WorldWideScience

Sample records for strong cooling effect

  1. Strong algorithmic cooling in large star-topology quantum registers

    Science.gov (United States)

    Pande, Varad R.; Bhole, Gaurav; Khurana, Deepak; Mahesh, T. S.

    2017-07-01

    Cooling the qubit into a pure initial state is crucial for realizing fault-tolerant quantum information processing. Here we envisage a star-topology arrangement of reset and computation qubits for this purpose. The reset qubits cool or purify the computation qubit by transferring its entropy to a heat bath with the help of a heat-bath algorithmic cooling procedure. By combining standard NMR methods with powerful quantum control techniques, we cool central qubits of two large star-topology systems, with 13 and 37 spins, respectively. We obtain polarization enhancements by a factor of over 24, and an associated reduction in the spin temperature from 298 K down to 12 K. Exploiting the enhanced polarization of computation qubit, we prepare combination coherences of orders up to 15. By benchmarking the decay of these coherences we investigate the underlying noise process. Further, we also cool a pair of computation qubits and subsequently prepare them in an effective pure state.

  2. Strong, sudden cooling alleviates the inflammatory responses in heat-stressed dairy cows based on iTRAQ proteomic analysis

    Science.gov (United States)

    Cheng, Jianbo; Min, Li; Zheng, Nan; Fan, Caiyun; Zhao, Shengguo; Zhang, Yangdong; Wang, Jiaqi

    2018-02-01

    This study was designed to investigate the effects of sudden cooling on the physiological responses of 12 heat-stressed Holstein dairy cows using an isobaric tags for relative and absolute quantification (iTRAQ) labeling approach. Plasma samples were collected from these cows during heat stress (HS), and after strong, sudden cooling in the summer (16 days later). We compared plasma proteomic data before and after sudden cooling to identify the differentially abundant proteins. The results showed that sudden cooling in summer effectively alleviated the negative consequences of HS on body temperature and production variables. Expressions of plasma hemoglobin alpha and hemoglobin beta were upregulated, whereas lipopolysaccharide-binding protein (LBP) and haptoglobin were downregulated in this process. The increase of hemoglobin after cooling may improve oxygen transport and alleviate the rise in respiration rates in heat-stressed dairy cows. The decrease of LBP and haptoglobin suggests that the inflammatory responses caused by HS are relieved after cooling. Our findings provide new insight into the physiological changes that occur when heat-stressed dairy cows experience strong, sudden cooling.

  3. Cooling in the single-photon strong-coupling regime of cavity optomechanics

    Science.gov (United States)

    Nunnenkamp, A.; Børkje, K.; Girvin, S. M.

    2012-05-01

    In this Rapid Communication we discuss how red-sideband cooling is modified in the single-photon strong-coupling regime of cavity optomechanics where the radiation pressure of a single photon displaces the mechanical oscillator by more than its zero-point uncertainty. Using Fermi's golden rule we calculate the transition rates induced by the optical drive without linearizing the optomechanical interaction. In the resolved-sideband limit we find multiple-phonon cooling resonances for strong single-photon coupling that lead to nonthermal steady states including the possibility of phonon antibunching. Our study generalizes the standard linear cooling theory.

  4. Confirmation of shutdown cooling effects

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Kotaro, E-mail: ksato@nelted.co.jp; Tabuchi, Masato; Sugimura, Naoki; Tatsumi, Masahiro [Nuclear Engineering, Limited, 1-3-7 Tosabori Nishi-ku, Osaka-shi, Osaka 550-0001 (Japan)

    2015-12-31

    After the Fukushima accidents, all nuclear power plants in Japan have gradually stopped their operations and have long periods of shutdown. During those periods, reactivity of fuels continues to change significantly especially for high-burnup UO{sub 2} fuels and MOX fuels due to radioactive decays. It is necessary to consider these isotopic changes precisely, to predict neutronics characteristics accurately. In this paper, shutdown cooling (SDC) effects of UO{sub 2} and MOX fuels that have unusual operation histories are confirmed by the advanced lattice code, AEGIS. The calculation results show that the effects need to be considered even after nuclear power plants come back to normal operation.

  5. Confirmation of shutdown cooling effects

    Science.gov (United States)

    Sato, Kotaro; Tabuchi, Masato; Sugimura, Naoki; Tatsumi, Masahiro

    2015-12-01

    After the Fukushima accidents, all nuclear power plants in Japan have gradually stopped their operations and have long periods of shutdown. During those periods, reactivity of fuels continues to change significantly especially for high-burnup UO2 fuels and MOX fuels due to radioactive decays. It is necessary to consider these isotopic changes precisely, to predict neutronics characteristics accurately. In this paper, shutdown cooling (SDC) effects of UO2 and MOX fuels that have unusual operation histories are confirmed by the advanced lattice code, AEGIS. The calculation results show that the effects need to be considered even after nuclear power plants come back to normal operation.

  6. Environmental effects of cooling systems

    International Nuclear Information System (INIS)

    1980-01-01

    Since the International Atomic Energy Agency published in 1974 Thermal Discharges at Nuclear Power Stations (Technical Reports Series No.155), much progress has been made in the understanding of phenomena related to thermal discharges. Many studies have been performed in Member States and from 1973 to 1978 the IAEA sponsored a co-ordinated research programme on 'Physical and Biological Effects on the Environment of Cooling Systems and Thermal Discharges from Nuclear Power Stations'. Seven laboratories from Canada, the Federal Republic of Germany, India and the United States of America were involved in this programme, and a lot of new information has been obtained during the five years' collaboration. The progress of the work was discussed at annual co-ordination meetings and the results are presented in the present report. It complements the previous report mentioned above as it deals with several questions that were not answered in 1974. With the conclusion of this co-ordinated programme, it is obvious that some problems have not yet been resolved and that more work is necessary to assess completely the impact of cooling systems on the environment. It is felt, however, that the data gathered here will bring a substantial contribution to the understanding of the subject

  7. Polarization-gradient laser cooling as a way to create strongly localized structures for atom lithography

    International Nuclear Information System (INIS)

    Prudnikov, O. N.; Taichenachev, A. V.; Tumaikin, A. M.; Yudin, V. I.

    2007-01-01

    Generally, conditions for deep sub-Doppler laser cooling do not match conditions for strong atomic localization, that takes place in a deeper optical potential and leads to higher temperature. Moreover, for a given detuning in a deep optical potential the secular approximation, which is frequently used for a quantum description of laser cooling, fails. Here we investigate the atomic localization in optical potential, using a full quantum approach for atomic density matrix beyond the secular approximation. It is shown that laser cooling in a deep optical potential, created by a light field with polarization gradients, can be used as an alternative method for the formation of high contrast spatially localized structures of atoms for the purposes of atom lithography and atomic nanofabrication. Finally, we analyze possible limits for the width and contrast of localized atomic structures that can be reached in this type of light mask

  8. Study of cooling effectiveness for an integrated cooling turbine blade

    OpenAIRE

    Matsushita, Masahiro; Yamane, Takashi; Mimura, Fujio; Fukuyama, Yoshitaka; 松下 政裕; 山根 敬; 三村 富嗣雄; 福山 佳孝

    2007-01-01

    Experimental study of film cooling, impingement cooling and integrated cooling were carried out with the aim of applying them to turbine cooling. The experiments were conducted with 673 K hot gas flow and room temperature cooling air. Test plate surface temperature distributions were measured with an infrared camera. This report presents fundamental research data on cooling performance of the test plates for the validation of numerical simulation. Moreover, simplify heat transfer calculations...

  9. Relativistic Turbulence with Strong Synchrotron and Synchrotron-Self-Compton Cooling

    Science.gov (United States)

    Uzdensky, D. A.

    2018-03-01

    Many relativistic plasma environments in high-energy astrophysics, including pulsar wind nebulae, hot accretion flows onto black holes, relativistic jets in active galactic nuclei and gamma-ray bursts, and giant radio lobes, are naturally turbulent. The plasma in these environments is often so hot that synchrotron and inverse-Compton (IC) radiative cooling becomes important. In this paper we investigate the general thermodynamic and radiative properties (and hence the observational appearance) of an optically thin relativistically hot plasma stirred by driven magnetohydrodynamic (MHD) turbulence and cooled by radiation. We find that if the system reaches a statistical equilibrium where turbulent heating is balanced by radiative cooling, the effective electron temperature tends to attain a universal value θ = kT_e/m_e c^2 ˜ 1/√{τ_T}, where τT = neσTL ≪ 1 is the system's Thomson optical depth, essentially independent of the strength of turbulent driving and hence of the magnetic field. This is because both MHD turbulent dissipation and synchrotron cooling are proportional to the magnetic energy density. We also find that synchrotron self-Compton (SSC) cooling and perhaps a few higher-order IC components are automatically comparable to synchrotron in this regime. The overall broadband radiation spectrum then consists of several distinct components (synchrotron, SSC, etc.), well separated in photon energy (by a factor ˜ τ_T^{-1}) and roughly equal in power. The number of IC peaks is checked by Klein-Nishina effects and depends logarithmically on τT and the magnetic field. We also examine the limitations due to synchrotron self-absorption, explore applications to Crab PWN and blazar jets, and discuss links to radiative magnetic reconnection.

  10. The study on the evaporation cooling efficiency and effectiveness of cooling tower of film type

    International Nuclear Information System (INIS)

    Li Yingjian; You Xinkui; Qiu Qi; Li Jiezhi

    2011-01-01

    Based on heat and mass transport mechanism of film type cooling, which was combined with an on-site test on counter flow film type cooling tower, a mathematical model on the evaporation and cooling efficiency and effectiveness has been developed. Under typical climatic conditions, air conditioning load and the operating condition, the mass and heat balances have been calculated for the air and the cooling water including the volume of evaporative cooling water. Changing rule has been measured and calculated between coefficient of performance (COP) and chiller load. The influences of air and cooling water parameters on the evaporative cooling efficiency were analyzed in cooling tower restrained by latent heat evaporative cooling, and detailed derivation and computation revealed that both the evaporative cooling efficiency and effectiveness of cooling tower are the same characteristics parameters of the thermal performance of a cooling tower under identical assumptions.

  11. Effectiveness-weighted control method for a cooling system

    Science.gov (United States)

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth Jr., Michael J.; Iyengar, Madhusudan K.; Schmidt, Roger R.; Simons, Robert E.

    2015-12-15

    Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.

  12. A STRONGLY COUPLED REACTOR CORE ISOLATION COOLING SYSTEM MODEL FOR EXTENDED STATION BLACK-OUT ANALYSES

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua [Idaho National Laboratory; Zhang, Hongbin [Idaho National Laboratory; Zou, Ling [Idaho National Laboratory; Martineau, Richard Charles [Idaho National Laboratory

    2015-03-01

    The reactor core isolation cooling (RCIC) system in a boiling water reactor (BWR) provides makeup cooling water to the reactor pressure vessel (RPV) when the main steam lines are isolated and the normal supply of water to the reactor vessel is lost. The RCIC system operates independently of AC power, service air, or external cooling water systems. The only required external energy source is from the battery to maintain the logic circuits to control the opening and/or closure of valves in the RCIC systems in order to control the RPV water level by shutting down the RCIC pump to avoid overfilling the RPV and flooding the steam line to the RCIC turbine. It is generally considered in almost all the existing station black-out accidents (SBO) analyses that loss of the DC power would result in overfilling the steam line and allowing liquid water to flow into the RCIC turbine, where it is assumed that the turbine would then be disabled. This behavior, however, was not observed in the Fukushima Daiichi accidents, where the Unit 2 RCIC functioned without DC power for nearly three days. Therefore, more detailed mechanistic models for RCIC system components are needed to understand the extended SBO for BWRs. As part of the effort to develop the next generation reactor system safety analysis code RELAP-7, we have developed a strongly coupled RCIC system model, which consists of a turbine model, a pump model, a check valve model, a wet well model, and their coupling models. Unlike the traditional SBO simulations where mass flow rates are typically given in the input file through time dependent functions, the real mass flow rates through the turbine and the pump loops in our model are dynamically calculated according to conservation laws and turbine/pump operation curves. A simplified SBO demonstration RELAP-7 model with this RCIC model has been successfully developed. The demonstration model includes the major components for the primary system of a BWR, as well as the safety

  13. Laser cooled ion beams and strongly coupled plasmas for precision experiments

    International Nuclear Information System (INIS)

    Bussmann, Michael

    2008-01-01

    This cumulative thesis summarizes experimental and theoretical results on cooling of ion beams using single-frequency, single-mode tabletop laser systems. It consists of two parts. One deals with experiments on laser-cooling of ion beams at relativistic energies, the other with simulations of stopping and sympathetic cooling of ions for precision in-trap experiments. In the first part, experimental results are presented on laser-cooling of relativistic C 3+ ion beams at a beam energy of 122 MeV/u, performed at the Experimental Storage Ring (ESR) at GSI. The main results presented in this thesis include the first attainment of longitudinally space-charge dominated relativistic ion beams using pure laser-cooling. The second part lists theoretical results on stopping and sympathetic cooling of ions in a laser-cooled one-component plasma of singly charged 24 Mg ions, which are confined in a three-dimensional harmonic trap potential. (orig.)

  14. Local cooling and warming effects of forests based on satellite observations

    Science.gov (United States)

    Li, Yan; Zhao, Maosheng; Motesharrei, Safa; Mu, Qiaozhen; Kalnay, Eugenia; Li, Shuangcheng

    2015-01-01

    The biophysical effects of forests on climate have been extensively studied with climate models. However, models cannot accurately reproduce local climate effects due to their coarse spatial resolution and uncertainties, and field observations are valuable but often insufficient due to their limited coverage. Here we present new evidence acquired from global satellite data to analyse the biophysical effects of forests on local climate. Results show that tropical forests have a strong cooling effect throughout the year; temperate forests show moderate cooling in summer and moderate warming in winter with net cooling annually; and boreal forests have strong warming in winter and moderate cooling in summer with net warming annually. The spatiotemporal cooling or warming effects are mainly driven by the two competing biophysical effects, evapotranspiration and albedo, which in turn are strongly influenced by rainfall and snow. Implications of our satellite-based study could be useful for informing local forestry policies. PMID:25824529

  15. Effectiveness of hand cooling and a cooling jacket on post-exercise cooling rates in hyperthermic athletes.

    Science.gov (United States)

    Maroni, Tessa; Dawson, Brian; Barnett, Kimberley; Guelfi, Kym; Brade, Carly; Naylor, Louise; Brydges, Chris; Wallman, Karen

    2018-01-24

    This study compared the effects of a hand cooling glove (∼16°C water temperature; subatmospheric pressure of -40 mmHg) and a cooling jacket (CJ) on post-exercise cooling rates (gastrointestinal core temperature, Tc; skin temperature, Tsk) and cognitive performance (the Stroop Colour-Word test). Twelve male athletes performed four trials (within subjects, counterbalanced design) involving cycling at a workload equivalent to 75% ⩒O 2 max in heat (35.7 ± 0.2°C, 49.2 ± 2.6% RH) until a Tc of 39°C or exhaustion occurred. A 30-min cooling period (in 22.3 ± 0.3°C, 42.1 ± 3.6% RH) followed, where participants adopted either one-hand cooling (1H), two-hand cooling (2H), wore a CJ or no cooling (NC). No significant differences were seen in Tc and Tsk cooling rates between trials; however, moderate effect sizes (d = 0.50-0.76) suggested Tc cooling rates to be faster for 1H, 2H and CJ compared to NC after 5 min; 1H and CJ compared to NC after 10 min and for CJ to be faster than 2H at 25-30 min. Reaction times on the cognitive test were similar between all trials after the 30 min cooling/no-cooling period (p > .05). In conclusion, Tc cooling rates were faster with 1H and CJ during the first 10 min compared to NC, with minimal benefit associated with 2H cooling. Reaction time responses were not impacted by the use of the glove(s) or CJ.

  16. Laser cooled ion beams and strongly coupled plasmas for precision experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bussmann, Michael

    2008-03-17

    This cumulative thesis summarizes experimental and theoretical results on cooling of ion beams using single-frequency, single-mode tabletop laser systems. It consists of two parts. One deals with experiments on laser-cooling of ion beams at relativistic energies, the other with simulations of stopping and sympathetic cooling of ions for precision in-trap experiments. In the first part, experimental results are presented on laser-cooling of relativistic C{sup 3+} ion beams at a beam energy of 122 MeV/u, performed at the Experimental Storage Ring (ESR) at GSI. The main results presented in this thesis include the first attainment of longitudinally space-charge dominated relativistic ion beams using pure laser-cooling. The second part lists theoretical results on stopping and sympathetic cooling of ions in a laser-cooled one-component plasma of singly charged {sup 24}Mg ions, which are confined in a three-dimensional harmonic trap potential. (orig.)

  17. Prediction of local effects of proposed cooling ponds

    International Nuclear Information System (INIS)

    Hicks, B.B.

    1978-01-01

    A Fog Excess Water (FEW) Index has been shown to provide a good measure of the likelihood for steam fog to occur at specific cooling pond installations. The FEW Index is derived from the assumption that the surface boundary layer over a cooling pond will be strongly convective, and that highly efficient vertical transport mechanisms will result in a thorough mixing of air saturated at surface temperature with ambient air aloft. Available data support this assumption. An extension of this approach can be used to derive a simple indicator for use in predicting the formation of rime ice in the immediate downwind environs of a cooling pond. In this case, it is supposed that rime ice will be deposited whenever steam fog and sub-freezing surface temperatures are predicted. This provides a convenient method for interpreting pre-existing meteorological information in order to assess possible icing effects while in the early design stages of the planning process. However, it remains necessary to derive accurate predictions of the cooling pond water surface temperature. Once a suitable and proven procedure for this purpose has been demonstrated, it is then a simple matter to employ the FEW Index in evaluations of the relative merits of alternative cooling pond designs, with the purpose of minimizing overall environmental impact

  18. Prevention of strong stench for stocked radioisotope sewerage using total water treatment agent for small-sized cooling towers

    International Nuclear Information System (INIS)

    Aoki, Katsumi; Nishimaki, Toshiyuki; Furuse, Yuko; Shinozuka, Akiko

    1996-01-01

    In general, the sewerage at radioisotope laboratories has very strong stench. We treated the sewerage with a total water treatment agent (Tachileslegi, Nippon Nouyaku Co., Ltd. ) that is widely used for prevention of slime, scale, corrosion in cooling towers. As the result, the stench was decreased to about two thirds to that of control estimated by odor-test. (author)

  19. Finding quantum effects in strong classical potentials

    Science.gov (United States)

    Hegelich, B. Manuel; Labun, Lance; Labun, Ou Z.

    2017-06-01

    The long-standing challenge to describing charged particle dynamics in strong classical electromagnetic fields is how to incorporate classical radiation, classical radiation reaction and quantized photon emission into a consistent unified framework. The current, semiclassical methods to describe the dynamics of quantum particles in strong classical fields also provide the theoretical framework for fundamental questions in gravity and hadron-hadron collisions, including Hawking radiation, cosmological particle production and thermalization of particles created in heavy-ion collisions. However, as we show, these methods break down for highly relativistic particles propagating in strong fields. They must therefore be improved and adapted for the description of laser-plasma experiments that typically involve the acceleration of electrons. Theory developed from quantum electrodynamics, together with dedicated experimental efforts, offer the best controllable context to establish a robust, experimentally validated foundation for the fundamental theory of quantum effects in strong classical potentials.

  20. Wormhole effect in a strong topological insulator

    Science.gov (United States)

    Rosenberg, G.; Guo, H.-M.; Franz, M.

    2010-07-01

    An infinitely thin solenoid carrying magnetic flux Φ (a “Dirac string”) inserted into an ordinary band insulator has no significant effect on the spectrum of electrons. In a strong topological insulator, remarkably, such a solenoid carries protected gapless one-dimensional fermionic modes when Φ=hc/2e . These modes are spin-filtered and represent a distinct bulk manifestation of the topologically nontrivial insulator. We establish this “wormhole” effect by both general qualitative considerations and by numerical calculations within a minimal lattice model. We also discuss the possibility of experimental observation of a closely related effect in artificially engineered nanostructures.

  1. Luminosity and cooling of highly magnetized white dwarfs: suppression of luminosity by strong magnetic fields

    Science.gov (United States)

    Bhattacharya, Mukul; Mukhopadhyay, Banibrata; Mukerjee, Subroto

    2018-03-01

    We investigate the luminosity and cooling of highly magnetized white dwarfs with electron-degenerate cores and non-degenerate surface layers where cooling occurs by diffusion of photons. We find the temperature and density profiles in the surface layers or envelope of white dwarfs by solving the magnetostatic equilibrium and photon diffusion equations in a Newtonian framework. We also obtain the properties of white dwarfs at the core-envelope interface, when the core is assumed to be practically isothermal. With the increase in magnetic field, the interface temperature increases whereas the interface radius decreases. For a given age of the white dwarf and for fixed interface radius or interface temperature, we find that the luminosity decreases significantly from about 10-6 L⊙ to 10-9 L⊙ as the magnetic field strength increases from about 109 G to 1012 G at the interface and hence the envelope. This is remarkable because it argues that magnetized white dwarfs are fainter and can be practically hidden in an observed H-R diagram. We also find the cooling rates corresponding to these luminosities. Interestingly, the decrease in temperature with time, for the fields under consideration, is not found to be appreciable.

  2. Effectiveness of cooling production with a combined power and cooling thermodynamic cycle

    International Nuclear Information System (INIS)

    Martin, C.; Goswami, D.Y.

    2006-01-01

    The combined production of power and cooling with an ammonia-water based cycle is under investigation. Cooling is produced by expanding an ammonia-rich vapor in an expander to sub-ambient temperatures and it is shown that a compromise exists between cooling and work production. A new parameter, termed the effective COP, is used to relate the gain in cooling to the compromise in work production. When the parameter is used to optimize conditions for the rectifier, the effective COP values are good, having values of up to 5. However, when combined operation is compared to work-optimized results, the maximum effective COP values are near 1.1. This implies that per unit of cooling production, nearly equal amounts of work are compromised for combined operation

  3. Fracture behaviour of bread crust: Effect of bread cooling conditions

    NARCIS (Netherlands)

    Primo Martin, C.; Beukelaer, de H.J.; Hamer, R.J.; Vliet, van T.

    2008-01-01

    The effect of air and vacuum cooling on the fracture behaviour and accompanying sound emission, moisture content and crispness of bread crust were investigated. Vacuum cooling resulted in rapid evaporative cooling of products that contained high moisture content. Fracture experiments showed a clear

  4. Analytical model of transient thermal effect on convectional cooled ...

    Indian Academy of Sciences (India)

    Abstract. The transient analytical solutions of temperature distribution, stress, strain and optical path difference in convectional cooled end-pumped laser rod are derived. The results are compared with other works and good agreements are found. The effects of increasing the edge cooling and face cooling are studied.

  5. SEARCHING FOR COOLING SIGNATURES IN STRONG LENSING GALAXY CLUSTERS: EVIDENCE AGAINST BARYONS SHAPING THE MATTER DISTRIBUTION IN CLUSTER CORES

    International Nuclear Information System (INIS)

    Blanchard, Peter K.; Bayliss, Matthew B.; McDonald, Michael; Dahle, Håkon; Gladders, Michael D.; Sharon, Keren; Mushotzky, Richard

    2013-01-01

    The process by which the mass density profile of certain galaxy clusters becomes centrally concentrated enough to produce high strong lensing (SL) cross-sections is not well understood. It has been suggested that the baryonic condensation of the intracluster medium (ICM) due to cooling may drag dark matter to the cores and thus steepen the profile. In this work, we search for evidence of ongoing ICM cooling in the first large, well-defined sample of SL selected galaxy clusters in the range 0.1 0.2 and shows no statistically significant deviation from the total cluster population. Specific star formation rates, as traced by the strength of the 4000 Å break, D 4000 , are also consistent with the general cluster population. Finally, we use optical imaging of the SL clusters to measure the angular separation, R arc , between the arc and the center of mass of each lensing cluster in our sample and test for evidence of changing [O II] emission and D 4000 as a function of R arc , a proxy observable for SL cross-sections. D 4000 is constant with all values of R arc , and the [O II] emission fractions show no dependence on R arc for R arc > 10'' and only very marginal evidence of increased weak [O II] emission for systems with R arc < 10''. These results argue against the ability of baryonic cooling associated with cool core activity in the cores of galaxy clusters to strongly modify the underlying dark matter potential, leading to an increase in SL cross-sections

  6. Effects of deformation and boron on microstructure and continuous cooling transformation in low carbon HSLA steels

    International Nuclear Information System (INIS)

    Jun, H.J.; Kang, J.S.; Seo, D.H.; Kang, K.B.; Park, C.G.

    2006-01-01

    The continuous-cooling-transformation (CCT) diagram and continuous cooled microstructure were investigated for low carbon (0.05 wt.% C) high strength low alloy steels with/without boron. Microstructures observed in continuous cooled specimens were composed of pearlite, quasi-polygonal ferrite, granular bainite, acicular ferrite, bainitic ferrite, lower bainite, and martensite depending on cooling rate and transformation temperature. A rapid cooling rate depressed the formation of pearlite and quasi-polygonal ferrite, which resulted in higher hardness. However, hot deformation slightly increased transformation start temperature, and promoted the formation of pearlite and quasi-polygonal ferrite. Hot deformation also strongly promoted the acicular ferrite formation which did not form under non-deformation conditions. Small boron addition effectively reduced the formation of pearlite and quasi-polygonal ferrite and broadened the cooling rate region for bainitic ferrite and martensite

  7. Strong curvature effects in Neumann wave problems

    DEFF Research Database (Denmark)

    Willatzen, Morten; Pors, A.; Gravesen, Jens

    2012-01-01

    Waveguide phenomena play a major role in basic sciences and engineering. The Helmholtz equation is the governing equation for the electric field in electromagnetic wave propagation and the acoustic pressure in the study of pressure dynamics. The Schro¨dinger equation simplifies to the Helmholtz...... equation for a quantum-mechanical particle confined by infinite barriers relevant in semiconductor physics. With this in mind and the interest to tailor waveguides towards a desired spectrum and modal pattern structure in classical structures and nanostructures, it becomes increasingly important...... to understand the influence of curvature effects in waveguides. In this work, we demonstrate analytically strong curvature effects for the eigenvalue spectrum of the Helmholtz equation with Neumann boundary conditions in cases where the waveguide cross section is a circular sector. It is found that the linear...

  8. Effect of closed loop cooling water transit time on containment cooling

    International Nuclear Information System (INIS)

    Smith, R.P.; Vossahlik, J.E.; Goodwin, E.F.

    1996-01-01

    Long term containment cooling analyses in nuclear plant systems are usually conducted assuming a quasi steady-state process, that is, a steady state evaluation of the cooling system is completed for each calculational step. In reality, fluid transport in the system, and heat addition to system components may affect the heat removal rate of the system. Transient effects occurring during system startup may affect the maximum temperatures experienced in the system. It is important to ensure that such transient effects do not affect operation of the system (e.g., cause a high temperature trip). To evaluate the effect of fluid transit delays, a closed loop cooling water system model has been developed that incorporates the fluid transport times when determining the closed loop cooling system performance. This paper describes the closed loop cooling system model as implemented in the CONTEMPT-LT/028 code. The evaluation of the transient temperature response of the closed loop cooling system using the model is described. The paper also describes the effect of fluid transit time on the overall containment cooling performance

  9. Strong curvature effects in Neumann wave problems

    International Nuclear Information System (INIS)

    Willatzen, M.; Pors, A.; Gravesen, J.

    2012-01-01

    Waveguide phenomena play a major role in basic sciences and engineering. The Helmholtz equation is the governing equation for the electric field in electromagnetic wave propagation and the acoustic pressure in the study of pressure dynamics. The Schrödinger equation simplifies to the Helmholtz equation for a quantum-mechanical particle confined by infinite barriers relevant in semiconductor physics. With this in mind and the interest to tailor waveguides towards a desired spectrum and modal pattern structure in classical structures and nanostructures, it becomes increasingly important to understand the influence of curvature effects in waveguides. In this work, we demonstrate analytically strong curvature effects for the eigenvalue spectrum of the Helmholtz equation with Neumann boundary conditions in cases where the waveguide cross section is a circular sector. It is found that the linear-in-curvature contribution originates from parity symmetry breaking of eigenstates in circular-sector tori and hence vanishes in a torus with a complete circular cross section. The same strong curvature effect is not present in waveguides subject to Dirichlet boundary conditions where curvature contributions contribute to second-order in the curvature only. We demonstrate this finding by considering wave propagation in a circular-sector torus corresponding to Neumann and Dirichlet boundary conditions, respectively. Results for relative eigenfrequency shifts and modes are determined and compared with three-dimensional finite element method results. Good agreement is found between the present analytical method using a combination of differential geometry with perturbation theory and finite element results for a large range of curvature ratios.

  10. The effect of cooling conditions on convective heat transfer and flow in a steam-cooled ribbed duct

    International Nuclear Information System (INIS)

    Shui, Linqi; Gao, Jianmin; Shi, Xiaojun; Liu, Jiazeng; Xu, Liang

    2014-01-01

    This work presents a numerical and experimental investigation on the heat transfer and turbulent flow of cooling steam in a rectangular duct with 90 .deg. ribs and studies the effect of cooling conditions on the heat transfer augmentation of steam. In the calculation, the variation range of Reynolds is from 10,000 to 190,000, the inlet temperature varies from 300 .deg. C to 500 .deg. C and the outlet pressure is from 0.5MPa to 6MPa. The aforementioned wide ranges of flow parameters cover the actual operating condition of coolant used in the gas turbine blades. The computations are carried with four turbulence models (the standard k-ε, the renormalized group (RNG) k-ε, the Launder-Reece-Rodi (LRR) and the Speziale-Sarkar-Gatski (SSG) turbulence models). The comparison of numerical and experimental results reveals that the SSG turbulence model is suitable for steam flow in the ribbed duct. Therefore, adopting the conjugate calculation technique, further study on the steam heat transfer and flow characteristics is performed with SSG turbulence model. The results show that the variation of cooling condition strongly impacts the forced convection heat transfer of steam in the ribbed duct. The cooling supply condition of a relative low temperature and medium pressure could bring a considerable advantage on steam thermal enhancement. In addition, comparing the heat transfer level between steam flow and air flow, the performance advantage of using steam is also influenced by the cooling supply condition. Changing Reynolds number has little effect on the performance superiority of steam cooling. Increasing pressure would strengthen the advantage, but increasing temperature gives an opposite result.

  11. Kaiseraugst nuclear power station: meteorological effects of the cooling towers

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Considerations of water conservation persuaded the German Government in 1971 not to allow the use of the Aar and Rhine for direct cooling of nuclear power stations. The criticism is often made that the Kaiseraugst cooling towers were built without full consideration of the resulting meteorological effects. The criticism is considered unjustified because the Federal Cooling Tower Commission considered all the relevant aspects before making its recommendations in 1972. Test results and other considerations show that the effect of the kaiseraugst cooling towers on meteorological and climatic conditions is indeed minimal and details are given. (P.G.R.)

  12. Guidelines for selecting weak-base versus strong-base anion-exchange resins for the recovery of chromate from cooling tower blowdown

    Energy Technology Data Exchange (ETDEWEB)

    Newman, J.; Reed, L.W.

    1980-01-01

    Guidelines for selecting weak-base versus strong-base anion-exchange resins for the recovery of chromate from cooling tower blowdown are given, together with actual operating data on large-scale industrial systems based on strong-base anion-exchange resins, data from a similar pilot system based on weak-base anion resin, and the chemical costs for operating both systems for a cooling tower blowdown containing 2500 ppm total dissolved solids and 20 ppm chromata.

  13. Compare Cooling Effect of Different Working Fluid in Thermosyphon

    Directory of Open Access Journals (Sweden)

    Hrabovský P.

    2015-01-01

    Full Text Available This work examines cooling effect of various working fluids types, which are used in thermosyphon at cooling electrical component, it’s connected to power supply. Measurement is realized at various heat output, which maximal value is limited with maximal operating value of electrical component.

  14. Neutron star cooling: effects of envelope physics

    International Nuclear Information System (INIS)

    Van Riper, K.A.

    1982-01-01

    Neutron star cooling calculations are reported which employ improved physics in the calculation of the temperature drop through the atmosphere. The atmosphere microphysics is discussed briefly. The predicted neutron star surface temperatures, in the interesting interval 200 less than or equal to t (yr) less than or equal to 10 5 , do not differ appreciably from the earlier results of Van Riper and Lamb (1981) for a non-magnetic star; for a magnetic star, the surface temperature is lower than in the previous work. Comparison with observational limits show that an exotic cooling mechanism, such as neutrino emission from a pion condensate or in the presence of percolating quarks, is not required unless the existence of a neutron star in the Tycho or SN1006 SNRs is established

  15. Strong crystal size effect on deformation twinning

    DEFF Research Database (Denmark)

    Yu, Qian; Shan, Zhi-Wei; Li, Ju

    2010-01-01

    find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal7, 8, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation...... plasticity. Accompanying the transition in deformation mechanism, the maximum flow stress of the submicrometre-sized pillars was observed to saturate at a value close to titanium’s ideal strength9, 10. We develop a ‘stimulated slip’ model to explain the strong size dependence of deformation twinning....... The sample size in transition is relatively large and easily accessible in experiments, making our understanding of size dependence11, 12, 13, 14, 15, 16, 17 relevant for applications....

  16. Effect of cooling rate on crystallization in an aluminophosphosilicate melt

    DEFF Research Database (Denmark)

    Liu, S. J.; Zhang, Yanfei; Yue, Yuanzheng

    2011-01-01

    The effect of cooling rate on spontaneous crystallization behavior of an alumino-phospho-silicate melt is studied by means of differential scanning calorimetry, X-ray diffraction, scanning electron microscopy and viscometry. The cooling rates of 160, 2100 and 12000 K/s are attained by subjecting ......, the opalescence of the glass can be tuned by adjusting the cooling rate. This makes the production of opal glasses or transparent glass ceramics more efficient and energy saving, since the conventional isothermal treatment procedure can be left out....... the glass melt to the casting, pressing and fiber-drawing processes, respectively. Results show that phase separation occurs in the melt during cooling, and leads to the internal nucleation and opalescence in the studied glass. The degree of phase separation increases with decreasing the cooling rate. Hence...

  17. Improved thermoelectric cooling based on the Thomson effect

    Science.gov (United States)

    Snyder, G. Jeffrey; Khanna, Raghav; Toberer, Eric S.; Heinz, Nicholas A.; Seifert, Wolfgang

    2016-05-01

    Traditional thermoelectric cooling relies on the Peltier effect which produces a temperature drop limited by the figure of merit, zT. This cooling limit is not required from classical thermodynamics but can be traced to problems of thermoelectric compatibility. Alternatively, if a thermoelectric cooler can be designed to achieve full thermoelectric compatibility, lower temperature can be achieved even if the zT is low. In such a device the Thomson effect plays an important role. We present the theoretical concept of a "Thomson cooler," for cryogenic cooling which is designed to maintain thermoelectric compatibility and we derive the requirements for the Seebeck coefficient.

  18. Strong coupling effects in hybrid plexitonic systems

    Science.gov (United States)

    Melnikau, Dzmitry; Esteban, Ruben; Govyadinov, Alexander A.; Savateeva, Diana; Simon, Thomas; Sánchez-Iglesias, Ana; Grzelczak, Marek; Schmidt, Mikolaj K.; Urban, Alexander S.; Liz-Marzán, Luis M.; Feldmann, Jochen; Aizpurua, Javier; Rakovich, Yury P.

    2017-08-01

    We investigated the interactions between localized plasmons in gold nanorods and excitons in J-aggregates and were able to track an anticrossing behavior of the hybridized modes both in the extinction and in the photoluminescence spectra of this hybrid system. We identified the nonlinear optical behavior of this system by transient absorption spectroscopy. Finally using magnetic circular dichroism spectroscopy we showed that nonmagnetic organic molecules exhibit magnetooptical response due to binding to a plasmonic nanoparticles. In our experiments we also studied the effect of detuning as well as the effect of off- and on resonance excitation on the hybrid states

  19. Disorder effects in strongly correlated uranium compounds

    International Nuclear Information System (INIS)

    Suellow, S.; Maple, M.B.; Tomuta, D.; Nieuwenhuys, G.J.; Menovsky, A.A.; Mydosh, J.A.; Chau, R.

    2001-01-01

    Moderate levels of crystallographic disorder can dramatically affect the ground-state properties of heavy fermion compounds. In particular, the role of disorder close to a quantum critical point has been investigated in detail. However, crystallographic disorder is equally effective in altering the properties of magnetically ordered heavy fermion compounds like URh 2 Ge 2 , where disorder-induced spin-glass behavior has been observed. In this system, moreover, the magnetic ground state can be tuned from a spin-glass to a long-range ordered antiferromagnetic one by means of an annealing treatment. The transformation of the magnetic state is accompanied by a transition in the transport properties from 'quasi-insulating' (dρ/dT 2 Ge 2 will be discussed. Of particular interest is the resistivity of as-grown URh 2 Ge 2 , which resembles the Non-Fermi-liquid system UCu 4 Pd, suggesting that a common mechanism - the crystallographic disorder - controls the transport properties of these materials

  20. Effect of Exhaust Pressure on the Cooling Characteristics of a Liquid-Cooled Engine

    Science.gov (United States)

    Doyle, Ronald B.; Desmon, Leland G.

    1947-01-01

    Data for a liquid-cooled engine with a displacement volume of 1710 cubic inches were analyzed to determine the effect of exhaust pressure on the engine cooling characteristics. The data covered a range of exhaust pressures from 7 to 62 inches of mercury absolute, inlet-manifold pressures from 30 to 50 inches of mercury absolute, engine speeds from 1600 to 3000 rpm, and fuel-air ratios from 0.063 to 0.100. The effect of exhaust pressure on engine cooling was satisfactorily incorporated in the NACA cooling-correlation method as a variation in effective gas temperature with exhaust pressure. Large variations of cylinder-head temperature with exhaust pressure were obtained for operation at constant charge flow. At a constant charge flow of 2 pounds per second (approximately 1000 bhp) and a fuel-air ratio of 0.085, an increase in exhaust pressure from 10 to 60 inches of mercury absolute resulted in an increase of 40 F in average cylinder-head temperature. For operation at constant engine speed and inlet-manifold pressure and variable exhaust pressure (variable charge flow), however, the effect of exhaust pressure on cylinder-head temperature is small. For example, at an inlet-manifold pressure of 40 inches of mercury absolute, an engine speed of 2400 rpm.- and a fuel-air ratio of 0.085, the average cylinder-head temperature was about the same at exhaust pressures of 10 and 60 inches of,mercury absolute; a rise and a subsequent decrease of about 70 occurred between these extremes.

  1. Effect of Transverse Coupling on Asymmetric Cooling in Compton Rings

    CERN Document Server

    Bulyak, E; Zimmermann, F

    2013-01-01

    Fast cooling of bunches circulating in a Compton ring is achieved by placing the collision point between electron bunches and laser pulses in a dispersive section and by, in addition, introducing a transverse offset between the laser pulse and the electron-beam closed orbit. Growth of the emittance in the dispersive transversal direction due to the additional excitation of betatron oscillations limits this type of cooling. Here we present the results of further studies on the fast cooling process, looking at the effect of the coupling of the transverse (betatron) oscillations. We first show theoretically that the transverse betatron coupling shortens the cooling time and hence reduces the steady-state energy spread of the electron beam, as well as the quantum losses. The theoretical estimates are then validated by simulations. Finally, a proof-of-principle experiment at the KEK ATF Damping Ring is proposed.

  2. Local cooling and warming effects of forests based on satellite observations

    OpenAIRE

    Li, Yan; Zhao, Maosheng; Motesharrei, Safa; Mu, Qiaozhen; Kalnay, Eugenia; Li, Shuangcheng

    2015-01-01

    The biophysical effects of forests on climate have been extensively studied with climate models. However, models cannot accurately reproduce local climate effects due to their coarse spatial resolution and uncertainties, and field observations are valuable but often insufficient due to their limited coverage. Here we present new evidence acquired from global satellite data to analyse the biophysical effects of forests on local climate. Results show that tropical forests have a strong cooling ...

  3. Strong far-infrared cooling lines, peculiar CO kinematics, and possible star-formation suppression in Hickson compact group 57

    Energy Technology Data Exchange (ETDEWEB)

    Alatalo, K.; Appleton, P. N.; Ogle, P. M.; Rich, J. A.; Xu, C. K. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Lisenfeld, U. [Departamento de Física Teórica y del Cosmos, Universidad de Granada, E-18071 Granada (Spain); Bitsakis, T. [NASA Herschel Science Center, IPAC, California Institute of Technology, Pasadena, CA 91125 (United States); Guillard, P. [Institut d' Astrophysique Spatiale, Université Paris-Sud XI, F-91405 Orsay Cedex (France); Charmandaris, V. [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, GR-15236 Penteli (Greece); Cluver, M.; Jarrett, T. [Astrophysics Cosmology and Gravity Centre, Dept of Astronomy, University of Cape Town, Private Bag X3, Rondebosch, 7701, Republic of South Africa (South Africa); Dopita, M. A.; Kewley, L. J. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Freeland, E. [The Oskar Klein Centre, Department of Astronomy, AlbaNova, Stockholm University, SE-106 91 Stockholm (Sweden); Rasmussen, J. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Verdes-Montenegro, L. [Departamento Astronomía Extragaláctica, Instituto Astrofísica Andalucía (CSIC), Glorieta de la Astronomía s/n, E-18008 Granada (Spain); Yun, M., E-mail: kalatalo@ipac.caltech.edu [University of Massachusetts, Astronomy Department, Amherst, MA 01003 (United States)

    2014-11-10

    We present [C II] and [O I] observations from Herschel and CO(1-0) maps from the Combined Array for Research in Millimeter Astronomy (CARMA) of the Hickson compact group HCG 57, focusing on the galaxies HCG 57a and HCG 57d. HCG 57a has been previously shown to contain enhanced quantities of warm molecular hydrogen consistent with shock or turbulent heating. Our observations show that HCG 57d has strong [C II] emission compared to L {sub FIR} and weak CO(1-0), while in HCG 57a, both the [C II] and CO(1-0) are strong. HCG 57a lies at the upper end of the normal distribution of the [C II]/CO and [C II]/FIR ratios, and its far-infrared (FIR) cooling supports a low-density, warm, diffuse gas that falls close to the boundary of acceptable models of a photon-dominated region. However, the power radiated in the [C II] and warm H{sub 2} emissions have similar magnitudes, as seen in other shock-dominated systems and predicted by recent models. We suggest that shock heating of the [C II] is a viable alternative to photoelectric heating in violently disturbed, diffuse gas. The existence of shocks is also consistent with the peculiar CO kinematics in the galaxy, indicating that highly noncircular motions are present. These kinematically disturbed CO regions also show evidence of suppressed star formation, falling a factor of 10-30 below normal galaxies on the Kennicutt-Schmidt relation. We suggest that the peculiar properties of both galaxies are consistent with a highly dissipative, off-center collisional encounter between HCG 57d and 57a, creating ring-like morphologies in both systems. Highly dissipative gas-on-gas collisions may be more common in dense groups because of the likelihood of repeated multiple encounters. The possibility of shock-induced star-formation suppression may explain why a subset of these HCG galaxies has been found previously to fall in the mid-infrared green valley.

  4. Strong far-infrared cooling lines, peculiar CO kinematics, and possible star-formation suppression in Hickson compact group 57

    International Nuclear Information System (INIS)

    Alatalo, K.; Appleton, P. N.; Ogle, P. M.; Rich, J. A.; Xu, C. K.; Lisenfeld, U.; Bitsakis, T.; Guillard, P.; Charmandaris, V.; Cluver, M.; Jarrett, T.; Dopita, M. A.; Kewley, L. J.; Freeland, E.; Rasmussen, J.; Verdes-Montenegro, L.; Yun, M.

