WorldWideScience

Sample records for strong generalized solution

  1. Exact solutions of strong gravity in generalized metrics

    International Nuclear Information System (INIS)

    Hojman, R.; Smailagic, A.

    1981-05-01

    We consider classical solutions for the strong gravity theory of Salam and Strathdee in a wider class of metrics with positive, zero and negative curvature. It turns out that such solutions exist and their relevance for quark confinement is explored. Only metrics with positive curvature (spherical symmetry) give a confining potential in a simple picture of the scalar hadron. This supports the idea of describing the hadron as a closed microuniverse of the strong metric. (author)

  2. Explicit and exact solutions for a generalized long-short wave resonance equations with strong nonlinear term

    International Nuclear Information System (INIS)

    Shang Yadong

    2005-01-01

    In this paper, the evolution equations with strong nonlinear term describing the resonance interaction between the long wave and the short wave are studied. Firstly, based on the qualitative theory and bifurcation theory of planar dynamical systems, all of the explicit and exact solutions of solitary waves are obtained by qualitative seeking the homoclinic and heteroclinic orbits for a class of Lienard equations. Then the singular travelling wave solutions, periodic travelling wave solutions of triangle functions type are also obtained on the basis of the relationships between the hyperbolic functions and that between the hyperbolic functions with the triangle functions. The varieties of structure of exact solutions of the generalized long-short wave equation with strong nonlinear term are illustrated. The methods presented here also suitable for obtaining exact solutions of nonlinear wave equations in multidimensions

  3. Kerr generalized solution

    International Nuclear Information System (INIS)

    Papoyan, V.V.

    1989-01-01

    A Kerr generalized solution for a stationary axially-symmetric gravitational field of rotating self-gravitational objects is given. For solving the problem Einstein equations and their combinations are used. The particular cases: internal and external Schwarzschild solutions are considered. The external solution of the stationary problem is a Kerr solution generalization. 3 refs

  4. General strongly nonlinear variational inequalities

    International Nuclear Information System (INIS)

    Siddiqi, A.H.; Ansari, Q.H.

    1990-07-01

    In this paper we develop iterative algorithms for finding approximate solutions for new classes of variational and quasi-variational inequalities which include, as special case, some known results in this field. It is shown that the solutions of the iterative schemes converge to the exact solutions. (author). 15 refs

  5. Perturbation of an exact strong gravity solution

    International Nuclear Information System (INIS)

    Baran, S.A.

    1982-10-01

    Perturbations of an exact strong gravity solution are investigated. It is shown, by using the new multipole expansions previously presented, that this exact and static spherically symmetric solution is stable under odd parity perturbations. (author)

  6. The stability of the strong gravity solution

    International Nuclear Information System (INIS)

    Baran, S.A.

    1978-01-01

    The perturbation of the classical solution to a strong gravity model given by Salam and Strathdee is investigated. Using the Hamiltonian formalism it is shown that this static and spherically symmetric solution is stable under the odd parity perturbations provided some parameters in the solution are suitably restricted

  7. Analytical solution of strongly nonlinear Duffing oscillators

    OpenAIRE

    El-Naggar, A.M.; Ismail, G.M.

    2016-01-01

    In this paper, a new perturbation technique is employed to solve strongly nonlinear Duffing oscillators, in which a new parameter α=α(ε)α=α(ε) is defined such that the value of α is always small regardless of the magnitude of the original parameter εε. Therefore, the strongly nonlinear Duffing oscillators with large parameter ε are transformed into a small parameter system with respect to αα. Approximate solution obtained by the present method is compared with the solution of energy balance m...

  8. Analytical solution of strongly nonlinear Duffing oscillators

    Directory of Open Access Journals (Sweden)

    A.M. El-Naggar

    2016-06-01

    Full Text Available In this paper, a new perturbation technique is employed to solve strongly nonlinear Duffing oscillators, in which a new parameter α=α(ε is defined such that the value of α is always small regardless of the magnitude of the original parameter ε. Therefore, the strongly nonlinear Duffing oscillators with large parameter ε are transformed into a small parameter system with respect to α. Approximate solution obtained by the present method is compared with the solution of energy balance method, homotopy perturbation method, global error minimization method and lastly numerical solution. We observe from the results that this method is very simple, easy to apply, and gives a very good accuracy not only for small parameter εbut also for large values of ε.

  9. Solvability of Extended General Strongly Mixed Variational Inequalities

    Directory of Open Access Journals (Sweden)

    Balwant Singh Thakur

    2013-10-01

    Full Text Available In this paper, a new class of extended general strongly mixed variational inequalities is introduced and studied in Hilbert spaces. An existence theorem of solution is established and using resolvent operator technique, a new iterative algorithm for solving the extended general strongly mixed variational inequality is suggested. A convergence result for the iterative sequence generated by the new algorithm is also established.

  10. Perturbation Solutions of the Quintic Duffing Equation with Strong Nonlinearities

    Directory of Open Access Journals (Sweden)

    Mehmet Pakdemirli

    Full Text Available The quintic Duffing equation with strong nonlinearities is considered. Perturbation solutions are constructed using two different techniques: The classical multiple scales method (MS and the newly developed multiple scales Lindstedt Poincare method (MSLP. The validity criteria for admissible solutions are derived. Both approximate solutions are contrasted with the numerical solutions. It is found that MSLP provides compatible solution with the numerical solution for strong nonlinearities whereas MS solution fail to produce physically acceptable solution for large perturbation parameters.

  11. Iterative solution of nonlinear equations with strongly accretive operators

    International Nuclear Information System (INIS)

    Chidume, C.E.

    1991-10-01

    Let E be a real Banach space with a uniformly convex dual, and let K be a nonempty closed convex and bounded subset of E. Suppose T:K→K is a strongly accretive map such that for each f is an element of K the equation Tx=f has a solution in K. It is proved that each of the two well known fixed point iteration methods (the Mann and Ishikawa iteration methods) converges strongly to a solution of the equation Tx=f. Furthermore, our method shows that such a solution is necessarily unique. Explicit error estimates are given. Our results resolve in the affirmative two open problems (J. Math. Anal. Appl. Vol 151(2) (1990), p. 460) and generalize important known results. (author). 32 refs

  12. Orbifolds and Exact Solutions of Strongly-Coupled Matrix Models

    Science.gov (United States)

    Córdova, Clay; Heidenreich, Ben; Popolitov, Alexandr; Shakirov, Shamil

    2018-02-01

    We find an exact solution to strongly-coupled matrix models with a single-trace monomial potential. Our solution yields closed form expressions for the partition function as well as averages of Schur functions. The results are fully factorized into a product of terms linear in the rank of the matrix and the parameters of the model. We extend our formulas to include both logarithmic and finite-difference deformations, thereby generalizing the celebrated Selberg and Kadell integrals. We conjecture a formula for correlators of two Schur functions in these models, and explain how our results follow from a general orbifold-like procedure that can be applied to any one-matrix model with a single-trace potential.

  13. A class of solutions for the strong gravity equations

    International Nuclear Information System (INIS)

    Salam, A.; Strathdee, J.

    1976-12-01

    We solve the Einstein equation for strong gravity in the limit that weak gravity is neglected. The class of solutions we find reduces to the Schwarzschild solution (with the weak gravity Newtonian constant replaced by a strong coupling parameter) in the limit M 2 →0 where M is the mass of the strong gravity spin-2 meson. These solutions may be of relevance for the problem of defining temperature in hadronic physics

  14. Relativistic generalization of strong plasma turbulence

    International Nuclear Information System (INIS)

    Chian, A.C.-L.

    1982-01-01

    Two fundamental electrostatic modes of an unmagnetized plasma, namely, ion acoustic mode and Langumir mode are studied. Previous theories are generalized to include the effect of relativistic mass variations. The existence of relativistic ion acoustic solitons is demonstrated. In addition, it is shown that simple, relativistic Langumir solitons do not exist in a infinite plasma. (L.C.) [pt

  15. Strong commutativity preserving generalized derivations on ...

    African Journals Online (AJOL)

    Let R be a non-commutative prime ring of characteristic different from 2, with right Utumi quotient ring U and extended centroid C and let F and G be generalized derivations of R such that F(x)G(y)-F(y)G(x) = [x; y], for all x; y ∈ S, where S is a subset of R. Here we will discuss the following cases: (a) S = [R;R];. b) S = L, where ...

  16. General Relativity solutions in modified gravity

    Science.gov (United States)

    Motohashi, Hayato; Minamitsuji, Masato

    2018-06-01

    Recent gravitational wave observations of binary black hole mergers and a binary neutron star merger by LIGO and Virgo Collaborations associated with its optical counterpart constrain deviation from General Relativity (GR) both on strong-field regime and cosmological scales with high accuracy, and further strong constraints are expected by near-future observations. Thus, it is important to identify theories of modified gravity that intrinsically possess the same solutions as in GR among a huge number of theories. We clarify the three conditions for theories of modified gravity to allow GR solutions, i.e., solutions with the metric satisfying the Einstein equations in GR and the constant profile of the scalar fields. Our analysis is quite general, as it applies a wide class of single-/multi-field scalar-tensor theories of modified gravity in the presence of matter component, and any spacetime geometry including cosmological background as well as spacetime around black hole and neutron star, for the latter of which these conditions provide a necessary condition for no-hair theorem. The three conditions will be useful for further constraints on modified gravity theories as they classify general theories of modified gravity into three classes, each of which possesses i) unique GR solutions (i.e., no-hair cases), ii) only hairy solutions (except the cases that GR solutions are realized by cancellation between singular coupling functions in the Euler-Lagrange equations), and iii) both GR and hairy solutions, for the last of which one of the two solutions may be selected dynamically.

  17. Iterative solutions of nonlinear equations with strongly accretive or strongly pseudocontractive maps

    International Nuclear Information System (INIS)

    Chidume, C.E.

    1994-03-01

    Let E be a real q-uniformly smooth Banach space. Suppose T is a strongly pseudo-contractive map with open domain D(T) in E. Suppose further that T has a fixed point in D(T). Under various continuity assumptions on T it is proved that each of the Mann iteration process or the Ishikawa iteration method converges strongly to the unique fixed point of T. Related results deal with iterative solutions of nonlinear operator equations involving strongly accretive maps. Explicit error estimates are also provided. (author). 38 refs

  18. Axisymmetric solution with charge in general relativity

    International Nuclear Information System (INIS)

    Arutyunyan, G.G.; Papoyan, V.V.

    1989-01-01

    The possibility of generating solutions to the equations of general relativity from known solutions of the generalized theory of gravitation and vice versa is proved. An electrovac solution to Einstein's equations that describes a static axisymmetric gravitational field is found. 14 refs

  19. Solution of the strong CP problem in models with scalars

    International Nuclear Information System (INIS)

    Dimopoulos, S.

    1978-01-01

    A possible solution to the strong CP problem is pointed out within the context of a Weinberg--Salam model with two Higgs fields coupled in a Peccei--Quinn symmetric fashion. This is done by extending the colour group to a bigger simple group which is broken at some very high energy. The model contains a heavy axion. No old or new U(1) problem re-emerges. 31 references

  20. Strong Duality and Optimality Conditions for Generalized Equilibrium Problems

    Directory of Open Access Journals (Sweden)

    D. H. Fang

    2013-01-01

    Full Text Available We consider a generalized equilibrium problem involving DC functions. By using the properties of the epigraph of the conjugate functions, some sufficient and/or necessary conditions for the weak and strong duality results and optimality conditions for generalized equilibrium problems are provided.

  1. A theory of strong interactions ''from'' general relativity

    International Nuclear Information System (INIS)

    Caldirola, P.; Recami, E.

    1979-01-01

    In this paper a previous letter (where, among other things, a classical ''quark confinement'' was derived from general relativity plus dilatation-covariance), is completed by showing that the theory is compatible also with quarks ''asymptotic freedom''. Then -within a bi-scale theory of gravitational and strong interactions- a classical field theory is proposed for the (strong) interactions between hadrons. Various consequences are briefly analysed

  2. A generalization of the virial theorem for strongly singular potentials

    International Nuclear Information System (INIS)

    Gesztesy, F.; Pittner, L.

    1978-09-01

    Using scale transformations the authors prove a generalization of the virial theorem for the eigenfunctions of non-relativistic Schroedinger Hamiltonians which are defined as the Friedrichs extension of strongly singular differential operators. The theorem also applies to situations where the ground state has divergent kinetic and potential energy and thus the usual version of the virial theorem becomes meaningless. (Auth.)

  3. New solutions of Heun's general equation

    International Nuclear Information System (INIS)

    Ishkhanyan, Artur; Suominen, Kalle-Antti

    2003-01-01

    We show that in four particular cases the derivative of the solution of Heun's general equation can be expressed in terms of a solution to another Heun's equation. Starting from this property, we use the Gauss hypergeometric functions to construct series solutions to Heun's equation for the mentioned cases. Each of the hypergeometric functions involved has correct singular behaviour at only one of the singular points of the equation; the sum, however, has correct behaviour. (letter to the editor)

  4. Properties of general relativistic kink solution

    International Nuclear Information System (INIS)

    Kodama, T.; Oliveira, L.C.S. de; Santos, F.C.

    1978-12-01

    Properties of the general relativistic kink solution of a nonlinear scalar field recently obtained, are discussed. It has been shown that the kink solution is stable against radical perturbations. Possible applications to Hadron physics from the geometrodynamic point of view are suggested [pt

  5. General solution of string inspired nonlinear equations

    International Nuclear Information System (INIS)

    Bandos, I.A.; Ivanov, E.; Kapustnikov, A.A.; Ulanov, S.A.

    1998-07-01

    We present the general solution of the system of coupled nonlinear equations describing dynamics of D-dimensional bosonic string in the geometric (or embedding) approach. The solution is parametrized in terms of two sets of the left- and right-moving Lorentz harmonic variables providing a special coset space realization of the product of two (D-2) dimensional spheres S D-2 = SO(1,D-1)/SO(1,1)xSO(D-2) contained in K D-2 . (author)

  6. General solution of linear vector supersymmetry

    International Nuclear Information System (INIS)

    Blasi, Alberto; Maggiore, Nicola

    2007-01-01

    We give the general solution of the Ward identity for the linear vector supersymmetry which characterizes all topological models. Such a solution, whose expression is quite compact and simple, greatly simplifies the study of theories displaying a supersymmetric algebraic structure, reducing to a few lines the proof of their possible finiteness. In particular, the cohomology technology, usually involved for the quantum extension of these theories, is completely bypassed. The case of Chern-Simons theory is taken as an example

  7. Generalized solutions of nonlinear partial differential equations

    CERN Document Server

    Rosinger, EE

    1987-01-01

    During the last few years, several fairly systematic nonlinear theories of generalized solutions of rather arbitrary nonlinear partial differential equations have emerged. The aim of this volume is to offer the reader a sufficiently detailed introduction to two of these recent nonlinear theories which have so far contributed most to the study of generalized solutions of nonlinear partial differential equations, bringing the reader to the level of ongoing research.The essence of the two nonlinear theories presented in this volume is the observation that much of the mathematics concernin

  8. STRONG FIELD EFFECTS ON PULSAR ARRIVAL TIMES: GENERAL ORIENTATIONS

    International Nuclear Information System (INIS)

    Wang Yan; Creighton, Teviet; Price, Richard H.; Jenet, Frederick A.

    2009-01-01

    A pulsar beam passing close to a black hole can provide a probe of very strong gravitational fields even if the pulsar itself is not in a strong field region. In the case that the spin of the hole can be ignored, we have previously shown that all strong field effects on the beam can be understood in terms of two 'universal' functions: F(φ in ) and T(φ in ) of the angle of beam emission φ in ; these functions are universal in that they depend only on a single parameter, the pulsar/black hole distance from which the beam is emitted. Here we apply this formalism to general pulsar-hole-observer geometries, with arbitrary alignment of the pulsar spin axis and arbitrary pulsar beam direction and angular width. We show that the analysis of the observational problem has two distinct elements: (1) the computation of the location and trajectory of an observer-dependent 'keyhole' direction of emission in which a signal can be received by the observer; and (2) the determination of an annulus that represents the set of directions containing beam energy. Examples of each are given along with an example of a specific observational scenario.

  9. Local strong solutions to the stochastic compressible Navier-Stokes system

    Czech Academy of Sciences Publication Activity Database

    Breit, D.; Feireisl, Eduard; Hofmanová, M.

    2018-01-01

    Roč. 43, č. 2 (2018), s. 313-345 ISSN 0360-5302 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : compressible fluids * local strong solutions * Navier-Stokes system Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.608, year: 2016 https://www.tandfonline.com/doi/full/10.1080/03605302.2018.1442476

  10. Solutions to the strong-CP problem in a world with gravity

    International Nuclear Information System (INIS)

    Holman, R.; Watkins, R.; Widrow, L.M.; Toronto Univ., ON

    1992-01-01

    We examine various solutions of the strong-CP problem to determine their sensitivity to possible violations of global symmetries by Plauck scale physics. While some solutions remain viable even in the face of such effects. Violations of the Peccei-Quinn (PQ) symmetry by non-renormalizable operators of dimension less than 10 will generally shift the value of bar θ to values inconsistent with the experimental bound bar θ approx-lt 10 - 9. We show that it is possible to construct axion models where gauge symmetries protect PQ symmetry to the requisite level

  11. Probing strong-field general relativity near black holes

    CERN Multimedia

    CERN. Geneva; Alvarez-Gaumé, Luís

    2005-01-01

    Nature has sprinkled black holes of various sizes throughout the universe, from stellar mass black holes in X-ray sources to supermassive black holes of billions of solar masses in quasars. Astronomers today are probing the spacetime near black holes using X-rays, and gravitational waves will open a different view in the near future. These tools give us an unprecedented opportunity to test ultra-strong-field general relativity, including the fundamental theorem of the uniqueness of the Kerr metric and Roger Penrose's cosmic censorship conjecture. Already, fascinating studies of spectral lines are showing the extreme gravitational lensing effects near black holes and allowing crude measurements of black hole spin. When the ESA-NASA gravitational wave detector LISA begins its observations in about 10 years, it will make measurements of dynamical spacetimes near black holes with an accuracy greater even than that which theoreticians can reach with their computations today. Most importantly, when gravitational wa...

  12. General Conversion for Obtaining Strongly Existentially Unforgeable Signatures

    Science.gov (United States)

    Teranishi, Isamu; Oyama, Takuro; Ogata, Wakaha

    We say that a signature scheme is strongly existentially unforgeable (SEU) if no adversary, given message/signature pairs adaptively, can generate a signature on a new message or a new signature on a previously signed message. We propose a general and efficient conversion in the standard model that transforms a secure signature scheme to SEU signature scheme. In order to construct that conversion, we use a chameleon commitment scheme. Here a chameleon commitment scheme is a variant of commitment scheme such that one can change the committed value after publishing the commitment if one knows the secret key. We define the chosen message security notion for the chameleon commitment scheme, and show that the signature scheme transformed by our proposed conversion satisfies the SEU property if the chameleon commitment scheme is chosen message secure. By modifying the proposed conversion, we also give a general and efficient conversion in the random oracle model, that transforms a secure signature scheme into a SEU signature scheme. This second conversion also uses a chameleon commitment scheme but only requires the key only attack security for it.

  13. Solution of the strong CP problem by color exchange

    International Nuclear Information System (INIS)

    Barr, S.M.; Zee, A.

    1985-08-01

    We present a new way to solve the strong CP problem in models with a spontaneously broken CP invariance. It is simpler than existing non-Peccei-Quinn approaches. It predicts the existence of light (i.e. weak scale) colored Higgs bosons which could be seen in colliders. 25 refs., 3 figs

  14. Towards a dynamical solution of the strong CP problem

    International Nuclear Information System (INIS)

    Schierholz, G.

    1994-01-01

    One may argue that QCD solves the strong CP problem by itself. To test this idea, a lattice simulation suggests itself. In view of the difficulty of such a calculation we have, as a first step, investigated the problem in the CP 3 model. The CP 3 model is in many respects similar to QCD. In this talk I present some first results of our calculation. Among other things it is shown that the model has a first order deconfining phase transition in θ and that the critical value of θ decreases towards zero as β is taken to infinity. This suggests that θ is tuned to zero in the continuum limit. ((orig.))

  15. Bouncing solutions from generalized EoS

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, F. [Universidad de Santiago de Chile, Departamento de Matematicas, Santiago (Chile); Cruz, N.; Palma, G. [Universidad de Santiago, Departamento de Fisica, Santiago (Chile)

    2017-12-15

    We present an exact analytical bouncing solution for a closed universe filled with only one exotic fluid with negative pressure, obeying a generalized equation of state (GEoS) of the form p(ρ) = Aρ+Bρ{sup λ}, where A, B and λ are constants. In our solution A = -1/3, λ = 1/2, and B < 0 is kept as a free parameter. For particular values of the initial conditions, we find that our solution obeys the null energy condition (NEC), which allows us to reinterpret the matter source as that of a real scalar field, φ, with a positive kinetic energy and a potential V(φ). We numerically compute the scalar field as a function of time as well as its potential V(φ), and we find an analytical function for the potential that fits very accurately with the numerical data obtained. The shape of this potential can be well described by a Gaussian-type of function, and hence there is no spontaneous symmetry minimum of V(φ). We show numerically that the bouncing scenario is structurally stable in a small vicinity of the value A = -1/3. We also include the study of the evolution of the linear fluctuations due to linear perturbations in the metric. These perturbations show an oscillatory behavior near the bouncing and approach a constant at large scales. (orig.)

  16. Strong quantum solutions in conflicting-interest Bayesian games

    Science.gov (United States)

    Rai, Ashutosh; Paul, Goutam

    2017-10-01

    Quantum entanglement has been recently demonstrated as a useful resource in conflicting-interest games of incomplete information between two players, Alice and Bob [Pappa et al., Phys. Rev. Lett. 114, 020401 (2015), 10.1103/PhysRevLett.114.020401]. The general setting for such games is that of correlated strategies where the correlation between competing players is established through a trusted common adviser; however, players need not reveal their input to the adviser. So far, the quantum advantage in such games has been revealed in a restricted sense. Given a quantum correlated equilibrium strategy, one of the players can still receive a higher than quantum average payoff with some classically correlated equilibrium strategy. In this work, by considering a class of asymmetric Bayesian games, we show the existence of games with quantum correlated equilibrium where the average payoff of both the players exceeds the respective individual maximum for each player over all classically correlated equilibriums.

  17. Strong cosmic censorship for solutions of the Einstein-Maxwell field equations with polarized Gowdy symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Nungesser, Ernesto; Rendall, Alan D [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, 14476 Potsdam (Germany)

    2009-05-21

    A proof of strong cosmic censorship is presented for a class of solutions of the Einstein-Maxwell equations, those with polarized Gowdy symmetry. A key element of the argument is the observation that by means of a suitable choice of variables the central equations in this problem can be written in a form where they are identical to the central equations for general (i.e. non-polarized) vacuum Gowdy spacetimes. Using this, it is seen that the deep results of Ringstroem on strong cosmic censorship in the vacuum case have implications for the Einstein-Maxwell case. Working out the geometrical meaning of these analytical results leads to the main conclusion.

  18. Strong cosmic censorship for solutions of the Einstein-Maxwell field equations with polarized Gowdy symmetry

    International Nuclear Information System (INIS)

    Nungesser, Ernesto; Rendall, Alan D

    2009-01-01

    A proof of strong cosmic censorship is presented for a class of solutions of the Einstein-Maxwell equations, those with polarized Gowdy symmetry. A key element of the argument is the observation that by means of a suitable choice of variables the central equations in this problem can be written in a form where they are identical to the central equations for general (i.e. non-polarized) vacuum Gowdy spacetimes. Using this, it is seen that the deep results of Ringstroem on strong cosmic censorship in the vacuum case have implications for the Einstein-Maxwell case. Working out the geometrical meaning of these analytical results leads to the main conclusion.

  19. High Intensity Compton Scattering in a strong plane wave field of general form

    International Nuclear Information System (INIS)

    Hartin, A.; Moortgat-Pick, G.; Hamburg Univ.

    2011-06-01

    Photon emission by an electron embedded in a strong external field of general form is studied theoretically. The external field considered is a plane wave electromagnetic field of any number of components, period and polarisation. Exact, Volkov solutions of the Dirac equation with the 4-potential of the general external field are obtained. The photon emission is considered in the usual perturbation theory using the Volkov solutions to represent the electron. An expression for the transition probability of this process is obtained after the usual spin and polarisation sums, trace calculation and phase space integration. The final transition probability in the general case contains a single sum over contributions from external field photons, an integration over one of the phase space components and the Fourier transforms of the Volkov phases. The validity of the general expression is established by considering specific external fields. Known specific analytic forms of the transition probability are obtained after substitution of the 4-potential for a circularly polarised and constant crossed external field. As an example usage of the general result for the transition probability, the case of two circularly polarised external fields separated by a phase difference is studied both analytically and numerically. (orig.)

  20. High Intensity Compton Scattering in a strong plane wave field of general form

    Energy Technology Data Exchange (ETDEWEB)

    Hartin, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Moortgat-Pick, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2011-06-15

    Photon emission by an electron embedded in a strong external field of general form is studied theoretically. The external field considered is a plane wave electromagnetic field of any number of components, period and polarisation. Exact, Volkov solutions of the Dirac equation with the 4-potential of the general external field are obtained. The photon emission is considered in the usual perturbation theory using the Volkov solutions to represent the electron. An expression for the transition probability of this process is obtained after the usual spin and polarisation sums, trace calculation and phase space integration. The final transition probability in the general case contains a single sum over contributions from external field photons, an integration over one of the phase space components and the Fourier transforms of the Volkov phases. The validity of the general expression is established by considering specific external fields. Known specific analytic forms of the transition probability are obtained after substitution of the 4-potential for a circularly polarised and constant crossed external field. As an example usage of the general result for the transition probability, the case of two circularly polarised external fields separated by a phase difference is studied both analytically and numerically. (orig.)

  1. Exact solution for the generalized Telegraph Fisher's equation

    International Nuclear Information System (INIS)

    Abdusalam, H.A.; Fahmy, E.S.

    2009-01-01

    In this paper, we applied the factorization scheme for the generalized Telegraph Fisher's equation and an exact particular solution has been found. The exact particular solution for the generalized Fisher's equation was obtained as a particular case of the generalized Telegraph Fisher's equation and the two-parameter solution can be obtained when n=2.

  2. New compacton solutions and solitary wave solutions of fully nonlinear generalized Camassa-Holm equations

    International Nuclear Information System (INIS)

    Tian Lixin; Yin Jiuli

    2004-01-01

    In this paper, we introduce the fully nonlinear generalized Camassa-Holm equation C(m,n,p) and by using four direct ansatzs, we obtain abundant solutions: compactons (solutions with the absence of infinite wings), solitary patterns solutions having infinite slopes or cups, solitary waves and singular periodic wave solutions and obtain kink compacton solutions and nonsymmetry compacton solutions. We also study other forms of fully nonlinear generalized Camassa-Holm equation, and their compacton solutions are governed by linear equations

  3. Critical experiments on an enriched uranium solution system containing periodically distributed strong thermal neutron absorbers

    International Nuclear Information System (INIS)

    Rothe, R.E.

    1996-01-01

    A series of 62 critical and critical approach experiments were performed to evaluate a possible novel means of storing large volumes of fissile solution in a critically safe configuration. This study is intended to increase safety and economy through use of such a system in commercial plants which handle fissionable materials in liquid form. The fissile solution's concentration may equal or slightly exceed the minimum-critical-volume concentration; and experiments were performed for high-enriched uranium solution. Results should be generally applicable in a wide variety of plant situations. The method is called the 'Poisoned Tube Tank' because strong neutron absorbers (neutron poisons) are placed inside periodically spaced stainless steel tubes which separate absorber material from solution, keeping the former free of contamination. Eight absorbers are investigated. Both square and triangular pitched lattice patterns are studied. Ancillary topics which closely model typical plant situations are also reported. They include the effect of removing small bundles of absorbers as might occur during inspections in a production plant. Not taking the tank out of service for these inspections would be an economic advantage. Another ancillary topic studies the effect of the presence of a significant volume of unpoisoned solution close to the Poisoned Tube Tank on the critical height. A summary of the experimental findings is that boron compounds were excellent absorbers, as expected. This was true for granular materials such as Gerstley Borate and Borax; but it was also true for the flexible solid composed of boron carbide and rubber, even though only thin sheets were used. Experiments with small bundles of absorbers intentionally removed reveal that quite reasonable tanks could be constructed that would allow a few tubes at a time to be removed from the tank for inspection without removing the tank from production service

  4. Strong and Weak Convergence Criteria of Composite Iterative Algorithms for Systems of Generalized Equilibria

    Directory of Open Access Journals (Sweden)

    Lu-Chuan Ceng

    2014-01-01

    Full Text Available We first introduce and analyze one iterative algorithm by using the composite shrinking projection method for finding a solution of the system of generalized equilibria with constraints of several problems: a generalized mixed equilibrium problem, finitely many variational inequalities, and the common fixed point problem of an asymptotically strict pseudocontractive mapping in the intermediate sense and infinitely many nonexpansive mappings in a real Hilbert space. We prove a strong convergence theorem for the iterative algorithm under suitable conditions. On the other hand, we also propose another iterative algorithm involving no shrinking projection method and derive its weak convergence under mild assumptions. Our results improve and extend the corresponding results in the earlier and recent literature.

  5. Strong generalized synchronization with a particular relationship R between the coupled systems

    Science.gov (United States)

    Grácio, Clara; Fernandes, Sara; Mário Lopes, Luís

    2018-03-01

    The question of the chaotic synchronization of two coupled dynamical systems is an issue that interests researchers in many fields, from biology to psychology, through economics, chemistry, physics, and many others. The different forms of couplings and the different types of synchronization, give rise to many problems, most of them little studied. In this paper we deal with general couplings of two dynamical systems and we study strong generalized synchronization with a particular relationship R between them. Our results include the definition of a window in the domain of the coupling strength, where there is an exponentially stable solution, and the explicit determination of this window. In the case of unidirectional or symmetric couplings, this window is presented in terms of the maximum Lyapunov exponent of the systems. Examples of applications to chaotic systems of dimension one and two are presented.

  6. General classical solutions in the noncommutative CPN-1 model

    International Nuclear Information System (INIS)

    Foda, O.; Jack, I.; Jones, D.R.T.

    2002-01-01

    We give an explicit construction of general classical solutions for the noncommutative CP N-1 model in two dimensions, showing that they correspond to integer values for the action and topological charge. We also give explicit solutions for the Dirac equation in the background of these general solutions and show that the index theorem is satisfied

  7. Treatment of infectious skin defects or ulcers with electrolyzed strong acid aqueous solution.

    Science.gov (United States)

    Sekiya, S; Ohmori, K; Harii, K

    1997-01-01

    A chronic ulcer with an infection such as methicillin-resistant Staphylococcus aureus is hard to heal. Plastic and reconstructive surgeons often encounter such chronic ulcers that are resistant to surgical or various conservative treatments. We applied conservative treatment using an electrolyzed strong acid aqueous solution and obtained satisfactory results. The lesion was washed with the solution or soaked in a bowl of the solution for approximately 20 min twice a day. Fresh electrolyzed strong acid aqueous solution is unstable and should be stored in a cool, dark site in a sealed bottle. It should be used within a week after it has been produced. Here we report on 15 cases of infectious ulcers that were treated by electrolyzed strong acid aqueous solution. Of these cases, 7 patients were healed, 3 were granulated, and in 5, infection subsided. In most cases the lesion became less reddish and less edematous. Discharge or foul odor from the lesion was decreased. Electrolyzed strong acid aqueous solution was especially effective for treating a chronic refractory ulcer combined with diabetes melitus or peripheral circulatory insufficiency. This clinically applied therapy of electrolyzed strong acid aqueous solution was found to be effective so that this new therapeutic technique for ulcer treatment can now be conveniently utilized.

  8. Charged Analogues of Henning Knutsen Type Solutions in General Relativity

    Science.gov (United States)

    Gupta, Y. K.; Kumar, Sachin; Pratibha

    2011-11-01

    In the present article, we have found charged analogues of Henning Knutsen's interior solutions which join smoothly to the Reissner-Nordstrom metric at the pressure free interface. The solutions are singularity free and analyzed numerically with respect to pressure, energy-density and charge-density in details. The solutions so obtained also present the generalization of A.L. Mehra's solutions.

  9. A general polynomial solution to convection–dispersion equation ...

    Indian Academy of Sciences (India)

    Jiao Wang

    concentration profiles and optimal solute transport parameters. Furthermore, the general .... requirement; in other words, if Is(t) is cumulated solute added in the column ..... National Natural Science Foundation of China. (Nos. 41530854 and ...

  10. Properties of general classical CPsup(n-1) solutions

    International Nuclear Information System (INIS)

    Din, A.M.

    1980-05-01

    The general classical solutions with finite action of the CPsup(n-1) model are displayed. Various properties of the solutions such as topological charge, action, Baecklund like transformations and stability are discussed

  11. A Generalized Deduction of the Ideal-Solution Model

    Science.gov (United States)

    Leo, Teresa J.; Perez-del-Notario, Pedro; Raso, Miguel A.

    2006-01-01

    A new general procedure for deriving the Gibbs energy of mixing is developed through general thermodynamic considerations, and the ideal-solution model is obtained as a special particular case of the general one. The deduction of the Gibbs energy of mixing for the ideal-solution model is a rational one and viewed suitable for advanced students who…

  12. Asymptotic behaviour of solutions of the first boundary-value problem for strongly hyperbolic systems near a conical point at the boundary of the domain

    International Nuclear Information System (INIS)

    Hung, Nguyen M

    1999-01-01

    An existence and uniqueness theorem for generalized solutions of the first initial-boundary-value problem for strongly hyperbolic systems in bounded domains is established. The question of estimates in Sobolev spaces of the derivatives with respect to time of the generalized solution is discussed. It is shown that the smoothness of generalized solutions with respect to time is independent of the structure of the boundary of the domain but depends on the coefficients of the right-hand side. Results on the smoothness of the generalized solution and its asymptotic behaviour in a neighbourhood of a conical boundary point are also obtained

  13. Strong solutions to a Navier–Stokes–Lamé system on a domain with a non-flat boundary

    International Nuclear Information System (INIS)

    Kukavica, Igor; Ziane, Mohammed; Tuffaha, Amjad

    2011-01-01

    In this paper, we consider a Navier–Stokes–Lamé system modeling a fluid–structure interaction. For a general domain, we establish local well-posedness for strong solutions in which initial velocity u 0 belongs to H 1 while the initial data (w 0 , w 1 ) for the elasticity equation belongs to (H 3/2+k , H 1/2+k ) for any k in (0, k 0 ) where k 0 is an explicit positive constant

  14. Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier–Stokes system

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Jin, B.J.; Novotný, A.

    2012-01-01

    Roč. 14, č. 4 (2012), s. 717-730 ISSN 1422-6928 R&D Projects: GA ČR GA201/09/0917 Institutional research plan: CEZ:AV0Z10190503 Keywords : suitable weak solution * weak-strong uniqueness * compressible Navier-Stokes system Subject RIV: BA - General Mathematics Impact factor: 1.415, year: 2012 http://link.springer.com/article/10.1007%2Fs00021-011-0091-9

  15. Planck-scale physics and solutions to the strong CP-problem without axion

    International Nuclear Information System (INIS)

    Berezhiani, Z.G.; Mohapatra, R.N.; Senjanovic, G.

    1992-12-01

    We analyse the impact of quantum gravity on the possible solutions to the strong CP problem which utilize the spontaneously broken discrete symmetries, such as parity and time reversal invariance. We find that the stability of the solution under Planck scale effects provides an upper limit on the scale Λ of relevant symmetry breaking. This result is mode dependent and the bound is most restrictive for the seesaw type models of fermion masses, with Λ 6 GeV. (author). 32 refs

  16. Analytical approximate solutions for a general class of nonlinear delay differential equations.

    Science.gov (United States)

    Căruntu, Bogdan; Bota, Constantin

    2014-01-01

    We use the polynomial least squares method (PLSM), which allows us to compute analytical approximate polynomial solutions for a very general class of strongly nonlinear delay differential equations. The method is tested by computing approximate solutions for several applications including the pantograph equations and a nonlinear time-delay model from biology. The accuracy of the method is illustrated by a comparison with approximate solutions previously computed using other methods.

  17. Cosmology in three dimensions: steps towards the general solution

    International Nuclear Information System (INIS)

    Barrow, John D; Shaw, Douglas J; Tsagas, Christos G

    2006-01-01

    We use covariant and first-order formalism techniques to study the properties of general relativistic cosmology in three dimensions. The covariant approach provides an irreducible decomposition of the relativistic equations, which allows for a mathematically compact and physically transparent description of the three-dimensional spacetimes. Using this information we review the features of homogeneous and isotropic 3D cosmologies, provide a number of new solutions and study gauge invariant perturbations around them. The first-order formalism is then used to provide a detailed study of the most general 3D spacetimes containing perfect-fluid matter. Assuming the material content to be dust with comoving spatial 2-velocities, we find the general solution of the Einstein equations with a non-zero (and zero) cosmological constant and generalize known solutions of Kriele and the 3D counterparts of the Szekeres solutions. In the case of a non-comoving dust fluid we find the general solution in the case of one non-zero fluid velocity component. We consider the asymptotic behaviour of the families of 3D cosmologies with rotation and shear and analyse their singular structure. We also provide the general solution for cosmologies with one spacelike Killing vector, find solutions for cosmologies containing scalar fields and identify all the PP-wave 2 + 1 spacetimes

  18. General solution for first order elliptic systems in the plane

    International Nuclear Information System (INIS)

    Mshimba, A.S.

    1990-01-01

    It is shown that a system of 2n real-valued partial differential equations of first order, which under certain assumptions can be transformed to the so-called 'complex normal form', admits a general solution. 15 refs

  19. New exact solutions of the generalized Zakharov–Kuznetsov ...

    Indian Academy of Sciences (India)

    In this paper, new exact solutions, including soliton, rational and elliptic integral function solutions, for the generalized Zakharov–Kuznetsov modified equal-width equation are obtained using a new approach called the extended trial equation method. In this discussion, a new version of the trial equation method for the ...

  20. Minimal solution of general dual fuzzy linear systems

    International Nuclear Information System (INIS)

    Abbasbandy, S.; Otadi, M.; Mosleh, M.

    2008-01-01

    Fuzzy linear systems of equations, play a major role in several applications in various area such as engineering, physics and economics. In this paper, we investigate the existence of a minimal solution of general dual fuzzy linear equation systems. Two necessary and sufficient conditions for the minimal solution existence are given. Also, some examples in engineering and economic are considered

  1. Exact and numerical solutions of generalized Drinfeld-Sokolov equations

    Energy Technology Data Exchange (ETDEWEB)

    Ugurlu, Yavuz [Firat University, Department of Mathematics, 23119 Elazig (Turkey); Kaya, Dogan [Firat University, Department of Mathematics, 23119 Elazig (Turkey)], E-mail: dkaya36@yahoo.com

    2008-04-14

    In this Letter, we consider a system of generalized Drinfeld-Sokolov (gDS) equations which models one-dimensional nonlinear wave processes in two-component media. We find some exact solutions of gDS by using tanh function method and we also obtain a numerical solution by using the Adomian's Decomposition Method (ADM)

  2. Exact and numerical solutions of generalized Drinfeld-Sokolov equations

    International Nuclear Information System (INIS)

    Ugurlu, Yavuz; Kaya, Dogan

    2008-01-01

    In this Letter, we consider a system of generalized Drinfeld-Sokolov (gDS) equations which models one-dimensional nonlinear wave processes in two-component media. We find some exact solutions of gDS by using tanh function method and we also obtain a numerical solution by using the Adomian's Decomposition Method (ADM)

  3. Yang-Mills analogs of general-relativistic solutions

    International Nuclear Information System (INIS)

    Singlton, D.

    1998-01-01

    Some solutions of Yang-Mills equations, which can be found with the use of the general relativistic theory and Yang-Mills theory, are discussed. Some notes concerning possible physical sense of these solutions are made. Arguments showing that some of such solutions in the Yang-Mills theory (similar to the general relativistic ones) may be connected with the confinement phenomenon are given in particular. The motion of probe particles located into the phonon potential similar to the Schwarz-Child one is briefly discussed for this purpose [ru

  4. Dark matter and dark energy from the solution of the strong CP problem.

    Science.gov (United States)

    Mainini, Roberto; Bonometto, Silvio A

    2004-09-17

    The Peccei-Quinn (PQ) solution of the strong CP problem requires the existence of axions, which are viable candidates for dark matter. If the Nambu-Goldstone potential of the PQ model is replaced by a potential V(|Phi|) admitting a tracker solution, the scalar field |Phi| can account for dark energy, while the phase of Phi yields axion dark matter. If V is a supergravity (SUGRA) potential, the model essentially depends on a single parameter, the energy scale Lambda. Once we set Lambda approximately equal to 10(10) GeV at the quark-hadron transition, |Phi| naturally passes through values suitable to solve the strong CP problem, later growing to values providing fair amounts of dark matter and dark energy.

  5. Strong solutions for an incompressible Navier-Stokes/Allen-Cahn system with different densities

    Science.gov (United States)

    Li, Yinghua; Huang, Mingxia

    2018-06-01

    In this paper, we investigate a coupled Navier-Stokes/Allen-Cahn system describing a diffuse interface model for two-phase flow of viscous incompressible fluids with different densities in a bounded domain Ω \\subset R^N(N=2,3). We prove the existence and uniqueness of local strong solutions to the initial boundary value problem when the initial density function ρ _0 has a positive lower bound.

  6. A solution of the strong CP problem in models with scalars

    International Nuclear Information System (INIS)

    Dimopoulos, S.

    1979-01-01

    A possible solution to the strong CP problem within the context of a Weinberg-Salam model with two Higgs fields coupled in a Peccei-Quinn symmetric fashion is pointed out. This is done by extending the colour group to a bigger simple group which is broken at some very high energy. The model contains a heavy axion. No old or new U(1) problem re-emerges. (Auth.)

  7. Self-similar solutions for implosion and reflection of strong and weak shocks in a plasma

    International Nuclear Information System (INIS)

    Desai, B.N.; Chavda, L.K.

    1980-06-01

    We present an improved approximation scheme for finding approximate solutions in analytic form to the self-similar equations of gas dynamics. The method gives better agreement with exact results not only for the weak shocks which were considered previously but also for strong shocks for which the previous method gave poor results. We have considered various shock configurations in spherical and cylindrical geometries. (author)

  8. Strong pairing approximation in comparison with the exact solutions to the pairing Hamiltonian

    Directory of Open Access Journals (Sweden)

    Lunyov A.V.

    2016-01-01

    Full Text Available Results of the Strong Pairing Approximation (SPA as a method with the exact particle number conservation are compared with those of the quasiparticle method (QM. It is shown that SPA comes to the same equations as QM for the gap parameter, chemical potential and one- and two-quasiparticle states. Calculations are performed for 14864Gd84 as an example, and compared with the exact solutions to the pairing Hamiltonian.

  9. Exact solutions of generalized Zakharov and Ginzburg-Landau equations

    International Nuclear Information System (INIS)

    Zhang Jinliang; Wang Mingliang; Gao Kequan

    2007-01-01

    By using the homogeneous balance principle, the exact solutions of the generalized Zakharov equations and generalized Ginzburg-Landau equation are obtained with the aid of a set of subsidiary higher-order ordinary differential equations (sub-equations for short)

  10. Nonelectrolyte NRTL-NRF model to study thermodynamics of strong and weak electrolyte solutions

    Energy Technology Data Exchange (ETDEWEB)

    Haghtalab, Ali, E-mail: haghtala@modares.ac.i [Department of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Shojaeian, Abolfazl; Mazloumi, Seyed Hossein [Department of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of)

    2011-03-15

    An electrolyte activity coefficient model is proposed by combining non-electrolyte NRTL-NRF local composition model and Pitzer-Debye-Hueckel equation as short-range and long-range contributions, respectively. With two adjustable parameters per each electrolyte, the present model is applied to correlation of the mean activity coefficients of more than 150 strong aqueous electrolyte solutions at 298.15 K. Also the results of the present model are compared with the other local composition models such as electrolyte-NRTL, electrolyte-NRTL-NRF and electrolyte-Wilson-NRF models. Moreover, the present model is used for prediction of the osmotic coefficient of several aqueous binary electrolytes systems at 298.15 K. Also the present activity coefficient model is adopted for representation of nonideality of the acid gases, as weak gas electrolytes, soluble in alkanolamine solutions. The model is applied for calculation of solubility and heat of absorption (enthalpy of solution) of acid gas in the two {l_brace}(H{sub 2}O + MDEA + CO{sub 2}) and (H{sub 2}O + MDEA + H{sub 2}S){r_brace} systems at different conditions. The results demonstrate that the present model can be successfully applied to study thermodynamic properties of both strong and weak electrolyte solutions.

  11. Strongly increasing solutions of cyclic systems of second order differential equations with power-type nonlinearities

    Directory of Open Access Journals (Sweden)

    Jaroslav Jaroš

    2015-01-01

    Full Text Available We consider \\(n\\-dimensional cyclic systems of second order differential equations \\[(p_i(t|x_{i}'|^{\\alpha_i -1}x_{i}'' = q_{i}(t|x_{i+1}|^{\\beta_i-1}x_{i+1},\\] \\[\\quad i = 1,\\ldots,n, \\quad (x_{n+1} = x_1 \\tag{\\(\\ast\\}\\] under the assumption that the positive constants \\(\\alpha_i\\ and \\(\\beta_i\\ satisfy \\(\\alpha_1{\\ldots}\\alpha_n \\gt \\beta_1{\\ldots}\\beta_n\\ and \\(p_i(t\\ and \\(q_i(t\\ are regularly varying functions, and analyze positive strongly increasing solutions of system (\\(\\ast\\ in the framework of regular variation. We show that the situation for the existence of regularly varying solutions of positive indices for (\\(\\ast\\ can be characterized completely, and moreover that the asymptotic behavior of such solutions is governed by the unique formula describing their order of growth precisely. We give examples demonstrating that the main results for (\\(\\ast\\ can be applied to some classes of partial differential equations with radial symmetry to acquire accurate information about the existence and the asymptotic behavior of their radial positive strongly increasing solutions.

  12. Towards the general solution of the Yang-Mills equations

    International Nuclear Information System (INIS)

    Helfer, A.D.

    1985-01-01

    The author presents a new non-perturbative technique for finding arbitrary self-dual solutions to the Yang-Mills equations, and of describing massless fields minimally coupled to them. The approach uses techniques of complex analysis in several variables, and is complementary to Ward's: it is expected that a combination of the two techniques will yield general, non-self-dual solutions to the Yang-Mills equations. This has been verified to first order in perturbation theory

  13. New solutions of Heun's general equation

    Energy Technology Data Exchange (ETDEWEB)

    Ishkhanyan, Artur [Engineering Center of Armenian National Academy of Sciences, Ashtarak (Armenia); Suominen, Kalle-Antti [Helsinki Institute of Physics, PL 64, Helsinki (Finland)

    2003-02-07

    We show that in four particular cases the derivative of the solution of Heun's general equation can be expressed in terms of a solution to another Heun's equation. Starting from this property, we use the Gauss hypergeometric functions to construct series solutions to Heun's equation for the mentioned cases. Each of the hypergeometric functions involved has correct singular behaviour at only one of the singular points of the equation; the sum, however, has correct behaviour. (letter to the editor)

  14. Isotropic extensions of the vacuum solutions in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Molina, C. [Universidade de Sao Paulo (USP), SP (Brazil); Martin-Moruno, Prado [Victoria University of Wellington (New Zealand); Gonzalez-Diaz, Pedro F. [Consejo Superior de Investigaciones Cientificas, Madrid (Spain)

    2012-07-01

    Full text: Spacetimes described by spherically symmetric solutions of Einstein's equations are of paramount importance both in astrophysical applications and theoretical considerations. And among those, black holes are highlighted. In vacuum, Birkhoff's theorem and its generalizations to non-asymptotically flat cases uniquely fix the metric as the Schwarzschild, Schwarzschild-de Sitter or Schwarzschild-anti-de Sitter geometries, the vacuum solutions of the usual general relativity with zero, positive or negative values for the cosmological constant, respectively. In this work we are mainly interested in black holes in a cosmological environment. Of the two main assumptions of the cosmological principle, homogeneity is lost when compact objects are considered. Nevertheless isotropy is still possible, and we enforce this condition. Within this context, we investigate spatially isotropic solutions close - continuously deformable - to the usual vacuum solutions. We obtain isotropic extensions of the usual spherically symmetric vacuum geometries in general relativity. Exact and perturbative solutions are derived. Maximal extensions are constructed and their causal structures are discussed. The classes of geometries obtained include black holes in compact and non-compact universes, wormholes in the interior region of cosmological horizons, and anti-de Sitter geometries with excess/deficit solid angle. The tools developed here are applicable in more general contexts, with extensions subjected to other constraints. (author)

  15. Robustness of strong solutions to the compressible Navier-Stokes system

    Czech Academy of Sciences Publication Activity Database

    Bella, P.; Feireisl, Eduard; Jin, B.J.; Novotný, A.

    2015-01-01

    Roč. 362, 1-2 (2015), s. 281-303 ISSN 0025-5831 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : compressible Navier-Stokes system * smooth solution * stability Subject RIV: BA - General Mathematics Impact factor: 1.366, year: 2015 http://link.springer.com/article/10.1007%2Fs00208-014-1119-2

  16. Analytical Solution of General Bagley-Torvik Equation

    Directory of Open Access Journals (Sweden)

    William Labecca

    2015-01-01

    Full Text Available Bagley-Torvik equation appears in viscoelasticity problems where fractional derivatives seem to play an important role concerning empirical data. There are several works treating this equation by using numerical methods and analytic formulations. However, the analytical solutions presented in the literature consider particular cases of boundary and initial conditions, with inhomogeneous term often expressed in polynomial form. Here, by using Laplace transform methodology, the general inhomogeneous case is solved without restrictions in boundary and initial conditions. The generalized Mittag-Leffler functions with three parameters are used and the solutions presented are expressed in terms of Wiman’s functions and their derivatives.

  17. Strong convergence and convergence rates of approximating solutions for algebraic Riccati equations in Hilbert spaces

    Science.gov (United States)

    Ito, Kazufumi

    1987-01-01

    The linear quadratic optimal control problem on infinite time interval for linear time-invariant systems defined on Hilbert spaces is considered. The optimal control is given by a feedback form in terms of solution pi to the associated algebraic Riccati equation (ARE). A Ritz type approximation is used to obtain a sequence pi sup N of finite dimensional approximations of the solution to ARE. A sufficient condition that shows pi sup N converges strongly to pi is obtained. Under this condition, a formula is derived which can be used to obtain a rate of convergence of pi sup N to pi. The results of the Galerkin approximation is demonstrated and applied for parabolic systems and the averaging approximation for hereditary differential systems.

