WorldWideScience

Sample records for strong lensing galaxies

  1. Galaxy number counts and implications for strong lensing

    NARCIS (Netherlands)

    Fassnacht, C. D.; Koopmans, L. V. E.; Wong, K. C.

    We compare galaxy number counts in Advanced Camera for Surveys (ACS) fields containing moderate-redshift (0.2 strong gravitational lenses with those in two control samples: (1) the first square degree of the COSMOS survey, comprising 259 ACS fields and (2) 20 ‘pure-parallel’ fields randomly

  2. Strong lensing by fermionic dark matter in galaxies

    Science.gov (United States)

    Gómez, L. Gabriel; Argüelles, C. R.; Perlick, Volker; Rueda, J. A.; Ruffini, R.

    2016-12-01

    It has been shown that a self-gravitating system of massive keV fermions in thermodynamic equilibrium correctly describes the dark matter (DM) distribution in galactic halos (from dwarf to spiral and elliptical galaxies) and that, at the same time, it predicts a denser quantum core towards the center of the configuration. Such a quantum core, for a fermion mass in the range of 50 keV ≲m c2≲345 keV , can be an alternative interpretation of the central compact object in Sgr A*, traditionally assumed to be a black hole (BH). We present in this work the gravitational lensing properties of this novel DM configuration in nearby Milky-Way-like spiral galaxies. We describe the lensing effects of the pure DM component both on halo scales, where we compare them to the effects of the Navarro-Frenk-White and the nonsingular isothermal sphere DM models, and near the galaxy center, where we compare them with the effects of a Schwarzschild BH. For the particle mass leading to the most compact DM core, m c2≈1 02 keV , we draw the following conclusions. At distances r ≳20 pc from the center of the lens the effect of the central object on the lensing properties is negligible. However, we show that measurements of the deflection angle produced by the DM distribution in the outer region at a few kpc, together with rotation curve data, could help to discriminate between different DM models. In the inner regions 1 0-6≲r ≲20 pc , the lensing effects of a DM quantum core alternative to the BH scenario becomes a theme of an analysis of unprecedented precision which is challenging for current technological developments. We show that at distances ˜1 0-4 pc strong lensing effects, such as multiple images and Einstein rings, may occur. Large differences in the deflection angle produced by a DM central core and a central BH appear at distances r ≲1 0-6 pc ; in this regime the weak-field formalism is no longer applicable and the exact general-relativistic formula has to be used

  3. Analysis of luminosity distributions of strong lensing galaxies: subtraction of diffuse lensed signal

    Science.gov (United States)

    Biernaux, J.; Magain, P.; Hauret, C.

    2017-08-01

    Context. Strong gravitational lensing gives access to the total mass distribution of galaxies. It can unveil a great deal of information about the lenses' dark matter content when combined with the study of the lenses' light profile. However, gravitational lensing galaxies, by definition, appear surrounded by lensed signal, both point-like and diffuse, that is irrelevant to the lens flux. Therefore, the observer is most often restricted to studying the innermost portions of the galaxy, where classical fitting methods show some instabilities. Aims: We aim at subtracting that lensed signal and at characterising some lenses' light profile by computing their shape parameters (half-light radius, ellipticity, and position angle). Our objective is to evaluate the total integrated flux in an aperture the size of the Einstein ring in order to obtain a robust estimate of the quantity of ordinary (luminous) matter in each system. Methods: We are expanding the work we started in a previous paper that consisted in subtracting point-like lensed images and in independently measuring each shape parameter. We improve it by designing a subtraction of the diffuse lensed signal, based only on one simple hypothesis of symmetry. We apply it to the cases where it proves to be necessary. This extra step improves our study of the shape parameters and we refine it even more by upgrading our half-light radius measurement method. We also calculate the impact of our specific image processing on the error bars. Results: The diffuse lensed signal subtraction makes it possible to study a larger portion of relevant galactic flux, as the radius of the fitting region increases by on average 17%. We retrieve new half-light radii values that are on average 11% smaller than in our previous work, although the uncertainties overlap in most cases. This shows that not taking the diffuse lensed signal into account may lead to a significant overestimate of the half-light radius. We are also able to measure

  4. Mapping the distribution of luminous and dark matter in strong lensing galaxies

    OpenAIRE

    Ferreras, I.; Saha, P.; Williams, L. L. R.; Burles, S.

    2007-01-01

    We present the distribution of luminous and dark matter in a set of strong lensing (early-type) galaxies. By combining two independent techniques – stellar population synthesis and gravitational lensing – we can compare the baryonic and dark matter content in these galaxies within the regions that can be probed using the images of the lensed background source. Two samples were studied, extracted from the CASTLES and SLACS surveys. The former probes a wider range of redshifts and allows us to ...

  5. GALAXY SCALE LENSES IN THE RCS2. I. FIRST CATALOG OF CANDIDATE STRONG LENSES

    International Nuclear Information System (INIS)

    Anguita, T.; Barrientos, L. F.; Gladders, M. D.; Faure, C.; Yee, H. K. C.; Gilbank, D. G.

    2012-01-01

    We present the first galaxy scale lens catalog from the second Red-Sequence Cluster Survey. The catalog contains 60 lensing system candidates comprised of Luminous Red Galaxy (LRG) lenses at 0.2 ∼ 11 [M ☉ h –1 ]) and rich in dark matter (M/L-bar∼ 14 [M ☉ /L ☉,B h]). Even though a slight increasing trend in the mass-to-light ratio is observed from z = 0.2 to z = 0.5, current redshift and light profile measurements do not allow stringent constraints on the mass-to-light ratio evolution of LRGs.

  6. GALAXY SCALE LENSES IN THE RCS2. I. FIRST CATALOG OF CANDIDATE STRONG LENSES

    Energy Technology Data Exchange (ETDEWEB)

    Anguita, T. [Centro de Astro-Ingenieria, Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago (Chile); Barrientos, L. F. [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago (Chile); Gladders, M. D. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Faure, C. [Laboratoire d' Astrophysique, Ecole Polytechnique Federale de Lausanne (EPFL), Obervatoire de Sauverny, CH-1290 Versoix (Switzerland); Yee, H. K. C.; Gilbank, D. G. [Department of Astronomy and Astrophysics, University of Toronto, 50 St George Street, Toronto, Ontario, M5S 3H4 (Canada)

    2012-04-01

    We present the first galaxy scale lens catalog from the second Red-Sequence Cluster Survey. The catalog contains 60 lensing system candidates comprised of Luminous Red Galaxy (LRG) lenses at 0.2 {approx}< z {approx}< 0.5 surrounded by blue arcs or apparent multiple images of background sources. The catalog is a valuable complement to previous galaxy-galaxy lens catalogs as it samples an intermediate lens redshift range and is composed of bright sources and lenses that allow easy follow-up for detailed analysis. Mass and mass-to-light ratio estimates reveal that the lens galaxies are massive ( M-bar {approx} 5.5 Multiplication-Sign 10{sup 11} [M{sub Sun} h{sup -1}]) and rich in dark matter (M/L-bar{approx} 14 [M{sub Sun }/L{sub Sun ,B} h]). Even though a slight increasing trend in the mass-to-light ratio is observed from z = 0.2 to z = 0.5, current redshift and light profile measurements do not allow stringent constraints on the mass-to-light ratio evolution of LRGs.

  7. SUNYAEV-ZEL'DOVICH EFFECT OBSERVATIONS OF STRONG LENSING GALAXY CLUSTERS: PROBING THE OVERCONCENTRATION PROBLEM

    International Nuclear Information System (INIS)

    Gralla, Megan B.; Gladders, Michael D.; Marrone, Daniel P.; Bayliss, Matthew; Carlstrom, John E.; Greer, Christopher; Hennessy, Ryan; Koester, Benjamin; Leitch, Erik; Sharon, Keren; Barrientos, L. Felipe; Bonamente, Massimiliano; Bulbul, Esra; Hasler, Nicole; Culverhouse, Thomas; Hawkins, David; Lamb, James; Gilbank, David G.; Joy, Marshall; Miller, Amber

    2011-01-01

    We have measured the Sunyaev-Zel'dovich (SZ) effect for a sample of 10 strong lensing selected galaxy clusters using the Sunyaev-Zel'dovich Array (SZA). The SZA is sensitive to structures on spatial scales of a few arcminutes, while the strong lensing mass modeling constrains the mass at small scales (typically <30''). Combining the two provides information about the projected concentrations of the strong lensing clusters. The Einstein radii we measure are twice as large as expected given the masses inferred from SZ scaling relations. A Monte Carlo simulation indicates that a sample randomly drawn from the expected distribution would have a larger median Einstein radius than the observed clusters about 3% of the time. The implied overconcentration has been noted in previous studies and persists for this sample, even when we take into account that we are selecting large Einstein radius systems, suggesting that the theoretical models still do not fully describe the observed properties of strong lensing clusters.

  8. The detection of a population of submillimeter-bright, strongly lensed galaxies.

    Science.gov (United States)

    Negrello, Mattia; Hopwood, R; De Zotti, G; Cooray, A; Verma, A; Bock, J; Frayer, D T; Gurwell, M A; Omont, A; Neri, R; Dannerbauer, H; Leeuw, L L; Barton, E; Cooke, J; Kim, S; da Cunha, E; Rodighiero, G; Cox, P; Bonfield, D G; Jarvis, M J; Serjeant, S; Ivison, R J; Dye, S; Aretxaga, I; Hughes, D H; Ibar, E; Bertoldi, F; Valtchanov, I; Eales, S; Dunne, L; Driver, S P; Auld, R; Buttiglione, S; Cava, A; Grady, C A; Clements, D L; Dariush, A; Fritz, J; Hill, D; Hornbeck, J B; Kelvin, L; Lagache, G; Lopez-Caniego, M; Gonzalez-Nuevo, J; Maddox, S; Pascale, E; Pohlen, M; Rigby, E E; Robotham, A; Simpson, C; Smith, D J B; Temi, P; Thompson, M A; Woodgate, B E; York, D G; Aguirre, J E; Beelen, A; Blain, A; Baker, A J; Birkinshaw, M; Blundell, R; Bradford, C M; Burgarella, D; Danese, L; Dunlop, J S; Fleuren, S; Glenn, J; Harris, A I; Kamenetzky, J; Lupu, R E; Maddalena, R J; Madore, B F; Maloney, P R; Matsuhara, H; Michaowski, M J; Murphy, E J; Naylor, B J; Nguyen, H; Popescu, C; Rawlings, S; Rigopoulou, D; Scott, D; Scott, K S; Seibert, M; Smail, I; Tuffs, R J; Vieira, J D; van der Werf, P P; Zmuidzinas, J

    2010-11-05

    Gravitational lensing is a powerful astrophysical and cosmological probe and is particularly valuable at submillimeter wavelengths for the study of the statistical and individual properties of dusty star-forming galaxies. However, the identification of gravitational lenses is often time-intensive, involving the sifting of large volumes of imaging or spectroscopic data to find few candidates. We used early data from the Herschel Astrophysical Terahertz Large Area Survey to demonstrate that wide-area submillimeter surveys can simply and easily detect strong gravitational lensing events, with close to 100% efficiency.

  9. GEMINI/GMOS SPECTROSCOPY OF 26 STRONG-LENSING-SELECTED GALAXY CLUSTER CORES

    International Nuclear Information System (INIS)

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.; Hennawi, Joseph F.; Sharon, Keren; Dahle, Haakon; Oguri, Masamune

    2011-01-01

    We present results from a spectroscopic program targeting 26 strong-lensing cluster cores that were visually identified in the Sloan Digital Sky Survey (SDSS) and the Second Red-Sequence Cluster Survey (RCS-2). The 26 galaxy cluster lenses span a redshift range of 0.2 Vir = 7.84 x 10 14 M sun h -1 0.7 , which is somewhat higher than predictions for strong-lensing-selected clusters in simulations. The disagreement is not significant considering the large uncertainty in our dynamical data, systematic uncertainties in the velocity dispersion calibration, and limitations of the theoretical modeling. Nevertheless our study represents an important first step toward characterizing large samples of clusters that are identified in a systematic way as systems exhibiting dramatic strong-lensing features.

  10. Investigating the internal structure of galaxies and clusters through strong gravitational lensing

    Science.gov (United States)

    Jigish Gandhi, Pratik; Grillo, Claudio; Bonamigo, Mario

    2018-01-01

    Gravitational lensing studies have radically improved our understanding of the internal structure of galaxies and cluster-scale systems. In particular, the combination of strong lensing and stellar dynamics or stellar population synthesis models have made it possible to characterize numerous fundamental properties of the galaxies as well as dark matter halos and subhalos with unprecedented robustness and accuracy. Here we demonstrate the usefulness and accuracy of strong lensing as a probe for characterising the properties of cluster members as well as dark matter halos, to show that such characterisation carried out via lensing analyses alone is as viable as those carried out through a combination of spectroscopy and lensing analyses.Our study uses focuses on the early-type galaxy cluster MACS J1149.5+2223 at redshift 0.54 in the Hubble Frontier Fields (HFF) program, where the first magnified and spatially resolved multiple images of supernova (SN) “Refsdal” and its late-type host galaxy at redshift 1.489 were detected. The Refsdal system is unique in being the first ever multiply-imaged supernova, with it’s first four images appearing in an Einstein Cross configuration around one of the cluster members in 2015. In our lensing analyses we use HST data of the multiply-imaged SN Refsdal to constrain the dynamical masses, velocity dispersions, and virial radii of individual galaxies and dark matter halos in the MACS J1149.5+2223 cluster. For our lensing models we select a sample of 300 cluster members within approximately 500 kpc from the BCG, and a set of reliable multiple images associated with 18 distinct knots in the SN host spiral galaxy, as well as multiple images of the supernova itself. Our results provide accurate measurements of the masses, velocity dispersions, and radii of the cluster’s dark matter halo as well as three chosen members galaxies, in strong agreement with those obtained by Grillo et al 2015, demonstrating the usefulness of strong

  11. STRONG GRAVITATIONAL LENSING BY THE SUPER-MASSIVE cD GALAXY IN ABELL 3827

    International Nuclear Information System (INIS)

    Carrasco, E. R.; Gomez, P. L.; Lee, H.; Diaz, R.; Bergmann, M.; Turner, J. E. H.; Miller, B. W.; West, M. J.; Verdugo, T.

    2010-01-01

    We have discovered strong gravitational lensing features in the core of the nearby cluster Abell 3827 by analyzing Gemini South GMOS images. The most prominent strong lensing feature is a highly magnified, ring-shaped configuration of four images around the central cD galaxy. GMOS spectroscopic analysis puts this source at z ∼ 0.2. Located ∼20'' away from the central galaxy is a secondary tangential arc feature which has been identified as a background galaxy with z ∼ 0.4. We have modeled the gravitational potential of the cluster core, taking into account the mass from the cluster, the brightest cluster galaxy (BCG), and other galaxies. We derive a total mass of (2.7 ± 0.4) x 10 13 M sun within 37 h -1 kpc. This mass is an order of magnitude larger than that derived from X-ray observations. The total mass derived from lensing data suggests that the BCG in this cluster is perhaps the most massive galaxy in the nearby universe.

  12. Dark matter distributions in early-type galaxies from strong gravitational lensing

    International Nuclear Information System (INIS)

    Eichner, Thomas Martin

    2013-01-01

    Dark matter constitutes a large fraction of the mass of early-type galaxies. However, the exact amount and spatial distribution of the dark matter, especially in the galaxies' center is still unclear. Furthermore, galaxies in dense environments such as the centers of galaxy clusters shrink in size, since parts of their outer dark matter halo is stripped away. The aim of this thesis is to measure the dark matter content in the centers and outskirts of elliptical galaxies by analyzing the strong gravitational lensing effect they produce. Gravitational lensing is well-suited for investigating dark matter, since it is sensitive to all forms of matter, regardless of its dynamical or evolutionary state. We present gravitational lensing studies of the exceptional strong lensing systems SDSS J1538+5817 and SDSS J1430+4105, identified by the Sloan Lens ACS survey. The lenses are elliptical galaxies at z l =0.143 and z l =0.285, respectively. For SDSS J1538+5817 we show that both multiple imaged sources are located at the same redshift z s =0.531. Its multiple images span a range from 1 to 4 kpc in the plane of the lens. For SDSS J1430+4105, the source at redshift z s =0.575 is imaged into a broad Einstein ring, covering radii from 4 kpc to 10 kpc in the plane of the lens. In both cases, the lensed images can be accurately and consistently reproduced with different modeling approaches. We get projected total masses of 8.11 +0.27 -0.59 x 10 10 M s un within the Einstein radius of 2.5 kpc for SDSS J1538+5817 and 5.37±0.06 x 10 11 M s un within 6.5 kpc for SDSS J1430+4105. The luminous and dark matter were traced separately, resulting in dark matter fractions within the Einstein radius of 0.1 +0.2 -0.1 and 0.40 +0.14 -0.10 for SDSS J1538+5817 and SDSS J1430+4105, respectively. We assume a de Vaucouleurs profile to trace the light distribution of both galaxies. From the stellar mass associated with this light, we can explicitly derive a stellar mass-to-light ratio of (M de

  13. What if LIGO's gravitational wave detections are strongly lensed by massive galaxy clusters?

    Science.gov (United States)

    Smith, Graham P.; Jauzac, Mathilde; Veitch, John; Farr, Will M.; Massey, Richard; Richard, Johan

    2018-04-01

    Motivated by the preponderance of so-called `heavy black holes' in the binary black hole (BBH) gravitational wave (GW) detections to date, and the role that gravitational lensing continues to play in discovering new galaxy populations, we explore the possibility that the GWs are strongly lensed by massive galaxy clusters. For example, if one of the GW sources were actually located at z = 1, then the rest-frame mass of the associated BHs would be reduced by a factor of ˜2. Based on the known populations of BBH GW sources and strong-lensing clusters, we estimate a conservative lower limit on the number of BBH mergers detected per detector year at LIGO/Virgo's current sensitivity that are multiply-imaged, of Rdetect ≃ 10-5 yr-1. This is equivalent to rejecting the hypothesis that one of the BBH GWs detected to date was multiply-imaged at ≲4σ. It is therefore unlikely, but not impossible, that one of the GWs is multiply-imaged. We identify three spectroscopically confirmed strong-lensing clusters with well-constrained mass models within the 90 per cent credible sky localizations of the BBH GWs from LIGO's first observing run. In the event that one of these clusters multiply-imaged one of the BBH GWs, we predict that 20-60 per cent of the putative next appearances of the GWs would be detectable by LIGO, and that they would arrive at Earth within 3yr of first detection.

  14. CENTRAL DARK MATTER TRENDS IN EARLY-TYPE GALAXIES FROM STRONG LENSING, DYNAMICS, AND STELLAR POPULATIONS

    International Nuclear Information System (INIS)

    Tortora, C.; Jetzer, P.; Napolitano, N. R.; Romanowsky, A. J.

    2010-01-01

    We analyze the correlations between central dark matter (DM) content of early-type galaxies and their sizes and ages, using a sample of intermediate-redshift (z ∼ 0.2) gravitational lenses from the SLACS survey, and by comparing them to a larger sample of z ∼ 0 galaxies. We decompose the deprojected galaxy masses into DM and stellar components using combinations of strong lensing, stellar dynamics, and stellar populations modeling. For a given stellar mass, we find that for galaxies with larger sizes, the DM fraction increases and the mean DM density decreases, consistently with the cuspy halos expected in cosmological formation scenarios. The DM fraction also decreases with stellar age, which can be partially explained by the inverse correlation between size and age. The residual trend may point to systematic dependencies on formation epoch of halo contraction or stellar initial mass functions. These results are in agreement with recent findings based on local galaxies by Napolitano et al. and suggest negligible evidence of galaxy evolution over the last ∼2.5 Gyr other than passive stellar aging.

  15. The Sloan Lens ACS Survey. XIII. Discovery of 40 New Galaxy-scale Strong Lenses

    Science.gov (United States)

    Shu, Yiping; Brownstein, Joel R.; Bolton, Adam S.; Koopmans, Léon V. E.; Treu, Tommaso; Montero-Dorta, Antonio D.; Auger, Matthew W.; Czoske, Oliver; Gavazzi, Raphaël; Marshall, Philip J.; Moustakas, Leonidas A.

    2017-12-01

    We present the full sample of 118 galaxy-scale strong-lens candidates in the Sloan Lens ACS (SLACS) Survey for the Masses (S4TM) Survey, which are spectroscopically selected from the final data release of the Sloan Digital Sky Survey. Follow-up Hubble Space Telescope (HST) imaging observations confirm that 40 candidates are definite strong lenses with multiple lensed images. The foreground-lens galaxies are found to be early-type galaxies (ETGs) at redshifts 0.06–0.44, and background sources are emission-line galaxies at redshifts 0.22–1.29. As an extension of the SLACS Survey, the S4TM Survey is the first attempt to preferentially search for strong-lens systems with relatively lower lens masses than those in the pre-existing strong-lens samples. By fitting HST data with a singular isothermal ellipsoid model, we find that the total projected mass within the Einstein radius of the S4TM strong-lens sample ranges from 3 × 1010 M ⊙ to 2 × 1011 M ⊙. In Shu et al., we have derived the total stellar mass of the S4TM lenses to be 5 × 1010 M ⊙ to 1 × 1012 M ⊙. Both the total enclosed mass and stellar mass of the S4TM lenses are on average almost a factor of 2 smaller than those of the SLACS lenses, which also represent the typical mass scales of the current strong-lens samples. The extended mass coverage provided by the S4TM sample can enable a direct test, with the aid of strong lensing, for transitions in scaling relations, kinematic properties, mass structure, and dark-matter content trends of ETGs at intermediate-mass scales as noted in previous studies. Based on observations made with the NASA/ESA Hubble Space Telescope (HST), obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. These observations are associated with HST program #12210.

  16. CLASH: Extending galaxy strong lensing to small physical scales with distant sources highly magnified by galaxy cluster members

    International Nuclear Information System (INIS)

    Grillo, C.; Christensen, L.; Gobat, R.; Presotto, V.; Balestra, I.; Nonino, M.; Biviano, A.; Mercurio, A.; Rosati, P.; Vanzella, E.; Graves, G.; Lemze, D.; Ford, H.; Bartelmann, M.; Benitez, N.; Bouwens, R.; Bradley, L.; Coe, D.; Broadhurst, T.; Donahue, M.

    2014-01-01

    We present a complex strong lensing system in which a double source is imaged five times by two early-type galaxies. We take advantage in this target of the extraordinary multi-band photometric data set obtained as part of the Cluster Lensing And Supernova survey with Hubble (CLASH) program, complemented by the spectroscopic measurements of the VLT/VIMOS and FORS2 follow-up campaign. We use a photometric redshift value of 3.7 for the source and confirm spectroscopically the membership of the two lenses to the galaxy cluster MACS J1206.2–0847 at redshift 0.44. We exploit the excellent angular resolution of the HST/ACS images to model the two lenses in terms of singular isothermal sphere profiles and derive robust effective velocity dispersion values of 97 ± 3 and 240 ± 6 km s –1 . Interestingly, the total mass distribution of the cluster is also well characterized by using only the local information contained in this lensing system, which is located at a projected distance of more than 300 kpc from the cluster luminosity center. According to our best-fitting lensing and composite stellar population models, the source is magnified by a total factor of 50 and has a luminous mass of approximately (1.0 ± 0.5) × 10 9 M ☉ (assuming a Salpeter stellar initial mass function). By combining the total and luminous mass estimates of the two lenses, we measure luminous over total mass fractions projected within the effective radii of 0.51 ± 0.21 and 0.80 ± 0.32. Remarkably, with these lenses we can extend the analysis of the mass properties of lens early-type galaxies by factors that are approximately two and three times smaller than previously done with regard to, respectively, velocity dispersion and luminous mass. The comparison of the total and luminous quantities of our lenses with those of astrophysical objects with different physical scales, like massive early-type galaxies and dwarf spheroidals, reveals the potential of studies of this kind for improving our

  17. Mass density slope of elliptical galaxies from strong lensing and resolved stellar kinematics

    Science.gov (United States)

    Lyskova, N.; Churazov, E.; Naab, T.

    2018-04-01

    We discuss constraints on the mass density distribution (parametrized as ρ ∝ r-γ) in early-type galaxies provided by strong lensing and stellar kinematics data. The constraints come from mass measurements at two `pinch' radii. One `pinch' radius r1 = 2.2REinst is defined such that the Einstein (i.e. aperture) mass can be converted into the spherical mass almost independently of the mass-model. Another `pinch' radius r2 = Ropt is chosen so that the dynamical mass, derived from the line-of-sight velocity dispersion, is least sensitive to the anisotropy of stellar orbits. We verified the performance of this approach on a sample of simulated elliptical galaxies and on a sample of 15 SLACS lens galaxies at 0.01 ≤ z ≤ 0.35, which have already been analysed in Barnabè et al. by the self-consistent joint lensing and kinematic code. For massive simulated galaxies, the density slope γ is recovered with an accuracy of ˜13 per cent, unless r1 and r2 happen to be close to each other. For SLACS galaxies, we found good overall agreement with the results of Barnabè et al. with a sample-averaged slope γ = 2.1 ± 0.05. Although the two-pinch-radii approach has larger statistical uncertainties, it is much simpler and uses only few arithmetic operations with directly observable quantities.

  18. Chandra and ALMA observations of the nuclear activity in two strongly lensed star-forming galaxies

    Science.gov (United States)

    Massardi, M.; Enia, A. F. M.; Negrello, M.; Mancuso, C.; Lapi, A.; Vignali, C.; Gilli, R.; Burkutean, S.; Danese, L.; Zotti, G. De

    2018-02-01

    Aim. According to coevolutionary scenarios, nuclear activity and star formation play relevant roles in the early stages of galaxy formation. We aim at identifying them in high-redshift galaxies by exploiting high-resolution and high-sensitivity X-ray and millimeter-wavelength data to confirm the presence or absence of star formation and nuclear activity and describe their relative roles in shaping the spectral energy distributions and in contributing to the energy budgets of the galaxies. Methods: We present the data, model, and analysis in the X-ray and millimeter (mm) bands for two strongly lensed galaxies, SDP.9 (HATLAS J090740.0-004200) and SDP.11 (HATLAS J091043.1-000322), which we selected in the Herschel-ATLAS catalogs for their excess emission in the mid-IR regime at redshift ≳1.5. This emission suggests nuclear activity in the early stages of galaxy formation. We observed both of them with Chandra ACIS-S in the X-ray regime and analyzed the high-resolution mm data that are available in the ALMA Science Archive for SDP.9. By combining the information available in mm, optical, and X-ray bands, we reconstructed the source morphology. Results: Both targets were detected in the X-ray, which strongly indicates highly obscured nuclear activity. ALMA observations for SDP.9 for the continuum and CO(6-5) spectral line with high resolution (0.02 arcsec corresponding to 65 pc at the distance of the galaxy) allowed us to estimate the lensed galaxy redshift to a better accuracy than pre-ALMA estimates (1.5753 ± 0.0003) and to model the emission of the optical, millimetric, and X-ray band for this galaxy. We demonstrate that the X-ray emission is generated in the nuclear environment, which strongly supports that this object has nuclear activity. On the basis of the X-ray data, we attempt an estimate of the black hole properties in these galaxies. Conclusions: By taking advantage of the lensing magnification, we identify weak nuclear activity associated with high

  19. The Strong Gravitationally Lensed Herschel Galaxy HLock01: Optical Spectroscopy Reveals a Close Galaxy Merger with Evidence of Inflowing Gas

    Science.gov (United States)

    Marques-Chaves, Rui; Pérez-Fournon, Ismael; Gavazzi, Raphael; Martínez-Navajas, Paloma I.; Riechers, Dominik; Rigopoulou, Dimitra; Cabrera-Lavers, Antonio; Clements, David L.; Cooray, Asantha; Farrah, Duncan; Ivison, Rob J.; Jiménez-Ángel, Camilo E.; Nayyeri, Hooshang; Oliver, Seb; Omont, Alain; Scott, Douglas; Shu, Yiping; Wardlow, Julie

    2018-02-01

    The submillimeter galaxy (SMG) HERMES J105751.1+573027 (hereafter HLock01) at z = 2.9574 ± 0.0001 is one of the brightest gravitationally lensed sources discovered in the Herschel Multi-tiered Extragalactic Survey. Apart from the high flux densities in the far-infrared, it is also extremely bright in the rest-frame ultraviolet (UV), with a total apparent magnitude m UV ≃ 19.7 mag. We report here deep spectroscopic observations with the Gran Telescopio Canarias of the optically bright lensed images of HLock01. Our results suggest that HLock01 is a merger system composed of the Herschel-selected SMG and an optically bright Lyman break-like galaxy (LBG), separated by only 3.3 kpc in projection. While the SMG appears very massive (M * ≃ 5 × 1011 M ⊙), with a highly extinguished stellar component (A V ≃ 4.3 ), the LBG is a young, lower-mass (M * ≃ 1 × 1010 M ⊙), but still luminous (10× {L}UV}* ) satellite galaxy. Detailed analysis of the high signal-to-noise ratio (S/N) rest-frame UV spectrum of the LBG shows complex kinematics of the gas, exhibiting both blueshifted and redshifted absorption components. While the blueshifted component is associated with strong galactic outflows from the massive stars in the LBG, as is common in most star-forming galaxies, the redshifted component may be associated with gas inflow seen along a favorable sightline to the LBG. We also find evidence of an extended gas reservoir around HLock01 at an impact parameter of 110 kpc, through the detection of C II λλ1334 absorption in the red wing of a bright Lyα emitter at z ≃ 3.327. The data presented here highlight the power of gravitational lensing in high S/N studies to probe deeply into the physics of high-z star-forming galaxies.

  20. SDSS-IV MaNGA: The Spectroscopic Discovery of Strongly Lensed Galaxies

    Science.gov (United States)

    Talbot, Michael S.; Brownstein, Joel R.; Bolton, Adam S.; Bundy, Kevin; Andrews, Brett H.; Cherinka, Brian; Collett, Thomas E.; More, Anupreeta; More, Surhud; Sonnenfeld, Alessandro; Vegetti, Simona; Wake, David A.; Weijmans, Anne-Marie; Westfall, Kyle B.

    2018-03-01

    We present a catalogue of 38 spectroscopically detected strong galaxy-galaxy gravitational lens candidates identified in the Sloan Digital Sky Survey IV (SDSS-IV). We were able to simulate narrow-band images for 8 of them demonstrating evidence of multiple images. Two of our systems are compound lens candidates, each with 2 background source-planes. One of these compound systems shows clear lensing features in the narrow-band image. Our sample is based on 2812 galaxies observed by the Mapping Nearby Galaxies at APO (MaNGA) integral field unit (IFU). This Spectroscopic Identification of Lensing Objects (SILO) survey extends the methodology of the Sloan Lens ACS Survey (SLACS) and BOSS Emission-Line Survey (BELLS) to lower redshift and multiple IFU spectra. We searched ˜1.5 million spectra, of which 3065 contained multiple high signal-to-noise background emission-lines or a resolved [O II] doublet, that are included in this catalogue. Upon manual inspection, we discovered regions with multiple spectra containing background emission-lines at the same redshift, providing evidence of a common source-plane geometry which was not possible in previous SLACS and BELLS discovery programs. We estimate more than half of our candidates have an Einstein radius ≳ 1.7", which is significantly greater than seen in SLACS and BELLS. These larger Einstein radii produce more extended images of the background galaxy increasing the probability that a background emission-line will enter one of the IFU spectroscopic fibres, making detection more likely.

  1. The inner mass power spectrum of galaxies using strong gravitational lensing: beyond linear approximation

    Science.gov (United States)

    Chatterjee, Saikat; Koopmans, Léon V. E.

    2018-02-01

    In the last decade, the detection of individual massive dark matter sub-haloes has been possible using potential correction formalism in strong gravitational lens imaging. Here, we propose a statistical formalism to relate strong gravitational lens surface brightness anomalies to the lens potential fluctuations arising from dark matter distribution in the lens galaxy. We consider these fluctuations as a Gaussian random field in addition to the unperturbed smooth lens model. This is very similar to weak lensing formalism and we show that in this way we can measure the power spectrum of these perturbations to the potential. We test the method by applying it to simulated mock lenses of different geometries and by performing an MCMC analysis of the theoretical power spectra. This method can measure density fluctuations in early type galaxies on scales of 1-10 kpc at typical rms levels of a per cent, using a single lens system observed with the Hubble Space Telescope with typical signal-to-noise ratios obtained in a single orbit.

  2. Herschel extreme lensing line observations: Dynamics of two strongly lensed star-forming galaxies near redshift z = 2

    International Nuclear Information System (INIS)

    Rhoads, James E.; Malhotra, Sangeeta; Allam, Sahar; Carilli, Chris; Combes, Françoise; Finkelstein, Keely; Finkelstein, Steven; Frye, Brenda; Gerin, Maryvonne; Guillard, Pierre; Nesvadba, Nicole; Rigby, Jane; Spaans, Marco; Strauss, Michael A.

    2014-01-01

    We report on two regularly rotating galaxies at redshift z ≈ 2, using high-resolution spectra of the bright [C II] 158 μm emission line from the HIFI instrument on the Herschel Space Observatory. Both SDSS090122.37+181432.3 ( S 0901 ) and SDSSJ120602.09+514229.5 ( t he Clone ) are strongly lensed and show the double-horned line profile that is typical of rotating gas disks. Using a parametric disk model to fit the emission line profiles, we find that S0901 has a rotation speed of vsin (i) ≈ 120 ± 7 km s –1 and a gas velocity dispersion of σ g < 23 km s –1 (1σ). The best-fitting model for the Clone is a rotationally supported disk having vsin (i) ≈ 79 ± 11 km s –1 and σ g ≲ 4 km s –1 (1σ). However, the Clone is also consistent with a family of dispersion-dominated models having σ g = 92 ± 20 km s –1 . Our results showcase the potential of the [C II] line as a kinematic probe of high-redshift galaxy dynamics: [C II] is bright, accessible to heterodyne receivers with exquisite velocity resolution, and traces dense star-forming interstellar gas. Future [C II] line observations with ALMA would offer the further advantage of spatial resolution, allowing a clearer separation between rotation and velocity dispersion.

  3. Reducing biases on H0 measurements using strong lensing and galaxy dynamics: results from the EAGLE simulation

    Science.gov (United States)

    Tagore, Amitpal S.; Barnes, David J.; Jackson, Neal; Kay, Scott T.; Schaller, Matthieu; Schaye, Joop; Theuns, Tom

    2018-03-01

    Cosmological parameter constraints from observations of time-delay lenses are becoming increasingly precise. However, there may be significant bias and scatter in these measurements due to, among other things, the so-called mass-sheet degeneracy. To estimate these uncertainties, we analyse strong lenses from the largest EAGLE hydrodynamical simulation. We apply a mass-sheet transformation to the radial density profiles of lenses, and by selecting lenses near isothermality, we find that the bias on H0 can be reduced to 5 per cent with an intrinsic scatter of 10 per cent, confirming previous results performed on a different simulation data set. We further investigate whether combining lensing observables with kinematic constraints helps to minimize this bias. We do not detect any significant dependence of the bias on lens model parameters or observational properties of the galaxy, but depending on the source-lens configuration, a bias may still exist. Cross lenses provide an accurate estimate of the Hubble constant, while fold (double) lenses tend to be biased low (high). With kinematic constraints, double lenses show bias and intrinsic scatter of 6 per cent and 10 per cent, respectively, while quad lenses show bias and intrinsic scatter of 0.5 per cent and 10 per cent, respectively. For lenses with a reduced χ2 > 1, a power-law dependence of the χ2 on the lens environment (number of nearby galaxies) is seen. Lastly, we model, in greater detail, the cases of two double lenses that are significantly biased. We are able to remove the bias, suggesting that the remaining biases could also be reduced by carefully taking into account additional sources of systematic uncertainty.

  4. A dusty star-forming galaxy at z = 6 revealed by strong gravitational lensing

    Science.gov (United States)

    Zavala, Jorge A.; Montaña, Alfredo; Hughes, David H.; Yun, Min S.; Ivison, R. J.; Valiante, Elisabetta; Wilner, David; Spilker, Justin; Aretxaga, Itziar; Eales, Stephen; Avila-Reese, Vladimir; Chávez, Miguel; Cooray, Asantha; Dannerbauer, Helmut; Dunlop, James S.; Dunne, Loretta; Gómez-Ruiz, Arturo I.; Michałowski, Michał J.; Narayanan, Gopal; Nayyeri, Hooshang; Oteo, Ivan; Rosa González, Daniel; Sánchez-Argüelles, David; Schloerb, F. Peter; Serjeant, Stephen; Smith, Matthew W. L.; Terlevich, Elena; Vega, Olga; Villalba, Alan; van der Werf, Paul; Wilson, Grant W.; Zeballos, Milagros

    2018-01-01

    Since their discovery, submillimetre-selected galaxies1,2 have revolutionized the field of galaxy formation and evolution. From the hundreds of square degrees mapped at submillimetre wavelengths3-5, only a handful of sources have been confirmed to lie at z > 5 (refs 6-10) and only two at z ≥ 6 (refs 11,12). All of these submillimetre galaxies are rare examples of extreme starburst galaxies with star formation rates of ≳1,000 M⊙ yr-1 and therefore are not representative of the general population of dusty star-forming galaxies. Consequently, our understanding of the nature of these sources, at the earliest epochs, is still incomplete. Here, we report the spectroscopic identification of a gravitationally amplified (μ = 9.3 ± 1.0) dusty star-forming galaxy at z = 6.027. After correcting for gravitational lensing, we derive an intrinsic less-extreme star formation rate of 380 ± 50 M⊙ yr-1 for this source and find that its gas and dust properties are similar to those measured for local ultra luminous infrared galaxies, extending the local trends to a poorly explored territory in the early Universe. The star-formation efficiency of this galaxy is similar to those measured in its local analogues13, despite a 12 Gyr difference in cosmic time.

  5. A STRONGLY LENSED MASSIVE ULTRACOMPACT QUIESCENT GALAXY AT z {approx} 2.4 IN THE COSMOS/UltraVISTA FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Muzzin, Adam; Labbe, Ivo; Franx, Marijn; Holt, J.; Szomoru, Daniel; Van de Sande, Jesse [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Van Dokkum, Pieter [Department of Astronomy, Yale University, New Haven, CT 06520-8101 (United States); Brammer, Gabriel [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001, Vitacura, Santiago (Chile); Marchesini, Danilo [Department of Physics and Astronomy, Tufts University, Medford, MA 06520 (United States); Stefanon, Mauro [Obseratori Astronomic de la Universitat de Valencia, E-46980 Paterna, Valencia (Spain); Buitrago, F.; Dunlop, James [SUPA, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJL (United Kingdom); Caputi, K. I. [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen (Netherlands); Fynbo, J. P. U.; Milvang-Jensen, Bo [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Le Fevre, Olivier [Laboratoire d' Astrophysique de Marseille, CNRS and Aix-Marseille Universite, 38 rue Frederic Joliot-Curie, F-13388 Marseille Cedex 13 (France); McCracken, Henry J. [Institut d' Astrophysique de Paris, UMR7095 CNRS, Universite Pierre et Marie Curie, 98 bis Boulevard Arago, F-75014 Paris (France)

    2012-12-20

    We report the discovery of a massive ultracompact quiescent galaxy that has been strongly lensed into multiple images by a foreground galaxy at z 0.960. This system was serendipitously discovered as a set of extremely K{sub s} -bright high-redshift galaxies with red J - K{sub s} colors using new data from the UltraVISTA YJHK{sub s} near-infrared survey. The system was also previously identified as an optically faint lens/source system using the COSMOS Advanced Camera for Surveys (ACS) imaging by Faure et al. Photometric redshifts for the three brightest images of the source galaxy determined from 27-band photometry place the source at z = 2.4 {+-} 0.1. We provide an updated lens model for the system that is a good fit to the positions and morphologies of the galaxies in the ACS image. The lens model implies that the magnification of the three brightest images is a factor of 4-5. We use the lens model, combined with the K{sub s} -band image, to constrain the size and Sersic profile of the galaxy. The best-fit model is an ultracompact galaxy (R{sub e} = 0.64{sup +0.08}{sub -0.18} kpc, lensing-corrected), with a Sersic profile that is intermediate between a disk and a bulge profile (n 2.2{sup +2.3}{sub -{sub 0.9}}), albeit with considerable uncertainties on the Sersic profile. We present aperture photometry for the source galaxy images that have been corrected for flux contamination from the central lens. The best-fit stellar population model is a massive galaxy (log(M{sub star}/M{sub Sun }) = 10.8{sup +0.1}{sub -0.1}, lensing-corrected) with an age of 1.0{sup +1.0}{sub -0.4} Gyr, moderate dust extinction (A{sub v} = 0.8{sup +0.5}{sub -0.6}), and a low specific star formation rate (log(SSFR) <-11.0 yr{sup -1}). This is typical of massive ''red-and-dead'' galaxies at this redshift and confirms that this source is the first bona fide strongly lensed massive ultracompact quiescent galaxy to be discovered. We conclude with a discussion of the prospects

  6. A strong-lensing elliptical galaxy in the MaNGA survey

    Science.gov (United States)

    Smith, Russell J.

    2017-01-01

    I report discovery of a new galaxy-scale gravitational lens system, identified using public data from the Mapping Galaxies at Apache Point Observatory (MaNGA) survey, as part of a systematic search for lensed background line emitters. The lens is SDSS J170124.01+372258.0, a giant elliptical galaxy with velocity dispersion σ = 256 km s-1, at a redshift of zl = 0.122. After modelling and subtracting the target galaxy light, the integral-field data cube reveals [O II], [O III] and Hβ emission lines corresponding to a source at zs = 0.791, forming an identifiable ring around the galaxy centre. If the ring is formed by a single lensed source, then the Einstein radius is REin ≈ 2.3 arcsec, projecting to ˜5 kpc at the distance of the lens. The total projected lensing mass is MEin = (3.6 ± 0.6) × 1011 M⊙, and the total J-band mass-to-light ratio is 3.0 ± 0.7 solar units. Plausible estimates of the likely dark matter content could reconcile this with a Milky Way-like initial mass function (IMF), for which M/L ≈ 1.5 is expected, but heavier IMFs are by no means excluded with the present data. An alternative interpretation of the system, with a more complex source plane, is also discussed. The discovery of this system bodes well for future lens searches based on MaNGA and other integral-field spectroscopic surveys.

  7. VizieR Online Data Catalog: Spectroscopy of strong lensing galaxy clusters (Carrasco+, 2017)

    Science.gov (United States)

    Carrasco, M.; Barrientos, L. F.; Anguita, T.; Garcia-Vergara, C.; Bayliss, M.; Gladders, M.; Gilbank, D.; Yee, H. K. C.; West, M.

    2017-07-01

    The cluster sample presented here is a subset of a larger sample of more than one hundred strong lensing (SL)-selected clusters that have been identified primarily in Second Red-Sequence Cluster Survey (RCS-2; Gilbank+ 2011AJ....141...94G) imaging data. The median seeing of the RCS-2 survey is ~0.7". We supplement the RCS-2 SL-selected cluster sample with a few systems chosen to fill R.A. gaps that were similarly selected from the Sloan Digital Sky Survey (SDSS, see II/294). We performed a comprehensive spectroscopic follow-up of 29 SL-selected galaxy clusters primarily from the Red-Sequence Cluster Survey Giant Arc (RCSGA; Bayliss 2012ApJ...744..156B; M. D. Gladders et al. 2016, in preparation); 7 of these clusters were previously unpublished. The cluster sample is presented in Table 1. Most of the imaging data presented here have been obtained from the RCS-2 survey. They were collected in queue-scheduled mode with MegaCam at the 3.6m Canada-France-Hawaii Telescope (CFHT), between the semesters 2003A and 2007B inclusive. We have also obtained pre-imaging of our clusters in B, R, and I bands, with the Focal Reducer and low dispersion Spectrograph 2 (FORS2) at the ESO 8.2m Very Large Telescope (VLT), in queue mode. The FORS2/VLT observations were carried out between 2006 October and 2010 March using the Multi-object spectroscopy. We have also performed spectroscopic observations with the Inamori Magellan Areal Camera and Spectrograph (IMACS) on the 6.5m Magellan (Baade) telescope at LCO. The IMACS/Magellan observations were collected during six different runs between 2008 June and 2011 March. (4 data files).

  8. Modelling high resolution ALMA observations of strongly lensed highly star forming galaxies detected by Herscheltype="fn" rid="fn1" />

    Science.gov (United States)

    Dye, S.; Furlanetto, C.; Dunne, L.; Eales, S. A.; Negrello, M.; Nayyeri, H.; van der Werf, P. P.; Serjeant, S.; Farrah, D.; Michałowski, M. J.; Baes, M.; Marchetti, L.; Cooray, A.; Riechers, D. A.; Amvrosiadis, A.

    2018-02-01

    We have modelled ˜0.1 arcsec resolution ALMA imaging of six strong gravitationally lensed galaxies detected by the Herschel Space Observatory. Our modelling recovers mass properties of the lensing galaxies and, by determining magnification factors, intrinsic properties of the lensed sub-millimetre sources. We find that the lensed galaxies all have high ratios of star formation rate to dust mass, consistent with or higher than the mean ratio for high redshift sub-millimetre galaxies and low redshift ultra-luminous infra-red galaxies. Source reconstruction reveals that most galaxies exhibit disturbed morphologies. Both the cleaned image plane data and the directly observed interferometric visibilities have been modelled, enabling comparison of both approaches. In the majority of cases, the recovered lens models are consistent between methods, all six having mass density profiles that are close to isothermal. However, one system with poor signal to noise shows mildly significant differences.

  9. Kinematics, Turbulence and Star Formation of z ˜1 Strongly Lensed Galaxies seen with MUSE

    Science.gov (United States)

    Patrício, V.; Richard, J.; Carton, D.; Contini, T.; Epinat, B.; Brinchmann, J.; Schmidt, K. B.; Krajnović, D.; Bouché, N.; Weilbacher, P. M.; Pelló, R.; Caruana, J.; Maseda, M.; Finley, H.; Bauer, F. E.; Martinez, J.; Mahler, G.; Lagattuta, D.; Clément, B.; Soucail, G.; Wisotzki, L.

    2018-03-01

    We analyse a sample of 8 highly magnified galaxies at redshift 0.6 star formation rates, extinction and metallicity from multiple nebular lines, concluding that our sample is representative of z ˜1 star-forming galaxies. We derive the 2D kinematics of these galaxies from the [O II ] emission and model it with a new method that accounts for lensing effects and fits multiple images simultaneously. We use these models to calculate the 2D beam-smearing correction and derive intrinsic velocity dispersion maps. We find them to be fairly homogeneous, with relatively constant velocity dispersions between 15 - 80 km s-1and Gini coefficent of ⪉ 0.3. We do not find any evidence for higher (or lower) velocity dispersions at the positions of bright star-forming clumps. We derive resolved maps of dust attenuation and attenuation-corrected star formation rates from emission lines for two objects in the sample. We use this information to study the relation between resolved star formation rate and velocity dispersion. We find that these quantities are not correlated, and the high velocity dispersions found for relatively low star-forming densities seems to indicate that, at sub-kiloparsec scales, turbulence in high-z discs is mainly dominated by gravitational instability rather than stellar feedback.

  10. The Sloan Lens ACS Survey. XIII. Discovery of 40 New Galaxy-scale Strong Lenses

    NARCIS (Netherlands)

    Shu, Yiping; Brownstein, Joel R.; Bolton, Adam S.; Koopmans, Léon V. E.; Treu, Tommaso; Montero-Dorta, Antonio D.; Auger, Matthew W.; Czoske, Oliver; Gavazzi, Raphaël; Marshall, Philip J.; Moustakas, Leonidas A.

    2017-01-01

    We present the full sample of 118 galaxy-scale strong-lens candidates in the Sloan Lens ACS (SLACS) Survey for the Masses (S4TM) Survey, which are spectroscopically selected from the final data release of the Sloan Digital Sky Survey. Follow-up Hubble Space Telescope (HST) imaging observations

  11. SUB-KILOPARSEC IMAGING OF COOL MOLECULAR GAS IN TWO STRONGLY LENSED DUSTY, STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Spilker, J. S.; Marrone, D. P. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Aravena, M. [Núcleo de Astronomía, Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Béthermin, M.; Breuck, C. de [European Southern Observatory, Karl Schwarzschild Straße 2, D-85748 Garching (Germany); Bothwell, M. S. [Cavendish Laboratory, University of Cambridge, JJ Thompson Ave, Cambridge CB3 0HA (United Kingdom); Carlstrom, J. E. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Chapman, S. C.; Rotermund, K. M. [Dalhousie University, Halifax, Nova Scotia (Canada); Collier, J. D.; Galvin, T.; Grieve, K.; O’Brien, A. [University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751 (Australia); Fassnacht, C. D. [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States); Gonzalez, A. H.; Ma, J. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); González-López, J. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago (Chile); Hezaveh, Y. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Malkan, M., E-mail: jspilker@as.arizona.edu [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); and others

    2015-10-01

    We present spatially resolved imaging obtained with the Australia Telescope Compact Array (ATCA) of three CO lines in two high-redshift gravitationally lensed dusty star-forming galaxies, discovered by the South Pole Telescope. Strong lensing allows us to probe the structure and dynamics of the molecular gas in these two objects, at z = 2.78 and z = 5.66, with effective source-plane resolution of less than 1 kpc. We model the lensed emission from multiple CO transitions and the dust continuum in a consistent manner, finding that the cold molecular gas as traced by low-J CO always has a larger half-light radius than the 870 μm dust continuum emission. This size difference leads to up to 50% differences in the magnification factor for the cold gas compared to dust. In the z = 2.78 galaxy, these CO observations confirm that the background source is undergoing a major merger, while the velocity field of the other source is more complex. We use the ATCA CO observations and comparable resolution Atacama Large Millimeter/submillimeter Array dust continuum imaging of the same objects to constrain the CO–H{sub 2} conversion factor with three different procedures, finding good agreement between the methods and values consistent with those found for rapidly star-forming systems. We discuss these galaxies in the context of the star formation—gas mass surface density relation, noting that the change in emitting area with observed CO transition must be accounted for when comparing high-redshift galaxies to their lower redshift counterparts.

  12. Investigations of Galaxy Clusters Using Gravitational Lensing

    Energy Technology Data Exchange (ETDEWEB)

    Wiesner, Matthew P. [Northern Illinois Univ., DeKalb, IL (United States)

    2014-08-01

    In this dissertation, we discuss the properties of galaxy clusters that have been determined using strong and weak gravitational lensing. A galaxy cluster is a collection of galaxies that are bound together by the force of gravity, while gravitational lensing is the bending of light by gravity. Strong lensing is the formation of arcs or rings of light surrounding clusters and weak lensing is a change in the apparent shapes of many galaxies. In this work we examine the properties of several samples of galaxy clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory of galaxy clusters and gravitational lensing. In Chapter 2 we examine evidence from our data that galaxy clusters are more concentrated than cosmology would predict. In Chapter 3 we investigate whether our assumptions about the number of galaxies in our clusters was valid by examining new data. In Chapter 4 we describe a determination of a relationship between mass and number of galaxies in a cluster at higher redshift than has been found before. In Chapter 5 we describe a model of the mass distribution in one of the ten lensing systems discovered by our group at Fermilab. Finally in Chapter 6 we summarize our conclusions.

  13. The Herschel-ATLAS: magnifications and physical sizes of 500-μm-selected strongly lensed galaxies

    Science.gov (United States)

    Enia, A.; Negrello, M.; Gurwell, M.; Dye, S.; Rodighiero, G.; Massardi, M.; De Zotti, G.; Franceschini, A.; Cooray, A.; van der Werf, P.; Birkinshaw, M.; Michałowski, M. J.; Oteo, I.

    2018-04-01

    We perform lens modelling and source reconstruction of Sub-millimetre Array (SMA) data for a sample of 12 strongly lensed galaxies selected at 500μm in the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). A previous analysis of the same data set used a single Sérsic profile to model the light distribution of each background galaxy. Here we model the source brightness distribution with an adaptive pixel scale scheme, extended to work in the Fourier visibility space of interferometry. We also present new SMA observations for seven other candidate lensed galaxies from the H-ATLAS sample. Our derived lens model parameters are in general consistent with previous findings. However, our estimated magnification factors, ranging from 3 to 10, are lower. The discrepancies are observed in particular where the reconstructed source hints at the presence of multiple knots of emission. We define an effective radius of the reconstructed sources based on the area in the source plane where emission is detected above 5σ. We also fit the reconstructed source surface brightness with an elliptical Gaussian model. We derive a median value reff ˜ 1.77 kpc and a median Gaussian full width at half-maximum ˜1.47 kpc. After correction for magnification, our sources have intrinsic star formation rates (SFR) ˜ 900-3500 M⊙ yr-1, resulting in a median SFR surface density ΣSFR ˜ 132 M⊙ yr-1 kpc-2 (or ˜218 M⊙ yr-1 kpc-2 for the Gaussian fit). This is consistent with that observed for other star-forming galaxies at similar redshifts, and is significantly below the Eddington limit for a radiation pressure regulated starburst.

  14. SEARCHING FOR COOLING SIGNATURES IN STRONG LENSING GALAXY CLUSTERS: EVIDENCE AGAINST BARYONS SHAPING THE MATTER DISTRIBUTION IN CLUSTER CORES

    International Nuclear Information System (INIS)

    Blanchard, Peter K.; Bayliss, Matthew B.; McDonald, Michael; Dahle, Håkon; Gladders, Michael D.; Sharon, Keren; Mushotzky, Richard

    2013-01-01

    The process by which the mass density profile of certain galaxy clusters becomes centrally concentrated enough to produce high strong lensing (SL) cross-sections is not well understood. It has been suggested that the baryonic condensation of the intracluster medium (ICM) due to cooling may drag dark matter to the cores and thus steepen the profile. In this work, we search for evidence of ongoing ICM cooling in the first large, well-defined sample of SL selected galaxy clusters in the range 0.1 0.2 and shows no statistically significant deviation from the total cluster population. Specific star formation rates, as traced by the strength of the 4000 Å break, D 4000 , are also consistent with the general cluster population. Finally, we use optical imaging of the SL clusters to measure the angular separation, R arc , between the arc and the center of mass of each lensing cluster in our sample and test for evidence of changing [O II] emission and D 4000 as a function of R arc , a proxy observable for SL cross-sections. D 4000 is constant with all values of R arc , and the [O II] emission fractions show no dependence on R arc for R arc > 10'' and only very marginal evidence of increased weak [O II] emission for systems with R arc < 10''. These results argue against the ability of baryonic cooling associated with cool core activity in the cores of galaxy clusters to strongly modify the underlying dark matter potential, leading to an increase in SL cross-sections

  15. Spatially Resolved Patchy Ly α Emission within the Central Kiloparsec of a Strongly Lensed Quasar Host Galaxy at z = 2.8

    Energy Technology Data Exchange (ETDEWEB)

    Bayliss, Matthew B.; Bordoloi, Rongmon [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Sharon, Keren; Runnoe, Jessie; Johnson, Traci; Paterno-Mahler, Rachel [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Acharyya, Ayan; Bian, Fuyan; Kewley, Lisa [RSAA, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Gladders, Michael D. [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Rigby, Jane R. [Astrophysics Science Division, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Dahle, Hakon [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); Florian, Michael, E-mail: mbayliss@mit.edu [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States)

    2017-08-20

    We report the detection of extended Ly α emission from the host galaxy of SDSS J2222+2745, a strongly lensed quasar at z = 2.8. Spectroscopic follow-up clearly reveals extended Ly α in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging and resolve spatial scales as small as ∼200 pc. In the source plane, we recover the host galaxy morphology to within a few hundred parsecs of the central AGN and map the extended Ly α emission to its physical origin on one side of the host galaxy at radii ∼0.5–2 kpc from the central AGN. There are clear morphological differences between the Ly α and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Ly α , host galaxy Ly α , and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong-lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.

  16. Total molecular gas masses of Planck - Herschel selected strongly lensed hyper luminous infrared galaxies

    Science.gov (United States)

    Harrington, K. C.; Yun, M. S.; Magnelli, B.; Frayer, D. T.; Karim, A.; Weiß, A.; Riechers, D.; Jiménez-Andrade, E. F.; Berman, D.; Lowenthal, J.; Bertoldi, F.

    2018-03-01

    We report the detection of CO(1-0) line emission from seven Planck and Herschel selected hyper luminous ({L_{IR (8-1000{μ m})} > 10^{13} L_{⊙}) infrared galaxies with the Green Bank Telescope (GBT). CO(1-0) measurements are a vital tool to trace the bulk molecular gas mass across all redshifts. Our results place tight constraints on the total gas content of these most apparently luminous high-z star-forming galaxies (apparent IR luminosities of LIR > 1013 - 14 L⊙), while we confirm their predetermined redshifts measured using the Large Millimeter Telescope, LMT (zCO = 1.33-3.26). The CO(1-0) lines show similar profiles as compared to Jup = 2-4 transitions previously observed with the LMT. We report enhanced infrared to CO line luminosity ratios of = 110 ± 22 L_{⊙} (K km s^{-1} pc^{-2})^{-1} compared to normal star-forming galaxies, yet similar to those of well-studied IR-luminous galaxies at high-z. We find average brightness temperature ratios of 〈 r21〉 = 0.93 (2 sources), 〈 r31〉 = 0.34 (5 sources), and 〈 r41〉 = 0.18 (1 source). The r31 and r41 values are roughly half the average values for SMGs. We estimate the total gas mass content as {μ M_{H2} = (0.9-27.2) × 10^{11} (α _CO/0.8) M_{⊙}, where μ is the magnification factor and αCO is the CO line luminosity to molecular hydrogen gas mass conversion factor. The rapid gas depletion times, = 80} Myr, reveal vigorous starburst activity, and contrast the Gyr depletion time-scales observed in local, normal star-forming galaxies.

  17. Using Strong Gravitational Lensing to Identify Fossil Group Progenitors

    Science.gov (United States)

    Johnson, Lucas E.; Irwin, Jimmy A.; White, Raymond E., III; Wong, Ka-Wah; Maksym, W. Peter; Dupke, Renato A.; Miller, Eric D.; Carrasco, Eleazar R.

    2018-04-01

    Fossil galaxy systems are classically thought to be the end result of galaxy group/cluster evolution, as galaxies experiencing dynamical friction sink to the center of the group potential and merge into a single, giant elliptical that dominates the rest of the members in both mass and luminosity. Most fossil systems discovered lie within z fossil criteria within the look forward time. Since strong gravitational lensing preferentially selects groups merging along the line of sight, or systems with a high mass concentration like fossil systems, we searched the CASSOWARY survey of strong-lensing events with the goal of determining whether lensing systems have any predisposition to being fossil systems or progenitors. We find that ∼13% of lensing groups are identified as traditional fossils while only ∼3% of nonlensing control groups are. We also find that ∼23% of lensing systems are traditional fossil progenitors compared to ∼17% for the control sample. Our findings show that strong-lensing systems are more likely to be fossil/pre-fossil systems than comparable nonlensing systems. Cumulative galaxy luminosity functions of the lensing and nonlensing groups also indicate a possible, fundamental difference between strong-lensing and nonlensing systems’ galaxy populations, with lensing systems housing a greater number of bright galaxies even in the outskirts of groups.

  18. Combining Galaxy-Galaxy Lensing and Galaxy Clustering

    Energy Technology Data Exchange (ETDEWEB)

    Park, Youngsoo [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Krause, Elisabeth [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Dodelson, Scott [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Jain, Bhuvnesh [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Amara, Adam [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Becker, Matt [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bridle, Sarah [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Clampitt, Joseph [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Crocce, Martin [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Honscheid, Klaus [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gaztanaga, Enrique [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Sanchez, Carles [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Wechsler, Risa [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-01-01

    Combining galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth rate of large scale structure, a quantity that will shed light on the mechanism driving the acceleration of the Universe. The Dark Energy Survey (DES) is a prime candidate for such an analysis, with its measurements of both the distribution of galaxies on the sky and the tangential shears of background galaxies induced by these foreground lenses. By constructing an end-to-end analysis that combines large-scale galaxy clustering and small-scale galaxy-galaxy lensing, we also forecast the potential of a combined probes analysis on DES datasets. In particular, we develop a practical approach to a DES combined probes analysis by jointly modeling the assumptions and systematics affecting the different components of the data vector, employing a shared halo model, HOD parametrization, photometric redshift errors, and shear measurement errors. Furthermore, we study the effect of external priors on different subsets of these parameters. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/ optimistically constraining the growth function to 8%/4.9% with its first-year data covering 1000 square degrees, and to 4%/2.3% with its full five-year data covering 5000 square degrees.

  19. Galaxy bias from galaxy-galaxy lensing in the DES science verification data

    Science.gov (United States)

    Prat, J.; Sánchez, C.; Miquel, R.; Kwan, J.; Blazek, J.; Bonnett, C.; Amara, A.; Bridle, S. L.; Clampitt, J.; Crocce, M.; Fosalba, P.; Gaztanaga, E.; Giannantonio, T.; Hartley, W. G.; Jarvis, M.; MacCrann, N.; Percival, W. J.; Ross, A. J.; Sheldon, E.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Nord, B.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.

    2018-01-01

    We present a measurement of galaxy-galaxy lensing around a magnitude-limited (iAB science verification (DES-SV) data. We split these lenses into three photometric-redshift bins from 0.2 to 0.8, and determine the product of the galaxy bias b and cross-correlation coefficient between the galaxy and dark matter overdensity fields r in each bin, using scales above 4 h-1 Mpc comoving, where we find the linear bias model to be valid given our current uncertainties. We compare our galaxy bias results from galaxy-galaxy lensing with those obtained from galaxy clustering and CMB lensing for the same sample of galaxies, and find our measurements to be in good agreement with those in Crocce et al., while, in the lowest redshift bin (z ∼ 0.3), they show some tension with the findings in Giannantonio et al. We measure b · r to be 0.87 ± 0.11, 1.12 ± 0.16 and 1.24 ± 0.23, respectively, for the three redshift bins of width Δz = 0.2 in the range 0.2 code to split the lens sample, TPZ, leads to changes in the measured biases at the 10-20 per cent level, but it does not alter the main conclusion of this work: when comparing with Crocce et al. we do not find strong evidence for a cross-correlation parameter significantly below one in this galaxy sample, except possibly at the lowest redshift bin (z ∼ 0.3), where we find r = 0.71 ± 0.11 when using TPZ, and 0.83 ± 0.12 with BPZ.

  20. Strong Lensing Science Results from the Hyper Suprime-Cam Survey

    Science.gov (United States)

    Wong, Kenneth; HSC SSP Strong Lens Working Group

    2018-01-01

    Strong gravitational lenses are valuable objects for studying galaxy structure and cosmology. Lensing is a unique probe of the dark matter structure of galaxies, groups, and clusters, as well as an independent tool for constraining cosmological parameters. Lensing also magnifies the background source population, allowing for detailed studies of their properties at high resolution. However, strong lenses are rare and difficult to find, requiring deep wide-area high-resolution imaging surveys. With data from the ongoing Hyper Suprime-Cam (HSC) Subaru Strategic Program, we have discovered over 100 new strong lenses at the galaxy and group scale to expand the sample of lensing systems, particularly at redshifts z > 0.5, where there have previously been relatively few known lenses. We present a summary of the latest strong lensing science results from the HSC survey data taken through the S17A semester.

  1. Galaxy bias from galaxy-galaxy lensing in the DES Science Verification Data

    Energy Technology Data Exchange (ETDEWEB)

    Prat, J.; et al.

    2016-09-26

    We present a measurement of galaxy-galaxy lensing around a magnitude-limited ($i_{AB} < 22.5$) sample of galaxies selected from the Dark Energy Survey Science Verification (DES-SV) data. We split these lenses into three photometric-redshift bins from 0.2 to 0.8, and determine the product of the galaxy bias $b$ and cross-correlation coefficient between the galaxy and dark matter overdensity fields $r$ in each bin, using scales above 4 Mpc/$h$ comoving, where we find the linear bias model to be valid given our current uncertainties. We compare our galaxy bias results from galaxy-galaxy lensing with those obtained from galaxy clustering (Crocce et al. 2016) and CMB lensing (Giannantonio et al. 2016) for the same sample of galaxies, and find our measurements to be in good agreement with those in Crocce et al. (2016), while, in the lowest redshift bin ($z\\sim0.3$), they show some tension with the findings in Giannantonio et al. (2016). Our results are found to be rather insensitive to a large range of systematic effects. We measure $b\\cdot r$ to be $0.87\\pm 0.11$, $1.12 \\pm 0.16$ and $1.24\\pm 0.23$, respectively for the three redshift bins of width $\\Delta z = 0.2$ in the range $0.2strong evidence for a cross-correlation parameter significantly below one in this galaxy sample, except possibly at the lowest redshift bin ($z\\sim 0.3$), where we find $r = 0.71 \\pm 0.11$ when using TPZ, and $0.83 \\pm 0.12$ with BPZ, assuming the difference between the results from the two probes can be solely attributed to the cross-correlation parameter.

  2. Cosmological parameter constraints from galaxy-galaxy lensing and galaxy clustering with the SDSS DR7

    Science.gov (United States)

    Mandelbaum, Rachel; Slosar, Anže; Baldauf, Tobias; Seljak, Uroš; Hirata, Christopher M.; Nakajima, Reiko; Reyes, Reinabelle; Smith, Robert E.

    2013-06-01

    Recent studies have shown that the cross-correlation coefficient between galaxies and dark matter is very close to unity on scales outside a few virial radii of galaxy haloes, independent of the details of how galaxies populate dark matter haloes. This finding makes it possible to determine the dark matter clustering from measurements of galaxy-galaxy weak lensing and galaxy clustering. We present new cosmological parameter constraints based on large-scale measurements of spectroscopic galaxy samples from the Sloan Digital Sky Survey (SDSS) data release 7. We generalize the approach of Baldauf et al. to remove small-scale information (below 2 and 4 h-1 Mpc for lensing and clustering measurements, respectively), where the cross-correlation coefficient differs from unity. We derive constraints for three galaxy samples covering 7131 deg2, containing 69 150, 62 150 and 35 088 galaxies with mean redshifts of 0.11, 0.28 and 0.40. We clearly detect scale-dependent galaxy bias for the more luminous galaxy samples, at a level consistent with theoretical expectations. When we vary both σ8 and Ωm (and marginalize over non-linear galaxy bias) in a flat Λ cold dark matter model, the best-constrained quantity is σ8(Ωm/0.25)0.57 = 0.80 ± 0.05 (1σ, stat. + sys.), where statistical and systematic errors (photometric redshift and shear calibration) have comparable contributions, and we have fixed ns = 0.96 and h = 0.7. These strong constraints on the matter clustering suggest that this method is competitive with cosmic shear in current data, while having very complementary and in some ways less serious systematics. We therefore expect that this method will play a prominent role in future weak lensing surveys. When we combine these data with Wilkinson Microwave Anisotropy Probe 7-year (WMAP7) cosmic microwave background (CMB) data, constraints on σ8, Ωm, H0, wde and ∑mν become 30-80 per cent tighter than with CMB data alone, since our data break several parameter

  3. Meso-Structure in Three Strong-lensing Systems

    Science.gov (United States)

    Saha, Prasenjit; Williams, Liliya L. R.; Ferreras, Ignacio

    2007-07-01

    We map substructure in three strong-lensing systems having particularly good image data: the galaxy lens MG J0414+053 and the clusters SDSS J1004+411 and ACO 1689. Our method is to first reconstruct the lens as a pixelated mass map and then subtract off the symmetric part (in the galaxy case) or a projected Navarro-Frenk-White profile (for the cluster lenses). In all three systems we find extended irregular structures, or meso-structures, having of order 10% of the total mass. In J0414+053, the meso-structure suggests a tidal tail connecting the main lens with a nearby galaxy; however, this interpretation is tentative. In the clusters, the identification of meso-structure is more secure, especially in ACO 1689, where two independent sets of lensed images imply very similar meso-structure. In all three cases, the meso-structures are correlated with galaxies but much more extended and massive than the stellar components of single galaxies. Such extended structures cannot plausibly persist in such high-density regions without being mixed; the crossing times are too short. The meso-structures therefore appear to be merging or otherwise dynamically evolving systems.

  4. Cosmological applications of strong gravitational lensing

    DEFF Research Database (Denmark)

    Paraficz, Danuta

    value of the energy density of the two above components, together with measuring the Hubble constant that determines the age of the Universe, is a major goal of modern astrophysics. An interesting method for estimating these parameters is strong gravitational lensing of quasars (QSOs). As shown...... by Refsdal (1964), H0, !m and !! can be measured based on the time delay ("t) between multiply lensed images of QSOs, because "t depends on H0 and on the distances to lens and source, hence!m and !!. Determination of cosmological parameters using gravitational lensing suffers from some degeneracies......, but it is based on well understood physics and unlike distance ladder methods there are no calibration issues. Moreover, it has an advantage over some of the leading methods (such as Type Ia SNe) in that it is a purely cosmological approach. In this thesis, the property of strong gravitational lensing - time...

  5. SPITZER ULTRA FAINT SURVEY PROGRAM (SURFS UP). II. IRAC-DETECTED LYMAN-BREAK GALAXIES AT 6 ≲ z ≲ 10 BEHIND STRONG-LENSING CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Kuang-Han; Bradač, Maruša; Hoag, Austin; Cain, Benjamin; Lubin, L. M.; Knight, Robert I. [University of California Davis, 1 Shields Avenue, Davis, CA 95616 (United States); Lemaux, Brian C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Ryan, R. E. Jr.; Brammer, Gabriel B. [Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Castellano, Marco; Amorin, Ricardo; Fontana, Adriano; Merlin, Emiliano [INAF—Osservatorio Astronomico di Roma Via Frascati 33, I-00040 Monte Porzio Catone (Italy); Schmidt, Kasper B. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Schrabback, Tim [Argelander-Institut für Astronomie, Auf Dem Hügel 71, D-53121 Bonn (Germany); Treu, Tommaso [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095 (United States); Gonzalez, Anthony H. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Linden, Anja von der, E-mail: khhuang@ucdavis.edu, E-mail: astrokuang@gmail.com [Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305 (United States)

    2016-01-20

    We study the stellar population properties of the IRAC-detected 6 ≲ z ≲ 10 galaxy candidates from the Spitzer UltRa Faint SUrvey Program. Using the Lyman Break selection technique, we find a total of 17 galaxy candidates at 6 ≲ z ≲ 10 from Hubble Space Telescope images (including the full-depth images from the Hubble Frontier Fields program for MACS 1149 and MACS 0717) that have detections at signal-to-noise ratios  ≥ 3 in at least one of the IRAC 3.6 and 4.5 μm channels. According to the best mass models available for the surveyed galaxy clusters, these IRAC-detected galaxy candidates are magnified by factors of ∼1.2–5.5. Due to the magnification of the foreground galaxy clusters, the rest-frame UV absolute magnitudes M{sub 1600} are between −21.2 and −18.9 mag, while their intrinsic stellar masses are between 2 × 10{sup 8}M{sub ⊙} and 2.9 × 10{sup 9}M{sub ⊙}. We identify two Lyα emitters in our sample from the Keck DEIMOS spectra, one at z{sub Lyα} = 6.76 (in RXJ 1347) and one at z{sub Lyα} = 6.32 (in MACS 0454). We find that 4 out of 17 z ≳ 6 galaxy candidates are favored by z ≲ 1 solutions when IRAC fluxes are included in photometric redshift fitting. We also show that IRAC [3.6]–[4.5] color, when combined with photometric redshift, can be used to identify galaxies which likely have strong nebular emission lines or obscured active galactic nucleus contributions within certain redshift windows.

  6. Galaxy-galaxy lensing estimators and their covariance properties

    Science.gov (United States)

    Singh, Sukhdeep; Mandelbaum, Rachel; Seljak, Uroš; Slosar, Anže; Vazquez Gonzalez, Jose

    2017-11-01

    We study the covariance properties of real space correlation function estimators - primarily galaxy-shear correlations, or galaxy-galaxy lensing - using SDSS data for both shear catalogues and lenses (specifically the BOSS LOWZ sample). Using mock catalogues of lenses and sources, we disentangle the various contributions to the covariance matrix and compare them with a simple analytical model. We show that not subtracting the lensing measurement around random points from the measurement around the lens sample is equivalent to performing the measurement using the lens density field instead of the lens overdensity field. While the measurement using the lens density field is unbiased (in the absence of systematics), its error is significantly larger due to an additional term in the covariance. Therefore, this subtraction should be performed regardless of its beneficial effects on systematics. Comparing the error estimates from data and mocks for estimators that involve the overdensity, we find that the errors are dominated by the shape noise and lens clustering, which empirically estimated covariances (jackknife and standard deviation across mocks) that are consistent with theoretical estimates, and that both the connected parts of the four-point function and the supersample covariance can be neglected for the current levels of noise. While the trade-off between different terms in the covariance depends on the survey configuration (area, source number density), the diagnostics that we use in this work should be useful for future works to test their empirically determined covariances.

  7. Dark matter halo properties from galaxy-galaxy lensing

    International Nuclear Information System (INIS)

    Brimioulle, Fabrice

    2013-01-01

    The scientific results over the past years have shown that the Universe is by far not only composed of baryonic matter. In fact the major energy content of 72% of the Universe appears to be represented by so-called dark energy, while even from the remaining components only about one fifth is of baryonic origin, whereas 80% have to be attributed to dark matter. Originally appearing in observations of spiral galaxy rotation curves, the need for dark matter has also been verified investigating elliptical galaxies and galaxy clusters. In fact, it appears that dark matter played a major role during structure formation in the early Universe. Shortly after the Big Bang, when the matter distribution was almost homogeneous, initially very small inhomogeneities in the matter distribution formed the seeds for the gravitational collapse of the matter structures. Numerical n-body simulations, for instance, clearly indicate that the presently observable evolutionary state and complexity of the matter structure in the Universe would not have been possible without dark matter, which significantly accelerated the structure collapse due to its gravitational interaction. As dark matter does not interact electromagnetically and therefore is non-luminous but only interacts gravitationally, the gravitational lens effect provides an excellent opportunity for its detection and estimation of its amount. Weak gravitational lensing is a technique that makes use of the random orientation of the intrinsic galaxy ellipticities and thus their uniform distribution. Gravitational tidal forces introduce a coherent distortion of the background object shapes, leading to a deviation from the uniform distribution which depends on the lens galaxy properties and therefore can be used to study them. This thesis describes the galaxy-galaxy lensing analysis of 89deg 2 of optical data, observed within the CFHTLS-WIDE survey. In the framework of this thesis the data were used in order to create photometric

  8. Cusp-core problem and strong gravitational lensing

    International Nuclear Information System (INIS)

    Li Nan; Chen Daming

    2009-01-01

    Cosmological numerical simulations of galaxy formation have led to the cuspy density profile of a pure cold dark matter halo toward the center, which is in sharp contradiction with the observations of the rotation curves of cold dark matter-dominated dwarf and low surface brightness disk galaxies, with the latter tending to favor mass profiles with a flat central core. Many efforts have been devoted to resolving this cusp-core problem in recent years, among them, baryon-cold dark matter interactions are considered to be the main physical mechanisms erasing the cold dark matter (CDM) cusp into a flat core in the centers of all CDM halos. Clearly, baryon-cold dark matter interactions are not customized only for CDM-dominated disk galaxies, but for all types, including giant ellipticals. We first fit the most recent high resolution observations of rotation curves with the Burkert profile, then use the constrained core size-halo mass relation to calculate the lensing frequency, and compare the predicted results with strong lensing observations. Unfortunately, it turns out that the core size constrained from rotation curves of disk galaxies cannot be extrapolated to giant ellipticals. We conclude that, in the standard cosmological paradigm, baryon-cold dark matter interactions are not universal mechanisms for galaxy formation, and therefore, they cannot be true solutions to the cusp-core problem.