    2014-01-01

    We present [C II] and [O I] observations from Herschel and CO(1-0) maps from the Combined Array for Research in Millimeter Astronomy (CARMA) of the Hickson compact group HCG 57, focusing on the galaxies HCG 57a and HCG 57d. HCG 57a has been previously shown to contain enhanced quantities of warm molecular hydrogen consistent with shock or turbulent heating. Our observations show that HCG 57d has strong [C II] emission compared to L FIR and weak CO(1-0), while in HCG 57a, both the [C II] and CO(1-0) are strong. HCG 57a lies at the upper end of the normal distribution of the [C II]/CO and [C II]/FIR ratios, and its far-infrared (FIR) cooling supports a low-density, warm, diffuse gas that falls close to the boundary of acceptable models of a photon-dominated region. However, the power radiated in the [C II] and warm H 2 emissions have similar magnitudes, as seen in other shock-dominated systems and predicted by recent models. We suggest that shock heating of the [C II] is a viable alternative to photoelectric heating in violently disturbed, diffuse gas. The existence of shocks is also consistent with the peculiar CO kinematics in the galaxy, indicating that highly noncircular motions are present. These kinematically disturbed CO regions also show evidence of suppressed star formation, falling a factor of 10-30 below normal galaxies on the Kennicutt-Schmidt relation. We suggest that the peculiar properties of both galaxies are consistent with a highly dissipative, off-center collisional encounter between HCG 57d and 57a, creating ring-like morphologies in both systems. Highly dissipative gas-on-gas collisions may be more common in dense groups because of the likelihood of repeated multiple encounters. The possibility of shock-induced star-formation suppression may explain why a subset of these HCG galaxies has been found previously to fall in the mid-infrared green valley.

  5. Geometric effect on cooling power and performance of an integrated thermoelectric generation-cooling system

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Wang, Chien-Chang; Hung, Chen-I

    2014-01-01

    Graphical abstract: - Highlights: • An integrated thermoelectric generation-cooling system is analyzed numerically. • The system performance is improved through the geometric design. • The effects of contact resistance and heat convection on performance are considered. • With varied TEG length, the system performance depends on boundary conditions. • The study provides a useful insight into the design of integrated TEG–TEC systems. - Abstract: Geometric design of an integrated thermoelectric generation-cooling system is performed numerically using a finite element method. In the system, a thermoelectric cooler (TEC) is powered directly by a thermoelectric generator (TEG). Two different boundary conditions in association with the effects of contact resistance and heat convection on system performance are taken into account. The results suggest that the characteristics of system performance under varying TEG length are significantly different from those under altering TEC length. When the TEG length is changed, the entire behavior of system performance depends highly on the boundary conditions. On the other hand, the maximum distributions of cooling power and coefficient of performance (COP) are exhibited when the TEC length is altered, whether the hot surface of TEG is given by a fixed temperature or heat transfer rate. The system performance will be reduced once the contact resistance and heat convection are considered. When the lengths of TEG and TEC vary, the maximum reduction percentages of system performance are 12.45% and 18.67%, respectively. The numerical predictions have provided a useful insight into the design of integrated TEG–TEC systems

  6. Cooling Effectiveness Measurements for Air Film Cooling of Thermal Barrier Coated Surfaces in a Burner Rig Environment Using Phosphor Thermometry

    Science.gov (United States)

    Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.

    2016-01-01

    While the effects of thermal barrier coating (TBC) thermal protection and air film cooling effectiveness are usually studied separately, their contributions to combined cooling effectiveness are interdependent and are not simply additive. Therefore, combined cooling effectiveness must be measured to achieve an optimum balance between TBC thermal protection and air film cooling. In this investigation, surface temperature mapping was performed using recently developed Cr-doped GdAlO3 phosphor thermometry. Measurements were performed in the NASA GRC Mach 0.3 burner rig on a TBC-coated plate using a scaled up cooling hole geometry where both the mainstream hot gas temperature and the blowing ratio were varied. Procedures for surface temperature and cooling effectiveness mapping of the air film-cooled TBC-coated surface are described. Applications are also shown for an engine component in both the burner rig test environment as well as an engine afterburner environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.

  7. Laboratory study on the cooling effect of flash water evaporative cooling technology for ventilation and air-conditioning of buildings

    DEFF Research Database (Denmark)

    Fang, Lei; Yuan, Shu; Yang, Jianrong

    2016-01-01

    This paper presents a simple cooling technology using flash water evaporation. The technology combines a water atomizer with a plate heat exchanger used for heat recovery of a ventilation system. It is mainly used to cool the ventilation airflow from outdoors and is particularly suitable to be used...... in warm/hot and dry environment where dehumidification of outdoor air is not needed. A laboratory experiment was designed and conducted to evaluate the cooling effectiveness of this technology. The experiment was conducted in a twin-climate chamber. One chamber simulated warm/hot and dry outdoor...... environments and the other simulated an air-conditioned indoor environment. The flash water evaporation cooling device was installed in the chamber that simulated indoor environment. The air from the chamber simulating outdoor environment was introduced into the cooling device and cooled by the flash water...

  8. Carbon savings resulting from the cooling effect of green areas: A case study in Beijing

    Energy Technology Data Exchange (ETDEWEB)

    Lin Wenqi, E-mail: linwq@mail.tsinghua.edu.cn [Key Laboratory of the Ministry of Education for Urban-rural Ecological Planning and Green Architecture, School of Architecture, Tsinghua University, Beijing 100084 (China); Wu Tinghai; Zhang Chengguo [Institute of Architectural and Urban Studies, Tsinghua University, Beijing 100084 (China); Yu Ting [Key Laboratory of the Ministry of Education for Urban-rural Ecological Planning and Green Architecture, School of Architecture, Tsinghua University, Beijing 100084 (China)

    2011-08-15

    Green areas cool the climate of a city, reduce the energy consumption caused by the urban heat island (UHI) effect, and bring along carbon savings. However, the calculation of carbon savings due to the cooling effect of green areas is still not well understood. We have used a Landsat Enhanced Thematic Mapper Plus (ETM+) image of Beijing, to identify the cooled areas, compute the possible energy used to maintain the temperature differences between cooled areas and their surrounding heated areas, and calculate the carbon savings owing to the avoidance of energy use. Results show that a total amount of 14315.37 tons carbon savings was achieved in the study area and the amount was related to the biomass, the size and the shape of green areas. These results demonstrate the importance of carbon savings resulting from green areas' cooling effect. - Highlights: > We provide an integral equation for the calculation of energy conservation and carbon savings. > We show that carbon savings is partly influenced by green areas' features. > A strong correlation between biomass, size and shape of green areas and carbon savings. - An integral equation for the calculation of energy conservation and carbon savings; Showing that carbon savings is partly influenced by green areas' features.

  9. OBSERVATION OF STRONG - STRONG AND OTHER BEAM - BEAM EFFECTS IN RHIC

    International Nuclear Information System (INIS)

    FISCHER, W.; BLASKIEWICZ, M.; BRENNAN, J.M.; CAMERON, P.; CONNOLLY, R.; MONTAG, C.; PEGGS, S.; PILAT, F.; PTITSYN, V.; TEPIKIAN, S.; TRBOJEVIC, D.; VAN ZEIJTS, J.

    2003-01-01

    RHIC is currently the only hadron collider in which strong-strong beam-beam effects can be seen. For the first time, coherent beam-beam modes were observed in a bunched beam hadron collider. Other beam-beam effects in RHIC were observed in operation and in dedicated experiments with gold ions, deuterons and protons. Observations include measurements of beam-beam induced tune shifts, lifetime and emittance growth measurements with and without beam-beam interaction, and background rates as a function of tunes. During ramps unequal radio frequencies in the two rings cause the crossing points to move longitudinally. Thus bunches experience beam-beam interactions only in intervals and the tunes are modulated. In this article we summarize the most important beam-beam observations made so far

  10. General relativistic effects on the cooling of neutron stars

    International Nuclear Information System (INIS)

    Kindl, C.; Straumann, N.

    1981-01-01

    The authors present a discussion of general relativistic effects on the cooling of neutron stars and show analytically that these almost cancel for the dominant neutrino processes and a very stiff equation of state (apart from a trivial redshift of the surface temperature for an observer ''at infinity''). Numerical results for a ''realistic'' equation of state show larger general relativistic corrections. These are, however, still smaller than the uncertainties in the neutrino loss rates. Previous results of cooling curves would thus not be changed significantly by a general relativistic treatment of the thermal properties of neutron stars. (Auth.)

  11. Effect of Modified Atmosphere Packaging under Ice Cooling on the ...

    African Journals Online (AJOL)

    The effect of the use of modified atmosphere packaging (MAP) in combination with ice cooling on postharvest storage life (6 days) and market quality attributes of spinach (Spinacea oleracea L.) leaves were investigated. Crates containing the leaves were stored at ambient conditions (temperature 23.7 ± 0.5°C and relative ...

  12. Effects of Cooling Media on the Mechanical Properties and ...

    African Journals Online (AJOL)

    Die and sand castings are versatile processes capable of being used in mass production of alloys having properties unobtainable by other manufacturing method. In this research, efforts were made to study the effects of cooling media on Aluminium alloy cast. Aluminium scrap (Al – Mg – Si,) were charged into crucible ...

  13. Manufacturing of REBCO coils strongly bonded to cooling members with epoxy resin aimed at its application to Maglev

    International Nuclear Information System (INIS)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2014-01-01

    Highlights: • Paraffin has a risk of losing thermal coupling during cooling down. • We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. • The coil is tightly bonded to cooling members by epoxy resin without the degradation. • We made a REBCO racetrack coil with the same outer dimension as the Maglev magnet. - Abstract: The REBCO coated conductor has been attracted attention because of its high current density in the presence of high magnetic field. If the coated conductor is applied to Maglev, the operational temperature of the on-board magnets will be over 40 K and energy consumption of cryocoolers will be reduced. That high operational temperature also means the absence of liquid helium. Therefore, reliable thermal coupling is desirable for cooling the coils. We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. While the PTFE tape prevents the performance degradation of the coil, the epoxy resin bonds the coil to cooling members. We carried out three experiments to confirm that the coil structure which we propose has robust thermal coupling without the degradation. First, thermal resistances of paraffin and epoxy were measured varying the temperature from room temperature to 10 K. The measurement result indicates that paraffin has a risk of losing thermal coupling during cooling down. In another experiment, PTFE (polytetrafluoroethylene) tape insulator prevented performance degradation of a small epoxy impregnated REBCO coil, while another REBCO coil with polyimide tape showed clear performance degradation. Finally, we produced a racetrack REBCO coil with the same outer dimension as a Maglev on-board magnet coil. Although the racetrack coil was installed in a GFRP coil case and tightly bonded to the case by epoxy impregnation, any performance degradation was not observed

  14. Expressions for the evaporation of sessile liquid droplets incorporating the evaporative cooling effect.

    Science.gov (United States)

    Wang, Yilin; Ma, Liran; Xu, Xuefeng; Luo, Jianbin

    2016-12-15

    The evaporation along the surface of pinned, sessile droplets is investigated numerically by using the combined field approach. In the present model, the evaporative cooling at the droplet surface which leads to a reduction in the evaporation is taken into account. Simple, yet accurate analytical expressions for the local evaporation flux and for the total evaporation rate of sessile droplets are obtained. The theoretical analyses indicate that the reduction in the evaporation becomes more pronounced as the evaporative cooling number Ec increases. The results also reveal that the variation of total evaporation rate with contact angle will change its trend as the intensity of the evaporative cooling changes. For small values of Ec, the total evaporation rate increases with the contact angle, the same as predicted by Deegan et al. and by Hu and Larson in their isothermal models in which the evaporative cooling is neglected. Contrarily, when the evaporative cooling effect is strong enough, the total evaporation rate will decrease as the contact angle increases. The present theory is corroborated experimentally, and found in good agreement with the expressions proposed by Hu and Larson in the limiting isothermal case. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Strong isotope effects on melting dynamics and ice crystallisation processes in cryo vitrification solutions.

    Directory of Open Access Journals (Sweden)

    Oleg Kirichek

    Full Text Available The nucleation and growth of crystalline ice during cooling, and further crystallization processes during re-warming are considered to be key processes determining the success of low temperature storage of biological objects, as used in medical, agricultural and nature conservation applications. To avoid these problems a method, termed vitrification, is being developed to inhibit ice formation by use of high concentration of cryoprotectants and ultra-rapid cooling, but this is only successful across a limited number of biological objects and in small volume applications. This study explores physical processes of ice crystal formation in a model cryoprotective solution used previously in trials on vitrification of complex biological systems, to improve our understanding of the process and identify limiting biophysical factors. Here we present results of neutron scattering experiments which show that even if ice crystal formation has been suppressed during quench cooling, the water molecules, mobilised during warming, can crystallise as detectable ice. The crystallisation happens right after melting of the glass phase formed during quench cooling, whilst the sample is still transiting deep cryogenic temperatures. We also observe strong water isotope effects on ice crystallisation processes in the cryoprotectant mixture. In the neutron scattering experiment with a fully protiated water component, we observe ready crystallisation occurring just after the glass melting transition. On the contrary with a fully deuteriated water component, the process of crystallisation is either completely or substantially supressed. This behaviour might be explained by nuclear quantum effects in water. The strong isotope effect, observed here, may play an important role in development of new cryopreservation strategies.

  16. Effect of cooling procedure on final denture base adaptation.

    Science.gov (United States)

    Ganzarolli, S M; Rached, R N; Garcia, R C M R; Del Bel Cury, A A

    2002-08-01

    Well-fitted dentures prevent hyperplasic lesions, provide chewing efficiency and promote patient's comfort. Several factors may affect final adaptation of dentures, as the type of the acrylic resin, the flask cooling procedure and the water uptake. This investigation evaluated the effect of water storage and two different cooling procedures [bench cooling (BC) for 2 h; running water (RW) at 20 degrees C for 45 min] on the final adaptation of denture bases. A heat-cured acrylic resin (CL, Clássico, Clássico Artigos Odontológicos) and two microwave-cured acrylic resins [Acron MC, (AC) GC Dent. Ind. Corp.; Onda Cryl (OC), Clássico Artigos Odontológicos] were used to make the bases. Adaptation was assessed by measuring the weight of an intervening layer of silicone impression material between the base and the master die. Data was submitted to ANOVA and Tukey's test (0.05). The following means were found: (BC) CL=0.72 +/- 0.03 a; AC=0.70 +/- 0.03 b; OC=0.76 +/- 0.04 c//(RW) CL= 1.00 +/- 0.11 a; AC=1.00 +/- 0.12 a; OC=0.95 +/- 0.10 a. Different labels join groups that are not statistically different (P > 0.05). Comparisons are made among groups submitted to the same cooling procedure (BC or RW). The conclusions are: interaction of type of material and cooling procedure had a statistically significant effect on the final adaptation of the denture bases (P 0.05) on the final adaptation.

  17. Cooling Strategies for Vane Leading Edges in a Syngas Environment Including Effects of Deposition and Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Forrest [Univ. of North Dakota, Grand Forks, ND (United States); Bons, Jeffrey [Univ. of North Dakota, Grand Forks, ND (United States)

    2014-09-30

    The Department of Energy has goals to move land based gas turbine systems to alternate fuels including coal derived synthetic gas and hydrogen. Coal is the most abundant energy resource in the US and in the world and it is economically advantageous to develop power systems which can use coal. Integrated gasification combined cycles are (IGCC) expected to allow the clean use of coal derived fuels while improving the ability to capture and sequester carbon dioxide. These cycles will need to maintain or increase turbine entry temperatures to develop competitive efficiencies. The use of coal derived syngas introduces a range of potential contaminants into the hot section of the gas turbine including sulfur, iron, calcium, and various alkali metals. Depending on the effectiveness of the gas clean up processes, there exists significant likelihood that the remaining materials will become molten in the combustion process and potentially deposit on downstream turbine surfaces. Past evidence suggests that deposition will be a strong function of increasing temperature. Currently, even with the best gas cleanup processes a small level of particulate matter in the syngas is expected. Consequently, particulate deposition is expected to be an important consideration in the design of turbine components. The leading edge region of first stage vanes most often have higher deposition rates than other areas due to strong fluid acceleration and streamline curvature in the vicinity of the surface. This region remains one of the most difficult areas in a turbine nozzle to cool due to high inlet temperatures and only a small pressure ratio for cooling. The leading edge of a vane often has relatively high heat transfer coefficients and is often cooled using showerhead film cooling arrays. The throat of the first stage nozzle is another area where deposition potentially has a strongly adverse effect on turbine performance as this region meters the turbine inlet flow. Based on roughness

  18. Effect of cooling water on stability of NLC linac components

    Energy Technology Data Exchange (ETDEWEB)

    F. Le Pimpec et al.

    2003-02-11

    Vertical vibration of linac components (accelerating structures, girders and quadrupoles) in the NLC has been studied experimentally and analytically. Effects such as structural resonances and vibration caused by cooling water both in accelerating structures and quadrupoles have been considered. Experimental data has been compared with analytical predictions and simulations using ANSYS. A design, incorporating the proper decoupling of structure vibrations from the linac quadrupoles, is being pursued.

  19. Effect of Cooling Water on Stability of NLC Linac Components

    Energy Technology Data Exchange (ETDEWEB)

    Le Pimpec, Frederic

    2002-11-01

    Vertical vibration of linac components (accelerating structures, girders and quadrupoles) in the NLC has been studied experimentally and analytically. Effects such as structural resonances and vibration caused by cooling water both in accelerating structures and quadrupoles have been considered. Experimental data has been compared with analytical predictions and simulations using ANSYS. A design, incorporating the proper decoupling of structure vibrations from the linac quadrupoles, is being pursued.

  20. SUB-KILOPARSEC IMAGING OF COOL MOLECULAR GAS IN TWO STRONGLY LENSED DUSTY, STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Spilker, J. S.; Marrone, D. P. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Aravena, M. [Núcleo de Astronomía, Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Béthermin, M.; Breuck, C. de [European Southern Observatory, Karl Schwarzschild Straße 2, D-85748 Garching (Germany); Bothwell, M. S. [Cavendish Laboratory, University of Cambridge, JJ Thompson Ave, Cambridge CB3 0HA (United Kingdom); Carlstrom, J. E. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Chapman, S. C.; Rotermund, K. M. [Dalhousie University, Halifax, Nova Scotia (Canada); Collier, J. D.; Galvin, T.; Grieve, K.; O’Brien, A. [University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751 (Australia); Fassnacht, C. D. [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States); Gonzalez, A. H.; Ma, J. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); González-López, J. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago (Chile); Hezaveh, Y. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Malkan, M., E-mail: jspilker@as.arizona.edu [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); and others

    2015-10-01

    We present spatially resolved imaging obtained with the Australia Telescope Compact Array (ATCA) of three CO lines in two high-redshift gravitationally lensed dusty star-forming galaxies, discovered by the South Pole Telescope. Strong lensing allows us to probe the structure and dynamics of the molecular gas in these two objects, at z = 2.78 and z = 5.66, with effective source-plane resolution of less than 1 kpc. We model the lensed emission from multiple CO transitions and the dust continuum in a consistent manner, finding that the cold molecular gas as traced by low-J CO always has a larger half-light radius than the 870 μm dust continuum emission. This size difference leads to up to 50% differences in the magnification factor for the cold gas compared to dust. In the z = 2.78 galaxy, these CO observations confirm that the background source is undergoing a major merger, while the velocity field of the other source is more complex. We use the ATCA CO observations and comparable resolution Atacama Large Millimeter/submillimeter Array dust continuum imaging of the same objects to constrain the CO–H{sub 2} conversion factor with three different procedures, finding good agreement between the methods and values consistent with those found for rapidly star-forming systems. We discuss these galaxies in the context of the star formation—gas mass surface density relation, noting that the change in emitting area with observed CO transition must be accounted for when comparing high-redshift galaxies to their lower redshift counterparts.

  1. Physiological Responses to Simulated Approach March in Desert and Tropic Conditions: Effects of Three Microclimate Cooling Configurations

    Science.gov (United States)

    2012-12-01

    TROPIC CONDITIONS: EFFECTS OF THREE MICROCLIMATE COOLING CONFIGURATIONS Bruce S. Cadarette Catherine O’Brien Thermal and Mountain...Cooling HR – Heart Rate INT – Intermittent Cooling LO – Low Cooling MCCS – Microclimate Cooling System NC – No Cooling NSRDEC – Natick...develop lightweight microclimate cooling systems (MCCS) for use by dismounted Soldiers by evaluating the cooling potentials of two prototype MCCS

  2. Geothermal energy - effective solutions for heating and cooling of buildings

    International Nuclear Information System (INIS)

    Veleska, Viktorija

    2014-01-01

    Energy and natural resources are essential prerequisites for the maintenance of the life and the development of human civilization. With the advancement of technology is more emphasis on energy efficiency and reducing carbon dioxide emissions. Energy efficiency is using less power without reducing the quality of life. Almost half of the energy used is devoted to buildings, including heating and cooling. Buildings are a major source of CO 2 emissions in the atmosphere. Reducing the impact of buildings on the environment and the development of renewable energy, energy solutions are key factor in terms of sustainable development. Energy and geothermal pumps posts represent effective solutions for large facilities for heating and cooling. Geothermal energy piles represent a system of pipes that circulate thermal fluid and embedded in earth, thus extracting heat from the bearing to satisfy the needs for heating and cooling. Experience has shown that this type of energy piles can save up to two thirds of the cost of conventional heating, while geothermal pump has the ability to low temperature resources (such as groundwater and earth) to extract energy and raise the higher level needed for heating buildings. Their implementation is supported by an active group of researchers working with industry to demonstrate the benefits of dual benefit performance at the foundations. Initiative for renewable heat and potential for further adoption of solutions with these technologies is rapidly expanding. The use of this source of energy has great potential due to environmental, economic and social benefits. (author)

  3. Effects of acute cooling on fish electroretinogram: a comparative study.

    Science.gov (United States)

    Gačić, Zoran; Milošević, Milena; Mićković, Branislav; Nikčević, Miroslav; Damjanović, Ilija

    2015-06-01

    Temperature dependence of electroretinogram (ERG) was investigated in 3 fish species occupying different habitats--dogfish shark (Scyliorhinus canicula), Prussian carp (Carassius gibelio) and European eel (Anguilla anguilla). Acute cooling of the shark isolated eyecup from 23°C down to 6°C induced suppression of the electroretinographic b-wave--a complete degradation of this component was observed at 6°C. On the other hand, photoreceptor component of the ERG, the negative late receptor potential was not affected by cooling. The fact that the suppression of the dogfish shark b-wave at low temperatures was as a rule irreversible testifies about breakdown of neural retinal function at cold temperature extremes. Although in vivo experiments on immobilized Prussian carps have never resulted in complete deterioration of the b-wave at low temperatures, significant suppression of this ERG component by cooling was detected. Suppressing the effect of low temperatures on Prussian carp ERG might be due to the fact that C. gibelio, as well as other cyprinids, can be characterized as a warmwater species preferring temperatures well above cold extremes. The ERG of the eel, the third examined species, exhibited the strongest resistance to extremely low temperatures. During acute cooling of in situ eyecup preparations of migrating silver eels from 30°C down to 2°C the form of ERG became wider, but the amplitude of the b-wave only slightly decreased. High tolerance of eel b-wave to cold extremes shown in our study complies with ecological data confirming eurythermia in migrating silver eels remarkably adapted to cold-water environment as well. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Intra-arrest transnasal evaporative cooling: a randomized, prehospital, multicenter study (PRINCE: Pre-ROSC IntraNasal Cooling Effectiveness).

    Science.gov (United States)

    Castrén, Maaret; Nordberg, Per; Svensson, Leif; Taccone, Fabio; Vincent, Jean-Louise; Desruelles, Didier; Eichwede, Frank; Mols, Pierre; Schwab, Tilmann; Vergnion, Michel; Storm, Christian; Pesenti, Antonio; Pachl, Jan; Guérisse, Fabien; Elste, Thomas; Roessler, Markus; Fritz, Harald; Durnez, Pieterjan; Busch, Hans-Jörg; Inderbitzen, Becky; Barbut, Denise

    2010-08-17

    Transnasal evaporative cooling has sufficient heat transfer capacity for effective intra-arrest cooling and improves survival in swine. The aim of this study was to determine the safety, feasibility, and cooling efficacy of prehospital transnasal cooling in humans and to explore its effects on neurologically intact survival to hospital discharge. Witnessed cardiac arrest patients with a treatment interval cooling with a RhinoChill device (treatment group, n=96) versus standard care (control group, n=104). The final analysis included 93 versus 101 patients, respectively. Both groups were cooled after hospital arrival. The patients had similar demographics, initial rhythms, rates of bystander cardiopulmonary resuscitation, and intervals to cardiopulmonary resuscitation and arrival of advanced life support personnel. Eighteen device-related adverse events (1 periorbital emphysema, 3 epistaxis, 1 perioral bleed, and 13 nasal discolorations) were reported. Time to target temperature of 34 degrees C was shorter in the treatment group for both tympanic (102 versus 282 minutes, P=0.03) and core (155 versus 284 minutes, P=0.13) temperature. There were no significant differences in rates of return of spontaneous circulation between the groups (38% in treated subjects versus 43% in control subjects, P=0.48), in overall survival of those admitted alive (44% versus 31%, respectively, P=0.26), or in neurologically intact survival to discharge (Pittsburgh cerebral performance category scale 1 to 2, 34% versus 21%, P=0.21), although the study was not adequately powered to detect changes in these outcomes. Prehospital intra-arrest transnasal cooling is safe and feasible and is associated with a significant improvement in the time intervals required to cool patients.

  5. Strong expectations cancel locality effects: evidence from Hindi.

    Directory of Open Access Journals (Sweden)

    Samar Husain

    Full Text Available Expectation-driven facilitation (Hale, 2001; Levy, 2008 and locality-driven retrieval difficulty (Gibson, 1998, 2000; Lewis & Vasishth, 2005 are widely recognized to be two critical factors in incremental sentence processing; there is accumulating evidence that both can influence processing difficulty. However, it is unclear whether and how expectations and memory interact. We first confirm a key prediction of the expectation account: a Hindi self-paced reading study shows that when an expectation for an upcoming part of speech is dashed, building a rarer structure consumes more processing time than building a less rare structure. This is a strong validation of the expectation-based account. In a second study, we show that when expectation is strong, i.e., when a particular verb is predicted, strong facilitation effects are seen when the appearance of the verb is delayed; however, when expectation is weak, i.e., when only the part of speech "verb" is predicted but a particular verb is not predicted, the facilitation disappears and a tendency towards a locality effect is seen. The interaction seen between expectation strength and distance shows that strong expectations cancel locality effects, and that weak expectations allow locality effects to emerge.

  6. Leading edge film cooling effects on turbine blade heat transfer

    Science.gov (United States)

    Garg, Vijay K.; Gaugler, Raymond E.

    1995-01-01

    An existing three dimensional Navier-Stokes code, modified to include film cooling considerations, has been used to study the effect of spanwise pitch of shower-head holes and coolant to mainstream mass flow ratio on the adiabatic effectiveness and heat transfer coefficient on a film-cooled turbine vane. The mainstream is akin to that under real engine conditions with stagnation temperature = 1900 K and stagnation pressure = 3 MPa. It is found that with the coolant to mainstream mass flow ratio fixed, reducing P, the spanwise pitch for shower-head holes, from 7.5 d to 3.0 d, where d is the hole diameter, increases the average effectiveness considerably over the blade surface. However, when P/d= 7.5, increasing the coolant mass flow increases the effectiveness on the pressure surface but reduces it on the suction surface due to coolant jet lift-off. For P/d = 4.5 or 3.0, such an anomaly does not occur within the range of coolant to mainstream mass flow ratios analyzed. In all cases, adiabatic effectiveness and heat transfer coefficient are highly three-dimensional.

  7. Effect of Half Time Cooling on Thermoregulatory Responses and Soccer-Specific Performance Tests

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2014-03-01

    Full Text Available This study examined two active coolings (forearm and hand cooling, and neck cooling during a simulated half-time recovery on thermoregulatory responses and subsequent soccer-specific exercise performance. Following a 45-min treadmill run in the heat, participants (N=7 undertook 15-min recovery with either passive cooling, forearm and hand cooling, or neck cooling in a simulated cooled locker room environment. After the recovery, participants performed a 6×15-m sprint test and Yo-Yo Intermittent Recovery Level 1 test (YYIR1 in a temperate environment. During the 15-min recovery, rectal temperature fell significantly (p<0.05. Neither active coolings induced further reduction in rectal temperature compared to passive cooling. No effect of active coolings was found in repeated sprint test. However, neck cooling reduced (p<0.05 the thermal sensation (TS compared to passive cooling during the 15-min recovery. Active coolings attenuated (p<0.05 the sweat rate compared to passive cooling: 1.2±0.3 l•h-1 vs. 0.8±0.1 l•h-1 vs. 0.8±0.3 l•h-1, for passive cooling, forearm and hand cooling, and neck cooling, respectively. For passive cooling, elevated sweat rate resulted in higher (p<0.05 dehydration (2.1±0.3% compared to neck cooling (1.5±0.3% and forearm and hand cooling (1.4±0.3%. YYIR1 was improved (p<0.05 following forearm and hand cooling (869±320 m and neck cooling (814±328 m compared to passive cooling (654±311 m. Neck cooling (4.6±0.6 reduced (p=0.03 the session TS compared to passive cooling (5.3±0.5. These results suggest that active coolings effectively improved comfort and sweating response, which delayed exercise-heat induced performance diminish during a second bout of exercise.

  8. Many-Body Effects on Optical Carrier Cooling in Intrinsic Semiconductors at Low Lattice Temperatures

    National Research Council Canada - National Science Library

    Huang, Danhong; Alsing, P. M

    2008-01-01

    Based on the coupled density and energy balance equations, a dynamical model is proposed for exploring many-body effects on optical carrier cooling not lattice cooling in steady state in comparison...

  9. Analytical model of transient thermal effect on convectional cooled ...

    Indian Academy of Sciences (India)

    It is also found that increasing this type of cooling significantly reduces the time required to reach the thermal equilibrium with a slight increase in the max. tensile hoop stress that can be reached as the cooling increases. On the other hand, increase in face cooling reduces the response time, optical path difference and the ...

  10. Effect of cooling rate on the microstructure and mechanical ...

    Indian Academy of Sciences (India)

    continuous cooling transformation (CCT) diagram. Similar cooling conditions were also applied to tensile ... transformation attributes of the steel is exploited to improve strength upon cooling after deformation. .... automatically recorded on a digital gauge in arbitrary hard- ness number. These values were then converted to ...

  11. EFFECT OF COOLING RATES ON THE MICROSTRUCTURE AND ...

    African Journals Online (AJOL)

    ... eutectic under three cooling conditions were proposed. In the DTA mode (slow cooling), the relationship between the two phases was stable. However as the cooling rates increased ( quenching and meltspun modes), the relationship tended towards metastability. KEY WORDS: alloy, solidification, microstructure, eutectic, ...

  12. Effect of cooling rate on the microstructure and mechanical ...

    Indian Academy of Sciences (India)

    The microstructure and mechanical properties of a low carbon steel containing 30 ppm boron have been investigated. The steel was subjected to various cooling conditions in a thermo-mechanical simulator to generate continuous cooling transformation (CCT) diagram. Similar cooling conditions were also applied to tensile ...

  13. The Effect of Wake Passing on Turbine Blade Film Cooling

    Science.gov (United States)

    Heidmann, James David

    1996-01-01

    The effect of upstream blade row wake passing on the showerhead film cooling performance of a downstream turbine blade has been investigated through a combination of experimental and computational studies. The experiments were performed in a steady-flow annular turbine cascade facility equipped with an upstream rotating row of cylindrical rods to produce a periodic wake field similar to that found in an actual turbine. Spanwise, chordwise, and temporal resolution of the blade surface temperature were achieved through the use of an array of nickel thin-film surface gauges covering one unit cell of showerhead film hole pattern. Film effectiveness and Nusselt number values were determined for a test matrix of various injectants, injectant blowing ratios, and wake Strouhal numbers. Results indicated a demonstratable reduction in film effectiveness with increasing Strouhal number, as well as the expected increase in film effectiveness with blowing ratio. An equation was developed to correlate the span-average film effectiveness data. The primary effect of wake unsteadiness was found to be correlated well by a chordwise-constant decrement of 0.094-St. Measurable spanwise film effectiveness variations were found near the showerhead region, but meaningful unsteady variations and downstream spanwise variations were not found. Nusselt numbers were less sensitive to wake and injection changes. Computations were performed using a three-dimensional turbulent Navier-Stokes code which was modified to model wake passing and film cooling. Unsteady computations were found to agree well with steady computations provided the proper time-average blowing ratio and pressure/suction surface flow split are matched. The remaining differences were isolated to be due to the enhanced mixing in the unsteady solution caused by the wake sweeping normally on the pressure surface. Steady computations were found to be in excellent agreement with experimental Nusselt numbers, but to overpredict

  14. Strong Gravity Effects of Rotating Black Holes: Quasiperiodic Oscillations

    OpenAIRE

    Aliev, Alikram N.; Esmer, Göksel Daylan; Talazan, Pamir

    2012-01-01

    We explore strong gravity effects of the geodesic motion in the spacetime of rotating black holes in general relativity and braneworld gravity. We focus on the description of the motion in terms of three fundamental frequencies: The orbital frequency, the radial and vertical epicyclic frequencies. For a Kerr black hole, we perform a detailed numerical analysis of these frequencies at the innermost stable circular orbits and beyond them as well as at the characteristic stable orbits, at which ...

  15. New results on strong-interaction effects in antiprotonic hydrogen

    CERN Document Server

    Gotta, D; Augsburger, M A; Borchert, G L; Castelli, C M; Chatellard, D; El-Khoury, P; Egger, J P; Gorke, H; Hauser, P R; Indelicato, P J; Kirch, K; Lenz, S; Nelms, N; Rashid, K; Schult, O W B; Siems, T; Simons, L M

    1999-01-01

    Lyman and Balmer transitions of antiprotonic hydrogen and deuterium have been measured at the low-energy antiproton ring LEAR at CERN in order to determine the strong interaction effects. The X-rays were detected using charge-coupled devices (CCDs) and a reflection type crystal spectrometer. The results of the measurements support the meson-exchange models describing the medium and long range part of the nucleon-antinucleon interaction. (33 refs).

  16. New results on strong-interaction effects in antiprotonic hydrogen

    International Nuclear Information System (INIS)

    Anagnostopoulos, D. F.; Augsburger, M.; Borchert, G.; Castelli, C.; Chatellard, D.; El-Khoury, P.; Egger, J.-P.; Gorke, H.; Gotta, D.; Hauser, P.; Indelicato, P.; Kirch, K.; Lenz, S.; Nelms, N.; Rashid, K.; Schult, O. W. B.; Siems, Th.; Simons, L. M.

    1999-01-01

    Lyman and Balmer transitions of antiprotonic hydrogen and deuterium have been measured at the Low-Energy Antiproton Ring LEAR at CERN in order to determine the strong interaction effects. The X-rays were detected using Charge-Coupled Devices (CCDs) and a reflection type crystal spectrometer. The results of the measurements support the meson-exchange models describing the medium and long range part of the nucleon-antinucleon interaction

  17. Effect of tropospheric aerosols upon atmospheric infrared cooling rates

    Science.gov (United States)

    Harshvardhan, MR.; Cess, R. D.

    1978-01-01

    An investigation has been made of the impact of wind-blown dust particles upon local climate of arid regions. The case of Northwest India is specifically considered, where a dense layer of dust persists for several months during the summer. In order to examine the effect of this dust layer on the infrared radiative flux and cooling rates, a method is presented for calculating the IR flux within a dusty atmosphere which allows the use of gaseous band models and is applicable in the limit of small single scattering albedo and pronounced forward scattering. The participating components of the atmosphere are assumed to be water vapor and spherical quartz particles only. The atmospheric window is partially filled by including the water vapor continuum bands for which empirically obtained transmission functions have been used. It is shown that radically different conclusions may be drawn on dust effects if the continuum absorption is not considered. The radiative transfer model, when applied to a dusty atmosphere, indicates that there is a moderate enhancement in the atmospheric greenhouse and a 10% increase in the mean IR radiative cooling rate, relative to the dust free case, within the lower troposphere. These results have been compared with previous work by other authors in the context of the possibility of dust layers inhibiting local precipitation.

  18. The effects of landscaping on the residential cooling energy

    Science.gov (United States)

    Misni, A.

    2018-02-01

    This paper examines the effectiveness of landscaping on the air-conditioning energy saving of houses in a tropical environment. This case study involved looking at the construction and landscaping of three single-family houses in three sections of Shah Alam, Selangor, Malaysia. The houses ranged in age from 5 to 30 years old, which provided different examples of construction and maturity levels of the surrounding landscaping. Landscaping affects the thermal performance as well as on the air-conditioning energy of houses, in how it provides shade, channels wind, and evapotranspiration. While the construction of the three houses was similar, they were different in size and design, including their landscape design. These houses were chosen because they are representative of single-family tropical houses and landscaping styles in Malaysia since 30 years ago. Three houses were chosen; the 30-year-old house, the 10-year-old house, and the 5-year-old house. In a tropical country, landscaping is used to reduce the effects of the hot and humid climate. The houses spent 15-45% of the electricity cost on cooling. These results were influenced by human factors and the surrounding landscaping. Every type of vegetation, such as trees, grass, shrubs, groundcover, and turf, contributes to reducing air temperatures near the house and providing evaporative cooling.

  19. [Cool/Hot target effect of the water fog infrared stealth].

    Science.gov (United States)

    Du, Yong-cheng; Yang, Li; Zhang, Shi-cheng; Yang, Zhen; Hu, Shuang-xi

    2012-08-01

    Artificial spray fog will come into being cool target because of the strong evaporation and convection but weak radiation heat flux, when it is used for defence of infrared imaging guided missile. Also, when it is the contrary condition, the water fog will come into being hot target. In order to open out the phenomenon particularly, a math model which can account for the cool/hot effect produced by water fog shielding the thermal radiation is established by coupling the calculation of radiation transfer equation and energy conversation equation, based on the Mie theory. This model is proved to be accurate in comparison with the Monte-Carlo method and Lambert-Beer' law. The water fog is seemed as absorbing, emitting and anisotropic scattering medium, and the medium radiation, multiple scattering, target radiation flux, and environment influence such as the conductivity, convection turbulent heat diffusion and evaporation is calculated. The phenomenon of cool/hot target effect can be shown in detail with this model.

  20. Effects of the cooling rate on the shear behavior of continuous glass fiber/impact polypropylene composites (GF-IPP)

    KAUST Repository

    Wafai, Husam

    2016-09-20

    Fiber-reinforced composites with improved dissipation of energy during impact loading have recently been developed based on a polypropylene copolymer commonly called impact polypropylene (IPP). Composites made of IPP reinforced with glass fibers (GF) are particularly attractive to the automotive industry due to their low cost and good impact resistance. In such composites, the cooling rate varies depending on processing techniques and manufacturing choices. Here, we study the effects of the cooling rate of GF-IPP composites on shear behavior, which is critical in impact applications, using [±45]s monotonic and cyclic (load/unload) tensile specimens. The specimens were manufactured under a wide range of cooling rates (3 °C/min, 22 °C/min, 500–1000 °C/min). Mainly dominated by the properties of the matrix, the global shear behavior of GF-IPP composites differed considerably with respect to the cooling rate. However, the performance of the fiber-matrix interface (chemically modified) appeared to be unaffected by the range of cooling rates used in this study. We found that the cooling rate has a minor effect on the rate of damage accumulation, while it strongly modifies the shear-activated rate-dependant viscoelastic behavior. © 2016 Elsevier Ltd

  1. Effect of cooling rates on the weld heat affected zone coarse grain microstructure

    Directory of Open Access Journals (Sweden)

    Roman Celin

    2018-04-01

    Full Text Available The effect of a cooling rate on the S690Q quenched and tempered steel welded joint coarse grain heat affected zone microstructure was investigated using a dilatometer with controlled heating and cooling fixture. Steel samples were heated to a peak temperature of 1350 °C and cooled at the different cooling time Dt8/5. A dilatometric analysis and hardness measurements of the simulated thermal cycle coarse grain samples were done. Transformation start and finish temperature were determined using dilatation vs. temperature data analysis. The microstructure of the sample with a cooling time 5 s consists of martensite, whereas at cooling time 80 s a bainitic microstructure was observed. The investigated steel cooling cycle using simulation approach makes possible to determine the range of an optimum CG HAZ cooling time for the welding.

  2. Superconducting proximity effect in the strong-coupling limit

    International Nuclear Information System (INIS)

    Wilvert, W.

    1975-01-01

    A generalization of the theory of the superconducting proximity effect is presented which takes into account strong-coupling in the superconductors. The results are found to agree with a model of weak-coupled superconductors with differing Debye frequencies which are in proximity. It is found that logarithmic averaging of phonon frequencies is an improvement on the original McMillan theory (1968). Comparison of the theory with data on thin films and on eutectic alloys is found to give good agreement. 19 references

  3. Strong dynamical effects during stick-slip adhesive peeling.

    Science.gov (United States)

    Dalbe, Marie-Julie; Santucci, Stéphane; Cortet, Pierre-Philippe; Vanel, Loïc

    2014-01-07

    We consider the classical problem of the stick-slip dynamics observed when peeling a roller adhesive tape at a constant velocity. From fast imaging recordings, we extract the dependence of the stick and slip phase durations on the imposed peeling velocity and peeled ribbon length. Predictions of Maugis and Barquins [in Adhesion 12, edited by K. W. Allen, Elsevier ASP, London, 1988, pp. 205-222] based on a quasistatic assumption succeed to describe quantitatively our measurements of the stick phase duration. Such a model however fails to predict the full stick-slip cycle duration, revealing strong dynamical effects during the slip phase.

  4. Effects of cooling timescale and non-ideaness of the gas in the shockwaves

    Directory of Open Access Journals (Sweden)

    Mohsen Nejad-Asghar

    2017-09-01

    degree polynomial equation to obtain $R$.The results for adiabatic case ($lambda=0$, with ideal ($eta=0$ and non-ideal ($eta neq 0$ mono-atomic ($gamma_1 = gamma_2 = 5/3$ gas are shown in the Fig.1. In the ideal case, the strong supersonic shockwave ($M_0 rightarrow infty$ leads to $R approx 4$. Considering of non-ideal parameter ($eta neq 0$ increases the pressure of the post-shock region so that the shock fronts move faster. In this way, for each $M_0$, the relative density of the post-shock non-ideal gas decreases in respect to the ideal case. The cooling shockwaves with low cooling timescale ($lambda=1$ and fast cooling timescale ($lambda=10$ are shown in the Fig.2. The results show that the relative density of post-shock gas, $R$, increases with increasing the Mach number, $M_0$, and asymptotically reaches to a value which depends on the two other parameters $eta$ and $lambda$. With increasing of the energy lost per unit mass during the shock process, $Q$ (i.e., increasing of $lambda$, the post-shock gas has more chance for condensation and increasing of its relative density, while including the non-ideal effects (i.e., increasing of $eta$ reduces this chance.

  5. Cooling tower

    International Nuclear Information System (INIS)

    Baer, E.; Dittrich, H.; Ernst, G.; Roller, W.

    1975-01-01

    The task on which the invention is based is to design a cooling tower in such a way that the negative influences of the wind, in particular strong side winds (wind velocities of over 10 m/s), on the functioning of the cooling tower are reduced or eliminated altogether. (orig./TK) [de

  6. Air cooling effect of fins on a Honda shine bike

    OpenAIRE

    Padhiyar Abhesinh J; Vasim G Machhar

    2015-01-01

    The main of aim of this work is to study various researches done in past to improve heat transfer rate of cooling fins by changing cylinder block fin geometry. Low rate of heat transfer through cooling fins is the main problem in this type of cooling. So efficiency of the engine is increase by increase the heat transfer. Examples of direct air cooling in modern automobiles are rare. The most common example is the commercials Automobile bike like a Honda Shine, Bajaj bike, Honda sp...