  18. Exact Solution of a Strongly Coupled Gauge Theory in 0 +1 Dimensions

    Science.gov (United States)

    Krishnan, Chethan; Kumar, K. V. Pavan

    2018-05-01

    Gauged tensor models are a class of strongly coupled quantum mechanical theories. We present the exact analytic solution of a specific example of such a theory: namely, the smallest colored tensor model due to Gurau and Witten that exhibits nonlinearities. We find explicit analytic expressions for the eigenvalues and eigenstates, and the former agree precisely with previous numerical results on (a subset of) eigenvalues of the ungauged theory. The physics of the spectrum, despite the smallness of N , exhibits rudimentary signatures of chaos. This Letter is a summary of our main results: the technical details will appear in companion paper [C. Krishnan and K. V. Pavan Kumar, Complete solution of a gauged tensor model, arXiv:1804.10103].

  19. General scalar-tensor cosmology: analytical solutions via noether symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Massaeli, Erfan; Motaharfar, Meysam; Sepangi, Hamid Reza [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of)

    2017-02-15

    We analyze the cosmology of a general scalar-tensor theory which encompasses generalized Brans-Dicke theory, Gauss-Bonnet gravity, non-minimal derivative gravity, generalized Galilean gravity and also the general k-essence type models. Instead of taking into account phenomenological considerations we adopt a Noether symmetry approach, as a physical criterion, to single out the form of undetermined functions in the action. These specified functions symmetrize equations of motion in the simplest possible form which result in exact solutions. Demanding de Sitter, power-law and bouncing universe solutions in the absence and presence of matter density leads to exploring new as well as well-investigated models. We show that there are models for which the dynamics of the system allows a transition from a decelerating phase (matter dominated era) to an accelerating phase (dark energy epoch) and could also lead to general Brans-Dicke with string correction without a self-interaction potential. Furthermore, we classify the models based on a phantom or quintessence dark energy point of view. Finally, we obtain the condition for stability of a de Sitter solution for which the solution is an attractor of the system. (orig.)

  20. Comptonization in Ultra-Strong Magnetic Fields: Numerical Solution to the Radiative Transfer Problem

    Science.gov (United States)

    Ceccobello, C.; Farinelli, R.; Titarchuk, L.

    2014-01-01

    We consider the radiative transfer problem in a plane-parallel slab of thermal electrons in the presence of an ultra-strong magnetic field (B approximately greater than B(sub c) approx. = 4.4 x 10(exp 13) G). Under these conditions, the magnetic field behaves like a birefringent medium for the propagating photons, and the electromagnetic radiation is split into two polarization modes, ordinary and extraordinary, that have different cross-sections. When the optical depth of the slab is large, the ordinary-mode photons are strongly Comptonized and the photon field is dominated by an isotropic component. Aims. The radiative transfer problem in strong magnetic fields presents many mathematical issues and analytical or numerical solutions can be obtained only under some given approximations. We investigate this problem both from the analytical and numerical point of view, provide a test of the previous analytical estimates, and extend these results with numerical techniques. Methods. We consider here the case of low temperature black-body photons propagating in a sub-relativistic temperature plasma, which allows us to deal with a semi-Fokker-Planck approximation of the radiative transfer equation. The problem can then be treated with the variable separation method, and we use a numerical technique to find solutions to the eigenvalue problem in the case of a singular kernel of the space operator. The singularity of the space kernel is the result of the strong angular dependence of the electron cross-section in the presence of a strong magnetic field. Results. We provide the numerical solution obtained for eigenvalues and eigenfunctions of the space operator, and the emerging Comptonization spectrum of the ordinary-mode photons for any eigenvalue of the space equation and for energies significantly lesser than the cyclotron energy, which is on the order of MeV for the intensity of the magnetic field here considered. Conclusions. We derived the specific intensity of the

  1. The general solution of a Nim-heap game

    Institute of Scientific and Technical Information of China (English)

    宋林森; 卢澎涛

    2010-01-01

    As a combinatorial one,the game Nim turns out to be extremely useful in certain types of combinatorial game analysis.It has given the general solution of the game a Nim-heap game and the result has proved true.

  2. General solution of Bateman equations for nuclear transmutations

    International Nuclear Information System (INIS)

    Cetnar, Jerzy

    2006-01-01

    The paper concerns the linear chain method of solving Bateman equations for nuclear transmutation in derivation of the general solution for linear chain with repeated transitions and thus elimination of existing numerical problems. In addition, applications of derived equations for transmutation trajectory analysis method is presented

  3. General analytical shakedown solution for structures with kinematic hardening materials

    Science.gov (United States)

    Guo, Baofeng; Zou, Zongyuan; Jin, Miao

    2016-09-01

    The effect of kinematic hardening behavior on the shakedown behaviors of structure has been investigated by performing shakedown analysis for some specific problems. The results obtained only show that the shakedown limit loads of structures with kinematic hardening model are larger than or equal to those with perfectly plastic model of the same initial yield stress. To further investigate the rules governing the different shakedown behaviors of kinematic hardening structures, the extended shakedown theorem for limited kinematic hardening is applied, the shakedown condition is then proposed, and a general analytical solution for the structural shakedown limit load is thus derived. The analytical shakedown limit loads for fully reversed cyclic loading and non-fully reversed cyclic loading are then given based on the general solution. The resulting analytical solution is applied to some specific problems: a hollow specimen subjected to tension and torsion, a flanged pipe subjected to pressure and axial force and a square plate with small central hole subjected to biaxial tension. The results obtained are compared with those in literatures, they are consistent with each other. Based on the resulting general analytical solution, rules governing the general effects of kinematic hardening behavior on the shakedown behavior of structure are clearly.

  4. Supersymmetric solutions of N =(1 ,1 ) general massive supergravity

    Science.gov (United States)

    Deger, N. S.; Nazari, Z.; Sarıoǧlu, Ö.

    2018-05-01

    We construct supersymmetric solutions of three-dimensional N =(1 ,1 ) general massive supergravity (GMG). Solutions with a null Killing vector are, in general, pp-waves. We identify those that appear at critical points of the model, some of which do not exist in N =(1 ,1 ) new massive supergravity (NMG). In the timelike case, we find that many solutions are common with NMG, but there is a new class that is genuine to GMG, two members of which are stationary Lifshitz and timelike squashed AdS spacetimes. We also show that in addition to the fully supersymmetric AdS vacuum, there is a second AdS background with a nonzero vector field that preserves 1 /4 supersymmetry.

  5. The general supersymmetric solution of topologically massive supergravity

    International Nuclear Information System (INIS)

    Gibbons, G W; Pope, C N; Sezgin, E

    2008-01-01

    We find the general fully nonlinear solution of topologically massive supergravity admitting a Killing spinor. It is of plane-wave type, with a null Killing vector field. Conversely, we show that all solutions with a null Killing vector are supersymmetric for one or the other choice of sign for the Chern-Simons coupling constant μ. If μ does not take the critical value, μ = ±1, these solutions are asymptotically regular on a Poincare patch, but do not admit a smooth global compactification with boundary S 1 x R. In the critical case, the solutions have a logarithmic singularity on the boundary of the Poincare patch. We derive a Nester-Witten identity, which allows us to identify the associated charges, but we conclude that the presence of the Chern-Simons term prevents us from making a statement about their positivity. The Nester-Witten procedure is applied to the BTZ black hole

  6. A New Solution for Einstein Field Equation in General Relativity

    Science.gov (United States)

    Mousavi, Sadegh

    2006-05-01

    There are different solutions for Einstein field equation in general relativity that they have been proposed by different people the most important solutions are Schwarzchild, Reissner Nordstrom, Kerr and Kerr Newmam. However, each one of these solutions limited to special case. I've found a new solution for Einstein field equation which is more complete than all previous ones and this solution contains the previous solutions as its special forms. In this talk I will present my new metric for Einstein field equation and the Christofel symbols and Richi and Rieman tensor components for the new metric that I have calculated them by GR TENSOR software. As a result I will determine the actual movement of black holes which is different From Kerr black hole's movement. Finally this new solution predicts, existence of a new and constant field in the nature (that nobody can found it up to now), so in this talk I will introduce this new field and even I will calculate the amount of this field. SADEGH MOUSAVI, Amirkabir University of Technology.

  7. Using solute and heat tracers for aquifer characterization in a strongly heterogeneous alluvial aquifer

    Science.gov (United States)

    Sarris, Theo S.; Close, Murray; Abraham, Phillip

    2018-03-01

    A test using Rhodamine WT and heat as tracers, conducted over a 78 day period in a strongly heterogeneous alluvial aquifer, was used to evaluate the utility of the combined observation dataset for aquifer characterization. A highly parameterized model was inverted, with concentration and temperature time-series as calibration targets. Groundwater heads recorded during the experiment were boundary dependent and were ignored during the inversion process. The inverted model produced a high resolution depiction of the hydraulic conductivity and porosity fields. Statistical properties of these fields are in very good agreement with estimates from previous studies at the site. Spatially distributed sensitivity analysis suggests that both solute and heat transport were most sensitive to the hydraulic conductivity and porosity fields and less sensitive to dispersivity and thermal distribution factor, with sensitivity to porosity greatly reducing outside the monitored area. The issues of model over-parameterization and non-uniqueness are addressed through identifiability analysis. Longitudinal dispersivity and thermal distribution factor are highly identifiable, however spatially distributed parameters are only identifiable near the injection point. Temperature related density effects became observable for both heat and solute, as the temperature anomaly increased above 12 degrees centigrade, and affected down gradient propagation. Finally we demonstrate that high frequency and spatially dense temperature data cannot inform a dual porosity model in the absence of frequent solute concentration measurements.

  8. Fragile to strong crossover at the Widom line in supercooled aqueous solutions of NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, P. [Dipartimento di Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Rome, Italy and INFN, Sezione di Roma Tre, Via della Vasca Navale 84, I-00146 Rome (Italy); Corradini, D.; Rovere, M., E-mail: rovere@fis.uniroma3.it [Dipartimento di Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Rome (Italy)

    2013-11-28

    We study by molecular dynamics simulations the dynamical properties of an aqueous solution of NaCl at a concentration of 0.67 mol/kg upon supercooling. In a previous study of the same ionic solution, we have located the liquid-liquid critical point (LLCP) and determined the Widom line connected to the liquid-liquid transition. We present here the results obtained from the study of the self-intermediate scattering function in a large range of temperatures and densities approaching the LLCP. The structural relaxation is in agreement with the mode coupling theory (MCT) in the region of mild supercooling. In the deeper supercooled region the α-relaxation time as function of temperature deviates from the MCT power law prediction showing a crossover from a fragile to a strong behavior. This crossover is found upon crossing the Widom line. The same trend was found in bulk water upon supercooling and it appears almost unchanged by the interaction with ions apart from a shift in the thermodynamic plane toward lower pressures and higher temperatures. These results show that the phenomenology of supercooled water transfers from bulk to solution where the study of the supercooled region is experimentally less difficult.

  9. Generalized synchronization in discrete maps. New point of view on weak and strong synchronization

    International Nuclear Information System (INIS)

    Koronovskii, Alexey A.; Moskalenko, Olga I.; Shurygina, Svetlana A.; Hramov, Alexander E.

    2013-01-01

    In the present Letter we show that the concept of the generalized synchronization regime in discrete maps needs refining in the same way as it has been done for the flow systems Koronovskii et al. [Koronovskii AA, Moskalenko OI, Hramov AE. Nearest neighbors, phase tubes, and generalized synchronization. Phys Rev E 2011;84:037201]. We have shown that, in the general case, when the relationship between state vectors of the interacting chaotic maps are considered, the prehistory must be taken into account. We extend the phase tube approach to the systems with a discrete time coupled both unidirectionally and mutually and analyze the essence of the generalized synchronization by means of this technique. Obtained results show that the division of the generalized synchronization into the weak and the strong ones also must be reconsidered. Unidirectionally coupled logistic maps and Hénon maps coupled mutually are used as sample systems.

  10. Spherically symmetric solutions of general second-order gravity

    International Nuclear Information System (INIS)

    Whitt, B.

    1988-01-01

    The general second-order gravity theory, whose Lagrangian includes higher powers of the curvature, is considered in arbitrary dimensions. It is shown that spherically symmetric solutions are static, except in certain, special, unphysical cases. Spherically symmetric solutions are found and classified. Each theory's solutions fall into a number of distinct branches, which may represent finite space with two singular boundaries, or an asymptotically either flat or (anti--)de Sitter space with one singular boundary. A theory may contain at most one branch of solutions in which all singularities are hidden by event horizons. Such horizons generally emit Hawking radiation, though in certain cases the horizon may have zero temperature. Black holes do not necessarily radiate away all their mass: they may terminate in a zero-temperature black hole, a naked singularity, or a hot black hole in equilibrium with a ''cosmological'' event horizon. The thermodynamics of black-hole solutions is discussed; entropy is found to be an increasing function of horizon area, and the first law is shown to hold

  11. New solutions of the generalized ellipsoidal wave equation

    Directory of Open Access Journals (Sweden)

    Harold Exton

    1999-10-01

    Full Text Available Certain aspects and a contribution to the theory of new forms of solutions of an algebraic form of the generalized ellipsoidal wave equation are deduced by considering the Laplace transform of a soluble system of linear differential equations. An ensuing system of non-linear algebraic equations is shown to be consistent and is numerically implemented by means of the computer algebra package MAPLE V. The main results are presented as series of hypergeometric type of there and four variables which readily lend themselves to numerical handling although this does not indicate all of the detailedanalytic properties of the solutions under consideration.

  12. Smooth Gowdy-symmetric generalized Taub–NUT solutions

    International Nuclear Information System (INIS)

    Beyer, Florian; Hennig, Jörg

    2012-01-01

    We study a class of S 3 -Gowdy vacuum models with a regular past Cauchy horizon which we call smooth Gowdy-symmetric generalized Taub–NUT solutions. In particular, we prove the existence of such solutions by formulating a singular initial value problem with asymptotic data on the past Cauchy horizon. We prove that also a future Cauchy horizon exists for generic asymptotic data, and derive an explicit expression for the metric on the future Cauchy horizon in terms of the asymptotic data on the past horizon. This complements earlier results about S 1 ×S 2 -Gowdy models. (paper)

  13. Generalized Asymptotically Almost Periodic and Generalized Asymptotically Almost Automorphic Solutions of Abstract Multiterm Fractional Differential Inclusions

    Directory of Open Access Journals (Sweden)

    G. M. N’Guérékata

    2018-01-01

    Full Text Available The main aim of this paper is to investigate generalized asymptotical almost periodicity and generalized asymptotical almost automorphy of solutions to a class of abstract (semilinear multiterm fractional differential inclusions with Caputo derivatives. We illustrate our abstract results with several examples and possible applications.

  14. Particular solutions of generalized Euler-Poisson-Darboux equation

    Directory of Open Access Journals (Sweden)

    Rakhila B. Seilkhanova

    2015-01-01

    Full Text Available In this article we consider the generalized Euler-Poisson-Darboux equation $$ {u}_{tt}+\\frac{2\\gamma }{t}{{u}_{t}}={u}_{xx}+{u}_{yy} +\\frac{2\\alpha }{x}{{u}_{x}}+\\frac{2\\beta }{y}{{u}_y},\\quad x>0,\\;y>0,\\;t>0. $$ We construct particular solutions in an explicit form expressed by the Lauricella hypergeometric function of three variables. Properties of each constructed solutions have been investigated in sections of surfaces of the characteristic cone. Precisely, we prove that found solutions have singularity $1/r$ at $r\\to 0$, where ${{r}^2}={{( x-{{x}_0}}^2}+{{( y-{{y}_0}}^2}-{{( t-{{t}_0}}^2}$.

  15. On the General Analytical Solution of the Kinematic Cosserat Equations

    KAUST Repository

    Michels, Dominik L.

    2016-09-01

    Based on a Lie symmetry analysis, we construct a closed form solution to the kinematic part of the (partial differential) Cosserat equations describing the mechanical behavior of elastic rods. The solution depends on two arbitrary analytical vector functions and is analytical everywhere except a certain domain of the independent variables in which one of the arbitrary vector functions satisfies a simple explicitly given algebraic relation. As our main theoretical result, in addition to the construction of the solution, we proof its generality. Based on this observation, a hybrid semi-analytical solver for highly viscous two-way coupled fluid-rod problems is developed which allows for the interactive high-fidelity simulations of flagellated microswimmers as a result of a substantial reduction of the numerical stiffness.

  16. Numerical solution of pipe flow problems for generalized Newtonian fluids

    International Nuclear Information System (INIS)

    Samuelsson, K.

    1993-01-01

    In this work we study the stationary laminar flow of incompressible generalized Newtonian fluids in a pipe with constant arbitrary cross-section. The resulting nonlinear boundary value problems can be written in a variational formulation and solved using finite elements and the augmented Lagrangian method. The solution of the boundary value problem is obtained by finding a saddle point of the augmented Lagrangian. In the algorithm the nonlinear part of the equations is treated locally and the solution is obtained by iteration between this nonlinear problem and a global linear problem. For the solution of the linear problem we use the SSOR preconditioned conjugate gradient method. The approximating problem is solved on a sequence of adaptively refined grids. A scheme for adjusting the value of the crucial penalization parameter of the augmented Lagrangian is proposed. Applications to pipe flow and a problem from the theory of capacities are given. (author) (34 refs.)

  17. On the General Analytical Solution of the Kinematic Cosserat Equations

    KAUST Repository

    Michels, Dominik L.; Lyakhov, Dmitry; Gerdt, Vladimir P.; Hossain, Zahid; Riedel-Kruse, Ingmar H.; Weber, Andreas G.

    2016-01-01

    Based on a Lie symmetry analysis, we construct a closed form solution to the kinematic part of the (partial differential) Cosserat equations describing the mechanical behavior of elastic rods. The solution depends on two arbitrary analytical vector functions and is analytical everywhere except a certain domain of the independent variables in which one of the arbitrary vector functions satisfies a simple explicitly given algebraic relation. As our main theoretical result, in addition to the construction of the solution, we proof its generality. Based on this observation, a hybrid semi-analytical solver for highly viscous two-way coupled fluid-rod problems is developed which allows for the interactive high-fidelity simulations of flagellated microswimmers as a result of a substantial reduction of the numerical stiffness.

  18. A database for extract solutions in general relativity

    International Nuclear Information System (INIS)

    Horvath, I.; Horvath, Zs.; Lukacs, B.

    1993-07-01

    The field of equations of General Relativity are coupled second order partial differential equations. Therefore no general method is known to generate solutions for prescribed initial and boundary conditions. In addition, the meaning of the particular coordinates cannot be known until the metric is not found. Therefore the result must permit arbitrary coordinate transformations, i.e. most kinds of approximating methods are improper. So exact solutions are necessary and each one is an individual product. For storage, retrieval and comparison database handling techniques are needed. A database of 1359 articles is shown (cross-referred at least once) published in 156 more important journals. It can be handled by dBase III plus on IBM PC's. (author) 5 refs.; 5 tabs

  19. Generalized Truncated Methods for an Efficient Solution of Retrial Systems

    Directory of Open Access Journals (Sweden)

    Ma Jose Domenech-Benlloch

    2008-01-01

    Full Text Available We are concerned with the analytic solution of multiserver retrial queues including the impatience phenomenon. As there are not closed-form solutions to these systems, approximate methods are required. We propose two different generalized truncated methods to effectively solve this type of systems. The methods proposed are based on the homogenization of the state space beyond a given number of users in the retrial orbit. We compare the proposed methods with the most well-known methods appeared in the literature in a wide range of scenarios. We conclude that the proposed methods generally outperform previous proposals in terms of accuracy for the most common performance parameters used in retrial systems with a moderated growth in the computational cost.

  20. Quantum solutions for Prisoner's Dilemma game with general parameters

    International Nuclear Information System (INIS)

    Sun, Z.W.; Jin, H.; Zhao, H.

    2008-01-01

    The quantum game of the Prisoner's Dilemma with general payoff matrix was studied in L. Marinatto and T. Weber's scheme presented in [Phys. Lett. A 272 (2000) 291, so that the results of two schemes of the quantum game can be compared. The Nash equilibria and the solutions of the game are obtained. They are related to initial state, matrix parameters and the intervals among the parameters. It can be concluded from the results that the quantum PD game in Marinatto and Weber's scheme matches the one in Eisert et al.'s scheme, one with general unitary operations.

  1. Automatic computation and solution of generalized harmonic balance equations

    Science.gov (United States)

    Peyton Jones, J. C.; Yaser, K. S. A.; Stevenson, J.

    2018-02-01

    Generalized methods are presented for generating and solving the harmonic balance equations for a broad class of nonlinear differential or difference equations and for a general set of harmonics chosen by the user. In particular, a new algorithm for automatically generating the Jacobian of the balance equations enables efficient solution of these equations using continuation methods. Efficient numeric validation techniques are also presented, and the combined algorithm is applied to the analysis of dc, fundamental, second and third harmonic response of a nonlinear automotive damper.

  2. Removal of tartrazine from aqueous solutions by strongly basic polystyrene anion exchange resins.

    Science.gov (United States)

    Wawrzkiewicz, Monika; Hubicki, Zbigniew

    2009-05-30

    The removal of tartrazine from aqueous solutions onto the strongly basic polystyrene anion exchangers of type 1 (Amberlite IRA-900) and type 2 (Amberlite IRA-910) was investigated. The experimental data obtained at 100, 200, 300 and 500 mg/dm(3) initial concentrations at 20 degrees C were applied to the pseudo-first order, pseudo-second order and Weber-Morris kinetic models. The calculated sorption capacities (q(e,cal)) and the rate constant of the first order adsorption (k(1)) were determined. The pseudo-second order kinetic constants (k(2)) and capacities were calculated from the plots of t/q(t) vs. t, 1/q(t) vs. 1/t, 1/t vs. 1/q(t) and q(t)/t vs. q(t) for type 1, type 2, type 3 and type 4 of the pseudo-second order expression, respectively. The influence of phase contact time, solution pH and temperature on tartrazine removal was also discussed. The FTIR spectra of pure anion exchangers and those loaded with tartrazine were recorded, too.

  3. A general method for enclosing solutions of interval linear equations

    Czech Academy of Sciences Publication Activity Database

    Rohn, Jiří

    2012-01-01

    Roč. 6, č. 4 (2012), s. 709-717 ISSN 1862-4472 R&D Projects: GA ČR GA201/09/1957; GA ČR GC201/08/J020 Institutional research plan: CEZ:AV0Z10300504 Keywords : interval linear equations * solution set * enclosure * absolute value inequality Subject RIV: BA - General Mathematics Impact factor: 1.654, year: 2012

  4. Analytical Solution of General Bagley-Torvik Equation

    OpenAIRE

    William Labecca; Osvaldo Guimarães; José Roberto C. Piqueira

    2015-01-01

    Bagley-Torvik equation appears in viscoelasticity problems where fractional derivatives seem to play an important role concerning empirical data. There are several works treating this equation by using numerical methods and analytic formulations. However, the analytical solutions presented in the literature consider particular cases of boundary and initial conditions, with inhomogeneous term often expressed in polynomial form. Here, by using Laplace transform methodology, the general inhomoge...

  5. Magnetotail equilibrium theory - The general three-dimensional solution

    Science.gov (United States)

    Birn, J.

    1987-01-01

    The general magnetostatic equilibrium problem for the geomagnetic tail is reduced to the solution of ordinary differential equations and ordinary integrals. The theory allows the integration of the self-consistent magnetotail equilibrium field from the knowledge of four functions of two space variables: the neutral sheet location, the total pressure, the magnetic field strength, and the z component of the magnetic field at the neutral sheet.

  6. Numerical path integral solution to strong Coulomb correlation in one dimensional Hooke's atom

    Science.gov (United States)

    Ruokosenmäki, Ilkka; Gholizade, Hossein; Kylänpää, Ilkka; Rantala, Tapio T.

    2017-01-01

    We present a new approach based on real time domain Feynman path integrals (RTPI) for electronic structure calculations and quantum dynamics, which includes correlations between particles exactly but within the numerical accuracy. We demonstrate that incoherent propagation by keeping the wave function real is a novel method for finding and simulation of the ground state, similar to Diffusion Monte Carlo (DMC) method, but introducing new useful tools lacking in DMC. We use 1D Hooke's atom, a two-electron system with very strong correlation, as our test case, which we solve with incoherent RTPI (iRTPI) and compare against DMC. This system provides an excellent test case due to exact solutions for some confinements and because in 1D the Coulomb singularity is stronger than in two or three dimensional space. The use of Monte Carlo grid is shown to be efficient for which we determine useful numerical parameters. Furthermore, we discuss another novel approach achieved by combining the strengths of iRTPI and DMC. We also show usefulness of the perturbation theory for analytical approximates in case of strong confinements.

  7. Generalized Models from Beta(p, 2) Densities with Strong Allee Effect: Dynamical Approach

    OpenAIRE

    Aleixo, Sandra M.; Rocha, J. Leonel

    2012-01-01

    A dynamical approach to study the behaviour of generalized populational growth models from Beta(p, 2) densities, with strong Allee effect, is presented. The dynamical analysis of the respective unimodal maps is performed using symbolic dynamics techniques. The complexity of the correspondent discrete dynamical systems is measured in terms of topological entropy. Different populational dynamics regimes are obtained when the intrinsic growth rates are modified: extinction, bistability, chaotic ...

  8. Generalized Lorentz-Dirac Equation for a Strongly Coupled Gauge Theory

    Science.gov (United States)

    Chernicoff, Mariano; García, J. Antonio; Güijosa, Alberto

    2009-06-01

    We derive a semiclassical equation of motion for a “composite” quark in strongly coupled large-Nc N=4 super Yang-Mills theory, making use of the anti-de Sitter space/conformal field theory correspondence. The resulting nonlinear equation incorporates radiation damping, and reduces to the standard Lorentz-Dirac equation for external forces that are small on the scale of the quark Compton wavelength, but has no self-accelerating or preaccelerating solutions. From this equation one can read off a nonstandard dispersion relation for the quark, as well as a Lorentz-covariant formula for its radiation rate.

  9. Generalized Lorentz-Dirac Equation for a Strongly Coupled Gauge Theory

    International Nuclear Information System (INIS)

    Chernicoff, Mariano; Garcia, J. Antonio; Gueijosa, Alberto

    2009-01-01

    We derive a semiclassical equation of motion for a 'composite' quark in strongly coupled large-N c N=4 super Yang-Mills theory, making use of the anti-de Sitter space/conformal field theory correspondence. The resulting nonlinear equation incorporates radiation damping, and reduces to the standard Lorentz-Dirac equation for external forces that are small on the scale of the quark Compton wavelength, but has no self-accelerating or preaccelerating solutions. From this equation one can read off a nonstandard dispersion relation for the quark, as well as a Lorentz-covariant formula for its radiation rate.

  10. Solution of generalized control system equations at steady state

    International Nuclear Information System (INIS)

    Vilim, R.B.

    1987-01-01

    Although a number of reactor systems codes feature generalized control system models, none of the models offer a steady-state solution finder. Indeed, if a transient is to begin from steady-state conditions, the user must provide estimates for the control system initial conditions and run a null transient until the plant converges to steady state. Several such transients may have to be run before values for control system demand signals are found that produce the desired plant steady state. The intent of this paper is (a) to present the control system equations assumed in the SASSYS reactor systems code and to identify the appropriate set of initial conditions, (b) to describe the generalized block diagram approach used to represent these equations, and (c) to describe a solution method and algorithm for computing these initial conditions from the block diagram. The algorithm has been installed in the SASSYS code for use with the code's generalized control system model. The solution finder greatly enhances the effectiveness of the code and the efficiency of the user in running it

  11. Spinning solutions in general relativity with infinite central density

    Science.gov (United States)

    Flammer, P. D.

    2018-05-01

    This paper presents general relativistic numerical simulations of uniformly rotating polytropes. Equations are developed using MSQI coordinates, but taking a logarithm of the radial coordinate. The result is relatively simple elliptical differential equations. Due to the logarithmic scale, we can resolve solutions with near-singular mass distributions near their center, while the solution domain extends many orders of magnitude larger than the radius of the distribution (to connect with flat space-time). Rotating solutions are found with very high central energy densities for a range of adiabatic exponents. Analytically, assuming the pressure is proportional to the energy density (which is true for polytropes in the limit of large energy density), we determine the small radius behavior of the metric potentials and energy density. This small radius behavior agrees well with the small radius behavior of large central density numerical results, lending confidence to our numerical approach. We compare results with rotating solutions available in the literature, which show good agreement. We study the stability of spherical solutions: instability sets in at the first maximum in mass versus central energy density; this is also consistent with results in the literature, and further lends confidence to the numerical approach.

  12. On the Existence and Uniqueness of Rv-Generalized Solution for Dirichlet Problem with Singularity on All Boundary

    Directory of Open Access Journals (Sweden)

    V. Rukavishnikov

    2014-01-01

    Full Text Available The existence and uniqueness of the Rv-generalized solution for the first boundary value problem and a second order elliptic equation with coordinated and uncoordinated degeneracy of input data and with strong singularity solution on all boundary of a two-dimensional domain are established.

  13. On generalized Melvin solution for the Lie algebra E6

    International Nuclear Information System (INIS)

    Bolokhov, S.V.; Ivashchuk, V.D.

    2017-01-01

    A multidimensional generalization of Melvin's solution for an arbitrary simple Lie algebra G is considered. The gravitational model in D dimensions, D ≥ 4, contains n 2-forms and l ≥ n scalar fields, where n is the rank of G. The solution is governed by a set of n functions H s (z) obeying n ordinary differential equations with certain boundary conditions imposed. It was conjectured earlier that these functions should be polynomials (the so-called fluxbrane polynomials). The polynomials H s (z), s = 1,.., 6, for the Lie algebra E 6 are obtained and a corresponding solution for l = n = 6 is presented. The polynomials depend upon integration constants Q s , s = 1,.., 6. They obey symmetry and duality identities. The latter ones are used in deriving asymptotic relations for solutions at large distances. The power-law asymptotic relations for E 6 -polynomials at large z are governed by the integer-valued matrix ν = A -1 (I + P), where A -1 is the inverse Cartan matrix, I is the identity matrix and P is a permutation matrix, corresponding to a generator of the Z 2 -group of symmetry of the Dynkin diagram. The 2-form fluxes Φ s , s = 1,.., 6, are calculated. (orig.)

  14. General method and exact solutions to a generalized variable-coefficient two-dimensional KdV equation

    International Nuclear Information System (INIS)

    Chen, Yong; Shanghai Jiao-Tong Univ., Shangai; Chinese Academy of sciences, Beijing

    2005-01-01

    A general method to uniformly construct exact solutions in terms of special function of nonlinear partial differential equations is presented by means of a more general ansatz and symbolic computation. Making use of the general method, we can successfully obtain the solutions found by the method proposed by Fan (J. Phys. A., 36 (2003) 7009) and find other new and more general solutions, which include polynomial solutions, exponential solutions, rational solutions, triangular periodic wave solution, soliton solutions, soliton-like solutions and Jacobi, Weierstrass doubly periodic wave solutions. A general variable-coefficient two-dimensional KdV equation is chosen to illustrate the method. As a result, some new exact soliton-like solutions are obtained. planets. The numerical results are given in tables. The results are discussed in the conclusion

  15. General solution of the Dirac equation for quasi-two-dimensional electrons

    Energy Technology Data Exchange (ETDEWEB)

    Eremko, Alexander, E-mail: eremko@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Str., 14-b, Kyiv, 03680 (Ukraine); Brizhik, Larissa, E-mail: brizhik@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Str., 14-b, Kyiv, 03680 (Ukraine); Loktev, Vadim, E-mail: vloktev@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Str., 14-b, Kyiv, 03680 (Ukraine); National Technical University of Ukraine “KPI”, Peremohy av., 37, Kyiv, 03056 (Ukraine)

    2016-06-15

    The general solution of the Dirac equation for quasi-two-dimensional electrons confined in an asymmetric quantum well, is found. The energy spectrum of such a system is exactly calculated using special unitary operator and is shown to depend on the electron spin polarization. This solution contains free parameters, whose variation continuously transforms one known particular solution into another. As an example, two different cases are considered in detail: electron in a deep and in a strongly asymmetric shallow quantum well. The effective mass renormalized by relativistic corrections and Bychkov–Rashba coefficients are analytically obtained for both cases. It is demonstrated that the general solution transforms to the particular solutions, found previously (Eremko et al., 2015) with the use of spin invariants. The general solution allows to establish conditions at which a specific (accompanied or non-accompanied by Rashba splitting) spin state can be realized. These results can prompt the ways to control the spin degree of freedom via the synthesis of spintronic heterostructures with the required properties.

  16. On the strong solution of a class of partial differential equations that arise in the pricing of mortgage backed securities

    KAUST Repository

    Parshad, Rana; Bayazit, Derviş; Barlow, Nathaniel S.; Prasad, V. Ramchandra

    2011-01-01

    We consider a reduced form pricing model for mortgage backed securities, formulated as a non-linear partial differential equation. We prove that the model possesses a weak solution. We then show that under additional regularity assumptions on the initial data, we also have a mild solution. This mild solution is shown to be a strong solution via further regularity arguments. We also numerically solve the reduced model via a Fourier spectral method. Lastly, we compare our numerical solution to real market data. We observe interestingly that the reduced model captures a number of recent market trends in this data, that have escaped previous models.

  17. Detectable gravitational waves from very strong phase transitions in the general NMSSM

    International Nuclear Information System (INIS)

    Huber, Stephan J.; Nardini, Germano; Bern Univ.

    2015-12-01

    We study the general NMSSM with an emphasis on the parameter regions with a very strong first-order electroweak phase transition (EWPT). In the presence of heavy fields coupled to the Higgs sector, the analysis can be problematic due to the existence of sizable radiative corrections. In this paper we propose a subtraction scheme that helps to circumvent this problem. For simplicity we focus on a parameter region that is by construction hidden from the current collider searches. The analysis proves that (at least) in the identified parameter region the EWPT can be very strong and striking gravitational wave signals can be produced. The corresponding gravitational stochastic background can potentially be detected at the planned space-based gravitational wave observatory eLISA, depending on the specific experiment design that will be approved.

  18. Analytical Solution of a Generalized Hirota-Satsuma Equation

    Science.gov (United States)

    Kassem, M.; Mabrouk, S.; Abd-el-Malek, M.

    A modified version of generalized Hirota-Satsuma is here solved using a two parameter group transformation method. This problem in three dimensions was reduced by Estevez [1] to a two dimensional one through a Lie transformation method and left unsolved. In the present paper, through application of symmetry transformation the Lax pair has been reduced to a system of ordinary equations. Three transformations cases are investigated. The obtained analytical solutions are plotted and show a profile proper to deflagration processes, well described by Degasperis-Procesi equation.

  19. The gravitational polarization in general relativity: solution to Szekeres' model of quadrupole polarization

    International Nuclear Information System (INIS)

    Montani, Giovanni; Ruffini, Remo; Zalaletdinov, Roustam

    2003-01-01

    A model for the static weak-field macroscopic medium is analysed and the equation for the macroscopic gravitational potential is derived. This is a biharmonic equation which is a non-trivial generalization of the Poisson equation of Newtonian gravity. In the case of strong gravitational quadrupole polarization, it essentially holds inside a macroscopic matter source. Outside the source the gravitational potential fades away exponentially. The equation is equivalent to a system of the Poisson equation and the non-homogeneous modified Helmholtz equations. The general solution to this system is obtained by using the Green function method and it is not limited to Newtonian gravity. In the case of insignificant gravitational quadrupole polarization, the equation for macroscopic gravitational potential becomes the Poisson equation with the matter density renormalized by a factor including the value of the quadrupole gravitational polarization of the source. The general solution to this equation obtained by using the Green function method is limited to Newtonian gravity

  20. Generalized ensemble method applied to study systems with strong first order transitions

    Science.gov (United States)

    Małolepsza, E.; Kim, J.; Keyes, T.

    2015-09-01

    At strong first-order phase transitions, the entropy versus energy or, at constant pressure, enthalpy, exhibits convex behavior, and the statistical temperature curve correspondingly exhibits an S-loop or back-bending. In the canonical and isothermal-isobaric ensembles, with temperature as the control variable, the probability density functions become bimodal with peaks localized outside of the S-loop region. Inside, states are unstable, and as a result simulation of equilibrium phase coexistence becomes impossible. To overcome this problem, a method was proposed by Kim, Keyes and Straub [1], where optimally designed generalized ensemble sampling was combined with replica exchange, and denoted generalized replica exchange method (gREM). This new technique uses parametrized effective sampling weights that lead to a unimodal energy distribution, transforming unstable states into stable ones. In the present study, the gREM, originally developed as a Monte Carlo algorithm, was implemented to work with molecular dynamics in an isobaric ensemble and coded into LAMMPS, a highly optimized open source molecular simulation package. The method is illustrated in a study of the very strong solid/liquid transition in water.

  1. Exact solutions of (3 + 1-dimensional generalized KP equation arising in physics

    Directory of Open Access Journals (Sweden)

    Syed Tauseef Mohyud-Din

    Full Text Available In this work, we have obtained some exact solutions to (3 + 1-dimensional generalized KP Equation. The improved tanϕ(ξ2-expansion method has been introduced to construct the exact solutions of nonlinear evolution equations. The obtained solutions include hyperbolic function solutions, trigonometric function solutions, exponential solutions, and rational solutions. Our study has added some new varieties of solutions to already available solutions. It is also worth mentioning that the computational work has been reduced significantly. Keywords: Improved tanϕ(ξ2-expansion method, Hyperbolic function solution, Trigonometric function solution, Rational solution, (3 + 1-dimensional generalized KP equation

  2. Tensor formulation of the model equations on strong conservation form for an incompressible flow in general coordinates

    DEFF Research Database (Denmark)

    Jørgensen, Bo Hoffmann

    2003-01-01

    This brief report expresses the basic equations of an incompressible flow model in a form which can be translated easily into the form used by a numerical solver. The application of tensor notation makes is possible to effectively address the issue ofnumerical robustness and stating the model...... equations on a general form which accommodate curvilinear coordinates. Strong conservation form is obtained by formulating the equations so that the flow variables, velocity and pressure, are expressed in thephysical coordinate system while the location of evaluation is expressed within the transformed...... form of the equations is included which allows for special solutions to be developed in the transformedcoordinate system. Examples of applications are atmospheric flows over complex terrain, aerodynamically flows, industrial flows and environmental flows....

  3. Generalized Euler transformation for summing strongly divergent Rayleigh-Schroedinger perturbation series: the Zeeman effect

    International Nuclear Information System (INIS)

    Silverman, J.N.

    1983-01-01

    A generalized Euler transformation (GET) is introduced which provides a powerful alternative method of accurately summing strongly divergent Rayleigh-Schroedinger (RS) perturbation series when other summability methods fail or are difficult to apply. The GET is simple to implement and, unlike a number of other summation procedures, requires no a priori knowledge of the analytic properties of the function underlying the RS series. Application of the GET to the difficult problem of the RS weak-field ground-state eigenvalue series of the hydrogen atom in a magnetic field (quadratic Zeeman effect) yields sums of good accuracy over a very wide range of field strengths up to the most intense fields of 10 14 G. The GET results are compared with those obtained by other summing methods

  4. A generalized trial solution method for solving the aerosol equation

    International Nuclear Information System (INIS)

    Simons, S.; Simpson, D.R.

    1988-01-01

    It is shown how the introduction of orthogonal functions together with a time-dependent scaling factor may be used to develop a generalized trial solution method for tackling the aerosol equation. The approach is worked out in detail for the case where the initial particle size spectrum follows a γ-distribution, and it is shown to be a viable technique as long as the initial volume fraction of particulate material is not too large. The method is applied to several situations of interest, and is shown to give more accurate results (with marginally shorter computing times) than are given by the three-parameter log-normal or γ distribution trial functions. (author)

  5. On the existence of global strong solutions to the equations modeling a motion of a rigid body around a viscous fluid

    Czech Academy of Sciences Publication Activity Database

    Nečasová, Šárka; Wolf, J.

    2016-01-01

    Roč. 36, č. 3 (2016), s. 1539-1562 ISSN 1078-0947 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : incompressible fluid * motion of rigid body * strong solutions Subject RIV: BA - General Mathematics Impact factor: 1.099, year: 2016 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=11589

  6. Generalized nonlinear Proca equation and its free-particle solutions

    Energy Technology Data Exchange (ETDEWEB)

    Nobre, F.D. [Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, RJ (Brazil); Plastino, A.R. [Universidad Nacional Buenos Aires-Noreoeste, CeBio y Secretaria de Investigacion, Junin (Argentina)

    2016-06-15

    We introduce a nonlinear extension of Proca's field theory for massive vector (spin 1) bosons. The associated relativistic nonlinear wave equation is related to recently advanced nonlinear extensions of the Schroedinger, Dirac, and Klein-Gordon equations inspired on the non-extensive generalized thermostatistics. This is a theoretical framework that has been applied in recent years to several problems in nuclear and particle physics, gravitational physics, and quantum field theory. The nonlinear Proca equation investigated here has a power-law nonlinearity characterized by a real parameter q (formally corresponding to the Tsallis entropic parameter) in such a way that the standard linear Proca wave equation is recovered in the limit q → 1. We derive the nonlinear Proca equation from a Lagrangian, which, besides the usual vectorial field Ψ{sup μ}(vector x,t), involves an additional field Φ{sup μ}(vector x,t). We obtain exact time-dependent soliton-like solutions for these fields having the form of a q-plane wave, and we show that both field equations lead to the relativistic energy-momentum relation E{sup 2} = p{sup 2}c{sup 2} + m{sup 2}c{sup 4} for all values of q. This suggests that the present nonlinear theory constitutes a new field theoretical representation of particle dynamics. In the limit of massless particles the present q-generalized Proca theory reduces to Maxwell electromagnetism, and the q-plane waves yield localized, transverse solutions of Maxwell equations. Physical consequences and possible applications are discussed. (orig.)

  7. Solution to the strong CP problem with gauge-mediated supersymmetry breaking

    International Nuclear Information System (INIS)

    Kong, O.C.; Wright, B.D.

    1998-01-01

    We demonstrate that a certain class of low scale supersymmetric open-quotes Nelson-Barrclose quotes type models can solve the strong and supersymmetric CP problems, while at the same time generating sufficient weak CP violation in the K 0 -bar K 0 system. In order to prevent one-loop corrections to bar θ which violate bounds coming from the neutron electric dipole moment (EDM), one needs a scheme for the soft supersymmetry breaking parameters which can naturally give sufficient squark degeneracies and proportionality of trilinear soft supersymmetry-breaking parameters to Yukawa couplings. We show that a gauge-mediated supersymmetry breaking sector can provide the needed degeneracy and proportionality, though that proves to be a problem for generic Nelson-Barr models. The workable model we consider here has the Nelson-Barr mass texture enforced by a gauge symmetry; one also expects a new U(1) gauge superfield with mass in the TeV range. The resulting model is predictive. We predict a measureable neutron EDM and the existence of extra vector-like quark superfields which can be discovered at the CERN Large Hadron Collider. Because the 3x3 Cabbibo-Kobayashi-Maskawa matrix is approximately real, the model also predicts a flat unitarity triangle and the absence of substantial CP violation in the B system at future B factories. We discuss the general issues pertaining to the construction of such a workable model and how they lead to the successful strategy. A detailed renormalization group study is then used to establish the feasibility of the model considered. copyright 1998 The American Physical Society

  8. A non-local theory of generalized entropy solutions of the Cauchy problem for a class of hyperbolic systems of conservation laws

    International Nuclear Information System (INIS)

    Panov, E Yu

    1999-01-01

    We consider a hyperbolic system of conservation laws on the space of symmetric second-order matrices. The right-hand side of this system contains the functional calculus operator f-bar(U) generated in the general case only by a continuous scalar function f(u). For these systems we define and describe the set of singular entropies, introduce the concept of generalized entropy solutions of the corresponding Cauchy problem, and investigate the properties of generalized entropy solutions. We define the class of strong generalized entropy solutions, in which the Cauchy problem has precisely one solution. We suggest a condition on the initial data under which any generalized entropy solution is strong, which implies its uniqueness. Under this condition we establish that the 'vanishing viscosity' method converges. An example shows that in the general case there can be more than one generalized entropy solution

  9. The mass limit of white dwarfs with strong magnetic fields in general relativity

    International Nuclear Information System (INIS)

    Wen De-Hua; Liu He-Lei; Zhang Xiang-Dong

    2014-01-01

    Recently, U. Das and B. Mukhopadhyay proposed that the Chandrasekhar limit of a white dwarf could reach a new high level (2.58M⊙) if a superstrong magnetic field were considered (Das U and Mukhopadhyay B 2013 Phys. Rev. Lett. 110 071102), where the structure of the strongly magnetized white dwarf (SMWD) is calculated in the framework of Newtonian theory (NT). As the SMWD has a far smaller size, in contrast with the usual expectation, we found that there is an obvious general relativistic effect (GRE) in the SMWD. For example, for the SMWD with a one Landau level system, the super-Chandrasekhar mass limit in general relativity (GR) is approximately 16.5% lower than that in NT. More interestingly, the maximal mass of the white dwarf will be first increased when the magnetic field strength keeps on increasing and reaches the maximal value M = 2.48M⊙ with B D = 391.5. Then if we further increase the magnetic fields, surprisingly, the maximal mass of the white dwarf will decrease when one takes the GRE into account. (geophysics, astronomy, and astrophysics)

  10. Communication: Strong laser alignment of solvent-solute aggregates in the gas-phase

    Science.gov (United States)

    Trippel, Sebastian; Wiese, Joss; Mullins, Terry; Küpper, Jochen

    2018-03-01

    Strong quasi-adiabatic laser alignment of the indole-water-dimer clusters, an amino-acid chromophore bound to a single water molecule through a hydrogen bond, was experimentally realized. The alignment was visualized through ion and electron imaging following strong-field ionization. Molecular-frame photoelectron angular distributions showed a clear suppression of the electron yield in the plane of the ionizing laser's polarization, which was analyzed as strong alignment of the molecular cluster with ⟨cos2 θ2D⟩ ≥ 0.9.

  11. Blood gas analysis, anion gap, and strong ion difference in horses treated with polyethylene glycol balanced solution (PEG 3350 or enteral and parenteral electrolyte solutions

    Directory of Open Access Journals (Sweden)

    Cláudio Luís Nina Gomes

    2014-06-01

    Full Text Available Large volumes of different electrolytes solutions are commonly used for ingesta hydration in horses with large colon impaction, but little is known about their consequences to blood acid-base balance. To evaluate the effects of PEG 3350 or enteral and parenteral electrolyte solutions on the blood gas analysis, anion gap and strong ion difference, five adult female horses were used in a 5x5 latin square design. The animals were divided in five groups and distributed to each of the following treatments: NaCl (0.9% sodium chloride solution; EES (enteral electrolyte solution, EES+LR (EES plus lactated Ringer's solution; PEG (balanced solution with PEG 3350 and PEG+LR (PEG plus lactated Ringer's solution. Treatments PEG or PEG + LR did not change or promoted minimal changes, while the EES caused a slight decrease in pH, but its association with lactated Ringer's solution induced increase in AG and SID values, as well as caused hypernatremia. In turn, the treatment NaCl generated metabolic acidosis. PEG 3350 did not alter the acid-base balance. Despite it's slight acidifying effect, the enteral electrolyte solution (EES did not cause clinically relevant changes.

  12. Strong solutions for the Navier-Stokes equations on bounded and unbounded domains with a moving boundary

    Directory of Open Access Journals (Sweden)

    Juergen Saal

    2007-02-01

    Full Text Available It is proved under mild regularity assumptions on the data that the Navier-Stokes equations in bounded and unbounded noncylindrical regions admit a unique local-in-time strong solution. The result is based on maximal regularity estimates for the in spatial regions with a moving boundary obtained in [16] and the contraction mapping principle.

  13. On an nth-order infinitesimal generator and time-dependent operator differential equation with a strongly almost periodic solution

    Directory of Open Access Journals (Sweden)

    Aribindi Satyanarayan Rao

    2002-01-01

    Full Text Available In a Banach space, if u is a Stepanov almost periodic solution of a certain nth-order infinitesimal generator and time-dependent operator differential equation with a Stepanov almost periodic forcing function, then u,u′,…,u (n−2 are all strongly almost periodic and u (n−1 is weakly almost periodic.

  14. A general solution strategy of modified power method for higher mode solutions

    International Nuclear Information System (INIS)

    Zhang, Peng; Lee, Hyunsuk; Lee, Deokjung

    2016-01-01

    A general solution strategy of the modified power iteration method for calculating higher eigenmodes has been developed and applied in continuous energy Monte Carlo simulation. The new approach adopts four features: 1) the eigen decomposition of transfer matrix, 2) weight cancellation for higher modes, 3) population control with higher mode weights, and 4) stabilization technique of statistical fluctuations using multi-cycle accumulations. The numerical tests of neutron transport eigenvalue problems successfully demonstrate that the new strategy can significantly accelerate the fission source convergence with stable convergence behavior while obtaining multiple higher eigenmodes at the same time. The advantages of the new strategy can be summarized as 1) the replacement of the cumbersome solution step of high order polynomial equations required by Booth's original method with the simple matrix eigen decomposition, 2) faster fission source convergence in inactive cycles, 3) more stable behaviors in both inactive and active cycles, and 4) smaller variances in active cycles. Advantages 3 and 4 can be attributed to the lower sensitivity of the new strategy to statistical fluctuations due to the multi-cycle accumulations. The application of the modified power method to continuous energy Monte Carlo simulation and the higher eigenmodes up to 4th order are reported for the first time in this paper. -- Graphical abstract: -- Highlights: •Modified power method is applied to continuous energy Monte Carlo simulation. •Transfer matrix is introduced to generalize the modified power method. •All mode based population control is applied to get the higher eigenmodes. •Statistic fluctuation can be greatly reduced using accumulated tally results. •Fission source convergence is accelerated with higher mode solutions.

  15. New exact solutions of the generalized Zakharov–Kuznetsov ...

    Indian Academy of Sciences (India)

    years, Liu and other researchers developed the trial equation method and its ... soliton, elliptic integral function and Jacobi elliptic function solutions. ... nonlinearity parameter, is a positive real number. ..... reduce to rational function solution.

  16. Classes of general axisymmetric solutions of Einstein-Maxwell equations

    International Nuclear Information System (INIS)

    Krori, K.D.; Choudhury, T.

    1981-01-01

    An exact solution of the Einstein equations for a stationary axially symmetric distribution of mass composed of all types of multipoles is obtained. Following Ernst (1968), from this vacuum solution the corresponding solution of the coupled Einstein-Maxwell equations is derived. A solution of Einstein-Maxwell fields for a static axially symmetric system composed of all types of multipoles is also obtained. (author)

  17. General supersymmetric solutions of five-dimensional supergravity

    International Nuclear Information System (INIS)

    Gutowski, Jan B.; Sabra, Wafic

    2005-01-01

    The classification of 1/4-supersymmetric solutions of five dimensional gauged supergravity coupled to arbitrary many abelian vector multiplets, which was initiated elsewhere, is completed. The structure of all solutions for which the Killing vector constructed from the Killing spinor is null is investigated in both the gauged and the ungauged theories and some new solutions are constructed

  18. PARETO OPTIMAL SOLUTIONS FOR MULTI-OBJECTIVE GENERALIZED ASSIGNMENT PROBLEM

    Directory of Open Access Journals (Sweden)

    S. Prakash

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: The Multi-Objective Generalized Assignment Problem (MGAP with two objectives, where one objective is linear and the other one is non-linear, has been considered, with the constraints that a job is assigned to only one worker – though he may be assigned more than one job, depending upon the time available to him. An algorithm is proposed to find the set of Pareto optimal solutions of the problem, determining assignments of jobs to workers with two objectives without setting priorities for them. The two objectives are to minimise the total cost of the assignment and to reduce the time taken to complete all the jobs.