  9. Subaru Weak Lensing Measurements of Four Strong Lensing Clusters: Are Lensing Clusters Over-Concentrated?

    Energy Technology Data Exchange (ETDEWEB)

    Oguri, Masamune; Hennawi, Joseph F.; Gladders, Michael D.; Dahle, Haakon; Natarajan, Priyamvada; Dalal, Neal; Koester, Benjamin P.; Sharon, Keren; Bayliss, Matthew

    2009-01-29

    We derive radial mass profiles of four strong lensing selected clusters which show prominent giant arcs (Abell 1703, SDSS J1446+3032, SDSS J1531+3414, and SDSS J2111-0115), by combining detailed strong lens modeling with weak lensing shear measured from deep Subaru Suprime-cam images. Weak lensing signals are detected at high significance for all four clusters, whose redshifts range from z = 0.28 to 0.64. We demonstrate that adding strong lensing information with known arc redshifts significantly improves constraints on the mass density profile, compared to those obtained from weak lensing alone. While the mass profiles are well fitted by the universal form predicted in N-body simulations of the {Lambda}-dominated cold dark matter model, all four clusters appear to be slightly more centrally concentrated (the concentration parameters c{sub vir} {approx} 8) than theoretical predictions, even after accounting for the bias toward higher concentrations inherent in lensing selected samples. Our results are consistent with previous studies which similarly detected a concentration excess, and increases the total number of clusters studied with the combined strong and weak lensing technique to ten. Combining our sample with previous work, we find that clusters with larger Einstein radii are more anomalously concentrated. We also present a detailed model of the lensing cluster Abell 1703 with constraints from multiple image families, and find the dark matter inner density profile to be cuspy with the slope consistent with -1, in agreement with expectations.

  10. 3C 220.3: A radio galaxy lensing a submillimeter galaxy

    International Nuclear Information System (INIS)

    Haas, Martin; Westhues, Christian; Chini, Rolf; Leipski, Christian; Klaas, Ulrich; Meisenheimer, Klaus; Barthel, Peter; Koopmans, Léon V. E.; Wilkes, Belinda J.; Bussmann, R. Shane; Willner, S. P.; Ashby, Matthew L. N.; Kuraszkiewicz, Joanna; Vegetti, Simona; Clements, David L.; Fassnacht, Christopher D.; Horesh, Assaf; Lagattuta, David J.; Stern, Daniel; Wylezalek, Dominika

    2014-01-01

    Herschel Space Observatory photometry and extensive multiwavelength follow-up have revealed that the powerful radio galaxy (PRG) 3C 220.3 at z = 0.685 acts as a gravitational lens for a background submillimeter galaxy (SMG) at z = 2.221. At an observed wavelength of 1 mm, the SMG is lensed into three distinct images. In the observed near infrared, these images are connected by an arc of ∼1''.8 radius forming an Einstein half-ring centered near the radio galaxy. In visible light, only the arc is apparent. 3C 220.3 is the only known instance of strong galaxy-scale lensing by a PRG not located in a galaxy cluster and therefore it offers the potential to probe the dark matter content of the radio galaxy host. Lens modeling rejects a single lens, but two lenses centered on the radio galaxy host A and a companion B, separated by 1''.5, provide a fit consistent with all data and reveal faint candidates for the predicted fourth and fifth images. The model does not require an extended common dark matter halo, consistent with the absence of extended bright X-ray emission on our Chandra image. The projected dark matter fractions within the Einstein radii of A (1''.02) and B (0''.61) are about 0.4 ± 0.3 and 0.55 ± 0.3. The mass to i-band light ratios of A and B, M/L i ∼8±4 M ⊙ L ⊙ −1 , appear comparable to those of radio-quiet lensing galaxies at the same redshift in the CfA-Arizona Space Telescope LEns Survey, Lenses Structure and Dynamics, and Strong Lenses in the Legacy Survey samples. The lensed SMG is extremely bright with observed f(250 μm) = 440 mJy owing to a magnification factor μ ∼ 10. The SMG spectrum shows luminous, narrow C IV λ1549 Å emission, revealing that the SMG houses a hidden quasar in addition to a violent starburst. Multicolor image reconstruction of the SMG indicates a bipolar morphology of the emitted ultraviolet (UV) light suggestive of cones through which UV light escapes a dust

  11. 3C 220.3: A radio galaxy lensing a submillimeter galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Martin; Westhues, Christian; Chini, Rolf [Astronomisches Institut, Ruhr Universität, Bochum (Germany); Leipski, Christian; Klaas, Ulrich; Meisenheimer, Klaus [Max-Planck-Institut für Astronomie, Heidelberg (Germany); Barthel, Peter; Koopmans, Léon V. E. [Kapteyn Astronomical Institute, University of Groningen (Netherlands); Wilkes, Belinda J.; Bussmann, R. Shane; Willner, S. P.; Ashby, Matthew L. N.; Kuraszkiewicz, Joanna [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Vegetti, Simona [Max-Planck-Institut für Astrophysik, Garching (Germany); Clements, David L. [Imperial College, London (United Kingdom); Fassnacht, Christopher D. [University of California, Davis, CA (United States); Horesh, Assaf [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA (United States); Lagattuta, David J. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn (Australia); Stern, Daniel; Wylezalek, Dominika, E-mail: haas@astro.rub.de [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (United States)

    2014-07-20

    Herschel Space Observatory photometry and extensive multiwavelength follow-up have revealed that the powerful radio galaxy (PRG) 3C 220.3 at z = 0.685 acts as a gravitational lens for a background submillimeter galaxy (SMG) at z = 2.221. At an observed wavelength of 1 mm, the SMG is lensed into three distinct images. In the observed near infrared, these images are connected by an arc of ∼1''.8 radius forming an Einstein half-ring centered near the radio galaxy. In visible light, only the arc is apparent. 3C 220.3 is the only known instance of strong galaxy-scale lensing by a PRG not located in a galaxy cluster and therefore it offers the potential to probe the dark matter content of the radio galaxy host. Lens modeling rejects a single lens, but two lenses centered on the radio galaxy host A and a companion B, separated by 1''.5, provide a fit consistent with all data and reveal faint candidates for the predicted fourth and fifth images. The model does not require an extended common dark matter halo, consistent with the absence of extended bright X-ray emission on our Chandra image. The projected dark matter fractions within the Einstein radii of A (1''.02) and B (0''.61) are about 0.4 ± 0.3 and 0.55 ± 0.3. The mass to i-band light ratios of A and B, M/L{sub i}∼8±4 M{sub ⊙} L{sub ⊙}{sup −1}, appear comparable to those of radio-quiet lensing galaxies at the same redshift in the CfA-Arizona Space Telescope LEns Survey, Lenses Structure and Dynamics, and Strong Lenses in the Legacy Survey samples. The lensed SMG is extremely bright with observed f(250 μm) = 440 mJy owing to a magnification factor μ ∼ 10. The SMG spectrum shows luminous, narrow C IV λ1549 Å emission, revealing that the SMG houses a hidden quasar in addition to a violent starburst. Multicolor image reconstruction of the SMG indicates a bipolar morphology of the emitted ultraviolet (UV) light suggestive of cones through which UV light escapes a

  12. Molecular gas in the Herschel-selected strongly lensed submillimeter galaxies at z 2-4 as probed by multi-J CO lines

    Science.gov (United States)

    Yang, C.; Omont, A.; Beelen, A.; Gao, Y.; van der Werf, P.; Gavazzi, R.; Zhang, Z.-Y.; Ivison, R.; Lehnert, M.; Liu, D.; Oteo, I.; González-Alfonso, E.; Dannerbauer, H.; Cox, P.; Krips, M.; Neri, R.; Riechers, D.; Baker, A. J.; Michałowski, M. J.; Cooray, A.; Smail, I.

    2017-12-01

    We present the IRAM-30 m observations of multiple-J CO (Jup mostly from 3 up to 8) and [C I](3P2 → 3P1) ([C I](2-1) hereafter) line emission in a sample of redshift 2-4 submillimeter galaxies (SMGs). These SMGs are selected among the brightest-lensed galaxies discovered in the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS). Forty-seven CO lines and 7 [C I](2-1) lines have been detected in 15 lensed SMGs. A non-negligible effect of differential lensing is found for the CO emission lines, which could have caused significant underestimations of the linewidths, and hence of the dynamical masses. The CO spectral line energy distributions (SLEDs), peaking around Jup 5-7, are found to be similar to those of the local starburst-dominated ultra-luminous infrared galaxies and of the previously studied SMGs. After correcting for lensing amplification, we derived the global properties of the bulk of molecular gas in the SMGs using non-LTE radiative transfer modelling, such as the molecular gas density nH2 102.5-104.1 cm-3 and the kinetic temperature Tk 20-750 K. The gas thermal pressure Pth ranging from 105 K cm-3 to 106 K cm-3 is found to be correlated with star formation efficiency. Further decomposing the CO SLEDs into two excitation components, we find a low-excitation component with nH2 102.8-104.6 cm-3 and Tk 20-30 K, which is less correlated with star formation, and a high-excitation one (nH2 102.7-104.2 cm-3, Tk 60-400 K) which is tightly related to the on-going star-forming activity. Additionally, tight linear correlations between the far-infrared and CO line luminosities have been confirmed for the Jup ≥ 5 CO lines of these SMGs, implying that these CO lines are good tracers of star formation. The [C I](2-1) lines follow the tight linear correlation between the luminosities of the [C I](2-1) and the CO(1-0) line found in local starbursts, indicating that [C I] lines could serve as good total molecular gas mass tracers for high-redshift SMGs as well

  13. Cosmological applications of strong gravitational lensing

    DEFF Research Database (Denmark)

    Paraficz, Danuta

    value of the energy density of the two above components, together with measuring the Hubble constant that determines the age of the Universe, is a major goal of modern astrophysics. An interesting method for estimating these parameters is strong gravitational lensing of quasars (QSOs). As shown......One of the most intriguing recent results in physics is the growing evidence that an unknown energy field and an unknown kind of matter are the major components of the Universe (70% and 30%, respectively; see e.g. Riess et al. 1998, Spergel et al. 2007). Understanding and estimating the precise...... by Refsdal (1964), H0, !m and !! can be measured based on the time delay ("t) between multiply lensed images of QSOs, because "t depends on H0 and on the distances to lens and source, hence!m and !!. Determination of cosmological parameters using gravitational lensing suffers from some degeneracies...

  14. Weak lensing galaxy cluster field reconstruction

    Science.gov (United States)

    Jullo, E.; Pires, S.; Jauzac, M.; Kneib, J.-P.

    2014-02-01

    In this paper, we compare three methods to reconstruct galaxy cluster density fields with weak lensing data. The first method called FLens integrates an inpainting concept to invert the shear field with possible gaps, and a multi-scale entropy denoising procedure to remove the noise contained in the final reconstruction, that arises mostly from the random intrinsic shape of the galaxies. The second and third methods are based on a model of the density field made of a multi-scale grid of radial basis functions. In one case, the model parameters are computed with a linear inversion involving a singular value decomposition (SVD). In the other case, the model parameters are estimated using a Bayesian Monte Carlo Markov Chain optimization implemented in the lensing software LENSTOOL. Methods are compared on simulated data with varying galaxy density fields. We pay particular attention to the errors estimated with resampling. We find the multi-scale grid model optimized with Monte Carlo Markov Chain to provide the best results, but at high computational cost, especially when considering resampling. The SVD method is much faster but yields noisy maps, although this can be mitigated with resampling. The FLens method is a good compromise with fast computation, high signal-to-noise ratio reconstruction, but lower resolution maps. All three methods are applied to the MACS J0717+3745 galaxy cluster field, and reveal the filamentary structure discovered in Jauzac et al. We conclude that sensitive priors can help to get high signal-to-noise ratio, and unbiased reconstructions.

  15. The DES Bright Arcs Survey: Hundreds of Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey Science Verification and Year 1 Observations

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, H. T.; Buckley-Geer, E. J.; Lindgren, K. A.; Nord, B.; Gaitsch, H.; Gaitsch, S.; Lin, H.; Allam, S.; Odden, C.; Pellico, A.; Tucker, D. L.; Kuropatkin, N.; Soares-Santos, M. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Collett, T. E. [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Furlanetto, C.; Nightingale, J. [University of Nottingham, School of Physics and Astronomy, Nottingham NG7 2RD (United Kingdom); Gill, M. S. S. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); More, A. [Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Costa, L. N. da; Neto, A. Fausti, E-mail: diehl@fnal.gov [Laboratório Interinstitucional de e-Astronomia—LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ—20921-400 (Brazil); Collaboration: DES Collaboration; and others

    2017-09-01

    We report the results of searches for strong gravitational lens systems in the Dark Energy Survey (DES) Science Verification and Year 1 observations. The Science Verification data span approximately 250 sq. deg. with a median i -band limiting magnitude for extended objects (10 σ ) of 23.0. The Year 1 data span approximately 2000 sq. deg. and have an i -band limiting magnitude for extended objects (10 σ ) of 22.9. As these data sets are both wide and deep, they are particularly useful for identifying strong gravitational lens candidates. Potential strong gravitational lens candidate systems were initially identified based on a color and magnitude selection in the DES object catalogs or because the system is at the location of a previously identified galaxy cluster. Cutout images of potential candidates were then visually scanned using an object viewer and numerically ranked according to whether or not we judged them to be likely strong gravitational lens systems. Having scanned nearly 400,000 cutouts, we present 374 candidate strong lens systems, of which 348 are identified for the first time. We provide the R.A. and decl., the magnitudes and photometric properties of the lens and source objects, and the distance (radius) of the source(s) from the lens center for each system.

  16. Cosmological tests with strong gravitational lenses using Gaussian processes

    Science.gov (United States)

    Yennapureddy, Manoj K.; Melia, Fulvio

    2018-03-01

    Strong gravitational lenses provide source/lens distance ratios D_{obs} useful in cosmological tests. Previously, a catalog of 69 such systems was used in a one-on-one comparison between the standard model, Λ CDM, and the Rh=ct universe, which has thus far been favored by the application of model selection tools to many other kinds of data. But in that work, the use of model parametric fits to the observations could not easily distinguish between these two cosmologies, in part due to the limited measurement precision. Here, we instead use recently developed methods based on Gaussian Processes (GP), in which D_{obs} may be reconstructed directly from the data without assuming any parametric form. This approach not only smooths out the reconstructed function representing the data, but also reduces the size of the 1σ confidence regions, thereby providing greater power to discern between different models. With the current sample size, we show that analyzing strong lenses with a GP approach can definitely improve the model comparisons, producing probability differences in the range ˜ 10-30%. These results are still marginal, however, given the relatively small sample. Nonetheless, we conclude that the probability of Rh=ct being the correct cosmology is somewhat higher than that of Λ CDM, with a degree of significance that grows with the number of sources in the subsamples we consider. Future surveys will significantly grow the catalog of strong lenses and will therefore benefit considerably from the GP method we describe here. In addition, we point out that if the Rh=ct universe is eventually shown to be the correct cosmology, the lack of free parameters in the study of strong lenses should provide a remarkably powerful tool for uncovering the mass structure in lensing galaxies.

  17. Weak Lensing by Galaxy Troughs in DES Science Verification Data

    Energy Technology Data Exchange (ETDEWEB)

    Gruen, D. [Ludwig Maximilian Univ., Munich (Germany); Max Planck Inst. for Extraterrestrial Physics, Garching (Germany). et al.

    2015-09-29

    We measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10σ–15σ for the smallest angular scales) for troughs with the redshift range z ϵ [0.2, 0.5] of the projected galaxy field and angular diameters of 10 arcmin…1°. These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers of the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial Λ cold dark matter model. Furthermore, the prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy counts is consistent with a symmetry between galaxy and matter over- and underdensities. In addition, we measure the two-point angular correlation of troughs with galaxies which, in contrast to the lensing signal, is sensitive to galaxy bias on all scales. Finally, the lensing signal of troughs and their clustering with galaxies is therefore a promising probe of the statistical properties of matter underdensities and their connection to the galaxy field.

  18. Dark-Matter in Galaxies from Gravitational Lensing and Stellar Dynamics Studies

    NARCIS (Netherlands)

    Koopmans, L. V. E.; Corbett, IF

    2010-01-01

    Strong gravitational lensing and stellar dynamics provide two complementary methods in the study of the mass distribution of dark matter in galaxies out to redshift of unity. They are particularly powerful in the determination of the total mass and the density profile of mass early-type galaxies on

  19. The Splashback Feature around DES Galaxy Clusters: Galaxy Density and Weak Lensing Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chihway; et al.

    2017-10-18

    Splashback refers to the process of matter that is accreting onto a dark matter halo reaching its first orbital apocenter and turning around in its orbit. The cluster-centric radius at which this process occurs, r_sp, defines a halo boundary that is connected to the dynamics of the cluster, in contrast with other common halo boundary definitions such as R_200. A rapid decline in the matter density profile of the halo is expected near r_sp. We measure the galaxy number density and weak lensing mass profiles around RedMapper galaxy clusters in the first year Dark Energy Survey (DES) data. For a cluster sample with mean mass ~2.5 x 10^14 solar masses, we find strong evidence of a splashback-like steepening of the galaxy density profile and measure r_sp=1.16 +/- 0.08 Mpc/h, consistent with earlier SDSS measurements of More et al. (2016) and Baxter et al. (2017). Moreover, our weak lensing measurement demonstrates for the first time the existence of a splashback-like steepening of the matter profile of galaxy clusters. We measure r_sp=1.28 +/- 0.18 Mpc/h from the weak lensing data, in good agreement with our galaxy density measurements. Applying our analysis to different cluster and galaxy samples, we find that consistent with LambdaCDM simulations, r_sp scales with R_200m and does not evolve with redshift over the redshift range of 0.3--0.6. We also find that potential systematic effects associated with the RedMapper algorithm may impact the location of r_sp, in particular the choice of scale used to estimate cluster richness. We discuss progress needed to understand the systematic uncertainties and fully exploit forthcoming data from DES and future surveys, emphasizing the importance of more realistic mock catalogs and independent cluster samples.

  20. The Initial Mass Function in the Nearest Strong Lenses from SNELLS: Assessing the Consistency of Lensing, Dynamical, and Spectroscopic Constraints

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Andrew B. [The Observatories of the Carnegie Institution for Science, Pasadena, CA (United States); Smith, Russell J. [Centre for Extragalactic Astronomy, University of Durham, South Road, Durham (United Kingdom); Conroy, Charlie [Department of Astronomy, Harvard University, Cambridge, MA (United States); Villaume, Alexa [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA (United States); Van Dokkum, Pieter, E-mail: anewman@obs.carnegiescience.edu [Department of Astrophysical Sciences, Yale University, New Haven, CT (United States)

    2017-08-20

    We present new observations of the three nearest early-type galaxy (ETG) strong lenses discovered in the SINFONI Nearby Elliptical Lens Locator Survey (SNELLS). Based on their lensing masses, these ETGs were inferred to have a stellar initial mass function (IMF) consistent with that of the Milky Way, not the bottom-heavy IMF that has been reported as typical for high- σ ETGs based on lensing, dynamical, and stellar population synthesis techniques. We use these unique systems to test the consistency of IMF estimates derived from different methods. We first estimate the stellar M {sub *}/ L using lensing and stellar dynamics. We then fit high-quality optical spectra of the lenses using an updated version of the stellar population synthesis models developed by Conroy and van Dokkum. When examined individually, we find good agreement among these methods for one galaxy. The other two galaxies show 2–3 σ tension with lensing estimates, depending on the dark matter contribution, when considering IMFs that extend to 0.08 M {sub ⊙}. Allowing a variable low-mass cutoff or a nonparametric form of the IMF reduces the tension among the IMF estimates to <2 σ . There is moderate evidence for a reduced number of low-mass stars in the SNELLS spectra, but no such evidence in a composite spectrum of matched- σ ETGs drawn from the SDSS. Such variation in the form of the IMF at low stellar masses ( m ≲ 0.3 M {sub ⊙}), if present, could reconcile lensing/dynamical and spectroscopic IMF estimates for the SNELLS lenses and account for their lighter M {sub *}/ L relative to the mean matched- σ ETG. We provide the spectra used in this study to facilitate future comparisons.

  1. Galaxy-galaxy weak gravitational lensing in f(R) gravity

    Science.gov (United States)

    Li, Baojiu; Shirasaki, Masato

    2018-03-01

    We present an analysis of galaxy-galaxy weak gravitational lensing (GGL) in chameleon f(R) gravity - a leading candidate of non-standard gravity models. For the analysis, we have created mock galaxy catalogues based on dark matter haloes from two sets of numerical simulations, using a halo occupation distribution (HOD) prescription which allows a redshift dependence of galaxy number density. To make a fairer comparison between the f(R) and Λ cold dark matter (ΛCDM) models, their HOD parameters are tuned so that the galaxy two-point correlation functions in real space (and therefore the projected two-point correlation functions) match. While the f(R) model predicts an enhancement of the convergence power spectrum by up to ˜ 30 per cent compared to the standard ΛCDM model with the same parameters, the maximum enhancement of GGL is only half as large and less than 5 per cent on separations above ˜1-2 h-1 Mpc, because the latter is a cross-correlation of shear (or matter, which is more strongly affected by modified gravity) and galaxy (which is weakly affected given the good match between galaxy autocorrelations in the two models) fields. We also study the possibility of reconstructing the matter power spectrum by combination of GGL and galaxy clustering in f(R) gravity. We find that the galaxy-matter cross-correlation coefficient remains at unity down to ˜2-3 h-1 Mpc at relevant redshifts even in f(R) gravity, indicating joint analysis of GGL and galaxy clustering can be a powerful probe of matter density fluctuations in chameleon gravity. The scale dependence of the model differences in their predictions of GGL can potentially allows us to break the degeneracy between f(R) gravity and other cosmological parameters such as Ωm and σ8.

  2. Simulation-based marginal likelihood for cluster strong lensing cosmology

    Science.gov (United States)

    Killedar, M.; Borgani, S.; Fabjan, D.; Dolag, K.; Granato, G.; Meneghetti, M.; Planelles, S.; Ragone-Figueroa, C.

    2018-01-01

    Comparisons between observed and predicted strong lensing properties of galaxy clusters have been routinely used to claim either tension or consistency with Λ cold dark matter cosmology. However, standard approaches to such cosmological tests are unable to quantify the preference for one cosmology over another. We advocate approximating the relevant Bayes factor using a marginal likelihood that is based on the following summary statistic: the posterior probability distribution function for the parameters of the scaling relation between Einstein radii and cluster mass, α and β. We demonstrate, for the first time, a method of estimating the marginal likelihood using the X-ray selected z > 0.5 Massive Cluster Survey clusters as a case in point and employing both N-body and hydrodynamic simulations of clusters. We investigate the uncertainty in this estimate and consequential ability to compare competing cosmologies, which arises from incomplete descriptions of baryonic processes, discrepancies in cluster selection criteria, redshift distribution and dynamical state. The relation between triaxial cluster masses at various overdensities provides a promising alternative to the strong lensing test.

  3. The Sloan Lens ACS Survey. XI. Beyond Hubble Resolution : Size, Luminosity, and Stellar Mass of Compact Lensed Galaxies at Intermediate Redshift

    NARCIS (Netherlands)

    Newton, Elisabeth R.; Marshall, Philip J.; Treu, Tommaso; Auger, Matthew W.; Gavazzi, Raphaeel; Bolton, Adam S.; Koopmans, Leon V. E.; Moustakas, Leonidas A.

    We exploit the strong lensing effect to explore the properties of intrinsically faint and compact galaxies at intermediate redshift (z(s) similar or equal to 0.4-0.8) at the highest possible resolution at optical wavelengths. Our sample consists of 46 strongly lensed emission line galaxies (ELGs)

  4. Galaxy–Galaxy Weak-lensing Measurements from SDSS. I. Image Processing and Lensing Signals

    International Nuclear Information System (INIS)

    Luo, Wentao; Yang, Xiaohu; Zhang, Jun; Tweed, Dylan; Fu, Liping; Shu, Chenggang; Mo, H. J.; Bosch, Frank C. van den; Li, Ran; Li, Nan; Liu, Xiangkun; Pan, Chuzhong; Wang, Yiran; Radovich, Mario

    2017-01-01

    We present our image processing pipeline that corrects the systematics introduced by the point-spread function (PSF). Using this pipeline, we processed Sloan Digital Sky Survey (SDSS) DR7 imaging data in r band and generated a galaxy catalog containing the shape information. Based on our shape measurements of the galaxy images from SDSS DR7, we extract the galaxy–galaxy (GG) lensing signals around foreground spectroscopic galaxies binned in different luminosities and stellar masses. We estimated the systematics, e.g., selection bias, PSF reconstruction bias, PSF dilution bias, shear responsivity bias, and noise rectification bias, which in total is between −9.1% and 20.8% at 2 σ levels. The overall GG lensing signals we measured are in good agreement with Mandelbaum et al. The reduced χ 2 between the two measurements in different luminosity bins are from 0.43 to 0.83. Larger reduced χ 2 from 0.60 to 1.87 are seen for different stellar mass bins, which is mainly caused by the different stellar mass estimator. The results in this paper with higher signal-to-noise ratio are due to the larger survey area than SDSS DR4, confirming that more luminous/massive galaxies bear stronger GG lensing signals. We divide the foreground galaxies into red/blue and star-forming/quenched subsamples and measure their GG lensing signals. We find that, at a specific stellar mass/luminosity, the red/quenched galaxies have stronger GG lensing signals than their counterparts, especially at large radii. These GG lensing signals can be used to probe the galaxy–halo mass relations and their environmental dependences in the halo occupation or conditional luminosity function framework.

  5. Galaxy–Galaxy Weak-lensing Measurements from SDSS. I. Image Processing and Lensing Signals

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Wentao [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Nandan Road 80, Shanghai 200030 (China); Yang, Xiaohu; Zhang, Jun; Tweed, Dylan [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Fu, Liping; Shu, Chenggang [Shanghai Key Lab for Astrophysics, Shanghai Normal University, 100 Guilin Road, 200234, Shanghai (China); Mo, H. J. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003-9305 (United States); Bosch, Frank C. van den [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Li, Ran [Key Laboratory for Computational Astrophysics, Partner Group of the Max Planck Institute for Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 (China); Li, Nan [Department of Astronomy and Astrophysics, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Liu, Xiangkun; Pan, Chuzhong [Department of Astronomy, Peking University, Beijing 100871 (China); Wang, Yiran [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801 (United States); Radovich, Mario, E-mail: walt@shao.ac.cn, E-mail: xyang@sjtu.edu.cn [INAF-Osservatorio Astronomico di Napoli, via Moiariello 16, I-80131 Napoli (Italy)

    2017-02-10

    We present our image processing pipeline that corrects the systematics introduced by the point-spread function (PSF). Using this pipeline, we processed Sloan Digital Sky Survey (SDSS) DR7 imaging data in r band and generated a galaxy catalog containing the shape information. Based on our shape measurements of the galaxy images from SDSS DR7, we extract the galaxy–galaxy (GG) lensing signals around foreground spectroscopic galaxies binned in different luminosities and stellar masses. We estimated the systematics, e.g., selection bias, PSF reconstruction bias, PSF dilution bias, shear responsivity bias, and noise rectification bias, which in total is between −9.1% and 20.8% at 2 σ levels. The overall GG lensing signals we measured are in good agreement with Mandelbaum et al. The reduced χ {sup 2} between the two measurements in different luminosity bins are from 0.43 to 0.83. Larger reduced χ {sup 2} from 0.60 to 1.87 are seen for different stellar mass bins, which is mainly caused by the different stellar mass estimator. The results in this paper with higher signal-to-noise ratio are due to the larger survey area than SDSS DR4, confirming that more luminous/massive galaxies bear stronger GG lensing signals. We divide the foreground galaxies into red/blue and star-forming/quenched subsamples and measure their GG lensing signals. We find that, at a specific stellar mass/luminosity, the red/quenched galaxies have stronger GG lensing signals than their counterparts, especially at large radii. These GG lensing signals can be used to probe the galaxy–halo mass relations and their environmental dependences in the halo occupation or conditional luminosity function framework.

  6. The DES Bright Arcs Survey: Hundreds of Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey Science Verification and Year 1 Observations

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, H. T.; Buckley-Geer, E. J.; Lindgren, K. A.; Nord, B.; Gaitsch, H.; Gaitsch, S.; Lin, H.; Allam, S.; Collett, T. E.; Furlanetto, C.; Gill, M. S. S.; More, A.; Nightingale, J.; Odden, C.; Pellico, A.; Tucker, D. L.; Costa, L. N. da; Neto, A. Fausti; Kuropatkin, N.; Soares-Santos, M.; Welch, B.; Zhang, Y.; Frieman, J. A.; Abdalla, F. B.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; Desai, S.; Dietrich, J. P.; Drlica-Wagner, A.; Evrard, A. E.; Finley, D. A.; Flaugher, B.; García-Bellido, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; James, D. J.; Kuehn, K.; Kuhlmann, S.; Lahav, O.; Li, T. S.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Menanteau, F.; Miquel, R.; Nichol, R. C.; Nugent, P.; Ogando, R. L. C.; Plazas, A. A.; Reil, K.; Romer, A. K.; Sako, M.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.

    2017-09-01

    We report the results of our searches for strong gravitational lens systems in the Dark Energy Survey (DES) Science Verication and Year 1 observations. The Science Verication data spans approximately 250 sq. deg. with median i

  7. Power spectrum of dark matter substructure in strong gravitational lenses

    Science.gov (United States)

    Diaz Rivero, Ana; Cyr-Racine, Francis-Yan; Dvorkin, Cora

    2018-01-01

    Studying the smallest self-bound dark matter structure in our Universe can yield important clues about the fundamental particle nature of dark matter. Galaxy-scale strong gravitational lensing provides a unique way to detect and characterize dark matter substructures at cosmological distances from the Milky Way. Within the cold dark matter (CDM) paradigm, the number of low-mass subhalos within lens galaxies is expected to be large, implying that their contribution to the lensing convergence field is approximately Gaussian and could thus be described by their power spectrum. We develop here a general formalism to compute from first principles the substructure convergence power spectrum for different populations of dark matter subhalos. As an example, we apply our framework to two distinct subhalo populations: a truncated Navarro-Frenk-White subhalo population motivated by standard CDM, and a truncated cored subhalo population motivated by self-interacting dark matter (SIDM). We study in detail how the subhalo abundance, mass function, internal density profile, and concentration affect the amplitude and shape of the substructure power spectrum. We determine that the power spectrum is mostly sensitive to a specific combination of the subhalo abundance and moments of the mass function, as well as to the average tidal truncation scale of the largest subhalos included in the analysis. Interestingly, we show that the asymptotic slope of the substructure power spectrum at large wave number reflects the internal density profile of the subhalos. In particular, the SIDM power spectrum exhibits a characteristic steepening at large wave number absent in the CDM power spectrum, opening the possibility of using this observable, if at all measurable, to discern between these two scenarios.

  8. Stellar Populations of Highly Magnified Lensed Galaxies Young Starburst at Z to Approximately 2

    Science.gov (United States)

    Wuyts, Eva; Rigby, Jane R.; Gladders, Michael D.; Gilbank, David G.; Sharon, Keren; Gralla, Megan B.; Bayliss, Matthew B.

    2011-01-01

    We present a comprehensive analysis of the rest-frame UV to near-IR spectral energy distributions and rest-frame optical spectra of four of the brightest gravitationally lensed galaxies in the literature: RCSGA 032727-132609 at z = 170, MS1512-cB58 at z = 2.73, SGAS J152745.1+065219 at z = 2.76 and SGAS J12265L3+215220 at z = 2.92. This includes new Spitzer imaging for RCSGA0327 as well as new spectra, near-IR imaging and Spitzer imaging for SGAS1527 and SGAS1226. Lensing magnifications of 3-4 magnitudes allow a detailed study of the stellar populations and physical conditions. We compare star formation rates as measured from the SED fit, the Ha and [O II] .(lambda)3727 emission lines, and the UV+IR bolometric luminosity where 24micron photometry is available. The SFR estimate from the SED fit is consistently higher than the other indicators, which suggests that the Calzetti dust extinction law used in the SED fitting is too flat for young star-forming galaxies at z approx. 2. Our analysis finds similar stellar population parameters for all four lensed galaxies: stellar masses 3 - 7 x 10(exp 9) Stellar mass, young ages approx. 100 Myr, little dust content E(B - V)=0.10-0.25, and star formation rates around 20- 100 Stellar mass/y. Compared to typical values for the galaxy population at z approx. 2, this suggests we are looking at newly formed, starbursting systems that have only recently started the build-up of stellar mass. These results constitute the first detailed, uniform analysis of a sample of the growing number of strongly lensed galaxies known at z approx. 2. Subject headings: galaxies: high-redshift, strong gravitational lensing, infrared: galaxies

  9. A dearth of dark matter in strong gravitational lenses

    NARCIS (Netherlands)

    Sanders, R. H.

    I show that the lensing masses of the Sloan Lens Advanced Camera Surveys sample of strong gravitational lenses are consistent with the stellar masses determined from population synthesis models using the Salpeter initial mass function. This is true in the context of both General Relativity and

  10. Finding strong gravitational lenses in the Kilo Degree Survey with Convolutional Neural Networks

    Science.gov (United States)

    Petrillo, C. E.; Tortora, C.; Chatterjee, S.; Vernardos, G.; Koopmans, L. V. E.; Verdoes Kleijn, G.; Napolitano, N. R.; Covone, G.; Schneider, P.; Grado, A.; McFarland, J.

    2017-11-01

    The volume of data that will be produced by new-generation surveys requires automatic classification methods to select and analyse sources. Indeed, this is the case for the search for strong gravitational lenses, where the population of the detectable lensed sources is only a very small fraction of the full source population. We apply for the first time a morphological classification method based on a Convolutional Neural Network (CNN) for recognizing strong gravitational lenses in 255 deg2 of the Kilo Degree Survey (KiDS), one of the current-generation optical wide surveys. The CNN is currently optimized to recognize lenses with Einstein radii ≳1.4 arcsec, about twice the r-band seeing in KiDS. In a sample of 21 789 colour-magnitude selected luminous red galaxies (LRGs), of which three are known lenses, the CNN retrieves 761 strong-lens candidates and correctly classifies two out of three of the known lenses. The misclassified lens has an Einstein radius below the range on which the algorithm is trained. We down-select the most reliable 56 candidates by a joint visual inspection. This final sample is presented and discussed. A conservative estimate based on our results shows that with our proposed method it should be possible to find ∼100 massive LRG-galaxy lenses at z ≲ 0.4 in KiDS when completed. In the most optimistic scenario, this number can grow considerably (to maximally ∼2400 lenses), when widening the colour-magnitude selection and training the CNN to recognize smaller image-separation lens systems.

  11. 3C 220.3: A Radio Galaxy Lensing a Submillimeter Galaxy

    NARCIS (Netherlands)

    Haas, Martin; Leipski, Christian; Barthel, Peter; Wilkes, Belinda J.; Vegetti, Simona; Bussmann, R. Shane; Willner, S. P.; Westhues, Christian; Ashby, Matthew L. N.; Chini, Rolf; Clements, David L.; Fassnacht, Christopher D.; Horesh, Assaf; Klaas, Ulrich; Koopmans, Léon V. E.; Kuraszkiewicz, Joanna; Lagattuta, David J.; Meisenheimer, Klaus; Stern, Daniel; Wylezalek, Dominika

    2014-01-01

    Herschel Space Observatory photometry and extensive multiwavelength follow-up have revealed that the powerful radio galaxy (PRG) 3C 220.3 at z = 0.685 acts as a gravitational lens for a background submillimeter galaxy (SMG) at z = 2.221. At an observed wavelength of 1 mm, the SMG is lensed into

  12. Strongly lensed gravitational waves and electromagnetic signals as powerful cosmic rulers

    Science.gov (United States)

    Wei, Jun-Jie; Wu, Xue-Feng

    2017-12-01

    In this paper, we discuss the possibility of using strongly lensed gravitational waves (GWs) and their electromagnetic (EM) counterparts as powerful cosmic rulers. In the EM domain, it has been suggested that joint observations of the time delay (Δτ) between lensed quasar images and the velocity dispersion (σ) of the lensing galaxy (i.e. the combination Δτ/σ2) are able to constrain the cosmological parameters more strongly than Δτ or σ2 separately. Here, for the first time, we propose that this Δτ/σ2 method can be applied to the strongly lensed systems observed in both GW and EM windows. Combining the redshifts, images and σ observed in the EM domain with the very precise Δτ derived from lensed GW signals, we expect that accurate multimessenger cosmology can be achieved in the era of third-generation GW detectors. Comparing with the constraints from the Δτ method, we prove that using Δτ/σ2 can improve the discrimination between cosmological models. Furthermore, we demonstrate that with ∼50 strongly lensed GW-EM systems, we can reach a constraint on the dark energy equation of state w comparable to the 580 Union2.1 Type Ia supernovae data. Much more stringent constraints on w can be obtained when combining the Δτ and Δτ/σ2 methods.

  13. OBSERVED SCALING RELATIONS FOR STRONG LENSING CLUSTERS: CONSEQUENCES FOR COSMOLOGY AND CLUSTER ASSEMBLY

    International Nuclear Information System (INIS)

    Comerford, Julia M.; Moustakas, Leonidas A.; Natarajan, Priyamvada

    2010-01-01

    Scaling relations of observed galaxy cluster properties are useful tools for constraining cosmological parameters as well as cluster formation histories. One of the key cosmological parameters, σ 8 , is constrained using observed clusters of galaxies, although current estimates of σ 8 from the scaling relations of dynamically relaxed galaxy clusters are limited by the large scatter in the observed cluster mass-temperature (M-T) relation. With a sample of eight strong lensing clusters at 0.3 8 , but combining the cluster concentration-mass relation with the M-T relation enables the inclusion of unrelaxed clusters as well. Thus, the resultant gains in the accuracy of σ 8 measurements from clusters are twofold: the errors on σ 8 are reduced and the cluster sample size is increased. Therefore, the statistics on σ 8 determination from clusters are greatly improved by the inclusion of unrelaxed clusters. Exploring cluster scaling relations further, we find that the correlation between brightest cluster galaxy (BCG) luminosity and cluster mass offers insight into the assembly histories of clusters. We find preliminary evidence for a steeper BCG luminosity-cluster mass relation for strong lensing clusters than the general cluster population, hinting that strong lensing clusters may have had more active merging histories.

  14. CMU DeepLens: deep learning for automatic image-based galaxy-galaxy strong lens finding

    Science.gov (United States)

    Lanusse, François; Ma, Quanbin; Li, Nan; Collett, Thomas E.; Li, Chun-Liang; Ravanbakhsh, Siamak; Mandelbaum, Rachel; Póczos, Barnabás

    2018-01-01

    Galaxy-scale strong gravitational lensing can not only provide a valuable probe of the dark matter distribution of massive galaxies, but also provide valuable cosmological constraints, either by studying the population of strong lenses or by measuring time delays in lensed quasars. Due to the rarity of galaxy-scale strongly lensed systems, fast and reliable automated lens finding methods will be essential in the era of large surveys such as Large Synoptic Survey Telescope, Euclid and Wide-Field Infrared Survey Telescope. To tackle this challenge, we introduce CMU DeepLens, a new fully automated galaxy-galaxy lens finding method based on deep learning. This supervised machine learning approach does not require any tuning after the training step which only requires realistic image simulations of strongly lensed systems. We train and validate our model on a set of 20 000 LSST-like mock observations including a range of lensed systems of various sizes and signal-to-noise ratios (S/N). We find on our simulated data set that for a rejection rate of non-lenses of 99 per cent, a completeness of 90 per cent can be achieved for lenses with Einstein radii larger than 1.4 arcsec and S/N larger than 20 on individual g-band LSST exposures. Finally, we emphasize the importance of realistically complex simulations for training such machine learning methods by demonstrating that the performance of models of significantly different complexities cannot be distinguished on simpler simulations. We make our code publicly available at https://github.com/McWilliamsCenter/CMUDeepLens.

  15. Robust covariance estimation of galaxy-galaxy weak lensing: validation and limitation of jackknife covariance

    Science.gov (United States)

    Shirasaki, Masato; Takada, Masahiro; Miyatake, Hironao; Takahashi, Ryuichi; Hamana, Takashi; Nishimichi, Takahiro; Murata, Ryoma

    2017-09-01

    We develop a method to simulate galaxy-galaxy weak lensing by utilizing all-sky, light-cone simulations and their inherent halo catalogues. Using the mock catalogue to study the error covariance matrix of galaxy-galaxy weak lensing, we compare the full covariance with the 'jackknife' (JK) covariance, the method often used in the literature that estimates the covariance from the resamples of the data itself. We show that there exists the variation of JK covariance over realizations of mock lensing measurements, while the average JK covariance over mocks can give a reasonably accurate estimation of the true covariance up to separations comparable with the size of JK subregion. The scatter in JK covariances is found to be ∼10 per cent after we subtract the lensing measurement around random points. However, the JK method tends to underestimate the covariance at the larger separations, more increasingly for a survey with a higher number density of source galaxies. We apply our method to the Sloan Digital Sky Survey (SDSS) data, and show that the 48 mock SDSS catalogues nicely reproduce the signals and the JK covariance measured from the real data. We then argue that the use of the accurate covariance, compared to the JK covariance, allows us to use the lensing signals at large scales beyond a size of the JK subregion, which contains cleaner cosmological information in the linear regime.

  16. The Weak Lensing Masses of Filaments between Luminous Red Galaxies

    Science.gov (United States)

    Epps, Seth D.; Hudson, Michael J.

    2017-07-01

    In the standard model of non-linear structure formation, a cosmic web of dark-matter-dominated filaments connects dark matter haloes. In this paper, we stack the weak lensing signal of an ensemble of filaments between groups and clusters of galaxies. Specifically, we detect the weak lensing signal, using CFHTLenS galaxy ellipticities, from stacked filaments between Sloan Digital Sky Survey (SDSS)-III/Baryon Oscillation Spectroscopic Survey luminous red galaxies (LRGs). As a control, we compare the physical LRG pairs with projected LRG pairs that are more widely separated in redshift space. We detect the excess filament mass density in the projected pairs at the 5σ level, finding a mass of (1.6 ± 0.3) × 1013 M⊙ for a stacked filament region 7.1 h-1 Mpc long and 2.5 h-1 Mpc wide. This filament signal is compared with a model based on the three-point galaxy-galaxy-convergence correlation function, as developed in Clampitt et al., yielding reasonable agreement.

  17. KiDS-450: tomographic cross-correlation of galaxy shear with Planck lensing

    Science.gov (United States)

    Harnois-Déraps, Joachim; Tröster, Tilman; Chisari, Nora Elisa; Heymans, Catherine; van Waerbeke, Ludovic; Asgari, Marika; Bilicki, Maciej; Choi, Ami; Erben, Thomas; Hildebrandt, Hendrik; Hoekstra, Henk; Joudaki, Shahab; Kuijken, Konrad; Merten, Julian; Miller, Lance; Robertson, Naomi; Schneider, Peter; Viola, Massimo

    2017-10-01

    We present the tomographic cross-correlation between galaxy lensing measured in the Kilo Degree Survey (KiDS-450) with overlapping lensing measurements of the cosmic microwave background (CMB), as detected by Planck 2015. We compare our joint probe measurement to the theoretical expectation for a flat Λ cold dark matter cosmology, assuming the best-fitting cosmological parameters from the KiDS-450 cosmic shear and Planck CMB analyses. We find that our results are consistent within 1σ with the KiDS-450 cosmology, with an amplitude re-scaling parameter AKiDS = 0.86 ± 0.19. Adopting a Planck cosmology, we find our results are consistent within 2σ, with APlanck = 0.68 ± 0.15. We show that the agreement is improved in both cases when the contamination to the signal by intrinsic galaxy alignments is accounted for, increasing A by ∼0.1. This is the first tomographic analysis of the galaxy lensing - CMB lensing cross-correlation signal, and is based on five photometric redshift bins. We use this measurement as an independent validation of the multiplicative shear calibration and of the calibrated source redshift distribution at high redshifts. We find that constraints on these two quantities are strongly correlated when obtained from this technique, which should therefore not be considered as a stand-alone competitive calibration tool.

  18. Galaxy-galaxy and galaxy-cluster lensing with the SDSS and FIRST surveys

    Science.gov (United States)

    Demetroullas, C.; Brown, M. L.

    2018-01-01

    We perform a galaxy-galaxy lensing study by correlating the shapes of ∼2.7 × 105 galaxies selected from the VLA FIRST (Faint Images of the Radio Sky at Twenty centimetres) radio survey with the positions of ∼38.5 million Sloan Digital Sky Survey (SDSS) galaxies, ∼132 000 Brightest Cluster Galaxies (BCGs) and ∼78 000 SDSS galaxies that are also detected in the VLA FIRST survey. The measurements are conducted on angular scales θ ≲ 1200 arcsec. On scales θ ≲ 200 arcsec, we find that the measurements are corrupted by residual systematic effects associated with the instrumental beam of the VLA data. Using simulations, we show that we can successfully apply a correction for these effects. Using the three lens samples (the SDSS DR10 sample, the BCG sample and the SDSS-FIRST matched object sample), we measure a tangential shear signal that is inconsistent with 0 at the 10.2σ, 3.8σ and 9σ levels, respectively. Fitting an NFW model to the detected signals, we find that the ensemble mass profile of the BCG sample agrees with the values in the literature. However, the mass profiles of the SDSS DR10 and the SDSS-FIRST matched object samples are found to be shallower and steeper than results in the literature, respectively. The best-fitting Virial masses for the SDSS DR10, BCG and SDSS-FIRST matched samples, derived using an NFW model and allowing for a varying concentration factor, are M_{200}^SDSS-DR10 = (1.2 ± 0.4) × 10^{12} M_{⊙}, M_{200}^BCG = (1.4 ± 1.3) × 10^{13} M_{⊙} and M_{200}^SDSS-FIRST =8.0 ± 4.2 × 10^{13} M_{⊙}, respectively. These results are in good agreement (within ∼2σ) with values in the literature. Our findings suggest that for galaxies to be bright both in the radio and in the optical, they must be embedded in very dense environment on scales R ≲ 1 Mpc.

  19. Strong Gravitational Lensing in a Brane-World Black Hole

    Science.gov (United States)

    Li, GuoPing; Cao, Biao; Feng, Zhongwen; Zu, Xiaotao

    2015-09-01

    Adopting the strong field limit approach, we investigated the strong gravitational lensing in a Brane-World black hole, which means that the strong field limit coefficients and the deflection angle in this gravitational field are obtained. With this result, it can be said with certainly that the strong gravitational lensing is related to the metric of gravitational fields closely, the cosmology parameter α and the dark matter parameter β come from the Brane-World black hole exerts a great influence on it. Comparing with the Schwarzschild-AdS spacetime and the Schwarzschild-XCMD spacetime, the parameters α, β of black holes have the similar effects on the gravitational lensing. In some way, we infer that the real gravitational fields in our universe can be described by this metric, so the results of the strong gravitational lensing in this spacetime will be more reasonable for us to observe. Finally, it has to be noticed that the influence which the parameters α, β exerted on the main observable quantities of this gravitational field is discussed.

  20. The dark side of galaxy colour: evidence from new SDSS measurements of galaxy clustering and lensing

    Energy Technology Data Exchange (ETDEWEB)

    Hearin, Andrew P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). Fermilab Center for Particle Astrophysics; Watson, Douglas F. [Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); Becker, Matthew R. [Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); KICP, Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Reyes, Reinabelle [Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); Berlind, Andreas A. [Vanderbilt Univ., Nashville, TN (United States). Dept. of Physics and Astronomy; Zentner, Andrew R. [Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (PITT PACC), PA (United States)

    2014-08-12

    The age matching model has recently been shown to predict correctly the luminosity L and g-r color of galaxies residing within dark matter halos. The central tenet of the model is intuitive: older halos tend to host galaxies with older stellar populations. In this paper, we demonstrate that age matching also correctly predicts the g-r color trends exhibited in a wide variety of statistics of the galaxy distribution for stellar mass M* threshold samples. In particular, we present new measurements of the galaxy two-point correlation function and the galaxy-galaxy lensing signal as a function of M* and g-r color from the Sloan Digital Sky Survey, and show that age matching exhibits remarkable agreement with these and other statistics of low-redshift galaxies. In so doing, we also demonstrate good agreement between the galaxy-galaxy lensing observed by SDSS and the signal predicted by abundance matching, a new success of this model. We describe how age matching is a specific example of a larger class of Conditional Abundance Matching models (CAM), a theoretical framework we introduce here for the first time. CAM provides a general formalism to study correlations at fixed mass between any galaxy property and any halo property. The striking success of our simple implementation of CAM provides compelling evidence that this technique has the potential to describe the same set of data as alternative models, but with a dramatic reduction in the required number of parameters. CAM achieves this reduction by exploiting the capability of contemporary N-body simulations to determine dark matter halo properties other than mass alone, which distinguishes our model from conventional approaches to the galaxy-halo connection.

  1. The ellipticity of galaxy cluster haloes from satellite galaxies and weak lensing

    Science.gov (United States)

    Shin, Tae-hyeon; Clampitt, Joseph; Jain, Bhuvnesh; Bernstein, Gary; Neil, Andrew; Rozo, Eduardo; Rykoff, Eli

    2018-04-01

    We study the ellipticity of galaxy cluster haloes as characterized by the distribution of cluster galaxies and as measured with weak lensing. We use Monte Carlo simulations of elliptical cluster density profiles to estimate and correct for Poisson noise bias, edge bias and projection effects. We apply our methodology to 10 428 Sloan Digital Sky Survey clusters identified by the redMaPPer algorithm with richness above 20. We find a mean ellipticity =0.271 ± 0.002 (stat) ±0.031 (sys) corresponding to an axis ratio = 0.573 ± 0.002 (stat) ±0.039 (sys). We compare this ellipticity of the satellites to the halo shape, through a stacked lensing measurement using optimal estimators of the lensing quadrupole based on Clampitt and Jain (2016). We find a best-fitting axis ratio of 0.56 ± 0.09 (stat) ±0.03 (sys), consistent with the ellipticity of the satellite distribution. Thus, cluster galaxies trace the shape of the dark matter halo to within our estimated uncertainties. Finally, we restack the satellite and lensing ellipticity measurements along the major axis of the cluster central galaxy's light distribution. From the lensing measurements, we infer a misalignment angle with an root-mean-square of 30° ± 10° when stacking on the central galaxy. We discuss applications of halo shape measurements to test the effects of the baryonic gas and active galactic nucleus feedback, as well as dark matter and gravity. The major improvements in signal-to-noise ratio expected with the ongoing Dark Energy Survey and future surveys from Large Synoptic Survey Telescope, Euclid, and Wide Field Infrared Survey Telescope will make halo shapes a useful probe of these effects.

  2. A new method to measure galaxy bias by combining the density and weak lensing fields

    Energy Technology Data Exchange (ETDEWEB)

    Pujol, Arnau; Chang, Chihway; Gaztañaga, Enrique; Amara, Adam; Refregier, Alexandre; Bacon, David J.; Carretero, Jorge; Castander, Francisco J.; Crocce, Martin; Fosalba, Pablo; Manera, Marc; Vikram, Vinu

    2016-07-29

    We present a new method to measure redshift-dependent galaxy bias by combining information from the galaxy density field and the weak lensing field. This method is based on the work of Amara et al., who use the galaxy density field to construct a bias-weighted convergence field κg. The main difference between Amara et al.'s work and our new implementation is that here we present another way to measure galaxy bias, using tomography instead of bias parametrizations. The correlation between κg and the true lensing field κ allows us to measure galaxy bias using different zero-lag correlations, such as <κgκ>/<κκ> or <κgκg>/<κgκ>. Our method measures the linear bias factor on linear scales, under the assumption of no stochasticity between galaxies and matter. We use the Marenostrum Institut de Ciències de l'Espai (MICE) simulation to measure the linear galaxy bias for a flux-limited sample (i < 22.5) in tomographic redshift bins using this method. This article is the first that studies the accuracy and systematic uncertainties associated with the implementation of the method and the regime in which it is consistent with the linear galaxy bias defined by projected two-point correlation functions (2PCF). We find that our method is consistent with a linear bias at the per cent level for scales larger than 30 arcmin, while non-linearities appear at smaller scales. This measurement is a good complement to other measurements of bias, since it does not depend strongly on σ8 as do the 2PCF measurements. We will apply this method to the Dark Energy Survey Science Verification data in a follow-up article.

  3. Shadows and strong gravitational lensing: a brief review

    Science.gov (United States)

    Cunha, Pedro V. P.; Herdeiro, Carlos A. R.

    2018-04-01

    For ultra compact objects, light rings and fundamental photon orbits (FPOs) play a pivotal role in the theoretical analysis of strong gravitational lensing effects, and of BH shadows in particular. In this short review, specific models are considered to illustrate how FPOs can be useful in order to understand some non-trivial gravitational lensing effects. This paper aims at briefly overviewing the theoretical foundations of these effects, touching also some of the related phenomenology, both in general relativity and alternative theories of gravity, hopefully providing some intuition and new insights for the underlying physics, which might be critical when testing the Kerr black hole hypothesis.

  4. Strong lensing of gravitational waves as seen by LISA.

    Science.gov (United States)

    Sereno, M; Sesana, A; Bleuler, A; Jetzer, Ph; Volonteri, M; Begelman, M C

    2010-12-17

    We discuss strong gravitational lensing of gravitational waves from the merging of massive black hole binaries in the context of the LISA mission. Detection of multiple events would provide invaluable information on competing theories of gravity, evolution and formation of structures and, possibly, constraints on H0 and other cosmological parameters. Most of the optical depth for lensing is provided by intervening massive galactic halos, for which wave optics effects are negligible. Probabilities to observe multiple events are sizable for a broad range of formation histories. For the most optimistic models, up to ≲ 4 multiple events with a signal to noise ratio ≳ 8 are expected in a 5-year mission. Chances are significant even for conservative models with either light (≲ 60%) or heavy (≲ 40%) seeds. Because of lensing amplification, some intrinsically too faint signals are brought over threshold (≲ 2 per year).

  5. Joint analysis of galaxy-galaxy lensing and galaxy clustering: Methodology and forecasts for Dark Energy Survey

    International Nuclear Information System (INIS)

    Park, Y.; Krause, E.; Dodelson, S.; Jain, B.; Amara, A.

    2016-01-01

    Here, the joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large-scale structure. Anticipating a near future application of this analysis to Dark Energy Survey (DES) measurements of galaxy positions and shapes, we develop a practical approach to modeling the assumptions and systematic effects affecting the joint analysis of small-scale galaxy-galaxy lensing and large-scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we study how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects being subdominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the Universe, conservatively/optimistically constraining the growth function to 7.9%/4.8% with its first-year data that cover over 1000 square degrees, and to 3.9%/2.3% with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties.

  6. Weak Lensing by Galaxy Clusters: from Pixels to Cosmology

    International Nuclear Information System (INIS)

    Gruen, Daniel

    2015-01-01

    The story of the origin and evolution of our Universe is told, equivalently, by space-time itself and by the structures that grow inside of it. Clusters of galaxies are the frontier of bottom-up structure formation. They are the most massive objects to have collapsed at the present epoch. By that virtue, their abundance and structural parameters are highly sensitive to the composition and evolution of the Universe. The most common probe of cluster cosmology, abundance, uses samples of clusters selected by some observable. Applying a mass-observable relation (MOR), cosmological parameters can be constrained by comparing the sample to predicted cluster abundances as a function of observable and redshift. Arguably, however, cluster probes have not yet entered the era of per cent level precision cosmology. The primary reason for this is our imperfect understanding of the MORs. The overall normalization, the slope of mass vs. observable, the redshift evolution, and the degree and correlation of intrinsic scatters of observables at fixed mass have to be constrained for interpreting abundances correctly. Mass measurement of clusters by means of the differential deflection of light from background sources in their gravitational field, i.e. weak lensing, is a powerful approach for achieving this. This thesis presents new methods for and scientific results of weak lensing measurements of clusters of galaxies. The former include, on the data reduction side, (i) the correction of CCD images for non-linear effects due to the electric fields of accumulated charges and (ii) a method for masking artifact features in sets of overlapping images of the sky by comparison to the median image. Also, (iii) I develop a method for the selection of background galaxy samples based on their color and apparent magnitude that includes a new correction for contamination with cluster member galaxies. The main scientific results are the following. (i) For the Hubble Frontier Field cluster RXC J

  7. Weak Lensing by Galaxy Clusters: from Pixels to Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Gruen, Daniel [Ludwig Maximilian Univ., Munich (Germany)

    2015-03-11

    The story of the origin and evolution of our Universe is told, equivalently, by space-time itself and by the structures that grow inside of it. Clusters of galaxies are the frontier of bottom-up structure formation. They are the most massive objects to have collapsed at the present epoch. By that virtue, their abundance and structural parameters are highly sensitive to the composition and evolution of the Universe. The most common probe of cluster cosmology, abundance, uses samples of clusters selected by some observable. Applying a mass-observable relation (MOR), cosmological parameters can be constrained by comparing the sample to predicted cluster abundances as a function of observable and redshift. Arguably, however, cluster probes have not yet entered the era of per cent level precision cosmology. The primary reason for this is our imperfect understanding of the MORs. The overall normalization, the slope of mass vs. observable, the redshift evolution, and the degree and correlation of intrinsic scatters of observables at fixed mass have to be constrained for interpreting abundances correctly. Mass measurement of clusters by means of the differential deflection of light from background sources in their gravitational field, i.e. weak lensing, is a powerful approach for achieving this. This thesis presents new methods for and scientific results of weak lensing measurements of clusters of galaxies. The former include, on the data reduction side, (i) the correction of CCD images for non-linear effects due to the electric fields of accumulated charges and (ii) a method for masking artifact features in sets of overlapping images of the sky by comparison to the median image. Also, (iii) I develop a method for the selection of background galaxy samples based on their color and apparent magnitude that includes a new correction for contamination with cluster member galaxies. The main scientific results are the following. (i) For the Hubble Frontier Field cluster RXC J

  8. How to Measure Dark Energy with LSST's Strong Gravitational Lenses

    Science.gov (United States)

    Marshall, Philip J.; Treu, T.; Brunner, R. J.; Strong Lensing, LSST; Dark Energy Science Collaborations

    2013-01-01

    Strong gravitational lensing is sensitive to dark energy (DE) via the combinations of angular diameter distances that appear in model predictions of the lens strength. Lenses with variable sources offer the most promise: the corresponding time delay distance has recently been shown to be measurable to 5% precision. Large samples of lensed quasars and supernovae will allow internal degeneracy-breaking and so enable the most direct access to the DE parameters, while multiple source-plane, compound lens systems may provide an alternative, complementary, H0-free probe. Its wide field survey and high cadence will enable LSST to provide a sample of several thousand measured time delays, two orders of magnitude larger than the current sample, and allow an independent, competitive Stage IV DE parameter measurement to be made. However, practical problems to be solved include: lens detection (which may be very sensitive to image quality and deblender performance); image and lightcurve modelling (which could be both CPU and manual labor-intensive); obtaining and analyzing high resolution spectro-imaging follow-up data; and interpreting the whole sample of lenses in the context of the well-studied subset.

  9. DETECTION OF LENSING SUBSTRUCTURE USING ALMA OBSERVATIONS OF THE DUSTY GALAXY SDP.81

    Energy Technology Data Exchange (ETDEWEB)

    Hezaveh, Yashar D.; Mao, Yao-Yuan; Morningstar, Warren; Blandford, Roger D.; Levasseur, Laurence Perreault; Wechsler, Risa H. [Kavli Institute for Particle Astrophysics and Cosmology and Department of Physics, Stanford University, 452 Lomita Mall, Stanford, CA 94305-4085 (United States); Dalal, Neal; Wen, Di; Kemball, Athol; Vieira, Joaquin D. [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana IL 61801 (United States); Marrone, Daniel P. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Carlstrom, John E. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Fassnacht, Christopher D. [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States); Holder, Gilbert P. [Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8 (Canada); Marshall, Philip J. [Kavli Institute for Particle Astrophysics and Cosmology and Department of Particle Physics and Astrophysics, SLAC National Accelerator Laboratory, Menlo Park, CA 94305 (United States); Murray, Norman [CITA, University of Toronto, 60 St. George St., Toronto ON M5S 3H8 (Canada)

    2016-05-20

    We study the abundance of substructure in the matter density near galaxies using ALMA Science Verification observations of the strong lensing system SDP.81. We present a method to measure the abundance of subhalos around galaxies using interferometric observations of gravitational lenses. Using simulated ALMA observations we explore the effects of various systematics, including antenna phase errors and source priors, and show how such errors may be measured or marginalized. We apply our formalism to ALMA observations of SDP.81. We find evidence for the presence of a M = 10{sup 8.96±0.12} M {sub ⊙} subhalo near one of the images, with a significance of 6.9 σ in a joint fit to data from bands 6 and 7; the effect of the subhalo is also detected in both bands individually. We also derive constraints on the abundance of dark matter (DM) subhalos down to M ∼ 2 × 10{sup 7} M {sub ⊙}, pushing down to the mass regime of the smallest detected satellites in the Local Group, where there are significant discrepancies between the observed population of luminous galaxies and predicted DM subhalos. We find hints of additional substructure, warranting further study using the full SDP.81 data set (including, for example, the spectroscopic imaging of the lensed carbon monoxide emission). We compare the results of this search to the predictions of ΛCDM halos, and find that given current uncertainties in the host halo properties of SDP.81, our measurements of substructure are consistent with theoretical expectations. Observations of larger samples of gravitational lenses with ALMA should be able to improve the constraints on the abundance of galactic substructure.

  10. AUTOMATED DETECTION OF GALAXY-SCALE GRAVITATIONAL LENSES IN HIGH-RESOLUTION IMAGING DATA

    International Nuclear Information System (INIS)

    Marshall, Philip J.; Bradac, Marusa; Hogg, David W.; Moustakas, Leonidas A.; Fassnacht, Christopher D.; Schrabback, Tim; Blandford, Roger D.

    2009-01-01

    We expect direct lens modeling to be the key to successful and meaningful automated strong galaxy-scale gravitational lens detection. We have implemented a lens-modeling 'robot' that treats every bright red galaxy (BRG) in a large imaging survey as a potential gravitational lens system. Having optimized a simple model for 'typical' galaxy-scale gravitational lenses, we generate four assessments of model quality that are then used in an automated classification. The robot infers from these four data the lens classification parameter H that a human would have assigned; the inference is performed using a probability distribution generated from a human-classified training set of candidates, including realistic simulated lenses and known false positives drawn from the Hubble Space Telescope (HST) Extended Groth Strip (EGS) survey. We compute the expected purity, completeness, and rejection rate, and find that these statistics can be optimized for a particular application by changing the prior probability distribution for H; this is equivalent to defining the robot's 'character'. Adopting a realistic prior based on expectations for the abundance of lenses, we find that a lens sample may be generated that is ∼100% pure, but only ∼20% complete. This shortfall is due primarily to the oversimplicity of the model of both the lens light and mass. With a more optimistic robot, ∼90% completeness can be achieved while rejecting ∼90% of the candidate objects. The remaining candidates must be classified by human inspectors. Displaying the images used and produced by the robot on a custom 'one-click' web interface, we are able to inspect and classify lens candidates at a rate of a few seconds per system, suggesting that a future 1000 deg. 2 imaging survey containing 10 7 BRGs, and some 10 4 lenses, could be successfully, and reproducibly, searched in a modest amount of time. We have verified our projected survey statistics, albeit at low significance, using the HST EGS data

  11. HERSCHEL EXTREME LENSING LINE OBSERVATIONS: [C ii] VARIATIONS IN GALAXIES AT REDSHIFTS z = 1–3

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, Sangeeta; Rhoads, James E.; Yang, Huan [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Finkelstein, K.; Finkelstein, Steven [University of Texas, Austin, TX 78712 (United States); Carilli, Chris [National Radio Astronomy Observatory, Socorro, NM (United States); Combes, Françoise [Observatoire de Paris, LERMA, CNRS, 61 Avenue de l’Observatoire, F-75014 Paris (France); Dassas, Karine; Guillard, Pierre; Nesvadba, Nicole [Institut d’Astrophysique Spatiale, Centre Universitaire d’Orsay (France); Frye, Brenda [Steward Observatory, University of Arizona, Tucson, AZ (United States); Gerin, Maryvonne [LERMA,24 rue Lhomond, F-75231 Paris Cedex 05 (France); Rigby, Jane [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Shin, Min-Su [Oxford University, Oxford, OX1 3PA (United Kingdom); Spaans, Marco [Kapteyn Astronomical Institute, University of Groningen, Groningen (Netherlands); Strauss, Michael A. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544 (United States); Papovich, Casey, E-mail: malhotra@asu.edu [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics, Texas A and M University, College Station, TX 77843 (United States)

    2017-01-20

    We observed the [C ii] line in 15 lensed galaxies at redshifts 1 < z < 3 using HIFI on the Herschel Space Observatory and detected 14/15 galaxies at 3 σ or better. High magnifications enable even modestly luminous galaxies to be detected in [C ii] with Herschel . The [C ii] luminosity in this sample ranges from 8 × 10{sup 7} L {sub ⊙} to 3.7 × 10{sup 9} L {sub ⊙} (after correcting for magnification), confirming that [C ii] is a strong tracer of the ISM at high redshifts. The ratio of the [C ii] line to the total far-infrared (FIR) luminosity serves as a measure of the ratio of gas to dust cooling and thus the efficiency of the grain photoelectric heating process. It varies between 3.3% and 0.09%. We compare the [C ii]/FIR ratio to that of galaxies at z = 0 and at high redshifts and find that they follow similar trends. The [C ii]/FIR ratio is lower for galaxies with higher dust temperatures. This is best explained if increased UV intensity leads to higher FIR luminosity and dust temperatures, but gas heating does not rise due to lower photoelectric heating efficiency. The [C ii]/FIR ratio shows weaker correlation with FIR luminosity. At low redshifts highly luminous galaxies tend to have warm dust, so the effects of dust temperature and luminosity are degenerate. Luminous galaxies at high redshifts show a range of dust temperatures, showing that [C ii]/FIR correlates most strongly with dust temperature. The [C ii] to mid-IR ratio for the HELLO sample is similar to the values seen for low-redshift galaxies, indicating that small grains and PAHs dominate the heating in the neutral ISM, although some of the high [CII]/FIR ratios may be due to turbulent heating.

  12. HERSCHEL EXTREME LENSING LINE OBSERVATIONS: [C ii] VARIATIONS IN GALAXIES AT REDSHIFTS z = 1–3

    International Nuclear Information System (INIS)

    Malhotra, Sangeeta; Rhoads, James E.; Yang, Huan; Finkelstein, K.; Finkelstein, Steven; Carilli, Chris; Combes, Françoise; Dassas, Karine; Guillard, Pierre; Nesvadba, Nicole; Frye, Brenda; Gerin, Maryvonne; Rigby, Jane; Shin, Min-Su; Spaans, Marco; Strauss, Michael A.; Papovich, Casey

    2017-01-01

    We observed the [C ii] line in 15 lensed galaxies at redshifts 1 < z < 3 using HIFI on the Herschel Space Observatory and detected 14/15 galaxies at 3 σ or better. High magnifications enable even modestly luminous galaxies to be detected in [C ii] with Herschel . The [C ii] luminosity in this sample ranges from 8 × 10 7 L ⊙ to 3.7 × 10 9 L ⊙ (after correcting for magnification), confirming that [C ii] is a strong tracer of the ISM at high redshifts. The ratio of the [C ii] line to the total far-infrared (FIR) luminosity serves as a measure of the ratio of gas to dust cooling and thus the efficiency of the grain photoelectric heating process. It varies between 3.3% and 0.09%. We compare the [C ii]/FIR ratio to that of galaxies at z = 0 and at high redshifts and find that they follow similar trends. The [C ii]/FIR ratio is lower for galaxies with higher dust temperatures. This is best explained if increased UV intensity leads to higher FIR luminosity and dust temperatures, but gas heating does not rise due to lower photoelectric heating efficiency. The [C ii]/FIR ratio shows weaker correlation with FIR luminosity. At low redshifts highly luminous galaxies tend to have warm dust, so the effects of dust temperature and luminosity are degenerate. Luminous galaxies at high redshifts show a range of dust temperatures, showing that [C ii]/FIR correlates most strongly with dust temperature. The [C ii] to mid-IR ratio for the HELLO sample is similar to the values seen for low-redshift galaxies, indicating that small grains and PAHs dominate the heating in the neutral ISM, although some of the high [CII]/FIR ratios may be due to turbulent heating.

  13. TESTING GRAVITATIONAL LENSING AS THE SOURCE OF ENHANCED STRONG Mg II ABSORPTION TOWARD GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Rapoport, Sharon; Onken, Christopher A.; Schmidt, Brian P.; Tucker, Brad E. [Research School of Astronomy and Astrophysics, Australian National University, Weston Creek, ACT 2611 (Australia); Wyithe, J. Stuart B. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Levan, Andrew J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2012-08-01

    Sixty percent of gamma-ray bursts (GRBs) reveal strong Mg II absorbing systems, which is a factor of {approx}2 times the rate seen along lines of sight to quasars. Previous studies argue that the discrepancy in the strong Mg II covering factor is most likely to be the result of either quasars being obscured due to dust or the consequence of many GRBs being strongly gravitationally lensed. We analyze observations of quasars that show strong foreground Mg II absorption. We find that GRB lines of sight pass closer to bright galaxies than would be expected for random lines of sight within the impact parameter expected for strong Mg II absorption. While this cannot be explained by obscuration in the GRB sample, it is a natural consequence of gravitational lensing. Upon examining the particular configurations of galaxies near a sample of GRBs with strong Mg II absorption, we find several intriguing lensing candidates. Our results suggest that lensing provides a viable contribution to the observed enhancement of strong Mg II absorption along lines of sight to GRBs, and we outline the future observations required to test this hypothesis conclusively.

  14. The effects of assembly bias on the inference of matter clustering from galaxy-galaxy lensing and galaxy clustering

    Science.gov (United States)

    McEwen, Joseph E.; Weinberg, David H.

    2018-04-01

    The combination of galaxy-galaxy lensing (GGL) and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modeling can extend the approach down to nonlinear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with large scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older halos affects the cutoff of the mean occupation function for central galaxies, with halos in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We introduce an extended, environment dependent HOD (EDHOD) prescription to describe these results and fit galaxy correlation measurements. Crucially, we find that the galaxy-matter cross-correlation coefficient, rgm(r) ≡ ξgm(r) . [ξmm(r)ξgg(r)]-1/2, is insensitive to assembly bias on scales r ≳ 1 h^{-1} Mpc, even though ξgm(r) and ξgg(r) are both affected individually. We can therefore recover the correct ξmm(r) from the HW13 galaxy-galaxy and galaxy-matter correlations using either a standard HOD or EDHOD fitting method. For Mr ≤ -19 or Mr ≤ -20 samples the recovery of ξmm(r) is accurate to 2% or better. For a sample of red Mr ≤ -20 galaxies we achieve 2% recovery at r ≳ 2 h^{-1} Mpc with EDHOD modeling but lower accuracy at smaller scales or with a standard HOD fit. Most of our mock galaxy samples are consistent with rgm = 1 down to r = 1h-1Mpc, to within the uncertainties set by our finite simulation volume.

  15. Cosmological Constraints from Galaxy Clustering and Weak Lensing

    Science.gov (United States)

    Troxel, Michael; DES Collaboration

    2018-01-01

    The Dark Energy Survey (DES) is a five-year, 5000 sq. deg. observing program using the Dark Energy Camera on the 4m Blanco telescope at CTIO. I will describe the cosmological analysis of large-scale structure in the Universe using 1321 sq. deg. of data taken in the first year of DES operations. The analysis combines unprecedented measurements of weak gravitational lensing and the clustering of galaxies over the redshift range 0.2 to 1.3 to derive the most precise such cosmological constraints to date. These DES results from the low-redshift Universe are consistent with those from the cosmic microwave background (CMB) and support the standard cosmological model, LCDM. In the coming years, DES will produce significantly tighter constraints on cosmology through similar and additional analyses using observations over more than three times the sky-area and more than twice the integrated exposure time per object as these results.

  16. Dusty starburst galaxies in the early Universe as revealed by gravitational lensing.

    Science.gov (United States)

    Vieira, J D; Marrone, D P; Chapman, S C; De Breuck, C; Hezaveh, Y D; Weiβ, A; Aguirre, J E; Aird, K A; Aravena, M; Ashby, M L N; Bayliss, M; Benson, B A; Biggs, A D; Bleem, L E; Bock, J J; Bothwell, M; Bradford, C M; Brodwin, M; Carlstrom, J E; Chang, C L; Crawford, T M; Crites, A T; de Haan, T; Dobbs, M A; Fomalont, E B; Fassnacht, C D; George, E M; Gladders, M D; Gonzalez, A H; Greve, T R; Gullberg, B; Halverson, N W; High, F W; Holder, G P; Holzapfel, W L; Hoover, S; Hrubes, J D; Hunter, T R; Keisler, R; Lee, A T; Leitch, E M; Lueker, M; Luong-Van, D; Malkan, M; McIntyre, V; McMahon, J J; Mehl, J; Menten, K M; Meyer, S S; Mocanu, L M; Murphy, E J; Natoli, T; Padin, S; Plagge, T; Reichardt, C L; Rest, A; Ruel, J; Ruhl, J E; Sharon, K; Schaffer, K K; Shaw, L; Shirokoff, E; Spilker, J S; Stalder, B; Staniszewski, Z; Stark, A A; Story, K; Vanderlinde, K; Welikala, N; Williamson, R

    2013-03-21

    In the past decade, our understanding of galaxy evolution has been revolutionized by the discovery that luminous, dusty starburst galaxies were 1,000 times more abundant in the early Universe than at present. It has, however, been difficult to measure the complete redshift distribution of these objects, especially at the highest redshifts (z > 4). Here we report a redshift survey at a wavelength of three millimetres, targeting carbon monoxide line emission from the star-forming molecular gas in the direction of extraordinarily bright millimetre-wave-selected sources. High-resolution imaging demonstrates that these sources are strongly gravitationally lensed by foreground galaxies. We detect spectral lines in 23 out of 26 sources and multiple lines in 12 of those 23 sources, from which we obtain robust, unambiguous redshifts. At least 10 of the sources are found to lie at z > 4, indicating that the fraction of dusty starburst galaxies at high redshifts is greater than previously thought. Models of lens geometries in the sample indicate that the background objects are ultra-luminous infrared galaxies, powered by extreme bursts of star formation.