  7. A system for quantifying the cooling effectiveness of bicycle helmets.

    Science.gov (United States)

    Reid, J; Wang, E L

    2000-08-01

    This article describes the design and development of a system that is capable of quantifying the thermal comfort of bicycle helmets. The motivation for the development of the system stems from the desire both to increase helmet use and to provide the designer with a quantitative method of evaluating the thermal comfort of a helmet. The system consists of a heated mannequin head form, a heated reference sphere, a small wind tunnel, and a data acquisition system. Both the head form and the reference sphere were instrumented with thermocouples. The system is capable of simulating riding speeds ranging from 4.5-15.5 m/s. A cooling effectiveness, C1, that is independent of both ambient conditions and wind velocity is defined as a measure of how well the helmet ventilates as compared to the reference sphere. The system was validated by testing six commercially available bicycle helmets manufactured between approximately 1992 and 1998.

  8. Effectiveness of Advanced Stay Strong, Stay Healthy in Community Settings

    Directory of Open Access Journals (Sweden)

    Emily M. Crowe MS

    2015-07-01

    Full Text Available The goal of this research was to investigate the effectiveness of the 10-week, University of Missouri (MU Extension strength training program Advanced Stay Strong, Stay Healthy (ASSSH. It was hypothesized that the program can improve strength, balance, agility, and flexibility—all physical measures of falling among seniors. Matched pair t tests were used to compare differences in five physical measures of health, body composition, and percent body fat (%BF. Two-way ANOVA was conducted to examine the age effects on changes in physical health from the start and finish of the exercise program. Following programming, participants significantly improved strength, flexibility, and balance, and significantly reduced %BF ( p < .05. Our data indicate that ASSSH can improve the physical health of senior citizens and can successfully be translated into community practice by MU Extension professionals.

  9. Effect of radiative cooling on collapsing charged grains

    Indian Academy of Sciences (India)

    the clouds above Jeans mass may be caused by the electrostatic interaction of the plasma clouds [4,5], the condensation of the sub critical Jeans matter can be achieved via radiative cooling of its plasma particles [6–8] which along with the charged and neutral grains form its other constituents. The precise nature of cooling ...

  10. Global Cooling: Effect of Urban Albedo on Global Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Menon, Surabi; Rosenfeld, Arthur

    2007-05-22

    In many urban areas, pavements and roofs constitute over 60% of urban surfaces (roof 20-25%, pavements about 40%). The roof and the pavement albedo can be increased by about 0.25 and 0.10, respectively, resulting in a net albedo increase for urban areas of about 0.1. Many studies have demonstrated building cooling-energy savings in excess of 20% upon raising roof reflectivity from an existing 10-20% to about 60%. We estimate U.S. potential savings in excess of $1 billion (B) per year in net annual energy bills. Increasing albedo of urban surfaces can reduce the summertime urban temperature and improve the urban air quality. Increasing the urban albedo has the added benefit of reflecting more of the incoming global solar radiation and countering the effect of global warming. We estimate that increasing albedo of urban areas by 0.1 results in an increase of 3 x 10{sup -4} in Earth albedo. Using a simple global model, the change in air temperature in lowest 1.8 km of the atmosphere is estimated at 0.01K. Modelers predict a warming of about 3K in the next 60 years (0.05K/year). Change of 0.1 in urban albedo will result in 0.01K global cooling, a delay of {approx}0.2 years in global warming. This 0.2 years delay in global warming is equivalent to 10 Gt reduction in CO2 emissions.

  11. Internal and external cooling methods and their effect on body temperature, thermal perception and dexterity

    Science.gov (United States)

    Minett, Geoffrey M.; Bach, Aaron J. E.; Zietek, Stephanie A.; Stewart, Kelly L.; Stewart, Ian B.

    2018-01-01

    Objective The present study aimed to compare a range of cooling methods possibly utilised by occupational workers, focusing on their effect on body temperature, perception and manual dexterity. Methods Ten male participants completed eight trials involving 30 min of seated rest followed by 30 min of cooling or control of no cooling (CON) (34°C, 58% relative humidity). The cooling methods utilised were: ice cooling vest (CV0), phase change cooling vest melting at 14°C (CV14), evaporative cooling vest (CVEV), arm immersion in 10°C water (AI), portable water-perfused suit (WPS), heliox inhalation (HE) and ice slushy ingestion (SL). Immediately before and after cooling, participants were assessed for fine (Purdue pegboard task) and gross (grip and pinch strength) manual dexterity. Rectal and skin temperature, as well as thermal sensation and comfort, were monitored throughout. Results Compared with CON, SL was the only method to reduce rectal temperature (P = 0.012). All externally applied cooling methods reduced skin temperature (Ptemperature versus other cooling methods. Participants felt cooler with CV0, CV14, WPS, AI and SL (P0.05). Conclusion The present study observed that ice ingestion or ice applied to the skin produced the greatest effect on rectal and skin temperature, respectively. AI should not be utilised if workers require subsequent fine manual dexterity. These results will help inform future studies investigating appropriate pre-cooling methods for the occupational worker. PMID:29357373

  12. The effects of aging on BWR core isolation cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.S. [Brookhaven National Lab., Upton, NY (United States)

    1994-10-01

    A study was performed to assess the effects of aging on the Reactor Core Isolation Cooling (RCIC) system in commercial Boiling Water Reactors (BWRs). This study is part of the Nuclear Plant Aging Research (NPAR) program sponsored by the US Nuclear Regulatory Commission. The objectives of this program are to provide an understanding of the aging process and how it affects plant safety so that it can be properly managed. This is one of a number of studies performed under the NPAR program which provide a technical basis for the identification and evaluation of degradation caused by age. The failure data from national databases, as well as plant specific data were reviewed and analyzed to understand the effects of aging on the RCIC system. This analysis identified important components that should receive the highest priority in terms of aging management. The aging characterization provided information on the effects of aging on component failure frequency, failure modes, and failures causes. Current inspection, surveillance, and monitoring practices were also reviewed.

  13. The effects of aging on BWR core isolation cooling systems

    International Nuclear Information System (INIS)

    Lee, B.S.

    1994-10-01

    A study was performed to assess the effects of aging on the Reactor Core Isolation Cooling (RCIC) system in commercial Boiling Water Reactors (BWRs). This study is part of the Nuclear Plant Aging Research (NPAR) program sponsored by the US Nuclear Regulatory Commission. The objectives of this program are to provide an understanding of the aging process and how it affects plant safety so that it can be properly managed. This is one of a number of studies performed under the NPAR program which provide a technical basis for the identification and evaluation of degradation caused by age. The failure data from national databases, as well as plant specific data were reviewed and analyzed to understand the effects of aging on the RCIC system. This analysis identified important components that should receive the highest priority in terms of aging management. The aging characterization provided information on the effects of aging on component failure frequency, failure modes, and failures causes. Current inspection, surveillance, and monitoring practices were also reviewed

  14. Effects of strong radiation reaction and quantum-electrodynamics on relativistic transparency

    Science.gov (United States)

    Zhang, Peng; Thomas, A. G. R.; Ridgers, C. P.

    2013-10-01

    Relativistic transparency is the process that optically switches the overdense plasma from opaque to transparent and enables light propagation through the otherwise opaque plasma, when light of sufficient intensity drives the electrons in the plasma to near light speeds. We study the relativistic transparency in radiation dominant and strong quantum electrodynamic (QED) regime, for the interaction of high-intensity laser pulses with a thin foil solid target. We analytically study the simplified motion of an electron in a circularly polarized plane wave to understand the physics of the transmissivity and absorption in the presence of classical and quantum-corrected, semiclassical radiation-reaction forces and the trapping of particles in nodes of laser standing wave through radiative cooling. These arguments are supported by both one dimensional and two dimensional particle-in-cell calculations including strong field QED effects. Measurement of the transmission of these pulses would be experimentally feasible and a robust test of the strong field QED particle-in-cell framework.

  15. Radiation Effects in Dual Heat Sinks for Cooling of Concentrated Photovoltaics

    Science.gov (United States)

    2016-06-01

    IN DUAL HEAT SINKS FOR COOLING OF CONCENTRATED PHOTOVOLTAICS by Mark T. Brandau June 2016 Thesis Advisor: Garth Hobson Co-Advisor...thesis 4. TITLE AND SUBTITLE RADIATION EFFECTS IN DUAL HEAT SINKS FOR COOLING OF CONCENTRATED PHOTOVOLTAICS 5. FUNDING NUMBERS 6. AUTHOR(S) Mark...examined the effectiveness of improving the cooling of concentrated photovoltaics (CPV) through the use of dual heat sinks. The intent was to improve

  16. Computational Analysis of Droplet Mass and Size Effect on Mist/Air Impingement Cooling Performance

    Directory of Open Access Journals (Sweden)

    Zhenglei Yu

    2013-01-01

    Full Text Available Impingement cooling has been widely employed to cool gas turbine hot components such as combustor liners, combustor transition pieces, turbine vanes, and blades. A promising technology is proposed to enhance impingement cooling with water droplets injection. However, previous studies were conducted on blade shower head film cooling, and less attention was given to the transition piece cooling. As a continuous effort to develop a realistic mist impingement cooling scheme, this paper focuses on simulating mist impingement cooling under typical gas turbine operating conditions of high temperature and pressure in a double chamber model. Furthermore, the paper presents the effect of cooling effectiveness by changing the mass and size of the droplets. Based on the heat-mass transfer analogy, the results of these experiments prove that the mass of 3E – 3 kg/s droplets with diameters of 5–35 μm could enhance 90% cooling effectiveness and reduce 122 K of wall temperature. The results of this paper can provide guidance for corresponding experiments and serve as the qualification reference for future more complicated studies with convex surface cooling.

  17. Relationship between Park Composition, Vegetation Characteristics and Cool Island Effect

    Directory of Open Access Journals (Sweden)

    Xinjun Wang

    2018-02-01

    Full Text Available The Land Surface Temperature (LST of a park is lower than the surrounding environment, and thus the parkland forms a Park Cool Island (PCI. However, more case studies are needed to reveal the relationship between park composition, vegetation characteristic and PCI development. The LST and Land Use/Land Cover (LULC of 18 different sized parks in Changzhou, China were obtained from Landsat-8 and Mapworld Changzhou data. Then, a sample investigation method was used to calculate vegetation characteristics of these parks by an i-Tree Eco model. In order to reduce the impact from the external environment on PCI, the Temperature Drop Amplitude (TDA and Temperature Drop Range (TR inside the parks were analyzed by ArcGIS 9.3. Impact factors were tested by Pearson correlation analysis and curve fit to reveal the relationship between these factors and PCI formation. The result shows that a park area threshold of 1.34 to 17 hectares provides the best PCI effect, that park shape (perimeter/area, Leaf Area Index (LAI, density, tree cover, water cover, and impervious surface cover have significant correlation with PCI development, vegetation health and global climate change affect the PCI development. Advice is proposed to improve and maintain PCI effects.

  18. Internal target effects in ion storage rings with beam cooling

    International Nuclear Information System (INIS)

    Gostishchev, Vitaly

    2008-06-01

    The accurate description of internal target effects is important for the prediction of operation conditions which are required for experiments in the planned storage rings of the FAIR facility. The BETACOOL code developed by the Dubna group has been used to evaluate beam dynamics in ion storage rings, where electron cooling in combination with an internal target is applied. Systematic benchmarking experiments of this code were carried out at the ESR storage ring at GSI. A mode with vanishing dispersion in the target position was applied to evaluate the influence of the dispersion function on the parameters when the target is heating the beam. The influence of the internal target on the beam parameters is demonstrated in the present work. A comparison of experimental results with simple models describing the energy loss of the beam particles in the target as well as with more sophisticated simulations with the BETACOOL code is given. In order to study the conditions which can be achieved in the proposed experiments the simulation results were quantitatively compared with experimental results and simulations for the ESR. The results of this comparison are discussed in the present thesis. BETACOOL simulations of target effects were performed for the NESR and the HESR of the future FAIR facility in order to predict the beam parameters for the planned experiments. (orig.)

  19. Internal and external cooling methods and their effect on body temperature, thermal perception and dexterity.

    Directory of Open Access Journals (Sweden)

    Matthew J Maley

    Full Text Available The present study aimed to compare a range of cooling methods possibly utilised by occupational workers, focusing on their effect on body temperature, perception and manual dexterity.Ten male participants completed eight trials involving 30 min of seated rest followed by 30 min of cooling or control of no cooling (CON (34°C, 58% relative humidity. The cooling methods utilised were: ice cooling vest (CV0, phase change cooling vest melting at 14°C (CV14, evaporative cooling vest (CVEV, arm immersion in 10°C water (AI, portable water-perfused suit (WPS, heliox inhalation (HE and ice slushy ingestion (SL. Immediately before and after cooling, participants were assessed for fine (Purdue pegboard task and gross (grip and pinch strength manual dexterity. Rectal and skin temperature, as well as thermal sensation and comfort, were monitored throughout.Compared with CON, SL was the only method to reduce rectal temperature (P = 0.012. All externally applied cooling methods reduced skin temperature (P0.05.The present study observed that ice ingestion or ice applied to the skin produced the greatest effect on rectal and skin temperature, respectively. AI should not be utilised if workers require subsequent fine manual dexterity. These results will help inform future studies investigating appropriate pre-cooling methods for the occupational worker.

  20. Analytical Modelling of the Effects of Different Gas Turbine Cooling Techniques on Engine Performance =

    Science.gov (United States)

    Uysal, Selcuk Can

    In this research, MATLAB SimulinkRTM was used to develop a cooled engine model for industrial gas turbines and aero-engines. The model consists of uncooled on-design, mean-line turbomachinery design and a cooled off-design analysis in order to evaluate the engine performance parameters by using operating conditions, polytropic efficiencies, material information and cooling system details. The cooling analysis algorithm involves a 2nd law analysis to calculate losses from the cooling technique applied. The model is used in a sensitivity analysis that evaluates the impacts of variations in metal Biot number, thermal barrier coating Biot number, film cooling effectiveness, internal cooling effectiveness and maximum allowable blade temperature on main engine performance parameters of aero and industrial gas turbine engines. The model is subsequently used to analyze the relative performance impact of employing Anti-Vortex Film Cooling holes (AVH) by means of data obtained for these holes by Detached Eddy Simulation-CFD Techniques that are valid for engine-like turbulence intensity conditions. Cooled blade configurations with AVH and other different external cooling techniques were used in a performance comparison study. (Abstract shortened by ProQuest.).

  1. MODELING THE AMBIENT CONDITION EFFECTS OF AN AIR-COOLED NATURAL CIRCULATION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Rui; Lisowski, Darius D.; Bucknor, Matthew; Kraus, Adam R.; Lv, Qiuping

    2017-07-02

    The Reactor Cavity Cooling System (RCCS) is a passive safety concept under consideration for the overall safety strategy of advanced reactors such as the High Temperature Gas-Cooled Reactor (HTGR). One such variant, air-cooled RCCS, uses natural convection to drive the flow of air from outside the reactor building to remove decay heat during normal operation and accident scenarios. The Natural convection Shutdown heat removal Test Facility (NSTF) at Argonne National Laboratory (“Argonne”) is a half-scale model of the primary features of one conceptual air-cooled RCCS design. The facility was constructed to carry out highly instrumented experiments to study the performance of the RCCS concept for reactor decay heat removal that relies on natural convection cooling. Parallel modeling and simulation efforts were performed to support the design, operation, and analysis of the natural convection system. Throughout the testing program, strong influences of ambient conditions were observed in the experimental data when baseline tests were repeated under the same test procedures. Thus, significant analysis efforts were devoted to gaining a better understanding of these influences and the subsequent response of the NSTF to ambient conditions. It was determined that air humidity had negligible impacts on NSTF system performance and therefore did not warrant consideration in the models. However, temperature differences between the building exterior and interior air, along with the outside wind speed, were shown to be dominant factors. Combining the stack and wind effects together, an empirical model was developed based on theoretical considerations and using experimental data to correlate zero-power system flow rates with ambient meteorological conditions. Some coefficients in the model were obtained based on best fitting the experimental data. The predictive capability of the empirical model was demonstrated by applying it to the new set of experimental data. The

  2. Methodology for predicting cooling water effects on fish

    International Nuclear Information System (INIS)

    Cakiroglu, C.; Yurteri, C.

    1998-01-01

    The mathematical model presented here predicts the long-term effects of once-through cooling water systems on local fish populations. The fish life cycle model simulates different life stages of fish by using appropriate expressions representing growth and mortality rates. The heart of the developed modeling approach is the prediction of plant-caused reduction in total fish population by estimating recruitment to adult population with and without entrainment of ichthyoplankton and impingement of small fish. The model was applied to a local fish species, gilthead (Aparus aurata), for the case of a proposed power plant in the Aegean region of Turkey. The simulations indicate that entrainment and impingement may lead to a population reduction of about 2% to 8% in the long run. In many cases, an impact of this size can be considered rather unimportant. In the case of sensitive and ecologically values species facing extinction, however, necessary precautions should be taken to minimize or totally avoid such an impact

  3. Biological effects from discharge of cooling water from thermal power plants

    International Nuclear Information System (INIS)

    1976-12-01

    Results are reported for a Danish project on biological effects from discharge of cooling water from thermal power plants. The purpose of the project was to provide an up-to-date knowledge of biological effects of cooling water discharge and of organization and evaluation of recipient investigations in planned and established areas. (BP)

  4. Cost-effectiveness analysis of scalp cooling to reduce chemotherapy-induced alopecia

    NARCIS (Netherlands)

    van den Hurk, C.J.; van den Akker-van Marle, E.M.; Breed, W.P.M.; van de Poll-Franse, L.V.; Nortier, J.; Coebergh, J.W.W.

    2014-01-01

    Background. Alopecia is a frequently occurring side effect of chemotherapy that often can be prevented by cooling the scalp during the infusion. This study compared effects and costs of scalp cooling with usual general oncological care, i.e. purchasing a wig or head cover. Material and methods.

  5. Effect of random charge fluctuation on strongly coupled dusty Plasma

    Science.gov (United States)

    Issaad, M.; Rouiguia, L.; Djebli, M.

    2008-09-01

    Modeling the interaction between particles is an open issue in dusty plasma. We dealt with strongly coupled dust particles in two dimensional confined system. For small number of clusters, we investigate the effect of random charge fluctuation on background configuration. The study is conducted for a short rang as well as a long rang potential interaction. Numerical simulation is performed using Monte-Carlo simulation in the presence of parabolic confinement and at low temperature. We have studied the background configurations for a dust particles with constant charge and in the presence of random charge fluctuation due to the discrete nature of charge carriers. The latter is studied for a positively charged dust when the dominant charging process is due to photo-emission from the dust surface. It is found, for small classical cluster consisting of small number of particles, short rang potential gives the same result as long rang one. It is also found that the random charge fluctuation affect the background configurations.

  6. Fossil fuel and biomass burning effect on climate - heating or cooling?

    International Nuclear Information System (INIS)

    Kaufman, Y.J.; Fraser, R.S.; Mahoney, R.L.

    1991-01-01

    Emission from burning of fossil fuels and biomass (associated with deforestation) generates a radiative forcing on the atmosphere and a possible climate change. Emitted trace gases heat the atmosphere through their greenhouse effect, while particulates formed from emitted SO 2 cause cooling by increasing cloud albedos through alteration of droplet size distributions. This paper reviews the characteristics of the cooling effect and applies Twomey's theory to check whether the radiative balance favours heating or cooling for the cases of fossil fuel and biomass burning. It is also shown that although coal and oil emit 120 times as many CO 2 molecules as SO 2 molecules, each SO 2 molecule is 50-1100 times more effective in cooling the atmosphere (through the effect of aerosol particles on cloud albedo) than a CO 2 molecule is in heating it. Note that this ratio accounts for the large difference in the aerosol (3-10 days) and CO 2 (7-100 years) lifetimes. It is concluded, that the cooling effect from coal and oil burning may presently range from 0.4 to 8 times the heating effect. Within this large uncertainty, it is presently more likely that fossil fuel burning causes cooling of the atmosphere rather than heating. Biomass burning associated with deforestation, on the other hand, is more likely to cause heating of the atmosphere than cooling since its aerosol cooling effect is only half that from fossil fuel burning and its heating effect is twice as large. Future increases in coal and oil burning, and the resultant increase in concentration of cloud condensation nuclei, may saturate the cooling effect, allowing the heating effect to dominate. For a doubling in the CO 2 concentration due to fossil fuel burning, the cooling effect is expected to be 0.1 to 0.3 of the heating effect. 75 refs., 8 tabs

  7. Thermal Response of Cooled Silicon Nitride Plate Due to Thermal Conductivity Effects Analyzed

    Science.gov (United States)

    Baaklini, George Y.; Abdul-Aziz, Ali; Bhatt, Ramakrishna

    2003-01-01

    Lightweight, strong, tough high-temperature materials are required to complement efficiency improvements for next-generation gas turbine engines that can operate with minimum cooling. Because of their low density, high-temperature strength, and high thermal conductivity, ceramics are being investigated as materials to replace the nickelbase superalloys that are currently used for engine hot-section components. Ceramic structures can withstand higher operating temperatures and a harsh combustion environment. In addition, their low densities relative to metals help reduce component mass (ref. 1). To complement the effectiveness of the ceramics and their applicability for turbine engine applications, a parametric study using the finite element method is being carried out. The NASA Glenn Research Center remains very active in conducting and supporting a variety of research activities related to ceramic matrix composites through both experimental and analytical efforts (ref. 1). The objectives of this work are to develop manufacturing technology, develop a thermal and environmental barrier coating (TBC/EBC), develop an analytical modeling capability to predict thermomechanical stresses, and perform a minimal burner rig test on silicon nitride (Si3N4) and SiC/SiC turbine nozzle vanes under simulated engine conditions. Moreover, we intend to generate a detailed database of the material s property characteristics and their effects on structural response. We expect to offer a wide range of data since the modeling will account for other variables, such as cooling channel geometry and spacing. Comprehensive analyses have begun on a plate specimen with Si3N4 cooling holes.

  8. Effect of cooling rate and forced convection on as-cast structure of 2205 duplex stainless steel

    Directory of Open Access Journals (Sweden)

    Cheng Zhang

    2015-01-01

    Full Text Available To forecast the as-cast structure and ferrite-austenite phase ratio of 2205 duplex stainless steel (DSS, the effects of cooling rate and forced convection were observed in a high-vacuum resistance furnace in which the forced convection was created by the rotation of the crucible. The as-cast structure of all 2205 DSS samples is full equiaxed grains, and the microstructure consists of a great amount of desirable intra-granular austenite inside the continuous ferrite grain matrix, besides Widmanstatten austenite and grain boundary austenite. The ferrite grain size decreases gradually with the increase in the cooling rates (20 to 60 ìC·min-1 or the forced convection, while the ferrite grains of the samples solidified with a strong convection are barely changed when the cooling rate is below 50 ìC·min-1. Moreover, a small grain size is beneficial for the austenite formation but the influence is not very obvious under the cooling rates in the range of 5 to 50 ìC·min-1. Compared with grain size, the cooling rate has a greater influence on the final ferrite content. A model based on the experimental results is established to predict the ferrite content, which could be approximated by ヤ(%=20.5·exp(c/80.0+0.34d+34.1, where c is the cooling rate in ìC·min-1 and d is the grain size in mm. By using this model, the dependence of the final ferrite content on cooling rate and grain size is well described.

  9. Effects of power plant cooling on aquatic biota

    International Nuclear Information System (INIS)

    Moeller, H.

    1978-01-01

    Several bibliographies and reviews on 'ecological consequences of power plant cooling' have been published. Other reports compile additional data, but are not available to the public. Altogether, more than 3,000 literature citations have been gathered until now, too many to be studied by an individual scientist. The bibliography becomes more comprehensible if only titles are accepted that deal with power plant cooling itself, neglecting the influence of temperature and other stress factors on organisms as examined under laboratory conditions. Among these 600 remaining titles, about 370 are published in journals and periodicals available to the public. They are presented in this bibliography. (orig./RW) [de

  10. Effect of local cooling on sweating rate and cold sensation

    Science.gov (United States)

    Crawshaw, L. I.; Nadel, E. R.; Stolwijk, J. A. J.; Stamford, B. A.

    1975-01-01

    Subjects resting in a 39 C environment were stimulated in different skin regions with a water-cooled thermode. Results indicate that cooling different body regions produces generally equivalent decreases in sweating rate and increases in cold sensation, with the forehead showing a much greater sensitivity per unit area and temperature decrease than other areas. The high thermal sensitivity of the face may have evolved when it was the thinnest-furred area of the body; today's clothing habits have reestablished the importance of the face in the regulation of body temperature.

  11. The effectiveness of cooling conditions on temperature of canine EDTA whole blood samples

    Directory of Open Access Journals (Sweden)

    Karen M. Tobias

    2016-11-01

    Full Text Available Background Preanalytic factors such as time and temperature can have significant effects on laboratory test results. For example, ammonium concentration will increase 31% in blood samples stored at room temperature for 30 min before centrifugation. To reduce preanalytic error, blood samples may be placed in precooled tubes and chilled on ice or in ice water baths; however, the effectiveness of these modalities in cooling blood samples has not been formally evaluated. The purpose of this study was to evaluate the effectiveness of various cooling modalities on reducing temperature of EDTA whole blood samples. Methods Pooled samples of canine EDTA whole blood were divided into two aliquots. Saline was added to one aliquot to produce a packed cell volume (PCV of 40% and to the second aliquot to produce a PCV of 20% (simulated anemia. Thirty samples from each aliquot were warmed to 37.7 °C and cooled in 2 ml allotments under one of three conditions: in ice, in ice after transfer to a precooled tube, or in an ice water bath. Temperature of each sample was recorded at one minute intervals for 15 min. Results Within treatment conditions, sample PCV had no significant effect on cooling. Cooling in ice water was significantly faster than cooling in ice only or transferring the sample to a precooled tube and cooling it on ice. Mean temperature of samples cooled in ice water was significantly lower at 15 min than mean temperatures of those cooled in ice, whether or not the tube was precooled. By 4 min, samples cooled in an ice water bath had reached mean temperatures less than 4 °C (refrigeration temperature, while samples cooled in other conditions remained above 4.0 °C for at least 11 min. For samples with a PCV of 40%, precooling the tube had no significant effect on rate of cooling on ice. For samples with a PCV of 20%, transfer to a precooled tube resulted in a significantly faster rate of cooling than direct placement of the warmed tube onto ice

  12. The effectiveness of cooling conditions on temperature of canine EDTA whole blood samples.

    Science.gov (United States)

    Tobias, Karen M; Serrano, Leslie; Sun, Xiaocun; Flatland, Bente

    2016-01-01

    Preanalytic factors such as time and temperature can have significant effects on laboratory test results. For example, ammonium concentration will increase 31% in blood samples stored at room temperature for 30 min before centrifugation. To reduce preanalytic error, blood samples may be placed in precooled tubes and chilled on ice or in ice water baths; however, the effectiveness of these modalities in cooling blood samples has not been formally evaluated. The purpose of this study was to evaluate the effectiveness of various cooling modalities on reducing temperature of EDTA whole blood samples. Pooled samples of canine EDTA whole blood were divided into two aliquots. Saline was added to one aliquot to produce a packed cell volume (PCV) of 40% and to the second aliquot to produce a PCV of 20% (simulated anemia). Thirty samples from each aliquot were warmed to 37.7 °C and cooled in 2 ml allotments under one of three conditions: in ice, in ice after transfer to a precooled tube, or in an ice water bath. Temperature of each sample was recorded at one minute intervals for 15 min. Within treatment conditions, sample PCV had no significant effect on cooling. Cooling in ice water was significantly faster than cooling in ice only or transferring the sample to a precooled tube and cooling it on ice. Mean temperature of samples cooled in ice water was significantly lower at 15 min than mean temperatures of those cooled in ice, whether or not the tube was precooled. By 4 min, samples cooled in an ice water bath had reached mean temperatures less than 4 °C (refrigeration temperature), while samples cooled in other conditions remained above 4.0 °C for at least 11 min. For samples with a PCV of 40%, precooling the tube had no significant effect on rate of cooling on ice. For samples with a PCV of 20%, transfer to a precooled tube resulted in a significantly faster rate of cooling than direct placement of the warmed tube onto ice. Canine EDTA whole blood samples cool most

  13. EFFECT OF AIR CONDITION ON AP-1000 CONTAINMENT COOLING PERFORMANCE IN STATION BLACK OUT ACCIDENT

    Directory of Open Access Journals (Sweden)

    Hendro Tjahjono

    2015-10-01

    Full Text Available ABSTRACT EFFECT OF AIR CONDITION ON AP-1000 CONTAINMENT COOLING PERFORMANCE IN STATION BLACK OUT ACCIDENT. AP1000 reactor is a nuclear power plant generation III+ 1000 MWe which apply passive cooling concept to anticipate accidents triggered by the extinction of the entire supply of electrical power or Station Black Out (SBO. In the AP1000 reactor, decay heat disposal mechanism conducted passively through the PRHR-IRWST and subsequently forwarded to the reactor containment. Containment externally cooled through natural convection in the air gap and through evaporation cooling water poured on the outer surface of the containment wall. The mechanism of evaporation of water into the air outside is strongly influenced by the conditions of humidity and air temperature. The purpose of this study was to determine the extent of the influence of the air condition on cooling capabilities of the AP1000 containment. The method used is to perform simulations using Matlab-based analytical calculation model capable of estimating the power of heat transfered. The simulation results showed a decrease in power up to  5% for relative humidity rose from 10% to 95%, while the variation of air temperature of 10 °C to 40°C, the power will decrease up to 15%. It can be concluded that the effect of air temperature increase is much more significant in lowering the containment cooling ability compared with the increase of humidity. Keywords: containment cooling, AP1000, air condition, SBO   ABSTRAK PENGARUH KONDISI UDARA TERHADAP KINERJA PENDINGINAN SUNGKUP AP-1000 DALAM KECELAKAAN STATION BLACK OUT. Reaktor AP-1000 merupakan PLTN generasi III+ berdaya 1000 MWe yang menerapkan konsep pendinginan pasif untuk mengantisipasi terjadinya kecelakaan yang dipicu oleh padamnya seluruh suplai daya listrik atau dikenal dengan Station Black Out (SBO. Pada reaktor AP-1000, mekanisme pembuangan kalor peluruhan dilakukan secara pasif melalui PRHR yang diteruskan ke IRWST dan

  14. The effects of gelatin supplementation prior to cooling on ram semen quality and fertility.

    Science.gov (United States)

    The physical and chemical characteristics of gelatin have been used to justify its inclusion in extenders to preserve the sperm quality and improve results of cervical artificial insemination with cooled semen. The objective of this study was to evaluate the effect of gelatin supplementation in cool...

  15. Summer and Winter Effect of Innovative Cool Roof Tiles on the Dynamic Thermal Behavior of Buildings

    Directory of Open Access Journals (Sweden)

    Anna Laura Pisello

    2014-04-01

    Full Text Available Cool roofs represent an acknowledged passive cooling technique to reduce building energy consumption for cooling and to mitigate urban heat island effects. This paper concerns the evaluation of the dynamic effect of new cool roof clay tiles on building thermal performance in summer and winter conditions. To this end, these properties have been analyzed on traditional roof brick tiles through an indoor and outdoor two-year long continuous monitoring campaign set up in a residential building located in central Italy. The analysis and the cooperation with industrial companies producing brick tiles and reflective coatings allowed the production of a new tile with notable “cool roof” properties through the traditional industrial manufacturing path of such tiles. Notable results show that during summer the high reflection tiles are able to decrease the average external roof surface temperature by more than 10 °C and the indoor operative temperature by more than 3 °C. During winter the average external surface temperature is lower with high reflection tiles by about 1 °C. Singular optic-thermal phenomena are registered while evaluating the dynamics of the cool roof effect. Interesting findings show how the sloped cool roof application could suggest further considerations about the dynamic effect of cool roofs.

  16. Effect of cooling in the night on the productivity and biochemical composition of Tetraselmis suecica

    NARCIS (Netherlands)

    Michels, M.H.A.; Rodriguez, J.; Barbosa, M.J.; Wijffels, R.H.

    2014-01-01

    The effect of cooling at night on the 24 hour productivity and biochemical composition of Tetraselmis suecica cultivated in a tubular photobioreactor was determined. The hypothesis that cooling at night would decrease the night respiration rate and therefore enhance the net productivity was

  17. The effect of icepack cooling on skin and muscle temperature at rest ...

    African Journals Online (AJOL)

    The effect of icepack cooling on skin and muscle temperature at rest and after exercise. M Mars, B Hadebe, M Tufts. Abstract. Objective. To compare cooling of skin, subcutaneous fat and muscle, produced by an icepack, at rest and after short-duration exhaustive exercise. Methods. Eight male subjects were studied. With the ...

  18. Minimization of the Effects of Secondary Reactions on Turbine Film Cooling in a Fuel Rich Environment

    Science.gov (United States)

    2014-06-02

    Influence of the Coolant Jet -flow Direction on the Cooling Effectiveness." GT2012-68517. Copenhagen Denmark, ASME Turbo Expo, 2012. 185 [10...computation of temperature profiles for reacting and non-reacting jets ...interaction of the mainstream with the exiting coolant jets . The mainstream impacts the cooling flow jet causing the coolant jet to turn towards the

  19. Carbon savings resulting from the cooling effect of green areas: a case study in Beijing.

    Science.gov (United States)

    Lin, Wenqi; Wu, Tinghai; Zhang, Chengguo; Yu, Ting

    2011-01-01

    Green areas cool the climate of a city, reduce the energy consumption caused by the urban heat island (UHI) effect, and bring along carbon savings. However, the calculation of carbon savings due to the cooling effect of green areas is still not well understood. We have used a Landsat Enhanced Thematic Mapper Plus (ETM+) image of Beijing, to identify the cooled areas, compute the possible energy used to maintain the temperature differences between cooled areas and their surrounding heated areas, and calculate the carbon savings owing to the avoidance of energy use. Results show that a total amount of 14315.37 tons carbon savings was achieved in the study area and the amount was related to the biomass, the size and the shape of green areas. These results demonstrate the importance of carbon savings resulting from green areas' cooling effect. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. A randomized controlled study of the acute and chronic effects of cooling therapy for MS.

    Science.gov (United States)

    Schwid, Steven R; Petrie, Mary D; Murray, Ronald; Leitch, Jennifer; Bowen, James; Alquist, Alan; Pelligrino, Richard; Roberts, Adam; Harper-Bennie, Judith; Milan, Maria Dawn; Guisado, Raul; Luna, Bernadette; Montgomery, Leslie; Lamparter, Richard; Ku, Yu-Tsuan; Lee, Hank; Goldwater, Danielle; Cutter, Gary; Webbon, Bruce

    2003-06-24

    Cooling demyelinated nerves can reduce conduction block, potentially improving symptoms of MS. The therapeutic effects of cooling in patients with MS have not been convincingly demonstrated because prior studies were limited by uncontrolled designs, unblinded evaluations, reliance on subjective outcome measures, and small sample sizes. To determine the effects of a single acute dose of cooling therapy using objective measures of neurologic function in a controlled, double-blinded setting, and to determine whether effects are sustained during daily cooling garment use. Patients (n = 84) with definite MS, mild to moderate disability (Expanded Disability Status Scale score < 6.0), and self-reported heat sensitivity were randomized into a multicenter, sham-treatment controlled, double-blind crossover study. Patients had the MS Functional Composite (MSFC) and measures of visual acuity/contrast sensitivity assessed before and after high-dose or low-dose cooling for 1 hour with a liquid cooling garment. One week later, patients had identical assessments before and after the alternate treatment. Patients were then re-randomized to use the cooling garment 1 hour each day for a month or to have observation only. They completed self-rated assessments of fatigue, strength, and cognition during this time, and underwent another acute cooling session at the end of the period. After 1 week of rest, they had identical assessments during the alternate treatment. Body temperature declined during both high-dose and low-dose cooling, but high-dose produced a greater reduction (p < 0.0001). High-dose cooling produced a small improvement in the MSFC (0.076 +/- 0.66, p = 0.007), whereas low-dose cooling produced only a trend toward improvement (0.053 +/- 0.031, p = 0.09), but the difference between conditions was not significant. Timed gait testing and visual acuity/contrast sensitivity improved in both conditions as well. When patients underwent acute cooling following a month of daily

  1. Spray cooling

    International Nuclear Information System (INIS)

    Rollin, Philippe.

    1975-01-01

    Spray cooling - using water spraying in air - is surveyed as a possible system for make-up (peak clipping in open circuit) or major cooling (in closed circuit) of the cooling water of the condensers in thermal power plants. Indications are given on the experiments made in France and the systems recently developed in USA, questions relating to performance, cost and environmental effects of spray devices are then dealt with [fr

  2. HIGH-REDSHIFT COOL-CORE GALAXY CLUSTERS DETECTED VIA THE SUNYAEV-ZEL'DOVICH EFFECT IN THE SOUTH POLE TELESCOPE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Semler, D. R.; Suhada, R.; Bazin, G.; Bocquet, S.; Desai, S. [Department of Physics, Ludwig-Maximilians-Universitaet, Scheinerstr. 1, D-81679 Muenchen (Germany); Aird, K. A. [University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Ashby, M. L. N.; Bayliss, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bautz, M. [MIT Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Brodwin, M. [Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Cho, H. M. [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); Clocchiatti, A. [Departamento de Astronomia y Astrofisica, PUC Casilla 306, Santiago 22 (Chile); De Haan, T.; Dobbs, M. A. [Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8 (Canada); and others

    2012-12-20

    We report the first investigation of cool-core properties of galaxy clusters selected via their Sunyaev-Zel'dovich (SZ) effect. We use 13 galaxy clusters uniformly selected from 178 deg{sup 2} observed with the South Pole Telescope (SPT) and followed up by the Chandra X-ray Observatory. They form an approximately mass-limited sample (>3 Multiplication-Sign 10{sup 14} M{sub Sun} h {sup -1}{sub 70}) spanning redshifts 0.3 < z < 1.1. Using previously published X-ray-selected cluster samples, we compare two proxies of cool-core strength: surface brightness concentration (c{sub SB}) and cuspiness ({alpha}). We find that c{sub SB} is better constrained. We measure c{sub SB} for the SPT sample and find several new z > 0.5 cool-core clusters, including two strong cool cores. This rules out the hypothesis that there are no z > 0.5 clusters that qualify as strong cool cores at the 5.4{sigma} level. The fraction of strong cool-core clusters in the SPT sample in this redshift regime is between 7% and 56% (95% confidence). Although the SPT selection function is significantly different from the X-ray samples, the high-z c{sub SB} distribution for the SPT sample is statistically consistent with that of X-ray-selected samples at both low and high redshifts. The cool-core strength is inversely correlated with the offset between the brightest cluster galaxy and the X-ray centroid, providing evidence that the dynamical state affects the cool-core strength of the cluster. Larger SZ-selected samples will be crucial in understanding the evolution of cluster cool cores over cosmic time.

  3. Combined Effects of Wakes and Jet Pulsing on Film Cooling

    Science.gov (United States)

    2008-10-01

    the wheel was driven by an electric motor and had 24 threaded holes around its circumfer- ence, into which 38 cm long, 1.905 cm diameter hollow alumi...Merlin model with a Stirling cooled detector was used to measure the surface temperature field of the test wall. The temperature reso- lution of the

  4. Certain relativistic effects due to strong electromagnetic fields in plasmas

    International Nuclear Information System (INIS)

    Tsintsadze, N.L.

    1974-01-01

    It is shown that the propagation of a strong electromagnetic wave in an electron plasma can lead to a generation of a constant electron current along the direction of propagation and to a large increase in the average electron density. (Auth.)

  5. An Experimental Study on the Effects of the Cooling Jacket Design Parameters on the Performance of Thermoelectric Cooling System

    International Nuclear Information System (INIS)

    Lee, J. E.; Park, S. H.; Kim, K. J.; Kim, D. J.

    2007-01-01

    A small-scale thermoelectric cooling system was built in an effort to enhance the performance of the refrigeration system by utilizing the water-cooled jacket which attached on the hot side of the thermoelectric module. Considered design parameters for the water-cooled jacket included the geometry of the flow passage inside the jacket and the flow rate of cooling water. The higher flow rate of cooling water in the jacket resulted in a better performance of the refrigeration system. The introduction of geometrical complexity of the cooling water flow passage of the cooling jacket also showed significant improvement on the performance of the thermoelectric refrigeration system such as the cooling capacity and the COP of the refrigeration system

  6. A simulation for predicting potential cooling effect on LPG-fuelled vehicles

    Science.gov (United States)

    Setiyo, M.; Soeparman, S.; Wahyudi, S.; Hamidi, N.

    2016-03-01

    Liquefied Petroleum Gas vehicles (LPG Vehicles) provide a potential cooling effect about 430 kJ/kg LPG consumption. This cooling effect is obtained from the LPG phase change from liquid to vapor in the vaporizer. In the existing system, energy to evaporate LPG is obtained from the coolant which is circulated around the vaporizer. One advantage is that the LPG (70/30 propane / butane) when expanded from 8 bar to at 1.2 bar, the temperature is less than -25 °C. These conditions provide opportunities to evaporate LPG with ambient air flow, then produce a cooling effect for cooling car's cabin. In this study, some LPG mix was investigated to determine the optimum condition. A simulation was carried out to estimate potential cooling effects of 2000 cc engine from 1000 rpm to 6000 rpm. In this case, the mass flow rate of LPG is a function of fuel consumption. The simulation result shows that the LPG (70/30 propane/butane) provide the greatest cooling effect compared with other mixtures. In conclusion, the 2000 cc engine fueled LPG at 3000 rpm provides potential cooling effect more than 1.3 kW, despite in the low engine speed (1000 rpm) only provides about 0.5 kW.

  7. Effective Field Theories and Strong Interactions. Final Technical Report

    International Nuclear Information System (INIS)

    Fleming, Sean

    2011-01-01

    The framework of Effective Field Theories (EFTs) allows us to describe strong interactions in terms of degrees of freedom relevant to the energy regimes of interest, in the most general way consistent with the symmetries of QCD. Observables are expanded systematically in powers of M lo /M hi , where M lo (M hi ) denotes a low-(high-)energy scale. This organizational principle is referred to as 'power counting'. Terms of increasing powers in the expansion parameter are referred to as leading order (LO), next-to-leading order (NLO), etc. Details of the QCD dynamics not included explicitly are encoded in interaction parameters, or 'low-energy constants' (LECs), which can in principle be calculated from an explicit solution of QCD - for example via lattice simulations- but can also be determined directly from experimental data. QCD has an intrinsic scale M QCD ≅ 1 GeV, at which the QCD coupling constant α s (M QCD ) becomes large and the dynamics becomes non-perturbative. As a consequence M QCD sets the scale for the masses of most hadrons, such as the nucleon mass m N ≅ 940 MeV. EFTs can roughly be divided into two categories: those that can be matched onto QCD in perturbation theory, which we call high-energy EFTs, and those that cannot be matched perturbatively, which we call low-energy EFTs. In high-energy EFTs, M QCD typically sets the low-energy scale, and all the dynamics associated with this scale reside in matrix elements of EFT operators. These non-perturbative matrix elements are the LECs and are also referred to as long-distance contributions. Each matrix element is multiplied by a short-distance coefficient, which contains the dynamics from the high scale M hi . Since M hi >> M QCD , α s (M hi ) hi ∼ M Q , the heavy-quark mass, and in addition to M QCD there are low scales associated with the typical relative momentum ∼ M Q v and energy ∼ M Q v 2 of the heavy quarks. Depending on the sizes of M Q and the heavy-quark velocity v these scales can

  8. THE INFLUENCE OF WAVE PATTERNS AND FREQUENCY ON THERMO-ACOUSTIC COOLING EFFECT

    Directory of Open Access Journals (Sweden)

    CHEN BAIMAN

    2011-06-01

    Full Text Available With the increasing environmental challenges, the search for an environmentally benign cooling technology that has simple and robust architecture continues. Thermo-acoustic refrigeration seems to be a promising candidate to fulfil these requirements. In this study, a simple thermo-acoustic refrigeration system was fabricated and tested. The thermo-acoustic refrigerator consists of acoustic driver (loudspeaker, resonator, stack, vacuum system and testing system. The effect of wave patterns and frequency on thermo-acoustic cooling effect was studied. It was found that a square wave pattern would yield superior cooling effects compared to other wave patterns tested.