    AFRIKAANSE OPSOMMING: ‘n Multi-doelwit veralgemeende toekenningsprobleem (“multi-objective generalised assignment problem – MGAP” met twee doelwitte, waar die een lineêr en die ander nielineêr is nie, word bestudeer, met die randvoorwaarde dat ‘n taak slegs toegedeel word aan een werker – alhoewel meer as een taak aan hom toegedeel kan word sou die tyd beskikbaar wees. ‘n Algoritme word voorgestel om die stel Pareto-optimale oplossings te vind wat die taaktoedelings aan werkers onderhewig aan die twee doelwitte doen sonder dat prioriteite toegeken word. Die twee doelwitte is om die totale koste van die opdrag te minimiseer en om die tyd te verminder om al die take te voltooi.

  19. Domains of analyticity for response solutions in strongly dissipative forced systems

    International Nuclear Information System (INIS)

    Corsi, Livia; Feola, Roberto; Gentile, Guido

    2013-01-01

    We study the ordinary differential equation εx ¨ +x . +εg(x)=εf(ωt), where g and f are real-analytic functions, with f quasi-periodic in t with frequency vector ω. If c 0 ∈R is such that g(c 0 ) equals the average of f and g′(c 0 ) ≠ 0, under very mild assumptions on ω there exists a quasi-periodic solution close to c 0 with frequency vector ω. We show that such a solution depends analytically on ε in a domain of the complex plane tangent more than quadratically to the imaginary axis at the origin

  20. Wronskians, generalized Wronskians and solutions to the Korteweg-de Vries equation

    International Nuclear Information System (INIS)

    Ma Wenxiu

    2004-01-01

    A bridge going from Wronskian solutions to generalized Wronskian solutions of the Korteweg-de Vries (KdV) equation is built. It is then shown that generalized Wronskian solutions can be viewed as Wronskian solutions. The idea is used to generate positons, negatons and their interaction solutions to the KdV equation. Moreover, general positons and negatons are constructed through the Wronskian formulation. A few new exact solutions to the KdV equation are explicitly presented as examples of Wronskian solutions

  1. An analytical approach to the solution of in-itself strong focusing beam

    International Nuclear Information System (INIS)

    Paulin, A.; Ticar, I.; Zoric, T.; Znidarsic, K.; Bezic, N.

    1981-01-01

    The aim of this paper is a description of the problem, how to represent the high current, high current density charged particle beam with straightforward analytical expressions. The principal difficulties in the solution of differential equation for stationary, axial and radial distribution of charged particles in the high current, high current density beam are mentioned. In all the derivations, an accomplished space charge effects compensation with suitable combined beam of oppositely charged particles is assumed. (author)

  2. Strong Federations: An Interoperable Blockchain Solution to Centralized Third-Party Risks

    OpenAIRE

    Dilley, Johnny; Poelstra, Andrew; Wilkins, Jonathan; Piekarska, Marta; Gorlick, Ben; Friedenbach, Mark

    2016-01-01

    Bitcoin, the first peer-to-peer electronic cash system, opened the door to permissionless, private, and trustless transactions. Attempts to repurpose Bitcoin's underlying blockchain technology have run up against fundamental limitations to privacy, faithful execution, and transaction finality. We introduce \\emph{Strong Federations}: publicly verifiable, Byzantine-robust transaction networks that facilitate movement of any asset between disparate markets, without requiring third-party trust. \\...

  3. On the theory of generalized entropy solutions of the Cauchy problem for a class of non-strictly hyperbolic systems of conservation laws

    International Nuclear Information System (INIS)

    Panov, E Yu

    2000-01-01

    Many-dimensional non-strictly hyperbolic systems of conservation laws with a radially degenerate flux function are considered. For such systems the set of entropies is defined and described, the concept of generalized entropy solution of the Cauchy problem is introduced, and the properties of generalized entropy solutions are studied. The class of strong generalized entropy solutions is distinguished, in which the Cauchy problem in question is uniquely soluble. A condition on the initial data is described that ensures that the generalized entropy solution is strong and therefore unique. Under this condition the convergence of the 'vanishing viscosity' method is established. An example presented in the paper shows that a generalized entropy solution is not necessarily unique in the general case

  4. Blood gas analysis, anion gap, and strong ion difference in horses treated with polyethylene glycol balanced solution (PEG 3350) or enteral and parenteral electrolyte solutions

    OpenAIRE

    Gomes, Cláudio Luís Nina; Ribeiro Filho, José Dantas; Faleiros, Rafael Resende; Dantas, Fernanda Timbó D'el Rey; Amorim, Lincoln da Silva; Dantas, Waleska de Melo Ferreira

    2014-01-01

    Large volumes of different electrolytes solutions are commonly used for ingesta hydration in horses with large colon impaction, but little is known about their consequences to blood acid-base balance. To evaluate the effects of PEG 3350 or enteral and parenteral electrolyte solutions on the blood gas analysis, anion gap and strong ion difference, five adult female horses were used in a 5x5 latin square design. The animals were divided in five groups and distributed to each of the following tr...

  5. Exact Solution of a Generalized Nonlinear Schrodinger Equation Dimer

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Maniadis, P.; Tsironis, G.P.

    1998-01-01

    We present exact solutions for a nonlinear dimer system defined throught a discrete nonlinear Schrodinger equation that contains also an integrable Ablowitz-Ladik term. The solutions are obtained throught a transformation that maps the dimer into a double Sine-Gordon like ordinary nonlinear...... differential equation....

  6. Solitary wave solution to a singularly perturbed generalized Gardner ...

    Indian Academy of Sciences (India)

    2017-03-24

    Mar 24, 2017 ... Abstract. This paper is concerned with the existence of travelling wave solutions to a singularly perturbed gen- eralized Gardner equation with nonlinear terms of any order. By using geometric singular perturbation theory and based on the relation between solitary wave solution and homoclinic orbits of the ...

  7. Strong solutions and instability for the fitness gradient system in evolutionary games between two populations

    Science.gov (United States)

    Xu, Qiuju; Belmonte, Andrew; deForest, Russ; Liu, Chun; Tan, Zhong

    2017-04-01

    In this paper, we study a fitness gradient system for two populations interacting via a symmetric game. The population dynamics are governed by a conservation law, with a spatial migration flux determined by the fitness. By applying the Galerkin method, we establish the existence, regularity and uniqueness of global solutions to an approximate system, which retains most of the interesting mathematical properties of the original fitness gradient system. Furthermore, we show that a Turing instability occurs for equilibrium states of the fitness gradient system, and its approximations.

  8. New exact travelling wave solutions for the generalized nonlinear Schroedinger equation with a source

    International Nuclear Information System (INIS)

    Abdou, M.A.

    2008-01-01

    The generalized F-expansion method with a computerized symbolic computation is used for constructing a new exact travelling wave solutions for the generalized nonlinear Schrodinger equation with a source. As a result, many exact travelling wave solutions are obtained which include new periodic wave solution, trigonometric function solutions and rational solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in physics

  9. Characterization of 'strong-fragile' behaviour of glass-forming aqueous solutions by neutron scattering

    CERN Document Server

    Branca, C; Galli, G; Magazù, S; Maisano, G; Migliardo, F

    2002-01-01

    Neutron-scattering measurements have been performed on trehalose/H sub 2 O and sucrose/H sub 2 O mixtures by using the spectrometer MIBEMOL at the Laboratoire Leon Brillouin (LLB, Saclay) as a function of temperature and concentration. In order to characterize the different rigidities of both the disaccharide/H sub 2 O mixtures, we have evaluated the R sub 1 (T sub g) parameter connected to the 'strong-fragile' classification of the systems according to Angell's nomenclature. (orig.)

  10. Data harmonization of environmental variables: from simple to general solutions

    Science.gov (United States)

    Baume, O.

    2009-04-01

    European data platforms often contain measurements from different regional or national networks. As standards and protocols - e.g. type of measurement devices, sensors or measurement site classification, laboratory analysis and post-processing methods, vary between networks, discontinuities will appear when mapping the target variable at an international scale. Standardisation is generally a costly solution and does not allow classical statistical analysis of previously reported values. As an alternative, harmonization should be envisaged as an integrated step in mapping procedures across borders. In this paper, several harmonization solutions developed under the INTAMAP FP6 project are presented. The INTAMAP FP6 project is currently developing an interoperable framework for real-time automatic mapping of critical environmental variables by extending spatial statistical methods to web-based implementations. Harmonization is often considered as a pre-processing step in statistical data analysis workflow. If biases are assessed with little knowledge about the target variable - in particular when no explanatory covariate is integrated, a harmonization procedure along borders or between regionally overlapping networks may be adopted (Skøien et al., 2007). In this case, bias is estimated as the systematic difference between line or local predictions. On the other hand, when covariates can be included in spatial prediction, the harmonization step is integrated in the whole model estimation procedure, and, therefore, is no longer an independent pre-processing step of the automatic mapping process (Baume et al., 2007). In this case, bias factors become integrated parameters of the geostatistical model and are estimated alongside the other model parameters. The harmonization methods developed within the INTAMAP project were first applied within the field of radiation, where the European Radiological Data Exchange Platform (EURDEP) - http://eurdep.jrc.ec.europa.eu/ - has

  11. Solution of the Neutron transport equation in hexagonal geometry using strongly discontinuous nodal schemes

    International Nuclear Information System (INIS)

    Mugica R, C.A.; Valle G, E. del

    2005-01-01

    In 2002, E. del Valle and Ernest H. Mund developed a technique to solve numerically the Neutron transport equations in discrete ordinates and hexagonal geometry using two nodal schemes type finite element weakly discontinuous denominated WD 5,3 and WD 12,8 (of their initials in english Weakly Discontinuous). The technique consists on representing each hexagon in the union of three rhombuses each one of which it is transformed in a square in the one that the methods WD 5,3 and WD 12,8 were applied. In this work they are solved the mentioned equations of transport using the same discretization technique by hexagon but using two nodal schemes type finite element strongly discontinuous denominated SD 3 and SD 8 (of their initials in english Strongly Discontinuous). The application in each case as well as a reference problem for those that results are provided for the effective multiplication factor is described. It is carried out a comparison with the obtained results by del Valle and Mund for different discretization meshes so much angular as spatial. (Author)

  12. Strong laws for generalized absolute Lorenz curves when data are stationary and ergodic sequences

    NARCIS (Netherlands)

    R. Helmers (Roelof); R. Zitikis

    2004-01-01

    textabstractWe consider generalized absolute Lorenz curves that include, as special cases, classical and generalized L - statistics as well as absolute or, in other words, generalized Lorenz curves. The curves are based on strictly stationary and ergodic sequences of random variables. Most of the

  13. Strong solutions for two-dimensional nonlocal Cahn–Hilliard–Navier–Stokes systems

    Czech Academy of Sciences Publication Activity Database

    Frigeri, S.; Grasselli, M.; Krejčí, Pavel

    2013-01-01

    Roč. 255, č. 9 (2013), s. 2587-2614 ISSN 0022-0396 R&D Projects: GA ČR GAP201/10/2315 Institutional support: RVO:67985840 Keywords : nonlocal Cahn-Hilliard equations * Navier-Stokes equations * global attractors Subject RIV: BA - General Mathematics Impact factor: 1.570, year: 2013 http://www.sciencedirect.com/science/article/pii/S0022039613002830

  14. Institutional Problems and Solutions of General Education in Chinese Universities

    Science.gov (United States)

    Meng, Weiqing; Huang, Wei

    2018-01-01

    Embedding general education in the Chinese university education system is a considerably complex systemic project, and a lack of institutional arrangements beneficial to general education has always been a key barrier in implementation. Currently, the main institutional restricting factors for university general education include substantial…

  15. The Generalized Wronskian Solution to a Negative KdV-mKdV Equation

    International Nuclear Information System (INIS)

    Liu Yu-Qing; Chen Deng-Yuan; Hu Chao

    2012-01-01

    A negative KdV-mKdV hierarchy is presented through the KdV-mKdV operator. The generalized Wronskian solution to the negative KdV-mKdV equation is obtained. Some soliton-like solutions and a complexiton solution are presented explicitly as examples. (general)

  16. General classical solutions in the noncommutative CP{sup N-1} model

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.; Jack, I.; Jones, D.R.T

    2002-10-31

    We give an explicit construction of general classical solutions for the noncommutative CP{sup N-1} model in two dimensions, showing that they correspond to integer values for the action and topological charge. We also give explicit solutions for the Dirac equation in the background of these general solutions and show that the index theorem is satisfied.

  17. Solution of the Eliashberg equations for a very strong electron-phonon coupling with a low-energy cutoff

    International Nuclear Information System (INIS)

    Weger, M.; Barbiellini, B.; Jarlborg, T.; Peter, M.; Santi, G.

    1995-01-01

    We solve the Eliashberg equations for the case of an explicit vector k dependence of the interactions, and of the resulting self-energies Σ 1 ( vector k,ω), Σ 2 ( vector k,ω). We consider a strong energy-dependence of the electron-electron scattering-rate τ ee -1 , which is associated with a strong energy-dependence of the electron-phonon matrix element g(k,k'). We characterize this energy-dependence by a cutoff ξ 1 , which is of the order of the phonon frequency ω ph . We find that we can account for a large number of unexpected features of the superconductivity of the cuprates by the BCS electron-phonon theory, if we consider very large values of the McMillan coupling constant λ ph , and small values of the cutoff ξ 1 . Specifically, the Coulomb interaction is found not to depress T c ; the isotope effect is strongly reduced when ξ 1 ph . We find solutions in which the gap function Δ( vector k,ω) has extended s-wave symmetry but is very anisotropic. We suggest that the underlying cause of the strong energy-dependence is a very small electronic screening parameter at the Fermi surface; the electron-phonon matrix element g is abnormally large, and this accounts for the high transition temperatures of the cuprates. An order of magnitude estimate suggests that the electron-phonon mechanism can account for transition temperatures up to about 200 K. We thus propose a very-strong-coupling theory, in which the renormalization functions, in particular the energy-renormalization X, depend very strongly on the superconducting gap Δ, and thus display a very strong temperature-dependence between T c and T=0. An experimental manifestation of the very strong coupling with a small cutoff is a zero bias anomaly sometimes observed in tunneling experiments. (orig.)

  18. New explicit spike solutions-non-local component of the generalized Mixmaster attractor

    International Nuclear Information System (INIS)

    Lim, Woei Chet

    2008-01-01

    By applying a standard solution-generating transformation to an arbitrary vacuum Bianchi type II solution, one generates a new solution with spikes commonly observed in numerical simulations. It is conjectured that the spike solutions are part of the generalized Mixmaster attractor

  19. Solving the AKNS Hierarchy by Its Bilinear Form: Generalized Double Wronskian Solutions

    International Nuclear Information System (INIS)

    Yin Fumei; Sun Yepeng; Cai Fuqing; Chen Dengyuan

    2008-01-01

    Through the Wronskian technique, a simple and direct proof is presented that the AKNS hierarchy in the bilinear form has generalized double Wronskian solutions. Moreover, by using a unified way, soliton solutions, rational solutions, Matveev solutions and complexitons in double Wronskian form for it are constructed.

  20. Classification of exact solutions to the generalized Kadomtsev-Petviashvili equation

    International Nuclear Information System (INIS)

    Pandir, Yusuf; Gurefe, Yusuf; Misirli, Emine

    2013-01-01

    In this paper, we study the Kadomtsev-Petviashvili equation with generalized evolution and derive some new results using the approach called the trial equation method. The obtained results can be expressed by the soliton solutions, rational function solutions, elliptic function solutions and Jacobi elliptic function solutions. In the discussion, we give a new version of the trial equation method for nonlinear differential equations.

  1. Elastic stars in general relativity: III. Stiff ultrarigid exact solutions

    International Nuclear Information System (INIS)

    Karlovini, Max; Samuelsson, Lars

    2004-01-01

    We present an equation of state for elastic matter which allows for purely longitudinal elastic waves in all propagation directions, not just principal directions. The speed of these waves is equal to the speed of light whereas the transversal type speeds are also very high, comparable to but always strictly less than that of light. Clearly such an equation of state does not give a reasonable matter description for the crust of a neutron star, but it does provide a nice causal toy model for an extremely rigid phase in a neutron star core, should such a phase exist. Another reason for focusing on this particular equation of state is simply that it leads to a very simple recipe for finding stationary rigid motion exact solutions to the Einstein equations. In fact, we show that a very large class of stationary spacetimes with constant Ricci scalar can be interpreted as rigid motion solutions with this matter source. We use the recipe to derive a static spherically symmetric exact solution with constant energy density, regular centre and finite radius, having a nontrivial parameter that can be varied to yield a mass-radius curve from which stability can be read off. It turns out that the solution is stable down to a tenuity R/M slightly less than 3. The result of this static approach to stability is confirmed by a numerical determination of the fundamental radial oscillation mode frequency. We also present another solution with outwards decreasing energy density. Unfortunately, this solution only has a trivial scaling parameter and is found to be unstable

  2. On the Painleve integrability, periodic wave solutions and soliton solutions of generalized coupled higher-order nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Xu Guiqiong; Li Zhibin

    2005-01-01

    It is proven that generalized coupled higher-order nonlinear Schroedinger equations possess the Painleve property for two particular choices of parameters, using the Weiss-Tabor-Carnevale method and Kruskal's simplification. Abundant families of periodic wave solutions are obtained by using the Jacobi elliptic function expansion method with the assistance of symbolic manipulation system, Maple. It is also shown that these solutions exactly degenerate to bright soliton, dark soliton and mixed dark and bright soliton solutions with physical interests

  3. On the strong metric dimension of generalized butterfly graph, starbarbell graph, and {C}_{m}\\odot {P}_{n} graph

    Science.gov (United States)

    Yunia Mayasari, Ratih; Atmojo Kusmayadi, Tri

    2018-04-01

    Let G be a connected graph with vertex set V(G) and edge set E(G). For every pair of vertices u,v\\in V(G), the interval I[u, v] between u and v to be the collection of all vertices that belong to some shortest u ‑ v path. A vertex s\\in V(G) strongly resolves two vertices u and v if u belongs to a shortest v ‑ s path or v belongs to a shortest u ‑ s path. A vertex set S of G is a strong resolving set of G if every two distinct vertices of G are strongly resolved by some vertex of S. The strong metric basis of G is a strong resolving set with minimal cardinality. The strong metric dimension sdim(G) of a graph G is defined as the cardinality of strong metric basis. In this paper we determine the strong metric dimension of a generalized butterfly graph, starbarbell graph, and {C}mȯ {P}n graph. We obtain the strong metric dimension of generalized butterfly graph is sdim(BFn ) = 2n ‑ 2. The strong metric dimension of starbarbell graph is sdim(S{B}{m1,{m}2,\\ldots,{m}n})={\\sum }i=1n({m}i-1)-1. The strong metric dimension of {C}mȯ {P}n graph are sdim({C}mȯ {P}n)=2m-1 for m > 3 and n = 2, and sdim({C}mȯ {P}n)=2m-2 for m > 3 and n > 2.

  4. The generalized tanh method to obtain exact solutions of nonlinear partial differential equation

    OpenAIRE

    Gómez, César

    2007-01-01

    In this paper, we present the generalized tanh method to obtain exact solutions of nonlinear partial differential equations, and we obtain solitons and exact solutions of some important equations of the mathematical physics.

  5. Travelling Solitary Wave Solutions for Generalized Time-delayed Burgers-Fisher Equation

    International Nuclear Information System (INIS)

    Deng Xijun; Han Libo; Li Xi

    2009-01-01

    In this paper, travelling wave solutions for the generalized time-delayed Burgers-Fisher equation are studied. By using the first-integral method, which is based on the ring theory of commutative algebra, we obtain a class of travelling solitary wave solutions for the generalized time-delayed Burgers-Fisher equation. A minor error in the previous article is clarified. (general)

  6. A general solution to some plane problems of micropolar elasticity

    DEFF Research Database (Denmark)

    Warren, William E.; Byskov, Esben

    2008-01-01

    functions, the solution is obtained in terms of two analytic functions and a third function satisfying the modified homogeneous Helmholtz equation. Expressions for the two-dimensional components of displacement, stress, and couple stress, along with the resultant force on a contour, are presented.We observe...

  7. A Study for Obtaining New and More General Solutions of Special-Type Nonlinear Equation

    International Nuclear Information System (INIS)

    Zhao Hong

    2007-01-01

    The generalized algebraic method with symbolic computation is extended to some special-type nonlinear equations for constructing a series of new and more general travelling wave solutions in terms of special functions. Such equations cannot be directly dealt with by the method and require some kinds of pre-processing techniques. It is shown that soliton solutions and triangular periodic solutions can be established as the limits of the Jacobi doubly periodic wave solutions.

  8. Field-theoretic methods in strongly-coupled models of general gauge mediation

    International Nuclear Information System (INIS)

    Fortin, Jean-François; Stergiou, Andreas

    2013-01-01

    An often-exploited feature of the operator product expansion (OPE) is that it incorporates a splitting of ultraviolet and infrared physics. In this paper we use this feature of the OPE to perform simple, approximate computations of soft masses in gauge-mediated supersymmetry breaking. The approximation amounts to truncating the OPEs for hidden-sector current–current operator products. Our method yields visible-sector superpartner spectra in terms of vacuum expectation values of a few hidden-sector IR elementary fields. We manage to obtain reasonable approximations to soft masses, even when the hidden sector is strongly coupled. We demonstrate our techniques in several examples, including a new framework where supersymmetry breaking arises both from a hidden sector and dynamically. Our results suggest that strongly-coupled models of supersymmetry breaking are naturally split

  9. Explicit Solutions for Generalized (2+1)-Dimensional Nonlinear Zakharov-Kuznetsov Equation

    International Nuclear Information System (INIS)

    Sun Yuhuai; Ma Zhimin; Li Yan

    2010-01-01

    The exact solutions of the generalized (2+1)-dimensional nonlinear Zakharov-Kuznetsov (Z-K) equation are explored by the method of the improved generalized auxiliary differential equation. Many explicit analytic solutions of the Z-K equation are obtained. The methods used to solve the Z-K equation can be employed in further work to establish new solutions for other nonlinear partial differential equations. (general)

  10. Travelling wave solutions of generalized coupled Zakharov–Kuznetsov and dispersive long wave equations

    Directory of Open Access Journals (Sweden)

    M. Arshad

    Full Text Available In this manuscript, we constructed different form of new exact solutions of generalized coupled Zakharov–Kuznetsov and dispersive long wave equations by utilizing the modified extended direct algebraic method. New exact traveling wave solutions for both equations are obtained in the form of soliton, periodic, bright, and dark solitary wave solutions. There are many applications of the present traveling wave solutions in physics and furthermore, a wide class of coupled nonlinear evolution equations can be solved by this method. Keywords: Traveling wave solutions, Elliptic solutions, Generalized coupled Zakharov–Kuznetsov equation, Dispersive long wave equation, Modified extended direct algebraic method

  11. A theory of general solutions of 3D problems in 1D hexagonal quasicrystals

    International Nuclear Information System (INIS)

    Gao Yang; Xu Sipeng; Zhao Baosheng

    2008-01-01

    A theory of general solutions of three-dimensional (3D) problems is developed for the coupled equilibrium equations in 1D hexagonal quasicrystals (QCs), and two new general solutions, which are called generalized Lekhnitskii-Hu-Nowacki (LHN) and Elliott-Lodge (E-L) solutions, respectively, are presented based on three theorems. As a special case, the generalized LHN solution is obtained from our previous general solution by introducing three high-order displacement functions. For further simplification, considering three cases in which three characteristic roots are distinct or possibly equal to each other, the generalized E-L solution shall take different forms, and be expressed in terms of four quasi-harmonic functions which are very simple and useful. It is proved that the general solution presented by Peng and Fan is consistent with one case of the generalized E-L solution, while does not include the other two cases. It is important to note that generalized LHN and E-L solutions are complete in z-convex domains, while incomplete in the usual non-z-convex domains

  12. A novel solution to the Klein–Gordon equation in the presence of a strong rotating electric field

    Directory of Open Access Journals (Sweden)

    E. Raicher

    2015-11-01

    Full Text Available The Klein–Gordon equation in the presence of a strong electric field, taking the form of the Mathieu equation, is studied. A novel analytical solution is derived for particles whose asymptotic energy is much lower or much higher than the electromagnetic field amplitude. The condition for which the new solution recovers the familiar Volkov wavefunction naturally follows. When not satisfied, significant deviation from the Volkov wavefunction is demonstrated. The new condition is shown to differ by orders of magnitudes from the commonly used one. As this equation describes (neglecting spin effects the emission processes and the particle motion in Quantum Electrodynamics (QED cascades, our results suggest that the standard theoretical approach towards this phenomenon should be revised.

  13. A novel solution to the Klein–Gordon equation in the presence of a strong rotating electric field

    Energy Technology Data Exchange (ETDEWEB)

    Raicher, E., E-mail: erez.raicher@mail.huji.ac.il [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Department of Applied Physics, Soreq Nuclear Research Center, Yavne 81800 (Israel); Eliezer, S. [Department of Applied Physics, Soreq Nuclear Research Center, Yavne 81800 (Israel); Nuclear Fusion Institute, Polytechnic University of Madrid, Madrid (Spain); Zigler, A. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)

    2015-11-12

    The Klein–Gordon equation in the presence of a strong electric field, taking the form of the Mathieu equation, is studied. A novel analytical solution is derived for particles whose asymptotic energy is much lower or much higher than the electromagnetic field amplitude. The condition for which the new solution recovers the familiar Volkov wavefunction naturally follows. When not satisfied, significant deviation from the Volkov wavefunction is demonstrated. The new condition is shown to differ by orders of magnitudes from the commonly used one. As this equation describes (neglecting spin effects) the emission processes and the particle motion in Quantum Electrodynamics (QED) cascades, our results suggest that the standard theoretical approach towards this phenomenon should be revised.

  14. Analytical solutions by squeezing to the anisotropic Rabi model in the nonperturbative deep-strong coupling regime

    OpenAIRE

    Zhang, Yu-Yu; Chen, Xiang-You

    2017-01-01

    A novel, unexplored nonperturbative deep-strong coupling (npDSC) achieved in superconducting circuits has been studied in the anisotropic Rabi model by the generalized squeezing rotating-wave approximation (GSRWA). Energy levels are evaluated analytically from the reformulated Hamiltonian and agree well with numerical ones under a wide range of coupling strength. Such improvement ascribes to deformation effects in the displaced-squeezed state presented by the squeezed momentum variance, which...

  15. Generalized virial theorem and pressure relation for a strongly correlated Fermi gas

    International Nuclear Information System (INIS)

    Tan, Shina

    2008-01-01

    For a two-component Fermi gas in the unitarity limit (i.e., with infinite scattering length), there is a well-known virial theorem, first shown by J.E. Thomas et al. A few people rederived this result, and extended it to few-body systems, but their results are all restricted to the unitarity limit. Here I show that there is a generalized virial theorem for FINITE scattering lengths. I also generalize an exact result concerning the pressure to the case of imbalanced populations

  16. Mathematical simulation and calculation of continuous countercurrent process of ion-exchange extraction of strontium from strongly mineralized solutions

    International Nuclear Information System (INIS)

    Nikashina, V.A.; Venitsianov, E.V.; Ivanov, V.A.; Gur'yanova, L.N.; Nikolaev, N.P.; Baturova, L.L.; Moskovskij Gosudarstvennyj Univ., Moscow

    1993-01-01

    A program 'Countercurrent' is developed for the simulation of a continuous ion-exchange extraction of strontium from the strongly mineralized solutions containing NaCl and CaCl 2 using carboxylic cation exchanger KB-4 in countercurrent columns. The use of the program allows one to calculate the consitions of Ca and Sr separation depending on the modes of operation at the stage of sorption as well as regeneration, to calculate a residual Sr content on an overloaded sorbent and Sr separation on an incompletely regenerated KB-4, and to find the optimal separation conditions

  17. Syncope prevalence in the ED compared to general practice and population: a strong selection process

    NARCIS (Netherlands)

    Olde Nordkamp, Louise R. A.; van Dijk, Nynke; Ganzeboom, Karin S.; Reitsma, Johannes B.; Luitse, Jan S. K.; Dekker, Lukas R. C.; Shen, Win-Kuang; Wieling, Wouter

    2009-01-01

    Objective: We assessed the prevalence and distribution of the different causes of transient loss of consciousness (TLOC) in the emergency department (ED) and chest pain unit (CPU) and estimated the proportion of persons with syncope in the general population who seek medical attention from either

  18. Approximation solutions for indifference pricing under general utility functions

    NARCIS (Netherlands)

    Chen, An; Pelsser, Antoon; Vellekoop, M.H.

    2008-01-01

    With the aid of Taylor-based approximations, this paper presents results for pricing insurance contracts by using indifference pricing under general utility functions. We discuss the connection between the resulting "theoretical" indifference prices and the pricing rule-of-thumb that practitioners

  19. Approximate Solutions for Indifference Pricing under General Utility Functions

    NARCIS (Netherlands)

    Chen, A.; Pelsser, A.; Vellekoop, M.

    2007-01-01

    With the aid of Taylor-based approximations, this paper presents results for pricing insurance contracts by using indifference pricing under general utility functions. We discuss the connection between the resulting "theoretical" indifference prices and the pricing rule-of-thumb that practitioners

  20. New Generalized Hyperbolic Functions to Find New Exact Solutions of the Nonlinear Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Yusuf Pandir

    2013-01-01

    Full Text Available We firstly give some new functions called generalized hyperbolic functions. By the using of the generalized hyperbolic functions, new kinds of transformations are defined to discover the exact approximate solutions of nonlinear partial differential equations. Based on the generalized hyperbolic function transformation of the generalized KdV equation and the coupled equal width wave equations (CEWE, we find new exact solutions of two equations and analyze the properties of them by taking different parameter values of the generalized hyperbolic functions. We think that these solutions are very important to explain some physical phenomena.

  1. Heavy Smoking Is More Strongly Associated with General Unhealthy Lifestyle than Obesity and Underweight.

    Science.gov (United States)

    Lohse, Tina; Rohrmann, Sabine; Bopp, Matthias; Faeh, David

    2016-01-01

    Smoking and obesity are major causes of non-communicable diseases. We investigated the associations of heavy smoking, obesity, and underweight with general lifestyle to infer which of these risk groups has the most unfavourable lifestyle. We used data from the population-based cross-sectional Swiss Health Survey (5 rounds 1992-2012), comprising 85,575 individuals aged≥18 years. Height, weight, smoking, diet, alcohol intake and physical activity were self-reported. Multinomial logistic regression was performed to analyse differences in lifestyle between the combinations of body mass index (BMI) category and smoking status. Compared to normal-weight never smokers (reference), individuals who were normal-weight, obese, or underweight and smoked heavily at the same time had a poorer general lifestyle. The lifestyle of obese and underweight never smokers differed less from reference. Regardless of BMI category, in heavy smoking men and women the fruit and vegetable consumption was lower (e.g. obese heavy smoking men: relative risk ratio (RRR) 1.69 [95% confidence interval 1.30;2.21]) and high alcohol intake was more common (e.g. normal-weight heavy smoking women 5.51 [3.71;8.20]). In both sexes, physical inactivity was observed more often in heavy smokers and obese or underweight (e.g. underweight never smoking 1.29 [1.08;1.54] and heavy smoking women 2.02 [1.33;3.08]). A decrease of smoking prevalence was observed over time in normal-weight, but not in obese individuals. Unhealthy general lifestyle was associated with both heavy smoking and BMI extremes, but we observed a stronger association for heavy smoking. Future smoking prevention measures should pay attention to improvement of general lifestyle and co-occurrence with obesity and underweight.

  2. General properties of quantum optical systems in a strong field limit

    Science.gov (United States)

    Chumakov, S. M.; Klimov, Andrei B.

    1994-01-01

    We investigate the dynamics of an arbitrary atomic system (n-level atoms or many n-level atoms) interacting with a resonant quantized mode of an em field. If the initial field state is a coherent state with a large photon number then the system dynamics possesses some general features, independently of the particular structure of the atomic system. Namely, trapping states, factorization of the wave function, collapses and revivals of the atomic energy oscillations are discussed.

  3. Heavy Smoking Is More Strongly Associated with General Unhealthy Lifestyle than Obesity and Underweight.

    Directory of Open Access Journals (Sweden)

    Tina Lohse

    Full Text Available Smoking and obesity are major causes of non-communicable diseases. We investigated the associations of heavy smoking, obesity, and underweight with general lifestyle to infer which of these risk groups has the most unfavourable lifestyle.We used data from the population-based cross-sectional Swiss Health Survey (5 rounds 1992-2012, comprising 85,575 individuals aged≥18 years. Height, weight, smoking, diet, alcohol intake and physical activity were self-reported. Multinomial logistic regression was performed to analyse differences in lifestyle between the combinations of body mass index (BMI category and smoking status.Compared to normal-weight never smokers (reference, individuals who were normal-weight, obese, or underweight and smoked heavily at the same time had a poorer general lifestyle. The lifestyle of obese and underweight never smokers differed less from reference. Regardless of BMI category, in heavy smoking men and women the fruit and vegetable consumption was lower (e.g. obese heavy smoking men: relative risk ratio (RRR 1.69 [95% confidence interval 1.30;2.21] and high alcohol intake was more common (e.g. normal-weight heavy smoking women 5.51 [3.71;8.20]. In both sexes, physical inactivity was observed more often in heavy smokers and obese or underweight (e.g. underweight never smoking 1.29 [1.08;1.54] and heavy smoking women 2.02 [1.33;3.08]. A decrease of smoking prevalence was observed over time in normal-weight, but not in obese individuals.Unhealthy general lifestyle was associated with both heavy smoking and BMI extremes, but we observed a stronger association for heavy smoking. Future smoking prevention measures should pay attention to improvement of general lifestyle and co-occurrence with obesity and underweight.

  4. Field-theoretic Methods in Strongly-Coupled Models of General Gauge Mediation

    CERN Document Server

    Fortin, Jean-Francois

    2013-01-01

    An often-exploited feature of the operator product expansion (OPE) is that it incorporates a splitting of ultraviolet and infrared physics. In this paper we use this feature of the OPE to perform simple, approximate computations of soft masses in gauge-mediated supersymmetry breaking. The approximation amounts to truncating the OPEs for hidden-sector current-current operator products. Our method yields visible-sector superpartner spectra in terms of vacuum expectation values of a few hidden-sector IR elementary fields. We manage to obtain reasonable approximations to soft masses, even when the hidden sector is strongly coupled. We demonstrate our techniques in several examples, including a new framework where supersymmetry-breaking arises both from a hidden sector and dynamically.

  5. Anisotropic generalization of well-known solutions describing relativistic self-gravitating fluid systems. An algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Thirukkanesh, S. [Eastern University, Department of Mathematics, Chenkalady (Sri Lanka); Ragel, F.C. [Eastern University, Department of Physics, Chenkalady (Sri Lanka); Sharma, Ranjan; Das, Shyam [P.D. Women' s College, Department of Physics, Jalpaiguri (India)

    2018-01-15

    We present an algorithm to generalize a plethora of well-known solutions to Einstein field equations describing spherically symmetric relativistic fluid spheres by relaxing the pressure isotropy condition on the system. By suitably fixing the model parameters in our formulation, we generate closed-form solutions which may be treated as an anisotropic generalization of a large class of solutions describing isotropic fluid spheres. From the resultant solutions, a particular solution is taken up to show its physical acceptability. Making use of the current estimate of mass and radius of a known pulsar, the effects of anisotropic stress on the gross physical behaviour of a relativistic compact star is also highlighted. (orig.)

  6. Exact solutions of nonlinear generalizations of the Klein Gordon and Schrodinger equations

    International Nuclear Information System (INIS)

    Burt, P.B.

    1978-01-01

    Exact solutions of sine Gordon and multiple sine Gordon equations are constructed in terms of solutions of a linear base equation, the Klein Gordon equation and also in terms of nonlinear base equations where the nonlinearity is polynomial in the dependent variable. Further, exact solutions of nonlinear generalizations of the Schrodinger equation and of additional nonlinear generalizations of the Klein Gordon equation are constructed in terms of solutions of linear base equations. Finally, solutions with spherical symmetry, of nonlinear Klein Gordon equations are given. 14 references

  7. Alternate Solution to Generalized Bernoulli Equations via an Integrating Factor: An Exact Differential Equation Approach

    Science.gov (United States)

    Tisdell, C. C.

    2017-01-01

    Solution methods to exact differential equations via integrating factors have a rich history dating back to Euler (1740) and the ideas enjoy applications to thermodynamics and electromagnetism. Recently, Azevedo and Valentino presented an analysis of the generalized Bernoulli equation, constructing a general solution by linearizing the problem…

  8. Travelling wave solutions of the generalized Benjamin-Bona-Mahony equation

    International Nuclear Information System (INIS)

    Estevez, P.G.; Kuru, S.; Negro, J.; Nieto, L.M.

    2009-01-01

    A class of particular travelling wave solutions of the generalized Benjamin-Bona-Mahony equation is studied systematically using the factorization technique. Then, the general travelling wave solutions of Benjamin-Bona-Mahony equation, and of its modified version, are also recovered.

  9. Stability of oscillatory solutions of differential equations with a general piecewise constant argument

    Directory of Open Access Journals (Sweden)

    Kuo-Shou Chiu

    2011-11-01

    Full Text Available We examine scalar differential equations with a general piecewise constant argument, in short DEPCAG, that is, the argument is a general step function. Criteria of existence of the oscillatory and nonoscillatory solutions of such equations are proposed. Necessary and sufficient conditions for stability of the zero solution are obtained. Appropriate examples are given to show our results.

  10. Explicit Solutions and Bifurcations for a Class of Generalized Boussinesq Wave Equation

    International Nuclear Information System (INIS)

    Ma Zhi-Min; Sun Yu-Huai; Liu Fu-Sheng

    2013-01-01

    In this paper, the generalized Boussinesq wave equation u tt — u xx + a(u m ) xx + bu xxxx = 0 is investigated by using the bifurcation theory and the method of phase portraits analysis. Under the different parameter conditions, the exact explicit parametric representations for solitary wave solutions and periodic wave solutions are obtained. (general)

  11. General solution of the Bagley-Torvik equation with fractional-order derivative

    Science.gov (United States)

    Wang, Z. H.; Wang, X.

    2010-05-01

    This paper investigates the general solution of the Bagley-Torvik equation with 1/2-order derivative or 3/2-order derivative. This fractional-order differential equation is changed into a sequential fractional-order differential equation (SFDE) with constant coefficients. Then the general solution of the SFDE is expressed as the linear combination of fundamental solutions that are in terms of α-exponential functions, a kind of functions that play the same role of the classical exponential function. Because the number of fundamental solutions of the SFDE is greater than 2, the general solution of the SFDE depends on more than two free (independent) constants. This paper shows that the general solution of the Bagley-Torvik equation involves actually two free constants only, and it can be determined fully by the initial displacement and initial velocity.

  12. Exact solution for MHD flow of a generalized Oldroyd-B fluid with modified Darcy's law

    International Nuclear Information System (INIS)

    Khan, M.; Hayat, T.; Asghar, S.

    2005-12-01

    This paper deals with an exact solution for the magnetohydrodynamic (MHD) flow of a generalized Oldroyd-B fluid in a circular pipe. For the description of such a fluid, the fractional calculus approach has been used throughout the analysis. Based on modified Darcy's law for generalized Oldroyd-B fluid, the velocity field is calculated analytically. Several known solutions can be recovered as the limiting cases of our solution. (author)

  13. General solutions of second-order linear difference equations of Euler type

    Directory of Open Access Journals (Sweden)

    Akane Hongyo

    2017-01-01

    Full Text Available The purpose of this paper is to give general solutions of linear difference equations which are related to the Euler-Cauchy differential equation \\(y^{\\prime\\prime}+(\\lambda/t^2y=0\\ or more general linear differential equations. We also show that the asymptotic behavior of solutions of the linear difference equations are similar to solutions of the linear differential equations.

  14. Exact solutions of the one-dimensional generalized modified complex Ginzburg-Landau equation

    International Nuclear Information System (INIS)

    Yomba, Emmanuel; Kofane, Timoleon Crepin

    2003-01-01

    The one-dimensional (1D) generalized modified complex Ginzburg-Landau (MCGL) equation for the traveling wave systems is analytically studied. Exact solutions of this equation are obtained using a method which combines the Painleve test for integrability in the formalism of Weiss-Tabor-Carnevale and Hirota technique of bilinearization. We show that pulses, fronts, periodic unbounded waves, sources, sinks and solution as collision between two fronts are the important coherent structures that organize much of the dynamical properties of these traveling wave systems. The degeneracies of the 1D generalized MCGL equation are examined as well as several of their solutions. These degeneracies include two important equations: the 1D generalized modified Schroedinger equation and the 1D generalized real modified Ginzburg-Landau equation. We obtain that the one parameter family of traveling localized source solutions called 'Nozaki-Bekki holes' become a subfamily of the dark soliton solutions in the 1D generalized modified Schroedinger limit

  15. Solution of generalized shifted linear systems with complex symmetric matrices

    International Nuclear Information System (INIS)

    Sogabe, Tomohiro; Hoshi, Takeo; Zhang, Shao-Liang; Fujiwara, Takeo

    2012-01-01

    We develop the shifted COCG method [R. Takayama, T. Hoshi, T. Sogabe, S.-L. Zhang, T. Fujiwara, Linear algebraic calculation of Green’s function for large-scale electronic structure theory, Phys. Rev. B 73 (165108) (2006) 1–9] and the shifted WQMR method [T. Sogabe, T. Hoshi, S.-L. Zhang, T. Fujiwara, On a weighted quasi-residual minimization strategy of the QMR method for solving complex symmetric shifted linear systems, Electron. Trans. Numer. Anal. 31 (2008) 126–140] for solving generalized shifted linear systems with complex symmetric matrices that arise from the electronic structure theory. The complex symmetric Lanczos process with a suitable bilinear form plays an important role in the development of the methods. The numerical examples indicate that the methods are highly attractive when the inner linear systems can efficiently be solved.

  16. Analytical solutions by squeezing to the anisotropic Rabi model in the nonperturbative deep-strong-coupling regime

    Science.gov (United States)

    Zhang, Yu-Yu; Chen, Xiang-You

    2017-12-01

    An unexplored nonperturbative deep strong coupling (npDSC) achieved in superconducting circuits has been studied in the anisotropic Rabi model by the generalized squeezing rotating-wave approximation. Energy levels are evaluated analytically from the reformulated Hamiltonian and agree well with numerical ones in a wide range of coupling strength. Such improvement ascribes to deformation effects in the displaced-squeezed state presented by the squeezed momentum variance, which are omitted in previous displaced states. The atom population dynamics confirms the validity of our approach for the npDSC strength. Our approach offers the possibility to explore interesting phenomena analytically in the npDSC regime in qubit-oscillator experiments.

  17. General solution to the E-B mixing problem

    International Nuclear Information System (INIS)

    Smith, Kendrick M.; Zaldarriaga, Matias

    2007-01-01

    We derive a general ansatz for optimizing pseudo-C l estimators used to measure cosmic microwave background anisotropy power spectra, and apply it to the recently proposed pure pseudo-C l formalism, to obtain an estimator which achieves near-optimal B-mode power spectrum errors for any specified noise distribution while minimizing leakage from ambiguous modes. Our technique should be relevant for upcoming cosmic microwave background polarization experiments searching for B-mode polarization. We compare our technique both to the theoretical limits based on a full Fisher matrix calculation and to the standard pseudo-C l technique. We demonstrate it by applying it to a fiducial survey with realistic inhomogeneous noise, complex boundaries, point source masking, and a noise level comparable to what is expected for next-generation experiments (∼5.75 μK-arcmin). For such an experiment our technique could improve the constraints on the amplitude of a gravity wave background by over a factor of 10 compared to what could be obtained using ordinary pseudo-C l , coming quite close to saturating the theoretical limit. Constraints on the amplitude of the lensing B-modes are improved by about a factor of 3

  18. A General Solution Framework for Component-Commonality Problems

    Directory of Open Access Journals (Sweden)

    Nils Boysen

    2009-05-01

    Full Text Available Component commonality - the use of the same version of a component across multiple products - is being increasingly considered as a promising way to offer high external variety while retaining low internal variety in operations. However, increasing commonality has both positive and negative cost effects, so that optimization approaches are required to identify an optimal commonality level. As components influence to a greater or lesser extent nearly every process step along the supply chain, it is not surprising that a multitude of diverging commonality problems is being investigated in literature, each of which are developing a specific algorithm designed for the respective commonality problem being considered. The paper on hand aims at a general framework which is flexible and efficient enough to be applied to a wide range of commonality problems. Such a procedure based on a two-stage graph approach is presented and tested. Finally, flexibility of the procedure is shown by customizing the framework to account for different types of commonality problems.

  19. A new generalized expansion method and its application in finding explicit exact solutions for a generalized variable coefficients KdV equation

    International Nuclear Information System (INIS)

    Sabry, R.; Zahran, M.A.; Fan Engui

    2004-01-01

    A generalized expansion method is proposed to uniformly construct a series of exact solutions for general variable coefficients non-linear evolution equations. The new approach admits the following types of solutions (a) polynomial solutions, (b) exponential solutions, (c) rational solutions, (d) triangular periodic wave solutions, (e) hyperbolic and solitary wave solutions and (f) Jacobi and Weierstrass doubly periodic wave solutions. The efficiency of the method has been demonstrated by applying it to a generalized variable coefficients KdV equation. Then, new and rich variety of exact explicit solutions have been found

  20. Enhanced dispersion stability and mobility of carboxyl-functionalized carbon nanotubes in aqueous solutions through strong hydrogen bonds

    International Nuclear Information System (INIS)

    Bahk, Yeon Kyoung; He, Xu; Gitsis, Emmanouil; Kuo, Yu-Ying; Kim, Nayoung; Wang, Jing

    2015-01-01

    Dispersion of carbon nanotubes has been heavily studied due to its importance for their technical applications, toxic effects, and environmental impacts. Common electrolytes, such as sodium chloride and potassium chloride, promote agglomeration of nanoparticles in aqueous solutions. On the contrary, we discovered that acetic electrolytes enhanced the dispersion of multi-walled carbon nanotubes (MWCNTs) with carboxyl functional group through the strong hydrogen bond, which was confirmed by UV–Vis spectrometry, dispersion observations and aerosolization-quantification method. When concentrations of acetate electrolytes such as ammonium acetate (CH 3 CO 2 NH 4 ) and sodium acetate (CH 3 CO 2 Na) were lower than 0.03 mol per liter, MWCNT suspensions showed better dispersion and had higher mobility in porous media. The effects by the acetic environment are also applicable to other nanoparticles with the carboxyl functional group, which was demonstrated with polystyrene latex particles as an example

  1. Enhanced dispersion stability and mobility of carboxyl-functionalized carbon nanotubes in aqueous solutions through strong hydrogen bonds

    Energy Technology Data Exchange (ETDEWEB)

    Bahk, Yeon Kyoung; He, Xu; Gitsis, Emmanouil; Kuo, Yu-Ying [ETH Zurich, Institute of Environmental Engineering (Switzerland); Kim, Nayoung [EMPA, Building Energy Materials and Components (Switzerland); Wang, Jing, E-mail: jing.wang@ifu.baug.ethz.ch [ETH Zurich, Institute of Environmental Engineering (Switzerland)

    2015-10-15

    Dispersion of carbon nanotubes has been heavily studied due to its importance for their technical applications, toxic effects, and environmental impacts. Common electrolytes, such as sodium chloride and potassium chloride, promote agglomeration of nanoparticles in aqueous solutions. On the contrary, we discovered that acetic electrolytes enhanced the dispersion of multi-walled carbon nanotubes (MWCNTs) with carboxyl functional group through the strong hydrogen bond, which was confirmed by UV–Vis spectrometry, dispersion observations and aerosolization-quantification method. When concentrations of acetate electrolytes such as ammonium acetate (CH{sub 3}CO{sub 2}NH{sub 4}) and sodium acetate (CH{sub 3}CO{sub 2}Na) were lower than 0.03 mol per liter, MWCNT suspensions showed better dispersion and had higher mobility in porous media. The effects by the acetic environment are also applicable to other nanoparticles with the carboxyl functional group, which was demonstrated with polystyrene latex particles as an example.

  2. Accuracy of the solution of the transfer equation for a plane layer of high optical thickness with strongly anisotropic scattering

    International Nuclear Information System (INIS)

    Konovalov, N.V.

    The accuracy of the calculation of the characteristics of a radiation field in a plane layer is investigated by solving the transfer equation in dependence on the error in the specification of the scattering indicatrix. It is shown that a small error in the specification of the indicatrix can lead to a large error in the solution at large optical depths. An estimate is given for the region of optical thicknesses for which the emission field can be determined with sufficient degree of accuracy from the transfer equation with a known error in the specification of the indicatrix. For an estimation of the error involved in various numerical methods, and also for a determination of the region of their applicability, the results of calculations of problems with strongly anisotropic indicatrix are given

  3. Mathematical simulation and calculation of the continuous countercurrent process of ion-exchange extraction of strontium from strongly mineralized solutions

    International Nuclear Information System (INIS)

    Nikashina, V.A.; Guryanova, L.N.; Baturova, L.L.; Venetsianov, E.V.; Ivanov, V.A.; Nikolaev, N.P.

    1993-01-01

    The program open-quotes Countercurrentclose quotes is developed for the simulation of a continuous ion-exchange extraction of strontium from strongly mineralized NaCl and CaCl 2 solutions using a KB-4 carboxylic cation-exchanger in the countercurrent columns. The program allows one to Calculate the conditions of Ca and Sr separation depending on the mode of operation at the sorption and regeneration stages, the residual Sr content on the overloaded sorbent, and the Sr separation on incompletely regenerated KB-4. It also makes it possible to find the optimal separation conditions. The program open-quotes Countercurrentclose quotes can be also used to simulate other ion-exchange processes

  4. Multipolar electromagnetic fields around neutron stars: general-relativistic vacuum solutions

    Science.gov (United States)

    Pétri, J.

    2017-12-01

    Magnetic fields inside and around neutron stars are at the heart of pulsar magnetospheric activity. Strong magnetic fields are responsible for quantum effects, an essential ingredient to produce leptonic pairs and the subsequent broad-band radiation. The variety of electromagnetic field topologies could lead to the observed diversity of neutron star classes. Thus, it is important to include multipolar components to a presumably dominant dipolar magnetic field. Exact analytical solutions for these multipoles in Newtonian gravity have been computed in recent literature. However, flat space-time is not adequate to describe physics in the immediate surroundings of neutron stars. We generalize the multipole expressions to the strong gravity regime by using a slowly rotating metric approximation such as the one expected around neutron stars. Approximate formulae for the electromagnetic field including frame dragging are computed from which we estimate the Poynting flux and the braking index. Corrections to leading order in compactness and spin parameter are presented. As far as spin-down luminosity is concerned, it is shown that frame dragging remains irrelevant. For high-order multipoles starting from the quadrupole, the electric part can radiate more efficiently than the magnetic part. Both analytical and numerical tools are employed.

