma current with a reasonable assumption of resistive loss during current ramp-up; a pulse length of 1,000s for ignition and inductively-sustained burn at nominal plasma current; plasma shutdown (following fusion power termination) in a similar contracting-aperture limiter configuration. The present design of the PF system can satisfy the ITER requirements within specified limitations

  12. Stability of tokamak magnetic configuration with a poloidal divertor

    International Nuclear Information System (INIS)

    Bazaeva, A.V.; Bykov, V.E.; Georgievskii, A.V.; Kaminskii, A.O.; Peletminskaya, V.G.; Pyatov, V.H.

    1979-02-01

    This paper investigates instabilities in the preseparatrix region of a tokamak magnetic configuration with a poloidal divertor with respect to perturbations produced by various irregularities in the manufacturing of tokamak magnetic systems. A computer solution, a system of differential equations describing the behavior of a force line, showed that small perturbation amplitudes may be the cause of the stochastic instability of force lines in the preseparatrix region. This instability is responsible for a number of demands on the accuracy in the manufacturing of tokamak magnetic systems. In particular, the misalignment in the divertor ring must not be larger than 0.5 0 , its displacement must be less than Δ/R = 10 -2 (Δ/R -2 ). This study can be used in the design of large thermonuclear installations

  13. Stability and heating of a poloidal divertor tokamak

    International Nuclear Information System (INIS)

    Biddle, A.P.; Dexter, R.N.; Holly, D.T.; Lipschultz, B.; Osborne, T.H.; Prager, S.C.; Shepard, D.A.; Sprott, J.C.; Witherspoon, F.D.

    1981-01-01

    Five experimental studies - two stability and three heating investigations - have been carried out on Tokapole II, a tokamak with a four-node poloidal divertor. After a brief description of the machine, discharges are described with q approximately 0.6 over most of the cross-section without degradation of confinement, observation of axisymmetric instability in dee, inverse-dee and square equilibria, high-power fast-wave ion-cyclotron resonance heating, studies of spatial shear Alfven wave resonances for heating, and reduction of the start-up loop voltage by approximately 60% by microwave pre-ionization at electron-cyclotron resonance. Work on axisymmetric instability and studies of pre-ionization have been described in detail elsewhere and are therefore only briefly mentioned. (author)

  14. Power transport to the poloidal divertor experiment scoop limiter

    International Nuclear Information System (INIS)

    Kugel, H.W.; Budny, R.; Fonck, R.

    1987-01-01

    Power transport to the Poloidal Divertor Experiment graphite scoop limiter was measured during both ohmic- and neutral-beam-heated discharges by observing its front face temperatures using an infrared camera. Measurements were made as a function of a plasma density, current, position, fueling mode, and heating power for both co- and counter-neutral beam injection. The measured thermal load on the scoop limiter was 25 to 50%. of the total plasma heating power. The measured peak front face midplane temperature was 1500 0 C, corresponding to a peak surface power density of 3 kW/cm/sup 2/. This power density implies an effective parallel power flow of 54 kW/cm/sup 2/ in agreement with the radial power distribution extrapolated from television Thomson scattering and calorimetry measurements

  15. Poloidal field electromagnetic engineering design for the TEXT upgrade

    International Nuclear Information System (INIS)

    Li, G.; Zhu, W.; Edmonds, P.H.; Solano, E.R.

    1989-01-01

    The overall design is a compromise between the requirement of maximum flexibility for plasma configuration, the technological limitations of materials and fabrication techniques, protection against failure by disruption, and the inevitable requirement of minimum cost and early completion schedules. Highlights of the design include the use of a pinned and clamped multi-turn toroidal joint, the use of an alumina dispersed high strength copper alloy and protection against the very high mechanical forces. The overall structure consists of the poloidal half windings clamped and fiber-glass epoxy glued to fiber-glass half cylinders, which are attached to the torque frame structure by vertical studs. The diverter coils require water cooling, and because of the small cross-section area available for these cooling tubes and for the coil feeds, and intricate assembly procedure has been developed

  16. Extraction of Poloidal Velocity from Charge Exchange Recombination Spectroscopy Measurements

    International Nuclear Information System (INIS)

    Solomon, W.M.; Burrell, K.H.; Gohil, P.; Groebner, R.J.; Baylor, L.R.

    2004-01-01

    A novel approach has been implemented on DIII-D to allow the correct determination of the plasma poloidal velocity from charge exchange spectroscopy measurements. Unlike usual techniques, the need for detailed atomic physics calculations to properly interpret the results is alleviated. Instead, the needed atomic physics corrections are self-consistently determined directly from the measurements, by making use of specially chosen viewing chords. Modeling results are presented that were used to determine a set of views capable of measuring the correction terms. We present the analysis of a quiescent H-mode discharge, illustrating that significant modifications to the velocity profiles are required in these high ion temperature conditions. We also present preliminary measurements providing the first direct comparison of the standard cross-section correction to the atomic physics calculations

  17. Poloidal magnetics of a divertor compact ignition tokamak

    International Nuclear Information System (INIS)

    Strickler, D.J.; Peng, Y.K.M.; Jardin, S.C.

    1987-10-01

    A technique is presented for calculating bounds on the poloidal field (PF) coil currents required to constrain critical plasma shape parameters when plasma pressure and current density profiles are changed. Such considerations are important in the conceptual design of the PF coils for the Compact Ignition Tokamak (CIT) and their electrical power systems in view of the uncertainty in plasma profiles and operating scenarios. Four relatively independent coil groups are sufficient to find a coil current distribution and equilibrium satisfying a prescribed plasma major radius, minor radius, and divertor strike point coordinates. The variation in the coil current distribution with plasma profiles tends to be large for external PF systems and provides a measure by which coil configurations may be compared. 6 refs., 7 figs., 4 tabs

  18. Stability and heating of a poloidal divertor tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Biddle, A. P.; Dexter, R. N.; Holly, D. T.; Lipschultz, B.; Osborne, T. H.; Prager, S. C.; Shepard, D.A., Sprott, J.C.; Witherspoon, F. D.

    1980-06-01

    Five experimental studies - two stability and three heating investigations - have been carried out on Tokapole II, a Tokamak with a four node poloidal divertor. First, discharges have been attained with safety factor q as low as 0.6 over most of the column without degradation of confinement, and correlation of helical instability onset with current profile shape is being studied. Second, the axisymmetric instability has been investigated in detail for various noncircular cross-sectional shapes, and results have been compared with a numerical stability code adapted to the Tokapole machine. Third, application of high power fast wave ion cyclotron resonance heating doubles the ion temperature and permits observation of heating as a function of harmonic number and spatial location of the resonance. Fourth, low power shear Alfven wave propagation is underway to test the applicability of this heating method to tokamaks. Fifth, preionization by electron cyclotron heating has been employed to reduce the startup loop voltage by approx. 60%.

  19. Axisymmetric stability of vertically asymmetric Tokamaks at large beta poloidal

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, K.; Fishman, H.; Okabayashi, M. (Princeton Univ., NJ (USA). Plasma Physics Lab.); Todd, A.M.M. (Grumman Aerospace Corp., Princeton, NJ (USA))

    1983-11-01

    The rigid-mode stability of high-..beta.. vertically asymmetric Tokamak equilibria with quasi-uniform current profile is investigated analytically using toroidicity-shaping double expansion method. It is found that vertical stability at large beta poloidal is mainly determined by a coupling between the shape of the plasma surface and the Shafranov shift of the magnetic axis. To the lowest order, symmetric components of the plasma surface shape are found to be the critical destabilizing elements. Asymmetric components have little effect. The inclusion of higher order terms in the high-..beta.. Tokamak expansion leads to further destabilization. These analytic insights are qualitatively confirmed by numerical stability calculations using the PEST code with parabolic safety-factor profile.

  20. A computational study of operating regimes for poloidal divertors

    International Nuclear Information System (INIS)

    Petravic, M.; Heifetz, D.; Post, D.

    1982-01-01

    We have identified three theoretical operating regimes for poloidal divertors. These regimes are determined by the geometry of the divertor and the input energy and particle fluxes, and are characterized by the divertor plasma density and temperature. A fully self-consistent two-dimensional model for the plasma and neutral atom and molecule transport was used to study poloidal divertor operation. Extensions of our previous calculations important to this study were the inclusion of parallel electron and ion thermal conduction. We find that the key physics in divertor operation is the neutral recycling near the neutralizer plate. This can be parametrized by R = GAMMAsub(P)/GAMMAsub(O), the ratio of particle flux striking the neutralizer plate to the particle flux entering the divertor. Values of R approx. equal to 1 can be produced by large pumping rates near the neutralizer plates resulting in low neutral recycling and a high temperature, low density divertor plasma. By decreasing the pumping near the neutralizer plate, R can be raised to an intermediate value of 5-10, the plasma temperature lowered by the same factor, and the density raised by a factor of 10-30. In this regime, escape of the neutrals back to the main plasma is virtually blocked. By further restricting the pumping, R can be raised to twenty or more, thereby lowering the temperature by a factor of twenty or more and raising the density by a factor of ninety or more. Such high density regimes have been observed on D-III and appear to offer the most promise for impurity control and particle control on large reactor experiments such as INTOR or FED. In this paper, we explore the range 3 < R < 16. (orig.)

  1. A semi-empirical analysis of strong-motion peaks in terms of seismic source, propagation path, and local site conditions

    Science.gov (United States)

    Kamiyama, M.; Orourke, M. J.; Flores-Berrones, R.

    1992-09-01

    A new type of semi-empirical expression for scaling strong-motion peaks in terms of seismic source, propagation path, and local site conditions is derived. Peak acceleration, peak velocity, and peak displacement are analyzed in a similar fashion because they are interrelated. However, emphasis is placed on the peak velocity which is a key ground motion parameter for lifeline earthquake engineering studies. With the help of seismic source theories, the semi-empirical model is derived using strong motions obtained in Japan. In the derivation, statistical considerations are used in the selection of the model itself and the model parameters. Earthquake magnitude M and hypocentral distance r are selected as independent variables and the dummy variables are introduced to identify the amplification factor due to individual local site conditions. The resulting semi-empirical expressions for the peak acceleration, velocity, and displacement are then compared with strong-motion data observed during three earthquakes in the U.S. and Mexico.

  2. Mixed poloidal-toroidal magnetic configuration and surface abundance distributions of the Bp star 36 Lyn

    Science.gov (United States)

    Oksala, M. E.; Silvester, J.; Kochukhov, O.; Neiner, C.; Wade, G. A.; the MiMeS Collaboration

    2018-01-01

    Previous studies of the chemically peculiar Bp star 36 Lyn revealed a moderately strong magnetic field, circumstellar material and inhomogeneous surface abundance distributions of certain elements. We present in this paper an analysis of 33 high signal-to-noise ratio, high-resolution Stokes IV observations of 36 Lyn obtained with the Narval spectropolarimeter at the Bernard Lyot Telescope at Pic du Midi Observatory. From these data, we compute new measurements of the mean longitudinal magnetic field, Bℓ, using the multiline least-squares deconvolution (LSD) technique. A rotationally phased Bℓ curve reveals a strong magnetic field, with indications for deviation from a pure dipole field. We derive magnetic maps and chemical abundance distributions from the LSD profiles, produced using the Zeeman-Doppler imaging code INVERSLSD. Using a spherical harmonic expansion to characterize the magnetic field, we find that the harmonic energy is concentrated predominantly in the dipole mode (ℓ = 1), with significant contribution from both the poloidal and toroidal components. This toroidal field component is predicted theoretically, but not typically observed for Ap/Bp stars. Chemical abundance maps reveal a helium enhancement in a distinct region where the radial magnetic field is strong. Silicon enhancements are located in two regions, also where the radial field is stronger. Titanium and iron enhancements are slightly offset from the helium enhancements, and are located in areas where the radial field is weak, close to the magnetic equator.

  3. Nonlinear energy transfer and current sheet development in localized Alfvén wavepacket collisions in the strong turbulence limit

    Science.gov (United States)

    Verniero, J. L.; Howes, G. G.; Klein, K. G.

    2018-02-01

    In space and astrophysical plasmas, turbulence is responsible for transferring energy from large scales driven by violent events or instabilities, to smaller scales where turbulent energy is ultimately converted into plasma heat by dissipative mechanisms. The nonlinear interaction between counterpropagating Alfvén waves, denoted Alfvén wave collisions, drives this turbulent energy cascade, as recognized by early work with incompressible magnetohydrodynamic (MHD) equations. Recent work employing analytical calculations and nonlinear gyrokinetic simulations of Alfvén wave collisions in an idealized periodic initial state have demonstrated the key properties that strong Alfvén wave collisions mediate effectively the transfer of energy to smaller perpendicular scales and self-consistently generate current sheets. For the more realistic case of the collision between two initially separated Alfvén wavepackets, we use a nonlinear gyrokinetic simulation to show here that these key properties persist: strong Alfvén wavepacket collisions indeed facilitate the perpendicular cascade of energy and give rise to current sheets. Furthermore, the evolution shows that nonlinear interactions occur only while the wavepackets overlap, followed by a clean separation of the wavepackets with straight uniform magnetic fields and the cessation of nonlinear evolution in between collisions, even in the gyrokinetic simulation presented here which resolves dispersive and kinetic effects beyond the reach of the MHD theory.

  4. Local Density of States in a d-wave Superconductor with Stripe-Like Modulations and a Strong Impurity

    OpenAIRE

    Chen, Hong-Yi; Ting, C. S.

    2003-01-01

    Using an effective Hamiltonian with d-wave superconductivity (dSC) and competing antiferromagnetic (AF) interactions, we show that weak and one-dimensionally modulated dSC, spin density wave (SDW) and charge density wave (CDW) could coexist in the ground state configuration. With proper parameters, the SDW order exhibits a period of 8a, while for dSC and CDW orders the period is 4a. The local density of states (LDOS), which probing the behavior of quasiparticle excitations, is found to have t...

  5. Poloidal field system for the ITER hard design option

    International Nuclear Information System (INIS)

    Schultz, J.H.; Pillsbury, R.D.

    1992-01-01

    This paper reports on ITER, the International Thermonuclear Experimental Reactor, a collaborative design by the US, EC, Japan, and the USSR of a tokamak fusion reactor that will demonstrate the physics and test the technology needed for commercial fusion reactors. In 1990, the ITER team completed a Conceptual Design Activity (CDA) in which a candidate design was shown to meet the specified goals of the ITER activity at a conceptual level. The four parties have agreed to an Engineering Design Activity (EDA) that includes the necessary additional design and analysis, along with the R and D needed to construct ITER with confidence. The CDA design includes a toroidal field (TF) magnet system that provides the main containment field and a poloidal field (PF) system used to control plasma current and position. The PF system is also used as transformer primary to induce and sustain current in the plasma. Since the volt-seconds available for full-current plasma burn are less than 10% of the total available volt-seconds from the PF system, an area of concern in the CDA design is that unfavorable plasma conditions could compromise the ability of the physics base case design to achieve long pulse burns. A High Aspect Ratio Design (HARD) was conceived as an alternative design option with a much larger bore in the central solenoid to enhance ITER's capabilities for long-burn operation

  6. Design and Fabrication of the KSTAR Poloidal Field Coil Structure

    International Nuclear Information System (INIS)

    Park, H. K.; Choi, C. H.; Sa, J. W.

    2005-01-01

    The KSTAR magnet system consists of 16 toroidal field(TF) coils. 4 pairs of central solenoid(CS) coils, and 3 pairs of outer poloidal field(PF) coils. The TF coils are encased in a structure to enhance mechanical stability. The CS coil structure is supported on top of the TF coil structure and supplies a vertical compression of 15 MN to prevent lateral movement due to a repulsive force between the CS coils. The PF coil system is vertically symmetry to the machine mid-plane and consists of 6 coils and 80 support structures(i.e, 16 for PF5, 32 for PF6 and 32 fort PF7). All PF coil structures should absorb the thermal contraction difference between TF coil structure and PF coils due to cool down and endure the vertical and radial magnetic forces due to current charging. In order to satisfy these structural requirements. the PF5 coil structure is designed base on hinges and both of PF6 and PF7 coil structures based on flexible plates. The PF coil structures are assembled on the TF coil structure with an individual basement that is welded on the TF coil structure

  7. Poloidal ULF oscillations in the dayside magnetosphere: a Cluster study

    Directory of Open Access Journals (Sweden)

    P. T. I. Eriksson

    2005-10-01

    Full Text Available Three ULF wave events, all occurring in the dayside magnetopshere during magnetically quiet times, are studied using the Cluster satellites. The multi-point measurements obtained from Cluster are used to determine the azimuthal wave number for the events by means of the phase shift and the azimuthal separation between the satellites. Also, the polarisation of the electric and magnetic fields is examined in a field-aligned coordinate system, which, in turn, gives the mode of the oscillations. The large-inclination orbits of Cluster allow us to examine the phase relationship between the electric and magnetic fields along the field lines. The events studied have large azimuthal wave numbers (m~100, two of them have eastward propagation and all are in the poloidal mode, consistent with the large wave numbers. We also use particle data from geosynchronous satellites to look for signatures of proton injections, but none of the events show any sign of enhanced proton flux. Thus, the drift-bounce resonance instability seems unlikely to have played any part in the excitation of these pulsations. As for the drift-mirror instability we conclude that it would require an unreasonably high plasma pressure for the instability criterion to be satisfied.

    Keywords. Ionosphere (Wave propagation – Magnetospheric physics (Plasma waves and instabilities; Instruments and techniques

  8. Poloidal field coil design for known plasma equilibrium states

    International Nuclear Information System (INIS)

    Paulson, C.C.; Todd, A.M.M.; Reusch, M.F.

    1986-01-01

    The technique for obtaining plasma equilibria with given boundary conditions has long been known and understood. The inverse problem of obtaining a poloidal field (PF) coil system from a given plasma equilibrium has been widely studied, however its solution has remained largely an art form. An investigation, by the writers, of this fundamentally ill-posed inverse problem has resulted in a new understanding of the requirements that solutions must satisfy. A set of interacting computer codes has been written which may be used to successfully design PF coil systems capable of supporting given plasma equilibria. It is shown that for discrete coil systems with a reasonable number of elements the standard minimization of the R M S flux error can lead to undesirable results. Examples are given to show that an additional stability requirement must be imposed on the regularization parameter to obtain correct solutions. For some equilibria, the authors find that the inverse problem admits dual solutions corresponding to two possible magnetic field configurations that fit the constraining relations on the plasma surface equally well. An additional minimization of the absolute value of the limiter flux is required to discriminate between these solutions

  9. PHASE RELATIONSHIPS OF SOLAR HEMISPHERIC TOROIDAL AND POLOIDAL CYCLES

    Energy Technology Data Exchange (ETDEWEB)

    Muraközy, J., E-mail: murakozy.judit@csfk.mta.hu [Debrecen Heliophysical Observatory (DHO), Konkoly Observatory, Research Centre for Astronomy and Earth Sciences H-4010 Debrecen P.O.B. 30, H-4010 (Hungary)

    2016-08-01

    The solar northern and southern hemispheres exhibit differences in their intensities and time profiles of the activity cycles. The time variation of these properties was studied in a previous article covering the data from Cycles 12–23. The hemispheric phase lags exhibited a characteristic variation: the leading role was exchanged between hemispheres every four cycles. The present work extends the investigation of this variation using the data of Staudacher and Schwabe in Cycles 1–4 and 7–10 as well as Spörer’s data in Cycle 11. The previously observed variation cannot be clearly recognized using the data of Staudacher, Schwabe, and Spörer. However, it is more interesting that the phase lags of the reversals of the magnetic fields at the poles follow the same variations as those of the hemispheric cycles in Cycles 12–23, i.e., one of the hemispheres leads in four cyles and the leading role jumps to the opposite hemisphere in the next four cycles. This means that this variation is a long-term property of the entire solar dynamo mechanism, for both the toroidal and poloidal fields, which hints at an unidentified component of the process responsible for the long-term memory.

  10. Accretion disc dynamo activity in local simulations spanning weak-to-strong net vertical magnetic flux regimes

    Science.gov (United States)

    Salvesen, Greg; Simon, Jacob B.; Armitage, Philip J.; Begelman, Mitchell C.

    2016-03-01

    Strongly magnetized accretion discs around black holes have attractive features that may explain enigmatic aspects of X-ray binary behaviour. The structure and evolution of these discs are governed by a dynamo-like mechanism, which channels part of the accretion power liberated by the magnetorotational instability (MRI) into an ordered toroidal magnetic field. To study dynamo activity, we performed three-dimensional, stratified, isothermal, ideal magnetohydrodynamic shearing box simulations. The strength of the self-sustained toroidal magnetic field depends on the net vertical magnetic flux, which we vary across almost the entire range over which the MRI is linearly unstable. We quantify disc structure and dynamo properties as a function of the initial ratio of mid-plane gas pressure to vertical magnetic field pressure, β _0^mid = p_gas / p_B. For 10^5 ≥ β _0^mid ≥ 10 the effective α-viscosity parameter scales as a power law. Dynamo activity persists up to and including β _0^mid = 10^2, at which point the entire vertical column of the disc is magnetic pressure dominated. Still stronger fields result in a highly inhomogeneous disc structure, with large density fluctuations. We show that the turbulent steady state βmid in our simulations is well matched by the analytic model of Begelman et al. describing the creation and buoyant escape of toroidal field, while the vertical structure of the disc can be broadly reproduced using this model. Finally, we discuss the implications of our results for observed properties of X-ray binaries.

  11. Toroidal field magnet and poloidal divertor field coil systems adapted to reactor requirements

    International Nuclear Information System (INIS)

    Koeppendoerfer, W.

    1985-01-01

    ASDEX Upgrade is a tokamak experiment with external poloidal field coils, that is now under construction at IPP Garching. It can produce elongated single-null (SN), double-null (DN) and limiter (L) configurations. The SN is the reference configuration with asymmetric load distributions in the poloidal field (PF) system and the toroidal field (TF) magnet. Plasma control and stabilization requires a rigid passive conductor close to the plasma. The design principles of the coils and support structure are described. (orig.)

  12. The ASDEX upgrade toroidal field magnet and poloidal divertor field coil system adapted to reactor requirements

    International Nuclear Information System (INIS)

    Koeppendoerfer, W.; Blaumoser, M.; Ennen, K.; Gruber, J.; Gruber, O.; Jandl, O.; Kaufmann, M.; Kollotzek, H.; Kotzlowski, H.; Lackner, E.; Lackner, K.; Larcher, T. von; Noterdaeme, J.M.; Pillsticker, M.; Poehlchen, R.; Preis, H.; Schneider, H.; Seidel, U.; Sombach, B.; Speth, E.; Streibl, B.; Vernickel, H.; Werner, F.; Wesner, F.; Wieczorek, A.

    1986-01-01

    ASDEX Upgrade is a tokamak experiment with external poloidal field coils that is now under construction at IPP Garching. It can produce elongated single-null (SN), double-null (DN) , and limiter (L) configurations. The SN is the reference configuration with asymmetric load distributions in the poloidal field (PF) system and the toroidal field (TF) magnet. Plasma control and stabilization require a rigid passive conductor close to the plasma. The design principles of the coils and support structure are described. (orig.)

  13. Magnetohydrodynamic stability of a plasma confined in a convex poloidal magnetic field

    International Nuclear Information System (INIS)

    Hellsten, T.

    1976-11-01

    A plasma confined in a purely poloidal magnetic field with a finite pressure at the boundary and surrounded by a conducting wall can be stabilized against magnetohydrodynamic perturbations even in absence of shear and minimum-average-B properties. To achieve large pressure gradients the average magnetic field has to decrease rapidly outwards. The theory is applied to a 'Spherator' configuration with a purely poloidal magnetic field. (Auth.)

  14. First measurement of poloidal-field-induced Faraday rotation in a tokamak plasma

    International Nuclear Information System (INIS)

    Kunz, W.; Association Euratom-CEA sur la Fusion, Centre d'Etudes Nucleaires de Fontenay-aux-Roses, 92

    1978-01-01

    Faraday rotation measurements using a ferrite modulation technique were performed on one channel of the 337 μm-interferometer on TFR. The experiment is intended as a preparatory step towards poloidal-field determination on the basis of the Faraday effect in a multi-channel configuration. The technical feasibility of precise Faraday rotation measurements under machine conditions is demonstrated. The measured rotation is unambiguously due to the poloidal magnetic field and agrees fairly with what can be estimated. (author)

  15. Coil development for the quasi-poloidal stellarator project

    International Nuclear Information System (INIS)

    Nelson, B.E.; Berry, L.A.; Cole, M.J.; Fogarty, P.J.; Freudenberg, K.; Hirshman, S.P.; Lyon, J.F.; Spong, D.A.; Strickler, D.J.; Williamson, D.; Benson, R.D.; Lumsdaine, A.; Madhukar, M.; Parang, M.; Shannon, T.; Dahlgren, F.; Heitzenroeder, P.; Neilson, G.H.; Goranson, P.; Hargrove, T.; Jones, G.; Lovett, G.

    2005-01-01

    The Quasi-Poloidal Stellarator (QPS), currently in the R and D and prototyping stage, is a low-aspect-ratio (R/a ≥ 2.3), compact stellarator experiment with a non-axisymmetric, near- poloidally-symmetric magnetic field. The QPS design parameters are = 0.95 m, = 0.3-0.4 m, B = 1 T, and a 1.5-s pulse length with 3-5 MW of ECH and ICRF heating power. The most challenging component to design and fabricate is the set of 20 nonplanar modular coils located inside the QPS vacuum tank. There are five distinct coil winding shapes, but only three types of winding forms are needed because each supports two distinct windings and both windings on the most complex coil form are the same shape. The stainless steel winding forms are machined to the required high tolerance and stranded copper cable conductor is wound on the winding forms to the highly precise shape required (to an accuracy of less than 1 mm). The windings are enclosed in a welded, stainless steel cover with stiffeners for compatibility with the QPS vacuum requirements, and the cans are then vacuum pressure impregnated with cynate ester resin to form the finished coil winding pack. Computer modeling and experimental measurements of the welding process indicate that distortion and thermal stress should be acceptable. A prototype coil using the most complex of the three winding forms is being fabricated. The coil winding form has been cast and is being machined to the required tolerance prior to winding with conductor. The machined modular coil forms will be shipped to the winding facility mounted on carts, which provide a work platform for preparing, winding, welding, and potting of the coils. The carts allow rotating the coils for optimum positioning during winding and fabrication. An overhead fixture allows supporting the spools of conductor and feeding the conductor in the correct orientation, groupings, and tensioning. An R and D program is underway that includes extensive conductor characterization and testing

  16. Manufacture of the Poloidal Field Conductor Insert Coil (PFCI)

    International Nuclear Information System (INIS)

    Baker, W.; Rajainmaeki, H.; Salpietro, E.; Keefe, C.

    2006-01-01

    Within the framework of the R(and)D programme for ITER (International Thermonuclear Experimental Reactor) the European team EFDA (European Fusion Development Agreement) have been charged with the design and manufacture of the Poloidal Field Conductor Insert Coil (PFCI). The purpose of the PFCI is to test and demonstrate the performance of long length full scale NbTi conductors in ITER relevant conditions. The PFCI will be tested in the Central Solenoid Model Coil test facility at the JAEA Naka Japan. This paper details the complete manufacturing details of the PFCI including development, forming machining, pre-assembly, impregnation, final assembly and testing. The PFCI is a single layer wound solenoid of 9 turns with a transition joggle in the centre section of the winding and an intermediate joint connection between the upper termination and the main coil winding. To give the required overall dimensions to fit in the testing facility, pre-formed and machined glass resin composite filler pieces are assembled with the winding and finally Vacuum Pressure Impregnated to create a single assembly unit. The PFCI is enclosed for assembly in a support structure which consist of an upper and lower flange that each are made up by 4 machined stainless steel castings which are electrically insulated by epoxy glass sheet material and 12 tie rods which preload the complete assembly in the vertical direction while the upper flange is equipped with 4 radial restraining jacks and the lower flange is equipped with 4 sets of studs and shear keys to withstand the net vertical and lateral electromagnetic forces. The PFCI is equipped with inductive heaters, voltage taps, temperature transducers, strain gauges and other instrumentation as diagnostics to monitor the performance. The current status of the manufacture is that the coil is in the process of final impregnation and should be completed and delivered before the summer of this year. (author)

  17. Manufacture of the poloidal field conductor insert coil (PFCI)

    Energy Technology Data Exchange (ETDEWEB)

    Baker, W. [EFDA CSU Garching, Boltzmannstrasse 2, 85748 Garching bei Muenchen (Germany); Keefe, C. [Tesla Engineering, Storrington, Sussex (United Kingdom); Rajainmaeki, H. [EFDA CSU Garching, Boltzmannstrasse 2, 85748 Garching bei Muenchen (Germany)], E-mail: hannu.rajainmaki@tech.efda.org; Salpietro, E. [EFDA CSU Garching, Boltzmannstrasse 2, 85748 Garching bei Muenchen (Germany)

    2007-10-15

    Within the framework of the R and D programme for international thermonuclear experimental reactor (ITER) the European team European Fusion Development Agreement (EFDA) has been charged with the design and manufacture of the poloidal field conductor insert coil (PFCI). The purpose of the PFCI is to test and demonstrate the performance of long-length full-scale NbTi conductors in ITER-relevant conditions. The PFCI will be tested in the central solenoid model coil test facility at the JAEA, Naka, Japan. This paper details the complete manufacturing of the PFCI including development, forming machining, pre-assembly, impregnation, final assembly and testing. The PFCI is a single-layered wound solenoid of nine turns with a transition joggle in the centre section of the winding and an intermediate joint connection between the upper termination and the main coil winding. To give the required overall dimensions to fit in the testing facility, preformed and machined glass resin composite filler pieces are assembled with the winding and is finally vacuum pressure impregnated (VPI) to create a single assembly unit. The PFCI is enclosed for assembly in a support structure, which consists of an upper and lower flange, each made up of four electrically insulated machined stainless steel castings, and 12 tie rods preloading the complete assembly in the vertical direction. The upper flange is equipped with four radial restraining jacks and the lower flange is equipped with four sets of studs and shear keys to withstand the net vertical and lateral electromagnetic forces. The PFCI is equipped with inductive heaters, voltage taps, temperature transducers, strain gauges and other instrumentation as diagnostics to monitor the performance. The current status of the manufacture is that the coil has passed the final acceptance tests and it is in the support structure assembly stage.

  18. Design of the outer poloidal field coils for ITER

    International Nuclear Information System (INIS)

    Sborchia, C.; Mitchell, N.; Yoshida, K.

    1995-01-01

    The ITER poloidal field (PF) system consists of a central solenoid (CS or PF-1), which is not subject of this paper, and six ring coils using a 40 kA forced flow cooled superconductor. The coils, placed around the toroidal field (TF) system, are used to start-up the plasma with typical ramp-up times of 100 s and burn duration of 1000 s. They also provide control and shaping of the plasma, with small, frequent current variations on a 1-5 s time scale. The magnetic field produced by the coils ranges from about 4.5 to 8 T and the AC losses in the conductor are significant: the largest coils require cooling path lengths up to 1000 m as well as the use of 2 in-hand winding. The field level and high thermal loads make the use of Nb 3 Sn strand attractive. This paper describes the basic design of the six ring (outer) coils developed by the ITER Joint Central Team in collaboration with the four Home Teams. The coil structural material is provided by a thick conductor jacket and by a bonded insulation system. The forces acting on the coils during typical operational scenarios and plasma disruption/vertical instabilities have been evaluated: radial forces are self-reacted by hoop stresses in the ring coil, with tensile stresses up to 300 MPa in the conductor jacket, and the vertical forces are resisted by a discrete support system, with shear stresses up to 10 MPa in the insulation. (orig./WL)

  19. Preparation of the ITER Poloidal Field Conductor Insert (PFCI) test

    International Nuclear Information System (INIS)

    Zanino, R.; Egorov, S.; Kim, K.; Martovetsky, N.; Nunoya, Y.; Okuno, K.; Salpietro, E.; Sborchia, C.; Takahashi, Y.; Weng, P.; Bangasco, M.; Savoldi Richard, L.; Polak, M.; Formisano, A.; Zapretilina, E.; Shikov, A.; Vedernikov, G.; Ciazynski, D.; Zani, L.; Muzzi, L.; Ricci, M.; Deela Corte, A.; Sugimoto, M.; Hamada, K.; Portone, A.; Hurd, F.; Mitchell, N.; Nijhuis, A.; Ilyin, Y.

    2004-01-01

    The Poloidal Field Conductor Insert (PFCI) of the International Thermonuclear Experimental Reactor (ITER) has been designed in Europe and is being manufactured at Tesla Engineering, UK, in the frame of a Task Agreement with the ITER International Team. Completion of the PFCI is expected at the beginning of 2005. Then, the coil shall be shipped to JAERI Naka, Japan, and inserted into the bore of the ITER Central Solenoid Model Coil, where it should be tested in 2005 to 2006. The PFCI consists of a NbTi dual-channel conductor, almost identical to the ITER PF1 and PF6 design, about 45 m long, with a 50 mm thick square stainless steel jacket, wound in a single-layer solenoid. It should carry up to 50 kA in a field of about 6 T, and it will be cooled by supercritical He at around 4.5 K and 0.6 MPa. An intermediate joint, representative of the ITER PF joints and located at relatively high field, will be an important new item in the test configuration with respect to the previous ITER Insert Coils. The PFCI will be fully instrumented with inductive and resistive heaters, as well as with voltage taps, Hall probes, pick-up coils, temperature sensors, pressure taps, strain and displacement sensors. The test program shall be aimed at DC and pulsed performance assessment of conductor and intermediate joint, AC loss measurement, stability and quench propagation, thermalhydraulic characterization. Here we give an overview of the preparatory work towards the test, including a review of the coil manufacturing and of the available instrumentation, a discussion of the most likely test program items, and a presentation of the supporting modeling and characterization work performed so far. (authors)

  20. Physics issues for a very-low-aspect-ratio Quasi-Poloidal Stellarator (QPS)

    International Nuclear Information System (INIS)

    Lyon, J.F.; Berry, L.A.; Hirshman, S.P.

    2003-01-01

    A quasi-poloidal stellarator with very low plasma aspect ratio (R/a ∼ 2.7, 1/2-1/4 that of existing stellarators) is a new confinement approach that could ultimately lead to a high-beta compact stellarator reactor. The Quasi-Poloidal Stellarator (QPS) experiment is being developed to test key features of this approach. The QPS will study neoclassical and anomalous transport, stability limits at beta up to 2.5%, the configuration dependence of the bootstrap current, and equilibrium robustness. The quasi-poloidal symmetry leads to neoclassical transport that is much smaller than the anomalous transport. The reduced effective field ripple may also produce reduced poloidal viscosity, enhancing the ambipolar E x B poloidal drift and allowing larger poloidal flows for reduction of anomalous transport. A region of second stability exists in the QPS experiment at higher beta. Very-high-beta configurations with a tokamak-like transform profile have also been obtained with a bootstrap current 1/3-1/5 that in an equivalent tokamak. These configurations are stable to low-n ideal MHD kink and vertical instabilities for beta up to 11%. Ballooning-stable configurations are found for beta in the range 2% to 23%. (author)

  1. The Effects of Radial and Poloidal ExB Drifts in the Tokamak SOL

    International Nuclear Information System (INIS)

    Ou Jing; Zhu Sizheng

    2006-01-01

    The effects of radial and poloidal ExB drifts in the scrape-off layer (SOL) of a limiter tokamak are studied with a one-dimensional fluid code. The transport equations are solved in the poloidal direction with the radial influxes as the source terms. The simulation results show that in the high recycling regime, the effect of the radial ExB drift on plasma density tends to be stronger than that of the poloidal ExB drift. In the sheath-limited regime, the effects of the radial ExB drift and poloidal ExB drift on plasma density are almost equally important. Considering the influence on the electron temperature, the poloidal ExB drift tends to be more important than the radial ExB drift in both the high recycling regime and sheath-limited regime. For the normal B φ , the poloidal ExB drift tends to raise the pressure at the low field side while the radial ExB drift favours the high field side. The simulation results also show that the ExB drift influences the asymmetries on the parameter distributions at the high field side and low field side, and the distributions are much more symmetric with the field reversal

  2. Simulation of the poloidal rotation shear layer for stellarators

    International Nuclear Information System (INIS)

    Maassberg, H.; Dyabilin, K.S.

    1993-01-01

    In the neoclassical theory based on the first order expansion of the distribution function, the radial electric field, E r , is calculated by the roots of the ambipolarity condition of the local particle fluxes: Γ e = Z i Γ i with Γ α = -n α · [D 11 α (n α , /n α - q α E r /T α ) + D 12 α T α , /T α ] with α = e, i (impurity ion fluxes are disregarded), q α being the particle charge. In the particle flux densities, Γ α , the Ware pinch term is omitted. In this context, additional 'anomalous' contributions are assumed to be intrinsically ambipolar. For given density and temperature profiles, E r is estimated separately for each flux surface. As the neoclassical particle transport coefficients depend on E r (and quite differently for ion and electrons in the different regimes of collisionality), multiple roots of the ambipolarity condition can exist. Especially when both the electrons and the ions are in the LMFP regime three roots can appear: the 'ion root', E r i , at small E r values, and the strongly positive 'electron root', E r e . An unstable root of the ambipolarity condition exists in between, while both the 'ion' and the 'electron root' are stable. At outer radii with higher collisionality, typically only the 'ion root' with typically E r i <0 can exist. (author) 9 refs., 4 figs

  3. The effect of partial poloidal wall sections on the wall stabilization of external kink modes

    International Nuclear Information System (INIS)

    Ward, D.J.

    1996-02-01

    An analysis of the effect on the wall stabilization of external kink modes due to toroidally continuous gaps in the resistive wall is performed. The effects with and without toroidal rotation are studied. For a high-β equilibrium, the mode structure is localized on the outboard side. Therefore, outboard gaps greatly increase the growth rate when there is no rotation. For resistive wall stabilization by toroidal rotation, the presence of gaps has the same effect as moving the wall farther away, i.e. destabilizing for the ideal plasma mode, and stabilizing for the resistive wall mode. The region of stability, in terms of wall position, is reduced in size and moved closer to the plasma. However, complete stabilization becomes possible at considerably reduced rotation frequencies. For a high-β, reverse-shear equilibrium both the resistive wall mode and the ideal plasma mode can be stabilized by close fitting discrete passive plates on the outboard side. The necessary toroidal rotation frequency to stabilize the resistive wall mode using these plates is reduced by a factor of three compared to that for a poloidally continuous and complete wall at the same plasma-wall separation. (author) 15 figs., 24 refs

  4. Amorphization-induced strong localization of electronic states in CsPbBr3 and CsPbCl3 studied by optical absorption measurements

    Science.gov (United States)

    Kondo, S.; Sakai, T.; Tanaka, H.; Saito, T.

    1998-11-01

    Optical absorption spectra of amorphous CsPbX3 films (X=Br,Cl) are characterized by two Gaussian bands near the fundamental edge, with the optical energy gap largely blueshifted and the absorption intensity strongly reduced as compared with the crystalline films. The peak energies of the bands are close to those of the A and C bands of Pb-doped alkali halides. The spectral features are discussed in terms of a molecular orbital theory based on a quasicomplex Pb2+(X-)6 model similar to the complex model for the doped alkali halides. It is shown that not only Pb2+ 6s and 6p extended states near the band edges but also X- p states contributing to upper valence bands are localized by amorphization. The transitions from the localized Pb2+ 6s to 6p states produce the spin-orbit allowed 3P1 and dipole allowed 1P1 states responsible for the two Gaussians. The localized X- p states lie deeper in energy than the localized Pb2+ 6s state and only contribute to higher-energy absorption above the Gaussian bands, giving the reason for the reduced absorption near the fundamental edge. The blueshift of the optical energy gap is attributed to the disappearance of k dispersions for these one-electron states.

  5. Understanding of impurity poloidal distribution in the edge pedestal by modelling

    Science.gov (United States)

    Rozhansky, V.; Kaveeva, E.; Molchanov, P.; Veselova, I.; Voskoboynikov, S.; Coster, D.; Fable, E.; Puetterich, T.; Viezzer, E.; Kukushkin, A. S.; Kirk, A.; the ASDEX Upgrade Team

    2015-07-01

    Simulation of an H-mode ASDEX Upgrade shot with boron impurity was done with the B2SOLPS5.2 transport code. Simulation results were compared with the unique experimental data available for the chosen shot: radial density, electron and ion temperature profiles in the equatorial midplanes, radial electric field profile, radial profiles of the parallel velocity of impurities at the low-field side (LFS) and high-field side (HFS), radial density profiles of impurity ions at LHS and HFS. Simulation results reproduce all available experimental data simultaneously. In particular strong poloidal HFS-LFS asymmetry of B5+ ions was predicted in accordance with the experiment. The simulated HFS B5+ density inside the edge transport barrier is twice larger than that at LFS. This is consistent with the experimental observations where even larger impurity density asymmetry was observed. A similar effect was predicted in the simulation done for the MAST H-mode. Here the HFS density of He2+ is predicted to be 4 times larger than that at LHS. Such a large predicted asymmetry is connected with a larger ratio of HFS and LFS magnetic fields which is typical for spherical tokamaks. The HFS/LFS asymmetry was not measured in the experiment, however modelling qualitatively reproduces the observed change of sign of He+parallel velocity to the counter-current direction at LFS. The understanding of the asymmetry is based on neoclassical effects in plasma with strong gradients. It is demonstrated that simulation results obtained with account of sources of ionization, realistic geometry and turbulent transport are consistent with the simplified analytical approach. Difference from the standard neoclassical theory is emphasized.