  9. How strong and generalisable is the Generation Y effect?

    DEFF Research Database (Denmark)

    Mueller, Simone; Remaud, Hervé; Chabin, Yann

    2011-01-01

    alcoholic beverage consumption. A number of noticeable differences appeared between countries: wine involvement and consumption increases with age in traditional European wine markets, while they decrease in North America; environmental concerns and purchase channel usage hardly differ between generations......Purpose – This study aims to investigate how strongly Generation Y consumers differ in their values, attitudes and wine and alcoholic beverage consumption behaviour from older generations. The comparison spans seven culturally different markets. Design/methodology/approach – Large representative...

  10. The streaming effect in gas-cooled fast breeder reactors

    International Nuclear Information System (INIS)

    Collussi, I.

    The importance of neutron streaming in the GCFR is evaluated by taking into consideration the anisotropy due to coolant and control rod channels. Calculation is done using a numerical-analytical method developed in this paper and compared with results obtained using the methods of Benoist and Ligou. Comparison of the results obtained by these three methods shows that streaming effect is strongly dependent on the axial buckling 'B 2 2 '. The influence of neutron streaming on the reactivity is shown to be negligilbe and, in consequence, the GCFRs may be considered homogeneous to a good approximation. For accurate calculation the neutron streaming should be considered, mainly for radiation damage and shielding calculation [pt

  11. Effect of molybdenum on continuous cooling bainite transformation of low-carbon microalloyed steel

    International Nuclear Information System (INIS)

    Kong Junhua; Xie Changsheng

    2006-01-01

    Through simulation of thermomechanical processing/on-line accelerated cooling processing and observation of microstructure, the effect of molybdenum on continuous cooling bainite transformation of ultra-low carbon microalloyed steel was studied. The continuous cooling transformation curves of the trial steels with or without molybdenum addition were also determined. The result showed that the separate temperature of bainite was obviously reduced and the size of microstructure became smaller as 0.40 wt% Mo was added to the steel. At the same time, the martensitic structure, which formed at some cooling conditions, became finer and dispersed more uniformly. The deformed austenite would transform to finer bainite even when the cooling rate was not too high

  12. Thermal shock resistance behavior of a functionally graded ceramic: Effects of finite cooling rate

    Directory of Open Access Journals (Sweden)

    Zhihe Jin

    2014-01-01

    Full Text Available This work presents a semi-analytical model to explore the effects of cooling rate on the thermal shock resistance behavior of a functionally graded ceramic (FGC plate with a periodic array of edge cracks. The FGC is assumed to be a thermally heterogeneous material with constant elastic modulus and Poisson's ratio. The cooling rate applied at the FGC surface is modeled using a linear ramp function. An integral equation method and a closed form asymptotic temperature solution are employed to compute the thermal stress intensity factor (TSIF. The thermal shock residual strength and critical thermal shock of the FGC plate are obtained using the SIF criterion. Thermal shock simulations for an Al2O3/Si3N4 FGC indicate that a finite cooling rate leads to a significantly higher critical thermal shock than that under the sudden cooling condition. The residual strength, however, is relatively insensitive to the cooling rate.

  13. Effect of an upstream bulge configuration on film cooling with and without mist injection.

    Science.gov (United States)

    Wang, Jin; Li, Qianqian; Sundén, Bengt; Ma, Ting; Cui, Pei

    2017-12-01

    To meet the economic requirements of power output, the increased inlet temperature of modern gas turbines is above the melting point of the material. Therefore, high-efficient cooling technology is needed to protect the blades from the hot mainstream. In this study, film cooling was investigated in a simplified channel. A bulge located upstream of the film hole was numerically investigated by analysis of the film cooling effectiveness distribution downstream of the wall. The flow distribution in the plate channel is first presented. Comparing with a case without bulge, different cases with bulge heights of 0.1d, 0.3d and 0.5d were examined with blowing ratios of 0.5 and 1.0. Cases with 1% mist injection were also included in order to obtain better cooling performance. Results show that the bulge configuration located upstream the film hole makes the cooling film more uniform, and enhanceslateral cooling effectiveness. Unlike other cases, the configuration with a 0.3d-height bulge shows a good balance in improving the downstream and lateral cooling effectiveness. Compared with the case without mist at M = 0.5, the 0.3d-height bulge with 1% mist injection increases lateral average effectiveness by 559% at x/d = 55. In addition, a reduction of the thermal stress concentration can be obtained by increasing the height of the bulge configuration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Cooling vests with phase change material packs: the effects of temperature gradient, mass and covering area.

    Science.gov (United States)

    Gao, Chuansi; Kuklane, Kalev; Holmer, Ingvar

    2010-05-01

    Phase change material (PCM) absorbs or releases latent heat when it changes phases, making thermal-regulated clothing possible. The objective of this study was to quantify the relationships between PCM cooling rate and temperature gradient, mass and covering area on a thermal manikin in a climatic chamber. Three melting temperatures (24, 28, 32 degrees C) of the PCMs, different mass, covering areas and two manikin temperatures (34 and 38 degrees C) were used. The results showed that the cooling rate of the PCM vests tested is positively correlated with the temperature gradient between the thermal manikin and the melting temperature of the PCMs. The required temperature gradient is suggested to be greater than 6 degrees C when PCM vests are used in hot climates. With the same temperature gradient, the cooling rate is mainly determined by the covering area. The duration of the cooling effect is dependent on PCM mass and the latent heat. STATEMENT OF RELEVANCE: The study of factors affecting the cooling rate of personal cooling equipment incorporated with PCM helps to understand cooling mechanisms. The results suggest climatic conditions, the required temperature gradient, PCM mass and covering area should be taken into account when choosing personal PCM cooling equipment.

  15. Water mist effect on cooling range and efficiency of casting die

    Directory of Open Access Journals (Sweden)

    R. Władysiak

    2008-12-01

    Full Text Available This project is showing investigation results of cooling process of casting die in the temperature range 570÷100 °C with 0.40 MPa compressed air and water mist streamed under pressure 0.25÷0.45 MPa in air jet 0.25÷0.50 MPa using open cooling system.The character and the speed of changes of temperature, forming of the temperture’s gradient along parallel layer to cooled surface of die is shawing with thermal and derivative curves. The effect of kind of cooling factor on the temperature and time and distance from cooling nozzle is presented in the paper. A designed device for generating the water mist cooling the die and the view of sprying water stream is shown here. It’s proved that using of the water mist together with the change of heat transfer interface increases intensity of cooling in the zone and makes less the range cooling zone and reduces the porosity of cast microstructure.

  16. Cooling of Gas Turbines I - Effects of Addition of Fins to Blade Tips and Rotor, Admission of Cooling Air Through Part of Nozzles, and Change in Thermal Conductivity of Turbine Components

    Science.gov (United States)

    Brown, Byron

    1947-01-01

    An analysis was developed for calculating the radial temperature distribution in a gas turbine with only the temperatures of the gas and the cooling air and the surface heat-transfer coefficient known. This analysis was applied to determine the temperatures of a complete wheel of a conventional single-stage impulse exhaust-gas turbine. The temperatures were first calculated for the case of the turbine operating at design conditions of speed, gas flow, etc. and with only the customary cooling arising from exposure of the outer blade flange and one face of the rotor to the air. Calculations were next made for the case of fins applied to the outer blade flange and the rotor. Finally the effects of using part of the nozzles (from 0 to 40 percent) for supplying cooling air and the effects of varying the metal thermal conductivity from 12 to 260 Btu per hour per foot per degree Farenheit on the wheel temperatures were determined. The gas temperatures at the nozzle box used in the calculations ranged from 1600F to 2000F. The results showed that if more than a few hundred degrees of cooling of turbine blades are required other means than indirect cooling with fins on the rotor and outer blade flange would be necessary. The amount of cooling indicated for the type of finning used could produce some improvement in efficiency and a large increase in durability of the wheel. The results also showed that if a large difference is to exist between the effective temperature of the exhaust gas and that of the blade material, as must be the case with present turbine materials and the high exhaust-gas temperatures desired (2000F and above), two alternatives are suggested: (a) If metal with a thermal conductivity comparable with copper is used, then the blade temperature can be reduced by strong cooling at both the blade tip and root. The center of the blade will be less than 2000F hotter than the ends; (b) With low conductivity materials some method of direct cooling other than

  17. Effects of a New Cooling Technology on Physical Performance in U.S Air Force Military Personnel

    Science.gov (United States)

    2015-03-25

    July 2013 4. TITLE AND SUBTITLE Effects of a New Cooling Technology on Physical Performance in U.S Air Force Military Personnel 5a. CONTRACT ...developed a cooling garment that can provide sustained cooling effects for longer than 2 hours. Initial research was conducted under dry heat conditions...was approved by the Air Force Research Laboratory Institutional Review Board. This study examined the effects of a cooling garment on core body

  18. Suction Side Roughness Effects on Film Cooling Heat Transfer on a Turbine Vane

    National Research Council Canada - National Science Library

    Rutledge, James

    2004-01-01

    An experimental study was conducted in a simulated three vane linear cascade to determine the effects of surface roughness and film cooling on the heat transfer coefficient distribution in the region...

  19. Spin effects in strong-field laser-electron interactions

    International Nuclear Information System (INIS)

    Ahrens, S; Bauke, H; Müller, T-O; Villalba-Chávez, S; Müller, C

    2013-01-01

    The electron spin degree of freedom can play a significant role in relativistic scattering processes involving intense laser fields. In this contribution we discuss the influence of the electron spin on (i) Kapitza-Dirac scattering in an x-ray laser field of high intensity, (ii) photo-induced electron-positron pair production in a strong laser wave and (iii) multiphoton electron-positron pair production on an atomic nucleus. We show that in all cases under consideration the electron spin can have a characteristic impact on the process properties and their total probabilities. To this end, spin-resolved calculations based on the Dirac equation in the presence of an intense laser field are performed. The predictions from Dirac theory are also compared with the corresponding results from the Klein-Gordon equation.

  20. Effect of bench cooling on the dimensional accuracy of heat-cured acrylic denture base material.

    Science.gov (United States)

    Kimoto, Suguru; Kobayashi, Norihiko; Kobayashi, Kihei; Kawara, Misao

    2005-01-01

    In order to obtain an insight on the internal stress caused by both polymerization and thermal shrinkage during the fabrication process of heat-cured denture resin, the effect of bench cooling on the dimensional accuracy of a heat-cured denture base resin was examined. A dimensional change of a dumbbell-shaped specimen during the fabrication process was measured directly by using the strain gauge method. After polymerization, the specimens were treated in one of the following two processing methods: (1) rapid cooling: the specimen was removed from a stone mold within a container of boiling water at 100 degrees C and then left to cool in a thermo-stabilized room of 20+/-1 degrees C; (2) bench cooling: the flask was left to cool in a thermo-stabilized room of 20+/-1 degrees C for 140min, after which, the specimen was removed from the stone mold. The strain from deflasking was derived from the difference in the strain, before and after the removal of the specimen from the stone mold. The strain differential, before and after cooling, was determined as the total strain. The bench cooling for the heat-cured denture base resin reduced the strain caused by thermal shrinkage during the fabrication process. The observed reduction in the strain was 26% for the C(L) (direction of center's length), 11% for the E(L) (direction of left-edge's length), and 12% for the E(W) (direction of left-edge's width), when compared with the results obtained from the rapid-cooling method. The flask should be slowly cooled to room temperature, since the internal stress developed by thermal shrinkage will be relaxed during the cooling process.

  1. NUMERICAL STUDY ON COOLING EFFECT POTENTIAL FROM VAPORIZER DEVICE OF LPG VEHICLE

    Directory of Open Access Journals (Sweden)

    MUJI SETIYO

    2017-07-01

    Full Text Available Over fuel consumption and increased exhaust gas due to the A/C system have become a serious problem. On the other hand, the LPG-fueled vehicle provides potential cooling from LPG phase changes in the vaporizer. Therefore, this article presents the potential cooling effect calculation from 1998 cm3 spark ignition (SI engine. A numerical study is used to calculate the potential heat absorption of latent and sensible heat transfer during LPG is expanded in the vaporizer. Various LPG compositions are also simulated through the engine speed range from 1000 to 6000 rpm. The result shows that the 1998 cm3 engine capable of generating the potential cooling effect of about 1.0 kW at 1000 rpm and a maximum of up to 1.8 kW at 5600 rpm. The potential cooling effects from the LPG vaporizer contributes about 26% to the A/C system works on eco-driving condition.

  2. Radiation effects on relativistic electrons in strong external fields

    International Nuclear Information System (INIS)

    Iqbal, Khalid

    2013-01-01

    The effects of radiation of high energy electron beams are a major issue in almost all types of charged particle accelerators. The objective of this thesis is both the analytical and numerical study of radiation effects. Due to its many applications the study of the self force has become a very active and productive field of research. The main part of this thesis is devoted to the study of radiation effects in laser-based plasma accelerators. Analytical models predict the existence of radiation effects. The investigation of radiation reaction show that in laser-based plasma accelerators, the self force effects lower the energy gain and emittance for moderate energies electron beams and increase the relative energy spread. However, for relatively high energy electron beams, the self radiation and retardation (radiation effects of one electron on the other electron of the system) effects increase the transverse emittance of the beam. The energy gain decreases to even lower value and relative energy spread increases to even higher value due to high radiation losses. The second part of this thesis investigates with radiation reaction in focused laser beams. Radiation effects are very weak even for high energy electrons. The radiation-free acceleration and the simple practical setup make direct acceleration in a focused laser beam very attractive. The results presented in this thesis can be helpful for the optimization of future electron acceleration experiments, in particular in the case of laser-plasma accelerators.

  3. Effective magnetic moment of neutrinos in strong magnetic fields

    CERN Document Server

    Pérez, A; Masood, S S; Gaitan, R; Rodríguez, S

    2002-01-01

    In this paper we compute the effective magnetic moment of neutrinos propagating in dense high magnetized medium. Taking typical values of magnetic field and densities of astrophysical objects (such as the cores of supernovae and neutron stars) we obtain an effective type of dipole magnetic moment in agreement with astrophysical and cosmological bounds. (Author)

  4. Effects of Hot Streak and Phantom Cooling on Heat Transfer in a Cooled Turbine Stage Including Particulate Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bons, Jeffrey [The Ohio State Univ., Columbus, OH (United States); Ameri, Ali [The Ohio State Univ., Columbus, OH (United States)

    2016-01-08

    The objective of this research effort was to develop a validated computational modeling capability for the characterization of the effects of hot streaks and particulate deposition on the heat load of modern gas turbines. This was accomplished with a multi-faceted approach including analytical, experimental, and computational components. A 1-year no cost extension request was approved for this effort, so the total duration was 4 years. The research effort succeeded in its ultimate objective by leveraging extensive experimental deposition studies complemented by computational modeling. Experiments were conducted with hot streaks, vane cooling, and combinations of hot streaks with vane cooling. These studies contributed to a significant body of corporate knowledge of deposition, in combination with particle rebound and deposition studies funded by other agencies, to provide suitable conditions for the development of a new model. The model includes the following physical phenomena: elastic deformation, plastic deformation, adhesion, and shear removal. It also incorporates material property sensitivity to temperature and tangential-normal velocity rebound cross-dependencies observed in experiments. The model is well-suited for incorporation in CFD simulations of complex gas turbine flows due to its algebraic (explicit) formulation. This report contains model predictions compared to coefficient of restitution data available in the open literature as well as deposition results from two different high temperature turbine deposition facilities. While the model comparisons with experiments are in many cases promising, several key aspects of particle deposition remain elusive. The simple phenomenological nature of the model allows for parametric dependencies to be evaluated in a straightforward manner. This effort also included the first-ever full turbine stage deposition model published in the open literature. The simulations included hot streaks and simulated vane cooling

  5. Effect of Cooling On Cell Volume and Viability After Nanoelectroporation.

    Science.gov (United States)

    Muratori, Claudia; Pakhomov, Andrei G; Pakhomova, Olga N

    2017-04-01

    Electric pulses of nanosecond duration (nsEP) are emerging as a new modality for tissue ablation. Plasma membrane permeabilization by nsEP may cause osmotic imbalance, water uptake, cell swelling, and eventual membrane rupture. The present study was aimed to increase the cytotoxicity of nsEP by fostering water uptake and cell swelling. This aim was accomplished by lowering temperature after nsEP application, which delayed the membrane resealing and/or suppressed the cell volume mechanisms. The cell diameter in U-937 monocytes exposed to a train of 50, 300-ns pulses (100 Hz, 7 kV/cm) at room temperature and then incubated on ice for 30 min increased by 5.6 +/- 0.7 μm (40-50%), which contrasted little or no changes (1 +/- 0.3 μm, <10%) if the incubation was at 37 °C. Neither this nsEP dose nor the 30-min cooling caused cell death when applied separately; however, their combination reduced cell survival to about 60% in 1.5-3 h. Isosmotic addition of a pore-impermeable solute (sucrose) to the extracellular medium blocked cell swelling and rescued the cells, thereby pointing to swelling as a primary cause of membrane rupture and cell death. Cooling after nsEP exposure can potentially be employed in medical practice to assist tissue and tumor ablation.

  6. The cooling effect by adsorption-desorption cycles

    Directory of Open Access Journals (Sweden)

    Wolak Eliza

    2017-01-01

    Full Text Available Adsorption appliances may turn out to be an alternative to compression-type refrigerators. The adsorption refrigeration machine may be driven by a low-grade heat source, especially solar energy. Solar adsorption cooling systems are environment-friendly and have zero ozone depletion potential. Therefore, the adsorption refrigeration is one kind of energy saving refrigeration methods. The merits of the adsorption refrigeration systems will be more significant especially when it is used in vehicles (automobiles, ships and locomotives, to preserve food and medicines and in air-conditioning. The paper presents the advantages and disadvantages as well as the evolution of the technology of adsorptive refrigeration systems. The methods of improving of adsorption refrigeration systems through improvements in adsorbents properties, use of advanced cycles and hybrid systems is also presented. Possible applications and perspectives for development of adsorption cooling systems are also analyzed. The paper describes a test stand of the adsorption-desorption refrigeration. The present investigations have been carried out utilizing the activated carbon granules as an adsorbent and methanol as an adsorbate. The paper demonstrates the measurement of temperature changes in the adsorbent bed and condenser during adsorption-desorption cycles.

  7. Cooling effect on hot antiproton plasma using buffer gas cloud. Simbuca - setup and simulations

    CERN Document Server

    Roshkovski, Dejan

    2014-01-01

    In this work I investigated the sympathetic cooling effect of antipro- tons with a plasma of charged anions in a Penning trap. From the AD (antiproton decelerator) antiprotons are decelerated to 5.5MeV. To get them further decelerated we trap the antiprotons inside the penning trap where we cool them down even further using a buffer gas which consists of charged plasma anions which helps us cool the antiprotons. For this work I used the open source simulations program Simbuca

  8. The Connect Effect Building Strong Personal, Professional, and Virtual Networks

    CERN Document Server

    Dulworth, Michael

    2008-01-01

    Entrepreneur and executive development expert Mike Dulworth's THE CONNECT EFFECT provides readers with a simple framework and practical tools for developing that crucial competitive advantage: a high-quality personal, professional/organizational and virtual network.

  9. Environmental effects of large discharges of cooling water. Experiences from Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Ehlin, Ulf; Lindahl, Sture; Neuman, Erik; Sandstroem, Olof; Svensson, Jonny

    2009-07-01

    Monitoring the environmental effects of cooling water intake and discharge from Swedish nuclear power stations started at the beginning of the 1960s and continues to this day. In parallel with long-term monitoring, research has provided new knowledge and methods to optimise possible discharge locations and design, and given the ability to forecast their environmental effects. Investigations into the environmental effects of cooling-water are a prerequisite for the issuing of power station operating permits by the environmental authorities. Research projects have been carried out by scientists at universities, while the Swedish Environmental Protection Agency, the Swedish Board of Fisheries, and the Swedish Meteorological and Hydrological Institute, SMHI, are responsible for the greater part of the investigations as well as of the research work. The four nuclear power plants dealt with in this report are Oskarshamn, Ringhals, Barsebaeck and Forsmark. They were taken into operation in 1972, 1975, 1975 and 1980 resp. - a total of 12 reactors. After the closure of the Barsebaeck plants in 2005, ten reactors remain in service. The maximum cooling water discharge from the respective stations was 115, 165, 50 and 135 m 3 /s, which is comparable to the mean flow of an average Swedish river - c:a 150 m 3 /s. The report summarizes studies into the consequences of cooling water intake and discharge. Radiological investigations made at the plants are not covered by this review. The strategy for the investigations was elaborated already at the beginning of the 1960s. The investigations were divided into pre-studies, baseline investigations and monitoring of effects. Pre-studies were partly to gather information for the technical planning and design of cooling water intake and outlet constructions, and partly to survey the hydrographic and ecological situation in the area. Baseline investigations were to carefully map the hydrography and ecology in the area and their natural

  10. Effects of Rolling and Cooling Conditions on Microstructure of Umbrella-Bone Steel

    Science.gov (United States)

    Wu, Yan-Xin; Fu, Jian-Xun; Zhang, Hua; Xu, Jie; Zhai, Qi-Jie

    2017-10-01

    The effects of deformation temperature and cooling rate on the micro-structure evolution of umbrella-bone steel was investigated using a Gleeble thermal-mechanical testing machine and dynamic continuous cooling transformation (CCT) curves. The results show that fast cooling which lowers the starting temperature of ferrite transformation leads to finer ferrite grains and more pearlite. Low temperature deformation enhances the hardening effect of austenite and reduces hardenability, allowing a wider range of cooling rates and thus avoiding martensite transformation after deformation. According to the phase transformation rules, the ultimate tensile strength and reduction in area of the wire rod formed in the optimized industrial trial are 636 MPa and 73.6 %, respectively, showing excellent strength and plasticity.

  11. A Numerical Analysis of Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models

    Science.gov (United States)

    Ameri, A. A.; Rigby, D. L.

    1999-01-01

    A computational study has been performed to predict the distribution of convective heat transfer coefficient on a simulated blade tip with cooling holes. The purpose of the examination was to assess the ability of a three-dimensional Reynolds-averaged Navier-Stokes solver to predict the rate of tip heat transfer and the distribution of cooling effectiveness. To this end, the simulation of tip clearance flow with blowing of Kim and Metzger was used. The agreement of the computed effectiveness with the data was quite good. The agreement with the heat transfer coefficient was not as good but improved away from the cooling holes. Numerical flow visualization showed that the uniformity of wetting of the surface by the film cooling jet is helped by the reverse flow due to edge separation of the main flow.

  12. Effect of Continuous Cooling on Secondary Phase Precipitation in the Super Duplex Stainless Steel ZERON-100

    Science.gov (United States)

    Calliari, Irene; Bassani, Paola; Brunelli, Katya; Breda, Marco; Ramous, Emilio

    2013-12-01

    The precipitation of secondary phases in super duplex stainless steels (SDSS) is a subject of great relevance owing to their dangerous effects on both mechanical and corrosion-resistance properties. This paper examines the effect of continuous cooling after solution annealing treatment on secondary phase precipitation in the ZERON-100 SDSS. It considers the influence of cooling rate on volume fraction, morphology and chemical composition. It has been found that the formation of sigma and chi phases can be avoided only at cooling rates higher than 0.7 °C/s. In addition, at the lowest cooling rate the sigma phase amount approaches the equilibrium value, but the chi phase amount remains significantly low.

  13. Effective bounds on strong unicity in L1-approximation

    DEFF Research Database (Denmark)

    Kohlenbach, Ulrich; Oliva, Paulo B.

    In this paper we present another case study in the general project of Proof Mining which means the logical analysis of prima facie non-effective proofs with the aim of extracting new computationally relevant data. We use techniques based on monotone functional interpretation (developed in [17]) t...

  14. Effect of cooling rate during hot stamping on low cyclic fatigue of boron steel sheet

    Science.gov (United States)

    Suh, Chang Hee; Jang, Won Seok; Oh, Sang Kyun; Lee, Rac Gyu; Jung, Yun-Chul; Kim, Young Suk

    2012-08-01

    Boron steel is widely used throughout the automobile industry due to its high tensile strength and hardenability. When boron steel is used for body parts, only high strength is required for crashworthiness. However, when boron steel is used for chassis parts, a high fatigue life is needed. The microstructure of boron steel is mainly affected by the cooling rate during hot stamping. Therefore, this study investigated the low cyclic fatigue life according to the cooling rate. The fatigue life increased at a low strain amplitude when the cooling rate was fast. However, at a high strain amplitude, the fatigue life decreased, due to the low ductility and fracture toughness of the martensite formed by rapid cooling. Martensite formed by a fast cooling rate shows excellent fatigue life at a low total strain amplitude; however, a multiphase microstructure formed by a slow cooling rate is recommended if the parts experience high and low total strain amplitudes alternately. In addition, the cooling rate has little effect on the distribution of solute boron and boron precipitations, so it is expected that boron rarely affects low cyclic fatigue.

  15. Strong delayed interactive effects of metal exposure and warming

    DEFF Research Database (Denmark)

    Debecker, Sara; Dinh, Khuong Van; Stoks, Robby

    2017-01-01

    As contaminants are often more toxic at higher temperatures, predicting their impact under global warming remains a key challenge for ecological risk assessment. Ignoring delayed effects, synergistic interactions between contaminants and warming, and differences in sensitivity across species......’ ranges could lead to an important underestimation of the risks. We addressed all three mechanisms by studying effects of larval exposure to zinc and warming before, during, and after metamorphosis in Ischnura elegans damselflies from high- and lowlatitude populations. By integrating these mechanisms...... was especially remarkable in high-latitude animals, as they appeared almost insensitive to zinc during the larval stage. Second, the well-known synergism between metals and warming was manifested not only during the larval stage but also after metamorphosis, yet notably only in low-latitude damselflies...

  16. Effects of a Novel Cooling Shirt on Various Physical Performance Parameters in Elite Athletes

    Science.gov (United States)

    2015-06-03

    cooling improves cycling performance in hot/humid conditions [abstract]. Med Sci Sports Exerc. 1997; 29(5):S263. 2. Cheung SS, McLellan TM. Heat ...13. SUPPLEMENTARY NOTES 14. ABSTRACT Elite athletes, as well as military personnel, are routinely exposed to a variety of high- heat conditions...operations and sport matches. The primary purpose of this short-term field observation was to determine the effects of a technical cooling shirt and

  17. Monitoring the Energy-Use Effects of Cool Roofs on California Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Levinson, Ronnen; Konopaki, Steve; Rainer, Leo

    2004-07-01

    Solar-reflective roofs stay cooler in the sun than solar-absorptive roofs. Such ''cool'' roofs achieve lower surface temperatures that reduce heat conduction into the building and the building's cooling load. The California Energy Commission has funded research in which Lawrence Berkeley National Laboratory (LBNL) has measured the electricity use and peak demand in commercial buildings to document savings from implementing the Commission's Cool Roofs program. The study seeks to determine the savings achieved by cool roofs by monitoring the energy use of a carefully selected assortment of buildings participating in the Cool Roofs program. Measurements were needed because the peak savings resulting from the application of cool roofs on different types of buildings in the diverse California climate zones have not been well characterized to date. Only a few occupancy categories (e.g., office and retail buildings) have been monitored before this, and those were done under a limited number of climatic conditions. To help rectify this situation, LBNL was tasked to select the buildings to be monitored, measure roof performance before and after replacing a hot roof by a cool roof, and document both energy and peak demand savings resulting from installation of cool roofs. We monitored the effects of cool roofs on energy use and environmental parameters in six California buildings at three different sites: a retail store in Sacramento; an elementary school in San Marcos (near San Diego); and a 4-building cold storage facility in Reedley (near Fresno). The latter included a cold storage building, a conditioning and fruit-palletizing area, a conditioned packing area, and two unconditioned packing areas (counted as one building).

  18. Effect of strong fragrance on olfactory detection threshold.

    Science.gov (United States)

    Fasunla, Ayotunde James; Douglas, David Dayo; Adeosun, Aderemi Adeleke; Steinbach, Silke; Nwaorgu, Onyekwere George Benjamin

    2014-09-01

    To assess the olfactory threshold of healthy volunteers at the University College Hospital, Ibadan and to investigate the effect of perfume on their olfactory detection thresholds. A quasi-experimental study on olfactory detection thresholds of healthy volunteers from September 2013 to November 2013. Tertiary health institution. A structured questionniare was administered to the participants in order to obtain information on sociodemographics, occupation, ability to perceive smell, use of perfume, effects of perfume on appetite and self-confidence, history of allergy, and previous nasal surgery. Participants subjectively rated their olfactory performance. Subsequently, they had olfactory detection threshold testing done at baseline and after exposure to perfume with varied concentrations of n-butanol in a forced triple response and staircase fashion. Healthy volunteers, 37 males and 63 females, were evaluated. Their ages ranged from 19 to 59 years with a mean of 31 years ± 8. Subjectively, 94% of the participants had excellent olfactory function. In the pre-exposure forced triple response, 88% were able to detect the odor at ≤.25 mmol/l concentration while in the post-exposure forced triple response, only 66% were able to detect the odor at ≤.25 mmol/l concentration. There is also a statistical significant difference in the olfactory detection threshold score between the pre-exposure and post-exposure period in the participants (P fragrances affects the olfactory detection threshold. Therefore patients and clinicians should be aware of this and its effects on the outcome of test of olfaction. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  19. Effects of heat pipe cooling on permanent mold castings of aluminum alloys

    International Nuclear Information System (INIS)

    Zhang, C.; Mucciardi, F.; Gruzleski, J.E.

    2002-01-01

    The temperature distribution within molds is a critical parameter in determining the ultimate casting quality in permanent mold casting processes, so there is a considerable incentive to develop a more effective method of mold cooling. Based on this consideration, a novel, effective and controllable heat pipe has been successfully developed and used as a new method of permanent mold cooling. Symmetric step casting of A356 alloy have been produced in an experimental permanent mold made of H13 tool steel, which is cooled by such heat pipes. The experimental results show that heat pipes can provide extremely high cooling rates in permanent mold castings of aluminum. The dendrite arm spacing of A356 alloy is refined considerably, and porosity and shrinkage of the castings are redistributed by the heat pipe cooling. Moreover, the heat pipe can be used to determine the time when the air gap forms at the interface between the mold and the casting. The effect of heat pipe cooling on solidification time of castings of A356 alloy with different coating types is also discussed in this paper. (author)

  20. Stirling engines using working fluids with strong real gas effects

    International Nuclear Information System (INIS)

    Invernizzi, Costante M.

    2010-01-01

    Real gas effects typical of the critical region of working fluids are a powerful tool to increase the energy performances of Stirling cycles, mainly at low top temperatures. To carry out the compression near the critical region the working fluids must have a critical temperature near environmental conditions and the use of organic working substances (pure or in suitable mixtures) as a matter of fact begins compulsory. The moderate thermal stability of the organic working fluids limits the maximum temperatures to 300-400 deg. C and as a consequence, the achievable cycles efficiencies result rather low. Carbon dioxide, with a critical temperature of 31 deg. C, is, among the traditionally inorganic gases, an exception and is considered here in comparison with organic substances. But the good thermodynamics of the cycles allows, in the considered cases, conversion efficiencies of about 20%, with good specific powers. The good energy performance of real gas Stirling cycles is obtained at the cost of high maximum cycle pressure, in the range of at least 100-300 bar. These high pressures nevertheless have large positive effects on the heat power transferred per unit of pumping mechanical power, and the low top temperatures have a positive influence on the material problems for the hottest engine parts.

  1. Effect of ribbed and smooth coolant cross-flow channel on film cooling

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Wei; Sun, Xiaokai [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China); Jiang, Peixue, E-mail: jiangpx@tsinghua.edu.cn [Key Laboratory for Thermal Science and Power Engineering of Ministry of Educations, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Wang, Jie [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2017-05-15

    Highlights: • Little different for plenum model and the cross-flow model at M = 0.5. • Crossflow model is much better than plenum model at M = 1.0, especially with ribs. • Coolant flow channel with V-shaped ribs has the best adiabatic film cooling. • Film cooling with the plenum model is better at M = 0.5 than at M = 1.0. • Crossflow model is better at M = 0.5 near film hole and at M = 1.0 for downstream. - Abstract: The influence of ribbed and unribbed coolant cross-flow channel on film cooling was investigated with the coolant supply being either a plenum-coolant feed or a coolant cross-flow feed. Validation experiments were conducted with comparison to numerical results using different RANS turbulence models showed that the RNG k–ε turbulence model and the RSM model gave closer predictions to the experimental data than the other RANS models. The results indicate that at a low blowing ratio of M = 0.5, the coolant supply channel structure has little effect on the film cooling. However, at a high blowing ratio of M = 1.0, the adiabatic wall film cooling effectiveness is significantly lower with the plenum feed than with the cross-flow feed, especially for the cases with ribs. The film cooling with the plenum model is better at M = 0.5 than at M = 1.0. The film cooling with the cross-flow model is better at a blowing ratio of M = 0.5 in the near hole region, while further downstream, it is better at M = 1.0. The results also show that the coolant cross-flow channel with V-shaped ribs has the best adiabatic film cooling effectiveness.

  2. Strong surface effect on direct bulk flexoelectric response in solids

    International Nuclear Information System (INIS)

    Yurkov, A. S.; Tagantsev, A. K.

    2016-01-01

    In the framework of a continuum theory, it is shown that the direct bulk flexoelectric response of a finite sample essentially depends on the surface polarization energy, even in the thermodynamic limit where the body size tends to infinity. It is found that a modification of the surface energy can lead to a change in the polarization response by a factor of two. The origin of the effect is an electric field produced by surface dipoles induced by the strain gradient. The unexpected sensitivity of the polarization response to the surface energy in the thermodynamic limit is conditioned by the fact that the moments of the surface dipoles may scale as the body size

  3. Fossil fuel and biomass burning effect on climate - Heating or cooling?

    Science.gov (United States)

    Kaufman, Yoram J.; Fraser, Robert S.; Mahoney, Robert L.

    1991-01-01

    The basic theory of the effect of pollution on cloud microphysics and its global implications is applied to compare the relative effect of a small increase in the consumption rate of oil, coal, or biomass burning on cooling and heating of the atmosphere. The characteristics of and evidence for the SO2 induced cooling effect are reviewed. This perturbation analysis approach permits linearization, therefore simplifying the analysis and reducing the number of uncertain parameters. For biomass burning the analysis is restricted to burning associated with deforestation. Predictions of the effect of an increase in oil or coal burning show that within the present conditions the cooling effect from oil and coal burning may range from 0.4 to 8 times the heating effect.

  4. Effect of water treatment on the comparative costs of evaporative and dry cooled power plants

    International Nuclear Information System (INIS)

    Gold, H.; Goldstein, D.J.; Yung, D.

    1976-07-01

    The report presents the results of a study on the relative cost of energy from a nominal 1000 Mwe nuclear steam electric generating plant using either dry or evaporative cooling at four sites in the United States: Rochester, New York; Sheridan, Wyoming; Gallup, New Mexico and Dallas, Texas. Previous studies have shown that because of lower efficiencies the total annual evaluated costs for dry cooling systems exceeds the total annual evaluated costs of evaporative cooling systems, not including the cost of water. The cost of water comprises the cost of supplying the makeup water, the cost of treatment of the makeup and/or the circulating water in the tower, and the cost of treatment and disposal of the blowdown in an environmentally acceptable manner. The purpose of the study is to show the effect of water costs on the comparative costs of dry and evaporative cooled towers

  5. The effects of magnetic fields on the growth of thermal instabilities in cooling flows

    Science.gov (United States)

    David, Laurence P.; Bregman, Joel N.

    1989-01-01

    The effects of heat conduction and magnetic fields on the growth of thermal instabilities in cooling flows are examined using a time-dependent hydrodynamics code. It is found that, for magnetic field strengths of roughly 1 micro-Gauss, magnetic pressure forces can completely suppress shocks from forming in thermally unstable entropy perturbations with initial length scales as large as 20 kpc, even for initial amplitudes as great as 60 percent. Perturbations with initial amplitudes of 50 percent and initial magnetic field strengths of 1 micro-Gauss cool to 10,000 K on a time scale which is only 22 percent of the initial instantaneous cooling time. Nonlinear perturbations can thus condense out of cooling flows on a time scale substantially less than the time required for linear perturbations and produce significant mass deposition of cold gas while the accreting intracluster gas is still at large radii.

  6. The Effect of Cool Deformation on the Microstructural Evolution and Flow Strength of Microalloyed Steels

    Science.gov (United States)

    Mousavi Anijdan, Seyyed Hashem

    Cool deformation is a process in which a small amount of plastic deformation is applied at temperatures well below the end of the austenite transformation temperature. In this thesis, a systematic study was conducted to evaluate the microstructural evolution and mechanical properties of microalloyed steels processed by thermomechanical schedules incorporating cool deformation. Thermodynamic analysis was conducted to predict equilibrium phases formed by the presence of microalloying elements such as Ti, Nb, Mo and their appearance were then elaborated by means of TEM microscopy. As well, continuous cooling torsion (CCT) was employed to study the transformation behavior of steels for austenite conditioned and unconditioned. Cool deformation was incorporated into a full scale simulation of hotrolling, and the effect of prior austenite conditioning on the cool deformability of microalloyed steels was investigated. Out of these studies, a new definition of no-recystallization temperature (Tnr) was proposed based on dynamic precipitation, which was then recognized in the Nb bearing steels by using TEM analysis as well as flow curves analysis. Results show that cool deformation greatly improves the strength of microalloyed steels. Of the several mechanisms identified, such as work hardening, precipitation, grain refinement, and strain induced transformation (SIT) of retained austenite, SIT was proposed, for the first time in microalloyed steels, to be the significant mechanism of strengthening due to the deformation in ferrite. Results also show that the effect of ferrite precipitation is greatly overshadowed by SIT at room temperature. Finally, considering the interplay of SIT and precipitation for the Nb bearing steels, a rolling schedule was designed incorporating austenite conditioning, cooling rate and cool deformation that maximized the strength.

  7. Evaluation of the effect of Bi, Sb, Sr and cooling condition on eutectic phases in an Al–Si–Cu alloy (ADC12) by in situ thermal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Farahany, S., E-mail: saeedfarahany@gmail.com [Department of Materials Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru (Malaysia); Ourdjini, A.; Idrsi, M.H. [Department of Materials Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru (Malaysia); Shabestari, S.G. [Center of Excellence for High Strength Alloys Technology (CEHSAT), School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), 16846-13114 Tehran (Iran, Islamic Republic of)

    2013-05-10

    Highlights: • Combined effect of Bi, Sb and Sr additions, and cooling condition was evaluated. • Two different scenarios of recalecense in response to cooling rate were observed. • Fraction solid increased in the order of Sr > Bi > Sb, corresponds to Si morphologies. • Only Bi decreased the nucleation temperature of Al{sub 2}Cu eutectic phase. - Abstract: Al–Si and Al–Cu eutectic phases strongly affect the properties of Al–Si–Cu cast alloys. The characteristic parameters of these two eutectic phases with addition of bismuth, antimony and strontium under different cooling rates (0.6–2 °C/s) were investigated in ADC12 alloy using in situ thermal analysis. Results show that additives affect the Al–Si phase more than the Al–Cu (Al{sub 2}Cu) phase. Addition elements showed two different scenarios in response to cooling rate in terms of recalescence of the Al–Si eutectic phase. Both Bi and Sb caused an increase in recalescence with increased cooling rate but Sr addition reduced the recalescence. Additions of Sb and Sr increased the nucleation temperature of Al{sub 2}Cu, but addition of Bi produced an opposite effect. There seems to be relationship between the solidification temperature range and fraction solid of Al–Si and Al{sub 2}Cu eutectic phases. As the cooling rate increases the fraction solid of Al–Si decreased and that of Al{sub 2}Cu increased.

  8. Effect of cooling design on the characteristics and performance of thermoelectric generator used for internal combustion engine

    International Nuclear Information System (INIS)

    Du, Qing; Diao, Hai; Niu, Zhiqiang; Zhang, Guobin; Shu, Gequn; Jiao, Kui

    2015-01-01

    Highlights: • A 3-D model of TEG coupled with exhaust and cooling channels is developed. • Effect of cooling type, flow rate, baffler and flow arrangement is investigated. • Flow resistance is large for air cooling, and liquid cooling has high net power. • Flow rate and baffler length need to be moderate for air cooling. • Counter is better than co-flow by keeping temperature difference for all TEGs. - Abstract: By developing a thermoelectric generator (TEG) model coupled with exhaust and cooling channels for an exhaust-based TEG (ETEG) system, the influence of the cooling type, coolant flow rate, length, number and location of bafflers, and flow arrangement are investigated. It is found that the net output power is generally higher with liquid cooling than air cooling. Since a very low velocity of liquid coolant is sufficient for cooling the TEG modules, the flow resistance is negligible, and inserting a baffler, increasing the baffler length or the flow velocity generally improves the performance. However, both the baffler length and flow velocity of air cooling need to be moderate. Placing one baffler in front of a TEG module is sufficient to guide the cooling flow. The performance is generally unaffected by the change of baffler location. By maintaining sufficient temperature difference for all the TEG modules, the counter-flow arrangement leads to higher output power than the co-flow arrangement. Although liquid cooling is more complicated, and extra cooling power may be needed to cool down the circulating coolant, the temperature increment of liquid coolant through cooling channel is insignificant for cooling 20 TEG modules producing about 250 W of power

  9. Effects of climate change on regional energy systems focussing on space heating and cooling: A case study of Austria

    Directory of Open Access Journals (Sweden)

    Hausl Stephan

    2014-01-01

    Full Text Available Climate change affects regions differently and therefore also climate change effects on energy systems need to be analyzed region specific. The objective of the study presented is to show and analyze these effects on regional energy systems following a high spatial resolution approach. Three regional climate scenarios are downscaled to a 1 km resolution and error corrected for three different testing regions in Austria. These climate data are used to analyze effects of climate change on heating and cooling demand until the year 2050. Potentials of renewable energies such as solar thermal, photovoltaic, ambient heat and biomass are also examined. In the last process step the outcomes of the previous calculations are fed into two energy system models, where energy system optimizations are executed, which provide information concerning optimal setups and operations of future energy systems. Due to changing climate strong changes for the energy demand structure are noticed; lower heat demand in winter (between -7 and -15% until 2050 and - strongly differing between regions - higher cooling demand in summer (up to +355%. Optimization results show that the composition of energy supply carriers is barely affected by climate change, since other developments such as refurbishment actions, price developments and regional biomass availabilities are more influencing within this context.

  10. The Effect of Intermittent Head Cooling on Aerobic Performance in the Heat

    Directory of Open Access Journals (Sweden)

    Peter Walters, Nathaniel Thom, Kai Libby, Shelby Edgren, Amanda Azadian, Daniel Tannous, Elisabeth Sorenson, Brian Hunt

    2017-03-01

    Full Text Available Thermoregulation is critical for athletes, particularly those for those who must perform in the heat. Most strategies aimed at reducing heat stress have cooled participants before or during activity. The objective of this study is to investigate whether seven minutes of head cooling applied between bouts of aerobic exercise in hot (35 ± 1.0 °C and dry (14.68 ±4.29% rh environmental conditions could positively effect participants peak power output (PP on a maximal effort graded exercise test (GXT. Twenty-two recreational active men ages 18 to 23 (19.8 ± 1.6 yrs. completed three performance trials over a 21 day period. During the first trial, participants were familiarized with procedures and completed a maximal effort GXT on a cycle ergometer to establish maximal baseline performances. The second and third trials, which were counterbalanced, consisted of a cooling and placebo condition. During both of these trials, participants cycled 40 minutes at 65% of their maximum VO2, in hot (35 ± 1.0 °C and dry (17-20% rh environmental conditions. Immediately after this initial bout of activity, participants were given seven minutes of recovery in which head cooling was applied during the cooling condition and withheld during the placebo condition. Participants then completed a maximal effort GXT. Significant differences (p < 0.001 in participants peak power output (W were measured when cooling was applied compared to the placebo condition (304.23(W ± 26.19(W cooling, 291.68(W ± 26.04(W placebo. These results suggest that a relatively brief period of intermittent cooling may enhance subsequent aerobic performance.