  5. Separating nano graphene oxide from the residual strong-acid filtrate of the modified Hummers method with alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xuebing, E-mail: xuebinghu2010@gmail.com [Key Laboratory of Inorganic Membrane, Jingdezhen Ceramic Institute, Jingdezhen 333001 (China); Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 201800 (China); Yu, Yun, E-mail: yunyush@mail.sic.ac.cn [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 201800 (China); Wang, Yongqing; Zhou, Jianer [Key Laboratory of Inorganic Membrane, Jingdezhen Ceramic Institute, Jingdezhen 333001 (China); Song, Lixin [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 201800 (China)

    2015-02-28

    Graphical abstract: By adding an alkaline (NaOH or KOH) solution, the unprecipitated nano graphene oxide undergoes fast aggregation from the residual strong-acid filtrate of the modified Hummers method and forms the stable floccules when the pH value of the filtrate is about 1.7. The acid–base interaction with the surface functional groups of the carbon layers plays a role in the aggregation of the unprecipitated nano graphene oxide. - Highlights: • The novel and high-efficient method for separating graphene oxide was showed. • Graphene oxide undergoes aggregation and forms the floccules when pH value is ∼1.7. • The acid–base interaction plays a role in the aggregation of graphene oxide. - Abstract: In the modified Hummers method for preparing graphene oxide, the yellow slurry can be obtained. After filtering through a quantitative filter paper, the strong-acid filtrate containing the unprecipitated nano graphene oxide was gained. The corresponding filtrate was added gradually with an alkaline (NaOH or KOH) solution at room temperature. The unprecipitated nano graphene oxide could undergo fast aggregation when the pH value of the filtrate was about 1.7 and formed the stable floccules. X-ray diffraction analysis shows the dominant peak of the floccules is about 11°, which accords to the peak of graphene oxide. Spectra of X-ray photoelectron spectroscopy confirm the presence in the floccules of an abundance of oxygen functional groups and the purified graphene oxide floccules can be obtained. Atomic force microscopy measurement shows the graphene oxide floccules consists of sheet-like objects, mostly containing only a few layers (about 5 layers). Zeta potential analysis demonstrates the surface charge of the graphene oxide is pH-sensitive and its isoelectric point is ∼1.7. The flocculation mechanism of graphene oxide ascribes to the acid–base interaction with the surface functional groups of the carbon layers.

  6. General solution for calculating polarization electric fields in the auroral ionosphere and application examples

    Science.gov (United States)

    Amm, O.; Fujii, R.; VanhamäKi, H.; Yoshikawa, A.; Ieda, A.

    2013-05-01

    We devise an approach to calculate the polarization electric field in the ionosphere, when the ionospheric conductances, the primary (modeled) or the total (measured) electric field, and the Cowling efficiency are given. In contrast to previous studies, our approach is a general solution which is not limited to specific geometrical setups, and all parameters may have any kind of spatial dependence. The solution technique is based on spherical elementary current (vector) systems (SECS). This way, we avoid the need to specify explicit boundary conditions for the searched polarization electric field of its potential which would be required if the problem was solved in a differential equation approach. Instead, we solve an algebraic matrix equation, and the implicit boundary condition that the divergence of the polarization electric field vanishes outside our analysis area is sufficient. In order to illustrate our theory, we then apply it to two simple models of auroral electrodynamic situations, the first being a mesoscale strong conductance enhancement in the early morning sector within a relatively weak southward primary electric field, and a morning sector auroral arc with only a weak conductance enhancement, but a large southward primary electric field at the poleward flank of the arc. While the significance of the polarization electric field for maximum Cowling efficiency is large for the first case, it is rather minor for the second one. Both models show that the polarization electric field effect may not only change the magnitude of the current systems but also their overall geometry. Furthermore, the polarization electric field may extend into regions where the primary electric field is small, thus even dominating the total electric field in these regions. For the first model case, the total Joule heating integrated over the analysis area decreases by a factor of about 4 for maximum Cowling efficiency as compared to the case of vanishing Cowling efficiency

  7. Exact solitary and periodic wave solutions for a generalized nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Sun Chengfeng; Gao Hongjun

    2009-01-01

    The generalized nonlinear Schroedinger equation (GNLS) iu t + u xx + β | u | 2 u + γ | u | 4 u + iα (| u | 2 u) x + iτ(| u | 2 ) x u = 0 is studied. Using the bifurcation of travelling waves of this equation, some exact solitary wave solutions were obtained in [Wang W, Sun J,Chen G, Bifurcation, Exact solutions and nonsmooth behavior of solitary waves in the generalized nonlinear Schroedinger equation. Int J Bifucat Chaos 2005:3295-305.]. In this paper, more explicit exact solitary wave solutions and some new smooth periodic wave solutions are obtained.

  8. Computer local construction of a general solution for the Chew-Low equations

    International Nuclear Information System (INIS)

    Gerdt, V.P.

    1980-01-01

    General solution of the dynamic form of the Chew-Low equations in the vicinity of the restpoint is considered. A method for calculating coefficients of series being members of such solution is suggested. The results of calculations, coefficients of power series and expansions carried out by means of the SCHOONSCHIP and SYMBAL systems are given. It is noted that the suggested procedure of the Chew-Low equation solutions basing on using an electronic computer as an instrument for analytical calculations permits to obtain detail information on the local structure of general solution

  9. Exact solution of the generalized Peierls equation for arbitrary n-fold screw dislocation

    Science.gov (United States)

    Wang, Shaofeng; Hu, Xiangsheng

    2018-05-01

    The exact solution of the generalized Peierls equation is presented and proved for arbitrary n-fold screw dislocation. The displacement field, stress field and the energy of the n-fold dislocation are also evaluated explicitly. It is found that the solution defined on each individual fold is given by the tail cut from the original Peierls solution. In viewpoint of energetics, a screw dislocation has a tendency to spread the distribution on all possible slip planes which are contained in the dislocation line zone. Based on the exact solution, the approximated solution of the improved Peierls equation is proposed for the modified γ-surface.

  10. Exact solution of the N-dimensional generalized Dirac-Coulomb equation

    International Nuclear Information System (INIS)

    Tutik, R.S.

    1992-01-01

    An exact solution to the bound state problem for the N-dimensional generalized Dirac-Coulomb equation, whose potential contains both the Lorentz-vector and Lorentz-scalar terms of the Coulomb form, is obtained. 24 refs. (author)

  11. Global existence of a generalized solution for the radiative transfer equations

    International Nuclear Information System (INIS)

    Golse, F.; Perthame, B.

    1984-01-01

    We prove global existence of a generalized solution of the radiative transfer equations, extending Mercier's result to the case of a layer with an initially cold area. Our Theorem relies on the results of Crandall and Ligett [fr

  12. Solitonlike solutions of the generalized discrete nonlinear Schrödinger equation

    DEFF Research Database (Denmark)

    Rasmussen, Kim; Henning, D.; Gabriel, H.

    1996-01-01

    We investigate the solution properties oi. a generalized discrete nonlinear Schrodinger equation describing a nonlinear lattice chain. The generalized equation interpolates between the integrable discrete Ablowitz-Ladik equation and the nonintegrable discrete Schrodinger equation. Special interes...... nonlinear Schrodinger equation. In this way eve are able to construct coherent solitonlike structures of profile determined by the map parameters.......We investigate the solution properties oi. a generalized discrete nonlinear Schrodinger equation describing a nonlinear lattice chain. The generalized equation interpolates between the integrable discrete Ablowitz-Ladik equation and the nonintegrable discrete Schrodinger equation. Special interest...

  13. Particular transcendent solution of the Ernst system generalized on n fields

    International Nuclear Information System (INIS)

    Leaute, B.; Marcilhacy, G.

    1986-01-01

    A particular solution, a function of a particular form of the fifth Painleve transcendent, of the Ernst system generalized to n fields is determined, which characterizes both the stationary axially symmetric fields, the solution of the Einstein (n-1) Maxwell equations, and one class of axially symmetric static self-dual SU(n+1) Yang--Mills fields

  14. A general solution of the plane problem in thermoelasticity in polar coordinates

    International Nuclear Information System (INIS)

    Tabakman, H.D.; Lin, Y.J.

    1977-01-01

    A general solution, in polar coordinates, of the plane problem in thermoelasticity is obtained in terms of a stress and displacement function. The solution is valid for arbitrary temperature distribution T(r,theta). The characteristic feature of the paper is the forthright determination of the displacement components brought about by the introduction of a displacement function. (Auth.)

  15. A general solution of the plane problem thermoelasticity in polar coordinates

    International Nuclear Information System (INIS)

    Tabakman, H.D.; Lin, Y.J.

    1977-01-01

    A general solution, in polar coordinates, of the plane problem in thermoelasticity is obtained in terms of a stress and displacement function. The solution is valid for arbitrary temperature distribution T(r, theta). The characteristic feature of the paper is the forthright determination of the displacement components brought about by the introduction of a displacement function

  16. General solution of Poisson equation in three dimensions for disk-like galaxies

    International Nuclear Information System (INIS)

    Tong, Y.; Zheng, X.; Peng, O.

    1982-01-01

    The general solution of the Poisson equation is solved by means of integral transformations for Vertical BarkVertical Barr>>1 provided that the perturbed density of disk-like galaxies distributes along the radial direction according to the Hankel function. This solution can more accurately represent the outer spiral arms of disk-like galaxies

  17. Generalized Sturmian Solutions for Many-Particle Schrödinger Equations

    DEFF Research Database (Denmark)

    Avery, John; Avery, James Emil

    2004-01-01

    The generalized Sturmian method for obtaining solutions to the many-particle Schrodinger equation is reviewed. The method makes use of basis functions that are solutions of an approximate Schrodinger equation with a weighted zeroth-order potential. The weighting factors are especially chosen so...

  18. Peakons, solitary patterns and periodic solutions for generalized Camassa-Holm equations

    International Nuclear Information System (INIS)

    Zheng Yin; Lai Shaoyong

    2008-01-01

    This Letter deals with a generalized Camassa-Holm equation and a nonlinear dispersive equation by making use of a mathematical technique based on using integral factors for solving differential equations. The peakons, solitary patterns and periodic solutions are expressed analytically under various circumstances. The conditions that cause the qualitative change in the physical structures of the solutions are highlighted

  19. Global existence of strong solutions to the three- dimensional incompressible Navier-Stokes equations with special boundary conditions

    Science.gov (United States)

    Riley, Douglas A.

    We study the three-dimensional incompressible Navier- Stokes equations in a domain of the form W'×(0,e) . First, we assume W' is a C3 bounded domain and impose no-slip boundary conditions on 6W'×(0,e ) , and periodic conditions on W'×0,e . Physically, this models fluid flow through a pipe with cross-section W' where the inlet and outlet conditions are assumed periodic. Secondly, we assume W'=(0,l4) ×(0,l5) and impose periodic boundary conditions. This problem is of interest mathematically, and has been more widely considered than the pipe flow problem. For both sets of boundary conditions, we show that a strong solution exists for all time with conditions on the initial data and forcing. We start by recalling that if the forcing function and initial condition do not depend on x3, then a global strong solution exists which also does not depend on x3. Here (x1,x2,x3) ∈W≡W'×( 0,e) . With this observation as motivation, and using an additive decomposition introduced by Raugel and Sell, we split the initial data and forcing into a portion independent of x3 and a remainder. In our first result, we impose a smallness condition on the remainder and assume the forcing function is square- integrable in time as a function into L2(W) . With these assumptions, we prove a global existence theorem that does not require a smallness condition on e or on the portion of the initial condition and forcing independent of x3. However, these quantities do affect the allowable size of the remainder. For our second result, we assume the forcing is only bounded in time as a function into L2(W) . In this case, we need a smallness condition on the initial data, the forcing, and e to obtain global existence. The interesting observation is that the allowable sizes for the initial data and forcing grow as e-->0 . Thus, we obtain a `thin-domain' result as originally obtained by Raugel and Sell. In fact, our results allow the portion of the initial data and forcing independent of x3 to

  20. Tables of generalized Airy functions for the asymptotic solution of the differential equation

    CERN Document Server

    Nosova, L N

    1965-01-01

    Tables of Generalized Airy Functions for the Asymptotic Solution of the Differential Equations contains tables of the special functions, namely, the generalized Airy functions, and their first derivatives, for real and pure imaginary values. The tables are useful for calculations on toroidal shells, laminae, rode, and for the solution of certain other problems of mathematical physics. The values of the functions were computed on the ""Strela"" highspeed electronic computer.This book will be of great value to mathematicians, researchers, and students.

  1. Some new exact solutions of Jacobian elliptic function about the generalized Boussinesq equation and Boussinesq-Burgers equation

    International Nuclear Information System (INIS)

    Zhang Liang; Zhang Lifeng; Li Chongyin

    2008-01-01

    By using the modified mapping method, we find some new exact solutions of the generalized Boussinesq equation and the Boussinesq-Burgers equation. The solutions obtained in this paper include Jacobian elliptic function solutions, combined Jacobian elliptic function solutions, soliton solutions, triangular function solutions

  2. A second order radiative transfer equation and its solution by meshless method with application to strongly inhomogeneous media

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.M., E-mail: jmzhao@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, People' s Republic of China (China); Tan, J.Y., E-mail: tanjy@hit.edu.cn [School of Auto Engineering, Harbin Institute of Technology at Weihai, 2 West Wenhua Road, Weihai 264209, People' s Republic of China (China); Liu, L.H., E-mail: lhliu@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, People' s Republic of China (China); School of Auto Engineering, Harbin Institute of Technology at Weihai, 2 West Wenhua Road, Weihai 264209, People' s Republic of China (China)

    2013-01-01

    A new second order form of radiative transfer equation (named MSORTE) is proposed, which overcomes the singularity problem of a previously proposed second order radiative transfer equation [J.E. Morel, B.T. Adams, T. Noh, J.M. McGhee, T.M. Evans, T.J. Urbatsch, Spatial discretizations for self-adjoint forms of the radiative transfer equations, J. Comput. Phys. 214 (1) (2006) 12-40 (where it was termed SAAI), J.M. Zhao, L.H. Liu, Second order radiative transfer equation and its properties of numerical solution using finite element method, Numer. Heat Transfer B 51 (2007) 391-409] in dealing with inhomogeneous media where some locations have very small/zero extinction coefficient. The MSORTE contains a naturally introduced diffusion (or second order) term which provides better numerical property than the classic first order radiative transfer equation (RTE). The stability and convergence characteristics of the MSORTE discretized by central difference scheme is analyzed theoretically, and the better numerical stability of the second order form radiative transfer equations than the RTE when discretized by the central difference type method is proved. A collocation meshless method is developed based on the MSORTE to solve radiative transfer in inhomogeneous media. Several critical test cases are taken to verify the performance of the presented method. The collocation meshless method based on the MSORTE is demonstrated to be capable of stably and accurately solve radiative transfer in strongly inhomogeneous media, media with void region and even with discontinuous extinction coefficient.

  3. On the structure of generalized monopole solutions in gauge-theories

    International Nuclear Information System (INIS)

    Horvath, Z.; Palla, L.

    1976-01-01

    A method is presented for constructing generalized 't Hooft monopole solutions in a gauge theory with an arbitrary gauge group. Restrictions arising from the condition of finite energy are derived. The radial oscillation of the solution is discussed. Using this method all the SU(3) solutions known in the literature are reproduced. Finite energy monopoles possessing magnetic charge in the range g 0 0 0 are found in SU(N) gauge theories. Different charge quantization conditions are analyzed to understand the structure of the solutions. (Auth.)

  4. Improved decay rates for solutions for a multidimensional generalized Benjamin-Bona-Mahony equation

    KAUST Repository

    Said-Houari, Belkacem

    2014-01-01

    In this paper, we study the decay rates of solutions for the generalized Benjamin-Bona-Mahony equation in multi-dimensional space. For initial data in some L1-weighted spaces, we prove faster decay rates of the solutions. More precisely, using the Fourier transform and the energy method, we show the global existence and the convergence rates of the solutions under the smallness assumption on the initial data and we give better decay rates of the solutions. This result improves early works in J. Differential Equations 158(2) (1999), 314-340 and Nonlinear Anal. 75(7) (2012), 3385-3392. © 2014-IOS Press.

  5. Abundant general solitary wave solutions to the family of KdV type equations

    Directory of Open Access Journals (Sweden)

    Md. Azmol Huda

    2017-03-01

    Full Text Available This work explores the construction of more general exact traveling wave solutions of some nonlinear evolution equations (NLEEs through the application of the (G′/G, 1/G-expansion method. This method is allied to the widely used (G′/G-method initiated by Wang et al. and can be considered as an extension of the (G′/G-expansion method. For effectiveness, the method is applied to the family of KdV type equations. Abundant general form solitary wave solutions as well as periodic solutions are successfully obtained through this method. Moreover, in the obtained wider set of solutions, if we set special values of the parameters, some previously known solutions are revived. The approach of this method is simple and elegantly standard. Having been computerized it is also powerful, reliable and effective.

  6. The Exact Solution for Linear Thermoelastic Axisymmetric Deformations of Generally Laminated Circular Cylindrical Shells

    Science.gov (United States)

    Nemeth, Michael P.; Schultz, Marc R.

    2012-01-01

    A detailed exact solution is presented for laminated-composite circular cylinders with general wall construction and that undergo axisymmetric deformations. The overall solution is formulated in a general, systematic way and is based on the solution of a single fourth-order, nonhomogeneous ordinary differential equation with constant coefficients in which the radial displacement is the dependent variable. Moreover, the effects of general anisotropy are included and positive-definiteness of the strain energy is used to define uniquely the form of the basis functions spanning the solution space of the ordinary differential equation. Loading conditions are considered that include axisymmetric edge loads, surface tractions, and temperature fields. Likewise, all possible axisymmetric boundary conditions are considered. Results are presented for five examples that demonstrate a wide range of behavior for specially orthotropic and fully anisotropic cylinders.

  7. General classical solutions of the complex Grassmannian and CP sub(N-1) sigma models

    International Nuclear Information System (INIS)

    Sasaki, Ryu.

    1983-05-01

    General classical solutions are constructed for the complex Grassmannian non-linear sigma models in two euclidean dimensions in terms of holomorphic functions. The Grassmannian sigma models are a simple generalization of the well known CP sup(N-1) model in two dimensions and they share various interesting properties; existence of (anti-) instantons, an infinite number of conserved quantities and complete integrability. (author)

  8. General-base catalysed hydrolysis and nucleophilic substitution of activated amides in aqueous solutions

    NARCIS (Netherlands)

    Buurma, NJ; Blandamer, MJ; Engberts, JBFN; Buurma, Niklaas J.

    The reactivity of 1-benzoyl-3-phenyl-1,2,4-triazole (1a) was studied in the presence of a range of weak bases in aqueous solution. A change in mechanism is observed from general-base catalysed hydrolysis to nucleophilic substitution and general-base catalysed nucleophilic substitution. A slight

  9. Numerical solutions of the aerosol general dynamic equation for nuclear reactor safety studies

    International Nuclear Information System (INIS)

    Park, J.W.

    1988-01-01

    Methods and approximations inherent in modeling of aerosol dynamics and evolution for nuclear reactor source term estimation have been investigated. Several aerosol evolution problems are considered to assess numerical methods of solving the aerosol dynamic equation. A new condensational growth model is constructed by generalizing Mason's formula to arbitrary particle sizes, and arbitrary accommodation of the condensing vapor and background gas at particle surface. Analytical solution is developed for the aerosol growth equation employing the new condensation model. The space-dependent aerosol dynamic equation is solved to assess implications of spatial homogenization of aerosol distributions. The results of our findings are as follows. The sectional method solving the aerosol dynamic equation is quite efficient in modeling of coagulation problems, but should be improved for simulation of strong condensation problems. The J-space transform method is accurate in modeling of condensation problems, but is very slow. For the situation considered, the new condensation model predicts slower aerosol growth than the corresponding isothermal model as well as Mason's model, the effect of partial accommodation is considerable on the particle evolution, and the effect of the energy accommodation coefficient is more pronounced than that of the mass accommodation coefficient. For the initial conditions considered, the space-dependent aerosol dynamics leads to results that are substantially different from those based on the spatially homogeneous aerosol dynamic equation

  10. Unified semiclassical theory for the two-state system: an analytical solution for general nonadiabatic tunneling.

    Science.gov (United States)

    Zhu, Chaoyuan; Lin, Sheng Hsien

    2006-07-28

    Unified semiclasical solution for general nonadiabatic tunneling between two adiabatic potential energy surfaces is established by employing unified semiclassical solution for pure nonadiabatic transition [C. Zhu, J. Chem. Phys. 105, 4159 (1996)] with the certain symmetry transformation. This symmetry comes from a detailed analysis of the reduced scattering matrix for Landau-Zener type of crossing as a special case of nonadiabatic transition and nonadiabatic tunneling. Traditional classification of crossing and noncrossing types of nonadiabatic transition can be quantitatively defined by the rotation angle of adiabatic-to-diabatic transformation, and this rotational angle enters the analytical solution for general nonadiabatic tunneling. The certain two-state exponential potential models are employed for numerical tests, and the calculations from the present general nonadiabatic tunneling formula are demonstrated in very good agreement with the results from exact quantum mechanical calculations. The present general nonadiabatic tunneling formula can be incorporated with various mixed quantum-classical methods for modeling electronically nonadiabatic processes in photochemistry.

  11. Approximate solution of generalized Ginzburg-Landau-Higgs system via homotopy perturbation method

    Energy Technology Data Exchange (ETDEWEB)

    Lu Juhong [School of Physics and Electromechanical Engineering, Shaoguan Univ., Guangdong (China); Dept. of Information Engineering, Coll. of Lishui Professional Tech., Zhejiang (China); Zheng Chunlong [School of Physics and Electromechanical Engineering, Shaoguan Univ., Guangdong (China); Shanghai Inst. of Applied Mathematics and Mechanics, Shanghai Univ., SH (China)

    2010-04-15

    Using the homotopy perturbation method, a class of nonlinear generalized Ginzburg-Landau-Higgs systems (GGLH) is considered. Firstly, by introducing a homotopic transformation, the nonlinear problem is changed into a system of linear equations. Secondly, by selecting a suitable initial approximation, the approximate solution with arbitrary degree accuracy to the generalized Ginzburg-Landau-Higgs system is derived. Finally, another type of homotopic transformation to the generalized Ginzburg-Landau-Higgs system reported in previous literature is briefly discussed. (orig.)

  12. Bentonite swelling pressure in strong NaCl solutions. Correlation of model calculations to experimentally determined data

    International Nuclear Information System (INIS)

    Karnland, O.

    1998-01-01

    A number of quite different quantitative models concerning swelling pressure in bentonite clay have been proposed. This report discusses a number of models which possibly can be used also for saline conditions. A discrepancy between calculated and measured values was noticed for all models at brine conditions. In general the models predicted a too low swelling pressure compared to what was experimentally found. An osmotic component in the clay/water system is proposed in order to improve the previous conservative use of the thermodynamic model. Calculations of this osmotic component is proposed to be made by use of the clay cation exchange capacity and Donnan equilibrium. Calculations made by this approach showed considerably better correlation to literature laboratory data, compared to calculations made by the previous conservative use of the thermodynamic model. A few verifying laboratory tests were made and are briefly described in the report. The improved model predicts a substantial bentonite swelling pressure also in a saturated sodium chloride solution if the density of the system is sufficiently high. This means in practice that the buffer in a KBS-3 repository will give rise to an acceptable swelling pressure, but that the positive effects of mixing bentonite into a backfill material will be lost if the system is exposed to brines. (orig.)

  13. Bentonite swelling pressure in strong NaCl solutions. Correlation between model calculations and experimentally determined data

    Energy Technology Data Exchange (ETDEWEB)

    Karnland, O. [Clay Technology, Lund (Sweden)

    1997-12-01

    A number of quite different quantitative models concerning swelling pressure in bentonite clay have been proposed by different researchers over the years. The present report examines some of the models which possibly may be used also for saline conditions. A discrepancy between calculated and measured values was noticed for all models at brine conditions. In general the models predicted a too low swelling pressure compared to what was experimentally found. An osmotic component in the clay/water system is proposed in order to improve the previous conservative use of the thermodynamic model. Calculations of this osmotic component is proposed to be made by use of the clay cation exchange capacity and Donnan equilibrium. Calculations made by this approach showed considerably better correlation to literature laboratory data, compared to calculations made by the previous conservative use of the thermodynamic model. A few verifying laboratory tests were made and are briefly described in the report. The improved thermodynamic model predicts substantial bentonite swelling pressures also in saturated sodium chloride solution if the density of the system is high enough. In practice, the model predicts a substantial swelling pressure for the buffer in a KBS-3 repository if the system is exposed to brines, but the positive effects of mixing bentonite into a backfill material will be lost, since the available compaction technique does not give a sufficiently high bentonite density 37 refs, 15 figs

  14. Bentonite swelling pressure in strong NaCl solutions. Correlation of model calculations to experimentally determined data

    Energy Technology Data Exchange (ETDEWEB)

    Karnland, O. [Clay Technology, Lund (Sweden)

    1998-01-01

    A number of quite different quantitative models concerning swelling pressure in bentonite clay have been proposed. This report discusses a number of models which possibly can be used also for saline conditions. A discrepancy between calculated and measured values was noticed for all models at brine conditions. In general the models predicted a too low swelling pressure compared to what was experimentally found. An osmotic component in the clay/water system is proposed in order to improve the previous conservative use of the thermodynamic model. Calculations of this osmotic component is proposed to be made by use of the clay cation exchange capacity and Donnan equilibrium. Calculations made by this approach showed considerably better correlation to literature laboratory data, compared to calculations made by the previous conservative use of the thermodynamic model. A few verifying laboratory tests were made and are briefly described in the report. The improved model predicts a substantial bentonite swelling pressure also in a saturated sodium chloride solution if the density of the system is sufficiently high. This means in practice that the buffer in a KBS-3 repository will give rise to an acceptable swelling pressure, but that the positive effects of mixing bentonite into a backfill material will be lost if the system is exposed to brines. (orig.). 14 refs.

  15. Bentonite swelling pressure in strong NaCl solutions. Correlation between model calculations and experimentally determined data

    International Nuclear Information System (INIS)

    Karnland, O.

    1997-12-01

    A number of quite different quantitative models concerning swelling pressure in bentonite clay have been proposed by different researchers over the years. The present report examines some of the models which possibly may be used also for saline conditions. A discrepancy between calculated and measured values was noticed for all models at brine conditions. In general the models predicted a too low swelling pressure compared to what was experimentally found. An osmotic component in the clay/water system is proposed in order to improve the previous conservative use of the thermodynamic model. Calculations of this osmotic component is proposed to be made by use of the clay cation exchange capacity and Donnan equilibrium. Calculations made by this approach showed considerably better correlation to literature laboratory data, compared to calculations made by the previous conservative use of the thermodynamic model. A few verifying laboratory tests were made and are briefly described in the report. The improved thermodynamic model predicts substantial bentonite swelling pressures also in saturated sodium chloride solution if the density of the system is high enough. In practice, the model predicts a substantial swelling pressure for the buffer in a KBS-3 repository if the system is exposed to brines, but the positive effects of mixing bentonite into a backfill material will be lost, since the available compaction technique does not give a sufficiently high bentonite density

  16. Predictive Sampling of Rare Conformational Events in Aqueous Solution: Designing a Generalized Orthogonal Space Tempering Method.

    Science.gov (United States)

    Lu, Chao; Li, Xubin; Wu, Dongsheng; Zheng, Lianqing; Yang, Wei

    2016-01-12

    In aqueous solution, solute conformational transitions are governed by intimate interplays of the fluctuations of solute-solute, solute-water, and water-water interactions. To promote molecular fluctuations to enhance sampling of essential conformational changes, a common strategy is to construct an expanded Hamiltonian through a series of Hamiltonian perturbations and thereby broaden the distribution of certain interactions of focus. Due to a lack of active sampling of configuration response to Hamiltonian transitions, it is challenging for common expanded Hamiltonian methods to robustly explore solvent mediated rare conformational events. The orthogonal space sampling (OSS) scheme, as exemplified by the orthogonal space random walk and orthogonal space tempering methods, provides a general framework for synchronous acceleration of slow configuration responses. To more effectively sample conformational transitions in aqueous solution, in this work, we devised a generalized orthogonal space tempering (gOST) algorithm. Specifically, in the Hamiltonian perturbation part, a solvent-accessible-surface-area-dependent term is introduced to implicitly perturb near-solute water-water fluctuations; more importantly in the orthogonal space response part, the generalized force order parameter is generalized as a two-dimension order parameter set, in which essential solute-solvent and solute-solute components are separately treated. The gOST algorithm is evaluated through a molecular dynamics simulation study on the explicitly solvated deca-alanine (Ala10) peptide. On the basis of a fully automated sampling protocol, the gOST simulation enabled repetitive folding and unfolding of the solvated peptide within a single continuous trajectory and allowed for detailed constructions of Ala10 folding/unfolding free energy surfaces. The gOST result reveals that solvent cooperative fluctuations play a pivotal role in Ala10 folding/unfolding transitions. In addition, our assessment

  17. On exact solutions for some oscillating motions of a generalized Oldroyd-B fluid

    Science.gov (United States)

    Khan, M.; Anjum, Asia; Qi, Haitao; Fetecau, C.

    2010-02-01

    This paper deals with exact solutions for some oscillating motions of a generalized Oldroyd-B fluid. The fractional calculus approach is used in the constitutive relationship of fluid model. Analytical expressions for the velocity field and the corresponding shear stress for flows due to oscillations of an infinite flat plate as well as those induced by an oscillating pressure gradient are determined using Fourier sine and Laplace transforms. The obtained solutions are presented under integral and series forms in terms of the Mittag-Leffler functions. For α = β = 1, our solutions tend to the similar solutions for ordinary Oldroyd-B fluid. A comparison between generalized and ordinary Oldroyd-B fluids is shown by means of graphical illustrations.

  18. On the stability of soliton solution in NLS-type general field model

    International Nuclear Information System (INIS)

    Chakrabarti, S.; Nayyar, A.H.

    1982-08-01

    A model incorporating the nonlinear Schroedinger equation and its generalizations is considered and the stability of its periodic-in-time solutions under the restriction of a fixed charge Q is analysed. It is shown that the necessary condition for the stability is given by the inequality deltaQ/deltaν<0, where ν is the parameter of periodicity of the solution in time. In particular, one specific class of Lagrangians is considered and, in addition, the sufficient conditions for the stability of the soliton solutions are also determined. This study thus examines both the necessary and the sufficient conditions for the stability of the solutions of nonlinear Schroedinger equation and some of its generalizations. (author)

  19. Existence of Positive Solutions to Singular -Laplacian General Dirichlet Boundary Value Problems with Sign Changing Nonlinearity

    Directory of Open Access Journals (Sweden)

    Qiying Wei

    2009-01-01

    Full Text Available By using the well-known Schauder fixed point theorem and upper and lower solution method, we present some existence criteria for positive solution of an -point singular -Laplacian dynamic equation on time scales with the sign changing nonlinearity. These results are new even for the corresponding differential (=ℝ and difference equations (=ℤ, as well as in general time scales setting. As an application, an example is given to illustrate the results.

  20. Centennial of General Relativity (1915-2015); The Schwarzschild Solution and Black Holes

    OpenAIRE

    Blinder, S. M.

    2015-01-01

    This year marks the 100th anniversary of Einstein's General Theory of Relativity (1915-2015). The first nontrivial solution of the Einstein field equations was derived by Karl Schwarzschild in 1916. This Note will focus mainly on the Schwarzschild solution and the remarkable developments which it inspired, the most dramatic being the prediction of black holes. Later extensions of Schwarzschild's spacetime structure has led to even wilder conjectures, such as white holes and passages to other ...

  1. Fundamental solutions for Schrödinger operators with general inverse square potentials

    KAUST Repository

    Chen, Huyuan

    2017-03-17

    In this paper, we clarify the fundamental solutions for Schrödinger operators given as (Formula presented.), where the potential V is a general inverse square potential in (Formula presented.) with (Formula presented.). In particular, letting (Formula presented.),(Formula presented.) where (Formula presented.), we discuss the existence and nonexistence of positive fundamental solutions for Hardy operator (Formula presented.), which depend on the parameter t.

  2. Fundamental solutions for Schrödinger operators with general inverse square potentials

    KAUST Repository

    Chen, Huyuan; Alhomedan, Suad; Hajaiej, Hichem; Markowich, Peter A.

    2017-01-01

    In this paper, we clarify the fundamental solutions for Schrödinger operators given as (Formula presented.), where the potential V is a general inverse square potential in (Formula presented.) with (Formula presented.). In particular, letting (Formula presented.),(Formula presented.) where (Formula presented.), we discuss the existence and nonexistence of positive fundamental solutions for Hardy operator (Formula presented.), which depend on the parameter t.

  3. Periodic solutions of differential equations with a general piecewise constant argument and applications

    Directory of Open Access Journals (Sweden)

    Kuo-Shou Chiu

    2010-08-01

    Full Text Available In this paper we investigate the existence of the periodic solutions of a quasilinear differential equation with piecewise constant argument of generalized type. By using some fixed point theorems and some new analysis technique, sufficient conditions are obtained for the existence and uniqueness of periodic solutions of these systems. A new Gronwall type lemma is proved. Some examples concerning biological models as Lasota-Wazewska, Nicholson's blowflies and logistic models are treated.

  4. Existence of Generalized Homoclinic Solutions of Lotka-Volterra System under a Small Perturbation

    OpenAIRE

    Mi, Yuzhen

    2016-01-01

    This paper investigates Lotka-Volterra system under a small perturbation vxx=-μ(1-a2u-v)v+ϵf(ϵ,v,vx,u,ux), uxx=-(1-u-a1v)u+ϵg(ϵ,v,vx,u,ux). By the Fourier series expansion technique method, the fixed point theorem, the perturbation theorem, and the reversibility, we prove that near μ=0 the system has a generalized homoclinic solution exponentially approaching a periodic solution.

  5. Existence of Generalized Homoclinic Solutions of Lotka-Volterra System under a Small Perturbation

    Directory of Open Access Journals (Sweden)

    Yuzhen Mi

    2016-01-01

    Full Text Available This paper investigates Lotka-Volterra system under a small perturbation vxx=-μ(1-a2u-vv+ϵf(ϵ,v,vx,u,ux, uxx=-(1-u-a1vu+ϵg(ϵ,v,vx,u,ux. By the Fourier series expansion technique method, the fixed point theorem, the perturbation theorem, and the reversibility, we prove that near μ=0 the system has a generalized homoclinic solution exponentially approaching a periodic solution.

  6. Probabilistic solutions of generalized birth and death equations and application to non-relativistic electrodynamics

    International Nuclear Information System (INIS)

    Serva, M.

    1986-01-01

    In this paper we give probabilistic solutions to the equations describing non-relativistic quantum electrodynamical systems. These solutions involve, besides the usual diffusion processes, also birth and death processes corresponding to the 'photons number' variables. We state some inequalities and in particular we establish bounds to the ground state energy of systems composed by a non relativistic particle interacting with a field. The result is general and it is applied as an example to the polaron problem. (orig.)

  7. On global structure of general solution of the Chew-Sow equations

    International Nuclear Information System (INIS)

    Gerdt, V.P.

    1981-01-01

    The Chew-Low equations for static p-wave πN-scattering are considered. The equations are formulated in the form of a system of three nonlinear difference equations of the first order which have the general solution depending on three arbitrary periodic functions. An approach to the global construction of the general solution is suggested which is based on the series expansion in powers of one of the arbitrary functions C(ω) determining the structure of the invariant curve for the Chew-Low equations. It is shown that the initial nonlinear problem is reduced to the linear one in every order in C(ω). By means of solving the linear problem the general solution is found in the first-order approximation in C(ω) [ru

  8. Exact solutions and transformation properties of nonlinear partial differential equations from general relativity

    International Nuclear Information System (INIS)

    Fischer, E.

    1977-01-01

    Various families of exact solutions to the Einstein and Einstein--Maxwell field equations of general relativity are treated for situations of sufficient symmetry that only two independent variables arise. The mathematical problem then reduces to consideration of sets of two coupled nonlinear differential equations. The physical situations in which such equations arise include: the external gravitational field of an axisymmetric, uncharged steadily rotating body, cylindrical gravitational waves with two degrees of freedom, colliding plane gravitational waves, the external gravitational and electromagnetic fields of a static, charged axisymmetric body, and colliding plane electromagnetic and gravitational waves. Through the introduction of suitable potentials and coordinate transformations, a formalism is presented which treats all these problems simultaneously. These transformations and potentials may be used to generate new solutions to the Einstein--Maxwell equations from solutions to the vacuum Einstein equations, and vice-versa. The calculus of differential forms is used as a tool for generation of similarity solutions and generalized similarity solutions. It is further used to find the invariance group of the equations; this in turn leads to various finite transformations that give new, physically distinct solutions from old. Some of the above results are then generalized to the case of three independent variables

  9. Generalized Stokes eignefunctions: a new trial basis for the solution of incompressible Navier-Stokes equations

    International Nuclear Information System (INIS)

    Batcho, P.F.; Karniadakis, G.E.

    1994-01-01

    The present study focuses on the solution of the incompressible Navier-Stokes equations in general, non-separable domains, and employs a Galerkin projection of divergence-free vector functions as a trail basis. This basis is obtained from the solution of a generalized constrained Stokes eigen-problem in the domain of interest. Faster convergence can be achieved by constructing a singular Stokes eigen-problem in which the Stokes operator is modified to include a variable coefficient which vanishes at the domain boundaries. The convergence properties of such functions are advantageous in a least squares sense and are shown to produce significantly better approximations to the solution of the Navier-Stokes equations in post-critical states where unsteadiness characterizes the flowfield. Solutions for the eigen-systems are efficiently accomplished using a combined Lanczos-Uzawa algorithm and spectral element discretizations. Results are presented for different simulations using these global spectral trial basis on non-separable and multiply-connected domains. It is confirmed that faster convergence is obtained using the singular eigen-expansions in approximating stationary Navier-Stokes solutions in general domains. It is also shown that 100-mode expansions of time-dependent solutions based on the singular Stokes eigenfunctions are sufficient to accurately predict the dynamics of flows in such domains, including Hopf bifurcations, intermittency, and details of flow structures

  10. Semiclassical series solution of the generalized phase shift atom--diatom scattering equations

    International Nuclear Information System (INIS)

    Squire, K.R.; Curtiss, C.F.

    1980-01-01

    A semiclassical series solution of the previously developed operator form of the generalized phase shift equations describing atom--diatom scattering is presented. This development is based on earlier work which led to a double series in powers of Planck's constant and a scaling parameter of the anisotropic portion of the intermolecular potential. The present solution is similar in that it is a double power series in Planck's constant and in the difference between the spherical radial momentum and a first order approximation. The present series solution avoids difficulties of the previous series associated with the classical turning point

  11. Generalized dynamics of soft-matter quasicrystals mathematical models and solutions

    CERN Document Server

    Fan, Tian-You

    2017-01-01

    The book systematically introduces the mathematical models and solutions of generalized hydrodynamics of soft-matter quasicrystals (SMQ). It provides methods for solving the initial-boundary value problems in these systems. The solutions obtained demonstrate the distribution, deformation and motion of the soft-matter quasicrystals, and determine the stress, velocity and displacement fields. The interactions between phonons, phasons and fluid phonons are discussed in some fundamental materials samples. Mathematical solutions for solid and soft-matter quasicrystals are compared, to help readers to better understand the featured properties of SMQ.

  12. Trigonometric Solutions of WDVV Equations and Generalized Calogero-Moser-Sutherland Systems

    Directory of Open Access Journals (Sweden)

    Misha V. Feigin

    2009-09-01

    Full Text Available We consider trigonometric solutions of WDVV equations and derive geometric conditions when a collection of vectors with multiplicities determines such a solution. We incorporate these conditions into the notion of trigonometric Veselov system (v-system and we determine all trigonometric v-systems with up to five vectors. We show that generalized Calogero-Moser-Sutherland operator admits a factorized eigenfunction if and only if it corresponds to the trigonometric v-system; this inverts a one-way implication observed by Veselov for the rational solutions.

  13. LAGRANGE SOLUTIONS TO THE DISCRETE-TIME GENERAL THREE-BODY PROBLEM

    International Nuclear Information System (INIS)

    Minesaki, Yukitaka

    2013-01-01

    There is no known integrator that yields exact orbits for the general three-body problem (G3BP). It is difficult to verify whether a numerical procedure yields the correct solutions to the G3BP because doing so requires knowledge of all 11 conserved quantities, whereas only six are known. Without tracking all of the conserved quantities, it is possible to show that the discrete general three-body problem (d-G3BP) yields the correct orbits corresponding to Lagrange solutions of the G3BP. We show that the d-G3BP yields the correct solutions to the G3BP for two special cases: the equilateral triangle and collinear configurations. For the triangular solution, we use the fact that the solution to the three-body case is a superposition of the solutions to the three two-body cases, and we show that the three bodies maintain the same relative distances at all times. To obtain the collinear solution, we assume a specific permutation of the three bodies arranged along a straight rotating line, and we show that the d-G3BP maintains the same distance ratio between two bodies as in the G3BP. Proving that the d-G3BP solutions for these cases are equivalent to those of the G3BP makes it likely that the d-G3BP and G3BP solutions are equivalent in other cases. To our knowledge, this is the first work that proves the equivalence of the discrete solutions and the Lagrange orbits.

  14. Path integral solution of linear second order partial differential equations I: the general construction

    International Nuclear Information System (INIS)

    LaChapelle, J.

    2004-01-01

    A path integral is presented that solves a general class of linear second order partial differential equations with Dirichlet/Neumann boundary conditions. Elementary kernels are constructed for both Dirichlet and Neumann boundary conditions. The general solution can be specialized to solve elliptic, parabolic, and hyperbolic partial differential equations with boundary conditions. This extends the well-known path integral solution of the Schroedinger/diffusion equation in unbounded space. The construction is based on a framework for functional integration introduced by Cartier/DeWitt-Morette

  15. A Note about the General Meromorphic Solutions of the Fisher Equation

    Directory of Open Access Journals (Sweden)

    Jian-ming Qi

    2014-01-01

    Full Text Available We employ the complex method to obtain the general meromorphic solutions of the Fisher equation, which improves the corresponding results obtained by Ablowitz and Zeppetella and other authors (Ablowitz and Zeppetella, 1979; Feng and Li, 2006; Guo and Chen, 1991, and wg,i(z are new general meromorphic solutions of the Fisher equation for c=±5i/6. Our results show that the complex method provides a powerful mathematical tool for solving great many nonlinear partial differential equations in mathematical physics.

  16. The General Traveling Wave Solutions of the Fisher Equation with Degree Three

    Directory of Open Access Journals (Sweden)

    Wenjun Yuan

    2013-01-01

    degree three and the general meromorphic solutions of the integrable Fisher equations with degree three, which improves the corresponding results obtained by Feng and Li (2006, Guo and Chen (1991, and Ağırseven and Öziş (2010. Moreover, all wg,1(z are new general meromorphic solutions of the Fisher equations with degree three for c=±3/2. Our results show that the complex method provides a powerful mathematical tool for solving a large number of nonlinear partial differential equations in mathematical physics.

  17. Generalizing Source Geometry of Site Contamination by Simulating and Analyzing Analytical Solution of Three-Dimensional Solute Transport Model

    Directory of Open Access Journals (Sweden)

    Xingwei Wang

    2014-01-01

    Full Text Available Due to the uneven distribution of pollutions and blur edge of pollutant area, there will exist uncertainty of source term shape in advective-diffusion equation model of contaminant transport. How to generalize those irregular source terms and deal with those uncertainties is very critical but rarely studied in previous research. In this study, the fate and transport of contaminant from rectangular and elliptic source geometry were simulated based on a three-dimensional analytical solute transport model, and the source geometry generalization guideline was developed by comparing the migration of contaminant. The result indicated that the variation of source area size had no effect on pollution plume migration when the plume migrated as far as five times of source side length. The migration of pollution plume became slower with the increase of aquifer thickness. The contaminant concentration was decreasing with scale factor rising, and the differences among various scale factors became smaller with the distance to field increasing.

  18. Solutions to the maximal spacelike hypersurface equation in generalized Robertson-Walker spacetimes

    Directory of Open Access Journals (Sweden)

    Henrique F. de Lima

    2018-03-01

    Full Text Available We apply some generalized maximum principles for establishing uniqueness and nonexistence results concerning maximal spacelike hypersurfaces immersed in a generalized Robertson-Walker (GRW spacetime, which is supposed to obey the so-called timelike convergence condition (TCC. As application, we study the uniqueness and nonexistence of entire solutions of a suitable maximal spacelike hypersurface equation in GRW spacetimes obeying the TCC.

  19. Exact solutions of the Navier-Stokes equations generalized for flow in porous media

    Science.gov (United States)

    Daly, Edoardo; Basser, Hossein; Rudman, Murray

    2018-05-01

    Flow of Newtonian fluids in porous media is often modelled using a generalized version of the full non-linear Navier-Stokes equations that include additional terms describing the resistance to flow due to the porous matrix. Because this formulation is becoming increasingly popular in numerical models, exact solutions are required as a benchmark of numerical codes. The contribution of this study is to provide a number of non-trivial exact solutions of the generalized form of the Navier-Stokes equations for parallel flow in porous media. Steady-state solutions are derived in the case of flows in a medium with constant permeability along the main direction of flow and a constant cross-stream velocity in the case of both linear and non-linear drag. Solutions are also presented for cases in which the permeability changes in the direction normal to the main flow. An unsteady solution for a flow with velocity driven by a time-periodic pressure gradient is also derived. These solutions form a basis for validating computational models across a wide range of Reynolds and Darcy numbers.

  20. New and More General Rational Formal Solutions to (2+1)-Dimensional Toda System

    International Nuclear Information System (INIS)

    Bai Chenglin

    2007-01-01

    With the aid of computerized symbolic computation and Riccati equation rational expansion approach, some new and more general rational formal solutions to (2+1)-dimensional Toda system are obtained. The method used here can also be applied to solve other nonlinear differential-difference equation or equations.

  1. Non-existence of global solutions to generalized dissipative Klein-Gordon equations with positive energy

    Directory of Open Access Journals (Sweden)

    Maxim Olegovich Korpusov

    2012-07-01

    Full Text Available In this article the initial-boundary-value problem for generalized dissipative high-order equation of Klein-Gordon type is considered. We continue our study of nonlinear hyperbolic equations and systems with arbitrary positive energy. The modified concavity method by Levine is used for proving blow-up of solutions.

  2. Generalized Couette flow of a third-grade fluid with slip. The exact solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ellahi, Rahmat [IIUI, Islamabad (Pakistan). Dept. of Mathematics; Hayat, Tasawar [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Mathematics; King Saud Univ., Riyadh (Saudi Arabia). Dept. of Mathematics; Mahomed, Fazal Mahmood [Univ. of the Witwatersrand, Wits (South Africa). Centre for Differential Equations, Continuum, Mechanics and Applications

    2010-12-15

    The present note investigates the influence of slip on the generalized Couette flows of a third-grade fluid. Two flow problems are considered. The resulting equations and the boundary conditions are nonlinear. Analytical solutions of the governing nonlinear problems are found in closed form. (orig.)

  3. Solution phase thermodynamics of strong electrolytes based on ionic concentrations, hydration numbers and volumes of dissolved entities

    Czech Academy of Sciences Publication Activity Database

    Heyrovská, Raji

    2013-01-01

    Roč. 24, č. 6 (2013), s. 1895-1901 ISSN 1040-0400 Institutional support: RVO:68081707 Keywords : Solution thermodynamics * Aqueous electrolytes * Partial electrolytic dissociation Subject RIV: BO - Biophysics Impact factor: 1.900, year: 2013

  4. General thermo-elastic solution of radially heterogeneous, spherically isotropic rotating sphere

    Energy Technology Data Exchange (ETDEWEB)

    Bayat, Yahya; EkhteraeiToussi, THamid [Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2015-06-15

    A thick walled rotating spherical object made of transversely isotropic functionally graded materials (FGMs) with general types of thermo-mechanical boundary conditions is studied. The thermo-mechanical governing equations consisting of decoupled thermal and mechanical equations are represented. The centrifugal body forces of the rotation are considered in the modeling phase. The unsymmetrical thermo-mechanical boundary conditions and rotational body forces are expressed in terms of the Legendre series. The series method is also implemented in the solution of the resulting equations. The solutions are checked with the known literature and FEM based solutions of ABAQUS software. The effects of anisotropy and heterogeneity are studied through the case studies and the results are represented in different figures. The newly developed series form solution is applicable to the rotating FGM spherical transversely isotropic vessels having nonsymmetrical thermo-mechanical boundary condition.

  5. New multiple soliton solutions to the general Burgers-Fisher equation and the Kuramoto-Sivashinsky equation

    International Nuclear Information System (INIS)

    Chen Huaitang; Zhang Hongqing

    2004-01-01

    A generalized tanh function method is used for constructing exact travelling wave solutions of nonlinear partial differential equations in a unified way. The main idea of this method is to take full advantage of the Riccati equation which has more new solutions. More new multiple soliton solutions are obtained for the general Burgers-Fisher equation and the Kuramoto-Sivashinsky equation

  6. Recursive algorithm for arrays of generalized Bessel functions: Numerical access to Dirac-Volkov solutions.

    Science.gov (United States)

    Lötstedt, Erik; Jentschura, Ulrich D

    2009-02-01

    In the relativistic and the nonrelativistic theoretical treatment of moderate and high-power laser-matter interaction, the generalized Bessel function occurs naturally when a Schrödinger-Volkov and Dirac-Volkov solution is expanded into plane waves. For the evaluation of cross sections of quantum electrodynamic processes in a linearly polarized laser field, it is often necessary to evaluate large arrays of generalized Bessel functions, of arbitrary index but with fixed arguments. We show that the generalized Bessel function can be evaluated, in a numerically stable way, by utilizing a recurrence relation and a normalization condition only, without having to compute any initial value. We demonstrate the utility of the method by illustrating the quantum-classical correspondence of the Dirac-Volkov solutions via numerical calculations.

  7. A general solution to the material performance index for bending strength design

    International Nuclear Information System (INIS)

    Burgess, S.C.; Pasini, D.; Smith, D.J.; Alemzadeh, K.