  6. Human cold stress of strong local-wind "Hijikawa-arashi" in Japan, based on the UTCI index and thermo-physiological responses

    Science.gov (United States)

    Ohashi, Yukitaka; Katsuta, Takumi; Tani, Haruka; Okabayashi, Taiki; Miyahara, Satoshi; Miyashita, Ryoji

    2018-03-01

    We investigated the cold stress caused by a strong local wind called "Hijikawa-arashi," through in situ vital measurements and the Universal Thermal Climate Index (UTCI). This wind is a very interesting winter phenomenon, localized in an area within 1 km of the seashore in Ozu City, Ehime Prefecture in Japan. When a strong Hijikawa-arashi (HA) occurred at 14-15 m s-1, the UTCI decreased to - 30 °C along the bridge where commuting residents are the most exposed to strong and cold winds. On the bridge, most participants in our experiment felt "very cold" or "extremely cold." The UTCI of HA can be predicted from a multiple regression equation using wind speed and air temperature. The cold HA wind is also harmful to human thermo-physiological responses. It leads to higher blood pressure and increased heart rate, both of which act as cardiovascular stress triggers. Increases of 6-10 mmHg and 3-6 bpm for every 10 °C reduction in UTCI were seen on all observational days, including HA and non-HA days. In fact, the participants' body skin temperatures decreased by approximately 1.2 to 1.7 °C for every 10 °C reduction in UTCI. Thus, the UTCI variation due to the HA outbreak corresponded well with the cold sensation and thermo-physiological responses in humans. This result suggests that daily UTCI monitoring enables the prediction of thermo-physiological responses to the HA cold stress.

  7. Human cold stress of strong local-wind "Hijikawa-arashi" in Japan, based on the UTCI index and thermo-physiological responses.

    Science.gov (United States)

    Ohashi, Yukitaka; Katsuta, Takumi; Tani, Haruka; Okabayashi, Taiki; Miyahara, Satoshi; Miyashita, Ryoji

    2018-03-30

    We investigated the cold stress caused by a strong local wind called "Hijikawa-arashi," through in situ vital measurements and the Universal Thermal Climate Index (UTCI). This wind is a very interesting winter phenomenon, localized in an area within 1 km of the seashore in Ozu City, Ehime Prefecture in Japan. When a strong Hijikawa-arashi (HA) occurred at 14-15 m s -1 , the UTCI decreased to - 30 °C along the bridge where commuting residents are the most exposed to strong and cold winds. On the bridge, most participants in our experiment felt "very cold" or "extremely cold." The UTCI of HA can be predicted from a multiple regression equation using wind speed and air temperature. The cold HA wind is also harmful to human thermo-physiological responses. It leads to higher blood pressure and increased heart rate, both of which act as cardiovascular stress triggers. Increases of 6-10 mmHg and 3-6 bpm for every 10 °C reduction in UTCI were seen on all observational days, including HA and non-HA days. In fact, the participants' body skin temperatures decreased by approximately 1.2 to 1.7 °C for every 10 °C reduction in UTCI. Thus, the UTCI variation due to the HA outbreak corresponded well with the cold sensation and thermo-physiological responses in humans. This result suggests that daily UTCI monitoring enables the prediction of thermo-physiological responses to the HA cold stress.

  8. Equilibrium poloidal-field distributions in reversed-field-pinch toroidal discharges

    International Nuclear Information System (INIS)

    Baker, D.A.; Mann, L.W.; Schoenberg, K.F.

    1983-01-01

    A comparison between the approximate analytic formulae of Shafranov for equilibrium in axisymmetric toroidal systems and fully toroidal numerical solutions of the Grad-Shafranov equation for reversed-field-pinch (RFP) configurations is presented as a function of poloidal beta, internal plasma inductance, and aspect ratio. The Shafranov formula for the equilibrium poloidal-field distribution at the conducting shell that surrounds the plasma is accurate to within 5% for aspect ratios greater than 2, poloidal betas less than 50%, and for plasma current channels that exceed one third of the minor toroidal radius. The analytic description for the centre shift of the innermost flux surface that encloses the plasma current (the Shafranov shift) is accurate to within 15% for aspect ratios greater than 2 and poloidal betas below 50%, provided the shift does not exceed one tenth of the minor conducting boundary radius. The Shafranov formulae provide a convenient method for describing the gross equilibrium behaviour of an axisymmetric RFP discharge, as well as an effective tool for designing the poloidal-field systems of RFP experiments. (author)

  9. Poloidal rotation dynamics, radial electric field, and neoclassical theory in the jet internal-transport-barrier region.

    Science.gov (United States)

    Crombé, K; Andrew, Y; Brix, M; Giroud, C; Hacquin, S; Hawkes, N C; Murari, A; Nave, M F F; Ongena, J; Parail, V; Van Oost, G; Voitsekhovitch, I; Zastrow, K-D

    2005-10-07

    Results from the first measurements of a core plasma poloidal rotation velocity (upsilontheta) across internal transport barriers (ITB) on JET are presented. The spatial and temporal evolution of the ITB can be followed along with the upsilontheta radial profiles, providing a very clear link between the location of the steepest region of the ion temperature gradient and localized spin-up of upsilontheta. The upsilontheta measurements are an order of magnitude higher than the neoclassical predictions for thermal particles in the ITB region, contrary to the close agreement found between the determined and predicted particle and heat transport coefficients [K.-D. Zastrow, Plasma Phys. Controlled Fusion 46, B255 (2004)]. These results have significant implications for the understanding of transport barrier dynamics due to their large impact on the measured radial electric field profile.

  10. Poloidal field effects on fundamental minority ion cyclotron resonance heating in a tokamak plasma

    International Nuclear Information System (INIS)

    Jun, S. C.; Imre, Kaya; Stevens, D. C.; Weitzner, Harold; Chang, C. S.

    2000-01-01

    Minority ion fundamental cyclotron resonance is studied in a large tokamak in which the geometrical optics approximation applies off resonance and the minority average speed is less than the wave phase speeds. Poloidal equilibrium magnetic field effects are included, which lead to nontrivially nonlocal integrodifferential equations for the wave fields. Exact reciprocity relation is given as well as explicit analytic solutions for the transmission coefficients for both the high and low field side incidences. Numerical solutions are needed only for the high field side incident reflection coefficient. Numerical schemes are described and numerical results are presented together with a reliable error bound. Typically, energy absorption increases with poloidal field. The energy absorption increases with minority density at low values of minority density. However, it decreases at high minority density. Poloidal field effects weaken the dependence of energy absorption on the toroidal wave number. (c) 2000 American Institute of Physics

  11. Development of a measuring system for poloidal field profile in JIPP T-IIU plasmas

    International Nuclear Information System (INIS)

    Kuramoto, Hideharu; Hiraki, Naoji; Moriyama, Shin-ichi; Toi, Kazuo; Sato, Kuninori.

    1995-01-01

    A Zeeman polarimeter has been developed to measure the poloidal magnetic field profile in the plasma edge of the JIPP T-IIU tokamak. The poloidal field strength is determined from the analysis of circular polarization of a HeII 4686A spectral lines emitted from a plasma. The polarization modulation rate, which is proportional to the magnetic field strength along a line of sight, is estimated as a ratio of the difference between the left-hand circular polarized line intensity and right-hand one to the sum of them. A newly developed fast scanning Fabry-Perot interferometer allows us to improve a time resolution up to 1.5 ms. The poloidal magnetic field profile in He-doped deuterium plasmas of JIPP T-IIU has been successfully obtained with this polarimeter system. (author)

  12. Spatial Variations of Poloidal and Toroidal Mode Field Line Resonances Observed by MMS

    Science.gov (United States)

    Le, G.; Chi, P. J.; Strangeway, R. J.; Russell, C. T.; Slavin, J. A.; Anderson, B. J.; Kepko, L.; Nakamura, R.; Plaschke, F.; Torbert, R. B.

    2017-12-01

    Field line resonances (FLRs) are magnetosphere's responses to solar wind forcing and internal instabilities generated by solar wind-magnetospheric interactions. They are standing waves along the Earth's magnetic field lines oscillating in either poloidal or toroidal modes. The two types of waves have their unique frequency characteristics. The eigenfrequency of FLRs is determined by the length of the field line and the plasma density, and thus gradually changes with L. For toroidal mode oscillations with magnetic field perturbations in the azimuthal direction, ideal MHD predicts that each field line oscillates independently with its own eigenfrequency. For poloidal mode waves with field lines oscillating radially, their frequency cannot change with L easily as L shells need to oscillate in sync to avoid efficient damping due to phase mixing. Observations, mainly during quiet times, indeed show that poloidal mode waves often exhibit nearly constant frequency across L shells. Our recent observations, on the other hand, reveal a clear L-dependent frequency trend for a long lasting storm-time poloidal wave event, indicating the wave can maintain its power with changing frequencies for an extended period [Le et al., 2017]. The spatial variation of the frequency shows discrete spatial structures. The frequency remains constant within each discrete structure that spans about 1 REalong L, and changes discretely. We present a follow-up study to investigate spatial variations of wave frequencies using the Wigner-Ville distribution. We examine both poloidal and toroidal waves under different geomagnetic conditions using multipoint observations from MMS, and compare their frequency and occurrence characteristics for insights into their generation mechanisms. Reference: Le, G., et al. (2017), Global observations of magnetospheric high-m poloidal waves during the 22 June 2015 magnetic storm, Geophys. Res. Lett., 44, 3456-3464, doi:10.1002/2017GL073048.

  13. Far infrared polarimetry with tokamak plasmas for determination of the poloidal magnetic field distribution

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, W

    1979-01-01

    This study examines the poloidal magnetic field distribution of tokamak plasma, and the elucidation of the radial distribution of the toroidal plasma flow. A numerical and experimental determination of the poloidal field based on the Faraday effect is presented. A method is discussed for measuring the rotation of the polarization plane linear polarized electromagnetic radiation, by passing through a plasma magnetized in the direction of the radiation. The polarization behavior of a linear polarized wave passing through a tokamak plasma is presented theoretically for various wavelengths, along with the experimental investigation of a ferrite modulation procedure through the use of different far infrared detectors.

  14. Tokamak ion temperature and poloidal field diagnostics using 3 MeV protons

    International Nuclear Information System (INIS)

    Heidbrink, W.W.; Strachan, J.D.

    1984-10-01

    The 3 MeV protons created by d(d,p)t fusion reactions in a moderately sized tokamak leave the plasma on trajectories determined by the position of their birth and by the poloidal magnetic field. Pitch-angle resolution of the escaping 3 MeV protons can separately resolve the spatial distribution of the d(d,p)t fusion reactions and the poloidal field distribution inside the tokamak. These diagnostic techniques have been demonstrated on PLT with an array of collimated surface barrier detectors

  15. Design and fabrication of forced-flow superconducting poloidal coils for the Large Helical Device

    International Nuclear Information System (INIS)

    Nakamoto, K.; Yamamoto, T.; Mizumaki, S.; Yamakoshi, T.; Kanai, Y.; Yamamoto, K.; Wachi, Y.; Ushijima, M.; Yoshida, T.; Kai, T.; Takahata, K.; Yamamoto, J.; Satow, T.; Motojima, O.

    1995-01-01

    Three pairs of superconducting poloidal coils for the LHD (Large Helical Device) have been designed and fabricated using NbTi/Cu cable-in-conduit (CIC) conductors cooled with forced-flow supercritical helium (SHE). In the LHD poloidal coils, high field accuracy as well as high reliability are required. To meet these requirements, detailed field and structural analyses have been performed and key parameters including winding pattern and size and locations of conductor joints have been determined. Compact conductor joint, where NbTi filaments are directly bonded, has also been developed using the solid state bonding technique. (orig.)

  16. Temperature anisotropy in a cyclotron resonance heated tokamak plasma and the generation of poloidal electric field

    International Nuclear Information System (INIS)

    Choe, W.; Ono, M.; Chang, C.S.

    1994-11-01

    The temperature anisotropy generated by cyclotron resonance heating of tokamak plasmas is calculated and the poloidal equilibrium electric field due to the anisotropy is studied. For the calculation of anisotropic temperatures, bounce-averaged Fokker-Planck equation with a bi-Maxwellian distribution function of heated particles is solved, assuming a moderate wave power and a constant quasilinear cyclotron resonance diffusion coefficient. The poloidal electrostatic potential variation is found to be proportional to the particle density and the degree of temperature anisotropy of warm species created by cyclotron resonance heating

  17. Role of advanced refuelling and heating on edge Reynolds stress-induced poloidal flow in HL-1M

    International Nuclear Information System (INIS)

    Hong Wenyu; Wang Enyao; Li Qiang; Cao Jianyong; Yan Longwen

    2002-01-01

    The radial profile of electrostatic Reynolds stress, plasma poloidal rotations, radial and poloidal electric fields have been measured in the plasma boundary region of the HL-1M tokamak using a multi-array of Mach/Langmuir probes. In the experiments of ohmic discharge, lower hybrid current drive, supersonic molecular beam injection (SMBI) and multi-shot pellet injection, the correlation between the Reynolds stress and poloidal flow in the edge plasma is presented. The radial profile changes of the Reynolds stress and poloidal flow velocity V pol with lower hybrid wave injection power and SMBI injection are obtained. The results indicate that the sheared poloidal flow can be generated in tokamak plasma due to the radially varying Reynolds stress

  18. Theoretical considerations and preparatory experiments for poloidal field measurements in tokamaks by far-infrared polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, W; Dodel, G [Stuttgart Univ. (TH) (Germany, F.R.). Inst. fuer Plasmaforschung

    1978-12-01

    Numerical calculations give an optimum wavelength and show the precision requirements for determining poloidal field profiles in tokamaks on the basis of the Faraday effect. The required precision of the polarimetric measurements can be achieved in the far-infrared as is verified in a model experiment using a ferrite modulated HCN laser beam.

  19. Poloidal rotation and the evolution of H-mode and VH-mode profiles

    International Nuclear Information System (INIS)

    Hinton, F.L.; Staebler, G.M.; Kim, Y.B.

    1993-12-01

    The physics which determines poloidal rotation, and its role in the development of profiles during H- and VH-modes, is discussed. A simple phenomenological transport model, which incorporates the rvec E x rvec B flow shear suppression of turbulence, is shown to predict profile evolution similar to that observed experimentally during H-mode and VH-mode

  20. Active transfer of poloidal magnetic energy during plasma disruptions in J-TEXT

    International Nuclear Information System (INIS)

    Zhang, Ming; Zhang, Jun; Rao, Bo; Chen, Zhongyong; Li, Xiaolong; Xu, Wendi; Pan, Yuan; Yu, Kexun

    2016-01-01

    Highlights: • An alternative plasma disruption mitigation method by transferring partial poloidal magnetic energy out of the vacuum vessel has been presented in this paper. • This method can reduced the magnetic energy dissipated inside the vacuum vessel during disruption and mitigated the disruption damage. • This method has been experimentally verified in J-TEXT with an experiment system set up. • According to the experimental results, the magnetic energy dissipated inside the vacuum vessel during disruption can be reduced by 20% or more and the loop voltage can be reduced by 58%. - Abstract: The magnitude of the damaging effects of plasma disruptions on vacuum vessel (VV) components increases with the thermal energy and poloidal magnetic energy dissipated inside the VV. This study focuses on an alternative method, by which partial poloidal magnetic energy is transferred out of the VV. The quantity of the poloidal magnetic energy dissipated inside the VV (W_d_i_s) can be reduced with this method, and the damaging effects can be mitigated. Partial magnetic energy is transferred based on magnetic coupling by a group of energy transfer coils (ETCs) that are coupled with the plasma current. This method, which is called magnetic energy transfer (MET), has been experimentally verified in J-TEXT. W_d_i_s can be reduced by approximately 20%, and the loop voltage can be reduced by 58%. MET is established as a novel, promising, and effective plasma disruption mitigation method.

  1. Poloidal asymmetries in the limiter shadow plasma of the Alcator C tokamak. Volume 1

    International Nuclear Information System (INIS)

    LaBombard, B.

    1986-05-01

    This thesis investigates conditions which exist in the limiter shadow plasma of the Alcator C tokamak. The understanding of this edge plasma region is approached from both experimental and theoretical points of view. First, a general overview of edge plasma physical processes is presented. Simple edge plasma models and conditions which can theoretically result in a poloidally asymmetric edge plasma are discussed. A review of data obtained from previous diagnostics in the Alcator C edge plasma is then used to motivate the development of a new edge plasma diagnostic system (DENSEPACK) to experimentally investigate poloidal asymmetries in this region. The bulk of this thesis focuses on the marked poloidal asymmetries detected by this poloidal probe array and possible mechanisms which might support such asymmetries on a magnetic flux surface. In processing the probe data, some important considerations on fitting Langmuir probe characteristics are identified. The remainder of this thesis catalogues edge versus central plasma parameter dependences. Regression analysis techniques are applied to characterize edge density for various central plasma parameters. Edge plasma conditions during lower hybrid radio frequency heating and pellet injection are also discussed

  2. Calibration of the charge exchange recombination spectroscopy diagnostic for core poloidal rotation velocity measurements on JET

    International Nuclear Information System (INIS)

    Crombe, K.; Andrew, Y.; Giroud, C.; Hawkes, N.C.; Murari, A.; Valisa, M.; Oost, G. van; Zastrow, K.-D.

    2004-01-01

    This article describes recent improvements in the measurement of C 6+ impurity ion poloidal rotation velocities in the core plasma of JET using charge exchange recombination spectroscopy. Two independent techniques are used to provide an accurate line calibration. The first method uses a Perkin-Elmer type 303-306 samarium hollow cathode discharge lamp, with a Sm I line at 528.291 nm close to the C VI line at 529.1 nm. The second method uses the Be II at 527.06 nm and C III at 530.47 nm in the plasma spectrum as two marker lines on either side of the C VI line. Since the viewing chords have both a toroidal and poloidal component, it is important to determine the contribution of the toroidal rotation velocity component separately. The toroidal rotation velocity in the plasma core is measured with an independent charge exchange recombination spectroscopy diagnostic, looking tangentially at the plasma core. The contribution of this velocity along the lines of sight of the poloidal rotation diagnostic has been determined experimentally in L-mode plasmas keeping the poloidal component constant (K. Crombe et al., Proc. 30th EPS Conference, St. Petersburg, Russia, 7-11 July 2003, p. 1.55). The results from these experiments are compared with calculations of the toroidal contribution that take into account the original design parameters of the diagnostic and magnetic geometry of individual shots

  3. Testing neoclassical and turbulent effects on poloidal rotation in the core of DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Chrystal, C. [University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States); Burrell, K. H.; Staebler, G. M.; Kinsey, J. E.; Lao, L. L.; Grassie, J. S. de [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Grierson, B. A.; Solomon, W. M.; Wang, W. X. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Rhodes, T. L.; Schmitz, L. [University of California Los Angeles, P.O. Box 957099, Los Angeles, California 90095-7099 (United States); Mordijck, S. [College of William and Mary, P.O. Box 8795, Williamsburg, Virginia 23187-8795 (United States); Meneghini, O. [Oak Ridge Associated Universities, 1299 Bethel Valley Rd, Bldg SC-200, Oak Ridge, Tennessee 37830 (United States)

    2014-07-15

    Experimental tests of ion poloidal rotation theories have been performed on DIII-D using a novel impurity poloidal rotation diagnostic. These tests show significant disagreements with theoretical predictions in various conditions, including L-mode plasmas with internal transport barriers (ITB), H-mode plasmas, and QH-mode plasmas. The theories tested include standard neoclassical theory, turbulence driven Reynolds stress, and fast-ion friction on the thermal ions. Poloidal rotation is observed to spin up at the formation of an ITB and makes a significant contribution to the measurement of the E{sup →}×B{sup →} shear that forms the ITB. In ITB cases, neoclassical theory agrees quantitatively with the experimental measurements only in the steep gradient region. Significant quantitative disagreement with neoclassical predictions is seen in the cores of ITB, QH-, and H-mode plasmas, demonstrating that neoclassical theory is an incomplete description of poloidal rotation. The addition of turbulence driven Reynolds stress does not remedy this disagreement; linear stability calculations and Doppler backscattering measurements show that disagreement increases as turbulence levels decline. Furthermore, the effect of fast-ion friction, by itself, does not lead to improved agreement; in QH-mode plasmas, neoclassical predictions are closest to experimental results in plasmas with the largest fast ion friction. Predictions from a new model that combines all three effects show somewhat better agreement in the H-mode case, but discrepancies well outside the experimental error bars remain.

  4. Testing neoclassical and turbulent effects on poloidal rotation in the core of DIII-D

    International Nuclear Information System (INIS)

    Chrystal, C.; Burrell, K. H.; Staebler, G. M.; Kinsey, J. E.; Lao, L. L.; Grassie, J. S. de; Grierson, B. A.; Solomon, W. M.; Wang, W. X.; Rhodes, T. L.; Schmitz, L.; Mordijck, S.; Meneghini, O.

    2014-01-01

    Experimental tests of ion poloidal rotation theories have been performed on DIII-D using a novel impurity poloidal rotation diagnostic. These tests show significant disagreements with theoretical predictions in various conditions, including L-mode plasmas with internal transport barriers (ITB), H-mode plasmas, and QH-mode plasmas. The theories tested include standard neoclassical theory, turbulence driven Reynolds stress, and fast-ion friction on the thermal ions. Poloidal rotation is observed to spin up at the formation of an ITB and makes a significant contribution to the measurement of the E → ×B → shear that forms the ITB. In ITB cases, neoclassical theory agrees quantitatively with the experimental measurements only in the steep gradient region. Significant quantitative disagreement with neoclassical predictions is seen in the cores of ITB, QH-, and H-mode plasmas, demonstrating that neoclassical theory is an incomplete description of poloidal rotation. The addition of turbulence driven Reynolds stress does not remedy this disagreement; linear stability calculations and Doppler backscattering measurements show that disagreement increases as turbulence levels decline. Furthermore, the effect of fast-ion friction, by itself, does not lead to improved agreement; in QH-mode plasmas, neoclassical predictions are closest to experimental results in plasmas with the largest fast ion friction. Predictions from a new model that combines all three effects show somewhat better agreement in the H-mode case, but discrepancies well outside the experimental error bars remain

  5. Observations of toroidal and poloidal rotation in the high beta tokamak Torus II

    International Nuclear Information System (INIS)

    Kostek, C.A.

    1983-01-01

    The macroscopic rotation of plasma in a toroidal containment device is an important feature of the equilibrium. Toroidal and poloidal rotation in the high beta tokamak Torus II is measured experimentally by examining the Doppler shift of the 4685.75 A He II line emitted from the plasma. The toroidal flow at an average velocity of 1.6 x 10 6 cm/sec, a small fraction of the ion thermal speed, moves in the same direction as the toroidal plasma current. The poloidal flow follows the ion diamagnetic current direction, also at an average speed of 1.6 x 10 6 cm/sec. In view of certain ordering parameters, the toroidal flow is compared with predictions from neoclassical theory in the collosional, Pfirsch-Schluter regime. The poloidal motion, however results from an E x B drift in a positive radial electric field, approaching a stable ambipolar state. This radial electric field is determined from theory by using the measured poloidal velocity. Mechanisms for the time evolution of rotation are also examined. It appears that the circulation damping is governed by a global decay of the temperature and density gradients which, in turn, may be functions of radiative cooling, loss of equilibrium due to external field decay, or the emergence of a growing instability, occasionally observed in CO 2 interferometry measurements

  6. Three-dimensional plasma equilibrium model based on the poloidal representation of the magnetic field

    International Nuclear Information System (INIS)

    Gruber, R.; Degtyarev, L.M.; Kuper, A.; Martynov, A.A.; Medvedev, S.Yu.; Shafranov, V.D.

    1996-01-01

    Equations for the three-dimensional equilibrium of a plasma are formulated in the poloidal representation. The magnetic field is expressed in terms of the poloidal magnetic flux Ψ and the poloidal electric current F. As a result, three-dimensional equilibrium configurations are analyzed with the help of a set of equations including the elliptical equation for the poloidal flux, the magnetic differential equation for the parallel current, and the equations for the basis vector field b. To overcome the difficulties associated with peculiarities that can arise in solving the magnetic differential equation at rational toroidal magnetic surfaces, small regulating corrections are introduced into the proposed set of equations. In this case, second-order differential terms with a small parameter appear in the magnetic differential equations. As a result, these equations take the form of elliptical equations. Three versions of regulating corrections are proposed. The equations obtained can be used to develop numerical codes for calculating three-dimensional equilibrium plasma configurations with an island structure

  7. Poloidal field system design for the ZT-H reversed field pinch experiment

    International Nuclear Information System (INIS)

    Schoenberg, K.F.; Gribble, R.F.; Linton, T.W.; Reass, W.R.

    1983-01-01

    This report discusses each of the following areas: (1) equilibrium specification, (2) the equilibrium winding, (3) the magnetizing winding, (4) numerical poloidal field system analysis, (5) coil cross section, turns, minimum field error, (6) coil stresses and cooling, (7) the upper structure, (8) the loads, (9) boundary conditions and method of analysis, and (10) design description

  8. Equilibrium poloidal field distributions in reversed-field-pinch toroidal discharges

    International Nuclear Information System (INIS)

    Baker, D.A.; Mann, L.W.; Schoenberg, K.F.

    1982-04-01

    A comparison between the analytic formulae of Shafranov for equilibrium in axisymmetric toroidal reversed field pinch (RFP) systems and fully toroidal numerical solutions of the Grad-Shafranov equation is presented as a function of poloidal beta, internal plasma inductance, and aspect ratio. The Shafranov formula for the equilibrium poloidal field distribution is accurate to within 5% for aspect ratios greater than 2, poloidal betas less than 50%, and for plasma current channels that exceed one-third of the minor toroidal radius. The analytic description for the center shift of the innermost flux surface that encloses the plasma current (the Shafranov shift) is accurate to within 15% for aspect ratios greater than 2 and poloidal betas below 50%, provided the shift does not exceed one-tenth of the minor conducting boundary radius. The behavior of the magnetic axis shift as a function of plasma parameters is included. The Shafranov formulae provide a convenient method for describing the equilibrium behavior of an RFP discharge. Examples illustrating the application of the analytic formulae to the Los Alamos ZT-40M RFP experiment are given

  9. Structure of the radial electric field and toroidal/poloidal flow in high temperature toroidal plasma

    International Nuclear Information System (INIS)

    Ida, Katsumi

    2001-01-01

    The structure of the radial electric field and toroidal/poloidal flow is discussed for the high temperature plasma in toroidal systems, tokamak and Heliotron type magnetic configurations. The spontaneous toroidal and poloidal flows are observed in the plasma with improved confinement. The radial electric field is mainly determined by the poloidal flow, because the contribution of toroidal flow to the radial electric field is small. The jump of radial electric field and poloidal flow are commonly observed near the plasma edge in the so-called high confinement mode (H-mode) plasmas in tokamaks and electron root plasma in stellarators including Heliotrons. In general the toroidal flow is driven by the momentum input from neutral beam injected toroidally. There is toroidal flow not driven by neutral beam in the plasma and it will be more significant in the plasma with large electric field. The direction of these spontaneous toroidal flows depends on the symmetry of magnetic field. The spontaneous toroidal flow driven by the ion temperature gradient is in the direction to increase the negative radial electric field in tokamak. The direction of spontaneous toroidal flow in Heliotron plasmas is opposite to that in tokamak plasma because of the helicity of symmetry of the magnetic field configuration. (author)

  10. Neoclassical impurity transport in the presence of toroidal and poloidal rotation

    International Nuclear Information System (INIS)

    Feneberg, W.

    1988-06-01

    This paper presents an extended theory of neoclassical impurity transport, starting from the parameters of bulk plasma toroidal and poloidal rotation. Analytic expressions resulting from the influence of a compressible flow on the perpendicular momentum balance and on the neoclassical Braginskii parallel viscosity are derived. The predicted impurity transport is extensively compared with that in earlier papers. (orig.)

  11. Control of tokamak plasma current and equilibrium with hybrid poloidal field coils

    International Nuclear Information System (INIS)

    Shimada, Ryuichi

    1982-01-01

    A control method with hybrid poloidal field system is considered, which comprehensively implements the control of plasma equilibrium and plasma current, those have been treated independently in Tokamak divices. Tokamak equilibrium requires the condition that the magnetic flux function value on plasma surface must be constant. From this, the current to be supplied to each coil is determined. Therefore, each coil current is the resultant of the component related to plasma current excitation and the component required for holding equilibrium. Here, it is intended to show a method by which the current to be supplied to each coil can easily be calculated by the introduction of hybrid control matrix. The text first considers the equilibrium of axi-symmetrical plasma and the equilibrium magnetic field outside plasma, next describes the determination of current using the above hybrid control matrix, and indicates an example of controlling Tokamak plasma current and equilibrium by the hybrid poloidal field coils. It also shows that the excitation of plasma current and the maintenance of plasma equilibrium can basically be available with a single power supply by the appropriate selection of the number of turns of each coil. These considerations determine the basic system configuration as well as decrease the installed capacity of power source for the poloidal field of a Tokamak fusion reactor. Finally, the actual configuration of the power source for hybrid poloidal field coils is shown for the above system. (Wakatsuki, Y.)

  12. Development of a new lower hybrid antenna module using a poloidal power divider

    International Nuclear Information System (INIS)

    Maebara, Sunao; Seki, Masami; Suganuma, Kazuaki

    1996-07-01

    The antenna using poloidal power divider is an effective method for simplification of Lower Hybrid Current Drive (LHCD) antenna system. This method should allow to reduce the power density in the antenna while maintaining a good flexibility of N parallel spectrum of waves. For this purpose, three types of poloidal power divider which split the power in three, and the 3 x 6 multi-junction module were developed. r.f. properties and outgassing of these components were evaluated using the CEA Cadarache RF Test Facility. A good power dividing ratio of 33 ± 4% was obtained for each of these poloidal dividers, and the reflection coefficient was lower value than 1.5%. For the 3 x 6 multi-junction, reflection coefficient was less than 1.3% and r.f. losses lower than 1.0% were measured. On the other hand, it was found in the scattering matrix analysis that reflection coefficient at plasma has to be less than a few % in order to operate these components under available conditions. In combination with two poloidal power dividers connected to the 3 x 6 multi-junction module, quasi stationary operation for r.f. injection time of 1000 sec at 300 kW was demonstrated under water cooling. In this case, it was found that the outgassing rate is in the lower range of 10 -7 Pam 3 s -1 m -2 within the maximum module temperature of ∼100degC. This report describes the experimental and analytical results of a new lower hybrid (LH) antenna module using the poloidal power divider. (author)

  13. Calculation of the form of an equilibrium poloidal magnetic field contained in a polytropic star

    International Nuclear Information System (INIS)

    Brundrit, G.B.; Miketinac, M.J.

    1976-01-01

    This program is designed to integrate the exact equations which determine the distribution of the density of a self-gravitating, axisymmetric polytrope of infinite conductivity containing a poloidal magnetic field. In addition, other properties of an equilibrium configuration such as mass, volume and radius are calculated. The program can also provide at very small extra cost the rates of change of the density with respect to changes of the polytropic index n and the parameter lambda which characterizes the poloidal magnetic field. Mathematically, the problem can be formulated as a boundary value problem for three coupled equations, two of which are second order, non-linear, two-dimensional partial differential equations. The solution is obtained numerically by an adaptation of the Stoeckl's finite difference-finite expansion method. In fact, the present program is a major modification of the program TOROID. The numerical scheme developed in the program is valid for all polytropes whose polytropic index n is greater than or equal to one. The other parameter of the theory, lambda, is unrestricted, i.e. the program permits the study of stars whose matnetic energy is a 'sizeable' percentage of their gravitational energy. Also, the program, with minor modifications, could be used for calculating equilibrium configurations of (a) (uniformly or non-uniformly) rotating polytropes pervaded by poloidal magnetic fields or (b) (rotation) polytropes containing poloidal magnetic fields. However, the greatest use of the present program is expected to arise in attempts to construct equilibrium configurations of polytropes containing mixed poloidal toroidal magnetic fields. (Auth.)

  14. Strong coupling between bi-dimensional electron gas and nitrogen localized states in heavily doped GaAs1-xN x structures

    International Nuclear Information System (INIS)

    Hamdouni, A.; Bousbih, F.; Ben Bouzid, S.; Oueslati, M.; Chtourou, R.; Harmand, J.C.

    2005-01-01

    We report a low-temperature photoluminescence spectra (LTPL) of GaAs 1-x N x layers and two-dimension electron gas (2DEG) GaAs 1-x N x /AlGaAs modulation doped heterostructure grown on GaAs substrates by molecular beam epitaxy (MBE) with low nitrogen content [N] = 2 x 10 18 cm -3 . At low temperature, PL spectra of GaAs 1-x N x layers are governed by several features associate to the excitons bound to nitrogen complexes, these features disappear in (2DEG) GaAs 1-x N x /AlGaAs modulation doped heterostructure and the PL peak energy decrease with the laser power excitation. This effect is explained by the strongly coupling of the (2DEG) fundamental state with the nitrogen localized states. An activated energy of about 55 meV is deduced by photoluminescence measurements in the 10-300 K range for a laser power excitation P = 6 W/cm 2

  15. Influence of local emissions on concentration and isotopic composition of trace gases (CO2 and CH4) under strong anthropopression: A case study from Krakow, southern Poland

    International Nuclear Information System (INIS)

    Florkowski, T.; Korus, A.; Kuc, T.; Lasa, J.; Necki, J.M.; Zimnoch, M.

    2002-01-01

    Full text: Measurements of the isotopic composition of carbon dioxide and methane together with their concentrations in the atmosphere, yield useful information on the contribution of anthropogenic sources to regional budgets of these gases and their seasonal changes. Observed correlation between isotopic composition and inverse concentration of these gases is used for estimation of mean isotopic composition of the local source. Monitoring of atmospheric CO 2 has been initiated in Krakow in 1982. The sampling point is located in a polluted urban area with strong contribution of anthropogenic gases originating both from local sources (coal burning, car traffic, leakages from city gas network, landfills) and large distant emitters - industrial district located ca. 80 km to the west from Krakow (Silesia district). Quasi-continuous measurements of CO 2 , and CH 4 concentrations in the low atmosphere are performed using gas chromatographic method. For isotope measurements, the atmospheric CO 2 is continuously sampled by sorption on molecular sieve in be-weekly intervals and radiocarbon concentration is measured by liquid scintillation spectrometer, while δ 13 C is determined by isotope ratio mass spectrometer. Measurement error (1σ for single measurement) is in the order of 0.1 ppm for CO 2 concentration, ±8 per mille for δ 14 C, and ± 0.1 per mille for δ 13 C. In 1994, a new station for regular observations of greenhouse gases in lower atmosphere was set up in the High Tatra mountains, at Kasprowy Wierch (49 deg. N, 20 deg. E, 1980 m a.s.l., 300 m above the tree line). Kasprowy Wierch, with only small influences from local sources of trace gases can be considered as a reference station for this region of Poland. The record of CO 2 and CH 4 concentration and their isotope composition obtained at Kasprowy Wierch is considered as a background level for Krakow observations. The presented study was aimed at better characterisation and quantification of the local

  16. Liquid metal flows in manifolds and expansions of insulating rectangular ducts in the plane perpendicular to a strong magnetic field

    International Nuclear Information System (INIS)

    Molokov, S.

    1994-01-01

    It is demonstrated the flow pattern in basic insulating 3-D geometries for the actual and for more advanced liquid-metal blanket concepts and discussed the ways to avoid pressure losses caused by flow redistribution. Flows in several geometries, such as symmetric and non-symmetric 180 turns with and without manifolds, sharp elbows, sharp and linear expansions with and without manifolds, T-junction, etc., have been calculated. They demonstrate high reliability of poloidal concepts of liquid-metal blankets, since they guarantee uniform conditions for heat transfer. If changes of the duct cross-section occur in the plane perpendicular to the magnetic field (ideally a coolant should flow always in the radial-poloidal plane) the disturbances are local and the slug velocity profile is reached roughly at the distance equivalent to one duct width from the manifolds, expansions, etc. The effects of inertia in these flows are unimportant for the determination of the pressure drop and mean velocity profiles in the core of the flow but may favour heat transfer characteristics via instabilities and strongly anisotropic turbulence. (orig./HP) [de

  17. local

    Directory of Open Access Journals (Sweden)

    Abílio Amiguinho

    2005-01-01

    Full Text Available The process of socio-educational territorialisation in rural contexts is the topic of this text. The theme corresponds to a challenge to address it having as main axis of discussion either the problem of social exclusion or that of local development. The reasons to locate the discussion in this last field of analysis are discussed in the first part of the text. Theoretical and political reasons are there articulated because the question is about projects whose intentions and practices call for the political both in the theoretical debate and in the choices that anticipate intervention. From research conducted for several years, I use contributions that aim at discuss and enlighten how school can be a potential locus of local development. Its identification and recognition as local institution (either because of those that work and live in it or because of those that act in the surrounding context are crucial steps to progressively constitute school as a partner for development. The promotion of the local values and roots, the reconstruction of socio-personal and local identities, the production of sociabilities and the equation and solution of shared problems were the dimensions of a socio-educative intervention, markedly globalising. This scenario, as it is argued, was also, intentionally, one of transformation and of deliberate change of school and of the administration of the educative territoires.

  18. Seismic analysis of ITER fourth PF (Poloidal Field Coil) feeder

    International Nuclear Information System (INIS)

    Liu, Sumei; Chen, Wei; Song, Yuntao; Ni, Xiaojun; Wang, Zhongwei; Chen, Yonghua; Gong, Chenyu

    2014-01-01

    The ITER feeder systems connect the ITER magnet systems located inside the main cryostat to the cryo-plant, power-supply and control system interfaces outside the cryostat. The main purpose of the feeders is to convey the cryogenic supply and electrical power to the coils as well as house the instrumentation wiring. The PF busbar which carries 52 kA current will suffer from high Lorentz force due to the background magnetic field inspired by the coils and the self-field between every pair of busbars. Except their mechanical strength and thermal insulation performance must be achieved, the dynamic mechanism on PF structure should be assessed. This paper presents the simulation and seismic analysis on ITER 4th PF feeder including the Coil Terminal Box and S-bend Box (CTB and SBB), the Cryostat Feed-through (CFT), the In-Cryostat-Feeder (ICF), especially for the ground supports and main outer-tube firstly. This analysis aims to study seismic resistance on system design under local seismograms with floor response spectrum, the structural response vibration mode and response duration results of displacement, membrane stress, and bending stress on structure under different directions actuating signals were obtained by using the single-seismic spectrum analysis and Dead Weight analysis respectively. Based on the simulative and analytical results, the system seismic resistance and the integrity of the support structure in the 4th PF feeder have been studied and the detail design confirmed

  19. Generation of sheared poloidal flows via Reynolds stress and transport barrier physics

    International Nuclear Information System (INIS)

    Hidalgo, C.; Pedrosa, M.A.; Sanchez, E.; Balbin, R.; Lopez-Fraguas, A.; Milligen, B. van; Silva, C.; Fernandes, H.; Varandas, C.A.F.; Riccardi, C.; Carrozza, R.; Fontanesi, M.; Carreras, B.A.; Garcia, L.

    2000-01-01

    A view of the latest experimental results and progress in the understanding of the role of poloidal flows driven by fluctuations via Reynolds stress is given. Reynolds stress shows a radial gradient close to the velocity shear layer location in tokamaks and stellarators, indicating that this mechanism may drive significant poloidal flows in the plasma boundary. Observation of the generation of ExB sheared flows via Reynolds stress at the ion Bernstein resonance layer has been noticed in toroidal magnetized plasmas. The experimental evidence of sheared ExB flows linked to the location of rational surfaces in stellarator plasmas might be interpreted in terms of Reynolds stress sheared driven flows. These results show that ExB sheared flows driven by fluctuations can play an important role in the generation of transport barriers. (author)

  20. Estimate of thermoelastic heat production from superconducting composites in pulsed poloidal coil systems

    International Nuclear Information System (INIS)

    Ballou, J.K.; Gray, W.H.

    1976-01-01

    In the design of the cryogenic system and superconducting magnets for the poloidal field system in a tokamak, it is important to have an accurate estimate of the heat produced in superconducting magnets as a result of rapidly changing magnetic fields. A computer code, PLASS (Pulsed Losses in Axisymmetric Superconducting Solenoids), was written to estimate the contributions to the heat production from superconductor hysteresis losses, superconductor coupling losses, stabilizing material eddy current losses, and structural material eddy current losses. Recently, it has been shown that thermoelastic dissipation in superconducting composites can contribute as much to heat production as the other loss mechanisms mentioned above. A modification of PLASS which takes into consideration thermoelastic dissipation in superconducting composites is discussed. A comparison between superconductor thermoelastic dissipation and the other superconductor loss mechanisms is presented in terms of the poloidal coil system of the ORNL Experimental Power Reactor design

  1. Confinement improvement with rf poloidal current drive in the reversed-field pinch

    International Nuclear Information System (INIS)

    Hokin, S.; Sarff, J.; Sovinec, C.; Uchimoto, E.