  11. Effect of repeated forearm muscle cooling on the adaptation of skeletal muscle metabolism in humans

    Science.gov (United States)

    Wakabayashi, Hitoshi; Nishimura, Takayuki; Wijayanto, Titis; Watanuki, Shigeki; Tochihara, Yutaka

    2017-07-01

    This study aimed to investigate the effect of repeated cooling of forearm muscle on adaptation in skeletal muscle metabolism. It is hypothesized that repeated decreases of muscle temperature would increase the oxygen consumption in hypothermic skeletal muscle. Sixteen healthy males participated in this study. Their right forearm muscles were locally cooled to 25 °C by cooling pads attached to the skin. This local cooling was repeated eight times on separate days for eight participants (experimental group), whereas eight controls received no cold exposure. To evaluate adaptation in skeletal muscle metabolism, a local cooling test was conducted before and after the repeated cooling period. Change in oxy-hemoglobin content in the flexor digitorum at rest and during a 25-s isometric handgrip (10% maximal voluntary construction) was measured using near-infrared spectroscopy at every 2 °C reduction in forearm muscle temperature. The arterial blood flow was occluded for 15 s by upper arm cuff inflation at rest and during the isometric handgrip. The oxygen consumption in the flexor digitorum muscle was evaluated by a slope of the oxy-hemoglobin change during the arterial occlusion. In the experimental group, resting oxygen consumption in skeletal muscle did not show any difference between pre- and post-intervention, whereas muscle oxygen consumption during the isometric handgrip was significantly higher in post-intervention than in pre-test from thermoneutral baseline to 31 °C muscle temperature ( P < 0.05). This result indicated that repeated local muscle cooling might facilitate oxidative metabolism in the skeletal muscle. In summary, skeletal muscle metabolism during submaximal isometric handgrip was facilitated after repeated local muscle cooling.

  12. Cooling-history effects on magnetic relaxation through quantum tunneling

    Science.gov (United States)

    Fernandez, Julio; Alonso, Juan

    2003-03-01

    Magnetic clusters, such as Fe8 and Mn_12, that make up the core of large organometallic molecules, behave at low temperatures as large single spins S. In crystals, magnetic anisotropy energies U inhibit magnetic relaxation of these spins, which can then proceed at very small temperatures (at k_BT tunneling (MQT). Magnetic dipolar interactions then play an essential role. We study how an Ising system of spins that interact through magnetic dipolar fields relaxes. A spin is allowed to flip, at rate Γ, only if the magnetic field h acting on it is within some tunnel window -hw < h< h_w. We let (1) this system be initially held for some time at some temperature Ta that is above both the long-range ordering temperature and T ˜ U/S, and (2) apply a magnetic field at t=0, inmediately after the system is quenched to T < 0.1U/S. This is somewhat as in the experiments of Wernsdorfer et al on Fe_8. The time evolution of the magnetiztion m and field distributions after the field is applied at t=0 is studied. For small applied fields H, m ˜= hw HF(Γ t). In addition, F(Γ t)˜= cΓ t for Γ t < 1 and F(Γ t)˜= cΓ t for 1 <Γ t < (h_d/h_w)^2, where hd is a nearest neighbor dipolar field. We will show how c depends on the cooling protocol. Finally, m saturates at m_s˜= 0.13\\varepsilon_aH.

  13. Effects of sympathetic stimulation during cooling on hypothermic as well as posthypothermic hemodynamic function.

    Science.gov (United States)

    Kondratiev, T V; Tveita, T

    2006-10-01

    This experimental study was performed to explore hemodynamic effects of a moderate dose epinephrine (Epi) during hypothermia and to test the hypothesis whether sympathetic stimulation during cooling affects myocardial function following rewarming. Two groups of male Wistar rats (each, n=7) were cooled to 15 degrees C, maintained at this temperature for 1 h, and then rewarmed. Group 1 received 1 microg/min Epi, i.v., for 1 h during cooling to 28 degrees C, a dose known to elevate cardiac output (CO) by approximately 25% at 37 degrees C. Group 2 served a saline solution control. At 37 degrees C, Epi infusion elevated CO, left ventricular systolic pressure, maximum rate of left ventricle pressure rise, and mean arterial pressure. During cooling to 28 degrees C, these variables, with the exception of mean arterial pressure, decreased in parallel to those in the saline solution group. In contrast, in the Epi group, mean arterial pressure remained increased and total peripheral resistance was significantly elevated at 28 degrees C. Compared with corresponding prehypothermic values, most hemodynamic variables were lowered after 1 h at 15 degrees C in both groups (except for stroke volume). After rewarming, alterations in hemodynamic variables in the Epi-treated group were more prominent than in saline solution controls. Thus, before cooling, continuous Epi infusion predominantly stimulates myocardial mechanical function, materialized as elevation of CO, left ventricular systolic pressure, and maximum rate of left ventricle pressure rise. Cooling, on the other hand, apparently eradicates central hemodynamic effects of Epi and during stable hypothermia, elevation of peripheral vascular vasopressor effects seem to take over. In contrast to temperature-matched, non-Epi stimulated control rats, a significant depression of myocardial mechanical function occurs during rewarming following a moderate sympathetic stimulus during initial cooling.

  14. Combined effects of recent Pacific cooling and Indian Ocean warming on the Asian monsoon.

    Science.gov (United States)

    Ueda, Hiroaki; Kamae, Youichi; Hayasaki, Masamitsu; Kitoh, Akio; Watanabe, Shigeru; Miki, Yurisa; Kumai, Atsuki

    2015-11-13

    Recent research indicates that the cooling trend in the tropical Pacific Ocean over the past 15 years underlies the contemporaneous hiatus in global mean temperature increase. During the hiatus, the tropical Pacific Ocean displays a La Niña-like cooling pattern while sea surface temperature (SST) in the Indian Ocean has continued to increase. This SST pattern differs from the well-known La Niña-induced basin-wide cooling across the Indian Ocean on the interannual timescale. Here, based on model experiments, we show that the SST pattern during the hiatus explains pronounced regional anomalies of rainfall in the Asian monsoon region and thermodynamic effects due to specific humidity change are secondary. Specifically, Indo-Pacific SST anomalies cause convection to intensify over the tropical western Pacific, which in turn suppresses rainfall in mid-latitude East Asia through atmospheric teleconnection. Overall, the tropical Pacific SST effect opposes and is greater than the Indian Ocean SST effect.

  15. Passive Method to Reduce Solar Energy Effect on the Cooling Load in Buildings

    Directory of Open Access Journals (Sweden)

    Orfi J.

    2012-10-01

    Full Text Available Energy needed for cooling residential and industrial buildings in hot weather countries is the major issue. The period needed for cooling or comfort conditions in those countries exceeds five months and outdoor temperature reaches more than 40 °C. Also, the solar intensity usually high and can reach about one kW per m2. Hence, any attempt to reduce the effect of solar energy on the cooling load is worthy to investigate. The present work analyzes using artificial, naturally ventilated, shading covers to reduce the effect of solar energy. Analytical and numerical analyzes were performed on the effect of adding a ventilated cover to walls and roof exposed to the solar energy.

  16. The Effects of Internal Components' Disposition on Thermal-Hydraulic Behaviors in Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Han, Ji Woong; Eoh, Jae Hyuk; Kim, Seong O

    2009-01-01

    Decay heat removal is very important in a nuclear power plant. The KALIMER-600, Korea Advanced Liquid MEtal Reactor, employs the PDRC(Passive Decay heat Removal Circuit) to remove the decay heat. However the cooling performance before the activation of DHX greatly depends on the natural circulation flow within the reactor pool. In the previous studies the effect of various design parameters such as coastdown flow, IHX(Intermediate Heat eXchanger) elevation and heat transfer via CCS (Cavity Cooling System) on the initial cooling performance has been analyzed. In the case of IHX elevation analysis the increase of IHX elevation was shown to enhance the initial cooling performance. However, the elevating the IHX is accompanied by the variation of hot or cold pool volume, the previous calculation was resulted from the combination of those effects. In order to analyze those effects qualitatively supplementary calculation conditions were prepared and related analyses have been done in this study. In those analyses the ratio between hot and cold pool volumes has been varied without elevating the IHX by changing the vertical position of separation plate and baffle plate. The COMMIX-1AR/P code is utilized as a tool to investigate overall transient behaviors within a pool. This study is expected to provide the basic information for the decision of internal components' layout in the sodium cooled fast reactor

  17. Thermal histories of chondrules in solar nebula shocks, including the effect of molecular line cooling

    Science.gov (United States)

    Morris, Melissa A.

    Chondrules are millimeter-sized, silicate (mostly ferromagnesian) igneous spheres found within chondritic meteorites. They are some of the oldest materials in our Solar System, having formed within a few million years of its birth. Chondrules were melted at high temperature (over 1800 K), while they were free-floating objects in the early solar nebula. Their petrology and chemistry constrain their formation, especially their thermal histories. Chondrules provide some of the most powerful constraints on conditions in the solar nebula. Models in which chondrule precursors melted by passage through solar nebula shocks are very promising, and meet most constraints on chondrule formation in broad brush. However, these models have been lacking in some of the relevant physics. Previous shock models have used incorrect approximations to the input radiation boundary condition, and the opacity of solids has been treated simply. Most important, a proper treatment of cooling due to molecular line emission has not been included. In this thesis, the shock model is significantly improved in order to determine if it remains consistent with observational constraints. The appropriate boundary condition for the input radiation and the proper method for calculation of the opacity of solids are determined, and a complete treatment of molecular line cooling due to water is included. Previous estimates of the effect of line cooling predicted chondrule cooling rates in excess of 10,000 K per hour. However, once molecular line cooling due to water was incorporated into the full shock model, it was found that line cooling has a minimal effect on the thermal histories of gas and chondrules. This behavior is attributed mostly to the thermal buffering of the gas due to hydrogen dissociation and recombination, which tends to keep the gas temperature at approximately 2000 K until the column densities of water become optically thick to line emission. Chondrule cooling rates in the range of 10

  18. Evaluation of Cooling Rate Effects on the Mechanical Properties of Die Cast Magnesium Alloy AM60

    Science.gov (United States)

    Sharifi, P.; Fan, Y.; Anaraki, H. B.; Banerjee, A.; Sadayappan, K.; Wood, J. T.

    2016-10-01

    With the increased application of magnesium high-pressure die castings (HPDC), it is necessary to better understand process-structure-mechanical properties. In the case of HPDC, ductility and yield strength strongly depend on porosity, grain size, and the skin thickness. In this contribution, a new method is developed which employs knowledge of local cooling rates to predict the grain size and the skin thickness of HPDC magnesium components. The centreline cooling curve, together with the die temperature, and the thermodynamic properties of the alloy are then used as inputs to compute the solution to the Stefan problem of a moving phase boundary, thereby providing the through-thickness cooling curves at each chosen location of the casting. The local cooling rate is used to calculate the resulting grain size and skin thickness via established relationships. The prediction of skin thickness and average grain size of skin region determined from this method compares quite well with the experimental results. Due to the presence of externally solidified grains, this method underestimates the grain size value in the core region, as compared to the experiment. Finally, we predict the locally varying yield strength using a modified Hall-Petch equation.

  19. Numerical Investigation of the Flow Dynamics and Evaporative Cooling of Water Droplets Impinging onto Heated Surfaces: An Effective Approach To Identify Spray Cooling Mechanisms.

    Science.gov (United States)

    Chen, Jian-Nan; Zhang, Zhen; Xu, Rui-Na; Ouyang, Xiao-Long; Jiang, Pei-Xue

    2016-09-13

    Numerical investigations of the dynamics and evaporative cooling of water droplets impinging onto heated surfaces can be used to identify spray cooling mechanisms. Droplet impingement dynamics and evaporation are simulated using the presented numerical model. Volume-of-fluid method is used in the model to track the free surface. The contact line dynamics was predicted from a dynamic contact angle model with the evaporation rate predicted by a kinetic theory model. A species transport equation was solved in the gas phase to describe the vapor convection and diffusion. The numerical model was validated by experimental data. The physical effects including the contact angle hysteresis and the thermocapillary effect are analyzed to offer guidance for future numerical models of droplet impingement cooling. The effects of various parameters including surface wettability, surface temperature, droplet velocity, droplet size, and droplet temperature were numerically studied from the standpoint of spray cooling. The numerical simulations offer profound analysis and deep insight into the spray cooling heat transfer mechanisms.

  20. Effect of modification and cooling rate on the microstructure of IN-713C alloy

    Directory of Open Access Journals (Sweden)

    A. Kościelna

    2009-10-01

    Full Text Available The results of investigations of the effect of modification and cooling rate on the microstructure of castings made from IN-713C nickel superalloy were described. As an inoculant, cobalt aluminate CoAl2O4 in composition with aluminium powder and colloidal silica was used. Changes in the cooling rate were obtained by the use of cast stepped test piece with steps of 6, 11 and 17 mm thickness. The phase and chemical composition of microstructural constituents, i.e. of γ phase, γ’ phase and eutectic carbide precipitates, was evaluated. A significant effect of the cooling rate and modification treatment on the stereological parameters of carbide precipitates was confirmed. Problems in evaluation of the chemical composition of these precipitates in the case of a high degree of the structure refinement were indicated.

  1. Quantifying the effects of zoned cooling systems on household peak electricity demand

    Energy Technology Data Exchange (ETDEWEB)

    Lomanowski, Bartosz; Haddad, Kamel [Cammet, Natural Resources Canada, Ottawa, ON (Canada)

    2010-07-01

    In Canada, significant temperature changes occur during the year with important peaks. Most residential apartments use a single thermostat to control heating and cooling, however those systems result in unbalanced delivery and high costs. The aim of this study is to evaluate the potential benefits of a zoned cooling system during peak summer days. A building energy simulation model was developed and simulations were performed on the Canadian Centre for Housing Technology's representative test house with different control strategies for peak summer days in Southern Ontario. Results showed that the effectiveness of a control strategy depends on the capacity of the system to meet the peak loads and that gradually decreasing the set point is better than a sudden drop. In addition, the implementation of passive cooling measures was found to reduce power consumption considerably and increase the effectiveness of the control strategy.

  2. Cooling Effect of Crushed Rock-Based Embankment along the Chaidaer-Muli Railway

    Directory of Open Access Journals (Sweden)

    Ji Chen

    2015-01-01

    Full Text Available This paper presents an experimental study of the cooling effect of crushed rock-based embankment on slope wetlands along the Chaidaer-Muli Railway. The result shows that only the embankment shady side can be effectively cooled down in a warm permafrost region and the crushed rock-based embankment can cool the entire embankment in a cold permafrost region. The crushed rock-based embankment cannot eliminate the problems from the south-north slope. Slope wetland can influence the temperature field of the crushed rock-based embankment. On the uphill side, it will lead to degradation in some cases and development of permafrost in other cases, which depends on the topsoil water content and ground surface runoff. On the downhill side, it always leads to the warming of permafrost. For crushed rock-based embankment constructed on slope wetlands, it is necessary to adopt other stronger measures to eliminate the sunny-shady slope problems.

  3. Effect of wrist cooling on aerobic and anaerobic performance in elite sportsmen.

    Science.gov (United States)

    Krishnan, Anup; Singh, Krishan; Sharma, Deep; Upadhyay, Vivekanand; Singh, Amit

    2018-01-01

    Body cooling has been used to increase sporting performance and enhance recovery. Several studies have reported improvement in exercise capacities using forearm and hand cooling or only hand cooling. Wrist cooling has emerged as a portable light weight solution for precooling prior to sporting activity. The Astrand test for aerobic performance and the Wingate test for anaerobic performance are reliable and accurate tests for performance assessment. This study conducted on elite Indian athletes analyses the effects of wrist precooling on aerobic and anaerobic performance as tested by the Astrand test and the Wingate test before and after wrist precooling. 67 elite sportsmen were administered Wingate and Astrand test under standardised conditions with and without wrist precooling using a wrist cooling device (dhamaSPORT). Paired t -test was applied to study effect on aerobic [VO 2 (ml/min/kg)] and anaerobic performance [peak power (W/kg) and average power (W/kg)] and Cohen's d was used to calculate effect size of wrist precooling. After wrist precooling, significant increase of 0.22 ( p  = 0.014, 95% CI: 0.047, 0.398) in peak power (W/kg) and 0.22 ( p  performance. Wrist cooling effect size was smaller in VO 2 (Cohen's d  = 0.21), peak power (Cohen's d  = 0.31) and it was larger in average power (Cohen's d  = 0.71). Results show wrist precooling significantly improves anaerobic than aerobic performance of elite sportsmen.

  4. Numerical investigation into thermal effects of pre-cooling zone in vitrification-based cryopreservation process.

    Science.gov (United States)

    Tsai, Hsun-Heng; Tsai, Chien-Hsiung; Wu, Wei-Te; Chen, Fu-Zen; Chiang, Pei-Ju

    2015-02-01

    Most studies on ultra-fast cryopreservation assume an immediate placement of the cryopreservation tube in the liquid nitrogen tank. However, in practice, before the tube is placed into the liquid nitrogen, it passes through a space containing gaseous nitrogen (pre-cooling zone) formed via the evaporation of the bulk liquid nitrogen. Comparing with ultra-fast cryopreservation, the cooling rate is insufficiently high during the falling transition to vitrify the liquid. As the tube passes through this region, its temperature may fall to the temperature required for the formation of ice crystals, and thus cell damage may occur. Consequently, in optimizing the cryopreservation process, the effects of this transition region should be properly understood. Accordingly, the present study utilizes a thermal model to investigate the temperature variation in the tube as it falls through the pre-cooling region. The simulation results show that the cooling rate within the tube increases with an increasing tube velocity. Furthermore, the results reveal that the cooling rate at the front end of the tube is higher than that at any other position of the tube. Thus, to prevent the formation of ice crystals, the material used to seal the front end of the tube should have a low thermal conductivity. In addition, a streamlined design of the front end of the tube is advised. Finally, the cooling rate within the tube depends on the tube material as well as the falling speed. The height of the pre-cooling zone needs to be carefully designed based on the tube material and falling speed, thus the ice crystal formation can be prevented. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Effect of cooling the recirculated exhaust gases on diesel engine emissions

    International Nuclear Information System (INIS)

    Abu-Hamdeh, Nidal H.

    2003-01-01

    Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Spiral fin exhaust pipes were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NO x ), carbon dioxide (CO 2 ) and carbon monoxide (CO). In addition, O 2 concentration in the exhaust was measured. The two designs adopted in this study were exhaust pipes with solid and hollow fins around them. The first type uses air flow around the fins to cool the exhaust gases. The second type consists of hollow fins around the exhaust pipe to allow cooling water to flow in the hollow passage. Different combinations and arrangements of the solid and hollow fins exhaust pipes were used. It was found that decreasing the temperature of the EGR resulted in reductions in the oxides of nitrogen (NO x ) and carbon dioxide (CO 2 ) but increased the carbon monoxide (CO) in the exhaust gases. In addition, the oxygen (O 2 ) concentration in the exhaust was decreased. As a general trend, the percentages of reduction in the NO x gas concentrations were lower than the percentages of increase in the CO emissions as a result of cooling the EGR of a Diesel engine by a heat exchanger. Using water as a cooling medium decreased the exhaust gases temperature and the amount of pollutants more than did air as a cooling medium. In a separate series of tests, increasing the cooled EGR ratios decreased the exhaust NO x but increased the particulate matter concentrations in the exhaust gases

  6. Cooling curve analysis in binary Al-Cu alloys: Part II- Effect of Cooling Rate and Grain Refinement on The Thermal and Thermodynamic Characteristics

    Directory of Open Access Journals (Sweden)

    Mehdi Dehnavi

    2015-09-01

    Full Text Available The Al-Cu alloys have been widely used in aerospace, automobile, and airplane applications. Generally Al–Ti and Al–Ti–B master alloys are added to the aluminium alloys for grain refinement. The cooling curve analysis (CCA has been used extensively in metal casting industry to predict microstructure constituents, grain refinement and to calculate the latent heat of solidification. The aim of this study is to investigate the effect of cooling rate and grain refinement on the thermal and thermodynamic characteristics of Al-Cu alloys by cooling curve analysis. To do this, Al-Cu alloys containing 3.7, and 4.8 wt.% Cu were melted and solidified with 0.04, 0.19, 0.42, and 1.08 K/s cooling rates. The temperature of the samples was recorded using a K thermocouple and a data acquisition system connected to a PC. Some samples were Grain refined by Al-5Ti-1B to see the effect of grain refinement on the aforementioned properties. The results show that, in a well refined alloy, nucleation will occur in a shorter time, and a undercooling approximately decreases to zero. The other results show that, with considering the cooling rate being around 0.1 °C/s, the Newtonian method is efficient in calculating the latent heat of solidification.

  7. Effects of tungsten on continuous cooling transformation characteristics of microalloyed steels

    International Nuclear Information System (INIS)

    Zhao, Jingwei; Jiang, Zhengyi; Kim, Ji Soo; Lee, Chong Soo

    2013-01-01

    Highlights: ► W has a positive effect on refining the austenite grains and precipitates. ► W shifts the ranges of transformation products to the right side of CCT diagram. ► W addition induces increased austenitisation starting and finishing temperatures. ► The critical cooling rate for phase transformation is decreased after W addition. - Abstract: Continuous cooling transformation (CCT) characteristics of microalloyed steels with different tungsten (W) contents (0, 0.1 and 1 wt.%) were investigated to obtain the necessary information for heat treatment of these steels. The effects of W addition on the sizes of prior austenite grains and precipitates were analysed. CCT diagrams were obtained by varying the cooling rates from 0.1 to 120 °C/s. Transformation characteristics were determined by using dilatometer test, microscopic observation and hardness measurement. The results showed that W had a positive effect on the refinement of prior austenite grains and precipitates. The CCT diagrams exhibited that the ranges of transformation products were shifted to the right side of the diagram when the W content increased. CCT diagram for steel with 0.1% W was similar in shape to that without W. The addition of 1% W induced two separated transformation ranges in the cooling rate range of 0.1 to 1 °C/s in the diagram. Both the austenitisation starting and finishing temperatures were raised as W was added. W addition induced decreased critical cooling rates for phase transformations and obtaining complete ferrite + pearlite microstructures. The martensite transformation temperature was decreased after W addition. The addition of W caused increased hardness, and the hardness obeyed an exponential type relationship with cooling rate

  8. Study on the Effect of water Injection Momentum on the Cooling Effect of Rocket Engine Exhaust Plume

    Science.gov (United States)

    Yang, Kan; Qiang, Yanhui; Zhong, Chenghang; Yu, Shaozhen

    2017-10-01

    For the study of water injection momentum factors impact on flow field of the rocket engine tail flame, the numerical computation model of gas-liquid two phase flow in the coupling of high temperature and high speed gas flow and low temperature liquid water is established. The accuracy and reliability of the numerical model are verified by experiments. Based on the numerical model, the relationship between the flow rate and the cooling effect is analyzed by changing the water injection momentum of the water spray pipes. And the effective mathematical expression is obtained. What’s more, by changing the number of the water spray and using small flow water injection, the cooling effect is analyzed to check the application range of the mathematical expressions. The results show that: the impact and erosion of the gas flow field could be reduced greatly by water injection, and there are two parts in the gas flow field, which are the slow cooling area and the fast cooling area. In the fast cooling area, the influence of the water flow momentum and nozzle quantity on the cooling effect can be expressed by mathematical functions without causing bifurcation flow for the mainstream gas. The conclusion provides a theoretical reference for the engineering application.

  9. Effect of Different Cooling Rates on the Corrosion Behavior of High-Carbon Pearlitic Steel

    Science.gov (United States)

    Katiyar, Prvan Kumar; Misra, Sudhir; Mondal, K.

    2018-03-01

    The present work discusses the effect of pearlitic morphology on the corrosion behavior of high-carbon fully pearlitic steel in 3.5% NaCl solution. Four different types of pearlitic steels (furnace-cooled, as-received, air-cooled and forced-air-cooled) consisting of coarse, medium, fine and very fine microstructures, respectively, were tested. Electrochemical behavior of these steels was studied with the help of dynamic and linear polarization and AC impedance spectroscopic tests. The corrosion resistance improved with fineness of the microstructure in general. However, with further reduction in interlamellar spacing beyond a limit, the corrosion resistance reduced slightly. Formation of homogeneous distribution of microgalvanic cells between cementite and ferrite lamellae of fine pearlitic steel improved the corrosion resistance. However, entanglement of the lamellae of pearlite in very fine pearlitic structure as well as breaking of cementite lamellae due to finer pearlitic colonies was attributed to the higher corrosion of the forced-air-cooled steel as compared to the air-cooled steel.

  10. Effects of ambient room temperature on cold air cooling during laser hair removal.

    Science.gov (United States)

    Ram, Ramin; Rosenbach, Alan

    2007-09-01

    Forced air cooling is a well-established technique that protects the epidermis during laser heating of deeper structures, thereby allowing for increased laser fluences. The goal of this prospective study was to identify whether an elevation in ambient room temperature influences the efficacy of forced air cooling. Skin surface temperatures were measured on 24 sites (12 subjects) during cold air exposure in examination rooms with ambient temperatures of 72 degrees F (22.2 degrees C) and 82 degrees F (27.8 degrees C), respectively. Before cooling, mean skin surface temperature was 9 degrees F (5 degrees C) higher in the warmer room (P cooling (within 1 s), the skin surface temperature remained considerably higher (10.75 degrees F, or 5.8 degrees C, P cooling in a room with an ambient temperature of 82 degrees F (27.8 degrees C) is not as effective as in a room that is at 72 degrees F (22.2 degrees C).

  11. Effect of modification and cooling rate on the microstructure of IN-713C alloy

    OpenAIRE

    A. Kościelna; J. Śleziona; F. Binczyk

    2009-01-01

    The results of investigations of the effect of modification and cooling rate on the microstructure of castings made from IN-713C nickel superalloy were described. As an inoculant, cobalt aluminate CoAl2O4 in composition with aluminium powder and colloidal silica was used. Changes in the cooling rate were obtained by the use of cast stepped test piece with steps of 6, 11 and 17 mm thickness. The phase and chemical composition of microstructural constituents, i.e. of γ phase, γ’ phase and eutec...

  12. A review of the risks of sudden global cooling and its effects on agriculture

    DEFF Research Database (Denmark)

    Engvild, K.C.

    2003-01-01

    was 1816, the year without a summer, probably caused by the cooling effect of the eruption of the volcano Tambora, Indonesia. The last decade-long cooling event was A.D. 536-545 where dust veil, cold, famine, and plague was recorded in Byzantium and China. Very large volcanic eruptions or a comet...... be necessary to avoid major famines. With some important exceptions, fundamental research in abrupt climate change is in place, but agricultural or economic research on volcanic/comet-dusting/nuclear winters and their mitigation is lacking. (C) 2003 Elsevier Science B.V. All rights reserved....

  13. Effect of TOC [total organic carbon] on a PWR secondary cooling water system

    International Nuclear Information System (INIS)

    Gau, J.Y.; Oung, J.C.; Wang, T.Y.

    1989-01-01

    Increasing the amount of total organic carbon (TOC) during the wet layup of the steam generator was a problem in PWR nuclear power plant in Taiwan. The results of surveys of TOC in PWR secondary cooling water systems had shown that the impurity of hydrazine and the bacteria were the main reasons that increase TOC. These do not have a corrosion effect on Inconel 600 and carbon steel when the secondary cooling water containing the TOC is below 200 ppb. But the anaerobic bacteria from the steam generator in wet layup will increase corrosion rate of carbon steel and crevice corrosion of Inconel 600. (author)

  14. Cooling load calculation by the radiant time series method - effect of solar radiation models

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Alexandre M.S. [Universidade Estadual de Maringa (UEM), PR (Brazil)], E-mail: amscosta@uem.br

    2010-07-01

    In this work was analyzed numerically the effect of three different models for solar radiation on the cooling load calculated by the radiant time series' method. The solar radiation models implemented were clear sky, isotropic sky and anisotropic sky. The radiant time series' method (RTS) was proposed by ASHRAE (2001) for replacing the classical methods of cooling load calculation, such as TETD/TA. The method is based on computing the effect of space thermal energy storage on the instantaneous cooling load. The computing is carried out by splitting the heat gain components in convective and radiant parts. Following the radiant part is transformed using time series, which coefficients are a function of the construction type and heat gain (solar or non-solar). The transformed result is added to the convective part, giving the instantaneous cooling load. The method was applied for investigate the influence for an example room. The location used was - 23 degree S and 51 degree W and the day was 21 of January, a typical summer day in the southern hemisphere. The room was composed of two vertical walls with windows exposed to outdoors with azimuth angles equals to west and east directions. The output of the different models of solar radiation for the two walls in terms of direct and diffuse components as well heat gains were investigated. It was verified that the clear sky exhibited the less conservative (higher values) for the direct component of solar radiation, with the opposite trend for the diffuse component. For the heat gain, the clear sky gives the higher values, three times higher for the peek hours than the other models. Both isotropic and anisotropic models predicted similar magnitude for the heat gain. The same behavior was also verified for the cooling load. The effect of room thermal inertia was decreasing the cooling load during the peak hours. On the other hand the higher thermal inertia values are the greater for the non peak hours. The effect

  15. Effect of modification and cooling rate on the macrostructure of IN-713C alloy

    Directory of Open Access Journals (Sweden)

    F. Binczyk

    2009-07-01

    Full Text Available The results of investigations of the effect of modification and cooling rate on the macrostructure of castings made from IN-713C nickel superalloy were described. As a modifier, cobalt aluminate CoAl2O4 in composition with aluminium powder and colloidal silica was used. Changes in the cooling rate were obtained by the use of a stepped test piece with the steps of 6, 11, 17 and 23 mm thickness. As a criterion for the evaluation of casting macrostructure, the stereological parameters, like grain count, relative surface area, shape factor, and indeces of the grain size and shape homogeneity, were applied. The modification treatment was observed to change the grain type from columnar to equiaxial. The stereological parameters of the equiaxial grains depended to a great extent on the cooling rate of the individual elements of a cast stepped test piece.

  16. Effect of cryogenic cooling on corrosion of friction stir welded AA7010-T7651

    DEFF Research Database (Denmark)

    Jariyaboon, Manthana; Davenport, A. J.; Ambat, Rajan

    2010-01-01

    Purpose - The purpose of this paper is to study how cryogenic CO2 cooling during the welding process affects corrosion behaviour of friction stir welding (FSW) AA7010-T7651. Design/methodology/approach - Friction stir welded AA7010-17651 was produced with a rotation speed of 288 rpm and a travel...... speed of 58 mm/min. The liquid CO2 was sprayed onto the weld centre line immediately after the toolpiece. The microstructures of welds in different regions were observed using Field Emission Gun Scanning Electron Microscope (FEG-SEM). The effect on the corrosion susceptibility was investigated using...... a gel visualisation test and potentiodynamic polarisation measurements using a micro-electrochemical technique. Findings - The main corrosion region for both FSWs AA7010-T7651 produced with and without cryogenic CO2 cooling is in the HAZ region, which exhibited intergranular attack. Cryogenic cooling...

  17. Effect of cooling rate on shear bond strength of veneering porcelain to a zirconia ceramic material.

    Science.gov (United States)

    Komine, Futoshi; Saito, Ayako; Kobayashi, Kazuhisa; Koizuka, Mai; Koizumi, Hiroyasu; Matsumura, Hideo

    2010-12-01

    The purpose of the present study was to evaluate the effect of cooling rates after firing procedures of veneering porcelain on shear bond strength between veneering porcelain and a zirconium dioxide (zirconia; ZrO₂) ceramic material. A total of 48 ZrO₂ disks were divided equally into three groups. Two veneering porcelains that are recommended for ZrO₂ material - Cerabien ZR (CZR), IPS e.max Ceram (EMX) - and one that is recommended for metal ceramics - Super Porcelain AAA (AAA) were assessed. Each group was then further divided into two subgroups (n = 8) according to cooling time (0 or 4 min) after porcelain firing. Specimens were fabricated by veneering the porcelain on the ZrO₂ disks, after which shear bond testing was conducted. Bond strength differed significantly by cooling time in ZrO₂-AAA (P veneering porcelain to a zirconia material depending on porcelain material used.

  18. The lumping of heat transfer parameters in cooled packed beds: effect of the bed entry

    NARCIS (Netherlands)

    Westerink, E.J.; Gerner, J.W.; Gerner, J.W.; Westerterp, K.R.; van der Wal, S.

    1993-01-01

    The lumping of the heat transfer parameters of the one- and the two-dimensional pseudo-homogeneous model of a cooled fixed bed were compared. It appeared that the lumping of the two-dimensional parameters, being the effective radial conductivity h-eff and the heat transfer coefficient at the wall

  19. Effects of tropical climate and water cooling methods on growing pigs' responses

    NARCIS (Netherlands)

    Huynh, T.T.T.; Aarnink, A.J.A.; Truong, C.T.; Kemp, B.; Verstegen, M.W.A.

    2006-01-01

    We report a study on crossbred growing pig ((Duroc x Pietrain) x Large White) that measured the effect of tropical conditions on respiration rate (RR), skin temperature (ST), rectal temperature (RT) and productivity and determined the efficacy of two simple cooling methods. The experiment was a

  20. Elastocaloric effect of Ni-Ti wire for application in a cooling device

    DEFF Research Database (Denmark)

    Tusek, Jaka; Engelbrecht, Kurt; Mikkelsen, Lars Pilgaard

    2015-01-01

    We report on the elastocaloric effect of a superelastic Ni-Ti wire to be used in a cooling device. Initially, each evaluated wire was subjected to 400 loading/unloading training cycles in order to stabilize its superelastic behavior. The wires were trained at different temperatures, which lead...

  1. Effect of radiative cooling on a hot charged dusty grains with charging fluctuation

    International Nuclear Information System (INIS)

    ElWakil, S.A.; El-Shewy, E.K.; El-Basyouny, S.T.

    2005-01-01

    The effect of the radiative cooling of electrons on the gravitational collapse of hot dust grains with fluctuating electric charge is investigated. Propagation of linear solitary radiation in an unmagnetized collisionless dusty plasma is studied. The standard normal-mode analysis is used to study the stability condition of linear wave

  2. Effects of Cooling on the Reproductive Performance of Gilts ...

    African Journals Online (AJOL)

    PROF HORSFALL

    vary with the temperature of its surroundings and a steady body temperature is important for a proper growth rate. Since pigs lack sweat glands, evaporation .... VSN. International Ltd., Oxford, U.K.. Holmes, R. N. (2005).The effect of Protein. Metabolism of Pigs growing at a high ambient temperature. Journal of Animal ...

  3. Effects of disinfection, packaging and evaporatively cooled storage ...

    African Journals Online (AJOL)

    Similarly, disinfection treatment significantly (P 0.01) affected the changes in reducing, non-reducing and total sugars of mangoes during storage. Two-way interactions were significant (P 0.01) in terms of the changes in sugar content of mangoes. The benefits of the combined effect of post-harvest treatments on mangoes ...

  4. Effect of shocks on film cooling of a full scale turbojet exhaust nozzle having an external expansion surface

    Science.gov (United States)

    Straight, D. M.

    1979-01-01

    Cooling is one of the critical technologies for efficient design of exhaust nozzles, especially for the developing technology of nonaxisymmetric (2D) nozzles for future aircraft applications. Several promising 2D nozzle designs have external expansion surfaces which need to be cooled. Engine data are scarce, however, on nozzle cooling effectiveness in the supersonic flow environment (with shocks) that exists along external expansion surfaces. This paper will present experimental film cooling data obtained during exploratory testing with an axisymmetric plug nozzle having external expansion and installed on an afterburning turbojet engine in an altitude test facility. The data obtained shows that the shocks and local hot gas stream conditions have a marked effect on film cooling effectiveness. An existing film cooling correlation is adequate at some operating conditions but inadequate at other conditions such as in separated flow regions resulting from shock-boundary-layer interactions.

  5. Questionable effects of antireflective coatings on inefficiently cooled solar cells

    DEFF Research Database (Denmark)

    Akhmatov, Vladislav; Galster, Georg; Larsen, Esben

    1998-01-01

    A model for temperature effects in p-n junction solar cells is introduced. The temperature of solar cells and the losses in the solar cell junction region caused by elevating temperature are discussed. The model developed is examined for low-cost silicon solar cells. In order to improve the shape...... of the output power and efficiency curves throughout the day the coherence between technical parameters of the solar cells and the climate in the operation region is observed and examined. It is shown how the drop in output power around noon can be avoided by fitting technical parameters of the solar cells...

  6. Effect of TEMPO-oxidization and rapid cooling on thermo-structural properties of nanocellulose.

    Science.gov (United States)

    Mhd Haniffa, Mhd Abd Cader; Ching, Yern Chee; Chuah, Cheng Hock; Yong Ching, Kuan; Nazri, Nik; Abdullah, Luqman Chuah; Nai-Shang, Liou

    2017-10-01

    Recently, surface functionality and thermal property of the green nanomaterials have received wide attention in numerous applications. In this study, microcrystalline cellulose (MCC) was used to prepare the nanocrystalline celluloses (NCCs) using acid hydrolysis method. The NCCs was treated with TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxy radical]-oxidation to prepare TEMPO-oxidized NCCs. Cellulose nanofibrils (CNFs) also prepared from MCC using TEMPO-oxidation. The effects of rapid cooling and chemical treatments on the thermo-structural property studies of the prepared nanocelluloses were investigated through FTIR, thermogravimetric analysis-derivative thermogravimetric (TGA-DTG), and XRD. A posteriori knowledge of the FTIR and TGA-DTG analysis revealed that the rapid cooling treatment enhanced the hydrogen bond energy and thermal stability of the TEMPO-oxidized NCC compared to other nanocelluloses. XRD analysis exhibits the effect of rapid cooling on pseudo 2 I helical conformation. This was the first investigation performed on the effect of rapid cooling on structural properties of the nanocellulose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Cooling Effect of Rivers on Metropolitan Taipei Using Remote Sensing

    Science.gov (United States)

    Chen, Yen-Chang; Tan, Chih-Hung; Wei, Chiang; Su, Zi-Wen

    2014-01-01

    This study applied remote sensing technology to analyze how rivers in the urban environment affect the surface temperature of their ambient areas. While surface meteorological stations can supply accurate data points in the city, remote sensing can provide such data in a two-dimensional (2-D) manner. The goal of this paper is to apply the remote sensing technique to further our understanding of the relationship between the surface temperature and rivers in urban areas. The 2-D surface temperature data was retrieved from Landsat-7 thermal infrared images, while data collected by Formosat-2 was used to categorize the land uses in the urban area. The land surface temperature distribution is simulated by a sigmoid function with nonlinear regression analysis. Combining the aforementioned data, the range of effect on the surface temperature from rivers can be derived. With the remote sensing data collected for the Taipei Metropolitan area, factors affecting the surface temperature were explored. It indicated that the effect on the developed area was less significant than on the ambient nature zone; moreover, the size of the buffer zone between the river and city, such as the wetlands or flood plain, was found to correlate with the affected distance of the river surface temperature. PMID:24464232

  8. Cooling Effect of Rivers on Metropolitan Taipei Using Remote Sensing

    Directory of Open Access Journals (Sweden)

    Yen-Chang Chen

    2014-01-01

    Full Text Available This study applied remote sensing technology to analyze how rivers in the urban environment affect the surface temperature of their ambient areas. While surface meteorological stations can supply accurate data points in the city, remote sensing can provide such data in a two-dimensional (2-D manner. The goal of this paper is to apply the remote sensing technique to further our understanding of the relationship between the surface temperature and rivers in urban areas. The 2-D surface temperature data was retrieved from Landsat-7 thermal infrared images, while data collected by Formosat-2 was used to categorize the land uses in the urban area. The land surface temperature distribution is simulated by a sigmoid function with nonlinear regression analysis. Combining the aforementioned data, the range of effect on the surface temperature from rivers can be derived. With the remote sensing data collected for the Taipei Metropolitan area, factors affecting the surface temperature were explored. It indicated that the effect on the developed area was less significant than on the ambient nature zone; moreover, the size of the buffer zone between the river and city, such as the wetlands or flood plain, was found to correlate with the affected distance of the river surface temperature.

  9. Cooling effect of rivers on metropolitan Taipei using remote sensing.

    Science.gov (United States)

    Chen, Yen-Chang; Tan, Chih-Hung; Wei, Chiang; Su, Zi-Wen

    2014-01-23

    This study applied remote sensing technology to analyze how rivers in the urban environment affect the surface temperature of their ambient areas. While surface meteorological stations can supply accurate data points in the city, remote sensing can provide such data in a two-dimensional (2-D) manner. The goal of this paper is to apply the remote sensing technique to further our understanding of the relationship between the surface temperature and rivers in urban areas. The 2-D surface temperature data was retrieved from Landsat-7 thermal infrared images, while data collected by Formosat-2 was used to categorize the land uses in the urban area. The land surface temperature distribution is simulated by a sigmoid function with nonlinear regression analysis. Combining the aforementioned data, the range of effect on the surface temperature from rivers can be derived. With the remote sensing data collected for the Taipei Metropolitan area, factors affecting the surface temperature were explored. It indicated that the effect on the developed area was less significant than on the ambient nature zone; moreover, the size of the buffer zone between the river and city, such as the wetlands or flood plain, was found to correlate with the affected distance of the river surface temperature.

  10. Determining the effects of thermal conductivity on epoxy molds using profiled cooling channels with metal inserts

    Energy Technology Data Exchange (ETDEWEB)

    Altaf, Khurram; Rani, Abdul Ahmad Majdi; Ahmad, Faiz; Baharom, Masri [Mechanical Engineering Dept., Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak (Malaysia); Raghavan, Vijay R. [OYL Manufacturing, Sungai Buloh (Malaysia)

    2016-11-15

    Polymer injection molds are generally manufactured with metallic materials, such as tool steel, which provide reliable working of molds and extended service life. The manufacture of injection molds with steel is a prolonged process because of the strength of steel. For a short prototype production run, one of the suitable choices could be the use of aluminum-filled epoxy material, which can produce a functional mold in a short time as compared with a conventionally machined tool. Aluminum-filled epoxy tooling is a good choice for short production runs for engineering applications, yet works best for relatively simple shapes. The advantages in relation to the fabrication of injection molds with epoxy-based materials include time saving in producing the mold, epoxy curing at ambient temperature, and ease of machining and post processing. Nevertheless, one major drawback of epoxy material is its poor thermal conductivity, which results in a relatively longer cooling time for epoxy injection molds. This study investigates some of the innovative ideas for enhancing the thermal conductivity for epoxy molds. The basic concept behind these ideas was to embed a highly thermally conductive metal insert within the mold between cavities with an innovative design of cooling channels called profiled cooling channels. This technique will increase the effective thermal conductivity of the epoxy mold, leading to the reduction in cooling time for the injection molded polymer part. Experimental analysis conducted in the current study also verified that the mold with profiled cooling channels and embedded metal insert has significantly reduced the cooling time.

  11. Determining the effects of thermal conductivity on epoxy molds using profiled cooling channels with metal inserts

    International Nuclear Information System (INIS)

    Altaf, Khurram; Rani, Abdul Ahmad Majdi; Ahmad, Faiz; Baharom, Masri; Raghavan, Vijay R.