    2006-01-01

    This paper presents a general solution to the material performance index for the bending strength design of beams. In general, the performance index for strength design is ρ f q /ρ where σ f is the material strength, ρ is the material density and q is a function of the direction of scaling. Previous studies have only solved q for three particular cases: proportional scaling of width and height (q=2/3), constrained height (q=1) and constrained width (q=1/2). This paper presents a general solution to the exponent q for any arbitrary direction of scaling. The index is used to produce performance maps that rank relative material performance for particular design cases. The performance index and the performance maps are applied to a design case study

  8. A General Solution for Groundwater Flow in Estuarine Leaky Aquifer System with Considering Aquifer Anisotropy

    Science.gov (United States)

    Chen, Po-Chia; Chuang, Mo-Hsiung; Tan, Yih-Chi

    2014-05-01

    In recent years the urban and industrial developments near the coastal area are rapid and therefore the associated population grows dramatically. More and more water demand for human activities, agriculture irrigation, and aquaculture relies on heavy pumping in coastal area. The decline of groundwater table may result in the problems of seawater intrusion and/or land subsidence. Since the 1950s, numerous studies focused on the effect of tidal fluctuation on the groundwater flow in the coastal area. Many studies concentrated on the developments of one-dimensional (1D) and two-dimensional (2D) analytical solutions describing the tide-induced head fluctuations. For example, Jacob (1950) derived an analytical solution of 1D groundwater flow in a confined aquifer with a boundary condition subject to sinusoidal oscillation. Jiao and Tang (1999) derived a 1D analytical solution of a leaky confined aquifer by considered a constant groundwater head in the overlying unconfined aquifer. Jeng et al. (2002) studied the tidal propagation in a coupled unconfined and confined costal aquifer system. Sun (1997) presented a 2D solution for groundwater response to tidal loading in an estuary. Tang and Jiao (2001) derived a 2D analytical solution in a leaky confined aquifer system near open tidal water. This study aims at developing a general analytical solution describing the head fluctuations in a 2D estuarine aquifer system consisted of an unconfined aquifer, a confined aquifer, and an aquitard between them. Both the confined and unconfined aquifers are considered to be anisotropic. The predicted head fluctuations from this solution will compare with the simulation results from the MODFLOW program. In addition, the solutions mentioned above will be shown to be special cases of the present solution. Some hypothetical cases regarding the head fluctuation in costal aquifers will be made to investigate the dynamic effects of water table fluctuation, hydrogeological conditions, and

  9. Generalized Langevin Theory Of The Brownian Motion And The Dynamics Of Polymers In Solution

    International Nuclear Information System (INIS)

    Tothova, J.; Lisy, V.

    2015-01-01

    The review deals with a generalization of the Rouse and Zimm bead-spring models of the dynamics of flexible polymers in dilute solutions. As distinct from these popular theories, the memory in the polymer motion is taken into account. The memory naturally arises as a consequence of the fluid and bead inertia within the linearized Navier-Stokes hydrodynamics. We begin with a generalization of the classical theory of the Brownian motion, which forms the basis of any theory of the polymer dynamics. The random force driving the Brownian particles is not the white one as in the Langevin theory, but “colored”, i.e., statistically correlated in time, and the friction force on the particles depends on the history of their motion. An efficient method of solving the resulting generalized Langevin equations is presented and applied to the solution of the equations of motion of polymer beads. The memory effects lead to several peculiarities in the time correlation functions used to describe the dynamics of polymer chains. So, the mean square displacement of the polymer coils contains algebraic long-time tails and at short times it is ballistic. It is shown how these features reveal in the experimentally observable quantities, such as the dynamic structure factors of the scattering or the viscosity of polymer solutions. A phenomenological theory is also presented that describes the dependence of these quantities on the polymer concentration in solution. (author)

  10. Chirped self-similar solutions of a generalized nonlinear Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Fei Jin-Xi [Lishui Univ., Zhejiang (China). College of Mathematics and Physics; Zheng Chun-Long [Shaoguan Univ., Guangdong (China). School of Physics and Electromechanical Engineering; Shanghai Univ. (China). Shanghai Inst. of Applied Mathematics and Mechanics

    2011-01-15

    An improved homogeneous balance principle and an F-expansion technique are used to construct exact chirped self-similar solutions to the generalized nonlinear Schroedinger equation with distributed dispersion, nonlinearity, and gain coefficients. Such solutions exist under certain conditions and impose constraints on the functions describing dispersion, nonlinearity, and distributed gain function. The results show that the chirp function is related only to the dispersion coefficient, however, it affects all of the system parameters, which influence the form of the wave amplitude. As few characteristic examples and some simple chirped self-similar waves are presented. (orig.)

  11. General-purpose chemical analyzer for on-line analyses of radioactive solutions

    International Nuclear Information System (INIS)

    Spencer, W.A.; Kronberg, J.W.

    1983-01-01

    An automated analyzer is being developed to perform analytical measurements on radioactive solutions on-line in a hostile environment. This General Purpose Chemical Analyzer (GPCA) samples a process stream, adds reagents, measures solution absorbances or electrode potentials, and automatically calculates the results. The use of modular components, under microprocessor control, permits a single analyzer design to carry out many types of analyses. This paper discusses the more important design criteria for the GPCA, and describes the equipment being tested in a prototype unit

  12. Elliptic solutions of generalized Brans-Dicke gravity with a non-universal coupling

    Energy Technology Data Exchange (ETDEWEB)

    Alimi, J.M.; Reverdy, V. [Observatoire de Paris, Laboratoire Univers et Theories (LUTh), Meudon (France); Golubtsova, A.A. [Observatoire de Paris, Laboratoire Univers et Theories (LUTh), Meudon (France); Peoples' Friendship University of Russia, Institute of Gravitation and Cosmology, Moscow (Russian Federation)

    2014-10-15

    We study a model of the generalized Brans-Dicke gravity presented in both the Jordan and in the Einstein frames, which are conformally related. We show that the scalar field equations in the Einstein frame are reduced to the geodesics equations on the target space of the nonlinear sigma model. The analytical solutions in elliptical functions are obtained when the conformal couplings are given by reciprocal exponential functions. The behavior of the scale factor in the Jordan frame is studied using numerical computations. For certain parameters the solutions can describe an accelerated expansion. We also derive an analytical approximation in exponential functions. (orig.)

  13. Travelling wave solutions in a class of generalized Korteweg-de Vries equation

    International Nuclear Information System (INIS)

    Shen Jianwei; Xu Wei

    2007-01-01

    In this paper, we consider a new generalization of KdV equation u t = u x u l-2 + α[2u xxx u p + 4pu p-1 u x u xx + p(p - 1)u p-2 (u x ) 3 ] and investigate its bifurcation of travelling wave solutions. From the above analysis, we know that there exists compacton and cusp waves in the system. We explain the reason that these non-smooth travelling wave solution arise by using the bifurcation theory

  14. First general solutions for unidirectional motions of rate type fluids over an infinite plate

    Directory of Open Access Journals (Sweden)

    Constantin Fetecau

    2015-09-01

    Full Text Available Based on a simple but important remark regarding the governing equation for the non-trivial shear stress corresponding to the motion of a fluid over an infinite plate, exact solutions are established for the motion of Oldroyd-B fluids due to the plate that applies an arbitrary time-dependent shear stress to the fluid. These solutions, that allow us to provide the first exact solutions for motions of rate type fluids produced by an infinite plate that applies constant, constantly accelerating or oscillating shears stresses to the fluid, can easily be reduced to the similar solutions for Maxwell, second grade or Newtonian fluids performing the same motion. Furthermore, the obtained solutions are used to develop general solutions for the motion induced by a moving plate and to correct or recover as special cases different known results from the existing literature. Consequently, the motion problem of such fluids over an infinite plate that is moving in its plane or applies a shear stress to the fluid is completely solved.

  15. Analytic study of solutions for a (3 + 1) -dimensional generalized KP equation

    Science.gov (United States)

    Gao, Hui; Cheng, Wenguang; Xu, Tianzhou; Wang, Gangwei

    2018-03-01

    The (3 + 1) -dimensional generalized KP (gKP) equation is an important nonlinear partial differential equation in theoretical and mathematical physics which can be used to describe nonlinear wave motion. Through the Hirota bilinear method, one-solition, two-solition and N-solition solutions are derived via symbolic computation. Two classes of lump solutions, rationally localized in all directions in space, to the dimensionally reduced cases in (2 + 1)-dimensions, are constructed by using a direct method based on the Hirota bilinear form of the equation. It implies that we can derive the lump solutions of the reduced gKP equation from positive quadratic function solutions to the aforementioned bilinear equation. Meanwhile, we get interaction solutions between a lump and a kink of the gKP equation. The lump appears from a kink and is swallowed by it with the change of time. This work offers a possibility which can enrich the variety of the dynamical features of solutions for higher-dimensional nonlinear evolution equations.

  16. Conditional Stability of Solitary-Wave Solutions for Generalized Compound KdV Equation and Generalized Compound KdV-Burgers Equation

    International Nuclear Information System (INIS)

    Zhang Weiguo; Dong Chunyan; Fan Engui

    2006-01-01

    In this paper, we discuss conditional stability of solitary-wave solutions in the sense of Liapunov for the generalized compound KdV equation and the generalized compound KdV-Burgers equations. Linear stability of the exact solitary-wave solutions is proved for the above two types of equations when the small disturbance of travelling wave form satisfies some special conditions.

  17. The strongly generalized double difference χ sequence spaces defined by a modulus - doi: 10.4025/actascitechnol.v35i4.16184

    Directory of Open Access Journals (Sweden)

    Subramanian Nagarajan

    2013-10-01

    Full Text Available In this paper we introduce the strongly generalized difference sequence spaces of modulus function and is a non-negative four dimensional matrix of complex numbers and (pi(mn is a sequence of positive real numbers. We also give natural relationship between strongly generalized difference summable sequences with respect of modulus. We examine some topological properties of the above spaces and investigate some inclusion relations between these spaces.  

  18. Identifying generalized Fitzhugh-Nagumo equation from a numerical solution of Hodgkin-Huxley model

    Directory of Open Access Journals (Sweden)

    Nikola V. Georgiev

    2003-01-01

    Full Text Available An analytic time series in the form of numerical solution (in an appropriate finite time interval of the Hodgkin-Huxley current clamped (HHCC system of four differential equations, well known in the neurophysiology as an exact empirical model of excitation of a giant axon of Loligo, is presented. Then we search for a second-order differential equation of generalized Fitzhugh-Nagumo (GFN type, having as a solution the given single component (action potential of the numerical solution. The given time series is used as a basis for reconstructing orders, powers, and coefficients of the polynomial right-hand sides of GFN equation approximately governing the process of action potential. For this purpose, a new geometrical method for determining phase space dimension of the unknown dynamical system (GFN equation and a specific modification of least squares method for identifying unknown coefficients are developed and applied.

  19. General exact solution for homogeneous time-dependent self-gravitating perfect fluids

    International Nuclear Information System (INIS)

    Gaete, P.; Hojman, R.

    1988-01-01

    A procedure to obtain the general exact solution of Einstein equations for a self-gravitating spherically-symmetric static perfect fluid obeying an arbitrary equation of state, is applied to time-dependent Kantowsky-Sachs line elements (with spherical, planar and hyperbolic symmetry). As in the static case, the solution is generated by an arbitrary function of the independent variable and its first derivative. To illustrate the results, the whole family of (plane-symmetric) solutions with a ''gamma-law'' equation of state is explicity obtained in terms of simple known functions. It is also shown that, while in the static plane-symmtric line elements, every metric is in one to one correspondence with a ''partner-metric'' (both originated from the same generatrix function), in this case every generatrix function univocally determines one metric. (author) [pt

  20. General properties of solutions to inhomogeneous Black-Scholes equations with discontinuous maturity payoffs

    Science.gov (United States)

    O, Hyong-Chol; Jo, Jong-Jun; Kim, Ji-Sok

    2016-02-01

    We provide representations of solutions to terminal value problems of inhomogeneous Black-Scholes equations and study such general properties as min-max estimates, gradient estimates, monotonicity and convexity of the solutions with respect to the stock price variable, which are important for financial security pricing. In particular, we focus on finding representation of the gradient (with respect to the stock price variable) of solutions to the terminal value problems with discontinuous terminal payoffs or inhomogeneous terms. Such terminal value problems are often encountered in pricing problems of compound-like options such as Bermudan options or defaultable bonds with discrete default barrier, default intensity and endogenous default recovery. Our results can be used in pricing real defaultable bonds under consideration of existence of discrete coupons or taxes on coupons.

  1. Black holes in the Universe: Generalized Lemaitre-Tolman-Bondi solutions

    International Nuclear Information System (INIS)

    Gao Changjun; Chen Xuelei; Shen Yougen; Faraoni, Valerio

    2011-01-01

    We present new exact solutions which presumably describe black holes in the background of a spatially flat, pressureless dark-matter- or dark matter plus dark energy (DM+DE)- or quintom-dominated Universe. These solutions generalize Lemaitre-Tolman-Bondi metrics. For a dark-matter- or (DM+DE)-dominated universe, the area of the black hole apparent horizon (AH) decreases with the expansion of the Universe while that of the cosmic AH increases. However, for a quintom-dominated universe, the black hole AH first shrinks and then expands, while the cosmic AH first expands and then shrinks. A (DM+DE)-dominated universe containing a black hole will evolve to the Schwarzschild-de Sitter solution with both AHs approaching constant size. In a quintom-dominated universe, the black hole and cosmic AHs will coincide at a certain time, after which the singularity becomes naked, violating cosmic censorship.

  2. Asymptotics for Large Time of Global Solutions to the Generalized Kadomtsev-Petviashvili Equation

    Science.gov (United States)

    Hayashi, Nakao; Naumkin, Pavel I.; Saut, Jean-Claude

    We study the large time asymptotic behavior of solutions to the generalized Kadomtsev-Petviashvili (KP) equations where σ= 1 or σ=- 1. When ρ= 2 and σ=- 1, (KP) is known as the KPI equation, while ρ= 2, σ=+ 1 corresponds to the KPII equation. The KP equation models the propagation along the x-axis of nonlinear dispersive long waves on the surface of a fluid, when the variation along the y-axis proceeds slowly [10]. The case ρ= 3, σ=- 1 has been found in the modeling of sound waves in antiferromagnetics [15]. We prove that if ρ>= 3 is an integer and the initial data are sufficiently small, then the solution u of (KP) satisfies the following estimates: for all t∈R, where κ= 1 if ρ= 3 and κ= 0 if ρ>= 4. We also find the large time asymptotics for the solution.

  3. Effect of stochastic gating on channel-facilitated transport of non-interacting and strongly repelling solutes

    Science.gov (United States)

    Berezhkovskii, Alexander M.; Bezrukov, Sergey M.

    2017-08-01

    Ligand- or voltage-driven stochastic gating—the structural rearrangements by which the channel switches between its open and closed states—is a fundamental property of biological membrane channels. Gating underlies the channel's ability to respond to different stimuli and, therefore, to be functionally regulated by the changing environment. The accepted understanding of the gating effect on the solute flux through the channel is that the mean flux is the product of the flux through the open channel and the probability of finding the channel in the open state. Here, using a diffusion model of channel-facilitated transport, we show that this is true only when the gating is much slower than the dynamics of solute translocation through the channel. If this condition breaks, the mean flux could differ from this simple estimate by orders of magnitude.

  4. Regular Bulk Solutions in Brane-Worlds with Inhomogeneous Dust and Generalized Dark Radiation

    International Nuclear Information System (INIS)

    Rocha, Roldão da; Kuerten, A. M.; Herrera-Aguilar, A.

    2015-01-01

    From the dynamics of a brane-world with matter fields present in the bulk, the bulk metric and the black string solution near the brane are generalized, when both the dynamics of inhomogeneous dust/generalized dark radiation on the brane-world and inhomogeneous dark radiation in the bulk as well are considered as exact dynamical collapse solutions. Based on the analysis on the inhomogeneous static exterior of a collapsing sphere of homogeneous dark radiation on the brane, the associated black string warped horizon is studied, as well as the 5D bulk metric near the brane. Moreover, the black string and the bulk are shown to be more regular upon time evolution, for suitable values for the dark radiation parameter in the model, by analyzing the soft physical singularities

  5. Holder continuity of bounded weak solutions to generalized parabolic p-Laplacian equations II: singular case

    Directory of Open Access Journals (Sweden)

    Sukjung Hwang

    2015-11-01

    Full Text Available Here we generalize quasilinear parabolic p-Laplacian type equations to obtain the prototype equation $$ u_t - \\hbox{div} \\Big(\\frac{g(|Du|}{|Du|} Du\\Big = 0, $$ where g is a nonnegative, increasing, and continuous function trapped in between two power functions $|Du|^{g_0 -1}$ and $|Du|^{g_1 -1}$ with $1generalization in the setting from Orlicz spaces, we provide a uniform proof with a single geometric setting that a bounded weak solution is locally Holder continuous with some degree of commonality between degenerate and singular types. By using geometric characters, our proof does not rely on any of alternatives which is based on the size of solutions.

  6. General solution of superconvergent sum rules for scattering of I=1 reggeons on baryons

    International Nuclear Information System (INIS)

    Grigoryan, A.A.; Khachatryan, G.N.

    1986-01-01

    Superconvergent sum rules for reggeon-particle scattering are applied to scattering of reggeons α i (i=π, ρ, A 2 ) with isospin I=1 on baryons with strangeness S=-1. The saturation scheme of these sum rules is determined on the basis of experimental data. Two series of baryon resonances with arbitrary isospins I and spins J=I+1/2 and J=I-1/2 are predicted. A general solution for vertices of interaction of these resonances with α i is found. Predictions for coupling vertices B α i B'(B, B'=Λ, Σ, Σ * ) agree well with the experiment. It is shown that the condition of sum rules saturation by minimal number of resonances brings to saturation schemes resulting from experimental data. A general solution of sum rules for scattering of α i reggeons on Ξ and Ω hyperons is analyzed

  7. An approximate JKR solution for a general contact, including rough contacts

    Science.gov (United States)

    Ciavarella, M.

    2018-05-01

    In the present note, we suggest a simple closed form approximate solution to the adhesive contact problem under the so-called JKR regime. The derivation is based on generalizing the original JKR energetic derivation assuming calculation of the strain energy in adhesiveless contact, and unloading at constant contact area. The underlying assumption is that the contact area distributions are the same as under adhesiveless conditions (for an appropriately increased normal load), so that in general the stress intensity factors will not be exactly equal at all contact edges. The solution is simply that the indentation is δ =δ1 -√{ 2 wA‧ /P″ } where w is surface energy, δ1 is the adhesiveless indentation, A‧ is the first derivative of contact area and P‧‧ the second derivative of the load with respect to δ1. The solution only requires macroscopic quantities, and not very elaborate local distributions, and is exact in many configurations like axisymmetric contacts, but also sinusoidal waves contact and correctly predicts some features of an ideal asperity model used as a test case and not as a real description of a rough contact problem. The solution permits therefore an estimate of the full solution for elastic rough solids with Gaussian multiple scales of roughness, which so far was lacking, using known adhesiveless simple results. The result turns out to depend only on rms amplitude and slopes of the surface, and as in the fractal limit, slopes would grow without limit, tends to the adhesiveless result - although in this limit the JKR model is inappropriate. The solution would also go to adhesiveless result for large rms amplitude of roughness hrms, irrespective of the small scale details, and in agreement with common sense, well known experiments and previous models by the author.

  8. A general solution of the BV-master equation and BRST field theories

    International Nuclear Information System (INIS)

    Dayi, O.F.

    1993-05-01

    For a class of first order gauge theories it was shown that the proper solution of the BV-master equation can be obtained straightforwardly. Here we present the general condition which the gauge generators should satisfy to conclude that this construction is relevant. The general procedure is illustrated by its application to the Chern-Simons theory in any odd-dimension. Moreover, it is shown that this formalism is also applicable to BRST field theories, when one replaces the role of the exterior derivative with the BRST charge of first quantization. (author). 17 refs

  9. Exact soliton solutions of the generalized Gross-Pitaevskii equation based on expansion method

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2014-06-01

    Full Text Available We give a more generalized treatment of the 1D generalized Gross-Pitaevskii equation (GGPE with variable term coefficients. External harmonic trapping potential is fully considered and the nonlinear interaction term is of arbitrary polytropic index of superfluid wave function. We also eliminate the interdependence between variable coefficients of the equation terms avoiding the restrictions that occur in some other works. The exact soliton solutions of the GGPE are obtained through the delicate combined utilization of modified lens-type transformation and F-expansion method with dominant features like soliton type properties highlighted.

  10. Asymptotic profile of global solutions to the generalized double dispersion equation via the nonlinear term

    Science.gov (United States)

    Wang, Yu-Zhu; Wei, Changhua

    2018-04-01

    In this paper, we investigate the initial value problem for the generalized double dispersion equation in R^n. Weighted decay estimate and asymptotic profile of global solutions are established for n≥3 . The global existence result was already proved by Kawashima and the first author in Kawashima and Wang (Anal Appl 13:233-254, 2015). Here, we show that the nonlinear term plays an important role in this asymptotic profile.

  11. Conservation Laws and Traveling Wave Solutions of a Generalized Nonlinear ZK-BBM Equation

    Directory of Open Access Journals (Sweden)

    Khadijo Rashid Adem

    2014-01-01

    Full Text Available We study a generalized two-dimensional nonlinear Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZK-BBM equation, which is in fact Benjamin-Bona-Mahony equation formulated in the ZK sense. Conservation laws for this equation are constructed by using the new conservation theorem due to Ibragimov and the multiplier method. Furthermore, traveling wave solutions are obtained by employing the (G'/G-expansion method.

  12. Exact periodic solutions of the sixth-order generalized Boussinesq equation

    International Nuclear Information System (INIS)

    Kamenov, O Y

    2009-01-01

    This paper examines a class of nonlinear sixth-order generalized Boussinesq-like equations (SGBE): u tt = u xx + 3(u 2 ) xx + u xxxx + αu xxxxxx , α in R, depending on the positive parameter α. Hirota's bilinear transformation method is applied to the above class of non-integrable equations and exact periodic solutions have been obtained. The results confirmed the well-known nonlinear superposition principle.

  13. On exact solutions for oscillatory flows in a generalized Burgers fluid with slip condition

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Tasawar [Dept. of Mathematics, Quaid-i-Azam Univ., Islamabad (Pakistan); Dept. of Mathematics, Coll. of Sciences, KS Univ., Riyadh (Saudi Arabia); Najam, Saher [Theoretical Plasma Physics Div., PINSTECH, P.O. Nilore, Islamabad (Pakistan); Sajid, Muhammad; Mesloub, Said [Dept. of Mathematics, Coll. of Sciences, KS Univ., Riyadh (Saudi Arabia); Ayub, Muhammad [Dept. of Mathematics, Quaid-i-Azam Univ., Islamabad (Pakistan)

    2010-05-15

    An analysis is performed for the slip effects on the exact solutions of flows in a generalized Burgers fluid. The flow modelling is based upon the magnetohydrodynamic (MHD) nature of the fluid and modified Darcy law in a porous space. Two illustrative examples of oscillatory flows are considered. The results obtained are compared with several limiting cases. It has been shown here that the derived results hold for all values of frequencies including the resonant frequency. (orig.)

  14. A General Construction of Linear Differential Equations with Solutions of Prescribed Properties

    Czech Academy of Sciences Publication Activity Database

    Neuman, František

    2004-01-01

    Roč. 17, č. 1 (2004), s. 71-76 ISSN 0893-9659 R&D Projects: GA AV ČR IAA1019902; GA ČR GA201/99/0295 Institutional research plan: CEZ:AV0Z1019905 Keywords : construction of linear differential equations * prescribed qualitative properties of solutions Subject RIV: BA - General Mathematics Impact factor: 0.414, year: 2004

  15. Exact solutions of generalized Calogero-Sutherland models: BCN and CN cases

    International Nuclear Information System (INIS)

    Kojima, M.; Ohta, N.

    1996-01-01

    Using a collective field method, we obtain explicit solutions of the generalized Calogero-Sutherland models that are characterized by the roots of the classical groups B N and C N . Starting from the explicit wave functions for the A N-1 type expressed in terms of the singular vectors of the W N algebra, we give a systematic method to construct wave functions and derive energy eigenvalues for other types of theories. (orig.)

  16. Characterization of 'strong-fragile' behaviour of glass-forming aqueous solutions by neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Branca, C.; Faraone, A.; Galli, G.; Magazu' , S.; Maisano, G.; Migliardo, F. [Dipartimento di Fisica and INFM, Universita' di Messina, PO Box 55, 98166 Messina (Italy)

    2002-07-01

    Neutron-scattering measurements have been performed on trehalose/H{sub 2}O and sucrose/H{sub 2}O mixtures by using the spectrometer MIBEMOL at the Laboratoire Leon Brillouin (LLB, Saclay) as a function of temperature and concentration. In order to characterize the different rigidities of both the disaccharide/H{sub 2}O mixtures, we have evaluated the R{sub 1}(T{sub g}) parameter connected to the 'strong-fragile' classification of the systems according to Angell's nomenclature. (orig.)

  17. Flexible polyelectrolyte chain in a strong electrolyte solution: Insight into equilibrium properties and force-extension behavior from mesoscale simulation

    Science.gov (United States)

    Malekzadeh Moghani, Mahdy; Khomami, Bamin

    2016-01-01

    Macromolecules with ionizable groups are ubiquitous in biological and synthetic systems. Due to the complex interaction between chain and electrostatic decorrelation lengths, both equilibrium properties and micro-mechanical response of dilute solutions of polyelectrolytes (PEs) are more complex than their neutral counterparts. In this work, the bead-rod micromechanical description of a chain is used to perform hi-fidelity Brownian dynamics simulation of dilute PE solutions to ascertain the self-similar equilibrium behavior of PE chains with various linear charge densities, scaling of the Kuhn step length (lE) with salt concentration cs and the force-extension behavior of the PE chain. In accord with earlier theoretical predictions, our results indicate that for a chain with n Kuhn segments, lE ˜ cs-0.5 as linear charge density approaches 1/n. Moreover, the constant force ensemble simulation results accurately predict the initial non-linear force-extension region of PE chain recently measured via single chain experiments. Finally, inspired by Cohen's extraction of Warner's force law from the inverse Langevin force law, a novel numerical scheme is developed to extract a new elastic force law for real chains from our discrete set of force-extension data similar to Padè expansion, which accurately depicts the initial non-linear region where the total Kuhn length is less than the thermal screening length.

  18. Trial function method and exact solutions to the generalized nonlinear Schrödinger equation with time-dependent coefficient

    International Nuclear Information System (INIS)

    Cao Rui; Zhang Jian

    2013-01-01

    In this paper, the trial function method is extended to study the generalized nonlinear Schrödinger equation with time-dependent coefficients. On the basis of a generalized traveling wave transformation and a trial function, we investigate the exact envelope traveling wave solutions of the generalized nonlinear Schrödinger equation with time-dependent coefficients. Taking advantage of solutions to trial function, we successfully obtain exact solutions for the generalized nonlinear Schrödinger equation with time-dependent coefficients under constraint conditions. (general)

  19. Shock-jump conditions in a general medium: weak-solution approach

    Science.gov (United States)

    Forbes, L. K.; Krzysik, O. A.

    2017-05-01

    General conservation laws are considered, and the concept of a weak solution is extended to the case of an equation involving three space variables and time. Four-dimensional vector calculus is used to develop general jump conditions at a shock wave in the material. To illustrate the use of this result, jump conditions at a shock in unsteady three-dimensional compressible gas flow are presented. It is then proved rigorously that these reduce to the commonly assumed conditions in coordinates normal and tangential to the shock face. A similar calculation is also outlined for an unsteady three-dimensional shock in magnetohydrodynamics, and in a chemically reactive fluid. The technique is available for determining shock-jump conditions in quite general continuous media.

  20. On generalized Melvin solution for the Lie algebra E{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Bolokhov, S.V. [Peoples' Friendship University of Russia (RUDN University), Moscow (Russian Federation); Ivashchuk, V.D. [VNIIMS, Center for Gravitation and Fundamental Metrology, Moscow (Russian Federation); Peoples' Friendship University of Russia (RUDN University), Moscow (Russian Federation)

    2017-10-15

    A multidimensional generalization of Melvin's solution for an arbitrary simple Lie algebra G is considered. The gravitational model in D dimensions, D ≥ 4, contains n 2-forms and l ≥ n scalar fields, where n is the rank of G. The solution is governed by a set of n functions H{sub s}(z) obeying n ordinary differential equations with certain boundary conditions imposed. It was conjectured earlier that these functions should be polynomials (the so-called fluxbrane polynomials). The polynomials H{sub s}(z), s = 1,.., 6, for the Lie algebra E{sub 6} are obtained and a corresponding solution for l = n = 6 is presented. The polynomials depend upon integration constants Q{sub s}, s = 1,.., 6. They obey symmetry and duality identities. The latter ones are used in deriving asymptotic relations for solutions at large distances. The power-law asymptotic relations for E{sub 6}-polynomials at large z are governed by the integer-valued matrix ν = A{sup -1}(I + P), where A{sup -1} is the inverse Cartan matrix, I is the identity matrix and P is a permutation matrix, corresponding to a generator of the Z{sub 2}-group of symmetry of the Dynkin diagram. The 2-form fluxes Φ{sup s}, s = 1,.., 6, are calculated. (orig.)

  1. Solution method for the unsteady incompressible Navier-Stokes equations in generalized coordinate systems

    International Nuclear Information System (INIS)

    Rosenfeld, M.; Kwak, D.; Vinokur, M.

    1988-01-01

    A solution method based on a fractional step approach is developed for obtaining time-dependent solutions of the three-dimensional, incompressible Navier-Stokes equations in generalized coordinate systems. The governing equations are discretized conservatively by finite volumes using a staggered mesh system. The primitive variable formulation uses the volume fluxes across the faces of each computational cell as dependent variables. This procedure, combined with accurate and consistent approximations of geometric parameters, is done to satisfy the discretized mass conservation equation to machine accuracy as well as to gain favorable convergence properties of the Poisson solver. The discretized equations are second-order-accurate in time and space and no smoothing terms are added. An approximate-factorization scheme is implemented in solving the momentum equations. A novel ZEBRA scheme with four-color ordering is devised for the efficient solution of the Poisson equation. Several two and three-dimensional solutions are compared with other numerical and experimental results to validate the present method. 23 references

  2. New periodic and soliton wave solutions for the generalized Zakharov system and (2 + 1)-dimensional Nizhnik-Novikov-Veselov system

    International Nuclear Information System (INIS)

    Borhanifar, A.; Kabir, M.M.; Maryam Vahdat, L.

    2009-01-01

    In this paper, the Exp-function method is used to obtain generalized solitonary solutions and periodic solutions of the Generalized Zakharov system and (2 + 1)-dimensional Nizhnik-Novikov-Veselov system. It is shown that the Exp-function method, with the help of symbolic computation, provides a powerful mathematical tool for solving nonlinear evolution equations in mathematical physics.

  3. Existence and Solution-representation of IVP for LFDE with Generalized Riemann-Liouville fractional derivatives and $n$ terms

    OpenAIRE

    Kim, Myong-Ha; Ri, Guk-Chol; O, Hyong-Chol

    2013-01-01

    This paper provides the existence and representation of solution to an initial value problem for the general multi-term linear fractional differential equation with generalized Riemann-Liouville fractional derivatives and constant coefficients by using operational calculus of Mikusinski's type. We prove that the initial value problem has the solution of if and only if some initial values should be zero.

  4. Holographic thermalization and generalized Vaidya-AdS solutions in massive gravity

    Science.gov (United States)

    Hu, Ya-Peng; Zeng, Xiao-Xiong; Zhang, Hai-Qing

    2017-02-01

    We investigate the effect of massive graviton on the holographic thermalization process. Before doing this, we first find out the generalized Vaidya-AdS solutions in the de Rham-Gabadadze-Tolley (dRGT) massive gravity by directly solving the gravitational equations. Then, we study the thermodynamics of these Vaidya-AdS solutions by using the Misner-Sharp energy and unified first law, which also shows that the massive gravity is in a thermodynamic equilibrium state. Moreover, we adopt the two-point correlation function at equal time to explore the thermalization process in the dual field theory, and to see how the graviton mass parameter affects this process from the viewpoint of AdS/CFT correspondence. Our results show that the graviton mass parameter will increase the holographic thermalization process.

  5. Holographic thermalization and generalized Vaidya-AdS solutions in massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Ya-Peng, E-mail: huyp@nuaa.edu.cn [College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Instituut-Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, Leiden 2333 CA (Netherlands); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190 (China); Zeng, Xiao-Xiong, E-mail: xxzengphysics@163.com [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190 (China); School of Science, Chongqing Jiaotong University, Chongqing 400074 (China); Zhang, Hai-Qing, E-mail: H.Q.Zhang@uu.nl [Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC Utrecht (Netherlands)

    2017-02-10

    We investigate the effect of massive graviton on the holographic thermalization process. Before doing this, we first find out the generalized Vaidya-AdS solutions in the de Rham–Gabadadze–Tolley (dRGT) massive gravity by directly solving the gravitational equations. Then, we study the thermodynamics of these Vaidya-AdS solutions by using the Misner–Sharp energy and unified first law, which also shows that the massive gravity is in a thermodynamic equilibrium state. Moreover, we adopt the two-point correlation function at equal time to explore the thermalization process in the dual field theory, and to see how the graviton mass parameter affects this process from the viewpoint of AdS/CFT correspondence. Our results show that the graviton mass parameter will increase the holographic thermalization process.

  6. Inverse planning for x-ray rotation therapy: a general solution of the inverse problem

    International Nuclear Information System (INIS)

    Oelfke, U.; Bortfeld, T.

    1999-01-01

    Rotation therapy with photons is currently under investigation for the delivery of intensity modulated radiotherapy (IMRT). An analytical approach for inverse treatment planning of this radiotherapy technique is described. The inverse problem for the delivery of arbitrary 2D dose profiles is first formulated and then solved analytically. In contrast to previously applied strategies for solving the inverse problem, it is shown that the most general solution for the fluence profiles consists of two independent solutions of different parity. A first analytical expression for both fluence profiles is derived. The mathematical derivation includes two different strategies, an elementary expansion of fluence and dose into polynomials and a more practical approach in terms of Fourier transforms. The obtained results are discussed in the context of previous work on this problem. (author)

  7. Analytical general solutions for static wormholes in f(R,T) gravity

    Science.gov (United States)

    Moraes, P. H. R. S.; Correa, R. A. C.; Lobato, R. V.

    2017-07-01

    Originally proposed as a tool for teaching the general theory of relativity, wormholes are today approached in many different ways and are seeing as an efficient alternative for interstellar and time travel. Attempts to achieve observational signatures of wormholes have been growing as the subject has become more and more popular. In this article we investigate some f(R,T) theoretical predictions for static wormholes, i.e., wormholes whose throat radius can be considered a constant. Since the T-dependence in f(R,T) gravity is due to the consideration of quantum effects, a further investigation of wormholes in such a theory is well motivated. We obtain the energy conditions of static wormholes in f(R,T) gravity and apply an analytical approach to find their physical and geometrical solutions. We highlight that our results are in agreement with previous solutions and assumptions presented in the literature.

  8. Holographic thermalization and generalized Vaidya-AdS solutions in massive gravity

    International Nuclear Information System (INIS)

    Hu, Ya-Peng; Zeng, Xiao-Xiong; Zhang, Hai-Qing

    2017-01-01

    We investigate the effect of massive graviton on the holographic thermalization process. Before doing this, we first find out the generalized Vaidya-AdS solutions in the de Rham–Gabadadze–Tolley (dRGT) massive gravity by directly solving the gravitational equations. Then, we study the thermodynamics of these Vaidya-AdS solutions by using the Misner–Sharp energy and unified first law, which also shows that the massive gravity is in a thermodynamic equilibrium state. Moreover, we adopt the two-point correlation function at equal time to explore the thermalization process in the dual field theory, and to see how the graviton mass parameter affects this process from the viewpoint of AdS/CFT correspondence. Our results show that the graviton mass parameter will increase the holographic thermalization process.

  9. Analytical Solution of Displacements Around Circular Openings in Generalized Hoek-Brown Rocks

    Directory of Open Access Journals (Sweden)

    Huang Houxu

    2017-09-01

    Full Text Available The rock in plastic region is divided into numbers of elements by the slip lines, resulted from shear localization. During the deformation process, the elements will slip along the slip lines and the displacement field is discontinuous. Slip lines around circular opening in isotropic rock, subjected to hydrostatic stress are described by the logarithmic spirals. Deformation of the plastic region is mainly attributed to the slippage. Relationship between the shear stresses and slippage on slip lines is presented, based on the study of Revuzhenko and Shemyakin. Relations between slippage and rock failure are described, based on the elastic-brittle-plastic model. An analytical solution is presented for the plane strain analysis of displacements around circular openings in the Generalized Hoek-Brown rock. With properly choosing of slippage parameters, results obtained by using the proposed solution agree well with those presented in published sources.

  10. Analytical general solutions for static wormholes in f ( R , T ) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, P.H.R.S.; Correa, R.A.C.; Lobato, R.V., E-mail: moraes.phrs@gmail.com, E-mail: fis04132@gmail.com, E-mail: ronaldo.lobato@icranet.org [ITA-Instituto Tecnológico de Aeronáutica, 12228-900, São José dos Campos, SP (Brazil)

    2017-07-01

    Originally proposed as a tool for teaching the general theory of relativity, wormholes are today approached in many different ways and are seeing as an efficient alternative for interstellar and time travel. Attempts to achieve observational signatures of wormholes have been growing as the subject has become more and more popular. In this article we investigate some f ( R , T ) theoretical predictions for static wormholes, i.e., wormholes whose throat radius can be considered a constant. Since the T -dependence in f ( R , T ) gravity is due to the consideration of quantum effects, a further investigation of wormholes in such a theory is well motivated. We obtain the energy conditions of static wormholes in f ( R , T ) gravity and apply an analytical approach to find their physical and geometrical solutions. We highlight that our results are in agreement with previous solutions and assumptions presented in the literature.

  11. Existence of solution for a general fractional advection-dispersion equation

    Science.gov (United States)

    Torres Ledesma, César E.

    2018-05-01

    In this work, we consider the existence of solution to the following fractional advection-dispersion equation -d/dt ( p {_{-∞}}It^{β }(u'(t)) + q {t}I_{∞}^{β }(u'(t))) + b(t)u = f(t, u(t)),t\\in R where β \\in (0,1) , _{-∞}It^{β } and tI_{∞}^{β } denote left and right Liouville-Weyl fractional integrals of order β respectively, 0continuous functions. Due to the general assumption on the constant p and q, the problem (0.1) does not have a variational structure. Despite that, here we study it performing variational methods, combining with an iterative technique, and give an existence criteria of solution for the problem (0.1) under suitable assumptions.

  12. Exact Solutions of Fragmentation Equations with General Fragmentation Rates and Separable Particles Distribution Kernels

    Directory of Open Access Journals (Sweden)

    S. C. Oukouomi Noutchie

    2014-01-01

    Full Text Available We make use of Laplace transform techniques and the method of characteristics to solve fragmentation equations explicitly. Our result is a breakthrough in the analysis of pure fragmentation equations as this is the first instance where an exact solution is provided for the fragmentation evolution equation with general fragmentation rates. This paper is the key for resolving most of the open problems in fragmentation theory including “shattering” and the sudden appearance of infinitely many particles in some systems with initial finite particles number.

  13. Lie group classification and exact solutions of the generalized Kompaneets equations

    Directory of Open Access Journals (Sweden)

    Oleksii Patsiuk

    2015-04-01

    Full Text Available We study generalized Kompaneets equations (GKEs with one functional parameter, and using the Lie-Ovsiannikov algorithm, we carried out the group classification. It is shown that the kernel algebra of the full groups of the GKEs is the one-dimensional Lie algebra. Using the direct method, we find the equivalence group. We obtain six non-equivalent (up to transformations from the equivalence group GKEs that allow wider invariance algebras than the kernel one. We find a number of exact solutions of the non-linear GKE which has the maximal symmetry properties.

  14. N=1 domain wall solutions of massive type II supergravity as generalized geometries

    International Nuclear Information System (INIS)

    Louis, J.

    2006-05-01

    We study N=1 domain wall solutions of type IIB supergravity compactified on a Calabi-Yau manifold in the presence of RR and NS electric and magnetic fluxes. We show that the dynamics of the scalar fields along the direction transverse to the domain wall is described by gradient flow equations controlled by a superpotential W. We then provide a geometrical interpretation of the gradient flow equations in terms of the mirror symmetric compactification of type IIA. They correspond to a set of generalized Hitchin flow equations of a manifold with SU(3) x SU(3)structure which is fibered over the direction transverse to the domain wall. (Orig.)

  15. Classic tests of General Relativity described by brane-based spherically symmetric solutions

    Energy Technology Data Exchange (ETDEWEB)

    Cuzinatto, R.R. [Universidade Federal de Alfenas, Instituto de Ciencia e Tecnologia, Pocos de Caldas, MG (Brazil); Pompeia, P.J. [Departamento de Ciencia e Tecnologia Aeroespacial, Instituto de Fomento e Coordenacao Industrial, Sao Jose dos Campos, SP (Brazil); Departamento de Ciencia e Tecnologia Aeroespacial, Instituto Tecnologico de Aeronautica, Sao Jose dos Campos, SP (Brazil); De Montigny, M. [University of Alberta, Theoretical Physics Institute, Edmonton, AB (Canada); University of Alberta, Campus Saint-Jean, Edmonton, AB (Canada); Khanna, F.C. [University of Alberta, Theoretical Physics Institute, Edmonton, AB (Canada); TRIUMF, Vancouver, BC (Canada); University of Victoria, Department of Physics and Astronomy, PO box 1700, Victoria, BC (Canada); Silva, J.M.H. da [Universidade Estadual Paulista, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil)

    2014-08-15

    We discuss a way to obtain information about higher dimensions from observations by studying a brane-based spherically symmetric solution. The three classic tests of General Relativity are analyzed in detail: the perihelion shift of the planet Mercury, the deflection of light by the Sun, and the gravitational redshift of atomic spectral lines. The braneworld version of these tests exhibits an additional parameter b related to the fifth-coordinate. This constant b can be constrained by comparison with observational data for massive and massless particles. (orig.)

  16. The General Analytic Solution of a Functional Equation of Addition Type

    OpenAIRE

    Braden, H. W.; Buchstaber, V. M.

    1995-01-01

    The general analytic solution to the functional equation $$ \\phi_1(x+y)= { { \\biggl|\\matrix{\\phi_2(x)&\\phi_2(y)\\cr\\phi_3(x)&\\phi_3(y)\\cr}\\biggr|} \\over { \\biggl|\\matrix{\\phi_4(x)&\\phi_4(y)\\cr\\phi_5(x)&\\phi_5(y)\\cr}\\biggr|} } $$ is characterised. Up to the action of the symmetry group, this is described in terms of Weierstrass elliptic functions. We illustrate our theory by applying it to the classical addition theorems of the Jacobi elliptic functions and the functional equations $$ \\phi_1(x+...

  17. General Series Solutions for Stresses and Displacements in an Inner-fixed Ring

    Science.gov (United States)

    Jiao, Yongshu; Liu, Shuo; Qi, Dexuan

    2018-03-01

    The general series solution approach is provided to get the stress and displacement fields in the inner-fixed ring. After choosing an Airy stress function in series form, stresses are expressed by infinite coefficients. Displacements are obtained by integrating the geometric equations. For an inner-fixed ring, the arbitrary loads acting on outer edge are extended into two sets of Fourier series. The zero displacement boundary conditions on inner surface are utilized. Then the stress (and displacement) coefficients are expressed by loading coefficients. A numerical example shows the validity of this approach.

  18. Exact periodic solutions of the sixth-order generalized Boussinesq equation

    Energy Technology Data Exchange (ETDEWEB)

    Kamenov, O Y [Department of Applied Mathematics and Informatics, Technical University of Sofia, PO Box 384, 1000 Sofia (Bulgaria)], E-mail: okam@abv.bg

    2009-09-18

    This paper examines a class of nonlinear sixth-order generalized Boussinesq-like equations (SGBE): u{sub tt} = u{sub xx} + 3(u{sup 2}){sub xx} + u{sub xxxx} + {alpha}u{sub xxxxxx}, {alpha} in R, depending on the positive parameter {alpha}. Hirota's bilinear transformation method is applied to the above class of non-integrable equations and exact periodic solutions have been obtained. The results confirmed the well-known nonlinear superposition principle.

  19. A generalization of the quantum Rabi model: exact solution and spectral structure

    International Nuclear Information System (INIS)

    Eckle, Hans-Peter; Johannesson, Henrik

    2017-01-01

    We consider a generalization of the quantum Rabi model where the two-level system and the single-mode cavity oscillator are coupled by an additional Stark-like term. By adapting a method recently introduced by Braak (2011 Phys. Rev. Lett . 107 100401), we solve the model exactly. The low-lying spectrum in the experimentally relevant ultrastrong and deep strong regimes of the Rabi coupling is found to exhibit two striking features absent from the original quantum Rabi model: avoided level crossings for states of the same parity and an anomalously rapid onset of two-fold near-degenerate levels as the Rabi coupling increases. (paper)

  20. The general Klein-Gordon-Schroedinger system: modulational instability and exact solutions

    International Nuclear Information System (INIS)

    Tang Xiaoyan; Ding Wei

    2008-01-01

    The general Klein-Gordon-Schroedinger (gKGS) system is studied where the cubic auto-interactions are introduced in both the nonlinear Schroedinger and the nonlinear Klein-Gordon fields. We first investigate the modulational instability (MI) of the system, and thus derive the general dispersion relation between the frequency and wavenumber of the modulating perturbations, which demonstrates many possibilities for the MI regions. Using the travelling wave reduction, the gKGS system is greatly simplified. Via a simple function expansion method, we obtain some exact travelling wave solutions. Under some special parameter values, some representative wave structures are graphically displayed including the kink, anti-kink, bright, dark, grey and periodic solitons

  1. Perturbed invariant subspaces and approximate generalized functional variable separation solution for nonlinear diffusion-convection equations with weak source

    Science.gov (United States)

    Xia, Ya-Rong; Zhang, Shun-Li; Xin, Xiang-Peng

    2018-03-01

    In this paper, we propose the concept of the perturbed invariant subspaces (PISs), and study the approximate generalized functional variable separation solution for the nonlinear diffusion-convection equation with weak source by the approximate generalized conditional symmetries (AGCSs) related to the PISs. Complete classification of the perturbed equations which admit the approximate generalized functional separable solutions (AGFSSs) is obtained. As a consequence, some AGFSSs to the resulting equations are explicitly constructed by way of examples.

  2. Studies on entrained DNPPA separation by charcoal adsorption from aqueous solutions generated during uranium recovery from strong phosphoric acid

    International Nuclear Information System (INIS)

    Singh, D.K.; Vijayalakshmi, R.; Singh, H.

    2010-01-01

    During the separation of metal ions by solvent extraction technique in hydrometallurgical operations, organic solvents either get entrained or dissolved in various types of aqueous streams, which need to be separated out to prevent environmental pollution and solvent loss. Generally entrained solvents are separated on plant scale by parallel plate separators or by froth floatation cells, while the dissolved solvents are recovered either by organic diluent wash or by charcoal adsorption. A novel process has been developed to recover uranium from merchant grade phosphoric acid (MGA) employing synergistic mixture of DNPPA (di-nonyl phenyl phosphoric acid ) and TOPO (tri-n-octyl phosphine oxide) dissolved in petrofin. After recovery of uranium, MGA has to be returned to the host company for the production of fertilizer. This MGA has to be free from any contamination due to DNPPA and TOPO. Separation of DNPPA and TOPO from MGA by diluent wash method has been reported. There is no information available in literature for the separation of DNPPA and TOPO from such aqueous streams by carbon adsorption. The present investigation describes the methodology based on charcoal adsorption study (batch and continuous column operation) to separate DNPPA from MGA. Three different types of charcoal namely coconut shell based, coal based and pelletized charcoal were evaluated for DNPPA separation from MGA containing 100 mg/L DNPPA. It was found that the % DNPPA adsorptions in single contact (0.5g C/50 ml) were 57, 34 and 10 in coconut shell, coal based and pelletised charcoal respectively. Based on the results, the coconut shell based charcoal was selected for further study. Adsorption of DNPPA by coconut shell based charcoal was investigated by carrying out the experiments with 50 ml MGA containing 770 mg/L DNPPA by adding 1 to 7 g charcoal respectively in separate beakers

  3. General solution of undersampling frequency conversion and its optimization for parallel photodisplacement imaging.

    Science.gov (United States)

    Nakata, Toshihiko; Ninomiya, Takanori

    2006-10-10

    A general solution of undersampling frequency conversion and its optimization for parallel photodisplacement imaging is presented. Phase-modulated heterodyne interference light generated by a linear region of periodic displacement is captured by a charge-coupled device image sensor, in which the interference light is sampled at a sampling rate lower than the Nyquist frequency. The frequencies of the components of the light, such as the sideband and carrier (which include photodisplacement and topography information, respectively), are downconverted and sampled simultaneously based on the integration and sampling effects of the sensor. A general solution of frequency and amplitude in this downconversion is derived by Fourier analysis of the sampling procedure. The optimal frequency condition for the heterodyne beat signal, modulation signal, and sensor gate pulse is derived such that undesirable components are eliminated and each information component is converted into an orthogonal function, allowing each to be discretely reproduced from the Fourier coefficients. The optimal frequency parameters that maximize the sideband-to-carrier amplitude ratio are determined, theoretically demonstrating its high selectivity over 80 dB. Preliminary experiments demonstrate that this technique is capable of simultaneous imaging of reflectivity, topography, and photodisplacement for the detection of subsurface lattice defects at a speed corresponding to an acquisition time of only 0.26 s per 256 x 256 pixel area.

  4. Cusping, transport and variance of solutions to generalized Fokker-Planck equations

    Science.gov (United States)

    Carnaffan, Sean; Kawai, Reiichiro

    2017-06-01

    We study properties of solutions to generalized Fokker-Planck equations through the lens of the probability density functions of anomalous diffusion processes. In particular, we examine solutions in terms of their cusping, travelling wave behaviours, and variance, within the framework of stochastic representations of generalized Fokker-Planck equations. We give our analysis in the cases of anomalous diffusion driven by the inverses of the stable, tempered stable and gamma subordinators, demonstrating the impact of changing the distribution of waiting times in the underlying anomalous diffusion model. We also analyse the cases where the underlying anomalous diffusion contains a Lévy jump component in the parent process, and when a diffusion process is time changed by an uninverted Lévy subordinator. On the whole, we present a combination of four criteria which serve as a theoretical basis for model selection, statistical inference and predictions for physical experiments on anomalously diffusing systems. We discuss possible applications in physical experiments, including, with reference to specific examples, the potential for model misclassification and how combinations of our four criteria may be used to overcome this issue.

  5. General N-Dark Soliton Solutions of the Multi-Component Mel'nikov System

    Science.gov (United States)

    Han, Zhong; Chen, Yong; Chen, Junchao

    2017-07-01

    A general form of N-dark soliton solutions of the multi-component Mel'nikov system are presented. Taking the coupled Mel'nikov system comprised of two-component short waves and one-component long wave as an example, its general N-dark-dark soliton solutions in Gram determinant form are constructed through the KP hierarchy reduction method. The dynamics of single dark-dark soliton and two dark-dark solitons are discussed in detail. It can be shown that the collisions of dark-dark solitons are elastic and energies of the solitons in different components completely transmit through. In addition, the dark-dark soliton bound states including both stationary and moving cases are also investigated. An interesting feature for the coupled Mel'nikov system is that the stationary dark-dark soliton bound states can exist for all possible combinations of nonlinearity coefficients including positive, negative and mixed types, while the moving case are possible when nonlinearity coefficients take opposite signs or they are both negative.