    1994-01-01

    External control of the current profile in a reversed-field pinch (RFP), by means such as rf poloidal current drive, may have beneficial effects well beyond the direct reduction of Ohmic input power due to auxiliary heating. Reduction of magnetic turbulence associated with the dynamo, which drives poloidal current in a conventional RFP, may allow operation at lower density and higher electron temperature, for which rf current drive becomes efficient and the RFP operates in a more favorable regime on the nτ vs T diagram. Projected parameters for RFX at 2 MA axe studied as a concrete example. If rf current drive allows RFX to operate with β = 10% (plasma energy/magnetic energy) at low density (3 x 10 19 m -3 ) with classical resistivity (i.e. without dynamo-enhanced power input), 40 ms energy confinement times and 3 keV temperatures will result, matching the performance of tokamaks of similar size

  2. Ion transport analysis of a high beta-poloidal JT-60U discharge

    International Nuclear Information System (INIS)

    Horton, W.; Tajima, T.; Dong, J.-Q.; Kim, J.-Y.; Kishimoto, Y.

    1997-01-01

    The high beta-poloidal discharge number 17110 in JT-60U (JT-60 Team, IAEA, Vienna, 1993) that developes an internal transport barrier is analysed for the transport of ion energy and momentum. First, the classical ion temperature gradient stability properties are calculated in the absence of sheared plasma flows to establish the L-mode transport level prior to the emergence of the transport barrier. Then the evolving toroidal and poloidal velocity profiles reported by Koide et al (1994 Phys. Rev. Lett. 72 3662) are used to show how the sheared mass flows control the stability and transport. Coupled energy-momentum transport equations predict the creation of a transport barrier. The balance of the steep ion temperature gradient against the magnetic shear and sheared mass flow is calculated for the profiles in the 17110 discharge. (Author)

  3. Tokamak poloidal-field systems. Progress report, January 1-December 31, 1982

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1983-05-01

    The work performed in support of the FED and INTOR tokamak studies is reported at length and covers almost all the aspects of poloidal field (PF) design that were considered. The design work included magnetics, forces and fields, superconductor design, superconductor loss calculations, high field tokamak central solenoid parametric analysis, helium vapor release with bubble clearing and entrainment analysis, eddy current losses in dewars, structural support design for internally cooled cable superconductor (ICCS), research and technology development and manufacturing plans and milestones for poloidal field (PF) coils, fault conditions for shorted PF coils, design of 50 kA vapor cooled leads, and structural design of PF ring coils box frame dewars. Eddy current calculations in tokamak structure are being calculated. A computer code to perform stability analysis of ICCS is being written. Two water cooled switches, a vacuum interrupter and a bypass switch, were tested to develop improved higher current carrying capacities

  4. Measurement of poloidal field distributions in Tokamaks by far-infrared polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, W [Stuttgart Univ. (TH) (Germany, F.R.). Inst. fuer Physikalische Elektronik; Dodel, G

    1978-02-01

    A sufficiently precise measurement of small Faraday rotation angles in a Tokamak experiment should be possible. Besides the precision with which the Faraday rotation angles can be measured, the precision with which the poloidal field can finally be deduced from such measurements, depends on other factors such as the measuring precision of the electron density profile, the diameter of the probing beam and the deviation of the plasma from circular symmetry.

  5. Poloidally asymmetric potential increases in tokamak scrape-off layer plasmas by radiofrequency power

    International Nuclear Information System (INIS)

    Diebold, D.A.; Majeski, R.; Tanaka, T.

    1992-01-01

    Langmuir probe data are presented which show poloidally asymmetric increases in floating potential, electron temperature and, hence, plasma potential on magnetic field lines which map to the Faraday shield of an ICRF antenna in a medium size tokamak, Phaedrus-T, during radiofrequency power injection. These data are consistent with and suggestive of the existence of radiofrequency generated sheath voltages on those field lines. (author). Letter-to-the-editor. 20 refs, 3 figs

  6. Reference data for plasma shaping and magnetic separatrix formation in the JET poloidal field system

    International Nuclear Information System (INIS)

    Lazzaro, E.; Keegan, B.

    1986-01-01

    The analysis and the design of special equilibrium configurations (plasma with separatrix boundary) can be greatly simplified by a chart of the response of the plasma to currents in the poloidal field coils. This note presents this information for some interesting cases, namely for elongated plasmas eventually transformed into double null or in single null separatrix configurations. The calculations are made using the latest edition of the JET equilibrium code ''INVERSX'' including the detailed permeability characteristics of the iron core. (author)

  7. Design and manufacture of the large poloidal coils for TORE SUPRA

    International Nuclear Information System (INIS)

    Calmels, C.; Leloup, C.; Rijnoudt, E.; Ane, J.M.; Chassain, P.; Giaccheto, A.

    1984-01-01

    After a short summary of the main features of the TORE SUPRA long pulse Tokamak poloidal field system, the manufacture process of the six larger coils is described. The hollow conductor copper cross section is almost equal to the water channel one so that the coils can withstand more than 30 s pulses at full power. The main difficulties arise from the exceptional size of these one piece coils which are up to 9 meters in diameter. (author)

  8. The Role of Viscosity in Causing the Plasma Poloidal Motion in Magnetic Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ake; Wang, Yuming; Liu, Jiajia; Zhou, Zhenjun; Shen, Chenglong; Liu, Rui; Zhuang, Bin; Zhang, Quanhao, E-mail: ymwang@ustc.edu.cn [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2017-08-20

    An interesting phenomenon, plasma poloidal motion, has been found in many magnetic clouds (MCs), and viscosity has been proposed as a possible mechanism. However, it is not clear how significant the role of viscosity is in generating such motion. In this paper, we conduct a statistical study of the MCs detected by the Wind spacecraft during 1995–2012. It is found that, for 19% of all the studied MCs (186), the poloidal velocities of the MC plasma near the MC boundaries are well correlated with those of the corresponding ambient solar wind plasma. A non-monotonic increase from inner to outer MCs suggests that the viscosity does play a role, albeit weak, on the poloidal motion in the MC statistically. The possible dependence on the solar wind parameters is then studied in detail for the nine selected crossings, which represent the viscosity characteristic. There is an evident negative correlation between the viscosity and the density, a weak negative correlation between the viscosity and the turbulence strength, and no clear correlation between the viscosity and the temperature.

  9. Poloidal structure of the plasma response to n = 1 Resonant Magnetic Perturbations in ASDEX Upgrade

    Science.gov (United States)

    Marrelli, L.; Bettini, P.; Piovesan, P.; Terranova, D.; Giannone, L.; Igochine, V.; Maraschek, M.; Suttrop, W.; Teschke, M.; Liu, Y. Q.; Ryan, D.; Eurofusion Mst1 Team; ASDEX Upgrade Team

    2017-10-01

    The hybrid scenario, a candidate for high-beta steady-state tokamak operations, becomes highly sensitive to 3D magnetic field near the no-wall limit. A predictive understanding of the plasma response to 3D fields near ideal MHD limits in terms of validated MHD stability codes is therefore important in order to safely operate future devices. Slowly rotating (5 - 10 Hz) n = 1 external magnetic fields have been applied in hybrid discharges in ASDEX Upgrade for an experimental characterization: the global n = 1 kink response has been measured by means of SXR and complete poloidal arrays of bθ probes located at different toroidal angles and compared to predictions of MHD codes such as MARS-F and V3FIT-VMEC. A Least-Squares Spectral Analysis approach has been developed together with a Monte Carlo technique to extract the small plasma response and its confidence interval from the noisy magnetic signals. MARS-F correctly reproduces the poloidal structure of the n = 1 measurements: for example, the dependence of the dominant poloidal mode number at the plasma edge from q95 is the same as in the experiment. Similar comparisons with V3FIT-VMEC and will be presented. See author list of ``H. Meyer et al. 2017 Nucl. Fusion 57 102014''.

  10. Demonstration of real-time control for poloidal beta in KSTAR

    International Nuclear Information System (INIS)

    Han, Hyunsun; Hahn, S.H.; Bak, J.G.; Hyatt, A.; Johnson, R.; Woo, M.H.; Kim, J.S.; Bae, Y.S.

    2015-01-01

    Highlights: • Real time control system for poloidal beta has been designed in KSTAR. • Poloidal beta has been calculated based on the diamagnetic loop signals. • The neutral beam Injector plays a role as the actuator. • The control system has been validated in the KSTAR experiments. - Abstract: Sustaining the plasma in a stable and a high performance condition is one of the important control issues for future steady state tokamaks. In the 2014 KSTAR campaign, we have developed a real-time poloidal beta (β p ) control technique and carried out preliminary experiments to identify its feasibility. In the control system, the β p is calculated in real time using the measured diamagnetic loop signal, and compared with the target value leading to the change of the neutral beam (NB) heating power using a feedback PID control algorithm. To match the requested power of NB which is operated with constant voltage, the on-time periods of the intervals were adjusted as the ratio of the required power to the maximum achievable one. This paper will present the overall procedures of the β p control, the β p estimation process and NB operation scheme implemented in the plasma control system (PCS), and the analysis on the preliminary experimental results

  11. Demonstration of real-time control for poloidal beta in KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hyunsun, E-mail: hyunsun@nfri.re.kr [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Hahn, S.H.; Bak, J.G. [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Hyatt, A.; Johnson, R. [General Atomics, San Diego, CA (United States); Woo, M.H.; Kim, J.S.; Bae, Y.S. [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of)

    2015-06-15

    Highlights: • Real time control system for poloidal beta has been designed in KSTAR. • Poloidal beta has been calculated based on the diamagnetic loop signals. • The neutral beam Injector plays a role as the actuator. • The control system has been validated in the KSTAR experiments. - Abstract: Sustaining the plasma in a stable and a high performance condition is one of the important control issues for future steady state tokamaks. In the 2014 KSTAR campaign, we have developed a real-time poloidal beta (β{sub p}) control technique and carried out preliminary experiments to identify its feasibility. In the control system, the β{sub p} is calculated in real time using the measured diamagnetic loop signal, and compared with the target value leading to the change of the neutral beam (NB) heating power using a feedback PID control algorithm. To match the requested power of NB which is operated with constant voltage, the on-time periods of the intervals were adjusted as the ratio of the required power to the maximum achievable one. This paper will present the overall procedures of the β{sub p} control, the β{sub p} estimation process and NB operation scheme implemented in the plasma control system (PCS), and the analysis on the preliminary experimental results.

  12. Gyrokinetic full f analysis of electric field dynamics and poloidal velocity in the FT2-tokamak configuration

    International Nuclear Information System (INIS)

    Leerink, S.; Heikkinen, J. A.; Janhunen, S. J.; Kiviniemi, T. P.; Nora, M.; Ogando, F.

    2008-01-01

    The ELMFIRE gyrokinetic simulation code has been used to perform full f simulations of the FT-2 tokamak. The dynamics of the radial electric field and the creation of poloidal velocity in the presence of turbulence are presented.

  13. Demonstration of the role of turbulence-driven poloidal flow generation in the L-H transition

    International Nuclear Information System (INIS)

    Yu, C.X.; Xu, Y.H.; Luo, J.R.; Mao, J.S.; Liu, B.H.; Li, J.G.; Wan, B.N.; Wan, Y.X.

    2000-01-01

    This paper presents the evidence for the role of turbulence-driven poloidal flow generation in the L-H transition induced by a turbulent heating pulse on the HT-6M tokamak. It is found that the poloidal flow υ θ plays a key role in developing the electric field E r and triggering the transition. The acceleration of υ θ across the transition is clearly correlated with the enhancement of the Reynolds stress gradient. (author)

  14. Poloidal electric field and variation of radial transport during ICRF heating in the JET scrape-off layer

    International Nuclear Information System (INIS)

    Clement, S.; Tagle, J.A.; Bures, M.; Vince, J.; Kock, L. de; Stangeby, P.C.

    1989-01-01

    The highly anomalous perpendicular transport in the plasma edge of a tokamak is generally attributed to plasma turbulence, primarily to density and electrostatic potential fluctuations. The edge transport could be modified by changing the geometry of objects in contact with the plasma (limiters, radio frequency antennae ...) and during additional heating experiments. Poloidal asymmetries in the scrape-off layer (SOL) in tokamaks using poloidal limiters (eg. ALCATOR-C) have been recently reported, indicating a poloidal asymmetry in cross-field transport. A poloidal ring limiter obstructs communications between different flux tubes in the SOL, thus permitting poloidal asymmetries in n e and T e to develop if D perpendicular is θ-dependent. When JET was operated with discrete limiters, equivalent to a single toroidal limiter at the outside mid-plane, little poloidal variation in the SOL plasma properties was observed. Currently JET is operated with two complete toroidal belt limiters located approximately one meter above and below the outside mid-plane. This configuration breaks the SOL into two regions: the low field side SOL (LFS), between the limiters, and the rest of the SOL on the high field side (HFS). Differences on the scrape-off lengths in the two SOLs are reported here, indicating that cross-field transport is faster on the LFS-SOL, in agreement with observations made on ASDEX and T-10. (author) 8 refs., 6 figs

  15. Detailed electromagnetic numerical evaluation of eddy currents induced by toroidal and poloidal magnetic field variation and halo currents

    International Nuclear Information System (INIS)

    Roccella, M.; Marin, A.; Lucca, F.; Merola, M.

    2008-01-01

    A detailed evaluation of the EM loads in the ITER divertor during plasma disruptions is mandatory for the correct dimensioning of the divertor component. The EM loads during plasma disruptions are mainly produced by: (1) toroidal flux variation (TFV) during the thermal quench (TQ) and current quench (CQ); (2) halo currents (HC); and (3) poloidal flux variation (PFV) during TQ and CQ phase. The new ITER reference disruption and the last changes in the divertor design have been considered in the EM models created to calculate all the EM loads due to TFV, HC and PFV. All the analyses have been performed for the three different main design options of the divertor plasma facing units (PFU). The effects of PFV have been analyzed using an EM-zooming procedure that has allowed a good detail of the component model, while new numerical approaches have been developed for the evaluation of the effects due to TFV and HC maintaining the same detail for the divertor model. Separate models have been developed to evaluate the equivalent electrical resistivities of the various PFU options; this allows in the full 3D model a strong simplification of a geometry which would otherwise be very complex. The effect of an electrical surface bridging of the PFU castellation has also been taken into account

  16. Detailed electromagnetic numerical evaluation of eddy currents induced by toroidal and poloidal magnetic field variation and halo currents

    Energy Technology Data Exchange (ETDEWEB)

    Roccella, M. [L.T. Calcoli S.a.S. Piazza Prinetti, 26/B, Merate (Lecco) (Italy)], E-mail: massimo.roccella@ltcalcoli.it; Marin, A.; Lucca, F. [L.T. Calcoli S.a.S. Piazza Prinetti, 26/B, Merate (Lecco) (Italy); Merola, M. [ITER Team, Cadarache (France)

    2008-12-15

    A detailed evaluation of the EM loads in the ITER divertor during plasma disruptions is mandatory for the correct dimensioning of the divertor component. The EM loads during plasma disruptions are mainly produced by: (1) toroidal flux variation (TFV) during the thermal quench (TQ) and current quench (CQ); (2) halo currents (HC); and (3) poloidal flux variation (PFV) during TQ and CQ phase. The new ITER reference disruption and the last changes in the divertor design have been considered in the EM models created to calculate all the EM loads due to TFV, HC and PFV. All the analyses have been performed for the three different main design options of the divertor plasma facing units (PFU). The effects of PFV have been analyzed using an EM-zooming procedure that has allowed a good detail of the component model, while new numerical approaches have been developed for the evaluation of the effects due to TFV and HC maintaining the same detail for the divertor model. Separate models have been developed to evaluate the equivalent electrical resistivities of the various PFU options; this allows in the full 3D model a strong simplification of a geometry which would otherwise be very complex. The effect of an electrical surface bridging of the PFU castellation has also been taken into account.

  17. Charge exchange measurements of MHD activity during neutral beam injection in the Princeton Large Torus and the Poloidal Divertor Experiment

    International Nuclear Information System (INIS)

    Goldston, R.J.; Kaita, R.; Beiersdorfer, P.; Gammel, G.; Herndon, D.L.; McCune, D.C.; Meyerhofer, D.D.

    1987-01-01

    The horizontally scanning, multi-angle charge exchange analysers on the Princeton Large Torus (PLT) and the Poloidal Divertor Experiment (PDX) were used to study the effects of MHD activity on the background ion distribution function and on the beam ion slowing-down process during high power neutral injection. Sawtooth oscillations were observed in the fast ion flux on PLT and PDX, and measurements with neutral beams providing local neutral density enhancement indicated that the ions were transported radially when these events occurred. With near-perpendicular injection in PDX, at the lower toroidal fields necessary to maximize the plasma beta, repetitive bursts of greatly enhanced charge exchange flux were observed. These were associated with the 'fishbone' MHD instability, and a substantial depletion of the perpendicular slowing-down spectrum below the injection energy was seen. A simple phenomenological model for this loss mechanism was developed, and its use in simulation codes has been successful in providing good agreement with the experimental data. The behaviour and characteristics of this model are well matched by direct theoretical calculations. (author)

  18. Extension of high poloidal beta scenario in DIII-D to lower q95 for steady state fusion reactor

    Science.gov (United States)

    Huang, J.; Gong, X.; Qian, J.; Ding, S.; Ren, Q.; Guo, W.; Pan, C.; Li, G.; Xia, T.; Garofalo, A.; Lao, L.; Hyatt, A.; Ferron, J.; Collins, C.; Lin, D.; McKee, G.; Rhode, T.; McClenaghan, J.; Holcomb, C.; Cui, L.; Heidbrink, W.; Zhu, Y.; Diiid Team; East Team

    2017-10-01

    DIII-D/EAST joint experiments have improved the high poloidal beta scenario with sustained large-radius internal transport barrier (ITB) extended to high plasma current Ip 1MA with q95 6.0. Slight off-axis NBCD is applied to obtain broader current density profile, ITBs can now be sustained below the previously observed βp threshold with excellent confinement (H98y2 1.8). The scenario also exhibits a local negative shear appearing with q increased at rho 0.4, which helps ITB formation and sustainment. This confirms TGLF prediction that negative magnetic shear can help recover ITB and achieve high confinement with reduced q95. Detailed analysis shows that the Shafranov shift and q profile is critical in the ITB formation at high βp regime. Supported in part by National Magnetic Confinement Fusion Program of China 2015GB102000, 2015GB110005, and US Department of Energy under DE-FC02-04ER54698.

  19. <strong>Mini-project>

    DEFF Research Database (Denmark)

    Katajainen, Jyrki

    2008-01-01

    In this project the goal is to develop the safe * family of containers for the CPH STL. The containers to be developed should be safer and more reliable than any of the existing implementations. A special focus should be put on strong exception safety since none of the existing prototypes available...

  20. Strong interactions

    International Nuclear Information System (INIS)

    Froissart, Marcel

    1976-01-01

    Strong interactions are introduced by their more obvious aspect: nuclear forces. In hadron family, the nucleon octet, OMEGA - decuplet, and quark triply are successively considered. Pion wave having been put at the origin of nuclear forces, low energy phenomena are described, the force being explained as an exchange of structure corresponding to a Regge trajectory in a variable rotating state instead of the exchange of a well defined particle. At high energies the concepts of pomeron, parton and stratons are introduced, pionization and fragmentation are briefly differentiated [fr

  1. Second harmonic poloidal waves observed by Van Allen Probes in the dusk-midnight sector

    International Nuclear Information System (INIS)

    Min, Kyungguk; Takahashi, Kazue; Ukhorskiy, Aleksandr Y.; Manweiler, Jerry W.; Spence, Harlan E.

    2017-01-01

    This paper presents observations of ultralow-frequency (ULF) waves from Van Allen Probes. The event that generated the ULF waves occurred 2 days after a minor geomagnetic storm during a geomagnetically quiet time. Narrowband pulsations with a frequency of about 7 mHz with moderate amplitudes were registered in the premidnight sector when Probe A was passing through an enhanced density region near geosynchronous orbit. Probe B, which passed through the region earlier, did not detect the narrowband pulsations but only broadband noise. Despite the single-spacecraft measurements, we were able to determine various wave properties. We find that the observed waves are a second harmonic poloidal mode propagating westward with an azimuthal wave number estimated to be ~100; the magnetic field fluctuations have a finite compressional component due to small but finite plasma beta (~0.1); the energetic proton fluxes in the energy ranging from above 10 keV to about 100 keV exhibit pulsations with the same frequency as the poloidal mode and energy-dependent phase delays relative to the azimuthal component of the electric field, providing evidence for drift-bounce resonance; and the second harmonic poloidal mode may have been excited via the drift-bounce resonance mechanism with free energy fed by the inward radial gradient of ~80 keV protons. Here, we show that the wave active region is where the plume overlaps the outer edge of ring current and suggest that this region can have a wide longitudinal extent near geosynchronous orbit.

  2. Development of two color laser diagnostics for the ITER poloidal polarimeter.

    Science.gov (United States)

    Kawahata, K; Akiyama, T; Tanaka, K; Nakayama, K; Okajima, S

    2010-10-01

    Two color laser diagnostics using terahertz laser sources are under development for a high performance operation of the Large Helical Device and for future fusion devices such as ITER. So far, we have achieved high power laser oscillation lines simultaneously oscillating at 57.2 and 47.7 μm by using a twin optically pumped CH(3)OD laser, and confirmed the original function, compensation of mechanical vibration, of the two color laser interferometer. In this article, application of the two color laser diagnostics to the ITER poloidal polarimeter and recent hardware developments will be described.

  3. Development of two color laser diagnostics for the ITER poloidal polarimeter

    International Nuclear Information System (INIS)

    Kawahata, K.; Akiyama, T.; Tanaka, K.; Nakayama, K.; Okajima, S.

    2010-01-01

    Two color laser diagnostics using terahertz laser sources are under development for a high performance operation of the Large Helical Device and for future fusion devices such as ITER. So far, we have achieved high power laser oscillation lines simultaneously oscillating at 57.2 and 47.7 μm by using a twin optically pumped CH 3 OD laser, and confirmed the original function, compensation of mechanical vibration, of the two color laser interferometer. In this article, application of the two color laser diagnostics to the ITER poloidal polarimeter and recent hardware developments will be described.

  4. Design and fabrication of the PDX poloidal field solenoid utilizing fiberglass reinforced epoxy

    International Nuclear Information System (INIS)

    Young, K.S.C.

    1975-11-01

    This paper discusses the basic design of the Poloidal Field Solenoid Coil. It will be mainly concerned with the more unique features of the Solenoid such as the copper coil windings and the design of the epoxy-glass structural support mandrels. The center solenoid coil of the PDX machine consists of five different coil systems (OH No. 8, No. 9; NF No. 11; DF No. 7; EF Solenoid and CF No. 9). Three concentric fiberglass reinforced epoxy cylinders fabricated in-house will act as mandrels to support and to house the coils that will result as an integral unit

  5. Development of a Closed Loop Simulator for Poloidal Field Control in DIII-D

    International Nuclear Information System (INIS)

    J.A. Leuer; M.L. Walker; D.A. Humphreys; J.R. Ferron; A. Nerem; B.G. Penaflor

    1999-01-01

    The design of a model-based simulator of the DIII-D poloidal field system is presented. The simulator is automatically configured to match a particular DIII-D discharge circuit. The simulator can be run in a data input mode, in which prior acquired DIII-D shot data is input to the simulator, or in a stand-alone predictive mode, in which the model operates in closed loop with the plasma control system. The simulator is used to design and validate a multi-input-multi-output controller which has been implemented on DIII-D to control plasma shape. Preliminary experimental controller results are presented

  6. Self-similar solutions for poloidal magnetic field in turbulent jet

    International Nuclear Information System (INIS)

    Komissarov, S.S.; Ovchinnikov, I.L.

    1990-01-01

    Evolution of a large-scale magnetic field in a turbulent extragalactic source radio jets is considered. Self-similar solutions for a weak poloidal magnetic field transported by turbulent jet of incompressible fluid are found. It is shown that the radial profiles of the solutions are the eigenfunctions of a linear differential operator. In all the solutions, the strength of a large-scale field decreases more rapidly than that of a small-scale turbulent field. This can be understood as a decay of a large-scale field in the turbulent jet

  7. Fast particles confinement in stellarators with both poloidal-pseudo-symmetry and quasi-isodynamicity

    International Nuclear Information System (INIS)

    Mikhailov, M.I.; Yamazaki, K.

    2004-04-01

    By analytical and computational consideration it is shown that the condition of quasi-isodynamicity for the configurations with poloidal direction of the contours of the magnetic field strength on the magnetic surfaces can be fulfilled with high enough accuracy for compact configuration. It is shown that for the configurations with toroidal direction of these contours the condition of quasi-isodynamicity is equivalent to the condition of quasi-symmetry, so that there is no the gap between these two conditions. The further optimization is required to stabilize the ballooning modes in the considered configuration. (author)

  8. Tokamak poloidal field systems. Progress report, January 1-December 31, 1979

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1980-05-01

    Work is reported on the development of superconducting tokamak poloidal field systems (TPFS). Progress is discussed on the design of a 20 MJ, 50 kA, 7.5 T superconducting pulsed energy storage coil operated in a 1 to 2 s bipolar mode from +7.5 T to -7.5 T in 1982. Conductor development for the coil is presented. A facility that uses a traction motor energy transfer system to test coils in the 20 to 100 MJ energy range is discussed. Current interrupter development and testing for protection and energy transfer circuits are also presented. The 400 kJ METS coil test preparation is under way

  9. Mechanical stress analysis for the poloidal field coils of TORE SUPRA

    International Nuclear Information System (INIS)

    Ane, J.M.; Perin, J.P.

    1985-01-01

    Hoop stresses, up to 100 MPa, in the poloidal field coils of TORE SUPRA have to be reacted back to the main body of the coil where a conductor ends or is twisted for an interturn or an interlayer transition. The load is taken by shear stress through the insulation. Carefully designed configurations, based on 1D, 2D and 3D analysis results, limit the shear stress levels to 15 MPa. A fatigue test of a conductor termination has shown that the experimental results are in good agreement with the calculated stresses

  10. Development of superconducting poloidal field coils for medium and large size tokamaks

    International Nuclear Information System (INIS)

    Dittrich, H.-G.; Forster, S.; Hofmann, A.

    1983-01-01

    Large long pulse tokamak fusion experiments require the use of superconducting poloidal field (PF) coils. In the past not much attention has been paid to the development of such coils. Therefore a development programme has been initiated recently at KfK. In this report start with summarizing the relevant PF coil parameters of some medium and large size tokamaks presently under construction or design, respectively. The most important areas of research and development work are deduced from these parameters. Design considerations and first experimental results concerning low loss conductors, cooling concepts and structural components are given

  11. Fast time resolution charge-exchange measurements during the fishbone instability in the poloidal divertor experiment

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; Kaita, R.; Goldston, R.J.

    1984-01-01

    Measurements of fast ion losses due to the fishbone instability during high β/sub T/q neutral beam heated discharges in the Poloidal Divertor Experiment have been made using two new vertical-viewing charge-exchange analyzers. The measurements show that the instability has an n=1 toroidal mode number, and that it ejects beam ions in a toroidally rotating beacon directed outward along a major radius. Observations of ejected ions with energies up to twice the beam injection energy at R approx. = R 0 + a indicate the presence of a non-μ-conserving acceleration mechanism

  12. Achieving high fusion reactivity in high poloidal beta discharges in TFTR

    International Nuclear Information System (INIS)

    Manuel, M.E.; Navratil, G.A.; Sabbagh, S.A.; Batha, S.; Bell, M.G.; Bell, R.; Budny, R.V.; Bush, C.E.; Cavallo, A.; Chance, M.S.; Cheng, C.Z.; Efthimion, P.C.; Fredrickson, E.D.; Fu, G.Y.; Hawryluk, R.J.; Janos, A.C.; Jassby, D.L.; Levinton, F.; Mikkelsen, D.R.; Manickam, J.; McCune, D.C.; McGuire, K.M.; Medley, S.S.; Mueller, D.; Nagayama, Y.; Owens, D.K.; Park, H.K.; Ramsey, A.T.; Stratton, B.C.; Synakowski, E.J.; Taylor, G.; Wieland, R.M.; Yamada, M.; Zarnstorff, M.C.: Zweben, S.; Kesner, J.; Marmar, E.; Snipes, J.; Terry, J.

    1993-04-01

    High poloidal beta discharges have been produced in TFTR that achieved high fusion reactivities at low plasma currents. By rapidly decreasing the plasma current just prior to high-power neutral beam injection, relatively peaked current profiles were created having high l i > 2, high Troyon-normalized beta, βN > 3, and high poloidal beta. β p ≥ 0.7 R/a. The global energy confinement time after the current ramp was comparable to supershots, and the combination of improved MHD stability and good confinement produced a new high εβ p high Q DD operating mode for TFTR. Without steady-state current profile control, as the pulse lengths of high βp discharges were extended, l i decreased, and the improved stability produced immediately after by the current ramp deteriorated. In four second, high εβ p discharges, the current profile broadened under the influence of bootstrap and beam-drive currents. When the calculated voltage throughout the plasma nearly vanished, MHD instabilities were observed with β N as low as 1.4. Ideal MHD stability calculations showed this lower beta limit to be consistent with theoretical expectations

  13. Tokamak poloidal-field systems. Progress report, January 1-December 31, 1981

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1982-03-01

    Work on the superconducting tokamak poloidal field system (TPFS) program is being redirected. The development of the 20 MJ, 50 kA, 7.5 T superconducting programmed energy storage coil is being terminated. The superconductor for the 20 MJ coil is being processed only to an intermediate state, and manufacture of the epoxy fiberglass dewar is being stopped. Further, development of the TPFS test facility is in abeyance. Change in program emphasis arises from prospective rf plasma current driven or beam heated tokamaks with programmed coil characteristics for the poloidal field being different from those to have been simulated by the 20 MJ coil and from budgetary constraints. Work is reported on the development of the coil, conductor, nonconducting dewar, and test facility to the recent time when the program change was instigated. Work in support of the Large Coil Test Facility (LCTF) and the Fusion Engineering Design (FED) Center is given. Analysis of the experiments on the 400 kJ METS coil test was completed

  14. Air core poloidal magnetic field system for a toroidal plasma producing device

    International Nuclear Information System (INIS)

    Marcus, F.B.

    1978-01-01

    A poloidal magnetics system for a plasma producing device of toroidal configuration is provided that reduces both the total volt-seconds requirement and the magnitude of the field change at the toroidal field coils. The system utilizes an air core transformer wound between the toroidal field (TF) coils and the major axis outside the TF coils. Electric current in the primary windings of this transformer is distributed and the magnetic flux returned by air core windings wrapped outside the toroidal field coils. A shield winding that is closely coupled to the plasma carries a current equal and opposite to the plasma current. This winding provides the shielding function and in addition serves in a fashion similar to a driven conducting shell to provide the equilibrium vertical field for the plasma. The shield winding is in series with a power supply and a decoupling coil located outside the TF coil at the primary winding locations. The present invention requires much less energy than the usual air core transformer and is capable of substantially shielding the toroidal field coils from poloidal field flux

  15. Dynamos driven by poloidal flows in untwisted, curved and flat Riemannian diffusive flux tubes

    International Nuclear Information System (INIS)

    De Andrade, L.C.G.

    2010-01-01

    Recently Vishik anti-fast dynamo theorem has been tested against non-stretching flux tubes (Phys. Plasmas, 15 (2008)). In this paper, another anti dynamo theorem, called Cowling's theorem, which states that axisymmetric magnetic fields cannot support dynamo action, is carefully tested against thick tubular and curved Riemannian untwisted flows, as well as thin flux tubes in diffusive and diffusion less media. In the non-diffusive media Cowling's theorem is not violated in thin Riemann-flat untwisted flux tubes, where the Frenet curvature is negative. Nevertheless the diffusion action in the thin flux tube leads to a dynamo action driven by poloidal flows as shown by Love and Gubbins (Geophysical Res., 23 (1996) 857) in the context of geo dynamos. Actually it is shown that a slow dynamo action is obtained. In this case the Frenet and Riemann curvature still vanishes. In the case of magnetic filaments in diffusive media dynamo action is obtained when the Frenet scalar curvature is negative. Since the Riemann curvature tensor can be expressed in terms of the Frenet curvature of the magnetic flux tube axis, this result can be analogous to a recent result obtained by Chicone, Latushkin and Smith, which states that geodesic curvature in compact Riemannian manifolds can drive dynamo action in the manifold. It is also shown that in the absence of diffusion, magnetic energy does not grow but magnetic toroidal magnetic field can be generated by the poloidal field, what is called a plasma dynamo.

  16. Relaxation of plasma potential and poloidal flows in the boundary of tokamak plasmas

    International Nuclear Information System (INIS)

    Hron, M.; Duran, I.; Stoeckel, J.; Hidalgo, C.; Gunn, J.

    2003-01-01

    The relaxation times of plasma parameters after a sudden change of electrode voltage have been measured in the plasma boundary during polarization experiments on the CASTOR tokamak (R = 0.4 m, a = 75 mm, B t = 1 T, I p ∼ 9 kA, q a ∼ 10). The time evolution of the floating potential after the biasing voltage switch-off can be well fitted by an exponential decay with characteristic time in the range of 10 - 20 μs. The poloidal flow shows a transient behaviour with a time scale of about 10 - 30 μs. These time scales are smaller than the expected damping time based on neoclassical parallel viscosity (which is in the range of 100 νs) and atomic physics via charge exchange (in the range of 100 - 1000 νs). But, they are larger than the correlation time of plasma turbulence (about 5 μs). These findings suggest that anomalous damping rate mechanisms for radial electric fields and poloidal flows may play a role in the boundary of tokamak plasmas. (authors)

  17. Metagenome-based diversity analyses suggest a strong locality signal for bacterial communities associated with oyster aquaculture farms in Ofunato Bay

    KAUST Repository

    Kobiyama, Atsushi

    2018-04-30

    Ofunato Bay, in Japan, is the home of buoy-and-rope-type oyster aquaculture activities. Since the oysters filter suspended materials and excrete organic matter into the seawater, bacterial communities residing in its vicinity may show dynamic changes depending on the oyster culture activities. We employed a shotgun metagenomic technique to study bacterial communities near oyster aquaculture facilities at the center of the bay (KSt. 2) and compared the results with those of two other localities far from the station, one to the northeast (innermost bay, KSt. 1) and the other to the southwest (bay entrance, KSt. 3). Seawater samples were collected every month from January to December 2015 from the surface (1 m) and deeper (8 or 10 m) layers of the three locations, and the sequentially filtered fraction on 0.2-μm membranes was sequenced on an Illumina MiSeq system. The acquired reads were uploaded to MG-RAST for KEGG functional abundance analysis, while taxonomic analyses at the phylum and genus levels were performed using MEGAN after parsing the BLAST output. Discrimination analyses were then performed using the ROC-AUC value of the cross validation, targeting the depth (shallow or deep), locality [(KSt. 1 + KSt. 2) vs. KSt 3; (KSt. 1 + KSt. 3) vs. KSt. 2 or the (KSt. 2 + KSt. 3) vs. KSt. 1] and seasonality (12 months). The matrix discrimination analysis on the adjacent 2 continuous seasons by ROC-AUC, which was based on the datasets that originated from different depths, localities and months, showed the strongest discrimination signal on the taxonomy matrix at the phylum level for the datasets from July to August compared with those from September to June, while the KEGG matrix showed the strongest signal for the datasets from March to June compared with those from July to February. Then, the locality combination was subjected to the same ROC-AUC discrimination analysis, resulting in significant differences between KSt. 2 and KSt. 1 + KSt. 3

  18. Metagenome-based diversity analyses suggest a strong locality signal for bacterial communities associated with oyster aquaculture farms in Ofunato Bay

    KAUST Repository

    Kobiyama, Atsushi; Ikeo, Kazuho; Reza, Md. Shaheed; Rashid, Jonaira; Yamada, Yuichiro; Ikeda, Yuri; Ikeda, Daisuke; Mizusawa, Nanami; Sato, Shigeru; Ogata, Takehiko; Jimbo, Mitsuru; Kudo, Toshiaki; Kaga, Shinnosuke; Watanabe, Shiho; Naiki, Kimiaki; Kaga, Yoshimasa; Mineta, Katsuhiko; Bajic, Vladimir B.; Gojobori, Takashi; Watabe, Shugo

    2018-01-01

    Ofunato Bay, in Japan, is the home of buoy-and-rope-type oyster aquaculture activities. Since the oysters filter suspended materials and excrete organic matter into the seawater, bacterial communities residing in its vicinity may show dynamic changes depending on the oyster culture activities. We employed a shotgun metagenomic technique to study bacterial communities near oyster aquaculture facilities at the center of the bay (KSt. 2) and compared the results with those of two other localities far from the station, one to the northeast (innermost bay, KSt. 1) and the other to the southwest (bay entrance, KSt. 3). Seawater samples were collected every month from January to December 2015 from the surface (1 m) and deeper (8 or 10 m) layers of the three locations, and the sequentially filtered fraction on 0.2-μm membranes was sequenced on an Illumina MiSeq system. The acquired reads were uploaded to MG-RAST for KEGG functional abundance analysis, while taxonomic analyses at the phylum and genus levels were performed using MEGAN after parsing the BLAST output. Discrimination analyses were then performed using the ROC-AUC value of the cross validation, targeting the depth (shallow or deep), locality [(KSt. 1 + KSt. 2) vs. KSt 3; (KSt. 1 + KSt. 3) vs. KSt. 2 or the (KSt. 2 + KSt. 3) vs. KSt. 1] and seasonality (12 months). The matrix discrimination analysis on the adjacent 2 continuous seasons by ROC-AUC, which was based on the datasets that originated from different depths, localities and months, showed the strongest discrimination signal on the taxonomy matrix at the phylum level for the datasets from July to August compared with those from September to June, while the KEGG matrix showed the strongest signal for the datasets from March to June compared with those from July to February. Then, the locality combination was subjected to the same ROC-AUC discrimination analysis, resulting in significant differences between KSt. 2 and KSt. 1 + KSt. 3

  19. Experimental identification of the kink instability as a poloidal flux amplification mechanism for coaxial gun spheromak formation.

    Science.gov (United States)

    Hsu, S C; Bellan, P M

    2003-05-30

    The magnetohydrodynamic kink instability is observed and identified experimentally as a poloidal flux amplification mechanism for coaxial gun spheromak formation. Plasmas in this experiment fall into three distinct regimes which depend on the peak gun current to magnetic flux ratio, with (I) low values resulting in a straight plasma column with helical magnetic field, (II) intermediate values leading to kinking of the column axis, and (III) high values leading immediately to a detached plasma. Onset of column kinking agrees quantitatively with the Kruskal-Shafranov limit, and the kink acts as a dynamo which converts toroidal to poloidal flux. Regime II clearly leads to both poloidal flux amplification and the development of a spheromak configuration.

  20. Experimental identification of the kink instability as a poloidal flux amplification mechanism for coaxial gun spheromak formation

    International Nuclear Information System (INIS)

    Hsu, S.C.; Bellan, P.M.

    2003-01-01

    The magnetohydrodynamic kink instability is observed and identified experimentally as a poloidal flux amplification mechanism for coaxial gun spheromak formation. Plasmas in this experiment fall into three distinct regimes which depend on the peak gun current to magnetic flux ratio, with (I) low values resulting in a straight plasma column with helical magnetic field, (II) intermediate values leading to kinking of the column axis, and (III) high values leading immediately to a detached plasma. Onset of column kinking agrees quantitatively with the Kruskal-Shafranov limit, and the kink acts as a dynamo which converts toroidal to poloidal flux. Regime II clearly leads to both poloidal flux amplification and the development of a spheromak configuration

  1. Poloidal density variation of impurities in a rotating tokamak plasma - flux surface coordinates and effect on transport coefficients

    International Nuclear Information System (INIS)

    Romanelli, M.

    1999-09-01

    The poloidal variation of impurity densities over magnetic surfaces brings about an enhancement of neoclassical transport coefficients, as shown by Romanelli and Ottaviani for impurities in the Pfirsch Schlueter regime and by Helander for particles in the banana-plateau regime, both in a large aspect ratio tokamak. The same effect will occur in a finite aspect ratio tokamak and therefore it is considered to be relevant for inclusion in transport codes for comparison with the experimental measurements of impurity transport. Here an expression for the impurity-density poloidal-variation generated by the fast toroidal rotation of the plasma column is presented in general coordinates. (author)

  2. Behavior of impurity ion velocities during the pulsed poloidal current drive in the Madison symmetric torus reversed-field pinch

    International Nuclear Information System (INIS)

    Sakakita, Hajime; Craig, Darren; Anderson, Jay K.; Chapman, Brett E.; Den-Hartog, Daniel J.; Prager, Stewart C.; Biewer, Ted M.; Terry, Stephen D.