  17. A SEARCH FOR DISK-GALAXY LENSES IN THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Feron, Chloe; Hjorth, Jens; Samsing, Johan; McKean, John P.

    2009-01-01

    We present the first automated spectroscopic search for disk-galaxy lenses, using the Sloan Digital Sky Survey (SDSS) database. We follow up eight gravitational lens candidates, selected among a sample of ∼40,000 candidate massive disk galaxies, using a combination of ground-based imaging and long-slit spectroscopy. We confirm two gravitational lens systems: one probable disk galaxy and one probable S0 galaxy. The remaining systems are four promising disk-galaxy lens candidates, as well as two probable gravitational lenses whose lens galaxy might be an S0 galaxy. The redshifts of the lenses are z lens ∼ 0.1. The redshift range of the background sources is z source ∼ 0.3-0.7. The systems presented here are (confirmed or candidate) galaxy-galaxy lensing systems, that is, systems where the multiple images are faint and extended, allowing an accurate determination of the lens galaxy mass and light distributions without contamination from the background galaxy. Moreover, the low redshift of the (confirmed or candidates) lens galaxies is favorable for measuring rotation points to complement the lensing study. We estimate the rest-frame total mass-to-light ratio within the Einstein radius for the two confirmed lenses: we find M tot /L I = 5.4 ± 1.5 within 3.9 ± 0.9 kpc for SDSS J081230.30+543650.9 and M tot /L I = 1.5 ± 0.9 within 1.4 ± 0.8 kpc for SDSS J145543.55+530441.2 (all in solar units). Hubble Space Telescope or adaptive optics imaging is needed to further study the systems.

  18. A CFH12k lensing survey of X-ray luminous galaxy clusters - II. Weak lensing analysis and global correlations

    NARCIS (Netherlands)

    Bardeau, S.; Soucail, G.; Kneib, J.-P.; Czoske, O.; Ebeling, H.; Hudelot, P.; Smail, I.; Smith, G. P.

    Aims. We present a wide-field multi-color survey of a homogeneous sample of eleven clusters of galaxies for which we measure total masses and mass distributions from weak lensing. This sample, spanning a small range in both X-ray luminosity and redshift, is ideally suited to determining the

  19. A MAGNIFIED GLANCE INTO THE DARK SECTOR: PROBING COSMOLOGICAL MODELS WITH STRONG LENSING IN A1689

    International Nuclear Information System (INIS)

    Magaña, Juan; Motta, V.; Cárdenas, Victor H.; Verdugo, T.; Jullo, Eric

    2015-01-01

    In this paper we constrain four alternative models to the late cosmic acceleration in the universe: Chevallier–Polarski–Linder (CPL), interacting dark energy (IDE), Ricci holographic dark energy (HDE), and modified polytropic Cardassian (MPC). Strong lensing (SL) images of background galaxies produced by the galaxy cluster Abell 1689 are used to test these models. To perform this analysis we modify the LENSTOOL lens modeling code. The value added by this probe is compared with other complementary probes: Type Ia supernovae (SN Ia), baryon acoustic oscillations (BAO), and cosmic microwave background (CMB). We found that the CPL constraints obtained for the SL data are consistent with those estimated using the other probes. The IDE constraints are consistent with the complementary bounds only if large errors in the SL measurements are considered. The Ricci HDE and MPC constraints are weak, but they are similar to the BAO, SN Ia, and CMB estimations. We also compute the figure of merit as a tool to quantify the goodness of fit of the data. Our results suggest that the SL method provides statistically significant constraints on the CPL parameters but is weak for those of the other models. Finally, we show that the use of the SL measurements in galaxy clusters is a promising and powerful technique to constrain cosmological models. The advantage of this method is that cosmological parameters are estimated by modeling the SL features for each underlying cosmology. These estimations could be further improved by SL constraints coming from other galaxy clusters

  20. Strong lensing probability in TeVeS (tensor-vector-scalar) theory

    Energy Technology Data Exchange (ETDEWEB)

    Chen Daming, E-mail: cdm@bao.ac.cn [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2008-01-15

    We recalculate the strong lensing probability as a function of the image separation in TeVeS (tensor-vector-scalar) cosmology, which is a relativistic version of MOND (MOdified Newtonian Dynamics). The lens is modeled by the Hernquist profile. We assume an open cosmology with {Omega}{sub b} = 0.04 and {Omega}{sub {Lambda}} = 0.5 and three different kinds of interpolating functions. Two different galaxy stellar mass functions (GSMF) are adopted: PHJ (Panter, Heavens and Jimenez 2004 Mon. Not. R. Astron. Soc. 355 764) determined from SDSS data release 1 and Fontana (Fontana et al 2006 Astron. Astrophys. 459 745) from GOODS-MUSIC catalog. We compare our results with both the predicted probabilities for lenses from singular isothermal sphere galaxy halos in LCDM (Lambda cold dark matter) with a Schechter-fit velocity function, and the observational results for the well defined combined sample of the Cosmic Lens All-Sky Survey (CLASS) and Jodrell Bank/Very Large Array Astrometric Survey (JVAS). It turns out that the interpolating function {mu}(x) = x/(1+x) combined with Fontana GSMF matches the results from CLASS/JVAS quite well.

  1. Strong lensing probability in TeVeS (tensor–vector–scalar) theory

    International Nuclear Information System (INIS)

    Chen Daming

    2008-01-01

    We recalculate the strong lensing probability as a function of the image separation in TeVeS (tensor–vector–scalar) cosmology, which is a relativistic version of MOND (MOdified Newtonian Dynamics). The lens is modeled by the Hernquist profile. We assume an open cosmology with Ω b = 0.04 and Ω Λ = 0.5 and three different kinds of interpolating functions. Two different galaxy stellar mass functions (GSMF) are adopted: PHJ (Panter, Heavens and Jimenez 2004 Mon. Not. R. Astron. Soc. 355 764) determined from SDSS data release 1 and Fontana (Fontana et al 2006 Astron. Astrophys. 459 745) from GOODS-MUSIC catalog. We compare our results with both the predicted probabilities for lenses from singular isothermal sphere galaxy halos in LCDM (Lambda cold dark matter) with a Schechter-fit velocity function, and the observational results for the well defined combined sample of the Cosmic Lens All-Sky Survey (CLASS) and Jodrell Bank/Very Large Array Astrometric Survey (JVAS). It turns out that the interpolating function μ(x) = x/(1+x) combined with Fontana GSMF matches the results from CLASS/JVAS quite well

  2. SOURCE-PLANE RECONSTRUCTION OF THE BRIGHT LENSED GALAXY RCSGA 032727-132609

    Energy Technology Data Exchange (ETDEWEB)

    Sharon, Keren; Gladders, Michael D.; Wuyts, Eva; Bayliss, Matthew B. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Rigby, Jane R. [Observational Cosmology Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Koester, Benjamin P. [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Barrientos, L. Felipe, E-mail: kerens@kicp.uchicago.edu [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile, Avda. Vicuna Mackenna 4860, Casilla 306, Santiago 22 (Chile)

    2012-02-20

    We present new Hubble Space Telescope/Wide Field Camera 3 imaging data of RCSGA 032727-132609, a bright lensed galaxy at z = 1.7 that is magnified and stretched by the lensing cluster RCS2 032727-132623. Using this new high-resolution imaging, we modify our previous lens model (which was based on ground-based data) to fully understand the lensing geometry, and use it to reconstruct the lensed galaxy in the source plane. This giant arc represents a unique opportunity to peer into 100 pc scale structures in a high-redshift galaxy. This new source reconstruction will be crucial for a future analysis of the spatially resolved rest-UV and rest-optical spectra of the brightest parts of the arc.

  3. Bayesian galaxy shape measurement for weak lensing surveys - III. Application to the Canada-France-Hawaii Telescope Lensing Survey

    Science.gov (United States)

    Miller, L.; Heymans, C.; Kitching, T. D.; van Waerbeke, L.; Erben, T.; Hildebrandt, H.; Hoekstra, H.; Mellier, Y.; Rowe, B. T. P.; Coupon, J.; Dietrich, J. P.; Fu, L.; Harnois-Déraps, J.; Hudson, M. J.; Kilbinger, M.; Kuijken, K.; Schrabback, T.; Semboloni, E.; Vafaei, S.; Velander, M.

    2013-03-01

    A likelihood-based method for measuring weak gravitational lensing shear in deep galaxy surveys is described and applied to the Canada-France-Hawaii Telescope (CFHT) Lensing Survey (CFHTLenS). CFHTLenS comprises 154 deg2 of multi-colour optical data from the CFHT Legacy Survey, with lensing measurements being made in the i' band to a depth i'AB noise ratio νSN ≳ 10. The method is based on the lensfit algorithm described in earlier papers, but here we describe a full analysis pipeline that takes into account the properties of real surveys. The method creates pixel-based models of the varying point spread function (PSF) in individual image exposures. It fits PSF-convolved two-component (disc plus bulge) models to measure the ellipticity of each galaxy, with Bayesian marginalization over model nuisance parameters of galaxy position, size, brightness and bulge fraction. The method allows optimal joint measurement of multiple, dithered image exposures, taking into account imaging distortion and the alignment of the multiple measurements. We discuss the effects of noise bias on the likelihood distribution of galaxy ellipticity. Two sets of image simulations that mirror the observed properties of CFHTLenS have been created to establish the method's accuracy and to derive an empirical correction for the effects of noise bias.

  4. IDCS J1426.5+3508: COSMOLOGICAL IMPLICATIONS OF A MASSIVE, STRONG LENSING CLUSTER AT z = 1.75

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Anthony H.; Fedeli, Cosimo; Mancone, Conor [Department of Astronomy, University of Florida, Gainesville, FL 32611-2055 (United States); Stanford, S. Adam; Zeimann, Greg [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States); Brodwin, Mark [Department of Physics, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Dey, Arjun [NOAO, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Eisenhardt, Peter R. M.; Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2012-07-10

    The galaxy cluster IDCS J1426.5+3508 at z = 1.75 is the most massive galaxy cluster yet discovered at z > 1.4 and the first cluster at this epoch for which the Sunyaev-Zel'Dovich effect has been observed. In this paper, we report on the discovery with Hubble Space Telescope imaging of a giant arc associated with this cluster. The curvature of the arc suggests that the lensing mass is nearly coincident with the brightest cluster galaxy, and the color is consistent with the arc being a star-forming galaxy. We compare the constraint on M{sub 200} based upon strong lensing with Sunyaev-Zel'Dovich results, finding that the two are consistent if the redshift of the arc is z {approx}> 3. Finally, we explore the cosmological implications of this system, considering the likelihood of the existence of a strongly lensing galaxy cluster at this epoch in a {Lambda}CDM universe. While the existence of the cluster itself can potentially be accommodated if one considers the entire volume covered at this redshift by all current high-redshift cluster surveys, the existence of this strongly lensed galaxy greatly exacerbates the long-standing giant arc problem. For standard {Lambda}CDM structure formation and observed background field galaxy counts this lens system should not exist. Specifically, there should be no giant arcs in the entire sky as bright in F814W as the observed arc for clusters at z {>=} 1.75, and only {approx}0.3 as bright in F160W as the observed arc. If we relax the redshift constraint to consider all clusters at z {>=} 1.5, the expected number of giant arcs rises to {approx}15 in F160W, but the number of giant arcs of this brightness in F814W remains zero. These arc statistic results are independent of the mass of IDCS J1426.5+3508. We consider possible explanations for this discrepancy.

  5. Constraining gravity at the largest scales through CMB lensing and galaxy velocities

    Science.gov (United States)

    Pullen, Anthony R.; Alam, Shadab; He, Siyu; Ho, Shirley

    2016-08-01

    We demonstrate a new method to constrain gravity on the largest cosmological scales by combining measurements of cosmic microwave background (CMB) lensing and the galaxy velocity field. EG is a statistic, constructed from a gravitational lensing tracer and a measure of velocities such as redshift-space distortions (RSD), that can discriminate between gravity models while being independent of clustering bias and σ8. While traditionally, the lensing field for EG has been probed through galaxy lensing, CMB lensing has been proposed as a more robust tracer of the lensing field for EG at higher redshifts while avoiding intrinsic alignments. We perform the largest-scale measurement of EG ever, up to 150 Mpc h-1, by cross-correlating the Planck CMB lensing map with the Sloan Digital Sky Survey III (SDSS-III) CMASS galaxy sample and combining this with our measurement of the CMASS auto-power spectrum and the RSD parameter β. We report EG(z = 0.57) = 0.243 ± 0.060 (stat) ± 0.013 (sys), a measurement in tension with the general relativity (GR) prediction at a level of 2.6σ. Note that our EG measurement deviates from GR only at scales greater than 80 Mpc h-1, scales which have not been probed by previous EG tests. Upcoming surveys, which will provide an order-of-magnitude reduction in statistical errors, can significantly constrain alternative gravity models when combined with better control of systematics.

  6. A KiDS weak lensing analysis of assembly bias in GAMA galaxy groups

    Science.gov (United States)

    Dvornik, Andrej; Cacciato, Marcello; Kuijken, Konrad; Viola, Massimo; Hoekstra, Henk; Nakajima, Reiko; van Uitert, Edo; Brouwer, Margot; Choi, Ami; Erben, Thomas; Fenech Conti, Ian; Farrow, Daniel J.; Herbonnet, Ricardo; Heymans, Catherine; Hildebrandt, Hendrik; Hopkins, Andrew M.; McFarland, John; Norberg, Peder; Schneider, Peter; Sifón, Cristóbal; Valentijn, Edwin; Wang, Lingyu

    2017-07-01

    We investigate possible signatures of halo assembly bias for spectroscopically selected galaxy groups from the Galaxy And Mass Assembly (GAMA) survey using weak lensing measurements from the spatially overlapping regions of the deeper, high-imaging-quality photometric Kilo-Degree Survey. We use GAMA groups with an apparent richness larger than 4 to identify samples with comparable mean host halo masses but with a different radial distribution of satellite galaxies, which is a proxy for the formation time of the haloes. We measure the weak lensing signal for groups with a steeper than average and with a shallower than average satellite distribution and find no sign of halo assembly bias, with the bias ratio of 0.85^{+0.37}_{-0.25}, which is consistent with the Λ cold dark matter prediction. Our galaxy groups have typical masses of 1013 M⊙ h-1, naturally complementing previous studies of halo assembly bias on galaxy cluster scales.

  7. Dark Energy Survey Year 1 Results: Methodology and Projections for Joint Analysis of Galaxy Clustering, Galaxy Lensing, and CMB Lensing Two-point Functions

    Energy Technology Data Exchange (ETDEWEB)

    Giannantonio, T.; et al.

    2018-02-14

    Optical imaging surveys measure both the galaxy density and the gravitational lensing-induced shear fields across the sky. Recently, the Dark Energy Survey (DES) collaboration used a joint fit to two-point correlations between these observables to place tight constraints on cosmology (DES Collaboration et al. 2017). In this work, we develop the methodology to extend the DES Collaboration et al. (2017) analysis to include cross-correlations of the optical survey observables with gravitational lensing of the cosmic microwave background (CMB) as measured by the South Pole Telescope (SPT) and Planck. Using simulated analyses, we show how the resulting set of five two-point functions increases the robustness of the cosmological constraints to systematic errors in galaxy lensing shear calibration. Additionally, we show that contamination of the SPT+Planck CMB lensing map by the thermal Sunyaev-Zel'dovich effect is a potentially large source of systematic error for two-point function analyses, but show that it can be reduced to acceptable levels in our analysis by masking clusters of galaxies and imposing angular scale cuts on the two-point functions. The methodology developed here will be applied to the analysis of data from the DES, the SPT, and Planck in a companion work.

  8. Strong gravitational lensing by a charged Kiselev black hole

    Energy Technology Data Exchange (ETDEWEB)

    Azreg-Ainou, Mustapha [Baskent University, Engineering Faculty, Ankara (Turkey); Bahamonde, Sebastian [University College London, Department of Mathematics, London (United Kingdom); Jamil, Mubasher [National University of Sciences and Technology (NUST), Department of Mathematics, School of Natural Sciences (SNS), Islamabad (Pakistan)

    2017-06-15

    We study the gravitational lensing scenario where the lens is a spherically symmetric charged black hole (BH) surrounded by quintessence matter. The null geodesic equations in the curved background of the black hole are derived. The resulting trajectory equation is solved analytically via perturbation and series methods for a special choice of parameters, and the distance of the closest approach to black hole is calculated. We also derive the lens equation giving the bending angle of light in the curved background. In the strong field approximation, the solution of the lens equation is also obtained for all values of the quintessence parameter w{sub q}. For all w{sub q}, we show that there are no stable closed null orbits and that corrections to the deflection angle for the Reissner-Nordstroem black hole when the observer and the source are at large, but finite, distances from the lens do not depend on the charge up to the inverse of the distances squared. A part of the present work, analyzed, however, with a different approach, is the extension of Younas et al. (Phys Rev D 92:084042, 2015) where the uncharged case has been treated. (orig.)

  9. The Lenses Structure and Dynamics Survey: luminous and dark matter in high redshift early-type galaxies

    NARCIS (Netherlands)

    Treu, T.; Koopmans, L.

    2003-01-01

    I will present the latest results from the Lenses Structure and Dynamics (LSD) Survey. Using ESI on the Keck Telescope, we have measured spatially resolved stellar kinematics for a sample of 11 early-type galaxies (E/S0s) in the range z=0.1-1, selected as gravitational lenses. By combining lensing

  10. Generalised model-independent characterisation of strong gravitational lenses. I. Theoretical foundations

    Science.gov (United States)

    Wagner, J.

    2017-05-01

    We extend our model-independent approach for characterising strong gravitational lenses to its most general form to leading order and use the orientation angles of a set of multiple images with respect to their connection line(s) in addition to the relative distances between the images, their ellipticities, and time-delays. For two symmetric images that straddle the critical curve, the orientation angle additionally allows us to determine the slope of the critical curve and a second (reduced) flexion coefficient at the critical point on the connection line between the images. It also allows us to drop the symmetry assumption that the axis of largest image extension is orthogonal to the critical curve. For three images almost forming a giant arc, the degree of assumed image symmetry is also reduced to the most general case, describing image configurations for which the source need not be placed on the symmetry axis of the two folds that unite at the cusp. For a given set of multiple images, we set limits on the applicability of our approach, show which information can be obtained in cases of merging images, and analyse the accuracy achievable due to the Taylor expansion of the lensing potential for the fold case on a galaxy cluster scale Navarro-Frenk-White-profile, a fold and cusp case on a galaxy cluster scale singular isothermal ellipse, and compare the generalised approach with our previously published one. The position of the critical points is reconstructed with less than 5'' deviation for multiple images closer to the critical points than 30% of the (effective) Einstein radius. The slope of the critical curve at a fold and its shape in the vicinity of a cusp deviate less than 20% from the true values for distances of the images to the critical points less than 15% of the (effective) Einstein radius.

  11. Lensing convergence in galaxy clustering in ΛCDM and beyond

    Science.gov (United States)

    Villa, Eleonora; Di Dio, Enea; Lepori, Francesca

    2018-04-01

    We study the impact of neglecting lensing magnification in galaxy clustering analyses for future galaxy surveys, considering the ΛCDM model and two extensions: massive neutrinos and modifications of General Relativity. Our study focuses on the biases on the constraints and on the estimation of the cosmological parameters. We perform a comprehensive investigation of these two effects for the upcoming photometric and spectroscopic galaxy surveys Euclid and SKA for different redshift binning configurations. We also provide a fitting formula for the magnification bias of SKA. Our results show that the information present in the lensing contribution does improve the constraints on the modified gravity parameters whereas the lensing constraining power is negligible for the ΛCDM parameters. For photometric surveys the estimation is biased for all the parameters if lensing is not taken into account. This effect is particularly significant for the modified gravity parameters. Conversely for spectroscopic surveys the bias is below one sigma for all the parameters. Our findings show the importance of including lensing in galaxy clustering analyses for testing General Relativity and to constrain the parameters which describe its modifications.

  12. Near-IR search for lensed supernovae behind galaxy clusters. II. First detection and future prospects

    OpenAIRE

    Goobar, A.; Paech, K.; Stanishev, V.; Amanullah, R.; Dahlén, T.; Jönsson, J.; Kneib, J. P.; Lidman, C.; Limousin, M.; Mörtsell, E.; Nobili, S.; Richard, J.; Riehm, T.; von Strauss, M.

    2009-01-01

    Aims. Powerful gravitational telescopes in the form of massive galaxy clusters can be used to enhance the light collecting power over a limited field of view by about an order of magnitude in flux. This effect is exploited here to increase the depth of a survey for lensed supernovae at near-IR wavelengths. Methods. We present a pilot supernova search programme conducted with the ISAAC camera at VLT. Lensed galaxies behind the massive clusters A1689, A1835, and AC114 were observed for a tot...

  13. Galaxy bias from the Dark Energy Survey Science Verification data: combining galaxy density maps and weak lensing maps

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.; Pujol, A.; Gaztañaga, E.; Amara, A.; Réfrégier, A.; Bacon, D.; Becker, M. R.; Bonnett, C.; Carretero, J.; Castander, F. J.; Crocce, M.; Fosalba, P.; Giannantonio, T.; Hartley, W.; Jarvis, M.; Kacprzak, T.; Ross, A. J.; Sheldon, E.; Troxel, M. A.; Vikram, V.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Rosell, A. Carnero; Kind, M. Carrasco; Cunha, C. E.; D' Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Estrada, J.; Evrard, A. E.; Flaugher, B.; Frieman, J.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Nichol, R. C.; Nord, B.; Ogando, R.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.

    2016-04-15

    We measure the redshift evolution of galaxy bias from a magnitude-limited galaxy sample by combining the galaxy density maps and weak lensing shear maps for a $\\sim$116 deg$^{2}$ area of the Dark Energy Survey (DES) Science Verification data. This method was first developed in Amara et al. (2012) and later re-examined in a companion paper (Pujol et al., in prep) with rigorous simulation tests and analytical treatment of tomographic measurements. In this work we apply this method to the DES SV data and measure the galaxy bias for a magnitude-limited galaxy sample. We find the galaxy bias and 1$\\sigma$ error bars in 4 photometric redshift bins to be 1.33$\\pm$0.18 (z=0.2-0.4), 1.19$\\pm$0.23 (z=0.4-0.6), 0.99$\\pm$0.36 ( z=0.6-0.8), and 1.66$\\pm$0.56 (z=0.8-1.0). These measurements are consistent at the 1-2$\\sigma$ level with mea- surements on the same dataset using galaxy clustering and cross-correlation of galaxies with CMB lensing. In addition, our method provides the only $\\sigma_8$-independent constraint among the three. We forward-model the main observational effects using mock galaxy catalogs by including shape noise, photo-z errors and masking effects. We show that our bias measurement from the data is consistent with that expected from simulations. With the forthcoming full DES data set, we expect this method to provide additional constraints on the galaxy bias measurement from more traditional methods. Furthermore, in the process of our measurement, we build up a 3D mass map that allows further exploration of the dark matter distribution and its relation to galaxy evolution.

  14. A SPECTROSCOPIC SURVEY OF THE FIELDS OF 28 STRONG GRAVITATIONAL LENSES: THE GROUP CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Michelle L.; Zabludoff, Ann I. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Ammons, S. Mark [Lawrence Livermore National Laboratory, Physics Division L-210, 7000 East Avenue, Livermore, CA 94550 (United States); Momcheva, Ivelina G. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Williams, Kurtis A. [Department of Physics and Astronomy, Texas A and M University-Commerce, Commerce, TX, 75428 (United States); Keeton, Charles R. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States)

    2016-12-20

    With a large, unique spectroscopic survey in the fields of 28 galaxy-scale strong gravitational lenses, we identify groups of galaxies in the 26 adequately sampled fields. Using a group-finding algorithm, we find 210 groups with at least 5 member galaxies; the median number of members is 8. Our sample spans redshifts of 0.04 ≤  z {sub grp} ≤ 0.76 with a median of 0.31, including 174 groups with 0.1 <  z {sub grp} < 0.6. The groups have radial velocity dispersions of 60 ≤  σ {sub grp} ≤ 1200 km s{sup −1} with a median of 350 km s{sup −1}. We also discover a supergroup in field B0712+472 at z = 0.29 that consists of three main groups. We recover groups similar to ∼85% of those previously reported in these fields within our redshift range of sensitivity and find 187 new groups with at least five members. The properties of our group catalog, specifically, (1) the distribution of σ {sub grp}, (2) the fraction of all sample galaxies that are group members, and (3) the fraction of groups with significant substructure, are consistent with those for other catalogs. The distribution of group virial masses agrees well with theoretical expectations. Of the lens galaxies, 12 of 26 (46%) (B1422+231, B1600+434, B2114+022, FBQS J0951+2635, HE0435-1223, HST J14113+5211, MG0751+2716, MGJ1654+1346, PG 1115+080, Q ER 0047-2808, RXJ1131-1231, and WFI J2033-4723) are members of groups with at least five galaxies, and one more (B0712+472) belongs to an additional, visually identified group candidate. There are groups not associated with the lens that still are likely to affect the lens model; in six of 25 (24%) fields (excluding the supergroup), there is at least one massive ( σ {sub grp} ≥ 500 km s{sup −1}) group or group candidate projected within 2′ of the lens.

  15. Galaxy-galaxy lensing constraints on the relation between baryons and dark matter in galaxies in the Red Sequence Cluster Survey 2

    OpenAIRE

    van Uitert, Edo; Hoekstra, Henk; Velander, Malin; Gilbank, David G.; Gladders, Michael D.; Yee, H. K. C.

    2011-01-01

    We present the results of a study of weak gravitational lensing by galaxies using imaging data that were obtained as part of the second Red Sequence Cluster Survey (RCS2). In order to compare to the baryonic properties of the lenses we focus here on the ~300 square degrees that overlap with the DR7 of the SDSS. The depth and image quality of the RCS2 enables us to significantly improve upon earlier work for luminous galaxies at z>=0.3. Comparison with dynamical masses from the SDSS shows a go...

  16. CLASS B 1359+ 154: Modelling Lensing by a Group of Galaxies

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The recently discovered gravitationally lensed system CLASS B1359+154 appears to have six detectable images of a single background source at a redshift of 3.235. A group of galaxies acts as the lens, at a redshift of ∼ 1. The present work identifies two distinct, physically plausible image configurations, ...

  17. Weak Lensing Calibrated M-T Scaling Relation of Galaxy Groups in the COSMOS Field

    NARCIS (Netherlands)

    Kettula, K.; Finoguenov, A.; Massey, R.; Rhodes, J.; Hoekstra, H.; Taylor, J.; Spinelli, P.; Tanaka, M.; Ilbert, O.; Capak, P.; McCracken, H.; Koekemoer, A.

    2013-01-01

    The scaling between X-ray observables and mass for galaxy clusters and groups is instrumental for cluster-based cosmology and an important probe for the thermodynamics of the intracluster gas. We calibrate a scaling relation between the weak lensing mass and X-ray spectroscopic temperature for 10

  18. CLASS B 1359 + 154: Modelling Lensing by a Group of Galaxies

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    systems: CLASS B1359 + 154—galaxy groups—dark matter. 1. Introduction. A find of the Cosmic Lens All-Sky Survey (CLASS; Myers et al. 1995), the radio lensed system B1359 + 154 was at first identified as a quadruply-imaged ('quad') system (Myers et al. 1999), although six compact radio features had been detected in.

  19. A KiDS weak lensing analysis of assembly bias in GAMA galaxy groups

    NARCIS (Netherlands)

    Dvornik, Andrej; Cacciato, Marcello; Kuijken, Konrad; Viola, Massimo; Hoekstra, Henk; Nakajima, Reiko; van Uitert, Edo; Brouwer, Margot; Choi, Ami; Erben, Thomas; Fenech Conti, Ian; Farrow, Daniel J.; Herbonnet, Ricardo; Heymans, Catherine; Hildebrandt, Hendrik; Hopkins, Andrew. M.; McFarland, John; Norberg, Peder; Schneider, Peter; Sifón, Cristóbal; Valentijn, Edwin; Wang, Lingyu

    2017-01-01

    We investigate possible signatures of halo assembly bias for spectroscopically selected galaxy groups from the GAMA survey using weak lensing measurements from the spatially overlapping regions of the deeper, high-imaging-quality photometric KiDS survey. We use GAMA groups with an apparent richness

  20. Detecting Gravitational Lensing of the Cosmic Microwave Background by Galaxy Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Eric Jones [Univ. of Chicago, IL (United States)

    2014-08-01

    Clusters of galaxies gravitationally lens the Cosmic Microwave Background (CMB) leading to a distinct signal in the CMB on arcminute scales. Measurement of the cluster lensing effect offers the exciting possibility of constraining the masses of galaxy clusters using CMB data alone. Improved constraints on cluster masses are in turn essential to the use of clusters as cosmological probes: uncertainties in cluster masses are currently the dominant systematic affecting cluster abundance constraints on cosmology. To date, however, the CMB cluster lensing signal remains undetected because of its small magnitude and angular size. In this thesis, we develop a maximum likelihood approach to extracting the signal from CMB temperature data. We validate the technique by applying it to mock data designed to replicate as closely as possible real data from the South Pole Telescope’s (SPT) Sunyaev-Zel’dovich (SZ) survey: the effects of the SPT beam, transfer function, instrumental noise and cluster selection are incorporated. We consider the effects of foreground emission on the analysis and show that uncertainty in amount of foreground lensing results in a small systematic error on the lensing constraints. Additionally, we show that if unaccounted for, the SZ effect leads to unacceptably large biases on the lensing constraints and develop an approach for removing SZ contamination. The results of the mock analysis presented here suggest that a 4σ first detection of the cluster lensing effect can be achieved with current SPT-SZ data.

  1. High-z early-type galaxies: mass and light from gravitational lensing and stellar kinematics

    Science.gov (United States)

    Treu, T.; Koopmans, L.

    2002-12-01

    I will report on new results from the Lenses Structure and Dynamics Survey. We have measured spatially resolved velocity dispersion profiles of a sample of 11 distant (up to z=1) early-type galaxies that are gravitational lenses. By combining lensing and dynamical analysis we firmly constrain the dark matter density profile, the controversial inner slope of the dark matter halo, and the total mass distribution, and we give some constraints on the stellar orbits. In particular, I will discuss the implications of this measurement on the epoch and mechanism of formation of early-type galaxies, on the universal dark matter halos predicted by cold dark matter scenarios, and on the measurement of the Hubble Constant from gravitational time-delay observations. Financial support for proposals HST-AR 9222 and HST-AR-09527 provided by NASA through a grant from STScI, which is operated by AURA under NASA contract NAS5-26555 is gratfully acknowledged.

  2. A Spectroscopic Survey of Lensed Dwarf Galaxies at 1

    Science.gov (United States)

    Alavi, Anahita; Siana, Brian; gburek, Timothy; Richard, Johan; Teplitz, Harry; Rafelski, Marc; Stark, Daniel P.; Anahita Alavi

    2018-01-01

    High-redshift dwarf galaxies (Mtalk, I will present their nebular dust attenuation measurements using the ratio of Balmer lines (i.e., Balmer decrement) and compare with their stellar dust attenuation (i.e., from UV spectral slopes). I will also show that these faint galaxies follow a steep dust extinction curve (i.e., SMC like).

  3. The Physical Conditions of a Lensed Star-Forming Galaxy at Z=1.7

    Science.gov (United States)

    Rigby, Jane; Wuyts, E.; Gladders, M.; Sharon, K.; Becker, G.

    2011-01-01

    We report rest-frame optical Keck/NIRSPEC spectroscopy of the brightest lensed galaxy yet discovered, RCSGA 032727-132609 at z=1.7037. From precise measurements of the nebular lines, we infer a number of physical properties: redshift ' extinction, star formation rate ' ionization parameter, electron density, electron temperature, oxygen abundance, and N/O, Ne/O, and Ar/O abundance ratios, The limit on [O III] 4363 A tightly constrains the oxygen abundance via the "direct" or Te method, for the first time in an average-metallicity galaxy at z approx.2. We compare this result to several standard "bright-line" O abundance diagnostics, thereby testing these empirically-calibrated diagnostics in situ. Finally, we explore the positions of lensed and unlensed galaxies in standard diagnostic diagrams, to explore the diversity of ionization conditions and mass-metallicity ratios at z=2.

  4. Physical Conditions of a Lensed Star-Forming Galaxy at Z=1.7

    Science.gov (United States)

    Rigby, Jane; Wuyts, E.; Gladders, M.; Sharon, K.; Becker, G. D.

    2010-01-01

    We report rest-frame optical Keck/NIRSPEC spectroscopy of the brightest lensed galaxy yet discovered, RCSGA 032727-132609 at z=1.7037. From precise measurements of the nebular lines, we infer a number of physical properties: redshift, extinction, star formation rate, ionization parameter, electron density, electron temperature, oxygen abundance, and N/O, Ne/O, and Ar/O abundance ratios. The limit on [O III] 4363 A tightly constrains the oxygen abundance via the "direct" or Tc method, for the first time in all metallicity galaxy at z approx.2. We compare this result to several standard "bright-line" O abundance diagnostics, thereby testing these empirically calibrated diagnostics in situ. Finally, we explore the positions of lensed and unlensed galaxies in standard diagnostic diagrams, and explore the diversity of ionization conditions and mass-metallicity ratios at z=2.

  5. The weak lensing analysis of the CFHTLS and NGVS RedGOLD galaxy clusters

    Science.gov (United States)

    Parroni, C.; Mei, S.; Erben, T.; Van Waerbeke, L.; Raichoor, A.; Ford, J.; Licitra, R.; Meneghetti, M.; Hildebrandt, H.; Miller, L.; Côté, P.; Covone, G.; Cuillandre, J.-C.; Duc, P.-A.; Ferrarese, L.; Gwyn, S. D. J.; Puzia, T. H.

    2017-12-01

    An accurate estimation of galaxy cluster masses is essential for their use in cosmological and astrophysical studies. We studied the accuracy of the optical richness obtained by our RedGOLD cluster detection algorithm tep{licitra2016a, licitra2016b} as a mass proxy, using weak lensing and X-ray mass measurements. We measured stacked weak lensing cluster masses for a sample of 1323 galaxy clusters in the Canada-France-Hawaii Telescope Legacy Survey W1 and the Next Generation Virgo Cluster Survey at 0.2z<0.5, in the optical richness range 10-70. We tested different weak lensing mass models that account for miscentering, non-weak shear, the two-halo term, the contribution of the Brightest Cluster Galaxy, and the intrinsic scatter in the mass-richness relation. We calculated the coefficients of the mass-richness relation, and of the scaling relations between the lensing mass and X-ray mass proxies.

  6. Discovery of three strongly lensed quasars in the Sloan Digital Sky Survey

    Science.gov (United States)

    Williams, P. R.; Agnello, A.; Treu, T.; Abramson, L. E.; Anguita, T.; Apostolovski, Y.; Chen, G. C.-F.; Fassnacht, C. D.; Hsueh, J.-W.; Lemaux, B. C.; Motta, V.; Oldham, L.; Rojas, K.; Rusu, C. E.; Shajib, A. J.; Wang, X.

    2018-03-01

    We present the discovery of 3 quasar lenses in the Sloan Digital Sky Survey, selected using two novel photometry-based selection techniques. The J0941+0518 system, with two point sources separated by 5.46″ on either side of a galaxy, has source and lens redshifts 1.54 and 0.343. Images of J2257+2349 show two point sources separated by 1.67″ on either side of an E/S0 galaxy. The extracted spectra show two images of the same quasar at zs = 2.10. SDSS J1640+1045 has two quasar spectra at zs = 1.70 and fits to the SDSS and Pan-STARRS images confirm the presence of a galaxy between the two point sources. We observed 56 photometrically selected lens candidates in this follow-up campaign, confirming 3 new lenses, re-discovering one known lens, and ruling out 36 candidates, with 16 still inconclusive. This initial campaign demonstrates the power of purely photometric selection techniques in finding lensed quasars.

  7. A gravitationally lensed starburst galaxy at z=1.03 detected by SOFIA/HAWC+

    Science.gov (United States)

    Brown, Arianna; Ma, Jingzhe; Cooray, Asantha; Nayyeri, Hooshang; Timmons, Nicholas

    2018-01-01

    We present a high S/N~20 detection at 89 micron (in 15 mins) of the Herschel-selected gravitationally lensed starburst galaxy HATLASJ1429-0028 with the High-resolution Airborne Wideband Camera-plus (HAWC+) onboard the Stratospheric Observatory for Infrared Astronomy (SOFIA). The spectacular lensing system consists of an edge-on foreground disk galaxy at z=0.22 and a nearly complete Einstein ring of an intrinsic ultra-luminous infrared galaxy at z=1.03. Is this high luminosity powered by pure star formation (SF) or an active galactic nucleus (AGN)? Previous nebular line diagnostics indicate that it is star-formation dominated. SOFIA/HAWC+ allows the broad-band spectral energy distribution of the galaxy to be studied between 20 - 100 micron, which is an important wavelength range for further constraining the fractional AGN contribution to the total IR luminosity. Multi-wavelength SED modeling constrains the AGN fraction to be SOFIA/HAWC+ for distant galaxy studies and the potential to decompose SF/AGN that cannot be obtained with other current facilities.

  8. The Sunburst Arc: Direct Lyman α escape observed in the brightest known lensed galaxy

    Science.gov (United States)

    Rivera-Thorsen, T. E.; Dahle, H.; Gronke, M.; Bayliss, M.; Rigby, J. R.; Simcoe, R.; Bordoloi, R.; Turner, M.; Furesz, G.

    2017-11-01

    We present rest-frame ultraviolet and optical spectroscopy of the brightest lensed galaxy yet discovered, at redshift z = 2.4. The source reveals a characteristic triple-peaked Lyman α profile that has been predicted in various theoretical works, but to our knowledge has not been unambiguously observed previously. The feature is well fit by a superposition of two components: a double-peak profile emerging from substantial radiative transfer, and a narrow, central component resulting from directly escaping Lyman α photons, but it is poorly fit by either component alone. We demonstrate that the feature is unlikely to contain contamination from nearby sources, and that the central peak is unaffected by radiative transfer effects except for very slight absorption. The feature is detected at signal-to-noise ratios exceeding 80 per pixel at line center, and bears strong resemblance to synthetic profiles predicted by numerical models. Based on observations obtained at the Magellan-I (Baade) Telescope at Las Campanas Observatory, Chile.

  9. The kinematical structure of gravitationally lensed arcs

    NARCIS (Netherlands)

    Moller, O; Noordermeer, E

    2006-01-01

    In this paper, the expected properties of the velocity fields of strongly lensed arcs behind galaxy clusters are investigated. The velocity profile along typical lensed arcs is determined by ray-tracing light rays from a model source galaxy through parametric cluster toy models consisting of

  10. Speed of Gravitational Waves from Strongly Lensed Gravitational Waves and Electromagnetic Signals.

    Science.gov (United States)

    Fan, Xi-Long; Liao, Kai; Biesiada, Marek; Piórkowska-Kurpas, Aleksandra; Zhu, Zong-Hong

    2017-03-03

    We propose a new model-independent measurement strategy for the propagation speed of gravitational waves (GWs) based on strongly lensed GWs and their electromagnetic (EM) counterparts. This can be done in two ways: by comparing arrival times of GWs and their EM counterparts and by comparing the time delays between images seen in GWs and their EM counterparts. The lensed GW-EM event is perhaps the best way to identify an EM counterpart. Conceptually, this method does not rely on any specific theory of massive gravitons or modified gravity. Its differential setting (i.e., measuring the difference between time delays in GW and EM domains) makes it robust against lens modeling details (photons and GWs travel in the same lensing potential) and against internal time delays between GW and EM emission acts. It requires, however, that the theory of gravity is metric and predicts gravitational lensing similar to general relativity. We expect that such a test will become possible in the era of third-generation gravitational-wave detectors, when about 10 lensed GW events would be observed each year. The power of this method is mainly limited by the timing accuracy of the EM counterpart, which for kilonovae is around 10^{4}  s. This uncertainty can be suppressed by a factor of ∼10^{10}, if strongly lensed transients of much shorter duration associated with the GW event can be identified. Candidates for such short transients include short γ-ray bursts and fast radio bursts.

  11. Bias to CMB lensing reconstruction from temperature anisotropies due to large-scale galaxy motions

    Science.gov (United States)

    Ferraro, Simone; Hill, J. Colin

    2018-01-01

    Gravitational lensing of the cosmic microwave background (CMB) is expected to be amongst the most powerful cosmological tools for ongoing and upcoming CMB experiments. In this work, we investigate a bias to CMB lensing reconstruction from temperature anisotropies due to the kinematic Sunyaev-Zel'dovich (kSZ) effect, that is, the Doppler shift of CMB photons induced by Compton scattering off moving electrons. The kSZ signal yields biases due to both its own intrinsic non-Gaussianity and its nonzero cross-correlation with the CMB lensing field (and other fields that trace the large-scale structure). This kSZ-induced bias affects both the CMB lensing autopower spectrum and its cross-correlation with low-redshift tracers. Furthermore, it cannot be removed by multifrequency foreground separation techniques because the kSZ effect preserves the blackbody spectrum of the CMB. While statistically negligible for current data sets, we show that it will be important for upcoming surveys, and failure to account for it can lead to large biases in constraints on neutrino masses or the properties of dark energy. For a stage 4 CMB experiment, the bias can be as large as ≈15 % or 12% in cross-correlation with LSST galaxy lensing convergence or galaxy overdensity maps, respectively, when the maximum temperature multipole used in the reconstruction is ℓmax=4000 , and about half of that when ℓmax=3000 . Similarly, we find that the CMB lensing autopower spectrum can be biased by up to several percent. These biases are many times larger than the expected statistical errors. We validate our analytical predictions with cosmological simulations and present the first complete estimate of secondary-induced CMB lensing biases. The predicted bias is sensitive to the small-scale gas distribution, which is affected by pressure and feedback mechanisms, thus making removal via "bias-hardened" estimators challenging. Reducing ℓmax can significantly mitigate the bias at the cost of a decrease

  12. LBT/LUCIFER OBSERVATIONS OF THE z ∼ 2 LENSED GALAXY J0900+2234

    International Nuclear Information System (INIS)

    Bian Fuyan; Fan Xiaohui; Bechtold, Jill; McGreer, Ian D.; Just, Dennis W.; Sand, David J.; Green, Richard F.; Thompson, David; Peng, Chien Y.; Seifert, Walter; Ageorges, Nancy; Buschkamp, Peter; Juette, Marcus; Knierim, Volker

    2010-01-01

    We present rest-frame optical images and spectra of the gravitationally lensed, star-forming galaxy J0900+2234 (z = 2.03). The observations were performed with the newly commissioned LUCIFER1 near-infrared (NIR) instrument mounted on the Large Binocular Telescope. We fitted lens models to the rest-frame optical images and found that the galaxy has an intrinsic effective radius of 7.4 ± 0.8 kpc with a lens magnification factor of about 5 for the A and B components. We also discovered a new arc belonging to another lensed high-z source galaxy, which makes this lens system a potential double Einstein ring system. Using the high signal-to-noise ratio rest-frame spectra covered by the H + K band, we detected Hβ, [O III], Hα, [N II], and [S II] emission lines. Detailed physical properties of this high-z galaxy were derived. The extinction toward the ionized H II regions (E g (B - V)) was computed from the flux ratio of Hα and Hβ and appears to be much higher than that toward the stellar continuum (E s (B - V)), derived from the optical and NIR broadband photometry fitting. The metallicity was estimated using N2 and O3N2 indices. It is in the range of 1/5 - 1/3 solar abundance, which is much lower than for typical z ∼ 2 star-forming galaxies. From the flux ratio of [S II]λ6717 and [S II]λ6732, we found that the electron number density of the H II regions in the high-z galaxy was ≅1000 cm -3 , consistent with other z ∼ 2 galaxies but much higher than that in local H II regions. The star formation rate was estimated via the Hα luminosity, after correction for the lens magnification, to be about 365 ± 69 M sun yr -1 . Combining the FWHM of Hα emission lines and the half-light radius, we found that the dynamical mass of the lensed galaxy is (5.8 ± 0.9) x 10 10 M sun . The gas mass is (5.1 ± 1.1) x 10 10 M sun from the Hα flux surface density using global Kennicutt-Schmidt law, indicating a very high gas fraction of 0.79 ± 0.19 in J0900+2234.

  13. Dark Energy Survey Year 1 Results: Redshift distributions of the weak lensing source galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Hoyle, B.; et al.

    2017-08-04

    We describe the derivation and validation of redshift distribution estimates and their uncertainties for the galaxies used as weak lensing sources in the Dark Energy Survey (DES) Year 1 cosmological analyses. The Bayesian Photometric Redshift (BPZ) code is used to assign galaxies to four redshift bins between z=0.2 and 1.3, and to produce initial estimates of the lensing-weighted redshift distributions $n^i_{PZ}(z)$ for bin i. Accurate determination of cosmological parameters depends critically on knowledge of $n^i$ but is insensitive to bin assignments or redshift errors for individual galaxies. The cosmological analyses allow for shifts $n^i(z)=n^i_{PZ}(z-\\Delta z^i)$ to correct the mean redshift of $n^i(z)$ for biases in $n^i_{\\rm PZ}$. The $\\Delta z^i$ are constrained by comparison of independently estimated 30-band photometric redshifts of galaxies in the COSMOS field to BPZ estimates made from the DES griz fluxes, for a sample matched in fluxes, pre-seeing size, and lensing weight to the DES weak-lensing sources. In companion papers, the $\\Delta z^i$ are further constrained by the angular clustering of the source galaxies around red galaxies with secure photometric redshifts at 0.15

  14. Confirmation of general relativity on large scales from weak lensing and galaxy velocities.

    Science.gov (United States)

    Reyes, Reinabelle; Mandelbaum, Rachel; Seljak, Uros; Baldauf, Tobias; Gunn, James E; Lombriser, Lucas; Smith, Robert E

    2010-03-11

    Although general relativity underlies modern cosmology, its applicability on cosmological length scales has yet to be stringently tested. Such a test has recently been proposed, using a quantity, E(G), that combines measures of large-scale gravitational lensing, galaxy clustering and structure growth rate. The combination is insensitive to 'galaxy bias' (the difference between the clustering of visible galaxies and invisible dark matter) and is thus robust to the uncertainty in this parameter. Modified theories of gravity generally predict values of E(G) different from the general relativistic prediction because, in these theories, the 'gravitational slip' (the difference between the two potentials that describe perturbations in the gravitational metric) is non-zero, which leads to changes in the growth of structure and the strength of the gravitational lensing effect. Here we report that E(G) = 0.39 +/- 0.06 on length scales of tens of megaparsecs, in agreement with the general relativistic prediction of E(G) approximately 0.4. The measured value excludes a model within the tensor-vector-scalar gravity theory, which modifies both Newtonian and Einstein gravity. However, the relatively large uncertainty still permits models within f(R) theory, which is an extension of general relativity. A fivefold decrease in uncertainty is needed to rule out these models.

  15. ACCOUNTING FOR COSMIC VARIANCE IN STUDIES OF GRAVITATIONALLY LENSED HIGH-REDSHIFT GALAXIES IN THE HUBBLE FRONTIER FIELD CLUSTERS

    International Nuclear Information System (INIS)

    Robertson, Brant E.; Stark, Dan P.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; McLeod, Derek

    2014-01-01

    Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ∼35% at redshift z ∼ 7 to ≳ 65% at z ∼ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program

  16. Radio and Gamma-Ray Monitoring of Strongly Lensed Quasars and Blazars

    NARCIS (Netherlands)

    Rumbaugh, Nick; Fassnacht, Chris; McKean, John; Koopmans, Leon; Auger, Matthew; Suyu, Sherry; Marshall, Philip J.

    2015-01-01

    We observed six strongly lensed, radio-loud quasars (MG 0414+0534, CLASS B0712+472, JVAS B1030+074, CLASS B1127+385, CLASS B1152+199, and JVAS B1938+666) in order to identify systems suitable for measuring cosmological parameters using time delays between their multiple images. Two separate

  17. STELLAR MASSES AND STAR FORMATION RATES OF LENSED, DUSTY, STAR-FORMING GALAXIES FROM THE SPT SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jingzhe; Gonzalez, Anthony H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Spilker, J. S.; Marrone, D. P. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Strandet, M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69 D-53121 Bonn (Germany); Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Aravena, M. [Núcleo de Astronomía, Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Béthermin, M.; Breuck, C. de; Gullberg, B. [European Southern Observatory, Karl Schwarzschild Straße 2, D-85748 Garching (Germany); Bothwell, M. S. [Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HA (United Kingdom); Brodwin, M. [Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Chapman, S. C. [Dalhousie University, Halifax, Nova Scotia (Canada); Fassnacht, C. D. [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States); Greve, T. R. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Hezaveh, Y. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Malkan, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Saliwanchik, B. R., E-mail: jingzhema@ufl.edu [Department of Physics, Case Western Reserve University, Cleveland, OH 44106 (United States); and others

    2015-10-10

    To understand cosmic mass assembly in the universe at early epochs, we primarily rely on measurements of the stellar masses and star formation rates (SFRs) of distant galaxies. In this paper, we present stellar masses and SFRs of six high-redshift (2.8 ≤ z ≤ 5.7) dusty, star-forming galaxies (DSFGs) that are strongly gravitationally lensed by foreground galaxies. These sources were first discovered by the South Pole Telescope (SPT) at millimeter wavelengths and all have spectroscopic redshifts and robust lens models derived from Atacama Large Millimeter/submillimeter Array observations. We have conducted follow-up observations to obtain multi-wavelength imaging data using the Hubble Space Telescope (HST), Spitzer, Herschel, and the Atacama Pathfinder EXperiment. We use the high-resolution HST/Wide Field Camera 3 images to disentangle the background source from the foreground lens in Spitzer/IRAC data. The detections and upper limits provide important constraints on the spectral energy distributions (SEDs) for these DSFGs, yielding stellar masses, IR luminosities, and SFRs. The SED fits of six SPT sources show that the intrinsic stellar masses span a range more than one order of magnitude with a median value ∼5 ×10{sup 10} M{sub ⊙}. The intrinsic IR luminosities range from 4 × 10{sup 12} L{sub ⊙} to 4 × 10{sup 13} L{sub ⊙}. They all have prodigious intrinsic SFRs of 510–4800 M{sub ⊙} yr{sup −1}. Compared to the star-forming main sequence (MS), these six DSFGs have specific SFRs that all lie above the MS, including two galaxies that are a factor of 10 higher than the MS. Our results suggest that we are witnessing ongoing strong starburst events that may be driven by major mergers.

  18. Searching in GaBoDS deep survey for clusters of galaxies by weak gravitational lensing

    Directory of Open Access Journals (Sweden)

    M Rahimi

    2011-06-01

    Full Text Available The aim of the present work is detection of galaxy clusters based on weak gravitational lensing method. We apply mass aperture statistics method to 0.32 square degrees data obtained with the WFI@MPG/ESO 2.2 m telescope and detect mass peaks based on their mass not the luminosity. So by the application of proper filter function, shear profile and mass map are produced. Finally mass peaks with higher detection significance are extracted. In future works, redshift of these mass concentrations and so their mass can be obtained.‎

  19. Galaxy-Galaxy Lensing in EAGLE: comparison with data from 180 square degrees of the KiDS and GAMA surveys

    OpenAIRE

    Velliscig, Marco; Cacciato, Marcello; Hoekstra, Henk; Schaye, Joop; Heymans, Catherine; Hildebrandt, Hendrik; Loveday, Jon; Norberg, Peder; Sifón, Cristóbal; Schneider, Peter; van Uitert, Edo; Viola, Massimo; Brough, Sarah; Erben, Thomas; Holwerda, Benne W.

    2016-01-01

    We present predictions for the galaxy-galaxy lensing (GGL) profile from the EAGLE hydrodynamical cosmological simulation at redshift z = 0.18, in the spatial range 0.02 galaxies imaged by the Kilo Degree Survey around spectroscopically confirmed foreground galaxies from the Ga...

  20. A Robust Mass Estimator for Dark Matter Subhalo Perturbations in Strong Gravitational Lenses

    Energy Technology Data Exchange (ETDEWEB)

    Minor, Quinn E. [Department of Science, Borough of Manhattan Community College, City University of New York, New York, NY 10007 (United States); Kaplinghat, Manoj [Department of Physics and Astronomy, University of California, Irvine CA 92697 (United States); Li, Nan [Department of Astronomy and Astrophysics, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States)

    2017-08-20

    A few dark matter substructures have recently been detected in strong gravitational lenses through their perturbations of highly magnified images. We derive a characteristic scale for lensing perturbations and show that they are significantly larger than the perturber’s Einstein radius. We show that the perturber’s projected mass enclosed within this radius, scaled by the log-slope of the host galaxy’s density profile, can be robustly inferred even if the inferred density profile and tidal radius of the perturber are biased. We demonstrate the validity of our analytic derivation using several gravitational lens simulations where the tidal radii and the inner log-slopes of the density profile of the perturbing subhalo are allowed to vary. By modeling these simulated data, we find that our mass estimator, which we call the effective subhalo lensing mass, is accurate to within about 10% or smaller in each case, whereas the inferred total subhalo mass can potentially be biased by nearly an order of magnitude. We therefore recommend that the effective subhalo lensing mass be reported in future lensing reconstructions, as this will allow for a more accurate comparison with the results of dark matter simulations.

  1. KiDS+GAMA: Cosmology constraints from a joint analysis of cosmic shear, galaxy-galaxy lensing and angular clustering

    Science.gov (United States)

    van Uitert, Edo; Joachimi, Benjamin; Joudaki, Shahab; Amon, Alexandra; Heymans, Catherine; Köhlinger, Fabian; Asgari, Marika; Blake, Chris; Choi, Ami; Erben, Thomas; Farrow, Daniel J.; Harnois-Déraps, Joachim; Hildebrandt, Hendrik; Hoekstra, Henk; Kitching, Thomas D.; Klaes, Dominik; Kuijken, Konrad; Merten, Julian; Miller, Lance; Nakajima, Reiko; Schneider, Peter; Valentijn, Edwin; Viola, Massimo

    2018-03-01

    We present cosmological parameter constraints from a joint analysis of three cosmological probes: the tomographic cosmic shear signal in ˜450 deg2 of data from the Kilo Degree Survey (KiDS), the galaxy-matter cross-correlation signal of galaxies from the Galaxies And Mass Assembly (GAMA) survey determined with KiDS weak lensing, and the angular correlation function of the same GAMA galaxies. We use fast power spectrum estimators that are based on simple integrals over the real-space correlation functions, and show that they are practically unbiased over relevant angular frequency ranges. We test our full pipeline on numerical simulations that are tailored to KiDS and retrieve the input cosmology. By fitting different combinations of power spectra, we demonstrate that the three probes are internally consistent. For all probes combined, we obtain S_8≡ σ _8 √{Ω _m/0.3}=0.800_{-0.027}^{+0.029}, consistent with Planck and the fiducial KiDS-450 cosmic shear correlation function results. Marginalising over wide priors on the mean of the tomographic redshift distributions yields consistent results for S8 with an increase of 28% in the error. The combination of probes results in a 26% reduction in uncertainties of S8 over using the cosmic shear power spectra alone. The main gain from these additional probes comes through their constraining power on nuisance parameters, such as the galaxy intrinsic alignment amplitude or potential shifts in the redshift distributions, which are up to a factor of two better constrained compared to using cosmic shear alone, demonstrating the value of large-scale structure probe combination.

  2. Strong and weak lensing united: II. The cluster mass distribution of the most X-ray luminous cluster RX J1347.5-1145

    Energy Technology Data Exchange (ETDEWEB)

    Bradač, M.; Erben, T.; Schneider, P.; Hildebrandt, H.; Lombardi, M.; Schirmer, M.; Miralles, J. -M.; Clowe, D.; Schindler, S.

    2005-07-01

    We have shown that the cluster-mass reconstruction method which combines strong and weak gravitational lensing data, developed in the first paper in the series, successfully reconstructs the mass distribution of a simulated cluster. In this paper we apply the method to the ground-based high-quality multi-colour data of RX J1347.5-1145 , the most X-ray luminous cluster to date. A new analysis of the cluster core on very deep, multi-colour data analysis of VLT/FORS data reveals many more arc candidates than previously known for this cluster. The combined strong and weak lensing reconstruction confirms that the cluster is indeed very massive. If the redshift and identification of the multiple-image system as well as the redshift estimates of the source galaxies used for weak lensing are correct, we determine the enclosed cluster mass in a cylinder to M(<360 h -1 kpc)= (1.2± 0.3) x 1015 M. In addition the reconstructed mass distribution follows the distribution found with independent methods (X-ray measurements, SZ). With higher resolution (e.g. HST imaging data) more reliable multiple imaging information can be obtained and the reconstruction can be improved to accuracies greater than what is currently possible with weak and strong lensing techniques.

  3. Strong and Weak Lensing United II: the Cluster Mass Distribution of the Most X-ray Luminous Cluster RX J1347.5-1145

    Energy Technology Data Exchange (ETDEWEB)

    Bradac, M.

    2005-04-13

    We have shown that the cluster-mass reconstruction method which combines strong and weak gravitational lensing data, developed in the first paper in the series, successfully reconstructs the mass distribution of a simulated cluster. In this paper we apply the method to the ground-based high-quality multi-colour data of RX J1347.5-1145, the most X-ray luminous cluster to date. A new analysis of the cluster core on very deep, multi-colour data analysis of VLT/FORS data reveals many more arc candidates than previously known for this cluster. The combined strong and weak lensing reconstruction confirms that the cluster is indeed very massive. If the redshift and identification of the multiple-image system as well as the redshift estimates of the source galaxies used for weak lensing are correct, we determine the enclosed cluster mass in a cylinder to M(< 360h{sup -1}kpc) = (1.2 {+-} 0.3) x 10{sup 15}M{circle_dot}. In addition the reconstructed mass distribution follows the distribution found with independent methods (X-ray measurements, SZ). With higher resolution (e.g. HST imaging data) more reliable multiple imaging information can be obtained and the reconstruction can be improved to accuracies greater than what is currently possible with weak and strong lensing techniques.

  4. The stellar-to-halo mass relation of GAMA galaxies from 100 deg2 of KiDS weak lensing data

    NARCIS (Netherlands)

    van Uitert, Edo; Cacciato, Marcello; Hoekstra, Henk; Brouwer, Margot; Sifón, Cristóbal; Viola, Massimo; Baldry, Ivan; Bland-Hawthorn, Joss; Brough, Sarah; Brown, M. J. I.; Choi, Ami; Driver, Simon P.; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Joachimi, Benjamin; Kuijken, Konrad; Liske, Jochen; Loveday, Jon; Mc Farland, J.; Miller, Lance; Nakajima, Reiko; Peacock, John; Radovich, Mario; Robotham, A. S. G.; Schneider, Peter; Sikkema, Gert; Taylor, Edward N.; Verdoes Kleijn, Gijs

    2016-01-01

    We study the stellar-to-halo mass relation of central galaxies in the range 9.7 10(M*/h- 2 M⊙) ) ) 2 of KiDS data to study the lensing signal around galaxies for which spectroscopic redshifts and stellar masses were determined by GAMA. We show that lensing alone results in poor constraints on the

  5. HerMES: A DEFICIT IN THE SURFACE BRIGHTNESS OF THE COSMIC INFRARED BACKGROUND DUE TO GALAXY CLUSTER GRAVITATIONAL LENSING

    International Nuclear Information System (INIS)

    Zemcov, M.; Cooray, A.; Bock, J.; Dowell, C. D.; Nguyen, H. T.; Blain, A.; Béthermin, M.; Clements, D. L.; Conley, A.; Glenn, J.; Conversi, L.; Farrah, D.; Oliver, S. J.; Roseboom, I. G.; Griffin, M.; Halpern, M.; Marsden, G.; Jullo, E.; Kneib, J.-P.; Richard, J.

    2013-01-01

    We have observed four massive galaxy clusters with the SPIRE instrument on the Herschel Space Observatory and measure a deficit of surface brightness within their central region after removing detected sources. We simulate the effects of instrumental sensitivity and resolution, the source population, and the lensing effect of the clusters to estimate the shape and amplitude of the deficit. The amplitude of the central deficit is a strong function of the surface density and flux distribution of the background sources. We find that for the current best fitting faint end number counts, and excellent lensing models, the most likely amplitude of the central deficit is the full intensity of the cosmic infrared background (CIB). Our measurement leads to a lower limit to the integrated total intensity of the CIB of I 250μm >0.69 -0.03 +0.03 (stat.) -0.06 +0.11 (sys.) MJy sr –1 , with more CIB possible from both low-redshift sources and from sources within the target clusters. It should be possible to observe this effect in existing high angular resolution data at other wavelengths where the CIB is bright, which would allow tests of models of the faint source component of the CIB.

  6. Early Science with the Large Millimeter Telescope: Detection of Dust Emission in Multiple Images of a Normal Galaxy at z > 4 Lensed by a Frontier Fields Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Alexandra; Battisti, Andrew; Wilson, Grant W.; Calzetti, Daniela; Cybulski, Ryan; Giavalisco, Mauro; Kirkpatrick, Allison [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Montaña, Alfredo; Aretxaga, Itziar; Hughes, David [Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Luis Enrique Erro 1, Sta. Ma. Tonantzintla, 72840 Puebla (Mexico); Limousin, Marceau [Aix Marseille Univ, CNRS, LAM, Laboratoire d' Astrophysique de Marseille, Marseille (France); Marchesini, Danilo; Kado-Fong, Erin [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Alberts, Stacey [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Avila-Reese, Vladimir [Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510, CDMX (Mexico); Bermejo-Climent, José Ramón [Departamento de Astrofísica, Universidad de La Laguna. Vía Láctea s/n, La Laguna 38200, Tenerife (Spain); Brammer, Gabriel [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bravo-Alfaro, Hector [Departamento de Astronomia, Universidad de Guanajuato, Apdo. Postal 144, Guanajuato 36000 (Mexico); Chary, Ranga-Ram [Infrared Processing and Analysis Center, MS314-6, California Institute of Technology, Pasadena, CA 91125 (United States); Keller, Erica, E-mail: pope@astro.umass.edu [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); and others

    2017-04-01

    We directly detect dust emission in an optically detected, multiply imaged galaxy lensed by the Frontier Fields cluster MACSJ0717.5+3745. We detect two images of the same galaxy at 1.1 mm with the AzTEC camera on the Large Millimeter Telescope leaving no ambiguity in the counterpart identification. This galaxy, MACS0717-Az9, is at z > 4 and the strong lensing model ( μ = 7.5) allows us to calculate an intrinsic IR luminosity of 9.7 × 10{sup 10} L {sub ⊙} and an obscured star formation rate of 14.6 ± 4.5 M {sub ⊙} yr{sup −1}. The unobscured star formation rate from the UV is only 4.1 ± 0.3 M {sub ⊙} yr{sup −1}, which means the total star formation rate (18.7 ± 4.5 M {sub ⊙} yr{sup −1}) is dominated (75%–80%) by the obscured component. With an intrinsic stellar mass of only 6.9 × 10{sup 9} M {sub ⊙}, MACS0717-Az9 is one of only a handful of z > 4 galaxies at these lower masses that is detected in dust emission. This galaxy lies close to the estimated star formation sequence at this epoch. However, it does not lie on the dust obscuration relation (IRX- β ) for local starburst galaxies and is instead consistent with the Small Magellanic Cloud attenuation law. This remarkable lower mass galaxy, showing signs of both low metallicity and high dust content, may challenge our picture of dust production in the early universe.

  7. Gravitational lensing reveals extreme dust-obscured star formation in quasar host galaxies

    Science.gov (United States)

    Stacey, H. R.; McKean, J. P.; Robertson, N. C.; Ivison, R. J.; Isaak, K. G.; Schleicher, D. R. G.; van der Werf, P. P.; Baan, W. A.; Alba, A. Berciano; Garrett, M. A.; Loenen, A. F.

    2018-02-01

    We have observed 104 gravitationally-lensed quasars at z ˜ 1-4 with Herschel/SPIRE, the largest such sample ever studied. By targeting gravitational lenses, we probe intrinsic far-infrared (FIR) luminosities and star formation rates (SFRs) more typical of the population than the extremely luminous sources that are otherwise accessible. We detect 72 objects with Herschel/SPIRE and find 66 percent (69 sources) of the sample have spectral energy distributions (SEDs) characteristic of dust emission. For 53 objects with sufficiently constrained SEDs, we find a median effective dust temperature of 38^{+12}_{-5} K. By applying the radio-infrared correlation, we find no evidence for an FIR excess which is consistent with star-formation-heated dust. We derive a median magnification-corrected FIR luminosity of 3.6^{+4.8}_{-2.4} × 10^{11} L_{⊙} and median SFR of 120^{+160}_{-80} M_{⊙} yr^{-1} for 94 quasars with redshifts. We find ˜10 percent of our sample have FIR properties similar to typical dusty star-forming galaxies at z ˜ 2-3 and a range of SFRs statistically-significant difference in the FIR luminosities of quasars in our sample with a radio excess relative to the radio-infrared correlation. Synchrotron emission is found to dominate at FIR wavelengths for <15 percent of those sources classified as powerful radio galaxies.

  8. Halo ellipticity of GAMA galaxy groups from KiDS weak lensing

    Science.gov (United States)

    van Uitert, Edo; Hoekstra, Henk; Joachimi, Benjamin; Schneider, Peter; Bland-Hawthorn, Joss; Choi, Ami; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Hopkins, Andrew M.; Klaes, Dominik; Kuijken, Konrad; Nakajima, Reiko; Napolitano, Nicola R.; Schrabback, Tim; Valentijn, Edwin; Viola, Massimo

    2017-06-01

    We constrain the average halo ellipticity of ˜2600 galaxy groups from the Galaxy And Mass Assembly (GAMA) survey, using the weak gravitational lensing signal measured from the overlapping Kilo Degree Survey (KiDS). To do so, we quantify the azimuthal dependence of the stacked lensing signal around seven different proxies for the orientation of the dark matter distribution, as it is a priori unknown which one traces the orientation best. On small scales, the major axis of the brightest group/cluster member (BCG) provides the best proxy, leading to a clear detection of an anisotropic signal. In order to relate that to a halo ellipticity, we have to adopt a model density profile. We derive new expressions for the quadrupole moments of the shear field given an elliptical model surface mass density profile. Modelling the signal with an elliptical Navarro-Frenk-White profile on scales R < 250 kpc, and assuming that the BCG is perfectly aligned with the dark matter, we find an average halo ellipticity of ɛh = 0.38 ± 0.12, in fair agreement with results from cold dark matter only simulations. On larger scales, the lensing signal around the BCGs becomes isotropic and the distribution of group satellites provides a better proxy for the halo's orientation instead, leading to a 3σ-4σ detection of a non-zero halo ellipticity at 250 < R < 750 kpc. Our results suggest that the distribution of stars enclosed within a certain radius forms a good proxy for the orientation of the dark matter within that radius, which has also been observed in hydrodynamical simulations.

  9. The Double Galaxy Cluster A2465. III. X-Ray and Weak-lensing Observations

    Science.gov (United States)

    Wegner, Gary A.; Umetsu, Keiichi; Molnar, Sandor M.; Nonino, Mario; Medezinski, Elinor; Andrade-Santos, Felipe; Bogdan, Akos; Lovisari, Lorenzo; Forman, William R.; Jones, Christine

    2017-07-01

    We report Chandra X-ray observations and optical weak-lensing measurements from Subaru/Suprime-Cam images of the double galaxy cluster A2465 (z = 0.245). The X-ray brightness data are fit to a β model to obtain the radial gas density profiles of the northeast (NE) and southwest (SW) subcomponents, which are seen to differ in structure. We determine core radii, central temperatures, the gas masses within r 500c, and the total masses for the broader NE and sharper SW components assuming hydrostatic equilibrium. There is no large X-ray excess between the two components. The central entropy of the NE subcluster is about two times higher than the SW. Along with its structural properties and an apparent radio halo that is a sign of a merger, this suggests that the NE component has undergone merging on its own. The weak-lensing analysis gives virial masses for each substructure, which compare well with earlier dynamical results. The derived outer mass contours of the SW sub-component from weak lensing are more irregular and extended than those of the NE. Although there is a weak enhancement and small offsets between X-ray gas and mass centers from weak lensing, the lack of large amounts of gas between the two subclusters indicates that A2465 is in a pre-merger state. We discuss star formation enhancement in this system resulting from its dynamics and shock-induced star formation scenarios. A dynamical model that is consistent with the observed cluster data, based on the FLASH program and the radial infall model, is constructed, where the subclusters currently separated by ˜1.2 Mpc are approaching each other at ˜2000 km s-1 and will meet in ˜0.4 Gyr. Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Society of Japan.

  10. The Double Galaxy Cluster A2465. III. X-Ray and Weak-lensing Observations

    Energy Technology Data Exchange (ETDEWEB)

    Wegner, Gary A. [Department of Physics and Astronomy, 6127 Wilder Laboratory, Hanover, NH 03745 (United States); Umetsu, Keiichi; Molnar, Sandor M. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Nonino, Mario [INAF/Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, 34143 Trieste (Italy); Medezinski, Elinor [Department of Astrophysical Sciences, 4 Ivy Lane, Princeton, NJ 08544 (United States); Andrade-Santos, Felipe; Bogdan, Akos; Lovisari, Lorenzo; Forman, William R.; Jones, Christine, E-mail: gary.wegner@dartmouth.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-07-20

    We report Chandra X-ray observations and optical weak-lensing measurements from Subaru/Suprime-Cam images of the double galaxy cluster A2465 ( z = 0.245). The X-ray brightness data are fit to a β model to obtain the radial gas density profiles of the northeast (NE) and southwest (SW) subcomponents, which are seen to differ in structure. We determine core radii, central temperatures, the gas masses within r {sub 500c}, and the total masses for the broader NE and sharper SW components assuming hydrostatic equilibrium. There is no large X-ray excess between the two components. The central entropy of the NE subcluster is about two times higher than the SW. Along with its structural properties and an apparent radio halo that is a sign of a merger, this suggests that the NE component has undergone merging on its own. The weak-lensing analysis gives virial masses for each substructure, which compare well with earlier dynamical results. The derived outer mass contours of the SW sub-component from weak lensing are more irregular and extended than those of the NE. Although there is a weak enhancement and small offsets between X-ray gas and mass centers from weak lensing, the lack of large amounts of gas between the two subclusters indicates that A2465 is in a pre-merger state. We discuss star formation enhancement in this system resulting from its dynamics and shock-induced star formation scenarios. A dynamical model that is consistent with the observed cluster data, based on the FLASH program and the radial infall model, is constructed, where the subclusters currently separated by ∼1.2 Mpc are approaching each other at ∼2000 km s{sup −1} and will meet in ∼0.4 Gyr.

  11. Dark Energy Survey Year 1 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, T.M.C.; et al.

    2017-08-04

    We present cosmological results from a combined analysis of galaxy clustering and weak gravitational lensing, using 1321 deg$^2$ of $griz$ imaging data from the first year of the Dark Energy Survey (DES Y1). We combine three two-point functions: (i) the cosmic shear correlation function of 26 million source galaxies in four redshift bins, (ii) the galaxy angular autocorrelation function of 650,000 luminous red galaxies in five redshift bins, and (iii) the galaxy-shear cross-correlation of luminous red galaxy positions and source galaxy shears. To demonstrate the robustness of these results, we use independent pairs of galaxy shape, photometric redshift estimation and validation, and likelihood analysis pipelines. To prevent confirmation bias, the bulk of the analysis was carried out while blind to the true results; we describe an extensive suite of systematics checks performed and passed during this blinded phase. The data are modeled in flat $\\Lambda$CDM and $w$CDM cosmologies, marginalizing over 20 nuisance parameters, varying 6 (for $\\Lambda$CDM) or 7 (for $w$CDM) cosmological parameters including the neutrino mass density and including the 457 $\\times$ 457 element analytic covariance matrix. We find consistent cosmological results from these three two-point functions, and from their combination obtain $S_8 \\equiv \\sigma_8 (\\Omega_m/0.3)^{0.5} = 0.783^{+0.021}_{-0.025}$ and $\\Omega_m = 0.264^{+0.032}_{-0.019}$ for $\\Lambda$CDM for $w$CDM, we find $S_8 = 0.794^{+0.029}_{-0.027}$, $\\Omega_m = 0.279^{+0.043}_{-0.022}$, and $w=-0.80^{+0.20}_{-0.22}$ at 68% CL. The precision of these DES Y1 results rivals that from the Planck cosmic microwave background measurements, allowing a comparison of structure in the very early and late Universe on equal terms. Although the DES Y1 best-fit values for $S_8$ and $\\Omega_m$ are lower than the central values from Planck ...

  12. Testing the Speed of Gravitational Waves over Cosmological Distances with Strong Gravitational Lensing.

    Science.gov (United States)

    Collett, Thomas E; Bacon, David

    2017-03-03

    Probing the relative speeds of gravitational waves and light acts as an important test of general relativity and alternative theories of gravity. Measuring the arrival time of gravitational waves (GWs) and electromagnetic (EM) counterparts can be used to measure the relative speeds, but only if the intrinsic time lag between emission of the photons and gravitational waves is well understood. Here we suggest a method that does not make such an assumption, using future strongly lensed GW events and EM counterparts; Biesiada et al. [J. Cosmol. Astropart. Phys.10 (2014) 080JCAPBP1475-751610.1088/1475-7516/2014/10/080] forecast that 50-100 strongly lensed GW events will be observed each year with the Einstein Telescope. A single strongly lensed GW event would produce robust constraints on c_{GW}/c_{γ} at the 10^{-7} level, if a high-energy EM counterpart is observed within the field of view of an observing γ-ray burst monitor.

  13. Dark matter halo properties of GAMA galaxy groups from 100 square degrees of KiDS weak lensing data

    NARCIS (Netherlands)

    Viola, M.; Cacciato, M.; Brouwer, M.; Kuijken, K.; Hoekstra, H.; Norberg, P.; Robotham, A. S. G.; van Uitert, E.; Alpaslan, M.; Baldry, I. K.; Choi, A.; de Jong, J. T. A.; Driver, S. P.; Erben, T.; Grado, A.; Graham, Alister W.; Heymans, C.; Hildebrandt, H.; Hopkins, A. M.; Irisarri, N.; Joachimi, B.; Loveday, J.; Miller, L.; Nakajima, R.; Schneider, P.; Sifón, C.; Verdoes Kleijn, G.

    2015-01-01

    The Kilo-Degree Survey is an optical wide-field survey designed to map the matter distribution in the Universe using weak gravitational lensing. In this paper, we use these data to measure the density profiles and masses of a sample of ˜1400 spectroscopically identified galaxy groups and clusters

  14. MISSING LENSED IMAGES AND THE GALAXY DISK MASS IN CXOCY J220132.8-320144

    International Nuclear Information System (INIS)

    Chen, Jacqueline; Lee, Samuel K.; Schechter, Paul L.; Castander, Francisco-Javier; Maza, José

    2013-01-01

    The CXOCY J220132.8-320144 system consists of an edge-on spiral galaxy lensing a background quasar into two bright images. Previous efforts to constrain the mass distribution in the galaxy have suggested that at least one additional image must be present. These extra images may be hidden behind the disk which features a prominent dust lane. We present and analyze Hubble Space Telescope observations of the system. We do not detect any extra images, but the observations further narrow the observable parameters of the lens system. We explore a range of models to describe the mass distribution in the system and find that a variety of acceptable model fits exist. All plausible models require 2 mag of dust extinction in order to obscure extra images from detection, and some models may require an offset between the center of the galaxy and the center of the dark matter halo of 1 kpc. Currently unobserved images will be detectable by future James Webb Space Telescope observations and will provide strict constraints on the fraction of mass in the disk.