    2016-01-01

    Polymer injection molds are generally manufactured with metallic materials, such as tool steel, which provide reliable working of molds and extended service life. The manufacture of injection molds with steel is a prolonged process because of the strength of steel. For a short prototype production run, one of the suitable choices could be the use of aluminum-filled epoxy material, which can produce a functional mold in a short time as compared with a conventionally machined tool. Aluminum-filled epoxy tooling is a good choice for short production runs for engineering applications, yet works best for relatively simple shapes. The advantages in relation to the fabrication of injection molds with epoxy-based materials include time saving in producing the mold, epoxy curing at ambient temperature, and ease of machining and post processing. Nevertheless, one major drawback of epoxy material is its poor thermal conductivity, which results in a relatively longer cooling time for epoxy injection molds. This study investigates some of the innovative ideas for enhancing the thermal conductivity for epoxy molds. The basic concept behind these ideas was to embed a highly thermally conductive metal insert within the mold between cavities with an innovative design of cooling channels called profiled cooling channels. This technique will increase the effective thermal conductivity of the epoxy mold, leading to the reduction in cooling time for the injection molded polymer part. Experimental analysis conducted in the current study also verified that the mold with profiled cooling channels and embedded metal insert has significantly reduced the cooling time

  12. Effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding.

    Science.gov (United States)

    Secilmis, Asli; Bulbul, Mehmet; Sari, Tugrul; Usumez, Aslihan

    2013-01-01

    The neodymium/yttrium-aluminum-garnet (Nd/YAG) laser has been suggested to repair broken prostheses in the mouth. This study investigated the effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding. Three intact human maxillary molars were prepared for full-veneer crown. For each tooth, dentin thicknesses in mesiobuccal cusp was 2, 3, or 4 mm. Twenty dies were duplicated from each of the prepared teeth. For metal copings with 0.5-mm thickness, wax patterns were prepared with dip wax technique directly onto each of dies. All patterns were sprued and invested. The castings were made using a nickel-chromium alloy (Nicromed Premium, Neodontics). A hole with 0.5-mm diameter was prepared on the mesiobuccal cusp of each crown. The Nd/YAG laser (9.85 W; 1 Hz repetition rate; fluence, 1.230 J/cm(2); Fidelis Plus 3, Fotona) was used for welding with or without air cooling (n = 10). The temperature rise was measured in pulpal chamber with a J-type thermocouple wire that was connected to a data logger. Differences between start and highest temperature reading were taken, and temperature rise values were compared using two-way analysis of variance and Tukey's honestly significant difference tests (α = .05). Pulpal temperature rise varied significantly depending on the dentin thickness and air cooling (p cooling group induced significantly the highest temperature increases. There were no significant differences between 2- and 3-mm dentin thicknesses groups (p > 0.05); however, pulpal temperature rise was the lowest for 4-mm dentin thickness group (p cooling was used in 2-mm dentin thickness group. Laser welding on base metal castings with Nd/YAG laser can be applied with air cooling to avoid temperature rises known to adversely affect pulpal health when dentin thickness is 2 or 3 mm.

  13. Wind tunnel experimental study on effect of inland nuclear power plant cooling tower on air flow and dispersion of pollutant

    International Nuclear Information System (INIS)

    Qiao Qingdang; Yao Rentai; Guo Zhanjie; Wang Ruiying; Fan Dan; Guo Dongping; Hou Xiaofei; Wen Yunchao

    2011-01-01

    A wind tunnel experiment for the effect of the cooling tower at Taohuajiang nuclear power plant on air flow and dispersion of pollutant was introduced in paper. Measurements of air mean flow and turbulence structure in different directions of cooling tower and other buildings were made by using an X-array hot wire probe. The effects of the cooling tower and its drift on dispersion of pollutant from the stack were investigated through tracer experiments. The results show that the effect of cooling tower on flow and dispersion obviously depends on the relative position of stack to cooling towers, especially significant for the cooling tower parallel to stack along wind direction. The variation law of normalized maximum velocity deficit and perturbations in longitudinal turbulent intensity in cooling tower wake was highly in accordance with the result of isolated mountain measured by Arya and Gadiyaram. Dispersion of pollutant in near field is significantly enhanced and plume trajectory is changed due to the cooling towers and its drift. Meanwhile, the effect of cooling tower on dispersion of pollutant depends on the height of release. (authors)

  14. Numerical Study of the Effects of Thermal Barrier Coating and Turbulence Intensity on Cooling Performances of a Nozzle Guide Vane

    Directory of Open Access Journals (Sweden)

    Prasert Prapamonthon

    2017-03-01

    Full Text Available This work presents a numerical investigation of the combined effects of thermal barrier coating (TBC with mainstream turbulence intensity (Tu on a modified vane of the real film-cooled nozzle guide vane (NGV reported by Timko (NASA CR-168289. Using a 3D conjugate heat transfer (CHT analysis, the NGVs with and without TBC are simulated at three Tus (Tu = 3.3%, 10% and 20%. The overall cooling effectiveness, TBC effectiveness and heat transfer coefficient are analyzed and discussed. The results indicate the following three interesting phenomena: (1 TBC on the pressure side (PS is more effective than that on the suction side (SS due to a fewer number of film holes on the SS; (2 for all three Tus, the variation trends of the overall cooling effectiveness are similar, and TBC plays the positive and negative roles in heat flux at the same time, and significantly increases the overall cooling effectiveness in regions cooled ineffectively by cooling air; (3 when Tu increases, the TBC effect is more significant, for example, at the highest Tu (Tu = 20% the overall cooling effectiveness can increase as much as 24% in the film cooling ineffective regions, but near the trailing edge (TE and the exits and downstream of film holes on the SS, this phenomenon is slight.

  15. Cooling performance assessment of horizontal earth tube system and effect on planting in tropical greenhouse

    International Nuclear Information System (INIS)

    Mongkon, S.; Thepa, S.; Namprakai, P.; Pratinthong, N.

    2014-01-01

    Graphical abstract: - Highlights: • The cooling ability of HETS is studied for planting in tropical greenhouse. • The effective of system was moderate with COP more than 2.0. • Increasing diameter and air velocity increase COP more than other parameters. • The plant growth with HETS was significantly better than no-HETS plant. - Abstract: The benefit of geothermal energy is used by the horizontal earth tube system (HETS); which is not prevalent in tropical climate. This study evaluated geothermal cooling ability and parameters studied in Thailand by mathematical model. The measurement of the effect on plant cultivation was carried out in two identical greenhouses with 30 m 2 of greenhouse volume. The HETS supplied cooled air to the model greenhouse (MGH), and the plant growth results were compared to the growth results of a conventional greenhouse (CGH). The prediction demonstrated that the coefficient of performance (COP) in clear sky day would be more than 2.0 while in the experiment it was found to be moderately lower. The parameters study could be useful for implementation of a system for maximum performance. Two plants Dahlias and head lettuce were grown satisfactory. The qualities of the plants with the HETS were better than the non-cooled plants. In addition, the quality of production was affected by variations of microclimate in the greenhouses and solar intensity throughout the cultivation period

  16. The microscale cooling effects of water sensitive urban design and irrigation in a suburban environment

    Science.gov (United States)

    Broadbent, Ashley M.; Coutts, Andrew M.; Tapper, Nigel J.; Demuzere, Matthias; Beringer, Jason

    2017-09-01

    Prolonged drought has threatened traditional potable urban water supplies in Australian cities, reducing capability to adapt to climate change and mitigate against extreme. Integrated urban water management (IUWM) approaches, such as water sensitive urban design (WSUD), reduce the reliance on centralised potable water supply systems and provide a means for retaining water in the urban environment through stormwater harvesting and reuse. This study examines the potential for WSUD to provide cooling benefits and reduce human exposure and heat stress and thermal discomfort. A high-resolution observational field campaign, measuring surface level microclimate variables and remotely sensed land surface characteristics, was conducted in a mixed residential suburb containing WSUD in Adelaide, South Australia. Clear evidence was found that WSUD features and irrigation can reduce surface temperature (T s) and air temperature (T a) and improve human thermal comfort (HTC) in urban environments. The average 3 pm T a near water bodies was found to be up to 1.8 °C cooler than the domain maximum. Cooling was broadly observed in the area 50 m downwind of lakes and wetlands. Design and placement of water bodies were found to affect their cooling effectiveness. HTC was improved by proximity to WSUD features, but shading and ventilation were also effective at improving thermal comfort. This study demonstrates that WSUD can be used to cool urban microclimates, while simultaneously achieving other environmental benefits, such as improved stream ecology and flood mitigation.

  17. Effect of cross-flow direction of coolant on film cooling effectiveness with one inlet and double outlet hole injection

    Directory of Open Access Journals (Sweden)

    Guangchao Li

    2012-12-01

    Full Text Available In order to study the effect of cross-flow directions of an internal coolant on film cooling performance, the discharge coefficients and film cooling effectiveness with one inlet and double outlet hole injections were simulated. The numerical results show that two different cross-flow directions of the coolant cause the same decrease in the discharge coefficients as that in the case of supplying coolant by a plenum. The different proportion of the mass flow out of the two outlets of the film hole results in different values of the film cooling effectiveness for three different cases of coolant supplies. The film cooling effectiveness is the highest for the case of supplying coolant by the plenum. At a lower blowing ratio of 1.0, the film cooling effectiveness with coolant injection from the right entrance of the passage is higher than that from the left entrance of the passage. At a higher blowing ratio of 2.0, the opposite result is found.

  18. Physiological tolerance to uncompensated heat stress in soldiers: effects of various types of body cooling systems.

    Science.gov (United States)

    Jovanović, Dalibor; Karkalić, Radovan; Zeba, Snjezana; Pavlović, Miroslav; Radaković, Sonja S

    2014-03-01

    In military services, emergency situations when soldiers are exposed to a combination of nuclear, biological and chemical (NBC) contamination combined with heat stress, are frequent and complex. In these specific conditions, usage of personal body cooling systems may be effective in reducing heat stress. The present study was conducted in order to evaluate the efficiency of four various types of contemporary personal body cooling systems based on the "Phase Change Material" (PCM), and its effects on soldiers' subjective comfort and physiological performance during exertional heat stress in hot environments. Ten male soldiers were voluntarily subjected to exertional heat stress tests (EHSTs) consisted of walking on a treadmill (5.5 km/h) in hot conditions (40 degreesC) in climatic chamber, wearing NBC isolating impermeable protective suits. One of the tests was performed without any additional cooling solution (NOCOOL), and four tests were performed while using different types of cooling systems: three in a form of vests and one as underwear. Physiological strain was determined by the mean skin temperature (Tsk), tympanic temperature (Tty), and heart rate values (HR), while sweat rates (SwR) indicated changes in hydration status. In all the cases EHST induced physiological response manifested through increasing Tty, HR and SwR. Compared to NOCOOL tests, when using cooling vests, Tty and Tsk were significantly lower (on 35th min, for 0.44 +/- 0.03 and 0.49 +/- 0.05 degrees C, respectively; p stress manifested by increased core and skin temperatures and heart rate values. These effects directly improve heat tolerance, hydration state, decrease in the risk of heat illness, and extends the duration of soldiers' exposure to extreme conditions.

  19. Effectiveness of Rapid Cooling as a Method of Euthanasia for Young Zebrafish (Danio rerio).

    Science.gov (United States)

    Wallace, Chelsea K; Bright, Lauren A; Marx, James O; Andersen, Robert P; Mullins, Mary C; Carty, Anthony J

    2018-01-01

    Despite increased use of zebrafish (Danio rerio) in biomedical research, consistent information regarding appropriate euthanasia methods, particularly for embryos, is sparse. Current literature indicates that rapid cooling is an effective method of euthanasia for adult zebrafish, yet consistent guidelines regarding zebrafish younger than 6 mo are unavailable. This study was performed to distinguish the age at which rapid cooling is an effective method of euthanasia for zebrafish and the exposure times necessary to reliably euthanize zebrafish using this method. Zebrafish at 3, 4, 7, 14, 16, 19, 21, 28, 60, and 90 d postfertilization (dpf) were placed into an ice water bath for 5, 10, 30, 45, or 60 min (n = 12 to 40 per group). In addition, zebrafish were placed in ice water for 12 h (age ≤14 dpf) or 30 s (age ≥14 dpf). After rapid cooling, fish were transferred to a recovery tank and the number of fish alive at 1, 4, and 12-24 h after removal from ice water was documented. Euthanasia was defined as a failure when evidence of recovery was observed at any point after removal from ice water. Results showed that younger fish required prolonged exposure to rapid cooling for effective euthanasia, with the required exposure time decreasing as fish age. Although younger fish required long exposure times, animals became immobilized immediately upon exposure to the cold water, and behavioral indicators of pain or distress rarely occurred. We conclude that zebrafish 14 dpf and younger require as long as 12 h, those 16 to 28 dpf of age require 5 min, and those older than 28 dpf require 30 s minimal exposure to rapid cooling for reliable euthanasia.

  20. Effect of strong electrolytes on edible oils part III: viscosity of canola ...

    African Journals Online (AJOL)

    Effect of strong electrolytes on the viscosity of canola oil in 1,4 dioxane was undertaken. The viscosity of oil in 1,4 dioxane was found to increase with the concentration of oil and decrease with rise in temperature. Strong electrolytes reduce the rate of flow of oil in 1,4 dioxane. It was noted that amongst these electrolytes, ...

  1. Progress on Beam-Plasma Effect Simulations in Muon Ionization Cooling Lattices

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James [IIT, Chicago; Snopok, Pavel [Fermilab

    2017-05-01

    New computational tools are essential for accurate modeling and simulation of the next generation of muon-based accelerators. One of the crucial physics processes specific to muon accelerators that has not yet been simulated in detail is beam-induced plasma effect in liquid, solid, and gaseous absorbers. We report here on the progress of developing the required simulation tools and applying them to study the properties of plasma and its effects on the beam in muon ionization cooling channels.

  2. Anomalous Josephson effect in semiconductor nanowire with strong spin-orbit interaction and Zeeman effect

    Science.gov (United States)

    Yokoyama, Tomohiro; Eto, Mikio; Nazarov, Yuli

    2014-03-01

    We theoretically investigate the Josephson junction using quasi-one dimensional semiconductor nanowires with strong spin-orbit (SO) interaction, e.g., InSb. First, we examine a simple model using a single scatterer to describe the elastic scattering due to impurities and SO interaction in the normal region.[1] The Zeeman effect is taken into account by the spin-dependent phase shift of electron and hole through the system. The interplay between SO interaction and Zeeman effect results in a finite supercurrent even when the phase difference between two superconductors is zero. Moreover, the critical current depends on its current direction if more than one conduction channel is present in the nanowire. Next, we perform a numerical simulation by the tight-binding model for the nanowire to confirm our simple model. Then, we show that a spin-dependent Fermi velocity due to the SO interaction causes the anomalous Josephson effect.

  3. Irrigation enhances local warming with greater nocturnal warming effects than daytime cooling effects

    Science.gov (United States)

    Chen, Xing; Jeong, Su-Jong

    2018-02-01

    To meet the growing demand for food, land is being managed to be more productive using agricultural intensification practices, such as the use of irrigation. Understanding the specific environmental impacts of irrigation is a critical part of using it as a sustainable way to provide food security. However, our knowledge of irrigation effects on climate is still limited to daytime effects. This is a critical issue to define the effects of irrigation on warming related to greenhouse gases (GHGs). This study shows that irrigation led to an increasing temperature (0.002 °C year-1) by enhancing nighttime warming (0.009 °C year-1) more than daytime cooling (-0.007 °C year-1) during the dry season from 1961-2004 over the North China Plain (NCP), which is one of largest irrigated areas in the world. By implementing irrigation processes in regional climate model simulations, the consistent warming effect of irrigation on nighttime temperatures over the NCP was shown to match observations. The intensive nocturnal warming is attributed to energy storage in the wetter soil during the daytime, which contributed to the nighttime surface warming. Our results suggest that irrigation could locally amplify the warming related to GHGs, and this effect should be taken into account in future climate change projections.

  4. The Cooling Effect of Urban Parks and Its Monthly Variations in a Snow Climate City

    Directory of Open Access Journals (Sweden)

    Chaobin Yang

    2017-10-01

    Full Text Available Urban parks have been shown to form park cool islands (PCIs, which can effectively alleviate the negative influences of urban heat islands (UHI. However, few studies have examined the detailed characteristics of PCIs, the effect of urban park features on their individual temperatures, and monthly variation in PCIs. Land surface temperature (LST retrieved from Landsat 8 TIR images between May and October were used to represent the thermal environment. Urban park characteristics were extracted from high-resolution GF-2 images. Using these datasets, the relationships between urban park characteristics and PCIs were explored in this study using Changchun, which has a snow climate, as a case study. The results showed the following: (1 the urban parks exhibited a cooling island effect, and the PCIs showed significant monthly variations with the highest intensities in the hot months; (2 the effects of composition (e.g., park size and the percentage of water area on LSTs and PCIs showed significant monthly variability and were stronger than the configuration effects. Furthermore, an unexpected, negative correlation between PCIs and the area of park grass was also found; and (3 larger parks tended to have stronger PCI intensities and extents of influence. For parks larger than 30 ha, the cooling effects extended approximately 480 m from the park edge between June and August. For all of parks during the study duration, the rate of temperature increase was highest within 60 m from the park edge. The PCI we employ specifically in this study is characterized by LST.

  5. The effect of cryogenic cooling and minimum quantity lubrication on end milling of titanium alloy Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Hee; Yang, Gi Dong; Lee, Dong Yoon; Kim, Tae Gon; Lee, Seok Woo [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of); Suhaimi, M. A. [Universiti Teknologi Malaysia, Johor Bahru (Malaysia); Kim, Dong Won [Chonbuk National University, Jeonju (Korea, Republic of)

    2015-11-15

    The cooling down of cutting temperature in machining is very important for the improvement of tool life, especially when dealing with work materials that have low thermal conductivity such as titanium alloy. In this study designed to investigate the machining performance of a variety of cooling methods, cryogenic, Minimum quantity lubrication (MQL), and flood cooling are performed on solid end milling of titanium alloy, Ti-6Al-4V. In particular, the effect of internal and external spray methods on cryogenic machining is analyzed with a specially designed liquid nitrogen spraying system by evaluating tool wear and cutting force at cutting conditions. The cutting force is also analyzed for tool breakage detection. As a result, the combination of MQL and internal cryogenic cooling improves tool life by up to 32% compared to conventional cooling methods. The cutting force is also reduced significantly by this combination of cooling and lubrication strategy of side end milling.

  6. The effect of cryogenic cooling and minimum quantity lubrication on end milling of titanium alloy Ti-6Al-4V

    International Nuclear Information System (INIS)

    Park, Kyung Hee; Yang, Gi Dong; Lee, Dong Yoon; Kim, Tae Gon; Lee, Seok Woo; Suhaimi, M. A.; Kim, Dong Won

    2015-01-01

    The cooling down of cutting temperature in machining is very important for the improvement of tool life, especially when dealing with work materials that have low thermal conductivity such as titanium alloy. In this study designed to investigate the machining performance of a variety of cooling methods, cryogenic, Minimum quantity lubrication (MQL), and flood cooling are performed on solid end milling of titanium alloy, Ti-6Al-4V. In particular, the effect of internal and external spray methods on cryogenic machining is analyzed with a specially designed liquid nitrogen spraying system by evaluating tool wear and cutting force at cutting conditions. The cutting force is also analyzed for tool breakage detection. As a result, the combination of MQL and internal cryogenic cooling improves tool life by up to 32% compared to conventional cooling methods. The cutting force is also reduced significantly by this combination of cooling and lubrication strategy of side end milling.

  7. Cooling rate effects on thermal, structural, and microstructural properties of bio-hydroxyapatite obtained from bovine bone.

    Science.gov (United States)

    Ramirez-Gutierrez, Cristian F; Palechor-Ocampo, Anderzon F; Londoño-Restrepo, Sandra M; Millán-Malo, Beatriz M; Rodriguez-García, Mario E

    2016-02-01

    This article is focused on the study of cooling rate effects on the thermal, structural, and microstructural properties of hydroxyapatite (HAp) obtained from bovine bone. A three-step process was used to obtain BIO-HAp: hydrothermal, calcinations, and cooling. Calcined samples in a furnace and cooling in air (HAp-CAir), water (HAp-CW), and liquid nitrogen (HAp-CN2), as well as an air cooled sample inside the furnace (HAp-CFAir), were studied. According to this study, the low cooling rate that was achieved for air cooled samples inside the furnace produce single crystal BIO-HAp with better crystalline quality; other samples exhibited polycrystalline structures forming micron and submicron grains. © 2015 Wiley Periodicals, Inc.

  8. A Multi-Center Controlled Study of the Acute and Chronic Effects of Cooling Therapy for MS

    Science.gov (United States)

    Luna, Bernadette; Schwid, Steven W.; Cutter, Gary; Murray, Ronald; Bowen, James; Pellegrino, Richard; Guisado, Raul; Webbon, Bruce W.; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    To determine the acute and chronic effects of cooling therapy on patients with MS using objective functional performance measures and self-assessed measures of fatigue. Cooling demyelinated nerves can reduce conduction block, potentially improving symptoms of MS. Significant acute and chronic effects of cooling have not been demonstrated in a multi-center, controlled, blinded study using objective measures of neurologic function. Patients (N=84) with definite MS, mild to moderate disability (EDSS less than 6.0), and self-reported heat sensitivity were enrolled at 5 study sites. Acute effects of cooling were assessed by randomly assigning subjects to high-dose or low-dose cooling for one hour using an active cooling vest and cap (Life Enhancement Technologies, Santa Clara, CA). Settings were individualized to maintain the cooling garments at 55 F for the high-dose treatment and 70 F for the low-dose treatment. Both patients and examining investigators were blinded to treatment assignments. The MSFC and visual acuity/contrast sensitivity were assessed before and 30 minutes after treatment. The following week, subjects had an identical visit with the alternate cooling treatment. Chronic effects of cooling were assessed by randomly assigning the same subjects to unblinded daily home cooling or observation for 4 weeks. All subjects completed the Rochester Fatigue Diary (RFD) twice weekly and subjective measures of strength, cognition, and energy level daily. At the end of the period, subjects completed the Modified Fatigue Impact Scale (MFIS) and underwent another high-dose cooling session with assessment of the MSFC and vision. After a one-week washout period, subjects crossed over to the alternate 4-week treatment. Oral temperatures were reduced with both acute treatments (0.8 +/- .06 F, high and 0.5 +/- .06 F, low). While mean MSFC did not change significantly during individual cooling sessions, post hoc analysis pooling the 3 high-dose cooling sessions revealed an

  9. The effect of body cooling on respiratory system mechanics and hysteresis in rats.

    Science.gov (United States)

    Rubini, Alessandro; El-Mazloum, Dania; Morra, Francesco; Bosco, Gerardo

    2013-10-01

    Literature reports and theoretical considerations suggest that body cooling may affect respiratory mechanics in vivo. To examine this hypothesis, healthy rats were studied using the end-inflation occlusion method under control conditions and after total body cooling. Respiratory mechanics parameters, hysteresis areas, the inspiratory work of breathing, and its elastic and resistive components, were calculated. After body cooling (mean rectal temperature from 36.6 ± 0.25 to 32.1 ± 0.26 °C), the ohmic and the additional visco-elastic respiratory system resistances, the hysteresis, the total inspiratory work of breathing, and its resistive components, were all increased. No significant changes were detected for the static and dynamic respiratory system elastance mean values, and the related elastic component of the work of breathing. These data indicate that body cooling increases the mechanical inspiratory work of breathing by increasing the resistive pressures dissipation. This effect is evident even for limited temperature variations, and it is suggested that it may occur in the event of accidental or therapeutic hypothermia. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Effects of Cooling Rate on 6.5% Silicon Steel Ordering

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jun [Ames Lab. and Iowa State Univ., Ames, IA (United States); Macziewski, Chad [Iowa State Univ., Ames, IA (United States); Jensen, Brandt [Ames Lab., Ames, IA (United States); Ouyang, Gaoyuan [Iowa State Univ., Ames, IA (United States); Zhou, Lin [Ames Lab., Ames, IA (United States); Dennis, Kevin [Ames Lab., Ames, IA (United States); Zarkevich, Nikolai [Ames Lab., Ames, IA (United States); Jiang, Xiujuan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tang, Wei [Ames Lab., Ames, IA (United States); Zhou, Shihuai [Ames Lab., Ames, IA (United States); Simsek, Emrah [Ames Lab., Ames, IA (United States); Napolitano, Ralph [Iowa State Univ., Ames, IA (United States); Kramer, Matt [Ames Lab., Ames, IA (United States)

    2017-03-02

    Increasing Si content improves magnetic and electrical properties of electrical steel, with 6.5% Si as the optimum. Unfortunately, when Si content approaches 5.7%, the Fe-Si alloy becomes brittle. At 6.5%, the steel conventional cold rolling process is no longer applicable. The heterogeneous formation of B2 and D03 ordered phases is responsible for the embrittlement. The formation of these ordered phases can be impeded by rapid cooling. However, only the cooling rates of water and brine water were investigated. A comprehensive study of the effect of rapid cooling rate on the formation of the ordered phases was carried out by varying wheel speed and melt-injection rate. Thermal imaging employed to measure cooling rates while microstructures of the obtained ribbons are characterized using X-ray diffraction and TEM. The electrical, magnetic and mechanical properties are characterized using 4-pt probe, VSM, and macro-indentation methods. The relations between physical properties and ordered phases are established.

  11. The effect of hand cooling during intermittent training of elite swimmers.

    Science.gov (United States)

    Zochowski, Thomas; Docherty, David

    2016-03-01

    The aim of this paper was to determine the effects of using intermittent hand cooling during high intensity, intermittent training on thermoregulatory, performance and psychophysical variables in elite level swimmers in a training pool (30.5±0.5 °C). Randomized cross-over design. Following a standard warm-up, ten male swimmers (20.3±3.2 years) were instructed to maintain the fastest 100-m time (on average) for an 8 x 100 m freestyle swimming set performed either in a training pool with cooling (TPC) or a training pool with no-cooling (TPNC). Time at 100 m, core temperature (Tc), heart rate (HR), ratings of perceived exertion (RPE), thermal comfort (ThC) and thermal sensation (ThS) were recorded following each repetition. Participants were cooled during the 90 s rest interval between repetitions using the Rapid Thermal Exchange System (RTX) (AVAcore Technologies Inc., Ann Arbor, MI, USA). There was a better performance when comparing 100 m time (1.50±1.98 s faster) for the final repetition in the TPC condition compared to the final repetition in the TPNC condition (P<0.05). There was no significant difference between Tc, HR, RPE, ThC and ThS (P<0.05). There was a performance benefit in the last set of the training block in the TPC condition that could not be attributed to any of the physiological and psychophysical measures used in the study.

  12. Application of PIXE technique to studies on global warming/cooling effect of atmospheric aerosols

    International Nuclear Information System (INIS)

    Kasahara, M.; Hoeller, R.; Tohno, S.; Onishi, Y.; Ma, C.-J.

    2002-01-01

    During the last decade, the importance of global warming has been recognized worldwide. Atmospheric aerosols play an important role in the global warming/cooling effects. The physicochemical properties of aerosol particles are fundamental to understanding such effects. In this study, the PIXE technique was applied to measure the average chemical properties of aerosols. Micro-PIXE was also applied to investigate the mixing state of the individual aerosol particle. The chemical composition data were used to estimate the optical properties of aerosols. The average values of aerosol radiative forcing were -1.53 w/m 2 in Kyoto and +3.3 w/m 2 in Nagoya, indicating cooling and warming effects respectively. The difference of radiative forcing in the two cities may be caused by the large difference in chemical composition of aerosols

  13. Assessment of the effect of nitrogen gas on passive containment cooling system performance

    International Nuclear Information System (INIS)

    Ha, Huiun; Suh, Jungsoo

    2016-01-01

    As a part of the passive containment cooling system (PCCS) of Innovative PWR development project, we have been investigating the effect of the nitrogen gas released from safety injection tank (SIT) on PCCS performance. With the design characteristics of APR1400 and conceptual design of PCCS, we developed a GOTHIC model of the APR1400 containment with PCCS. The calculation model is described herein, and representative results from the calculation are presented as well. The results of the present work will be used for the design of PCCS. APR1400 GOTHIC model was developed for assessment on the effect of SIT nitrogen gas on passive containment cooling system performance. Calculation results confirmed that influence of nitrogen gas release is negligible; however, further studies should be performed to confirm effect of non-condensable gas on the final performance of PCCS. These insights are important for developing the PCCS of Innovative PWR

  14. Assessment of the effect of nitrogen gas on passive containment cooling system performance

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Huiun; Suh, Jungsoo [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    As a part of the passive containment cooling system (PCCS) of Innovative PWR development project, we have been investigating the effect of the nitrogen gas released from safety injection tank (SIT) on PCCS performance. With the design characteristics of APR1400 and conceptual design of PCCS, we developed a GOTHIC model of the APR1400 containment with PCCS. The calculation model is described herein, and representative results from the calculation are presented as well. The results of the present work will be used for the design of PCCS. APR1400 GOTHIC model was developed for assessment on the effect of SIT nitrogen gas on passive containment cooling system performance. Calculation results confirmed that influence of nitrogen gas release is negligible; however, further studies should be performed to confirm effect of non-condensable gas on the final performance of PCCS. These insights are important for developing the PCCS of Innovative PWR.

  15. Hot-electron effect in PdAu thin-film resistors with attached cooling fins

    International Nuclear Information System (INIS)

    Pleikies, J; Flokstra, J; Usenko, O; Frossati, G; Stolz, R; Fritzsch, L

    2009-01-01

    The sensitivity of superconducting electronics operated in the sub-Kelvin temperature range is usually limited by the hot-electron effect. Here, an increased thermal resistance due to a weakened electron-phonon coupling leads to a higher temperature of the electrons in the thin-film shunt resistors of the Josephson junctions. Cooling fins can be attached to weaken this effect. We characterized different configurations of resistors in PdAu with or without attached cooling fins by dissipating power and determining the effective electron temperature. This was done by directly measuring the Johnson noise with a SQUID amplifier. The results are compared to theory and numerical calculations on the electronic heat transport. The latter turns out to be a useful tool for the optimization of the thermal design of superconducting electronics.

  16. Cooled perch effects on performance and well-being traits in caged White Leghorn hens.

    Science.gov (United States)

    Hu, J Y; Hester, P Y; Makagon, M M; Vezzoli, G; Gates, R S; Xiong, Y J; Cheng, H W

    2016-12-01

    We assessed the effects of chilled water cooling perches on hen performance and physiological and behavioral parameters under "natural" high temperatures during the 2013 summer with a 4-hour acute heating episode. White Leghorns at 16 wk of age (N = 162) were randomly assigned to 18 cages (n = 9) arranged into 3 units. Each unit was assigned to one of the 3 treatments through 32 wk of age: 1) cooled perches, 2) air perches, and 3) no perches. Chilled water (10°C) was circulated through the cooled perches when cage ambient temperature exceeded 25°C. At the age of 27.6 wk, hens were subjected to a 4-hour acute heating episode of 33.3°C and plasma corticosterone was determined within 2 hours. Egg production was recorded daily. Feed intake and egg and shell quality were measured at 5-week intervals. Feather condition, foot health, adrenal and liver weights, plasma corticosterone, and heat shock protein 70 mRNA were determined at the end of the study at 32 wk of age. The proportion of hens per cage perching, feeding, drinking, panting, and wing spreading was evaluated over one d every 5 wks and on the d of acute heat stress. There were no treatment effects on the measured physiological and production traits except for nail length. Nails were shorter for cooled perch hens than control (P = 0.002) but not air perch hens. Panting and wing spread were observed only on the day of acute heat stress. The onset of both behaviors was delayed for cooled perch hens, and they perched more than air perch hens following acute heat stress (P = 0.001) and at the age 21.4 wk (P = 0.023). Cooled perch hens drank less than control (P = 0.019) but not air perch hens at the age 21.4 wk. These results indicate that thermally cooled perches reduced thermoregulatory behaviors during acute heat stress, but did not affect their performance and physiological parameters under the ambient temperature imposed during this study. Published by Oxford University Press on behalf of

  17. The effect of cooling to different subzero temperatures on dog sperm cryosurvival.

    Science.gov (United States)

    Alcantar-Rodriguez, A; Medrano, A

    2017-06-01

    The objective was to assess the effect of cooling to different subzero temperatures around ice formation (-5°C) on dog sperm cryosurvival and plasma membrane fluidity. Semen was centrifuged, and sperm were resuspended in a Tris-egg yolk medium (3% glycerol). Diluted sperm were cooled from 22 to 5°C, and then, a Tris-egg yolk medium containing 7% glycerol was added (final concentration of 5% glycerol and 200 × 10 6  cells/ml). Sperm were packaged in 0.5-ml plastic straws, and equilibration was done 16 hr at 5°C before freezing. I. Straws (n = 47) at 5°C were exposed to nitrogen vapours to determine the freezing point. II. Other straws (from different ejaculates) processed as mentioned, were further cooled to -3, -5 or -7°C and immediately rewarmed in a water bath at 37°C. Motility, plasma membrane functionality and acrosome integrity were assessed. III. Other straws (from different ejaculates) processed as mentioned were further cooled to -3 or -5°C, frozen over nitrogen vapours and stored in liquid nitrogen for one month. Straws were thawed in a water bath at 38°C for 30 s. Motility, plasma membrane functionality, plasma membrane integrity, acrosome integrity, capacitation status and plasma membrane fluidity were assessed. Ice nucleation temperature was -14.3 ± 2.05°C (mean ± SD); cooling to +5, -3, -5 and -7°C, without freezing, produces no differences on sperm quality between target temperatures; cooling to +5, -3, and -5°C produced no differences on sperm survival and plasma membrane fluidity after freeze-thawing. In conclusion, cooling of dog spermatozoa to different subzero temperatures did not improve sperm cryosurvival and had no effect on plasma membrane fluidity after thawing. © 2017 Blackwell Verlag GmbH.

  18. The effect of lower body cooling on the changes in three core temperature indices

    International Nuclear Information System (INIS)

    Basset, F A; Cahill, F; Handrigan, G; DuCharme, M B; Cheung, S S

    2011-01-01

    Rectal (T re ), ear canal (T ear ) and esophageal (T es ) temperatures have been used in the literature as core temperature indices in humans. The aim of the study was to investigate if localized lower body cooling would have a different effect on each of these measurements. We hypothesized that prolonged lower body surface cooling will result in a localized cooling effect for the rectal temperature not reflected in the other core measurement sites. Twelve participants (mean ± SD; 26.8 ± 6.0 years; 82.6 ± 13.9 kg; 179 ± 10 cm, BSA = 2.00 ± 0.21 m 2 ) attended one experimental session consisting of sitting on a rubberized raft floor surface suspended in 5 °C water in a thermoneutral air environment (∼21.5 ± 0.5 °C). Experimental conditions were (a) a baseline phase during which participants were seated for 15 min in an upright position on an insulated pad (1.408 K . m 2 . W −1 ); (b) a cooling phase during which participants were exposed to the cooling surface for 2 h, and (c) an insulation phase during which the baseline condition was repeated for 1 h. Temperature data were collected at 1 Hz, reduced to 1 min averages, and transformed from absolute values to a change in temperature from baseline (15 min average). Metabolic data were collected breath-by-breath and integrated over the same temperature epoch. Within the baseline phase no significant change was found between the three indices of core temperature. By the end of the cooling phase, T re was significantly lower (Δ = −1.0 ± 0.4 °C) from baseline values than from T ear (Δ = −0.3 ± 0.3 °C) and T es (Δ = −0.1 ± 0.3 °C). T re continued to decrease during the insulation phase from Δ −1.0 ± 0.4 °C to as low as Δ −1.4 ± 0.5 °C. By the end of the insulation phase T re had slightly risen back to Δ −1.3 ± 0.4 °C but remained significantly different from baseline values and from the other two core measures. Metabolic data showed no variation throughout the experiment. In

  19. Strong Effect of Azodye Layer Thickness on RM-Stabilized Photoalignment

    Science.gov (United States)

    2017-05-21

    Strong Effect of Azodye Layer Thickness on RM-Stabilized Photoalignment Colin McGinty*, Valerie Finnemeyer**, Robert Reich**, Harry Clark...vertical alignment on these substrates. For the thinner BY layers, we do not see this strong evidence of out of plane reorientation. The out of...In this report we show the surprising effect that thin azodye layers demonstrate improved stability over those that are thicker. Figure 6

  20. Beam cooling

    OpenAIRE

    Danared, H

    2006-01-01

    Beam cooling is the technique of reducing the momentum spread and increasing the phase-space density of stored particle beams. This paper gives an introduction to beam cooling and Liouville’s theorem, and then it describes the three methods of active beam cooling that have been proven to work so far, namely electron cooling, stochastic cooling, and laser cooling. Ionization cooling is also mentioned briefly.

  1. Effects of a New Cooling Technology on Physical Performance in US Air Force Military Personnel.

    Science.gov (United States)

    O'Hara, Reginald; Vojta, Christopher; Henry, Amy; Caldwell, Lydia; Wade, Molly; Swanton, Stacie; Linderman, Jon K; Ordway, Jason

    2016-01-01

    Heat-related illness is a critical factor for military personnel operating in hyperthermic environments. Heat illness can alter cognitive and physical performance during sustained operations missions. Therefore, the primary purpose of this investigation was to determine the effects of a novel cooling shirt on core body temperature in highly trained US Air Force personnel. Twelve trained (at least 80th percentile for aerobic fitness according to the American College of Sports Medicine, at least 90% on the US Air Force fitness test), male Air Force participants (mean values: age, 25 ± 2.8 years; height, 178 ± 7.9cm; body weight 78 ± 9.6kg; maximal oxygen uptake, 57 ± 1.9mL/kg/ min; and body fat, 10% ± 0.03%) completed this study. Subjects performed a 70-minute weighted treadmill walking test and 10-minute, 22.7kg sandbag shuttle test under two conditions: (1) "loaded" (shirt with cooling inserts) and (2) "unloaded" (shirt with no cooling inserts). Core body temperature, exercise heart rate, capillary blood lactate, and ratings of perceived exertion were recorded. Core body temperature was lower (ρ = .001) during the 70-minute treadmill walking test in the loaded condition. Peak core temperature during the 70-minute walking test was also significantly lower (ρ = .038) in the loaded condition. This lightweight (471g), passive cooling technology offers multiple hours of sustained cooling and reduced core and peak body temperature during a 70-minute, 22.7kg weighted-vest walking test. 2016.

  2. Effectiveness of a night radiative cooling system in different geographical latitudes

    Science.gov (United States)

    Tsoy, A. P.; Granovskiy, A. S.; Baranenko, A. V.; Tsoy, D. A.

    2017-08-01

    Growth of world energy consumption and depletion of energy resources make humanity to constantly work on the creation of the energy efficient technologies and increase usage of the alternative and renewable sources of energy. One of such alternative sources of energy is the night radiative cooling (NRC). NRC is an alternative and renewable source of energy, derived from the effective radiation of the Earth into the Space. If the given surface is located so that it looks to the night sky, then under the particular condition more energy can be generated under the effect of radiative cooling, than received from the atmosphere. As a result the temperature of the surface can be kept lower than the temperature of the ambient air. This effect can be used for creation of the refrigeration systems with the low energy consumption and as a result lower negative influence on the environment. During the research it has been identified that the possibility of the NRC usage is mostly predetermined by the specifics of the climate of the each region. In particular climate conditions the refrigeration systems working on night radiative cooling will be more effective that in others.

  3. The effects of age on nuclear power plant containment cooling systems

    International Nuclear Information System (INIS)

    Lofaro, R.; Subudhi, M.; Travis, R.; DiBiasio, A.; Azarm, A.; Davis, J.

    1994-04-01

    A study was performed to assess the effects of aging on the performance and availability of containment cooling systems in US commercial nuclear power plants. This study is part of the Nuclear Plant Aging Research (NPAR) program sponsored by the US Nuclear Regulatory Commission. The objectives of this program are to provide an understanding of the aging process and how it affects plant safety so that it can be properly managed. This is one of a number of studies performed under the NPAR program which provide a technical basis for the identification and evaluation of degradation caused by age. The effects of age were characterized for the containment cooling system by reviewing and analyzing failure data from national databases, as well as plant-specific data. The predominant failure causes and aging mechanisms were identified, along with the components that failed most frequently. Current inspection, surveillance, and monitoring practices were also examined. A containment cooling system unavailability analysis was performed to examine the potential effects of aging by increasing failure rates for selected components. A commonly found containment spray system design and a commonly found fan cooler system design were modeled. Parametric failure rates for those components in each system that could be subject to aging were accounted for in the model to simulate the time-dependent effects of aging degradation, assuming no provisions are made to properly manage it. System unavailability as a function of increasing component failure rates was then calculated

  4. Effects of Nuclear Energy on Sustainable Development and Energy Security: Sodium-Cooled Fast Reactor Case

    Directory of Open Access Journals (Sweden)

    Sungjoo Lee

    2016-09-01

    Full Text Available We propose a stepwise method of selecting appropriate indicators to measure effects of a specific nuclear energy option on sustainable development and energy security, and also to compare an energy option with another. Focusing on the sodium-cooled fast reactor, one of the highlighted Generation IV reactors, we measure and compare its effects with the standard pressurized water reactor-based nuclear power, and then with coal power. Collecting 36 indicators, five experts select seven key indicators to meet data availability, nuclear energy relevancy, comparability among energy options, and fit with Korean energy policy objectives. The results show that sodium-cooled fast reactors is a better alternative than existing nuclear power as well as coal electricity generation across social, economic and environmental dimensions. Our method makes comparison between energy alternatives easier, thereby clarifying consequences of different energy policy decisions.

  5. Cooled-Spool Piston Compressor

    Science.gov (United States)

    Morris, Brian G.

    1994-01-01

    Proposed cooled-spool piston compressor driven by hydraulic power and features internal cooling of piston by flowing hydraulic fluid to limit temperature of compressed gas. Provides sufficient cooling for higher compression ratios or reactive gases. Unlike conventional piston compressors, all parts of compressed gas lie at all times within relatively short distance of cooled surface so that gas cooled more effectively.

  6. The Effect of Wind Velocity on the Cooling Rate of Water

    OpenAIRE

    Shrey Aryan

    2016-01-01

    The effect of wind velocity on the cooling rate of water was investigated by blowing air horizontally over the surface of water contained in a plastic water-bottle cap. The time taken for the temperature to fall to the average of the surrounding and initial temperatures was recorded at different values of wind velocity. It was observed that on increasing the wind velocity, the time taken to achieve average temperature not only decreased but also remained the same after a certain point.

  7. Physiological tolerance to uncompensated heat stress in soldiers: Effects of various types of body cooling systems

    Directory of Open Access Journals (Sweden)

    Jovanović Dalibor

    2014-01-01

    Full Text Available Background/Aim. In military services, emergency situations when soldiers are exposed to a combination of nuclear, biological and chemical (NBC contamination combined with heat stress, are frequent and complex. In these specific conditions, usage of personal body cooling systems may be effective in reducing heat stress. The present study was conducted in order to evaluate the efficiency of four various types of contemporary personal body cooling systems based on the “Phase Change Material” (PCM, and its effects on soldiers’ subjective comfort and physiological performance during exertional heat stress in hot environments. Methods. Ten male soldiers were voluntarily subjected to exertional heat stress tests (EHSTs consisted of walking on a treadmill (5.5 km/h in hot conditions (40ºC in climatic chamber, wearing NBC isolating impermeable protective suits. One of the tests was performed without any additional cooling solution (NOCOOL, and four tests were performed while using different types of cooling systems: three in a form of vests and one as underwear. Physiological strain was determined by the mean skin temperature (Tsk, tympanic temperature (Tty, and heart rate values (HR, while sweat rates (SwR indicated changes in hydration status. Results. In all the cases EHST induced physiological response manifested through increasing Tty, HR and SwR. Compared to NOCOOL tests, when using cooling vests, Tty and Tsk were significantly lower (on 35th min, for 0.44 ± 0.03 and 0.49 ± 0.05ºC, respectively; p < 0.05, as well as the average SwR (0.17 ± 0.03 L/m2/h. When using underwear, the values of given parameters were not significantly different compared to NOCOOL tests. Conclusions. Using a body cooling system based on PCM in the form of vest under NBC protective clothes during physical activity in hot conditions, reduces sweating and alleviates heat stress manifested by increased core and skin temperatures and heart rate values. These effects

  8. The Bigger, the Better? The Influence of Urban Green Space Design on Cooling Effects for Residential Areas.

    Science.gov (United States)

    Jaganmohan, Madhumitha; Knapp, Sonja; Buchmann, Carsten M; Schwarz, Nina

    2016-01-01

    It is well known that the cooling effect of an urban green space extends into its surroundings, cooling the immediate environment and mitigating urban heat problems. However, the effects of size, shape, and type of an urban green space on cooling remain uncertain. The objectives of our study were to quantify and compare the strength of the cooling effects of urban parks and forests, to determine how far the cooling effects extend into the surrounding residential environment, and to better understand how temperature gradients are driven by physical characteristics of the green space and the surroundings. Mobile air temperature measurements were performed in 62 urban parks and forests in the city of Leipzig, Germany, in the summer of 2013. Three indicators of cooling were calculated: the change in temperature (ΔT) at the park-width distance, the maximum ΔT, and the cooling distance. The relationships of these variables to the physical characteristics of the green spaces and their surroundings were examined in multiple regression models. Analyzing all three indicators revealed that cooling effects were greater in urban forests than in parks. Cooling increased with increasing size but in a different manner for forests and parks, whereas the influence of shape was the same for forests and parks. Generally, the characteristics of the green spaces were more important than the characteristics of the residential surroundings. These findings have the potential to assist in better planning and designing of urban green spaces to increase their cooling effects. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Effect of cold inflow on chimney height of natural draft cooling towers

    International Nuclear Information System (INIS)

    Chu, Chi-Ming; Rahman, Md. Mizanur; Kumaresan, Sivakumar

    2012-01-01

    Highlights: ► Natural convection data were obtained from an air-cooled heat exchanger model. ► The extent of cold inflow was quantified to relate to the decrease in effective chimney height. ► Installation of wire mesh screen on chimney outlet blocked off cold inflow to improve the chimney efficiency. ► Evidence of existence of effective plume-chimney for when cold inflow was blocked off warrants further work. - Abstract: Temperature and pressure drop data obtained from an air-cooled heat exchanger model with cross-sectional flow areas of 0.56 m 2 , 1.00 m 2 and 2.25 m 2 operating under natural convection are presented that indicate significant cold inflow, resulting in the reduction of effective chimney height. Cold inflows encountered in actual applications where the Froude number is typically 0.2, may not be as severe as described in this paper, which was of the order of 10 −6 –10 −4 . Additional tests on smaller scale models appeared to favor the explanation that the occurrence of cold inflow in the air-cooled heat exchanger model was primarily due to the relative ease in either drawing cold air from inlet or from outlet, and to a lesser extent the Froude number of the chimney or the critical velocity estimated by formula. A CFD study will bring much understanding of the phenomenon for the different situations.