    2003-01-01

    We report on passive measurements of impurity ion velocities during the pulsed poloidal current drive (PPCD) in the Madison Symmetric Torus reversed-field pinch. During PPCD, the electron temperature increased and a sudden reduction of magnetic fluctuations was observed. For this change, we have studied whether plasma velocity is affected. Plasma rotation is observed to decrease during PPCD. From measurements of line intensities for several impurities at 10 poloidal chords, it is found that the impurity line emission shifts outward. The ion temperature of impurities is reasonably connected to that measured by charge exchange recombination spectroscopy from core to edge. (author)

  3. Towards space based verification of CO2 emissions from strong localized sources: fossil fuel power plant emissions as seen by a CarbonSat constellation

    Directory of Open Access Journals (Sweden)

    T. Krings

    2011-12-01

    Full Text Available Carbon dioxide (CO2 is the most important man-made greenhouse gas (GHG that cause global warming. With electricity generation through fossil-fuel power plants now being the economic sector with the largest source of CO2, power plant emissions monitoring has become more important than ever in the fight against global warming. In a previous study done by Bovensmann et al. (2010, random and systematic errors of power plant CO2 emissions have been quantified using a single overpass from a proposed CarbonSat instrument. In this study, we quantify errors of power plant annual emission estimates from a hypothetical CarbonSat and constellations of several CarbonSats while taking into account that power plant CO2 emissions are time-dependent. Our focus is on estimating systematic errors arising from the sparse temporal sampling as well as random errors that are primarily dependent on wind speeds. We used hourly emissions data from the US Environmental Protection Agency (EPA combined with assimilated and re-analyzed meteorological fields from the National Centers of Environmental Prediction (NCEP. CarbonSat orbits were simulated as a sun-synchronous low-earth orbiting satellite (LEO with an 828-km orbit height, local time ascending node (LTAN of 13:30 (01:30 p.m. LT and achieves global coverage after 5 days. We show, that despite the variability of the power plant emissions and the limited satellite overpasses, one CarbonSat has the potential to verify reported US annual CO2 emissions from large power plants (≥5 Mt CO2 yr−1 with a systematic error of less than ~4.9% and a random error of less than ~6.7% for 50% of all the power plants. For 90% of all the power plants, the systematic error was less than ~12.4% and the random error was less than ~13%. We additionally investigated two different satellite configurations using a combination of 5 CarbonSats. One achieves global coverage everyday but only samples the targets at fixed local times. The other

  4. Strong interaction between dye molecule and electromagnetic field localized around 1 Nm3 at gaps of nanoparticle dimers by plasmon resonance

    Science.gov (United States)

    Itoh, Tamitake; Yamamoto, Yuko S.

    2017-11-01

    Electronic transition rates of a molecule located at a crevasse or a gap of a plasmonic nanoparticle (NP) dimer are largely enhanced up to the factor of around 106 due to electromagnetic (EM) coupling between plasmonic and molecular electronic resonances. The coupling rate is determined by mode density of the EM fields at the crevasse and the oscillator strength of the local electronic resonance of a molecule. The enhancement by EM coupling at a gap of plasmonic NP dimer enables us single molecule (SM) Raman spectroscopy. Recently, this type of research has entered a new regime wherein EM enhancement effects cannot be treated by conventional theorems, namely EM mechanism. Thus, such theorems used for the EM enhancement effect should be re-examined. We here firstly summarize EM mechanism by using surface-enhanced Raman scattering (SERS), which is common in EM enhancement phenomena. Secondly, we focus on recent two our studies on probing SM fluctuation by SERS within the spatial resolution of sub-nanometer scales. Finally, we discuss the necessity of re-examining the EM mechanism with respect to two-fold breakdowns of the weak coupling assumption: the breakdown of Kasha's rule induced by the ultra-fast plasmonic de-excitation and the breakdown of the weak coupling by EM coupling rates exceeding both the plasmonic and molecular excitonic dephasing rates.

  5. Strong trans-Pacific break and local conservation units in the Galapagos shark (Carcharhinus galapagensis) revealed by genome-wide cytonuclear markers.

    Science.gov (United States)

    Pazmiño, Diana A; Maes, Gregory E; Green, Madeline E; Simpfendorfer, Colin A; Hoyos-Padilla, E Mauricio; Duffy, Clinton J A; Meyer, Carl G; Kerwath, Sven E; Salinas-de-León, Pelayo; van Herwerden, Lynne

    2018-05-01

    The application of genome-wide cytonuclear molecular data to identify management and adaptive units at various spatio-temporal levels is particularly important for overharvested large predatory organisms, often characterized by smaller, localized populations. Despite being "near threatened", current understanding of habitat use and population structure of Carcharhinus galapagensis is limited to specific areas within its distribution. We evaluated population structure and connectivity across the Pacific Ocean using genome-wide single-nucleotide polymorphisms (~7200 SNPs) and mitochondrial control region sequences (945 bp) for 229 individuals. Neutral SNPs defined at least two genetically discrete geographic groups: an East Tropical Pacific (Mexico, east and west Galapagos Islands), and another central-west Pacific (Lord Howe Island, Middleton Reef, Norfolk Island, Elizabeth Reef, Kermadec, Hawaii and Southern Africa). More fine-grade population structure was suggested using outlier SNPs: west Pacific, Hawaii, Mexico, and Galapagos. Consistently, mtDNA pairwise Φ ST defined three regional stocks: east, central and west Pacific. Compared to neutral SNPs (F ST  = 0.023-0.035), mtDNA exhibited more divergence (Φ ST  = 0.258-0.539) and high overall genetic diversity (h = 0.794 ± 0.014; π = 0.004 ± 0.000), consistent with the longstanding eastern Pacific barrier between the east and central-west Pacific. Hawaiian and Southern African populations group within the west Pacific cluster. Effective population sizes were moderate/high for east/west populations (738 and 3421, respectively). Insights into the biology, connectivity, genetic diversity, and population demographics informs for improved conservation of this species, by delineating three to four conservation units across their Pacific distribution. Implementing such conservation management may be challenging, but is necessary to achieve long-term population resilience at basin and

  6. Deuterium-tritium TFTR plasmas in the high poloidal beta regime

    International Nuclear Information System (INIS)

    Sabbagh, S.A.; Mauel, M.E.; Navratil, G.A.

    1995-03-01

    Deuterium-tritium plasmas with enhanced energy confinement and stability have been produced in the high poloidal beta, advanced tokamak regime in TFTR. Confinement enhancement H triple-bond τ E /τ E ITER-89P > 4 has been obtained in a limiter H-mode configuration at moderate plasma current I p = 0.85 - 1.46 MA. By peaking the plasma current profile, β N dia triple-bond 10 8 tperpendicular > aB 0 /I p = 3 has been obtained in these plasma,s exceeding the β N limit for TFTR plasmas with lower internal inductance, l i . Fusion power exceeding 6.7 MW with a fusion power gain Q DT = 0.22 has been produced with reduced alpha particle first orbit loss provided by the increased l i

  7. Tokamak poloidal field systems. Progress report, January 1-December 31, 1980

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1981-03-01

    Work is reported on the development of superconducting tokamak poloidal field system (TPFS) program. Progress is discussed on the design of the 20 MJ, 50 kA, 7.5 T superconducting pulsed energy storage coil to be operated in a bipolar mode from +7.5 T to -7.5 T in an energy transfer period of 1.5 to 5 s in 1982 followed by extensive cyclic testing. The facility to conduct the tests uses a traction motor energy transfer system and a nonconducting dewar. Status of the hardware development for the TPFS program is presented. Current interrupter development and testing for protection and energy transfer circuits are also presented. The 400 kJ METS coil test results are given

  8. Remote replacement of TF [toroidal field] and PF [poloidal field] coils for the compact ignition tokamak

    International Nuclear Information System (INIS)

    Macdonald, D.; Watkin, D.C.; Hollis, M.J.; DePew, R.E.; Kuban, D.P.

    1990-01-01

    The use of deuterium-tritium fuel in the Compact Ignition Tokamak will require applying remote handling technology for ex-vessel maintenance and replacement of machine components. Highly activated and contaminated components of the fusion devices auxiliary systems, such as diagnostics and RF heating, must be replaced using remotely operated maintenance equipment in the test cell. In-vessel remote maintenance included replacement of divertor and first wall hardware, faraday shields, and for an in-vessel inspection system. Provision for remote replacement of a vacuum vessel sector, toroidal field coil or poloidal field ring coil was not included in the project baseline. As a result of recent coil failures experienced at a number of facilities, the CIT project decided to reconsider the question of remote recovery from a coil failure and, in January of 1990, initiated a coil replacement study. This study focused on the technical requirements and impact on fusion machine design associated with remote recovery from any coil failure

  9. Feasibility analysis of fuzzy logic control for ITER Poloidal field (PF) AC/DC converter system

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Mahmood Ul; Fu, Peng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China (China); Song, Zhiquan, E-mail: zhquansong@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Chen, Xiaojiao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China (China); Zhang, Xiuqing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Humayun, Muhammad [Shanghai Jiaotong University (China)

    2017-05-15

    Highlights: • The implementation of the Fuzzy controller for the ITER PF converter system is presented. • The comparison of the FLC and PI simulation are investigated. • The FLC single and parallel bridge operation are presented. • Fuzzification and Defuzzification algorithms are presented using FLC controller. - Abstract: This paper describes the feasibility analysis of the fuzzy logic control to increase the performance of the ITER poloidal field (PF) converter systems. A fuzzy-logic-based controller is designed for ITER PF converter system, using the traditional PI controller and Fuzzy controller (FC), the dynamic behavior and transient response of the PF converter system are compared under normal operation by analysis and simulation. The analysis results show that the fuzzy logic control can achieve better operation performance than PI control.

  10. The production of high poloidal tokamak equilibria in Versator II by means of RF current drive

    International Nuclear Information System (INIS)

    Luckhardt, S.C.; Chen, K.-I.; Kesner, J.; Kirkwood, R.; Lane, B.; Porkolab, M.; Squire, J.

    1989-01-01

    Experiments on the Versator II device have been carried out in a regime of low plasma current with the aim of reaching high poloidal beta, β p . Lower-Hybrid RF current drive is used to produce an energetic electron population which carries the plasma current and pressure. In this mode of operation, plasmas with εβ p approaching unity appear attainable. Data from equilibrium magnetic analysis, hard x-ray, and density profiles display an outward magnetic axis shift in agreement with equilibrium theory, and further indicate that q(O) is in the range of 4-6. PEST code modeling of these experiments suggests that some of these plasmas may be near or beyond the transition to the second stability region for ballooning modes. (author)

  11. Mechanical impacts of poloidal eddy currents on the continuous vacuum vessel of a tokamak

    International Nuclear Information System (INIS)

    In, Sang Ryul; Yoon, Byung Joo.

    1996-11-01

    Poloidal eddy currents are induced on the continuous torus vacuum vessel by changes of the toroidal field during the machine start-up (toroidal field coil charge), shut-down (toroidal field coil discharge) and plasma disruption (plasma diamagnetism change). Analytic forms for the eddy currents flowing on the vessel, consequent pressures and forces acting on it are presented in this report. The results are applied to typical operation modes of the KT-2 tokamak. Stress analysis for two typical operation modes of toroidal field damping during a machine shut-gown and plasma energy quench during a plasma disruption were carried out using 3D FEM code (ANSYS 5.2). (author). 5 tabs., 22 figs., 9 refs

  12. A poloidal non-uniformity of the collisionless parallel current in a tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Romannikov, A.; Fenzi-Bonizec, C

    2005-07-01

    The collisionless distortion of the ion (electron) distribution function at certain points on a magnetic surface is studied in the framework of a simple model of a large aspect ratio tokamak plasma. The flow velocity driven by this distortion is calculated. The possibility of an additional non-uniform collisionless parallel current density on a magnetic surface, other than the known neo-classical non-uniformity is shown. The difference between the parallel current density on the low and high field side of a magnetic surface is close to the neoclassical bootstrap current density. The first Tore-Supra experimental test indicates the possibility of the poloidal non-uniformity of the parallel current density. (authors)

  13. Fivefold confinement time increase in the Madison Symmetric Torus using inductive poloidal current drive

    International Nuclear Information System (INIS)

    Stoneking, M.R.; Lanier, N.E.; Prager, S.C.; Sarff, J.S.; Sinitsyn, D.

    1997-01-01

    Current profile control is employed in the Madison Symmetric Torus [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)] reversed field pinch to reduce the magnetic fluctuations responsible for anomalous transport. An inductive poloidal electric-field pulse is applied in the sense to flatten the parallel current profile, reducing the dynamo fluctuation amplitude required to sustain the equilibrium. This technique demonstrates a substantial reduction in fluctuation amplitude (as much as 50%), and improvement in energy confinement (from 1 to 5 ms); a record low fluctuation (0.8%) and record high temperature (615 eV) for this device were observed simultaneously during current drive experiments. Plasma beta increases by 50% and the Ohmic input power is three times lower. Particle confinement improves and plasma impurity contamination is reduced. The results of the transient current drive experiments provide motivation for continuing development of steady-state current profile control strategies for the reversed field pinch. copyright 1997 American Institute of Physics

  14. Upgrade of the synchronous data management system of the EAST poloidal field power supply

    International Nuclear Information System (INIS)

    Zhu, Lili; Huang, Liansheng; Fu, Peng; Gao, Ge; He, Shiying

    2016-01-01

    Highlights: • The upgraded synchronous data management system of EAST poloidal field power supply supports long-pulse data storage. • Slice storage mechanism on MDSplus has been adopted for quasi real-time data storage. • The state machine has been adopted for managing the system sequencer. • IEEE-1588 protocol via Ethernet for the synchronization of clock signal was detailed described. - Abstract: Poloidal field (PF) power supply is an important subsystem of the Experimental Advanced Superconducting Tokamak (EAST). The upgrade of the PF control system of EAST is a great improvement over the original data management system which could not meet the requirements necessary for experiments on synchronization, modularity and sampling rate. In order to better analyze the power operation performance, the Synchronization Data Management System (SDMS) needs to be upgraded as well. This upgrade is based on distributed data acquisition and an MDSPLUS database. It consists of three data acquisition nodes synchronized by an reference clock from the EAST central timing system that also provides the start trigger of the EAST pulse. After being processed by a signal conditioning unit, experimental signals are digitized and written into the database in MDSPLUS format. Multi-channel, multi-tasking and continuous data storage have been achieved by using multi-threading technology on a Linux operation system. The SDMS has been used on the server in PF control system for the entire 2015 EAST campaign. The SDMS has had good performance during experiments and convenient human-machine interface to satisfy the requirements of all the experiments.

  15. Generation of poloidal magnetic field in a hot collisional plasma by inverse Faraday effect

    International Nuclear Information System (INIS)

    Srivastava, M.K.; Lawande, S.V.; Dutta, D.; Sarkar, S.; Khan, M.; Chakraborty, B.

    1996-01-01

    Generation of poloidal magnetic field in a hot and collisional plasma by an inverse Faraday effect is discussed. This field can either be induced by a circularly polarized laser beam (CPLB) or a plane-polarized laser beam (PPLB). For the CPLB, an average field left-angle Re x right-angle ∼I 0 λ∼11.6 MG could be produced in a DT plasma for a high intensity (I 0 =10 22 W/m 2 ) and shorter wavelength (λ=0.35 μm) laser. This field is essentially induced by the field inhomogeneity effect and dominates over that induced by the plasma inhomogeneity effect (left-angle Re x right-angle ∼I 2/3 0 λ 7/3 ∼2.42 MG). The collisional and thermal contribution to left-angle Re x right-angle is just negligible for the CPLB. However, in the case of PPLB the poloidal field is generated only for a hot and collisional plasma and can be quite large for a longer wavelength laser (e.g., CO 2 laser, λ=10.6 μm). The collisional effect induces a field left-angle Re x right-angle ∼0.08 kG, which dominates near the turning point and is independent of the laser parameters. However, in the outer cronal region the thermal pressure effect dominates (e.g., left-angle Re x right-angle ∼I 5/3 0 λ 4/3 ∼3.0 MG). Further, left-angle Re x right-angle for the p-polarized beam is, in general, relatively smaller than that for the s-polarized beam. Practical implications of these results and their limitations are discussed. copyright 1996 American Institute of Physics

  16. Upgrade of the synchronous data management system of the EAST poloidal field power supply

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lili; Huang, Liansheng, E-mail: huangls@ipp.ac.cn; Fu, Peng; Gao, Ge; He, Shiying

    2016-11-15

    Highlights: • The upgraded synchronous data management system of EAST poloidal field power supply supports long-pulse data storage. • Slice storage mechanism on MDSplus has been adopted for quasi real-time data storage. • The state machine has been adopted for managing the system sequencer. • IEEE-1588 protocol via Ethernet for the synchronization of clock signal was detailed described. - Abstract: Poloidal field (PF) power supply is an important subsystem of the Experimental Advanced Superconducting Tokamak (EAST). The upgrade of the PF control system of EAST is a great improvement over the original data management system which could not meet the requirements necessary for experiments on synchronization, modularity and sampling rate. In order to better analyze the power operation performance, the Synchronization Data Management System (SDMS) needs to be upgraded as well. This upgrade is based on distributed data acquisition and an MDSPLUS database. It consists of three data acquisition nodes synchronized by an reference clock from the EAST central timing system that also provides the start trigger of the EAST pulse. After being processed by a signal conditioning unit, experimental signals are digitized and written into the database in MDSPLUS format. Multi-channel, multi-tasking and continuous data storage have been achieved by using multi-threading technology on a Linux operation system. The SDMS has been used on the server in PF control system for the entire 2015 EAST campaign. The SDMS has had good performance during experiments and convenient human-machine interface to satisfy the requirements of all the experiments.

  17. Measurements of poloidal and toroidal energy deposition asymmetries in the ASDEX divertors

    International Nuclear Information System (INIS)

    Evans, T.E.

    1991-03-01

    Energy deposition characteristics in the ASDEX divertors have been analyzed over a wide range of discharges and wall conditions during ohmically heated, additionally heated, or lower hybrid current drive experiments. Changes in discharge operating parameters with high power additional heating produce a diversity of effects on the magnitudes and distributions of the energy absorbed in the divertors. Poloidally and toroidally resolved energy deposition patterns are particularly sensitive to changes in the edge safety factor, the type and power level of additional heating used, and the vertical position of the plasma. In most additionally heated discharges, a large fraction of the incremental divertor loading is found on only one or two target rings. Poloidal in-out asymmetries, which typically favor the low-field side by a factor of 2.5 in ohmic discharges, commonly range between a factor of 2.5 and 4.5 in additionally heated experiments and in extreme cases can be as large as a factor of 5.6. At the same time, toroidal asymmetries on individual target rings are found to range between a factor of 1.4 and 3.8 in typical ICRH and NBI cases with extreme LHCD cases of 4.3. A model, proposed to explain the cause of discharge asymmetries, is compared with the experimental observations. Under some conditions, for example during LHCD experiments, the model is in good agreement with the data. A method is proposed for supressing discharge asymmetries which may generally improve the divertor performance as well. (orig./AH)

  18. Study on poloidal field coil optimization and equilibrium control of ITER

    International Nuclear Information System (INIS)

    Shinya, Kichiro; Sugihara, Masayoshi; Nishio, Satoshi

    1989-03-01

    The purpose of this report is to present general features of the poloidal field coil optimization for the ITER plasma, flexibility analysis for various plasma options and some other aspect of the equilibrium control which is required for understanding plasma operation in more detail. Double null divertor plasma was selected as a main object of the optimization. Single null divertor plasma was assumed to be an alternative, because single null divertor plasma can be operational within the amounts of the total stored energy and ampere-turns of the double null divertor plasma, if it is shaped appropriately. Plasma parameters used in the present analysis are mainly those employed in the preliminary study by the Basic Device Engineering group of the ITER design team. The most part of the optimization study, however, utilizes the parameters proposed for discussion by the Japan team before starting joint design work at Garching. Plasma shape, and solenoid coil shape and size, which maximize available flux swing with reasonable amounts of the stored energy and ampere-turns, are discussed. Location and minimum number of the poloidal field coils with adequate shaping controllability were also discussed for various plasma options. Some other aspect of the equilibrium control, such as separatrix swing, moving null point operation during plasma heating and possible range of li, were evaluated and the guideline for the engineering design was proposed. Finally, fusion power output was estimated for the different pressure profiles and combinations of the average density and temperature, and the magnetic quantities of the scrape-off region was calculated to be available for the future divertor analysis. (author)

  19. Poloidal magnetic field profile measurements on the microwave tokamak experiment using far-infrared polarimetry

    International Nuclear Information System (INIS)

    Rice, B.W.

    1992-09-01

    The measurement of plasma poloidal magnetic field (B) profiles in tokamaks with good temporal and spatial resolution has proven to be a difficult but important measurement. A large range of toroidal confinement phenomena is expected to depend sensitively on the radial variation of B including the tearing instability, sawtooth oscillations, disruptions, and transport. Experimental confirmation of theoretical models describing these phenomena has been hampered by the lack of detailed B measurements. A fifteen chord far-infrared (FIR) polarimeter has been developed to measure B in the Microwave Tokamak, Experiment (MTX). Polarimetry utilizes the well known Faraday rotation effect, which causes a rotation of the polarization of an FIR beam propagating in the poloidal plane. The rotation angle is proportional to the component of B parallel to the beam. A new technique for determining the Faraday rotation angle is introduced, based on phase measurements of a rotating polarization ellipse. This instrument has been used successfully to measure B profiles for a wide range of experiments on MTX. For ohmic discharges, measurements of the safety factor on axis give q 0 ∼ 0.75 during sawteeth and q 0 > 1 without sawteeth. Large perturbations to the polarimeter signals correlated with the sawtooth crash are observed during some discharges. Measurements in discharges with electron cyclotron heating (ECH) show a transition from a hollow to peaked J profile that is triggered by the ECH pulse. Current-ramp experiments were done to perturb the J profile from the nominal Spitzer conductivity profile. Profiles for initial current ramps and ramps starting from a stable equilibrium have been measured and are compared with a cylindrical diffusion model. Finally, the tearing mode stability equation is solved using measured J profiles. Stability predictions are in good agreement with the existence of oscillations observed on the magnetic loops

  20. Overview of the modification to the poloidal divertor experiment (PDX) to produce the Princeton beta experiment (PBX)

    International Nuclear Information System (INIS)

    Knutson, D.

    1984-01-01

    The Poloidal Divertor Experiment at the Princeton Plasma Physics Laboratory has been recently transformed into the Princeton Beta Experiment. The purpose of the modification is to produce a bean-shaped plasma with beta values in excess of 10%, which is substantially above those achieved with more conventional plasma shapes. (author)

  1. Loss of beam ions to the inside of the PDX [Poloidal Divertor Experiment] tokamak during the fishbone instability

    International Nuclear Information System (INIS)

    Heidbrink, W.W.; Beiersdorfer, P.

    1986-11-01

    Using data from two vertical charge-exchange detectors on the Poloidal Divertor Experiment (PDX), we have identified a set of conditions for which loss of beam ions inward in major radius is observed during the fishbone instability. Previously, it was reported that beam ions were lost only to the outside of the PDX tokamak

  2. Poloidal asymmetries of the heavy ions in the ASDEX Upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Odstrcil, Tomas [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Physik-Department E28, Technische Universitaet Muenchen, Garching (Germany); Puetterich, Thomas; Angioni, Clemente; Bilato, Roberto; Gude, Anja; Vezinet, Didier [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Mazon, Didier [CEA, IRFM, Saint Paul-lez-Durance (France); Collaboration: ASDEX Upgrade Team

    2015-05-01

    Poloidal asymmetries of heavy ions in the tokamak plasma are caused by the presence of forces parallel with field-lines which have comparable magnitude to the thermal pressure. The most important examples are the centrifugal force (CF) and the electric force (EF). The CF is caused by fast toroidal rotation of the plasma column which is pushing impurity ions, that have a substantially higher mass than the main ions, on the outer-side of the plasma. And the EF can be produced by ion cyclotron heated fast particles with high pitch angle that are trapped by the mirror force on the low field side of the plasma. The excessive charge produced by these particles is affecting highly charged impurities and pushing them to the high field side of the plasma. From predictions based on neoclassical and turbulent theory, it follows that the radial flux of heavy ions will be significantly changed by the presence of these asymmetries. The purpose of this study is to investigate the presence of these asymmetries in ASDEX Upgrade and verify the predicted consequences on the particles flux. High intrinsic content of the tungsten in AUG plasma makes this device well suitable for such studies. Precise measurement of the SXR (soft-X-ray) radiation profiles has identified a presence of CF generated asymmetries in every NBI heated Asdex discharge. Poloidal asymmetry should than lead to the significant change in the neoclassical and turbulent radial transport of these heavy ions. High intrinsic content of the tungsten in Asdex plasma makes this device well suitable for studying these asymmetries. Precise measurement of the SXR (soft-X-ray) radiation profiles has identified a presence of CF generated asymmetries in every NBI heated Asdex discharge. For heavy and highly charged impurities multiple mechanisms exist that produce non-constant impurities densities on the flux surfaces. As for neoclassical and turbulent transport models such an asymmetry is of highly importance an effort is

  3. A web application for poloidal field analysis on HL-2M

    Energy Technology Data Exchange (ETDEWEB)

    Song, X.M., E-mail: songxm@swip.ac.cn; Pan, W.; Chen, L.Y.; Song, X.; Li, X.D.

    2014-05-15

    Highlights: • An original way to develop web application with a new framework (jQuery + PHP + Matlab) is introduced. • A convenient but powerful application for electromagnetic calculation is implemented. • The web application can run in any popular browser, on any hardware and in any operating system. • No any plugin is needed; no any maintenance is required. - Abstract: Recently, many web tools [1–3] in fusion society have been designed and demonstrated, which has been proved to be powerful and convenient to fusion researchers. Many physicists and engineers need a tool to compute the poloidal magnetic field for some purposes (for example, the calibration of magnetic probes for EFIT, the field null structure analysis for control, the design of some plasma diagnostic systems), so to develop a powerful and convenient web application for the calculation of magnetic field and magnetic flux produced by PF coils is very important. In this paper, a web application tool for poloidal field analysis on HL-2M with a totally original framework is presented. This web application is full of dynamic and interactive interface, and can run in any popular browser (IE, safari, firefox, opera), on any hardware (smart phone, PC, ipad, Mac) and operating system (ios, android, windows, linux, Mac OS). No any plugins is needed. The three layers (jQuery + PHP + Matlab) of this framework are introduced. The front top client layer is developed by jQuery code. The middle layer, which plays a role of a bridge to connect the server and client through socket communication, is developed by PHP code. The behind server layer is developed by Matlab, which compute the magnetic field or magnetic flux through a Special Function called Complete Elliptic Integral, and returns the results in the client favorite way, either by table or by JPG image. The field null structure and the vertical and radial field structure calculated by this tool are introduced with details. The idea to design a web

  4. A web application for poloidal field analysis on HL-2M

    International Nuclear Information System (INIS)

    Song, X.M.; Pan, W.; Chen, L.Y.; Song, X.; Li, X.D.

    2014-01-01

    Highlights: • An original way to develop web application with a new framework (jQuery + PHP + Matlab) is introduced. • A convenient but powerful application for electromagnetic calculation is implemented. • The web application can run in any popular browser, on any hardware and in any operating system. • No any plugin is needed; no any maintenance is required. - Abstract: Recently, many web tools [1–3] in fusion society have been designed and demonstrated, which has been proved to be powerful and convenient to fusion researchers. Many physicists and engineers need a tool to compute the poloidal magnetic field for some purposes (for example, the calibration of magnetic probes for EFIT, the field null structure analysis for control, the design of some plasma diagnostic systems), so to develop a powerful and convenient web application for the calculation of magnetic field and magnetic flux produced by PF coils is very important. In this paper, a web application tool for poloidal field analysis on HL-2M with a totally original framework is presented. This web application is full of dynamic and interactive interface, and can run in any popular browser (IE, safari, firefox, opera), on any hardware (smart phone, PC, ipad, Mac) and operating system (ios, android, windows, linux, Mac OS). No any plugins is needed. The three layers (jQuery + PHP + Matlab) of this framework are introduced. The front top client layer is developed by jQuery code. The middle layer, which plays a role of a bridge to connect the server and client through socket communication, is developed by PHP code. The behind server layer is developed by Matlab, which compute the magnetic field or magnetic flux through a Special Function called Complete Elliptic Integral, and returns the results in the client favorite way, either by table or by JPG image. The field null structure and the vertical and radial field structure calculated by this tool are introduced with details. The idea to design a web

  5. Strongly disordered superconductors

    International Nuclear Information System (INIS)

    Muttalib, K.A.

    1982-01-01

    We examine some universal effects of strong non-magnetic disorder on the electron-phonon and electron-electron interactions in a superconductor. In particular we explicitly take into account the effect of slow diffusion of electrons in a disordered medium by working in an exact impurity eigenstate representation. We find that the normal diffusion of electrons characterized by a constant diffusion coefficient does not lead to any significant correction to the electron-phonon or the effective electron-electron interactions in a superconductor. We then consider sufficiently strong disorder where Anderson localization of electrons becomes important and determine the effect of localization on the electron-electron interactions. We find that due to localization, the diffusion of electrons becomes anomalous in the sense that the diffusion coefficient becomes scale dependent. This results in an increase in the effective electron-electron interaction with increasing disorder. We propose that this provides a natural explanation for the unusual sensitivity of the transition temperature T/sub c/ of the high T/sub c/ superconductors (T/sub c/ > 10 0 K) to damage effects

  6. First time observation of local current shrinkage during the MARFE behavior on the J-TEXT tokamak

    Science.gov (United States)

    Shi, Peng; Zhuang, G.; Gentle, K.; Hu, Qiming; Chen, Jie; Li, Qiang; Liu, Yang; Gao, Li; Zhang, Xiaolong; Liu, Hai; Chen, Zhipeng; Zhu, Lizhi; Li, Fuming; Zhou, Yinan; Zeng, Zhong; Liu, Linzi; He, Jiyang

    2017-11-01

    Multifaceted asymmetric radiation as well as strong poloidal asymmetry of the electron density from the edge, dubbed as ‘MARFE’, has been observed in high electron density Ohmically heated plasmas on J-TEXT tokamak. Equilibrium reconstruction based on the measured data from the 17-channel FIR polarimeter-interferometer indicates that an asymmetric plasma current density distribution forms at the edge region and the plasma current shrinkage locates at the MARFE affected region. Furthermore, associated with the localized plasma current shrinkage, a locked mode MHD activity is excited, which then terminate the discharge with a major disruption. Localized plasma current shrinkage at the MARFE region is considered to be the direct cause for the density limit disruptions, and the proposed interpretation is consistent with the experimental observations.

  7. HPV16 DNA status is a strong prognosticator of loco-regional control after postoperative radiochemotherapy of locally advanced oropharyngeal carcinoma: Results from a multicentre explorative study of the German Cancer Consortium Radiation Oncology Group (DKTK-ROG)

    International Nuclear Information System (INIS)

    Lohaus, Fabian; Linge, Annett; Tinhofer, Inge; Budach, Volker; Gkika, Eleni; Stuschke, Martin; Balermpas, Panagiotis; Rödel, Claus; Avlar, Melanie; Grosu, Anca-Ligia

    2014-01-01

    Objective: To investigate the impact of HPV status in patients with locally advanced head and neck squamous cell carcinoma (HNSCC), who received surgery and cisplatin-based postoperative radiochemotherapy. Materials and methods: For 221 patients with locally advanced squamous cell carcinoma of the hypopharynx, oropharynx or oral cavity treated at the 8 partner sites of the German Cancer Consortium, the impact of HPV DNA, p16 overexpression and p53 expression on outcome were retrospectively analysed. The primary endpoint was loco-regional tumour control; secondary endpoints were distant metastases and overall survival. Results: In the total patient population, univariate analyses revealed a significant impact of HPV16 DNA positivity, p16 overexpression, p53 positivity and tumour site on loco-regional tumour control. Multivariate analysis stratified for tumour site showed that positive HPV 16 DNA status correlated with loco-regional tumour control in patients with oropharyngeal carcinoma (p = 0.02) but not in the oral cavity carcinoma group. Multivariate evaluation of the secondary endpoints in the total population revealed a significant association of HPV16 DNA positivity with overall survival (p < 0.01) but not with distant metastases. Conclusions: HPV16 DNA status appears to be a strong prognosticator of loco-regional tumour control after postoperative cisplatin-based radiochemotherapy of locally advanced oropharyngeal carcinoma and is now being explored in a prospective validation trial

  8. The design of the poloidal divertor experiment tokamak wall armor and inner limiter system

    International Nuclear Information System (INIS)

    Kugel, H.W.; Ulrickson, M.

    1982-01-01

    The inner wall protective plates for the Poloidal Divertor Experiment Tokamak are designed to absorb 8 MW of neutral deuterium beam power at maximum power densities of 3 kW/cm 2 for pulse lengths of 0.5 s. Preliminary studies indicate that the design could survive several pulses of l-s duration. The design consists of a tile and mounting plate structure. The mounting plates are water cooled to allow short duty cycles and beam calorimetry. The temperature and flow of the coolant are measured to obtain the injected power. A thermocouple array on the tiles provides beam position and power density profiles. Several material combinations for the tiles were subjected to thermal tests using both electron and neutral beams, and titanium-carbidecoated graphite was selected as the tile material. The heat transfer coefficient of the tile backing plate structure was measured to determine the maximum pulse rate allowable. The design of the armor system allows the structure to be used as a neutral beam power diagnostic and as an inner plasma limiter. The electrical and cooling systems external to the vacuum vessel are discussed

  9. Maximum entropy reconstruction of poloidal magnetic field and radial electric field profiles in tokamaks

    Science.gov (United States)

    Chen, Yihang; Xiao, Chijie; Yang, Xiaoyi; Wang, Tianbo; Xu, Tianchao; Yu, Yi; Xu, Min; Wang, Long; Lin, Chen; Wang, Xiaogang

    2017-10-01

    The Laser-driven Ion beam trace probe (LITP) is a new diagnostic method for measuring poloidal magnetic field (Bp) and radial electric field (Er) in tokamaks. LITP injects a laser-driven ion beam into the tokamak, and Bp and Er profiles can be reconstructed using tomography methods. A reconstruction code has been developed to validate the LITP theory, and both 2D reconstruction of Bp and simultaneous reconstruction of Bp and Er have been attained. To reconstruct from experimental data with noise, Maximum Entropy and Gaussian-Bayesian tomography methods were applied and improved according to the characteristics of the LITP problem. With these improved methods, a reconstruction error level below 15% has been attained with a data noise level of 10%. These methods will be further tested and applied in the following LITP experiments. Supported by the ITER-CHINA program 2015GB120001, CHINA MOST under 2012YQ030142 and National Natural Science Foundation Abstract of China under 11575014 and 11375053.

  10. A ceramic breeder in a poloidal tube blanket for a tokamak reactor

    International Nuclear Information System (INIS)

    Amici, A.; Anzidei, L.; Gallina, M.; Rado, V.; Simbolotti, G.; Violante, V.; Zampaglione, V.; Petrizzi, L.

    1989-01-01

    A conceptual study of a helium-cooled solid breeder blanket for a tokamak reactor is presented. Tritium breeding capability together with system reliability are taken as the main design criteria. The blanket consists of tubular poloidal modules made of a central bundle of ceramic rods (γLiAlO 2 ) with a coaxial distribution of the inlet/outlet coolant flow (He) surrounded by a multiplier material (Be) in the form of bored bricks. The Be to γLiAlO 2 volume ratio is 4/1. The He inlet and outlet branches are cooling Be and γLiAlO 2 , respectively. A purge He flow running through small central holes of the ceramic rods is derived from the main flow. Under the typical conditions of a tokamak reactor (neutron wall load=2 MW/m 2 ), a full coverage tritium breeding ratio of 1.47 is achieved for the following design and operating parameters: outlet He temperature=570 0 C; inlet He temperature=250 0 ; total extracted power=2700 MW; He pumping power percentage=2%; minimum/maximum γLiAlO 2 temperature=400/900 0 C; maximum structural temperature=475 0 C; and maximum Be temperature=525 0 C. (orig.)

  11. Structural design of the superconducting Poloidal Field coils for the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    O'Connor, T.G.; Zbasnik, J.P.

    1993-01-01

    The Tokamak Physics Experiment concept design uses superconducting coils made from cable-in-conduit conductor to accomplish both magnetic confinement and plasma initiation. The Poloidal Field (PF) magnet system is divided into two subsystems, the central solenoid and the outer ring coils, the latter is focus of this paper. The eddy current heating from the pulsed operation is excessive for a case type construction; therefore, a ''no case'' design has been chosen. This ''no case'' design uses the conductor conduit as the primary structure and the electrical insulation (fiberglass/epoxy wrap) as a structural adhesive. The model integrates electromagnetic analysis and structural analysis into the finite element code ANSYS to solve the problem. PF coil design is assessed by considering a variety of coil current wave forms, corresponding to various operating modes and conditions. The structural analysis shows that the outer ring coils are within the requirements of the fatigue life and fatigue crack growth requirements. The forces produced by the Toroidal Field coils on the PF coils have little effect on the maximum stresses in the PF coils. In addition in an effort to reduce the cost of the coils new elongated PF coils design was proposed which changes the aspect ratio of the outer ring coils to reduce the number of turns in the coils. The compressive stress in the outer ring coils is increased while the tensile stress is decreased

  12. First Trial of Real-time Poloidal Beta Control in KSTAR

    Science.gov (United States)

    Han, Hyunsun; Hahn, S. H.; Bak, J. G.; Walker, M. L.; Woo, M. H.; Kim, J. S.; Kim, Y. J.; Bae, Y. S.; KSTAR Team

    2014-10-01

    Sustaining the plasma in a stable and a high performance condition is one of the important control issues for future steady state tokamaks. In the 2014 KSTAR campaign, we have developed a real-time poloidal beta (βp) control technique and carried out preliminary experiments to identify its feasibility. In the control system, the βp is calculated in real time using the measured diamagnetic loop signal (DLM03) with coil pickup corrections, and compared with the target value leading to the change of the neutral beam (NB) heating power using a feedback PID control algorithm. To match the required power of NB which is operated with constant voltage, the duty cycles of the modulation were adjusted as the ratio of the required power to the maximum achievable one. This paper will present the overall procedures of the βp control, the βp estimation process implemented in the plasma control system, and the analysis on the preliminary experimental results. This work is supported by the KSTAR research project funded by the Ministry of Science, ICT & Future Planning of Korea.

  13. R&D on high-power dc reactor prototype for ITER poloidal field converter

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuan [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Song, Zhiquan; Fu, Peng [Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031 (China); Zhang, Ming, E-mail: zhangming@hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Yu, Kexun [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Qin, Xiuqi [School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009 (China)

    2015-10-15

    Highlights: • A new prototype design structure of dry-type air-core water-cooling reactor with epoxy resin casting technique is presented. • Theoretical analysis, finite-element simulation and prototype test verification are applied on the design. • The results of temperature rise and transient fault current test of prototypes are introduced and analyzed. • The success of tests demonstrates that the proposed structure is of high reliability and availability. - Abstract: This paper mainly introduces the research and development (R&D) of the high-power dc reactor prototype, whose functions are to limit the circulating current and ripple current in the ITER poloidal field (PF) converter. It needs to operate at rated large direct current 27.5 kA and withstand peak fault current up to 175 kA. Therefore, in order to meet the special requirements of the dynamic and thermal stability, a new prototype design structure of dry-type air-core water-cooling reactor with epoxy resin casting technique is presented, which is based on the theoretical analysis, finite-element simulation calculation and small prototype test verification. Now the full prototype has been fabricated by China industry, and the dynamic and thermal stability tests of the prototype have also been accomplished successfully. The test results are in compliance with the design and it shows the availability and feasibility of the proposed design, which may be a reference for relevant applications.

  14. Resolving the effects of toroidal and poloidal coupling on resistive modes in Heliotron E and LHD

    International Nuclear Information System (INIS)

    McMillan, B.F.; Dewar, R.L.; Storer, R.G.

    2003-01-01

    In general, stellarators are less subject than axisymmetric configurations to the most dangerous of instabilities, which lead to disruption of the plasma. For example, the LHD experiment has been shown to be remarkably stable to large scale instabilities, even where analysis suggests the presence of (unstable) ballooning modes. This may not be the case for configurations which contain large parallel currents, where possible kink and tearing modes might lead to unfavourable confinement or even disruptions. These effects can only be approximately modelled while averaging over poloidal and/or toroidal angles, so a complete study would include both a full 3D resistive linear stability analysis and a determination of the non-linear behaviour of the plasma. We have developed a linear, fully 3D resistive MHD code, Spector3D, to examine the stable and unstable wavemodes in a plasma. As verification of the applicability and correctness of the code, we have checked our results against resistive codes of lower dimensionality, and we present here a comparsion with published ideal MHD results for LHD and Heliotron E. As an application of the code, we then determine the stability of current-carrying Heliotron E plasmas against resistive tearing modes under the variation of plasma current and pressure. (orig.)

  15. Far-infrared polarimetry/interferometry for poloidal magnetic field measurement on ZT-40M

    International Nuclear Information System (INIS)

    Erickson, R.M.