  15. A magnified view of star formation at z = 0.9 from two lensed galaxies

    International Nuclear Information System (INIS)

    Olmstead, Alice; Veilleux, Sylvain; Rigby, Jane R.; Swinbank, Mark

    2014-01-01

    We present new narrowband Hα imaging from the Hubble Space Telescope of two z = 0.91 galaxies that have been lensed by the foreground galaxy cluster A2390. These data probe spatial scales as small as ∼0.3 kpc, providing a magnified look at the morphology of star formation at an epoch when the global star formation rate (SFR) was high. However, dust attenuates our spatially resolved SFR indicators, the Hα and rest-UV emission, and we lack a direct measurement of extinction. Other studies have found that ionized gas in galaxies tends to be roughly 50% more obscured than stars; however, given an unextincted measurement of the SFR we can quantify the relative stellar to nebular extinction and the extinction in Hα. We infer SFRs from Spitzer and Herschel mid- to far-infrared observations and compare these to integrated Hα and rest-UV SFRs; this yields stellar to nebular extinction ratios consistent with previous studies. We take advantage of high spatial resolution and contextualize these results in terms of the source-plane morphologies, comparing the distribution of Hα to that of the rest-frame UV and optical light. In one galaxy, we measure separate SFRs in visually distinct clumps, but can set only a lower limit on the extinction and thus the star formation. Consequently, the data are also consistent with there being an equal amount of extinction along the lines of sight to the ionized gas as to the stars. Future observations in the far-infrared could settle this by mapping out the dust directly.

  16. Algorithms and Programs for Strong Gravitational Lensing In Kerr Space-time Including Polarization

    Science.gov (United States)

    Chen, Bin; Kantowski, Ronald; Dai, Xinyu; Baron, Eddie; Maddumage, Prasad

    2015-05-01

    Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravity field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python.

  17. ALGORITHMS AND PROGRAMS FOR STRONG GRAVITATIONAL LENSING IN KERR SPACE-TIME INCLUDING POLARIZATION

    International Nuclear Information System (INIS)

    Chen, Bin; Maddumage, Prasad; Kantowski, Ronald; Dai, Xinyu; Baron, Eddie

    2015-01-01

    Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravity field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python

  18. Constraining cosmic curvature by using age of galaxies and gravitational lenses

    International Nuclear Information System (INIS)

    Rana, Akshay; Mahajan, Shobhit; Mukherjee, Amitabha; Jain, Deepak

    2017-01-01

    We use two model-independent methods to constrain the curvature of the universe. In the first method, we study the evolution of the curvature parameter (Ω k 0 ) with redshift by using the observations of the Hubble parameter and transverse comoving distances obtained from the age of galaxies. Secondly, we also use an indirect method based on the mean image separation statistics of gravitationally lensed quasars. The basis of this methodology is that the average image separation of lensed images will show a positive, negative or zero correlation with the source redshift in a closed, open or flat universe respectively. In order to smoothen the datasets used in both the methods, we use a non-parametric method namely, Gaussian Process (GP). Finally from first method we obtain Ω k 0 = 0.025±0.57 for a presumed flat universe while the cosmic curvature remains constant throughout the redshift region 0 < z < 1.37 which indicates that the universe may be homogeneous. Moreover, the combined result from both the methods suggests that the universe is marginally closed. However, a flat universe can be incorporated at 3σ level.

  19. A measurement of gravitational lensing of the cosmic microwave background by galaxy clusters using data from the south pole telescope

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, E. J.; Keisler, R.; Dodelson, S.; Aird, K. A.; Allen, S. W.; Ashby, M. L. N.; Bautz, M.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H-M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; Desai, S.; Dietrich, J. P.; de Haan, T.; Dobbs, M. A.; Foley, R. J.; Forman, W. R.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Harrington, N. L.; Hennig, C.; Hoekstra, H.; Holder, G. P.; Holzapfel, W. L.; Hou, Z.; Hrubes, J. D.; Jones, C.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Millea, M.; Mocanu, L. M.; Murray, S. S.; Padin, S.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; van Engelen, A.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zahn, O.; Zenteno, A.

    2015-06-20

    Clusters of galaxies are expected to gravitationally lens the cosmic microwave background (CMB) and thereby generate a distinct signal in the CMB on arcminute scales. Measurements of this effect can be used to constrain the masses of galaxy clusters with CMB data alone. Here we present a measurement of lensing of the CMB by galaxy clusters using data from the South Pole Telescope (SPT). We develop a maximum likelihood approach to extract the CMB cluster lensing signal and validate the method on mock data. We quantify the effects on our analysis of several potential sources of systematic error and find that they generally act to reduce the best-fit cluster mass. It is estimated that this bias to lower cluster mass is roughly 0.85σ in units of the statistical error bar, although this estimate should be viewed as an upper limit. We apply our maximum likelihood technique to 513 clusters selected via their Sunyaev–Zeldovich (SZ) signatures in SPT data, and rule out the null hypothesis of no lensing at 3.1σ. The lensing-derived mass estimate for the full cluster sample is consistent with that inferred from the SZ flux: ${M}_{200,\\mathrm{lens}}={0.83}_{-0.37}^{+0.38}\\;{M}_{200,\\mathrm{SZ}}$ (68% C.L., statistical error only).

  20. Angular ellipticity correlations in a composite alignment model for elliptical and spiral galaxies and inference from weak lensing

    Science.gov (United States)

    Tugendhat, Tim M.; Schäfer, Björn Malte

    2018-02-01

    We investigate a physical, composite alignment model for both spiral and elliptical galaxies and its impact on cosmological parameter estimation from weak lensing for a tomographic survey. Ellipticity correlation functions and angular ellipticity spectra for spiral and elliptical galaxies are derived on the basis of tidal interactions with the cosmic large-scale structure and compared to the tomographic weak lensing signal. We find that elliptical galaxies cause a contribution to the weak-lensing dominated ellipticity correlation on intermediate angular scales between ℓ ≃ 40 and ℓ ≃ 400 before that of spiral galaxies dominates on higher multipoles. The predominant term on intermediate scales is the negative cross-correlation between intrinsic alignments and weak gravitational lensing (GI-alignment). We simulate parameter inference from weak gravitational lensing with intrinsic alignments unaccounted; the bias induced by ignoring intrinsic alignments in a survey like Euclid is shown to be several times larger than the statistical error and can lead to faulty conclusions when comparing to other observations. The biases generally point into different directions in parameter space, such that in some cases one can observe a partial cancellation effect. Furthermore, it is shown that the biases increase with the number of tomographic bins used for the parameter estimation process. We quantify this parameter estimation bias in units of the statistical error and compute the loss of Bayesian evidence for a model due to the presence of systematic errors as well as the Kullback-Leibler divergence to quantify the distance between the true model and the wrongly inferred one.

  1. Angular ellipticity correlations in a composite alignment model for elliptical and spiral galaxies and inference from weak lensing

    Science.gov (United States)

    Tugendhat, Tim M.; Schäfer, Björn Malte

    2018-05-01

    We investigate a physical, composite alignment model for both spiral and elliptical galaxies and its impact on cosmological parameter estimation from weak lensing for a tomographic survey. Ellipticity correlation functions and angular ellipticity spectra for spiral and elliptical galaxies are derived on the basis of tidal interactions with the cosmic large-scale structure and compared to the tomographic weak-lensing signal. We find that elliptical galaxies cause a contribution to the weak-lensing dominated ellipticity correlation on intermediate angular scales between ℓ ≃ 40 and ℓ ≃ 400 before that of spiral galaxies dominates on higher multipoles. The predominant term on intermediate scales is the negative cross-correlation between intrinsic alignments and weak gravitational lensing (GI-alignment). We simulate parameter inference from weak gravitational lensing with intrinsic alignments unaccounted; the bias induced by ignoring intrinsic alignments in a survey like Euclid is shown to be several times larger than the statistical error and can lead to faulty conclusions when comparing to other observations. The biases generally point into different directions in parameter space, such that in some cases one can observe a partial cancellation effect. Furthermore, it is shown that the biases increase with the number of tomographic bins used for the parameter estimation process. We quantify this parameter estimation bias in units of the statistical error and compute the loss of Bayesian evidence for a model due to the presence of systematic errors as well as the Kullback-Leibler divergence to quantify the distance between the true model and the wrongly inferred one.

  2. Galaxy-galaxy lensing in EAGLE: comparison with data from 180 deg2 of the KiDS and GAMA surveys

    Science.gov (United States)

    Velliscig, Marco; Cacciato, Marcello; Hoekstra, Henk; Schaye, Joop; Heymans, Catherine; Hildebrandt, Hendrik; Loveday, Jon; Norberg, Peder; Sifón, Cristóbal; Schneider, Peter; van Uitert, Edo; Viola, Massimo; Brough, Sarah; Erben, Thomas; Holwerda, Benne W.; Hopkins, Andrew M.; Kuijken, Konrad

    2017-11-01

    We present predictions for the galaxy-galaxy lensing (GGL) profile from the EAGLE hydrodynamical cosmological simulation at redshift z = 0.18, in the spatial range 0.02 EAGLE predictions are in broad agreement with the observed profiles for both central and satellite galaxies, although the signal is underestimated at R ≈ 0.5-2 h- 1 Mpc for the highest stellar mass bins. When central and satellite galaxies are considered simultaneously, agreement is found only when the selection function of lens galaxies is taken into account in detail. Specifically, in the case of GAMA galaxies, it is crucial to account for the variation of the fraction of satellite galaxies in bins of stellar mass induced by the flux-limited nature of the survey. We report the inferred stellar-to-halo mass relation and we find good agreement with recent published results. We note how the precision of the GGL profiles in the simulation holds the potential to constrain fine-grained aspects of the galaxy-dark matter connection.

  3. Null Geodesics and Strong Field Gravitational Lensing of Black Hole with Global Monopole

    International Nuclear Information System (INIS)

    Iftikhar, Sehrish; Sharif, M.

    2015-01-01

    We study two interesting features of a black hole with an ordinary as well as phantom global monopole. Firstly, we investigate null geodesics which imply unstable orbital motion of particles for both cases. Secondly, we evaluate deflection angle in strong field regime. We then find Einstein rings, magnifications, and observables of the relativistic images for supermassive black hole at the center of galaxy NGC4486B. We also examine time delays for different galaxies and present our results numerically. It is found that the deflection angle for ordinary/phantom global monopole is greater/smaller than that of Schwarzschild black hole. In strong field limit, the remaining properties of these black holes are quite different from the Schwarzschild black hole

  4. Probing the Small-scale Structure in Strongly Lensed Systems via Transdimensional Inference

    Science.gov (United States)

    Daylan, Tansu; Cyr-Racine, Francis-Yan; Diaz Rivero, Ana; Dvorkin, Cora; Finkbeiner, Douglas P.

    2018-02-01

    Strong lensing is a sensitive probe of the small-scale density fluctuations in the Universe. We implement a pipeline to model strongly lensed systems using probabilistic cataloging, which is a transdimensional, hierarchical, and Bayesian framework to sample from a metamodel (union of models with different dimensionality) consistent with observed photon count maps. Probabilistic cataloging allows one to robustly characterize modeling covariances within and across lens models with different numbers of subhalos. Unlike traditional cataloging of subhalos, it does not require model subhalos to improve the goodness of fit above the detection threshold. Instead, it allows the exploitation of all information contained in the photon count maps—for instance, when constraining the subhalo mass function. We further show that, by not including these small subhalos in the lens model, fixed-dimensional inference methods can significantly mismodel the data. Using a simulated Hubble Space Telescope data set, we show that the subhalo mass function can be probed even when many subhalos in the sample catalogs are individually below the detection threshold and would be absent in a traditional catalog. The implemented software, Probabilistic Cataloger (PCAT) is made publicly available at https://github.com/tdaylan/pcat.

  5. Strong-lensing analysis of A2744 with MUSE and Hubble Frontier Fields images

    Science.gov (United States)

    Mahler, G.; Richard, J.; Clément, B.; Lagattuta, D.; Schmidt, K.; Patrício, V.; Soucail, G.; Bacon, R.; Pello, R.; Bouwens, R.; Maseda, M.; Martinez, J.; Carollo, M.; Inami, H.; Leclercq, F.; Wisotzki, L.

    2018-01-01

    We present an analysis of Multi Unit Spectroscopic Explorer (MUSE) observations obtained on the massive Frontier Fields (FFs) cluster A2744. This new data set covers the entire multiply imaged region around the cluster core. The combined catalogue consists of 514 spectroscopic redshifts (with 414 new identifications). We use this redshift information to perform a strong-lensing analysis revising multiple images previously found in the deep FF images, and add three new MUSE-detected multiply imaged systems with no obvious Hubble Space Telescope counterpart. The combined strong-lensing constraints include a total of 60 systems producing 188 images altogether, out of which 29 systems and 83 images are spectroscopically confirmed, making A2744 one of the most well-constrained clusters to date. Thanks to the large amount of spectroscopic redshifts, we model the influence of substructures at larger radii, using a parametrization including two cluster-scale components in the cluster core and several group scale in the outskirts. The resulting model accurately reproduces all the spectroscopic multiple systems, reaching an rms of 0.67 arcsec in the image plane. The large number of MUSE spectroscopic redshifts gives us a robust model, which we estimate reduces the systematic uncertainty on the 2D mass distribution by up to ∼2.5 times the statistical uncertainty in the cluster core. In addition, from a combination of the parametrization and the set of constraints, we estimate the relative systematic uncertainty to be up to 9 per cent at 200 kpc.

  6. IMAGES. I. Strong evolution of galaxy kinematics since z = 1

    Science.gov (United States)

    Yang, Y.; Flores, H.; Hammer, F.; Neichel, B.; Puech, M.; Nesvadba, N.; Rawat, A.; Cesarsky, C.; Lehnert, M.; Pozzetti, L.; Fuentes-Carrera, I.; Amram, P.; Balkowski, C.; Dannerbauer, H.; di Serego Alighieri, S.; Guiderdoni, B.; Kembhavi, A.; Liang, Y. C.; Östlin, G.; Ravikumar, C. D.; Vergani, D.; Vernet, J.; Wozniak, H.

    2008-01-01

    Nearly half the stellar mass of present-day spiral galaxies has formed since z = 1, and galaxy kinematics is an ideal tool to identify the underlying mechanisms responsible for the galaxy mass assembly since that epoch. Here, we present the first results of the ESO large program, “IMAGES”, which aims at obtaining robust measurements of the kinematics of distant galaxies using the multi-IFU mode of GIRAFFE on the VLT. 3D spectroscopy is essential to robustly measure the often distorted kinematics of distant galaxies (e.g., Flores et al. 2006, A&A, 455, 107). We derive the velocity fields and σ-maps of 36 galaxies at 0.4 evolution of the galaxy kinematics that we observe. Intermediate MAss Galaxy Evolution Sequence, ESO programs 174.B-0328(A), 174.B-0328(A), 174.B-0328(E).

  7. THE SLOAN DIGITAL SKY SURVEY CO-ADD: CROSS-CORRELATION WEAK LENSING AND TOMOGRAPHY OF GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Simet, Melanie; Dodelson, Scott; Kubo, Jeffrey M.; Annis, James T.; Hao Jiangang; Johnston, David; Lin, Huan; Soares-Santos, Marcelle; Reis, Ribamar R. R.; Seo, Hee-Jong

    2012-01-01

    The shapes of distant galaxies are sheared by intervening galaxy clusters. We examine this effect in Stripe 82, a 275 deg 2 region observed multiple times in the Sloan Digital Sky Survey (SDSS) and co-added to achieve greater depth. We obtain a mass-richness calibration that is similar to other SDSS analyses, demonstrating that the co-addition process did not adversely affect the lensing signal. We also propose a new parameterization of the effect of tomography on the cluster lensing signal which does not require binning in redshift, and we show that using this parameterization we can detect tomography for stacked clusters at varying redshifts. Finally, due to the sensitivity of the tomographic detection to accurately marginalize over the effect of the cluster mass, we show that tomography at low redshift (where dependence on exact cosmological models is weak) can be used to constrain mass profiles in clusters.

  8. Models of the Strongly Lensed Quasar DES J0408-5354

    Energy Technology Data Exchange (ETDEWEB)

    Agnello, A.; et al.

    2017-02-01

    We present gravitational lens models of the multiply imaged quasar DES J0408-5354, recently discovered in the Dark Energy Survey (DES) footprint, with the aim of interpreting its remarkable quad-like configuration. We first model the DES single-epoch $grizY$ images as a superposition of a lens galaxy and four point-like objects, obtaining spectral energy distributions (SEDs) and relative positions for the objects. Three of the point sources (A,B,D) have SEDs compatible with the discovery quasar spectra, while the faintest point-like image (G2/C) shows significant reddening and a `grey' dimming of $\\approx0.8$mag. In order to understand the lens configuration, we fit different models to the relative positions of A,B,D. Models with just a single deflector predict a fourth image at the location of G2/C but considerably brighter and bluer. The addition of a small satellite galaxy ($R_{\\rm E}\\approx0.2$") in the lens plane near the position of G2/C suppresses the flux of the fourth image and can explain both the reddening and grey dimming. All models predict a main deflector with Einstein radius between $1.7"$ and $2.0",$ velocity dispersion $267-280$km/s and enclosed mass $\\approx 6\\times10^{11}M_{\\odot},$ even though higher resolution imaging data are needed to break residual degeneracies in model parameters. The longest time-delay (B-A) is estimated as $\\approx 85$ (resp. $\\approx125$) days by models with (resp. without) a perturber near G2/C. The configuration and predicted time-delays of J0408-5354 make it an excellent target for follow-up aimed at understanding the source quasar host galaxy and substructure in the lens, and measuring cosmological parameters. We also discuss some lessons learnt from J0408-5354 on lensed quasar finding strategies, due to its chromaticity and morphology.

  9. Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago.

    Science.gov (United States)

    Genzel, R; Schreiber, N M Förster; Übler, H; Lang, P; Naab, T; Bender, R; Tacconi, L J; Wisnioski, E; Wuyts, S; Alexander, T; Beifiori, A; Belli, S; Brammer, G; Burkert, A; Carollo, C M; Chan, J; Davies, R; Fossati, M; Galametz, A; Genel, S; Gerhard, O; Lutz, D; Mendel, J T; Momcheva, I; Nelson, E J; Renzini, A; Saglia, R; Sternberg, A; Tacchella, S; Tadaki, K; Wilman, D

    2017-03-15

    In the cold dark matter cosmology, the baryonic components of galaxies-stars and gas-are thought to be mixed with and embedded in non-baryonic and non-relativistic dark matter, which dominates the total mass of the galaxy and its dark-matter halo. In the local (low-redshift) Universe, the mass of dark matter within a galactic disk increases with disk radius, becoming appreciable and then dominant in the outer, baryonic regions of the disks of star-forming galaxies. This results in rotation velocities of the visible matter within the disk that are constant or increasing with disk radius-a hallmark of the dark-matter model. Comparisons between the dynamical mass, inferred from these velocities in rotational equilibrium, and the sum of the stellar and cold-gas mass at the peak epoch of galaxy formation ten billion years ago, inferred from ancillary data, suggest high baryon fractions in the inner, star-forming regions of the disks. Although this implied baryon fraction may be larger than in the local Universe, the systematic uncertainties (owing to the chosen stellar initial-mass function and the calibration of gas masses) render such comparisons inconclusive in terms of the mass of dark matter. Here we report rotation curves (showing rotation velocity as a function of disk radius) for the outer disks of six massive star-forming galaxies, and find that the rotation velocities are not constant, but decrease with radius. We propose that this trend arises because of a combination of two main factors: first, a large fraction of the massive high-redshift galaxy population was strongly baryon-dominated, with dark matter playing a smaller part than in the local Universe; and second, the large velocity dispersion in high-redshift disks introduces a substantial pressure term that leads to a decrease in rotation velocity with increasing radius. The effect of both factors appears to increase with redshift. Qualitatively, the observations suggest that baryons in the early (high

  10. Uncertainties in Parameters Estimated with Neural Networks: Application to Strong Gravitational Lensing

    Science.gov (United States)

    Perreault Levasseur, Laurence; Hezaveh, Yashar D.; Wechsler, Risa H.

    2017-11-01

    In Hezaveh et al. we showed that deep learning can be used for model parameter estimation and trained convolutional neural networks to determine the parameters of strong gravitational-lensing systems. Here we demonstrate a method for obtaining the uncertainties of these parameters. We review the framework of variational inference to obtain approximate posteriors of Bayesian neural networks and apply it to a network trained to estimate the parameters of the Singular Isothermal Ellipsoid plus external shear and total flux magnification. We show that the method can capture the uncertainties due to different levels of noise in the input data, as well as training and architecture-related errors made by the network. To evaluate the accuracy of the resulting uncertainties, we calculate the coverage probabilities of marginalized distributions for each lensing parameter. By tuning a single variational parameter, the dropout rate, we obtain coverage probabilities approximately equal to the confidence levels for which they were calculated, resulting in accurate and precise uncertainty estimates. Our results suggest that the application of approximate Bayesian neural networks to astrophysical modeling problems can be a fast alternative to Monte Carlo Markov Chains, allowing orders of magnitude improvement in speed.

  11. Interpreting the Strongly Lensed Supernova iPTF16geu: Time Delay Predictions, Microlensing, and Lensing Rates

    Energy Technology Data Exchange (ETDEWEB)

    More, Anupreeta; Oguri, Masamune; More, Surhud [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), University of Tokyo, Chiba 277-8583 (Japan); Suyu, Sherry H. [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Lee, Chien-Hsiu, E-mail: anupreeta.more@ipmu.jp [Subaru Telescope, National Astronomical Observatory of Japan, 650 North Aohoku Place, Hilo, HI 96720 (United States)

    2017-02-01

    We present predictions for time delays between multiple images of the gravitationally lensed supernova, iPTF16geu, which was recently discovered from the intermediate Palomar Transient Factory (iPTF). As the supernova is of Type Ia where the intrinsic luminosity is usually well known, accurately measured time delays of the multiple images could provide tight constraints on the Hubble constant. According to our lens mass models constrained by the Hubble Space Telescope F814W image, we expect the maximum relative time delay to be less than a day, which is consistent with the maximum of 100 hr reported by Goobar et al. but places a stringent upper limit. Furthermore, the fluxes of most of the supernova images depart from expected values suggesting that they are affected by microlensing. The microlensing timescales are small enough that they may pose significant problems to measure the time delays reliably. Our lensing rate calculation indicates that the occurrence of a lensed SN in iPTF is likely. However, the observed total magnification of iPTF16geu is larger than expected, given its redshift. This may be a further indication of ongoing microlensing in this system.

  12. Submillimeter H2O and H2O+emission in lensed ultra- and hyper-luminous infrared galaxies at z 2-4

    NARCIS (Netherlands)

    Yang, C.; Omont, A.; Beelen, A.; González-Alfonso, E.; Neri, R.; Gao, Y.; van der Werf, P.; Weiß, A.; Gavazzi, R.; Falstad, N.; Baker, A. J.; Bussmann, R. S.; Cooray, A.; Cox, P.; Dannerbauer, H.; Dye, S.; Guélin, M.; Ivison, R.; Krips, M.; Lehnert, M.; Michałowski, M. J.; Riechers, D. A.; Spaans, M.; Valiante, E.

    2016-01-01

    We report rest-frame submillimeter H2O emission line observations of 11 ultra- or hyper-luminous infrared galaxies (ULIRGs or HyLIRGs) at z 2-4 selected among the brightest lensed galaxies discovered in the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS). Using the IRAM NOrthern

  13. Angular spectra of the intrinsic galaxy ellipticity field, their observability and their impact on lensing in tomographic surveys

    Science.gov (United States)

    Schäfer, Björn Malte; Merkel, Philipp M.

    2017-09-01

    This paper describes intrinsic ellipticity correlations between galaxies, their statistical properties, their observability with future surveys and their interference with weak gravitational lensing measurements. Using an angular-momentum-based, quadratic intrinsic alignment model we derive correlation functions of the ellipticity components and project them to yield the four non-zero angular ellipticity spectra C^ɛ _E(ℓ), C^ɛ _B(ℓ), C^ɛ _C(ℓ) and C^ɛ _S(ℓ) in their generalization to tomographic surveys. For a Euclid-like survey, these spectra would have amplitudes smaller than the weak lensing effect on non-linear structures, but would constitute an important systematics. Computing estimation biases for cosmological parameters derived from an alignment-contaminated survey suggests biases of +5σw for the dark energy equation of state parameter w, -20σ _{Ω _m} for the matter density Ωm and -12σ _{σ _8} for the spectrum normalization σ8. Intrinsic alignments yield a signal that is easily observable with a survey similar to Euclid: while not independent, significances for estimates of each of the four spectra reach values of tens of σ if weak lensing and shape noise are considered as noise sources, which suggests relative uncertainties on alignment parameters at the percent level, implying that galaxy alignment mechanisms can be investigated by future surveys.

  14. The SNAP Strong Lens Survey

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, P.

    2005-01-03

    Basic considerations of lens detection and identification indicate that a wide field survey of the types planned for weak lensing and Type Ia SNe with SNAP are close to optimal for the optical detection of strong lenses. Such a ''piggy-back'' survey might be expected even pessimistically to provide a catalogue of a few thousand new strong lenses, with the numbers dominated by systems of faint blue galaxies lensed by foreground ellipticals. After sketching out our strategy for detecting and measuring these galaxy lenses using the SNAP images, we discuss some of the scientific applications of such a large sample of gravitational lenses: in particular we comment on the partition of information between lens structure, the source population properties and cosmology. Understanding this partitioning is key to assessing strong lens cosmography's value as a cosmological probe.

  15. THE SEARCH FOR Hi EMISSION AT z ≈ 0.4 IN GRAVITATIONALLY LENSED GALAXIES WITH THE GREEN BANK TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, L. R.; Pisano, D. J. [Department of Physics and Astronomy, West Virginia University, P.O. Box 6315, Morgantown, WV 26506 (United States); Edel, S., E-mail: lhunt3@mix.wvu.edu, E-mail: djpisano@mail.wvu.edu, E-mail: stasedel@gmail.com [Infinite Optics, 1712 Newport Cir # F, Santa Ana, CA 92705 (United States)

    2016-08-01

    Neutral hydrogen (Hi) provides a very important fuel for star formation, but is difficult to detect at high redshift due to weak emission, limited sensitivity of modern instruments, and terrestrial radio frequency interference (RFI) at low frequencies. We report the first attempt to use gravitational lensing to detect Hi line emission from three gravitationally lensed galaxies behind the cluster Abell 773, two at redshifts of 0.398 and one at z = 0.487, using the Green Bank Telescope. We find that a 3 σ upper limit for a galaxy with a rotation velocity of 200 km s{sup −1} is M{sub Hi} = 6.58 × 10{sup 9} and 1.5 × 10{sup 10} M {sub ⊙} at z = 0.398 and z = 0.487. The estimated Hi masses of the sources at z = 0.398 and z = 0.487 are factors of 3.7 and ∼30 times lower than our detection limits at the respective redshifts. To facilitate these observations we have used sigma-clipping to remove both narrow- and wideband RFI but retain the signal from the source. We are able to reduce the noise of the spectrum by ∼25% using our routine instead of discarding observations with too much RFI. The routine is most effective when ∼10% of the integrations or fewer contain RFI. These techniques can be used to study Hi in highly magnified distant galaxies that are otherwise too faint to detect.

  16. On the Lack of Correlation Between Mg II 2796, 2803 Angstrom and Lyman alpha Emission in Lensed Star-Forming Galaxies

    Science.gov (United States)

    Rigby, Jane Rebecca; Bayliss, M. B.; Gladders, M. D.; Sharon, K.; Wuyts, E.; Dahle, H.

    2014-01-01

    We examine the Mg II 2796, 2803 Angstrom, Lyman alpha, and nebular line emission in five bright star-forming galaxies at 1.66 less than z less than 1.91 that have been gravitationally lensed by foreground galaxy clusters. All five galaxies show prominent Mg II emission and absorption in a P Cygni profile. We find no correlation between the equivalent widths of Mg II and Lyman alpha emission. The Mg II emission has a broader range of velocities than do the nebular emission line profiles; the Mg II emission is redshifted with respect to systemic by 100 to 200 km s(exp-1). When present, Lyman alpha is even more redshifted. The reddest components of Mg II and Lyman alpha emission have tails to 500-600 km s(exp-1), implying a strong outflow. The lack of correlation in the Mg II and Lyman alpha equivalent widths, the differing velocity profiles, and the high ratios of Mg II to nebular line fluxes together suggest that the bulk of Mg II emission does not ultimately arise as nebular line emission, but may instead be reprocessed stellar continuum emission.

  17. Full-sky Ray-tracing Simulation of Weak Lensing Using ELUCID Simulations: Exploring Galaxy Intrinsic Alignment and Cosmic Shear Correlations

    Science.gov (United States)

    Wei, Chengliang; Li, Guoliang; Kang, Xi; Luo, Yu; Xia, Qianli; Wang, Peng; Yang, Xiaohu; Wang, Huiyuan; Jing, Yipeng; Mo, Houjun; Lin, Weipeng; Wang, Yang; Li, Shijie; Lu, Yi; Zhang, Youcai; Lim, S. H.; Tweed, Dylan; Cui, Weiguang

    2018-01-01

    The intrinsic alignment of galaxies is an important systematic effect in weak-lensing surveys, which can affect the derived cosmological parameters. One direct way to distinguish different alignment models and quantify their effects on the measurement is to produce mock weak-lensing surveys. In this work, we use the full-sky ray-tracing technique to produce mock images of galaxies from the ELUCID N-body simulation run with WMAP9 cosmology. In our model, we assume that the shape of the central elliptical galaxy follows that of the dark matter halo, and that of the spiral galaxy follows the halo spin. Using the mock galaxy images, a combination of galaxy intrinsic shape and the gravitational shear, we compare the predicted tomographic shear correlations to the results of the Kilo-Degree Survey (KiDS) and Deep Lens Survey (DLS). We find that our predictions stay between the KiDS and DLS results. We rule out a model in which the satellite galaxies are radially aligned with the center galaxy; otherwise, the shear correlations on small scales are too high. Most importantly, we find that although the intrinsic alignment of spiral galaxies is very weak, they induce a positive correlation between the gravitational shear signal and the intrinsic galaxy orientation (GI). This is because the spiral galaxy is tangentially aligned with the nearby large-scale overdensity, contrary to the radial alignment of the elliptical galaxy. Our results explain the origin of the detected positive GI term in the weak-lensing surveys. We conclude that in future analyses, the GI model must include the dependence on galaxy types in more detail.

  18. The BOSS Emission-line Lens Survey. V. Morphology and Substructure of Lensed Lyα Emitters at Redshift Z ≈ 2.5 in the BELLS GALLERY

    Science.gov (United States)

    Cornachione, Matthew A.; Bolton, Adam S.; Shu, Yiping; Zheng, Zheng; Montero-Dorta, Antonio D.; Brownstein, Joel R.; Oguri, Masamune; Kochanek, Christopher S.; Mao, Shude; Pèrez-Fournon, Ismael; Marques-Chaves, Rui; Mènard, Brice

    2018-02-01

    We present a morphological study of the 17 lensed Lyα emitter (LAE) galaxies of the Baryon Oscillation Spectroscopic Survey Emission-Line Lens Survey (BELLS) for the GALaxy-Lyα EmitteR sYstems (BELLS GALLERY) sample. This analysis combines the magnification effect of strong galaxy–galaxy lensing with the high resolution of the Hubble Space Telescope to achieve a physical resolution of ∼80 pc for this 2 matter substructure in the foreground lensing galaxies.

  19. Revealing the ISM in high redshift starburst galaxies: An analysis of Herschel PACS and SPIRE FTS spectroscopic observations of HerMES and H-ATLAS-selected lensed galaxies

    Science.gov (United States)

    Cooray, Asantha

    In the quest to develop a fundamental understanding of galaxy formation and evolution, observations of dusty star-forming galaxies (DSFGs) promise significant progress this decade. The importance of DSFGs is highlighted by the fact that half of the energy emitted by extragalactic sources emerges as dust-reprocessed light at infrared (IR) to sub millimeter wavelength. In the post-herschel\\ era, we are now at a unique position to tackle some of the key questions on galaxy formation and evolution because of the large area Herschel's Key Project surveys (HerMES and H-ATLAS). In particular those surveys have allowed us to identify a sample of 250 strongly gravitationally lensed DSFGs at z > 1. They give us a unique opportunity to dissect the detailed structures and kinematics of DSFGs. The Herschel Science Archive also contains individual follow up data on 44 and 25 of the brightest sources with SPIRE-FTS and PACS, respectively, in the spectroscopy mode, taking over 250 hours in four open-time programs. Only one of the 44 SPIRE FTS targets has yet to appear in the published literature. One of the four include an open-time 2 PACS spectroscopy program that was led at UCI by a former postdoc from the PI's group. That program was initially approved at Priority 2 in 2011, but was triggered in late 2012 and achieved 100% completion during the last two weeks of Herschel lifetime in May 2013. This archival analysis, interpretation, and modeling program involves two parts: (i) PACS spectroscopy in 50 to 200 microns of 25 lensed galaxies in the fine-structure emission lines [SiII]34, [SIII]33, [OIV]26, [OIII]52, [NIII]57 and [OI]63, and the molecular hydrogen H_2 S(0) and S(1). (ii) SPIRE FTS spectroscopy of 44 lensed galaxies, including above 25, over the wavelength range of 200 to 600 microns targeting [CII]158, [OIII]88, [OI]63/145, and [NI]122. The analysis will lead to a better understanding of the ISM of starbursting galaxies that span 1 research supports Goal 2 of the

  20. A HIGHLY ELONGATED PROMINENT LENS AT z = 0.87: FIRST STRONG-LENSING ANALYSIS OF EL GORDO

    Energy Technology Data Exchange (ETDEWEB)

    Zitrin, Adi [Zentrum fuer Astronomie, Institut fuer Theoretische Astrophysik, Universitaet Heidelberg, Philosophenweg 12, D-69120 Heidelberg (Germany); Menanteau, Felipe; Hughes, John P. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Coe, Dan [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Barrientos, L. Felipe; Infante, Leopoldo [Departamento de Astronomia y Astrofisica, Facultad de Fisica, Pontificia Universidad Catolica, Casilla 306, Santiago 22 (Chile); Mandelbaum, Rachel, E-mail: adizitrin@gmail.com [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States)

    2013-06-10

    We present the first strong-lensing (SL) analysis of the galaxy cluster ACT-CL J0102-4915 (El Gordo), in recent HST/ACS images, revealing a prominent strong lens at a redshift of z = 0.87. This finding adds to the already-established unique properties of El Gordo: it is the most massive, hot, X-ray luminous, and bright Sunyaev-Zeldovich effect cluster at z {approx}> 0.6, and the only {sup b}ullet{sup -}like merging cluster known at these redshifts. The lens consists of two merging massive clumps, where, for a source redshift of z{sub s} {approx} 2, each clump exhibits only a small, separate critical area, with a total area of 0.69 {+-} 0.11{open_square}' over the two clumps. For a higher source redshift, z{sub s} {approx} 4, the critical curves of the two clumps merge together into one bigger and very elongated lens (axis ratio {approx_equal} 5.5), enclosing an effective area of 1.44 {+-} 0.22{open_square}'. The critical curves continue expanding with increasing redshift so that for high-redshift sources (z{sub s} {approx}> 9) they enclose an area of {approx}1.91 {+-} 0.30{open_square}' (effective {theta}{sub e} {approx_equal} 46.''8 {+-} 3.''7) and a mass of 6.09 {+-} 1.04 Multiplication-Sign 10{sup 14} M{sub Sun }. According to our model, the area of high magnification ({mu} > 10) for such high-redshift sources is {approx_equal}1.2{open_square}', and the area with {mu} > 5 is {approx_equal}2.3{open_square}', making El Gordo a compelling target for studying the high-redshift universe. We obtain a strong lower limit on the total mass of El Gordo, {approx}> 1.7 Multiplication-Sign 10{sup 15} M{sub Sun} from the SL regime alone, suggesting a total mass of roughly M{sub 200} {approx} 2.3 Multiplication-Sign 10{sup 15} M{sub Sun }. Our results should be revisited when additional spectroscopic and HST imaging data are available.

  1. HST Grism Observations of a Gravitationally Lensed Redshift 9.5 Galaxy

    Science.gov (United States)

    Hoag, A.; Bradač, M.; Brammer, G.; Huang, K.-H.; Treu, T.; Mason, C. A.; Castellano, M.; Di Criscienzo, M.; Jones, T.; Kelly, P.; Pentericci, L.; Ryan, R.; Schmidt, K.; Trenti, M.

    2018-02-01

    We present deep spectroscopic observations of a Lyman break galaxy (LBG) candidate (hereafter MACS1149-JD) at z ∼ 9.5 with the Hubble Space Telescope (HST) WFC3/IR grisms. The grism observations were taken at four distinct position angles, totaling 34 orbits with the G141 grism, although only 19 of the orbits are relatively uncontaminated along the trace of MACS1149-JD. We fit a three-parameter (z, F160W mag, and Lyα equivalent width [EW]) LBG template to the three least contaminated grism position angles using a Markov chain Monte Carlo approach. The grism data alone are best fit with a redshift of {z}{grism}={9.53}-0.60+0.39 (68% confidence), in good agreement with our photometric estimate of {z}{phot}={9.51}-0.12+0.06 (68% confidence). Our analysis rules out Lyα emission from MACS1149-JD above a 3σ EW of 21 Å, consistent with a highly neutral IGM. We explore a scenario where the red Spitzer/IRAC [3.6]–[4.5] color of the galaxy previously pointed out in the literature is due to strong rest-frame optical emission lines from a very young stellar population rather than a 4000 Å break. We find that while this can provide an explanation for the observed IRAC color, it requires a lower redshift (z ≲ 9.1), which is less preferred by the HST imaging data. The grism data are consistent with both scenarios, indicating that the red IRAC color can still be explained by a 4000 Å break, characteristic of a relatively evolved stellar population. In this interpretation, the photometry indicates that a {340}-35+29 Myr stellar population is already present in this galaxy only ∼500 Myr after the big bang.

  2. Antireflection Coatings for Strongly Curved Glass Lenses by Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Kristin Pfeiffer

    2017-08-01

    Full Text Available Antireflection (AR coatings are indispensable in numerous optical applications and are increasingly demanded on highly curved optical components. In this work, optical thin films of SiO2, Al2O3, TiO2 and Ta2O5 were prepared by atomic layer deposition (ALD, which is based on self-limiting surface reactions leading to a uniform film thickness on arbitrarily shaped surfaces. Al2O3/TiO2/SiO2 and Al2O3/Ta2O5/SiO2 AR coatings were successfully applied in the 400–750 nm and 400–700 nm spectral range, respectively. Less than 0.6% reflectance with an average of 0.3% has been measured on a fused silica hemispherical (half-ball lens with 4 mm diameter along the entire lens surface at 0° angle of incidence. The reflectance on a large B270 aspherical lens with height of 25 mm and diameter of 50 mm decreased to less than 1% with an average reflectance < 0.3%. The results demonstrate that ALD is a promising technology for deposition of uniform optical layers on strongly curved lenses without complex in situ thickness monitoring.

  3. Probing the cosmic distance duality with strong gravitational lensing and supernovae Ia data

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, R.F.L. [Departamento de Física, Universidade Estadual da Paraíba, 58429-500, Campina Grande PB (Brazil); Busti, V.C. [Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, CEP 05508-090, São Paulo SP (Brazil); Alcaniz, J.S., E-mail: holanda@uepb.edu.br, E-mail: vcbusti@astro.iag.usp.br, E-mail: alcaniz@on.br [Departamento de Astronomia, Observatório Nacional, 20921-400, Rio de Janeiro RJ (Brazil)

    2016-02-01

    We propose and perform a new test of the cosmic distance-duality relation (CDDR), D{sub L}(z) / D{sub A}(z) (1 + z){sup 2} = 1, where D{sub A} is the angular diameter distance and D{sub L} is the luminosity distance to a given source at redshift z, using strong gravitational lensing (SGL) and type Ia Supernovae (SNe Ia) data. We show that the ratio D=D{sub A{sub 1{sub 2}}}/D{sub A{sub 2}} and D{sup *}=D{sub L{sub 1{sub 2}}}/D{sub L{sub 2}}, where the subscripts 1 and 2 correspond, respectively, to redshifts z{sub 1} and z{sub 2}, are linked by D/D{sup *}=(1+z{sub 1}){sup 2} if the CDDR is valid. We allow departures from the CDDR by defining two functions for η(z{sub 1}), which equals unity when the CDDR is valid. We find that combination of SGL and SNe Ia data favours no violation of the CDDR at 1σ confidence level (η(z) ≅ 1), in complete agreement with other tests and reinforcing the theoretical pillars of the CDDR.

  4. Constraints on Dark Energy Models from Galaxy Clusters and Gravitational Lensing Data

    Directory of Open Access Journals (Sweden)

    Alexander Bonilla

    2018-01-01

    Full Text Available The Sunyaev–Zel’dovich (SZ effect is a global distortion of the Cosmic Microwave Background (CMB spectrum as a result of its interaction with a hot electron plasma in the intracluster medium of large structures gravitationally viralized such as galaxy clusters (GC. Furthermore, this hot gas of electrons emits X-rays due to its fall in the gravitational potential well of the GC. The analysis of SZ and X-ray data provides a method for calculating distances to GC at high redshifts. On the other hand, many galaxies and GC produce a Strong Gravitational Lens (SGL effect, which has become a useful astrophysical tool for cosmology. We use these cosmological tests in addition to more traditional ones to constrain some alternative dark energy (DE models, including the study of the history of cosmological expansion through the cosmographic parameters. Using Akaike and Bayesian Information Criterion, we find that the w C D M and Λ C D M models are the most favoured by the observational data. In addition, we found at low redshift a peculiar behavior of slowdown of the universe, which occurs in dynamical DE models when we use data from GC.

  5. Doppler term in the galaxy two-point correlation function: Wide-angle, velocity, Doppler lensing and cosmic acceleration effects

    Science.gov (United States)

    Raccanelli, Alvise; Bertacca, Daniele; Jeong, Donghui; Neyrinck, Mark C.; Szalay, Alexander S.

    2018-03-01

    We study the parity-odd part (that we shall call Doppler term) of the linear galaxy two-point correlation function that arises from wide-angle, velocity, Doppler lensing and cosmic acceleration effects. As it is important at low redshift and at large angular separations, the Doppler term is usually neglected in the current generation of galaxy surveys. For future wide-angle galaxy surveys, however, we show that the Doppler term must be included. The effect of these terms is dominated by the magnification due to relativistic aberration effects and the slope of the galaxy redshift distribution and it generally mimics the effect of the local type primordial non-Gaussianity with the effective nonlinearity parameter fNLeff of a few; we show that this would affect forecasts on measurements of fNL at low-redshift. Our results show that a survey at low redshift with large number density over a wide area of the sky could detect the Doppler term with a signal-to-noise ratio of ∼ 1 - 20, depending on survey specifications.

  6. A direct gravitational lensing test for 10 exp 6 solar masses black holes in halos of galaxies

    Science.gov (United States)

    Wambsganss, Joachim; Paczynski, Bohdan

    1992-01-01

    We propose a method that will be able to detect or exclude the existence of 10 exp 6 solar masses black holes in the halos of galaxies. VLBA radio maps of two milliarcsecond jets of a gravitationally lensed quasar will show the signature of these black holes - if they exist. If there are no compact objects in this mass range along the line of sight, the two jets should be linear mappings of each other. If they are not, there must be compact objects of about 10 exp 6 solar masses in the halo of the galaxy that deform the images by gravitational deflection. We present numerical simulations for the two jets A and B of the double quasar 0957 + 561, but the method is valid for any gravitationally lensed quasar with structure on milliarcsecond scales. As a by-product from high-quality VLBA maps of jets A and B, one will be able to tell which features in the maps are intrinsic in the original jet and which are only an optical illusion, i.e., gravitational distortions by black holes along the line of sight.

  7. The Hawaii SCUBA-2 Lensing Cluster Survey: Are Low-luminosity Submillimeter Galaxies Detected in the Rest-frame UV?

    Science.gov (United States)

    Hsu, Li-Yen; Cowie, Lennox L.; Barger, Amy J.; Wang, Wei-Hao

    2017-12-01

    In this third paper of the Hawaii SCUBA-2 Lensing Cluster Survey series, we present Submillimeter Array (SMA) detections of six intrinsically faint 850 μm sources detected in SCUBA-2 images of the lensing cluster fields, A1689, A2390, A370, MACS J0717.5+3745, and MACS J1423.8+2404. Two of the SCUBA-2 sources split into doublets, yielding a total of eight SMA detections. The intrinsic 870 μm flux densities of these submillimeter galaxies (SMGs) are ∼1 mJy. Five of the eight SMGs are not detected in optical or near-infrared (NIR) images. The NIR-to-submillimeter flux ratios of these faint SMGs suggest that most of them are extremely dusty and/or are at very high redshifts. By combining these SMGs and several other samples from the literature, we find a bimodal distribution for the faint sources in the space of submillimeter flux versus NIR-to-submillimeter flux ratio. While most of the SMA-detected lensed sources are very obscured, the other SMGs with similar flux densities are mostly bright in the NIR. Future Atacama Large Millimeter/submillimeter Array observations of a large sample of SCUBA-2 sources in cluster fields will allow us to decide whether or not the bimodality we observe here really exists.

  8. Revealing strong bias in common measures of galaxy properties using new inclination-independent structures

    Science.gov (United States)

    Devour, Brian M.; Bell, Eric F.

    2017-06-01

    Accurate measurement of galaxy structures is a prerequisite for quantitative investigation of galaxy properties or evolution. Yet, the impact of galaxy inclination and dust on commonly used metrics of galaxy structure is poorly quantified. We use infrared data sets to select inclination-independent samples of disc and flattened elliptical galaxies. These samples show strong variation in Sérsic index, concentration and half-light radii with inclination. We develop novel inclination-independent galaxy structures by collapsing the light distribution in the near-infrared on to the major axis, yielding inclination-independent 'linear' measures of size and concentration. With these new metrics we select a sample of Milky Way analogue galaxies with similar stellar masses, star formation rates, sizes and concentrations. Optical luminosities, light distributions and spectral properties are all found to vary strongly with inclination: When inclining to edge-on, r-band luminosities dim by >1 magnitude, sizes decrease by a factor of 2, 'dust-corrected' estimates of star formation rate drop threefold, metallicities decrease by 0.1 dex and edge-on galaxies are half as likely to be classified as star forming. These systematic effects should be accounted for in analyses of galaxy properties.

  9. DES meets Gaia: discovery of strongly lensed quasars from a multiplet search

    Energy Technology Data Exchange (ETDEWEB)

    Agnello, A.; et al.

    2017-11-10

    We report the discovery, spectroscopic confirmation and first lens models of the first two, strongly lensed quasars from a combined search in WISE and Gaia over the DES footprint. The four-image lensWGD2038-4008 (r.a.=20:38:02.65, dec.=-40:08:14.64) has source- and lens-redshifts $z_{s}=0.777 \\pm 0.001$ and $z_l = 0.230 \\pm 0.002$ respectively. Its deflector has effective radius $R_{\\rm eff} \\approx 3.4^{\\prime\\prime}$, stellar mass $\\log(M_{\\star}/M_{\\odot}) = 11.64^{+0.20}_{-0.43}$, and shows extended isophotal shape variation. Simple lens models yield Einstein radii $R_{\\rm E}=(1.30\\pm0.04)^{\\prime\\prime},$ axis ratio $q=0.75\\pm0.1$ (compatible with that of the starlight) and considerable shear-ellipticity degeneracies. The two-image lensWGD2021-4115 (r.a.=20:21:39.45, dec.=--41:15:57.11) has $z_{s}=1.390\\pm0.001$ and $z_l = 0.335 \\pm 0.002$, and Einstein radius $R_{\\rm E} = (1.1\\pm0.1)^{\\prime\\prime},$ but higher-resolution imaging is needed to accurately separate the deflector and faint quasar image. We also show high-rank candidate doubles selected this way, some of which have been independently identified with different techniques, and discuss a DES+WISE quasar multiplet selection.

  10. Precise Time Delays from Strongly Gravitationally Lensed Type Ia Supernovae with Chromatically Microlensed Images

    Science.gov (United States)

    Goldstein, Daniel A.; Nugent, Peter E.; Kasen, Daniel N.; Collett, Thomas E.

    2018-03-01

    Time delays between the multiple images of strongly gravitationally lensed Type Ia supernovae (glSNe Ia) have the potential to deliver precise cosmological constraints, but the effects of microlensing on time delay extraction have not been studied in detail. Here we quantify the effect of microlensing on the glSN Ia yield of the Large Synoptic Survey Telescope (LSST) and the effect of microlensing on the precision and accuracy of time delays that can be extracted from LSST glSNe Ia. Microlensing has a negligible effect on the LSST glSN Ia yield, but it can be increased by a factor of ∼2 over previous predictions to 930 systems using a novel photometric identification technique based on spectral template fitting. Crucially, the microlensing of glSNe Ia is achromatic until three rest-frame weeks after the explosion, making the early-time color curves microlensing-insensitive time delay indicators. By fitting simulated flux and color observations of microlensed glSNe Ia with their underlying, unlensed spectral templates, we forecast the distribution of absolute time delay error due to microlensing for LSST, which is unbiased at the sub-percent level and peaked at 1% for color curve observations in the achromatic phase, while for light-curve observations it is comparable to state-of-the-art mass modeling uncertainties (4%). About 70% of LSST glSN Ia images should be discovered during the achromatic phase, indicating that microlensing time delay uncertainties can be minimized if prompt multicolor follow-up observations are obtained. Accounting for microlensing, the 1–2 day time delay on the recently discovered glSN Ia iPTF16geu can be measured to 40% precision, limiting its cosmological utility.

  11. Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing

    Energy Technology Data Exchange (ETDEWEB)

    Bonnett, C.; Troxel, M. A.; Hartley, W.; Amara, A.; Leistedt, B.; Becker, M. R.; Bernstein, G. M.; Bridle, S. L.; Bruderer, C.; Busha, M. T.; Carrasco Kind, M.; Childress, M. J.; Castander, F. J.; Chang, C.; Crocce, M.; Davis, T. M.; Eifler, T. F.; Frieman, J.; Gangkofner, C.; Gaztanaga, E.; Glazebrook, K.; Gruen, D.; Kacprzak, T.; King, A.; Kwan, J.; Lahav, O.; Lewis, G.; Lidman, C.; Lin, H.; MacCrann, N.; Miquel, R.; O’Neill, C. R.; Palmese, A.; Peiris, H. V.; Refregier, A.; Rozo, E.; Rykoff, E. S.; Sadeh, I.; Sánchez, C.; Sheldon, E.; Uddin, S.; Wechsler, R. H.; Zuntz, J.; Abbott, T.; Abdalla, F. B.; Allam, S.; Armstrong, R.; Banerji, M.; Bauer, A. H.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Fausti Neto, A.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Gerdes, D. W.; Gruendl, R. A.; Honscheid, K.; Jain, B.; James, D. J.; Jarvis, M.; Kim, A. G.; Kuehn, K.; Kuropatkin, N.; Li, T. S.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Miller, C. J.; Neilsen, E.; Nichol, R. C.; Nord, B.; Ogando, R.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Sako, M.; Sanchez, E.; Santiago, B.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Vikram, V.; Walker, A. R.

    2016-08-01

    We present photometric redshift estimates for galaxies used in the weak lensing analysis of the Dark Energy Survey Science Verification (DES SV) data. Four model- or machine learning-based photometric redshift methods { annz2, bpz calibrated against BCC-U fig simulations, skynet, and tpz { are analysed. For training, calibration, and testing of these methods, we also construct a catalogue of spectroscopically confirmed galaxies matched against DES SV data. The performance of the methods is evalu-ated against the matched spectroscopic catalogue, focusing on metrics relevant for weak lensing analyses, with additional validation against COSMOS photo-zs. From the galaxies in the DES SV shear catalogue, which have mean redshift 0.72 ±0.01 over the range 0:3 < z < 1:3, we construct three tomographic bins with means of z = {0.45; 0.67,1.00g}. These bins each have systematic uncertainties δz ≲ 0.05 in the mean of the fiducial skynet photo-z n(z). We propagate the errors in the redshift distributions through to their impact on cosmological parameters estimated with cosmic shear, and find that they cause shifts in the value of σ8 of approx. 3%. This shift is within the one sigma statistical errors on σ8 for the DES SV shear catalog. We also found that further study of the potential impact of systematic differences on the critical surface density, Σcrit, contained levels of bias safely less than the statistical power of DES SV data. We recommend a final Gaussian prior for the photo-z bias in the mean of n(z) of width 0:05 for each of the three tomographic bins, and show that this is a sufficient bias model for the corresponding cosmology analysis.

  12. KiDS-450 + 2dFLenS: Cosmological parameter constraints from weak gravitational lensing tomography and overlapping redshift-space galaxy clustering

    Science.gov (United States)

    Joudaki, Shahab; Blake, Chris; Johnson, Andrew; Amon, Alexandra; Asgari, Marika; Choi, Ami; Erben, Thomas; Glazebrook, Karl; Harnois-Déraps, Joachim; Heymans, Catherine; Hildebrandt, Hendrik; Hoekstra, Henk; Klaes, Dominik; Kuijken, Konrad; Lidman, Chris; Mead, Alexander; Miller, Lance; Parkinson, David; Poole, Gregory B.; Schneider, Peter; Viola, Massimo; Wolf, Christian

    2018-03-01

    We perform a combined analysis of cosmic shear tomography, galaxy-galaxy lensing tomography, and redshift-space multipole power spectra (monopole and quadrupole) using 450 deg2 of imaging data by the Kilo Degree Survey (KiDS-450) overlapping with two spectroscopic surveys: the 2-degree Field Lensing Survey (2dFLenS) and the Baryon Oscillation Spectroscopic Survey (BOSS). We restrict the galaxy-galaxy lensing and multipole power spectrum measurements to the overlapping regions with KiDS, and self-consistently compute the full covariance between the different observables using a large suite of N-body simulations. We methodically analyse different combinations of the observables, finding that the galaxy-galaxy lensing measurements are particularly useful in improving the constraint on the intrinsic alignment amplitude, while the multipole power spectra are useful in tightening the constraints along the lensing degeneracy direction. The fully combined constraint on S_8 ≡ σ _8 √{Ω _m/0.3}=0.742± 0.035, which is an improvement by 20 per cent compared to KiDS alone, corresponds to a 2.6σ discordance with Planck, and is not significantly affected by fitting to a more conservative set of scales. Given the tightening of the parameter space, we are unable to resolve the discordance with an extended cosmology that is simultaneously favoured in a model selection sense, including the sum of neutrino masses, curvature, evolving dark energy and modified gravity. The complementarity of our observables allows for constraints on modified gravity degrees of freedom that are not simultaneously bounded with either probe alone, and up to a factor of three improvement in the S8 constraint in the extended cosmology compared to KiDS alone.

  13. Next Generation Virgo Cluster Survey. XXI. The weak lensing masses of the CFHTLS and NGVS RedGOLD galaxy clusters and calibration of the optical richness

    OpenAIRE

    Parroni, Carolina; Mei, Simona; Erben, Thomas; Van Waerbeke, Ludovic; Raichoor, Anand; Ford, Jes; Licitra, Rossella; Meneghetti, Massimo; Hildebrandt, Hendrik; Miller, Lance; Côté, Patrick; Covone, Giovanni; Cuillandre, Jean-Charles; Duc, Pierre-Alain; Ferrarese, Laura

    2017-01-01

    We measured stacked weak lensing cluster masses for a sample of 1325 galaxy clusters detected by the RedGOLD algorithm in the Canada-France-Hawaii Telescope Legacy Survey W1 and the Next Generation Virgo Cluster Survey at $0.2

  14. LoCuSS: A COMPARISON OF SUNYAEV-ZEL'DOVICH EFFECT AND GRAVITATIONAL-LENSING MEASUREMENTS OF GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Marrone, Daniel P.; Culverhouse, Thomas; Carlstrom, John E.; Greer, Christopher; Hennessy, Ryan; Leitch, Erik M.; Loh, Michael; Pryke, Clem; Smith, Graham P.; Hamilton-Morris, Victoria; Richard, Johan; Joy, Marshall; Bonamente, Massimiliano; Hasler, Nicole; Kneib, Jean-Paul; Hawkins, David; Lamb, James W.; Muchovej, Stephen; Miller, Amber; Mroczkowski, Tony

    2009-01-01

    We present the first measurement of the relationship between the Sunyaev-Zel'dovich effect (SZE) signal and the mass of galaxy clusters that uses gravitational lensing to measure cluster mass, based on 14 X-ray luminous clusters at z ≅ 0.2 from the Local Cluster Substructure Survey. We measure the integrated Compton y-parameter, Y, and total projected mass of the clusters (M GL ) within a projected clustercentric radius of 350 kpc, corresponding to mean overdensities of 4000-8000 relative to the critical density. We find self-similar scaling between M GL and Y, with a scatter in mass at fixed Y of 32%. This scatter exceeds that predicted from numerical cluster simulations, however, it is smaller than comparable measurements of the scatter in mass at fixed T X . We also find no evidence of segregation in Y between disturbed and undisturbed clusters, as had been seen with T X on the same physical scales. We compare our scaling relation to the Bonamente et al. relation based on mass measurements that assume hydrostatic equilibrium, finding no evidence for a hydrostatic mass bias in cluster cores (M GL = 0.98 ± 0.13 M HSE ), consistent with both predictions from numerical simulations and lensing/X-ray-based measurements of mass-observable scaling relations at larger radii. Overall our results suggest that the SZE may be less sensitive than X-ray observations to the details of cluster physics in cluster cores.

  15. The impact of ΛCDM substructure and baryon-dark matter transition on the image positions of quad galaxy lenses

    Science.gov (United States)

    Gomer, Matthew R.; Williams, Liliya L. R.

    2018-04-01

    The positions of multiple images in galaxy lenses are related to the galaxy mass distribution. Smooth elliptical mass profiles were previously shown to be inadequate in reproducing the quad population. In this paper, we explore the deviations from such smooth elliptical mass distributions. Unlike most other work, we use a model-free approach based on the relative polar image angles of quads, and their position in 3D space with respect to the fundamental surface of quads (FSQ). The FSQ is defined by quads produced by elliptical lenses. We have generated thousands of quads from synthetic populations of lenses with substructure consistent with Lambda cold dark matter (ΛCDM) simulations, and found that such perturbations are not sufficient to match the observed distribution of quads relative to the FSQ. The result is unchanged even when subhalo masses are increased by a factor of 10, and the most optimistic lensing selection bias is applied. We then produce quads from galaxies created using two components, representing baryons and dark matter. The transition from the mass being dominated by baryons in inner radii to being dominated by dark matter in outer radii can carry with it asymmetries, which would affect relative image angles. We run preliminary experiments using lenses with two elliptical mass components with non-identical axial ratios and position angles, perturbations from ellipticity in the form of non-zero Fourier coefficients a4 and a6, and artificially offset ellipse centres as a proxy for asymmetry at image radii. We show that combination of these effects is a promising way of accounting for quad population properties. We conclude that the quad population provides a unique and sensitive tool for constraining detailed mass distribution in the centres of galaxies.

  16. Measuring the hydrostatic mass bias in galaxy clusters by combining Sunyaev-Zel'dovich and CMB lensing data

    Science.gov (United States)

    Hurier, G.; Angulo, R. E.

    2018-02-01

    The cosmological parameters preferred by the cosmic microwave background (CMB) primary anisotropies predict many more galaxy clusters than those that have been detected via the thermal Sunyaev-Zeldovich (tSZ) effect. This discrepancy has attracted considerable attention since it might be evidence of physics beyond the simplest ΛCDM model. However, an accurate and robust calibration of the mass-observable relation for clusters is necessary for the comparison, which has been proven difficult to obtain so far. Here, we present new constraints on the mass-pressure relation by combining tSZ and CMB lensing measurements of optically selected clusters. Consequently, our galaxy cluster sample is independent of the data employed to derive cosmological constrains. We estimate an average hydrostatic mass bias of b = 0.26 ± 0.07, with no significant mass or redshift evolution. This value greatly reduces the discrepancy between the predictions of ΛCDM and the observed abundance of tSZ clusters but agrees with recent estimates from tSZ clustering. On the other hand, our value for b is higher than the predictions from hydrodynamical simulations. This suggests mechanisms that drive large departures from hydrostatic equilibrium and that are not included in the latest simulations, and/or unaccounted systematic errors such as biases in the cluster catalogue that are due to the optical selection.

  17. Cross-correlation Weak Lensing of SDSS galaxy Clusters II: Cluster Density Profiles and the Mass--Richness Relation

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, David E.; Sheldon, Erin S.; Wechsler, Risa H.; Rozo, Eduardo; Koester, Benjamin P.; Frieman, Joshua A.; McKay, Timothy A.; Evrard, August E.; Becker, Matthew; Annis, James

    2007-09-28

    We interpret and model the statistical weak lensing measurements around 130,000 groups and clusters of galaxies in the Sloan Digital Sky Survey presented by Sheldon et al. (2007). We present non-parametric inversions of the 2D shear profiles to the mean 3D cluster density and mass profiles in bins of both optical richness and cluster i-band luminosity. Since the mean cluster density profile is proportional to the cluster-mass correlation function, the mean profile is spherically symmetric by the assumptions of large-scale homogeneity and isotropy. We correct the inferred 3D profiles for systematic effects, including non-linear shear and the fact that cluster halos are not all precisely centered on their brightest galaxies. We also model the measured cluster shear profile as a sum of contributions from the brightest central galaxy, the cluster dark matter halo, and neighboring halos. We infer the relations between mean cluster virial mass and optical richness and luminosity over two orders of magnitude in cluster mass; the virial mass at fixed richness or luminosity is determined with a precision of {approx} 13% including both statistical and systematic errors. We also constrain the halo concentration parameter and halo bias as a function of cluster mass; both are in good agreement with predictions from N-body simulations of LCDM models. The methods employed here will be applicable to deeper, wide-area optical surveys that aim to constrain the nature of the dark energy, such as the Dark Energy Survey, the Large Synoptic Survey Telescope and space-based surveys.

  18. EDITORIAL: Focus on Gravitational Lensing

    Science.gov (United States)

    Jain, Bhuvnesh

    2007-11-01

    Gravitational lensing emerged as an observational field following the 1979 discovery of a doubly imaged quasar lensed by a foreground galaxy. In the 1980s and '90s dozens of other multiply imaged systems were observed, as well as time delay measurements, weak and strong lensing by galaxies and galaxy clusters, and the discovery of microlensing in our galaxy. The rapid pace of advances has continued into the new century. Lensing is currently one of best techniques for finding and mapping dark matter over a wide range of scales, and also addresses broader cosmological questions such as understanding the nature of dark energy. This focus issue of New Journal of Physics presents a snapshot of current research in some of the exciting areas of lensing. It provides an occasion to look back at the advances of the last decade and ahead to the potential of the coming years. Just about a decade ago, microlensing was discovered through the magnification of stars in our galaxy by invisible objects with masses between that of Jupiter and a tenth the mass of the Sun. Thus a new component of the mass of our galaxy, dubbed MACHOs, was established (though a diffuse, cold dark matter-like component is still needed to make up most of the galaxy mass). More recently, microlensing led to another exciting discovery—of extra-solar planets with masses ranging from about five times that of Earth to that of Neptune. We can expect many more planets to be discovered through ongoing surveys. Microlensing is the best technique for finding Earth mass planets, though it is not as productive overall as other methods and does not allow for follow up observations. Beyond planet hunting, microlensing has enabled us to observe previously inaccessible systems, ranging from the surfaces of other stars to the accretion disks around the black holes powering distant quasars. Galaxies and galaxy clusters at cosmological distances can produce dramatic lensing effects: multiple images of background galaxies

  19. Weak-lensing mass calibration of redMaPPer galaxy clusters in Dark Energy Survey Science Verification data

    Energy Technology Data Exchange (ETDEWEB)

    Melchior, P.; Gruen, D.; McClintock, T.; Varga, T. N.; Sheldon, E.; Rozo, E.; Amara, A.; Becker, M. R.; Benson, B. A.; Bermeo, A.; Bridle, S. L.; Clampitt, J.; Dietrich, J. P.; Hartley, W. G.; Hollowood, D.; Jain, B.; Jarvis, M.; Jeltema, T.; Kacprzak, T.; MacCrann, N.; Rykoff, E. S.; Saro, A.; Suchyta, E.; Troxel, M. A.; Zuntz, J.; Bonnett, C.; Plazas, A. A.; Abbott, T. M. C.; Abdalla, F. B.; Annis, J.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; Desai, S.; Eifler, T. F.; Flaugher, B.; Fosalba, P.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kirk, D.; Krause, E.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Martini, P.; Menanteau, F.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Nichol, R. C.; Ogando, R.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.; Weller, J.; Zhang, Y.

    2017-05-16

    We use weak-lensing shear measurements to determine the mean mass of optically selected galaxy clusters in Dark Energy Survey Science Verification data. In a blinded analysis, we split the sample of more than 8,000 redMaPPer clusters into 15 subsets, spanning ranges in the richness parameter $5 \\leq \\lambda \\leq 180$ and redshift $0.2 \\leq z \\leq 0.8$, and fit the averaged mass density contrast profiles with a model that accounts for seven distinct sources of systematic uncertainty: shear measurement and photometric redshift errors; cluster-member contamination; miscentering; deviations from the NFW halo profile; halo triaxiality; and line-of-sight projections. We combine the inferred cluster masses to estimate the joint scaling relation between mass, richness and redshift, $\\mathcal{M}(\\lambda,z) \\varpropto M_0 \\lambda^{F} (1+z)^{G}$. We find $M_0 \\equiv \\langle M_{200\\mathrm{m}}\\,|\\,\\lambda=30,z=0.5\\rangle=\\left[ 2.35 \\pm 0.22\\ \\rm{(stat)} \\pm 0.12\\ \\rm{(sys)} \\right] \\cdot 10^{14}\\ M_\\odot$, with $F = 1.12\\,\\pm\\,0.20\\ \\rm{(stat)}\\, \\pm\\, 0.06\\ \\rm{(sys)}$ and $G = 0.18\\,\\pm\\, 0.75\\ \\rm{(stat)}\\, \\pm\\, 0.24\\ \\rm{(sys)}$. The amplitude of the mass-richness relation is in excellent agreement with the weak-lensing calibration of redMaPPer clusters in SDSS by Simet et al. (2016) and with the Saro et al. (2015) calibration based on abundance matching of SPT-detected clusters. Our results extend the redshift range over which the mass-richness relation of redMaPPer clusters has been calibrated with weak lensing from $z\\leq 0.3$ to $z\\leq0.8$. Calibration uncertainties of shear measurements and photometric redshift estimates dominate our systematic error budget and require substantial improvements for forthcoming studies.

  20. Gravitational lensing and microlensing

    CERN Document Server

    Mollerach, Silvia

    2002-01-01

    This book provides a comprehensive and self-contained exposition of gravitational lensing phenomena. It presents the up-to-date status of gravitational lensing and microlensing, covering the cosmological applications of the observed lensing by galaxies, clusters and the large scale structures, as well as the microlensing searches in the Local Group and its applications to unveil the nature of the galactic dark matter, the search for planetary objects and the distribution of faint stars in our galaxy. Gravitational Lensing and Microlensing is pitched at the level of the graduate student interes

  1. VizieR Online Data Catalog: Strong lensing mass modeling of 4 HFF clusters (Kawamata+, 2016)

    Science.gov (United States)

    Kawamata, R.; Oguri, M.; Ishigaki, M.; Shimasaku, K.; Ouchi, M.

    2018-02-01

    We use the public HFF data (http://www.stsci.edu/hst/campaigns/frontier-fields/) for our analysis. The HFF targets six massive clusters, Abell 2744 (z=0.308), MACS J0416.1-2403 (z=0.397), MACS J0717.5+3745 (z=0.545), MACS J1149.6+2223 (z=0.541), Abell S1063 (z=0.348), and Abell 370 (z=0.375), which have been chosen according to their lensing strength and also their accessibility from major ground-based telescopes. The cluster core and parallel field region of each cluster are observed deeply with the IR channel of Wide Field Camera 3 (WFC3/IR) and the Advanced Camera for Surveys (ACS). As of 2015 October, HST observations for the first four clusters, Abell 2744, MACS J0416.1-2403, MACS J0717.5+3745, and MACS J1149.6+2223, are completed. In this study, we use the Version 1.0 data products of drizzled images with a pixel scale of 0.03"/pixel provided by the Space Telescope Science Institute (STScI). The images for each cluster consist of F435W (B435), F606W (V606), and F814W (i814) images from ACS, and F105W (Y105), F125W (J125), F140W (JH140), and F160W (H160) images from WFC3/IR. (7 data files).

  2. Sunyaev-Zel'dovich Effect and X-ray Scaling Relations from Weak-Lensing Mass Calibration of 32 SPT Selected Galaxy Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, J.P.; et al.

    2017-11-14

    Uncertainty in the mass-observable scaling relations is currently the limiting factor for galaxy cluster based cosmology. Weak gravitational lensing can provide a direct mass calibration and reduce the mass uncertainty. We present new ground-based weak lensing observations of 19 South Pole Telescope (SPT) selected clusters and combine them with previously reported space-based observations of 13 galaxy clusters to constrain the cluster mass scaling relations with the Sunyaev-Zel'dovich effect (SZE), the cluster gas mass $M_\\mathrm{gas}$, and $Y_\\mathrm{X}$, the product of $M_\\mathrm{gas}$ and X-ray temperature. We extend a previously used framework for the analysis of scaling relations and cosmological constraints obtained from SPT-selected clusters to make use of weak lensing information. We introduce a new approach to estimate the effective average redshift distribution of background galaxies and quantify a number of systematic errors affecting the weak lensing modelling. These errors include a calibration of the bias incurred by fitting a Navarro-Frenk-White profile to the reduced shear using $N$-body simulations. We blind the analysis to avoid confirmation bias. We are able to limit the systematic uncertainties to 6.4% in cluster mass (68% confidence). Our constraints on the mass-X-ray observable scaling relations parameters are consistent with those obtained by earlier studies, and our constraints for the mass-SZE scaling relation are consistent with the the simulation-based prior used in the most recent SPT-SZ cosmology analysis. We can now replace the external mass calibration priors used in previous SPT-SZ cosmology studies with a direct, internal calibration obtained on the same clusters.

  3. Gravitational lensing

    CERN Document Server

    Dodelson, Scott

    2017-01-01

    Gravitational lensing is a consequence of general relativity, where the gravitational force due to a massive object bends the paths of light originating from distant objects lying behind it. Using very little general relativity and no higher level mathematics, this text presents the basics of gravitational lensing, focusing on the equations needed to understand the phenomena. It then applies them to a diverse set of topics, including multiply imaged objects, time delays, extrasolar planets, microlensing, cluster masses, galaxy shape measurements, cosmic shear, and lensing of the cosmic microwave background. This approach allows undergraduate students and others to get quickly up to speed on the basics and the important issues. The text will be especially relevant as large surveys such as LSST and Euclid begin to dominate the astronomical landscape. Designed for a one semester course, it is accessible to anyone with two years of undergraduate physics background.

  4. Constraints on a possible evolution of mass density power-law index in strong gravitational lensing from cosmological data

    Science.gov (United States)

    Holanda, R. F. L.; Pereira, S. H.; Jain, Deepak

    2017-11-01

    In this work, by using strong gravitational lensing (SGL) observations along with Type Ia Supernovae (Union2.1) and gamma-ray burst data (GRBs), we propose a new method to study a possible redshift evolution of γ(z), the mass density power-law index of strong gravitational lensing systems. In this analysis, we assume the validity of cosmic distance duality relation and the flat universe. In order to explore the γ(z) behaviour, three different parametrizations are considered, namely: (P1) γ(zl) = γ0 + γ1zl; (P2) γ(zl) = γ0 + γ1zl/(1 + zl); and (P3) γ(zl) = γ0 + γ1ln (1 + zl), where zl corresponds to lens redshift. If γ0 = 2 and γ1 = 0, the singular isothermal sphere model is recovered. Our method is performed on SGL sub-samples defined by different lens redshifts and velocity dispersions. For the former case, the results are in full agreement with each other, while a 1σ tension between the sub-samples with low (≤250 km s-1) and high (>250 km s-1) velocity dispersions was obtained on the (γ0-γ1) plane. By considering the complete SGL sample, we obtain γ0 ≈ 2 and γ1 ≈ 0 within 1σ c.l. for all γ(z) parametrizations. However, we find the following best-fitting values of γ1: -0.085; -0.16; and -0.12 for P1, P2 and P3 parametrizations, respectively, suggesting a mild evolution for γ(z). By repeating the analysis with Type Ia Supernovae from Joint Light Analysis compilation, GRBs and SGL systems this mild evolution is reinforced.

  5. Arcs from gravitational lensing

    Science.gov (United States)

    Grossman, Scott A.; Narayan, Ramesh

    1988-01-01

    The proposal made by Paczynski (1987) that the arcs of blue light found recently in two cluster cores are gravitationally lensed elongated images of background galaxies is investigated. It is shown that lenses that are circularly symmetric in projection produce pairs of arcs, in conflict with the observations. However, more realistic asymmetric lenses produce single arcs, which can become as elongated as the observed ones whenever the background galaxy is located on or close to a cusp caustic. Detailed computer simulations of lensing by clusters using a reasonable model of the mass distribution are presented. Elongated and curved lensed images longer than 10 arcsec occur in 12 percent of the simulated clusters. It is concluded that the lensing hypothesis must be taken seriously.

  6. Core or Cusps: The Central Dark Matter Profile of a Strong Lensing Cluster with a Bright Central Image at Redshift 1

    Energy Technology Data Exchange (ETDEWEB)

    Collett, Thomas E.; Buckley-Geer, Elizabeth; Lin, Huan; Bacon, David; Nichol, Robert C.; Nord, Brian; Morice-Atkinson, Xan; Amara, Adam; Birrer, Simon; Kuropatkin, Nikolay; More, Anupreeta; Papovich, Casey; Romer, Kathy K.; Tessore, Nicolas; Abbott, Tim M. C.; Allam, Sahar; Annis, James; Benoit-Lévy, Aurlien; Brooks, David; Burke, David L.; Carrasco Kind, Matias; Castander, Francisco Javier J.; D’Andrea, Chris B.; da Costa, Luiz N.; Desai, Shantanu; Diehl, H. Thomas; Doel, Peter; Eifler, Tim F.; Flaugher, Brenna; Frieman, Josh; Gerdes, David W.; Goldstein, Daniel A.; Gruen, Daniel; Gschwend, Julia; Gutierrez, Gaston; James, David J.; Kuehn, Kyler; Kuhlmann, Steve; Lahav, Ofer; Li, Ting S.; Lima, Marcos; Maia, Marcio A. G.; March, Marisa; Marshall, Jennifer L.; Martini, Paul; Melchior, Peter; Miquel, Ramon; Plazas, Andrs A.; Rykoff, Eli S.; Sanchez, Eusebio; Scarpine, Vic; Schindler, Rafe; Schubnell, Michael; Sevilla-Noarbe, Ignacio; Smith, Mathew; Sobreira, Flavia; Suchyta, Eric; Swanson, Molly E. C.; Tarle, Gregory; Tucker, Douglas L.; Walker, Alistair R.