  10. Effect of cooling methods on hole quality in drilling of aluminium 6061-6T

    International Nuclear Information System (INIS)

    Islam, M N; Boswell, B

    2016-01-01

    The influence of cooling method and drilling parameters on hole production has been investigated experimentally and analytically by measuring the hole quality. A three-level, three-parameter experiment was conducted using design-of-experiment methodology. The three levels of independent input parameters were: for cooling method—flood drilling, minimum quantity lubrication (MQL) drilling and cryogenic drilling; for feed rate—0.2, 0.3 and 0.4 mm/rev; and for cutting speed—60, 75 and 100 m/min. The selected work and tool materials were aluminium 6061-6T and high speed steel (HSS), respectively. The measured output parameters were the three most widely used quality characteristics of drilled holes - diameter error, circularity and surface roughness. The results were analysed applying three methods: Pareto ANOVA, Taguchi method and traditional analysis. The findings revealed that the cooling method has a significant effect on diameter error (contribution ratio 88.27%), moderate effect on surface roughness (contribution ratio 41.74%) and relatively small effect on circularity (contribution ratio 23.64%). The best results for the dimensional accuracy and surface roughness were achieved by MQL drilling. Cryogenic drilling produced the best circularity results; however, in terms of dimensional accuracy and surface roughness it was the worst. (paper)

  11. Cooling fins to limit the hot-electron effect in dc SQUIDs

    Energy Technology Data Exchange (ETDEWEB)

    Falferi, P; Vinante, A [Istituto di Fotonica e Nanotecnologie, CNR-FBK, Povo, I-38050 Trento (Italy); Mezzena, R [INFN, Gruppo Collegato di Trento, Sezione di Padova, Povo, I-38050 Trento (Italy); Mueck, M [Institute of Applied Physics, University of Giessen, D-35392 Giessen (Germany)], E-mail: falferi@science.unitn.it

    2008-02-15

    The generally accepted noise theory of the dc SQUID predicts that the energy resolution scales as the electron temperature in the Josephson junction shunt resistors. As in metals at low temperature the electron-phonon coupling becomes very weak, the electron gas of the thin film shunt resistors undergoes a Joule heating due to the bias current and its temperature can be significantly higher than that of the thermal bath. This heating, the hot-electron effect, causes a deviation from the linear behaviour of noise versus temperature and a saturation of the SQUID noise, typically at temperatures of about 200 mK. This effect can be reduced considerably by increasing the effective volume available for the electron-phonon interaction by attaching 'large' cooling fins to the shunt resistors. Our measurements have been performed on two thin film devices made with the same design of a dc SQUID but without the Josephson junctions: one device with standard shunt resistors, the other with shunt resistors with cooling fins. From these measurements one can expect for the SQUID with cooling fins an improvement of the noise saturation temperature of at most a factor 2, from 200 mK to about 100 mK.

  12. Effect of cooling methods on hole quality in drilling of aluminium 6061-6T

    Science.gov (United States)

    Islam, M. N.; Boswell, B.

    2016-02-01

    The influence of cooling method and drilling parameters on hole production has been investigated experimentally and analytically by measuring the hole quality. A three-level, three-parameter experiment was conducted using design-of-experiment methodology. The three levels of independent input parameters were: for cooling method—flood drilling, minimum quantity lubrication (MQL) drilling and cryogenic drilling; for feed rate—0.2, 0.3 and 0.4 mm/rev; and for cutting speed—60, 75 and 100 m/min. The selected work and tool materials were aluminium 6061-6T and high speed steel (HSS), respectively. The measured output parameters were the three most widely used quality characteristics of drilled holes - diameter error, circularity and surface roughness. The results were analysed applying three methods: Pareto ANOVA, Taguchi method and traditional analysis. The findings revealed that the cooling method has a significant effect on diameter error (contribution ratio 88.27%), moderate effect on surface roughness (contribution ratio 41.74%) and relatively small effect on circularity (contribution ratio 23.64%). The best results for the dimensional accuracy and surface roughness were achieved by MQL drilling. Cryogenic drilling produced the best circularity results; however, in terms of dimensional accuracy and surface roughness it was the worst.

  13. Effects of cooling methods on the occurrence of sulfur in the low-titanium slag

    Science.gov (United States)

    Wang, Baohua; Zhang, Mingbo; Gong, Yongyu; Huang, Shiping; Qiu, Shengtao; Zhu, Rong

    2018-01-01

    The distribution of sulfur existence in the mineral phase and occurrence in the low-titanium slag with different cooling methods (water cooling, air cooling, crucible cooling, and furnace cooling) were studied by XRD, EPMA and XPS. The results show that with the cooling rate decrease, the distribution of S changes from clustering dots to large sheet or surface, and the occurrence of S in the mineral phase transfers gradually from the vitreous, perovskite, merwinite and the intertwined phase of some mineral phases to the gehlenite. During the transfer, the velocity decreases with the increasing of the cooling rate. The S in the water cooling slag only exists in the form of SO32- and SO42-, while the occurrences of S in the air cooling slag, crucible cooling slag, and furnace cooling slag are S2-, SO32- and SO42-.

  14. Cooling systems

    International Nuclear Information System (INIS)

    Coutant, C.C.

    1978-01-01

    Progress on the thermal effects project is reported with regard to physiology and distribution of Corbicula; power plant effects studies on burrowing mayfly populations; comparative thermal responses of largemouth bass from northern and southern populations; temperature selection by striped bass in Cherokee Reservoir; fish population studies; and predictive thermoregulation by fishes. Progress is also reported on the following; cause and ecological ramifications of threadfin shad impingement; entrainment project; aquaculture project; pathogenic amoeba project; and cooling tower drift project

  15. Effectiveness of Ti-micro alloying in relation to cooling rate on corrosion of AZ91 Mg alloy

    International Nuclear Information System (INIS)

    Candan, S.; Celik, M.; Candan, E.

    2016-01-01

    In this study, micro Ti-alloyed AZ91 Mg alloys (AZ91 + 0.5wt.%Ti) have been investigated in order to clarify effectiveness of micro alloying and/or cooling rate on their corrosion properties. Molten alloys were solidified under various cooling rates by using four stage step mold. The microstructural investigations were carried out by using scanning electron microscopy (SEM). Corrosion behaviors of the alloys were evaluated by means of immersion and electrochemical polarization tests in 3.5% NaCl solution. Results showed that the Mg 17 Al 12 (β) intermetallic phase in the microstructure of AZ91 Mg alloy formed as a net-like structure. The Ti addition has reduced the distribution and continuity of β intermetallic phase and its morphology has emerged as fully divorced eutectic. Compared to AZ91 alloy, the effect of the cooling rate in Ti-added alloy on the grain size was less pronounced. When AZ91 and its Ti-added alloys were compared under the same cooling conditions, the Ti addition showed notably high corrosion resistance. Electrochemical test results showed that while I corr values of AZ91 decrease with the increase in the cooling rate, the effect of the cooling rate on I corr values was much lower in the Ti-added alloy. The corrosion resistance of AZ91 Mg alloy was sensitive towards the cooling rates while Ti-added alloy was not affected much from the cooling conditions. - Highlights: • Effect the cooling rate on grain size was less pronounced in the Ti-added alloy. • The morphology of the β phase transformed into fully divorced eutectics. • Ti addition exhibited significantly higher corrosion resistance. • Ti micro alloying is more effective than faster cooling of the alloy on corrosion.

  16. Effects of cooling temperature and hot carcass weight on the quality of lamb.

    Science.gov (United States)

    Muela, E; Sañudo, C; Campo, M M; Medel, I; Beltrán, J A

    2010-01-01

    The effects of cooling temperature (CT) (0-2, 2-4, or 4-6 degrees C) and hot carcass weight (HCW) (either or= 12.0 kg) on weight loss (WL) and meat quality were evaluated in 60 lamb carcasses of Rasa Aragonesa breed. Carcasses were exposed to CT throughout 90 h. WL was assessed at 18, 42, 66, and 90 h post-slaughter. pH, colour, instrumental measurement of texture, oxidation, and sensory parameters were evaluated in longissimus thoracis et lumborum aged for 96 h following standard methods. Sensory test involved a trained test panel. No significant interactive effects among the parameters evaluated were detected in the study. The lower the CT, the higher the WL after 90 h in storage (0.25% lost each 2 degrees C decrease), the higher final pH, and the lower lightness, the higher hue and chroma of the meat. Toughness was higher in meat cooled at 2-4 degrees C than in meat cooled at temperatures above or below this range. Neither oxidation nor sensory variables were affected by CT. Regarding on HCW, light carcasses exhibited higher WL (2.39% versus 2.04% after 90 h of cooling), higher final pH, and lower levels of oxidation than did heavier carcasses. Neither colour nor instrumental measurement of texture was affected by HCW. Lamb and fat odour and metallic and acid flavour intensities were significantly greater in the heavier carcasses, although it did not affect overall acceptability. Both CT and HCW should be considered as main effects on lamb quality, especially CT.

  17. The Effect of Intermittent Vest Cooling on Thermoregulation and Cardiovascular Strain in Baseball Catchers.

    Science.gov (United States)

    Bishop, Stacy H; Szymanski, David J; Ryan, Greg A; Herron, Robert L; Bishop, Phil A

    2017-08-01

    Bishop, SH, Szymanski, DJ, Ryan, GA, Herron, RL, and Bishop, PA. The effect of intermittent vest cooling on thermoregulation and cardiovascular strain in baseball catchers. J Strength Cond Res 31(8): 2060-2065, 2017-Baseball catchers are exposed to multiple physiological challenges while playing outside during the spring and summer months, many of which deal with recovery and thermoregulation. The purpose of this study was to investigate the effect of intermittent cooling on core temperature, cardiovascular strain, exertion, and recovery during a simulated catching performance in the heat. Six trained college-aged baseball catchers performed in a controlled, hot (35° C), and humid (25% relative humidity) environment in a counter-balanced, cross-over design. Ice vest cooling (VC) was used as a cooling modality and was compared with a control of no cooling (NC). Rectal temperature (Tre), heart rate (HR), rating of perceived exertion (RPE), and perceived recovery scale (PRS) were recorded before and after each simulated inning. All activities took place in a heat chamber, and each inning consisted of catchers receiving 12 pitches in their position followed by 6 minutes of recovery. Nine total innings were performed, and 27 total innings were performed with each of the 2 treatments. A significantly smaller mean Tre change was seen in VC when compared with NC (0.58 ± 0.2° C, 0.98 ± 0.2° C, p ≤ 0.01, respectively). Rating of perceived exertion was significantly lower and PRS was significantly improved for VC compared with NC (both p ≤ 0.05). Mean recovery HR during VC was significantly lower than NC in the fifth (VC = 84 ± 8 b·min, NC = 90 ± 9 b·min, p = 0.04), seventh (VC = 84 ± 3 b·min, NC = 92 ± 7 b·min, p = 0.02), and ninth (VC = 85 ± 7 b·min, NC = 93 ± 5 b·min, p = 0.01) innings. Heart rate during catching was significantly lower at the end of the VC trials when compared with NC (108 ± 16 b·min vs. 120 ± 19 b·min, p = 0.02, respectively

  18. Effects of N and B on continuous cooling transformation diagrams of Mo-V-Ti micro-alloyed steels

    Science.gov (United States)

    Yuhui, Wang; Bo, Liao; Ligang, Liu; Xianfeng, Li; Hang, Su; Caifu, Yang; Qingfeng, Wang

    2012-05-01

    Effects of the single addition of nitrogen (N) and boron (B) and the combined addition of N and B on continuous cooling transformation (CCT) diagrams and properties of the three Mo-V-Ti micro-alloyed steels were investigated by means of a combined method of dilatometry and metallography. Microstructures observed in continuous cooled specimens were composed of pearlite (P), quasi-polygonal ferrite (QPF), granular bainite (GB), acicular ferrite (AF), lath-like bainite (LB) and martensite (M) depending on the cooling rates and transformation temperatures. Single addition of 12 ppm B effectively reduced the formation of QPF and broadened the cooling rate region for LB and M. Added N makes the action of B invalid and the QPF region was prominently broadened, and even though the cooling rate is higher than 50°C s-1, it cannot obtain full bainite.

  19. Nontrivial effects of high-frequency excitation for strongly damped mechanical systems

    DEFF Research Database (Denmark)

    Fidlin, Alexander; Thomsen, Jon Juel

    Some nontrivial effects are investigated, which can occur if strongly damped mechanical systems are subjected to strong high-frequency (HF) excitation. The main result is a theoretical prediction, supported by numerical simulation, that for such systems the (quasi-)equilibrium states can change...... that can be substantial (depending on the strength of the HF excitation) for finite values of the damping. The analysis is focused on the differences between the classic results for weakly damped systems, and new effects for which the strong damping terms are responsible. The analysis is based...... on a slightly modified averaging technique, and includes an elementary example of an elliptically excited pendulum for illustration, alongside with a generalization to a broader class of strongly damped dynamical systems with HF excitation. As an application example, the nontrivial behavior of a classical...

  20. Nontrivial effects of high-frequency excitation for strongly damped mechanical systems

    DEFF Research Database (Denmark)

    Fidlin, Alexander; Thomsen, Jon Juel

    2008-01-01

    Some non-trivial effects are investigated, which can occur if strongly damped mechanical systems are subjected to strong high-frequency (HF) excitation. The main result is a theoretical prediction, supported by numerical simulation, that for such systems the (quasi-)equilibrium states can change...... that can be substantial depending on the strength of the HF excitation) for finite values of the damping. The analysis is focused on the differences between the classic results for weakly damped systems, and new effects for which the strong damping terms are responsible. The analysis is based on a slightly...... modified averaging technique, and includes an elementary example of an elliptically excited pendulum for illustration, alongside with a generalization to a broader class of strongly damped dynamical systems with HF excitation. As an application example, the nontrivial behavior of a classical optimally...

  1. <strong>Effectiveness of Orthoses and Foot Training in patients with Patellofemoral Pain and hyperpronationstrong>

    DEFF Research Database (Denmark)

    Mølgaard, Carsten; Kaalund, Søren; Christensen, Marianne

    of treatment with functional foot orthoses, exercises, or orthoses with exercises. The intrinsic pedal muscles play an important role in support of the medial longitudinal arch. (2) There are however very little information of the effect from specific foot exercise as an imperative part of exercise program...... adolescent females (3). Soft foot orhtoses in addition to an exercise program resulted in significantly greater improvements in pain than treatment with flat insoles and exercises over eight weeks. A study from 2004 by Wiener-Ogilvie & Jones (4) found however no difference in outcome between 8 weeks...... to PFPS patients. The purpose of this prospective single blinded randomised study was to determine the effectiveness of a standardized foot training program combined with foot orthoses in patients with patellofemoral pain. This treatment was additional to a regular conservative patellofemoral regime...

  2. Effects of rapid and slow cooling on thermoregulatory reactions in hypertensive rats after administration of calcium.

    Science.gov (United States)

    Kozyreva, T V; Lomakina, S V; Tkachenko, E Ya; Markel', A L

    2007-01-01

    Iontophoretic administration of calcium ions into the skin close to the application site of a cold stimulus decreased the threshold of thermoregulatory reactions in hypertensive rats to a greater extent than in normotensive control animals, which may be evidence that the tissues involved in thermoregulatory reactions to cold have a greater sensitivity to calcium in hypertensive rats. The initially earlier onset of vascular and metabolic reactions and the increase in the vascular reaction seen in hypertensive rats became more marked after administration of calcium. Treatment with calcium, increasing the vascular reaction to cooling, facilitates a more marked discrimination between hyper-and normotensive animals in terms of the appearance of the vasoconstrictor reactions of skin blood vessels in response to cold. The effects of the added calcium on cold-dependent reactions depended on the rate of cooling.

  3. Cooling of chiral heat transport in the quantum Hall effect regime of graphene

    Science.gov (United States)

    Slizovskiy, Sergey; Fal'ko, Vladimir

    2017-08-01

    In the quantum Hall effect (QHE) regime, heat is carried by electrons in the edge states of Landau levels. Here, we study cooling of hot electrons propagating along the edge of graphene at the filling factor ν =±2 , mediated by acoustic phonons. We determine the temperature profile extended from a hot spot, where the Hall current is injected into graphene from a metallic contact, taking into account specifics of boundary conditions for lattice displacements in graphene in a van der Waals heterostructure with an insulating substrate. Our calculations, performed using generic boundary conditions for Dirac electrons, show that emission of phonons can explain a short cooling length observed in graphene-based QHE devices by Nahm, Hwang, and Lee [Phys. Rev. Lett. 110, 226801 (2013), 10.1103/PhysRevLett.110.226801].

  4. Neutron spectrum effects on TRU recycling in Pb-Bi cooled fast reactor core

    International Nuclear Information System (INIS)

    Kim, Yong Nam; Kim, Jong Kyung; Park, Won Seok

    2003-01-01

    This study is intended to evaluate the dependency of TRU recycling characteristics on the neutron spectrum shift in a Pb-Bi cooled core. Considering two Pb-Bi cooled cores with the soft and the hard spectrum, respectively, various characteristics of the recycled core are carefully examined and compared with each other. Assuming very simplified fuel cycle management with the homogeneous and single region fuel loading, the burnup calculations are performed until the recycled core reached to the (quasi-) equilibrium state. The mechanism of TRU recycling toward the equilibrium is analyzed in terms of burnup reactivity and the isotopic compositions of TRU fuel. In the comparative analyses, the difference in the recycling behavior between the two cores is clarified. In addition, the basic safety characteristics of the recycled core are also discussed in terms of the Doppler coefficient, the coolant loss reactivity coefficient, and the effective delayed neutron fraction

  5. Effect of cooling on the efficiency of Schottky varactor frequency multipliers at millimeter waves

    Science.gov (United States)

    Louhi, Jyrki; Raiesanen, Antti; Erickson, Neal

    1992-01-01

    The efficiency of the Schottky diode multiplier can be increased by cooling the diode to 77 K. The main reason for better efficiency is the increased mobility of the free carriers. Because of that the series resistance decreases and a few dB higher efficiency can be expected at low input power levels. At high output frequencies and at high power levels, the current saturation decreases the efficiency of the multiplication. When the diode is cooled the maximum current of the diode increases and much more output power can be expected. There are also slight changes in the I-V characteristic and in the diode junction capacitance, but they have a negligible effect on the efficiency of the multiplier.

  6. Effect of deformation on the continuous cooling transformation (CCT diagram of steel 32CRB4

    Directory of Open Access Journals (Sweden)

    R. Kawulok

    2015-07-01

    Full Text Available CCT and DCCT steel diagrams of the steel 32CrB4 were determined by the universal plastometer GLEEBLE 3 800 on the basis of dilatometric tests. Dilatometric analysis showed that compared to the diagram provided by the software QTSteel th e noses of individual curves are in fact shifted towards shorter times. Preceding deformation significantly affected the decay diagram of the investigated steel. Shorter times, which were available for recovery of the deformed structure during more rapid cooling, resulted in a significant shift of the curves in the DCCT diagram towards shorter times. At low cooling rates the effect of deformation was practically negligible, since recrystallization took place between the deformation and beginning of the phase transformation.

  7. The effects of aging on Boiling Water Reactor core isolation cooling system

    International Nuclear Information System (INIS)

    Lee, Bom Soon.

    1994-01-01

    A study was performed to assess the effects of aging on the Reactor Core Isolation Cooling system in commercial Boiling Water Reactors. This study is part of the Nuclear Plant Aging Research program sponsored by the US Nuclear Regulatory Commission. The failure data, from national databases, as well as plant specific data were reviewed and analyzed to understand the effects of aging on the RCIC system. This analysis identified important components that should receive the highest priority in terms of aging management. The aging characterization provided information on the effects of aging on component failure frequency, failure modes, and failure causes

  8. Dick Effect in a Microwave Frequency Standard Based on Laser-Cooled 113Cd+ Ions

    Science.gov (United States)

    Zhang, Jian-Wei; Miao, Kai; Wang, Li-Jun

    2015-01-01

    The Dick effect is one of the main limits to the frequency stability of a passive frequency standard, especially for the fountain clock and ion clock operated in pulsed mode which require unavoidable dead time during interrogation. Here we measure the phase noise of the interrogation oscillator applied in the microwave frequency standard based on laser-cooled 113Cd+ ions, and analyze the Allan deviation limited by the Dick effect. The results indicate that the Dick effect is one of the key issues for the cadmium ion clock to reach expected frequency stability. This problem can be resolved by interrogating the local oscillator continuously with two ion traps.

  9. Feedback effects of deformations on fuel temperatures during degraded cooling accidents in CANDU reactors

    International Nuclear Information System (INIS)

    Lau, J.H.K.; Akalin, O.; Reeves, D.B.; Muzumdar, A.P.; Blahnik, C.

    1984-01-01

    During postulated degraded cooling accidents in CANDU reactors, some fuel channels may receive only single phase steam. The amount of this steam flow is governed by the pressure differential across the fuel channel, as well as the pressure-loss characteristics of the channel flow path. Any deformation of the bundle and the fuel channel components, due to heatup resulting from inadequate steam cooling, will alter the pressure-loss characteristics. This in turn will affect the subsequent steam flow, and hence, the deformation behaviour of the fuel. Deformations will also affect the normal heat transfer paths available in the fuel channels by establishing contacts among the channel components. They will also affect the fuel temperatures by altering the coolant flow pattern through the fuel bundle. In a deformed bundle, the subchannel flow areas can be significantly reduced, limiting the access of steam to the bundle interior. This paper describes the computer model CHAN-II(MOD6) which was developed to analyse the feedback effects of deformations on fuel temperatures in CANDU fuel channels. Sample results are presented and they show that deformations have the effect of lowering the average fuel temperature in the fuel channel during degraded cooling accidents. (author)

  10. Effect of healthy aging on renal vascular responses to local cooling and apnea.

    Science.gov (United States)

    Patel, Hardikkumar M; Mast, Jessica L; Sinoway, Lawrence I; Muller, Matthew D

    2013-07-01

    Sympathetically mediated renal vasoconstriction may contribute to the pathogenesis of hypertension in older adults, but empirical data in support of this concept are lacking. In 10 young (26 ± 1 yr) and 11 older (67 ± 2 yr) subjects, we quantified acute hemodynamic responses to three sympathoexcitatory stimuli: local cooling of the forehead, cold pressor test (CPT), and voluntary apnea. We hypothesized that all stimuli would increase mean arterial blood pressure (MAP) and renal vascular resistance index (RVRI) and that aging would augment these effects. Beat-by-beat MAP, heart rate (HR), and renal blood flow velocity (from Doppler) were measured in the supine posture, and changes from baseline were compared between groups. In response to 1°C forehead cooling, aging was associated with an augmented MAP (20 ± 3 vs. 6 ± 2 mmHg) and RVRI (35 ± 6 vs. 16 ± 9%) but not HR. In older adults, there was a positive correlation between the cold-induced pressor response and forehead pain (R = 0.726), but this effect was not observed in young subjects. The CPT raised RVRI in both young (56 ± 13%) and older (45 ± 8%) subjects, but this was not different between groups. Relative to baseline, end-expiratory apnea increased RVRI to a similar extent in both young (46 ± 14%) and older (41 ± 9%) subjects. During sympathetic activation, renal vasoconstriction occurred in both groups. Forehead cooling caused an augmented pressor response in older adults that was related to pain perception.

  11. Effect of cooling heat-stressed dairy cows during the dry period on insulin response.

    Science.gov (United States)

    Tao, S; Thompson, I M; Monteiro, A P A; Hayen, M J; Young, L J; Dahl, G E

    2012-09-01

    Heat stress (HT) during the dry period affects hepatic gene expression and adipose tissue mobilization during the transition period. In addition, it is postulated that HT may alter insulin action on peripheral tissues. Our objective was to evaluate the effect of cooling heat-stressed cows during the dry period on insulin effects on peripheral tissues during the transition period. Cows were dried off 46 d before expected calving and assigned to 1 of 2 treatments: HT (n = 16) or cooling (CL, n = 16). During the dry period, the average temperature-humidity index was 78, but CL cows were cooled with sprinklers and fans, whereas HT cows were not. After calving, all cows were housed and managed under the same conditions. Rectal temperatures were measured twice daily (0730 and 1430 h) and respiration rate recorded 3 times weekly during the dry period. Dry matter intake was recorded daily from dry-off to 42 d relative to calving (DRC). Body weight and body condition score were measured weekly from dry-off to 42 DRC. Milk yield and composition were recorded daily to 42 wk postpartum. Glucose tolerance tests (GTT) and insulin challenges (IC) were performed at dry-off, -14, 7, and 28 DRC in a subset of cows (HT, n = 8; CL, n = 8). Relative to HT, CL cows had lower rectal temperatures (39.3 vs. 39.0°C) in the afternoon and respiration rate (69 vs. 48 breath/min). Cows from the cooling treatment tended to consume more feed than HT cows prepartum and postpartum. Compared with HT, CL cows gained more weight before calving but lost more weight and body condition in early lactation. Cows from the cooling treatment produced more milk than HT cows (34.0 vs. 27.7 kg/d), but treatments did not affect milk composition. Treatments did not affect circulating insulin and metabolites prepartum, but CL cows had decreased glucose, increased nonesterified fatty acid, and tended to have lower insulin concentrations in plasma postpartum compared with HT cows. Cooling prepartum HT cows did not

  12. Computing effective properties of nonlinear structures exposed to strong high-frequency loading at multiple frequencies

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2006-01-01

    Effects of strong high-frequency excitation at multiple frequencies (multi-HFE) are analyzed for a class of generally nonlinear systems. The effects are illustrated for a simple pendulum system with a vibrating support, and for a parametrically excited flexible beam. For the latter, theoretical...

  13. Cool and dry weather enhances the effects of air pollution on emergency IHD hospital admissions.

    Science.gov (United States)

    Qiu, Hong; Yu, Ignatius Tak-Sun; Wang, Xiaorong; Tian, Linwei; Tse, Lap Ah; Wong, Tze Wai

    2013-09-20

    Associations between ambient pollution and cardiovascular morbidity including ischemic heart disease (IHD) have been confirmed. Weather factors such as temperature, season and relative humidity (RH) may modify the effects of pollution. We conducted this study to examine the effects of air pollution on emergency IHD hospital admissions varied across seasons and RH levels, and to explore the possible joint modification of weather factors on pollution effects. Daily time series of air pollution concentrations, mean temperature and RH were collected from IHD hospital admissions from 1998 to 2007 in Hong Kong. We used generalized additive Poisson models with interaction term to estimate the pollution effects varied across seasons and RH levels, after adjusting for time trends, weather conditions, and influenza outbreaks. An increase in the detrimental effects of air pollution in cool season and on low humidity days was observed. In the cool and dry season, a 10 μg/m(3) increment of lag03 exposure was associated with an increase of emergency IHD admissions by 1.82% (95% CI: 1.24-2.40%), 3.89% (95% CI: 3.08-4.70%), and 2.19% (95% CI: 1.33-3.06%) for particles with an aerodynamic diameter less than 10 μm (PM10), nitrogen dioxide (NO2), and ozone (O3), respectively. The effects of pollutants decreased greatly and lost statistical significance in the warm and humid season. We found season and RH jointly modified the associations between ambient pollution and IHD admissions, resulting in increased IHD admissions in the cool and dry season and reduced admissions in the warm and humid season. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. The effect of non-equilibrium metal cooling on the interstellar medium

    Science.gov (United States)

    Capelo, Pedro R.; Bovino, Stefano; Lupi, Alessandro; Schleicher, Dominik R. G.; Grassi, Tommaso

    2018-04-01

    By using a novel interface between the modern smoothed particle hydrodynamics code GASOLINE2 and the chemistry package KROME, we follow the hydrodynamical and chemical evolution of an isolated galaxy. In order to assess the relevance of different physical parameters and prescriptions, we constructed a suite of 10 simulations, in which we vary the chemical network (primordial and metal species), how metal cooling is modelled (non-equilibrium versus equilibrium; optically thin versus thick approximation), the initial gas metallicity (from 10 to 100 per cent solar), and how molecular hydrogen forms on dust. This is the first work in which metal injection from supernovae, turbulent metal diffusion, and a metal network with non-equilibrium metal cooling are self-consistently included in a galaxy simulation. We find that properly modelling the chemical evolution of several metal species and the corresponding non-equilibrium metal cooling has important effects on the thermodynamics of the gas, the chemical abundances, and the appearance of the galaxy: the gas is typically warmer, has a larger molecular-gas mass fraction, and has a smoother disc. We also conclude that, at relatively high metallicity, the choice of molecular-hydrogen formation rates on dust is not crucial. Moreover, we confirm that a higher initial metallicity produces a colder gas and a larger fraction of molecular gas, with the low-metallicity simulation best matching the observed molecular Kennicutt-Schmidt relation. Finally, our simulations agree quite well with observations that link star formation rate to metal emission lines.

  15. SUNYAEV-ZEL'DOVICH EFFECT OBSERVATIONS OF STRONG LENSING GALAXY CLUSTERS: PROBING THE OVERCONCENTRATION PROBLEM

    International Nuclear Information System (INIS)

    Gralla, Megan B.; Gladders, Michael D.; Marrone, Daniel P.; Bayliss, Matthew; Carlstrom, John E.; Greer, Christopher; Hennessy, Ryan; Koester, Benjamin; Leitch, Erik; Sharon, Keren; Barrientos, L. Felipe; Bonamente, Massimiliano; Bulbul, Esra; Hasler, Nicole; Culverhouse, Thomas; Hawkins, David; Lamb, James; Gilbank, David G.; Joy, Marshall; Miller, Amber

    2011-01-01

    We have measured the Sunyaev-Zel'dovich (SZ) effect for a sample of 10 strong lensing selected galaxy clusters using the Sunyaev-Zel'dovich Array (SZA). The SZA is sensitive to structures on spatial scales of a few arcminutes, while the strong lensing mass modeling constrains the mass at small scales (typically <30''). Combining the two provides information about the projected concentrations of the strong lensing clusters. The Einstein radii we measure are twice as large as expected given the masses inferred from SZ scaling relations. A Monte Carlo simulation indicates that a sample randomly drawn from the expected distribution would have a larger median Einstein radius than the observed clusters about 3% of the time. The implied overconcentration has been noted in previous studies and persists for this sample, even when we take into account that we are selecting large Einstein radius systems, suggesting that the theoretical models still do not fully describe the observed properties of strong lensing clusters.

  16. Endwall shape modification using vortex generators and fences to improve gas turbine cooling and effectiveness

    Science.gov (United States)

    Gokce, Zeki Ozgur

    confirmed that placing a rectangular endwall fence upstream of the cylinder created additional turbulent mixing in the domain. This led to increased mixing of the cooler flow in the freestream and the hotter flow near the endwall. As a result, we showed that adding a rectangular fence created a 10% mean heat transfer increase downstream of the cylinder. When vortex generators are used, as the flow passes over the sharp edges of the vortex generators, it separates and continues downstream in a rolling, helical pattern. Combined with the effect generated by the orientation of the vortex generators, this flow structure mixes the higher momentum fluid in the freestream with lower momentum fluid in the boundary layer. Similar turbulent mixing behavior is observed over the entire domain, near the cylinders and the side walls. As a result, the heat transfer levels over the wall surfaces are increased and improved cooling is achieved. The improvements in heat transfer are obtained at the expense of acceptable pressure losses across the cooling channel. When the vortex generators are used, the CFD modeling studies showed that overall heat transfer improvements as high as 27% compared to the baseline case are observed inside a domain containing multiple rows of cylinders. A price in the form of 13% pressure loss increase across the channel is paid for the heat transfer benefits. Experiments conducted in the open loop wind tunnel of the Turbomachinery Aero-Heat Transfer Laboratory of the Department of Aerospace Engineering of Penn State University supported the general positive trend of these findings, with a 14% overall increase in heat transfer over the constant heat flux surface when vortex generators are installed, accompanied by an 8% increase in pressure loss. (Abstract shortened by UMI.)

  17. A comparative analysis to quantify the biogeochemical and biogeophysical cooling effects on climate of a white mustard cover crop

    Science.gov (United States)

    Ferlicoq, Morgan; Ceschia, Eric; Brut, Aurore; Tallec, Tiphaine; Carrer, Dominique; Pique, Gaetan; Ferroni, Nicole

    2017-04-01

    , the amount of C imported to the field increased by 2 g C-eq.m-2. As the white-mustard was buried and used as green manure for the next cash crop, the amount of C exported (when harvesting winter-wheat) was unchanged. Thus, the WM improved the NECB and reinforced the sink effect by 65 g C-eq.m-2. Nevertheless, growing a CC leads to additional emissions associated to FO. They represented only 3 g C-eq.m-2 and can therefore be considered negligible. However, N2O emissions were reduced during the WM development. Finally, the GHGB of the WM subplot (-73 g C-eq.m-2) was a significant sink while the GHGB of the BS subplot was close to neutral (-12 g C-eq.m-2). By increasing surface albedo, the WM induced a biogeophysical cooling effect (-81 g C-eq.m-2) equivalent to the GHGB of the WM subplot. In other words, the white-mustard cooling effect (compared to bare soil) is doubled if both biogeochemical and RFα are considered. This cooling effect was reinforced by the 53% increase in latent heat flux during the WM development. Finally, we estimated that the albedo cooling effect could be increased by 5-fold by maintaining the WM during 6-months. We conclude that through both biogeochemical and biogeophysical effects, cover crops represent a strong mitigation potential.

  18. Using strong nonlinearity and high-frequency vibrations to control effective properties of discrete elastic waveguides

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Thomsen, Jon Juel; Snaeland, Sveinn Orri

    2008-01-01

    The aim of this article is to investigate how highfrequency (HF) excitation, combined with strong nonlinear elastic material behavior, influences the effective material or structural properties for low-frequency excitation and wave propagation. The HF effects are demonstrated on discrete linear...... spring-mass chains with non-linear inclusions. The presented analytical and numerical results suggest that the effective material properties can easily be altered by establishing finite amplitude HF standing waves in the non-linear regions of the chain....

  19. Effective hadronic lagrangian in the strong coupling expansion of lattice QCD with Susskind fermions

    International Nuclear Information System (INIS)

    Azakov, S.I.; Aliev, E.S.

    1987-12-01

    The effective hadronic action in lattice QCD with U(N) and SU(N) gauge groups and with Susskind fermions is constructed in the framework of the strong coupling approximation. For arbitrary finite (odd) N (in particular N=3) we find an effective potential, vacuum expectation value of the (χ-barχ) and an effective action for the physical meson field π(x). (author). 19 refs

  20. Observed increase in local cooling effect of deforestation at higher latitudes.

    Science.gov (United States)

    Lee, Xuhui; Goulden, Michael L; Hollinger, David Y; Barr, Alan; Black, T Andrew; Bohrer, Gil; Bracho, Rosvel; Drake, Bert; Goldstein, Allen; Gu, Lianhong; Katul, Gabriel; Kolb, Thomas; Law, Beverly E; Margolis, Hank; Meyers, Tilden; Monson, Russell; Munger, William; Oren, Ram; Paw U, Kyaw Tha; Richardson, Andrew D; Schmid, Hans Peter; Staebler, Ralf; Wofsy, Steven; Zhao, Lei

    2011-11-16

    Deforestation in mid- to high latitudes is hypothesized to have the potential to cool the Earth's surface by altering biophysical processes. In climate models of continental-scale land clearing, the cooling is triggered by increases in surface albedo and is reinforced by a land albedo-sea ice feedback. This feedback is crucial in the model predictions; without it other biophysical processes may overwhelm the albedo effect to generate warming instead. Ongoing land-use activities, such as land management for climate mitigation, are occurring at local scales (hectares) presumably too small to generate the feedback, and it is not known whether the intrinsic biophysical mechanism on its own can change the surface temperature in a consistent manner. Nor has the effect of deforestation on climate been demonstrated over large areas from direct observations. Here we show that surface air temperature is lower in open land than in nearby forested land. The effect is 0.85 ± 0.44 K (mean ± one standard deviation) northwards of 45° N and 0.21 ± 0.53 K southwards. Below 35° N there is weak evidence that deforestation leads to warming. Results are based on comparisons of temperature at forested eddy covariance towers in the USA and Canada and, as a proxy for small areas of cleared land, nearby surface weather stations. Night-time temperature changes unrelated to changes in surface albedo are an important contributor to the overall cooling effect. The observed latitudinal dependence is consistent with theoretical expectation of changes in energy loss from convection and radiation across latitudes in both the daytime and night-time phase of the diurnal cycle, the latter of which remains uncertain in climate models. © 2011 Macmillan Publishers Limited. All rights reserved

  1. Radiative cooling for concentrating photovoltaic systems

    Science.gov (United States)

    Sun, Yubo; Zhou, Zhiguang; Jin, Xin; Sun, Xingshu; Alam, Muhammad Ashraful; Bermel, Peter

    2017-09-01

    Radiative cooling, a unique and uncommon passive cooling method for devices operating outdoors, has recently been demonstrated to be effective for photovoltaic thermal management. In this work, we investigate the effect of radiative cooling as a complement to existing passive cooling methods like convective cooling in a related system with much higher heat loads: a high-concentration photovoltaic (HCPV) system. A feasible radiative cooler design addressing the thermal management challenges here is proposed. It consists of low-iron soda-lime glass with a porous layer on top as an antireflection coating and a diamond layer as heat spreader. It is found that the proposed structure has strong mid-IR emittance as well as high solar transmission, allowing radiative cooling under direct sunlight and low loss in the concentrated solar irradiance. A systematic simulation with realistic considerations is then performed. Compared with a conventional copper cooler, the lowest temperature reached by the proposed radiative cooler is 14 K lower. Furthermore, less area of the proposed cooler is needed to reach a standard target temperature (333.15 K) for steady-state operation under high concentrations for the crystalline silicon PV module. In order to compare the coolers quantitatively, a figure of merit - cooling power per weight - is introduced. At the target temperature, the proposed cooler is determined to have a cooling power per weight of 75 W/kg, around 3.7 times higher than that of the conventional copper cooler.

  2. Engineering the mobility increment in pentacene-based field-effect transistors by fast cooling of polymeric modification layer

    Science.gov (United States)

    Ling, Haifeng; Zhang, Chenxi; Chen, Yan; Shao, Yaqing; Li, Wen; Li, Huanqun; Chen, Xudong; Yi, Mingdong; Xie, Linghai; Huang, Wei

    2017-06-01

    In this work, we investigate the effect of the cooling rate of polymeric modification layers (PMLs) on the mobility improvement of pentacene-based organic field-effect transistors (OFETs). In contrast to slow cooling (SC), the OFETs fabricated through fast cooling (FC) with PMLs containing side chain-phenyl rings, such as polystyrene (PS) and poly (4-vinylphenol) (PVP), show an obvious mobility incensement compared with that of π-group free polymethylmethacrylate (PMMA). Atomic force microscopy (AFM) images and x-ray diffraction (XRD) characterizations have showed that fast-cooled PMLs could effectively enhance the crystallinity of pentacene, which might be related to the optimized homogeneity of surface energy on the surface of polymeric dielectrics. Our work has demonstrated that FC treatment could be a potential strategy for performance modulation of OFETs.

  3. Planning, Instruction, and Assessment: Effective Teaching Practices. James H. Stronge Research-to-Practice Series

    Science.gov (United States)

    Grant, Leslie W.; Hindman, Jennifer; Stronge, James H.

    2010-01-01

    This entry in the James H. Stronge Research-to-Practice Series focuses on specific strategies teachers can use to improve the quality of their instruction. Studies have shown teacher quality to be the top indicator of student achievement, with the effects of good teachers apparent even as students move on to successive grades. In this book, Grant,…

  4. Engineering the Dynamics of Effective Spin-Chain Models for Strongly Interacting Atomic Gases

    DEFF Research Database (Denmark)

    Volosniev, A. G.; Petrosyan, D.; Valiente, M.

    2015-01-01

    We consider a one-dimensional gas of cold atoms with strong contact interactions and construct an effective spin-chain Hamiltonian for a two-component system. The resulting Heisenberg spin model can be engineered by manipulating the shape of the external confining potential of the atomic gas. We...

  5. Effects of interaction imbalance in a strongly repulsive one-dimensional Bose gas

    DEFF Research Database (Denmark)

    Barfknecht, Rafael Emilio; Zinner, Nikolaj Thomas; Foerster, Angela

    2018-01-01

    We calculate the spatial distributions and the dynamics of a few-body two-component strongly interacting Bose gas confined to an effectively one-dimensional trapping potential. We describe the densities for each component in the trap for different interaction and population imbalances. We calculate...

  6. Parity violation effects in the hydrogen atom in the field of a strong electromagnetic wave

    International Nuclear Information System (INIS)

    Labzovsky, L.N.; Mitrushchenkov, A.O.

    1989-01-01

    The parity violation effects in the hydrogen atom in a strong electromagnetic laser field are considered. It is shown that there is the possibility of hyperrate measurements of different constants of the weak interaction in the hydrogen magnetic resonance experiments. (orig.)

  7. Effects of interaction imbalance in a strongly repulsive one-dimensional Bose gas

    DEFF Research Database (Denmark)

    Barfknecht, Rafael Emilio; Zinner, Nikolaj Thomas; Foerster, Angela

    2018-01-01

    We calculate the spatial distributions and the dynamics of a few-body two-component strongly interacting Bose gas confined to an effectively one-dimensional trapping potential. We describe the densities for each component in the trap for different interaction and population imbalances. We calcula...

  8. Non-Oberbeck-Boussinesq effects in strongly turbulent Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Ahlers, Günter; Brown, Eric; Fontenele Araujo Junior, F.; Funfschilling, Denis; Grossmann, Siegfried; Lohse, Detlef

    2006-01-01

    Non-Oberbeck–Boussinesq (NOB) effects on the Nusselt number $Nu$ and Reynolds number $\\hbox{\\it Re}$ in strongly turbulent Rayleigh–Bénard (RB) convection in liquids were investigated both experimentally and theoretically. In the experiments the heat current, the temperature difference, and the

  9. The lumping of heat transfer parameters in cooled packed beds: effect of the bed entry

    OpenAIRE

    Westerink, E.J.; Gerner, J.W.; Gerner, J.W.; Westerterp, K.R.; van der Wal, S.