  6. General practice integration in Australia. Primary health services provider and consumer perceptions of barriers and solutions.

    Science.gov (United States)

    Appleby, N J; Dunt, D; Southern, D M; Young, D

    1999-08-01

    To identify practical examples of barriers and possible solutions to improve general practice integration with other health service providers. Twelve focus groups, including one conducted by teleconference, were held across Australia with GPs and non GP primary health service providers between May and September, 1996. Focus groups were embedded within concept mapping sessions, which were used to conceptually explore the meaning of integration in general practice. Data coding, organising and analysis were based on the techniques documented by Huberman and Miles. Barriers to integration were perceived to be principally due to the role and territory disputes between the different levels of government and their services, the manner in which the GP's role is currently defined, and the system of GP remuneration. Suggestions on ways to improve integration involved two types of strategies. The first involves initiatives implemented 'top down' through major government reform to service structures, including the expansion of the role of divisions of general practice, and structural changes to the GP remuneration systems. The second type of strategy suggested involves initiatives implemented from the 'bottom up' involving services such as hospitals (e.g. additional GP liaison positions) and the use of information technology to link services and share appropriate patient data. The findings support the need for further research and evaluation of initiatives aimed at achieving general practice integration at a systems level. There is little evidence to suggest which types of initiatives improve integration. However, general practice has been placed in the centre of the health care debate and is likely to remain central to the success of such initiatives. Clarification of the future role and authority of general practice will therefore be required if such integrative strategies are to be successful at a wider health system level.

  7. On a strong solution of the non-stationary Navier-Stokes equations under slip or leak boundary conditions of friction type

    Science.gov (United States)

    Kashiwabara, Takahito

    Strong solutions of the non-stationary Navier-Stokes equations under non-linearized slip or leak boundary conditions are investigated. We show that the problems are formulated by a variational inequality of parabolic type, to which uniqueness is established. Using Galerkin's method and deriving a priori estimates, we prove global and local existence for 2D and 3D slip problems respectively. For leak problems, under no-leak assumption at t=0 we prove local existence in 2D and 3D cases. Compatibility conditions for initial states play a significant role in the estimates.

  8. Strong work-hardening behavior induced by the solid solution strengthening of dendrites in TiZr-based bulk metallic glass matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Ma, D.Q. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Jiao, W.T. [College of Education, Hebei Normal University of Science and Technology, Qinhuangdao 066004 (China); Zhang, Y.F. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Hebei Vocational and Technical College of Building Materials, Qinhuangdao 066004 (China); Wang, B.A.; Li, J.; Zhang, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Ma, M.Z., E-mail: mz550509@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Liu, R.P. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2015-03-05

    Highlights: • Hardness of dendrite of TiZr-based BMGMCs increases. • Strong work-hardening behavior is obtained after solid solution strengthening. • Lattice distortions of dendrite suffering from rapid cooling are detected. - Abstract: A series of TiZr-based bulk metallic glass matrix composites (BMGMCs) with distinguished mechanical properties are successfully fabricated by adding different volume fractions of Ta (Ti{sub 38.8}Zr{sub 28.8}Cu{sub 6.2}Be{sub 16.2}Nb{sub 10} as the basic composition, denoted as Ta{sub 0.0}–Ta{sub 8.0}). Along with the growth of precipitated phase, typical dendritic morphology is fully developed in the TiZr-based BMGMCs of Ta{sub 8.0}. Energy-dispersive spectrometry analysis of the dendrites and glass matrix indicates that the metallic elements of Nb and Ta should preferentially form solid solution into dendrites. The chaotic structure of high-temperature precipitate phase is trapped down by the rapid cooling of the copper-mould. The detected lattice distortions in the dendrites are attributed to the strong solid solution strengthening of the metallic elements of Ti, Zr, Nb, and Ta. These lattice distortions increase the resistance of the dislocation motion and pin the dislocations, thus the strength and hardness of dendrite increase. Dendrites create a strong barrier for the shear band propagation and generate multiple shear bands after solid solution strengthening, thereby providing the TiZr-based BMGMCs with greatly improved capacity to sustain plastic deformation and resistance to brittle fracture. Thus, the TiZr-based BMGMCs possess distinguished work-hardening capability. Among these TiZr-based BMGMCs, the sample Ta{sub 0.5} possesses the largest plastic strain (ε{sub p}) at 20.3% and ultimate strength (σ{sub max}) of 2613 MPa during compressive loading. In addition, the sample of Ta{sub 0.5} exhibits work-hardening up to an ultrahigh tensile strength of 1680 MPa during the tensile process, and then progressively

  9. Positive Periodic Solution for the Generalized Neutral Differential Equation with Multiple Delays and Impulse

    Directory of Open Access Journals (Sweden)

    Zhenguo Luo

    2014-01-01

    Full Text Available By using a fixed point theorem of strict-set-contraction, which is different from Gaines and Mawhin's continuation theorem and abstract continuation theory for k-set contraction, we established some new criteria for the existence of positive periodic solution of the following generalized neutral delay functional differential equation with impulse: x'(t=x(t[a(t-f(t,x(t,x(t-τ1(t,x(t,…,x(t-τn(t,x(t,x'(t-γ1(t,x(t,…,x'(t-γm(t,x(t],  t≠tk,  k∈Z+;  x(tk+=x(tk-+θk(x(tk,  k∈Z+. As applications of our results, we also give some applications to several Lotka-Volterra models and new results are obtained.

  10. A Generalized Measure for the Optimal Portfolio Selection Problem and its Explicit Solution

    Directory of Open Access Journals (Sweden)

    Zinoviy Landsman

    2018-03-01

    Full Text Available In this paper, we offer a novel class of utility functions applied to optimal portfolio selection. This class incorporates as special cases important measures such as the mean-variance, Sharpe ratio, mean-standard deviation and others. We provide an explicit solution to the problem of optimal portfolio selection based on this class. Furthermore, we show that each measure in this class generally reduces to the efficient frontier that coincides or belongs to the classical mean-variance efficient frontier. In addition, a condition is provided for the existence of the a one-to-one correspondence between the parameter of this class of utility functions and the trade-off parameter λ in the mean-variance utility function. This correspondence essentially provides insight into the choice of this parameter. We illustrate our results by taking a portfolio of stocks from National Association of Securities Dealers Automated Quotation (NASDAQ.

  11. Multigrid method applied to the solution of an elliptic, generalized eigenvalue problem

    Energy Technology Data Exchange (ETDEWEB)

    Alchalabi, R.M. [BOC Group, Murray Hill, NJ (United States); Turinsky, P.J. [North Carolina State Univ., Raleigh, NC (United States)

    1996-12-31

    The work presented in this paper is concerned with the development of an efficient MG algorithm for the solution of an elliptic, generalized eigenvalue problem. The application is specifically applied to the multigroup neutron diffusion equation which is discretized by utilizing the Nodal Expansion Method (NEM). The underlying relaxation method is the Power Method, also known as the (Outer-Inner Method). The inner iterations are completed using Multi-color Line SOR, and the outer iterations are accelerated using Chebyshev Semi-iterative Method. Furthermore, the MG algorithm utilizes the consistent homogenization concept to construct the restriction operator, and a form function as a prolongation operator. The MG algorithm was integrated into the reactor neutronic analysis code NESTLE, and numerical results were obtained from solving production type benchmark problems.

  12. On flux integrals for generalized Melvin solution related to simple finite-dimensional Lie algebra

    Energy Technology Data Exchange (ETDEWEB)

    Ivashchuk, V.D. [VNIIMS, Center for Gravitation and Fundamental Metrology, Moscow (Russian Federation); Peoples' Friendship University of Russia (RUDN University), Institute of Gravitation and Cosmology, Moscow (Russian Federation)

    2017-10-15

    A generalized Melvin solution for an arbitrary simple finite-dimensional Lie algebra G is considered. The solution contains a metric, n Abelian 2-forms and n scalar fields, where n is the rank of G. It is governed by a set of n moduli functions H{sub s}(z) obeying n ordinary differential equations with certain boundary conditions imposed. It was conjectured earlier that these functions should be polynomials - the so-called fluxbrane polynomials. These polynomials depend upon integration constants q{sub s}, s = 1,.., n. In the case when the conjecture on the polynomial structure for the Lie algebra G is satisfied, it is proved that 2-form flux integrals Φ{sup s} over a proper 2d submanifold are finite and obey the relations q{sub s} Φ{sup s} = 4πn{sub s}h{sub s}, where the h{sub s} > 0 are certain constants (related to dilatonic coupling vectors) and the n{sub s} are powers of the polynomials, which are components of a twice dual Weyl vector in the basis of simple (co-)roots, s = 1,.., n. The main relations of the paper are valid for a solution corresponding to a finite-dimensional semi-simple Lie algebra G. Examples of polynomials and fluxes for the Lie algebras A{sub 1}, A{sub 2}, A{sub 3}, C{sub 2}, G{sub 2} and A{sub 1} + A{sub 1} are presented. (orig.)

  13. Asymptotically Stable Solutions of a Generalized Fractional Quadratic Functional-Integral Equation of Erdélyi-Kober Type

    Directory of Open Access Journals (Sweden)

    Mohamed Abdalla Darwish

    2014-01-01

    Full Text Available We study a generalized fractional quadratic functional-integral equation of Erdélyi-Kober type in the Banach space BC(ℝ+. We show that this equation has at least one asymptotically stable solution.

  14. Global solutions of restricted open-shell Hartree-Fock theory from semidefinite programming with applications to strongly correlated quantum systems.

    Science.gov (United States)

    Veeraraghavan, Srikant; Mazziotti, David A

    2014-03-28

    We present a density matrix approach for computing global solutions of restricted open-shell Hartree-Fock theory, based on semidefinite programming (SDP), that gives upper and lower bounds on the Hartree-Fock energy of quantum systems. While wave function approaches to Hartree-Fock theory yield an upper bound to the Hartree-Fock energy, we derive a semidefinite relaxation of Hartree-Fock theory that yields a rigorous lower bound on the Hartree-Fock energy. We also develop an upper-bound algorithm in which Hartree-Fock theory is cast as a SDP with a nonconvex constraint on the rank of the matrix variable. Equality of the upper- and lower-bound energies guarantees that the computed solution is the globally optimal solution of Hartree-Fock theory. The work extends a previously presented method for closed-shell systems [S. Veeraraghavan and D. A. Mazziotti, Phys. Rev. A 89, 010502-R (2014)]. For strongly correlated systems the SDP approach provides an alternative to the locally optimized Hartree-Fock energies and densities with a certificate of global optimality. Applications are made to the potential energy curves of C2, CN, Cr2, and NO2.

  15. [Burnout of general practitioners in Belgium: societal consequences and paths to solutions].

    Science.gov (United States)

    Kacenelenbogen, N; Offermans, A M; Roland, M

    2011-09-01

    corollary a questioning of the viability of the health care system as we know it. At the time of writing this article, the Belgian Health Care Knowledge Centre (KCE) is completing, at the request of the Belgian Ministry (SPF) of Health a study entitled "Burn Out of General Practitioners: which prevention, which solutions" whose goal is to make recommendations for the prevention and support of this issue. To measure the real impact of the solutions eventually implemented, we need to create a tool for a regular assessment of the prevalence of this problem in our country.

  16. Generalized Bilinear Differential Operators, Binary Bell Polynomials, and Exact Periodic Wave Solution of Boiti-Leon-Manna-Pempinelli Equation

    Directory of Open Access Journals (Sweden)

    Huanhe Dong

    2014-01-01

    Full Text Available We introduce how to obtain the bilinear form and the exact periodic wave solutions of a class of (2+1-dimensional nonlinear integrable differential equations directly and quickly with the help of the generalized Dp-operators, binary Bell polynomials, and a general Riemann theta function in terms of the Hirota method. As applications, we solve the periodic wave solution of BLMP equation and it can be reduced to soliton solution via asymptotic analysis when the value of p is 5.

  17. Stability of Almost Periodic Solution for a General Class of Discontinuous Neural Networks with Mixed Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Yingwei Li

    2013-01-01

    Full Text Available The global exponential stability issues are considered for almost periodic solution of the neural networks with mixed time-varying delays and discontinuous neuron activations. Some sufficient conditions for the existence, uniqueness, and global exponential stability of almost periodic solution are achieved in terms of certain linear matrix inequalities (LMIs, by applying differential inclusions theory, matrix inequality analysis technique, and generalized Lyapunov functional approach. In addition, the existence and asymptotically almost periodic behavior of the solution of the neural networks are also investigated under the framework of the solution in the sense of Filippov. Two simulation examples are given to illustrate the validity of the theoretical results.

  18. A general solution in the cylindrical coordinates system for the diffusion of a radionuclide in homogeneous and isotropic solids

    CERN Document Server

    Ribeiro, F B

    1999-01-01

    Solutions of the diffusion equation in cylindrical coordinates are presented for a radionuclide produced by the decay of a not diffusing parent isotope with arbitrary activity distribution. General initial and Dirichlet boundary conditions are considered and the diffusion equation is solved for a finite cylinder. Solutions corresponding to two particular boundary conditions that can be imposed in laboratory diffusion coefficient measurements are presented. An analysis of the speed of convergence and of the series truncation error is done for these particular solutions. An example of the escape to production ratio derived from one of the solutions is also presented.

  19. A general solution in the cylindrical coordinates system for the diffusion of a radionuclide in homogeneous and isotropic solids

    International Nuclear Information System (INIS)

    Ribeiro, Fernando Brenha

    1999-01-01

    Solutions of the diffusion equation in cylindrical coordinates are presented for a radionuclide produced by the decay of a not diffusing parent isotope with arbitrary activity distribution. General initial and Dirichlet boundary conditions are considered and the diffusion equation is solved for a finite cylinder. Solutions corresponding to two particular boundary conditions that can be imposed in laboratory diffusion coefficient measurements are presented. An analysis of the speed of convergence and of the series truncation error is done for these particular solutions. An example of the escape to production ratio derived from one of the solutions is also presented

  20. Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent Navier–Stokes equations with vacuum

    Science.gov (United States)

    Lü, Boqiang; Shi, Xiaoding; Zhong, Xin

    2018-06-01

    We are concerned with the Cauchy problem of the two-dimensional (2D) nonhomogeneous incompressible Navier–Stokes equations with vacuum as far-field density. It is proved that if the initial density decays not too slow at infinity, the 2D Cauchy problem of the density-dependent Navier–Stokes equations on the whole space admits a unique global strong solution. Note that the initial data can be arbitrarily large and the initial density can contain vacuum states and even have compact support. Furthermore, we also obtain the large time decay rates of the spatial gradients of the velocity and the pressure, which are the same as those of the homogeneous case.

  1. Mass transfer simulation of nanofiltration membranes for electrolyte solutions through generalized Maxwell-Stefan approach

    International Nuclear Information System (INIS)

    Hoshyargar, Vahid; Fadaei, Farzad; Ashrafizadeh, Seyed Nezameddin

    2015-01-01

    A comprehensive mathematical model is developed for simulation of ion transport through nanofiltration membranes. The model is based on the Maxwell-Stefan approach and takes into account steric, Donnan, and dielectric effects in the transport of mono and divalent ions. Theoretical ion rejection for multi-electrolyte mixtures was obtained by numerically solving the 'hindered transport' based on the generalized Maxwell-Stefan equation for the flux of ions. A computer simulation has been developed to predict the transport in the range of nanofiltration, a numerical procedure developed linearization and discretization form of the governing equations, and the finite volume method was employed for the numerical solution of equations. The developed numerical method is capable of solving equations for multicomponent systems of n species no matter to what extent the system shows stiffness. The model findings were compared and verified with the experimental data from literature for two systems of Na 2 SO 4 +NaCl and MgCl 2 +NaCl. Comparison showed great agreement for different concentrations. As such, the model is capable of predicting the rejection of different ions at various concentrations. The advantage of such a model is saving costs as a result of minimizing the number of required experiments, while it is closer to a realistic situation since the adsorption of ions has been taken into account. Using this model, the flux of permeates and rejections of multi-component liquid feeds can be calculated as a function of membrane properties. This simulation tool attempts to fill in the gap in methods used for predicting nanofiltration and optimization of the performance of charged nanofilters through generalized Maxwell-Stefan (GMS) approach. The application of the current model may weaken the latter gap, which has arisen due to the complexity of the fundamentals of ion transport processes via this approach, and may further facilitate the industrial development of

  2. Solute transport in coupled inland-coastal water systems. General conceptualisation and application to Forsmark

    International Nuclear Information System (INIS)

    Jarsjoe, Jerker; Destouni, Georgia; Persson, Klas; Prieto, Carmen

    2007-12-01

    We formulate a general theoretical conceptualisation of solute transport from inland sources to downstream recipients, considering main recipient load contributions from all different nutrient and pollutant sources that may exist within any catchment. Since the conceptualisation is model independent, its main hydrological factors and mass delivery factors can be quantified on the basis of inputs to and outputs from any considered analytical or numerical model. Some of the conceptually considered source contribution and transport pathway combinations are however commonly neglected in catchment-scale solute transport and attenuation modelling, in particular those related to subsurface sources, diffuse sources at the land surface and direct groundwater transport into the recipient. The conceptual framework provides a possible tool for clarification of underlying and often implicit model assumptions, which can be useful for e.g. inter-model comparisons. In order to further clarify and explain research questions that may be of particular importance for transport pathways from deep groundwater surrounding a repository, we concretise and interpret some selected transport scenarios for model conditions in the Forsmark area. Possible uncertainties in coastal discharge predictions, related to uncertain spatial variation of evapotranspiration within the catchment, were shown to be small for the relatively large, focused surface water discharges from land to sea, because local differences were averaged out along the length of the main water flow paths. In contrast, local flux values within the diffuse groundwater flow field from land to sea are more uncertain, although estimates of mean values and total sums of submarine groundwater discharge (SGD) along some considerable coastline length may be robust. The present results show that 80% to 90% of the total coastal discharge of Forsmark occurred through focused flows in visible streams, whereas the remaining 10% to 20% was

  3. Reprint of Solution of Ambrosio-Tortorelli model for image segmentation by generalized relaxation method

    Science.gov (United States)

    D'Ambra, Pasqua; Tartaglione, Gaetano

    2015-04-01

    Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.

  4. Solution of Ambrosio-Tortorelli model for image segmentation by generalized relaxation method

    Science.gov (United States)

    D'Ambra, Pasqua; Tartaglione, Gaetano

    2015-03-01

    Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.

  5. Generalization of the Numerov method for solution of N-d breakup problem in configuration space

    International Nuclear Information System (INIS)

    Suslov, V.M.; Vlahovic, B.

    2004-01-01

    A new computational method for solving the configuration-space Faddeev equations for three-nucleon systems has been developed. This method is based on the spline decomposition in the angular variable and a generalization of the Numerov method for the hyperradius. The s-wave calculations of the inelasticity and phase shift as well as breakup amplitudes for n-d and p-d breakup scatterings for lab energies 14.1 and 42.0 MeV were performed with the Malfliet-Tjon I-III potential. In the case of n-d breakup scattering the results are in good agreement with those of the benchmark solution [J. L. Friar, B. F. Gibson, G. Berthold, W. Gloeckle, Th. Cornelius, H. Witala, J. Haidenbauer, Y. Koike, G. L. Payne, J. A. Tjon, and W. M. Kloet, Phys. Rev. C 42, 1838 (1990); J. L. Friar, G. L. Payne, W. Gloeckle, D. Hueber, and H. Witala, Phys. Rev. C 51, 2356 (1995)]. In the case of p-d quartet breakup scattering disagreement for the inelasticities reaches up to 6% as compared with those of the Pisa group [A. Kievsky, M. Viviani, and S. Rosati, Phys. Rev. C 64, 024002 (2001)]. The calculated p-d amplitudes fulfill the optical theorem with a good precision

  6. Solute transport in coupled inland-coastal water systems. General conceptualisation and application to Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Jarsjoe, Jerker; Destouni, Georgia; Persson, Klas; Prieto, Carmen (Dept. of Physical Geography, Quaternary Geology, Stockholm Univ., Stockholm (Sweden))

    2007-12-15

    We formulate a general theoretical conceptualisation of solute transport from inland sources to downstream recipients, considering main recipient load contributions from all different nutrient and pollutant sources that may exist within any catchment. Since the conceptualisation is model independent, its main hydrological factors and mass delivery factors can be quantified on the basis of inputs to and outputs from any considered analytical or numerical model. Some of the conceptually considered source contribution and transport pathway combinations are however commonly neglected in catchment-scale solute transport and attenuation modelling, in particular those related to subsurface sources, diffuse sources at the land surface and direct groundwater transport into the recipient. The conceptual framework provides a possible tool for clarification of underlying and often implicit model assumptions, which can be useful for e.g. inter-model comparisons. In order to further clarify and explain research questions that may be of particular importance for transport pathways from deep groundwater surrounding a repository, we concretise and interpret some selected transport scenarios for model conditions in the Forsmark area. Possible uncertainties in coastal discharge predictions, related to uncertain spatial variation of evapotranspiration within the catchment, were shown to be small for the relatively large, focused surface water discharges from land to sea, because local differences were averaged out along the length of the main water flow paths. In contrast, local flux values within the diffuse groundwater flow field from land to sea are more uncertain, although estimates of mean values and total sums of submarine groundwater discharge (SGD) along some considerable coastline length may be robust. The present results show that 80% to 90% of the total coastal discharge of Forsmark occurred through focused flows in visible streams, whereas the remaining 10% to 20% was

  7. Traveling wave solutions of the Boussinesq equation via the new approach of generalized (G'/G)-expansion method.

    Science.gov (United States)

    Alam, Md Nur; Akbar, M Ali; Roshid, Harun-Or-

    2014-01-01

    Exact solutions of nonlinear evolution equations (NLEEs) play a vital role to reveal the internal mechanism of complex physical phenomena. In this work, the exact traveling wave solutions of the Boussinesq equation is studied by using the new generalized (G'/G)-expansion method. Abundant traveling wave solutions with arbitrary parameters are successfully obtained by this method and the wave solutions are expressed in terms of the hyperbolic, trigonometric, and rational functions. It is shown that the new approach of generalized (G'/G)-expansion method is a powerful and concise mathematical tool for solving nonlinear partial differential equations in mathematical physics and engineering. 05.45.Yv, 02.30.Jr, 02.30.Ik.

  8. A general solution for the dynamics of a generalized non-degenerate optical parametric down-conversion interaction by virtue of the Lewis-Riesenfeld invariant theory

    International Nuclear Information System (INIS)

    Li Jiangfan; Jiang Zongfu; Xiao Fuliang; Huang Chunjia

    2005-01-01

    The dynamics of a generalized non-degenerate optical parametric down-conversion interaction whose Hamiltonian includes an arbitrary time-dependent driving part and a two-mode coupled part is studied by adopting the Lewis-Riesenfeld invariant theory. The closed formulae for the evolution of the quantum states and the evolution operators of the system are obtained. It is shown that various generalized squeezed states arise naturally in the process, and the two-mode squeezed effect is independent of the driving part. An explicitly analytical solution of the Schroedinger equation is further derived as the classical generalized force acting on each mode and the coupling of the two modes both have harmonic time dependences. This solution is found to be in agreement with previous research in special cases

  9. Embedded class solutions compatible for physical compact stars in general relativity

    Science.gov (United States)

    Newton Singh, Ksh.; Pant, Neeraj; Tewari, Neeraj; Aria, Anil K.

    2018-05-01

    We have explored a family of new solutions satisfying Einstein's field equations and Karmarkar condition. We have assumed an anisotropic stress-tensor with no net electric charge. Interestingly, the new solutions yield zero values of all the physical quantities for all even integer n > 0. However, for all n >0 (n ≠ even numbers) they yield physically possible solutions. We have tuned the solution for neutron star Vela X-1 so that the solutions matches the observed mass and radius. For the same star we have extensively discussed the behavior of the solutions. The solutions yield a stiffer equation of state for larger values of n since the adiabatic index increases and speed of sound approaches the speed of light. It is also found that the solution is physically possible for Vela X-1 if 1.8 ≤ n < 7 (with n≠ 2,4,6). All the solutions for n ≥ 7 violates the causality condition and all the solutions with 0 < n < 1.8 lead to complex values of transverse sound speed vt. The range of well-behaved n depends on the mass and radius of compact stars.

  10. Solution of a General Linear Complementarity Problem Using Smooth Optimization and Its Application to Bilinear Programming and LCP

    International Nuclear Information System (INIS)

    Fernandes, L.; Friedlander, A.; Guedes, M.; Judice, J.

    2001-01-01

    This paper addresses a General Linear Complementarity Problem (GLCP) that has found applications in global optimization. It is shown that a solution of the GLCP can be computed by finding a stationary point of a differentiable function over a set defined by simple bounds on the variables. The application of this result to the solution of bilinear programs and LCPs is discussed. Some computational evidence of its usefulness is included in the last part of the paper

  11. A class of algebraically general solutions of the Einstein-Maxwell equations for non-null electromagnetic fields

    International Nuclear Information System (INIS)

    Tupper, B.O.J.

    1976-01-01

    In a previous article (Gen. Rel. Grav.; 6 : 345 (1975)) the Einstein-Maxwell field equations for non-null electromagnetic fields were studied under the conditions that the null tetrad is parallel-propagated along both principal null congruences. A solution with twist and shear, but no expansion, was found and was conjectured to be the only expansion-free solution. Here it is shown that this conjecture is false; the general expansion-free solution is found to be a family of space-times depending on a single constant parameter which is the ratio of the (constant) twists of the two principal null congruences. (author)

  12. Interpretation and further properties of general classical CPsup(n-1) solutions

    International Nuclear Information System (INIS)

    Din, A.M.

    1980-11-01

    We present arguments suggesting that non-(anti)selfdual classical solutions to the equations of motion of the euclidean CPsup(n-1) model can be interpreted as unstable non-interacting mixtures of instantons and anti-instantons. Fermionic modes in the background of these solutions are discussed. We determine the modes explicitly for the case of an embedded O(3) solution and point out that they give rise to a non-trivial illustration of the Atiyah-Singer index theorem

  13. Recruitment and retention of general practitioners in the UK: what are the problems and solutions?

    Science.gov (United States)

    Young, R; Leese, B

    1999-10-01

    Recruitment and retention of general practitioners (GPs) has become an issue of major concern in recent years. However, much of the evidence is anecdotal and some commentators continue to question the scale of workforce problems. Hence, there is a need to establish a clear picture of those instabilities (i.e. imbalances between demand and supply) that do exist in the GP labour market in the UK. Based on a review of the published literature, we identify problems that stem from: (i) the changing social composition of the workforce and the fact that a large proportion of qualified GPs are significantly underutilized within traditional career structures; and (ii) the considerable differences in the ability of local areas to match labour demand and supply. We argue that one way to address these problems would be to encourage greater flexibility in a number of areas highlighted in the literature: (i) time commitment across the working day and week; (ii) long-term career paths; (iii) training and education; and (iv) remuneration and contract conditions. Overall, although the evidence suggests that the predicted 'crisis' has not yet occurred in the GP labour market as a whole, there is no room for lack of imagination in planning terms. Workforce planners continue to emphasize national changes to the medical school intake as the means to balance labour demand and supply between the specialities; however, better retention and deployment of existing GP labour would arguably produce more effective supply-side solutions. In this context, current policy and practice developments (e.g. Primary Care Groups and Primary Care Act Pilot Sites) offer a unique learning base upon which to move forward.

  14. A General Semi-Analytical Solution for Three Types of Well Tests in Confined Aquifers with a Partially Penetrating Well

    Directory of Open Access Journals (Sweden)

    Shaw-Yang Yang Hund-Der Yeh

    2012-01-01

    Full Text Available This note develops a general mathematical model for describing the transient hydraulic head response for constant-head test, constant-flux test, and slug test in a radial confined aquifer system with a partially penetrating well. The Laplace-domain solution for the model is derived by applying the Laplace transform with respect to time and finite Fourier cosine transform with respect to the z-direction. This new solution has been shown to reduce to the constant-head test when discounting the wellbore storage and maintaining a constant well water level. This solution can also be reduced to the constant-flux test solution when discounting the wellbore storage and keeping a constant pumping rate in the well. Moreover, the solution becomes the slug test solution when there is no pumping in the well. This general solution can be used to develop a single computer code to estimate aquifer parameters if coupled with an optimization algorithm or to assess the effect of well partial penetration on hydraulic head distribution for three types of aquifer tests.

  15. Generalized hyperbolic functions to find soliton-like solutions for a system of coupled nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Yomba, Emmanuel

    2008-01-01

    With the aid of symbolic computation, we demonstrate that the known method which is based on the new generalized hyperbolic functions and the new kinds of generalized hyperbolic function transformations, generates classes of exact solutions to a system of coupled nonlinear Schroedinger equations. This system includes the modified Hubbard model and the system of coupled nonlinear Schroedinger derived by Lazarides and Tsironis. Four types of solutions for this system are given explicitly, namely: new bright-bright, new dark-dark, new bright-dark and new dark-bright solitons

  16. Further analysis of scintillation index for a laser beam propagating through moderate-to-strong non-Kolmogorov turbulence based on generalized effective atmospheric spectral model

    Science.gov (United States)

    Ma, Jing; Fu, Yu-Long; Yu, Si-Yuan; Xie, Xiao-Long; Tan, Li-Ying

    2018-03-01

    A new expression of the scintillation index (SI) for a Gaussian-beam wave propagating through moderate-to-strong non-Kolmogorov turbulence is derived, using a generalized effective atmospheric spectrum and the extended Rytov approximation theory. Finite inner and outer scale parameters and high wave number “bump” are considered in the spectrum with a generalized spectral power law in the range of 3–4, instead of the fixed classical Kolmogorov power law of 11/3. The obtained SI expression is then used to analyze the effects of the spectral power law and the inner scale and outer scale on SI under various non-Kolmogorov fluctuation conditions. These results will be useful in future investigations of optical wave propagation through atmospheric turbulence.

  17. Generalized Solutions of the Dirac Equation, W Bosons, and Beta Decay

    International Nuclear Information System (INIS)

    Okniński, Andrzej

    2016-01-01

    We study the 7×7 Hagen-Hurley equations describing spin 1 particles. We split these equations, in the interacting case, into two Dirac equations with nonstandard solutions. It is argued that these solutions describe decay of a virtual W boson in beta decay.

  18. Complementary remarks about two Papapetrou solutions for the gravitational field equations in general relativity

    International Nuclear Information System (INIS)

    Reuss, J.D.

    1967-08-01

    We recall the algebraic statement that can be done for Petrov's classification. We determine Petrov's class in some points of the axial symmetric stationary solution given in 1953 by Papapetrou. We complete the determination of the Papapetrou non stationary cylindric solution. (author) [fr

  19. Two general classes of self dual, Minkowski propagating wave solutions in Yang Mills gauge theory

    International Nuclear Information System (INIS)

    Kovacs, E.; Lo, S.Y.

    1979-01-01

    Two classes of self dual propogating wave solutions to the sourceless field equations in Minkowski space are presented. Some of these solutions can be linearly superposed. These waves can propogate at either the speed of light or at a speed less than that of light

  20. Traversable intra-Universe wormholes and timeholes in General Relativity: two new solutions

    Science.gov (United States)

    Smirnov, Alexey L.

    2016-11-01

    Using thin shell formalism we construct two solutions of intra-Universe wormholes. The first model is a cosmological analog of the Aichelburg-Schein timehole, while another one is an intra-Universe form of the Bronnikov-Ellis solution.

  1. Traversable intra-Universe wormholes and timeholes in General Relativity: two new solutions

    International Nuclear Information System (INIS)

    Smirnov, Alexey L

    2016-01-01

    Using thin shell formalism we construct two solutions of intra-Universe wormholes. The first model is a cosmological analog of the Aichelburg–Schein timehole, while another one is an intra-Universe form of the Bronnikov–Ellis solution. (paper)

  2. Improved decay rates for solutions for a multidimensional generalized Benjamin-Bona-Mahony equation

    KAUST Repository

    Said-Houari, Belkacem

    2014-01-01

    the Fourier transform and the energy method, we show the global existence and the convergence rates of the solutions under the smallness assumption on the initial data and we give better decay rates of the solutions. This result improves early works in J

  3. The Influence of Oral Carbohydrate Solution Intake on Stress Response before Total Hip Replacement Surgery during Epidural and General Anaesthesia.

    Science.gov (United States)

    Çeliksular, M Cem; Saraçoğlu, Ayten; Yentür, Ercüment

    2016-06-01

    The effects of oral carbohydrate solutions, ingested 2 h prior to operation, on stress response were studied in patients undergoing general or epidural anaesthesia. The study was performed on 80 ASA I-II adult patients undergoing elective total hip replacement, which were randomized to four groups (n=20). Group G patients undergoing general anaesthesia fasted for 8 h preoperatively; Group GN patients undergoing general anaesthesia drank oral carbohydrate solutions preoperatively; Group E patients undergoing epidural anaesthesia fasted for 8 h and Group EN patients undergoing epidural anaesthesia drank oral carbohydrate solutions preoperatively. Groups GN and EN drank 800 mL of 12.5% oral carbohydrate solution at 24:00 preoperatively and 400 mL 2 h before the operation. Blood samples were taken for measurements of glucose, insulin, cortisol and IL-6 levels. The effect of preoperative oral carbohydrate ingestion on blood glucose levels was not significant. Insulin levels 24 h prior to surgery were similar; however, insulin levels measured just before surgery were 2-3 times higher in groups GN and EN than in groups G and E. Insulin levels at the 24(th) postoperative hour in epidural groups were increased compared to those at basal levels, although general anaesthesia groups showed a decrease. From these measurements, only the change in Group EN was statistically significant (poral carbohydrate nutrition did not reveal a significant effect on surgical stress response.

  4. Higher-order rogue wave solutions of the three-wave resonant interaction equation via the generalized Darboux transformation

    International Nuclear Information System (INIS)

    Wang, Xin; Chen, Yong; Cao, Jianli

    2015-01-01

    In this paper, we utilize generalized Darboux transformation to study higher-order rogue wave solutions of the three-wave resonant interaction equation, which describes the propagation and mixing of waves with different frequencies in weakly nonlinear dispersive media. A general Nth-order rogue wave solution with two characteristic velocities structural parameters and 3N independent parameters under a determined plane-wave background and a specific parameter condition is derived. As an application, we show that four fundamental rogue waves with fundamental, two kinds of line and quadrilateral patterns, or six fundamental rogue waves with fundamental, triangular, two kinds of quadrilateral and circular patterns can emerge in the second-order rogue waves. Moreover, several important wave characteristics including the maximum values, the corresponding coordinate positions of the humps, and the stability problem for some special higher-order rogue wave solutions such as the fundamental and quadrilateral cases are discussed. (paper)

  5. New exact solutions to the generalized KdV equation with ...

    Indian Academy of Sciences (India)

    is reduced to an ordinary differential equation with constant coefficients ... Application to generalized KdV equation with generalized evolution ..... [12] P F Byrd and M D Friedman, Handbook of elliptic integrals for engineers and physicists.

  6. A Simple General Solution for Maximal Horizontal Range of Projectile Motion

    OpenAIRE

    Busic, Boris

    2005-01-01

    A convenient change of variables in the problem of maximizing the horizontal range of the projectile motion, with an arbitrary initial vertical position of the projectile, provides a simple, straightforward solution.

  7. A generalized exp-function method for multiwave solutions of sine ...

    Indian Academy of Sciences (India)

    With the development of soliton theory, finding multiwave solutions has ... transmission, self-transparency due to nonlinear effects of optical pulses, ..... Secondly, expanding each new dependent variable in infinite series of a formal expansion.

  8. Exact Solutions of Generalized Modified Boussinesq, Kuramoto-Sivashinsky, and Camassa-Holm Equations via Double Reduction Theory

    Directory of Open Access Journals (Sweden)

    Zulfiqar Ali

    2013-01-01

    Full Text Available We find exact solutions of the Generalized Modified Boussinesq (GMB equation, the Kuromoto-Sivashinsky (KS equation the and, Camassa-Holm (CH equation by utilizing the double reduction theory related to conserved vectors. The fourth order GMB equation involves the arbitrary function and mixed derivative terms in highest derivative. The partial Noether’s approach yields seven conserved vectors for GMB equation and one conserved for vector KS equation. Due to presence of mixed derivative term the conserved vectors for GMB equation derived by the Noether like theorem do not satisfy the divergence relationship. The extra terms that constitute the trivial part of conserved vectors are adjusted and the resulting conserved vectors satisfy the divergence property. The double reduction theory yields two independent solutions and one reduction for GMB equation and one solution for KS equation. For CH equation two independent solutions are obtained elsewhere by double reduction theory with the help of conserved Vectors.

  9. Comment on 'Exact analytical solution for the generalized Lyapunov exponent of the two-dimensional Anderson localization'

    International Nuclear Information System (INIS)

    Markos, P; Schweitzer, L; Weyrauch, M

    2004-01-01

    In a recent publication, Kuzovkov et al (2002 J. Phys.: Condens. Matter. 14 13777) announced an analytical solution of the two-dimensional Anderson localization problem via the calculation of a generalized Lyapunov exponent using signal theory. Surprisingly, for certain energies and small disorder strength they observed delocalized states. We study the transmission properties of the same model using well-known transfer matrix methods. Our results disagree with the findings obtained using signal theory. We point to the possible origin of this discrepancy and comment on the general strategy of using a generalized Lyapunov exponent for studying Anderson localization. (comment)

  10. Individual Differences in the Speed of Facial Emotion Recognition Show Little Specificity but Are Strongly Related with General Mental Speed: Psychometric, Neural and Genetic Evidence

    Directory of Open Access Journals (Sweden)

    Xinyang Liu

    2017-08-01

    Full Text Available Facial identity and facial expression processing are crucial socio-emotional abilities but seem to show only limited psychometric uniqueness when the processing speed is considered in easy tasks. We applied a comprehensive measurement of processing speed and contrasted performance specificity in socio-emotional, social and non-social stimuli from an individual differences perspective. Performance in a multivariate task battery could be best modeled by a general speed factor and a first-order factor capturing some specific variance due to processing emotional facial expressions. We further tested equivalence of the relationships between speed factors and polymorphisms of dopamine and serotonin transporter genes. Results show that the speed factors are not only psychometrically equivalent but invariant in their relation with the Catechol-O-Methyl-Transferase (COMT Val158Met polymorphism. However, the 5-HTTLPR/rs25531 serotonin polymorphism was related with the first-order factor of emotion perception speed, suggesting a specific genetic correlate of processing emotions. We further investigated the relationship between several components of event-related brain potentials with psychometric abilities, and tested emotion specific individual differences at the neurophysiological level. Results revealed swifter emotion perception abilities to go along with larger amplitudes of the P100 and the Early Posterior Negativity (EPN, when emotion processing was modeled on its own. However, after partialling out the shared variance of emotion perception speed with general processing speed-related abilities, brain-behavior relationships did not remain specific for emotion. Together, the present results suggest that speed abilities are strongly interrelated but show some specificity for emotion processing speed at the psychometric level. At both genetic and neurophysiological levels, emotion specificity depended on whether general cognition is taken into account

  11. Individual Differences in the Speed of Facial Emotion Recognition Show Little Specificity but Are Strongly Related with General Mental Speed: Psychometric, Neural and Genetic Evidence

    Science.gov (United States)

    Liu, Xinyang; Hildebrandt, Andrea; Recio, Guillermo; Sommer, Werner; Cai, Xinxia; Wilhelm, Oliver

    2017-01-01

    Facial identity and facial expression processing are crucial socio-emotional abilities but seem to show only limited psychometric uniqueness when the processing speed is considered in easy tasks. We applied a comprehensive measurement of processing speed and contrasted performance specificity in socio-emotional, social and non-social stimuli from an individual differences perspective. Performance in a multivariate task battery could be best modeled by a general speed factor and a first-order factor capturing some specific variance due to processing emotional facial expressions. We further tested equivalence of the relationships between speed factors and polymorphisms of dopamine and serotonin transporter genes. Results show that the speed factors are not only psychometrically equivalent but invariant in their relation with the Catechol-O-Methyl-Transferase (COMT) Val158Met polymorphism. However, the 5-HTTLPR/rs25531 serotonin polymorphism was related with the first-order factor of emotion perception speed, suggesting a specific genetic correlate of processing emotions. We further investigated the relationship between several components of event-related brain potentials with psychometric abilities, and tested emotion specific individual differences at the neurophysiological level. Results revealed swifter emotion perception abilities to go along with larger amplitudes of the P100 and the Early Posterior Negativity (EPN), when emotion processing was modeled on its own. However, after partialling out the shared variance of emotion perception speed with general processing speed-related abilities, brain-behavior relationships did not remain specific for emotion. Together, the present results suggest that speed abilities are strongly interrelated but show some specificity for emotion processing speed at the psychometric level. At both genetic and neurophysiological levels, emotion specificity depended on whether general cognition is taken into account or not. These

  12. Twenty Years of General Education in China: Progress, Problems, and Solutions

    Science.gov (United States)

    Wang, Hongcai; Xie, Debo

    2018-01-01

    General education is a subject with rich contents and that is highly contested in the field of higher education studies. It has been highly praised for its core concepts such as broad educational targets, liberating educational objectives, and balanced educational content. Looking back at the course of general education in China over the past 20…

  13. The Role of General Physical Education in Solution of Health Problem of Russia’s Population

    Directory of Open Access Journals (Sweden)

    V.P. Lykyanenko

    2012-06-01

    Full Text Available The educational concept, worked out by the author rests on the ideas of fundamentalization of school physical educational process, basing on the unique general educational potential of this subject, acquiring the character of fundamental, backbone principle of general secondary education, reflecting its essence, goal and objectives in modern society with its core.

  14. Exploring Fundamental Concepts in Aqueous Solution Conductivity: A General Chemistry Laboratory Exercise

    Science.gov (United States)

    Nyasulu, Frazier; Stevanov, Kelly; Barlag, Rebecca

    2010-01-01

    Using a conductivity sensor, a temperature sensor, and a datalogger, fundamental factors that affect conductivity are explored. These factors are (i) concentration, (ii) temperature, (iii) ion charge, and (iv) size and or mass of anion. In addition, the conductivities of a number of other solutions are measured. This lab has been designed to…

  15. Exact solution of an electroosmotic flow for generalized Burgers fluid in cylindrical domain

    Directory of Open Access Journals (Sweden)

    Masood Khan

    Full Text Available The present paper reports a theoretical study of the dynamics of an electroosmotic flow (EOF in cylindrical domain. The Cauchy momentum equation is first simplified by incorporating the electrostatic body force in the electric double layer and the generalized Burgers fluid constitutive model. The electric potential distribution is given by the linearized Poisson–Boltzmann equation. After solving the linearized Poisson–Boltzmann equation, the Cauchy momentum equation with electrostatic body force is solved analytically by using the temporal Fourier and finite Hankel transforms. The effects of important involved parameters are examined and presented graphically. The results obtained reveal that the magnitude of velocity increases with increase of the Debye–Huckel and electrokinetic parameters. Further, it is shown that the results presented for generalized Burgers fluid are quite general so that results for the Burgers, Oldroyd-B, Maxwell and Newtonian fluids can be obtained as limiting cases. Keywords: Generalized Burgers fluid, Electroosmotic flow, Fourier and Hankel transform

  16. Exact, E = 0, classical and quantum solutions for general power-law oscillators

    International Nuclear Information System (INIS)

    Nieto, M.M.; Daboul, J.

    1994-01-01

    For zero energy, E = 0, we derive exact, classical and quantum solutions for all power-law oscillators with potentials V(r) = -γ/r ν , γ > 0 and -∞ 0 (t))] 1/μ , with μ = ν/2 - 1 ≠ 0. For ν > 2, the orbits are bound and go through the origin. We calculate the periods and precessions of these bound orbits, and graph a number of specific examples. The unbound orbits are also discussed in detail. Quantum mechanically, this system is also exactly solvable. We find that when ν > 2 the solutions are normalizable (bound), as in the classical case. Also, there are normalizable discrete, yet unbound, state which correspond to unbound classical particles which reach infinity in a finite time. These and other interesting comparisons to the classical system will be discussed

  17. On the Exact Solution Explaining the Accelerate Expanding Universe According to General Relativity

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2012-04-01

    Full Text Available A new method of calculation is applied to the frequency of a photon according to the tra- velled distance. It consists in solving the scalar geodesic equation (equation of energy of the photon, and manifests gravitation, non-holonomity, and deformation of space as the intrinsic geometric factors affecting the photon’s frequency. The solution obtained in the expanding space of Friedmann’s metric manifests the exponential cosmological redshift: its magnitude increases, exponentially, with distance. This explains the acce- lerate expansion of the Universe registered recently by the astronomers. According to the obtained solution, the redshift reaches the ultimately high value z = e π − 1 = 22 . 14 at the event horizon.

  18. Asymptotic behavior of solutions of nonlinear differential equations and generalized guiding functions

    Directory of Open Access Journals (Sweden)

    C. Avramescu

    2003-07-01

    Full Text Available Let $f:\\mathbb{R}\\times \\mathbb{R}^{N}\\rightarrow \\mathbb{R}^{N}$ be a continuous function and let $h:\\mathbb{R}\\rightarrow \\mathbb{R}$ be a continuous and strictly positive function. A sufficient condition such that the equation $\\dot{x}=f\\left( t,x\\right $ admits solutions $x:\\mathbb{R}\\rightarrow \\mathbb{R}^{N}$ satisfying the inequality $\\left| x\\left( t\\right \\right| \\leq k\\cdot h\\left( t\\right ,$ $t\\in \\mathbb{R},$ $k>0$, where $\\left| \\cdot \\right| $ is the euclidean norm in $\\mathbb{R}^{N},$ is given. The proof of this result is based on the use of a special function of Lyapunov type, which is often called guiding function. In the particular case $h\\equiv 1$, one obtains known results regarding the existence of bounded solutions.

  19. Continuous properties of the data-to-solution map for a generalized μ-Camassa-Holm integrable equation

    Science.gov (United States)

    Yu, Shengqi

    2018-05-01

    This work studies a generalized μ-type integrable equation with both quadratic and cubic nonlinearities; the μ-Camassa-Holm and modified μ-Camassa-Holm equations are members of this family of equations. It has been shown that the Cauchy problem for this generalized μ-Camassa-Holm integrable equation is locally well-posed for initial data u0 ∈ Hs, s > 5/2. In this work, we further investigate the continuity properties to this equation. It is proved in this work that the data-to-solution map of the proposed equation is not uniformly continuous. It is also found that the solution map is Hölder continuous in the Hr-topology when 0 ≤ r < s with Hölder exponent α depending on both s and r.

  20. Technetium and iodine aqueous species immobilization and transformations in the presence of strong reductants and calcite-forming solutions: Remedial action implications

    Energy Technology Data Exchange (ETDEWEB)

    Lawter, Amanda R.; Garcia, Whitney L.; Kukkadapu, Ravi K.; Qafoku, Odeta; Bowden, Mark E.; Saslow, Sarah A.; Qafoku, Nikolla

    2018-09-15

    At the Hanford Site in southeastern Washington State, radionuclide (Tc-99/I-129) laden liquid wastes have been discharged to ground, resulting in vadose zone contamination, which provides a continuous source of these contaminants to groundwater. The presence of multiple contaminants increases the complexity of finding viable remediation technologies to sequester vadose zone contaminants in situ and protect groundwater. Although previous studies have shown the efficiency of zero valent iron (ZVI) and sulfur modified iron (SMI) in reducing mobile Tc(VII) to immobile Tc(IV) and iodate incorporation into calcite, the coupled effects from simultaneously using these remedial technologies have not been previously studied. In this first-of-a-kind laboratory study, we used two efficient reductants (i.e., ZVI and SMI) and calcite-forming solutions to simultaneously remove aqueous Tc(VII) and iodate via reduction and incorporation, respectively. The results confirmed that Tc(VII) was rapidly removed from the aqueous phase via reduction to Tc(IV). ZVI removed Tc(VII) faster than SMI, although both had removed the same amount by the end of the experiments. Most of the aqueous iodate was rapidly transformed to iodide, and therefore was not incorporated into calcite, but instead remained in the aqueous phase. The iodate reduction to iodide was much faster than iodate incorporation into calcite, suggesting that this remedial pathway is not efficient in removing aqueous iodate when strong reductants are present. Other experiments suggested that iodate removal via calcite precipitation should occur first and then reductants should be added for Tc(VII) removal. Although ZVI can negatively impact microbial populations and thereby inhibit natural attenuation mechanisms, only changes in the makeup of the microbial community were observed. However, these changes in the microbial community may have an impact on remediation efforts in the long term that could not be seen in a short

  1. General solution of the aerosol dynamic equation: growth and diffusion processes

    International Nuclear Information System (INIS)

    Elgarayhi, A.; Elhanbaly, A.

    2004-01-01

    The dispersion of aerosol particles in a fluid media is studied considering the main mechanism for condensation and diffusion. This has been done when the technique of Lie is used for solving the aerosol dynamic equation. This method is very useful in sense that it reduces the partial differential equation to some ordinary differential equations. So, different classes of similarity solutions have been obtained. The quantity of well-defined physical interest is the mean particle volume has been calculated

  2. Legendre condition and the stabilization problem for classical soliton solutions in generalized Skyrme models

    International Nuclear Information System (INIS)

    Kiknadze, N.A.; Khelashvili, A.A.

    1990-01-01

    The problem on stability of classical soliton solutions is studied from the unique point of view: the Legendre condition - necessary condition of existence of weak local minimum for energy functional (term soliton is used here in the wide sense) is used. Limits to parameters of the model Lagrangians are obtained; it is shown that there is no soliton stabilization in some of them despite the phenomenological achievements. The Jacoby sufficient condition is discussed

  3. Complete factorisation and analytic solutions of generalized Lotka-Volterra equations

    Science.gov (United States)

    Brenig, L.

    1988-11-01

    It is shown that many systems of nonlinear differential equations of interest in various fields are naturally imbedded in a new family of differential equations. This family is invariant under nonlinear transformations based on the concept of matrix power of a vector. Each equation belonging to that family can be brought into a factorized canonical form for which integrable cases can be easily identified and solutions can be found by quadratures.

  4. Generalized analytic solutions and response characteristics of magnetotelluric fields on anisotropic infinite faults

    Science.gov (United States)

    Bing, Xue; Yicai, Ji

    2018-06-01

    In order to understand directly and analyze accurately the detected magnetotelluric (MT) data on anisotropic infinite faults, two-dimensional partial differential equations of MT fields are used to establish a model of anisotropic infinite faults using the Fourier transform method. A multi-fault model is developed to expand the one-fault model. The transverse electric mode and transverse magnetic mode analytic solutions are derived using two-infinite-fault models. The infinite integral terms of the quasi-analytic solutions are discussed. The dual-fault model is computed using the finite element method to verify the correctness of the solutions. The MT responses of isotropic and anisotropic media are calculated to analyze the response functions by different anisotropic conductivity structures. The thickness and conductivity of the media, influencing MT responses, are discussed. The analytic principles are also given. The analysis results are significant to how MT responses are perceived and to the data interpretation of the complex anisotropic infinite faults.