    2017-07-10

    We report on SPT-CLJ2011-5228, a giant system of arcs created by a cluster at $z=1.06$. The arc system is notable for the presence of a bright central image. The source is a Lyman Break galaxy at $z_s=2.39$ and the mass enclosed within the 14 arc second radius Einstein ring is $10^{14.2}$ solar masses. We perform a full light profile reconstruction of the lensed images to precisely infer the parameters of the mass distribution. The brightness of the central image demands that the central total density profile of the lens be shallow. By fitting the dark matter as a generalized Navarro-Frenk-White profile---with a free parameter for the inner density slope---we find that the break radius is $270^{+48}_{-76}$ kpc, and that the inner density falls with radius to the power $-0.38\\pm0.04$ at 68 percent confidence. Such a shallow profile is in strong tension with our understanding of relaxed cold dark matter halos; dark matter only simulations predict the inner density should fall as $r^{-1}$. The tension can be alleviated if this cluster is in fact a merger; a two halo model can also reconstruct the data, with both clumps (density going as $r^{-0.8}$ and $r^{-1.0}$) much more consistent with predictions from dark matter only simulations. At the resolution of our Dark Energy Survey imaging, we are unable to choose between these two models, but we make predictions for forthcoming Hubble Space Telescope imaging that will decisively distinguish between them.

  7. The masses of satellites in GAMA galaxy groups from 100 square degrees of KiDS weak lensing data

    NARCIS (Netherlands)

    Sifón, Cristóbal; Cacciato, Marcello; Hoekstra, Henk; Brouwer, Margot; van Uitert, Edo; Viola, Massimo; Baldry, Ivan; Brough, Sarah; Brown, Michael J. I.; Choi, Ami; Driver, Simon P.; Erben, Thomas; Grado, Aniello; Heymans, Catherine; Hildebrandt, Hendrik; Joachimi, Benjamin; de Jong, Jelte T. A.; Kuijken, Konrad; McFarland, John; Miller, Lance; Nakajima, Reiko; Napolitano, Nicola; Norberg, Peder; Robotham, Aaron S. G.; Schneider, Peter; Kleijn, Gijs Verdoes

    2015-01-01

    We use the first 100 deg2 of overlap between the Kilo-Degree Survey and the Galaxy And Mass Assembly survey to determine the average galaxy halo mass of ˜10 000 spectroscopically confirmed satellite galaxies in massive (M > 1013 h-1 M⊙) galaxy groups. Separating the sample as a function of projected

  8. FAST VARIABILITY AND MILLIMETER/IR FLARES IN GRMHD MODELS OF Sgr A* FROM STRONG-FIELD GRAVITATIONAL LENSING

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal; Marrone, Daniel [Steward Observatory and Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Medeiros, Lia [Department of Physics, Broida Hall, University of California, Santa Barbara, Santa Barbara, CA 93106 (United States); Sadowski, Aleksander [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Narayan, Ramesh, E-mail: chanc@email.arizona.edu [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2015-10-20

    We explore the variability properties of long, high-cadence general relativistic magnetohydrodynamic (GRMHD) simulations across the electromagnetic spectrum using an efficient, GPU-based radiative transfer algorithm. We focus on both standard and normal evolution (SANE) and magnetically arrested disk (MAD) simulations with parameters that successfully reproduce the time-averaged spectral properties of Sgr A* and the size of its image at 1.3 mm. We find that the SANE models produce short-timescale variability with amplitudes and power spectra that closely resemble those inferred observationally. In contrast, MAD models generate only slow variability at lower flux levels. Neither set of models shows any X-ray flares, which most likely indicates that additional physics, such as particle acceleration mechanisms, need to be incorporated into the GRMHD simulations to account for them. The SANE models show strong, short-lived millimeter/infrared (IR) flares, with short (≲1 hr) time lags between the millimeter and IR wavelengths, that arise from the combination of short-lived magnetic flux tubes and strong-field gravitational lensing near the horizon. Such events provide a natural explanation for the observed IR flares with no X-ray counterparts.

  9. Cluster Mass Calibration at High Redshift: HST Weak Lensing Analysis of 13 Distant Galaxy Clusters from the South Pole Telescope Sunyaev-Zel'dovich Survey

    Energy Technology Data Exchange (ETDEWEB)

    Schrabback, T.; et al.

    2016-11-11

    We present an HST/ACS weak gravitational lensing analysis of 13 massive high-redshift (z_median=0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V-I colour. Our estimate of the source redshift distribution is based on CANDELS data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the mass-concentration relation using simulations. In combination with temperature estimates from Chandra we constrain the normalisation of the mass-temperature scaling relation ln(E(z) M_500c/10^14 M_sun)=A+1.5 ln(kT/7.2keV) to A=1.81^{+0.24}_{-0.14}(stat.) +/- 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c_200c=5.6^{+3.7}_{-1.8}.

  10. Cluster Mass Calibration at High Redshift: HST Weak Lensing Analysis of 13 Distant Galaxy Clusters from the South Pole Telescope Sunyaev-Zel’dovich Survey

    Energy Technology Data Exchange (ETDEWEB)

    Schrabback, T.; Applegate, D.; Dietrich, J. P.; Hoekstra, H.; Bocquet, S.; Gonzalez, A. H.; der Linden, A. von; McDonald, M.; Morrison, C. B.; Raihan, S. F.; Allen, S. W.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Chiu, I.; Desai, S.; Foley, R. J.; de Haan, T.; High, F. W.; Hilbert, S.; Mantz, A. B.; Massey, R.; Mohr, J.; Reichardt, C. L.; Saro, A.; Simon, P.; Stern, C.; Stubbs, C. W.; Zenteno, A.

    2017-10-14

    We present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (z(median) = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V - I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration-mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass-temperature scaling relation ln (E(z) M-500c/10(14)M(circle dot)) = A + 1.5ln (kT/7.2 keV) to A = 1.81(-0.14)(+0.24)(stat.)+/- 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c(200c) = 5.6(-1.8)(+3.7).

  11. Ultra-faint ultraviolet galaxies at z ∼ 2 behind the lensing cluster A1689: The luminosity function, dust extinction, and star formation rate density

    Energy Technology Data Exchange (ETDEWEB)

    Alavi, Anahita; Siana, Brian; Freeman, William R.; Dominguez, Alberto [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Richard, Johan [Centre de Recherche Astrophysique de Lyon, Université Lyon 1, 9 Avenue Charles André, F-69561 Saint Genis Laval Cedex (France); Stark, Daniel P.; Robertson, Brant [Department of Astronomy, Steward Observatory, University of Arizona, 933 North Cherry Avenue, Rm N204, Tucson, AZ 85721 (United States); Scarlata, Claudia [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Teplitz, Harry I.; Rafelski, Marc [Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125 (United States); Kewley, Lisa, E-mail: anahita.alavi@email.ucr.edu [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia)

    2014-01-10

    We have obtained deep ultraviolet imaging of the lensing cluster A1689 with the WFC3/UVIS camera onboard the Hubble Space Telescope in the F275W (30 orbits) and F336W (4 orbits) filters. These images are used to identify z ∼ 2 star-forming galaxies via their Lyman break, in the same manner that galaxies are typically selected at z ≥ 3. Because of the unprecedented depth of the images and the large magnification provided by the lensing cluster, we detect galaxies 100× fainter than previous surveys at this redshift. After removing all multiple images, we have 58 galaxies in our sample in the range –19.5 < M {sub 1500} < –13 AB mag. Because the mass distribution of A1689 is well constrained, we are able to calculate the intrinsic sensitivity of the observations as a function of source plane position, allowing for accurate determinations of effective volume as a function of luminosity. We fit the faint-end slope of the luminosity function to be α = –1.74 ± 0.08, which is consistent with the values obtained for 2.5 < z < 6. Notably, there is no turnover in the luminosity function down to M {sub 1500} = –13 AB mag. We fit the UV spectral slopes with photometry from existing Hubble optical imaging. The observed trend of increasingly redder slopes with luminosity at higher redshifts is observed in our sample, but with redder slopes at all luminosities and average reddening of (E(B – V)) = 0.15 mag. We assume the stars in these galaxies are metal poor (0.2 Z {sub ☉}) compared to their brighter counterparts (Z {sub ☉}), resulting in bluer assumed intrinsic UV slopes and larger derived values for dust extinction. The total UV luminosity density at z ∼ 2 is 4.31{sub −0.60}{sup +0.68}×10{sup 26} erg s{sup –1} Hz{sup –1} Mpc{sup –3}, more than 70% of which is emitted by galaxies in the luminosity range of our sample. Finally, we determine the global star formation rate density from UV-selected galaxies at z ∼ 2 (assuming a constant dust

  12. The variation of dust content with intrinsic galaxy properties: revealing strong dust biases in many commonly-used galaxy property measurements

    Science.gov (United States)

    Devour, Brian; Bell, Eric F.

    2018-01-01

    Dust strongly affects many observations of galaxy properties, and quantifying galaxy dust content and correcting for its effects is a delicate and often uncertain task. In particular, both the impact of dust on commonly-used metrics of galaxy structure and the variation of dust content with intrinsic galaxy properties are poorly quantified. The inclination dependence of dust attenuation is a powerful tool to quantify dust amounts and the effects of dust on galaxy property measurements; this requires the construction of dust and inclination-independent selection techniques to isolate samples of intrinsically similar galaxies for study. To this end we construct dust and inclination-independent measurements of galaxy mass and star formation rate using dust-penetrated infrared datasets, and we develop novel dust and inclination-independent galaxy ‘linear’ size and concentration measurements by collapsing the light distribution in the near-infrared onto the major axis. With these new metrics we select a sample of Milky Way analog galaxies with similar stellar masses, star formation rates, and linear sizes and concentrations. These galaxies - identical save for their orientation - show strong systematic dust and inclination dependence in their Sérsic index, concentration, half-light radius, luminosity, (dust-corrected!) star formation rate and metallicitity, and spectral classification. We use these new metrics to study the variation in relative face-on to edge-on attenuation as a function of intrinsic stellar mass, star formation rate, and linear size and concentration. We find that, if one accounts for geometric and radiative transfer effects, the complex patterns of variation in relative attenuation can be reproduced by simple scaling relation-based dust density models in which dust optical depth is set primarily by gas density and metallicity.

  13. Strong Stellar-driven Outflows Shape the Evolution of Galaxies at Cosmic Dawn

    International Nuclear Information System (INIS)

    Fontanot, Fabio; De Lucia, Gabriella; Hirschmann, Michaela

    2017-01-01

    We study galaxy mass assembly and cosmic star formation rate (SFR) at high redshift (z ≳ 4), by comparing data from multiwavelength surveys with predictions from the GAlaxy Evolution and Assembly (gaea) model. gaea implements a stellar feedback scheme partially based on cosmological hydrodynamical simulations, which features strong stellar-driven outflows and mass-dependent timescales for the re-accretion of ejected gas. In previous work, we have shown that this scheme is able to correctly reproduce the evolution of the galaxy stellar mass function (GSMF) up to z ∼ 3. We contrast model predictions with both rest-frame ultraviolet (UV) and optical luminosity functions (LFs), which are mostly sensitive to the SFR and stellar mass, respectively. We show that gaea is able to reproduce the shape and redshift evolution of both sets of LFs. We study the impact of dust on the predicted LFs, and we find that the required level of dust attenuation is in qualitative agreement with recent estimates based on the UV continuum slope. The consistency between data and model predictions holds for the redshift evolution of the physical quantities well beyond the redshift range considered for the calibration of the original model. In particular, we show that gaea is able to recover the evolution of the GSMF up to z ∼ 7 and the cosmic SFR density up to z ∼ 10.

  14. Galaxies

    International Nuclear Information System (INIS)

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented

  15. Star Formation at z = 2.481 in the Lensed Galaxy SDSS J1110+6459. II. What is Missed at the Normal Resolution of the Hubble Space Telescope?

    Science.gov (United States)

    Rigby, J. R.; Johnson, T. L.; Sharon, K.; Whitaker, K.; Gladders, M. D.; Florian, M.; Lotz, J.; Bayliss, M.; Wuyts, E.

    2017-07-01

    For lensed galaxy SGAS J111020.0+645950.8 at redshift z = 2.481, which is magnified by a factor of 28 ± 8, we analyze the morphology of star formation, as traced by rest-frame ultraviolet emission, in both the highly magnified source plane and simulations of how this galaxy would appear without lensing magnification. Were this galaxy not lensed, but rather drawn from a Hubble Space Telescope deep field, we would conclude that almost all its star formation arises from an exponential disk (Sérsic index of 1.0 ± 0.4) with an effective radius of {r}e=2.7+/- 0.3 {kpc} measured from two-dimensional fitting to F606W using Galfit, and {r}e=1.9+/- 0.1 {kpc} measured by fitting a radial profile to F606W elliptical isophotes. At the normal spatial resolution of the deep fields, there is no sign of clumpy star formation within SGAS J111020.0+645950.8. However, the enhanced spatial resolution enabled by gravitational lensing tells a very different story; much of the star formation arises in two dozen clumps with sizes of r = 30-50 pc spread across the 7 kpc length of the galaxy. The color and spatial distribution of the diffuse component suggests that still-smaller clumps are unresolved. Despite this clumpy, messy morphology, the radial profile is still well-characterized by an exponential profile. In this lensed galaxy, stars are forming in complexes with sizes well below 100 pc such sizes are wholly unexplored by surveys of galaxy evolution at 1< z< 3.

  16. Spatially Resolved Analysis of the Interstellar Medium in the Cosmic Eye, a Lensed Lyman Break Galaxy at z=3.074

    Science.gov (United States)

    Ball, Catherine; Riechers, Dominik A.; Pavesi, Riccardo

    2018-01-01

    The [CII]/[NII] ratio combines the [CII] line, a tracer of photodissociation and HII regions emerging from the neutral and ionized phases of the interstellar medium (ISM), with [NII] emission, which only originates from the ionized ISM. In this, the [CII]/[NII] ratio can be used to separate the fractions of [CII] emission emerging from the different phases of the ISM. We present Atacama Large sub-Millimeter Array (ALMA) observations of the Cosmic Eye, a gravitationally lensed Lyman Break Galaxy (LBG). As an LBG, the Cosmic Eye represents a "normal" star forming galaxy in the z>2 universe. LBGs were host to the bulk of star formation during the peak epoch of star formation. Diagnosing star formation in these galaxies provides insight into the evolution of “normal” galaxies in a cosmic sense. The high magnification (30x) allows us to resolve the [CII] 158μm and the [NII] 205μm lines in detail, allowing for a position-resolved analysis of their ratio. We find variations of the line ratio across the galaxy, suggesting the galaxy’s internal structure affects this ratio. We consider the Cosmic Eye in the context of both higher redshift LBGs and local luminous and ultraluminous infrared galaxies, finding that the Cosmic Eye’s line ratio is similar to those of both higher- and lower- redshift galaxies. The Cosmic Eye’s global [CII]/[NII] ratio sits between two previous measurements of z>5 LBGs at low resolution, suggesting that the ratio may correlate more significantly with LFIR than with redshift in this epoch. Furthermore, the Cosmic Eye’s [CII]/[NII] ratio is similar to those of the nearby LIRG/ULIRGs, though we expect local [CII]/[NII] values to be lower due to their different metallicities and dust content. High-resolution studies like this one probe the evolution of [CII]/[NII] over cosmic time by examining the evolution of the ISM’s structure. With a better understanding of the [CII]/[NII] line ratio, we can more effectively use it as a probe of the

  17. Gravitational lensing of quasars

    CERN Document Server

    Eigenbrod, Alexander

    2013-01-01

    The universe, in all its richness, diversity and complexity, is populated by a myriad of intriguing celestial objects. Among the most exotic of them are gravitationally lensed quasars. A quasar is an extremely bright nucleus of a galaxy, and when such an object is gravitationally lensed, multiple images of the quasar are produced – this phenomenon of cosmic mirage can provide invaluable insights on burning questions, such as the nature of dark matter and dark energy. After presenting the basics of modern cosmology, the book describes active galactic nuclei, the theory of gravitational lensing, and presents a particular numerical technique to improve the resolution of astronomical data. The book then enters the heart of the subject with the description of important applications of gravitational lensing of quasars, such as the measurement of the famous Hubble constant, the determination of the dark matter distribution in galaxies, and the observation of the mysterious inner parts of quasars with much higher r...

  18. Precise weak lensing constraints from deep high-resolution Ks images: VLT/HAWK-I analysis of the super-massive galaxy cluster RCS2 J 232727.7-020437 at z = 0.70

    Science.gov (United States)

    Schrabback, Tim; Schirmer, Mischa; van der Burg, Remco F. J.; Hoekstra, Henk; Buddendiek, Axel; Applegate, Douglas; Bradač, Maruša; Eifler, Tim; Erben, Thomas; Gladders, Michael D.; Hernández-Martín, Beatriz; Hildebrandt, Hendrik; Hoag, Austin; Klaes, Dominik; von der Linden, Anja; Marchesini, Danilo; Muzzin, Adam; Sharon, Keren; Stefanon, Mauro

    2018-03-01

    We demonstrate that deep good-seeing VLT/HAWK-I Ks images complemented with g + z-band photometry can yield a sensitivity for weak lensing studies of massive galaxy clusters at redshifts 0.7 ≲ z ≲ 1.1, which is almost identical to the sensitivity of HST/ACS mosaics of single-orbit depth. Key reasons for this good performance are the excellent image quality frequently achievable for Ks imaging from the ground, a highly effective photometric selection of background galaxies, and a galaxy ellipticity dispersion that is noticeably lower than for optically observed high-redshift galaxy samples. Incorporating results from the 3D-HST and UltraVISTA surveys we also obtained a more accurate calibration of the source redshift distribution than previously achieved for similar optical weak lensing data sets. Here we studied the extremely massive galaxy cluster RCS2 J232727.7-020437 (z = 0.699), combining deep VLT/HAWK-I Ks images (point spread function with a 0.''35 full width at half maximum) with LBT/LBC photometry. The resulting weak lensing mass reconstruction suggests that the cluster consists of a single overdensity, which is detected with a peak significance of 10.1σ. We constrained the cluster mass to M200c/(1015 M⊙) = 2.06-0.26+0.28(stat.) ± 0.12(sys.) assuming a spherical Navarro, Frenk & White model and simulation-based priors on the concentration, making it one of the most massive galaxy clusters known in the z ≳ 0.7 Universe. We also cross-checked the HAWK-I measurements through an analysis of overlapping HST/ACS images, yielding fully consistent estimates of the lensing signal. Based on observations conducted with the ESO Very Large Telescope, the Large Binocular Telescope, and the NASA/ESA Hubble Space Telescope, as detailed in the acknowledgements.

  19. Galaxies

    International Nuclear Information System (INIS)

    1987-01-01

    The size and nature of any large-scale anisotropy in the three-dimensional distribution of galaxies is still little understood. Recent studies have indicated that large fluctuations in the matter distribution on a scale from tens up to several hundreds of megaparsecs may exist. Work at the South African Astronomical Observatory (SAAO) in recent years has made major contributions to studies of the large scale distribution of galaxies, as well as to solving the problems of the galactic and extragalactic distance scale. Other studies of galaxies undertaken at SAAO include: quasars in the fields of nearby galaxies; dwarf irregular galaxies; IRAS galaxies; Seyfert galaxies; 'hot spot' galaxies; supernovae in NGC 5128 and NGC 1559 and superclusters. 4 figs

  20. Galaxies

    International Nuclear Information System (INIS)

    1989-01-01

    In studies of the large scale structure of the universe there is a continuing need for extensive galaxy redshift determinations. Optically selected redshift surveys are of particular importance, since flux-limited samples record much higher space densities of galaxies than samples of similar size selected in other wavebands. A considerable amount of the South African Astronomical Observatory (SAAO) observing time is currently being devoted to carrying out a large southern galaxy redshift survey. A recently completed study, the Durham-SAAO redshift survey suggests that the mean density of matter is well below the critical limit for a closed universe and also that the universe may be homogenous at very large scales. Other research conducted by the SAAO include studies on: the distribution of galaxies; Seyfert galaxies; starburst and IRAS galaxies; interacting and compact galaxies; a re-evaluation of the Cepheid distance to NGC 300, and a search for quasars behind galaxies. 1 fig

  1. An integral-field spectroscopic strong lens survey

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, Adam S [Harvard-Smithsonian Center for Astrophysics, 60 Garden St. MS-20, Cambridge, MA 02138 (United States); Burles, Scott [Department of Physics and Kavli Institute, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States)

    2007-12-15

    We present the observational results of a survey for strong gravitational lens systems consisting of extended emission-line galaxies lensed by intervening early-type galaxies, conducted using integral field units (IFUs) of the Magellan IMACS and Gemini GMOS-N spectrographs. These data are highly valuable for corroborating the lensing interpretation of Hubble Space Telescope imaging data. We show that in many cases, ground-based IFU spectroscopy is in fact competitive with space-based imaging for the measurement of the mass model parameters of the lensing galaxy. We demonstrate a novel technique of three-dimensional gravitational lens modeling for a single lens system with a resolved lensed rotation curve. We also describe the details of our custom IFU data analysis software, which performs optimal multi-fiber extraction, relative and absolute wavelength calibration to a few hundredths of a pixel RMS and nearly Poisson-limited sky subtraction.

  2. An integral-field spectroscopic strong lens survey

    International Nuclear Information System (INIS)

    Bolton, Adam S; Burles, Scott

    2007-01-01

    We present the observational results of a survey for strong gravitational lens systems consisting of extended emission-line galaxies lensed by intervening early-type galaxies, conducted using integral field units (IFUs) of the Magellan IMACS and Gemini GMOS-N spectrographs. These data are highly valuable for corroborating the lensing interpretation of Hubble Space Telescope imaging data. We show that in many cases, ground-based IFU spectroscopy is in fact competitive with space-based imaging for the measurement of the mass model parameters of the lensing galaxy. We demonstrate a novel technique of three-dimensional gravitational lens modeling for a single lens system with a resolved lensed rotation curve. We also describe the details of our custom IFU data analysis software, which performs optimal multi-fiber extraction, relative and absolute wavelength calibration to a few hundredths of a pixel RMS and nearly Poisson-limited sky subtraction

  3. Searching for supernovae in the multiply-imaged galaxies behind the gravitational telescope A370

    OpenAIRE

    Petrushevska, T.; Goobar, A.; Lagattuta, D. J.; Amanullah, R.; Hangard, L.; Fabbro, S.; Lidman, C.; Paech, K.; Richard, J.; Kneib, J. P.

    2018-01-01

    Strong lensing by massive galaxy clusters can provide magnification of the flux and even multiple images of the galaxies that lie behind them. This phenomenon facilitates observations of high-redshift supernovae (SNe), that would otherwise remain undetected. Type Ia supernovae (SNe Ia) detections are of particular interest because of their standard brightness, since they can be used to improve either cluster lensing models or cosmological parameter measurements. We present a ground-based, nea...

  4. Fitting gravitational lenses: truth or delusion

    Science.gov (United States)

    Evans, N. Wyn; Witt, Hans J.

    2003-11-01

    The observables in a strong gravitational lens are usually just the image positions and sometimes the flux ratios. We develop a new and simple algorithm which allows a set of models to be fitted exactly to the observations. Taking our cue from the strong body of evidence that early-type galaxies are close to isothermal, we assume that the lens is scale-free with a flat rotation curve. External shear can be easily included. Our algorithm allows full flexibility regarding the angular structure of the lensing potential. Importantly, all the free parameters enter linearly into the model and so the lens and flux ratio equations can always be solved by straightforward matrix inversion. The models are only restricted by the fact that the surface mass density must be positive. We use this new algorithm to examine some of the claims made for anomalous flux ratios. It has been argued that such anomalies betray the presence of substantial amounts of substructure in the lensing galaxy. We demonstrate by explicit construction that some of the lens systems for which substructure has been claimed can be well fitted by smooth lens models. This is especially the case when the systematic errors in the flux ratios (caused by microlensing or differential extinction) are taken into account. However, there is certainly one system (B1422+231) for which the existing smooth models are definitely inadequate and for which substructure may be implicated. Within a few tens of kpc of the lensing galaxy centre, dynamical friction and tidal disruption are known to be very efficient at dissolving any substructure. Very little substructure is projected within the Einstein radius. The numbers of strong lenses for which substructure is currently being claimed may be so large that this contradicts rather than supports cold dark matter theories.

  5. MUSE spectroscopy and deep observations of a unique compact JWST target, lensing cluster CLIO

    Science.gov (United States)

    Griffiths, Alex; Conselice, Christopher J.; Alpaslan, Mehmet; Frye, Brenda L.; Diego, Jose M.; Zitrin, Adi; Yan, Haojing; Ma, Zhiyuan; Barone-Nugent, Robert; Bhatawdekar, Rachana; Driver, Simon P.; Robotham, Aaron S. G.; Windhorst, Rogier A.; Wyithe, J. Stuart B.

    2018-04-01

    We present the results of a VLT MUSE/FORS2 and Spitzer survey of a unique compact lensing cluster CLIO at z = 0.42, discovered through the GAMA survey using spectroscopic redshifts. Compact and massive clusters such as this are understudied, but provide a unique prospective on dark matter distributions and for finding background lensed high-z galaxies. The CLIO cluster was identified for follow-up observations due to its almost unique combination of high-mass and dark matter halo concentration, as well as having observed lensing arcs from ground-based images. Using dual band optical and infra-red imaging from FORS2 and Spitzer, in combination with MUSE optical spectroscopy we identify 89 cluster members and find background sources out to z = 6.49. We describe the physical state of this cluster, finding a strong correlation between environment and galaxy spectral type. Under the assumption of an NFW profile, we measure the total mass of CLIO to be M200 = (4.49 ± 0.25) × 1014 M⊙. We build and present an initial strong-lensing model for this cluster, and measure a relatively low intracluster light (ICL) fraction of 7.21 ± 1.53 per cent through galaxy profile fitting. Due to its strong potential for lensing background galaxies and its low ICL, the CLIO cluster will be a target for our 110 h James Webb Space Telescope `Webb Medium-Deep Field' (WMDF) GTO program.

  6. The Sloan Lens ACS Survey. I. A Large Spectroscopically Selected Sample of Massive Early-Type Lens Galaxies

    Science.gov (United States)

    Bolton, Adam S.; Burles, Scott; Koopmans, Leon V. E.; Treu, Tommaso; Moustakas, Leonidas A.

    2006-01-01

    The Sloan Lens ACS (SLACS) Survey is an efficient Hubble Space Telescope (HST) Snapshot imaging survey for new galaxy-scale strong gravitational lenses. The targeted lens candidates are selected spectroscopically from the Sloan Digital Sky Survey (SDSS) database of galaxy spectra for having multiple nebular emission lines at a redshift significantly higher than that of the SDSS target galaxy. The SLACS survey is optimized to detect bright early-type lens galaxies with faint lensed sources in order to increase the sample of known gravitational lenses suitable for detailed lensing, photometric, and dynamical modeling. In this paper, the first in a series on the current results of our HST Cycle 13 imaging survey, we present a catalog of 19 newly discovered gravitational lenses, along with nine other observed candidate systems that are either possible lenses, nonlenses, or nondetections. The survey efficiency is thus >=68%. We also present Gemini 8 m and Magellan 6.5 m integral-field spectroscopic data for nine of the SLACS targets, which further support the lensing interpretation. A new method for the effective subtraction of foreground galaxy images to reveal faint background features is presented. We show that the SLACS lens galaxies have colors and ellipticities typical of the spectroscopic parent sample from which they are drawn (SDSS luminous red galaxies and quiescent MAIN sample galaxies), but are somewhat brighter and more centrally concentrated. Several explanations for the latter bias are suggested. The SLACS survey provides the first statistically significant and homogeneously selected sample of bright early-type lens galaxies, furnishing a powerful probe of the structure of early-type galaxies within the half-light radius. The high confirmation rate of lenses in the SLACS survey suggests consideration of spectroscopic lens discovery as an explicit science goal of future spectroscopic galaxy surveys.

  7. Planck intermediate results XXVII. High-redshift infrared galaxy overdensity candidates and lensed sources discovered by Planck and confirmed by Herschel-SPIRE⋆

    DEFF Research Database (Denmark)

    Aghanim, N.; Altieri, B.; Arnaud, M.

    2015-01-01

    with high significance, half of the sample showing statistical significance above 10 sigma. The SPIRE photometric redshifts of galaxies in overdensities suggest a peak at z similar or equal to 2, assuming a single common dust temperature for the sources of T-d = 35 K. Under this assumption, we derive......) directly from the maps and from the Planck Catalogue of Compact Sources (PCCS), all satisfy the criterion of having their rest-frame far-infrared peak redshifted to the frequency range 353-857 GHz. This colour-selection favours galaxies in the redshift range z = 2-4, which we consider as cold peaks...... in the cosmic infrared background. With a 4.'5 beam at the four highest frequencies, our sample is expected to include overdensities of galaxies in groups or clusters, lensed galaxies, and chance line-of-sight projections. We perform a dedicated Herschel-SPIRE follow-up of 234 such Planck targets, finding...

  8. THE SLACS SURVEY. VIII. THE RELATION BETWEEN ENVIRONMENT AND INTERNAL STRUCTURE OF EARLY-TYPE GALAXIES

    NARCIS (Netherlands)

    Treu, Tommaso; Gavazzi, Raphael; Gorecki, Alexia; Marshall, Philip J.; Koopmans, Leon V. E.; Bolton, Adam S.; Moustakas, Leonidas A.; Burles, Scott

    2009-01-01

    We study the relation between the internal structure of early-type galaxies and their environment using 70 strong gravitational lenses from the SLACS Survey. The Sloan Digital Sky Survey (SDSS) database is used to determine two measures of overdensity of galaxies around each lens-the projected

  9. LENS MODEL AND TIME DELAY PREDICTIONS FOR THE SEXTUPLY LENSED QUASAR SDSS J2222+2745

    Energy Technology Data Exchange (ETDEWEB)

    Sharon, Keren; Johnson, Traci L.; Paterno-Mahler, Rachel [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Bayliss, Matthew B. [Colby College, 5800 Mayflower Hill, Waterville, 04901, Maine (United States); Dahle, Håkon [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); Florian, Michael K.; Gladders, Michael D. [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Rigby, Jane R. [Astrophysics Science Division, Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Whitaker, Katherine E. [Department of Astronomy, University of Massachusetts-Amherst, Amherst, MA 01003 (United States); Wuyts, Eva, E-mail: kerens@umich.edu [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstr. 1, D-85741 Garching (Germany)

    2017-01-20

    SDSS J2222+2745 is a galaxy cluster at z = 0.49, strongly lensing a quasar at z = 2.805 into six widely separated images. In recent Hubble Space Telescope imaging of the field, we identify additional multiply lensed galaxies and confirm the sixth quasar image that was identified by Dahle et al. We used the Gemini-North telescope to measure a spectroscopic redshift of z = 4.56 of one of the lensed galaxies. These data are used to refine the lens model of SDSS J2222+2745, compute the time delay and magnifications of the lensed quasar images, and reconstruct the source image of the quasar host and a lensed galaxy at z = 2.3. This galaxy also appears in absorption in our Gemini spectra of the lensed quasar, at a projected distance of 34 kpc. Our model is in agreement with the recent time delay measurements of Dahle et al., who found τ {sub AB} = 47.7 ± 6.0 days and τ {sub AC} = −722 ± 24 days. We use the observed time delays to further constrain the model, and find that the model-predicted time delays of the three faint images of the quasar are τ {sub AD} = 502 ± 68 days, τ {sub AE} = 611 ± 75 days, and τ {sub AF} = 415 ± 72 days. We have initiated a follow-up campaign to measure these time delays with Gemini North. Finally, we present initial results from an X-ray monitoring program with Swift , indicating the presence of hard X-ray emission from the lensed quasar, as well as extended X-ray emission from the cluster itself, which is consistent with the lensing mass measurement and the cluster velocity dispersion.

  10. Dark Energy Survey Year 1 Results: The Impact of Galaxy Neighbours on Weak Lensing Cosmology with im3shape

    Energy Technology Data Exchange (ETDEWEB)

    Samuroff, S.; et al.

    2017-08-04

    We use a suite of simulated images based on Year 1 of the Dark Energy Survey to explore the impact of galaxy neighbours on shape measurement and shear cosmology. The hoopoe image simulations include realistic blending, galaxy positions, and spatial variations in depth and PSF properties. Using the im3shape maximum-likelihood shape measurement code, we identify four mechanisms by which neighbours can have a non-negligible influence on shear estimation. These effects, if ignored, would contribute a net multiplicative bias of $m \\sim 0.03 - 0.09$ in the DES Y1 im3shape catalogue, though the precise impact will be dependent on both the measurement code and the selection cuts applied. This can be reduced to percentage level or less by removing objects with close neighbours, at a cost to the effective number density of galaxies $n_\\mathrm{eff}$ of 30%. We use the cosmological inference pipeline of DES Y1 to explore the cosmological implications of neighbour bias and show that omitting blending from the calibration simulation for DES Y1 would bias the inferred clustering amplitude $S_8\\equiv \\sigma_8 (\\Omega _\\mathrm{m} /0.3)^{0.5}$ by $2 \\sigma$ towards low values. Finally, we use the hoopoe simulations to test the effect of neighbour-induced spatial correlations in the multiplicative bias. We find the impact on the recovered $S_8$ of ignoring such correlations to be subdominant to statistical error at the current level of precision.

  11. Reconstructing the lensing mass in the Universe from photometric catalogue data

    NARCIS (Netherlands)

    Collett, Thomas E.; Marshall, Philip J.; Auger, Matthew W.; Hilbert, Stefan; Suyu, Sherry H.; Greene, Zachary; Treu, Tommaso; Fassnacht, Christopher D.; Koopmans, Leon V. E.; Bradac, Marusa; Blandford, Roger D.

    2013-01-01

    High precision cosmological distance measurements towards individual objects such as time delay gravitational lenses or Type Ia supernovae are affected by weak lensing perturbations by galaxies and groups along the line of sight. In time delay gravitational lenses, 'external convergence',

  12. Gravitational lenses and cosmological evolution

    International Nuclear Information System (INIS)

    Peacock, J.A.

    1982-01-01

    The effect of gravitational lensing on the apparent cosmological evolution of extragalactic radio sources is investigated. Models for a lens population consisting of galaxies and clusters of galaxies are constructed and used to calculate the distribution of amplification factors caused by lensing. Although many objects at high redshifts are predicted to have flux densities altered by 10 to 20 per cent relative to a homogeneous universe, flux conservation implies that de-amplification is as common as amplification. The effects on cosmological evolution as inferred from source counts and redshift data are thus relatively small; the slope of the counts is not large enough for intrinsically rare lensing events of high amplitude to corrupt observed samples. Lensing effects may be of greater importance for optically selected quasars, where lenses of mass as low as approximately 10 -4 solar mass can cause large amplifications. (author)

  13. Gravitational lenses and. cosmological evolution

    Science.gov (United States)

    Peacock, J. A.

    1982-06-01

    The effect of gravitational lensing on the apparent evolution of extragalactic radio sources is investigated. Models for a lens population consisting of galaxies and clusters of galaxies are constructed used to calculate the distribution of amplification factors caused by lensing ,. Although many objects at high redshifts are predicted to have flux densities altered by 10-20 per cent relative to a homogeneous universe, flux conservation implies that de-amplification is as common as amplification. The effect on cosmological evolution as inferred from source counts and redshift data are thus relatively small; the slope of the counts is not large enough for intrinsically rare lensing events of high amplitude to corrupt observed sample Lensing effects may be of greater importance for optically selected quasar where lenses of mass as low as ˜10-4 Msun can cause large amplifications.

  14. Dark Energy Survey Year 1 results: the impact of galaxy neighbours on weak lensing cosmology with IM3SHAPE

    Science.gov (United States)

    Samuroff, S.; Bridle, S. L.; Zuntz, J.; Troxel, M. A.; Gruen, D.; Rollins, R. P.; Bernstein, G. M.; Eifler, T. F.; Huff, E. M.; Kacprzak, T.; Krause, E.; MacCrann, N.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Crocce, M.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; Desai, S.; Doel, P.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Jarvis, M.; Jeltema, T.; Kirk, D.; Kuehn, K.; Kuhlmann, S.; Li, T. S.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Menanteau, F.; Miquel, R.; Nord, B.; Ogando, R. L. C.; Plazas, A. A.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D. L.; DES Collaboration

    2018-04-01

    We use a suite of simulated images based on Year 1 of the Dark Energy Survey to explore the impact of galaxy neighbours on shape measurement and shear cosmology. The HOOPOE image simulations include realistic blending, galaxy positions, and spatial variations in depth and point spread function properties. Using the IM3SHAPE maximum-likelihood shape measurement code, we identify four mechanisms by which neighbours can have a non-negligible influence on shear estimation. These effects, if ignored, would contribute a net multiplicative bias of m ˜ 0.03-0.09 in the Year One of the Dark Energy Survey (DES Y1) IM3SHAPE catalogue, though the precise impact will be dependent on both the measurement code and the selection cuts applied. This can be reduced to percentage level or less by removing objects with close neighbours, at a cost to the effective number density of galaxies neff of 30 per cent. We use the cosmological inference pipeline of DES Y1 to explore the cosmological implications of neighbour bias and show that omitting blending from the calibration simulation for DES Y1 would bias the inferred clustering amplitude S8 ≡ σ8(Ωm/0.3)0.5 by 2σ towards low values. Finally, we use the HOOPOE simulations to test the effect of neighbour-induced spatial correlations in the multiplicative bias. We find the impact on the recovered S8 of ignoring such correlations to be subdominant to statistical error at the current level of precision.

  15. The Sloan Lens ACS Survey. I. A large spectroscopically selected sample of massive early-type lens galaxies

    NARCIS (Netherlands)

    Bolton, AS; Burles, S; Koopmans, LVE; Treu, T; Moustakas, LA

    2006-01-01

    The Sloan Lens ACS (SLACS) Survey is an efficient Hubble Space Telescope (HST) Snapshot imaging survey for new galaxy-scale strong gravitational lenses. The targeted lens candidates are selected spectroscopically from the Sloan Digital Sky Survey (SDSS) database of galaxy spectra for having multiple

  16. Pulsar lensing geometry

    Science.gov (United States)

    Liu, Siqi; Pen, Ue-Li; Macquart, J.-P.; Brisken, Walter; Deller, Adam

    2016-05-01

    We test the inclined sheet pulsar scintillation model (Pen & Levin) against archival very long baseline interferometry (VLBI) data on PSR 0834+06 and show that its scintillation properties can be precisely reproduced by a model in which refraction occurs on two distinct lens planes. These data strongly favour a model in which grazing-incidence refraction instead of diffraction off turbulent structures is the primary source of pulsar scattering. This model can reproduce the parameters of the observed diffractive scintillation with an accuracy at the percent level. Comparison with new VLBI proper motion results in a direct measure of the ionized interstellar medium (ISM) screen transverse velocity. The results are consistent with ISM velocities local to the PSR 0834+06 sight-line (through the Galaxy). The simple 1-D structure of the lenses opens up the possibility of using interstellar lenses as precision probes for pulsar lens mapping, precision transverse motions in the ISM, and new opportunities for removing scattering to improve pulsar timing. We describe the parameters and observables of this double screen system. While relative screen distances can in principle be accurately determined, a global conformal distance degeneracy exists that allows a rescaling of the absolute distance scale. For PSR B0834+06, we present VLBI astrometry results that provide (for the first time) a direct measurement of the distance of the pulsar. For most of the recycled millisecond pulsars that are the targets of precision timing observations, the targets where independent distance measurements are not available. The degeneracy presented in the lens modelling could be broken if the pulsar resides in a binary system.

  17. A Comparison Of X-ray, Radio, And Lensing Results With GBT+MUSTANG Observations Of The Sunyaev-Zel'dovich Effect In Galaxy Clusters

    Science.gov (United States)

    Mroczkowski, Tony; Devlin, M.; Dicker, S.; Korngut, P.; Mason, B.; Reese, E.; Romero, C.; Sarazin, C.; Sun, M.; Young, A.; Lensing, Cluster; survey with Hubble, Supernova

    2012-05-01

    We present recent high angular resolution (9") Sunyaev-Zel'dovich effect (SZE) observations with MUSTANG, a 90-GHz bolometric receiver on the 100-meter Green Bank Telescope (GBT). MUSTANG is now imaging a sample of clusters with complementary Chandra X-ray observations, HST optical observations that probe the mass distribution through strong and weak lensing, radio observations that probe the non-thermal component of the intra-cluster gas, and lower resolution SZE observations that can recover larger scales (>1'). The MUSTANG observations, which will be used to assess the impact of substructure on SZE scaling relations, are some of the highest resolution SZE images to date, and are revealing complex pressure substructures in intermediate redshift clusters. Combined, these observations reveal complicated cluster dynamics, which must be understood in order to use clusters as cosmological probes.

  18. The mass-temperature relation for clusters of galaxies

    DEFF Research Database (Denmark)

    Hjorth, J.; Oukbir, J.; van Kampen, E.

    1998-01-01

    temperatures measured with ASCA and masses inferred from weak and strong gravitational lensing. The surface lensing masses are deprojected in accordance with N-body simulations and analytic results. The data are well-fitted by the mass-temperature relation and are consistent with the empirical normalization...... with wide-held HST imaging could provide a sensitive test of the normalization and intrinsic scatter of the relation, resulting in a powerful and expedient way of measuring masses of clusters of galaxies. In addition, as M(r)/r las derived from lensing) is dependent on the cosmological model at high...

  19. VizieR Online Data Catalog: Lensed z~6-8 galaxies behind CLASH clusters (Bradley+, 2014)

    Science.gov (United States)

    Bradley, L. D.; Zitrin, A.; Coe, D.; Bouwens, R.; Postman, M.; Balestra, I.; Grillo, C.; Monna, A.; Rosati, P.; Seitz, S.; Host, O.; Lemze, D.; Moustakas, J.; Moustakas, L. A.; Shu, X.; Zheng, W.; Broadhurst, T.; Carrasco, M.; Jouvel, S.; Koekemoer, A.; Medezinski, E.; Meneghetti, M.; Nonino, M.; Smit, R.; Umetsu, K.; Bartelmann, M.; Benitez, N.; Donahue, M.; Ford, H.; Infante, L.; Jimenez-Teja, Y.; Kelson, D.; Lahav, O.; Maoz, D.; Melchior, P.; Merten, J.; Molino, A.

    2017-04-01

    CLASH is a 524 orbit multi-cycle treasury program to observe 25 galaxy clusters to a total depth of 20 orbits each, incorporating archival HST data for our cluster sample whenever possible (Postman et al. 2012, J/ApJS/199/25). Each cluster is observed using WFC3/UVIS, ACS/WFC, and WFC3/IR to obtain imaging in 16 broadband filters spanning from 0.2 to 1.7 um (for the throughput curves of each filter, see Postman et al. 2012, J/ApJS/199/25 or Jouvel et al. 2014, J/A+A/562/A86). We used SExtractor version 2.5.0 (Bertin & Arnouts 1996A&AS..117..393B) in dual-image mode to perform object detection and photometry. For each of our 18 clusters, we constructed a detection image by performing an inverse-variance weighted sum of the images in all five WFC3/IR bands: Y105, J110, J125, JH140, and H160. The local background was measured within a rectangular annulus (default width 24 pixels) and sources were required to be detected at >1σ significance over a minimum area of nine contiguous pixels. (4 data files).

  20. Photometry of High-Redshift Gravitationally Lensed Type Ia Supernovae

    Science.gov (United States)

    Haynie, Annastasia

    2018-01-01

    Out of more than 1100 well-identified Type Ia Supernovae, only roughly 10 of them are at z> 1.5. High redshift supernovae are hard to detect but this is made easier by taking advantage of the effects of gravitational lensing, which magnifies objects in the background field of massive galaxy clusters. Supernova Nebra (z= ~1.8), among others, was discovered during observations taken as part of the RELICS survey, which focused on fields of view that experience strong gravitational lensing effects. SN Nebra, which sits behind galaxy cluster Abell 1763, is magnified and therefore appears closer and easier to see than with HST alone. Studying high-redshift supernovae like SN Nebra is an important step towards creating cosmological models that accurately describe the behavior of dark energy in the early Universe. Recent efforts have been focused on improving photometry and the building and fitting of preliminary light curves.

  1. The mass-metallicity relations for gas and stars in star-forming galaxies: strong outflow versus variable IMF

    Science.gov (United States)

    Lian, Jianhui; Thomas, Daniel; Maraston, Claudia; Goddard, Daniel; Comparat, Johan; Gonzalez-Perez, Violeta; Ventura, Paolo

    2018-02-01

    We investigate the mass-metallicity relations for the gaseous (MZRgas) and stellar components (MZRstar) of local star-forming galaxies based on a representative sample from Sloan Digital Sky Survey Data Release 12. The mass-weighted average stellar metallicities are systematically lower than the gas metallicities. This difference in metallicity increases towards galaxies with lower masses and reaches 0.4-0.8 dex at 109 M⊙ (depending on the gas metallicity calibration). As a result, the MZRstar is much steeper than the MZRgas. The much lower metallicities in stars compared to the gas in low-mass galaxies imply dramatic metallicity evolution with suppressed metal enrichment at early times. The aim of this paper is to explain the observed large difference in gas and stellar metallicity and to infer the origin of the mass-metallicity relations. To this end we develop a galactic chemical evolution model accounting for star formation, gas inflow and outflow. By combining the observed mass-metallicity relation for both gas and stellar components to constrain the models, we find that only two scenarios are able to reproduce the observations. Either strong metal outflow or a steep initial mass function (IMF) slope at early epochs of galaxy evolution is needed. Based on these two scenarios, for the first time we successfully reproduce the observed MZRgas and MZRstar simultaneously, together with other independent observational constraints in the local Universe. Our model also naturally reproduces the flattening of the MZRgas at the high-mass end leaving the MZRstar intact, as seen in observational data.

  2. Galaxy Clustering and Merging

    Science.gov (United States)

    Wen, Z. L.

    2011-09-01

    Cosmic structure formation and galaxy evolution are important subjects in astrophysics. The thesis consists of two parts: (1) identification of galaxy clusters and studies of their properties; (2) identification of the mergers of luminous early-type galaxies and gravitational waves (GWs). Most of the galaxy clusters in the previous catalogs have redshifts z≤0.3 with richnesses not well determined. Using the photometric redshifts of galaxies from the Sixth Data Release of Sloan Digital Sky Survey (SDSS DR6), we identify 39716 clusters in the redshift range of 0.05contamination rate and the completeness of member galaxies are found to be ˜20% and ∼90%, respectively. Monte Carlo simulations show that the cluster detection rate is larger than 90% for the massive (M_{200}>2×10^{14} M_{⊙}) clusters with z≤0.42. The false detection rate is ˜5%. We obtain the richness, the summed luminosity and the gross galaxy number. They are tightly correlated with the X-ray luminosity and the temperature of clusters. The cluster mass is also found to be tightly related to the richness and summed luminosity in the form of M_{200}∝ R^{1.90±0.04} and M_{200}∝ L_r^{1.64±0.03}, respectively. In addition, 790 new candidates of X-ray clusters are found by cross-identification of our clusters with the unidentified source list of the ROSAT X-ray survey. By visual inspections of the detected clusters, we recognize 13 gravitational lensing candidates. Among all the candidates, four can be sure strong lensing systems even without further spectroscopic identification, five are more probable and four are possible lenses. In the second part, we discuss the merger rates of luminous early-type galaxies and GWs from the mergers of supermassive black holes (SMBHs). The merger rates of massive galaxies in the local universe are still not clear so far. We select a large sample (1209) of close pairs of galaxies with projected separations 7 kpc

  3. A connection between extremely strong damped Lyman-α systems and Lyman-α emitting galaxies at small impact parameters

    Science.gov (United States)

    Noterdaeme, P.; Petitjean, P.; Pâris, I.; Cai, Z.; Finley, H.; Ge, J.; Pieri, M. M.; York, D. G.

    2014-06-01

    We present a study of ~100 high redshift (z ~ 2-4) extremely strong damped Lyman-α systems (ESDLA, with N(H i) ≥ 0.5 × 1022cm-2) detected in quasar spectra from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey (SDSS-III) Data Release 11. We study the neutral hydrogen, metal, and dust content of this elusive population of absorbers and confirm our previous finding that the high column density end of the N(H i) frequency distribution has a relatively shallow slope with power-law index -3.6, similar to what is seen from 21-cm maps in nearby galaxies. The stacked absorption spectrum indicates a typical metallicity ~1/20th solar, similar to the mean metallicity of the overall DLA population. The relatively small velocity extent of the low-ionisation lines suggests that ESDLAs do not arise from large-scale flows of neutral gas. The high column densities involved are in turn more similar to what is seen in DLAs associated with gamma-ray burst afterglows (GRB-DLAs), which are known to occur close to star-forming regions. This indicates that ESDLAs arise from a line of sight passing at very small impact parameters from the host galaxy, as observed in nearby galaxies. This is also supported by simple theoretical considerations and recent high-z hydrodynamical simulations. We strongly substantiate this picture by the first statistical detection of Ly α emission with ⟨LESDLA(Ly α)⟩ ≃ (0.6 ± 0.2) × 1042 erg s-1 in the core of ESDLAs (corresponding to about 0.1 L⋆ at z ~ 2-3), obtained through stacking the fibre spectra (of radius 1 ″ corresponding to ~8 kpc at z ~ 2.5). Statistical errors on the Ly α luminosity are of the order of 0.1 × 1042 erg s-1 but we caution that the measured Ly α luminosity may be overestimated by ~35% due to sky light residuals and/or FUV emission from the quasar host and that we have neglected flux-calibration uncertainties. We estimate a more conservative uncertainty of 0.2 × 1042 erg s-1. The

  4. Gravitational Lensing Mass Mapping with Gaussian Processes

    Science.gov (United States)

    Schneider, Michael; Ng, Karen; Dawson, William; Marshall, Phil; Meyers, Joshua; Bard, Deborah

    2018-01-01

    We infer gravitational lensing shear and convergence fields from galaxy ellipticity catalogs under a Gaussian Process prior for the lensing potential. We demonstrate the performance of our algorithm with simulated Gaussian-distributed cosmological lensing shear maps and a reconstruction of the mass distribution of the merging galaxy cluster Abell 781 using galaxy ellipticities measured with the Deep Lens Survey. Given interim posterior samples of lensing shear or convergence fields on the sky, we describe an algorithm to infer cosmological parameters via lens field marginalization. In the most general formulation of our algorithm we make no assumptions about weak shear orGaussian-distributed shape noise or shears. Because we require solutions and matrix determinants of a linear system of dimension that scales with the number of galaxies, we present computational performance metrics with approximate algorithms that introduce sparsity in the Gaussian Process kernel.

  5. The Morphologies and Alignments of Gas, Mass, and the Central Galaxies of CLASH Clusters of Galaxies

    Science.gov (United States)

    Donahue, Megan; Ettori, Stefano; Rasia, Elena; Sayers, Jack; Zitrin, Adi; Meneghetti, Massimo; Voit, G. Mark; Golwala, Sunil; Czakon, Nicole; Yepes, Gustavo; Baldi, Alessandro; Koekemoer, Anton; Postman, Marc

    2016-03-01

    Morphology is often used to infer the state of relaxation of galaxy clusters. The regularity, symmetry, and degree to which a cluster is centrally concentrated inform quantitative measures of cluster morphology. The Cluster Lensing and Supernova survey with Hubble Space Telescope (CLASH) used weak and strong lensing to measure the distribution of matter within a sample of 25 clusters, 20 of which were deemed to be “relaxed” based on their X-ray morphology and alignment of the X-ray emission with the Brightest Cluster Galaxy. Toward a quantitative characterization of this important sample of clusters, we present uniformly estimated X-ray morphological statistics for all 25 CLASH clusters. We compare X-ray morphologies of CLASH clusters with those identically measured for a large sample of simulated clusters from the MUSIC-2 simulations, selected by mass. We confirm a threshold in X-ray surface brightness concentration of C ≳ 0.4 for cool-core clusters, where C is the ratio of X-ray emission inside 100 h70-1 kpc compared to inside 500 {h}70-1 kpc. We report and compare morphologies of these clusters inferred from Sunyaev-Zeldovich Effect (SZE) maps of the hot gas and in from projected mass maps based on strong and weak lensing. We find a strong agreement in alignments of the orientation of major axes for the lensing, X-ray, and SZE maps of nearly all of the CLASH clusters at radii of 500 kpc (approximately 1/2 R500 for these clusters). We also find a striking alignment of clusters shapes at the 500 kpc scale, as measured with X-ray, SZE, and lensing, with that of the near-infrared stellar light at 10 kpc scales for the 20 “relaxed” clusters. This strong alignment indicates a powerful coupling between the cluster- and galaxy-scale galaxy formation processes.

  6. First Weak-lensing Results from “See Change”: Quantifying Dark Matter in the Two z ≳ 1.5 High-redshift Galaxy Clusters SPT-CL J2040-4451 and IDCS J1426+3508

    Science.gov (United States)

    Jee, M. James; Ko, Jongwan; Perlmutter, Saul; Gonzalez, Anthony; Brodwin, Mark; Linder, Eric; Eisenhardt, Peter

    2017-10-01

    We present a weak-lensing study of SPT-CL J2040-4451 and IDCS J1426+3508 at z = 1.48 and 1.75, respectively. The two clusters were observed in our “See Change” program, a Hubble Space Telescope survey of 12 massive high-redshift clusters aimed at high-z supernova measurements and weak-lensing estimation of accurate cluster masses. We detect weak but significant galaxy shape distortions using infrared images from the Wide Field Camera 3 (WFC3), which has not yet been used for weak-lensing studies. Both clusters appear to possess relaxed morphology in projected mass distribution, and their mass centroids agree nicely with those defined by both the galaxy luminosity and X-ray emission. Using a Navarro-Frenk-White profile, for which we assume that the mass is tightly correlated with the concentration parameter, we determine the masses of SPT-CL J2040-4451 and IDCS J1426 + 3508 to be {M}200={8.6}-1.4+1.7× {10}14 {M}⊙ and {2.2}-0.7+1.1× {10}14 {M}⊙ , respectively. The weak-lensing mass of SPT-CL J2040-4451 shows that the cluster is clearly a rare object. Adopting the central value, the expected abundance of such a massive cluster at z≳ 1.48 is only ˜ 0.07 in the parent 2500 sq. deg. survey. However, it is yet premature to claim that the presence of this cluster creates a serious tension with the current ΛCDM paradigm unless that tension will remain in future studies after marginalizing over many sources of uncertainties such as the accuracy of the mass function and the mass-concentration relation at the high-mass end. The mass of IDCS J1426+3508 is in excellent agreement with our previous Advanced Camera for Surveys-based weak-lensing result, while the much higher source density from our WFC3 imaging data makes the current statistical uncertainty ˜ 40% smaller.

  7. Weak Weak Lensing : How Accurately Can Small Shears be Measured?

    NARCIS (Netherlands)

    Kuijken, K.

    2006-01-01

    Abstract: Now that weak lensing signals on the order of a percent are actively being searched for (cosmic shear, galaxy-galaxy lensing, large radii in clusters...) it is important to investigate how accurately weak shears can be determined. Many systematic effects are present, and need to be

  8. Gravitational Lensing of Supernova Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Mena, Olga; /Fermilab /Rome U.; Mocioiu, Irina; /Penn State U.; Quigg, Chris; /Fermilab

    2006-10-01

    The black hole at the center of the galaxy is a powerful lens for supernova neutrinos. In the very special circumstance of a supernova near the extended line of sight from Earth to the galactic center, lensing could dramatically enhance the neutrino flux at Earth and stretch the neutrino pulse.

  9. The Optical Gravitational Lensing Experiment

    Science.gov (United States)

    Udalski, A.; Szymanski, M.; Kaluzny, J.; Kubiak, M.; Mateo, Mario

    1992-01-01

    The technical features are described of the Optical Gravitational Lensing Experiment, which aims to detect a statistically significant number of microlensing events toward the Galactic bulge. Clusters of galaxies observed during the 1992 season are listed and discussed and the reduction methods are described. Future plans are addressed.

  10. Cosmology with weak lensing surveys

    International Nuclear Information System (INIS)

    Munshi, Dipak; Valageas, Patrick; Waerbeke, Ludovic van; Heavens, Alan

    2008-01-01

    Weak gravitational lensing is responsible for the shearing and magnification of the images of high-redshift sources due to the presence of intervening matter. The distortions are due to fluctuations in the gravitational potential, and are directly related to the distribution of matter and to the geometry and dynamics of the Universe. As a consequence, weak gravitational lensing offers unique possibilities for probing the Dark Matter and Dark Energy in the Universe. In this review, we summarise the theoretical and observational state of the subject, focussing on the statistical aspects of weak lensing, and consider the prospects for weak lensing surveys in the future. Weak gravitational lensing surveys are complementary to both galaxy surveys and cosmic microwave background (CMB) observations as they probe the unbiased non-linear matter power spectrum at modest redshifts. Most of the cosmological parameters are accurately estimated from CMB and large-scale galaxy surveys, so the focus of attention is shifting to understanding the nature of Dark Matter and Dark Energy. On the theoretical side, recent advances in the use of 3D information of the sources from photometric redshifts promise greater statistical power, and these are further enhanced by the use of statistics beyond two-point quantities such as the power spectrum. The use of 3D information also alleviates difficulties arising from physical effects such as the intrinsic alignment of galaxies, which can mimic weak lensing to some extent. On the observational side, in the next few years weak lensing surveys such as CFHTLS, VST-KIDS and Pan-STARRS, and the planned Dark Energy Survey, will provide the first weak lensing surveys covering very large sky areas and depth. In the long run even more ambitious programmes such as DUNE, the Supernova Anisotropy Probe (SNAP) and Large-aperture Synoptic Survey Telescope (LSST) are planned. Weak lensing of diffuse components such as the CMB and 21 cm emission can also

  11. Dynamics of Galaxy Clusters and their Outskirts

    DEFF Research Database (Denmark)

    Falco, Martina

    Galaxy clusters have demonstrated to be powerful probes of cosmology, since their mass and abundance depend on the cosmological model that describes the Universe and on the gravitational formation process of cosmological structures. The main challenge in using clusters to constrain cosmology...... is that their masses cannot be measured directly, but need to be inferred indirectly through their observable properties. The most common methods extract the cluster mass from their strong X-ray emission or from the measured redshifts of the galaxy members. The gravitational lensing effect caused by clusters...... on the background galaxies is also an important trace of their total mass distribution.In the work presented within this thesis, we exploit the connection between the gravitational potential of galaxy clusters and the kinematical properties of their surroundings, in order to determine the total cluster mass...

  12. A strong magnetic field around the supermassive black hole at the centre of the Galaxy.

    Science.gov (United States)

    Eatough, R P; Falcke, H; Karuppusamy, R; Lee, K J; Champion, D J; Keane, E F; Desvignes, G; Schnitzeler, D H F M; Spitler, L G; Kramer, M; Klein, B; Bassa, C; Bower, G C; Brunthaler, A; Cognard, I; Deller, A T; Demorest, P B; Freire, P C C; Kraus, A; Lyne, A G; Noutsos, A; Stappers, B; Wex, N

    2013-09-19

    Earth's nearest candidate supermassive black hole lies at the centre of the Milky Way. Its electromagnetic emission is thought to be powered by radiatively inefficient accretion of gas from its environment, which is a standard mode of energy supply for most galactic nuclei. X-ray measurements have already resolved a tenuous hot gas component from which the black hole can be fed. The magnetization of the gas, however, which is a crucial parameter determining the structure of the accretion flow, remains unknown. Strong magnetic fields can influence the dynamics of accretion, remove angular momentum from the infalling gas, expel matter through relativistic jets and lead to synchrotron emission such as that previously observed. Here we report multi-frequency radio measurements of a newly discovered pulsar close to the Galactic Centre and show that the pulsar's unusually large Faraday rotation (the rotation of the plane of polarization of the emission in the presence of an external magnetic field) indicates that there is a dynamically important magnetic field near the black hole. If this field is accreted down to the event horizon it provides enough magnetic flux to explain the observed emission--from radio to X-ray wavelengths--from the black hole.

  13. Active galaxies. A strong magnetic field in the jet base of a supermassive black hole.

    Science.gov (United States)

    Martí-Vidal, Ivan; Muller, Sébastien; Vlemmings, Wouter; Horellou, Cathy; Aalto, Susanne

    2015-04-17

    Active galactic nuclei (AGN) host some of the most energetic phenomena in the universe. AGN are thought to be powered by accretion of matter onto a rotating disk that surrounds a supermassive black hole. Jet streams can be boosted in energy near the event horizon of the black hole and then flow outward along the rotation axis of the disk. The mechanism that forms such a jet and guides it over scales from a few light-days up to millions of light-years remains uncertain, but magnetic fields are thought to play a critical role. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we have detected a polarization signal (Faraday rotation) related to the strong magnetic field at the jet base of a distant AGN, PKS 1830-211. The amount of Faraday rotation (rotation measure) is proportional to the integral of the magnetic field strength along the line of sight times the density of electrons. The high rotation measures derived suggest magnetic fields of at least tens of Gauss (and possibly considerably higher) on scales of the order of light-days (0.01 parsec) from the black hole. Copyright © 2015, American Association for the Advancement of Science.

  14. Evidence for strong dynamical evolution in disc galaxies through the last 11 Gyr. GHASP VIII - a local reference sample of rotating disc galaxies for high-redshift studies

    Science.gov (United States)

    Epinat, B.; Amram, P.; Balkowski, C.; Marcelin, M.

    2010-02-01

    Due to their large distances, high-redshift galaxies are observed at a very low spatial resolution. In order to disentangle the evolution of galaxy kinematics from low-resolution effects, we have used Fabry-Pérot 3D Hα data cubes of 153 nearby isolated galaxies selected from the Gassendi Hα survey of SPirals (GHASP) to simulate data cubes of galaxies at redshift z = 1.7 using a pixel size of 0.125arcsec and a 0.5arcsec seeing. We have derived Hα flux, velocity and velocity dispersion maps. From these data, we show that the inner velocity gradient is lowered and is responsible for a peak in the velocity dispersion map. This signature in the velocity dispersion map can be used to make a kinematical classification, but misses 30 per cent of the regular rotating discs in our sample. Toy models of rotating discs have been built to recover the kinematical parameters and the rotation curves from low-resolution data. The poor resolution makes the kinematical inclination uncertain and the position of galaxy centre difficult to recover. The position angle of the major axis is retrieved with an accuracy higher than 5° for 70 per cent of the sample. Toy models also enable us to retrieve statistically the maximum velocity and the mean velocity dispersion of galaxies with a satisfying accuracy. This validates the use of the Tully-Fisher relation for high-redshift galaxies, but the loss of resolution induces a lower slope of the relation despite the beam smearing corrections. We conclude that the main kinematic parameters are better constrained for galaxies with an optical radius at least as large as three times the seeing. The simulated data have been compared to actual high-redshift galaxy data observed with VLT/SINFONI, Keck/OSIRIS and VLT/GIRAFFE in the redshift range 3 > z > 0.4, allowing us to follow galaxy evolution from 11 to 4Gyr. For rotation-dominated galaxies, we find that the use of the velocity dispersion central peak as a signature of rotating discs may

  15. The Discovery and Properties of a Newly Discovered Compact Lensing Cluster CLIO at z=0.42: A unique JWST target

    Science.gov (United States)

    Conselice, Christopher; Griffiths, Alex; Alpaslan, Mehmet; Frye, Brenda; Zitrin, Adi; Diego, Jose; Yan, Haojing; Ma, Zhiyuan; Barone-Nugent, Robert; Bhatawdekar, Rachana; Driver, Simon; Robotham, Aaron; Windhorst, Rogier; Wyithe, Stuart

    2018-01-01

    We present the results of a new study of a unique compact lensing cluster we name CLIO at redshift z = 0.42, discovered through the GAMA survey using spectroscopic redshifts. Compact and massive clusters such as this are understudied, but provide a unique prospective on dark matter distributions and for finding background lensed high-z galaxies. The CLIO cluster was identied for follow up observations due to its almost unique combination of high mass and dark matter halo concentration, as well as having observed lensing arcs from ground based imaging. Using deep FORS2 and Spitzer imaging in combination with MUSE optical spectroscopy we identify 89 cluster members and background sources out to z = 5.79. We describe the physical state of this cluster, finding a strong correlation between environment and galaxy spectral type. We furthermore measure the total mass of CLIO to be 4$\\times 10^{14}$ solar masses . We build and present an initial strong-lensing model for this cluster, and measure a relatively low intracluster light (ICL) fraction of ~7%. Due to its strong potential for lensing background galaxies and its low ICL, the CLIO cluster will be a target for our 110 hour JWST `Webb Medium-Deep Field' (WMDF) GTO program.

  16. Updating the (supermassive black hole mass)-(spiral arm pitch angle) relation: a strong correlation for galaxies with pseudobulges

    Science.gov (United States)

    Davis, Benjamin L.; Graham, Alister W.; Seigar, Marc S.

    2017-10-01

    We have conducted an image analysis of the (current) full sample of 44 spiral galaxies with directly measured supermassive black hole (SMBH) masses, MBH, to determine each galaxy's logarithmic spiral arm pitch angle, ϕ. For predicting black hole masses, we have derived the relation: log (MBH/M⊙) = (7.01 ± 0.07) - (0.171 ± 0.017)[|ϕ| - 15°]. The total root mean square scatter associated with this relation is 0.43 dex in the log MBH direction, with an intrinsic scatter of 0.30 ± 0.08 dex. The MBH-ϕ relation is therefore at least as accurate at predicting SMBH masses in spiral galaxies as the other known relations. By definition, the existence of an MBH-ϕ relation demands that the SMBH mass must correlate with the galaxy discs in some manner. Moreover, with the majority of our sample (37 of 44) classified in the literature as having a pseudobulge morphology, we additionally reveal that the SMBH mass correlates with the large-scale spiral pattern and thus the discs of galaxies hosting pseudobulges. Furthermore, given that the MBH-ϕ relation is capable of estimating black hole masses in bulge-less spiral galaxies, it therefore has great promise for predicting which galaxies may harbour intermediate-mass black holes (IMBHs, MBH < 105 M⊙). Extrapolating from the current relation, we predict that galaxies with |ϕ| ≥ 26.7° should possess IMBHs.

  17. Deficiency of normal galaxies among Markaryan galaxies

    International Nuclear Information System (INIS)

    Iyeveer, M.M.

    1986-01-01

    Comparison of the morphological types of Markaryan galaxies and other galaxies in the Uppsala catalog indicates a strong deficiency of normal ellipticals among the Markaryan galaxies, for which the fraction of type E galaxies is ≤ 1% against 10% among the remaining galaxies. Among the Markaryan galaxies, an excess of barred galaxies is observed - among the Markaryan galaxies with types Sa-Scd, approximately half or more have bars, whereas among the remaining galaxies of the same types bars are found in about 1/3

  18. Weighing 'El Gordo' with a precision scale: Hubble space telescope weak-lensing analysis of the merging galaxy cluster ACT-CL J0102–4915 at z = 0.87

    Energy Technology Data Exchange (ETDEWEB)

    Jee, M. James; Ng, Karen Y. [Department of Physics, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States); Hughes, John P.; Menanteau, Felipe [Department of Physics and Astronomy, Rutgers University, 136 Frelinghysen Rd., Piscataway, NJ 08854 (United States); Sifón, Cristóbal [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Mandelbaum, Rachel [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Barrientos, L. Felipe; Infante, Leopoldo [Departamento de Astronomía y Astrofísica, Facultad de Física, Ponticia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile)

    2014-04-10

    We present a Hubble Space Telescope weak-lensing study of the merging galaxy cluster 'El Gordo' (ACT-CL J0102–4915) at z = 0.87 discovered by the Atacama Cosmology Telescope (ACT) collaboration as the strongest Sunyaev-Zel'dovich decrement in its ∼1000 deg{sup 2} survey. Our weak-lensing analysis confirms that ACT-CL J0102–4915 is indeed an extreme system consisting of two massive (≳ 10{sup 15} M {sub ☉} each) subclusters with a projected separation of ∼0.7 h{sub 70}{sup −1} Mpc. This binary mass structure revealed by our lensing study is consistent with the cluster galaxy distribution and the dynamical study carried out with 89 spectroscopic members. We estimate the mass of ACT-CL J0102–4915 by simultaneously fitting two axisymmetric Navarro-Frenk-White (NFW) profiles allowing their centers to vary. We use only a single parameter for the NFW mass profile by enforcing the mass-concentration relation from numerical simulations. Our Markov-Chain-Monte-Carlo analysis shows that the masses of the northwestern (NW) and the southeastern (SE) components are M{sub 200c}=(1.38±0.22)×10{sup 15} h{sub 70}{sup −1} M{sub ⊙} and (0.78±0.20)×10{sup 15} h{sub 70}{sup −1} M{sub ⊙}, respectively, where the quoted errors include only 1σ statistical uncertainties determined by the finite number of source galaxies. These mass estimates are subject to additional uncertainties (20%-30%) due to the possible presence of triaxiality, correlated/uncorrelated large scale structure, and departure of the cluster profile from the NFW model. The lensing-based velocity dispersions are 1133{sub −61}{sup +58} km s{sup −1} and 1064{sub −66}{sup +62} km s{sup −1} for the NW and SE components, respectively, which are consistent with their spectroscopic measurements (1290 ± 134 km s{sup –1} and 1089 ± 200 km s{sup –1}, respectively). The centroids of both components are tightly constrained (∼4'') and close to the optical luminosity

  19. The massive galaxy cluster XMMU J1230.3+1339 at z ˜ 1: colour-magnitude relation, Butcher-Oemler effect, X-ray and weak lensing mass estimates

    Science.gov (United States)

    Lerchster, M.; Seitz, S.; Brimioulle, F.; Fassbender, R.; Rovilos, M.; Böhringer, H.; Pierini, D.; Kilbinger, M.; Finoguenov, A.; Quintana, H.; Bender, R.

    2011-03-01

    We present results from the multiwavelength study of XMMU J1230.3+1339 at z˜ 1. We analyse deep multiband wide-field images from the Large Binocular Telescope (LBT), multi-object spectroscopy observations from VLT, as well as space-based serendipitous observations, from the GALEX and Chandra X-ray observatories. We apply a Bayesian photometric redshift code to derive the redshifts using the far-UV (FUV), near-UV (NUV) and the deep U, B, V, r, i, z data. We make further use of spectroscopic data from FORS2 to calibrate our photometric redshifts, and investigate the photometric and spectral properties of the early-type galaxies. We achieve an accuracy of ▵z/(1 +z)= 0.07 (0.04) and the fraction of catastrophic outliers is η= 13 (0) per cent, when using all (secure) spectroscopic data, respectively. The i-z against z colour-magnitude relation of the photo-z members shows a tight red sequence with a zero-point of 0.935 mag, and slope equal to -0.027. We observe evidence for a truncation at the faint end of the red-cluster-sequence and the Butcher-Oemler effect, finding a fraction of blue galaxies fb≈ 0.5. Further, we conduct a weak lensing analysis of the deep 26 × 26 arcmin r-band LBC image. The observed shear is fitted with a Single-Isothermal-Sphere and a Navarro-Frenk-White model to obtain the velocity dispersion and the model parameters, respectively. Our best-fitting values are, for the velocity dispersion σSIS= 1308 ± 284 km s-1, concentration parameter c= 4.0+14-2 and scale radius rs= 345+50-57 kpc. From a 38 ks Chandra X-ray observation we obtain an independent estimate of the cluster mass. In addition, we create a signal-to-noise ratio (S/N) map for the detection of the matter mass distribution of the cluster using the mass-aperture technique. We find excellent agreement of the mass concentration identified with weak lensing and the X-ray surface brightness. Combining our mass estimates from the kinematic, X-ray and weak lensing analyses we obtain a

  20. ALMA observations of lensed Herschel sources: testing the dark matter halo paradigm

    Science.gov (United States)

    Amvrosiadis, A.; Eales, S. A.; Negrello, M.; Marchetti, L.; Smith, M. W. L.; Bourne, N.; Clements, D. L.; De Zotti, G.; Dunne, L.; Dye, S.; Furlanetto, C.; Ivison, R. J.; Maddox, S. J.; Valiante, E.; Baes, M.; Baker, A. J.; Cooray, A.; Crawford, S. M.; Frayer, D.; Harris, A.; Michałowski, M. J.; Nayyeri, H.; Oliver, S.; Riechers, D. A.; Serjeant, S.; Vaccari, M.

    2018-04-01

    With the advent of wide-area submillimetre surveys, a large number of high-redshift gravitationally lensed dusty star-forming galaxies have been revealed. Because of the simplicity of the selection criteria for candidate lensed sources in such surveys, identified as those with S500 μm > 100 mJy, uncertainties associated with the modelling of the selection function are expunged. The combination of these attributes makes submillimetre surveys ideal for the study of strong lens statistics. We carried out a pilot study of the lensing statistics of submillimetre-selected sources by making observations with the Atacama Large Millimeter Array (ALMA) of a sample of strongly lensed sources selected from surveys carried out with the Herschel Space Observatory. We attempted to reproduce the distribution of image separations for the lensed sources using a halo mass function taken from a numerical simulation that contains both dark matter and baryons. We used three different density distributions, one based on analytical fits to the haloes formed in the EAGLE simulation and two density distributions [Singular Isothermal Sphere (SIS) and SISSA] that have been used before in lensing studies. We found that we could reproduce the observed distribution with all three density distributions, as long as we imposed an upper mass transition of ˜1013 M⊙ for the SIS and SISSA models, above which we assumed that the density distribution could be represented by a Navarro-Frenk-White profile. We show that we would need a sample of ˜500 lensed sources to distinguish between the density distributions, which is practical given the predicted number of lensed sources in the Herschel surveys.

  1. ALMA observations of lensed Herschel sources : Testing the dark-matter halo paradigm

    Science.gov (United States)

    Amvrosiadis, A.; Eales, S. A.; Negrello, M.; Marchetti, L.; Smith, M. W. L.; Bourne, N.; Clements, D. L.; De Zotti, G.; Dunne, L.; Dye, S.; Furlanetto, C.; Ivison, R. J.; Maddox, S.; Valiante, E.; Baes, M.; Baker, A. J.; Cooray, A.; Crawford, S. M.; Frayer, D.; Harris, A.; Michałowski, M. J.; Nayyeri, H.; Oliver, S.; Riechers, D. A.; Serjeant, S.; Vaccari, M.