    1986-06-01

    The measurement of internal magnetic field profiles may be a very important step in the understanding of magnetic confinement physics issues. The measurement of plasma-induced Faraday rotation is one of the more promising internal magnetic field diagnostics. This thesis describes the development of a heterodyne polarimeter/interferometer for internal poloidal magnetic field measurement on ZT-40M. Heterodyne techniques were employed because of the insensitivity to spurious signal amplitude changes that cause errors in other methods. Initial problems in polarimetric sensitivity were observed that were ultimately found to be related to discharge-induced motions of the constrained diagnostic access on ZT-40M. Grazing incidence motions of the constrained diagnostic access on ZT-40M. Grazing incidence reflections on metallic surfaces of the diagnostic ports caused polarization changes that affected the measurement accuracy. Installation of internally threaded sleeves to baffle the reflections eliminated the sensitivity problem, and allowed useful Faraday rotation measurements to be made. Simultaneous polarimetric and interferometric measurements have also been demonstrated. The ability to assemble a working heterodyne polarimeter/interferometer is no longer in question. The extension of the present system to multichord operation requires increased laser power and efficiency

  16. MSC/NASTRAN ''expert'' techniques developed and applied to the TFTR poloidal field coils

    International Nuclear Information System (INIS)

    O'Toole, J.A.

    1986-01-01

    The TFTR poloidal field (PF) coils are being analyzed by PPPL and Grumman using MSC/NASTRAN as a part of an overall effort to establish the absolute limiting conditions of operation for TFTR. Each of the PF coils will be analyzed in depth, using a detailed set of finite element models. Several of the models developed are quite large because each copper turn, as well as its surrounding insulation, was modeled using solid elements. Several of the finite element models proved large enough to tax the capabilities of the National Magnetic Fusion Energy Computer Center (NMFECC), specifically disk storage space. To allow the use of substructuring techniques with their associated data bases for the larger models, it became necessary to employ certain infrequently used MSC/NASTRAN ''expert'' techniques. The techniques developed used multiple data bases and data base sets to divide each problem into a series of computer runs. For each run, only the data required was kept on active disk space, the remainder being placed in inactive ''FILEM'' storage, thus, minimizing active disk space required at any time and permitting problem solution using the NMFECC. A representative problem using the TFTR OH-1 coil global model provides an example of the techniques developed. The special considerations necessary to obtain proper results are discussed

  17. The device for the poloidal profile measurement of H sub(α)-line emission by photodiode and its calibration

    International Nuclear Information System (INIS)

    Miura, Yukitoshi; Kasai, Satoshi; Tamai, Hiroshi; Hasegawa, Koichi

    1985-11-01

    The device for the poloidal profile measurement of H sub(α)-line emission has been equipped by photodiode (S1225-5BQ by HAMAMATSU PHOTONICS K.K.) and operational amplifier. The absolute efficiency was calibrated by using He-Ne laser. The device is constructed by 44 channels. The fast type of 8 channels is for the monitor of pellet abration profile. The slow type of 36 channels is for the poloidal profile measurement of H sub(α)-line emission from JFT-2M plasma. The rise time of the fast type and the slow type is about 2.8 μsec and about 350 μsec, respectively. The absolute efficiency of the fast type and the slow type is 72.7 V/mW and 18.2 V/μW, respectively. (author)

  18. The effect of alpha incident- and poloidal-angle distributions on blister-induced first-wall erosion

    International Nuclear Information System (INIS)

    Fenske, G.; Hively, L.; Miley, G.

    1979-01-01

    The incident velocity distribution of high-energy alpha particles bombarding the first wall of an axisymmetric tokamak is evaluated as a function of poloidal angle (theta). The resulting helium concentration profile as a function of the poloidal angle and the implant depth is calculated for a typical Experimental Power Reactor (EPR) design. The critical helium concentration for blistering is first exceeded at theta approx. 55 0 . Peak concentrations are reduced somewhat through continuous D-T sputtering which, dependent on theta, reduces the blister skin thicknesses. The blistering-induced impurity level is found to increase drastically (< approx. 50%), relative to sputtering-induced impurities, at periodic intervals corresponding to approx. 4000 hours operation when each generation of blister begins to exfoliate. (orig.)

  19. A thyristor breaker of 1.5 109 V.A. for the poloidal field system of TORUS SUPRA

    International Nuclear Information System (INIS)

    Bareyt, B.; Leloup, C.; Rijnoudt, E.

    1980-09-01

    The poloidal field system of Torus Supra has an inductive storage of approximately 38 MJ, which has conducted to research the best solution for a D.C. breaker (55 kA., 27 kV). A solid-state breaker has been chosen. The working principles have been tested on a small size model. The final circuit breaker will contain a large number of thyristors in series and in parallel; the critical problem lies in the series arrangement. A test unit for full tension has been constructed. In this unit the thyristors are submitted to the maximum current as well as to the maximum voltage. The surges measured during tests are not higher than the calculated values. A synthetic circuit of the poloidal field system has been used for test under the final working conditions

  20. Dependence of CIT [Compact Ignition Tokamak] PF [poloidal field] coil currents on profile and shape parameters using the Control Matrix

    International Nuclear Information System (INIS)

    Strickler, D.J.; Peng, Y-K.M.; Jardin, S.C.; Pomphrey, N.

    1990-01-01

    The plasma shaping flexibility of the Compact Ignition Tokamak (CIT) poloidal field (PF) coil set is demonstrated through MHD equilibrium calculations of optimal PF coil current distributions and their variation with poloidal beta, internal inductance, plasma 95% elongation, and 95% triangularity. Calculations of the magnetic stored energy are used to compare solutions associated with various plasma parameters. The Control Matrix (CM) equilibrium code, together with the nonlinear equation and numerical optimization software packages HYBRD, and VMCON, respectively, are used to find equilibrium coil current distributions for fixed divertor geometry, volt-seconds, and plasma profiles in order to isolate the dependence on individual parameters. A reference equilibrium and coil current distribution are chosen, and correction currents dI are determined using the CM equilibrium method to obtain other specified plasma shapes. The reference equilibrium is the κ = 2 divertor at beginning of flattop (BOFT) with a minimum stored energy solution for the coil current distribution. The pressure profile function is fixed

  1. Experimental Identification of the Kink Instability as a Poloidal Flux Amplification Mechanism for Coaxial Gun Spheromak Formation

    OpenAIRE

    Hsu, S. C.; Bellan, P. M.

    2003-01-01

    The magnetohydrodynamic kink instability is observed and identified experimentally as a poloidal flux amplification mechanism for coaxial gun spheromak formation. Plasmas in this experiment fall into three distinct regimes which depend on the peak gun current to magnetic flux ratio, with (I) low values resulting in a straight plasma column with helical magnetic field, (II) intermediate values leading to kinking of the column axis, and (III) high values leading immediately to a detached plasma...

  2. Effect of the poloidal current from the classical diffusion in the steady-state neo-classical transport

    International Nuclear Information System (INIS)

    Igna Junior, A.D.

    1984-01-01

    The relevant parameters of two steady-state models of a plasma column, in fusion regime, were analyzed for an ideal Tokamak. The neo-classical transport theory was considered in the banana regime and in the Pfirsch-Schlueter regime. The first model proposes a correction in the numerical coefficients of the transport equations. In the other one, a poloidal current from Pfirsch-Schlueter classical diffusion is considered aiming to satisfy the pressure balance. (M.C.K.) [pt

  3. Overview of the modification to the Poloidal Divertor Experiment (PDX) to produce the Princeton Beta Experiment (PBX)

    International Nuclear Information System (INIS)

    Kuntson, D.

    1985-01-01

    The Poloidal Divertor Experiment at the Princeton Plasma Physics Laboratory has been recently transformed into the Princeton Beta Experiment. The purpose of the modification is to produce a bean-shaped plasma with beta values in excess of 10%, which is substantially above those achieved with more conventional plasma shapes. This transformation is accomplished by relocating several of the existing coils within the vacuum vessel, without a major disassembly of the device. One of the former PDX divertor coils is relocated on the mid-plane to be used as a ''pusher'' coil to create the plasma indentation. The ''pusher'' coil is protected from neutral beam impingement by watercooled graphite armor. The remaining internal PDX poloidal field coils are moved vertically to optimize the new configuration. The major new component is the set of passive stabilization coils. These coils are fabricated in segments and installed inside of the vacuum vessel. The purpose of the passive coils is to dampen the vertical instability of the bean-shaped plasma. The conversion to PBX also required reworking of internal and external poloidal coil bus leads, and the fabrication of new mechanical support structure

  4. Equilibrium and stability of high-beta toroidal plasmas with toroidal and poloidal flow in reduced magnetohydrodynamic models

    International Nuclear Information System (INIS)

    Ito, A.; Nakajima, N.

    2010-11-01

    Effects of flow, finite ion temperature and pressure anisotropy on equilibrium and stability of a high-beta toroidal plasma are studied in the framework of reduced magnetohydrodynamics (MHD). A set of reduced equilibrium equations for high-beta tokamaks with toroidal and poloidal flow comparable to the poloidal sound velocity is derived in a unified form of single-fluid and Hall MHD models and a two-fluid MHD model with ion finite Larmor radius (FLR) terms. Pressure anisotropy is introduced with equations for the parallel heat flux which are closed by a fluid closure model. It is solved analytically for the single-fluid model and the solutions shows complicated characteristics in the region around the poloidal sound velocity due to pressure anisotropy and the parallel heat flux. Numerical solutions are found by using the finite element method for the two-fluid model with FLR effects in the case of isotropic, adiabatic pressure and indicate the following features of two-fluid equilibria: the isosurfaces of the magnetic flux, the pressure and the ion stream function do not coincide with each other, and the solutions depend on the sign of the radial electric field. Reduced single-fluid MHD equations with time evolution that are consistent with the above equilibria are also derived in order to study their stability. They conserve the energy up to the order required by the equilibria. (author)

  5. Evidence for a poloidally localized enhancement of radial transport in the scrape-off layer of the Tore Supra tokamak

    Czech Academy of Sciences Publication Activity Database

    Gunn, J. P.; Boucher, C.; Dionne, M.; Ďuran, Ivan; Fuchs, Vladimír; Loarer, T.; Nanobashvili, I.; Pánek, Radomír; Pascal, J.-Y.; Saint-Laurent, F.; Stöckel, Jan; Van Rompuy, T.; Zagórski, R.; Adámek, Jiří; Bucalossi, J.; Dejarnac, Renaud; Devynck, P.; Hertout, P.; Hron, Martin; Lebrun, G.; Moreau, P.; Rimini, F.; Sarkissian, A.; Van Oost, G.

    363-365, - (2007), s. 484-490 ISSN 0022-3115. [International Conference on Plasma-Surface Interactions in Controlled Fusion Devices/17th./. Hefei, 22.05.2006-26.05. 2006] R&D Projects: GA ČR GP202/03/P062 Institutional research plan: CEZ:AV0Z20430508 Keywords : Cross-field transport * Edge plasma * Plasma flow * Tore Supra Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.643, year: 2007

  6. Plasma edge physics in the TEXTOR tokamak with poloidal and toroidal limiters

    International Nuclear Information System (INIS)

    Samm, U.; Bogen, P.; Hartwig, H.; Hintz, E.; Hoethker, K.; Lie, Y.T.; Pospieszczyk, A.; Rusbueldt, D.; Schweer, B.; Yu, Y.J.

    1989-01-01

    Investigations of the plasma edge in TEXTOR are presented on the one hand by comparing results obtained with poloidal and toroidal limiters and on the other hand by discussing general problems of plasma edge physics which are independent of the limiter configuration. The characteristic properties of plasma flow to the different limiters are analyzed and show e.g. that the fraction of total ion flow to the limiter is much larger in the case of a toroidal limiter (80%). Density and heat flux profiles are presented which demonstrate that for both types of limiters a significant steepening of the scrape-off layer (SOL) occurs close to the limiter, leading to a small heat load e-folding length of 5-8 mm. The velocity distribution of recycled neutral hydrogen at a main limiter has been determined from the Doppler broadening of the H α line. The data clearly show that a large fraction of particles (30-50%) is reflected at the limiter surface having energies of about the sheath potential. Significant isotopic effects (H/D) concerning the plasma edge properties and the plasma core are presented and their relation to enhanced particle and energy transport in hydrogen compared to deuterium is discussed. A decrease of the cross field diffusion coefficient with increasing density can be deduced from density profile measurements in the SOL and a comparison with density fluctuations is given. The role of oxygen for impurity release is demonstrated. A new type of wall conditioning - boronization - is described, with two major improvements for quasi stationary conditions: reduction of oxygen and better density control. Best results with ICRH have been obtained under these conditions. (orig.)

  7. Modelling of the toroidal asymmetry of poloidal halo currents in conducting structures

    International Nuclear Information System (INIS)

    Pomphrey, N.; Bialek, J.M.; Part, W.

    1998-01-01

    During plasma disruptions, substantial toroidal and poloidal eddy currents are generated in the vacuum vessel and other plasma facing conducting structures. Eddy currents that conduct charge through paths which close through the plasma periphery are called halo currents, and these can be of substantial magnitude. Of particular concern for tokamak design and operation is the observed toroidal asymmetry of the halo current distribution: such an asymmetric distribution leads to problematic non-uniform forces on the conducting structures. The premise is adopted that the source of toroidal asymmetry is the plasma deformation resulting from the non-linear external kink instability that develops during the current quench phase of a disruption. A simple model is presented of the kinked plasma that allows an analytic calculation of the dependence of the toroidal peaking factor (TPF) on the ratio of the halo current to the total toroidal plasma current, I h /I p . Expressions for the TPF as a function of I h /I p are derived for m/n=2/1 and m/n=1/1 helical instabilities. The expressions depend on a single parameter, which measures the amplitude of the saturated state of the kink instability. A comparison with disruption data from experiments shows good agreement. Numerical experiments that simulate non-linear external kinks provide guidance on the values expected for the saturated amplitude. It is proposed that a simple plasma halo model is adequate for assessing the engineering impact of asymmetric halo currents, since the force distribution on the conducting structures depends mainly on the 'resistive distribution' of the eddy currents. A brief description is given of an electromagnetics code that calculates the time development of eddy currents in conducting structures, and the code is applied to two halo current disruption scenarios. These are used to emphasize the importance of having an accurate eddy current calculation to correctly estimate the engineering impact of

  8. Fabrication of the new poloidal field coils for DIII-D

    International Nuclear Information System (INIS)

    Heiberger, M.; Bott, R.J.; Gallix, R.; Street, R.W.

    1986-01-01

    The six new poloidal field coil assemblies manufactured by GA Technologies (GA) for DIII-D range in diameter from 3.4-5.3 m. Two of them are 55-turn field shaping coils. Each of the other four combines one turn of the ohmic heating coil and a 55-turn field shaping coil into a single unit encased in a stainless steel box beam. These four box beams, which provide support for the coils inside, are part of the overall coil and vacuum vessel support structure. They also serve as molds for vacuum impregnating the coils with epoxy. All coils are made of hollow, water-cooled copper conductor. The larger field shaping coils are designed for 20 kA, 3 sec rectangular current pulses with 40 0 C temperature rise. The ohmic heating coil turns are capable of currents of up to 110 kA. The conductor is wrapped with Kapton and fiberglass tape; Kapton provides 1000 V/turn and 28 kV coil-to-ground insulation. The fiberglass acts as wick and reinforcement for the vacuum impregnated epoxy resin which bonds the coil together. The fabrication process is described in detail and illustrated. Tools and setups used for special operations such as induction brazing, conductor winding, conductor bending, and vacuum impregnation are presented. The quality control procedures followed to guarantee sound brazed joints are explained. The electrical tests performed at several stages of fabrication, especially the 1000 V/turn impulse tests conducted before potting to facilitate fault detection and repair, are described

  9. Numerical simulations of resistive magnetohydrodynamic instabilities in a poloidal divertor tokamak

    International Nuclear Information System (INIS)

    Uchimoto, E.

    1988-03-01

    A new 3-D resistive MHD initial value code RPD has been successfully developed from scratch to study the linear and nonlinear evolution of long wavelength resistive MHD instabilities in a square cross-section tokamak with or without a poloidal divertor. The code numerically advances the full set of compressible resistive MHD equations in a toroidal geometry, with an important option of permitting the divertor separatrix and the region outside it to be in the computational domain. A severe temporal step size restriction for numerical stability imposed by the fast compressional waves was removed by developing and implementing a new, efficient semi-implicit scheme extending one first proposed by Harned and Kerner. As a result, the code typically runs faster than that with a mostly explicit scheme by a factor of about the aspect ratio. The equilibrium input for RPD is generated by a new 2-D code EQPD that is based on the Chodura-Schluter method. The RPD code, as well as the new semi-implicit scheme, has passed very extensive numerical tests in both divertor and divertorless geometries. Linear and nonlinear simulations in a divertorless geometry have reproduced the standard, previously known results. In a geometry with a four-node divertor the m = 2,n = 1 (2/1) tearing mode tends to be linearly stabilized as the q = 2 surface approaches the divertor separatrix. However, the m = 1,n = 1 (1/1) resistive kink mode remains relatively unaffected by the nearness of the q = 1 surface to the divertor separatrix. When plasma current is added to the region outside the divertor separatrix, the 2/1 tearing mode is linearly stabilized not by this current, but by the profile modifications induced near the q = 2 surface and the divertor separatrix. A similar stabilization effect is seen for the 1/1 resistive kink mode, but to a lesser extent. 77 refs., 91 figs

  10. Modeling of stochastic broadening in a poloidally diverted discharge with piecewise analytic symplectic mapping flux functions

    International Nuclear Information System (INIS)

    Punjabi, Alkesh; Ali, Halima; Evans, Todd; Boozer, Allen

    2008-01-01

    A highly accurate calculation of the magnetic field line Hamiltonian in DIII-D [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)] is made from piecewise analytic equilibrium fit data for shot 115467 3000 ms. The safety factor calculated from this Hamiltonian has a logarithmic singularity at an ideal separatrix. The logarithmic region inside the ideal separatrix contains 2.5% of toroidal flux inside the separatrix. The logarithmic region is symmetric about the separatrix. An area-preserving map for the field line trajectories is obtained in magnetic coordinates from the Hamiltonian equations of motion for the lines and a canonical transformation. This map is used to calculate trajectories of magnetic field lines in DIII-D. The field line Hamiltonian in DIII-D is used as the generating function for the map and to calculate stochastic broadening from field-errors and spatial noise near the separatrix. A very negligible amount (0.03%) of magnetic flux is lost from inside the separatrix due to these nonaxisymmetric fields. It is quite easy to add magnetic perturbations to generating functions and calculate trajectories for maps in magnetic coordinates. However, it is not possible to integrate across the separatrix. It is also difficult to find the physical position corresponding to magnetic coordinates. For open field lines, periodicity in the poloidal angle is assumed, which is not satisfactory. The goal of this paper is to demonstrate the efficacy of the symplectic mapping approach rather than using realistic DIII-D parameters or modeling specific experimental results

  11. A Strong Self-adaptivity Localization Algorithm Based on Gray Prediction Model for Mobile Nodes%一种使用灰度预测模型的强自适应性移动节点定位算法

    Institute of Scientific and Technical Information of China (English)

    单志龙; 刘兰辉; 张迎胜; 黄广雄

    2014-01-01

    定位技术是无线传感器网络的关键技术,而关于移动节点的定位又是其中的技术难点。该文针对移动节点定位问题提出基于灰度预测模型的强自适应性移动节点定位算法(GPLA)。算法在基于蒙特卡罗定位思想的基础上,利用灰度预测模型进行运动预测,精确采样区域,用估计距离进行滤波,提高采样粒子的有效性,通过限制性的线性交叉操作来生成新粒子,从而加快样本生成,减少采样次数,提高算法效率。仿真实验中,该算法在通信半径、锚节点密度、样本大小等条件变化的情况下,表现出较好的性能与较强的自适应性。%Localization of sensor nodes is an important issue in Wireless Sensor Networks (WSNs), and positioning of the mobile nodes is one of the difficulties. To deal with this issue, a strong self-adaptive Localization Algorithm based on Gray Prediction model for mobile nodes (GPLA) is proposed. On the background of Monte Carlo Localization Algoritm, gray prediction model is used in GPLA, which can accurate sampling area is used to predict nodes motion situation. In filtering process, estimated distance is taken to improve the validity of the sample particles. Finally, restrictive linear crossover is used to generate new particles, which can accelerate the sampling process, reduce the times of sampling and heighten the efficiency of GPLA. Simulation results show that the algorithm has excellent performance and strong self-adaptivity in different communication radius, anchor node, sample size, and other conditions.

  12. Charge-exchange measurements of MHD activity during neutral beam injection in the Princeton Large Torus and the Poloidal Divertor Experiment

    International Nuclear Information System (INIS)

    Goldston, R.J.; Kaita, R.; Beiersdorfer, P.; Gammel, G.; Herndon, D.L.; McCune, D.C.; Meyerhofer, D.D.

    1986-07-01

    The horizontally scanning, multiangle charge-exchange analyzers on the Princeton Large Torus (PLT) and the Poloidal Divertor Experiment (PDX) were used to study the effects of MHD activity on the background ion distribution function and on the beam ion slowing-down process during high-power neutral injection. Sawtooth oscillations were observed in the fast ion flux on PLT and PDX, and measurements with neutral beams providing local neutral density enhancement indicate that ions are transported radially when these events occur. With near-perpendicular injection in PDX, at the lower toroidal fields necessary to maximize beta, rapid, repetitive bursts of greatly enhanced charge-exchange flux were observed. These are associated with the ''fishbone'' MHD instability, and a substantial depletion of the perpendicular slowing-down spectrum below the injection energy was seen. A simple phenomenological model for this loss mechanism was developed, and its use in simulation codes has been successful in providing good agreement with the data. The behavior and characteristics of this model are well matched by the direct theoretical calculations

  13. Reynolds stress of localized toroidal modes

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Mahajan, S.M.

    1995-02-01

    An investigation of the 2D toroidal eigenmode problem reveals the possibility of a new consistent 2D structure, the dissipative BM-II mode. In contrast to the conventional ballooning mode, the new mode is poloidally localized at π/2 (or -π/2), and possesses significant radial asymmetry. The radial asymmetry, in turn, allows the dissipative BM-II to generate considerably larger Reynolds stress as compared to the standard slab drift type modes. It is also shown that a wide class of localized dissipative toroidal modes are likely to be of the dissipative BM-II nature, suggesting that at the tokamak edge, the fluctuation generated Reynolds stress (a possible source of poloidal flow) can be significant

  14. Reynolds stress of localized toroidal modes

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Mahajan, S.M.

    1995-01-01

    An investigation of the 2D toroidal eigenmode problem reveals the possibility of a new consistent 2D structure, the dissipative BM-II mode. In contrast to the conventional ballooning mode, the new mode is poloidally localized at π/2 (or -π/2), and possesses significant radial asymmetry. The radial asymmetry, in turn, allows the dissipative BM-II to generate considerably larger Reynolds stress as compared to the standard slab drift type modes. It is also shown that a wide class of localized dissipative toroidal modes are likely to be of the dissipative BM-II nature, suggesting that at the tokamak edge, the fluctuation generated Reynolds stress (a possible source of poloidal flow) can be significant. (author). 15 refs

  15. Resonance localization in tokamaks excited with ICRF waves

    International Nuclear Information System (INIS)

    Kerbel, G.D.; McCoy, M.G.

    1985-01-01

    Advanced wave models used to evaluate ICRH in tokamaks typically use warm plasma theory and allow inhomogeneity in one dimension. The majority of these calculations neglect the fact that gyrocenters experience the inhomogeneity via their motion parallel to the magnetic field. The non-local effects of rotational transform and toroidicity can play a significant role in both the propagation and the absorption physics. In strongly driven systems, wave damping can distort the particle distribution function supporting the wave and this produces changes in the absorption. The most common approach is to use Maxwellian absorption rates. We have developed a bounce-averaged Fokker-Planck quasilinear computational model which evolves the population of particles on more realistic orbits. Each wave-particle resonance has its own specific interaction amplitude within any given volume element; these data need only be generated once, and appropriately stored for efficient retrieval. The wave-particle resonant interaction then serves as a mechanism by which the diffusion of particle populations can proceed among neighboring orbits. The local specific spectral energy absorption rate is directly calculable once the orbit geometry and populations are determined. The code is constructed in such fashion as to accommodate wave propagation models which provide the wave spectral energy density on a poloidal cross-section. Information provided by the calculation includes the local absorption properties of the medium which can then be exploited to evolve the wave field

  16. Physics of strong internal transport barriers in JT-60U reversed-magnetic-shear plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, N; Takizuka, T; Sakamoto, Y; Fujita, T; Kamada, Y; Ide, S; Koide, Y [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka, Ibaraki 311-0193 (Japan)

    2006-05-15

    The physics of strong internal transport barriers (ITBs) in JT-60U reversed-magnetic-shear (RS) plasmas has been studied through the modelling on the 1.5 dimensional transport simulation. The key physics to produce two scalings on the basis of the JT-60U box-type ITB database are identified. As for the scaling for the narrow ITB width proportional to the ion poloidal gyroradius, the following three physics are important: (1) the sharp reduction of the anomalous transport below the neoclassical level in the RS region, (2) the autonomous formation of pressure and current profiles through the neoclassical transport and the bootstrap current and (3) the large difference between the neoclassical transport and the anomalous transport in the normal-shear region. As for the scaling for the energy confinement inside ITB ({epsilon}{sub f}{beta}{sub p,core} {approx} 0.25, where {epsilon}{sub f} is the inverse aspect ratio at the ITB foot and {beta}{sub p,core} is the core poloidal beta value), the value of 0.25 is found to be a saturation value due to the MHD equilibrium. The value of {epsilon}{sub f}{beta}{sub p,core} reaches the saturation value, when the box-type ITB is formed in the strong RS plasma with a large asymmetry of the poloidal magnetic field, regardless of the details of the transport and the non-inductively driven current.

  17. Spectral dependence, efficiency and localization of non-inductive current drive via helicity injection by global Alfven waves in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Komoshvili, K.; Cuperman, S.; Bruma, C. [Tel Aviv Univ. (Israel). Sackler Faculty of Exact Sciences

    1997-04-01

    A systematic study of non-inductive current drive via helicity injection by global Alfven eigenmode (GAE) waves is carried out. For illustration, the first radial mode of the discrete resonant GAE spectrum is considered. The following aspects are given special attention: spectral analysis, radial dependence and efficiency - all of these functions of the characteristics of the waves launched by an external, concentric antenna (i.e. wave frequency and poloidal and toroidal wavenumbers). The tokamak plasma is simulated by a current-carrying cylindrical plasma column surrounded by a helical sheet current and situated inside a perfectly conducting shell, with incorporation of equilibrium (simulated) toroidal field, magnetic shear and a relatively large poloidal magnetic field component. Within the framework of low-{beta} MHD model equations and for typical tokamak physical parameters, the following basic results are obtained: (1) in the range of poloidal wavenumbers -3{<=} m {<=} 3 and toroidal wavenumbers -20{<=} n {<=}20, resonant GAE peaks below the Alfven continuum are found; (2) the power absorption (P), current drive (I) and corresponding frequency of the GAE modes depend strongly on the sets of (m,n) values considered; (3) the `net` current drive is positive (i.e. flows in the direction of the equilibrium current j{sub 0z} for m = -1, -2, -3 and -20 {<=} n {<=} -1 as well as for m +1, +2, +3 and n > 10); (4) in the cases m = -1, -2, -3, the efficiency of current drive, I/P, increases with /m/ and I/n/; (5) the radial localization of the current drive in each of the cases considered is determined and tabulated. (Author).

  18. Spectral dependence, efficiency and localization of non-inductive current drive via helicity injection by global Alfven waves in tokamak plasmas

    International Nuclear Information System (INIS)

    Komoshvili, K.; Cuperman, S.; Bruma, C.

    1997-01-01

    A systematic study of non-inductive current drive via helicity injection by global Alfven eigenmode (GAE) waves is carried out. For illustration, the first radial mode of the discrete resonant GAE spectrum is considered. The following aspects are given special attention: spectral analysis, radial dependence and efficiency - all of these functions of the characteristics of the waves launched by an external, concentric antenna (i.e. wave frequency and poloidal and toroidal wavenumbers). The tokamak plasma is simulated by a current-carrying cylindrical plasma column surrounded by a helical sheet current and situated inside a perfectly conducting shell, with incorporation of equilibrium (simulated) toroidal field, magnetic shear and a relatively large poloidal magnetic field component. Within the framework of low-β MHD model equations and for typical tokamak physical parameters, the following basic results are obtained: (1) in the range of poloidal wavenumbers -3≤ m ≤ 3 and toroidal wavenumbers -20≤ n ≤20, resonant GAE peaks below the Alfven continuum are found; (2) the power absorption (P), current drive (I) and corresponding frequency of the GAE modes depend strongly on the sets of (m,n) values considered; (3) the 'net' current drive is positive (i.e. flows in the direction of the equilibrium current j 0z for m = -1, -2, -3 and -20 ≤ n ≤ -1 as well as for m +1, +2, +3 and n > 10; (4) in the cases m = -1, -2, -3, the efficiency of current drive, I/P, increases with /m/ and I/n/; (5) the radial localization of the current drive in each of the cases considered is determined and tabulated. (Author)

  19. Updating the Design of the Poloidal Field Coils for the ITER Magnet System

    International Nuclear Information System (INIS)

    Yoshida, K.; Takahashi, Y.; Mitchell, N.; Jong, C.; Bessette, D.

    2006-01-01

    The ITER superconducting coil system consists of 18 Toroidal Field coils, six Poloidal Field (PF) coils, six Central Solenoid (CS) modules, 18 Correction Coils and their feeders. The six PF coils are attached to the TF coil cases through flexible plates or sliding supports allowing radial displacements. The PF coils and CS modules provide suitable magnetic fields for plasma shaping and position control. The PF coils use NbTi superconductor, cooled by supercritical helium. This gives a substantial cost saving compared to Nb 3 Sn and the elimination of a reaction heat treatment greatly simplifies the insulation of such large diameter coils. The cable configuration is 6 sub-cables arranged around a central cooling space. The conductors have a heavy square walled stainless steel jacket. The latest parameters of conductor design are evaluated by analysis of the minimum quench energy and hotspot temperature. The PF coils are self supporting as regards the radial magnetic loads. The vertical loads on each PF coil are transmitted to the TF coil cases. Load transmission is through flexible plates for the PF2 to PF5 coils or sliding supports for the PF1 and PF6 coils with fibreslip bearing surfaces. The supports for the PF winding consist of a set of clamping plates and stud bolts. The shape of the clamping plates has been designed to minimize stresses in the winding pack insulation. Bolts are pre-tensioned to keep pressure between the winding pack and clamping plate. Because of the difficulties in replacing the PF coils, the most unreliable component (the coil insulation) is designed with extra redundancy. There are two insulation layers with a thin metal screen in between. By monitoring the voltage of the intermediate screen, it is possible to detect an incipient short, defined as a short in only one of the two insulation layers. Adjustment of the screen voltage level may allow the shot growth to the stopped once it is detected. Alternately the faulty double pancake must

  20. MHD equilibrium methods for ITER [International Thermonuclear Experimental Reactor] PF [poloidal field] coil design and systems analysis

    International Nuclear Information System (INIS)

    Strickler, D.J.; Galambos, J.D.; Peng, Y.K.M.

    1989-03-01

    Two versions of the Fusion Engineering Design Center (FEDC) free-boundary equilibrium code designed to computer the poloidal field (PF) coil current distribution of elongated, magnetically limited tokamak plasmas are demonstrated and applied to the systems analysis of the impact of plasma elongation on the design point of the International Thermonuclear Experimental Reactor (ITER). These notes were presented at the ITER Specialists' Meeting on the PF Coil System and Operational Scenario, held at the Max Planck Institute for Plasma Physics in Garching, Federal Republic of Germany, May 24--27, 1988. 8 refs., 6 figs., 4 tabs

  1. Calculation of edge ion temperature and poloidal rotation velocity from carbon III triplet measurements on the COMPASS tokamak

    Czech Academy of Sciences Publication Activity Database

    Tomeš, Matěj; Weinzettl, Vladimír; Pereira, T.; Imríšek, Martin; Seidl, Jakub

    2016-01-01

    Roč. 61, č. 4 (2016), s. 443-451 ISSN 0029-5922. [Summer School of Plasma Diagnostics Phdiafusion - Soft X-Ray Diagnostics for Fusion Plasma. Bezmiechowa, 16.06.2015-20.06.2015] Institutional support: RVO:61389021 Keywords : high-resolution spectroscopy * spectra processing * peak detection * line detection * line fi tting * poloidal plasma rotation * ion temperature * C III * impurity temperature Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.760, year: 2016 https://www.degruyter.com/view/j/nuka.2016.61.issue-4/nuka-2016-0073/nuka-2016-0073.xml

  2. Measurement of the poloidal magnetic field in the PBX-M tokamak using the motional Stark effect

    International Nuclear Information System (INIS)

    Levinton, F.M.; Fonck, R.J.; Gammel, G.M.; Kaita, R.; Kugel, H.W.; Powell, E.T.; Roberts, D.W.

    1989-05-01

    Polarimetry measurements of the Doppler-shifted H/sub α/ emission from a hydrogen neutral beam on the PBX-M tokamak have been employed in a novel technique for obtaining q(0) and poloidal magnetic field profiles. The electric field from the beam particle motion across the magnetic field (E = V/sub beam/ /times/ B) causes a wavelength splitting of several angstroms, and polarization of the emitted radiation (Stark effect). Viewed transverse to the fields, the emission is linearly polarized with the angle of polarization related to the direction of the magnetic field. 14 refs., 5 figs

  3. Development and application of poloidal correlation reflectometry to study turbulent structures in the ASDEX Upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Prisiazhniuk, Dmitrii

    2017-06-05

    One of the key question of high temperature plasma confinement in a magnetic field is how plasma turbulence influences the radial transport of particles and energy. A better understanding of transport processes caused by turbulence would allow to improve the plasma confinement in fusion devices. To this end a deeper understanding of the mechanisms controlling the development, saturation and stabilization of turbulence is needed. From the experimental point of view a main challenge in these investigations is the measurement of plasma parameters on both small temporal (μs) and spatial (mm) scales. In this thesis a new microwave heterodyne poloidal correlation reflectometry diagnostic has been developed and installed at the ASDEX Upgrade tokamak to investigate the cross-correlation of turbulent density fluctuations. This diagnostic yields information on fundamental turbulence parameters such as the perpendicular propagation velocity v {sub perpendicular} {sub to}, the perpendicular correlation length l {sub perpendicular} {sub to} (characteristic size of the turbulent eddies) and the decorrelation time τ{sub d} (characteristic life time of the turbulent eddies) over a wide range of plasma densities. The inclination of the turbulent eddies α in the poloidal-toroidal plane spanned by the magnetic flux surfaces of a tokamak, being a measure of the magnetic field pitch angle, can also be obtained. The turbulence investigations were performed in low confinement mode (L-mode) plasmas for a range of plasma parameters. All measurements were interpreted taking into account the transfer function of reflectometry in the Born approximation. The results are compared with theoretical predictions and simulations. In the first part of this thesis the inclination and the propagation of turbulent structures are investigated. It is shown that eddies are nearly aligned to the magnetic field line and, therefore, the magnetic field pitch angle can be measured with a precision of about 1

  4. Characterization and interpretation of the Edge Snake in between type-I edge localized modes at ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, F; Guenter, S; Kallenbach, A; Maraschek, M; Boom, J; Fischer, R; Hicks, N; Reiter, B; Wolfrum, E [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching, EURATOM Association (Germany); Luhmann, N C Jr [University of California at Davis, Davis, CA 95616 (United States); Park, H K [POSTECH, Pahang, Gyeongbuk 790-784 (Korea, Republic of); Wenninger, R, E-mail: fabian.sommer@ipp.mpg.de [Universitaetssternwarte der Ludwig-Maximilians-Universitaet, D-81679 Muenchen (Germany)

    2011-08-15

    A new magnetohydrodynamic instability called the 'Edge Snake', which was found in 2006 at the tokamak ASDEX Upgrade during type-I ELMy H-modes, is investigated. It is located within the separatrix in the region of high temperature and density gradients and has a toroidal mode number of n = 1. The Edge Snake consists of a radially and poloidally strongly localized current wire, in which the temperature and density profiles flatten. This significant reduction in pressure gradient leads to a reduction in the neoclassical Bootstrap current and can plausibly explain the drive of the instability. The experimental observations point towards a magnetic island with a defect current inside the O-point of the island. The Edge Snake is compared with similar instabilities at JET, DIII-D and ASDEX Upgrade.

  5. PC-based package for interactive assessment of MHD equilibrium and poloidal field coil design in axisymmetric toroidal geometry

    International Nuclear Information System (INIS)

    Kelleher, W.P.

    1987-01-01

    In the assessment of Magnetohydrodynamic (MHD) equilibrium and Poloidal Field Coil (PFC) arrangement for toroidal axisymmetric geometry, the Grad-Shafranov equation must be solved, either analytically or numerically. Existing numerical tools have been developed primarily for mainframe usage and can prove cumbersome for screening assessments and parametric evaluations. The objective of this thesis was to develop a personal computer (PC)-based calculational tool for assessing MHD/PFC problems in a highly interactive mode, well suited for scoping studies. The approach adopted involves a two-step process: first the MHD equilibrium is calculated and then the PFC arrangement, consistent with the equilibrium, is determined in an interactive design environment. The PC-based system developed consists of two programs: (1) PCEQ, which solve the MHD equilibrium problem and (2) PFDE-SIGN, which is employed to arrive at a PFC arrangement. PCEQ provides an output file including, but not limited to, the following: poloidal beta, total beta, safety factors, q, on axis and on edge. PCEQ plots the following contours and/or profiles: flux, pressure and toroidal current density, safety factor, and ratio of plasma toroidal field to vacuum field

  6. Magnetic field pitch angle and perpendicular velocity measurements from multi-point time-delay estimation of poloidal correlation reflectometry

    Science.gov (United States)

    Prisiazhniuk, D.; Krämer-Flecken, A.; Conway, G. D.; Happel, T.; Lebschy, A.; Manz, P.; Nikolaeva, V.; Stroth, U.; the ASDEX Upgrade Team

    2017-02-01

    In fusion machines, turbulent eddies are expected to be aligned with the direction of the magnetic field lines and to propagate in the perpendicular direction. Time delay measurements of density fluctuations can be used to calculate the magnetic field pitch angle α and perpendicular velocity {{v}\\bot} profiles. The method is applied to poloidal correlation reflectometry installed at ASDEX Upgrade and TEXTOR, which measure density fluctuations from poloidally and toroidally separated antennas. Validation of the method is achieved by comparing the perpendicular velocity (composed of the E× B drift and the phase velocity of turbulence {{v}\\bot}={{v}E× B}+{{v}\\text{ph}} ) with Doppler reflectometry measurements and with neoclassical {{v}E× B} calculations. An important condition for the application of the method is the presence of turbulence with a sufficiently long decorrelation time. It is shown that at the shear layer the decorrelation time is reduced, limiting the application of the method. The magnetic field pitch angle measured by this method shows the expected dependence on the magnetic field, plasma current and radial position. The profile of the pitch angle reproduces the expected shape and values. However, comparison with the equilibrium reconstruction code cliste suggests an additional inclination of turbulent eddies at the pedestal position (2-3°). This additional angle decreases towards the core and at the edge.

  7. Multipoint spacecraft observations of long-lasting poloidal Pc4 pulsations in the dayside magnetosphere on 1–2 May 2014

    Directory of Open Access Journals (Sweden)

    G. Korotova

    2016-11-01

    Full Text Available We use magnetic field and plasma observations from the Van Allen Probes, Time History of Events and Macroscale Interactions during Substorms (THEMIS and Geostationary Operational Environmental Satellite system (GOES spacecraft to study the spatial and temporal characteristics of long-lasting poloidal Pc4 pulsations in the dayside magnetosphere. The pulsations were observed after the main phase of a moderate storm during low geomagnetic activity. The pulsations occurred during various interplanetary conditions and the solar wind parameters do not seem to control the occurrence of the pulsations. The most striking feature of the Pc4 magnetic field pulsations was their occurrence at similar locations during three of four successive orbits. We used this information to study the latitudinal nodal structure of the pulsations and demonstrated that the latitudinal extent of the magnetic field pulsations did not exceed 2 Earth radii (RE. A phase shift between the azimuthal and radial components of the electric and magnetic fields was observed from ZSM  =  0.30 RE to ZSM  =  −0.16 RE. We used magnetic and electric field data from Van Allen Probes to determine the structure of ULF waves. We showed that the Pc4 magnetic field pulsations were radially polarized and are the second-mode harmonic waves. We suggest that the spacecraft were near a magnetic field null during the second orbit when they failed to observe the magnetic field pulsations at the local times where pulsations were observed on previous and successive orbits. We investigated the spectral structure of the Pc4 pulsations. Each spacecraft observed a decrease of the dominant period as it moved to a smaller L shell (stronger magnetic field strength. We demonstrated that higher frequencies occurred at times and locations where Alfvén velocities were greater, i.e., on Orbit 1. There is some evidence that the periods of the pulsations increased during the plasmasphere refilling

  8. Testing strong interaction theories

    International Nuclear Information System (INIS)

    Ellis, J.