  5. Numerical solution to generalized Burgers'-Fisher equation using Exp-function method hybridized with heuristic computation.

    Directory of Open Access Journals (Sweden)

    Suheel Abdullah Malik

    Full Text Available In this paper, a new heuristic scheme for the approximate solution of the generalized Burgers'-Fisher equation is proposed. The scheme is based on the hybridization of Exp-function method with nature inspired algorithm. The given nonlinear partial differential equation (NPDE through substitution is converted into a nonlinear ordinary differential equation (NODE. The travelling wave solution is approximated by the Exp-function method with unknown parameters. The unknown parameters are estimated by transforming the NODE into an equivalent global error minimization problem by using a fitness function. The popular genetic algorithm (GA is used to solve the minimization problem, and to achieve the unknown parameters. The proposed scheme is successfully implemented to solve the generalized Burgers'-Fisher equation. The comparison of numerical results with the exact solutions, and the solutions obtained using some traditional methods, including adomian decomposition method (ADM, homotopy perturbation method (HPM, and optimal homotopy asymptotic method (OHAM, show that the suggested scheme is fairly accurate and viable for solving such problems.

  6. Numerical solution to generalized Burgers'-Fisher equation using Exp-function method hybridized with heuristic computation.

    Science.gov (United States)

    Malik, Suheel Abdullah; Qureshi, Ijaz Mansoor; Amir, Muhammad; Malik, Aqdas Naveed; Haq, Ihsanul

    2015-01-01

    In this paper, a new heuristic scheme for the approximate solution of the generalized Burgers'-Fisher equation is proposed. The scheme is based on the hybridization of Exp-function method with nature inspired algorithm. The given nonlinear partial differential equation (NPDE) through substitution is converted into a nonlinear ordinary differential equation (NODE). The travelling wave solution is approximated by the Exp-function method with unknown parameters. The unknown parameters are estimated by transforming the NODE into an equivalent global error minimization problem by using a fitness function. The popular genetic algorithm (GA) is used to solve the minimization problem, and to achieve the unknown parameters. The proposed scheme is successfully implemented to solve the generalized Burgers'-Fisher equation. The comparison of numerical results with the exact solutions, and the solutions obtained using some traditional methods, including adomian decomposition method (ADM), homotopy perturbation method (HPM), and optimal homotopy asymptotic method (OHAM), show that the suggested scheme is fairly accurate and viable for solving such problems.

  7. Details of the general numerical solutions of the Friedberg-Lee soliton model for ground and exited states

    International Nuclear Information System (INIS)

    Koeppel, T.; Harvey, M.

    1984-06-01

    A new numerical method is applied to solving the equations of motion of the Friedberg-Lee Soliton model for both ground and spherically symmetric excited states. General results have been obtained over a wide range of parameters. Critical coupling constants and critical particle numbers have been determined below which soliton solutions cease to exist. The static properties of the proton are considered to show that as presently formulated the model fails to fit all experimental data for any set of parameters

  8. 1-Soliton solution of the generalized Zakharov-Kuznetsov equation with nonlinear dispersion and time-dependent coefficients

    International Nuclear Information System (INIS)

    Biswas, Anjan

    2009-01-01

    In this Letter, the 1-soliton solution of the Zakharov-Kuznetsov equation with power law nonlinearity and nonlinear dispersion along with time-dependent coefficients is obtained. There are two models for this kind of an equation that are studied. The constraint relation between these time-dependent coefficients is established for the solitons to exist. Subsequently, this equation is again analysed with generalized evolution. The solitary wave ansatz is used to carry out this investigation.

  9. High Order A-stable Continuous General Linear Methods for Solution of Systems of Initial Value Problems in ODEs

    Directory of Open Access Journals (Sweden)

    Dauda GuliburYAKUBU

    2012-12-01

    Full Text Available Accurate solutions to initial value systems of ordinary differential equations may be approximated efficiently by Runge-Kutta methods or linear multistep methods. Each of these has limitations of one sort or another. In this paper we consider, as a middle ground, the derivation of continuous general linear methods for solution of stiff systems of initial value problems in ordinary differential equations. These methods are designed to combine the advantages of both Runge-Kutta and linear multistep methods. Particularly, methods possessing the property of A-stability are identified as promising methods within this large class of general linear methods. We show that the continuous general linear methods are self-starting and have more ability to solve the stiff systems of ordinary differential equations, than the discrete ones. The initial value systems of ordinary differential equations are solved, for instance, without looking for any other method to start the integration process. This desirable feature of the proposed approach leads to obtaining very high accuracy of the solution of the given problem. Illustrative examples are given to demonstrate the novelty and reliability of the methods.

  10. Exact solution of the generalized time-dependent Jaynes-Cummings Hamiltonian

    International Nuclear Information System (INIS)

    Gruver, J.L.; Aliaga, J.; Cerdeira, H.A.; Proto, A.N.

    1993-04-01

    A time-dependent generalization of the Jaynes-Cummings Hamiltonian is studied using the maximum entropy formalism. The approach, related to a semi-Lie algebra, allows to find three different sets of physical relevant operators which describe the dynamics of the system for any temporal dependence. It is shown how the initial conditions of the operators are determined via the maximum entropy principle density operator, where the inclusion of the temperature turns the description of the problem into a thermodynamical one. The generalized time-independent Jaynes-Cummings Hamiltonian is exactly solved as a particular example. (author). 14 refs

  11. Solution of the generalized Emden-Fowler equations by the hybrid functions method

    International Nuclear Information System (INIS)

    Tabrizidooz, H R; Marzban, H R; Razzaghi, M

    2009-01-01

    In this paper, we present a numerical algorithm for solving the generalized Emden-Fowler equations, which have many applications in mathematical physics and astrophysics. The method is based on hybrid functions approximations. The properties of hybrid functions, which consist of block-pulse functions and Lagrange interpolating polynomials, are presented. These properties are then utilized to reduce the computation of the generalized Emden-Fowler equations to a system of nonlinear equations. The method is easy to implement and yields very accurate results.

  12. Generalized Analytical Treatment Of The Source Strength In The Solution Of The Diffusion Equation

    International Nuclear Information System (INIS)

    Essa, Kh.S.M.; EI-Otaify, M.S.

    2007-01-01

    The source release strength (which is an integral part of the mathematical formulation of the diffusion equation) together with the boundary conditions leads to three different forms of the diffusion equation. The obtained forms have been solved analytically under different boundary conditions, by using transformation of axis, cosine, and Fourier transformation. Three equivalent alternative mathematical formulations of the problem have been obtained. The estimated solution of the concentrations at the ground source has been used for comparison with observed concentrations data for SF 6 tracer experiments in low wind and unstable conditions at lIT Delhi sports ground. A good agreement between estimated and observed concentrations is found

  13. Infinitely many solutions for sublinear fractional Schrodinger-type equations with general potentials

    Directory of Open Access Journals (Sweden)

    Gang-Ling Hou

    2018-04-01

    Full Text Available This article concerns the fractional Schrodinger type equations $$ (-\\Delta^\\alpha u+V(xu =f(x,u \\quad\\text{in } \\mathbb{R}^N, $$ where $N\\geq 2$, $\\alpha\\in(0,1$, $(-\\Delta^\\alpha$ stands for the fractional Laplacian, $V$ is a positive continuous potential, $f\\in C(\\mathbb{R}^N\\times\\mathbb{R},\\mathbb{R}$. We establish criteria that guarantee the existence of infinitely many solutions by using the genus properties in critical point theory.

  14. Solution of the General Helmholtz Equation Starting from Laplace’s Equation

    Science.gov (United States)

    2002-11-01

    infinity for the two dimensional case. For the 3D the general form case, this term does not exist, as the potential at infinity is zero. Hence the Green’s...companies. She has assisted the Comisi6n the Living System Laboratory, Interministerial de Ciencia y Tecnologia (National LG Electronics, From 1998 to 2000

  15. Exact solutions of the generalized Lane–Emden equations of the ...

    Indian Academy of Sciences (India)

    the mutual attraction of its molecules and subject to the classical laws of thermodynamics. This equation was proposed ... was investigated for first integrals by Leach [31]. Moreover, transformation properties of a more general Emden–Fowler equation were considered in Mellin et al [5]. A review paper by Wong [32] contains ...

  16. The direct tensor solution and higher-order acquisition schemes for generalized diffusion tensor imaging

    NARCIS (Netherlands)

    Akkerman, Erik M.

    2010-01-01

    Both in diffusion tensor imaging (DTI) and in generalized diffusion tensor imaging (GDTI) the relation between the diffusion tensor and the measured apparent diffusion coefficients is given by a tensorial equation, which needs to be inverted in order to solve the diffusion tensor. The traditional

  17. Expanding the class of general exact solutions for interacting two field kinks

    International Nuclear Information System (INIS)

    Souza Dutra, A. de; Amaro de Faria, A.C.

    2006-01-01

    In this work we extend the range of applicability of a method recently introduced where coupled first-order nonlinear equations can be put into a linear form, and consequently be solved completely. Some general consequences of the present extension are then commented

  18. Influence of Ringer’s lactated solution in continuous infusion and general anesthesia on hematocrit in dogs

    Directory of Open Access Journals (Sweden)

    Rogério Luizari Guedes

    2015-08-01

    Full Text Available The measurement of serum parameters during general anesthesia procedures are subject to variations due to differences in protocol, splenic storage, and by the instituted fluid therapy. The aim of this study was to assess the hematocrit changes promoted by controlled fluid therapy and general anesthesia. Six mongrel female dogs underwent an anesthetic protocol with acepromazine (0.03 mg kg-1 and tramadol (5 mg kg-1 for premedication, induction with propofol (3 mg kg-1, and maintained with isoflurane and mechanical ventilation for 120 minutes. After induction, they were infused with 10 ml kg hr-1 of Ringer’s lactate solution. Hematocrit measurements were performed from the start until 72 hours from anesthesia and evaluated statistically to check if there were significant changes over time. The fluid therapy, the acepromazine and propofol in the anesthetic protocol promotes a significant reduction of hematocrit up to four hours after general anesthesia.

  19. General Exact Solution to the Problem of the Probability Density for Sums of Random Variables

    Science.gov (United States)

    Tribelsky, Michael I.

    2002-07-01

    The exact explicit expression for the probability density pN(x) for a sum of N random, arbitrary correlated summands is obtained. The expression is valid for any number N and any distribution of the random summands. Most attention is paid to application of the developed approach to the case of independent and identically distributed summands. The obtained results reproduce all known exact solutions valid for the, so called, stable distributions of the summands. It is also shown that if the distribution is not stable, the profile of pN(x) may be divided into three parts, namely a core (small x), a tail (large x), and a crossover from the core to the tail (moderate x). The quantitative description of all three parts as well as that for the entire profile is obtained. A number of particular examples are considered in detail.

  20. A case of generalized argyria after ingestion of colloidal silver solution.

    Science.gov (United States)

    Kim, Yangho; Suh, Ho Seok; Cha, Hee Jeong; Kim, Suk Hwan; Jeong, Kyoung Sook; Kim, Dong Hoon

    2009-03-01

    A 58-year-old woman was referred to our hospital due to progressive skin darkening, which began 5 months previously. The patient had strikingly diffuse blue-gray discoloration of the skin, most prominent in sun-exposed areas, especially her face and hands. The oral mucosa, tongue, gums, eye conjunctiva, ears, nail beds, and trunk were also involved. Bluish-gray discoloration of all nails was aggravated by cold weather. She had ingested 1 L of colloidal silver solution daily for approximately 16 months as a traditional remedy. Her serum silver concentration was 381 ng/ml which was a very high (reference level: silver and sulfur in the dense black deposits. The ingestion of colloidal silver appears to be an increasing practice among patients using alternative health practices. All silver-containing products including colloidal silver should be labeled with a clear warning to prevent argyria, especially in alternative health practices.

  1. Preemption versus Entrenchment: Towards a Construction-General Solution to the Problem of the Retreat from Verb Argument Structure Overgeneralization.

    Directory of Open Access Journals (Sweden)

    Ben Ambridge

    Full Text Available Participants aged 5;2-6;8, 9;2-10;6 and 18;1-22;2 (72 at each age rated verb argument structure overgeneralization errors (e.g., *Daddy giggled the baby using a five-point scale. The study was designed to investigate the feasibility of two proposed construction-general solutions to the question of how children retreat from, or avoid, such errors. No support was found for the prediction of the preemption hypothesis that the greater the frequency of the verb in the single most nearly synonymous construction (for this example, the periphrastic causative; e.g., Daddy made the baby giggle, the lower the acceptability of the error. Support was found, however, for the prediction of the entrenchment hypothesis that the greater the overall frequency of the verb, regardless of construction, the lower the acceptability of the error, at least for the two older groups. Thus while entrenchment appears to be a robust solution to the problem of the retreat from error, and one that generalizes across different error types, we did not find evidence that this is the case for preemption. The implication is that the solution to the retreat from error lies not with specialized mechanisms, but rather in a probabilistic process of construction competition.

  2. A General Approach to Access Morphologies of Polyoxometalates in Solution by Using SAXS: An Ab Initio Modeling Protocol.

    Science.gov (United States)

    Li, Mu; Wang, Weiyu; Yin, Panchao

    2018-05-02

    Herein, we reported a general protocol for an ab initio modeling approach to deduce structure information of polyoxometalates (POMs) in solutions from scattering data collected by the small-angle X-ray scattering (SAXS) technique. To validate the protocol, the morphologies of a serious of known POMs in either aqueous or organic solvents were analyzed. The obtained particle morphologies were compared and confirmed with previous reported crystal structures. To extend the feasibility of the protocol to an unknown system of aqueous solutions of Na 2 MoO 4 with the pH ranging from -1 to 8.35, the formation of {Mo 36 } clusters was probed, identified, and confirmed by SAXS. The approach was further optimized with a multi-processing capability to achieve fast analysis of experimental data, thereby, facilitating in situ studies of formations of POMs in solutions. The advantage of this approach is to generate intuitive 3D models of POMs in solutions without confining information such as symmetries and possible sizes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Iterative approximation of a solution of a general variational-like inclusion in Banach spaces

    International Nuclear Information System (INIS)

    Chidume, C.E.; Kazmi, K.R.; Zegeye, H.

    2002-07-01

    In this paper, we introduce a class of η-accretive mappings in a real Banach space, and show that the η-proximal point mapping for η-m-accretive mapping is Lipschitz continuous. Further we develop an iterative algorithm for a class of general variational-like inclusions involving η-accretive mappings in real Banach space, and discuss its convergence criteria. The class of η-accretive mappings includes several important classes of operators that have been studied by various authors. (author)

  4. Numerical solutions of a general coupled nonlinear system of parabolic and hyperbolic equations of thermoelasticity

    Science.gov (United States)

    Sweilam, N. H.; Abou Hasan, M. M.

    2017-05-01

    In this paper, the weighted-average non-standard finite-difference (WANSFD) method is used to study numerically the general time-fractional nonlinear, one-dimensional problem of thermoelasticity. This model contains the standard system arising in thermoelasticity as a special case. The stability of the proposed method is analyzed by a procedure akin to the standard John von Neumann technique. Moreover, the accuracy of the proposed scheme is proved. Numerical results are presented graphically, which reveal that the WANSFD method is easy to implement, effective and convenient for solving the proposed system. The proposed method could also be easily extended to solve other systems of fractional partial differential equations.

  5. Global solutions in lower order Sobolev spaces for the generalized Boussinesq equation

    Directory of Open Access Journals (Sweden)

    Luiz G. Farah

    2012-03-01

    Full Text Available We show that the Cauchy problem for the defocusing generalized Boussinesq equation $$ u_{tt}-u_{xx}+u_{xxxx}-(|u|^{2k}u_{xx}=0, quad kgeq 1, $$ on the real line is globally well-posed in $H^s(mathbb{R}$ with s>1-(1/(3k. To do this, we use the I-method, introduced by Colliander, Keel, Staffilani, Takaoka and Tao [8,9], to define a modification of the energy functional that is almost conserved in time. Our result extends a previous result obtained by Farah and Linares [16] for the case k=1.

  6. General solution of an exact correlation function factorization in conformal field theory

    International Nuclear Information System (INIS)

    Simmons, Jacob J H; Kleban, Peter

    2009-01-01

    The correlation function factorization with K a boundary operator product expansion coefficient, is known to hold for certain scaling operators at the two-dimensional percolation point and in a few other cases. Here the correlation functions are evaluated in the upper half-plane (or any conformally equivalent region) with x 1 and x 2 arbitrary points on the real axis, and z an arbitrary point in the interior. This type of result is of interest because it is both exact and universal, relates higher-order correlation functions to lower-order ones and has a simple interpretation in terms of cluster or loop probabilities in several statistical models. This motivated us to use the techniques of conformal field theory to determine the general conditions for its validity. Here, we discover that either (see display) factorizes in this way for any central charge c, generalizing previous results. In particular, the factorization holds for either FK (Fortuin–Kasteleyn) or spin clusters in the Q-state Potts models; it also applies to either the dense or dilute phases of the O(n) loop models. Further, only one other non-trivial set of highest-weight operators (in an irreducible Verma module) factorizes in this way. In this case the operators have negative dimension (for c<1) and do not seem to have a physical realization

  7. General three-state model with biased population replacement: Analytical solution and application to language dynamics

    Science.gov (United States)

    Colaiori, Francesca; Castellano, Claudio; Cuskley, Christine F.; Loreto, Vittorio; Pugliese, Martina; Tria, Francesca

    2015-01-01

    Empirical evidence shows that the rate of irregular usage of English verbs exhibits discontinuity as a function of their frequency: the most frequent verbs tend to be totally irregular. We aim to qualitatively understand the origin of this feature by studying simple agent-based models of language dynamics, where each agent adopts an inflectional state for a verb and may change it upon interaction with other agents. At the same time, agents are replaced at some rate by new agents adopting the regular form. In models with only two inflectional states (regular and irregular), we observe that either all verbs regularize irrespective of their frequency, or a continuous transition occurs between a low-frequency state, where the lemma becomes fully regular, and a high-frequency one, where both forms coexist. Introducing a third (mixed) state, wherein agents may use either form, we find that a third, qualitatively different behavior may emerge, namely, a discontinuous transition in frequency. We introduce and solve analytically a very general class of three-state models that allows us to fully understand these behaviors in a unified framework. Realistic sets of interaction rules, including the well-known naming game (NG) model, result in a discontinuous transition, in agreement with recent empirical findings. We also point out that the distinction between speaker and hearer in the interaction has no effect on the collective behavior. The results for the general three-state model, although discussed in terms of language dynamics, are widely applicable.

  8. Generalized solution of design optimization and failure analysis of composite drive shaft

    Energy Technology Data Exchange (ETDEWEB)

    Kollipalli, K.; Shivaramakrishna, K.V.S.; Prabhakaran, R.T.D. [Birla Institute of Technology and Science, Goa (India)

    2012-07-01

    Composites have an edge over conventional metals like steel and aluminum due to higher stiffness-to-weight ratio and strength-to-weight ratio. Due to these advantages, composites can bring out a revolutionary change in materials used in automotive engineering, as weight savings has positive impacts on other attributes like fuel economy and possible noise, vibration and harshness (NVH). In this paper, the drive line system of an automotive system is targeted for use of composites by keeping constraints in view such as such as torque transmission, torsional buckling load and fundamental natural frequency. Composite drive shafts made of three different composites ('HM Carbon/HS Carbon/E-glass'-epoxy) was modeled using Catia V5R16 CPD workbench and a finite element analysis with boundary conditions, fiber orientation and stacking sequence was performed using ANSYS Composite module. Results obtained were compared to theoretical results and were found to be accurate and in the limits. This paper also speaks on drive shaft modeling and analysis generalization i.e., changes in stacking sequence in the future can be incorporated directly into ANSYS model without modeling it again in Catia. Hence the base model and analysis method made up in this analysis generalization facilitated by CAD/CAE can be used to carry out any composite shaft design optimization process. (Author)

  9. Quantum, classical, and hybrid QM/MM calculations in solution: General implementation of the ddCOSMO linear scaling strategy

    International Nuclear Information System (INIS)

    Lipparini, Filippo; Scalmani, Giovanni; Frisch, Michael J.; Lagardère, Louis; Stamm, Benjamin; Cancès, Eric; Maday, Yvon; Piquemal, Jean-Philip; Mennucci, Benedetta

    2014-01-01

    We present the general theory and implementation of the Conductor-like Screening Model according to the recently developed ddCOSMO paradigm. The various quantities needed to apply ddCOSMO at different levels of theory, including quantum mechanical descriptions, are discussed in detail, with a particular focus on how to compute the integrals needed to evaluate the ddCOSMO solvation energy and its derivatives. The overall computational cost of a ddCOSMO computation is then analyzed and decomposed in the various steps: the different relative weights of such contributions are then discussed for both ddCOSMO and the fastest available alternative discretization to the COSMO equations. Finally, the scaling of the cost of the various steps with respect to the size of the solute is analyzed and discussed, showing how ddCOSMO opens significantly new possibilities when cheap or hybrid molecular mechanics/quantum mechanics methods are used to describe the solute

  10. Quantum, classical, and hybrid QM/MM calculations in solution: General implementation of the ddCOSMO linear scaling strategy

    Energy Technology Data Exchange (ETDEWEB)

    Lipparini, Filippo, E-mail: flippari@uni-mainz.de [Sorbonne Universités, UPMC Univ. Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005 Paris (France); Sorbonne Universités, UPMC Univ. Paris 06, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); Sorbonne Universités, UPMC Univ. Paris 06, Institut du Calcul et de la Simulation, F-75005 Paris (France); Scalmani, Giovanni; Frisch, Michael J. [Gaussian, Inc., 340 Quinnipiac St. Bldg. 40, Wallingford, Connecticut 06492 (United States); Lagardère, Louis [Sorbonne Universités, UPMC Univ. Paris 06, Institut du Calcul et de la Simulation, F-75005 Paris (France); Stamm, Benjamin [Sorbonne Universités, UPMC Univ. Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005 Paris (France); CNRS, UMR 7598 and 7616, F-75005 Paris (France); Cancès, Eric [Université Paris-Est, CERMICS, Ecole des Ponts and INRIA, 6 and 8 avenue Blaise Pascal, 77455 Marne-la-Vallée Cedex 2 (France); Maday, Yvon [Sorbonne Universités, UPMC Univ. Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005 Paris (France); Institut Universitaire de France, Paris, France and Division of Applied Maths, Brown University, Providence, Rhode Island 02912 (United States); Piquemal, Jean-Philip [Sorbonne Universités, UPMC Univ. Paris 06, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); CNRS, UMR 7598 and 7616, F-75005 Paris (France); Mennucci, Benedetta [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, 56126 Pisa (Italy)

    2014-11-14

    We present the general theory and implementation of the Conductor-like Screening Model according to the recently developed ddCOSMO paradigm. The various quantities needed to apply ddCOSMO at different levels of theory, including quantum mechanical descriptions, are discussed in detail, with a particular focus on how to compute the integrals needed to evaluate the ddCOSMO solvation energy and its derivatives. The overall computational cost of a ddCOSMO computation is then analyzed and decomposed in the various steps: the different relative weights of such contributions are then discussed for both ddCOSMO and the fastest available alternative discretization to the COSMO equations. Finally, the scaling of the cost of the various steps with respect to the size of the solute is analyzed and discussed, showing how ddCOSMO opens significantly new possibilities when cheap or hybrid molecular mechanics/quantum mechanics methods are used to describe the solute.

  11. Development of A General Principle Solution Forisoagrinet Compliant Networking System Components in Animal Husbandry

    Science.gov (United States)

    Kuhlmann, Arne; Herd, Daniel; Röβler, Benjamin; Gallmann, Eva; Jungbluth, Thomas

    In pig production software and electronic systems are widely used for process control and management. Unfortunately most devices on farms are proprietary solutions and autonomically working. To unify data communication of devices in agricultural husbandry, the international standard ISOagriNET (ISO 17532:2007) was developed. It defines data formats and exchange protocols, to link up devices like climate controls, feeding systems and sensors, but also management software. The aim of the research project, "Information and Data Collection in Livestock Systems" is to develop an ISOagriNET compliant IT system, a so called Farming Cell. It integrates all electronic components to acquire the available data and information for pig fattening. That way, an additional benefit to humans, animals and the environment regarding process control and documentation, can be generated. Developing the Farming Cell is very complex; in detail it is very difficult and long-winded to integrate hardware and software by various vendors into an ISOagriNET compliant IT system. This ISOagriNET prototype shows as a test environment the potential of this new standard.

  12. Strong coupling results in the AdS{sub 5}/CFT{sub 4} correspondence from the numerical solution of the quantum spectral curve

    Energy Technology Data Exchange (ETDEWEB)

    Hegedűs, Árpád; Konczer, József [MTA Lendület Holographic QFT Group, Wigner Research Centre,H-1525 Budapest 114, P.O.B. 49 (Hungary)

    2016-08-09

    In this paper, we solved numerically the Quantum Spectral Curve (QSC) equations corresponding to some twist-2 single trace operators with even spin from the sl(2) sector of AdS{sub 5}/CFT{sub 4} correspondence. We describe all technical details of the numerical method which are necessary to implement it in C++ language. In the S=2,4,6,8 cases, our numerical results confirm the analytical results, known in the literature for the first 4 coefficients of the strong coupling expansion for the anomalous dimensions of twist-2 operators. In the case of the Konishi operator, due to the high precision of the numerical data we could give numerical predictions to the values of two further coefficients, as well. The strong coupling behaviour of the coefficients c{sub a,n} in the power series representation of the P {sub a}-functions is also investigated. Based on our numerical data, in the regime, where the index of the coefficients is much smaller than λ{sup 1/4}, we conjecture that the coefficients have polynomial index dependence at strong coupling. This allows one to propose a strong coupling series representation for the P-functions being valid far enough from the real short cut. In the paper the qualitative strong coupling behaviour of the P-functions at the branch points is also discussed.

  13. A general method for tritium labelling of benzimidazole carbamates by catalytic exchange in dioxane solutions

    Energy Technology Data Exchange (ETDEWEB)

    Lacey, E [Commonwealth Scientific and Industrial Research Organization, Glebe, NSW (Australia). Div. of Animal Health, McMaster Lab.; Dawson, M [Sydney Univ. (Australia). Dept. of Pharmacy; Long, M A; Than, C [New South Wales Univ., Kensington (Australia). School of Chemistry

    1989-12-01

    Benzimidazole carbamates (BZCs) act as inhibitors of the tubulin-microtubule equilibria in eukaryotic organisms. Recently drug resistance to this class of compounds in helminth parasites has been shown to be due to a reduced ability of resistant tubulin to bind BZCs. In order to quantitate the nature of the tubulin-BZC interaction a general method for the specific tritium labelling of BZCs has been developed. The BZCs: mebendazole, oxfendazole, parbendazole, oxibendazole, albendazole and fenbendazole were labelled by catalytic exchange using palladium on calcium carbonate in pure dioxane at 60{sup 0}C under tritium gas. The position of label incorporation for tritiated albendazole was determined by tritium-NMR as the 4-position of benzimadazole nucleus. The yields for individual BZCs varied from 8 to 68% for a range of specific activity of 0.44 to 13.4 Ci/mmole. (author).

  14. A general method for tritium labelling of benzimidazole carbamates by catalytic exchange in dioxane solutions

    International Nuclear Information System (INIS)

    Lacey, E.; Dawson, M.; Long, M.A.; Than, C.

    1989-01-01

    Benzimidazole carbamates (BZCs) act as inhibitors of the tubulin-microtubule equilibria in eukaryotic organisms. Recently drug resistance to this class of compounds in helminth parasites has been shown to be due to a reduced ability of resistant tubulin to bind BZCs. In order to quantitate the nature of the tubulin-BZC interaction a general method for the specific tritium labelling of BZCs has been developed. The BZCs: mebendazole, oxfendazole, parbendazole, oxibendazole, albendazole and fenbendazole were labelled by catalytic exchange using palladium on calcium carbonate in pure dioxane at 60 0 C under tritium gas. The position of label incorporation for tritiated albendazole was determined by tritium-NMR as the 4-position of benzimadazole nucleus. The yields for individual BZCs varied from 8 to 68% for a range of specific activity of 0.44 to 13.4 Ci/mmole. (author)

  15. A new proof for the convergent iterative solution of the degenerate quantum double-well potential and its generalization

    International Nuclear Information System (INIS)

    Friedberg, R.; Lee, T.D.

    2003-01-01

    We present a new and simpler proof for the convergent iterative solution of the one-dimensional degenerate double-well potential. This new proof depends on a general theorem, called the hierarchy theorem, that shows the successive stages in the iteration to form a monotonically increasing sequence of approximations to the energy and to the wavefunction at any point x. This important property makes possible a much simpler proof of convergence than the one given before in the literature. The hierarchy theorem proven in this paper is applicable to a much wider class of potentials which includes the quartic potential

  16. Bright, dark, and mixed vector soliton solutions of the general coupled nonlinear Schrödinger equations.

    Science.gov (United States)

    Agalarov, Agalar; Zhulego, Vladimir; Gadzhimuradov, Telman

    2015-04-01

    The reduction procedure for the general coupled nonlinear Schrödinger (GCNLS) equations with four-wave mixing terms is proposed. It is shown that the GCNLS system is equivalent to the well known integrable families of the Manakov and Makhankov U(n,m)-vector models. This equivalence allows us to construct bright-bright and dark-dark solitons and a quasibreather-dark solution with unconventional dynamics: the density of the first component oscillates in space and time, whereas the density of the second component does not. The collision properties of solitons are also studied.

  17. Effect of exotic long-lived sub-strongly interacting massive particles in big bang nucleosynthesis and a new solution to the Li problem

    Directory of Open Access Journals (Sweden)

    Kawasaki Masahiro

    2012-02-01

    Full Text Available The plateau of 7Li abundance as a function of the iron abundance by spectroscopic observations of metal-poor halo stars (MPHSs indicates its primordial origin. The observed abundance levels are about a factor of three smaller than the primordial 7Li abundance predicted in the standard Big Bang Nucleosynthesis (BBN model. This discrepancy might originate from exotic particle and nuclear processes operating in BBN epoch. Some particle models include heavy (m >> 1 GeV long-lived colored particles which would be confined inside exotic heavy hadrons, i.e., strongly interacting massive particles (SIMPs. We have found reactions which destroy 7Be and 7Li during BBN in the scenario of BBN catalyzed by a long-lived sub-strongly interacting massive particle (sub-SIMP, X. The reactions are non radiative X captures of 7 Be and 7Li which can be operative if the X particle interacts with nuclei strongly enough to drive 7 Be destruction but not strongly enough to form a bound state with 4 He of relative angular momentum L = 1. We suggest that 7Li problem can be solved as a result of a new process beyond the standard model through which the observable signature was left on the primordial Li abundance.

  18. General solution of the multigroup spherical harmonics equations in R-Z geometry

    International Nuclear Information System (INIS)

    Matausek, M.

    1983-01-01

    In the present paper the generalization is performed of the procedure to solve multigroup spherical harmonics equations, which has originally been proposed and developed foe one-dimensional systems in cylindrical or spherical geometry, and later extended for special case of a two-dimensional system in r-z geometry. The expressions are derived for the axial and the radial dependence of the group values of the neutron flux moments, in the P-3 approximation of the spherical harmonics method, in a cylindrically symmetrical system with an arbitrary number of material regions in both r and z directions. In the special case of an axially homogeneous system, these expressions reduce to the relations derived previously. The analysis is performed of the possibilities to satisfy the boundary conditions in the case when the system considered represents an elementary reactor lattice cell and in the case when the system represents a reactor as a whole. The computational effort is estimated for system of a given configuration. (author)

  19. Towards a Robust Solution of the Non-Linear Kinematics for the General Stewart Platform with Estimation of Distribution Algorithms

    Directory of Open Access Journals (Sweden)

    Eusebio Eduardo Hernández Martinez

    2013-01-01

    Full Text Available In robotics, solving the direct kinematics problem (DKP for parallel robots is very often more difficult and time consuming than for their serial counterparts. The problem is stated as follows: given the joint variables, the Cartesian variables should be computed, namely the pose of the mobile platform. Most of the time, the DKP requires solving a non-linear system of equations. In addition, given that the system could be non-convex, Newton or Quasi-Newton (Dogleg based solvers get trapped on local minima. The capacity of such kinds of solvers to find an adequate solution strongly depends on the starting point. A well-known problem is the selection of such a starting point, which requires a priori information about the neighbouring region of the solution. In order to circumvent this issue, this article proposes an efficient method to select and to generate the starting point based on probabilistic learning. Experiments and discussion are presented to show the method performance. The method successfully avoids getting trapped on local minima without the need for human intervention, which increases its robustness when compared with a single Dogleg approach. This proposal can be extended to other structures, to any non-linear system of equations, and of course, to non-linear optimization problems.

  20. Exact traveling wave solutions of the KP-BBM equation by using the new approach of generalized (G'/G)-expansion method.

    Science.gov (United States)

    Alam, Md Nur; Akbar, M Ali

    2013-01-01

    The new approach of the generalized (G'/G)-expansion method is an effective and powerful mathematical tool in finding exact traveling wave solutions of nonlinear evolution equations (NLEEs) in science, engineering and mathematical physics. In this article, the new approach of the generalized (G'/G)-expansion method is applied to construct traveling wave solutions of the Kadomtsev-Petviashvili-Benjamin-Bona-Mahony (KP-BBM) equation. The solutions are expressed in terms of the hyperbolic functions, the trigonometric functions and the rational functions. By means of this scheme, we found some new traveling wave solutions of the above mentioned equation.

  1. <strong>Mini-project>

    DEFF Research Database (Denmark)

    Katajainen, Jyrki

    2008-01-01

    In this project the goal is to develop the safe * family of containers for the CPH STL. The containers to be developed should be safer and more reliable than any of the existing implementations. A special focus should be put on strong exception safety since none of the existing prototypes available...

  2. Conformal and covariant Z4 formulation of the Einstein equations: Strongly hyperbolic first-order reduction and solution with discontinuous Galerkin schemes

    Science.gov (United States)

    Dumbser, Michael; Guercilena, Federico; Köppel, Sven; Rezzolla, Luciano; Zanotti, Olindo

    2018-04-01

    We present a strongly hyperbolic first-order formulation of the Einstein equations based on the conformal and covariant Z4 system (CCZ4) with constraint-violation damping, which we refer to as FO-CCZ4. As CCZ4, this formulation combines the advantages of a conformal and traceless formulation, with the suppression of constraint violations given by the damping terms, but being first order in time and space, it is particularly suited for a discontinuous Galerkin (DG) implementation. The strongly hyperbolic first-order formulation has been obtained by making careful use of first and second-order ordering constraints. A proof of strong hyperbolicity is given for a selected choice of standard gauges via an analytical computation of the entire eigenstructure of the FO-CCZ4 system. The resulting governing partial differential equations system is written in nonconservative form and requires the evolution of 58 unknowns. A key feature of our formulation is that the first-order CCZ4 system decouples into a set of pure ordinary differential equations and a reduced hyperbolic system of partial differential equations that contains only linearly degenerate fields. We implement FO-CCZ4 in a high-order path-conservative arbitrary-high-order-method-using-derivatives (ADER)-DG scheme with adaptive mesh refinement and local time-stepping, supplemented with a third-order ADER-WENO subcell finite-volume limiter in order to deal with singularities arising with black holes. We validate the correctness of the formulation through a series of standard tests in vacuum, performed in one, two and three spatial dimensions, and also present preliminary results on the evolution of binary black-hole systems. To the best of our knowledge, these are the first successful three-dimensional simulations of moving punctures carried out with high-order DG schemes using a first-order formulation of the Einstein equations.

  3. Nonlinear recurrent neural networks for finite-time solution of general time-varying linear matrix equations.

    Science.gov (United States)

    Xiao, Lin; Liao, Bolin; Li, Shuai; Chen, Ke

    2018-02-01

    In order to solve general time-varying linear matrix equations (LMEs) more efficiently, this paper proposes two nonlinear recurrent neural networks based on two nonlinear activation functions. According to Lyapunov theory, such two nonlinear recurrent neural networks are proved to be convergent within finite-time. Besides, by solving differential equation, the upper bounds of the finite convergence time are determined analytically. Compared with existing recurrent neural networks, the proposed two nonlinear recurrent neural networks have a better convergence property (i.e., the upper bound is lower), and thus the accurate solutions of general time-varying LMEs can be obtained with less time. At last, various different situations have been considered by setting different coefficient matrices of general time-varying LMEs and a great variety of computer simulations (including the application to robot manipulators) have been conducted to validate the better finite-time convergence of the proposed two nonlinear recurrent neural networks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Strong interactions

    International Nuclear Information System (INIS)

    Froissart, Marcel

    1976-01-01

    Strong interactions are introduced by their more obvious aspect: nuclear forces. In hadron family, the nucleon octet, OMEGA - decuplet, and quark triply are successively considered. Pion wave having been put at the origin of nuclear forces, low energy phenomena are described, the force being explained as an exchange of structure corresponding to a Regge trajectory in a variable rotating state instead of the exchange of a well defined particle. At high energies the concepts of pomeron, parton and stratons are introduced, pionization and fragmentation are briefly differentiated [fr

  5. On a nu-continuous famaly of strong solutions to the Euler or Navier-Stokes equations with the Navier-type boundary condition

    Czech Academy of Sciences Publication Activity Database

    Bellout, H.; Neustupa, Jiří; Penel, P.

    2010-01-01

    Roč. 27, č. 4 (2010), s. 1353-1373 ISSN 1078-0947 R&D Projects: GA AV ČR IAA100190905 Institutional research plan: CEZ:AV0Z10190503 Keywords : Euler equations * Navier-Stokes equations * zero viscosity limit Subject RIV: BA - General Mathematics Impact factor: 0.986, year: 2010 http://www.aimsciences.org/journals/displayArticles.jsp?paperID=5028

  6. On robustness of a strong solution to the Navier–Stokes equations with Navier's boundary conditions in the L3-norm

    Czech Academy of Sciences Publication Activity Database

    Kučera, P.; Neustupa, Jiří

    2017-01-01

    Roč. 30, č. 4 (2017), s. 1564-1583 ISSN 0951-7715 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : Navier-Stokes equations * slip boundary conditions * regularity Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.767, year: 2016 http://iopscience.iop.org/article/10.1088/1361-6544/aa6166/meta

  7. Two-step algorithm of generalized PAPA method applied to linear programming solution of dynamic matrix control

    International Nuclear Information System (INIS)

    Shimizu, Yoshiaki

    1991-01-01

    In recent complicated nuclear systems, there are increasing demands for developing highly advanced procedures for various problems-solvings. Among them keen interests have been paid on man-machine communications to improve both safety and economy factors. Many optimization methods have been good enough to elaborate on these points. In this preliminary note, we will concern with application of linear programming (LP) for this purpose. First we will present a new superior version of the generalized PAPA method (GEPAPA) to solve LP problems. We will then examine its effectiveness when applied to derive dynamic matrix control (DMC) as the LP solution. The approach is to aim at the above goal through a quality control of process that will appear in the system. (author)

  8. Exact Solutions to Several Nonlinear Cases of Generalized Grad-Shafranov Equation for Ideal Magnetohydrodynamic Flows in Axisymmetric Domain

    Science.gov (United States)

    Adem, Abdullahi Rashid; Moawad, Salah M.

    2018-05-01

    In this paper, the steady-state equations of ideal magnetohydrodynamic incompressible flows in axisymmetric domains are investigated. These flows are governed by a second-order elliptic partial differential equation as a type of generalized Grad-Shafranov equation. The problem of finding exact equilibria to the full governing equations in the presence of incompressible mass flows is considered. Two different types of constraints on position variables are presented to construct exact solution classes for several nonlinear cases of the governing equations. Some of the obtained results are checked for their applications to magnetic confinement plasma. Besides, they cover many previous configurations and include new considerations about the nonlinearity of magnetic flux stream variables.

  9. Detection of localized and general corrosion of mild steel in simulated defense nuclear waste solutions using electrochemical noise analysis

    International Nuclear Information System (INIS)

    Edgemon, G.L.; Ohl, P.C.; Bell, G.E.C.; Wilson, D.F.

    1995-12-01

    Underground waste tanks fabricated from mild steel store more than 60 million gallons of radioactive waste from 50 years of weapons production. Leaks are suspected in a significant number of tanks. The probable modes of corrosion failures are reported to be localized corrosion (e.g. nitrate stress corrosion cracking and pitting). The use of electrochemical noise (EN) for the monitoring and detection of localized corrosion processes has received considerable attention and application over the last several years. Proof of principle laboratory tests were conducted to verify the capability of EN evaluation to detect localized corrosion and to compare the predictions of general corrosion obtained from EN with those derived from other sources. Simple, pre-fabricated flat and U-bend specimens of steel alloys A516-Grade 60 (UNS K02100) and A537-CL 1 (UNS K02400) were immersed in temperature controlled simulated waste solutions. The simulated waste solution was either 5M NaNO 3 with 0.3M NaOH at 90 C or 11M NaNO 3 with 0.15M NaOH at 95 C. The electrochemical noise activity from the specimens was monitored and recorded for periods ranging between 140 and 240 hours. At the end of each test period, the specimens were metallographically examined to correlated EN data with corrosion damage

  10. Multisoliton solutions in terms of double Wronskian determinant for a generalized variable-coefficient nonlinear Schroedinger equation from plasma physics, arterial mechanics, fluid dynamics and optical communications

    International Nuclear Information System (INIS)

    Lue Xing; Zhu Hongwu; Yao Zhenzhi; Meng Xianghua; Zhang Cheng; Zhang Chunyi; Tian Bo

    2008-01-01

    In this paper, the multisoliton solutions in terms of double Wronskian determinant are presented for a generalized variable-coefficient nonlinear Schroedinger equation, which appears in space and laboratory plasmas, arterial mechanics, fluid dynamics, optical communications and so on. By means of the particularly nice properties of Wronskian determinant, the solutions are testified through direct substitution into the bilinear equations. Furthermore, it can be proved that the bilinear Baecklund transformation transforms between (N - 1)- and N-soliton solutions

  11. Strong Convergence Theorems of a New General Iterative Process with Meir-Keeler Contractions for a Countable Family of -Strict Pseudocontractions in -Uniformly Smooth Banach Spaces

    Directory of Open Access Journals (Sweden)

    Song Yanlai

    2010-01-01

    Full Text Available We introduce a new iterative scheme with Meir-Keeler contractions for strict pseudocontractions in -uniformly smooth Banach spaces. We also discuss the strong convergence theorems for the new iterative scheme in -uniformly smooth Banach space. Our results improve and extend the corresponding results announced by many others.

  12. A general method for the purification of synthetic oligodeoxyribonucleotides containing strong secondary structure by reversed-phase high-performance liquid chromatography on PRP-1 resin.

    Science.gov (United States)

    Germann, M W; Pon, R T; van de Sande, J H

    1987-09-01

    Synthetic 5'-dimethoxytritylated oligodeoxyribonucleotides, which contained strong secondary structure, were satisfactorily denatured and purified by reversed-phase HPLC on PRP-1 columns when strongly alkaline conditions (0.05 M NaOH) were employed. This procedure was suitable for the purification of hairpin structures, e.g., d(CG)nT4(CG)n (n = 4, 5, 6), and oligo(dG) sequences, e.g., d(G)24, as well as oligodeoxyribonucleotide probes which contained degenerate base sites. Oligodeoxyribonucleotides as long as 50 bases in length were purified. Recovery of injected oligonucleotides was typically 90% or better. The high capacity of the PRP-1 resin also allowed purification to be performed on a preparative scale (2-8 mg per injection). Enzymatic degradation and HPLC analysis indicated that no modification of the heterocyclic bases occurred under the alkaline conditions described.

  13. Geographic Diffusion and Implementation of Acute Care Surgery: An Uneven Solution to the National Emergency General Surgery Crisis.

    Science.gov (United States)

    Khubchandani, Jasmine A; Ingraham, Angela M; Daniel, Vijaya T; Ayturk, Didem; Kiefe, Catarina I; Santry, Heena P

    2018-02-01

    Owing to lack of adequate emergency care infrastructure and decline in general surgery workforce, the United States faces a crisis in access to emergency general surgery (EGS) care. Acute care surgery (ACS), an organized system of trauma, general surgery, and critical care, is a proposed solution; however, ACS diffusion remains poorly understood. To investigate geographic diffusion of ACS models of care and characterize the communities in which ACS implementation is lagging. A national survey on EGS practices was developed, tested, and administered at all 2811 US acute care hospitals providing EGS to adults between August 2015 and October 2015. Surgeons responsible for EGS coverage at these hospitals were approached. If these surgeons failed to respond to the initial survey implementation, secondary surgeons or chief medical officers at hospitals with only 1 general surgeon were approached. Survey responses on ACS implementation were linked with geocoded hospital data and national census data to determine geographic diffusion of and access to ACS. We measured the distribution of hospitals with ACS models of care vs those without over time (diffusion) and by US counties characterized by sociodemographic characteristics of county residents (access). Survey response rate was 60% (n = 1690); 272 responding hospitals had implemented ACS by 2015, steadily increasing from 34 in 2001 to 125 in 2010. Acute care surgery implementation has not been uniform. Rural regions have limited ACS access, with hospitals in counties with greater than the 75th percentile population having 5.4 times higher odds (95% CI, 1.66-7.35) of implementing ACS than hospitals in counties with less than 25th percentile population. Communities with greater percentages of adults without a college degree also have limited ACS access (OR, 3.43; 95% CI, 1.81-6.48). However, incorporating EGS into ACS models may be a potential equalizer for poor, black, and Hispanic communities. Understanding and

  14. A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear Schrödinger equation

    Science.gov (United States)

    Ghanbari, Behzad; Inc, Mustafa

    2018-04-01

    The present paper suggests a novel technique to acquire exact solutions of nonlinear partial differential equations. The main idea of the method is to generalize the exponential rational function method. In order to examine the ability of the method, we consider the resonant nonlinear Schrödinger equation (R-NLSE). Many variants of exact soliton solutions for the equation are derived by the proposed method. Physical interpretations of some obtained solutions is also included. One can easily conclude that the new proposed method is very efficient and finds the exact solutions of the equation in a relatively easy way.

  15. A transformation with symbolic computation and abundant new soliton-like solutions for the (1+2)-dimensional generalized Burgers equation

    International Nuclear Information System (INIS)

    Yan Zhenya

    2002-01-01

    In this paper, an auto-Baecklund transformation is presented for the generalized Burgers equation: u t +u xy + αuu y +αu x ∂ -1 x u y =0 (α is constant) by using an ansatz and symbolic computation. Particularly, this equation is transformed into a (1+2)-dimensional generalized heat equation ω t + ω xy =0 by the Cole-Hopf transformation. This shows that this equation is C-integrable. Abundant types of new soliton-like solutions are obtained by virtue of the obtained transformation. These solutions contain n-soliton-like solutions, shock wave solutions and singular soliton-like solutions, which may be of important significance in explaining some physical phenomena. The approach can also be extended to other types of nonlinear partial differential equations in mathematical physics

  16. Generalized Møller-Plesset Multiconfiguration Perturbation Theory Applied to an Open-Shell Antisymmetric Product of Strongly Orthogonal Geminals Reference Wave Function.

    Science.gov (United States)

    Tarumi, Moto; Kobayashi, Masato; Nakai, Hiromi

    2012-11-13

    The antisymmetric product of strongly orthogonal geminals (APSG) method is a wave function theory that can effectively treat the static electron correlation. Recently, we proposed the open-shell APSG method using one-electron orbitals for open-shell parts. In this paper, we have extended the perturbation correction to the open-shell APSG calculations through Møller-Plesset-type multiconfiguration perturbation theory (MP-MCPT). Numerical applications demonstrate that the present open-shell MP-MCPT can reasonably reproduce the dissociation energies or equilibrium distances for open-shell systems.

  17. Stability analysis of the soliton solutions for the generalized quintic derivative nonlinear Schrödinger equation

    Directory of Open Access Journals (Sweden)

    Chen Yue

    Full Text Available The propagation of hydrodynamic wave packets and media with negative refractive index is studied in a quintic derivative nonlinear Schrödinger (DNLS equation. The quintic DNLS equation describe the wave propagation on a discrete electrical transmission line. We obtain a Lagrangian and the invariant variational principle for quintic DNLS equation. By using a class of ordinary differential equation, we found four types of exact solutions of the quintic DNLS equation, which are kink-type solitary wave solution, antikink-type solitary wave solution, sinusoidal solitary wave solution, bell-type solitary wave solution. By applying the modulation instability to discuss stability analysis of the obtained solutions. Modulation instabilities of continuous waves and localized solutions on a zero background have been investigated. Keywords: Quintic derivative NLS equation, Solitary wave solutions, Mathematical physics methods, 2000 MR Subject Classification: 35G20, 35Q53, 37K10, 49S05, 76A60

  18. General parenting styles are not strongly associated with fruit and vegetable intake and social-environmental correlates among 11-year-old children in four countries in Europe.

    Science.gov (United States)

    De Bourdeaudhuij, I; Te Velde, S J; Maes, L; Pérez-Rodrigo, C; de Almeida, M D V; Brug, J

    2009-02-01

    To investigate whether fruit and vegetable (F&V) intake in 11-year-olds, and social-environmental correlates of F&V intake such as parental modelling and encouragement, family food rules and home availability, differ according to general parenting styles in Belgium, The Netherlands, Portugal and Spain. Cross-sectional study. Primary schools in four countries. Pupils and one of their parents completed questionnaires to measure F&V intake, related social-environmental correlates and general parenting styles. The sample size was 4555 (49.3 % boys); 1180 for Belgium, 883 for The Netherlands, 1515 for Portugal and 977 for Spain. Parenting styles were divided into authoritative, authoritarian, indulgent and neglectful. No differences were found in F&V intake across parenting styles and only very few significant differences in social-environmental correlates. The authoritarian (more parental encouragement and more demands to eat fruit) and the authoritative (more availability of fruit and vegetables) parenting styles resulted in more favourable correlates. Despite earlier studies suggesting that general parenting styles are associated with health behaviours in children, the present study suggests that this association is weak to non-existent for F&V intakes in four different European countries.

  19. Global Positive Periodic Solutions of Generalized n-Species Gilpin-Ayala Delayed Competition Systems with Impulses

    Directory of Open Access Journals (Sweden)

    Zhenguo Luo

    2013-01-01

    Full Text Available We consider the following generalized n-species Lotka-Volterra type and Gilpin-Ayala type competition systems with multiple delays and impulses: xi′(t=xi(t[ai(t-bi(txi(t-∑j=1n‍cij(txjαij(t-ρij(t-∑j=1n‍dij(txjβij(t-τij(t-∑j=1n‍eij(t∫-ηij0‍kij(sxjγij(t+sds-∑j=1n‍fij(t∫-θij0‍Kij(ξxiδij(t+ξxjσij(t+ξdξ],a.e, t>0, t≠tk; xi(tk+-xi(tk-=hikxi(tk, i=1,2,…,n, k∈Z+. By applying the Krasnoselskii fixed-point theorem in a cone of Banach space, we derive some verifiable necessary and sufficient conditions for the existence of positive periodic solutions of the previously mentioned. As applications, some special cases of the previous system are examined and some earlier results are extended and improved.