    2018-01-01

    With the advent of wide-area submillimeter surveys, a large number of high-redshift gravitationally lensed dusty star-forming galaxies (DSFGs) has been revealed. Due to the simplicity of the selection criteria for candidate lensed sources in such surveys, identified as those with S500μm > 100 mJy, uncertainties associated with the modelling of the selection function are expunged. The combination of these attributes makes submillimeter surveys ideal for the study of strong lens statistics. We carried out a pilot study of the lensing statistics of submillimetre-selected sources by making observations with the Atacama Large Millimetre Array (ALMA) of a sample of strongly-lensed sources selected from surveys carried out with the Herschel Space Observatory. We attempted to reproduce the distribution of image separations for the lensed sources using a halo mass function taken from a numerical simulation which contains both dark matter and baryons. We used three different density distributions, one based on analytical fits to the halos formed in the EAGLE simulation and two density distributions (Singular Isothermal Sphere (SIS) and SISSA) that have been used before in lensing studies. We found that we could reproduce the observed distribution with all three density distributions, as long as we imposed an upper mass transition of ˜1013M⊙ for the SIS and SISSA models, above which we assumed that the density distribution could be represented by an NFW profile. We show that we would need a sample of ˜500 lensed sources to distinguish between the density distributions, which is practical given the predicted number of lensed sources in the Herschel surveys.

  2. Towards an understanding of dark matter: Precise gravitational lensing analysis complemented by robust photometric redshifts

    Science.gov (United States)

    Coe, Daniel Aaron

    The goal of thesis is to help scientists resolve one of the great mysteries of our time: the nature of Dark Matter. Dark Matter is currently believed to make up over 80% of the material in our universe, yet we have so far inferred but a few of its basic properties. Here we study the Dark Matter surrounding a galaxy cluster, Abell 1689, via the most direct method currently available--gravitational lensing. Abell 1689 is a "strong" gravitational lens, meaning it produces multiple images of more distant galaxies. The observed positions of these images can be measured very precisely and act as a blueprint allowing us to reconstruct the Dark Matter distribution of the lens. Until now, such mass models of Abell 1689 have reproduced the observed multiple images well but with significant positional offsets. Using a new method we develop here, we obtain a new mass model which perfectly reproduces the observed positions of 168 knots identified within 135 multiple images of 42 galaxies. An important ingredient to our mass model is the accurate measurement of distances to the lensed galaxies via their photometric redshifts. Here we develop tools which improve the accuracy of these measurements based on our study of the Hubble Ultra Deep Field, the only image yet taken to comparable depth as the magnified regions of Abell 1689. We present results both for objects in the Hubble Ultra Deep Field and for galaxies gravitationally lensed by Abell 1689. As part of this thesis, we also provide reviews of Dark Matter and Gravitational Lensing, including a chapter devoted to the mass profiles of Dark Matter halos realized in simulations. The original work presented here was performed primarily by myself under the guidance of Narciso Benítez and Holland Ford as a member of the Advanced Camera for Surveys GTO Science Team at Johns Hopkins University and the Instituto de Astrofisica de Andalucfa. My advisors served on my thesis committee along with Rick White, Gabor Domokos, and Steve

  3. A Strong-Lens Survey in AEGIS: the influence of large scalestructure

    Energy Technology Data Exchange (ETDEWEB)

    Moustakas, Leonidas A.; Marshall, Phil; Newman, Jeffrey A.; Coil,Alison L.; Cooper, Michael C.; Davis, Marc; Fassnacht, Christopher D.; Guhathakurta, Puragra; Hopkins, Andrew; Koekemoer, Anton; Konidaris,Nicholas P.; Lotz, Jennifer M.; Willmer, Christopher N. A.

    2006-10-13

    We report on the results of a visual search for galaxy-scale strong gravitational lenses over 650 arcmin{sup 2} of HST/ACS (F606W and F814W) imaging in the DEEP2-Extended Groth Strip (EGS). In addition to a previously-known Einstein Cross also found by our search (the 'Cross', HSTJ141735+52264, z{sub lens} = 0.8106, z{sub source} = 3.40), we identify two new strong galaxy-galaxy lenses with multiple extended arcs. The first, HSTJ141820+52361 (the 'Dewdrop'; z{sub lens} = 0.5798), lenses two distinct extended sources into two pairs of arcs (z{sub source} = 0.9818), while the second, HSTJ141833+52435 (the 'Anchor'; z{sub lens} = 0.4625), produces a single pair of arcs (z{sub lens} not yet known). Four less convincing arc/counter-arc and two-image lens candidates are also found and presented for completeness. Lenses are found in a both underdense and overdense local environments, as characterized by a robust measure, 1+{delta}{sub 3}, a normalized density that uses the distance to the third nearest neighbor. All three definite lenses are fit reasonably well by simple singular isothermal ellipsoid models including external shear, giving {chi}{sub {nu}}{sup 2} values close to unity. These shears are much greater than those implied by a simple consideration of the three-dimensional convergence and shear from galaxies along the line of sight, where each galaxy is approximated by a singular isothermal sphere halo truncated at 200 h{sup -1} kpc. This shows how a realistic treatment of galaxies and the large scale structure they are embedded in is necessary, and that simply characterizing the very-local environment may be insufficient.

  4. GRAVITATIONAL IMAGING BY ELLIPTIC GALAXIES - THE EFFECTS OF DARK HALOS

    NARCIS (Netherlands)

    BREIMER, TG; SANDERS, RH

    It has been claimed that some gravitational lenses in which a background quasar is multiply-imaged by a single foreground galaxy support the existence of dark massive halos in elliptical galaxies. We reexamine this claim by considering the lensing effects of spherical galaxies with and without a

  5. Gravitational lensing of gravitational waves: A statistical perspective

    Science.gov (United States)

    Li, Shun-Sheng; Mao, Shude; Zhao, Yuetong; Lu, Youjun

    2018-02-01

    In this paper we study the strong gravitational lensing of gravitational waves (GWs) from a statistical perspective, with particular focus on the high frequency GWs from stellar binary black hole coalescences. These are most promising targets for ground-based detectors such as aLIGO and the proposed Einstein Telescope (ET) and can be safely treated under the geometrical optics limit for GW propagation. We perform a thorough calculation of the lensing rate, by taking account of effects caused by the ellipticity of lensing galaxies, lens environments, and magnification bias. We find that in certain GW source rate scenarios, we should be able to observe strongly lensed GW events once per year (˜1 yr-1) in the aLIGO survey at its design sensitivity; for the proposed ET survey, the rate could be as high as ˜80 yr-1. These results depend on the estimate of GW source abundance, and hence can be correspondingly modified with an improvement in our understanding of the merger rate of stellar binary black holes. We also compute the fraction of four-image lens systems in each survey, predicting it to be ˜30 percent for the aLIGO survey and ˜6 percent for the ET survey. Finally, we evaluate the possibility of missing some images due to the finite survey duration, by presenting the probability distribution of lensing time delays. We predict that this selection bias will be insignificant in future GW surveys, as most of the lens systems (˜90%) will have time delays less than ˜1 month which will be far shorter than survey durations.

  6. Gravitational lensing of gravitational waves: a statistical perspective

    Science.gov (United States)

    Li, Shun-Sheng; Mao, Shude; Zhao, Yuetong; Lu, Youjun

    2018-05-01

    In this paper, we study the strong gravitational lensing of gravitational waves (GWs) from a statistical perspective, with particular focus on the high frequency GWs from stellar binary black hole coalescences. These are most promising targets for ground-based detectors such as Advanced Laser Interferometer Gravitational Wave Observatory (aLIGO) and the proposed Einstein Telescope (ET) and can be safely treated under the geometrical optics limit for GW propagation. We perform a thorough calculation of the lensing rate, by taking account of effects caused by the ellipticity of lensing galaxies, lens environments, and magnification bias. We find that in certain GW source rate scenarios, we should be able to observe strongly lensed GW events once per year (˜1 yr-1) in the aLIGO survey at its design sensitivity; for the proposed ET survey, the rate could be as high as ˜80 yr-1. These results depend on the estimate of GW source abundance, and hence can be correspondingly modified with an improvement in our understanding of the merger rate of stellar binary black holes. We also compute the fraction of four-image lens systems in each survey, predicting it to be ˜30 per cent for the aLIGO survey and ˜6 per cent for the ET survey. Finally, we evaluate the possibility of missing some images due to the finite survey duration, by presenting the probability distribution of lensing time delays. We predict that this selection bias will be insignificant in future GW surveys, as most of the lens systems ({˜ } 90{per cent}) will have time delays less than ˜1 month, which will be far shorter than survey durations.

  7. Acoustic lenses

    International Nuclear Information System (INIS)

    Kittmer, C.A.

    1983-03-01

    Acoustic lenses focus ultrasound to produce pencil-like beams with reduced near fields. When fitted to conventional (flat-faced) transducers, such lenses greatly improve the ability to detect and size defects. This paper describes a program developed to design acoustic lenses for use in immersion or contact inspection, using normal or angle beam mode with flat or curved targets. Lens surfaces are circular in geometry to facilitate machining. For normal beam inspection of flat plate, spherical or cylindrical lenses are used. For angle beam or curved surface inspections, a compound lens is required to correct for the extra induced aberration. Such a lens is aspherical with one radius of curvature in the plane of incidence, and a different radius of curvature in the plane perpendicular to the incident plane. The resultant beam profile (i.e., location of the acoustic focus, beam diameter, 6 dB working range) depends on the degree of focusing and the transducer used. The operating frequency and bandwidth can be affected by the instrumentation used. Theoretical and measured beam profiles are in good agreement. Various applications, from zone focusing used for defect sizing in thick plate, to line focusing for pipe weld inspection, are discussed

  8. Dependence of GAMA galaxy halo masses on the cosmic web environment from 100 deg2 of KiDS weak lensing data

    NARCIS (Netherlands)

    Brouwer, Margot M.; Cacciato, Marcello; Dvornik, Andrej; Eardley, Lizzie; Heymans, Catherine; Hoekstra, Henk; Kuijken, Konrad; McNaught-Roberts, Tamsyn; Sifón, Cristóbal; Viola, Massimo; Alpaslan, Mehmet; Bilicki, Maciej; Bland-Hawthorn, Joss; Brough, Sarah; Choi, Ami; Driver, Simon P.; Erben, Thomas; Grado, Aniello; Hildebrandt, Hendrik; Holwerda, Benne W.; Hopkins, Andrew M.; de Jong, Jelte T. A.; Liske, Jochen; Mc Farland, John; Nakajima, Reiko; Napolitano, Nicola R.; Norberg, Peder; Peacock, John A.; Radovich, Mario; Robotham, Aaron S. G.; Schneider, Peter; Sikkema, Gert; van Uitert, Edo; Verdoes Kleijn, Gijs; Valentijn, Edwin A.

    2016-01-01

    Galaxies and their dark matter haloes are part of a complex network of mass structures, collectively called the cosmic web. Using the tidal tensor prescription these structures can be classified into four cosmic environments: voids, sheets, filaments and knots. As the cosmic web may influence the

  9. Magnified Weak Lensing Cross Correlation Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ulmer, Melville P., Clowe, Douglas I.

    2010-11-30

    nights on 4-m class telescopes, which gives concrete evidence of strong community support for this project. The WLT technique is based on the dependence of the gravitational shear signal on the angular diameter distances between the observer, the lens, and the lensed galaxy to measure cosmological parameters. By taking the ratio of measured shears of galaxies with different redshifts around the same lens, one obtains a measurement of the ratios of the angular diameter distances involved. Making these observations over a large range of lenses and background galaxy redshifts will measure the history of the expansion rate of the universe. Because this is a purely geometric measurement, it is insensitive to any form of evolution of objects or the necessity to understand the physics in the early universe. Thus, WLT was identified by the Dark Energy Task Force as perhaps the best method to measure the evolution of DE. To date, however, the conjecture of the DETF has not been experimentally verified, but will be by the proposed project. The primary reason for the lack of tomography measurements is that one must have an exceptional data-set to attempt the measurement. One needs both extremely good seeing (or space observations) in order to minimize the point spread function smearing corrections on weak lensing shear measurements and deep, multi-color data, from B to z, to measure reliable photometric redshifts of the background galaxies being lensed (which are typically too faint to obtain spectroscopic redshifts). Because the entire process from multi-drizzling the HST images, and then creating shear maps, to gathering the necessary ground based observations, to generating photo-zs and then carrying out the tomography is a complicated task, until the creation of our team, nobody has taken the time to connect all the levels of expertise necessary to carry out this project based on HST archival data. Our data are being used in 2 Ph.D. theses. Kellen Murphy, at Ohio University, is

  10. Gravitationally Lensed Quasars in Gaia: II. Discovery of 24 Lensed Quasars

    Science.gov (United States)

    Lemon, Cameron A.; Auger, Matthew W.; McMahon, Richard G.; Ostrovski, Fernanda

    2018-04-01

    We report the discovery, spectroscopic confirmation and preliminary characterisation of 24 gravitationally lensed quasars identified using Gaia observations. Candidates were selected in the Pan-STARRS footprint with quasar-like WISE colours or as photometric quasars from SDSS, requiring either multiple detections in Gaia or a single Gaia detection near a morphological galaxy. The Pan-STARRS grizY images were modelled for the most promising candidates and 60 candidate systems were followed up with the William Herschel Telescope. 13 of the lenses were discovered as Gaia multiples and 10 as single Gaia detections near galaxies. We also discover 1 lens identified through a quasar emission line in an SDSS galaxy spectrum. The lenses have median image separation 2.13″ and the source redshifts range from 1.06 to 3.36. 4 systems are quadruply-imaged and 20 are doubly-imaged. Deep CFHT data reveal an Einstein ring in one double system. We also report 12 quasar pairs, 10 of which have components at the same redshift and require further follow-up to rule out the lensing hypothesis. We compare the properties of these lenses and other known lenses recovered by our search method to a complete sample of simulated lenses to show the lenses we are missing are mainly those with small separations and higher source redshifts. The initial Gaia data release only catalogues all images of ˜ 30% of known bright lensed quasars, however the improved completeness of Gaia data release 2 will help find all bright lensed quasars on the sky.

  11. What is Gravitational Lensing? (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Leauthaud, Alexie; Nakajima, Reiko [Berkeley Center for Cosmological Physics

    2009-07-28

    Summer Lecture Series 2009: Gravitational lensing is explained by Einstein's general theory of relativity: galaxies and clusters of galaxies, which are very massive objects, act on spacetime by causing it to become curved. Alexie Leauthaud and Reiko Nakajima, astrophysicists with the Berkeley Center for Cosmological Physics, will discuss how scientists use gravitational lensing to investigate the nature of dark energy and dark matter in the universe.

  12. The skewed weak lensing likelihood: why biases arise, despite data and theory being sound.

    Science.gov (United States)

    Sellentin, Elena; Heymans, Catherine; Harnois-Déraps, Joachim

    2018-04-01

    We derive the essentials of the skewed weak lensing likelihood via a simple Hierarchical Forward Model. Our likelihood passes four objective and cosmology-independent tests which a standard Gaussian likelihood fails. We demonstrate that sound weak lensing data are naturally biased low, since they are drawn from a skewed distribution. This occurs already in the framework of ΛCDM. Mathematically, the biases arise because noisy two-point functions follow skewed distributions. This form of bias is already known from CMB analyses, where the low multipoles have asymmetric error bars. Weak lensing is more strongly affected by this asymmetry as galaxies form a discrete set of shear tracer particles, in contrast to a smooth shear field. We demonstrate that the biases can be up to 30% of the standard deviation per data point, dependent on the properties of the weak lensing survey and the employed filter function. Our likelihood provides a versatile framework with which to address this bias in future weak lensing analyses.

  13. Only marginal alignment of disc galaxies

    Science.gov (United States)

    Andrae, René; Jahnke, Knud

    2011-12-01

    Testing theories of angular-momentum acquisition of rotationally supported disc galaxies is the key to understanding the formation of this type of galaxies. The tidal-torque theory aims to explain this acquisition process in a cosmological framework and predicts positive autocorrelations of angular-momentum orientation and spiral-arm handedness, i.e. alignment of disc galaxies, on short distance scales of 1 Mpc h-1. This disc alignment can also cause systematic effects in weak-lensing measurements. Previous observations claimed discovering these correlations but are overly optimistic in the reported level of statistical significance of the detections. Errors in redshift, ellipticity and morphological classifications were not taken into account, although they have a significant impact. We explain how to rigorously propagate all the important errors through the estimation process. Analysing disc galaxies in the Sloan Digital Sky Survey (SDSS) data base, we find that positive autocorrelations of spiral-arm handedness and angular-momentum orientations on distance scales of 1 Mpc h-1 are plausible but not statistically significant. Current data appear not good enough to constrain parameters of theory. This result agrees with a simple hypothesis test in the Local Group, where we also find no evidence for disc alignment. Moreover, we demonstrate that ellipticity estimates based on second moments are strongly biased by galactic bulges even for Scd galaxies, thereby corrupting correlation estimates and overestimating the impact of disc alignment on weak-lensing studies. Finally, we discuss the potential of future sky surveys. We argue that photometric redshifts have too large errors, i.e. PanSTARRS and LSST cannot be used. Conversely, the EUCLID project will not cover the relevant redshift regime. We also discuss the potentials and problems of front-edge classifications of galaxy discs in order to improve the autocorrelation estimates of angular-momentum orientation.

  14. GRAVITATIONAL LENSES AND UNCONVENTIONAL GRAVITY THEORIES

    NARCIS (Netherlands)

    BEKENSTEIN, JD; SANDERS, RH

    1994-01-01

    We study gravitational lensing by clusters of galaxies in the context of the generic class of unconventional gravity theories which describe gravity in terms of a metric and one or more scalar fields (called here scalar-tensor theories). We conclude that, if the scalar fields have positive energy,

  15. Weak lensing and dark energy

    International Nuclear Information System (INIS)

    Huterer, Dragan

    2002-01-01

    We study the power of upcoming weak lensing surveys to probe dark energy. Dark energy modifies the distance-redshift relation as well as the matter power spectrum, both of which affect the weak lensing convergence power spectrum. Some dark-energy models predict additional clustering on very large scales, but this probably cannot be detected by weak lensing alone due to cosmic variance. With reasonable prior information on other cosmological parameters, we find that a survey covering 1000 sq deg down to a limiting magnitude of R=27 can impose constraints comparable to those expected from upcoming type Ia supernova and number-count surveys. This result, however, is contingent on the control of both observational and theoretical systematics. Concentrating on the latter, we find that the nonlinear power spectrum of matter perturbations and the redshift distribution of source galaxies both need to be determined accurately in order for weak lensing to achieve its full potential. Finally, we discuss the sensitivity of the three-point statistics to dark energy

  16. Chitah: Strong-gravitational-lens hunter in imaging surveys

    Energy Technology Data Exchange (ETDEWEB)

    Chan, James H. H.; Suyu, Sherry H.; Chiueh, Tzihong; More, Anupreeta; Marshall, Philip J.; Coupon, Jean; Oguri, Masamune; Price, Paul

    2015-07-07

    Strong gravitationally lensed quasars provide powerful means to study galaxy evolution and cosmology. Current and upcoming imaging surveys will contain thousands of new lensed quasars, augmenting the existing sample by at least two orders of magnitude. To find such lens systems, we built a robot, Chitah, that hunts for lensed quasars by modeling the configuration of the multiple quasar images. Specifically, given an image of an object that might be a lensed quasar, Chitah first disentangles the light from the supposed lens galaxy and the light from the multiple quasar images based on color information. A simple rule is designed to categorize the given object as a potential four-image (quad) or two-image (double) lensed quasar system. The configuration of the identified quasar images is subsequently modeled to classify whether the object is a lensed quasar system. We test the performance of Chitah using simulated lens systems based on the Canada–France–Hawaii Telescope Legacy Survey. For bright quads with large image separations (with Einstein radius ${r}_{\\mathrm{ein}}\\gt 1\\buildrel{\\prime\\prime}\\over{.} 1$) simulated using Gaussian point-spread functions, a high true-positive rate (TPR) of $\\sim 90\\%$ and a low false-positive rate of $\\sim 3\\%$ show that this is a promising approach to search for new lens systems. We obtain high TPR for lens systems with ${r}_{\\mathrm{ein}}\\gtrsim 0\\buildrel{\\prime\\prime}\\over{.} 5$, so the performance of Chitah is set by the seeing. We further feed a known gravitational lens system, COSMOS 5921+0638, to Chitah, and demonstrate that Chitah is able to classify this real gravitational lens system successfully. Our newly built Chitah is omnivorous and can hunt in any ground-based imaging surveys.

  17. Observations of Cluster Substructure using Weakly Lensed Sextupole Moments

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, John

    2003-08-01

    Since dark matter clusters and groups may have substructure, we have examined the sextupole content of Hubble images looking for a curvature signature in background galaxies that would arise from galaxy-galaxy lensing. We describe techniques for extracting and analyzing sextupole and higher weakly lensed moments. Indications of substructure, via spatial clumping of curved background galaxies, were observed in the image of CL0024 and then surprisingly in both Hubble deep fields. We estimate the dark cluster masses in the deep field. Alternatives to a lensing hypothesis appear improbable, but better statistics will be required to exclude them conclusively. Observation of sextupole moments would then provide a means to measure dark matter structure on smaller length scales than heretofore.

  18. Weak lensing of the Lyman-alpha forest

    Science.gov (United States)

    Croft, Rupert A. C.; Romeo, Alessandro; Metcalf, R. Benton

    2018-03-01

    The angular positions of quasars are deflected by the gravitational lensing effect of foreground matter. The Lyα forest seen in the spectra of these quasars is therefore also lensed. We propose that the signature of weak gravitional lensing of the Lyα forest could be measured using similar techniques that have been applied to the lensed Cosmic Microwave Background, and which have also been proposed for application to spectral data from 21cm radio telescopes. As with 21cm data, the forest has the advantage of spectral information, potentially yielding many lensed "slices" at different redshifts. We perform an illustrative idealized test, generating a high resolution angular grid of quasars (of order arcminute separation), and lensing the Lyα forest spectra at redshifts z = 2 - 3 using a foreground density field. We find that standard quadratic estimators can be used to reconstruct images of the foreground mass distribution at z ˜ 1. There currently exists a wealth of Lyα forest data from quasar and galaxy spectral surveys, with smaller sightline separations expected in the future. Lyα forest lensing is sensitive to the foreground mass distribution at redshifts intermediate between CMB lensing and galaxy shear, and avoids the difficulties of shape measurement associated with the latter. With further refinement and application of mass reconstruction techniques, weak gravitational lensing of the high redshift Lyα forest may become a useful new cosmological probe.

  19. On Using a Space Telescope to Detect Weak-lensing Shear

    Science.gov (United States)

    Tung, Nathan; Wright, Edward

    2017-11-01

    Ignoring redshift dependence, the statistical performance of a weak-lensing survey is set by two numbers: the effective shape noise of the sources, which includes the intrinsic ellipticity dispersion and the measurement noise, and the density of sources that are useful for weak-lensing measurements. In this paper, we provide some general guidance for weak-lensing shear measurements from a “generic” space telescope by looking for the optimum wavelength bands to maximize the galaxy flux signal-to-noise ratio (S/N) and minimize ellipticity measurement error. We also calculate an effective galaxy number per square degree across different wavelength bands, taking into account the density of sources that are useful for weak-lensing measurements and the effective shape noise of sources. Galaxy data collected from the ultra-deep UltraVISTA Ks-selected and R-selected photometric catalogs (Muzzin et al. 2013) are fitted to radially symmetric Sérsic galaxy light profiles. The Sérsic galaxy profiles are then stretched to impose an artificial weak-lensing shear, and then convolved with a pure Airy Disk PSF to simulate imaging of weak gravitationally lensed galaxies from a hypothetical diffraction-limited space telescope. For our model calculations and sets of galaxies, our results show that the peak in the average galaxy flux S/N, the minimum average ellipticity measurement error, and the highest effective galaxy number counts all lie around the K-band near 2.2 μm.

  20. The Scales of Gravitational Lensing

    Directory of Open Access Journals (Sweden)

    Francesco De Paolis

    2016-03-01

    Full Text Available After exactly a century since the formulation of the general theory of relativity, the phenomenon of gravitational lensing is still an extremely powerful method for investigating in astrophysics and cosmology. Indeed, it is adopted to study the distribution of the stellar component in the Milky Way, to study dark matter and dark energy on very large scales and even to discover exoplanets. Moreover, thanks to technological developments, it will allow the measure of the physical parameters (mass, angular momentum and electric charge of supermassive black holes in the center of ours and nearby galaxies.

  1. GOLDEN GRAVITATIONAL LENSING SYSTEMS FROM THE SLOAN LENS ACS SURVEY. I. SDSS J1538+5817: ONE LENS FOR TWO SOURCES ,

    International Nuclear Information System (INIS)

    Grillo, C.; Seitz, S.; Bender, R.; Eichner, T.; Bauer, A.; Lombardi, M.; Gobat, R.

    2010-01-01

    We present a gravitational lensing and photometric study of the exceptional strong lensing system SDSS J1538+5817, identified by the Sloan Lens Advanced Camera for Survey. The lens is a luminous elliptical galaxy at redshift z l = 0.143. Using Hubble Space Telescope public images obtained with two different filters, the presence of two background sources lensed, respectively, into an Einstein ring and a double system is ascertained. Our new spectroscopic observations, performed at the Nordic Optical Telescope, reveal unequivocally that the two sources are located at the same redshift z s = 0.531. We investigate the total (luminous and dark) mass distribution of the lens between 1 and 4 kpc from the galaxy center by means of parametric and non-parametric lensing codes that describe the multiple images as point-like objects. Bootstrapping and Bayesian analyses are performed to determine the uncertainties on the quantities relevant to the lens mass characterization. Several disparate lensing models provide results that are consistent, given the errors, with those obtained from the best-fit model of the lens mass distribution in terms of a singular power-law ellipsoid model. In particular, the lensing models agree on: (1) reproducing accurately the observed positions of the images; (2) predicting a nearly axisymmetric total mass distribution, centered and oriented as the light distribution; (3) measuring a value of 8.11 +0.27 -0.59 x 10 10 M sun for the total mass projected within the Einstein radius of 2.5 kpc; and (4) estimating a total mass density profile slightly steeper than an isothermal one (ρ(r)∝r -2.33 +0.43 -0.20 ). A fit of the Sloan Digital Sky Survey multicolor photometry with composite stellar population models provides a value of 20 +1 -4 x 10 10 M sun for the total mass of the galaxy in the form of stars and of 0.9 +0.1 -0.2 for the fraction of projected luminous over total mass enclosed inside the Einstein radius. By combining lensing (total) and

  2. Separate Ways: The Mass–Metallicity Relation Does Not Strongly Correlate with Star Formation Rate in SDSS-IV MaNGA Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Barrera-Ballesteros, J. K.; Heckman, T. [Department of Physics and Astronomy, Johns Hopkins University, Bloomberg Center, 3400 N. Charles St., Baltimore, MD 21218 (United States); Sánchez, S. F. [Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510 México, D.F., México (Mexico); Blanc, G. A., E-mail: jbarrer3@jhu.edu [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St, Pasadena, CA 91101 (United States); Collaboration: MaNGA Team

    2017-07-20

    We present the integrated stellar mass–metallicity relation (MZR) for more than 1700 galaxies included in the integral field area SDSS-IV MaNGA survey. The spatially resolved data allow us to determine the metallicity at the same physical scale (effective radius, R {sub eff}) using a heterogeneous set of 10 abundance calibrators. In addition to scale factors, the shape of the MZR is similar for all calibrators, consistent with those reported previously using single-fiber and integral field spectroscopy. We compare the residuals of this relation against the star formation rate (SFR) and specific SFR (sSFR). We do not find a strong secondary relation of the MZR with either SFR or sSFR for any of the calibrators, in contrast with previous single-fiber spectroscopic studies. Our results agree with a scenario in which metal enrichment happens at local scales, with global outflows playing a secondary role in shaping the chemistry of galaxies and cold-gas inflows regulating the stellar formation.

  3. Separate Ways: The Mass–Metallicity Relation Does Not Strongly Correlate with Star Formation Rate in SDSS-IV MaNGA Galaxies

    International Nuclear Information System (INIS)

    Barrera-Ballesteros, J. K.; Heckman, T.; Sánchez, S. F.; Blanc, G. A.

    2017-01-01

    We present the integrated stellar mass–metallicity relation (MZR) for more than 1700 galaxies included in the integral field area SDSS-IV MaNGA survey. The spatially resolved data allow us to determine the metallicity at the same physical scale (effective radius, R eff ) using a heterogeneous set of 10 abundance calibrators. In addition to scale factors, the shape of the MZR is similar for all calibrators, consistent with those reported previously using single-fiber and integral field spectroscopy. We compare the residuals of this relation against the star formation rate (SFR) and specific SFR (sSFR). We do not find a strong secondary relation of the MZR with either SFR or sSFR for any of the calibrators, in contrast with previous single-fiber spectroscopic studies. Our results agree with a scenario in which metal enrichment happens at local scales, with global outflows playing a secondary role in shaping the chemistry of galaxies and cold-gas inflows regulating the stellar formation.

  4. Separate Ways: The Mass-Metallicity Relation Does Not Strongly Correlate with Star Formation Rate in SDSS-IV MaNGA Galaxies

    Science.gov (United States)

    Barrera-Ballesteros, J. K.; Sánchez, S. F.; Heckman, T.; Blanc, G. A.; The MaNGA Team

    2017-07-01

    We present the integrated stellar mass-metallicity relation (MZR) for more than 1700 galaxies included in the integral field area SDSS-IV MaNGA survey. The spatially resolved data allow us to determine the metallicity at the same physical scale (effective radius, R eff) using a heterogeneous set of 10 abundance calibrators. In addition to scale factors, the shape of the MZR is similar for all calibrators, consistent with those reported previously using single-fiber and integral field spectroscopy. We compare the residuals of this relation against the star formation rate (SFR) and specific SFR (sSFR). We do not find a strong secondary relation of the MZR with either SFR or sSFR for any of the calibrators, in contrast with previous single-fiber spectroscopic studies. Our results agree with a scenario in which metal enrichment happens at local scales, with global outflows playing a secondary role in shaping the chemistry of galaxies and cold-gas inflows regulating the stellar formation.

  5. Joining X-Ray to Lensing: An Accurate Combined Analysis of MACS J0416.1–2403

    Energy Technology Data Exchange (ETDEWEB)

    Bonamigo, M.; Grillo, C. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Ettori, S. [INAF, Osservatorio Astronomico di Bologna, Via Piero Gobetti, 93/3, 40129 Bologna (Italy); Caminha, G. B.; Rosati, P. [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Via Saragat 1, I-44122 Ferrara (Italy); Mercurio, A. [INAF—Osservatorio Astronomico di Capodimonte, Via Moiariello 16, I-80131 Napoli (Italy); Annunziatella, M. [INAF—Osservatorio Astronomico di Trieste, Via G.B. Tiepolo, 11 I-34143 Trieste (Italy); Balestra, I. [University Observatory Munich, Scheinerstrasse 1, D-81679 Munich (Germany); Lombardi, M., E-mail: bonamigo@dark-cosmology.dk [Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, I-20133 Milano (Italy)

    2017-06-20

    We present a novel approach for a combined analysis of X-ray and gravitational lensing data and apply this technique to the merging galaxy cluster MACS J0416.1–2403. The method exploits the information on the intracluster gas distribution that comes from a fit of the X-ray surface brightness and then includes the hot gas as a fixed mass component in the strong-lensing analysis. With our new technique, we can separate the collisional from the collision-less diffuse mass components, thus obtaining a more accurate reconstruction of the dark matter distribution in the core of a cluster. We introduce an analytical description of the X-ray emission coming from a set of dual pseudo-isothermal elliptical mass distributions, which can be directly used in most lensing softwares. By combining Chandra observations with Hubble Frontier Fields imaging and Multi Unit Spectroscopic Explorer spectroscopy in MACS J0416.1–2403, we measure a projected gas-to-total mass fraction of approximately 10% at 350 kpc from the cluster center. Compared to the results of a more traditional cluster mass model (diffuse halos plus member galaxies), we find a significant difference in the cumulative projected mass profile of the dark matter component and that the dark matter over total mass fraction is almost constant, out to more than 350 kpc. In the coming era of large surveys, these results show the need of multiprobe analyses for detailed dark matter studies in galaxy clusters.

  6. Strong lens search in the ESO public Survey KiDS

    NARCIS (Netherlands)

    Napolitano, N. R.; Covone, G.; Roy, N.; Tortora, C.; Barbera, F. La; Radovich, M.; Getman, F.; Capaccioli, M.; Colonna, A.; Paolillo, M.; Kleijn, G. A. Verdoes; Koopmans, L. V. E.; Valentijn, E; Napolitano, Nicola R.; Longo, Giuseppe; Marconi, Marcella; Paolillo, Maurizio; Lodice, Enrichetta

    2015-01-01

    We have started a systematic search for strong lens candidates in the ESO public survey KiDS based on the visual inspection of massive galaxies in the redshift range 0. 1 < z < 0. 5. As a pilot program we have inspected 100 deg2, which overlap with SDSS and where there are known lenses to use as a

  7. Gravitational Lensing Signatures of Long Cosmic Strings

    CERN Document Server

    De Laix, A A; Vachaspati, T; Laix, Andrew A. de; Krauss, Lawrence M.; Vachaspati, Tanmay

    1997-01-01

    The gravitational lensing by long, wiggly cosmic strings is shown to produce a large number of lensed images of a background source. In addition to pairs of images on either side of the string, a number of small images outline the string due to small-scale structure on the string. This image pattern could provide a highly distinctive signature of cosmic strings. Since the optical depth for multiple imaging of distant quasar sources by long strings may be comparable to that by galaxies, these image patterns should be clearly observable in the next generation of redshift surveys such as the Sloan Digital Sky Survey.

  8. The nature of giant clumps in distant galaxies probed by the anatomy of the cosmic snake

    Science.gov (United States)

    Cava, Antonio; Schaerer, Daniel; Richard, Johan; Pérez-González, Pablo G.; Dessauges-Zavadsky, Miroslava; Mayer, Lucio; Tamburello, Valentina

    2018-01-01

    Giant stellar clumps are ubiquitous in high-redshift galaxies1,2. They are thought to play an important role in the build-up of galactic bulges3 and as diagnostics of star formation feedback in galactic discs4. Hubble Space Telescope (HST) blank field imaging surveys have estimated that these clumps have masses of up to 109.5 M⊙ and linear sizes of ≳1 kpc5,6. Recently, gravitational lensing has also been used to get higher spatial resolution7-9. However, both recent lensed observations10,11 and models12,13 suggest that the clumps' properties may be overestimated by the limited resolution of standard imaging techniques. A definitive proof of this observational bias is nevertheless still missing. Here we investigate directly the effect of resolution on clump properties by analysing multiple gravitationally lensed images of the same galaxy at different spatial resolutions, down to 30 pc. We show that the typical mass and size of giant clumps, generally observed at 1 kpc resolution in high-redshift galaxies, are systematically overestimated. The high spatial resolution data, only enabled by strong gravitational lensing using currently available facilities, support smaller scales of clump formation by fragmentation of the galactic gas disk via gravitational instabilities.

  9. A Measurement of CMB Cluster Lensing with SPT and DES Year 1 Data

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, E.J.; et al.

    2017-08-03

    Clusters of galaxies gravitationally lens the cosmic microwave background (CMB) radiation, resulting in a distinct imprint in the CMB on arcminute scales. Measurement of this effect offers a promising way to constrain the masses of galaxy clusters, particularly those at high redshift. We use CMB maps from the South Pole Telescope Sunyaev-Zel'dovich (SZ) survey to measure the CMB lensing signal around galaxy clusters identified in optical imaging from first year observations of the Dark Energy Survey. We detect lensing of the CMB by the galaxy clusters at 6.5$\\sigma$ significance. Using the measured lensing signal, we constrain the amplitude of the relation between cluster mass and optical richness to roughly $20\\%$ precision, finding good agreement with recent constraints obtained with galaxy lensing. The error budget is dominated by statistical noise but includes significant contributions from systematic biases due to the thermal SZ effect and cluster miscentering.

  10. The Hubble Space Telescope Snapshot Survey. IV - A summary of the search for gravitationally lensed quasars

    Science.gov (United States)

    Maoz, D.; Bahcall, J. N.; Schneider, D. P.; Bahcall, N. A.; Djorgovski, S.; Doxsey, R.; Gould, A.; Kirhakos, S.; Meylan, G.; Yanny, B.

    1993-01-01

    We report the concluding results of the HST Snapshot Survey for gravitationally lensed quasars. New observations of 153 high-luminosity z above 1 quasars are presented, bringing to 498 the total number of quasars observed in the survey. The new observations do not reveal new candidates for gravitational lensing. We present tables summarizing all of the snapshot observations, with measured V-magnitudes, accurate to 0.1 mag, for each of the quasars successfully observed. The observed frequency of lensing of quasars into multiple images is 3-6 out of 502, depending on whether one counts candidates that are not yet securely confirmed and cases in which clusters play a role. This frequency is in the range predicted by calculations with a vanishing cosmological constant, assuming galaxies can be modeled by unevolving isothermal spheres dominated in their centers by dark matter. The observed frequency is an order of magnitude lower than expected in such models when the universe is strongly dominated by a cosmological constant. This conclusion is, however, sensitive to the model assumptions and to the precise number of actual lensed quasars.

  11. H0LiCOW - V. New COSMOGRAIL time delays of HE 0435-1223: H0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model

    Science.gov (United States)

    Bonvin, V.; Courbin, F.; Suyu, S. H.; Marshall, P. J.; Rusu, C. E.; Sluse, D.; Tewes, M.; Wong, K. C.; Collett, T.; Fassnacht, C. D.; Treu, T.; Auger, M. W.; Hilbert, S.; Koopmans, L. V. E.; Meylan, G.; Rumbaugh, N.; Sonnenfeld, A.; Spiniello, C.

    2017-03-01

    We present a new measurement of the Hubble Constant H0 and other cosmological parameters based on the joint analysis of three multiply imaged quasar systems with measured gravitational time delays. First, we measure the time delay of HE 0435-1223 from 13-yr light curves obtained as part of the COSMOGRAIL project. Companion papers detail the modelling of the main deflectors and line-of-sight effects, and how these data are combined to determine the time-delay distance of HE 0435-1223. Crucially, the measurements are carried out blindly with respect to cosmological parameters in order to avoid confirmation bias. We then combine the time-delay distance of HE 0435-1223 with previous measurements from systems B1608+656 and RXJ1131-1231 to create a Time Delay Strong Lensing probe (TDSL). In flat Λ cold dark matter (ΛCDM) with free matter and energy density, we find H0 =71.9^{+2.4}_{-3.0} {km s^{-1} Mpc^{-1}} and Ω _{Λ }=0.62^{+0.24}_{-0.35}. This measurement is completely independent of, and in agreement with, the local distance ladder measurements of H0. We explore more general cosmological models combining TDSL with other probes, illustrating its power to break degeneracies inherent to other methods. The joint constraints from TDSL and Planck are H0 = 69.2_{-2.2}^{+1.4} {km s^{-1} Mpc^{-1}}, Ω _{Λ }=0.70_{-0.01}^{+0.01} and Ω _k=0.003_{-0.006}^{+0.004} in open ΛCDM and H0 =79.0_{-4.2}^{+4.4} {km s^{-1} Mpc^{-1}}, Ω _de=0.77_{-0.03}^{+0.02} and w=-1.38_{-0.16}^{+0.14} in flat wCDM. In combination with Planck and baryon acoustic oscillation data, when relaxing the constraints on the numbers of relativistic species we find Neff = 3.34_{-0.21}^{+0.21} in NeffΛCDM and when relaxing the total mass of neutrinos we find Σmν ≤ 0.182 eV in mνΛCDM. Finally, in an open wCDM in combination with Planck and cosmic microwave background lensing, we find H0 =77.9_{-4.2}^{+5.0} {km s^{-1} Mpc^{-1}}, Ω _de=0.77_{-0.03}^{+0.03}, Ω _k=-0.003_{-0.004}^{+0.004} and w=-1.37_{-0.23}^{+0.18}.

  12. Modelling the line-of-sight contribution in substructure lensing

    Science.gov (United States)

    Despali, Giulia; Vegetti, Simona; White, Simon D. M.; Giocoli, Carlo; van den Bosch, Frank C.

    2018-04-01

    We investigate how Einstein rings and magnified arcs are affected by small-mass dark-matter haloes placed along the line of sight to gravitational lens systems. By comparing the gravitational signature of line-of-sight haloes with that of substructures within the lensing galaxy, we derive a mass-redshift relation that allows us to rescale the detection threshold (i.e. lowest detectable mass) for substructures to a detection threshold for line-of-sight haloes at any redshift. We then quantify the line-of-sight contribution to the total number density of low-mass objects that can be detected through strong gravitational lensing. Finally, we assess the degeneracy between substructures and line-of-sight haloes of different mass and redshift to provide a statistical interpretation of current and future detections, with the aim of distinguishing between cold dark matter and warm dark matter. We find that line-of-sight haloes statistically dominate with respect to substructures, by an amount that strongly depends on the source and lens redshifts, and on the chosen dark-matter model. Substructures represent about 30 percent of the total number of perturbers for low lens and source redshifts (as for the SLACS lenses), but less than 10 per cent for high-redshift systems. We also find that for data with high enough signal-to-noise ratio and angular resolution, the non-linear effects arising from a double-lens-plane configuration are such that one is able to observationally recover the line-of-sight halo redshift with an absolute error precision of 0.15 at the 68 per cent confidence level.

  13. Characterizing SL2S galaxy groups using the Einstein radius

    DEFF Research Database (Denmark)

    Verdugo, T.; Motta, V.; Foex, G.

    2014-01-01

    Aims. We aim to study the reliability of RA (the distance from the arcs to the center of the lens) as a measure of the Einstein radius in galaxy groups. In addition, we want to analyze the possibility of using RA as a proxy to characterize some properties of galaxy groups, such as luminosity (L......) and richness (N). Methods. We analyzed the Einstein radius, θE, in our sample of Strong Lensing Legacy Survey (SL2S) galaxy groups, and compared it with RA, using three different approaches: 1) the velocity dispersion obtained from weak lensing assuming a singular isothermal sphere profile (θE,I); 2) a strong.......7 ± 0.2)RA, θE,II = (0.4 ± 1.5) + (1.1 ± 0.4)RA, and θE,III = (0.4 ± 1.5) + (0.9 ± 0.3)RA for each method respectively. We found weak evidence of anti-correlation between RA and z, with Log RA = (0.58 ± 0.06) − (0.04 ± 0.1)z, suggesting a possible evolution of the Einstein radius with z, as reported...

  14. Gravitational Lensing in the metric theory proposed by Sobouti

    Science.gov (United States)

    Bernal, Tula; Mendoza, Sergio

    2008-12-01

    Recently, Y. Sobouti (2007) has provided a metric theory f(R) that can account for certain dynamical anomalies observed in spiral galaxies. Mendoza & Rosas-Guevara (2007) have shown that in this theory there is an extra-bending as compared to standard general relativity. In the present work we have developed in more specific detail this additional lensing effect and we have made evaluations of the α parameter used in the model adjusting the theory to observations in X-rays of 13 clusters of galaxies with gravitational lensing ([6]).

  15. GALAXY HALO TRUNCATION AND GIANT ARC SURFACE BRIGHTNESS RECONSTRUCTION IN THE CLUSTER MACSJ1206.2-0847

    International Nuclear Information System (INIS)

    Eichner, Thomas; Seitz, Stella; Monna, Anna; Suyu, Sherry H.; Halkola, Aleksi; Umetsu, Keiichi; Zitrin, Adi; Coe, Dan; Postman, Marc; Koekemoer, Anton; Bradley, Larry; Rosati, Piero; Grillo, Claudio; Høst, Ole; Balestra, Italo; Zheng, Wei; Lemze, Doron; Broadhurst, Tom; Moustakas, Leonidas; Molino, Alberto

    2013-01-01

    In this work, we analyze the mass distribution of MACSJ1206.2-0847, particularly focusing on the halo properties of its cluster members. The cluster appears relaxed in its X-ray emission, but has a significant amount of intracluster light that is not centrally concentrated, suggesting that galaxy-scale interactions are still ongoing despite the overall relaxed state. The cluster lenses 12 background galaxies into multiple images and one galaxy at z = 1.033 into a giant arc and its counterimage. The multiple image positions and the surface brightness (SFB) distribution of the arc, which is bent around several cluster members, are sensitive to the cluster galaxy halo properties. We model the cluster mass distribution with a Navarro-Frenk-White profile and the galaxy halos with two parameters for the mass normalization and the extent of a reference halo assuming scalings with their observed near-infrared light. We match the multiple image positions at an rms level of 0.''85 and can reconstruct the SFB distribution of the arc in several filters to a remarkable accuracy based on this cluster model. The length scale where the enclosed galaxy halo mass is best constrained is about 5 effective radii—a scale in between those accessible to dynamical and field strong-lensing mass estimates on the one hand and galaxy-galaxy weak-lensing results on the other hand. The velocity dispersion and halo size of a galaxy with m 160W,AB = 19.2 and M B,Vega = –20.7 are σ = 150 km s –1 and r ≈ 26 ± 6 kpc, respectively, indicating that the halos of the cluster galaxies are tidally stripped. We also reconstruct the unlensed source, which is smaller by a factor of ∼5.8 in area, demonstrating the increase in morphological information due to lensing. We conclude that this galaxy likely has star-forming spiral arms with a red (older) central component

  16. STRONG UV AND X-RAY VARIABILITY OF THE NARROW LINE SEYFERT 1 GALAXY WPVS 007-ON THE NATURE OF THE X-RAY LOW STATE

    Energy Technology Data Exchange (ETDEWEB)

    Grupe, Dirk; Barlow, Brad N. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Komossa, S. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Scharwaechter, Julia [Research School of Astronomy and Astrophysics, Australian National University, Mount Stromlo Observatory, Cotter Road, Weston Creek, ACT 2611 (Australia); Dietrich, Matthias [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Leighly, Karen M.; Lucy, Adrian, E-mail: dxg35@psu.edu, E-mail: julia.scharwaechter@obspm.fr, E-mail: leighly@nhn.ou.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States)

    2013-10-01

    We report on multi-wavelength observations of the X-ray transient Narrow Line Seyfert 1 (NLS1) galaxy WPVS 007. The galaxy was monitored with Swift between 2005 October and 2013 July, after it had previously undergone a dramatic drop in its X-ray flux. For the first time, we are able to repeatedly detect this NLS1 in X-rays again. This increased number of detections in the last couple of years may suggest that the strong absorber that has been found in this active galactic nucleus (AGN) is starting to become leaky and may eventually disappear. The X-ray spectra obtained for WPVS 007 are all consistent with a partial covering absorber model. A spectrum based on the data during the extreme low X-ray flux states shows that the absorption column density is of the order of 4 Multiplication-Sign 10{sup 23} cm{sup -2} with a covering fraction of 95%. WPVS 007 also displays one of the strongest UV variabilities seen in NLS1s. The UV continuum variability anti-correlates with the optical/UV slope {alpha}{sub UV}, which suggests that the variability may be primarily due to reddening. The UV variability timescales are consistent with moving dust ''clouds'' located beyond the dust sublimation radius of R{sub sub} Almost-Equal-To 20 lt-days. We present for the first time near-infrared JHK data of WPVS 007, which reveal a rich emission-line spectrum. Recent optical spectroscopy does not indicate significant variability in the broad permitted and Fe II emission lines, implying that the ionizing continuum seen by those gas clouds has not significantly changed over the last decades. All X-ray and UV observations are consistent with a scenario in which an evolving broad absorption line (BAL) flow obscures the continuum emission. As such, WPVS 007 is an important target for our understanding of BAL flows in low-mass AGNs.

  17. SDSS J2222+2745: A GRAVITATIONALLY LENSED SEXTUPLE QUASAR WITH A MAXIMUM IMAGE SEPARATION OF 15.''1 DISCOVERED IN THE SLOAN GIANT ARCS SURVEY

    International Nuclear Information System (INIS)

    Dahle, H.; Groeneboom, N.; Gladders, M. D.; Abramson, L. E.; Sharon, K.; Bayliss, M. B.; Wuyts, E.; Koester, B. P.; Brinckmann, T. E.; Kristensen, M. T.; Lindholmer, M. O.; Nielsen, A.; Krogager, J.-K.; Fynbo, J. P. U.

    2013-01-01

    We report the discovery of a unique gravitational lens system, SDSS J2222+2745, producing five spectroscopically confirmed images of a z s = 2.82 quasar lensed by a foreground galaxy cluster at z l = 0.49. We also present photometric and spectroscopic evidence for a sixth lensed image of the same quasar. The maximum separation between the quasar images is 15.''1. Both the large image separations and the high image multiplicity are in themselves rare among known lensed quasars, and observing the combination of these two factors is an exceptionally unlikely occurrence in present data sets. This is only the third known case of a quasar lensed by a cluster, and the only one with six images. The lens system was discovered in the course of the Sloan Giant Arcs Survey, in which we identify candidate lenses in the Sloan Digital Sky Survey and target these for follow-up and verification with the 2.56 m Nordic Optical Telescope. Multi-band photometry obtained over multiple epochs from 2011 September to 2012 September reveals significant variability at the ∼10%-30% level in some of the quasar images, indicating that measurements of the relative time delay between quasar images will be feasible. In this lens system, we also identify a bright (g = 21.5) giant arc corresponding to a strongly lensed background galaxy at z s = 2.30. We fit parametric models of the lens system, constrained by the redshift and positions of the quasar images and the redshift and position of the giant arc. The predicted time delays between different pairs of quasar images range from ∼100 days to ∼6 yr

  18. Measuring the total and baryonic mass profiles of the very massive CASSOWARY 31 strong lens

    DEFF Research Database (Denmark)

    Grillo, Claudio; Christensen, L.; Gallazzi, A.

    2013-01-01

    analysis and plasma modelling. We derive a total mass projected within the Einstein radius R-Ein = 70 kpc of (40 +/- 1) x 10(12) M-circle dot, and a central logarithmic slope of -1.7 +/- 0.2 for the total mass density. Despite a very high stellar mass and velocity dispersion of the central galaxy of (3......We investigate the total and baryonic mass distributions in deflector number 31 (CSWA 31) of the Cambridge And Sloan Survey Of Wide ARcs in the skY (CASSOWARY). We confirm spectroscopically a four-image lensing system at redshift 1.4870 with Very Large Telescope/X-shooter observations. The lensed...... images are distributed around a bright early-type galaxy at redshift 0.683, surrounded by several smaller galaxies at similar photometric redshifts. We use available optical and X-ray data to constrain the deflector total, stellar and hot gas mass through, respectively, strong lensing, stellar population...

  19. Kiloparsec Mass/Light Offsets in the Galaxy Pair-Ly$\\alpha$ Emitter Lens System SDSS\\,J1011$+$0143

    OpenAIRE

    Shu, Yiping; Bolton, Adam S.; Moustakas, Leonidas A.; Stern, Daniel; Dey, Arjun; Brownstein, Joel R.; Burles, Scott; Spinrad, Hyron

    2016-01-01

    We report the discovery of significant mass/light offsets in the strong gravitational lensing system SDSS\\,J1011$+$0143. We use the high-resolution \\textsl{Hubble Space Telescope} (\\textsl{HST}) F555W- and F814W-band imaging and Sloan Digital Sky Survey (SDSS) spectroscopy of this system, which consists of a close galaxy pair with a projected separation of $\\approx 4.2$ kpc at $z_{\\rm lens} \\sim 0.331$ lensing a Ly$\\alpha$ emitter (LAE) at $z_{\\rm source} = 2.701$. Comparisons between the mas...

  20. Metal-Poor, Strongly Star-Forming Galaxies in the DEEP2 Survey: The Relationship Between Stellar Mass, Temperature-Based Metallicity, and Star Formation Rate

    Science.gov (United States)

    Ly, Chun; Rigby, Jane R.; Cooper, Michael; Yan, Renbin

    2015-01-01

    We report on the discovery of 28 redshift (z) approximately equal to 0.8 metal-poor galaxies in DEEP2. These galaxies were selected for their detection of the weak [O (sub III)] lambda 4363 emission line, which provides a "direct" measure of the gas-phase metallicity. A primary goal for identifying these rare galaxies is to examine whether the fundamental metallicity relation (FMR) between stellar mass, gas metallicity, and star formation rate (SFR) holds for low stellar mass and high SFR galaxies. The FMR suggests that higher SFR galaxies have lower metallicity (at fixed stellar mass). To test this trend, we combine spectroscopic measurements of metallicity and dust-corrected SFR with stellar mass estimates from modeling the optical photometry. We find that these galaxies are 1.05 plus or minus 0.61 dex above the redshift (z) approximately 1 stellar mass-SFR relation and 0.23 plus or minus 0.23 dex below the local mass-metallicity relation. Relative to the FMR, the latter offset is reduced to 0.01 dex, but significant dispersion remains dex with 0.16 dex due to measurement uncertainties). This dispersion suggests that gas accretion, star formation, and chemical enrichment have not reached equilibrium in these galaxies. This is evident by their short stellar mass doubling timescale of approximately equal to 100 (sup plus 310) (sub minus 75) million years which suggests stochastic star formation. Combining our sample with other redshift (z) of approximately 1 metal-poor galaxies, we find a weak positive SFR-metallicity dependence (at fixed stellar mass) that is significant at 94.4 percent confidence. We interpret this positive correlation as recent star formation that has enriched the gas but has not had time to drive the metal-enriched gas out with feedback mechanisms.

  1. Kiloparsec Mass/Light Offsets in the Galaxy Pair-Lyα Emitter Lens System SDSS J1011+0143

    Science.gov (United States)

    Shu, Yiping; Bolton, Adam S.; Moustakas, Leonidas A.; Stern, Daniel; Dey, Arjun; Brownstein, Joel R.; Burles, Scott; Spinrad, Hyron

    2016-03-01

    We report the discovery of significant mass/light offsets in the strong gravitational lensing system SDSS J1011+0143. We use the high-resolution Hubble Space Telescope (HST) F555W- and F814W-band imaging and Sloan Digital Sky Survey (SDSS) spectroscopy of this system, which consists of a close galaxy pair with a projected separation of ≈ 4.2 {{kpc}} at zlens ˜ 0.331 lensing an Lyα emitter (LAE) at zsource = 2.701. Comparisons between the mass peaks inferred from lens models and light peaks from HST imaging data reveal significant spatial mass/light offsets as large as 1.72 ± 0.24 ± 0.34 kpc in both filter bands. Such large mass/light offsets, not seen in isolated field lens galaxies and relaxed galaxy groups, may be related to the interactions between the two lens galaxies. The detected mass/light offsets can potentially serve as an important test for the self-interacting dark matter model. However, other mechanisms such as dynamical friction on spatially differently distributed dark matter and stars could produce similar offsets. Detailed hydrodynamical simulations of galaxy-galaxy interactions with self-interacting dark matter could accurately quantify the effects of different mechanisms. The background LAE is found to contain three distinct star-forming knots with characteristic sizes from 116 to 438 pc. It highlights the power of strong gravitational lensing in probing the otherwise too faint and unresolved structures of distance objects below subkiloparsec or even 100 pc scales through its magnification effect. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. These observations are associated with program #10831.

  2. Cosmological constraints from weak lensing non-Gaussian statistics

    Science.gov (United States)

    Liu, Jia; Haiman, Zoltan; Petri, Andrea; Hill, James; Hui, Lam; Kratochvil, Jan Michael; May, Morgan

    2016-01-01

    Weak gravitational lensing is one of the most promising techniques to probe dark energy. Our work to date suggests that the information in the nonlinear regime exceeds that in the two-point functions. Using the publicly available data from the 154 deg^2 CFHTLenS survey and a large suite of ray-tracing N-body simulations on a grid of 91 cosmological models, we find that constraints from peak counts are comparable to those from the power spectrum, and somewhat tighter when different smoothing scales are combined.I will also introduce the utility of cross-correlating weak galaxy lensing maps with CMB lensing maps, a technique that will be useful to probe structures at an intermediate redshift of 0.9, as larger weak lensing surveys such as HSC, DES, KiDS, Euclid, and LSST come online. We cross-correlate the CFHTLenS galaxy lensing convergence maps with Planck CMB lensing maps. Our results show two sigma tension with the constraints obtained from the Planck temperature measurements. I will discuss possible sources of the tension, including intrinsic alignments, photo-z uncertainties, masking of tSZ in the CMB maps, and the multiplicative bias.

  3. Gravitational lensing of the SNLS supernovae

    International Nuclear Information System (INIS)

    Kronborg, T.

    2011-01-01

    Type Ia supernovae have become an essential tool of modern observational cosmology. By studying the distance-redshift relation of a large number of supernovae, the nature of dark energy can be unveiled. Distances to Type Ia SNe are however affected by gravitational lensing which can induce systematic effects in the measurement of cosmology. The majority of the supernovae is slightly de-magnified whereas a small fraction is significantly magnified due to the mass distribution along the line of sight. This causes naturally an additional dispersion in the observed magnitudes. There are two different ways to estimate the magnification of a supernova. A first method consists in comparing the supernova luminosity, which is measured to about 15% precision, to the mean SN luminosity at the same redshift. Another estimate can be obtained from predicting the magnification induced by the foreground matter density modeled from the measurements of the luminosity of the galaxies with an initial prior on the mass-luminosity relation of the galaxies. A correlation between these 2 estimates will make it possible to tune the initially used mass-luminosity relation resulting in an independent measurement of the dark matter clustering based on the luminosity of SNe Ia. Evidently, this measurement depends crucially on the detection of this correlation also referred to as the lensing signal. This thesis is dedicated to the measurement of the lensing signal in the SNLS 3-year sample. (author)

  4. The effects of structure anisotropy on lensing observables in an exact general relativistic setting for precision cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Troxel, M. A.; Ishak, Mustapha; Peel, Austin, E-mail: troxel@utdallas.edu, E-mail: mishak@utdallas.edu, E-mail: austin.peel@utdallas.edu [Department of Physics, The University of Texas at Dallas, Richardson, TX 75080 (United States)

    2014-03-01

    The study of relativistic, higher order, and nonlinear effects has become necessary in recent years in the pursuit of precision cosmology. We develop and apply here a framework to study gravitational lensing in exact models in general relativity that are not restricted to homogeneity and isotropy, and where full nonlinearity and relativistic effects are thus naturally included. We apply the framework to a specific, anisotropic galaxy cluster model which is based on a modified NFW halo density profile and described by the Szekeres metric. We examine the effects of increasing levels of anisotropy in the galaxy cluster on lensing observables like the convergence and shear for various lensing geometries, finding a strong nonlinear response in both the convergence and shear for rays passing through anisotropic regions of the cluster. Deviation from the expected values in a spherically symmetric structure are asymmetric with respect to path direction and thus will persist as a statistical effect when averaged over some ensemble of such clusters. The resulting relative difference in various geometries can be as large as approximately 2%, 8%, and 24% in the measure of convergence (1−κ) for levels of anisotropy of 5%, 10%, and 15%, respectively, as a fraction of total cluster mass. For the total magnitude of shear, the relative difference can grow near the center of the structure to be as large as 15%, 32%, and 44% for the same levels of anisotropy, averaged over the two extreme geometries. The convergence is impacted most strongly for rays which pass in directions along the axis of maximum dipole anisotropy in the structure, while the shear is most strongly impacted for rays which pass in directions orthogonal to this axis, as expected. The rich features found in the lensing signal due to anisotropic substructure are nearly entirely lost when one treats the cluster in the traditional FLRW lensing framework. These effects due to anisotropic structures are thus likely to

  5. Learning through Different Lenses

    Science.gov (United States)

    Jeweler, Sue; Barnes-Robinson, Linda

    2015-01-01

    When parents and teachers help gifted kids use the metaphor "learning through different lenses," amazing things happen: Horizons open up. Ideas are focused. Thoughts are magnified and clarified. They see the big picture. Metaphoric thinking offers new and exciting ways to see the world. Viewing the world through different lenses provides…

  6. Deep convolutional neural networks as strong gravitational lens detectors

    Science.gov (United States)

    Schaefer, C.; Geiger, M.; Kuntzer, T.; Kneib, J.-P.

    2018-03-01

    Context. Future large-scale surveys with high-resolution imaging will provide us with approximately 105 new strong galaxy-scale lenses. These strong-lensing systems will be contained in large data amounts, however, which are beyond the capacity of human experts to visually classify in an unbiased way. Aim. We present a new strong gravitational lens finder based on convolutional neural networks (CNNs). The method was applied to the strong-lensing challenge organized by the Bologna Lens Factory. It achieved first and third place, respectively, on the space-based data set and the ground-based data set. The goal was to find a fully automated lens finder for ground-based and space-based surveys that minimizes human inspection. Methods: We compared the results of our CNN architecture and three new variations ("invariant" "views" and "residual") on the simulated data of the challenge. Each method was trained separately five times on 17 000 simulated images, cross-validated using 3000 images, and then applied to a test set with 100 000 images. We used two different metrics for evaluation, the area under the receiver operating characteristic curve (AUC) score, and the recall with no false positive (Recall0FP). Results: For ground-based data, our best method achieved an AUC score of 0.977 and a Recall0FP of 0.50. For space-based data, our best method achieved an AUC score of 0.940 and a Recall0FP of 0.32. Adding dihedral invariance to the CNN architecture diminished the overall score on space-based data, but achieved a higher no-contamination recall. We found that using committees of five CNNs produced the best recall at zero contamination and consistently scored better AUC than a single CNN. Conclusions: We found that for every variation of our CNN lensfinder, we achieved AUC scores close to 1 within 6%. A deeper network did not outperform simpler CNN models either. This indicates that more complex networks are not needed to model the simulated lenses. To verify this, more

  7. SPT-GMOS: A GEMINI/GMOS-SOUTH SPECTROSCOPIC SURVEY OF GALAXY CLUSTERS IN THE SPT-SZ SURVEY

    International Nuclear Information System (INIS)

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Capasso, R.; Chiu, I.; Cho, H-M.; Clocchiatti, A.; Crites, A. T.; Haan, T. de

    2016-01-01

    We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg 2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W , of [O ii] λλ 3727, 3729 and H- δ , and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m ⋆ ). Finally, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ∼20% of the full SPT-SZ sample.

  8. SPT-GMOS: A GEMINI/GMOS-SOUTH SPECTROSCOPIC SURVEY OF GALAXY CLUSTERS IN THE SPT-SZ SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W. [Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138 (United States); Allen, S. W. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305 (United States); Applegate, D. E. [Argelander-Institut für Astronomie, Auf dem Hügel 71, D-53121 Bonn (Germany); Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bautz, M. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Bleem, L. E.; Bocquet, S. [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Brodwin, M. [Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Capasso, R.; Chiu, I. [Faculty of Physics, Ludwig-Maximilians-Universität, Scheinerstr. 1, D-81679 Munich (Germany); Cho, H-M. [NIST Quantum Devices Group, Boulder, CO 80305 (United States); Clocchiatti, A. [Departamento de Astronomia y Astrosifica, Pontificia Universidad Catolica (Chile); Crites, A. T. [California Institute of Technology, Pasadena, CA 91125 (United States); Haan, T. de, E-mail: mbbayliss@cfa.harvard.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States); and others

    2016-11-01

    We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg{sup 2} of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W , of [O ii] λλ 3727, 3729 and H- δ , and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m {sup ⋆}). Finally, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ∼20% of the full SPT-SZ sample.

  9. iPTF16geu: A multiply imaged, gravitationally lensed type Ia supernova.

    Science.gov (United States)

    Goobar, A; Amanullah, R; Kulkarni, S R; Nugent, P E; Johansson, J; Steidel, C; Law, D; Mörtsell, E; Quimby, R; Blagorodnova, N; Brandeker, A; Cao, Y; Cooray, A; Ferretti, R; Fremling, C; Hangard, L; Kasliwal, M; Kupfer, T; Lunnan, R; Masci, F; Miller, A A; Nayyeri, H; Neill, J D; Ofek, E O; Papadogiannakis, S; Petrushevska, T; Ravi, V; Sollerman, J; Sullivan, M; Taddia, F; Walters, R; Wilson, D; Yan, L; Yaron, O

    2017-04-21

    We report the discovery of a multiply imaged, gravitationally lensed type Ia supernova, iPTF16geu (SN 2016geu), at redshift z = 0.409. This phenomenon was identified because the light from the stellar explosion was magnified more than 50 times by the curvature of space around matter in an intervening galaxy. We used high-spatial-resolution observations to resolve four images of the lensed supernova, approximately 0.3 arc seconds from the center of the foreground galaxy. The observations probe a physical scale of ~1 kiloparsec, smaller than is typical in other studies of extragalactic gravitational lensing. The large magnification and symmetric image configuration imply close alignment between the lines of sight to the supernova and to the lens. The relative magnifications of the four images provide evidence for substructures in the lensing galaxy. Copyright © 2017, American Association for the Advancement of Science.

  10. Class B0631+519: Last of the Class Lenses

    Energy Technology Data Exchange (ETDEWEB)

    York, Tom; Jackson, N.; Browne, I.W.A.; Koopmans, L.V.E.; McKean, J.P.; Norbury, M.A.; Biggs, A.D.; Blandford, R.D.; de Bruyn, A.G.; Fassnacht, C.D.; Myers, S.T.; Pearson, T.J.; Phillips, P.M.; Readhead, A.C.S.; Rusin, D.; Wilkinson, P.N.; /Jodrell Bank /Kapteyn Astron. Inst., Groningen /UC, Davis /JIVE, Dwingeloo /KIPAC, Menlo Park /NFRA,

    2005-05-31

    We report the discovery of the new gravitational lens system CLASS B0631+519. Imaging with the VLA, MERLIN and the VLBA reveals a doubly-imaged flat-spectrum radio core, a doubly-imaged steep-spectrum radio lobe and possible quadruply-imaged emission from a second lobe. The maximum separation between the lensed images is 1.16 arcsec. High resolution mapping with the VLBA at 5 GHz resolves the most magnified image of the radio core into a number of sub-components spread across approximately 20 mas. No emission from the lensing galaxy or an odd image is detected down to 0.31 mJy (5{sigma}) at 8.4 GHz. Optical and near-infrared imaging with the ACS and NICMOS cameras on the HST show that there are two galaxies along the line of sight to the lensed source, as previously discovered by optical spectroscopy. We find that the foreground galaxy at z=0.0896 is a small irregular, and that the other, at z=0.6196 is a massive elliptical which appears to contribute the majority of the lensing effect. The host galaxy of the lensed source is detected in the HST near-infrared imaging as a set of arcs, which form a nearly complete Einstein ring. Mass modeling using non-parametric techniques can reproduce the near-infrared observations and indicates that the small irregular galaxy has a (localized) effect on the flux density distribution in the Einstein ring at the 5-10% level.

  11. Predicting weak lensing statistics from halo mass reconstructions - Final Paper

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Spencer [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-20

    As dark matter does not absorb or emit light, its distribution in the universe must be inferred through indirect effects such as the gravitational lensing of distant galaxies. While most sources are only weakly lensed, the systematic alignment of background galaxies around a foreground lens can constrain the mass of the lens which is largely in the form of dark matter. In this paper, I have implemented a framework to reconstruct all of the mass along lines of sight using a best-case dark matter halo model in which the halo mass is known. This framework is then used to make predictions of the weak lensing of 3,240 generated source galaxies through a 324 arcmin² field of the Millennium Simulation. The lensed source ellipticities are characterized by the ellipticity-ellipticity and galaxy-mass correlation functions and compared to the same statistic for the intrinsic and ray-traced ellipticities. In the ellipticity-ellipticity correlation function, I and that the framework systematically under predicts the shear power by an average factor of 2.2 and fails to capture correlation from dark matter structure at scales larger than 1 arcminute. The model predicted galaxy-mass correlation function is in agreement with the ray-traced statistic from scales 0.2 to 0.7 arcminutes, but systematically underpredicts shear power at scales larger than 0.7 arcminutes by an average factor of 1.2. Optimization of the framework code has reduced the mean CPU time per lensing prediction by 70% to 24 ± 5 ms. Physical and computational shortcomings of the framework are discussed, as well as potential improvements for upcoming work.

  12. A gravitationally lensed quasar with quadruple images separated by 14.62 arcseconds.

    Science.gov (United States)

    Inada, Naohisa; Oguri, Masamune; Pindor, Bartosz; Hennawi, Joseph F; Chiu, Kuenley; Zheng, Wei; Ichikawa, Shin-Ichi; Gregg, Michael D; Becker, Robert H; Suto, Yasushi; Strauss, Michael A; Turner, Edwin L; Keeton, Charles R; Annis, James; Castander, Francisco J; Eisenstein, Daniel J; Frieman, Joshua A; Fukugita, Masataka; Gunn, James E; Johnston, David E; Kent, Stephen M; Nichol, Robert C; Richards, Gordon T; Rix, Hans-Walter; Sheldon, Erin Scott; Bahcall, Neta A; Brinkmann, J; Ivezić, Zeljko; Lamb, Don Q; McKay, Timothy A; Schneider, Donald P; York, Donald G

    2003-12-18

    Gravitational lensing is a powerful tool for the study of the distribution of dark matter in the Universe. The cold-dark-matter model of the formation of large-scale structures (that is, clusters of galaxies and even larger assemblies) predicts the existence of quasars gravitationally lensed by concentrations of dark matter so massive that the quasar images would be split by over 7 arcsec. Numerous searches for large-separation lensed quasars have, however, been unsuccessful. All of the roughly 70 lensed quasars known, including the first lensed quasar discovered, have smaller separations that can be explained in terms of galaxy-scale concentrations of baryonic matter. Although gravitationally lensed galaxies with large separations are known, quasars are more useful cosmological probes because of the simplicity of the resulting lens systems. Here we report the discovery of a lensed quasar, SDSS J1004 + 4112, which has a maximum separation between the components of 14.62 arcsec. Such a large separation means that the lensing object must be dominated by dark matter. Our results are fully consistent with theoretical expectations based on the cold-dark-matter model.

  13. Galaxy Evolution Insights from Spectral Modeling of Large Data Sets from the Sloan Digital Sky Survey

    Energy Technology Data Exchange (ETDEWEB)

    Hoversten, Erik A. [Johns Hopkins Univ., Baltimore, MD (United States)

    2007-10-01

    This thesis centers on the use of spectral modeling techniques on data from the Sloan Digital Sky Survey (SDSS) to gain new insights into current questions in galaxy evolution. The SDSS provides a large, uniform, high quality data set which can be exploited in a number of ways. One avenue pursued here is to use the large sample size to measure precisely the mean properties of galaxies of increasingly narrow parameter ranges. The other route taken is to look for rare objects which open up for exploration new areas in galaxy parameter space. The crux of this thesis is revisiting the classical Kennicutt method for inferring the stellar initial mass function (IMF) from the integrated light properties of galaxies. A large data set (~ 105 galaxies) from the SDSS DR4 is combined with more in-depth modeling and quantitative statistical analysis to search for systematic IMF variations as a function of galaxy luminosity. Galaxy Hα equivalent widths are compared to a broadband color index to constrain the IMF. It is found that for the sample as a whole the best fitting IMF power law slope above 0.5 M is Γ = 1.5 ± 0.1 with the error dominated by systematics. Galaxies brighter than around Mr,0.1 = -20 (including galaxies like the Milky Way which has Mr,0.1 ~ -21) are well fit by a universal Γ ~ 1.4 IMF, similar to the classical Salpeter slope, and smooth, exponential star formation histories (SFH). Fainter galaxies prefer steeper IMFs and the quality of the fits reveal that for these galaxies a universal IMF with smooth SFHs is actually a poor assumption. Related projects are also pursued. A targeted photometric search is conducted for strongly lensed Lyman break galaxies (LBG) similar to MS1512-cB58. The evolution of the photometric selection technique is described as are the results of spectroscopic follow-up of the best targets. The serendipitous discovery of two interesting blue compact dwarf galaxies is reported. These

  14. Inverting Gravitational Lenses

    Science.gov (United States)

    Newbury, P. R.; Spiteri, R. J.

    2002-02-01

    Gravitational lensing provides a powerful tool to study a number of fundamental questions in astrophysics. Fortuitously, one can begin to explore some non-trivial issues associated with this phenomenon without a lot of very sophisticated mathematics, making an elementary treatment of this topic tractable even to senior undergraduates. In this paper, we give a relatively self-contained outline of the basic concepts and mathematics behind gravitational lensing as a recent and exciting topic for courses in mathematical modeling or scientific computing. To this end, we have designed and made available some interactive software to aid in the simulation and inversion of gravitational lenses in a classroom setting.

  15. Stress-Detection Lenses

    Science.gov (United States)

    1996-01-01

    An Ames Research Center scientist invented an infrared lens used in sunglasses to filter out ultraviolet rays. This product finds its origins in research for military enemy detection. Through a Space Act Agreement, Optical Sales Corporation introduced the Hawkeye Lenses not only as sunglasses but as plant stress detection lenses. The lenses enhance the stressed part of the leaf, which has less chlorophyll than healthy leaves, through dyes that filter out certain wavelengths of light. Plant stress is visible earlier, at a stage when something can be done to save the plants.

  16. Mass Models and Environment of the New Quadruply Lensed Quasar SDSS J1330+1810

    Energy Technology Data Exchange (ETDEWEB)

    Oguri, Masamune; Inada, Naohisa; Blackburne, Jeffrey A.; Shin, Min-Su; Kayo, Issha; Strauss, Michael A.; Schneider, Donald P.; York, Donald G.

    2008-09-09

    We present the discovery of a new quadruply lensed quasar. The lens system, SDSS J1330+1810 at z{sub s} = 1.393, was identified as a lens candidate from the spectroscopic sample of the Sloan Digital Sky Survey. Optical and near-infrared images clearly show four quasar images with a maximum image separation of 1.76 inch, as well as a bright lensing galaxy. We measure a redshift of the lensing galaxy of z{sub 1} = 0.373 from absorption features in the spectrum. We find a foreground group of galaxies at z = 0.31 centred {approx} 120 inch southwest of the lens system. Simple mass models fit the data quite well, including the flux ratios between images, although the lens galaxy appears to be {approx} 1 mag brighter than expected by the Faber-Jackson relation. Our mass modeling suggests that shear from nearby structure is affecting the lens potential.

  17. Weak lensing magnification in the Dark Energy Survey Science Verification data

    Science.gov (United States)

    Garcia-Fernandez, M.; Sanchez, E.; Sevilla-Noarbe, I.; Suchyta, E.; Huff, E. M.; Gaztanaga, E.; Aleksić, J.; Ponce, R.; Castander, F. J.; Hoyle, B.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Eifler, T. F.; Evrard, A. E.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; James, D. J.; Jarvis, M.; Kirk, D.; Krause, E.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; MacCrann, N.; Maia, M. A. G.; March, M.; Marshall, J. L.; Melchior, P.; Miquel, R.; Mohr, J. J.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Scarpine, V.; Schubnell, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Tarle, G.; Thomas, D.; Walker, A. R.; Wester, W.

    2018-02-01

    In this paper the effect of weak lensing magnification on galaxy number counts is studied by cross-correlating the positions of two galaxy samples, separated by redshift, using the Dark Energy Survey Science Verification dataset. This analysis is carried out for galaxies that are selected only by its photometric redshift. An extensive analysis of the systematic effects, using new methods based on simulations is performed, including a Monte Carlo sampling of the selection function of the survey.