    1979-01-01

    The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)

  9. Direct measurement of the plasma equilibrium response to poloidal field changes and H∞ controller tests in TCV

    International Nuclear Information System (INIS)

    Lister, J.B.; Albanese, R.; Ambrosino, G.

    2001-01-01

    The control of ITER provides several challenges which can be met using existing techniques for the design of modern controllers. The specific case of the control of the Poloidal Field (PF) system has sollicited considerable interest. One feature of the design of such controllers is their dependence on a sufficiently accurate model of the full system under control. To this end, experiments have been performed on the TCV tokamak to validate one plasma equilibrium response model, the CREATE-L model. Using a new technique, the open loop response of TCV has been directly measured in the frequency domain. These experimental results compare well with the CREATE-L model. This model was subsequently used to design a PF system controller, using methods proposed during the ITER EDA and the first test on TCV has been successful. (author)

  10. Direct measurement of the plasma equilibrium response to poloidal field changes and H∞ controller tests in TCV

    International Nuclear Information System (INIS)

    Lister, J.B.; Albanese, R.; Ambrosino, G.

    1999-01-01

    The control of ITER provides several challenges which can be met using existing techniques for the design of modern controllers. The specific case of the control of the Poloidal Field (PF) system has solicited considerable interest. One feature of the design of such controllers is their dependence on a sufficiently accurate model of the full system under control. To this end, experiments have been performed on the TCV tokamak to validate one plasma equilibrium response model, the CREATE-L model. Using a new technique, the open loop response of TCV has been directly measured in the frequency domain. These experimental results compare well with the CREATE-L model. This model was subsequently used to design a PF system controller, using methods proposed during the ITER EDA and the first test on TCV has been successful. (author)

  11. Theoretical study on the laser-driven ion-beam trace probe in toroidal devices with large poloidal magnetic field

    Science.gov (United States)

    Yang, X.; Xiao, C.; Chen, Y.; Xu, T.; Yu, Y.; Xu, M.; Wang, L.; Wang, X.; Lin, C.

    2018-03-01

    Recently, a new diagnostic method, Laser-driven Ion-beam Trace Probe (LITP), has been proposed to reconstruct 2D profiles of the poloidal magnetic field (Bp) and radial electric field (Er) in the tokamak devices. A linear assumption and test particle model were used in those reconstructions. In some toroidal devices such as the spherical tokamak and the Reversal Field Pinch (RFP), Bp is not small enough to meet the linear assumption. In those cases, the error of reconstruction increases quickly when Bp is larger than 10% of the toroidal magnetic field (Bt), and the previous test particle model may cause large error in the tomography process. Here a nonlinear reconstruction method is proposed for those cases. Preliminary numerical results show that LITP could be applied not only in tokamak devices, but also in other toroidal devices, such as the spherical tokamak, RFP, etc.

  12. Generation of sheared poloidal flows by electrostatic and magnetic Reynolds stress in the boundary plasma of HT-7 tokamak

    International Nuclear Information System (INIS)

    Xu, G.S.; Wan, B.N.; Li, J.

    2005-01-01

    The radial profiles of electrostatic and magnetic Reynolds stress (Maxwell stress) have been measured in the plasma boundary region of HT-7 tokamak. Experimental results show that the radial gradient of electrostatic Reynolds stress (ERS) changes sign across the last closed flux surface, and the neoclassical flow damping and the damping due to charge exchange processes are balanced by the radial gradient of ERS, which sustains the equilibrium sheared flow structure in a steady state. The contribution of magnetic Reynolds stress was found unimportant in a low β plasma. Detailed analyses indicate that the propagation properties of turbulence in radial and poloidal directions and the profiles of potential fluctuation level are responsible for the radial structure of ERS. (author)

  13. Profile measurements of localized fast electrons and ions in TORE SUPRA

    International Nuclear Information System (INIS)

    Basiuk, V.; Roubin, J.P.; Becoulet, A.; Carrasco, J.; Martin, G.; Moreau, D.; Saoutic, B.

    1992-01-01

    The strong toroidal and poloidal anisotropy of the heat flux to the first wall of Tore Supra during additional heating has been related to suprathermal particle losses induced by the TF ripple. In this paper we describe a new system of electric collectors designed to diagnose these localized particles and we analyse measurements performed during LHCD, ICRH and NBI heating. The interaction of fast particles created by additional heating with the TF ripple perturbation in Tore Supra has been analyzed by a direct measurement of the localized particles. The good confinement region has been identified thanks to a peak in the measured current profiles and is in agreement with theory. During LHCD and ICRH, the global losses are weak but strongly anisotropic leading to hot spots at the wall. During ICRH, an ejection of fast ions by the sawteeth towards peripheral zones where they get lost in the ripple has been seen. This is a possible scenario of α particle losses in a reactor

  14. Magnetic X-points, edge localized modes, and stochasticity

    International Nuclear Information System (INIS)

    Sugiyama, L. E.; Strauss, H. R.

    2010-01-01

    Edge localized modes (ELMs) near the boundary of a high temperature, magnetically confined toroidal plasma represent a new type of nonlinear magnetohydrodynamic (MHD) plasma instability that grows through a coherent plasma interaction with part of a chaotic magnetic field. Under perturbation, the freely moving magnetic boundary surface with an X-point splits into two different limiting asymptotic surfaces (manifolds), similar to the behavior of a hyperbolic saddle point in Hamiltonian dynamics. Numerical simulation using the extended MHD code M3D shows that field-aligned plasma instabilities, such as ballooning modes, can couple to the ''unstable'' manifold that forms helical, field-following lobes around the original surface. Large type I ELMs proceed in stages. Initially, a rapidly growing ballooning outburst involves the entire outboard side. Large plasma fingers grow well off the midplane, while low density regions penetrate deeply into the plasma. The magnetic field becomes superficially stochastic. A secondary inboard edge instability causes inboard plasma loss. The plasma gradually relaxes back toward axisymmetry, with diminishing cycles of edge instability. Poloidal rotation of the interior and edge plasma may be driven. The magnetic tangle constrains the early nonlinear ballooning, but may encourage the later inward penetration. Equilibrium toroidal rotation and two-fluid diamagnetic drifts have relatively small effects on a strong MHD instability. Intrinsic magnetic stochasticity may help explain the wide range of experimentally observed ELMs and ELM-free behavior in fusion plasmas, as well as properties of the H-mode and plasma edge.

  15. Abortion: Strong's counterexamples fail

    DEFF Research Database (Denmark)

    Di Nucci, Ezio

    2009-01-01

    This paper shows that the counterexamples proposed by Strong in 2008 in the Journal of Medical Ethics to Marquis's argument against abortion fail. Strong's basic idea is that there are cases--for example, terminally ill patients--where killing an adult human being is prima facie seriously morally...

  16. Strong Langmuir turbulence

    International Nuclear Information System (INIS)

    Goldman, M.V.

    1984-01-01

    After a brief discussion of beam-excited Langmuir turbulence in the solar wind, we explain the criteria for wave-particle, three-wave and strong turbulence interactions. We then present the results of a numerical integration of the Zakharov equations, which describe the strong turbulence saturation of a weak (low-density) high energy, bump-on-tail beam instability. (author)

  17. MHD considerations for poloidal-toroidal coolant ducts of self-cooled blankets

    International Nuclear Information System (INIS)

    Hua, T.Q.; Walker, J.S.

    1990-01-01

    Magnetohydrodynamic flows of liquid metals through sharp elbow ducts with rectangular cross sections and with thin conducting walls in the presence of strong uniform magnetic fields are examined. The geometries simulate the poloidaltoroidal coolant channels in fusion tokamak blankets. Analysis for obtaining the three-dimensional numerical solutions are described. Results for pressure drop, velocity profiles and flow distribution are predicted for the upcoming joint ANL/KfK sharp elbow experiment. Results from a parametric study using fusion relevant parameters to investigate the three-dimensional pressure drop are presented for possible applications to blanket designs. 10 refs., 9 refs

  18. Equilibrium and stability studies for an iron-core tokamak with a poloidal divertor

    International Nuclear Information System (INIS)

    Solano, E.R.; Neilson, G.H.; Lao, L.L.

    1989-01-01

    A study of plasma equilibrium and stability in a tokamak with an unsaturated iron core is presented. A spool model is developed for the iron. Both, a simplified force balance code and a Grad-Shafranov solver are used to study the plasma equilibrium. It is observed that the iron can strongly modify the conditions for equilibrium and stability, and in some cases an infinite cylinder model for the iron core is not adequate. New criteria for plasma position stability in the presence of an iron core are introduced. 17 refs., 4 figs., 3 tabs

  19. Theoretical studies of strongly correlated fermions

    Energy Technology Data Exchange (ETDEWEB)

    Logan, D [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Strongly correlated fermions are investigated. An understanding of strongly correlated fermions underpins a diverse range of phenomena such as metal-insulator transitions, high-temperature superconductivity, magnetic impurity problems and the properties of heavy-fermion systems, in all of which local moments play an important role. (author).

  20. The lambda sigma calculus and strong normalization

    DEFF Research Database (Denmark)

    Schack-Nielsen, Anders; Schürmann, Carsten

    Explicit substitution calculi can be classified into several dis- tinct categories depending on whether they are confluent, meta-confluent, strong normalization preserving, strongly normalizing, simulating, fully compositional, and/or local. In this paper we present a variant of the λσ-calculus, ...

  1. Strong intrinsic motivation

    OpenAIRE

    Dessi, Roberta; Rustichini, Aldo

    2015-01-01

    A large literature in psychology, and more recently in economics, has argued that monetary rewards can reduce intrinsic motivation. We investigate whether the negative impact persists when intrinsic motivation is strong, and test this hypothesis experimentally focusing on the motivation to undertake interesting and challenging tasks, informative about individual ability. We find that this type of task can generate strong intrinsic motivation, that is impervious to the effect of monetary incen...

  2. Bitcoin Meets Strong Consistency

    OpenAIRE

    Decker, Christian; Seidel, Jochen; Wattenhofer, Roger

    2014-01-01

    The Bitcoin system only provides eventual consistency. For everyday life, the time to confirm a Bitcoin transaction is prohibitively slow. In this paper we propose a new system, built on the Bitcoin blockchain, which enables strong consistency. Our system, PeerCensus, acts as a certification authority, manages peer identities in a peer-to-peer network, and ultimately enhances Bitcoin and similar systems with strong consistency. Our extensive analysis shows that PeerCensus is in a secure state...

  3. Strong gravity and supersymmetry

    International Nuclear Information System (INIS)

    Chamseddine, Ali H.; Salam, A.; Strathdee, J.

    1977-11-01

    A supersymmetric theory is constructed for a strong f plus a weak g graviton, together with their accompanying massive gravitinos, by gaugin the gradel 0Sp(2,2,1)x 0Sp(2,2,1) structure. The mixing term between f and g fields, which makes the strong graviton massive, can be introduced through a spontaneous symmetry-breaking mechanism implemented in this note by constructing a non-linear realization of the symmetry group

  4. Strong versions of Bell's theorem

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1994-01-01

    Technical aspects of a recently constructed strong version of Bell's theorem are discussed. The theorem assumes neither hidden variables nor factorization, and neither determinism nor counterfactual definiteness. It deals directly with logical connections. Hence its relationship with modal logic needs to be described. It is shown that the proof can be embedded in an orthodox modal logic, and hence its compatibility with modal logic assured, but that this embedding weakens the theorem by introducing as added assumptions the conventionalities of the particular modal logic that is adopted. This weakening is avoided in the recent proof by using directly the set-theoretic conditions entailed by the locality assumption

  5. The importance of matched poloidal spectra to error field correction in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Paz-Soldan, C., E-mail: paz-soldan@fusion.gat.com; Lanctot, M. J.; Buttery, R. J.; La Haye, R. J.; Strait, E. J. [General Atomics, P.O. Box 85608, San Diego, California 92121 (United States); Logan, N. C.; Park, J.-K.; Solomon, W. M. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Shiraki, D.; Hanson, J. M. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2014-07-15

    Optimal error field correction (EFC) is thought to be achieved when coupling to the least-stable “dominant” mode of the plasma is nulled at each toroidal mode number (n). The limit of this picture is tested in the DIII-D tokamak by applying superpositions of in- and ex-vessel coil set n = 1 fields calculated to be fully orthogonal to the n = 1 dominant mode. In co-rotating H-mode and low-density Ohmic scenarios, the plasma is found to be, respectively, 7× and 20× less sensitive to the orthogonal field as compared to the in-vessel coil set field. For the scenarios investigated, any geometry of EFC coil can thus recover a strong majority of the detrimental effect introduced by the n = 1 error field. Despite low sensitivity to the orthogonal field, its optimization in H-mode is shown to be consistent with minimizing the neoclassical toroidal viscosity torque and not the higher-order n = 1 mode coupling.

  6. Method and apparatus for steady-state magnetic measurement of poloidal magnetic field near a tokamak plasma

    Science.gov (United States)

    Woolley, Robert D.

    1998-01-01

    A method and apparatus for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators.

  7. A 40 kA NbTi cable in conduit conductor for the large poloidal field coils of net

    International Nuclear Information System (INIS)

    Torossian, A.; Bessette, D.; Turck, B.; Kazimierzak, B.

    1990-01-01

    The main feature of this cable in conduit design is to separate the manufacture of the full length of the steel conduit (400 m) and of the cable in order to minimize the industrial risk and consequently the cost. A circular cross section for that cable seems to be the most suitable for that purpose: - axisymmetric cabling with full transposition of strands, - cable behaviour independent of the field orientation, - less deformation of subcables, - cross section remains circular when the cable is under tension and makes the slippage of the cable in the conduit easier, - butt welding of 8 m long tubes forming the conduit becomes simpler. The square external shape allows to minimize the amount of insulating material and consequently improves the overall current density of the coil. This conductor is aimed to large poloidal field coils for NET which do not require high field and in that case NbTi seems to be the best choice with regard to reliability and cost but Nb 3 Sn could be used as well. Stainless steel ribbons are inserted between subcables in order to reduce losses induced by the rapid field changes and also to improve the mechanical behaviour of the cable

  8. Boundary plasma heat flux width measurements for poloidal magnetic fields above 1 Tesla in the Alcator C-Mod tokamak

    Science.gov (United States)

    Brunner, Dan; Labombard, Brian; Kuang, Adam; Terry, Jim; Alcator C-Mod Team

    2017-10-01

    The boundary heat flux width, along with the total power flowing into the boundary, sets the power exhaust challenge for tokamaks. A multi-machine boundary heat flux width database found that the heat flux width in H-modes scaled inversely with poloidal magnetic field (Bp) and was independent of machine size. The maximum Bp in the database was 0.8 T, whereas the ITER 15 MA, Q =10 scenario will be 1.2 T. New measurements of the boundary heat flux width in Alcator C-Mod extend the international database to plasmas with Bp up to 1.3 T. C-Mod was the only experiment able to operate at ITER-level Bp. These new measurements are from over 300 plasma shots in L-, I-, and EDA H-modes spanning essentially the whole operating space in C-Mod. We find that the inverse-Bp dependence of the heat flux width in H-modes continues to ITER-level Bp, further reinforcing the empirical projection of 500 μm heat flux width for ITER. We find 50% scatter around the inverse-Bp scaling and are searching for the `hidden variables' causing this scatter. Supported by USDoE award DE-FC02-99ER54512.

  9. Non-inductive current start-up and plasma equilibrium with an inboard poloidal field null by means of electron cyclotron waves in QUEST

    International Nuclear Information System (INIS)

    Zushi, H.; Hasegawa, M.; Hanada, K.; Idei, H.; Nakamura, K.; Fujisawa, A.; Nagashima, Y.; Matsuoka, K.; Tashima, S.; Ishiguro, M.; Banerjee, S.; Sharma, S.K.; Liu, H.; Nishino, N.; Isobe, M.; Toi, K.; Okamura, S.; Maekawa, T.; Fukuyama, A.; Ejiri, A.; Yamaguchi, T.; Hiratsuka, J.; Takase, Y.; Kikuchi, Mitsuru; Ueda, Y.; Mitarai, O.

    2012-11-01

    Non-inductive current start-up via relativistic electron cyclotron resonance interaction is investigated for the high ratio (∼10%) of vertical B v to toroidal B t fields and the concave field lines in the QUEST spherical tokamak. In the start-up scenario with an internal poloidal field null (IPN), the fast current start-up rate of 0.3-0.5 MA/sec and correlation with mildly relativistic electrons accelerated due to multiple ECR interaction are observed. In steady state high β p equilibrium characterized by the inboard null (R s ∼ 0.7×R 0 ) and εβ p of 1.5 is achieved, where ε, β p are the inverse aspect ratio and poloidal beta, respectively. Relaxation oscillations in this equilibrium and confinement of the energetic electrons are discussed. (author)

  10. Assessment of power deposition dependence on the antenna poloidal extension in the fast waves-plasma interaction in pre-heated spherical tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Komoshvili, K [Tel Aviv University, Ramat Aviv (Israel); Cuperman, S [Tel Aviv University, Ramat Aviv (Israel); Bruma, C [Tel Aviv University, Ramat Aviv (Israel)

    2007-09-15

    To assess the effect of antenna poloidal extension on fast waves-plasma interactions in pre-heated spherical tokamaks and, as a result, to assist the determination of optimal conditions for power deposition, we carried out a global, numerical investigation. Thus, we solved the steady-state full wave equations for Alfvenic modes in an inhomogeneous, non-uniformly magnetized, resistive, low aspect ratio tokamak plasma with appropriate consideration of boundary conditions; in this, processes such as wave propagation, reflection, transmission, absorption and mode conversion as well as mode-coupling(s) by plasma cross-section non-homogeneity generated waves were included. The results were analysed in terms of the directions of the current densities generated in the presence of up low field side or down high field side magnetic field gradient. Suitable antenna location and poloidal extension for maximum power deposition were determined.

  11. Assessment of power deposition dependence on the antenna poloidal extension in the fast waves-plasma interaction in pre-heated spherical tokamaks

    International Nuclear Information System (INIS)

    Komoshvili, K; Cuperman, S; Bruma, C

    2007-01-01

    To assess the effect of antenna poloidal extension on fast waves-plasma interactions in pre-heated spherical tokamaks and, as a result, to assist the determination of optimal conditions for power deposition, we carried out a global, numerical investigation. Thus, we solved the steady-state full wave equations for Alfvenic modes in an inhomogeneous, non-uniformly magnetized, resistive, low aspect ratio tokamak plasma with appropriate consideration of boundary conditions; in this, processes such as wave propagation, reflection, transmission, absorption and mode conversion as well as mode-coupling(s) by plasma cross-section non-homogeneity generated waves were included. The results were analysed in terms of the directions of the current densities generated in the presence of up low field side or down high field side magnetic field gradient. Suitable antenna location and poloidal extension for maximum power deposition were determined

  12. Local equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-12-15

    From 3-6 September the First International Workshop on Local Equilibrium in Strong Interaction Physics took place in Bad-Honnef at the Physics Centre of the German Physical Society. A number of talks covered the experimental and theoretical investigation of the 'hotspots' effect, both in high energy particle physics and in intermediate energy nuclear physics.

  13. Strongly interacting Fermi gases

    Directory of Open Access Journals (Sweden)

    Bakr W.

    2013-08-01

    Full Text Available Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly, we discuss high-precision measurements on the thermodynamics of a strongly interacting Fermi gas across the superfluid transition. The onset of superfluidity is directly observed in the compressibility, the chemical potential, the entropy, and the heat capacity. Our measurements provide benchmarks for current many-body theories on strongly interacting fermions. Secondly, we have studied the evolution of fermion pairing from three to two dimensions in these gases, relating to the physics of layered superconductors. In the presence of p-wave interactions, Fermi gases are predicted to display toplogical superfluidity carrying Majorana edge states. Two possible avenues in this direction are discussed, our creation and direct observation of spin-orbit coupling in Fermi gases and the creation of fermionic molecules of 23Na 40K that will feature strong dipolar interactions in their absolute ground state.

  14. A strong comeback

    International Nuclear Information System (INIS)

    Marier, D.

    1992-01-01

    This article presents the results of a financial rankings survey which show a strong economic activity in the independent energy industry. The topics of the article include advisor turnover, overseas banks, and the increase in public offerings. The article identifies the top project finance investors for new projects and restructurings and rankings for lenders

  15. Strong Electroweak Symmetry Breaking

    CERN Document Server

    Grinstein, Benjamin

    2011-01-01

    Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...

  16. Plasmons in strong superconductors

    International Nuclear Information System (INIS)

    Baldo, M.; Ducoin, C.

    2011-01-01

    We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.

  17. Strongly intensive quantities

    International Nuclear Information System (INIS)

    Gorenstein, M. I.; Gazdzicki, M.

    2011-01-01

    Analysis of fluctuations of hadron production properties in collisions of relativistic particles profits from use of measurable intensive quantities which are independent of system size variations. The first family of such quantities was proposed in 1992; another is introduced in this paper. Furthermore we present a proof of independence of volume fluctuations for quantities from both families within the framework of the grand canonical ensemble. These quantities are referred to as strongly intensive ones. Influence of conservation laws and resonance decays is also discussed.

  18. Strong-coupling approximations

    International Nuclear Information System (INIS)

    Abbott, R.B.

    1984-03-01

    Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi 4 field theory in 1 + 1 dimensions. 9 references, 6 figures

  19. Strong Coupling Holography

    CERN Document Server

    Dvali, Gia

    2009-01-01

    We show that whenever a 4-dimensional theory with N particle species emerges as a consistent low energy description of a 3-brane embedded in an asymptotically-flat (4+d)-dimensional space, the holographic scale of high-dimensional gravity sets the strong coupling scale of the 4D theory. This connection persists in the limit in which gravity can be consistently decoupled. We demonstrate this effect for orbifold planes, as well as for the solitonic branes and string theoretic D-branes. In all cases the emergence of a 4D strong coupling scale from bulk holography is a persistent phenomenon. The effect turns out to be insensitive even to such extreme deformations of the brane action that seemingly shield 4D theory from the bulk gravity effects. A well understood example of such deformation is given by large 4D Einstein term in the 3-brane action, which is known to suppress the strength of 5D gravity at short distances and change the 5D Newton's law into the four-dimensional one. Nevertheless, we observe that the ...

  20. Uniquely Strongly Clean Group Rings

    Institute of Scientific and Technical Information of China (English)

    WANG XIU-LAN

    2012-01-01

    A ring R is called clean if every element is the sum of an idempotent and a unit,and R is called uniquely strongly clean (USC for short) if every element is uniquely the sum of an idempotent and a unit that commute.In this article,some conditions on a ring R and a group G such that RG is clean are given.It is also shown that if G is a locally finite group,then the group ring RG is USC if and only if R is USC,and G is a 2-group.The left uniquely exchange group ring,as a middle ring of the uniquely clean ring and the USC ring,does not possess this property,and so does the uniquely exchange group ring.

  1. LIGO: The strong belief

    CERN Multimedia

    Antonella Del Rosso

    2016-01-01

    Twenty years of designing, building and testing a number of innovative technologies, with the strong belief that the endeavour would lead to a historic breakthrough. The Bulletin publishes an abstract of the Courier’s interview with Barry Barish, one of the founding fathers of LIGO.   The plots show the signals of gravitational waves detected by the twin LIGO observatories at Livingston, Louisiana, and Hanford, Washington. (Image: Caltech/MIT/LIGO Lab) On 11 February, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo collaborations published a historic paper in which they showed a gravitational signal emitted by the merger of two black holes. These results come after 20 years of hard work by a large collaboration of scientists operating the two LIGO observatories in the US. Barry Barish, Linde Professor of Physics, Emeritus at the California Institute of Technology and former Director of the Global Design Effort for the Internat...

  2. Strongly interacting Higgs bosons

    International Nuclear Information System (INIS)

    Appelquist, T.; Bernard, C.

    1980-01-01

    The sensitivity of present-energy weak interactions to a strongly interacting heavy-Higgs-boson sector is discussed. The gauged nonlinear sigma model, which is the limit of the linear model as the Higgs-boson mass goes to infinity, is used to organize and catalogue all possible heavy-Higgs-boson effects. As long as the SU(2)/sub L/ x SU(2)/sub R/ symmetry of the Higgs sector is preserved, these effects are found to be small, of the order of the square of the gauge coupling times logarithms (but not powers) of the Higgs-boson mass divided by the W mass. We work in the context of a simplified model with gauge group SU(2)/sub L/; the extension to SU(2)/sub L/ x U(1) is briefly discussed

  3. Magnetic properties of strongly asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Kutschera, M.; Wojcik, W.

    1988-01-01

    We investigate stability of neutron matter containing a small proton admixture with respect to spin fluctuations. We establish conditions under which strongly asymmetric nuclear matter could acquire a permanent magnetization. It is shown that if the protons are localized, the system becomes unstable to spin fluctuations for arbitrarily weak proton-neutron spin interactions. For non-localized protons there exists a threshold value of the spin interaction above which the system can develop a spontaneous polarization. 12 refs., 2 figs. (author)

  4. Strong-interaction nonuniversality

    International Nuclear Information System (INIS)

    Volkas, R.R.; Foot, R.; He, X.; Joshi, G.C.

    1989-01-01

    The universal QCD color theory is extended to an SU(3) 1 direct product SU(3) 2 direct product SU(3) 3 gauge theory, where quarks of the ith generation transform as triplets under SU(3)/sub i/ and singlets under the other two factors. The usual color group is then identified with the diagonal subgroup, which remains exact after symmetry breaking. The gauge bosons associated with the 16 broken generators then form two massive octets under ordinary color. The interactions between quarks and these heavy gluonlike particles are explicitly nonuniversal and thus an exploration of their physical implications allows us to shed light on the fundamental issue of strong-interaction universality. Nonuniversality and weak flavor mixing are shown to generate heavy-gluon-induced flavor-changing neutral currents. The phenomenology of these processes is studied, as they provide the major experimental constraint on the extended theory. Three symmetry-breaking scenarios are presented. The first has color breaking occurring at the weak scale, while the second and third divorce the two scales. The third model has the interesting feature of radiatively induced off-diagonal Kobayashi-Maskawa matrix elements

  5. John Strong (1941 - 2006)

    CERN Multimedia

    Wickens, F

    Our friend and colleague John Strong was cruelly taken from us by a brain tumour on Monday 31st July, a few days before his 65th birthday John started his career working with a group from Westfield College, under the leadership of Ted Bellamy. He obtained his PhD and spent the early part of his career on experiments at Rutherford Appleton Laboratory (RAL), but after the early 1970s his research was focussed on experiments in CERN. Over the years he made a number of notable contributions to experiments in CERN: The Omega spectrometer adopted a system John had originally developed for experiments at RAL using vidicon cameras to record the sparks in the spark chambers; He contributed to the success of NA1 and NA7, where he became heavily involved in the electronic trigger systems; He was responsible for the second level trigger system for the ALEPH detector and spent five years leading a team that designed and built the system, which ran for twelve years with only minor interventions. Following ALEPH he tur...

  6. Stirring Strongly Coupled Plasma

    CERN Document Server

    Fadafan, Kazem Bitaghsir; Rajagopal, Krishna; Wiedemann, Urs Achim

    2009-01-01

    We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implicati...

  7. Poloidal inhomogeneity of the particle fluctuation induced fluxes near of the LCFS at lower hybrid heating and improved confinement transition at the FT-2 tokamak

    International Nuclear Information System (INIS)

    Lashkul, S.I.; Altukhov, A.B.; Gurchenko, A.D.; Gusakov, E.Z.; Dyachenko, V.V.; Esipov, L.A.; Kantor, M.Y.; Kouprienko, D.V.; Stepanov, A.Y.; Sharpeonok, A.P.; Shatalin, S.V.; Vekshina, E.O.

    2004-01-01

    This paper present our observations and conclusions about development of the transport process at the plasma periphery of the small tokamak FT-2 during additional Lower Hybrid Heating (LHH), when external (ETB) transport barrier followed by Internal (ITB) transport barrier is observed. The peculiarities of the variations of the fluctuation fluxes near periphery are measured by three moveable multi-electrode Langmuir probes (L-probe) located in the same poloidal cross-section of the chamber. So the observed L-H transition and ETB formation after LHH and the associated negative E r rise result mainly from the decrease of the electron temperature (T e ) near inner region of the LCFS (last close flux surface) by greater extent than in SOL (scrape-off layer). This effect is stimulated by decrease of the input power and decrease of the radial correlation coefficient (for r equals 74-77 mm) (and radial particle fluctuation-induced Γ(t)) resulted from ITB formation mechanism during LHH. T e variation in the SOL after LH heating pulse takes place to a lesser extent. Observed non-monotonic radial profile of T e near LCFS with positive δT e /δr rise is kept constant obviously by large longitudinal conductivity and poloidal fluxes from the hotter limiter shadow regions because of the poloidal inhomogeneity of the T e (SOL) and n e (SOL). Such induced negative E r after RF pulse gives fast rise to a quasi-steady-state Γ 0 (t) drift fluxes with reversed direction structure, like 'zonal flows', which may inhibit transport across the flow. Large rise of grad(n e ) after LHH near LCFS with L-H transition is observed after the end of LH pulse for a long time - about 10-15 ms

  8. PREFACE: Strongly correlated electron systems Strongly correlated electron systems

    Science.gov (United States)

    Saxena, Siddharth S.; Littlewood, P. B.

    2012-07-01

    make use of 'small' electrons packed to the highest possible density. These are by definition 'strongly correlated'. For example: good photovoltaics must be efficient optical absorbers, which means that photons will generate tightly bound electron-hole pairs (excitons) that must then be ionised at a heterointerface and transported to contacts; efficient solid state refrigeration depends on substantial entropy changes in a unit cell, with large local electrical or magnetic moments; efficient lighting is in a real sense the inverse of photovoltaics; the limit of an efficient battery is a supercapacitor employing mixed valent ions; fuel cells and solar to fuel conversion require us to understand electrochemistry on the scale of a single atom; and we already know that the only prospect for effective high temperature superconductivity involves strongly correlated materials. Even novel IT technologies are now seen to have value not just for novel function but also for efficiency. While strongly correlated electron systems continue to excite researchers and the public alike due to the fundamental science issues involved, it seems increasingly likely that support for the science will be leveraged by its impact on energy and sustainability. Strongly correlated electron systems contents Strongly correlated electron systemsSiddharth S Saxena and P B Littlewood Magnetism, f-electron localization and superconductivity in 122-type heavy-fermion metalsF Steglich, J Arndt, O Stockert, S Friedemann, M Brando, C Klingner, C Krellner, C Geibel, S Wirth, S Kirchner and Q Si High energy pseudogap and its evolution with doping in Fe-based superconductors as revealed by optical spectroscopyN L Wang, W Z Hu, Z G Chen, R H Yuan, G Li, G F Chen and T Xiang Structural investigations on YbRh2Si2: from the atomic to the macroscopic length scaleS Wirth, S Ernst, R Cardoso-Gil, H Borrmann, S Seiro, C Krellner, C Geibel, S Kirchner, U Burkhardt, Y Grin and F Steglich Confinement of chiral magnetic

  9. Effects of Strong Local Sporadic E on ELF Propagation.

    Science.gov (United States)

    1978-08-15

    Huygens diffraction model (e.g., Marcuse , 1972). The model is similar to that used by Crombie. Unlike Crombie’s work however , the Fresnel approximation...40. Marcuse , D., “Light transmission optics ,” Van Nostrand Reinhold Co., New York , 1972. Papper t , R. A. & Moler , W. F., “A theoretica’ study of...ATTN Donald Dubbert O1 CY ATTN Herbert Rend University of IllinoisDepartment of Electrical Engineering Develco Urbana , IL 61803 530 Logue Avenue O2CY

  10. Strong Coupling Corrections in Quantum Thermodynamics

    Science.gov (United States)

    Perarnau-Llobet, M.; Wilming, H.; Riera, A.; Gallego, R.; Eisert, J.

    2018-03-01

    Quantum systems strongly coupled to many-body systems equilibrate to the reduced state of a global thermal state, deviating from the local thermal state of the system as it occurs in the weak-coupling limit. Taking this insight as a starting point, we study the thermodynamics of systems strongly coupled to thermal baths. First, we provide strong-coupling corrections to the second law applicable to general systems in three of its different readings: As a statement of maximal extractable work, on heat dissipation, and bound to the Carnot efficiency. These corrections become relevant for small quantum systems and vanish in first order in the interaction strength. We then move to the question of power of heat engines, obtaining a bound on the power enhancement due to strong coupling. Our results are exemplified on the paradigmatic non-Markovian quantum Brownian motion.

  11. Elevator convection modes in vertical ducts with strong transverse magnetic fields

    Science.gov (United States)

    Zikanov, Oleg; Liu, Li

    2014-11-01

    Instability modes in the form of axially uniform vertical jets, also called ``elevator modes,'' are known to be solutions of thermal convection problems for vertically unbounded systems. Typically, their relevance to an actual flow state is limited, since they quickly break down to secondary instabilities. We consider a downward flow of a liquid metal in a vertical duct with a heated wall and strong transverse magnetic field and find elevator modes that are likely to be not just relevant, but a dominant feature of the flow. Recent experiments indicate that counterparts of such modes may develop in vertically finite ducts leading to high-amplitude fluctuations of temperature. Potential implications for designs of liquid metal blankets for fusion reactors with poloidal ducts are discussed. Financial support was provided by the US NSF (Grant CBET 1232851).

  12. EDITORIAL: Strongly correlated electron systems Strongly correlated electron systems

    Science.gov (United States)

    Ronning, Filip; Batista, Cristian

    2011-03-01

    during SCES 2010. As we learned, past dogmas about strongly correlated materials and phenomena must be re-examined with an open and inquisitive mind. Invited speakers and respected leaders in the field were invited to contribute to this special issue and we have insisted that they present new data, ideas, or perspectives, as opposed to simply an overview of their past work. As with the conference, this special issue touches upon recent developments of strongly correlated electron systems in d-electron materials, such as Sr3Ru2O7, graphene, and the new Fe-based superconductors, but it is dominated by topics in f-electron compounds. Contributions reflect the growing appreciation for the influence of disorder and frustration, the need for organizing principles, as well as detailed investigations on particular materials of interest and, of course, new materials. As this special issue could not possibly capture the full breadth and depth that the conference had to offer, it is being published simultaneously with an issue of Journal of Physics: Conference Series containing 157 manuscripts in which all poster presenters at SCES 2010 were invited to contribute. Since this special issue grew out of the 2010 SCES conference, we take this opportunity to give thanks. This conference would not have been possible without the hard work of the SCES 2010 Program Committee, International and National Advisory Committees, Local Committee, and conference organizers, the New Mexico Consortium. We thank them as well as those organizations that generously provided financial support: ICAM-I2CAM, Quantum Design, Lakeshore, the National High Magnetic Field Laboratory and the Department of Energy National Laboratories at Argonne, Berkeley, Brookhaven, Los Alamos and Oak Ridge. Of course, we especially thank the participants for bringing new ideas and new results, without which SCES 2010 would not have been possible. Strongly correlated electron systems contents Spin-orbit coupling and k

  13. Strong Coupling between Plasmons and Organic Semiconductors

    Directory of Open Access Journals (Sweden)

    Joel Bellessa

    2014-05-01

    Full Text Available In this paper we describe the properties of organic material in strong coupling with plasmon, mainly based on our work in this field of research. The strong coupling modifies the optical transitions of the structure, and occurs when the interaction between molecules and plasmon prevails on the damping of the system. We describe the dispersion relation of different plasmonic systems, delocalized and localized plasmon, coupled to aggregated dyes and the typical properties of these systems in strong coupling. The modification of the dye emission is also studied. In the second part, the effect of the microscopic structure of the organics, which can be seen as a disordered film, is described. As the different molecules couple to the same plasmon mode, an extended coherent state on several microns is observed.

  14. A personal-computer-based package for interactive assessment of magnetohydrodynamic equilibrium and poloidal field coil design in axisymmetric toroidal geometry

    International Nuclear Information System (INIS)

    Kelleher, W.P.; Steiner, D.

    1989-01-01

    A personal-computer (PC)-based calculational approach assesses magnetohydrodynamic (MHD) equilibrium and poloidal field (PF) coil arrangement in a highly interactive mode, well suited for tokamak scoping studies. The system developed involves a two-step process: the MHD equilibrium is calculated and then a PF coil arrangement, consistent with the equilibrium is determined in an interactive design environment. In this paper the approach is used to examine four distinctly different toroidal configurations: the STARFIRE rector, a spherical torus (ST), the Big Dee, and an elongated tokamak. In these applications the PC-based results are benchmarked against those of a mainframe code for STARFIRE, ST, and Big Dee. The equilibrium and PF coil arrangement calculations obtained with the PC approach agree within a few percent with those obtained with the mainframe code

  15. 77 FR 35711 - Strong Cities, Strong Communities National Resource Network Pilot Program Advance Notice and...

    Science.gov (United States)

    2012-06-14

    ... economic need, strong local leadership and collaboration, potential for economic growth, geographic... $1 million that they will use to administer an ``X-prize style'' competition, whereby they will... founding mandate in the 1965 Department of Housing and Urban Development Act to ``Exercise leadership at...

  16. Quantum electrodynamics of strong fields

    International Nuclear Information System (INIS)

    Greiner, W.

    1983-01-01

    Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund

  17. Instabilities in strongly coupled plasmas

    CERN Document Server

    Kalman, G J

    2003-01-01

    The conventional Vlasov treatment of beam-plasma instabilities is inappropriate when the plasma is strongly coupled. In the strongly coupled liquid state, the strong correlations between the dust grains fundamentally affect the conditions for instability. In the crystalline state, the inherent anisotropy couples the longitudinal and transverse polarizations, and results in unstable excitations in both polarizations. We summarize analyses of resonant and non-resonant, as well as resistive instabilities. We consider both ion-dust streaming and dust beam-plasma instabilities. Strong coupling, in general, leads to an enhancement of the growth rates. In the crystalline phase, a resonant transverse instability can be excited.

  18. Nonlinear damping of drift waves by strong flow curvature

    International Nuclear Information System (INIS)

    Sidikman, K.L.; Carreras, B.A.; Garcia, L.; Diamond, P.H.

    1993-01-01

    A single-equation model has been used to study the effect of a fixed poloidal flow (V 0 ) on turbulent drift waves. The electron dynamics come from a laminar kinetic equation in the dissipative trapped-electron regime. In the past, the authors have assumed that the mode frequency is close to the drift-wave frequency. Trapped-electron density fluctuations are then related to potential fluctuations by an open-quotes iδclose quotes term. Flow shear (V 0 ') and curvature (V 0 double-prime) both have a stabilizing effect on linear modes for this open-quotes iδclose quotes model. However, in the nonlinear regime, single-helicity effects inhibit the flow damping. Neither V 0 ' nor V 0 double-prime produces a nonlinear damping effect. The above assumption on the frequency can be relaxed by including the electron time-response in the linear part of the evolution. In this time-dependent model, instability drive due to trapped electrons is reduced when mode frequency is greater than drift-wave frequency. Since V 0 double-prime produces such a frequency shift, its linear effect is enhanced. There is also nonlinear damping, since single-helicity effects do not eliminate the shift. Renormalized theory for this model predicts nonlinear stability for sufficiently large curvature. Single-helicity calculations have already shown nonlinear damping, and this strong V 0 double-prime regime is being explored. In the theory, the Gaussian shape of the nonlinear diffusivity is expanded to obtain a quadratic potential. The implications of this assumption will be tested by solving the full renormalized equation using a shooting method

  19. Short proofs of strong normalization

    OpenAIRE

    Wojdyga, Aleksander

    2008-01-01

    This paper presents simple, syntactic strong normalization proofs for the simply-typed lambda-calculus and the polymorphic lambda-calculus (system F) with the full set of logical connectives, and all the permutative reductions. The normalization proofs use translations of terms and types to systems, for which strong normalization property is known.

  20. Strong-back safety latch

    International Nuclear Information System (INIS)

    DeSantis, G.N.

    1995-01-01

    The calculation decides the integrity of the safety latch that will hold the strong-back to the pump during lifting. The safety latch will be welded to the strong-back and will latch to a 1.5-in. dia cantilever rod welded to the pump baseplate. The static and dynamic analysis shows that the safety latch will hold the strong-back to the pump if the friction clamps fail and the pump become free from the strong-back. Thus, the safety latch will meet the requirements of the Lifting and Rigging Manual for under the hook lifting for static loading; it can withstand shock loads from the strong-back falling 0.25 inch

  1. Transverse Localization of Light

    NARCIS (Netherlands)

    Raedt, Hans De; Lagendijk, Ad; Vries, Pedro de

    1989-01-01

    We study the propagation of light through a semi-infinite medium with transverse disorder (that is, disorder in two directions only). We show that such a system exhibits strong two-dimensional localization by demonstrating that on propagation a beam expands until the transverse localization length

  2. Waves in strong centrifugal fields: dissipationless gas

    Science.gov (United States)

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    2015-04-01

    Linear waves are investigated in a rotating gas under the condition of strong centrifugal acceleration of the order 106 g realized in gas centrifuges for separation of uranium isotopes. Sound waves split into three families of the waves under these conditions. Dispersion equations are obtained. The characteristics of the waves strongly differ from the conventional sound waves on polarization, velocity of propagation and distribution of energy of the waves in space for two families having frequencies above and below the frequency of the conventional sound waves. The energy of these waves is localized in rarefied region of the gas. The waves of the third family were not specified before. They propagate exactly along the rotational axis with the conventional sound velocity. These waves are polarized only along the rotational axis. Radial and azimuthal motions are not excited. Energy of the waves is concentrated near the wall of the rotor where the density of the gas is largest.