  20. Generalization of Bateman-Hillion progressive wave and Bessel-Gauss pulse solutions of the wave equation via a separation of variables

    CERN Document Server

    Kiselev, A

    2003-01-01

    Two new families of exact solutions of the wave equation u sub x sub x + u sub y sub y + u sub z sub z - c sup - sup 2 u sub t sub t = 0 generalizing Bessel-Gauss pulses and Bateman-Hillion relatively undistorted progressive waves, respectively are presented. In each of these families new simple solutions describing localized wave propagation are found. The approach is based on a kind of separation of variables. (letter to the editor)

  1. Positive solution of non-square fully Fuzzy linear system of equation in general form using least square method

    Directory of Open Access Journals (Sweden)

    Reza Ezzati

    2014-08-01

    Full Text Available In this paper, we propose the least square method for computing the positive solution of a non-square fully fuzzy linear system. To this end, we use Kaffman' arithmetic operations on fuzzy numbers \\cite{17}. Here, considered existence of exact solution using pseudoinverse, if they are not satisfy in positive solution condition, we will compute fuzzy vector core and then we will obtain right and left spreads of positive fuzzy vector by introducing constrained least squares problem. Using our proposed method, non-square fully fuzzy linear system of equations always has a solution. Finally, we illustrate the efficiency of proposed method by solving some numerical examples.

  2. Infrared and dc conductivity in metals with strong scattering: Nonclassical behavior from a generalized Boltzmann equation containing band-mixing effects

    International Nuclear Information System (INIS)

    Allen, P.B.; Chakraborty, B.

    1981-01-01

    Metals with high resistivity (approx.100 μΩ cm) seem to show weaker variation of resistivity (as a function of temperature and perhaps also static disorder) than predicted by semiclassical (Bloch-Boltzmann) theory (SBT). We argue that the effect is not closely related to Anderson localization, and therefore does not necessarily signify a failure of the independent collision approximation. Instead we propose a failure of the semiclassical acceleration and conduction approximations. A generalization of Boltzmann theory is made which includes quantum (interband) acceleration and conduction, as well as a complete treatment of interband-collision effects (within the independent-collision approximation). The interband terms enhance short-time response to E fields (because the theory satisfies the exact f-sum rule instead of the semiclassical approximation to it). This suggests that the additional conductivity, as expressed phenomenologically by the shunt resistor model, is explained by interband effects. The scattering operator is complex, its imaginary parts being related to energy-band renormalization caused by the disorder. Charge conservation is respected and thermal equilibrium is restored by the collision operator. The theory is formally solved for the leading corrections to SBT, which have the form of a shunt resistor model. At infrared frequencies, the conductivity mostly obeys the Drude law sigma(ω)approx.sigma(0)(1-iωtau) -1 , except for one term which goes as (1-iωtau) -2

  3. Classical solutions for discrete potential boundary value problems with generalized Leray-Lions type operator and variable exponent

    Directory of Open Access Journals (Sweden)

    Bila Adolphe Kyelem

    2017-04-01

    Full Text Available In this article, we prove the existence of solutions for some discrete nonlinear difference equations subjected to a potential boundary type condition. We use a variational technique that relies on Szulkin's critical point theory, which ensures the existence of solutions by ground state and mountain pass methods.

  4. Exact solution of the Klein-Gordon equation for the PT-symmetric generalized Woods-Saxon potential by the Nikiforov-Uvarov method

    International Nuclear Information System (INIS)

    Ikhdair, S.M.; Sever, R.

    2007-01-01

    The exact solution of the one-dimensional Klein-Gordon equation of the PT-symmetric generalized Woods-Saxon potential is obtained. The exact energy eigenvalues and wavefunctions are derived analytically by using the Nikiforov and Uvarov method. In addition, the positive and negative exact bound states of the s-states are also investigated for different types of complex generalized Woods-Saxon potentials. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  5. A general analytical solution for the stochastic Milne problem using Karhunen–Loeve (K–L) expansion

    International Nuclear Information System (INIS)

    Hussein, A.; Selim, M.M.

    2013-01-01

    This paper considers the solution of the stochastic integro-differential equation of Milne problem with random operator. The Pomraning–Eddington method is implemented to get a closed form solution deterministically. Relying on the spectral properties of the covariance function, the Karhunen–Loeve (K–L) expansion is used to represent the input stochastic process in the deterministic solution. This leads to an explicit expression for the solution process as a multivariate functional of a set of uncorrelated random variables. By using different distributions for these variables, the work is realized through computing the mean and the variance of the solution. The numerical results are found in agreement with those obtained in the literature. -- Highlights: •The solution of the stochastic Milne problem is considered. •We dealt with the random cross-section itself not with the optical transformation of it. •Pomraning–Eddington method together with the (K–L) expansion were implemented. •The solution process is obtained as a functional of a set of uncorrelated random variables. •Good results are obtained for different distributions of these variables

  6. On the de Sitter and Nariai solutions in general relativity and their extension in higher dimensional space-time

    International Nuclear Information System (INIS)

    Nariai, Hidekazu; Ishihara, Hideki.

    1983-01-01

    Various geometrical properties of Nariai's less-familiar solution of the vacuum Einstein equations R sub( mu nu ) = lambda g sub( mu nu ) is f irst summarized in comparison with de Sitter's well-known solution. Next an extension of both solutions is performed in a six-dimensional space on the supposition that such an extension will in future become useful to elucidate more closely the creation of particles in an inflationary stage of the big-bang universe. For preparation, the behavior of a massive scalar field in the extended space-time is studied in a classical level. (author)

  7. IFLA General Conference, 1986. Pre-Conference Seminar on Automated Systems for Access to Multilingual and Multiscript Library materials: Problems and Solutions. Papers.

    Science.gov (United States)

    International Federation of Library Associations and Institutions, The Hague (Netherlands).

    A seminar which considered problems and solutions regarding automated systems for access to multilingual and multiscript library materials was held as a pre-session before the IFLA general conference in 1986. Papers presented include: (1) "Romanized and Transliterated Databases of Asian Language Materials--History, Problems, and…

  8. One class of meromorphic solutions of general two-dimensional nonlinear equations, connected with the algebraic inverse scattering method.

    Science.gov (United States)

    Chudnovsky, D V

    1978-09-01

    For systems of nonlinear equations having the form [L(n) - ( partial differential/ partial differentialt), L(m) - ( partial differential/ partial differentialy)] = 0 the class of meromorphic solutions obtained from the linear equations [Formula: see text] is presented.

  9. A Generalized Semi-Analytical Solution for the Dispersive Henry Problem: Effect of Stratification and Anisotropy on Seawater Intrusion

    Directory of Open Access Journals (Sweden)

    Marwan Fahs

    2018-02-01

    Full Text Available The Henry problem (HP continues to play a useful role in theoretical and practical studies related to seawater intrusion (SWI into coastal aquifers. The popularity of this problem is attributed to its simplicity and precision to the existence of semi-analytical (SA solutions. The first SA solution has been developed for a high uniform diffusion coefficient. Several further studies have contributed more realistic solutions with lower diffusion coefficients or velocity-dependent dispersion. All the existing SA solutions are limited to homogenous and isotropic domains. This work attempts to improve the realism of the SA solution of the dispersive HP by extending it to heterogeneous and anisotropic coastal aquifers. The solution is obtained using the Fourier series method. A special hydraulic conductivity–depth model describing stratified heterogeneity is used for mathematical convenience. An efficient technique is developed to solve the flow and transport equations in the spectral space. With this technique, we show that the HP can be solved in the spectral space with the salt concentration as primary unknown. Several examples are generated, and the SA solutions are compared against an in-house finite element code. The results provide high-quality data assessed by quantitative indicators that can be effectively used for code verification in realistic configurations of heterogeneity and anisotropy. The SA solution is used to explain contradictory results stated in the previous works about the effect of anisotropy on the saltwater wedge. It is also used to investigate the combined influence of stratification and anisotropy on relevant metrics characterizing SWI. At a constant gravity number, anisotropy leads to landward migration of the saltwater wedge, more intense saltwater flux, a wider mixing zone and shallower groundwater discharge zone to the sea. The influence of stratified heterogeneity is more pronounced in highly anisotropic aquifers. The

  10. Effect of Organic Acid Additions on the General and Localized Corrosion Susceptibility of Alloy 22 in Chloride Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Carranza, R M; Giordano, C M; Rodr?guez, M A; Ilevbare, G O; Rebak, R B

    2007-08-28

    Electrochemical studies such as cyclic potentiodynamic polarization (CPP) and electrochemical impedance spectroscopy (EIS) were performed to determine the corrosion behavior of Alloy 22 (N06022) in 1M NaCl solutions at various pH values from acidic to neutral at 90 C. All the tested material was wrought Mill Annealed (MA). Tests were also performed in NaCl solutions containing weak organic acids such as oxalic, acetic, citric and picric. Results show that the corrosion rate of Alloy 22 was significantly higher in solutions containing oxalic acid than in solutions of pure NaCl at the same pH. Citric and picric acids showed a slightly higher corrosion rate, and acetic acid maintained the corrosion rate of pure chloride solutions at the same pH. Organic acids revealed to be weak inhibitors for crevice corrosion. Higher concentration ratios, compared to nitrate ions, were needed to completely inhibit crevice corrosion in chloride solutions. Results are discussed considering acid dissociation constants, buffer capacity and complex formation constants of the different weak acids.

  11. Contribution to the study of influences in emission spectrography on solutions. Application to a general analysis method for stainless steels (1961)

    International Nuclear Information System (INIS)

    Baudin, G.

    1961-11-01

    In order to establish a general method of analysis of stainless steels, by means of spark spectroscopy on solutions, a systematic study has been made of the factors involved. The variations in acidity of the solutions, or in the ratio of concentrations of two acids at constant pH, lead to a displacement of the calibration curve. Simple relations have been established between the concentration of the extraneous elements, and the effects produced, for the constituents Fe, Ti, Ni, Cr, Mn; a general method using abacus is proposed for steels containing only these elements. The interactions in the case of the elements Mo, Nb, Ta, W, were more complex, so that the simultaneous separation was studied with the help of ion-exchange resins. A general method of analysis is proposed for stainless steels. (author) [fr

  12. You Don't Need Richards'... A New General 1-D Vadose Zone Solution Method that is Reliable

    Science.gov (United States)

    Ogden, F. L.; Lai, W.; Zhu, J.; Steinke, R. C.; Talbot, C. A.

    2015-12-01

    Hydrologic modelers and mathematicians have strived to improve 1-D Richards' equation (RE) solution reliability for predicting vadose zone fluxes. Despite advances in computing power and the numerical solution of partial differential equations since Richards first published the RE in 1931, the solution remains unreliable. That is to say that there is no guarantee that for a particular set of soil constitutive relations, moisture profile conditions, or forcing input that a numerical RE solver will converge to an answer. This risk of non-convergence renders prohibitive the use of RE solvers in hydrological models that need perhaps millions of infiltration solutions. In lieu of using unreliable numerical RE solutions, researchers have developed a wide array of approximate solutions that more-or-less mimic the behavior of the RE, with some notable deficiencies such as parameter insensitivity or divergence over time. The improved Talbot-Ogden (T-O) finite water-content scheme was shown by Ogden et al. (2015) to be an extremely good approximation of the 1-D RE solution, with a difference in cumulative infiltration of only 0.2 percent over an 8 month simulation comparing the improved T-O scheme with a RE numerical solver. The reason is that the newly-derived fundamental flow equation that underpins the improved T-O method is equivalent to the RE minus a term that is equal to the diffusive flux divided by the slope of the wetting front. Because the diffusive flux has zero mean, this term is not important in calculating the mean flux. The wetting front slope is near infinite (sharp) in coarser soils that produce more significant hydrological interactions between surface and ground waters, which also makes this missing term 1) disappear in the limit, and, 2) create stability challenges for the numerical solution of RE. The improved T-O method is a replacement for the 1-D RE in soils that can be simulated as homogeneous layers, where the user is willing to neglect the effects

  13. Strong diamagnetism for general domains and applications

    DEFF Research Database (Denmark)

    Fournais, Søren; Helffer, Bernard

    2007-01-01

    We consider the Neumann Laplacian with constant magnetic field on a regular domain. Let $B$ be the strength of the magnetic field, and let $\\lambda_1(B)$ be the first eigenvalue of the magnetic Neumann Laplacian on the domain. It is proved that $B \\mapsto \\lambda_1(B)$ is monotone increasing for ...

  14. A note on the solution of general Falkner-Skan problem by two novel semi-analytical techniques

    Directory of Open Access Journals (Sweden)

    Ahmed Khidir

    2015-12-01

    Full Text Available The aim of this paper is to give a presentation of two new iterative methods for solving non-linear differential equations, they are successive linearisation method and spectral homotopy perturbation method. We applied these techniques on the non-linear boundary value problems of Falkner-Skan type. The methods used to find a recursive former for higher order equations that are solved using the Chebyshev spectral method to find solutions that are accurate and converge rapidly to the full numerical solution. The methods are illustrated by progressively applying the technique to the Blasius boundary layer equation, the Falkner-Skan equation and finally, the magnetohydrodynamic (MHD Falkner-Skan equation. The solutions are compared to other methods in the literature such as the homotopy analysis method and the spectral-homotopy analysis method with focus on the accuracy and convergence of this new techniques.

  15. Fission and fusion interaction phenomena of mixed lump kink solutions for a generalized (3+1)-dimensional B-type Kadomtsev-Petviashvili equation

    Science.gov (United States)

    Liu, Yaqing; Wen, Xiaoyong

    2018-05-01

    In this paper, a generalized (3+1)-dimensional B-type Kadomtsev-Petviashvili (gBKP) equation is investigated by using the Hirota’s bilinear method. With the aid of symbolic computation, some new lump, mixed lump kink and periodic lump solutions are derived. Based on the derived solutions, some novel interaction phenomena like the fission and fusion interactions between one lump soliton and one kink soliton, the fission and fusion interactions between one lump soliton and a pair of kink solitons and the interactions between two periodic lump solitons are discussed graphically. Results might be helpful for understanding the propagation of the shallow water wave.

  16. Solution of Effective-Mass Dirac Equation with Scalar-Vector and Pseudoscalar Terms for Generalized Hulthén Potential

    Directory of Open Access Journals (Sweden)

    Altuğ Arda

    2017-01-01

    Full Text Available We find the exact bound state solutions and normalization constant for the Dirac equation with scalar-vector-pseudoscalar interaction terms for the generalized Hulthén potential in the case where we have a particular mass function m(x. We also search the solutions for the constant mass where the obtained results correspond to the ones when the Dirac equation has spin and pseudospin symmetry, respectively. After giving the obtained results for the nonrelativistic case, we search then the energy spectra and corresponding upper and lower components of Dirac spinor for the case of PT-symmetric forms of the present potential.

  17. The Generalized Maxwell-Stefan Model Coupled with Vacancy Solution Theory of Adsorption for Diffusion in Zeolites

    Directory of Open Access Journals (Sweden)

    Seyyed Milad Salehi

    2014-01-01

    Full Text Available It seems using the Maxwell-Stefan (M-S diffusion model in combination with the vacancy solution theory (VST and the single-component adsorption data provides a superior, qualitative, and quantitative prediction of diffusion in zeolites. In the M-S formulation, thermodynamic factor (Г is an essential parameter which must be estimated by an adsorption isotherm. Researchers usually utilize the simplest form of adsorption isotherms such as Langmuir or improved dual-site Langmuir, which eventually cannot predict the real behavior of mixture diffusion particularly at high concentrations of adsorbates because of ignoring nonideality in the adsorbed phase. An isotherm model with regard to the real behavior of the adsorbed phase, which is based on the vacancy solution theory (VST and considers adsorbate-adsorbent interactions, is employed. The objective of this study is applying vacancy solution theory to pure component data, calculating thermodynamic factor (Г, and finally evaluating the simulation results by comparison with literature. Vacancy solution theory obviously predicts thermodynamic factor better than simple models such as dual-site Langmuir.

  18. The Teaching of General Solution Methods to Pattern Finding Problems through Focusing on an Evaluation and Improvement Process.

    Science.gov (United States)

    Ishida, Junichi

    1997-01-01

    Examines the effects of a teaching strategy in which fifth-grade students evaluated the strengths or weaknesses of solution methods to pattern finding problems, including an experimental and control group each consisting of 34 elementary students, in Japan. The experimental group showed a significantly better performance on the retention test…

  19. Solution of the advection-diffusion equation for a nonhomogeneous and nonstationary Planetary Boundary Layer by GILTT (Generalized Integral Laplace Transform Technique)

    International Nuclear Information System (INIS)

    Mello, Kelen Berra de

    2005-02-01

    In this work is shown the solution of the advection-diffusion equation to simulate a pollutant dispersion in the Planetary Boundary Layer. The solution is obtained through of the GILTT (Generalized Integral Laplace Transform Technique) analytic method and of the numerical inversion Gauss Quadrature. The validity of the solution is proved using concentration obtained from the model with concentration obtained for Copenhagen experiment. In this comparison was utilized potential and logarithmic wind profile and eddy diffusivity derived by Degrazia et al (1997) [17] and (2002) [19]. The best results was using the potential wind profile and the eddy diffusivity derived by Degrazia et al (1997). The vertical velocity influence is shown in the plume behavior of the pollutant concentration. Moreover, the vertical and longitudinal velocity provided by Large Eddy Simulation (LES) was stood in the model to simulate the turbulent boundary layer more realistic, the result was satisfactory when compared with contained in the literature. (author)

  20. Generalized boundary conditions in an existence and uniqueness proof for the solution of the non-stationary electron Boltzmann equation by means of operator-semigroups

    International Nuclear Information System (INIS)

    Bartolomaeus, G.; Wilhelm, J.

    1983-01-01

    Recently, based on the semigroup approach a new proof was presented of the existence of a unique solution of the non-stationary Boltzmann equation for the electron component of a collision dominated plasma. The proof underlies some restriction which should be overcome to extend the validity range to other problems of physical interest. One of the restrictions is the boundary condition applied. The choice of the boundary condition is essential for the proof because it determines the range of definition of the infinitesimal generator and thus the operator semigroup itself. The paper proves the existence of a unique solution for generalized boundary conditions, this solution takes non-negative values, which is necessary for a distribution function from the physical point of view. (author)

  1. Generalized Meir-Keeler Type ψ-Contractive Mappings and Applications to Common Solution of Integral Equations

    Directory of Open Access Journals (Sweden)

    Huseyin Isik

    2017-03-01

    Full Text Available The goal of the present article to introduce the notion of generalized Meir-Keeler type ψ-contractions and prove some coupled common fixed point results for such type of contractions. The theorems proved herein extend, generalize and improve some results of the existing literature. Several examples and an application to integral equations are also given in order to illustrate the genuineness of our results.

  2. Plasmons in strong superconductors

    International Nuclear Information System (INIS)

    Baldo, M.; Ducoin, C.

    2011-01-01

    We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.

  3. A Designer Fluid for Aluminum Phase Change Devices, Vol. 1 of 3: General Inorganic Aqueous Solution (IAS) Chemistry

    Science.gov (United States)

    2016-11-17

    out in wicked phase change heat transfer devices. Wen [18] used nanoparticle suspensions to successfully increase the boiling heat transfer...Aqueous Solution of an Anionic Surfactant,” Journal of Heat Transfer 122, No. 4: 708. [18] Wen , D. and Ding, Y., 2005, “Experimental Investigation...Li, Y., 1974, “Diffusion of Ions in Sea Water and in Deep -Sea Sediments,” Geochimica et Cosmochimica Acta, Vol. 88, pp. 703-714. [36] Negishi, K

  4. A generalized Zakharov-Shabat equation with finite-band solutions and a soliton-equation hierarchy with an arbitrary parameter

    International Nuclear Information System (INIS)

    Zhang Yufeng; Tam, Honwah; Feng Binlu

    2011-01-01

    Highlights: → A generalized Zakharov-Shabat equation is obtained. → The generalized AKNS vector fields are established. → The finite-band solution of the g-ZS equation is obtained. → By using a Lie algebra presented in the paper, a new soliton hierarchy with an arbitrary parameter is worked out. - Abstract: In this paper, a generalized Zakharov-Shabat equation (g-ZS equation), which is an isospectral problem, is introduced by using a loop algebra G ∼ . From the stationary zero curvature equation we define the Lenard gradients {g j } and the corresponding generalized AKNS (g-AKNS) vector fields {X j } and X k flows. Employing the nonlinearization method, we obtain the generalized Zhakharov-Shabat Bargmann (g-ZS-B) system and prove that it is Liouville integrable by introducing elliptic coordinates and evolution equations. The explicit relations of the X k flows and the polynomial integrals {H k } are established. Finally, we obtain the finite-band solutions of the g-ZS equation via the Abel-Jacobian coordinates. In addition, a soliton hierarchy and its Hamiltonian structure with an arbitrary parameter k are derived.

  5. A generalized volumetric dispersion model for a class of two-phase separation/reaction: finite difference solutions

    Science.gov (United States)

    Siripatana, Chairat; Thongpan, Hathaikarn; Promraksa, Arwut

    2017-03-01

    This article explores a volumetric approach in formulating differential equations for a class of engineering flow problems involving component transfer within or between two phases. In contrast to conventional formulation which is based on linear velocities, this work proposed a slightly different approach based on volumetric flow-rate which is essentially constant in many industrial processes. In effect, many multi-dimensional flow problems found industrially can be simplified into multi-component or multi-phase but one-dimensional flow problems. The formulation is largely generic, covering counter-current, concurrent or batch, fixed and fluidized bed arrangement. It was also intended to use for start-up, shut-down, control and steady state simulation. Since many realistic and industrial operation are dynamic with variable velocity and porosity in relation to position, analytical solutions are rare and limited to only very simple cases. Thus we also provide a numerical solution using Crank-Nicolson finite difference scheme. This solution is inherently stable as tested against a few cases published in the literature. However, it is anticipated that, for unconfined flow or non-constant flow-rate, traditional formulation should be applied.

  6. Escape from washing out of baryon number in a two-zero-texture general Zee model compatible with the large mixing angle MSW solution

    International Nuclear Information System (INIS)

    Hasegawa, K.; Lim, C.S.; Ogure, K.

    2003-01-01

    We propose a two-zero-texture general Zee model, compatible with the large mixing angle Mikheyev-Smirnov-Wolfenstein solution. The washing out of the baryon number does not occur in this model for an adequate parameter range. We check the consistency of a model with the constraints coming from flavor changing neutral current processes, the recent cosmic microwave background observation, and the Z-burst scenario

  7. Escape from washing out of baryon number in a two-zero-texture general Zee model compatible with the large mixing angle MSW solution

    Science.gov (United States)

    Hasegawa, K.; Lim, C. S.; Ogure, K.

    2003-09-01

    We propose a two-zero-texture general Zee model, compatible with the large mixing angle Mikheyev-Smirnov-Wolfenstein solution. The washing out of the baryon number does not occur in this model for an adequate parameter range. We check the consistency of a model with the constraints coming from flavor changing neutral current processes, the recent cosmic microwave background observation, and the Z-burst scenario.

  8. Escape from washing out of baryon number in a two-zero-texture general Zee model compatible with the large mixing angle MSW solution

    OpenAIRE

    Hasegawa, K.; Lim, C. S.; Ogure, K.

    2003-01-01

    We propose a two-zero-texture general Zee model, compatible with the large mixing angle Mikheyev-Smirnov-Wolfenstein solution. The washing out of the baryon number does not occur in this model for an adequate parameter range. We check the consistency of a model with the constraints coming from flavor changing neutral current processes, the recent cosmic microwave background observation, and the Z-burst scenario.

  9. Identification of alkaptonuria in the general population: a United Kingdom experience describing the challenges, possible solutions and persistent barriers.

    Science.gov (United States)

    Ranganath, L; Taylor, A M; Shenkin, A; Fraser, W D; Jarvis, J; Gallagher, J A; Sireau, N

    2011-06-01

    Progress in research into rare diseases is challenging. This paper discusses strategies to identify individuals with the rare genetic disease alkaptonuria (AKU) within the general population. Strategies used included a questionnaire survey of general practitioners, a dedicated website and patient network contact, targeted family screening and medical conference targeting. Primary care physicians of the UK were targeted by a postal survey that involved mailing 11,151 UK GPs; the response rate was 18.2%. We have identified 75 patients in the UK with AKU by the following means: postal survey (23), targeted family screening (11), patient networks and the website (41). Targeting medical conferences (AKU, rare diseases, rheumatology, clinical biochemistry, orthopaedics, general practitioners) did not lead to new identification in the UK but helped identify overseas cases. We are now aware of 626 patients worldwide including newly identified non-UK people with AKU in the following areas: Slovakia (208), the rest of Europe (including Turkey) (79), North America (including USA and Canada) (110), and the rest of the world (154). A mechanism for identifying individuals with AKU in the general population-not just in the UK but worldwide-has been established. Knowledge of patients with AKU, both in the UK and outside, is often confined to establishing their location in a particular GP practice or association with a particular medical professional. Mere identification, however, does not always lead to full engagement for epidemiological research purposes or targeting treatment since further barriers exist.

  10. On large-time energy concentration in solutions to the Navier-Stokes equations in general domains

    Czech Academy of Sciences Publication Activity Database

    Skalák, Zdeněk

    2011-01-01

    Roč. 91, č. 9 (2011), s. 724-732 ISSN 0044-2267 R&D Projects: GA AV ČR IAA100190905 Institutional research plan: CEZ:AV0Z20600510 Keywords : Navier-Stokes equations * large-time behavior * energy concentration Subject RIV: BA - General Mathematics Impact factor: 0.863, year: 2011

  11. Explicit solutions to the generalized Sylvester matrix equation AX- XF = BY%广义Sylvester矩阵方程AX-XF=BY的显式解

    Institute of Scientific and Technical Information of China (English)

    周彬; 段广仁

    2006-01-01

    A complete, general and explicit solution to the generalized Sylvester matrix equation AX-XF = BY, with F being an arbitrary square matrix, is investigated. The proposed solution is in an extremely neat form represented by a controllability matrix of the matrix pair (A,B), a symmetric operator and an observability matrix of the matrix pair (Z,F), where Z is an arbitrary matrix used to denote the degree of freedom in the solution. Furthermore, based on the Faddeev - Leverrier algorithm, an equivalent form of the proposed solution is established. At the same time, an equivalent form of the solutions proposed in [ 13 ] is also induced. These results provide great convenience to the analysis and design problems in control systems. The results proposed in this note is a further discussion of the results proposed in [ 13 ].%给出了广义Sylvester矩阵方程AX-XF=BY当F为任意矩阵时的一种完全的解析通解.该通解由矩阵对(A,B)构成的能控性矩阵,一个对称算子矩阵和矩阵对(Z,F)构成的能观性矩阵组成,这里Z是一个任意的参数矩阵,用来表征该方程的解的自由度.利用著名的Levverrier算法,该解析解的一个等价形式被给出.给出的结果是参考文献[13]的推广,在[13]中F被假设为友矩阵.

  12. Exact analytical solution of the convolution integral equation for a general profile fitting function and Gaussian detector kernel

    International Nuclear Information System (INIS)

    Garcia-Vicente, F.; Rodriguez, C.

    2000-01-01

    One of the most important aspects in the metrology of radiation fields is the problem of the measurement of dose profiles in regions where the dose gradient is large. In such zones, the 'detector size effect' may produce experimental measurements that do not correspond to reality. Mathematically it can be proved, under some general assumptions of spatial linearity, that the disturbance induced in the measurement by the effect of the finite size of the detector is equal to the convolution of the real profile with a representative kernel of the detector. In this work the exact relation between the measured profile and the real profile is shown, through the analytical resolution of the integral equation for a general type of profile fitting function using Gaussian convolution kernels. (author)

  13. On regularity of a weak solution to the Navier–Stokes equations with the generalized Navier slip boundary conditions

    Czech Academy of Sciences Publication Activity Database

    Neustupa, Jiří; Penel, P.

    2018-01-01

    Roč. 2018, March (2018), č. článku 4617020. ISSN 1687-9120 R&D Projects: GA ČR(CZ) GA17-01747S Institutional support: RVO:67985840 Keywords : Navier-Stokes equations Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.643, year: 2016 https://www.hindawi.com/journals/amp/2018/4617020/

  14. Trajectory planning of mobile robots using indirect solution of optimal control method in generalized point-to-point task

    Science.gov (United States)

    Nazemizadeh, M.; Rahimi, H. N.; Amini Khoiy, K.

    2012-03-01

    This paper presents an optimal control strategy for optimal trajectory planning of mobile robots by considering nonlinear dynamic model and nonholonomic constraints of the system. The nonholonomic constraints of the system are introduced by a nonintegrable set of differential equations which represent kinematic restriction on the motion. The Lagrange's principle is employed to derive the nonlinear equations of the system. Then, the optimal path planning of the mobile robot is formulated as an optimal control problem. To set up the problem, the nonlinear equations of the system are assumed as constraints, and a minimum energy objective function is defined. To solve the problem, an indirect solution of the optimal control method is employed, and conditions of the optimality derived as a set of coupled nonlinear differential equations. The optimality equations are solved numerically, and various simulations are performed for a nonholonomic mobile robot to illustrate effectiveness of the proposed method.

  15. Elastic interaction of a crack with a microcrack array. I - Formulation of the problem and general form of the solution. II - Elastic solution for two crack configurations (piecewise constant and linear approximations)

    Science.gov (United States)

    Chudnovsky, A.; Dolgopolsky, A.; Kachanov, M.

    1987-01-01

    The elastic interactions of a two-dimensional configuration consisting of a crack with an array of microcracks located near the tip are studied. The general form of the solution is based on the potential representations and approximations of tractions on the microcracks by polynomials. In the second part, the technique is applied to two simple two-dimensional configurations involving one and two microcracks. The problems of stress shielding and stress amplification (the reduction or increase of the effective stress intensity factor due to the presence of microcracks) are discussed, and the refinements introduced by higher order polynomial approximations are illustrated.

  16. Instabilities in strongly coupled plasmas

    CERN Document Server

    Kalman, G J

    2003-01-01

    The conventional Vlasov treatment of beam-plasma instabilities is inappropriate when the plasma is strongly coupled. In the strongly coupled liquid state, the strong correlations between the dust grains fundamentally affect the conditions for instability. In the crystalline state, the inherent anisotropy couples the longitudinal and transverse polarizations, and results in unstable excitations in both polarizations. We summarize analyses of resonant and non-resonant, as well as resistive instabilities. We consider both ion-dust streaming and dust beam-plasma instabilities. Strong coupling, in general, leads to an enhancement of the growth rates. In the crystalline phase, a resonant transverse instability can be excited.

  17. Stability of solutions of antineoplastic agents during preparation and storage for in vitro assays. General considerations, the nitrosoureas and alkylating agents.

    Science.gov (United States)

    Bosanquet, A G

    1985-01-01

    In vitro drug sensitivity of tumour biopsies is currently being determined using a variety of methods. For these chemosensitivity assays many drugs are required at short notice, and this in turn means that the drugs must generally be stored in solution. There are, however, a number of potential problems associated with dissolving and storing drugs for in vitro use, which include (a) drug adsorption; (b) effects of freezing; (c) drug stability under the normal conditions of dilution and setting up of an in vitro assay; and (d) insolubility of drugs in normal saline (NS) or phosphate-buffered saline (PBS). These problems are considered in general, and some recommendations for use of solutions of drugs in in vitro assays are suggested. The nitrosoureas and alkylating agents are also investigated in greater detail in this respect. The nitrosoureas are found to be very labile in PBS at pH 7, with 5% degradation (t0.95) occurring in 10-50 min at room temperature. These values are increased about 10-fold on refrigeration and about 5- to 10-fold on reduction of the pH of the medium to pH 4-5. At pH 7 and room temperature, t0.95 is observed in under 1 h with the alkylating agents nitrogen mustard, chlorambucil, melphalan, 2,5-diaziridinyl-3,6-bis(2-hydroxyethylamino)-1,4-benzoquinone (BZQ), dibromodulcitol, dibromomannitol, treosulphan, and procarbazine. Of the other alkylating agents, 4-hydroperoxycylophosphamide (sometimes used in vitro in place of cyclophosphamide), busulphan, dianhydrogalactitol, aziridinylbenzoquinone (AZQ), and dacarbazine have a t0.95 of between 2 and 24 h, while ifosfamide and pentamethylmelamine are both stable in aqueous solution for greater than 7 days. About half the drugs studied in detail have been stored frozen in solution for in vitro use, although very little is known about their stability under these conditions.

  18. Contribution to the study of influences in emission spectrography on solutions. Application to a general analysis method for stainless steels (1961); Contribution a l'etude des influences en spectographie d'emission sur solution. Application a une methode generale d'analyse des aciers inoxydables (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Baudin, G [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1961-11-15

    In order to establish a general method of analysis of stainless steels, by means of spark spectroscopy on solutions, a systematic study has been made of the factors involved. The variations in acidity of the solutions, or in the ratio of concentrations of two acids at constant pH, lead to a displacement of the calibration curve. Simple relations have been established between the concentration of the extraneous elements, and the effects produced, for the constituents Fe, Ti, Ni, Cr, Mn; a general method using abacus is proposed for steels containing only these elements. The interactions in the case of the elements Mo, Nb, Ta, W, were more complex, so that the simultaneous separation was studied with the help of ion-exchange resins. A general method of analysis is proposed for stainless steels. (author) [French] En vue d'etablir une methode generale d'analyse des aciers inoxydables par spectrographie d'etincelles sur solution, on a effectue une etude systematique des influences. Les variations de l'acidite des solutions ou du rapport des concentrations de deux acides a pH constant, entrainent un deplacement des courbes d'etalonnage. On a etabli des relations simples entre la teneur des tiers elements et les effets produits pour les constituants Fe, Ti, Ni, Cr, Mn; une methode generale avec abaques est proposee pour les aciers contenant ces seuls elements. Les influences dans le cas des elements Mo, Nb, Ta, W etant plus complexes, on eut a etudier la separation simultanee a l'aide de resines echangeuses d'ions. On propose une methode generale d'analyse des aciers inoxydables. (auteur)

  19. Classical and quantum models of strong cosmic censorship

    International Nuclear Information System (INIS)

    Moncrief, V.E.

    1983-01-01

    The cosmic censorship conjecture states that naked singularities should not evolve from regular initial conditions in general relativity. In its strong form the conjecture asserts that space-times with Cauchy horizons must always be unstable and thus that the generic solution of Einstein's equations must be inextendible beyond its maximal Cauchy development. In this paper it is shown that one can construct an infinite-dimensional family of extendible cosmological solutions similar to Taub-NUT space-time; however, each of these solutions is unstable in precisely the way demanded by strong cosmic censorship. Finally it is shown that quantum fluctuations in the metric always provide (though in an unexpectedly subtle way) the ''generic perturbations'' which destroy the Cauchy horizons in these models. (author)

  20. Classical and quantum models of strong cosmic censorship

    Energy Technology Data Exchange (ETDEWEB)

    Moncrief, V.E. (Yale Univ., New Haven, CT (USA). Dept. of Physics)

    1983-04-01

    The cosmic censorship conjecture states that naked singularities should not evolve from regular initial conditions in general relativity. In its strong form the conjecture asserts that space-times with Cauchy horizons must always be unstable and thus that the generic solution of Einstein's equations must be inextendible beyond its maximal Cauchy development. In this paper it is shown that one can construct an infinite-dimensional family of extendible cosmological solutions similar to Taub-NUT space-time; however, each of these solutions is unstable in precisely the way demanded by strong cosmic censorship. Finally it is shown that quantum fluctuations in the metric always provide (though in an unexpectedly subtle way) the ''generic perturbations'' which destroy the Cauchy horizons in these models.

  1. Black holes a laboratory for testing strong gravity

    CERN Document Server

    Bambi, Cosimo

    2017-01-01

    This textbook introduces the current astrophysical observations of black holes, and discusses the leading techniques to study the strong gravity region around these objects with electromagnetic radiation. More importantly, it provides the basic tools for writing an astrophysical code and testing the Kerr paradigm. Astrophysical black holes are an ideal laboratory for testing strong gravity. According to general relativity, the spacetime geometry around these objects should be well described by the Kerr solution. The electromagnetic radiation emitted by the gas in the inner part of the accretion disk can probe the metric of the strong gravity region and test the Kerr black hole hypothesis. With exercises and examples in each chapter, as well as calculations and analytical details in the appendix, the book is especially useful to the beginners or graduate students who are familiar with general relativity while they do not have any background in astronomy or astrophysics.

  2. Efficacy of 1.25% amitraz solution in the treatment of generalized demodicosis (eight cases) and sarcoptic mange (five cases) in dogs.

    Science.gov (United States)

    Hugnet, C; Bruchon-Hugnet, C; Royer, H; Bourdoiseau, G

    2001-04-01

    Eight dogs with generalized demodicosis and five with sarcoptic manage were treated with 1.25% amitraz solution applied weekly and associated with an antidote treatment (atipamezol, 0.1 mg kg-1 i.m. once: and yohimbine 0.1 mg kg-1 once daily for 3 days, orally). Results of skin scrapings were used to determine whether therapy should be continued or stopped. The median number of treatments for demodicosis and sarcoptic mange was three (range 2-5) and two (range 1-3), respectively. Some side-effects were observed but all were stopped with antidote treatment; no failure or relapses occurred at 6-36 months after treatment.

  3. Antiperiodic Solutions for a Generalized High-Order (p,q-Laplacian Neutral Differential System with Delays in the Critical Case

    Directory of Open Access Journals (Sweden)

    Yongzhi Liao

    2013-01-01

    Full Text Available By applying the method of coincidence degree, some criteria are established for the existence of antiperiodic solutions for a generalized high-order (p,q-Laplacian neutral differential system with delays (φp((x(t-cx(t-τ(k(m-k=F(t,xθ0(t,xθ1(t′,…,xθk(t(k,yϑ0(t,yϑ1(t′,…,yϑl(t(l, (φq((y(t-dy(t-σ(l(n-l=G(t,yμ0(t,yμ1(t′,…,yμl(t(l,xν0(t,xν1(t′,…,xνk(t(k in the critical case |c|=|d|=1. The results of this paper are completely new. Finally, an example is employed to illustrate our results.

  4. Soliton-like solutions of a generalized variable-coefficient higher order nonlinear Schroedinger equation from inhomogeneous optical fibers with symbolic computation

    International Nuclear Information System (INIS)

    Li Juan; Zhang Haiqiang; Xu Tao; Zhang, Ya-Xing; Tian Bo

    2007-01-01

    For the long-distance communication and manufacturing problems in optical fibers, the propagation of subpicosecond or femtosecond optical pulses can be governed by the variable-coefficient nonlinear Schroedinger equation with higher order effects, such as the third-order dispersion, self-steepening and self-frequency shift. In this paper, we firstly determine the general conditions for this equation to be integrable by employing the Painleve analysis. Based on the obtained 3 x 3 Lax pair, we construct the Darboux transformation for such a model under the corresponding constraints, and then derive the nth-iterated potential transformation formula by the iterative process of Darboux transformation. Through the one- and two-soliton-like solutions, we graphically discuss the features of femtosecond solitons in inhomogeneous optical fibers

  5. Rogue waves and lump solutions for a (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation in fluid mechanics

    Science.gov (United States)

    Wu, Xiao-Yu; Tian, Bo; Chai, Han-Peng; Sun, Yan

    2017-08-01

    Under investigation in this letter is a (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation, which describes the weakly dispersive waves propagating in a fluid. Employing the Hirota method and symbolic computation, we obtain the lump, breather-wave and rogue-wave solutions under certain constraints. We graphically study the lump waves with the influence of the parameters h1, h3 and h5 which are all the real constants: When h1 increases, amplitude of the lump wave increases, and location of the peak moves; when h3 increases, lump wave’s amplitude decreases, but location of the peak keeps unchanged; when h5 changes, lump wave’s peak location moves, but amplitude keeps unchanged. Breather waves and rogue waves are displayed: Rogue waves emerge when the periods of the breather waves go to the infinity.

  6. Soil Solution

    NARCIS (Netherlands)

    Sonneveld, C.; Voogt, W.

    2009-01-01

    The characteristics of the soil solution in the root environment in the greenhouse industry differ much from those for field grown crops. This is caused firstly by the growing conditions in the greenhouse, which strongly differ from those in the field and secondly the function attributed to the soil

  7. Strongly nonlinear parabolic variational inequalities.

    Science.gov (United States)

    Browder, F E; Brézis, H

    1980-02-01

    An existence and uniqueness result is established for a general class of variational inequalities for parabolic partial differential equations of the form partial differentialu/ partial differentialt + A(u) + g(u) = f with g nondecreasing but satisfying no growth condition. The proof is based upon a type of compactness result for solutions of variational inequalities that should find a variety of other applications.

  8. Testing strong interaction theories

    International Nuclear Information System (INIS)

    Ellis, J.

    1979-01-01

    The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)

  9. Strong coupling phase in QED

    International Nuclear Information System (INIS)

    Aoki, Ken-ichi

    1988-01-01

    Existence of a strong coupling phase in QED has been suggested in solutions of the Schwinger-Dyson equation and in Monte Carlo simulation of lattice QED. In this article we recapitulate the previous arguments, and formulate the problem in the modern framework of the renormalization theory, Wilsonian renormalization. This scheme of renormalization gives the best understanding of the basic structure of a field theory especially when it has a multi-phase structure. We resolve some misleading arguments in the previous literature. Then we set up a strategy to attack the strong phase, if any. We describe a trial; a coupled Schwinger-Dyson equation. Possible picture of the strong coupling phase QED is presented. (author)

  10. Comparative demography of an epiphytic lichen: support for general life history patterns and solutions to common problems in demographic parameter estimation.

    Science.gov (United States)

    Shriver, Robert K; Cutler, Kerry; Doak, Daniel F

    2012-09-01

    Lichens are major components in many terrestrial ecosystems, yet their population ecology is at best only poorly understood. Few studies have fully quantified the life history or demographic patterns of any lichen, with particularly little attention to epiphytic species. We conducted a 6-year demographic study of Vulpicida pinastri, an epiphytic foliose lichen, in south-central Alaska. After testing multiple size-structured functions to describe patterns in each V. pinastri demographic rate, we used the resulting estimates to construct a stochastic demographic model for the species. This model development led us to propose solutions to two general problems in construction of demographic models for many taxa: how to simply but accurately characterize highly skewed growth rates, and how to estimate recruitment rates that are exceptionally difficult to directly observe. Our results show that V. pinastri has rapid and variable growth and, for small individuals, low and variable survival, but that these traits are coupled with considerable longevity (e.g., >50 years mean future life span for a 4-cm(2) thallus) and little deviation of the stochastic population growth rate from the deterministic expectation. Comparisons of the demographic patterns we found with those of other lichen studies suggest that their relatively simple architecture may allow clearer generalities about growth patterns for lichens than for other taxa, and that the expected pattern of faster growth rates for epiphytic species is substantiated.

  11. Unbounded solutions of quasi-linear difference equations

    Czech Academy of Sciences Publication Activity Database

    Cecchi, M.; Došlá, Zuzana; Marini, M.

    2003-01-01

    Roč. 45, 10-11 (2003), s. 1113-1123 ISSN 0898-1221 Institutional research plan: CEZ:AV0Z1019905 Keywords : nonlinear difference equation * possitive increasing solution * strongly increasing solution Subject RIV: BA - General Mathematics Impact factor: 0.498, year: 2003

  12. <strong>Authenticated hash tablesstrong>

    DEFF Research Database (Denmark)

    Triandopoulos, Nikolaos; Papamanthou, Charalampos; Tamassia, Roberto

    2008-01-01

    Hash tables are fundamental data structures that optimally answer membership queries. Suppose a client stores n elements in a hash table that is outsourced at a remote server so that the client can save space or achieve load balancing. Authenticating the hash table functionality, i.e., verifying...... to a scheme that achieves different trade-offs---namely, constant update time and O(nε/logκε n) query time for fixed ε > 0 and κ > 0. An experimental evaluation of our solution shows very good scalability....

  13. Global general relativity

    International Nuclear Information System (INIS)

    Penrose, R.

    1979-01-01

    Much theoretical work in General Relativity has been concerned with finding explicit solutions of Einstein field equations. Exact solutions must involve simplifying procedures which in the case of strong gravitational fields may not be valid. Computers can help but complementary to these are the global qualitative mathematics that have been introduced into relativity over the past years. These have shown that Einstein's equations together with suitable inequalities on the energy-momentum tensor can lead inevitably to space-time singularities arising, provided that some qualitative geometric criterion is satisfied. It seems that in suitable situations of gravitational collapse this criterion will be satisfied. Similarly in a cosmological setting the criterion can be applied in the reverse direction in time. There is, however, the unsolved problem in general relativity of cosmic censorship and this is discussed as a consequence of Einstein's equations. (UK)

  14. Integrability and soliton solutions for an inhomogeneous generalized fourth-order nonlinear Schrödinger equation describing the inhomogeneous alpha helical proteins and Heisenberg ferromagnetic spin chains

    International Nuclear Information System (INIS)

    Wang, Pan; Tian, Bo; Jiang, Yan; Wang, Yu-Feng

    2013-01-01

    For describing the dynamics of alpha helical proteins with internal molecular excitations, nonlinear couplings between lattice vibrations and molecular excitations, and spin excitations in one-dimensional isotropic biquadratic Heisenberg ferromagnetic spin with the octupole–dipole interactions, we consider an inhomogeneous generalized fourth-order nonlinear Schrödinger equation. Based on the Ablowitz–Kaup–Newell–Segur system, infinitely many conservation laws for the equation are derived. Through the auxiliary function, bilinear forms and N-soliton solutions for the equation are obtained. Interactions of solitons are discussed by means of the asymptotic analysis. Effects of linear inhomogeneity on the interactions of solitons are also investigated graphically and analytically. Since the inhomogeneous coefficient of the equation h=α x+β, the soliton takes on the parabolic profile during the evolution. Soliton velocity is related to the parameter α, distance scale coefficient and biquadratic exchange coefficient, but has no relation with the parameter β. Soliton amplitude and width are only related to α. Soliton position is related to β

  15. LSENS: A General Chemical Kinetics and Sensitivity Analysis Code for homogeneous gas-phase reactions. Part 1: Theory and numerical solution procedures

    Science.gov (United States)

    Radhakrishnan, Krishnan

    1994-01-01

    LSENS, the Lewis General Chemical Kinetics and Sensitivity Analysis Code, has been developed for solving complex, homogeneous, gas-phase chemical kinetics problems and contains sensitivity analysis for a variety of problems, including nonisothermal situations. This report is part 1 of a series of three reference publications that describe LENS, provide a detailed guide to its usage, and present many example problems. Part 1 derives the governing equations and describes the numerical solution procedures for the types of problems that can be solved. The accuracy and efficiency of LSENS are examined by means of various test problems, and comparisons with other methods and codes are presented. LSENS is a flexible, convenient, accurate, and efficient solver for chemical reaction problems such as static system; steady, one-dimensional, inviscid flow; reaction behind incident shock wave, including boundary layer correction; and perfectly stirred (highly backmixed) reactor. In addition, the chemical equilibrium state can be computed for the following assigned states: temperature and pressure, enthalpy and pressure, temperature and volume, and internal energy and volume. For static problems the code computes the sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of the dependent variables and/or the three rate coefficient parameters of the chemical reactions.

  16. Solution-chemical route to generalized synthesis of metal germanate nanowires with room-temperature, light-driven hydrogenation activity of CO2 into renewable hydrocarbon fuels.

    Science.gov (United States)

    Liu, Qi; Zhou, Yong; Tu, Wenguang; Yan, Shicheng; Zou, Zhigang

    2014-01-06

    A facile solution-chemical route was developed for the generalized preparation of a family of highly uniform metal germanate nanowires on a large scale. This route is based on the use of hydrazine monohydrate/H2O as a mixed solvent under solvothermal conditions. Hydrazine has multiple effects on the generation of the nanowires: as an alkali solvent, a coordination agent, and crystal anisotropic growth director. Different-percentage cobalt-doped Cd2Ge2O6 nanowires were also successfully obtained through the addition of Co(OAc)2·4H2O to the initial reaction mixture for future investigation of the magnetic properties of these nanowires. The considerably negative conduction band level of the Cd2Ge2O6 nanowire offers a high driving force for photogenerated electron transfer to CO2 under UV-vis illumination, which facilitates CO2 photocatalytic reduction to a renewable hydrocarbon fuel in the presence of water vapor at room temperature.

  17. Abortion: Strong's counterexamples fail

    DEFF Research Database (Denmark)

    Di Nucci, Ezio

    2009-01-01

    This paper shows that the counterexamples proposed by Strong in 2008 in the Journal of Medical Ethics to Marquis's argument against abortion fail. Strong's basic idea is that there are cases--for example, terminally ill patients--where killing an adult human being is prima facie seriously morally...

  18. Strong Langmuir turbulence

    International Nuclear Information System (INIS)

    Goldman, M.V.

    1984-01-01

    After a brief discussion of beam-excited Langmuir turbulence in the solar wind, we explain the criteria for wave-particle, three-wave and strong turbulence interactions. We then present the results of a numerical integration of the Zakharov equations, which describe the strong turbulence saturation of a weak (low-density) high energy, bump-on-tail beam instability. (author)

  19. Towards TDDFT for Strongly Correlated Materials

    Directory of Open Access Journals (Sweden)

    Shree Ram Acharya

    2016-09-01

    Full Text Available We present some details of our recently-proposed Time-Dependent Density-Functional Theory (TDDFT for strongly-correlated materials in which the exchange-correlation (XC kernel is derived from the charge susceptibility obtained using Dynamical Mean-Field Theory (the TDDFT + DMFT approach. We proceed with deriving the expression for the XC kernel for the one-band Hubbard model by solving DMFT equations via two approaches, the Hirsch–Fye Quantum Monte Carlo (HF-QMC and an approximate low-cost perturbation theory approach, and demonstrate that the latter gives results that are comparable to the exact HF-QMC solution. Furthermore, through a variety of applications, we propose a simple analytical formula for the XC kernel. Additionally, we use the exact and approximate kernels to examine the nonhomogeneous ultrafast response of two systems: a one-band Hubbard model and a Mott insulator YTiO3. We show that the frequency dependence of the kernel, i.e., memory effects, is important for dynamics at the femtosecond timescale. We also conclude that strong correlations lead to the presence of beats in the time-dependent electric conductivity in YTiO3, a feature that could be tested experimentally and that could help validate the few approximations used in our formulation. We conclude by proposing an algorithm for the generalization of the theory to non-linear response.

  20. On the strong CP problem

    Energy Technology Data Exchange (ETDEWEB)

    Dowrick, N.J. (Dept. of Physics, Oxford (United Kingdom)); McDougall, N.A. (National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan))

    1992-07-09

    We show that two well-known solutions to the strong CP problem, the axion and a massless quark, may be understood in terms of the mechanism recently proposed by Samuel where long-range interactions between topological charges may be responsible for the removal of CP violation. We explain how the axion and a QCD meson (identified as the {eta}' if all quarks are massless) suppress fluctuations in global topological charge by almost identical dynamical although the masses, couplings and relevant length scales are very different. Furthermore, we elucidate the precise origin of the {eta}' mass. (orig.).