  18. Weak lensing magnification in the Dark Energy Survey Science Verification data

    Science.gov (United States)

    Garcia-Fernandez, M.; Sanchez, E.; Sevilla-Noarbe, I.; Suchyta, E.; Huff, E. M.; Gaztanaga, E.; Aleksić, J.; Ponce, R.; Castander, F. J.; Hoyle, B.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Eifler, T. F.; Evrard, A. E.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; James, D. J.; Jarvis, M.; Kirk, D.; Krause, E.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; MacCrann, N.; Maia, M. A. G.; March, M.; Marshall, J. L.; Melchior, P.; Miquel, R.; Mohr, J. J.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Scarpine, V.; Schubnell, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Tarle, G.; Thomas, D.; Walker, A. R.; Wester, W.; DES Collaboration

    2018-05-01

    In this paper, the effect of weak lensing magnification on galaxy number counts is studied by cross-correlating the positions of two galaxy samples, separated by redshift, using the Dark Energy Survey Science Verification data set. This analysis is carried out for galaxies that are selected only by its photometric redshift. An extensive analysis of the systematic effects, using new methods based on simulations is performed, including a Monte Carlo sampling of the selection function of the survey.

  19. Braneworld Black Hole Gravitational Lensing

    International Nuclear Information System (INIS)

    Liang Jun

    2017-01-01

    A class of braneworld black holes, which I called as Bronnikov–Melnikov–Dehen (BMD) black holes, are studied as gravitational lenses. I obtain the deflection angle in the strong deflection limit, and further calculate the angular positions and magnifications of relativistic images as well as the time delay between different relativistic images. I also compare the results with those obtained for Schwarzschild and two braneworld black holes, i.e., the tidal Reissner-Nordström (R-N) and the Casadio–Fabbri–Mazzacurati (CFM) black holes. (paper)

  20. Weakly oval electron lense

    International Nuclear Information System (INIS)

    Daumenov, T.D.; Alizarovskaya, I.M.; Khizirova, M.A.

    2001-01-01

    The method of the weakly oval electrical field getting generated by the axially-symmetrical field is shown. Such system may be designed with help of the cylindric form coaxial electrodes with the built-in quadrupole duplet. The singularity of the indicated weakly oval lense consists of that it provides the conducting both mechanical and electronic adjustment. Such lense can be useful for elimination of the near-axis astigmatism in the electron-optical system

  1. The Cambridge photographic atlas of galaxies

    CERN Document Server

    König, Michael

    2017-01-01

    Galaxies - the Milky Way's siblings - offer a surprising variety of forms and colours. Displaying symmetrical spiral arms, glowing red nebulae or diffuse halos, even the image of a galaxy can reveal much about its construction. All galaxies consist of gas, dust and stars, but the effects of gravity, dark matter and the interaction of star formation and stellar explosions all influence their appearances. This volume showcases more than 250 of the most beautiful galaxies within an amateur's reach and uses them to explain current astrophysical research. It features fantastic photographs, unique insights into our knowledge, tips on astrophotography and essential facts and figures based on the latest science. From the Andromeda Galaxy to galaxy clusters and gravitational lenses, the nature of galaxies is revealed through these stunning amateur photographs. This well illustrated reference atlas deserves a place on the bookshelves of astronomical imagers, observers and armchair enthusiasts.

  2. Exploring cosmic origins with CORE: Gravitational lensing of the CMB

    Science.gov (United States)

    Challinor, A.; Allison, R.; Carron, J.; Errard, J.; Feeney, S.; Kitching, T.; Lesgourgues, J.; Lewis, A.; Zubeldía, Í.; Achucarro, A.; Ade, P.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartlett, J.; Bartolo, N.; Basak, S.; Baumann, D.; Bersanelli, M.; Bonaldi, A.; Bonato, M.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Burigana, C.; Buzzelli, A.; Cai, Z.-Y.; Calvo, M.; Carvalho, C.-S.; Castellano, G.; Chluba, J.; Clesse, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; d'Alessandro, G.; de Bernardis, P.; de Gasperis, G.; De Zotti, G.; Delabrouille, J.; Di Valentino, E.; Diego, J.-M.; Fernandez-Cobos, R.; Ferraro, S.; Finelli, F.; Forastieri, F.; Galli, S.; Genova-Santos, R.; Gerbino, M.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Handley, W.; Hernandez-Monteagudo, C.; Hervías-Caimapo, C.; Hills, M.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Liguori, M.; Lindholm, V.; López-Caniego, M.; Luzzi, G.; Maffei, B.; Martinez-González, E.; Martins, C. J. A. P.; Masi, S.; Matarrese, S.; McCarthy, D.; Melchiorri, A.; Melin, J.-B.; Molinari, D.; Monfardini, A.; Natoli, P.; Negrello, M.; Notari, A.; Paiella, A.; Paoletti, D.; Patanchon, G.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Quartin, M.; Remazeilles, M.; Roman, M.; Rubino-Martin, J.-A.; Salvati, L.; Tartari, A.; Tomasi, M.; Tramonte, D.; Trappe, N.; Trombetti, T.; Tucker, C.; Valiviita, J.; Van de Weijgaert, R.; van Tent, B.; Vennin, V.; Vielva, P.; Vittorio, N.; Young, K.; Zannoni, M.

    2018-04-01

    Lensing of the cosmic microwave background (CMB) is now a well-developed probe of the clustering of the large-scale mass distribution over a broad range of redshifts. By exploiting the non-Gaussian imprints of lensing in the polarization of the CMB, the CORE mission will allow production of a clean map of the lensing deflections over nearly the full-sky. The number of high-S/N modes in this map will exceed current CMB lensing maps by a factor of 40, and the measurement will be sample-variance limited on all scales where linear theory is valid. Here, we summarise this mission product and discuss the science that will follow from its power spectrum and the cross-correlation with other clustering data. For example, the summed mass of neutrinos will be determined to an accuracy of 17 meV combining CORE lensing and CMB two-point information with contemporaneous measurements of the baryon acoustic oscillation feature in the clustering of galaxies, three times smaller than the minimum total mass allowed by neutrino oscillation measurements. Lensing has applications across many other science goals of CORE, including the search for B-mode polarization from primordial gravitational waves. Here, lens-induced B-modes will dominate over instrument noise, limiting constraints on the power spectrum amplitude of primordial gravitational waves. With lensing reconstructed by CORE, one can "delens" the observed polarization internally, reducing the lensing B-mode power by 60 %. This can be improved to 70 % by combining lensing and measurements of the cosmic infrared background from CORE, leading to an improvement of a factor of 2.5 in the error on the amplitude of primordial gravitational waves compared to no delensing (in the null hypothesis of no primordial B-modes). Lensing measurements from CORE will allow calibration of the halo masses of the tens of thousands of galaxy clusters that it will find, with constraints dominated by the clean polarization-based estimators. The 19

  3. Dark Matter in Galaxy Clusters: Shape, Projection, and Environment

    Science.gov (United States)

    Groener, Austen M.

    We explore the intrinsic distribution of dark matter within galaxy clusters, by combining insights from the largest N-body simulations as well as the largest observational dataset of its kind. Firstly, we study the intrinsic shape and alignment of isodensities of galaxy cluster halos extracted from the MultiDark MDR1 cosmological simulation. We find that the simulated halos are extremely prolate on small scales and increasingly spherical on larger ones. Due to this trend, analytical projection along the line of sight produces an overestimate of the concentration index as a decreasing function of radius, which we quantify by using both the intrinsic distribution of 3D concentrations (c200) and isodensity shape on weak and strong lensing scales. We find this difference to be ˜ 18% (˜ 9%) for low (medium) mass cluster halos with intrinsically low concentrations (c200=1- 3), while we find virtually no difference for halos with intrinsically high concentrations. Isodensities are found to be fairly well-aligned throughout the entirety of the radial scale of each halo population. However, major axes of individual halos have been found to deviate by as much as ˜ 30°. We also present a value-added catalog of our analysis results, which we have made publicly available to download. Following that, we then turn to observational measurements galaxy clusters. Scaling relations of clusters have made them particularly important cosmological probes of structure formation. In this work, we present a comprehensive study of the relation between two profile observables, concentration (cvir ) and mass (Mvir). We have collected the largest known sample of measurements from the literature which make use of one or more of the following reconstruction techniques: Weak gravitational lensing (WL), strong gravitational lensing (SL), Weak+Strong Lensing (WL+SL), the Caustic Method (CM), Line-of-sight Velocity Dispersion (LOSVD), and X-ray. We find that the concentration-mass (c-M) relation

  4. Cross-correlation of gravitational lensing from DES Science Verification data with SPT and Planck lensing

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, D.; Omori, Y.; Benoit-Lévy, A.; Cawthon, R.; Chang, C.; Larsen, P.; Amara, A.; Bacon, D.; Crawford, T. M.; Dodelson, S.; Fosalba, P.; Giannantonio, T.; Holder, G.; Jain, B.; Kacprzak, T.; Lahav, O.; MacCrann, N.; Nicola, A.; Refregier, A.; Sheldon, E.; Story, K. T.; Troxel, M. A.; Vieira, J. D.; Vikram, V.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Becker, M. R.; Benson, B. A.; Bernstein, G. M.; Bernstein, R. A.; Bleem, L. E.; Bonnett, C.; Bridle, S. L.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carlstrom, J. E.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Crocce, M.; Cunha, C. E.; D' Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D. J.; Jarvis, M.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lima, M.; March, M.; Martini, P.; Melchior, P.; Miller, C. J.; Miquel, R.; Nichol, R. C.; Ogando, R.; Plazas, A. A.; Reichardt, C. L.; Roodman, A.; Rozo, E.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Simard, G.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Wechsler, R. H.; Weller, J.

    2016-03-10

    We measure the cross-correlation between weak lensing of galaxy images and of the cosmic microwave background (CMB). The effects of gravitational lensing on different sources will be correlated if the lensing is caused by the same mass fluctuations. We use galaxy shape measurements from 139 deg(2) of the Dark Energy Survey (DES) Science Verification data and overlapping CMB lensing from the South Pole Telescope (SPT) and Planck. The DES source galaxies have a median redshift of z(med) similar to 0.7, while the CMB lensing kernel is broad and peaks at z similar to 2. The resulting cross-correlation is maximally sensitive to mass fluctuations at z similar to 0.44. Assuming the Planck 2015 best-fitting cosmology, the amplitude of the DESxSPT cross-power is found to be A(SPT) = 0.88 +/- 0.30 and that from DESxPlanck to be A(Planck) = 0.86 +/- 0.39, where A = 1 corresponds to the theoretical prediction. These are consistent with the expected signal and correspond to significances of 2.9 sigma and 2.2 sigma, respectively. We demonstrate that our results are robust to a number of important systematic effects including the shear measurement method, estimator choice, photo-z uncertainty and CMB lensing systematics. We calculate a value of A = 1.08 +/- 0.36 for DESxSPT when we correct the observations with a simple intrinsic alignment model. With three measurements of this cross-correlation now existing in the literature, there is not yet reliable evidence for any deviation from the expected LCDM level of cross-correlation. We provide forecasts for the expected signal-to-noise ratio of the combination of the five-year DES survey and SPT-3G.

  5. Large turbulent reservoirs of cold molecular gas around high-redshift starburst galaxies.

    Science.gov (United States)

    Falgarone, E; Zwaan, M A; Godard, B; Bergin, E; Ivison, R J; Andreani, P M; Bournaud, F; Bussmann, R S; Elbaz, D; Omont, A; Oteo, I; Walter, F

    2017-08-24

    Starburst galaxies at the peak of cosmic star formation are among the most extreme star-forming engines in the Universe, producing stars over about 100 million years (ref. 2). The star-formation rates of these galaxies, which exceed 100 solar masses per year, require large reservoirs of cold molecular gas to be delivered to their cores, despite strong feedback from stars or active galactic nuclei. Consequently, starburst galaxies are ideal for studying the interplay between this feedback and the growth of a galaxy. The methylidyne cation, CH + , is a most useful molecule for such studies because it cannot form in cold gas without suprathermal energy input, so its presence indicates dissipation of mechanical energy or strong ultraviolet irradiation. Here we report the detection of CH + (J = 1-0) emission and absorption lines in the spectra of six lensed starburst galaxies at redshifts near 2.5. This line has such a high critical density for excitation that it is emitted only in very dense gas, and is absorbed in low-density gas. We find that the CH + emission lines, which are broader than 1,000 kilometres per second, originate in dense shock waves powered by hot galactic winds. The CH + absorption lines reveal highly turbulent reservoirs of cool (about 100 kelvin), low-density gas, extending far (more than 10 kiloparsecs) outside the starburst galaxies (which have radii of less than 1 kiloparsec). We show that the galactic winds sustain turbulence in the 10-kiloparsec-scale environments of the galaxies, processing these environments into multiphase, gravitationally bound reservoirs. However, the mass outflow rates are found to be insufficient to balance the star-formation rates. Another mass input is therefore required for these reservoirs, which could be provided by ongoing mergers or cold-stream accretion. Our results suggest that galactic feedback, coupled jointly to turbulence and gravity, extends the starburst phase of a galaxy instead of quenching it.

  6. Astrophysics. Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens.

    Science.gov (United States)

    Kelly, Patrick L; Rodney, Steven A; Treu, Tommaso; Foley, Ryan J; Brammer, Gabriel; Schmidt, Kasper B; Zitrin, Adi; Sonnenfeld, Alessandro; Strolger, Louis-Gregory; Graur, Or; Filippenko, Alexei V; Jha, Saurabh W; Riess, Adam G; Bradac, Marusa; Weiner, Benjamin J; Scolnic, Daniel; Malkan, Matthew A; von der Linden, Anja; Trenti, Michele; Hjorth, Jens; Gavazzi, Raphael; Fontana, Adriano; Merten, Julian C; McCully, Curtis; Jones, Tucker; Postman, Marc; Dressler, Alan; Patel, Brandon; Cenko, S Bradley; Graham, Melissa L; Tucker, Bradley E

    2015-03-06

    In 1964, Refsdal hypothesized that a supernova whose light traversed multiple paths around a strong gravitational lens could be used to measure the rate of cosmic expansion. We report the discovery of such a system. In Hubble Space Telescope imaging, we have found four images of a single supernova forming an Einstein cross configuration around a redshift z = 0.54 elliptical galaxy in the MACS J1149.6+2223 cluster. The cluster's gravitational potential also creates multiple images of the z = 1.49 spiral supernova host galaxy, and a future appearance of the supernova elsewhere in the cluster field is expected. The magnifications and staggered arrivals of the supernova images probe the cosmic expansion rate, as well as the distribution of matter in the galaxy and cluster lenses. Copyright © 2015, American Association for the Advancement of Science.

  7. PREDICTIONS FOR ULTRA-DEEP RADIO COUNTS OF STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Mancuso, Claudia; Lapi, Andrea; De Zotti, Gianfranco; Bressan, Alessandro; Perrotta, Francesca; Danese, Luigi [Astrophysics Sector, SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Cai, Zhen-Yi [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Negrello, Mattia; Bonato, Matteo, E-mail: cmancuso@sissa.it [INAF—Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy)

    2015-09-01

    We have worked outty predictions for the radio counts of star-forming galaxies down to nJy levels, along with redshift distributions down to the detection limits of the phase 1 Square Kilometer Array MID telescope (SKA1-MID) and of its precursors. Such predictions were obtained by coupling epoch-dependent star formation rate (SFR) functions with relations between SFR and radio (synchrotron and free–free) emission. The SFR functions were derived taking into account both the dust-obscured and the unobscured star formation, by combining far-infrared, ultraviolet, and Hα luminosity functions up to high redshifts. We have also revisited the South Pole Telescope counts of dusty galaxies at 95 GHz, performing a detailed analysis of the Spectral Energy Distributions. Our results show that the deepest SKA1-MID surveys will detect high-z galaxies with SFRs two orders of magnitude lower compared to Herschel surveys. The highest redshift tails of the distributions at the detection limits of planned SKA1-MID surveys comprise a substantial fraction of strongly lensed galaxies. We predict that a survey down to 0.25 μJy at 1.4 GHz will detect about 1200 strongly lensed galaxies per square degree, at redshifts of up to 10. For about 30% of them the SKA1-MID will detect at least 2 images. The SKA1-MID will thus provide a comprehensive view of the star formation history throughout the re-ionization epoch, unaffected by dust extinction. We have also provided specific predictions for the EMU/ASKAP and MIGHTEE/MeerKAT surveys.

  8. Gravitational lensing of gravitational waves from merging neutron star binaries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yun; Stebbins, Albert; Turner, Edwin L.

    1996-05-01

    We discuss the gravitational lensing of gravitational waves from merging neutron star binaries, in the context of advanced LIGO type gravitational wave detectors. We consider properties of the expected observational data with cut on the signal-to-noise ratio \\rho, i.e., \\rho>\\rho_0. An advanced LIGO should see unlensed inspiral events with a redshift distribution with cut-off at a redshift z_{\\rm max} < 1 for h \\leq 0.8. Any inspiral events detected at z>z_{\\rm max} should be lensed. We compute the expected total number of events which are present due to gravitational lensing and their redshift distribution for an advanced LIGO in a flat Universe. If the matter fraction in compact lenses is close to 10\\%, an advanced LIGO should see a few strongly lensed events per year with \\rho >5.

  9. Precision cluster mass determination from weak lensing

    Science.gov (United States)

    Mandelbaum, Rachel; Seljak, Uroš; Baldauf, Tobias; Smith, Robert E.

    2010-07-01

    Weak gravitational lensing has been used extensively in the past decade to constrain the masses of galaxy clusters, and is the most promising observational technique for providing the mass calibration necessary for precision cosmology with clusters. There are several challenges in estimating cluster masses, particularly (a) the sensitivity to astrophysical effects and observational systematics that modify the signal relative to the theoretical expectations, and (b) biases that can arise due to assumptions in the mass estimation method, such as the assumed radial profile of the cluster. All of these challenges are more problematic in the inner regions of the cluster, suggesting that their influence would ideally be suppressed for the purpose of mass estimation. However, at any given radius the differential surface density measured by lensing is sensitive to all mass within that radius, and the corrupted signal from the inner parts is spread out to all scales. We develop a new statistic Υ(RR0) that is ideal for estimation of cluster masses because it completely eliminates mass contributions below a chosen scale (which we suggest should be about 20 per cent of the virial radius), and thus reduces sensitivity to systematic and astrophysical effects. We use simulated and analytical profiles including shape noise to quantify systematic biases on the estimated masses for several standard methods of mass estimation, finding that these can lead to significant mass biases that range from 10 to over 50 per cent. The mass uncertainties when using the new statistic Υ(RR0) are reduced by up to a factor of 10 relative to the standard methods, while only moderately increasing the statistical errors. This new method of mass estimation will enable a higher level of precision in future science work with weak lensing mass estimates for galaxy clusters.

  10. Ring-down gravitational waves and lensing observables: How far can a wormhole mimic those of a black hole?

    Science.gov (United States)

    Nandi, Kamal K.; Izmailov, Ramil N.; Yanbekov, Almir A.; Shayakhmetov, Azat A.

    2017-05-01

    It has been argued that the recently detected ring-down gravity waveforms could be indicative only of the presence of light rings in a horizonless object, such as a surgical Schwarzschild wormhole, with the frequencies differing drastically from those of the horizon quasinormal mode frequencies ωQNM at late times. While the possibility of such a horizonless alternative is novel by itself, we show by the example of the Ellis-Bronnikov wormhole that the differences in ωQNM in the eikonal limit (large l ) need not be drastic. This result will be reached by exploiting the connection between ωQNM and the Bozza strong field lensing parameters. We shall also show that the lensing observables of the Ellis-Bronnikov wormhole can be very close to those of a black hole (say, SgrA* hosted by our galaxy) of the same mass. This situation indicates that the ring-down frequencies and lensing observables of the Ellis-Bronnikov wormhole can remarkably mimic those of a black hole. The constraint on wormhole parameter γ imposed by experimental accuracy is briefly discussed. We also provide independent arguments supporting the stability of the Ellis-Bronnikov wormhole proven recently.

  11. Optical emission line spectra of Seyfert galaxies and radio galaxies

    International Nuclear Information System (INIS)

    Osterbrock, D.E.

    1978-01-01

    Many radio galaxies have strong emission lines in their optical spectra, similar to the emission lines in the spectra of Seyfert galaxies. The range of ionization extends from [O I] and [N I] through [Ne V] and [Fe VII] to [Fe X]. The emission-line spectra of radio galaxies divide into two types, narrow-line radio galaxies whose spectra are indistinguishable from Seyfert 2 galaxies, and broad-line radio galaxies whose spectra are similar to Seyfert 1 galaxies. However on the average the broad-line radio galaxies have steeper Balmer decrements, stronger [O III] and weaker Fe II emission than the Seyfert 1 galaxies, though at least one Seyfert 1 galaxy not known to be a radio source has a spectrum very similar to typical broad-line radio galaxies. Intermediate-type Seyfert galaxies exist that show various mixtures of the Seyfert 1 and Seyfert 2 properties, and the narrow-line or Seyfert 2 property seems to be strongly correlated with radio emission. (Auth.)

  12. Modelling Baryonic Effects on Galaxy Cluster Mass Profiles

    Science.gov (United States)

    Shirasaki, Masato; Lau, Erwin T.; Nagai, Daisuke

    2018-03-01

    Gravitational lensing is a powerful probe of the mass distribution of galaxy clusters and cosmology. However, accurate measurements of the cluster mass profiles are limited by uncertainties in cluster astrophysics. In this work, we present a physically motivated model of baryonic effects on the cluster mass profiles, which self-consistently takes into account the impact of baryons on the concentration as well as mass accretion histories of galaxy clusters. We calibrate this model using the Omega500 hydrodynamical cosmological simulations of galaxy clusters with varying baryonic physics. Our model will enable us to simultaneously constrain cluster mass, concentration, and cosmological parameters using stacked weak lensing measurements from upcoming optical cluster surveys.

  13. Golden Gravitational Lensing Systems from the Sloan Lens ACS Survey. I. SDSS J1538+5817: One Lens for Two Sources

    Science.gov (United States)

    Grillo, C.; Eichner, T.; Seitz, S.; Bender, R.; Lombardi, M.; Gobat, R.; Bauer, A.

    2010-02-01

    We present a gravitational lensing and photometric study of the exceptional strong lensing system SDSS J1538+5817, identified by the Sloan Lens Advanced Camera for Survey. The lens is a luminous elliptical galaxy at redshift zl = 0.143. Using Hubble Space Telescope public images obtained with two different filters, the presence of two background sources lensed, respectively, into an Einstein ring and a double system is ascertained. Our new spectroscopic observations, performed at the Nordic Optical Telescope, reveal unequivocally that the two sources are located at the same redshift zs = 0.531. We investigate the total (luminous and dark) mass distribution of the lens between 1 and 4 kpc from the galaxy center by means of parametric and non-parametric lensing codes that describe the multiple images as point-like objects. Bootstrapping and Bayesian analyses are performed to determine the uncertainties on the quantities relevant to the lens mass characterization. Several disparate lensing models provide results that are consistent, given the errors, with those obtained from the best-fit model of the lens mass distribution in terms of a singular power-law ellipsoid model. In particular, the lensing models agree on: (1) reproducing accurately the observed positions of the images; (2) predicting a nearly axisymmetric total mass distribution, centered and oriented as the light distribution; (3) measuring a value of 8.11+0.27 -0.59 × 1010 M sun for the total mass projected within the Einstein radius of 2.5 kpc; and (4) estimating a total mass density profile slightly steeper than an isothermal one (ρ (r) ∝ r^{-2.33^{+0.43}_{-0.20}}). A fit of the Sloan Digital Sky Survey multicolor photometry with composite stellar population models provides a value of 20+1 -4 × 1010 M sun for the total mass of the galaxy in the form of stars and of 0.9+0.1 -0.2 for the fraction of projected luminous over total mass enclosed inside the Einstein radius. By combining lensing (total

  14. Gravitational Lensing as a Probe of Cold Dark Matter Subhalos

    Directory of Open Access Journals (Sweden)

    Erik Zackrisson

    2010-01-01

    Full Text Available In the cold dark matter scenario, dark matter halos are assembled hierarchically from smaller subunits. Some of these subunits are disrupted during the merging process, whereas others survive temporarily in the form of subhalos. A long-standing problem with this picture is that the number of subhalos predicted by simulations exceeds the number of luminous dwarf galaxies seen in the vicinity of large galaxies like the Milky Way. Many of the subhalos must therefore have remained dark or very faint. If cold dark matter subhalos are as common as predicted, gravitational lensing may in principle offer a promising route to detection. In this paper, we describe the many ways through which lensing by subhalos can manifest itself, and summarize the results from current efforts to constrain the properties of cold dark matter subhalos using such effects.

  15. Detection of brown dwarfs by the micro-lensing of unresolved stars

    CERN Document Server

    Baillon, Paul; Giraud-Héraud, Yannick; Kaplan, J; Baillon, Paul; Bouquet, Alain; Giraud-Héraud, Yannick; Kaplan, Jean

    1993-01-01

    The presence of brown dwarfs in the dark galactic halo could be detected through their gravitational lensing effect and experiments under way monitor about one million stars to observe a few lensing events per year. We show that if the photon flux from a galaxy is measured with a good precision, it is not necessary to resolve the stars and besides more events could be observed.

  16. Biocompatibility of Intraocular Lenses.

    Science.gov (United States)

    Özyol, Pelin; Özyol, Erhan; Karel, Fatih

    2017-08-01

    The performance of an intraocular lens is determined by several factors such as the surgical technique, surgical complications, intraocular lens biomaterial and design, and host reaction to the lens. The factor indicating the biocompatibility of an intraocular lens is the behavior of inflammatory and lens epithelial cells. Hence, the biocompatibility of intraocular lens materials is assessed in terms of uveal biocompatibility, based on the inflammatory foreign-body reaction of the eye against the implant, and in terms of capsular biocompatibility, determined by the relationship of the intraocular lens with residual lens epithelial cells within the capsular bag. Insufficient biocompatibility of intraocular lens materials may result in different clinical entities such as anterior capsule opacification, posterior capsule opacification, and lens epithelial cell ongrowth. Intraocular lenses are increasingly implanted much earlier in life in cases such as refractive lens exchange or pediatric intraocular lens implantation after congenital cataract surgery, and these lenses are expected to exhibit maximum performance for many decades. The materials used in intraocular lens manufacture should, therefore, ensure long-term uveal and capsular biocompatibility. In this article, we review the currently available materials used in the manufacture of intraocular lenses, especially with regard to their uveal and capsular biocompatibility, and discuss efforts to improve the biocompatibility of intraocular lenses.

  17. TESTING STRICT HYDROSTATIC EQUILIBRIUM IN SIMULATED CLUSTERS OF GALAXIES: IMPLICATIONS FOR A1689

    International Nuclear Information System (INIS)

    Molnar, S. M.; Umetsu, K.; Chiu, I.-N.; Chen, P.; Hearn, N.; Broadhurst, T.; Bryan, G.; Shang, C.

    2010-01-01

    Accurate mass determination of clusters of galaxies is crucial if they are to be used as cosmological probes. However, there are some discrepancies between cluster masses determined based on gravitational lensing and X-ray observations assuming strict hydrostatic equilibrium (i.e., the equilibrium gas pressure is provided entirely by thermal pressure). Cosmological simulations suggest that turbulent gas motions remaining from hierarchical structure formation may provide a significant contribution to the equilibrium pressure in clusters. We analyze a sample of massive clusters of galaxies drawn from high-resolution cosmological simulations and find a significant contribution (20%-45%) from non-thermal pressure near the center of relaxed clusters, and, in accord with previous studies, a minimum contribution at about 0.1 R vir , growing to about 30%-45% at the virial radius, R vir . Our results strongly suggest that relaxed clusters should have significant non-thermal support in their core region. As an example, we test the validity of strict hydrostatic equilibrium in the well-studied massive galaxy cluster A1689 using the latest high-resolution gravitational lensing and X-ray observations. We find a contribution of about 40% from non-thermal pressure within the core region of A1689, suggesting an alternate explanation for the mass discrepancy: the strict hydrostatic equilibrium is not valid in this region.

  18. THE THIRD GRAVITATIONAL LENSING ACCURACY TESTING (GREAT3) CHALLENGE HANDBOOK

    International Nuclear Information System (INIS)

    Mandelbaum, Rachel; Kannawadi, Arun; Simet, Melanie; Rowe, Barnaby; Kacprzak, Tomasz; Bosch, James; Miyatake, Hironao; Chang, Chihway; Gill, Mandeep; Courbin, Frederic; Jarvis, Mike; Armstrong, Bob; Lackner, Claire; Leauthaud, Alexie; Nakajima, Reiko; Rhodes, Jason; Zuntz, Joe; Bridle, Sarah; Coupon, Jean; Dietrich, Jörg P.

    2014-01-01

    The GRavitational lEnsing Accuracy Testing 3 (GREAT3) challenge is the third in a series of image analysis challenges, with a goal of testing and facilitating the development of methods for analyzing astronomical images that will be used to measure weak gravitational lensing. This measurement requires extremely precise estimation of very small galaxy shape distortions, in the presence of far larger intrinsic galaxy shapes and distortions due to the blurring kernel caused by the atmosphere, telescope optics, and instrumental effects. The GREAT3 challenge is posed to the astronomy, machine learning, and statistics communities, and includes tests of three specific effects that are of immediate relevance to upcoming weak lensing surveys, two of which have never been tested in a community challenge before. These effects include many novel aspects including realistically complex galaxy models based on high-resolution imaging from space; a spatially varying, physically motivated blurring kernel; and a combination of multiple different exposures. To facilitate entry by people new to the field, and for use as a diagnostic tool, the simulation software for the challenge is publicly available, though the exact parameters used for the challenge are blinded. Sample scripts to analyze the challenge data using existing methods will also be provided. See http://great3challenge.info and http://great3.projects.phys.ucl.ac.uk/leaderboard/ for more information

  19. Isolated galaxies

    International Nuclear Information System (INIS)

    Einasto, Maret

    1990-01-01

    To test for the possible presence of really isolated galaxies, which form a randomly distributed population in voids, we compare the distribution of most isolated galaxies in an observed sample with distributions of the same number of random points using the nearest neighbour test. The results show that the random population of really isolated galaxies does not exist - even the most isolated galaxies are connected with systems of galaxies, forming their outlying parts. (author)

  20. A COSMIC MICROWAVE BACKGROUND LENSING MASS MAP AND ITS CORRELATION WITH THE COSMIC INFRARED BACKGROUND

    Energy Technology Data Exchange (ETDEWEB)

    Holder, G. P.; De Haan, T.; Dobbs, M. A.; Dudley, J. [Department of Physics, McGill University, Montreal, Quebec H3A 2T8 (Canada); Viero, M. P.; Bock, J. [California Institute of Technology, Pasadena, CA 91125 (United States); Zahn, O. [Berkeley Center for Cosmological Physics, Department of Physics, University of California, and Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Aird, K. A. [University of Chicago, Chicago, IL 60637 (United States); Benson, B. A.; Bhattacharya, S.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T. [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Brodwin, M. [Department of Physics and Astronomy, University of Missouri, Kansas City, MO 64110 (United States); Cho, H-M. [NIST Quantum Devices Group, Boulder, CO 80305 (United States); Conley, A. [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309 (United States); George, E. M. [Department of Physics, University of California, Berkeley, CA 94720 (United States); Halverson, N. W. [Department of Astrophysical and Planetary Sciences and Department of Physics, University of Colorado, Boulder, CO 80309 (United States); and others

    2013-07-01

    We use a temperature map of the cosmic microwave background (CMB) obtained using the South Pole Telescope at 150 GHz to construct a map of the gravitational convergence to z {approx} 1100, revealing the fluctuations in the projected mass density. This map shows individual features that are significant at the {approx}4{sigma} level, providing the first image of CMB lensing convergence. We cross-correlate this map with Herschel/SPIRE maps covering 90 deg{sup 2} at wavelengths of 500, 350, and 250 {mu}m. We show that these submillimeter (submm) wavelength maps are strongly correlated with the lensing convergence map, with detection significances in each of the three submm bands ranging from 6.7{sigma} to 8.8{sigma}. We fit the measurement of the cross power spectrum assuming a simple constant bias model and infer bias factors of b = 1.3-1.8, with a statistical uncertainty of 15%, depending on the assumed model for the redshift distribution of the dusty galaxies that are contributing to the Herschel/SPIRE maps.

  1. A measurement of CMB cluster lensing with SPT and DES year 1 data

    Science.gov (United States)

    Baxter, E. J.; Raghunathan, S.; Crawford, T. M.; Fosalba, P.; Hou, Z.; Holder, G. P.; Omori, Y.; Patil, S.; Rozo, E.; Abbott, T. M. C.; Annis, J.; Aylor, K.; Benoit-Lévy, A.; Benson, B. A.; Bertin, E.; Bleem, L.; Buckley-Geer, E.; Burke, D. L.; Carlstrom, J.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Chang, C. L.; Cho, H.-M.; Crites, A. T.; Crocce, M.; Cunha, C. E.; da Costa, L. N.; D'Andrea, C. B.; Davis, C.; de Haan, T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Dodelson, S.; Doel, P.; Drlica-Wagner, A.; Estrada, J.; Everett, W. B.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; García-Bellido, J.; George, E. M.; Gaztanaga, E.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Halverson, N. W.; Harrington, N. L.; Hartley, W. G.; Holzapfel, W. L.; Honscheid, K.; Hrubes, J. D.; Jain, B.; James, D. J.; Jarvis, M.; Jeltema, T.; Knox, L.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Lee, A. T.; Leitch, E. M.; Li, T. S.; Lima, M.; Luong-Van, D.; Manzotti, A.; March, M.; Marrone, D. P.; Marshall, J. L.; Martini, P.; McMahon, J. J.; Melchior, P.; Menanteau, F.; Meyer, S. S.; Miller, C. J.; Miquel, R.; Mocanu, L. M.; Mohr, J. J.; Natoli, T.; Nord, B.; Ogando, R. L. C.; Padin, S.; Plazas, A. A.; Pryke, C.; Rapetti, D.; Reichardt, C. L.; Romer, A. K.; Roodman, A.; Ruhl, J. E.; Rykoff, E.; Sako, M.; Sanchez, E.; Sayre, J. T.; Scarpine, V.; Schaffer, K. K.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Shirokoff, E.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Staniszewski, Z.; Stark, A.; Story, K.; Suchyta, E.; Tarle, G.; Thomas, D.; Troxel, M. A.; Vanderlinde, K.; Vieira, J. D.; Walker, A. R.; Williamson, R.; Zhang, Y.; Zuntz, J.

    2018-05-01

    Clusters of galaxies gravitationally lens the cosmic microwave background (CMB) radiation, resulting in a distinct imprint in the CMB on arcminute scales. Measurement of this effect offers a promising way to constrain the masses of galaxy clusters, particularly those at high redshift. We use CMB maps from the South Pole Telescope Sunyaev-Zel'dovich (SZ) survey to measure the CMB lensing signal around galaxy clusters identified in optical imaging from first year observations of the Dark Energy Survey. The cluster catalogue used in this analysis contains 3697 members with mean redshift of \\bar{z} = 0.45. We detect lensing of the CMB by the galaxy clusters at 8.1σ significance. Using the measured lensing signal, we constrain the amplitude of the relation between cluster mass and optical richness to roughly 17 {per cent} precision, finding good agreement with recent constraints obtained with galaxy lensing. The error budget is dominated by statistical noise but includes significant contributions from systematic biases due to the thermal SZ effect and cluster miscentring.

  2. A Measurement of CMB Cluster Lensing with SPT and DES Year 1 Data

    Science.gov (United States)

    Baxter, E. J.; Raghunathan, S.; Crawford, T. M.; Fosalba, P.; Hou, Z.; Holder, G. P.; Omori, Y.; Patil, S.; Rozo, E.; Abbott, T. M. C.; Annis, J.; Aylor, K.; Benoit-Lévy, A.; Benson, B. A.; Bertin, E.; Bleem, L.; Buckley-Geer, E.; Burke, D. L.; Carlstrom, J.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Chang, C. L.; Cho, H.-M.; Crites, A. T.; Crocce, M.; Cunha, C. E.; da Costa, L. N.; D'Andrea, C. B.; Davis, C.; de Haan, T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Dodelson, S.; Doel, P.; Drlica-Wagner, A.; Estrada, J.; Everett, W. B.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; García-Bellido, J.; George, E. M.; Gaztanaga, E.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Halverson, N. W.; Harrington, N. L.; Hartley, W. G.; Holzapfel, W. L.; Honscheid, K.; Hrubes, J. D.; Jain, B.; James, D. J.; Jarvis, M.; Jeltema, T.; Knox, L.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Lee, A. T.; Leitch, E. M.; Li, T. S.; Lima, M.; Luong-Van, D.; Manzotti, A.; March, M.; Marrone, D. P.; Marshall, J. L.; Martini, P.; McMahon, J. J.; Melchior, P.; Menanteau, F.; Meyer, S. S.; Miller, C. J.; Miquel, R.; Mocanu, L. M.; Mohr, J. J.; Natoli, T.; Nord, B.; Ogando, R. L. C.; Padin, S.; Plazas, A. A.; Pryke, C.; Rapetti, D.; Reichardt, C. L.; Romer, A. K.; Roodman, A.; Ruhl, J. E.; Rykoff, E.; Sako, M.; Sanchez, E.; Sayre, J. T.; Scarpine, V.; Schaffer, K. K.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Shirokoff, E.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Staniszewski, Z.; Stark, A.; Story, K.; Suchyta, E.; Tarle, G.; Thomas, D.; Troxel, M. A.; Vanderlinde, K.; Vieira, J. D.; Walker, A. R.; Williamson, R.; Zhang, Y.; Zuntz, J.

    2018-02-01

    Clusters of galaxies gravitationally lens the cosmic microwave background (CMB) radiation, resulting in a distinct imprint in the CMB on arcminute scales. Measurement of this effect offers a promising way to constrain the masses of galaxy clusters, particularly those at high redshift. We use CMB maps from the South Pole Telescope Sunyaev-Zel'dovich (SZ) survey to measure the CMB lensing signal around galaxy clusters identified in optical imaging from first year observations of the Dark Energy Survey. The cluster catalog used in this analysis contains 3697 members with mean redshift of \\bar{z} = 0.45. We detect lensing of the CMB by the galaxy clusters at 8.1σ significance. Using the measured lensing signal, we constrain the amplitude of the relation between cluster mass and optical richness to roughly 17% precision, finding good agreement with recent constraints obtained with galaxy lensing. The error budget is dominated by statistical noise but includes significant contributions from systematic biases due to the thermal SZ effect and cluster miscentering.

  3. Learning unit: Thin lenses

    Science.gov (United States)

    Nita, L.-S.

    2012-04-01

    Learning unit: Thin lenses "Why objects seen through lenses are sometimes upright and sometimes reversed" Nita Laura Simona National College of Arts and Crafts "Constantin Brancusi", Craiova, Romania 1. GEOMETRIC OPTICS. 13 hours Introduction (models, axioms, principles, conventions) 1. Thin lenses (Types of lenses. Defining elements. Path of light rays through lenses. Image formation. Required physical quantities. Lens formulas). 2. Lens systems (Non-collated lenses. Focalless systems). 3. Human eye (Functioning as an optical system. Sight defects and their corrections). 4. Optical instruments (Characteristics exemplified by a magnifying glass. Paths of light rays through a simplified photo camera. Path of light rays through a classical microscope) (Physics curriculum for the IXth grade/ 2011). This scenario exposes a learning unit based on experimental sequences (defining specific competencies), as a succession of lessons started by noticing a problem whose solution assumes the setup of an experiment under laboratory conditions. Progressive learning of theme objectives are realised with sequential experimental steps. The central cognitive process is the induction or the generalization (development of new knowledge based on observation of examples or counterexamples of the concept to be learnt). Pupil interest in theme objectives is triggered by problem-situations, for example: "In order to better see small objects I need a magnifying glass. But when using a magnifier, small object images are sometimes seen upright and sometimes seen reversed!" Along the way, pupils' reasoning will converge to the idea: "The image of an object through a lens depends on the relative distances among object, lens, and observer". Associated learning model: EXPERIMENT Specific competencies: derived from the experiment model, in agreement with the following learning unit steps I. Evoking - Anticipation: Size of the problem, formulation of hypotheses and planning of experiment. II

  4. Visibility of galaxies

    International Nuclear Information System (INIS)

    Disney, M.J.

    1976-01-01

    It is stated that counts of galaxies could be seriously biased by selection effects, largely influenced by the brightness of the night sky. To illustrate this suppose the Earth were situated near the center of a giant elliptical galaxy. The mean surface brightness of the sky would then appear some 8 to 9 mag. brighter than is observed from our position in the Galaxy. Extragalactic space would then appear to be empty void; spiral and irregular galaxies would be invisible, and all that could be easily detected would be the core regions of galaxy ellipticals very similar to our own. Much of the Universe would be blinded by the surface brightness of the parent galaxy. This blinding, however, is a relative matter and the question arises as to what extent we are blinded by the spiral galaxy in which we exist. Strong indirect evidence exists that our knowledge of galaxies is heavily biased by the sky background, and the true population of extragalactic space may be very different from that seen. Other relevant work is also discussed, and further investigational work is indicated. (U.K.)

  5. The Planck Catalogue of High-z source candidates : A laboratory for high-z star forming galaxies

    Science.gov (United States)

    Montier, Ludovic

    2015-08-01

    The Planck satellite has provided the first FIR/submm all-sky survey with a sensitivity allowing us to identify the rarest, most luminous high-z dusty star-forming sources on the sky. It opens a new window on these extreme star-forming systems at redshift above 1.5, providing a powerful laboratory to study the mechanisms of galaxy evolution and enrichment in the frame of the large scale structure growth.I will describe how the Planck catalogue of high-z source candidates (PHz, Planck 2015 in prep.) has been built and charcaterized over 25% of the sky by selecting the brightest red submm sources at a 5' resolution. Follow-up observations with Herschel/SPIRE over 228 Planck candidates have shown that 93% of these candidates are actually overdensities of red sources with SEDs peaking at 350um (Planck Int. results. XXVII 2014). Complementarily to this population of objects, 12 Planck high-z candidates have been identified as strongly lensed star forming galaxies at redshift lying between 2.2 and 3.6 (Canameras et al 2015 subm.), with flux densities larger than 400 mJy up to 1 Jy at 350um, and strong magnification factors. These Planck lensed star-forming galaxies are the rarest brightest lensed in the submm range, providing a unique opportunity to extend the exploration of the star-forming system in this range of mass and redshift.I will detail further a specific analysis performed on a proto-cluster candidate, PHz G95.5-61.6, identified as a double structure at z=1.7 and z=2.03, using an extensive follow-up program (Flores-Cacho et al 2015 subm.). This is the first Planck proto-cluster candidate with spectroscopic confirmation, which opens a new field of statistical analysis about the evolution of dusty star-forming galaxies in such accreting structures.I will finally discuss how the PHz catalogue may help to answer some of the fundamental questions like: At what cosmic epoch did massive galaxy clusters form most of their stars? Is star formation more or less vigorous

  6. The impact of baryonic physics on the subhalo mass function and implications for gravitational lensing

    Science.gov (United States)

    Despali, Giulia; Vegetti, Simona

    2017-08-01

    We investigate the impact of baryonic physics on the subhalo population by analysing the results of two recent hydrodynamical simulations (EAGLE and Illustris), which have very similar configuration, but a different model of baryonic physics. We concentrate on haloes with a mass between 1012.5 and 1014M⊙ h-1 and redshift between 0.2 and 0.5, comparing with observational results and subhalo detections in early-type galaxy lenses. We compare the number and the spatial distribution of subhaloes in the fully hydro runs and in their dark-matter-only (DMO) counterparts, focusing on the differences between the two simulations. We find that the presence of baryons reduces the number of subhaloes, especially at the low-mass end (≤1010 M⊙ h-1), by different amounts depending on the model. The variations in the subhalo mass function are strongly dependent on those in the halo mass function, which is shifted by the effect of stellar and AGN feedback. Finally, we search for analogues of the observed lenses (Sloan Lens ACS) in the simulations, selecting them in velocity dispersion and dynamical properties. We use the selected galaxies to quantify detection expectations based on the subhalo populations in the different simulations, calculating the detection probability and the predicted values for the projected dark matter fraction in subhaloes fDM and the slope of the mass function α. We compare these values with those derived from subhalo detections in observations and conclude that the DMO and hydro EAGLE runs are both compatible with observational results, while results from the hydro Illustris run do not lie within the errors.

  7. SUBARU WEAK-LENSING STUDY OF A2163: BIMODAL MASS STRUCTURE

    International Nuclear Information System (INIS)

    Okabe, N.; Bourdin, H.; Mazzotta, P.; Maurogordato, S.

    2011-01-01

    We present a weak-lensing analysis of the merging cluster A2163 using Subaru/Suprime-Cam and CFHT/Mega-Cam data and discuss the dynamics of this cluster merger, based on complementary weak-lensing, X-ray, and optical spectroscopic data sets. From two-dimensional multi-component weak-lensing analysis, we reveal that the cluster mass distribution is well described by three main components including the two-component main cluster A2163-A with mass ratio 1:8, and its cluster satellite A2163-B. The bimodal mass distribution in A2163-A is similar to the galaxy density distribution, but appears as spatially segregated from the brightest X-ray emitting gas region. We discuss the possible origins of this gas-dark-matter offset and suggest the gas core of the A2163-A subcluster has been stripped away by ram pressure from its dark matter component. The survival of this gas core from the tidal forces exerted by the main cluster lets us infer a subcluster accretion with a non-zero impact parameter. Dominated by the most massive component of A2163-A, the mass distribution of A2163 is well described by a universal Navarro-Frenk-White profile as shown by a one-dimensional tangential shear analysis, while the singular-isothermal sphere profile is strongly ruled out. Comparing this cluster mass profile with profiles derived assuming intracluster medium hydrostatic equilibrium (H.E.) in two opposite regions of the cluster atmosphere has allowed us to confirm the prediction of a departure from H.E. in the eastern cluster side, presumably due to shock heating. Yielding a cluster mass estimate of M 500 = 11.18 +1.64 –1.46 × 10 14 h –1 M ☉ , our mass profile confirms the exceptionally high mass of A2163, consistent with previous analyses relying on the cluster dynamical analysis and Y X mass proxy.

  8. THE MOST LUMINOUS GALAXIES DISCOVERED BY WISE

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Chao-Wei; Eisenhardt, Peter R. M.; Stern, Daniel; Moustakas, Leonidas A. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Wu, Jingwen; Wright, Edward L. [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547 (United States); Assef, Roberto J. [Núcleo de Astronomía de la Facultad deIngeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Blain, Andrew W. [Department of Physics and Astronomy, University of Leicester, 1 University Road, Leicester, LE1 7RH (United Kingdom); Bridge, Carrie R.; Sayers, Jack [Division of Physics, Math, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Benford, Dominic J.; Leisawitz, David T. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Cutri, Roc M.; Masci, Frank J.; Yan, Lin [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Griffith, Roger L. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Jarrett, Thomas H. [Astronomy Department, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Lonsdale, Carol J. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Petty, Sara M. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Stanford, S. Adam, E-mail: Chao-Wei.Tsai@jpl.nasa.gov [Department of Physics, University of California Davis, One Shields Avenue, Davis, CA 95616 (United States); and others

    2015-06-01

    We present 20 Wide-field Infrared Survey Explorer (WISE)-selected galaxies with bolometric luminosities L{sub bol} > 10{sup 14} L{sub ☉}, including five with infrared luminosities L{sub IR} ≡ L{sub (rest} {sub 8–1000} {sub μm)} > 10{sup 14} L{sub ☉}. These “extremely luminous infrared galaxies,” or ELIRGs, were discovered using the “W1W2-dropout” selection criteria which requires marginal or non-detections at 3.4 and 4.6 μm (W1 and W2, respectively) but strong detections at 12 and 22 μm in the WISE survey. Their spectral energy distributions are dominated by emission at rest-frame 4–10 μm, suggesting that hot dust with T{sub d} ∼ 450 K is responsible for the high luminosities. These galaxies are likely powered by highly obscured active galactic nuclei (AGNs), and there is no evidence suggesting these systems are beamed or lensed. We compare this WISE-selected sample with 116 optically selected quasars that reach the same L{sub bol} level, corresponding to the most luminous unobscured quasars in the literature. We find that the rest-frame 5.8 and 7.8 μm luminosities of the WISE-selected ELIRGs can be 30%–80% higher than that of the unobscured quasars. The existence of AGNs with L{sub bol} > 10{sup 14} L{sub ☉} at z > 3 suggests that these supermassive black holes are born with large mass, or have very rapid mass assembly. For black hole seed masses ∼10{sup 3} M{sub ☉}, either sustained super-Eddington accretion is needed, or the radiative efficiency must be <15%, implying a black hole with slow spin, possibly due to chaotic accretion.

  9. Gravitational lensing by a Horndeski black hole

    Energy Technology Data Exchange (ETDEWEB)

    Badia, Javier [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Eiroa, Ernesto F. [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2017-11-15

    In this article we study gravitational lensing by non-rotating and asymptotically flat black holes in Horndeski theory. By adopting the strong deflection limit, we calculate the deflection angle, from which we obtain the positions and the magnifications of the relativistic images. We compare our results with those corresponding to black holes in General Relativity. We analyze the astrophysical consequences in the case of the nearest supermassive black holes. (orig.)

  10. The first detection of neutral hydrogen in emission in a strong spiral lens

    Science.gov (United States)

    Lipnicky, Andrew; Chakrabarti, Sukanya; Wright, Melvyn C. H.; Blitz, Leo; Heiles, Carl; Cotton, William; Frayer, David; Blandford, Roger; Shu, Yiping; Bolton, Adam S.

    2018-05-01

    We report H I observations of eight spiral galaxies that are strongly lensing background sources. Our targets were selected from the Sloan WFC (Wide Field Camera) Edge-on Late-type Lens Survey (SWELLS) using the Arecibo, Karl G. Jansky Very Large Array, and Green Bank telescopes. We securely detect J1703+2451 at z = 0.063 with a signal-to-noise ratio of 6.7 and W50 = 79 ± 13 km s-1, obtaining the first detection of H I emission in a strong spiral lens. We measure a mass of M_{H I} = (1.77± 0.06^{+0.35}_{-0.75})× 10^9 M_{⊙} for this source. We find that this lens is a normal spiral, with observable properties that are fairly typical of spiral galaxies. For three other sources, we did not secure a detection; however, we are able to place strong constraints on the H I masses of those galaxies. The observations for four of our sources were rendered unusable due to strong radio frequency interference.

  11. The First Detection of Neutral Hydrogen in Emission in a Strong Spiral Lens

    Science.gov (United States)

    Lipnicky, Andrew; Chakrabarti, Sukanya; Wright, Melvyn C. H.; Blitz, Leo; Heiles, Carl; Cotton, William; Frayer, David; Blandford, Roger; Shu, Yiping; Bolton, Adam S.

    2018-02-01

    We report H I observations of eight spiral galaxies that are strongly lensing background sources. Our targets were selected from the Sloan WFC (Wide Field Camera) Edge-on Late-type Lens Survey (SWELLS) using the Arecibo, Karl G. Jansky Very Large Array, and Green Bank telescopes. We securely detect J1703+2451 at z = 0.063 with a signal-to-noise of 6.7 and W50 = 79 ± 13 km s-1, obtaining the first detection of H I emission in a strong spiral lens. We measure a mass of M_{H I}= (1.77± 0.06^{+0.35}_{-0.75})× 10^9 {M}_{\\odot} for this source. We find that this lens is a normal spiral, with observable properties that are fairly typical of spiral galaxies. For three other sources we did not secure a detection; however, we are able to place strong constraints on the H I masses of those galaxies. The observations for four of our sources were rendered unusable due to strong radio frequency interference.

  12. Cross-correlation of gravitational lensing from DES Science Verification data with SPT and Planck lensing

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, D.; Omori, Y.; Benoit-Lévy, A.; Cawthon, R.; Chang, C.; Larsen, P.; Amara, A.; Bacon, D.; Crawford, T. M.; Dodelson, S.; Fosalba, P.; Giannantonio, T.; Holder, G.; Jain, B.; Kacprzak, T.; Lahav, O.; MacCrann, N.; Nicola, A.; Refregier, A.; Sheldon, E.; Story, K. T.; Troxel, M. A.; Vieira, J. D.; Vikram, V.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Becker, M. R.; Benson, B. A.; Bernstein, G. M.; Bernstein, R. A.; Bleem, L. E.; Bonnett, C.; Bridle, S. L.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carlstrom, J. E.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Crocce, M.; Cunha, C. E.; D' Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D. J.; Jarvis, M.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lima, M.; March, M.; Martini, P.; Melchior, P.; Miller, C. J.; Miquel, R.; Nichol, R. C.; Ogando, R.; Plazas, A. A.; Reichardt, C. L.; Roodman, A.; Rozo, E.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Simard, G.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Wechsler, R. H.; Weller, J.

    2016-03-10

    We measure the cross-correlation between weak lensing of galaxy images and of the cosmic microwave background (CMB). The effects of gravitational lensing on different sources will be correlated if the lensing is caused by the same mass fluctuations. We use galaxy shape measurements from 139 deg$^{2}$ of the Dark Energy Survey (DES) Science Verification data and overlapping CMB lensing from the South Pole Telescope (SPT) and Planck. The DES source galaxies have a median redshift of $z_{\\rm med} {\\sim} 0.7$, while the CMB lensing kernel is broad and peaks at $z{\\sim}2$. The resulting cross-correlation is maximally sensitive to mass fluctuations at $z{\\sim}0.44$. Assuming the Planck 2015 best-fit cosmology, the amplitude of the DES$\\times$SPT cross-power is found to be $A = 0.88 \\pm 0.30$ and that from DES$\\times$Planck to be $A = 0.86 \\pm 0.39$, where $A=1$ corresponds to the theoretical prediction. These are consistent with the expected signal and correspond to significances of $2.9 \\sigma$ and $2.2 \\sigma$ respectively. We demonstrate that our results are robust to a number of important systematic effects including the shear measurement method, estimator choice, photometric redshift uncertainty and CMB lensing systematics. Significant intrinsic alignment of galaxy shapes would increase the cross-correlation signal inferred from the data; we calculate a value of $A = 1.08 \\pm 0.36$ for DES$\\times$SPT when we correct the observations with a simple IA model. With three measurements of this cross-correlation now existing in the literature, there is not yet reliable evidence for any deviation from the expected LCDM level of cross-correlation, given the size of the statistical uncertainties and the significant impact of systematic errors, particularly IAs. We provide forecasts for the expected signal-to-noise of the combination of the five-year DES survey and SPT-3G.

  13. Galaxy mergers

    International Nuclear Information System (INIS)

    Roos, N.

    1981-01-01

    This thesis contains a series of four papers dealing with the effects of interactions among galaxies during the epoch of cluster formation. Galaxy interactions are investigated and the results incorporated in numerical simulations of the formation of groups and clusters of galaxies. The role of galaxy interactions is analysed in the more general context of simulations of an expanding universe. The evolution of galaxies in rich clusters is discussed. The results of the investigations are presented and their relation to other work done in the field are briefly reviewed and an attempt is made to link galaxy mergers to the occurrence of activity in galactic nuclei. (Auth.)

  14. Galaxy number counts: Pt. 2

    International Nuclear Information System (INIS)

    Metcalfe, N.; Shanks, T.; Fong, R.; Jones, L.R.

    1991-01-01

    Using the Prime Focus CCD Camera at the Isaac Newton Telescope we have determined the form of the B and R galaxy number-magnitude count relations in 12 independent fields for 21 m ccd m and 19 m ccd m 5. The average galaxy count relations lie in the middle of the wide range previously encompassed by photographic data. The field-to-field variation of the counts is small enough to define the faint (B m 5) galaxy count to ±10 per cent and this variation is consistent with that expected from galaxy clustering considerations. Our new data confirm that the B, and also the R, galaxy counts show evidence for strong galaxy luminosity evolution, and that the majority of the evolving galaxies are of moderately blue colour. (author)

  15. Lopsidedness of cluster galaxies in modified gravity

    International Nuclear Information System (INIS)

    Wu, Xufen; Zhao, HongSheng; Famaey, Benoit

    2010-01-01

    We point out an interesting theoretical prediction for elliptical galaxies residing inside galaxy clusters in the framework of modified Newtonian dynamics (MOND), that could be used to test this paradigm. Apart from the central brightest cluster galaxy, other galaxies close enough to the centre experience a strong gravitational influence from the other galaxies of the cluster. This influence manifests itself only as tides in standard Newtonian gravity, meaning that the systematic acceleration of the centre of mass of the galaxy has no consequence. However, in the context of MOND, a consequence of the breaking of the strong equivalence principle is that the systematic acceleration changes the own self-gravity of the galaxy. We show here that, in this framework, initially axisymmetric elliptical galaxies become lopsided along the external field's direction, and that the centroid of the galaxy, defined by the outer density contours, is shifted by a few hundreds parsecs with respect to the densest point

  16. Image analysis for cosmology: results from the GREAT10 Galaxy Challenge

    Science.gov (United States)

    Kitching, T. D.; Balan, S. T.; Bridle, S.; Cantale, N.; Courbin, F.; Eifler, T.; Gentile, M.; Gill, M. S. S.; Harmeling, S.; Heymans, C.; Hirsch, M.; Honscheid, K.; Kacprzak, T.; Kirkby, D.; Margala, D.; Massey, R. J.; Melchior, P.; Nurbaeva, G.; Patton, K.; Rhodes, J.; Rowe, B. T. P.; Taylor, A. N.; Tewes, M.; Viola, M.; Witherick, D.; Voigt, L.; Young, J.; Zuntz, J.

    2012-07-01

    In this paper, we present results from the weak-lensing shape measurement GRavitational lEnsing Accuracy Testing 2010 (GREAT10) Galaxy Challenge. This marks an order of magnitude step change in the level of scrutiny employed in weak-lensing shape measurement analysis. We provide descriptions of each method tested and include 10 evaluation metrics over 24 simulation branches. GREAT10 was the first shape measurement challenge to include variable fields; both the shear field and the point spread function (PSF) vary across the images in a realistic manner. The variable fields enable a variety of metrics that are inaccessible to constant shear simulations, including a direct measure of the impact of shape measurement inaccuracies, and the impact of PSF size and ellipticity, on the shear power spectrum. To assess the impact of shape measurement bias for cosmic shear, we present a general pseudo-Cℓ formalism that propagates spatially varying systematics in cosmic shear through to power spectrum estimates. We also show how one-point estimators of bias can be extracted from variable shear simulations. The GREAT10 Galaxy Challenge received 95 submissions and saw a factor of 3 improvement in the accuracy achieved by other shape measurement methods. The best methods achieve sub-per cent average biases. We find a strong dependence on accuracy as a function of signal-to-noise ratio, and indications of a weak dependence on galaxy type and size. Some requirements for the most ambitious cosmic shear experiments are met above a signal-to-noise ratio of 20. These results have the caveat that the simulated PSF was a ground-based PSF. Our results are a snapshot of the accuracy of current shape measurement methods and are a benchmark upon which improvement can be brought. This provides a foundation for a better understanding of the strengths and limitations of shape measurement methods.

  17. A Subhalo-Galaxy Correspondence Model of Galaxy Biasing

    Science.gov (United States)

    Kim, Juhan; Park, Changbom; Choi, Yun-Young

    2008-08-01

    We propose a model for allocating galaxies in cosmological N-body simulations. We identify each subhalo with a galaxy and assign luminosity and morphological type, assuming that the galaxy luminosity is a monotonic function of the host subhalo mass. Morphology is assigned using two simple relations between the subhalo mass and galaxy luminosity for different galaxy types. The first uses a constant luminosity ratio between early-type (E/SO) and late-type (S/Irr) galaxies at a fixed subhalo mass. The other assumes that galaxies of different morphological types but equal luminosity have a constant ratio of subhalo mass. We made a series of comparisons of the properties of these mock galaxies with those of SDSS galaxies. The resulting mock galaxy sample is found to successfully reproduce the observed local number density distribution except in high-density regions. We study the luminosity function as a function of local density, and find that the observed luminosity functions in different local density environments are overall well reproduced by the mock galaxies. A discrepancy is found at the bright end of the luminosity function of early types in the underdense regions and at the faint end of both morphological types in very high density regions. A significant fraction of the observed early-type galaxies in voids seem to have undergone relatively recent star formation and become brighter. The lack of faint mock galaxies in dense regions may be due to the strong tidal force of the central halo, which destroys less massive satellite subhalos around the simulation. The mass-to-light ratio is found to depend on the local density in a way similar to that observed in the SDSS sample. We have found an impressive agreement between our mock galaxies and the SDSS galaxies in the dependence of central velocity dispersion on the local density and luminosity.

  18. Lensing and dynamics in two simple steps

    Science.gov (United States)

    Agnello, A.; Auger, M. W.; Evans, N. W.

    2013-02-01

    We present a ready-to-use method to constrain the density distribution in spherically symmetric early-type galaxy lenses. Assuming a power-law density profile, then joint use of the virial theorem and the lens equation yields simple formulae for the power-law index (or logarithmic density gradient). Any dependence on orbital anisotropy can be tightly constrained or even erased completely. Our results rely just on surface brightnesses and line-of-sight kinematics, making deprojection unnecessary. We revisit three systems that have already been examined in the literature (the Cosmic Horseshoe, the Jackpot and B1608+656) and provide our estimates. Finally, we show that the method yields a good approximation for the density profile even when the true profile is a broken power law, albeit with a mild bias towards isothermality.

  19. A faint galaxy redshift survey behind massive clusters

    Energy Technology Data Exchange (ETDEWEB)

    Frye, Brenda Louise [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    This thesis is concerned with the gravitational lensing effect by massive galaxy clusters. We have explored a new technique for measuring galaxy masses and for detecting high-z galaxies by their optical colors. A redshift survey has been obtained at the Keck for a magnitude limited sample of objects (I<23) behind three clusters, A1689, A2390, and A2218 within a radius of 0.5M pc. For each cluster we see both a clear trend of increasing flux and redshift towards the center. This behavior is the result of image magnifications, such that at fixed redshift one sees further down the luminosity function. The gradient of this magnification is, unlike measurements of image distortion, sensitive to the mass profile, and found to depart strongly from a pure isothermal halo. We have found that V RI color selection can be used effectively as a discriminant for finding high-z galaxies behind clusters and present five 4.1 < z < 5.1 spectra which are of very high quality due to their high mean magnification of ~20, showing strong, visibly-saturated interstellar metal lines in some cases. We have also investigated the radio ring lens PKS 1830-211, locating the source and multiple images and detected molecular absorption at mm wavelengths. Broad molecular absorption of width 1/40kms is found toward the southwest component only, where surprisingly it does not reach the base of the continuum, which implies incomplete coverage of the SW component by molecular gas, despite the small projected size of the source, less than 1/8h pc at the absorption redshift.

  20. Additive manufacturing of tunable lenses

    Science.gov (United States)

    Schlichting, Katja; Novak, Tobias; Heinrich, Andreas

    2017-02-01

    Individual additive manufacturing of optical systems based on 3D Printing offers varied possibilities in design and usage. In addition to the additive manufacturing procedure, the usage of tunable lenses allows further advantages for intelligent optical systems. Our goal is to bring the advantages of additive manufacturing together with the huge potential of tunable lenses. We produced tunable lenses as a bundle without any further processing steps, like polishing. The lenses were designed and directly printed with a 3D Printer as a package. The design contains the membrane as an optical part as well as the mechanical parts of the lens, like the attachments for the sleeves which contain the oil. The dynamic optical lenses were filled with an oil. The focal length of the lenses changes due to a change of the radius of curvature. This change is caused by changing the pressure in the inside of the lens. In addition to that, we designed lenses with special structures to obtain different areas with an individual optical power. We want to discuss the huge potential of this technology for several applications. Further, an appropriate controlling system is needed. Wéll show the possibilities to control and regulate the optical power of the lenses. The lenses could be used for illumination tasks, and in the future, for individual measurement tasks. The main advantage is the individuality and the possibility to create an individual design which completely fulfills the requirements for any specific application.

  1. A search for z= 7.3 Lyα emitters behind gravitationally lensing clusters

    Science.gov (United States)

    Ota, Kazuaki; Richard, Johan; Iye, Masanori; Shibuya, Takatoshi; Egami, Eiichi; Kashikawa, Nobunari

    2012-07-01

    We searched for z= 7.3 Lyα emitters (LAEs) behind two gravitationally lensing clusters, Abell 2390 and CL 0024, using the Subaru Telescope Suprime-Cam and a narrow-band filter NB1006 (λc˜ 1005 nm and full width at half-maximum of about 21 nm). The combination of the fully depleted CCDs of the Suprime-Cam, sensitive to z˜ 7 Lyα emission at ˜ 1 μm, and the magnification by the lensing clusters can be potentially a powerful tool to detect faint distant LAEs. Using the NB1006 and deep optical to mid-infrared images of the clusters taken with the Hubble Space Telescope and Spitzer Space Telescope, we investigated if there exist objects consistent with the colour of z= 7.3 LAEs behind the clusters. We could not detect any LAEs to the unlensed Lyα line flux limit of FLyα≃ 6.9 × 10-18 erg s-1 cm-2. Using several z=7 Lyα luminosity functions (LFs) from the literature, we estimated and compared the expected detection numbers of z˜ 7$ LAEs in lensing and blank field surveys in the case of using an 8-m class ground-based telescope. Given the steep bright-end slope of the LFs, when the detector field of view (FOV) is comparable to the angular extent of a massive lensing cluster, imaging cluster(s) is (are) more efficient in detecting z˜ 7 LAEs than imaging a blank field. However, the gain is expected to be modest, a factor of 2 at most and likely much less depending on the adopted LFs. The main advantage of lensing survey, therefore, remains the gain in depth and not necessarily in detection efficiency. For much larger detectors, the lensing effect becomes negligible and the efficiency of LAE detection is proportional to the instrumental FOV. We also investigated the NB1006 images of the three z˜ 7 z-dropout galaxy candidates previously detected in Abell 2390 and found that none of them is detected in NB1006. Two of them are consistent with the predictions from previous studies that they would be at lower redshifts. The other one has a photometric redshift of z

  2. Active Galaxies

    DEFF Research Database (Denmark)

    Kilerci Eser, Ece

    Galaxy formation and evolution is one of the main research themes of modern astronomy. Active galaxies such as Active Galactic Nuclei (AGN) and Ultraluminous Infrared Galaxies (ULIRGs) are important evolutionary stages of galaxies. The ULIRG stage is mostly associated with galaxy mergers...... and interactions. During the interactions of gas-rich galaxies, the gas inflows towards the centers of the galaxies and can trigger both star formation and AGN activity. The ULIRG stage includes rapid star formation activity and fast black hole growth that is enshrouded by dust. Once the AGN emission...... one is related to the mass estimates of supermassive black holes (SMBHs). Mass estimates of SMBHs are important to understand the formation and evolution of SMBHs and their host galaxies. Black hole masses in Type 1 AGN are measured with the reverberation mapping (RM) technique. Reverberation mapping...

  3. Galaxy Formation

    DEFF Research Database (Denmark)

    Sparre, Martin

    Galaxy formation is an enormously complex discipline due to the many physical processes that play a role in shaping galaxies. The objective of this thesis is to study galaxy formation with two different approaches: First, numerical simulations are used to study the structure of dark matter and how...... galaxies form stars throughout the history of the Universe, and secondly it is shown that observations of gamma-ray bursts (GRBs) can be used to probe galaxies with active star formation in the early Universe. A conclusion from the hydrodynamical simulations is that the galaxies from the stateof...... is important, since it helps constraining chemical evolution models at high redshift. A new project studying how the population of galaxies hosting GRBs relate to other galaxy population is outlined in the conclusion of this thesis. The core of this project will be to quantify how the stellar mass function...

  4. Lensing of 21-cm fluctuations by primordial gravitational waves.

    Science.gov (United States)

    Book, Laura; Kamionkowski, Marc; Schmidt, Fabian

    2012-05-25

    Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is thus a huge trove of information with which to reconstruct the curl component of the lensing field, allowing tensor-to-scalar ratios conceivably as small as r~10(-9)-far smaller than those currently accessible-to be probed.

  5. BIASED DARK ENERGY CONSTRAINTS FROM NEGLECTING REDUCED SHEAR IN WEAK-LENSING SURVEYS

    International Nuclear Information System (INIS)

    Shapiro, Charles

    2009-01-01

    The weak gravitational lensing of distant galaxies by a large-scale structure is expected to become a powerful probe of dark energy. By measuring the ellipticities of large number of background galaxies, the subtle gravitational distortion called 'cosmic shear' can be measured and used to constrain dark energy parameters. The observed galaxy ellipticities, however, are induced not by shear but by reduced shear, which also accounts for slight magnifications of the images. This distinction is negligible for present weak-lensing surveys, but it will become more important as we improve our ability to measure and understand small-angle cosmic shear modes. I calculate the discrepancy between shear and reduced shear in the context of power spectra and cross spectra, finding the difference could be as high as 10% on the smallest accessible angular scales. I estimate how this difference will bias dark energy parameters obtained from two weak-lensing methods: weak-lensing tomography and the shear ratio method known as offset-linear scaling. For weak-lensing tomography, ignoring the effects of reduced shear will cause future surveys considered by the Dark Energy Task Force to measure dark energy parameters that are biased by amounts comparable to their error bars. I advocate that reduced shear be properly accounted for in such surveys, and I provide a semi-analytic formula for doing so. Since reduced shear cross spectra do not follow an offset-linear scaling relation, the shear ratio method is similarly biased but with smaller significance.

  6. Galaxy And Mass Assembly (GAMA): Gas Fuelling of Spiral Galaxies in the Local Universe II. - Direct Measurement of the Dependencies on Redshift and Host Halo Mass of Stellar Mass Growth in Central Disk Galaxies

    Science.gov (United States)

    Grootes, M. W.; Dvornik, A.; Laureijs, R. J.; Tuffs, R. J.; Popescu, C. C.; Robotham, A. S. G.; Liske, J.; Brown, M. J. I.; Holwerda, B. W.; Wang, L.

    2018-03-01

    We present a detailed analysis of the specific star formation rate - stellar mass (sSFR - M*) of z ≤ 0.13 disk central galaxies using a morphologically selected mass-complete sample (M* ≥ 109.5M⊙). Considering samples of grouped and ungrouped galaxies, we find the sSFR - M* relations of disk-dominated central galaxies to have no detectable dependence on host dark-matter halo (DMH) mass, even where weak-lensing measurements indicate a difference in halo mass of a factor ≳ 5. We further detect a gradual evolution of the sSFR - M* relation of non-grouped (field) central disk galaxies with redshift, even over a Δz ≈ 0.04 (≈5 . 108yr) interval, while the scatter remains constant. This evolution is consistent with extrapolation of the "main-sequence-of-star-forming-galaxies" from previous literature that uses larger redshift baselines and coarser sampling. Taken together, our results present new constraints on the paradigm under which the SFR of galaxies is determined by a self-regulated balance between gas inflows and outflows, and consumption of gas by star-formation in disks, with the inflow being determined by the product of the cosmological accretion rate and a fuelling-efficiency - \\dot{M}_{b,halo}ζ. In particular, maintaining the paradigm requires \\dot{M}_{b,halo}ζ to be independent of the mass Mhalo of the host DMH. Furthermore, it requires the fuelling-efficiency ζ to have a strong redshift dependence (∝(1 + z)2.7 for M* = 1010.3M⊙ over z = 0 - 0.13), even though no morphological transformation to spheroids can be invoked to explain this in our disk-dominated sample. The physical mechanisms capable of giving rise to such dependencies of ζ on Mhalo and z for disks are unclear.

  7. RHIC electron lenses upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Gu, X. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Altinbas, Z. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Bruno, D. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Binello, S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Costanzo, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Drees, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Gassner, D. M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Hock, J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Hock, K. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Harvey, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Mi, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Mernick, K. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Michnoff, R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Miller, T. A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Pikin, A. I. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Robert-Demolaize, G. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Samms, T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Shrey, T. C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Schoefer, V. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Tan, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Than, R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Thieberger, P. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; White, S. M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    In the Relativistic Heavy Ion Collider (RHIC) 100 GeV polarized proton run in 2015, two electron lenses were used to partially compensate for the head-on beam-beam effect for the first time. Here, we describe the design of the current electron lens, detailing the hardware modifications made after the 2014 commissioning run with heavy ions. A new electron gun with 15-mm diameter cathode is characterized. The electron beam transverse profile was measured using a YAG screen and fitted with a Gaussian distribution. During operation, the overlap of the electron and proton beams was achieved using the electron backscattering detector in conjunction with an automated orbit control program.

  8. Periodic self-lensing from accreting massive black hole binaries

    Science.gov (United States)

    D'Orazio, Daniel J.; Di Stefano, Rosanne

    2018-03-01

    Nearly 150 massive black hole binary (MBHB) candidates at sub-pc orbital separations have been reported in recent literature. Nevertheless, the definitive detection of even a single such object remains elusive. If at least one of the black holes is accreting, the light emitted from its accretion disc will be lensed by the other black hole for binary orbital inclinations near to the line of sight. This binary self-lensing could provide a unique signature of compact MBHB systems. We show that, for MBHBs with masses in the range 106-1010 M⊙ and with orbital periods less than ˜10 yr, strong lensing events should occur in one to 10s of per cent of MBHB systems that are monitored for an entire orbit. Lensing events will last from days for the less massive, shorter period MBHBs to a year for the most massive ˜10 year orbital period MBHBs. At small inclinations of the binary orbit to the line of sight, lensing must occur and will be accompanied by periodicity due to the relativistic Doppler boost. Flares at the same phase as the otherwise average flux of the Doppler modulation would be a smoking gun signature of self-lensing and can be used to constrain binary parameters. For MBHBs with separation ≳100 Schwarzschild radii, we show that finite-sized source effects could serve as a probe of MBH accretion disc structure. Finally, we stress that our lensing probability estimate implies that ˜10 of the known MBHB candidates identified through quasar periodicity should exhibit strong lensing flares.

  9. The JVAS/CLASS search for 6-arcsec to 15-arcsec image separation lensing

    NARCIS (Netherlands)

    Phillips, PM; Browne, IWA; Jackson, NJ; Wilkinson, PN; Mao, S; Rusin, D; Marlow, DR; Snellen, [No Value; Neeser, M

    2001-01-01

    The Jodrell Bank-VLA Astrometric Survey (JVAS) and the Cosmic Lens All Sky Survey (CLASS) have been systematically searched for multiple gravitational imaging of sources with image separations between 6 arcsec and 15 arcsec, associated with galaxy group and cluster lensing masses. The radio and

  10. Giant luminous arcs from lensing: determination of the mass distribution inside distant cluster cores

    International Nuclear Information System (INIS)

    Hammer, F.; Rigaut, F.