  3. Strong spin-photon coupling in silicon

    Science.gov (United States)

    Samkharadze, N.; Zheng, G.; Kalhor, N.; Brousse, D.; Sammak, A.; Mendes, U. C.; Blais, A.; Scappucci, G.; Vandersypen, L. M. K.

    2018-03-01

    Long coherence times of single spins in silicon quantum dots make these systems highly attractive for quantum computation, but how to scale up spin qubit systems remains an open question. As a first step to address this issue, we demonstrate the strong coupling of a single electron spin and a single microwave photon. The electron spin is trapped in a silicon double quantum dot, and the microwave photon is stored in an on-chip high-impedance superconducting resonator. The electric field component of the cavity photon couples directly to the charge dipole of the electron in the double dot, and indirectly to the electron spin, through a strong local magnetic field gradient from a nearby micromagnet. Our results provide a route to realizing large networks of quantum dot–based spin qubit registers.

  4. Unification of electromagnetic, strong and weak interaction

    International Nuclear Information System (INIS)

    Duong Van Phi; Duong Anh Duc

    1993-09-01

    The Unification of Electromagnetic, Strong and Weak Interactions is realized in the framework of the Quantum Field Theory, established in an 8-dimensional Unified Space. Two fundamental, spinor and vector field equations are considered. The first of the matter particles and the second is of the gauge particles. Interaction Lagrangians are formed from the external and internal currents and the external and internal vector field operators. Generators of the local gauge transformations are the combinations of the matrices of the first field equation. (author). 15 refs

  5. Strong coupling phase in QED

    International Nuclear Information System (INIS)

    Aoki, Ken-ichi

    1988-01-01

    Existence of a strong coupling phase in QED has been suggested in solutions of the Schwinger-Dyson equation and in Monte Carlo simulation of lattice QED. In this article we recapitulate the previous arguments, and formulate the problem in the modern framework of the renormalization theory, Wilsonian renormalization. This scheme of renormalization gives the best understanding of the basic structure of a field theory especially when it has a multi-phase structure. We resolve some misleading arguments in the previous literature. Then we set up a strategy to attack the strong phase, if any. We describe a trial; a coupled Schwinger-Dyson equation. Possible picture of the strong coupling phase QED is presented. (author)

  6. Strong interactions at high energy

    International Nuclear Information System (INIS)

    Anselmino, M.

    1995-01-01

    Spin effects in strong interaction high energy processes are subtle phenomena which involve both short and long distance physics and test perturbative and non perturbative aspects of QCD. Moreover, depending on quantities like interferences between different amplitudes and relative phases, spin observables always test a theory at a fundamental quantum mechanical level; it is then no surprise that spin data are often difficult to accommodate within the existing models. A report is made on the main issues and contributions discussed in the parallel Session on the open-quote open-quote Strong interactions at high energy close-quote close-quote in this Conference. copyright 1995 American Institute of Physics

  7. Strong-field dissociation dynamics

    International Nuclear Information System (INIS)

    DiMauro, L.F.; Yang, Baorui.

    1993-01-01

    The strong-field dissociation behavior of diatomic molecules is examined under two distinctive physical scenarios. In the first scenario, the dissociation of the isolated hydrogen and deuterium molecular ions is discussed. The dynamics of above-threshold dissociation (ATD) are investigated over a wide range of green and infrared intensities and compared to a dressed-state model. The second situation arises when strong-field neutral dissociation is followed by ionization of the atomic fragments. The study results in a direct measure of the atomic fragment's ac-Stark shift by observing the intensity-dependent shifts in the electron or nuclear fragment kinetic energy. 8 figs., 14 refs

  8. Optimization of Outer Poloidal Field (PF) Coil Configurations for Inductive PF Coil-only Plasma Start-up on Spherical Tori

    International Nuclear Information System (INIS)

    Wonho Choe; Jayhyun Kim; Masayuki Ono

    2004-01-01

    The elimination of in-board ohmic heating solenoid is required for the spherical torus (ST) to function as an attractive fusion power plant. An in-board ohmic solenoid, along with the shielding needed for its insulation, increases the size and, hence, the cost of the plant. Here, we investigate using static as well as dynamic codes in ST geometries a solenoid-free start-up concept utilizing a set of out-board poloidal field coils. By using the static code, an optimization of coil positions as well as coil currents was performed to demonstrate that it is indeed possible to create a high quality multi-pole field null region while retaining significant flux (volt-seconds) needed for the subsequent current ramp-up. With the dynamic code that includes the effect of vacuum vessel eddy currents, we then showed that it is possible to maintain a large size field null region for several milliseconds in which sufficient ionization avalanche can develop in the applied toroidal electric field. Under the magnetic geometry typical of a next generation spherical torus experiment, it is shown that the well-known plasma breakdown conditions for conventional ohmic solenoid start-up of E(sub)TB(sub)T/B(sub)P ∼ (0.1-1) kV/m with V(sub)loop ∼ 6 V can be readily met while retaining significant volt-seconds ∼ 4 V-S sufficient to generate multi-MA plasma current in STs

  9. Dependence of the fast waves-plasma interactions in pre-heated spherical tokamaks on the antenna location and poloidal extension

    International Nuclear Information System (INIS)

    Komoshvili, K.; Bruma, C.; Cuperman, S.

    2004-01-01

    Full Text:In the magnetically confined fusion devices, externally launched e.m. waves are used, e.g., for heating, non-inductive current drive and turbulent transport suppression barriers. In view of the complexity of these processes, it is desirable to assist the planning of the actual experiments by reliable theoretical (computational) studies. This work aims to (i) assess the effect of antenna position and extension on the fast waves-plasma interactions in pre-heated spherical tokamaks and consequently, (ii) to further the physical understanding as well as to determine optimal conditions in order to achieve the imposed goals. Thus, using as a study case the spherical tokamak START, we considered the following antenna positions and extensions: (a) low field side location and i T ±π/4 poloidal extension; (b) above and below middle-plane locations (two separate sections) and extending (each) π/2; (c) (hypothetical) circular, 2π-extension. We solved the full wave equations in order to consistently determine the global e.m. field for Alfvinic modes in inhomogeneous, non-uniformly magnetized, resistive, small aspect ratio tokamak plasma in the presence of externally launched fast waves. The global approach consists of simultaneous treatment of the plasma-vacuum-external RF source-vacuum-metal wall configuration with the appropriate consideration of wave propagation, transmission, absorption and mode conversion; in this, no simplifying approximations or small parameter extension are used. Illustrative results of these investigations will be presented and discussed

  10. Caviton dynamics in strong Langmuir turbulence

    Science.gov (United States)

    DuBois, Don; Rose, Harvey A.; Russell, David

    1990-01-01

    Recent studies based on long time computer simulations of Langmuir turbulence as described by Zakharov's model will be reviewed. These show that for strong to moderate ion sound damping the turbulent energy is dominantly in non-linear "caviton" excitations which are localized in space and time. A local caviton model will be presented which accounts for the nucleation-collapse-burnout cycles of individual cavitons as well as their space-time correlations. This model is in detailed agreement with many features of the electron density fluctuation spectra in the ionosphere modified by powerful HF waves as measured by incoherent scatter radar. Recently such observations have verified a prediction of the theory that "free" Langmuir waves are emitted in the caviton collapse process. These observations and theoretical considerations also strongly imply that cavitons in the heated ionosphere, under certain conditions, evolve to states in which they are ordered in space and time. The sensitivity of the high frequency Langmuir field dynamics to the low frequency ion density fluctuations and the related caviton nucleation process will be discussed.

  11. Caviton dynamics in strong Langmuir turbulence

    International Nuclear Information System (INIS)

    DuBois, D.; Rose, H.A.; Russell, D.

    1990-01-01

    Recent studies based on long time computer simulations of Langmuir turbulence as described by Zakharov's model will be reviewed. These show that for strong to moderate ion sound damping the turbulent energy is dominantly in non-linear ''caviton'' excitations which are localized in space and time. A local caviton model will be presented which accounts for the nucleation-collapse-burnout cycles of individual cavitons as well as their space-time correlations. This model is in detailed agreement with many features of the electron density fluctuation spectra in the ionosphere modified by powerful HF waves as measured by incoherent scatter radar. Recently such observations have verified a prediction of the theory that ''free'' Langmuir waves are emitted in the caviton collapse process. These observations and theoretical considerations also strongly imply that cavitons in the heated ionosphere, under certain conditions, evolve to states in which they are ordered in space and time. The sensitivity of the high frequency Langmuir field dynamics to the low frequency ion density fluctuations and the related caviton nucleation process will be discussed. (orig.)

  12. Caviton dynamics in strong Langmuir turbulence

    International Nuclear Information System (INIS)

    DuBois, D.; Rose, H.A.; Russell, D.

    1989-01-01

    Recent studies based on long time computer simulations of Langmuir turbulence as described by Zakharov's model will be reviewed. These show that for strong to moderate ion sound samping the turbulent energy is dominantly in nonlinear ''caviton'' excitations which are localized in space and time. A local caviton model will be presented which accounts for the nucleation-collapse-burnout cycles of individual cavitons as well as their space-time correlations. This model is in detailed agreement with many features of the electron density fluctuation spectra in the ionosphere modified by powerful hf waves as measured by incoherent scatter radar. Recently such observations have verified a prediction of the theory that ''free'' Langmuir waves are emitted in the caviton collapse process. These observations and theoretical considerations also strongly imply that cavitons in the heated ionosphere, under certain conditions, evolve to states in which they are ordered in space and time. The sensitivity of the high frequency Langmuir field dynamics to the low frequency ion density fluctuations and the related caviton nucleation process will be discussed. 40 refs., 19 figs

  13. Determination of the poloidal flux function for the TBR-1 (Tokamak Brazilian Reactor). Construction of a data acquisition system

    International Nuclear Information System (INIS)

    Fagundes, Aluisio Neves.

    1992-06-01

    This thesis is made of two distinct parts, around the small tokamak TBR-1, built at the Physics Institute of the University of Sao Paulo, whose main characteristics are in appendix C. the first part corresponds to the development of software and implementation of a Data Acquisition System (DAS), built essentially of Analogue-to-Digital Converters (ADC's) for transient analysis. The system is based on CAMAC standards, with a GPIB controller and a 16 bit microcomputer of IBM-PC line. Strategy and software are original and locally developed specifically for the task. The second part was the development of a hybrid system for reconstruction of MHD equilibrium of the plasma column for TBR-1, based upon external measurements. A study was done the past concerning the approximate determination of the transversal shape of the plasma column in the same machine. The method used was totally modified and coupled to a process of numerical solution of Gra-Shafranov equation in order to permit reliable estimatives of plasma variables associated to equilibrium of TBR-1. Results are reasonable, taken into account the bad state of TBR-1 when data was collected. Only the values of Q show unexpected output, deserving revision. (author). 29 refs., 23 figs., 6 tabs

  14. Strong Decomposition of Random Variables

    DEFF Research Database (Denmark)

    Hoffmann-Jørgensen, Jørgen; Kagan, Abram M.; Pitt, Loren D.

    2007-01-01

    A random variable X is stongly decomposable if X=Y+Z where Y=Φ(X) and Z=X-Φ(X) are independent non-degenerated random variables (called the components). It is shown that at least one of the components is singular, and we derive a necessary and sufficient condition for strong decomposability...... of a discrete random variable....

  15. Strong coupling electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Barklow, T.L.; Burdman, G.; Chivukula, R.S.

    1997-04-01

    The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models

  16. Strong coupling electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Barklow, T.L. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Burdman, G. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Chivukula, R.S. [Boston Univ., MA (United States). Dept. of Physics

    1997-04-01

    The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models.

  17. The colours of strong interaction

    International Nuclear Information System (INIS)

    1995-01-01

    The aim of this session is to draw a consistent framework about the different ways to consider strong interaction. A large part is dedicated to theoretical work and the latest experimental results obtained at the first electron collider HERA are discussed. (A.C.)

  18. Strong cosmic censorship and the strong curvature singularities

    International Nuclear Information System (INIS)

    Krolak, A.

    1987-01-01

    Conditions are given under which any asymptotically simple and empty space-time that has a partial Cauchy surface with an asymptotically simple past is globally hyperbolic. It is shown that this result suggests that the Cauchy horizons of the type occurring in Reissner--Nordstroem and Kerr space-times are unstable. This in turn gives support for the validity of the strong cosmic censorship hypothesis

  19. Simulation of turbulent flows containing strong shocks

    International Nuclear Information System (INIS)

    Fryxell, Bruce; Menon, Suresh

    2008-01-01

    Simulation of turbulent flows with strong shocks is a computationally challenging problem. The requirements for a method to produce accurate results for turbulence are orthogonal to those needed to treat shocks properly. In order to prevent an unphysical rate of decay of turbulent structures, it is necessary to use a method with very low numerical dissipation. Because of this, central difference schemes are widely used. However, computing strong shocks with a central difference scheme can produce unphysical post-shock oscillations that corrupt the entire flow unless additional dissipation is added. This dissipation can be difficult to localize to the area near the shock and can lead to inaccurate treatment of the turbulence. Modern high-resolution shock-capturing methods usually use upwind algorithms to provide the dissipation necessary to stabilize shocks. However, this upwind dissipation can also lead to an unphysical rate of decay of the turbulence. This paper discusses a hybrid method for simulating turbulent flows with strong shocks that couples a high-order central difference scheme with a high-resolution shock-capturing method. The shock-capturing method is used only in the vicinity of discontinuities in the flow, whereas the central difference scheme is used in the remainder of the computational domain. Results of this new method will be shown for a variety of test problems. Preliminary results for a realistic application involving detonation in gas-particle flows will also be presented.

  20. Strongly Correlated Systems Theoretical Methods

    CERN Document Server

    Avella, Adolfo

    2012-01-01

    The volume presents, for the very first time, an exhaustive collection of those modern theoretical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciates consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as po...

  1. Strongly correlated systems numerical methods

    CERN Document Server

    Mancini, Ferdinando

    2013-01-01

    This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possi...

  2. Strongly correlated systems experimental techniques

    CERN Document Server

    Mancini, Ferdinando

    2015-01-01

    The continuous evolution and development of experimental techniques is at the basis of any fundamental achievement in modern physics. Strongly correlated systems (SCS), more than any other, need to be investigated through the greatest variety of experimental techniques in order to unveil and crosscheck the numerous and puzzling anomalous behaviors characterizing them. The study of SCS fostered the improvement of many old experimental techniques, but also the advent of many new ones just invented in order to analyze the complex behaviors of these systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. The volume presents a representative collection of the modern experimental techniques specifically tailored for the analysis of strongly correlated systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognize...

  3. Flavour Democracy in Strong Unification

    CERN Document Server

    Abel, S A; Abel, Steven; King, Steven

    1998-01-01

    We show that the fermion mass spectrum may naturally be understood in terms of flavour democratic fixed points in supersymmetric theories which have a large domain of attraction in the presence of "strong unification". Our approach provides an alternative to the approximate Yukawa texture zeroes of the Froggatt-Nielsen mechanism. We discuss a particular model based on a broken gauged $SU(3)_L\\times SU(3)_R$ family symmetry which illustrates our approach.

  4. String dynamics at strong coupling

    International Nuclear Information System (INIS)

    Hull, C.M.

    1996-01-01

    The dynamics of superstring, supergravity and M-theories and their compactifications are probed by studying the various perturbation theories that emerge in the strong and weak-coupling limits for various directions in coupling constant space. The results support the picture of an underlying non-perturbative theory that, when expanded perturbatively in different coupling constants, gives different perturbation theories, which can be perturbative superstring theories or superparticle theories. The p-brane spectrum is considered in detail and a criterion found to establish which p-branes govern the strong-coupling dynamics. In many cases there are competing conjectures in the literature, and this analysis decides between them. In other cases, new results are found. The chiral 6-dimensional theory resulting from compactifying the type IIB string on K 3 is studied in detail and it is found that certain strong-coupling limits appear to give new theories, some of which hint at the possibility of a 12-dimensional origin. (orig.)

  5. The non-resonant kink modes triggering strong sawtooth-like crashes in the EAST tokamak

    Science.gov (United States)

    Li, Erzhong; Igochine, V.; Dumbrajs, O.; Xu, L.; Chen, K.; Shi, T.; Hu, L.

    2014-12-01

    Evolution of the safety factor (q) profile during L-H transitions in the Experimental Advanced Superconducting Tokamak (EAST) was accompanied by strong core crashes prior to regular sawtooth behavior. These crashes appeared in the absence of q = 1 (q is the safety factor) rational surface inside the plasma. Analysis indicates that the m/n = 2/1 tearing mode is destabilized and phase-locked with the m/n = 1/1 non-resonant kink mode (the q = 1 rational surface is absent) due to the self-consistent evolution of plasma profiles as the L-H transition occurs (m and n are the poloidal and toroidal mode numbers, respectively). The growing m/n = 1/1 mode destabilizes the m/n = 2/2 kink mode which eventually triggers the strong crash due to an anomalous heat conductivity, as predicted by the transport model of stochastic magnetic fields using experimental parameters. It is also shown that the magnetic topology changes with the amplitude of m/n = 2/2 mode and the value of center safety factor in a reasonable range.

  6. Characterization of local heat fluxes around ICRF antennas on JET

    Energy Technology Data Exchange (ETDEWEB)

    Campergue, A.-L. [Ecole Nationale des Ponts et Chaussées, F77455 Marne-la-Vallée (France); Jacquet, P.; Monakhov, I.; Arnoux, G.; Brix, M.; Sirinelli, A. [Euratom/CCFE Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Bobkov, V. [Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Milanesio, D. [Politecnico di Torino, Department of Electronics, Torino (Italy); Colas, L. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Collaboration: JET-EFDA Contributors

    2014-02-12

    When using Ion Cyclotron Range of Frequency (ICRF) heating, enhanced power deposition on Plasma-Facing Components (PFCs) close to the antennas can occur. Experiments have recently been carried out on JET with the new ITER-Like-Wall (ILW) to characterize the heat fluxes on the protection of the JET ICRF antennas, using Infra-Red (IR) thermography measurement. The measured heat flux patterns along the poloidal limiters surrounding powered antennas were compared to predictions from a simple RF sheath rectification model. The RF electric field, parallel to the static magnetic field in front of the antenna, was evaluated using the TOPICA code, integrating a 3D flattened model of the JET A2 antennas. The poloidal density variation in front of the limiters was obtained from the mapping of the Li-beam or edge reflectometry measurements using the flux surface geometry provided by EFIT equilibrium reconstruction. In many cases, this simple model can well explain the position of the maximum heat flux on the different protection limiters and the heat-flux magnitude, confirming that the parallel RF electric field and the electron plasma density in front of the antenna are the main driving parameters for ICRF-induced local heat fluxes.

  7. Atoms in strong laser fields

    International Nuclear Information System (INIS)

    L'Huillier, A.

    2002-01-01

    When a high-power laser focuses into a gas of atoms, the electromagnetic field becomes of the same magnitude as the Coulomb field which binds a 1s electron in a hydrogen atom. 3 highly non-linear phenomena can happen: 1) ATI (above threshold ionization): electrons initially in the ground state absorb a large number of photons, many more than the minimum number required for ionization; 2) multiple ionization: many electrons can be emitted one at a time, in a sequential process, or simultaneously in a mechanism called direct or non-sequential; and 3) high order harmonic generation (HHG): efficient photon emission in the extreme ultraviolet range, in the form of high-order harmonics of the fundamental laser field can occur. The theoretical problem consists in solving the time dependent Schroedinger equation (TDSE) that describes the interaction of a many-electron atom with a laser field. A number of methods have been proposed to solve this problem in the case of a hydrogen atom or a single-active electron atom in a strong laser field. A large effort is presently being devoted to go beyond the single-active approximation. The understanding of the physics of the interaction between atoms and strong laser fields has been provided by a very simple model called ''simple man's theory''. A unified view of HHG, ATI, and non-sequential ionization, originating from the simple man's model and the strong field approximation, expressed in terms of electrons trajectories or quantum paths is slowly emerging. (A.C.)

  8. Rydberg atoms in strong fields

    International Nuclear Information System (INIS)

    Kleppner, D.; Tsimmerman, M.

    1985-01-01

    Experimental and theoretical achievements in studying Rydberg atoms in external fields are considered. Only static (or quasistatic) fields and ''one-electron'' atoms, i.e. atoms that are well described by one-electron states, are discussed. Mainly behaviour of alkali metal atoms in electric field is considered. The state of theoretical investigations for hydrogen atom in magnetic field is described, but experimental data for atoms of alkali metals are presented as an illustration. Results of the latest experimental and theoretical investigations into the structure of Rydberg atoms in strong fields are presented

  9. Strongly interacting light dark matter

    International Nuclear Information System (INIS)

    Bruggisser, Sebastian; Riva, Francesco; Urbano, Alfredo

    2016-07-01

    In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM) can appear weakly coupled at small-energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo-Nambu-Goldstone Bosons and Goldstini) are interesting targets for LHC missing-energy searches.

  10. Weak consistency and strong paraconsistency

    Directory of Open Access Journals (Sweden)

    Gemma Robles

    2009-11-01

    Full Text Available In a standard sense, consistency and paraconsistency are understood as, respectively, the absence of any contradiction and as the absence of the ECQ (“E contradictione quodlibet” rule that allows us to conclude any well formed formula from any contradiction. The aim of this paper is to explain the concepts of weak consistency alternative to the standard one, the concepts of paraconsistency related to them and the concept of strong paraconsistency, all of which have been defined by the author together with José M. Méndez.

  11. On the strong CP problem

    Energy Technology Data Exchange (ETDEWEB)

    Dowrick, N.J. (Dept. of Physics, Oxford (United Kingdom)); McDougall, N.A. (National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan))

    1992-07-09

    We show that two well-known solutions to the strong CP problem, the axion and a massless quark, may be understood in terms of the mechanism recently proposed by Samuel where long-range interactions between topological charges may be responsible for the removal of CP violation. We explain how the axion and a QCD meson (identified as the {eta}' if all quarks are massless) suppress fluctuations in global topological charge by almost identical dynamical although the masses, couplings and relevant length scales are very different. Furthermore, we elucidate the precise origin of the {eta}' mass. (orig.).

  12. Scalar strong interaction hadron theory

    CERN Document Server

    Hoh, Fang Chao

    2015-01-01

    The scalar strong interaction hadron theory, SSI, is a first principles' and nonlocal theory at quantum mechanical level that provides an alternative to low energy QCD and Higgs related part of the standard model. The quark-quark interaction is scalar rather than color-vectorial. A set of equations of motion for mesons and another set for baryons have been constructed. This book provides an account of the present state of a theory supposedly still at its early stage of development. This work will facilitate researchers interested in entering into this field and serve as a basis for possible future development of this theory.

  13. Estimation of strong ground motion

    International Nuclear Information System (INIS)

    Watabe, Makoto

    1993-01-01

    Fault model has been developed to estimate a strong ground motion in consideration of characteristics of seismic source and propagation path of seismic waves. There are two different approaches in the model. The first one is a theoretical approach, while the second approach is a semi-empirical approach. Though the latter is more practical than the former to be applied to the estimation of input motions, it needs at least the small-event records, the value of the seismic moment of the small event and the fault model of the large event

  14. Strong Mechanoluminescence from Oxynitridosilicate Phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lin; Xu Chaonan; Yamada, Hiroshi, E-mail: cn-xu@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 807-1 Shuku, Tosu, Saga 841-0052 (Japan)

    2011-10-29

    We successfully developed a novel Mechanoluminescence (ML) material with water resistance, oxynitridosilicate; BaSi{sub 2}O{sub 2}N{sub 2}: Eu{sup 2+}. The crystal structure, photoluminescence (PL) and ML properties were characterized. The ML of BaSi{sub 2}O{sub 2}N{sub 2}: Eu{sup 2+} is so strong that the blue-green emission can be observed by the naked eyes clearly. In addition, it shows superior water resistance property. No changes were found in the ML intensities during the total water treatment test.

  15. Effective lagrangian for strong interactions

    International Nuclear Information System (INIS)

    Jain, P.

    1988-01-01

    We attempt to construct a realistic phenomenological Lagrangian in order to describe strong interactions. This is in general a very complicated problem and we shall explore its various aspects. We first include the vector mesons by writing down the most general chiral invariant terms proportional to the Levi-Civita symbol ε μναβ . These terms involve three unknown coefficients, which are calculated by using the experimental results of strong interaction processes. We then calculate the static nucleon properties by finding the solitonic excitations of this model. The results turn out to be, as is also the case for most other vector-pseudoscalar Lagrangians, better than the Skyrme model but are still somewhat different from the experiments. Another aspect that we shall study is the incorporation of scale anomaly of QCD into the Skyrme model. We thus introduce a scalar glueball in our Lagrangian. Here we find an interesting result that the effective glue field dynamically forms a bag for the soliton. Depending on the values of the parameters, we get either a deep bag or a shallow bag. However by including the scalar meson, we find that to get realistic scalar sector we must have the shallow bag. Finally we show some intriguing connections between the chiral quark model, in which the nucleon is described as a solitonic excitation, and the ordinary potential binding quark model

  16. Strong Selective Adsorption of Polymers.

    Science.gov (United States)

    Ge, Ting; Rubinstein, Michael

    2015-06-09

    A scaling theory is developed for selective adsorption of polymers induced by the strong binding between specific monomers and complementary surface adsorption sites. By "selective" we mean specific attraction between a subset of all monomers, called "sticky", and a subset of surface sites, called "adsorption sites". We demonstrate that, in addition to the expected dependence on the polymer volume fraction ϕ bulk in the bulk solution, selective adsorption strongly depends on the ratio between two characteristic length scales, the root-mean-square distance l between neighboring sticky monomers along the polymer, and the average distance d between neighboring surface adsorption sites. The role of the ratio l / d arises from the fact that a polymer needs to deform to enable the spatial commensurability between its sticky monomers and the surface adsorption sites for selective adsorption. We study strong selective adsorption of both telechelic polymers with two end monomers being sticky and multisticker polymers with many sticky monomers between sticky ends. For telechelic polymers, we identify four adsorption regimes at l / d 1, we expect that the adsorption layer at exponentially low ϕ bulk consists of separated unstretched loops, while as ϕ bulk increases the layer crosses over to a brush of extended loops with a second layer of weakly overlapping tails. For multisticker chains, in the limit of exponentially low ϕ bulk , adsorbed polymers are well separated from each other. As l / d increases, the conformation of an individual polymer changes from a single-end-adsorbed "mushroom" to a random walk of loops. For high ϕ bulk , adsorbed polymers at small l / d are mushrooms that cover all the adsorption sites. At sufficiently large l / d , adsorbed multisticker polymers strongly overlap. We anticipate the formation of a self-similar carpet and with increasing l / d a two-layer structure with a brush of loops covered by a self-similar carpet. As l / d exceeds the

  17. Designing asymmetric multiferroics with strong magnetoelectric coupling

    Science.gov (United States)

    Lu, Xuezeng; Xiang, Hongjun; Rondinelli, James; Materials Theory; Design Group Team

    2015-03-01

    Multiferroics offer exciting opportunities for electric-field control of magnetism. Single-phase multiferroics suitable for such applications at room temperature need much more study. Here, we propose the concept of an alternative type of multiferroics, namely, the ``asymmetric multiferroic.'' In asymmetric multiferroics, two locally stable ferroelectric states are not symmetrically equivalent, leading to different magnetic properties between these two states. Furthermore, we predict from first principles that a Fe-Cr-Mo superlattice with the LiNbO3-type structure is such an asymmetric multiferroic. The strong ferrimagnetism, high ferroelectric polarization, and significant dependence of the magnetic transition temperature on polarization make this asymmetric multiferroic an ideal candidate for realizing electric-field control of magnetism at room temperature. Our study suggests that the asymmetric multiferroic may provide an alternative playground for voltage control of magnetism and find its applications in spintronics and quantum computing.

  18. Quantum effects in strong fields

    International Nuclear Information System (INIS)

    Roessler, Lars

    2014-01-01

    This work is devoted to quantum effects for photons in spatially inhomogeneous fields. Since the purely analytical solution of the corresponding equations is an unsolved problem even today, a main aspect of this work is to use the worldline formalism for scalar QED to develop numerical algorithms for correlation functions beyond perturbative constructions. In a first step we take a look at the 2-Point photon correlation function, in order to understand effects like vacuum polarization or quantum reflection. For a benchmark test of the numerical algorithm we reproduce analytical results in a constant magnetic background. For inhomogeneous fields we calculate for the first time local refractive indices of the quantum vacuum. In this way we find a new de-focusing effect of inhomogeneous magnetic fields. Furthermore the numerical algorithm confirms analytical results for quantum reflection obtained within the local field approximation. In a second step we take a look at higher N-Point functions, with the help of our numerical algorithm. An interesting effect at the level of the 3-Point function is photon splitting. First investigations show that the Adler theorem remains also approximately valid for inhomogeneous fields.

  19. Finite temperature system of strongly interacting baryons

    International Nuclear Information System (INIS)

    Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.; Wheeler, J.W.

    1976-07-01

    A fully relativistic finite temperature many body theory is constructed and used to examine the bulk properties of a system of strongly interacting baryons. The strong interactions are described by a two parameter phenomenological model fit to a simple description of nuclear matter at T = 0. The zero temperature equation of state for such a system which has already been discussed in the literature was developed to give a realistic description of nuclear matter. The model presented here is the exact finite temperature extension of that model. The effect of the inclusion of baryon pairs for T greater than or equal to 2mc 2 /k is discussed in detail. The phase transition identified with nuclear matter vanishes for system temperatures in excess of T/sub C/ = 1.034 x 10 11 0 K. All values of epsilon (P,T) correspond to systems that are causal in the sense that the locally determined speed of sound never exceeds the speed of light

  20. Finite temperature system of strongly interacting baryons

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.; Wheeler, J.W.

    1976-07-01

    A fully relativistic finite temperature many body theory is constructed and used to examine the bulk properties of a system of strongly interacting baryons. The strong interactions are described by a two parameter phenomenological model fit to a simple description of nuclear matter at T = 0. The zero temperature equation of state for such a system which has already been discussed in the literature was developed to give a realistic description of nuclear matter. The model presented here is the exact finite temperature extension of that model. The effect of the inclusion of baryon pairs for T greater than or equal to 2mc/sup 2//k is discussed in detail. The phase transition identified with nuclear matter vanishes for system temperatures in excess of T/sub C/ = 1.034 x 10/sup 11/ /sup 0/K. All values of epsilon (P,T) correspond to systems that are causal in the sense that the locally determined speed of sound never exceeds the speed of light.

  1. Strong growth for Queensland mining

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    The Queensland mining industry experienced strong growth during 1989-90 as shown in the latest statistics released by the Department of Resource Industries. The total value of Queensland mineral and energy production rose to a new record of $5.1 billion, an increase of 16.5% on 1988-89 production. A major contributing factor was a 20.9 percent increase in the value of coal production. While the quantity of coal produced rose only 1.1 percent, the substantial increase in the value of coal production is attributable to higher coal prices negotiated for export contracts. In Australian dollar terms coal, gold, lead, zinc and crude oil on average experienced higher international prices than in the previous year. Only copper and silver prices declined. 3 tabs.

  2. Strong moduli stabilization and phenomenology

    CERN Document Server

    Dudas, Emilian; Mambrini, Yann; Mustafayev, Azar; Olive, Keith A

    2013-01-01

    We describe the resulting phenomenology of string theory/supergravity models with strong moduli stabilization. The KL model with F-term uplifting, is one such example. Models of this type predict universal scalar masses equal to the gravitino mass. In contrast, A-terms receive highly suppressed gravity mediated contributions. Under certain conditions, the same conclusion is valid for gaugino masses, which like A-terms, are then determined by anomalies. In such models, we are forced to relatively large gravitino masses (30-1000 TeV). We compute the low energy spectrum as a function of m_{3/2}. We see that the Higgs masses naturally takes values between 125-130 GeV. The lower limit is obtained from the requirement of chargino masses greater than 104 GeV, while the upper limit is determined by the relic density of dark matter (wino-like).

  3. Strongly interacting W's and Z's

    International Nuclear Information System (INIS)

    Gaillard, M.K.

    1984-01-01

    The study focussed primarily on the dynamics of a strongly interacting W, Z(SIW) sector, with the aim of sharpening predictions for total W, Z yield and W, Z multiplicities expected from WW fusion for various scenarios. Specific issues raised in the context of the general problem of modeling SIW included the specificity of the technicolor (or, equivalently, QCD) model, whether or not a composite scalar model can be evaded, and whether the standard model necessarily implies an I = J = O state (≅ Higgs particle) that is relatively ''light'' (M ≤ hundreds of TeV). The consensus on the last issue was that existing arguments are inconclusive. While the author shall briefly address compositeness and alternatives to the technicolor model, quantitative estimates will be of necessity based on technicolor or an extrapolation of pion data

  4. Electrophoresis in strong electric fields.

    Science.gov (United States)

    Barany, Sandor

    2009-01-01

    Two kinds of non-linear electrophoresis (ef) that can be detected in strong electric fields (several hundred V/cm) are considered. The first ("classical" non-linear ef) is due to the interaction of the outer field with field-induced ionic charges in the electric double layer (EDL) under conditions, when field-induced variations of electrolyte concentration remain to be small comparatively to its equilibrium value. According to the Shilov theory, the non-linear component of the electrophoretic velocity for dielectric particles is proportional to the cubic power of the applied field strength (cubic electrophoresis) and to the second power of the particles radius; it is independent of the zeta-potential but is determined by the surface conductivity of particles. The second one, the so-called "superfast electrophoresis" is connected with the interaction of a strong outer field with a secondary diffuse layer of counterions (space charge) that is induced outside the primary (classical) diffuse EDL by the external field itself because of concentration polarization. The Dukhin-Mishchuk theory of "superfast electrophoresis" predicts quadratic dependence of the electrophoretic velocity of unipolar (ionically or electronically) conducting particles on the external field gradient and linear dependence on the particle's size in strong electric fields. These are in sharp contrast to the laws of classical electrophoresis (no dependence of V(ef) on the particle's size and linear dependence on the electric field gradient). A new method to measure the ef velocity of particles in strong electric fields is developed that is based on separation of the effects of sedimentation and electrophoresis using videoimaging and a new flowcell and use of short electric pulses. To test the "classical" non-linear electrophoresis, we have measured the ef velocity of non-conducting polystyrene, aluminium-oxide and (semiconductor) graphite particles as well as Saccharomice cerevisiae yeast cells as a

  5. Local Turbulence Suppression and Shear Flow Dynamics During qmin-Triggered Internal Transport Barriers on DIII-D

    Science.gov (United States)

    Shafer, M. W.; McKee, G. R.; Schlossberg, D. J.; Austin, M. E.; Burrell, K. H.

    2008-11-01

    Long-wavelength turbulence (kρiITBs) may form. Application of off-axis ECH slows the q-profile evolution and increases ρqmin, both of which enhance turbulence measurements using a new high-sensitivity large-area (8x,8) 2D BES array. The measured transient turbulence suppression is localized to the low-order rational surface (qmin= 2, 5/2, 3, etc.). Measured poloidal flow shear transiently exceeds the turbulence decorrelation rate, which is consistent with shear suppression. The localized suppression zone propagates radially outward, nearly coincident with the low-order surface.

  6. Three dimensional nonlinear simulations of edge localized modes on the EAST tokamak using BOUT++ code

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z. X., E-mail: zxliu316@ipp.ac.cn; Xia, T. Y.; Liu, S. C.; Ding, S. Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Xu, X. Q.; Joseph, I.; Meyer, W. H. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Gao, X.; Xu, G. S.; Shao, L. M.; Li, G. Q.; Li, J. G. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2014-09-15

    Experimental measurements of edge localized modes (ELMs) observed on the EAST experiment are compared to linear and nonlinear theoretical simulations of peeling-ballooning modes using the BOUT++ code. Simulations predict that the dominant toroidal mode number of the ELM instability becomes larger for lower current, which is consistent with the mode structure captured with visible light using an optical CCD camera. The poloidal mode number of the simulated pressure perturbation shows good agreement with the filamentary structure observed by the camera. The nonlinear simulation is also consistent with the experimentally measured energy loss during an ELM crash and with the radial speed of ELM effluxes measured using a gas puffing imaging diagnostic.

  7. Strong correlation effects on surfaces of topological insulators via holography

    Science.gov (United States)

    Seo, Yunseok; Song, Geunho; Sin, Sang-Jin

    2017-07-01

    We investigate the effects of strong correlation on the surface state of a topological insulator (TI). We argue that electrons in the regime of crossover from weak antilocalization to weak localization are strongly correlated, and calculate the magnetotransport coefficients of TIs using the gauge-gravity principle. Then, we examine the magnetoconductivity (MC) formula and find excellent agreement with the data of chrome-doped Bi2Te3 in the crossover regime. We also find that the cusplike peak in MC at low doping is absent, which is natural since quasiparticles disappear due to the strong correlation.

  8. Strong monotonicity in mixed-state entanglement manipulation

    International Nuclear Information System (INIS)

    Ishizaka, Satoshi

    2006-01-01

    A strong entanglement monotone, which never increases under local operations and classical communications (LOCC), restricts quantum entanglement manipulation more strongly than the usual monotone since the usual one does not increase on average under LOCC. We propose strong monotones in mixed-state entanglement manipulation under LOCC. These are related to the decomposability and one-positivity of an operator constructed from a quantum state, and reveal geometrical characteristics of entangled states. These are lower bounded by the negativity or generalized robustness of entanglement

  9. Local food:

    DEFF Research Database (Denmark)

    Sundbo, Donna Isabella Caroline

    2013-01-01

    are identified and then categorised according to whether they pertain to the food product itself or the production methods and facilities and whether they describe physical or social properties of local food. From this a model with four categories is developed. It is found that properties of the product are more......Recently there has been more focus on food in general and local food in particular. But what is local food? And what are the perceptions of this concept according to theory and to providers and consumers of local food? This article first summarises and compares three different theoretical...... perspectives on local food, namely experience economy, local food systems and what is termed pro-industrialism. These have differing and sometimes opposite conceptualisations and aims for the concept of local food. Using the perspective of experience economy as theoretical background, the concept of local food...

  10. Strong Ideal Convergence in Probabilistic Metric Spaces

    Indian Academy of Sciences (India)

    In the present paper we introduce the concepts of strongly ideal convergent sequence and strong ideal Cauchy sequence in a probabilistic metric (PM) space endowed with the strong topology, and establish some basic facts. Next, we define the strong ideal limit points and the strong ideal cluster points of a sequence in this ...

  11. Strong Statistical Convergence in Probabilistic Metric Spaces

    OpenAIRE

    Şençimen, Celaleddin; Pehlivan, Serpil

    2008-01-01

    In this article, we introduce the concepts of strongly statistically convergent sequence and strong statistically Cauchy sequence in a probabilistic metric (PM) space endowed with the strong topology, and establish some basic facts. Next, we define the strong statistical limit points and the strong statistical cluster points of a sequence in this space and investigate the relations between these concepts.

  12. John Strong - 1941-2006

    CERN Multimedia

    2006-01-01

    Our friend and colleague John Strong was cruelly taken from us by a brain tumour on 31 July, a few days before his 65th birthday. John started his career and obtained his PhD in a group from Westfield College, initially working on experiments at Rutherford Appleton Laboratory (RAL). From the early 1970s onwards, however, his research was focused on experiments in CERN, with several particularly notable contributions. The Omega spectrometer adopted a system John had originally developed for experiments at RAL using vidicon cameras (a type of television camera) to record the sparks in the spark chambers. This highly automated system allowed Omega to be used in a similar way to bubble chambers. He contributed to the success of NA1 and NA7, where he became heavily involved in the electronic trigger systems. In these experiments the Westfield group joined forces with Italian colleagues to measure the form factors of the pion and the kaon, and the lifetime of some of the newly discovered charm particles. Such h...

  13. Remnants of strong tidal interactions

    International Nuclear Information System (INIS)

    Mcglynn, T.A.

    1990-01-01

    This paper examines the properties of stellar systems that have recently undergone a strong tidal shock, i.e., a shock which removes a significant fraction of the particles in the system, and where the shocked system has a much smaller mass than the producer of the tidal field. N-body calculations of King models shocked in a variety of ways are performed, and the consequences of the shocks are investigated. The results confirm the prediction of Jaffe for shocked systems. Several models are also run where the tidal forces on the system are constant, simulating a circular orbit around a primary, and the development of tidal radii under these static conditions appears to be a mild process which does not dramatically affect material that is not stripped. The tidal radii are about twice as large as classical formulas would predict. Remnant density profiles are compared with a sample of elliptical galaxies, and the implications of the results for the development of stellar populations and galaxies are considered. 38 refs

  14. Strongly correlated perovskite fuel cells

    Science.gov (United States)

    Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D.; Ramanathan, Shriram

    2016-06-01

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

  15. Strong seismic ground motion propagation

    International Nuclear Information System (INIS)

    Seale, S.; Archuleta, R.; Pecker, A.; Bouchon, M.; Mohammadioun, G.; Murphy, A.; Mohammadioun, B.