    1989-01-01

    The observations of giant luminous arcs are used in the context of the gravitational lensing theory, to investigate the distribution of the deflecting matter, usually situated in the cores of distant clusters. Analytic equations of the caustic curves are presented for a multi-point mass model, which roughly accounts for the observed arc properties. A more general lensing model is introduced, where the lensing objects (galaxies, groups and clusters of galaxies) are extended and follow the r 1/4 law. Numerical simulations reproduce pixel by pixel all the gravitational images, including the arcs, found in the cores of the A 370 and CI2244-02 clusters. They are consistent with the use of the observations of luminous matter and X-ray emitting matter as a tracer of the total mass distribution

  11. Giant luminous arcs from lensing: determination of the mass distribution inside distant cluster cores

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, F.; Rigaut, F. (Observatoire de Paris, Section de Meudon, 92 (FR))

    1989-12-01

    The observations of giant luminous arcs are used in the context of the gravitational lensing theory, to investigate the distribution of the deflecting matter, usually situated in the cores of distant clusters. Analytic equations of the caustic curves are presented for a multi-point mass model, which roughly accounts for the observed arc properties. A more general lensing model is introduced, where the lensing objects (galaxies, groups and clusters of galaxies) are extended and follow the r{sup 1/4} law. Numerical simulations reproduce pixel by pixel all the gravitational images, including the arcs, found in the cores of the A 370 and CI2244-02 clusters. They are consistent with the use of the observations of luminous matter and X-ray emitting matter as a tracer of the total mass distribution.

  12. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

    Science.gov (United States)

    Melchior, P.; Suchyta, E.; Huff, E.; Hirsch, M.; Kacprzak, T.; Rykoff, E.; Gruen, D.; Armstrong, R.; Bacon, D.; Bechtol, K.; Bernstein, G. M.; Bridle, S.; Clampitt, J.; Honscheid, K.; Jain, B.; Jouvel, S.; Krause, E.; Lin, H.; MacCrann, N.; Patton, K.; Plazas, A.; Rowe, B.; Vikram, V.; Wilcox, H.; Young, J.; Zuntz, J.; Abbott, T.; Abdalla, F. B.; Allam, S. S.; Banerji, M.; Bernstein, J. P.; Bernstein, R. A.; Bertin, E.; Buckley-Geer, E.; Burke, D. L.; Castander, F. J.; da Costa, L. N.; Cunha, C. E.; Depoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; Evrard, A. E.; Neto, A. Fausti; Fernandez, E.; Finley, D. A.; Flaugher, B.; Frieman, J. A.; Gaztanaga, E.; Gerdes, D.; Gruendl, R. A.; Gutierrez, G. R.; Jarvis, M.; Karliner, I.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marriner, J.; Marshall, J. L.; Merritt, K. W.; Miller, C. J.; Miquel, R.; Mohr, J.; Neilsen, E.; Nichol, R. C.; Nord, B. D.; Reil, K.; Roe, N. A.; Roodman, A.; Sako, M.; Sanchez, E.; Santiago, B. X.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, C.; Soares-Santos, M.; Swanson, M. E. C.; Sypniewski, A. J.; Tarle, G.; Thaler, J.; Thomas, D.; Tucker, D. L.; Walker, A.; Wechsler, R.; Weller, J.; Wester, W.

    2015-05-01

    We measure the weak lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey (DES). This pathfinder study is meant to (1) validate the Dark Energy Camera (DECam) imager for the task of measuring weak lensing shapes, and (2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, point spread function (PSF) modelling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Science Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well behaved, but the modelling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting Navarro-Frenk-White profiles to the clusters in this study, we determine weak lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak lensing mass, and richness. In addition, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1°(approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.

  13. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

    Energy Technology Data Exchange (ETDEWEB)

    Melchior, P.; Suchyta, E.; Huff, E.; Hirsch, M.; Kacprzak, T.; Rykoff, E.; Gruen, D.; Armstrong, R.; Bacon, D.; Bechtol, K.; Bernstein, G. M.; Bridle, S.; Clampitt, J.; Honscheid, K.; Jain, B.; Jouvel, S.; Krause, E.; Lin, H.; MacCrann, N.; Patton, K.; Plazas, A.; Rowe, B.; Vikram, V.; Wilcox, H.; Young, J.; Zuntz, J.; Abbott, T.; Abdalla, F. B.; Allam, S. S.; Banerji, M.; Bernstein, J. P.; Bernstein, R. A.; Bertin, E.; Buckley-Geer, E.; Burke, D. L.; Castander, F. J.; da Costa, L. N.; Cunha, C. E.; Depoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; Evrard, A. E.; Neto, A. F.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Frieman, J. A.; Gaztanaga, E.; Gerdes, D.; Gruendl, R. A.; Gutierrez, G. R.; Jarvis, M.; Karliner, I.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marriner, J.; Marshall, J. L.; Merritt, K. W.; Miller, C. J.; Miquel, R.; Mohr, J.; Neilsen, E.; Nichol, R. C.; Nord, B. D.; Reil, K.; Roe, N. A.; Roodman, A.; Sako, M.; Sanchez, E.; Santiago, B. X.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, C.; Soares-Santos, M.; Swanson, M. E. C.; Sypniewski, A. J.; Tarle, G.; Thaler, J.; Thomas, D.; Tucker, D. L.; Walker, A.; Wechsler, R.; Weller, J.; Wester, W.

    2015-03-31

    We measure the weak-lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey. This pathfinder study is meant to 1) validate the DECam imager for the task of measuring weak-lensing shapes, and 2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, PSF modeling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Science Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well-behaved, but the modeling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting NFW profiles to the clusters in this study, we determine weak-lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak-lensing mass, and richness. In addition, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1 degree (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.

  14. Magnetic electron lenses

    CERN Document Server

    1982-01-01

    No single volume has been entirely devoted to the properties of magnetic lenses, so far as I am aware, although of course all the numerous textbooks on electron optics devote space to them. The absence of such a volume, bringing together in­ formation about the theory and practical design of these lenses, is surprising, for their introduction some fifty years ago has created an entirely new family of commercial instruments, ranging from the now traditional transmission electron microscope, through the reflection and transmission scanning microscopes, to co­ lumns for micromachining and microlithography, not to mention the host of experi­ mental devices not available commercially. It therefore seemed useful to prepare an account of the various aspects of mag­ netic lens studies. These divide naturally into the five chapters of this book: the theoretical background, in which the optical behaviour is described and formu­ lae given for the various aberration coefficients; numerical methods for calculat­ ing...

  15. Halo-lensing or Self-lensing? Locating the MACHO Lenses

    Science.gov (United States)

    Nelson, C. A.; Cook, K. H.; Popowski, P.; Drake, A. J.; Marshall, S. L.; Griest, K.; Vandehei, T.; Alcock, C.; Allsman, R. A.; Axelrod, T. S.; Freeman, K. C.; Peterson, B. A.; Alves, D. R.; Becker, A. C.; Stubbs, C. W.; Tomaney, A. B.; Bennett, D. P.; Geha, M.; Lehner, M. J.; Minniti, D.; Pratt, M. R.; Quinn, P. J.; Sutherland, W.; Welch, D.; MACHO Collaboration

    2000-12-01

    There are two principle geometrical arrangements which may explain Large Magellanic Cloud (LMC) microlensing: a) halo-lensing, in which the lensed object is part of the Milky Way galactic halo and b) self-lensing, in which the lensed object is part of the LMC. Self-lensing in turn may be broken into two categories: LMC-LMC self-lensing, in which both the source and the lens reside in the LMC and background self-lensing, in which the lens is a star in the LMC and the source star is drawn from some population behind the LMC. Models suggest the contribution of LMC-LMC self-lensing is small, so the nature of LMC microlensing may be estimated from the location of the microlensing source stars. If the source stars are in the LMC then microlensing is dominated by halo-lensing; conversely if the source stars are located behind the LMC then microlensing is dominated by self-lensing. Since background populations reside behind the LMC, we expect them to be both redder and fainter then the average population of the LMC. We attempt to determine if the MACHO source stars come from such a background population by comparing the HST color-magnitude diagram (CMD) of source stars to the CMD of the average population of the LMC and looking for the effects of extra reddening and extinction. The microlensing source stars are identified by deriving accurate centroids in the ground-based MACHO images using difference image analysis (DIA) and then transforming the DIA coordinates to the HST frame. Preliminary results suggest that halo-lensing accounts for ≳ 40% of the observed microlensing results. Support provided by NASA, DOE, NSF and NPSC.

  16. Cosmological measurements with general relativistic galaxy correlations

    Energy Technology Data Exchange (ETDEWEB)

    Raccanelli, Alvise [Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 (United States); Montanari, Francesco; Durrer, Ruth [Département de Physique Théorique, Université de Genève, 24 quai Ernest Ansermet, 1211 Genève 4 (Switzerland); Bertacca, Daniele [Argelander-Institut für Astronomie, Auf dem Hügel 71, D-53121 Bonn (Germany); Doré, Olivier, E-mail: alvise@jhu.edu, E-mail: francesco.montanari@helsinki.fi, E-mail: daniele.bertacca@gmail.com, E-mail: Olivier.P.Dore@jpl.nasa.gov, E-mail: ruth.durrer@unige.ch [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2016-05-01

    We investigate the cosmological dependence and the constraining power of large-scale galaxy correlations, including all redshift-distortions, wide-angle, lensing and gravitational potential effects on linear scales. We analyze the cosmological information present in the lensing convergence and in the gravitational potential terms describing the so-called ''relativistic effects'', and we find that, while smaller than the information contained in intrinsic galaxy clustering, it is not negligible. We investigate how neglecting them does bias cosmological measurements performed by future spectroscopic and photometric large-scale surveys such as SKA and Euclid. We perform a Fisher analysis using the CLASS code, modified to include scale-dependent galaxy bias and redshift-dependent magnification and evolution bias. Our results show that neglecting relativistic terms, especially lensing convergence, introduces an error in the forecasted precision in measuring cosmological parameters of the order of a few tens of percent, in particular when measuring the matter content of the Universe and primordial non-Gaussianity parameters. The analysis suggests a possible substantial systematic error in cosmological parameter constraints. Therefore, we argue that radial correlations and integrated relativistic terms need to be taken into account when forecasting the constraining power of future large-scale number counts of galaxy surveys.

  17. The surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.

    1983-01-01

    Correlations between optical surface brightness and the radio properties of spiral galaxies are investigated. It is found that galaxies with high surface brightness are more likely to be strong continuum radio sources and that galaxies with low surface brightness have high 21-cm line emission. (author)

  18. Maximal lens bounds on QSO-galaxy association

    International Nuclear Information System (INIS)

    Kovner, I.

    1989-01-01

    The maximal possible enhancement of QSO number counts that can be produced by any ensemble of lenses which conserve brightness and in which the magnification probability is negligibly correlated with the intrinsic QSO flux is obtained. Under the assumption of the Boyle et al. (1988) number-magnitude relation for the QSOs unaffected by lenses, the theory is applied to the QSO-galaxy association sample of Webster et al. (1988). The results suggest that the background QSOs of Webster et al. may be appreciably affected by lensing. 17 refs

  19. Galaxies and clusters of galaxies

    International Nuclear Information System (INIS)

    Salpeter, E.E.

    1982-01-01

    Stellar populations and massive halos, the properties of individual galaxies, and the clusters of galaxies are discussed. Baade's concept of the two stellar populations in our Galaxy had an important influence on the theories of stellar evolution. In Baade's day, there were two puzzling questions. Population II stars manage to form more rapidly than population I stars. Population II has lower rotational velocity than population I. This story is affected by the presence of an extended, massive halo which was not known in Baade's day. It is known from galaxy rotation curves that massive halos extend much further out. The most striking feature about the variation amongst galaxies is the separation between elliptical and spiral galaxies, with SO-galaxies occupying an intermediate position. The absolute luminosity L of a galaxy provides the second parameter in a two-dimensional classification scheme. In many ways, elliptical galaxies bear the same relationship to late-type spirals as does our stellar population II to population I. Most galaxies occur in some kind of groupings, ranging from a small group such as Local Group to a rich and dense cluster such as the Coma cluster. The formation of galaxies is connected with the formation of clusters. Various models are presented and discussed. (Kato, T.)

  20. The formation of cluster galaxies

    Science.gov (United States)

    Mancone, Conor L.

    2012-06-01

    In this work I sought to understand the formation and evolution of galaxies. Specifically, I studied three key aspects of galaxy formation: star formation, mass assembly, and structural evolution. Past research has shown that the formation of a galaxy is strongly coupled to its local environment (i.e. the local galaxy density). Therefore, I studied the evolution of cluster galaxies because clusters are the highest density environments that exist in the universe. In turn, the observational results found herein form a foundation upon which to test theories of galaxy formation in the densest environments. I used the latest sample of galaxy clusters from the Bootes region to measure the near-infrared luminosity function (NIR LF) of cluster galaxies from 0 1.3. I used deeper IRAC imaging to study the NIR LF of high redshift cluster galaxies (1 pulsating AGB stars, which are poorly understood observationally but contribute substantially to the NIR light of a stellar population. I also created the Python Galaxy Fitter (PyGFit), a program which measures PSF matched photometry from crowded imaging with disparate PSFs and resolutions. This enabled accurate measurement of spectral energy distributions (SEDs) in crowded cluster fields.

  1. Constraining dark sector perturbations II: ISW and CMB lensing tomography

    Science.gov (United States)

    Soergel, B.; Giannantonio, T.; Weller, J.; Battye, R. A.

    2015-02-01

    Any Dark Energy (DE) or Modified Gravity (MG) model that deviates from a cosmological constant requires a consistent treatment of its perturbations, which can be described in terms of an effective entropy perturbation and an anisotropic stress. We have considered a recently proposed generic parameterisation of DE/MG perturbations and compared it to data from the Planck satellite and six galaxy catalogues, including temperature-galaxy (Tg), CMB lensing-galaxy (varphi g) and galaxy-galaxy (gg) correlations. Combining these observables of structure formation with tests of the background expansion allows us to investigate the properties of DE/MG both at the background and the perturbative level. Our constraints on DE/MG are mostly in agreement with the cosmological constant paradigm, while we also find that the constraint on the equation of state w (assumed to be constant) depends on the model assumed for the perturbation evolution. We obtain w=-0.92+0.20-0.16 (95% CL; CMB+gg+Tg) in the entropy perturbation scenario; in the anisotropic stress case the result is w=-0.86+0.17-0.16. Including the lensing correlations shifts the results towards higher values of w. If we include a prior on the expansion history from recent Baryon Acoustic Oscillations (BAO) measurements, we find that the constraints tighten closely around w=-1, making it impossible to measure any DE/MG perturbation evolution parameters. If, however, upcoming observations from surveys like DES, Euclid or LSST show indications for a deviation from a cosmological constant, our formalism will be a useful tool towards model selection in the dark sector.

  2. The DES Science Verification Weak Lensing Shear Catalogs

    International Nuclear Information System (INIS)

    Jarvis, M.

    2016-01-01

    We present weak lensing shear catalogs for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES). We describe our object selection, point spread function estimation and shear measurement procedures using two independent shear pipelines, IM3SHAPE and NGMIX, which produce catalogs of 2.12 million and 3.44 million galaxies respectively. We also detail a set of null tests for the shear measurements and find that they pass the requirements for systematic errors at the level necessary for weak lensing science applications using the SV data. Furthermore, we discuss some of the planned algorithmic improvements that will be necessary to produce sufficiently accurate shear catalogs for the full 5-year DES, which is expected to cover 5000 square degrees

  3. Weak gravitational lensing towards high-precision cosmology

    International Nuclear Information System (INIS)

    Berge, Joel

    2007-01-01

    This thesis aims at studying weak gravitational lensing as a tool for high-precision cosmology. We first present the development and validation of a precise and accurate tool for measuring gravitational shear, based on the shapelets formalism. We then use shapelets on real images for the first time, we analyze CFHTLS images, and combine them with XMM-LSS data. We measure the normalisation of the density fluctuations power spectrum σ 8 , and the one of the mass-temperature relation for galaxy clusters. The analysis of the Hubble space telescope COSMOS field confirms our σ 8 measurement and introduces tomography. Finally, aiming at optimizing future surveys, we compare the individual and combined merits of cluster counts and power spectrum tomography. Our results demonstrate that next generation surveys will allow weak lensing to yield its full potential in the high-precision cosmology era. (author) [fr

  4. Lensing-induced morphology changes in CMB temperature maps in modified gravity theories

    Energy Technology Data Exchange (ETDEWEB)

    Munshi, D.; Coles, P. [Astronomy Centre, School of Mathematical and Physical Sciences, University of Sussex, Brighton BN1 9QH (United Kingdom); Hu, B. [Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (IEEC-UB), Martí i Franquès 1, E08028 Barcelona (Spain); Matsubara, T. [Kobayashi-Maskawa Institute, Nagoya University, Chikusa, Nagoya 464-8602 (Japan); Heavens, A., E-mail: D.Munshi@sussex.ac.uk, E-mail: binhu@icc.ub.edu, E-mail: taka@kmi.nagoya-u.ac.jp, E-mail: P.Coles@sussex.ac.uk, E-mail: a.heavens@imperial.ac.uk [Imperial Centre for Inference and Cosmology, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom)

    2016-04-01

    Lensing of the Cosmic Microwave Background (CMB) changes the morphology of pattern of temperature fluctuations, so topological descriptors such as Minkowski Functionals can probe the gravity model responsible for the lensing. We show how the recently introduced two-to-two and three-to-one kurt-spectra (and their associated correlation functions), which depend on the power spectrum of the lensing potential, can be used to probe modified gravity theories such as f ( R ) theories of gravity and quintessence models. We also investigate models based on effective field theory, which include the constant-Ω model, and low-energy Hořava theories. Estimates of the cumulative signal-to-noise for detection of lensing-induced morphology changes, reaches O(10{sup 3}) for the future planned CMB polarization mission COrE{sup +}. Assuming foreground removal is possible to ℓ{sub max}=3000, we show that many modified gravity theories can be rejected with a high level of significance, making this technique comparable in power to galaxy weak lensing or redshift surveys. These topological estimators are also useful in distinguishing lensing from other scattering secondaries at the level of the four-point function or trispectrum. Examples include the kinetic Sunyaev-Zel'dovich (kSZ) effect which shares, with lensing, a lack of spectral distortion. We also discuss the complication of foreground contamination from unsubtracted point sources.

  5. Noise Estimates for Measurements of Weak Lensing from the Lyman-alpha Forest

    Science.gov (United States)

    Metcalf, R. Benton; Croft, Rupert A. C.; Romeo, Alessandro

    2018-03-01

    Lensing changes the apparent separation between pixels in the Lyman-α forest of separate quasars or high redshift objects by changing their observed positions on the sky. This changes the implied correlations in the absorption and in particular makes the Lyman-α forest correlation function, or power spectrum, locally anisotropic in the plane of the sky. We have proposed a method for measuring weak lensing using this effect. Here we estimate the noise expected in weak lensing maps and power spectra for different sets of observational parameters. We find that surveys of the size and quality of the ones being done today and ones planned for the future will be able to measure the lensing power spectrum at a source redshift of z ≃ 2.5 with high precision and even be able to image the distribution of foreground matter with high fidelity on degree scales. For example, we predict that Lyman-α forest lensing measurements from the DESI and WEAVE surveys should yield the mass fluctuation amplitude with a statistical error of ˜3%, eBOSS ˜6%. and the proposed MSE survey less than 1%. By dividing the redshift range into multiple bins some tomographic lensing information should be accessible as well. This would allow for cosmological lensing measurements at higher redshift than are accessible with galaxy shear surveys and correspondingly better constraints on the evolution of dark energy at relatively early times.

  6. Evidence for Dark Energy from the Cosmic Microwave Background Alone Using the Atacama Cosmology Telescope Lensing Measurements

    Science.gov (United States)

    Sherwin, Blake D.; Dunkley, Joanna; Das, Sudeep; Appel, John W.; Bond, J. Richard; Carvalho, C. Sofia; Devlin, Mark J.; Duenner, Rolando; Essinger-Hileman, Thomas; Fowler, Joesph J.; hide

    2011-01-01

    For the first time, measurements of the cosmic microwave background radiation (CMB) alone favor cosmologies with w = -1 dark energy over models without dark energy at a 3.2-sigma level. We demonstrate this by combining the CMB lensing deflection power spectrum from the Atacama Cosmology Telescope with temperature and polarization power spectra from the "Wilkinson Microwave Anisotropy Probe. The lensing data break the geometric degeneracy of different cosmological models with similar CMB temperature power spectra. Our CMB-only measurement of the dark energy density Omega(delta) confirms other measurements from supernovae, galaxy clusters and baryon acoustic oscillations, and demonstrates the power of CMB lensing as a new cosmological tool.

  7. Measurement of a Metallicity Gradient in a z = 2 Galaxy: Implications for Inside-out Assembly Histories

    Science.gov (United States)

    Jones, Tucker; Ellis, Richard; Jullo, Eric; Richard, Johan

    2010-12-01

    We present near-infrared imaging spectroscopy of the strongly lensed z = 2.00 galaxy SDSS J120601.69+514227.8 ("the Clone arc"). Using OSIRIS on the Keck 2 telescope with laser guide star adaptive optics, we achieve resolved spectroscopy with 0.20 arcsec FWHM resolution in the diagnostic emission lines [O III], Hα, and [N II]. The lensing magnification allows us to map the velocity and star formation from Hα emission at a physical resolution of sime300 pc in the galaxy source plane. With an integrated star formation rate of sime50 M sun yr-1, the galaxy is typical of sources similarly studied at this epoch. It is dispersion dominated with a velocity gradient of sime±80 km s-1 and average dispersion \\bar{σ} = 85 km s-1 the dynamical mass is 2.4 × 1010 M sun within a half-light radius of 2.9 kpc. Robust detection of [N II] emission across the entire OSIRIS field of view enables us to trace the gas phase metallicity distribution with 500 pc resolution. We find a strong radial gradient in both the [N II]/Hα and [O III]/Hα ratios indicating a metallicity gradient of -0.27 ± 0.05 dex kpc-1 with central metallicity close to solar. We demonstrate that the gradient is seen independently in two multiple images. While the physical gradient is considerably steeper than that observed in local galaxies, in terms of the effective radius at that epoch, the gradient is similar. This suggests that subsequent growth occurs in an inside-out manner with the inner metallicity gradient diminished over time due to radial mixing and enrichment from star formation.

  8. Do satellite galaxies trace matter in galaxy clusters?

    Science.gov (United States)

    Wang, Chunxiang; Li, Ran; Gao, Liang; Shan, Huanyuan; Kneib, Jean-Paul; Wang, Wenting; Chen, Gang; Makler, Martin; Pereira, Maria E. S.; Wang, Lin; Maia, Marcio A. G.; Erben, Thomas

    2018-04-01

    The spatial distribution of satellite galaxies encodes rich information of the structure and assembly history of galaxy clusters. In this paper, we select a red-sequence Matched-filter Probabilistic Percolation cluster sample in SDSS Stripe 82 region with 0.1 ≤ z ≤ 0.33, 20 0.7. Using the high-quality weak lensing data from CS82 Survey, we constrain the mass profile of this sample. Then we compare directly the mass density profile with the satellite number density profile. We find that the total mass and number density profiles have the same shape, both well fitted by an NFW profile. The scale radii agree with each other within a 1σ error (r_s,gal=0.34_{-0.03}^{+0.04} Mpc versus r_s=0.37_{-0.10}^{+0.15} Mpc).

  9. The WFIRST Galaxy Survey Exposure Time Calculator

    Science.gov (United States)

    Hirata, Christopher M.; Gehrels, Neil; Kneib, Jean-Paul; Kruk, Jeffrey; Rhodes, Jason; Wang, Yun; Zoubian, Julien

    2013-01-01

    This document describes the exposure time calculator for the Wide-Field Infrared Survey Telescope (WFIRST) high-latitude survey. The calculator works in both imaging and spectroscopic modes. In addition to the standard ETC functions (e.g. background and SN determination), the calculator integrates over the galaxy population and forecasts the density and redshift distribution of galaxy shapes usable for weak lensing (in imaging mode) and the detected emission lines (in spectroscopic mode). The source code is made available for public use.

  10. The Magellan Evolution of Galaxies Spectroscopic and Ultraviolet Reference Atlas (MegaSaura). II. Stacked Spectra

    Science.gov (United States)

    Rigby, J. R.; Bayliss, M. B.; Chisholm, J.; Bordoloi, R.; Sharon, K.; Gladders, M. D.; Johnson, T.; Paterno-Mahler, R.; Wuyts, E.; Dahle, H.; Acharyya, A.

    2018-01-01

    We stack the rest-frame ultraviolet spectra of N = 14 highly magnified gravitationally lensed galaxies at redshifts 1.6high redshift with the James Webb Space Telescope (JWST). We report equivalent widths to aid in proposing for and interpreting JWST spectra. We examine the velocity profiles of strong absorption features in the composite, and in a matched composite of z∼ 0 COS/HST galaxy spectra. We find remarkable similarity in the velocity profiles at z∼ 0 and z∼ 2, suggesting that similar physical processes control the outflows across cosmic time. While the maximum outflow velocity depends strongly on ionization potential, the absorption-weighted mean velocity does not. As such, the bulk of the high-ionization absorption traces the low-ionization gas, with an additional blueshifted absorption tail extending to at least ‑2000 km s‑1. We interpret this tail as arising from the stellar wind and photospheres of massive stars. Starburst99 models are able to replicate this high-velocity absorption tail. However, these theoretical models poorly reproduce several of the photospheric absorption features, indicating that improvements are needed to match observational constraints on the massive stellar content of star-forming galaxies at z∼ 2. We publicly release our composite spectra.

  11. ROSAT Discovers Unique, Distant Cluster of Galaxies

    Science.gov (United States)

    1995-06-01

    galaxies as they were 5,000 million years ago. Knowing the intensity of the X-ray emission as measured by ROSAT and also the distance, the astronomers were then able to estimate the total X-ray energy emitted by this cluster. It was found to be extremely high [3], in fact higher than that of any other cluster ever observed by ROSAT. It amounts to no less than 1.5 million million times the total energy emitted by the Sun. It is believed that this strong X-ray emission originates in a hot gas located between the galaxies in the cluster. The high temperature indicates that the components of the gas move very rapidly; this is related to the strong gravitational field within the cluster. THE GRAVITATIONAL ARCS To their great surprise and delight, the astronomers also discovered two bright arcs, 5 - 6 arcseconds long and symmetrically placed about 35 arcseconds to the North-East and South-West of the brightest galaxies in the cluster (see the photo). They were detected on exposures of only 3 minutes duration with the 2.2-metre telescope and are among the brightest such arcs ever found. At the indicated distance, the arcs are situated at a projected distance of about 500,000 light-years from the centre of the cluster. It is an interesting possibility that the two arcs may in fact be two images of the same, very distant galaxy, that is situated far beyond RXJ1347.5-1145 and whose light has been bent and split by this cluster's strong gravitational field. This strange phenomenon was first discovered in the late 1970's and is referred to as gravitational lensing. Quite a few examples are now known, in most cases in the form of double or multiple images of quasars. About three dozen cases involve well visible galaxy clusters and elongated arcs, but few, if any, of these arcs are as bright as those seen in the present cluster. This particular arc configuration enables a very accurate determination of the total mass of the cluster, once the distance of the background galaxy has been

  12. Weak lensing and CMB: Parameter forecasts including a running spectral index

    International Nuclear Information System (INIS)

    Ishak, Mustapha; Hirata, Christopher M.; McDonald, Patrick; Seljak, Uros

    2004-01-01

    We use statistical inference theory to explore the constraints from future galaxy weak lensing (cosmic shear) surveys combined with the current CMB constraints on cosmological parameters, focusing particularly on the running of the spectral index of the primordial scalar power spectrum, α s . Recent papers have drawn attention to the possibility of measuring α s by combining the CMB with galaxy clustering and/or the Lyman-α forest. Weak lensing combined with the CMB provides an alternative probe of the primordial power spectrum. We run a series of simulations with variable runnings and compare them to semianalytic nonlinear mappings to test their validity for our calculations. We find that a 'reference' cosmic shear survey with f sky =0.01 and 6.6x10 8 galaxies per steradian can reduce the uncertainty on n s and α s by roughly a factor of 2 relative to the CMB alone. We investigate the effect of shear calibration biases on lensing by including the calibration factor as a parameter, and show that for our reference survey, the precision of cosmological parameter determination is only slightly degraded even if the amplitude calibration is uncertain by as much as 5%. We conclude that in the near future weak lensing surveys can supplement the CMB observations to constrain the primordial power spectrum

  13. Stacked Weak Lensing Mass Calibration: Estimators, Systematics, and Impact on Cosmological Parameter Constraints

    Energy Technology Data Exchange (ETDEWEB)

    Rozo, Eduardo; /U. Chicago /Chicago U., KICP; Wu, Hao-Yi; /KIPAC, Menlo Park; Schmidt, Fabian; /Caltech

    2011-11-04

    When extracting the weak lensing shear signal, one may employ either locally normalized or globally normalized shear estimators. The former is the standard approach when estimating cluster masses, while the latter is the more common method among peak finding efforts. While both approaches have identical signal-to-noise in the weak lensing limit, it is possible that higher order corrections or systematic considerations make one estimator preferable over the other. In this paper, we consider the efficacy of both estimators within the context of stacked weak lensing mass estimation in the Dark Energy Survey (DES). We find that the two estimators have nearly identical statistical precision, even after including higher order corrections, but that these corrections must be incorporated into the analysis to avoid observationally relevant biases in the recovered masses. We also demonstrate that finite bin-width effects may be significant if not properly accounted for, and that the two estimators exhibit different systematics, particularly with respect to contamination of the source catalog by foreground galaxies. Thus, the two estimators may be employed as a systematic cross-check of each other. Stacked weak lensing in the DES should allow for the mean mass of galaxy clusters to be calibrated to {approx}2% precision (statistical only), which can improve the figure of merit of the DES cluster abundance experiment by a factor of {approx}3 relative to the self-calibration expectation. A companion paper investigates how the two types of estimators considered here impact weak lensing peak finding efforts.

  14. Galaxy Disks

    NARCIS (Netherlands)

    van der Kruit, P. C.; Freeman, K. C.

    The disks of disk galaxies contain a substantial fraction of their baryonic matter and angular momentum, and much of the evolutionary activity in these galaxies, such as the formation of stars, spiral arms, bars and rings, and the various forms of secular evolution, takes place in their disks. The

  15. A massive, dead disk galaxy in the early Universe.

    Science.gov (United States)

    Toft, Sune; Zabl, Johannes; Richard, Johan; Gallazzi, Anna; Zibetti, Stefano; Prescott, Moire; Grillo, Claudio; Man, Allison W S; Lee, Nicholas Y; Gómez-Guijarro, Carlos; Stockmann, Mikkel; Magdis, Georgios; Steinhardt, Charles L

    2017-06-21

    At redshift z = 2, when the Universe was just three billion years old, half of the most massive galaxies were extremely compact and had already exhausted their fuel for star formation. It is believed that they were formed in intense nuclear starbursts and that they ultimately grew into the most massive local elliptical galaxies seen today, through mergers with minor companions, but validating this picture requires higher-resolution observations of their centres than is currently possible. Magnification from gravitational lensing offers an opportunity to resolve the inner regions of galaxies. Here we report an analysis of the stellar populations and kinematics of a lensed z = 2.1478 compact galaxy, which-surprisingly-turns out to be a fast-spinning, rotationally supported disk galaxy. Its stars must have formed in a disk, rather than in a merger-driven nuclear starburst. The galaxy was probably fed by streams of cold gas, which were able to penetrate the hot halo gas until they were cut off by shock heating from the dark matter halo. This result confirms previous indirect indications that the first galaxies to cease star formation must have gone through major changes not just in their structure, but also in their kinematics, to evolve into present-day elliptical galaxies.

  16. Molecular gas in dusty high-redshift galaxies

    Science.gov (United States)

    Sharon, Chelsea Electra

    2013-12-01

    We present high-resolution observations of carbon monoxide (CO) emission lines for three high-redshift galaxies in order to determine their molecular gas and star formation properties. These galaxies (SMM J14011+0252, SMM J00266+1708, and SDSS J0901+1814) have large infrared luminosities, which imply high dust enshrouded star formation rates and substantial molecular gas masses. We observed these sources using the Robert C. Byrd Green Bank Telescope, the Karl G. Jansky Very Large Array, the Plateau de Bure Interferometer, and the Submillimeter Array in order to obtain measurements of multiple CO spectral lines, allowing us to determine the physical conditions of the molecular gas. Our high resolution and multi-line CO mapping of SMM J00266+1708 reveals that it is a pair of merging galaxies, whose two components have different gas excitation conditions and different gas kinematics. For SMM J14011+0252 (J14011), we find a near-unity CO(3--2)/CO(1--0) intensity ratio, consistent with a single phase (i.e., a single temperature and density) of molecular gas and different from the average population value for dusty galaxies selected at submillimeter wavelengths. Our radiative transfer modeling (using the large velocity gradient approximation) indicates that converting the CO line luminosity to molecular gas mass requires a Galactic (disk-like) scale factor rather than the typical conversion factor assumed for starbursts. Despite this choice of conversion factor, J14011 falls in the same region of star formation rate surface density and gas mass surface density (the Schmidt-Kennicutt relation) as other starburst galaxies. SDSS J0901+1814 (J0901) was initially selected as a star-forming galaxy at ultraviolet wavelengths, but also has a large infrared luminosity. We use the magnification provided by the strong gravitational lensing affecting this system to examine the spatial variation of the CO excitation within J0901. We find that the CO(3--2)/CO(1--0) line ratio is

  17. On an illusion of superluminal velocities produced by gravitational lenses

    International Nuclear Information System (INIS)

    Ingel, L.Kh.

    1981-01-01

    It is noted that gravitational lenses, by focusing the radiation of an object, increase the angle which it subtends. This in turn produces the illusion of an increase in velocities at right angles to the line of sight. Preliminary estimates are made which indicate a rather high probability of strong distortion of the observed velocities

  18. Small-scale fluctuations in the microwave background radiation and multiple gravitational lensing

    International Nuclear Information System (INIS)

    Kashlinsky, A.

    1988-01-01

    It is shown that multiple gravitational lensing of the microwave background radiation (MBR) by static compact objects significantly attenuates small-scale fluctuations in the MBR. Gravitational lensing, by altering trajectories of MBR photons reaching an observer, leads to (phase) mixing of photons from regions with different initial fluctuations. As a result of this diffusion process the original fluctuations are damped on scales up to several arcmin. An equation that describes this process and its general solution are given. It is concluded that the present upper limits on the amplitude of the MBR fluctuations on small scales cannot constrain theories of galaxy formation. 25 references

  19. An automatic taxonomy of galaxy morphology using unsupervised machine learning

    Science.gov (United States)

    Hocking, Alex; Geach, James E.; Sun, Yi; Davey, Neil

    2018-01-01

    We present an unsupervised machine learning technique that automatically segments and labels galaxies in astronomical imaging surveys using only pixel data. Distinct from previous unsupervised machine learning approaches used in astronomy we use no pre-selection or pre-filtering of target galaxy type to identify galaxies that are similar. We demonstrate the technique on the Hubble Space Telescope (HST) Frontier Fields. By training the algorithm using galaxies from one field (Abell 2744) and applying the result to another (MACS 0416.1-2403), we show how the algorithm can cleanly separate early and late type galaxies without any form of pre-directed training for what an 'early' or 'late' type galaxy is. We then apply the technique to the HST Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) fields, creating a catalogue of approximately 60 000 classifications. We show how the automatic classification groups galaxies of similar morphological (and photometric) type and make the classifications public via a catalogue, a visual catalogue and galaxy similarity search. We compare the CANDELS machine-based classifications to human-classifications from the Galaxy Zoo: CANDELS project. Although there is not a direct mapping between Galaxy Zoo and our hierarchical labelling, we demonstrate a good level of concordance between human and machine classifications. Finally, we show how the technique can be used to identify rarer objects and present lensed galaxy candidates from the CANDELS imaging.

  20. Discovery of two gravitationally lensed quasars with image separations of 3 arcseconds from the Sloan Digital Sky Survey

    Energy Technology Data Exchange (ETDEWEB)

    Oguri, Masamune; Inada, Naohisa; Hennawi, Joseph F.; Richards, Gordon T.; Johnston, David E.; Frieman, Joshua A.; Pindor, Bartosz; Strauss, Michael A.; Brunner, Robert; Becker, Robert H.; Castander, Francisco J.; Gregg, Michael D.; Hall, Patrick B.; Rix, Hans-Walter; Schneider, Donald P.; Bahcall, Neta A.; Brinkmann, Jonathan; York, Donald G.

    2004-11-01

    We report the discovery of two doubly-imaged quasars, SDSS J100128.61+502756.9 and SDSS J120629.65+433217.6, at redshifts of 1.838 and 1.789 and with image separations of 2.86'' and 2.90'', respectively. The objects were selected as lens candidates from the Sloan Digital Sky Survey (SDSS). Based on the identical nature of the spectra of the two quasars in each pair and the identification of the lens galaxies, we conclude that the objects are gravitational lenses. The lenses are complicated; in both systems there are several galaxies in the fields very close to the quasars, in addition to the lens galaxies themselves. The lens modeling implies that these nearby galaxies contribute significantly to the lens potentials. On larger scales, we have detected an enhancement in the galaxy density near SDSS J100128.61+502756.9. The number of lenses with image separation of {approx} 3'' in the SDSS already exceeds the prediction of simple theoretical models based on the standard Lambda-dominated cosmology and observed velocity function of galaxies.

  1. Statistical and systematic errors in the measurement of weak-lensing Minkowski functionals: Application to the Canada-France-Hawaii Lensing Survey

    Energy Technology Data Exchange (ETDEWEB)

    Shirasaki, Masato; Yoshida, Naoki, E-mail: masato.shirasaki@utap.phys.s.u-tokyo.ac.jp [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan)

    2014-05-01

    The measurement of cosmic shear using weak gravitational lensing is a challenging task that involves a number of complicated procedures. We study in detail the systematic errors in the measurement of weak-lensing Minkowski Functionals (MFs). Specifically, we focus on systematics associated with galaxy shape measurements, photometric redshift errors, and shear calibration correction. We first generate mock weak-lensing catalogs that directly incorporate the actual observational characteristics of the Canada-France-Hawaii Lensing Survey (CFHTLenS). We then perform a Fisher analysis using the large set of mock catalogs for various cosmological models. We find that the statistical error associated with the observational effects degrades the cosmological parameter constraints by a factor of a few. The Subaru Hyper Suprime-Cam (HSC) survey with a sky coverage of ∼1400 deg{sup 2} will constrain the dark energy equation of the state parameter with an error of Δw {sub 0} ∼ 0.25 by the lensing MFs alone, but biases induced by the systematics can be comparable to the 1σ error. We conclude that the lensing MFs are powerful statistics beyond the two-point statistics only if well-calibrated measurement of both the redshifts and the shapes of source galaxies is performed. Finally, we analyze the CFHTLenS data to explore the ability of the MFs to break degeneracies between a few cosmological parameters. Using a combined analysis of the MFs and the shear correlation function, we derive the matter density Ω{sub m0}=0.256±{sub 0.046}{sup 0.054}.

  2. Time Delay Measurements for the Cluster-lensed Sextuple Quasar SDSS J2222+2745

    Science.gov (United States)

    Dahle, H.; Gladders, M. D.; Sharon, K.; Bayliss, M. B.; Rigby, J. R.

    2015-11-01

    We report first results from an ongoing monitoring campaign to measure time delays between the six images of the quasar SDSS J2222+2745, gravitationally lensed by a galaxy cluster. The time delay between A and B, the two most highly magnified images, is measured to be {τ }{{AB}}=47.7+/- 6.0 days (95% confidence interval), consistent with previous model predictions for this lens system. The strong intrinsic variability of the quasar also allows us to derive a time delay value of {τ }{{CA}}=722+/- 24 days between image C and A, in spite of modest overlap between their light curves in the current data set. Image C, which is predicted to lead all the other lensed quasar images, has undergone a sharp, monotonic flux increase of 60%-75% during 2014. A corresponding brightening is firmly predicted to occur in images A and B during 2016. The amplitude of this rise indicates that time delays involving all six known images in this system, including those of the demagnified central images D-F, will be obtainable from further ground-based monitoring of this system during the next few years. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, and including observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnologi´a e Innovación Productiva (Argentina).

  3. Emulating the CFHTLenS weak lensing data: Cosmological constraints from moments and Minkowski functionals

    Science.gov (United States)

    Petri, Andrea; Liu, Jia; Haiman, Zoltán; May, Morgan; Hui, Lam; Kratochvil, Jan M.

    2015-05-01

    Weak gravitational lensing is a powerful cosmological probe, with non-Gaussian features potentially containing the majority of the information. We examine constraints on the parameter triplet (Ωm,w ,σ8) from non-Gaussian features of the weak lensing convergence field, including a set of moments (up to fourth order) and Minkowski functionals, using publicly available data from the 154 deg2 CFHTLenS survey. We utilize a suite of ray-tracing N-body simulations spanning 91 points in (Ωm,w ,σ8) parameter space, replicating the galaxy sky positions, redshifts and shape noise in the CFHTLenS catalogs. We then build an emulator that interpolates the simulated descriptors as a function of (Ωm,w ,σ8), and use it to compute the likelihood function and parameter constraints. We employ a principal component analysis to reduce dimensionality and to help stabilize the constraints with respect to the number of bins used to construct each statistic. Using the full set of statistics, we find Σ8≡σ8(Ωm/0.27 )0.55=0.75 ±0.04 (68% C.L.), in agreement with previous values. We find that constraints on the (Ωm,σ8) doublet from the Minkowski functionals suffer a strong bias. However, high-order moments break the (Ωm,σ8) degeneracy and provide a tight constraint on these parameters with no apparent bias. The main contribution comes from quartic moments of derivatives.

  4. SPT0346-52: NEGLIGIBLE AGN ACTIVITY IN A COMPACT, HYPER-STARBURST GALAXY AT z = 5.7

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jingzhe; Gonzalez, Anthony H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Vieira, J. D.; Sreevani, J. [Department of Astronomy and Department of Physics, University of Illinois, 1002 West Green St., Urbana, IL 61801 (United States); Aravena, M. [Núcleo de Astronomía, Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Béthermin, M.; Breuck, C. de; Gullberg, B. [European Southern Observatory, Karl Schwarzschild Straße 2, D-85748 Garching (Germany); Bothwell, M. S. [Cavendish Laboratory, University of Cambridge, JJ Thompson Ave, Cambridge CB3 0HA (United Kingdom); Brandt, W. N. [Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802 (United States); Carlstrom, J. E. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Chapman, S. C. [Dalhousie University, Halifax, Nova Scotia (Canada); Hezaveh, Y. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Litke, K.; Marrone, D. P.; Spilker, J. S. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Malkan, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); McDonald, M. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 37-582C, Cambridge, MA 02139 (United States); Murphy, E. J., E-mail: jingzhema@ufl.edu [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); and others

    2016-12-01

    We present Chandra ACIS-S and Australia Telescope Compact Array (ATCA) radio continuum observations of the strongly lensed dusty, star-forming galaxy SPT-S J034640-5204.9 (hereafter SPT0346-52) at z = 5.656. This galaxy has also been observed with ALMA, HST , Spitzer , Herschel , Atacama Pathfinder EXperiment, and the Very Large Telescope. Previous observations indicate that if the infrared (IR) emission is driven by star formation, then the inferred lensing-corrected star formation rate (SFR) (∼4500 M {sub ☉} yr{sup −1}) and SFR surface density Σ{sub SFR} (∼2000 M {sub ☉} yr{sup −1} kpc{sup −2}) are both exceptionally high. It remained unclear from the previous data, however, whether a central active galactic nucleus (AGN) contributes appreciably to the IR luminosity. The Chandra upper limit shows that SPT0346-52 is consistent with being star formation dominated in the X-ray, and any AGN contribution to the IR emission is negligible. The ATCA radio continuum upper limits are also consistent with the FIR-to-radio correlation for star-forming galaxies with no indication of an additional AGN contribution. The observed prodigious intrinsic IR luminosity of (3.6 ± 0.3) × 10{sup 13} L {sub ☉} originates almost solely from vigorous star formation activity. With an intrinsic source size of 0.61 ± 0.03 kpc, SPT0346-52 is confirmed to have one of the highest Σ{sub SFR} of any known galaxy. This high Σ{sub SFR}, which approaches the Eddington limit for a radiation pressure supported starburst, may be explained by a combination of very high star formation efficiency and gas fraction.

  5. A Portrait of One Hundred Thousand and One Galaxies

    Science.gov (United States)

    2002-08-01

    - JPEG: 1200 x 1091 pix - 664k] [Full-Res - JPEG: 5515 x 5014 pix - 14.3M] Caption : PR Photo 18c/02 displays NGC 300, as seen through a narrow optical filter (H-alpha) in the red light of hydrogen atoms. A population of intrinsically bright and young stars turned "on" just a few million years ago. Their radiation and strong stellar winds have shaped many of the clouds of ionized hydrogen gas ("HII shells") seen in this photo. The "rings" near some of the bright stars are caused by internal reflections in the telescope. Technical information about this photo is available below.. But there is much more to discover on these WFI images of NGC 300! The WFI images obtained in several broad and narrow band filters from the ultraviolet to the near-infrared spectral region (U, B, V, R, I and H-alpha) allow a detailed study of groups of heavy, hot stars (known as "OB associations") and a large number of huge clouds of ionized hydrogen ("HII shells") in this galaxy. Corresponding studies have been carried out by Gieren's group, resulting in the discovery of an amazing number of OB associations, including a number of giant associations. These investigations, taken together with the observed distribution of the pulsation periods of the Cepheids, allow to better understand the history of star formation in NGC 300. For example, three distinct peaks in the number distribution of the pulsation periods of the Cepheids seem to indicate that there have been at least three different bursts of star formation within the past 100 million years. The large number of OB associations and HII shells ( PR Photo 18c/02 ) furthermore indicate the presence of a numerous, very young stellar population in NGC 300, aged only a few million years. Dark matter and the observed shapes of distant galaxies In early 2002, Thomas Erben and Mischa Schirmer from the "Institut für Astrophysik and extraterrestrische Forschung" ( IAEF , Universität Bonn, Germany), in the course of their ASTROVIRTEL programme

  6. OT2_smalhotr_3: Herschel Extreme Lensing Line Observations (HELLO)

    Science.gov (United States)

    Malhotra, S.

    2011-09-01

    We request 59.8 hours of Herschel time to observe 20 normal star-forming galaxies in the [CII] 158 micron and [OI] 63 micron lines. These galaxies lie at high redshift (1lensing, but have modest star formation rates. Therefore they represent our best chance of studying star formation and the interstellar medium in typical, common galaxies at this epoch. Redshift 1 to 3 spans the peak of both star formation activity and black hole accretion in active galactic nuclei-- a period that was crucial in shaping our modern universe. Most of this redshift range is inaccesible to ground-based observations of [CII], [OI], or both. Herschel offers the unique opportunity to study both lines with high sensitivity throughout this epoch (using HIFI for [CII] and PACS for [OI]). These two lines are the main cooling lines of the atomic medium. By measuring their fluxes, we will measure (1) the cooling efficiency of gas, (2) gas densities and temperatures near starforming regions, and (3) gas pressures, which are important to drive the winds that provide feedback to starformation processes. By combining the proposed observations with existing multiwavelength data on these objects, we will obtain as complete a picture of galaxy-scale star formation and ISM physical conditions at high redshifts as we have at z=0. Then perhaps we can understand why star formation and AGN activity peaked at this epoch. In Herschel cycle OT1, 49 high redshift IR luminous galaxies were approved for spectroscopy, but only two so-called normal galaxies were included. This is an imbalance that should be corrected, to balance Herschel's legacy.

  7. Merger relics of cluster galaxies

    Science.gov (United States)

    Yi, S. K.; Lee, J.; Jung, I.; Ji, I.; Sheen, Y.-K.

    2013-06-01

    Context. Sheen and collaborators recently found that a surprisingly large portion (38%) of massive early-type galaxies in heavy clusters show strong merger-related disturbed features. This contradicts the general understanding that massive clusters are hostile environments for galaxy mergers. Considering the significance of mergers in galaxy evolution, it is important to understand this. Aims: We aim to present a theoretical foundation that explains galaxy mergers in massive clusters. Methods: We used the N-body simulation technique to perform a cosmological-volume simulation and derive dark-halo merger trees. Then, we used the semi-analytic modeling technique to populate each halo with galaxies. We ran hydrodynamic simulations of galaxy mergers to estimate the lifetime of merger features for the imaging condition used by Sheen and collaborators. We applied this merger feature lifetime to our semi-analytic models. Finally, we counted the massive early-type galaxies in heavy model clusters that would show strong merger features. Results: While there still are substantial uncertainties, our preliminary results are remarkably close to the observed fraction of galaxies with merger features. Key ingredients for the success are twofold: firstly, the subhalo motion in dark haloes has been accurately traced, and, second, the lifetime of merger features has been properly estimated. As a result, merger features are expected to last very long in cluster environments. Many massive early-type galaxies in heavy clusters therefore show merger features not because they experience mergers in the current clusters in situ, but because they still carry their merger features from their previous halo environments. Conclusions: Investigating the merger relics of cluster galaxies is potentially important, because it uniquely allows us to backtrack the halo merger history.

  8. Dusty Feedback from Massive Black Holes in Two Elliptical Galaxies

    Science.gov (United States)

    Temi, P.; Brighenti, F.; Mathews, W. G.; Amblard, A.; Riguccini, L.

    2013-01-01

    Far-infrared dust emission from elliptical galaxies informs us about galaxy mergers, feedback energy outbursts from supermassive black holes and the age of galactic stars. We report on the role of AGN feedback observationally by looking for its signatures in elliptical galaxies at recent epochs in the nearby universe. We present Herschel observations of two elliptical galaxies with strong and spatially extended FIR emission from colder grains 5-10 kpc distant from the galaxy cores. Extended excess cold dust emission is interpreted as evidence of recent feedback-generated AGN energy outbursts in these galaxies, visible only in the FIR, from buoyant gaseous outflows from the galaxy cores.

  9. ETHOS - an effective theory of structure formation: Predictions for the high-redshift Universe - abundance of galaxies and reionization

    Science.gov (United States)

    Lovell, Mark R.; Zavala, Jesús; Vogelsberger, Mark; Shen, Xuejian; Cyr-Racine, Francis-Yan; Pfrommer, Christoph; Sigurdson, Kris; Boylan-Kolchin, Michael; Pillepich, Annalisa

    2018-03-01

    We contrast predictions for the high-redshift galaxy population and reionization history between Cold Dark Matter (CDM) and an alternative self-interacting dark matter model based on the recently developed ETHOS framework that alleviates the small-scale CDM challenges within the Local Group. We perform the highest resolution hydrodynamical cosmological simulations (a 36 Mpc3 volume with gas cell mass of ˜ 10^5{ M_⊙} and minimum gas softening of ˜180 pc) within ETHOS to date - plus a CDM counterpart - to quantify the abundance of galaxies at high redshift and their impact on reionisation. We find that ETHOS predicts galaxies with higher ultraviolet (UV) luminosities than their CDM counterparts and a faster build-up of the faint end of the UV luminosity function. These effects, however, make the optical depth to reionisation less sensitive to the power spectrum cutoff: the ETHOS model differs from the CDM τ value by only 10 per cent and is consistent with Planck limits if the effective escape fraction of UV photons is 0.1-0.5. We conclude that current observations of high-redshift luminosity functions cannot differentiate between ETHOS and CDM models, but deep JWST surveys of strongly-lensed, inherently faint galaxies have the potential to test non-CDM models that offer attractive solutions to CDM's Local Group problems.

  10. Use of Scleral Lenses and Miniscleral Lenses After Penetrating Keratoplasty.

    Science.gov (United States)

    Barnett, Melissa; Lien, Vivian; Li, Jennifer Y; Durbin-Johnson, Blythe; Mannis, Mark J

    2016-05-01

    To examine the clinical outcomes of scleral lenses for visual rehabilitation after penetrating keratoplasty (PK). A retrospective review was conducted for 34 patients (48 eyes) who had a history of prior PK and were fit with scleral lenses between October 2009 and December 2013 at the UC Davis Eye Center. The most common initial indication for PK was keratoconus in 27 eyes (56%). Thirty-three eyes (69%) had previously been fit with other types of contact lenses, with small-diameter rigid gas-permeable lenses being the most common. The improvement in best-corrected visual acuity with a scleral lens compared with prior spectacle refraction or other contact lens was a mean of two best-corrected visual acuity lines. Forty-four eyes (91.7%) achieved functional vision with best scleral lens-corrected visual acuities of 20/40 or better. Patients who continued wearing scleral lenses were significantly more likely to report "good" subjective vision compared with patients who abandoned scleral lens wear (P=0.009), although change in objective best-corrected visual acuity did not differ significantly. There were no cases of infectious keratitis. Six eyes (12.5%) developed graft rejection; 3 were able to resume scleral lens wear. Nineteen eyes (39.5%) discontinued scleral lens wear for various reasons, the most common reason for discontinuation of lens wear was difficulty with scleral lens insertion or removal (8 eyes, 42.1%). Scleral lenses are effective and safe in patients who have had PK. There was a mean gain in visual acuity, with the majority of patients achieving 20/40 vision or better. The patient's subjective perception of vision was a significant factor in determining whether scleral lens wear was continued or abandoned.

  11. Scleral lenses: a literature review.

    Science.gov (United States)

    Schornack, Muriel M

    2015-01-01

    To present a comprehensive review of current and historical literature on scleral lenses. A comprehensive search of several databases from each database's earliest inception to May 23, 2014 was conducted by an experienced librarian with input from the author to locate articles related to scleral lens design, fabrication, prescription, and management. A total of 899 references were identified, 184 of which were directly related to scleral lenses. References of interest were organized by date, topic, and study design. Most of articles published before 1983 presented lens design and fabrication techniques or indications for scleral lens therapy. Case reviews published after 1983 identified major indications for scleral lenses (corneal ectasia, ocular surface disease, and refractive error) and visual and functional outcomes of scleral lens wear. Statistically significant improvements in visual acuity, vision-related quality of life, and ocular surface integrity were reported. Reviews of ocular and systemic conditions suggested that comprehensive management strategies for these conditions could include scleral lenses. Early work investigating scleral lens fitting characteristics, optical qualities, and potential physiological impact on anterior ocular structures have been published in the past 5 years. Indications for scleral lens wear are well-established. Developing areas of research on the physiologic impact of scleral lens wear on the ocular surface, the use of technology to improve scleral lens vision and fit, and the impact of these devices on the quality of life should further enhance our understanding of scleral lenses in the future.

  12. Precise LIGO lensing rate predictions for binary black holes

    Science.gov (United States)

    Ng, Ken K. Y.; Wong, Kaze W. K.; Broadhurst, Tom; Li, Tjonnie G. F.

    2018-01-01

    We show how LIGO is expected to detect coalescing binary black holes at z >1 that are lensed by the intervening galaxy population. Gravitational magnification, μ , strengthens gravitational-wave signals by √{μ } without altering their frequencies, which if unrecognized leads to an underestimate of the event redshift and hence an overestimate of the binary mass. High magnifications can be reached for coalescing binaries, because the region of intense gravitational-wave emission during coalescence is so small (˜100 km ), permitting very close projections between lensing caustics and gravitational-wave events. Our simulations use the current LIGO event-based mass function and incorporate accurate waveforms convolved with the LIGO power spectral density. Importantly, we include the detection dependence on sky position and orbital orientation, which for the LIGO configuration translates into a wide spread in observed redshifts and chirp masses. Currently, we estimate a detectable rate of lensed events 0. 06-0.02+0.02 yr-1 that rises to 5-3+5 yr-1 at LIGO design sensitivity limit, depending on the high redshift rate of black hole coalescence.

  13. Galaxy Formation

    CERN Document Server

    Longair, Malcolm S

    2008-01-01

    This second edition of Galaxy Formation is an up-to-date text on astrophysical cosmology, expounding the structure of the classical cosmological models from a contemporary viewpoint. This forms the background to a detailed study of the origin of structure and galaxies in the Universe. The derivations of many of the most important results are derived by simple physical arguments which illuminate the results of more advanced treatments. A very wide range of observational data is brought to bear upon these problems, including the most recent results from WMAP, the Hubble Space Telescope, galaxy surveys like the Sloan Digital Sky Survey and the 2dF Galaxy Redshift Survey, studies of Type 1a supernovae, and many other observations.

  14. A clumpy and anisotropic galaxy halo at redshift 1 from gravitational-arc tomography.

    Science.gov (United States)

    Lopez, Sebastian; Tejos, Nicolas; Ledoux, Cédric; Barrientos, L Felipe; Sharon, Keren; Rigby, Jane R; Gladders, Michael D; Bayliss, Matthew B; Pessa, Ismael

    2018-02-22

    Every star-forming galaxy has a halo of metal-enriched gas that extends out to at least 100 kiloparsecs, as revealed by the absorption lines that this gas imprints on the spectra of background quasars. However, quasars are sparse and typically probe only one narrow beam of emission through the intervening galaxy. Close quasar pairs and gravitationally lensed quasars have been used to circumvent this inherently one-dimensional technique, but these objects are rare and the structure of the circumgalactic medium remains poorly constrained. As a result, our understanding of the physical processes that drive the recycling of baryons across the lifetime of a galaxy is limited. Here we report integral-field (tomographic) spectroscopy of an extended background source-a bright, giant gravitational arc. We can thus coherently map the spatial and kinematic distribution of Mg ɪɪ absorption-a standard tracer of enriched gas-in an intervening galaxy system at redshift 0.98 (around 8 billion years ago). Our gravitational-arc tomography unveils a clumpy medium in which the absorption strength decreases with increasing distance from the galaxy system, in good agreement with results for quasars. Furthermore, we find strong evidence that the gas is not distributed isotropically. Interestingly, we detect little kinematic variation over a projected area of approximately 600 square kiloparsecs, with all line-of-sight velocities confined to within a few tens of kilometres per second of each other. These results suggest that the detected absorption originates from entrained recycled material, rather than in a galactic outflow.

  15. A clumpy and anisotropic galaxy halo at redshift 1 from gravitational-arc tomography

    Science.gov (United States)

    Lopez, Sebastian; Tejos, Nicolas; Ledoux, Cédric; Barrientos, L. Felipe; Sharon, Keren; Rigby, Jane R.; Gladders, Michael D.; Bayliss, Matthew B.; Pessa, Ismael

    2018-02-01

    Every star-forming galaxy has a halo of metal-enriched gas that extends out to at least 100 kiloparsecs, as revealed by the absorption lines that this gas imprints on the spectra of background quasars. However, quasars are sparse and typically probe only one narrow beam of emission through the intervening galaxy. Close quasar pairs and gravitationally lensed quasars have been used to circumvent this inherently one-dimensional technique, but these objects are rare and the structure of the circumgalactic medium remains poorly constrained. As a result, our understanding of the physical processes that drive the recycling of baryons across the lifetime of a galaxy is limited. Here we report integral-field (tomographic) spectroscopy of an extended background source—a bright, giant gravitational arc. We can thus coherently map the spatial and kinematic distribution of Mg ɪɪ absorption—a standard tracer of enriched gas—in an intervening galaxy system at redshift 0.98 (around 8 billion years ago). Our gravitational-arc tomography unveils a clumpy medium in which the absorption strength decreases with increasing distance from the galaxy system, in good agreement with results for quasars. Furthermore, we find strong evidence that the gas is not distributed isotropically. Interestingly, we detect little kinematic variation over a projected area of approximately 600 square kiloparsecs, with all line-of-sight velocities confined to within a few tens of kilometres per second of each other. These results suggest that the detected absorption originates from entrained recycled material, rather than in a galactic outflow.

  16. The kinematics of lopsided galaxies

    OpenAIRE

    Noordermeer, Edo; Sparke, Linda S.; Levine, Stephen E.

    2001-01-01

    Lopsidedness is a common feature in galaxies, both in the distribution of light and in the kinematics. We investigate the kinematics of a model for lopsided galaxies that consists of a disc lying off-centre in a dark halo, and circling around the halo centre. We search for families of stable, closed, non-crossing orbits, and assume that gas in our galaxies moves on these orbits. Several of our models show strong lopsided gas kinematics, especially the ones in which the disc spins around its a...

  17. Dark matter in elliptical galaxies

    Science.gov (United States)

    Carollo, C. M.; Zeeuw, P. T. DE; Marel, R. P. Van Der; Danziger, I. J.; Qian, E. E.

    1995-01-01

    We present measurements of the shape of the stellar line-of-sight velocity distribution out to two effective radii along the major axes of the four elliptical galaxies NGC 2434, 2663, 3706, and 5018. The velocity dispersion profiles are flat or decline gently with radius. We compare the data to the predictions of f = f(E, L(sub z)) axisymmetric models with and without dark matter. Strong tangential anisotropy is ruled out at large radii. We conclude from our measurements that massive dark halos must be present in three of the four galaxies, while for the fourth galaxy (NGC 2663) the case is inconclusive.

  18. HOW TO FIND GRAVITATIONALLY LENSED TYPE Ia SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, Daniel A.; Nugent, Peter E. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

    2017-01-01

    Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts ( z ≳ 2), probe potential SN Ia evolution, and deliver high-precision constraints on H {sub 0}, w , and Ω{sub m} via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear to be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts’ photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. Active galactic nuclei, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse SNe will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that the Large Synoptic Survey Telescope can discover up to 500 multiply imaged SNe Ia using this technique in a 10 year z -band search, more than an order of magnitude improvement over previous estimates. We also predict that the Zwicky Transient Facility should find up to 10 multiply imaged SNe Ia using this technique in a 3 year R -band search—despite the fact that this survey will not resolve a single system.

  19. Imaging the Lenses in the Quintuple Gravitational Lens PMN J0134-0931

    Science.gov (United States)

    Wiklind, Tommy

    2017-08-01

    The gravitational lens PMN J0134-0931 is one of only two known non-cluster lenses producing six images of the background source. In this case the source is a quasar located at z=2.2 and the lens plane at z=0.76. It is likely that a small compact group of galaxies are located in the lens plane. The lens modeling for these six-image systems has, however, proven to be extraordinarily complicated and no satisfactory lens model has been produced for this system.PMN J0194-0931 is also unique in the sense that it is one of only two cases where molecular absorption lines are seen against two or more background images, the other one being PKS1830-211. The absorption lines make it possible to probe the kinematics of the lensing galaxies on sub-kpc scales and to determine kinematically derived total masses. Comparing with the mass derived from lens models, it provides a test of the assumed dark matter halo profile. In order to use the absorption lines to constrain the rotation curve it is necessary to know where the sigh lines cross the galaxies, the galaxy center and their inclination.The goal with this proposal is to image the galaxies at z=0.76 that lens the background quasar PMN J0134-0931. At optical and near-infrared wavelengths the highly magnified background quasar dominates the light. Attempts to subtract the quasar light has not produced useable results. We propose to observe PMN J0134-0931 at a wavelength short of the redshifted Lyman limit of the background quasar. This ensures that the quasar is essentially turned off. This can be accomplished by using the WFC3/F275W filter. The lensing galaxies will be observed in restframe 1500A.

  20. Aspheric lenses for terahertz imaging.

    Science.gov (United States)

    Lo, Yat Hei; Leonhardt, Rainer

    2008-09-29

    We present novel designs for aspheric lenses used in terahertz (THz) imaging. As different surfaces result in different beam shaping properties and in different losses from reflection and absorption, the resultant imaging resolution (i.e. the focal spot size) depends critically on the design approach. We evaluate the different lens designs using Kirchhoff's scalar diffraction theory, and test the predictions experimentally. We also show that our lenses can achieve sub-wavelength resolution. While our lens designs are tested with THz radiation, the design considerations are applicable also to other regions of the electro-magnetic spectrum.

  1. Gravitational lensing by exotic objects

    Science.gov (United States)

    Asada, Hideki

    2017-11-01

    This paper reviews a phenomenological approach to the gravitational lensing by exotic objects such as the Ellis wormhole lens, where the exotic lens objects may follow a non-standard form of the equation of state or may obey a modified gravity theory. A gravitational lens model is proposed in the inverse powers of the distance, such that the Schwarzschild lens and exotic lenses can be described in a unified manner as a one parameter family. As observational implications, the magnification, shear, photo-centroid motion and time delay in this lens model are discussed.

  2. Mapping Dark Matter in Simulated Galaxy Clusters

    Science.gov (United States)

    Bowyer, Rachel

    2018-01-01

    Galaxy clusters are the most massive bound objects in the Universe with most of their mass being dark matter. Cosmological simulations of structure formation show that clusters are embedded in a cosmic web of dark matter filaments and large scale structure. It is thought that these filaments are found preferentially close to the long axes of clusters. We extract galaxy clusters from the simulations "cosmo-OWLS" in order to study their properties directly and also to infer their properties from weak gravitational lensing signatures. We investigate various stacking procedures to enhance the signal of the filaments and large scale structure surrounding the clusters to better understand how the filaments of the cosmic web connect with galaxy clusters. This project was supported in part by the NSF REU grant AST-1358980 and by the Nantucket Maria Mitchell Association.

  3. Small-scale galaxy clustering in the eagle simulation

    Science.gov (United States)

    Artale, M. Celeste; Pedrosa, Susana E.; Trayford, James W.; Theuns, Tom; Farrow, Daniel J.; Norberg, Peder; Zehavi, Idit; Bower, Richard G.; Schaller, Matthieu

    2017-09-01

    We study present-day galaxy clustering in the eagle cosmological hydrodynamical simulation. eagle's galaxy formation parameters were calibrated to reproduce the redshift z = 0.1 galaxy stellar mass function, and the simulation also reproduces galaxy colours well. The simulation volume is too small to correctly sample large-scale fluctuations and we therefore concentrate on scales smaller than a few mega parsecs. We find very good agreement with observed clustering measurements from the Galaxy And Mass Assembly (GAMA) survey, when galaxies are binned by stellar mass, colour or luminosity. However, low-mass red galaxies are clustered too strongly, which is at least partly due to limited numerical resolution. Apart from this limitation, we conclude that eagle galaxies inhabit similar dark matter haloes as observed GAMA galaxies, and that the radial distribution of satellite galaxies, as a function of stellar mass and colour, is similar to that observed as well.

  4. A new detection of an UFO in the X-ray spectrum of a lensed QSO

    Science.gov (United States)

    Dadina, M.

    2017-10-01

    The discovery of the "M_{SMBH}-σ relation" indicated that a connection between the central black-hole and the hosting galaxies acted during the cosmic time. With the discovery in X-rays of the ultra-fast outflows in nearby AGN, we have most probably probed one of the ingredients that are needed to build-up this mechanism. At high-z, however, such measurements were possible only in an handful of objects and this was possible mainly for the presence of gravitational lenses that magnified otherwise X-ray weak QSO. Following this, we proposed a program to use XMM-Newton and gravitational lenses as telescopes to point bright, lensed and distant QSO to characterize in detail their X-ray spectrum and to detect blushifted absorption lines at E˜7-10 keV (rest frame). Here we present the preliminary results obtained for the z=2.64 QSO MG J0414+0534.

  5. The Density Profiles of Massive, Relaxed Galaxy Clusters. I. The Total Density Over Three Decades in Radius

    Science.gov (United States)

    Newman, Andrew B.; Treu, Tommaso; Ellis, Richard S.; Sand, David J.; Nipoti, Carlo; Richard, Johan; Jullo, Eric

    2013-03-01

    Clusters of galaxies are excellent locations to probe the distribution of baryons and dark matter (DM) over a wide range of scales. We study a sample of seven massive (M 200 = 0.4-2 × 1015 M ⊙), relaxed galaxy clusters with centrally located brightest cluster galaxies (BCGs) at z = 0.2-0.3. Using the observational tools of strong and weak gravitational lensing, combined with resolved stellar kinematics within the BCG, we measure the total radial density profile, comprising both dark and baryonic matter, over scales of ~= 3-3000 kpc. We present Keck spectroscopy yielding seven new spectroscopic redshifts of multiply imaged sources and extended stellar velocity dispersion profiles of the BCGs. Lensing-derived mass profiles typically agree with independent X-ray estimates within ~= 15%, suggesting that departures from hydrostatic equilibrium are small and that the clusters in our sample (except A383) are not strongly elongated or compressed along the line of sight. The inner logarithmic slope γtot of the total density profile measured over r/r 200 = 0.003-0.03, where ρ_{tot} ∝ r^{-γ_{tot}}, is found to be nearly universal, with a mean langγtotrang = 1.16 ± 0.05(random)+0.05 -0.07 (systematic) and an intrinsic scatter σγ numerical simulations that contain only DM, despite the significant contribution of stellar mass on the scales we probe. The Navarro-Frenk-White profile characteristic of collisionless cold DM is a better description of the total mass density at radii >~ 5-10 kpc than that of DM alone. Hydrodynamical simulations that include baryons, cooling, and feedback currently provide a poorer match. We discuss the significance of our findings for understanding the physical processes governing the assembly of BCGs and cluster cores, particularly the influence of baryons on the inner DM halo.

  6. 3D weak lensing with spin wavelets on the ball

    Science.gov (United States)

    Leistedt, Boris; McEwen, Jason D.; Kitching, Thomas D.; Peiris, Hiranya V.

    2015-12-01

    We construct the spin flaglet transform, a wavelet transform to analyze spin signals in three dimensions. Spin flaglets can probe signal content localized simultaneously in space and frequency and, moreover, are separable so that their angular and radial properties can be controlled independently. They are particularly suited to analyzing cosmological observations such as the weak gravitational lensing of galaxies. Such observations have a unique 3D geometrical setting since they are natively made on the sky, have spin angular symmetries, and are extended in the radial direction by additional distance or redshift information. Flaglets are constructed in the harmonic space defined by the Fourier-Laguerre transform, previously defined for scalar functions and extended here to signals with spin symmetries. Thanks to various sampling theorems, both the Fourier-Laguerre and flaglet transforms are theoretically exact when applied to bandlimited signals. In other words, in numerical computations the only loss of information is due to the finite representation of floating point numbers. We develop a 3D framework relating the weak lensing power spectrum to covariances of flaglet coefficients. We suggest that the resulting novel flaglet weak lensing estimator offers a powerful alternative to common 2D and 3D approaches to accurately capture cosmological information. While standard weak lensing analyses focus on either real- or harmonic-space representations (i.e., correlation functions or Fourier-Bessel power spectra, respectively), a wavelet approach inherits the advantages of both techniques, where both complicated sky coverage and uncertainties associated with the physical modeling of small scales can be handled effectively. Our codes to compute the Fourier-Laguerre and flaglet transforms are made publicly available.

  7. Scientific visualization of gravitational lenses

    International Nuclear Information System (INIS)

    Magallon, M.

    1999-01-01

    Concepts related to gravitational lenses are discussed and applied to develop an interactive visualization tool that allow us to investigate them. Optimization strategies were performed to elaborate the tool. Some results obtained from the application of the tool are shown [es

  8. Optics Demonstrations Using Cylindrical Lenses

    Science.gov (United States)

    Ivanov, Dragia; Nikolov, Stefan

    2015-01-01

    In this paper we consider the main properties of cylindrical lenses and propose several demonstrational experiments that can be performed with them. Specifically we use simple glasses full of water to demonstrate some basic geometrical optics principles and phenomena. We also present some less standard experiments that can be performed with such…

  9. Polarization optics of GRIN lenses

    Science.gov (United States)

    Camacho, Javier; Tentori, Diana

    2001-01-01

    In this paper we show that the matrix representation for a linear retarder, given by Jones calculus, can be successfully applied to describe the birefringence properties of GRIN lenses for meridional rays. The usefulness of this description is experimentally verified by comparing the output pattern of a GRIN lens obtained in a linear polariscope with the predicted conoscopic pattern.

  10. Weak lensing and cosmological investigation

    CERN Document Server

    Acquaviva, V

    2005-01-01

    In the last few years the scientific community has been dealing with the challenging issue of identifying the dark energy component. We regard weak gravitational lensing as a brand new, and extremely important, tool for cosmological investigation in this field. In fact, the features imprinted on the cosmic microwave background radiation by the lensing from the intervening distribution of matter represent a pretty unbiased estimator, and can thus be used for putting constraints on different dark energy models. This is true in particular for the magnetic-type B-modes of CMB polarization, whose unlensed spectrum at large multipoles (l approximately=1000) is very small even in presence of an amount of gravitational waves as large as currently allowed by the experiments: therefore, on these scales the lensing phenomenon is the only responsible for the observed power, and this signal turns out to be a faithful tracer of the dark energy dynamics. We first recall the formal apparatus of the weak lensing in extended t...

  11. Constraining Dark Matter Through the Study of Merging Galaxy Clusters

    Science.gov (United States)

    Dawson, William Anthony

    2013-03-01

    Context: The majority (~85%) of the matter in the universe is composed of dark matter, a mysterious particle that does not interact via the electromagnetic force yet does interact with all other matter via the gravitational force. Many direct detection experiments have been devoted to finding interactions of dark matter with baryonic matter via the weak force. It is still possible that dark matter interacts with itself via a strong scale force and has a self-scattering cross-section of ~0.5 cm2g -1. In fact such a strong scale scattering force could resolve several outstanding astronomical mysteries: a discrepancy between the cuspy density profiles seen in ΛCDM simulations and the cored density profiles observed in low surface brightness galaxies, dwarf spheroidal galaxies, and galaxy clusters, as well as the discrepancy between the significant number of massive Milky Way dwarf spheroidal halos predicted by ΛCDM and the dearth of observed Milky Way dwarf spheroidal halos. Need: While such observations are in conflict with ΛCDM and suggest that dark matter may self-scatter, each suffers from a baryonic degeneracy, where the observations might be explained by various baryonic processes (e.g., AGN or supernove feedback, stellar winds, etc.) rather than self-interacting dark matter (SIDM). If dark matter lags behind the effectively collisionless galaxies then this is clear evidence that dark matter self-interacts. The expected galaxy-dark matter offset is typically >25 kpc (for cross-sections that would explain the other aforementioned issues with ΛCDM), this is larger than the scales of that are plagued by the baryonic degeneracies. Task: To test whether dark matter self-interacts we have carried out a comprehensive survey of the dissociative merging galaxy cluster DLSCL J0916.2+2951 (also known as the Musket Ball Cluster). This survey includes photometric and spectroscopic observations to quantify the position and velocity of the cluster galaxies, weak

  12. The Cluster Lens SDSS 1004+4112: Constraining World Models With its Multiply-Imaged Quasar and Galaxies

    Science.gov (United States)

    Kochanek, C.

    2005-07-01

    We will use deep ACS imaging of the giant {15 arcsec} four-image z_s=1.734 lensed quasar SDSS 1004+4112, and its z_l=0.68 lensing galaxy cluster, to identify many additional multiply-imaged background galaxies. Combining the existing single orbit ACS I-band image with ground based data, we have definitely identified two multiply imaged galaxies with estimated redshifts of 2.6 and 4.3, about 15 probable images of background galaxies, and a point source in the core of the central cD galaxy, which is likely to be the faint, fifth image of the quasar. The new data will provide accurate photometric redshifts, confirm that the candidate fifth image has the same spectral energy distribution as the other quasar images, allow secure identification of additional multiply-lensed galaxies for improving the mass model, and permit identification of faint cluster members. Due to the high lens redshift and the broad redshift distribution of the