    1988-10-01

    At the McGee Creek, California, site, 3-component strong-motion accelerometers are located at depths of 166 m, 35 m and 0 m. The surface material is glacial moraine, to a depth of 30.5 m, overlying homfels. Accelerations were recorded from two California earthquakes: Round Valley, M L 5.8, November 23, 1984, 18:08 UTC and Chalfant Valley, M L 6.4, July 21, 1986, 14:42 UTC. By separating out the SH components of acceleration, we were able to determine the orientations of the downhole instruments. By separating out the SV component of acceleration, we were able to determine the approximate angle of incidence of the signal at 166 m. A constant phase velocity Haskell-Thomson model was applied to generate synthetic SH seismograms at the surface using the accelerations recorded at 166 m. In the frequency band 0.0 - 10.0 Hz, we compared the filtered synthetic records to the filtered surface data. The onset of the SH pulse is clearly seen, as are the reflections from the interface at 30.5 m. The synthetic record closely matches the data in amplitude and phase. The fit between the synthetic accelerogram and the data shows that the seismic amplification at the surface is a result of the contrast of the impedances (shear stiffnesses) of the near surface materials

  16. Local Content

    CSIR Research Space (South Africa)

    Gibberd, Jeremy

    2016-10-01

    Full Text Available Local content refers to materials and products made in a country as opposed those that are imported. There is an increasing interest in the concept of local content as a means of supporting local economies and providing jobs (Belderbos & Sleuwaegen...

  17. Spectral dependence efficiency and localization of non-inductive current-drive via helicity injection by global Alfven waves in Tokamak plasmas

    International Nuclear Information System (INIS)

    Komoshvili, K.; Cuperman, S.; Bruma, C.

    1996-01-01

    The non-inductive current drive via helicity injection by Global Alfven eigenmode (GAE) waves is studied. For illustration, the first radial mode of the discrete resonant GAE spectrum is considered. The following aspects are given special attention: spectral analysis, radial dependence and efficiency - all these as functions of the characteristics of the waves launched by an external, concentric antenna (i.e, wave frequency and poloidal and toroidal wave numbers). The results reveal the following conclusions. Generation of GAE waves. In the range of poloidal wave numbers -3 0 for m = -l, -2, -3 and -20 10; I-BAR < 0 for m = +1, +2, +3 and n < 10. (iv) The efficiency of the current drive, η = absolute I-BAR/absolute P-BAR, increases in the cases m = -1, -2, -3 with absolute m and absolute 1/n. (v) Detailed information on the relative direction and radial (core) localization of the current drive is obtained. (authors)

  18. Joint DIII-D/EAST research on the development of a high poloidal beta scenario for the steady state missions of ITER and CFETR

    Science.gov (United States)

    Garofalo, A. M.; Gong, X. Z.; Ding, S. Y.; Huang, J.; McClenaghan, J.; Pan, C. K.; Qian, J.; Ren, Q. L.; Staebler, G. M.; Chen, J.; Cui, L.; Grierson, B. A.; Hanson, J. M.; Holcomb, C. T.; Jian, X.; Li, G.; Li, M.; Pankin, A. Y.; Peysson, Y.; Zhai, X.; Bonoli, P.; Brower, D.; Ding, W. X.; Ferron, J. R.; Guo, W.; Lao, L. L.; Li, K.; Liu, H.; Lyv, B.; Xu, G.; Zang, Q.

    2018-01-01

    Experimental and modeling investigations on the DIII-D and EAST tokamaks show the attractive transport and stability properties of fully noninductive, high poloidal-beta (β P ) plasmas, and their suitability for steady-state operating scenarios in ITER and CFETR. A key feature of the high-β P regime is the large-radius (ρ > 0.6) internal transport barrier (ITB), often observed in all channels (ne, Te, Ti, rotation), and responsible for both excellent energy confinement quality and excellent stability properties. Experiments on DIII-D have shown that, with a large-radius ITB, very high β N and β P values (both ≥ 4) can be reached by taking advantage of the stabilizing effect of a nearby conducting wall. Synergistically, higher plasma pressure provides turbulence suppression by Shafranov shift, leading to ITB sustainment independent of the plasma rotation. Experiments on EAST have been used to assess the long pulse potential of the high-β P regime. Using RF-only heating and current drive, EAST achieved minute-long fully noninductive steady state H-mode operation with strike points on an ITER-like tungsten divertor. Improved confinement (relative to standard H-mode) and steady state ITB features are observed with a monotonic q-profile with q min ˜ 1.5. Separately, experiments have shown that increasing the density in plasmas driven by lower hybrid wave broadens the q-profile, a technique that could enable a large radius ITB. These experimental results have been used to validate MHD, current drive, and turbulent transport models, and to project the high-β P regime to a burning plasma. These projections suggest the Shafranov shift alone will not suffice to provide improved confinement (over standard H-mode) without rotation and rotation shear. However, increasing the negative magnetic shear (higher q on axis) provides a similar turbulence suppression mechanism to Shafranov shift, and can help devices such as ITER and CFETR achieve their steady-state fusion

  19. Strongly interacting photons and atoms

    International Nuclear Information System (INIS)

    Alge, W.

    1999-05-01

    This thesis contains the main results of the research topics I have pursued during the my PhD studies at the University of Innsbruck and partly in collaboration with the Institut d' Optique in Orsay, France. It is divided into three parts. The first and largest part discusses the possibility of using strong standing waves as a tool to cool and trap neutral atoms in optical cavities. This is very important in the field of nonlinear optics where several successful experiments with cold atoms in cavities have been performed recently. A discussion of the optical parametric oscillator in a regime where the nonlinearity dominates the evolution is the topic of the second part. We investigated mainly the statistical properties of the cavity output of the three interactive cavity modes. Very recently a system has been proposed which promises fantastic properties. It should exhibit a giant Kerr nonlinearity with negligible absorption thus leading to a photonic turnstile device based on cold atoms in cavity. We have shown that this model suffers from overly simplistic assumptions and developed several more comprehensive approaches to study the behavior of this system. Apart from the division into three parts of different contents the thesis is divided into publications, supplements and invisible stuff. The intention of the supplements is to reach researchers which work in related areas and provide them with more detailed information about the concepts and the numerical tools we used. It is written especially for diploma and PhD students to give them a chance to use the third part of our work which is actually the largest one. They consist of a large number of computer programs we wrote to investigate the behavior of the systems in parameter regions where no hope exists to solve the equations analytically. (author)

  20. Topics in strong Langmuir turbulence

    International Nuclear Information System (INIS)

    Skoric, M.M.

    1981-01-01

    This thesis discusses certain aspects of the turbulence of a fully ionised non-isothermal plasma dominated by the Langmuir mode. Some of the basic properties of strongly turbulent plasmas are reviewed. In particular, interest is focused on the state of Langmuir turbulence, that is the turbulence of a simple externally unmagnetized plasma. The problem of the existence and dynamics of Langmuir collapse is discussed, often met as a non-linear stage of the modulational instability in the framework of the Zakharov equations (i.e. simple time-averaged dynamical equations). Possible macroscopic consequences of such dynamical turbulent models are investigated. In order to study highly non-linear collapse dynamics in its advanced stage, a set of generalized Zakharov equations are derived. Going beyond the original approximation, the author includes the effects of higher electron non-linearities and a breakdown of slow-timescale quasi-neutrality. He investigates how these corrections may influence the collapse stabilisation. Recently, it has been realised that the modulational instability in a Langmuir plasma will be accompanied by the collisionless-generation of a slow-timescale magnetic field. Accordingly, a novel physical situation has emerged which is investigated in detail. The stability of monochromatic Langmuir waves in a self-magnetized Langmuir plasma, is discussed, and the existence of a novel magneto-modulational instability shown. The wave collapse dynamics is investigated and a physical interpretation of the basic results is given. A problem of the transient analysis of an interaction of time-dependent electromagnetic pulses with linear cold plasma media is investigated. (Auth.)

  1. Promoting Strong Written Communication Skills

    Science.gov (United States)

    Narayanan, M.

    2015-12-01

    The reason that an improvement in the quality of technical writing is still needed in the classroom is due to the fact that universities are facing challenging problems not only on the technological front but also on the socio-economic front. The universities are actively responding to the changes that are taking place in the global consumer marketplace. Obviously, there are numerous benefits of promoting strong written communication skills. They can be summarized into the following six categories. First, and perhaps the most important: The University achieves learner satisfaction. The learner has documented verbally, that the necessary knowledge has been successfully acquired. This results in learner loyalty that in turn will attract more qualified learners.Second, quality communication lowers the cost per pupil, consequently resulting in increased productivity backed by a stronger economic structure and forecast. Third, quality communications help to improve the cash flow and cash reserves of the university. Fourth, having high quality communication enables the university to justify the need for high costs of tuition and fees. Fifth, better quality in written communication skills result in attracting top-quality learners. This will lead to happier and satisfied learners, not to mention greater prosperity for the university as a whole. Sixth, quality written communication skills result in reduced complaints, thus meaning fewer hours spent on answering or correcting the situation. The University faculty and staff are thus able to devote more time on scholarly activities, meaningful research and productive community service. References Boyer, Ernest L. (1990). Scholarship reconsidered: Priorities of the Professorate.Princeton, NJ: Carnegie Foundation for the Advancement of Teaching. Hawkins, P., & Winter, J. (1997). Mastering change: Learning the lessons of the enterprise.London: Department for Education and Employment. Buzzel, Robert D., and Bradley T. Gale. (1987

  2. Strong density of a class of simple operators

    International Nuclear Information System (INIS)

    Somasundaram, S.; Mohammad, N.

    1991-08-01

    An algebra of simple operators has been shown to be strongly dense in the algebra of all bounded linear operators on function spaces of a compact (not necessarily abelian) group. Further, it is proved that the same result is also true for L 2 (G) if G is a locally compact (not necessarily compact) abelian group. (author). 6 refs

  3. Electromagnetic pulses in a strongly magnetized electron-positron plasma

    International Nuclear Information System (INIS)

    Yu, M.Y.; Rao, N.N.

    1985-01-01

    The conditions for the existence of large-amplitude localized electromagnetic wave pulses in an electron-positron plasma penetrated by a very strong ambient magnetic field are obtained. It is shown that such pulses can exist in pulsar polar magnetospheres. 12 references

  4. Analytical modeling of equilibrium of strongly anisotropic plasma in tokamaks and stellarators

    International Nuclear Information System (INIS)

    Lepikhin, N. D.; Pustovitov, V. D.

    2013-01-01

    Theoretical analysis of equilibrium of anisotropic plasma in tokamaks and stellarators is presented. The anisotropy is assumed strong, which includes the cases with essentially nonuniform distributions of plasma pressure on magnetic surfaces. Such distributions can arise at neutral beam injection or at ion cyclotron resonance heating. Then the known generalizations of the standard theory of plasma equilibrium that treat p ‖ and p ⊥ (parallel and perpendicular plasma pressures) as almost constant on magnetic surfaces are not applicable anymore. Explicit analytical prescriptions of the profiles of p ‖ and p ⊥ are proposed that allow modeling of the anisotropic plasma equilibrium even with large ratios of p ‖ /p ⊥ or p ⊥ /p ‖ . A method for deriving the equation for the Shafranov shift is proposed that does not require introduction of the flux coordinates and calculation of the metric tensor. It is shown that for p ⊥ with nonuniformity described by a single poloidal harmonic, the equation for the Shafranov shift coincides with a known one derived earlier for almost constant p ⊥ on a magnetic surface. This does not happen in the other more complex case

  5. Russia needs a strong counterpart

    International Nuclear Information System (INIS)

    Slovak, K.; Marcan, P.

    2008-01-01

    In this paper an interview with the head of OMV, Wolfgang Ruttenstorfer is published. There is extract from this interview: Q: There have been attempts to take over MOL for a quite long time. Do you think you can still succeed? Since the beginning we kept saying that this would not happen from one day to another. But it may take two to three years. But we are positive that it is justified. Q: Resistance from MOL and the Hungarian government is strong. We have tried to persuade the Hungarian government. We offered them a split company management. A part of the management would be in Budapest. We would locate the management of the largest division - the refinery, there. And of course only the best could be part of the management. We would not nominate people according to their nationality, it would not matter whether the person was Austrian, Hungarian or Slovak. We want a Central European company, not Hungarian, Romanian or Slovak company. Q: Would the transaction still be attractive if, because of pressure exercised by Brussels, you had to sell Slovnaft or your refinery in Szazhalobatta? We do not intend to sell any refineries. Q: Rumours are spreading that the Commission may ask you to sell a refinery? We do not want to speculate. Let us wait and see what happens. We do not want to sell refineries. Q: It is said that OMV is coordinating or at least consulting its attempts to acquire MOL with Gazprom. There are many rumours in Central Europe. But I can tell you this is not true. We are interested in this merger because we feel the increasing pressure exercised by Kazakhstan and Russia. We, of course, have a good relationship with Gazprom which we have had enjoyed for over forty years. As indeed Slovakia has. Q: A few weeks ago Austrian daily Wirtschaftsblatt published an article about Gazprom's interest in OMV shares. That is gossip that is more than ten years' old. Similarly to the rumours that Gazprom is a shareholder of MOL. There are no negotiations with Gazprom

  6. Localized MHD activity near transport barriers in JT-60U and TFTR

    International Nuclear Information System (INIS)

    Manickam, J.

    2001-01-01

    Localized MHD activity observed in JT-60U and TFTR near transport barriers with their associated large pressure gradients is investigated. Stability analysis of equilibria modeling the experiments supports an identification of this MHD as being due to an ideal MHD n=1 instability. The appearance of the instability depends on the local pressure gradient, local shear in the q profile and the proximity of rational surfaces where q∼m/n and m and n are the poloidal and toroidal mode numbers respectively. The mode width is shown to depend on the local value of q, and is larger when q is smaller. In addition the role of the edge current density in coupling the internal mode to the plasma edge and of the energetic particles which can drive fishbone like modes is investigated. (author)

  7. High-mode-number ballooning modes in a heliotron/torsatron system: 1, Local magnetic shear

    International Nuclear Information System (INIS)

    Nakajima, N.

    1996-05-01

    The characteristics of the local magnetic shear, a quantity associated with high-mode-number ballooning mode stability, are considered in heliotron/torsatron devices that have a large Shafranov shift. The local magnetic shear is shown to vanish even in the stellarator-like region in which the global magnetic shear is positive. The reason for this is that the degree of the local compression of the poloidal magnetic field on the outer side of the torus, which maintains the toroidal force balance, is reduced in the stellarator-like region of global magnetic shear because the global rotational transform in heliotron/torsatron systems is a radially increasing function. This vanishing of the local magnetic shear is a universal property in heliotron/torsatron systems with a large Shafranov shift since it results from toroidal force balance in the stellarator-like global shear regime that is inherent to such systems

  8. Effective Induction Heating around Strongly Magnetized Stars

    Science.gov (United States)

    Kislyakova, K. G.; Fossati, L.; Johnstone, C. P.; Noack, L.; Lüftinger, T.; Zaitsev, V. V.; Lammer, H.

    2018-05-01

    Planets that are embedded in the changing magnetic fields of their host stars can experience significant induction heating in their interiors caused by the planet’s orbital motion. For induction heating to be substantial, the planetary orbit has to be inclined with respect to the stellar rotation and dipole axes. Using WX UMa, for which the rotation and magnetic axes are aligned, as an example, we show that for close-in planets on inclined orbits, induction heating can be stronger than the tidal heating occurring inside Jupiter’s satellite Io; namely, it can generate a surface heat flux exceeding 2 W m‑2. An internal heating source of such magnitude can lead to extreme volcanic activity on the planet’s surface, possibly also to internal local magma oceans, and to the formation of a plasma torus around the star aligned with the planetary orbit. A strongly volcanically active planet would eject into space mostly SO2, which would then dissociate into oxygen and sulphur atoms. Young planets would also eject CO2. Oxygen would therefore be the major component of the torus. If the O I column density of the torus exceeds ≈1012 cm‑2, the torus could be revealed by detecting absorption signatures at the position of the strong far-ultraviolet O I triplet at about 1304 Å. We estimate that this condition is satisfied if the O I atoms in the torus escape the system at a velocity smaller than 1–10 km s‑1. These estimates are valid also for a tidally heated planet.

  9. Is It Possible to Predict Strong Earthquakes?

    Science.gov (United States)

    Polyakov, Y. S.; Ryabinin, G. V.; Solovyeva, A. B.; Timashev, S. F.

    2015-07-01

    The possibility of earthquake prediction is one of the key open questions in modern geophysics. We propose an approach based on the analysis of common short-term candidate precursors (2 weeks to 3 months prior to strong earthquake) with the subsequent processing of brain activity signals generated in specific types of rats (kept in laboratory settings) who reportedly sense an impending earthquake a few days prior to the event. We illustrate the identification of short-term precursors using the groundwater sodium-ion concentration data in the time frame from 2010 to 2014 (a major earthquake occurred on 28 February 2013) recorded at two different sites in the southeastern part of the Kamchatka Peninsula, Russia. The candidate precursors are observed as synchronized peaks in the nonstationarity factors, introduced within the flicker-noise spectroscopy framework for signal processing, for the high-frequency component of both time series. These peaks correspond to the local reorganizations of the underlying geophysical system that are believed to precede strong earthquakes. The rodent brain activity signals are selected as potential "immediate" (up to 2 weeks) deterministic precursors because of the recent scientific reports confirming that rodents sense imminent earthquakes and the population-genetic model of K irshvink (Soc Am 90, 312-323, 2000) showing how a reliable genetic seismic escape response system may have developed over the period of several hundred million years in certain animals. The use of brain activity signals, such as electroencephalograms, in contrast to conventional abnormal animal behavior observations, enables one to apply the standard "input-sensor-response" approach to determine what input signals trigger specific seismic escape brain activity responses.

  10. Neoclassical kinetic theory near an X point: Plateau regime

    International Nuclear Information System (INIS)

    Solano, E.R.; Hazeltine, R.D.

    1994-01-01

    Traditionally, neoclassical transport calculations ignore poloidal variation of the poloidal magnetic field. Near an X point of the confining field of a diverted plasma, the poloidal field is small, causing guiding centers to linger at that poloidal position. A study of how neoclassical transport is affected by this differential shaping is presented. The problem is solved in general in the plateau regime, and a model poloidal flux function with an X point is utilized as an analytic example to show that the plateau diffusion coefficient can change considerably (factor of 2 reduction). Ion poloidal rotation is proportional to the local value of B pol but otherwise it is not strongly affected by shaping. The usual favorable scaling of neoclassical confinement time with plasma current is unaffected by the X point

  11. Quantum centipedes with strong global constraint

    Science.gov (United States)

    Grange, Pascal

    2017-06-01

    A centipede made of N quantum walkers on a one-dimensional lattice is considered. The distance between two consecutive legs is either one or two lattice spacings, and a global constraint is imposed: the maximal distance between the first and last leg is N  +  1. This is the strongest global constraint compatible with walking. For an initial value of the wave function corresponding to a localized configuration at the origin, the probability law of the first leg of the centipede can be expressed in closed form in terms of Bessel functions. The dispersion relation and the group velocities are worked out exactly. Their maximal group velocity goes to zero when N goes to infinity, which is in contrast with the behaviour of group velocities of quantum centipedes without global constraint, which were recently shown by Krapivsky, Luck and Mallick to give rise to ballistic spreading of extremal wave-front at non-zero velocity in the large-N limit. The corresponding Hamiltonians are implemented numerically, based on a block structure of the space of configurations corresponding to compositions of the integer N. The growth of the maximal group velocity when the strong constraint is gradually relaxed is explored, and observed to be linear in the density of gaps allowed in the configurations. Heuristic arguments are presented to infer that the large-N limit of the globally constrained model can yield finite group velocities provided the allowed number of gaps is a finite fraction of N.

  12. Control of dynamical localization

    International Nuclear Information System (INIS)

    Gong Jiangbin; Woerner, Hans Jakob; Brumer, Paul

    2003-01-01

    Control over the quantum dynamics of chaotic kicked rotor systems is demonstrated. Specifically, control over a number of quantum coherent phenomena is achieved by a simple modification of the kicking field. These include the enhancement of the dynamical localization length, the introduction of classical anomalous diffusion assisted control for systems far from the semiclassical regime, and the observation of a variety of strongly nonexponential line shapes for dynamical localization. The results provide excellent examples of controlled quantum dynamics in a system that is classically chaotic and offer opportunities to explore quantum fluctuations and correlations in quantum chaos

  13. Endangerment of cultural heritage sites by strong rain

    Science.gov (United States)

    Krauß, Thomas; Fischer, Peter

    2017-09-01

    Due to climate change extreme weather conditions become more and more frequent in the last years. Especially in Germany nearly every year a large flood event happens. Most of these events are caused by strong rain. There are at most two causes for these floodings: The first is locally strong rain in the area of damage, the second happens at damage sites located near confluxes and strong rain in the upper stream areas of the joining rivers. The amount of damage is often strongly correlated with unreasonable designation of new construction in such endangered regions. Our presented study is based on an earlier project together with a German insurance company. In this project we analyzed correlations of geographical settings with the insurance data of flood damages over ten years. The result of this study was a strong relation of the terrain with the amount and the probability of damages. Further investigations allow us to derive a system for estimating potential endangerment due to strong rain just from suitable digital terrain models (DTMs). In the presented study we apply this method to different types of cultural heritage (CH) sites in Germany and other parts of the world to detect which type of CH sites were build with potential endangerment of strong rain events in mind and which ones are prone to such events.

  14. Localized superconductors

    International Nuclear Information System (INIS)

    Ma, M.; Lee, P.A.

    1985-01-01

    We study the effects of Anderson localization on superconductivity by using a Bardeen-Cooper-Schrieffer (BCS)-type trial wave function which pairs electrons in exact time-reversed eigenstates of the single-particle Hamiltonian. Within this approximation, and neglecting localization effects on the effective Coulomb repulsion and the electron-phonon coupling, we find that superconductivity persists below the mobility edge. In fact, Anderson's theorem is valid in the localized phase as long as rhoΔ 0 L/sup d/ > 1 (rho is the density of states averaged over +- Δ 0 of the Fermi energy, Δ 0 the BCS gap parameter, and L the localization length). Hence the gap order parameter Δ(r) remains uniform in space at the BCS value Δ 0 . The superfluid density and response to electromagnetic perturbations, however, show marked differences from the ''dirty superconductor'' regime. For rhoΔ 0 L/sup d/ < 1, Δ(r) fluctuates spatially and eventually drops to zero. In the limit when states are site localized, the system crosses over into the ''Anderson negative-U glass.'' Considerations beyond the trial wave-function approximation will speed up the destruction of superconductivity. The superconductor formed from localized states has the property that its quasiparticle excitations are also localized. Such excitations can be probed by observing the normal current in a tunneling junction

  15. Edge-localized mode avoidance and pedestal structure in I-mode plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Walk, J. R., E-mail: jrwalk@psfc.mit.edu; Hughes, J. W.; Hubbard, A. E.; Terry, J. L.; Whyte, D. G.; White, A. E.; Baek, S. G.; Reinke, M. L.; Theiler, C.; Churchill, R. M.; Rice, J. E. [MIT Plasma Science and Fusion Center, Cambridge, MA 02139-4307 (United States); Snyder, P. B.; Osborne, T. [General Atomics, San Diego, CA 92186-5608 (United States); Dominguez, A [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Cziegler, I. [UCSD Center for Momentum Transport and Flow Organization, La Jolla, CA 92093-0417 (United States)

    2014-05-15

    I-mode is a high-performance tokamak regime characterized by the formation of a temperature pedestal and enhanced energy confinement, without an accompanying density pedestal or drop in particle and impurity transport. I-mode operation appears to have naturally occurring suppression of large Edge-Localized Modes (ELMs) in addition to its highly favorable scalings of pedestal structure and overall performance. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to the structure and ELM stability of I-mode pedestals. Analysis of I-mode discharges prepared with high-resolution pedestal data from the most recent C-Mod campaign reveals favorable pedestal scalings for extrapolation to large machines—pedestal temperature scales strongly with power per particle P{sub net}/n{sup ¯}{sub e}, and likewise pedestal pressure scales as the net heating power (consistent with weak degradation of confinement with heating power). Matched discharges in current, field, and shaping demonstrate the decoupling of energy and particle transport in I-mode, increasing fueling to span nearly a factor of two in density while maintaining matched temperature pedestals with consistent levels of P{sub net}/n{sup ¯}{sub e}. This is consistent with targets for increased performance in I-mode, elevating pedestal β{sub p} and global performance with matched increases in density and heating power. MHD calculations using the ELITE code indicate that I-mode pedestals are strongly stable to edge peeling-ballooning instabilities. Likewise, numerical modeling of the KBM turbulence onset, as well as scalings of the pedestal width with poloidal beta, indicates that I-mode pedestals are not limited by KBM turbulence—both features identified with the trigger for large ELMs

  16. Possible test of the strong principle of equivalence

    International Nuclear Information System (INIS)

    Brecher, K.

    1978-01-01

    We suggest that redshift determinations of X-ray and γ-ray lines produced near the surface of neutron stars which arise from different physical processes could provide a significant test of the strong principle of equivalence for strong gravitational fields. As a complement to both the high-precision weak-field solar-system experiments and the cosmological time variation searches, such observations could further test the hypothesis that physics is locally the same at all times and in all places

  17. Localized Scleroderma

    Science.gov (United States)

    ... How Is Localized Scleroderma Diagnosed? Doctors who are familiar with scleroderma, or who are experts at examining ... systemic treatment with a medication or other treatment interventions (for example, ultraviolet light), are reserved for more ...

  18. Interaction of a strong vortex with decaying turbulence

    International Nuclear Information System (INIS)

    Terry, P.W.

    1988-01-01

    The evolution of a localized, axially symmetric vortex under the action of shear stresses associated with decaying two-dimensional turbulent vorticity which is inhomogeneous in the presence of the vortex is studied analytically. For a vortex which is sufficiently strong relative to the coefficient of turbulent eddy viscosity, it is shown that turbulent fluctuations in the vortex interior and diffusion of coherent vorticity by the turbulence localize to the vortex periphery. It is also found that the coefficient of diffusion is small compared to the coefficient of eddy viscosity. 8 refs

  19. Strong discontinuity with cam clay under large deformations

    DEFF Research Database (Denmark)

    Katic, Natasa; Hededal, Ole

    2008-01-01

    The work shows simultaneous implementation of Strong discontinuity approach (SDA) by means of Enhanced Assumed Strain (EAS) and Critical State Soil Mechanics CSSM) in large strain regime. The numerical model is based on an additive decomposition of the displacement gradient into a conforming and ...... and an enhanced part. The localized deformations are approximated by means of a discontinuous displacement field. The applied algorithm leads to a predictor/corrector procedure which is formally identical to the returnmapping algorithm of classical (local and continuous) Cam clay model....

  20. Discriminative deep inelastic tests of strong interaction field theories

    International Nuclear Information System (INIS)

    Glueck, M.; Reya, E.

    1979-02-01

    It is demonstrated that recent measurements of F 2 (x,Q 2 ) dx eliminate already all strong interaction field theories which do not include colored quarks as well as colored vector gluons. Detailed studies of scaling violations in F 2 (x,Q 2 ) cannot discriminate between a local gauge invariant theory (QCD) and one which has no local color gauge invariance, i.e. no triple-gluon coupling. This implies that all calculations on scaling violations done so far are insensitive to the gluon self-coupling, the latter might perhaps be delineated with future ep colliding beam facilities. (orig.) [de

  1. Kinetic theory for strongly coupled Coulomb systems

    Science.gov (United States)

    Dufty, James; Wrighton, Jeffrey

    2018-01-01

    The calculation of dynamical properties for matter under extreme conditions is a challenging task. The popular Kubo-Greenwood model exploits elements from equilibrium density-functional theory (DFT) that allow a detailed treatment of electron correlations, but its origin is largely phenomenological; traditional kinetic theories have a more secure foundation but are limited to weak ion-electron interactions. The objective here is to show how a combination of the two evolves naturally from the short-time limit for the generator of the effective single-electron dynamics governing time correlation functions without such limitations. This provides a theoretical context for the current DFT-related approach, the Kubo-Greenwood model, while showing the nature of its corrections. The method is to calculate the short-time dynamics in the single-electron subspace for a given configuration of the ions. This differs from the usual kinetic theory approach in which an average over the ions is performed as well. In this way the effective ion-electron interaction includes strong Coulomb coupling and is shown to be determined from DFT. The correlation functions have the form of the random-phase approximation for an inhomogeneous system but with renormalized ion-electron and electron-electron potentials. The dynamic structure function, density response function, and electrical conductivity are calculated as examples. The static local field corrections in the dielectric function are identified in this way. The current analysis is limited to semiclassical electrons (quantum statistical potentials), so important quantum conditions are excluded. However, a quantization of the kinetic theory is identified for broader application while awaiting its detailed derivation.

  2. Strong Bisimilarity of Simple Process Algebras

    DEFF Research Database (Denmark)

    Srba, Jirí

    2003-01-01

    We study bisimilarity and regularity problems of simple process algebras. In particular, we show PSPACE-hardness of the following problems: (i) strong bisimilarity of Basic Parallel Processes (BPP), (ii) strong bisimilarity of Basic Process Algebra (BPA), (iii) strong regularity of BPP, and (iv......) strong regularity of BPA. We also demonstrate NL-hardness of strong regularity problems for the normed subclasses of BPP and BPA. Bisimilarity problems of simple process algebras are introduced in a general framework of process rewrite systems, and a uniform description of the new techniques used...

  3. The non-resonant kink modes triggering strong sawtooth-like crashes in the EAST tokamak

    International Nuclear Information System (INIS)

    Li, Erzhong; Xu, L; Chen, K; Shi, T; Hu, L; Igochine, V; Dumbrajs, O

    2014-01-01

    Evolution of the safety factor (q) profile during L–H transitions in the Experimental Advanced Superconducting Tokamak (EAST) was accompanied by strong core crashes prior to regular sawtooth behavior. These crashes appeared in the absence of q = 1 (q is the safety factor) rational surface inside the plasma. Analysis indicates that the m/n = 2/1 tearing mode is destabilized and phase-locked with the m/n = 1/1 non-resonant kink mode (the q = 1 rational surface is absent) due to the self-consistent evolution of plasma profiles as the L–H transition occurs (m and n are the poloidal and toroidal mode numbers, respectively). The growing m/n = 1/1 mode destabilizes the m/n = 2/2 kink mode which eventually triggers the strong crash due to an anomalous heat conductivity, as predicted by the transport model of stochastic magnetic fields using experimental parameters. It is also shown that the magnetic topology changes with the amplitude of m/n = 2/2 mode and the value of center safety factor in a reasonable range. (paper)

  4. Developmental Local Government as a Model for Grassroots Socio ...

    African Journals Online (AJOL)

    In the past five decades of political independence in Nigeria, local ... governments places a strong limitation on local autonomy and governance at the local level. ... negatively affecting grassroots socio-economic development in the Country.

  5. Strong Motion Seismograph Based On MEMS Accelerometer

    Science.gov (United States)

    Teng, Y.; Hu, X.

    2013-12-01

    application program layer mainly concludes: earthquake parameter module, local database managing module, data transmission module, remote monitoring, FTP service and so on. The application layer adopted multi-thread process. The whole strong motion seismograph was encapsulated in a small aluminum box, which size is 80mm×120mm×55mm. The inner battery can work continuesly more than 24 hours. The MEMS accelerograph uses modular design for its software part and hardware part. It has remote software update function and can meet the following needs: a) Auto picking up the earthquake event; saving the data on wave-event files and hours files; It may be used for monitoring strong earthquake, explosion, bridge and house health. b) Auto calculate the earthquake parameters, and transferring those parameters by 3G wireless broadband network. This kind of seismograph has characteristics of low cost, easy installation. They can be concentrated in the urban region or areas need to specially care. We can set up a ground motion parameters quick report sensor network while large earthquake break out. Then high-resolution-fine shake-map can be easily produced for the need of emergency rescue. c) By loading P-wave detection program modules, it can be used for earthquake early warning for large earthquakes; d) Can easily construct a high-density layout seismic monitoring network owning remote control and modern intelligent earthquake sensor.

  6. Application of strong phosphoric acid to radiochemistry

    International Nuclear Information System (INIS)

    Terada, Kikuo

    1977-01-01

    Not only inorganic and organic compounds but also natural substrances, such as accumulations in soil, are completely decomposed and distilled by heating with strong phosphoric acid for 30 to 50 minutes. As applications of strong phosphoric acid to radiochemistry, determination of uranium and boron by use of solubilization effect of this substance, titration of uranyl ion by use of sulfuric iron (II) contained in this substance, application to tracer experiment, and determination of radioactive ruthenium in environmental samples are reviewed. Strong phosphoric acid is also applied to activation analysis, for example, determination of N in pyrographite with iodate potassium-strong phosphoric acid method, separation of Os and Ru with sulfuric cerium (IV) - strong phosphoric acid method or potassium dechromate-strong phosphoric acid method, analysis of Se, As and Sb rocks and accumulations with ammonium bromide, sodium chloride and sodium bromide-strong phosphoric acid method. (Kanao, N.)

  7. Locals Collection

    Directory of Open Access Journals (Sweden)

    Stephen Hastings-King

    2010-03-01

    Full Text Available A locals collection is a set of parameters that are used to delimit data-mining operations. This piece uses a collection of locals from around Essex Massachusetts to shape and delimit an interrogation of post-reality in contemporary America. It explores the notion of crisis, the possibility of a crisis of empire that may or may not emerge in a media-space that does not allow crisis of empire to be mentioned and relations this maybe-crisis to the various levels of economic dysfunction that have become evident since late 2008. But mostly this piece explores ways in which particular stories about particular people do and do not link/link to these larger-scale narratives. This is the first of a potential series of locals collections that will mine the American post-real.

  8. STRONG ORACLE OPTIMALITY OF FOLDED CONCAVE PENALIZED ESTIMATION.

    Science.gov (United States)

    Fan, Jianqing; Xue, Lingzhou; Zou, Hui

    2014-06-01

    Folded concave penalization methods have been shown to enjoy the strong oracle property for high-dimensional sparse estimation. However, a folded concave penalization problem usually has multiple local solutions and the oracle property is established only for one of the unknown local solutions. A challenging fundamental issue still remains that it is not clear whether the local optimum computed by a given optimization algorithm possesses those nice theoretical properties. To close this important theoretical gap in over a decade, we provide a unified theory to show explicitly how to obtain the oracle solution via the local linear approximation algorithm. For a folded concave penalized estimation problem, we show that as long as the problem is localizable and the oracle estimator is well behaved, we can obtain the oracle estimator by using the one-step local linear approximation. In addition, once the oracle estimator is obtained, the local linear approximation algorithm converges, namely it produces the same estimator in the next iteration. The general theory is demonstrated by using four classical sparse estimation problems, i.e., sparse linear regression, sparse logistic regression, sparse precision matrix estimation and sparse quantile regression.

  9. Local effect of equilibrium current on tearing mode stability

    International Nuclear Information System (INIS)

    Cozzani, F.

    1985-12-01

    The local effect of the equilibrium current on the linear stability of low poloidal number tearing modes in tokamaks is investigated analytically. The plasma response inside the tearing layer is derived from fluid theory and the local equilibrium current is shown to couple to the mode dynamics through its gradient, which is proportional to the local electron temperature gradient under the approximations used in the analysis. The relevant eigenmode equations, expressing Ampere's law and the plasma quasineutrality condition, respectively, are suitably combined in a single integral equation, from which a variational principle is formulated to derive the mode dispersion relations for several cases of interest. The local equilibrium current is treated as a small perturbation of the known results for the m greater than or equal to 2 and the m = 1 tearing modes in the collisional regime, and the m greater than or equal to 2 tearing mode in the semicollisional regime; its effect is found to enhance stabilization for the m greater than or equal to 2 drift-tearing mode in the collisional regime, whereas the m = 1 growth rate is very slightly increased and the stabilizing effect of the parallel thermal conduction on the m greater than or equal to 2 mode in the semicollisional regime is slightly reduced

  10. Strong Stationary Duality for Diffusion Processes

    OpenAIRE

    Fill, James Allen; Lyzinski, Vince

    2014-01-01

    We develop the theory of strong stationary duality for diffusion processes on compact intervals. We analytically derive the generator and boundary behavior of the dual process and recover a central tenet of the classical Markov chain theory in the diffusion setting by linking the separation distance in the primal diffusion to the absorption time in the dual diffusion. We also exhibit our strong stationary dual as the natural limiting process of the strong stationary dual sequence of a well ch...

  11. Strongly correlating liquids and their isomorphs

    OpenAIRE

    Pedersen, Ulf R.; Gnan, Nicoletta; Bailey, Nicholas P.; Schröder, Thomas B.; Dyre, Jeppe C.

    2010-01-01

    This paper summarizes the properties of strongly correlating liquids, i.e., liquids with strong correlations between virial and potential energy equilibrium fluctuations at constant volume. We proceed to focus on the experimental predictions for strongly correlating glass-forming liquids. These predictions include i) density scaling, ii) isochronal superposition, iii) that there is a single function from which all frequency-dependent viscoelastic response functions may be calculated, iv) that...

  12. Atom collisions in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Smirnov, V.S.; Chaplik, A.V.

    1976-01-01

    It is shown that the long-range part of interatomic interaction is considerably altered in a strong electromagnetic field. Instead of the van der Waals law the potential asymptote can best be described by a dipole-dipole R -3 law. Impact broadening and the line shift in a strong nonresonant field are calculated. The possibility of bound states of two atoms being formed in a strong light field is discussed

  13. Net Locality

    DEFF Research Database (Denmark)

    de Souza e Silva, Adriana Araujo; Gordon, Eric

    Provides an introduction to the new theory of Net Locality and the profound effect on individuals and societies when everything is located or locatable. Describes net locality as an emerging form of location awareness central to all aspects of digital media, from mobile phones, to Google Maps......, to location-based social networks and games, such as Foursquare and facebook. Warns of the threats these technologies, such as data surveillance, present to our sense of privacy, while also outlining the opportunities for pro-social developments. Provides a theory of the web in the context of the history...... of emerging technologies, from GeoCities to GPS, Wi-Fi, Wiki Me, and Google Android....

  14. On the Strong Direct Summand Conjecture

    Science.gov (United States)

    McCullough, Jason

    2009-01-01

    In this thesis, our aim is the study the Vanishing of Maps of Tor Conjecture of Hochster and Huneke. We mainly focus on an equivalent characterization called the Strong Direct Summand Conjecture, due to N. Ranganathan. Our results are separated into three chapters. In Chapter 3, we prove special cases of the Strong Direct Summand Conjecture in…

  15. Physics challenges in the strong interactions

    International Nuclear Information System (INIS)

    Ellis, S.D.

    1992-01-01

    The study of strong interactions is now a mature field for which scientist now know that the correct underlying theory is QCD. Here, an overview of the challenges to be faced in the area of the strong interactions during the 1990's is presented. As an illustrative example special attention is given to the analysis of jets as studied at hadron colliders

  16. Physics challenges in the strong interactions

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, S.D. [Univ. of Washington, Seattle (United States)

    1992-12-31

    The study of strong interactions is now a mature field for which scientist now know that the correct underlying theory is QCD. Here, an overview of the challenges to be faced in the area of the strong interactions during the 1990`s is presented. As an illustrative example special attention is given to the analysis of jets as studied at hadron colliders.

  17. The strong reflecting property and Harrington's Principle

    OpenAIRE

    Cheng, Yong

    2015-01-01

    In this paper we characterize the strong reflecting property for $L$-cardinals for all $\\omega_n$, characterize Harrington's Principle $HP(L)$ and its generalization and discuss the relationship between the strong reflecting property for $L$-cardinals and Harrington's Principle $HP(L)$.

  18. Strong Nash Equilibria and the Potential Maimizer

    NARCIS (Netherlands)

    van Megen, F.J.C.; Facchini, G.; Borm, P.E.M.; Tijs, S.H.

    1996-01-01

    A class of non cooperative games characterized by a `congestion e ect' is studied, in which there exists a strong Nash equilibrium, and the set of Nash equilibria, the set of strong Nash equilibria and the set of strategy pro les maximizing the potential function coincide.The structure of the class

  19. Large N baryons, strong coupling theory, quarks

    International Nuclear Information System (INIS)

    Sakita, B.

    1984-01-01

    It is shown that in QCD the large N limit is the same as the static strong coupling limit. By using the static strong coupling techniques some of the results of large N baryons are derived. The results are consistent with the large N SU(6) static quark model. (author)

  20. Optimization of strong and weak coordinates

    NARCIS (Netherlands)

    Swart, M.; Bickelhaupt, F.M.

    2006-01-01

    We present a new scheme for the geometry optimization of equilibrium and transition state structures that can be used for both strong and weak coordinates. We use a screening function that depends on atom-pair distances to differentiate strong coordinates from weak coordinates. This differentiation