    1993-01-01

    The lumping of the heat transfer parameters of the one- and the two-dimensional pseudo-homogeneous model of a cooled fixed bed were compared. It appeared that the lumping of the two-dimensional parameters, being the effective radial conductivity h-eff and the heat transfer coefficient at the wall (alpha)w, into the one-dimensional overall heat transfer coefficient U results in a length dependence of U. It is shown that the ratio (alpha)w/U develops from unity at the bed inlet to a final value...

  10. The Effect of Wind Velocity on the Cooling Rate of Water

    Directory of Open Access Journals (Sweden)

    Shrey Aryan

    2016-01-01

    Full Text Available The effect of wind velocity on the cooling rate of water was investigated by blowing air horizontally over the surface of water contained in a plastic water-bottle cap. The time taken for the temperature to fall to the average of the surrounding and initial temperatures was recorded at different values of wind velocity. It was observed that on increasing the wind velocity, the time taken to achieve average temperature not only decreased but also remained the same after a certain point.

  11. EFFECT OF THE FILL VENTILATION WINDOW ON PERFORMANCE OF A NATURAL DRAFT COOLING TOWER SUBJECTED TO CROSS-WINDS

    Directory of Open Access Journals (Sweden)

    K. V. Dobrego

    2016-01-01

    Full Text Available Various aerodynamic design elements and technics (wind deflectors, wind walls, etc. are utilized for improvement of the thermal efficiency of the natural draft cooling towers, particularly in conditions of cross wind. One of the technical methods, proposed by engineers of Belarus Academy of Sciences, is installation of the ventilation window in the center of the fill. This method is substantiated by the fact that the flow of cooling gas obtains maximum temperature and humidity near the center of the under-fill space of cooling tower and, as a consequence, performs minimal heat exchange. The influence of the fill ventilation window and wind deflectors in the inlet windows of the cooling tower on its thermal performance in condition of cross-wind is investigated in the paper numerically. The cooling tower of the “Woo-Jin” power plant (China 150 m of the height and 114 m of the base diameter was taken as a prototype. The analogy (equivalence between the heat and mass transfer was taken into consideration, which enabled us to consider single-phase flow and perform complicated 3D simulation by using modern personal computers. Heat transfer coefficient for the fill and its hydrodynamic resistance were defined by using actual data on total flow rate in the cooling tower. The numerical model and computational methods were tested and verified in numerous previous works. The non-linear dependence of the thermal performance of the cooling tower on wind velocity (with the minimum in vicinity of Ucr ~ 8 m/s for the simulated system was demonstrated. Calculations show that in the condition of the average wind speed the fill ventilation window doesn’t improve, but slightly decrease (by 3–7 % performance of the cooling tower. Situation changes in the condition of strong winds Ucw > 12 m/s, which are not typical for Belarus. Utilization of airflow deflectors at the inlet windows of cooling tower, conversely, increases thermal performance of the

  12. Heavy quark mass effects and improved tests of the flavor independence of strong interactions

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, P.N. [Univ. of Oxford (United Kingdom); SLD Collaboration

    1998-08-01

    A review is given of latest results on tests of the flavor independence of strong interactions. Heavy quark mass effects are evident in the data and are now taken into account at next-to-leading order in QCD perturbation theory. The strong-coupling ratios {alpha}{sub s}{sup b}/{alpha}{sub s}{sup uds} and {alpha}{sub s}{sup c}/{alpha}{sub s}{sup uds} are found to be consistent with unity. Determinations of the b-quark mass m{sub b} (M{sub Z}) are discussed.

  13. Strong interaction effects in high-Z K sup minus atoms

    Energy Technology Data Exchange (ETDEWEB)

    Batty, C.J.; Eckhause, M.; Gall, K.P.; Guss, P.P.; Hertzog, D.W.; Kane, J.R.; Kunselman, A.R.; Miller, J.P.; O' Brien, F.; Phillips, W.C.; Powers, R.J.; Roberts, B.L.; Sutton, R.B.; Vulcan, W.F.; Welsh, R.E.; Whyley, R.J.; Winter, R.G. (Rutherford-Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom (GB) College of William and Mary, Williamsburg, Virginia 23185 Boston University, Boston, Massachusetts 02215 University of Wyoming, Laramie, Wyoming 82071 California Institute of Technology, Pasadena, California 91125 Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213)

    1989-11-01

    A systematic experimental study of strong interaction shifts, widths, and yields from high-{ital Z} kaonic atoms is reported. Strong interaction effects for the {ital K}{sup {minus}}(8{r arrow}7) transition were measured in U, Pb, and W, and the {ital K}{sup {minus}}(7{r arrow}6) transition in W was also observed. This is the first observation of two measurably broadened and shifted kaonic transitions in a single target and thus permitted the width of the upper state to be determined directly, rather than being inferred from yield data. The results are compared with optical-model calculations.

  14. Film cooling effects on the tip flow characteristics of a gas turbine blade

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2015-03-01

    Full Text Available An experimental investigation of the tip flow characteristics between a gas turbine blade tip and the shroud was conducted by a pressure-test system and a particle image velocimetry (PIV system. A three-times scaled profile of the GE-E3 blade with five film cooling holes was used as specimen. The effects on flow characteristics by the rim width and the groove depth of the squealer tip were revealed. The rim widths were (a 0.9%, (b 2.1%, and (c 3.0% of the axial chord, and the groove depths were (a 2.8%, (b 4.8%, and (c 10% of the blade span. Several pressure taps on the top plate above the blades were connected to pressure gauges. By a CCD camera the PIV system recorded the velocity field around the leading edge zone including the five cooling holes. The flow distributions both in the tip clearance and in the passage were revealed, and the influence of the inlet velocity was determined. In this work, the tip flow characteristics with and without film cooling were investigated. The effects of different global blowing ratios of M=0.5, 1.0, 1.3 and 2.5 were established. It was found that decreasing the rim width resulted in a lower mass flow rate of the leakage flow, and the pressure distributions from the leading edge to the trailing edge showed a linearly increasing trend. It was also found that if the inlet velocity was less than 1.5 m/s, the flow field in the passage far away from the suction side appeared as a stagnation zone.

  15. Reprint of: The effectiveness of common thermo-regulatory behaviours in a cool temperate grasshopper.

    Science.gov (United States)

    Harris, Rebecca M B; McQuillan, Peter; Hughes, Lesley

    2015-12-01

    Behavioural thermoregulation has the potential to alleviate the short-term impacts of climate change on some small ectotherms, without the need for changes to species distributions or genetic adaptation. We illustrate this by measuring the effect of behaviour in a cool temperate species of grasshopper (Phaulacridium vittatum) over a range of spatial and temporal scales in laboratory and natural field experiments. Microhabitat selection at the site scale was tested in free-ranging grasshoppers and related to changing thermal quality over a daily period. Artificial warming experiments were then used to measure the temperature at which common thermoregulatory behaviours are initiated and the subsequent reductions in body temperature. Behavioural means such as timing of activity, choice of substrates with optimum surface temperatures, shade seeking and postural adjustments (e.g. stilting, vertical orientation) were found to be highly effective at maintaining preferred body temperature. The maximum voluntarily tolerated temperature (MVT) was determined to be 44 °C ± 0.4 °C, indicating the upper bounds of thermal flexibility in this species. Behavioural thermoregulation effectively enables small ectotherms to regulate exposure to changing environmental temperatures and utilize the spatially and temporally heterogeneous environments they occupy. Species such as the wingless grasshopper, although adapted to cool temperate conditions, are likely to be well equipped to respond successfully to coarse scale climate change. Copyright © 2015. Published by Elsevier Ltd.

  16. The effectiveness of common thermo-regulatory behaviours in a cool temperate grasshopper.

    Science.gov (United States)

    Harris, Rebecca M B; McQuillan, Peter; Hughes, Lesley

    2015-08-01

    Behavioural thermoregulation has the potential to alleviate the short-term impacts of climate change on some small ectotherms, without the need for changes to species distributions or genetic adaptation. We illustrate this by measuring the effect of behaviour in a cool temperate species of grasshopper (Phaulacridium vittatum) over a range of spatial and temporal scales in laboratory and natural field experiments. Microhabitat selection at the site scale was tested in free-ranging grasshoppers and related to changing thermal quality over a daily period. Artificial warming experiments were then used to measure the temperature at which common thermoregulatory behaviours are initiated and the subsequent reductions in body temperature. Behavioural means such as timing of activity, choice of substrates with optimum surface temperatures, shade seeking and postural adjustments (e.g. stilting, vertical orientation) were found to be highly effective at maintaining preferred body temperature. The maximum voluntarily tolerated temperature (MVT) was determined to be 44°C±0.4°C, indicating the upper bounds of thermal flexibility in this species. Behavioural thermoregulation effectively enables small ectotherms to regulate exposure to changing environmental temperatures and utilize the spatially and temporally heterogeneous environments they occupy. Species such as the wingless grasshopper, although adapted to cool temperate conditions, are likely to be well equipped to respond successfully to coarse scale climate change. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Experimental and Numerical Study of the Effects of Acoustic Sound Absorbers on the Cooling Performance of Thermally Active Building Systems

    DEFF Research Database (Denmark)

    Domínguez, L. Marcos; Kazanci, Ongun Berk; Rage, Nils

    2017-01-01

    %, respectively. With vertical sound absorbers, the decrease in cooling performance was 8%, 12%, and 14% for the corresponding cases, respectively. The numerical model predicted closely the cooling performance reduction, air temperatures and ceiling surface temperatures in most cases, while there were differences......Free-hanging horizontal and vertical sound absorbers are commonly used in buildings for room acoustic control; however, when these sound absorbers are used in combination with Thermally Active Building Systems, they will decrease the cooling performance of Thermally Active Building Systems...... and this will affect the thermal indoor environment in that space. Therefore, it is crucial to be able to quantify and model these effects in the design phase. This study quantifies experimentally the effects of horizontal and vertical free-hanging sound absorbers on the cooling performance of Thermally Active...

  18. Auger effect in the presence of strong x-ray pulses

    International Nuclear Information System (INIS)

    Liu Jicai; Sun Yuping; Wang Chuankui; Aagren, Hans; Gel'mukhanov, Faris

    2010-01-01

    We study the role of propagation of strong x-ray free-electron laser pulses on the Auger effect. When the system is exposed to a strong x-ray pulse the stimulated emission starts to compete with the Auger decay. As an illustration we present numerical results for Ar gas with the frequency of the incident x-ray pulse tuned in the 2p 3/2 -4s resonance. It is shown that the pulse propagation is accompanied by two channels of amplified spontaneous emission, 4s-2p 3/2 and 3s-2p 3/2 , which reshape the pulse when the system is inverted. The population inversion is quenched for longer propagation distances where lasing without inversion enhances the Stokes component. The results of simulations show that the propagation of the strong x-ray pulses affect intensively the Auger branching ratio.

  19. Effect of cooling on sperm motility before and after frozen-thawed ...

    African Journals Online (AJOL)

    The motility of semen subjected only to cooling for 24 h before freezing was optimal (70.0%) for artificial insemination. Moreover, semen subjected to cooling for 7 or 24 h before and after frozen-thawed could be used still with some considerations for artificial insemination. Keywords: Stallion, semen, motility, cooling, frozen- ...

  20. Thermal Modeling of the Cooling History of a Basalt Lava Flow: Effect of Flow Shape and Thermal Perturbations Induced by Inflation Fissures

    Science.gov (United States)

    Schaefer, C. J.; Kattenhorn, S. A.

    2003-12-01

    Thermal modeling of cooling basalt lava flows has typically been undertaken using 1-D analytical heat flow models for an infinite plane. In such models, flows are conceptualized as having a finite thickness, but are infinitely wide and infinitely long (i.e., "sheet flows"). These analytical models typically accounted only for conductive heat loss, or attempted to approximate the effect of a sudden convective heat loss by redefining the conduction boundary conditions at some point during the cooling history. Although such models have proven useful for the examination of sheet flows such as those of the Columbia River flood basalts, they are inadequate for considering the cooling history of low-volume flows having small (meters to a few 10s of meters) in-plane dimensions (i.e., small aspect ratios, or width/thickness). In such flows, cross-sectional flow shape exerts a strong control on the thermal evolution of the flow during cooling, and hence on the cooling fracture patterns that develop in response to thermal stresses. The advent of numerical thermal models has recently enabled other researchers to predict isotherm patterns in lava flows with in-plane lateral peripheries. We build on these numerical modeling efforts by examining the effect of variable flow shape on lava flow cooling history. We also explicitly model the effects of convective heat loss through inflation fissures that develop in response to inflation of the lava flow during extrusion. This choice of controlling factors is predicated by observations of flow shapes and fracture characteristics of low-volume basalt flows of the Eastern Snake River Plain (ESRP), Idaho. We use the finite element code ABAQUS to model the thermal evolution of small aspect ratio flows, both with and without an inflation fissure. The program accounts for radiation of heat and convection at exposed boundaries, latent heat of crystallization, and conduction of heat into the underlying substrate. In models that do not include

  1. Cooling tower calculations

    International Nuclear Information System (INIS)

    Simonkova, J.

    1988-01-01

    The problems are summed up of the dynamic calculation of cooling towers with forced and natural air draft. The quantities and relations are given characterizing the simultaneous exchange of momentum, heat and mass in evaporative water cooling by atmospheric air in the packings of cooling towers. The method of solution is clarified in the calculation of evaporation criteria and thermal characteristics of countercurrent and cross current cooling systems. The procedure is demonstrated of the calculation of cooling towers, and correction curves and the effect assessed of the operating mode at constant air number or constant outlet air volume flow on their course in ventilator cooling towers. In cooling towers with the natural air draft the flow unevenness is assessed of water and air relative to its effect on the resulting cooling efficiency of the towers. The calculation is demonstrated of thermal and resistance response curves and cooling curves of hydraulically unevenly loaded towers owing to the water flow rate parameter graded radially by 20% along the cross-section of the packing. Flow rate unevenness of air due to wind impact on the outlet air flow from the tower significantly affects the temperatures of cooled water in natural air draft cooling towers of a design with lower demands on aerodynamics, as early as at wind velocity of 2 m.s -1 as was demonstrated on a concrete example. (author). 11 figs., 10 refs

  2. Effect of Calcium Chloride and Cooling on Post-Harvest Brussels Cabbage (Brassica Oleracea L.

    Directory of Open Access Journals (Sweden)

    Alfonso Rincón Pérez

    2014-11-01

    Full Text Available In recent years, the demand of crucifers has increased and particularly of Brussels sprouts (Brassica genus, species Brassica oleracea L.; mainly due to their functional properties; however, this vegetable is perishable and with inadequate techniques in postharvest handling, considerable losses are generated. The objective of this research was to determine the effect of calcium chloride and cooling on postharvest behavior of Brussels sprouts. A completely randomized design was performed, treatments corresponded to three storage temperatures (4°C, 8°C and temperature (18°C and three concentrations of calcium chloride (0%, 2% and 4% were used. Sprouts were harvested at commercial maturity on a farm irrigation district in Usochicamocha, Boyacá Department; of uniform size, excellent plant health and free from mechanical damage conditions. For 19 days of storage, weight loss, respiratory rate and total chlorophyll were measured. Sprouts stored at room temperature lasted 11days postharvest, while cooled lasted for 19 days. A significant effect in reducing weight loss between those sprouts which were stored at 4°C and 8°C and treated with calcium chloride solution at 4% was observed. For the respiratory rate was observed a significant reduction insprouts stored at 4°C. Therefore the most favorable temperature for the storage of Brussels sprouts is 4°C and calcium chloride solution 4%,useful information for producers and marketers.

  3. Effect of Ultra-Fast Cooling on Microstructure and Properties of High Strength Steel for Shipbuilding

    Science.gov (United States)

    Zhou, Cheng; Ye, Qibin; Yan, Ling

    The effect of ultra-fast cooling(UFC) and conventional accelerated cooling(AcC) on the mechanical properties and microstructure of controlled rolled AH32 grade steel plates on industrial scale were compared using tensile test, Charpy impact test, welding thermal simulation, and microscopic analysis. The results show that the properties of the plate produced by UFC are improved considerably comparing to that by AcC. The yield strength is increased with 54 MPa without deterioration in the ductility and the impact energy is improved to more than 260 J at -60 °C with much lower ductile-to-brittle transition temperature(DBTT). The ferrite grain size is refined to ASTM No. 11.5 in the UFC steel with uniform microstructure throughout the thickness direction, while that of the AcC steel is ASTM No. 9.5. The analysis of nucleation kinetics of α-ferrite indicates that the microstructure is refined due to the increased nucleation rate of α-ferrite by much lower γ→α transition temperature through the UFC process. The Hall-Petch effect is quantified for the improvement of the strength and toughness of the UFC steel attributed to the grain refinement.

  4. Effect of Primary Cooling Water on the Hot Water Layer of a Reactor Pool

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Hark; Chae, Hee Taek; Jo, Dea Sung; Lee, Byung Chul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    Many research reactors, including HANARO, have a hot water layer to reduce the radioactivity level in a pool top area. The hot water layer can keep down the ascending of radio-active matters generated nearby the reactor by the neutron irradiation. The hot water layer is a stratified water layer about 5 {approx} 10 .deg. C hotter than the lower pool water. The flow in the reactor pool become fierce, the hot water layer may be broken or become thinner due to vigorous mixing between the hot water layer and the pool water. Large amount of cooling water directly dumped into the reactor pool makes the stable water pool move violently that can have a serious effect on the hot water layer. Thus, the preliminary investigation is required to figure out the mass flow dump effect on the hot water layer. The reactor pool is so gigantic that it is hard to conduct this study by an experimental method, whereas CFD method is relatively easy to simulate even such a very large structure. In this paper when a mass flow of cooling water is dumped into the reactor pool, flow behaviors of pool water are studied by CFD method

  5. Analysis of fluid induced vibration of cryogenic pipes in consideration of the cooling effect

    International Nuclear Information System (INIS)

    Kim, Bong Soo; Kim, Young Ki; Choi, Jung Woon

    2008-01-01

    The purpose of system analysis using fluid induced vibration is to identify the problems of the system in advance by analyzing the vibration behavior of the system excited by fluid flow. Fluid-induced vibration analysis methods, developed so far, generally use the numerical analysis method to analyze the fluid flowing inside the pipe and the infinitesimal elements at normal temperature on the basis of the governing equation obtained by applying Newton's Second Law and the momentum equation. However, as the fluid temperature changes greatly at low temperature, fluid-induced vibration analysis methods for normal temperature cannot be applied. This study investigated methods of analyzing fluid-induced vibration in consideration of the cooling effect. In consideration of the changes in the properties of the fluid and system relative to temperature, vibration behavior was analyzed numerically by means of the equation of motion. As a result, the natural frequency of the system tends to change because of the changes of the properties of materials even when the flux is constant inside the pipe, and the vibration behavior of the system was compared to that in case of normal temperature to analyze how much influence the cooling effect has on the vibration behavior of the system

  6. Cooling effect of agricultural irrigation over Xinjiang, Northwest China from 1959 to 2006

    International Nuclear Information System (INIS)

    Han Songjun; Yang Zhiyong

    2013-01-01

    The influences of agricultural irrigation on trends in surface air temperature from 1959 to 2006 over Xinjiang, Northwest China are evaluated using data from 90 meteorological stations. The 90 stations are located in landscapes with markedly different cultivated land uses. The increasing trends in daily average temperature (T a ), maximum temperature (T max ), and minimum temperature (T min ) for May–September (the main growing season) are negatively correlated with cultivated land proportions within 4 km of the meteorological stations, as indicated by year 2000 land use data. The correlations between the trends in T max and cultivated land proportions are the most significant. The trends in T a , T max , and T min for May–September are expected to decrease by −0.018, −0.014, and −0.016 ° C per decade, respectively, along with a 10% increase in cultivated land proportion. As irrigated cultivated land occupies over 90% of total cultivated land, the dependence of temperature trends on cultivated area is attributed to irrigation. The cooling effects on stations with cultivated land proportion larger than 50% are compared to temperature trends in a reference group with cultivated land proportion smaller than 10%. The irrigation expansion from 1959 to 2006 over Xinjiang is found to be associated with cooling of May–September T a , T max , and T min by around −0.15 ° C to −0.10 ° C/decade in the station group with extensive irrigation. Short periods of rapid irrigation expansion co-occurred with the significant cooling of the May–September temperature. (letter)

  7. Effects of focal brain cooling on extracellular concentrations of neurotransmitters in patients with epilepsy.

    Science.gov (United States)

    Nomura, Sadahiro; Inoue, Takao; Imoto, Hirochika; Suehiro, Eiichi; Maruta, Yuichi; Hirayama, Yuya; Suzuki, Michiyasu

    2017-04-01

    Brain hypothermia controls epileptic discharge and reduces extracellular concentrations of glutamate (Glu), an excitatory neurotransmitter. We aimed to determine the effects of focal brain cooling (FBC) on levels of γ-aminobutyric acid (GABA), which is a major inhibitory neurotransmitter. The relationship between Glu or GABA concentrations and the severity of epileptic symptoms was also analyzed. Patients with intractable epilepsy underwent FBC at lesionectomized (n = 11) or hippocampectomized (n = 8) regions at 15°C for 30 min using custom-made cooling devices. Concentrations of Glu (n = 18) and GABA (n = 12) were measured in extracellular fluid obtained through microdialysis using high-performance liquid chromatography (HPLC). The reduction rate of neurotransmitter levels and its relationship with electrocorticography (ECoG) signal changes in response to FBC were measured. We found no relationship between the concentrations of Glu or GABA and seizure severity. There was a significant decrease in the concentration of Glu to 66.3% of control levels during the cooling period (p = 0.001). This rate of reduction correlated with ECoG power (r 2 = 0.68). Cortical and hippocampal GABA levels significantly (p = 0.02) and nonsignificantly decreased to 47.7% and 32.4% of control levels, respectively. However, the rate of this reduction did not correlate with ECoG (r 2 = 0.11). Although the decrease in hippocampal GABA levels was not significant due to wide variations in its concentration, the levels of cortical GABA and Glu were decreased following FBC. FBC suppresses epileptic discharge and the release of both excitatory and inhibitory neurotransmitters. The reduction in Glu levels further contributes to the reduction in epileptic discharge. However, the reduction in the levels of GABA has no impact on ECoG. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  8. Effect of external turbulence on the efficiency of film cooling with coolant injection into a transverse trench

    Science.gov (United States)

    Khalatov, A. A.; Panchenko, N. A.; Severin, S. D.

    2017-09-01

    Film cooling is among the basic methods used for thermal protection of blades in modern high-temperature gas turbines. Results of computer simulation of film cooling with coolant injection via a row of conventional inclined holes or a row of holes in a trench are presented in this paper. The ANSYS CFX 14 commercial software package was used for CFD-modeling. The effect is studied of the mainstream turbulence on the film cooling efficiency for the blowing ratio range between 0.6 and 2.3 and three different turbulence intensities of 1, 5, and 10%. The mainstream velocity was 150 and 400 m/s, while the temperatures of the mainstream and the injected coolant were 1100 and 500°C, respectively. It is demonstrated that, for the coolant injection via one row of trenched holes, an increase in the mainstream turbulence intensity reduces the film cooling efficiency in the entire investigated range of blowing ratios. It was revealed that freestream turbulence had varied effects on the film cooling efficiency depending on the blowing ratio and mainstream velocity in a blade channel. Thus, an increase in the mainstream turbulence intensity from 1 to 10% decreases the surface-averaged film cooling efficiency by 3-10% at a high mainstream velocity (400 m/s) in the blade channel and by 12-23% at a moderate velocity (of 150 m/s). Here, lower film cooling efficiencies correspond to higher blowing ratios. The effect of mainstream turbulence intensity on the film cooling efficiency decreases with increasing the mainstream velocity in the modeled channel for both investigated configurations.

  9. Empirical Analysis for the Heat Exchange Effectiveness of a Thermoelectric Liquid Cooling and Heating Unit

    Directory of Open Access Journals (Sweden)

    Hansol Lim

    2018-03-01

    Full Text Available This study aims to estimate the performance of thermoelectric module (TEM heat pump for simultaneous liquid cooling and heating and propose empirical models for predicting the heat exchange effectiveness. The experiments were conducted to investigate and collect the performance data of TEM heat pump where the working fluid was water. A total of 57 sets of experimental data were statistically analyzed to estimate the effects of each independent variable on the heat exchange effectiveness using analysis of variance (ANOVA. To develop the empirical model, the six design parameters were measured: the number of transfer units (NTU of the heat exchangers (i.e., water blocks, the inlet water temperatures and temperatures of water blocks at the cold and hot sides of the TEM. As a result, two polynomial equations predicting heat exchange effectiveness at the cold and hot sides of the TEM heat pump were derived as a function of the six selected design parameters. Also, the proposed models and theoretical model of conventional condenser and evaporator for heat exchange effectiveness were compared with the additional measurement data to validate the reliability of the proposed models. Consequently, two conclusions have been made: (1 the possibility of using the TEM heat pump for simultaneous cooling and heating was examined with the maximum temperature difference of 30 °C between cold and hot side of TEM, and (2 it is revealed that TEM heat pump has difference with the conventional evaporator and condenser from the comparison results between the proposed models and theoretical model due to the heat conduction and Joule effect in TEM.

  10. Effect of Air Cooling and Vacuum Cooling Storage on the β-Carotene Content and Proximate Analysis (Water Content, pH, Total Protein and Content of Sugar) in Carrot

    Science.gov (United States)

    Kusumaningsih, T.; Martini, T.; Rini, K. S.; Okstafiyanti, L.

    2017-04-01

    The study of air cooling and vacuum cooling storage effect on the β-carotene content and proximate analysis in carrot has been studied. The aim of the research to determine the effective storage in carrot to improve the quality and the shelf life. Parameters measured during the 12 weeks of storage process were β-carotene, pH, water, sugar and protein content. Validation analysis for β-carotene method showed a good linearity (r 2 = 0.997) in a range of 0-8 mg/L and (r 2 = 0.999) in a range of 0-1 mg/L. The precision was exemplified by %RSD of 0.88%-7.48%. Mean recovery was 100.66% during accuracy studied. UV analysis revealed the LOD values were 0.009 mg/L and LOQ values were 0.032 mg/L. The decreased content of β-carotene, water, protein, and pH from carrot during vacuum cooling storage were higher than in the air cooling storage period. The sugar content for air cooling storage increased up to eight weeks and decreased at the end of storage while the vacuum cooling storage decreased from the beginning of the storage period. All the data indicates that the air cooling storage was more effective storage techniques for extending the shelf life of carrot compared to the vacuum cooling storage.

  11. The Effect of Extending the Length of the Coupling Coils in a Muon Ionization Cooling Channel

    International Nuclear Information System (INIS)

    Green, Michael A.

    2007-01-01

    RF cavities are used to re-accelerate muons that have been cooled by absorbers that are in low beta regions of a muon ionization cooling channel. A superconducting coupling magnet (or magnets) are around or among the RF cavities of a muon ionization-cooling channel. The field from the magnet guides the muons so that they are kept within the iris of the RF cavities that are used to accelerate the muons. This report compares the use of a single short coupling magnet with an extended coupling magnet that has one or more superconducting coils as part of a muon-cooling channel of the same design as the muon ionization cooling experiment (MICE). Whether the superconducting magnet is short and thick or long and this affects the magnet stored energy and the peak field in the winding. The magnetic field distribution also affects is the muon beam optics in the cooling cell of a muon cooling channel

  12. Effect of sub-zero cooling on microstructure and mechanical properties of a low alloyed austempered ductile iron

    Directory of Open Access Journals (Sweden)

    M. Ardestani

    2007-05-01

    Full Text Available The effect of sub-zero cooling on microstructure and mechanical properties of a low alloyed austempered ductile iron has been investigated. Austempering of samples was performed at 325! and 400℃ after austenitizing at 875℃ and 950℃. The sub-zero treatments were carried out by cooling down the samples to -30℃, -70℃ and -196℃. The changes in volume fraction of austenite and mechanical properties were determined after cooling to each temperature. The austenite volume fraction of samples which were austenitized at 875℃ and austempered at 325℃ remained unchanged, whilst it reduced in samples austenitized at 950℃ and 875℃ for austempering temperature of 400℃. In these specimens, some austenite transformed to martensite after subzero cooling. Mechanical property measurements showed a slight increase in strength and hardness and decrease in elongation and toughness due to this transformation behavior.

  13. The Effect of Intermittent Arm and Shoulder Cooling on Baseball Pitching Velocity.

    Science.gov (United States)

    Bishop, Stacy H; Herron, Robert L; Ryan, Gregory A; Katica, Charles P; Bishop, Phillip A

    2016-04-01

    The throwing arm of a baseball pitcher is subjected to high stress as a result of the repetitive activity of pitching. Intermittent cryotherapy may facilitate recovery from this repeated high stress, but few researchers have investigated cryotherapy's efficacy in an ecologically valid setting. This study investigated the effects of intermittent cryotherapy on pitching velocity and subjective measures of recovery and exertion in a simulated baseball game. Trained college-aged male baseball pitchers (n = 8) threw 12 pitches (1 pitch every 20 seconds) per inning for 5 total innings during a simulated pitching start. Between each inning, pitchers received shoulder and arm cooling (AC) or, on a separate occasion, no cooling (NC). All sessions took place in a temperate environment (18.3 ± 2.8° C; 49 ± 4% relative humidity). Pitch speeds were averaged for each participant each inning and overall for 5 innings. Perceived exertion (rating of perceived exertion [RPE]) was recorded at the end of each simulated inning. Perceived recovery (perceived recovery scale [PRS]) was recorded after treatment between each inning. Mean pitching velocity for all-innings combined was higher (p = 0.04) for shoulder and elbow cooling (AC) (31.2 ± 2.1 m·s) than for no cooling (NC) (30.6 ± 2.1 m·s). Average pitch speed was significantly higher in the fourth (p = <0.01) and fifth (p = 0.02) innings in AC trial (31.3 ± 2 m·s for both innings) compared with NC trial (30.0 ± 2.22 m·s and 30.4 ± 1.99 m·s, for the fourth and fifth innings, respectively. AC resulted in a significantly lower RPE (p ≤ 0.01) and improved PRS (p ≤ 0.01) compared with NC. Intermittent cryotherapy attenuated velocity loss in baseball pitching, decreased RPE, and facilitated subjective recovery during a 5-inning simulated game.

  14. Strong coupling electrostatics for randomly charged surfaces: antifragility and effective interactions.

    Science.gov (United States)

    Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf

    2015-05-07

    We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular but integrable counterion density profile that exhibits an algebraic divergence at the surfaces with an exponent that depends on the surface charge (disorder) variance. This effect drives the system towards a state of lower thermal 'disorder', one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. In the presence of an interfacial dielectric discontinuity, the singular behavior of counterion density at the surfaces is removed but multivalent counterions are still accumulated much more strongly close to randomly charged surfaces as compared with uniformly charged ones. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which dominate the surface-surface repulsion due to

  15. Empty creditors and strong shareholders: The real effects of credit risk trading. Second draft

    OpenAIRE

    Colonnello, Stefano; Efing, Matthias; Zucchi, Francesca

    2016-01-01

    Credit derivatives give creditors the possibility to transfer debt cash flow rights to other market participants while retaining control rights. We use the market for credit default swaps (CDSs) as a laboratory to show that the real effects of such debt unbundling crucially hinge on shareholder bargaining power. We find that creditors buy more CDS protection when facing strong shareholders to secure themselves a valuable outside option in distressed renegotiations. After the start of CDS trad...

  16. [Effects of strong reductive approach on remediation of degraded facility vegetable soil].

    Science.gov (United States)

    Zhu, Tong-Bin; Meng, Tian-Zhu; Zhang, Jin-Bo; Cai, Zu-Cong

    2013-09-01

    High application rate of chemical fertilizers and unreasonable rotation in facility vegetable cultivation can easily induce the occurrence of soil acidification, salinization, and serious soil-borne diseases, while to quickly and effectively remediate the degraded facility vegetable soil can considerably increase vegetable yield and farmers' income. In this paper, a degraded facility vegetable soil was amended with 0, 3.75, 7.50, and 11.3 t C x hm(-2) of air-dried alfalfa and flooded for 31 days to establish a strong reductive environment, with the variations of soil physical and chemical properties and the cucumber yield studied. Under the reductive condition, soil Eh dropped quickly below 0 mV, accumulated soil NO3(-) was effectively eliminated, soil pH was significantly raised, and soil EC was lowered, being more evident in higher alfalfa input treatments. After treated with the strong reductive approach, the cucumber yield in the facility vegetable field reached 53.3-57.9 t x hm(-2), being significantly higher than that in un-treated facility vegetable field in last growth season (10.8 t x hm(-2)). It was suggested that strong reductive approach could effectively remediate the degraded facility vegetable soil in a short term.

  17. Effect of organic on chemical oxidation for biofouling control in pilot-scale seawater cooling towers

    KAUST Repository

    Al-Bloushi, Mohammed

    2017-09-14

    Due to the scarcity of potable water in many regions of the world, the demand for seawater as an alternative evaporative cooling medium in cooling towers (CTs) has increased significantly in recent years. Seawater make-up in CTs is deemed the most feasible because of its unlimited supply in the coastal areas of Gulf and Red Sea. However, the seawater CTs have higher challenges greatly mitigating their performances because it is an open system where biofouling and bio-corrosion occurring within the fillers and piping of recirculation systems. Their pilot-scale CTs were constructed to assess the performance of three types of oxidizing biocides or oxidants, namely chlorine, chlorine dioxide (ClO2) and ozone, for biofouling control. The test results showed that the addition of organic (5mg/L of methanol (MeOH)) increased the bacterial growth in CT basin. All oxidants were effective in keeping the microbial growth to the minimum. Oxidation increased the oxidation-reduction potential (ORP) level from 270 to 600mV. Total residual oxidant (TRO) was increased with oxidation but it was slightly increased with organic addition. Other parameters including pH, dissolved oxygen (DO), conductivity levels were not changed. However, higher formation of disinfection by-products (DBPs) was detected with chlorination and ozonation. This indicates the organic level should be limited in the oxidation for biofouling control in seawater CTs.

  18. The lock-in effect and the greening of automotive cooling systems in the European Union.

    Science.gov (United States)

    Bjørnåvold, Amalie; Van Passel, Steven

    2017-12-01

    As of 2017, the sale and use of the refrigerants most commonly used in automotive cooling systems - hydrofluorocarbons - are entirely banned in all new vehicles placed on the market in the European Union. These refrigerants have been recognised as potent greenhouse gases and, therefore, direct contributors to climate change. It is within this regulation-driven market that the technologies for a sustainable solution have been developed. However, this paper argues that the market for automotive cooling systems has been 'locked-in', which means that competing technologies, operating under dynamic increasing returns, will allow for one - potentially inferior technology - to dominate the market. Whilst such a situation is not uncommon, this paper discusses the way that regulation has reinforced a patented monopoly in 'picking winners': to the advantage of a synthetic chemical, R-1234yf, as opposed to the natural solution, which is CO 2 . By developing a generic conceptual framework of path dependence and lock-in, the presented evidence seeks to show how a snowballing effect has led to the intensification of differences in market share. We also argue that the automotive industry is potentially promoting short-term fixes, rather than long-term, sustainable and economically viable solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effect of Egg Yolk and Cooling on Storage of Ram Coated Spermatozoa

    Directory of Open Access Journals (Sweden)

    A. Mohammadi-Nohdehy

    2013-08-01

    Full Text Available This study was conducted to evaluate the effect of egg yolk and cooling on ram coated spermatozoa. Semen was collected from three ram by artificial vagina contacted with a tube containing Tris- fructose-egg yolk 15%. Samples were pooled, centrifuged by 700 g for 10 min and removed supernatant. Then, samples were diluted by Tris-glucose and centrifuged again to remove seminal plasma and egg yolk. Aliquots split into two fractions and each one was split into 5 parts and added egg yolk 0, 5, 10, 15 and 20%. The half of the treatments were gradually cold and other ones were encountered with cold shock then samples were incubated at 5C for 72 h. Progressive sperm motility, plasma membrane integrity, viability (by Hoechst 33258 fluorescent staining and acrosome reaction (by PNA-Alexa flur-488 were investigated at 0, 24, 48 and 72 h. The results showed that there was no difference between 15% and 20% egg yolk in the progressive sperm motility but they were higher than 0% and 5% egg yolk. There was highest difference between 0% and 20 % egg yolk in the progressive sperm motility. There was no difference among the treatments containing egg yolk in plasma membrane integrity and acrosome reaction. In both cooling rate, there was no difference among the treatments containing egg yolk in the sperm viability. It was suggested that 20% egg yolk was superior to keep the function of ram coated spermatozoa for storage at 5C.

  20. Experimental investigation of material chemical effects on emergency core cooling pump suction filter performance after loss of coolant accident

    International Nuclear Information System (INIS)

    Park, Jong Woon; Park, Byung Gi; Kim, Chang Hyun

    2009-01-01

    Integral tests of head loss through an emergency core cooling filter screen are conducted, simulating reactor building environmental conditions for 30 days after a loss of coolant accident. A test rig with five individual loops each of whose chamber is established to test chemical product formation and measure the head loss through a sample filter. The screen area at each chamber and the amounts of reactor building materials are scaled down according to specific plant condition. A series of tests have been performed to investigate the effects of calcium-silicate, reactor building spray, existence of calcium-silicate with tri-sodium phosphate (TSP), and composition of materials. The results showed that head loss across the chemical bed with even a small amount of calcium-silicate insulation instantaneously increased as soon as TSP was added to the test solution. Also, the head loss across the filter screen is strongly affected by spray duration and the head loss increase is rapid at the early stage, because of high dissolution and precipitation of aluminum and zinc. After passivation of aluminum and zinc by corrosion, the head loss increase is much slowed down and is mainly induced by materials such as calcium, silicon, and magnesium leached from NUKON TM and concrete. Furthermore, it is newly found that the spay buffer agent, tri-sodium phosphate, to form protective coating on the aluminum surface and reduce aluminum leaching is not effective for a large amount of aluminum and a long spray.

  1. Preferred Air Velocity and Local Cooling Effect of desk fans in warm environments

    DEFF Research Database (Denmark)

    Simone, Angela; Olesen, Bjarne W.

    2013-01-01

    Common experiences, standards, and laboratory studies show that increased air velocity helps to offset warm sensation due to high environmental temperatures. In warm climate regions the opening of windows and the use of desk or ceiling fans are the most common systems to generate increased airflows...... to compensate for higher environmental temperatures at the expense of no or relatively low energy consumption. When using desk fans, local air movement is generated around the occupant and a certain cooling effect is perceived. The impact of the local air movement generated by different air flow patterns....../kg. By a thermal manikin the effect of direct air movement generated by a personal desk fan at 26 °C, 28 °C, or 30 °C room temperatures and the achievable thermal comfort was also analyzed. Results show that it is possible to offset warm sensation within a range of indoor conditions using increased air velocity...

  2. Cheating the Locals: Invasive Mussels Steal and Benefit from the Cooling Effect of Indigenous Mussels.

    Directory of Open Access Journals (Sweden)

    Justin A Lathlean

    Full Text Available The indigenous South African mussel Perna perna gapes during periods of aerial exposure to maintain aerobic respiration. This behaviour has no effect on the body temperatures of isolated individuals, but when surrounded by conspecifics, beneficial cooling effects of gaping emerge. It is uncertain, however, whether the presence of the invasive mussel Mytilus galloprovincialis limits the ability of P. perna for collective thermoregulation. We investigated whether varying densities of P. perna and M. galloprovincialis influences the thermal properties of both natural and artificial mussel beds during periods of emersion. Using infrared thermography, body temperatures of P. perna within mixed artificial beds were shown to increase faster and reach higher temperatures than individuals in conspecific beds, indicating that the presence of M. galloprovincialis limits the group cooling effects of gaping. In contrast, body temperatures of M. galloprovincialis within mixed artificial mussel beds increased slower and exhibited lower temperatures than for individuals in beds comprised entirely of M. galloprovincialis. Interestingly, differences in bed temperatures and heating rates were largely dependent on the size of mussels, with beds comprised of larger individuals experiencing less thermal stress irrespective of species composition. The small-scale patterns of thermal stress detected within manipulated beds were not observed within naturally occurring mixed mussel beds. We propose that small-scale differences in topography, size-structure, mussel bed size and the presence of organisms encrusting the mussel shells mask the effects of gaping behaviour within natural mussel beds. Nevertheless, the results from our manipulative experiment indicate that the invasive species M. galloprovincialis steals thermal properties as well as resources from the indigenous mussel P. perna. This may have significant implications for predicting how the co-existence of

  3. Strong Stability Preserving Explicit Runge--Kutta Methods of Maximal Effective Order

    KAUST Repository

    Hadjimichael, Yiannis

    2013-07-23

    We apply the concept of effective order to strong stability preserving (SSP) explicit Runge--Kutta methods. Relative to classical Runge--Kutta methods, methods with an effective order of accuracy are designed to satisfy a relaxed set of order conditions but yield higher order accuracy when composed with special starting and stopping methods. We show that this allows the construction of four-stage SSP methods with effective order four (such methods cannot have classical order four). However, we also prove that effective order five methods---like classical order five methods---require the use of nonpositive weights and so cannot be SSP. By numerical optimization, we construct explicit SSP Runge--Kutta methods up to effective order four and establish the optimality of many of them. Numerical experiments demonstrate the validity of these methods in practice.

  4. Using strong nonlinearity and high-frequency vibrations to control effective mechanical stiffness

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2008-01-01

    High-frequency excitation (HFE) can be used to change the effective stiffness of an elastic structure, and related quanti-ties such as resonance frequencies, wave speed, buckling loads, and equilibrium states. There are basically two ways to do this: By using parametrical HFE (with or without non...... the method of direct separation of motions with results of a modified multiple scales ap-proach, valid also for strong nonlinearity, the stiffening ef-fect is predicted for a generic 1-dof system, and results are tested against numerical simulation and ((it is planned)) laboratory experiments....

  5. Three-loop Standard Model effective potential at leading order in strong and top Yukawa couplings

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Stephen P. [Santa Barbara, KITP

    2014-01-08

    I find the three-loop contribution to the effective potential for the Standard Model Higgs field, in the approximation that the strong and top Yukawa couplings are large compared to all other couplings, using dimensional regularization with modified minimal subtraction. Checks follow from gauge invariance and renormalization group invariance. I also briefly comment on the special problems posed by Goldstone boson contributions to the effective potential, and on the numerical impact of the result on the relations between the Higgs vacuum expectation value, mass, and self-interaction coupling.

  6. Attosecond counter-rotating-wave effect in xenon driven by strong fields

    Science.gov (United States)

    Anand, M.; Pabst, Stefan; Kwon, Ojoon; Kim, Dong Eon

    2017-05-01

    We investigate the subfemtosecond dynamics of a highly excited xenon atom coherently driven by a strong control field at which the Rabi frequency of the system is comparable to the frequency of a driving laser. The widely used rotating-wave approximation breaks down at such fields, resulting in features such as the counter-rotating-wave (CRW) effect. We present a time-resolved observation of the CRW effect in the highly excited 4 d-1n p xenon using attosecond transient absorption spectroscopy. Time-dependent many-body theory confirms the observation and explains the various features of the absorption spectrum seen in experiment.

  7. Initial ratio optimization for the ejector cooling system with thermal pumping effect (ECSTPE)

    International Nuclear Information System (INIS)

    He, Yijian; Sun, Yongjun; Zhang, Sheng; Lyu, Yuanli; Chen, Guangming

    2016-01-01

    Graphical abstract: The existing ejector cooling systems with thermal pumping effect (ECSTPEs) have severe problems of thermal energy and chilling load waste. The deviations of the initial ratio from its optimal value would lead to the deviations of the time length of cooling stage (TLCS), and finally, result in the performance deteriorations of the ECSTPEs. The results of the case study showed that, for an ECSTPE with R134a, a 10-second deviation from the optimal TLCS led to a decrease of 5.6% in the COP value and an increase of 23.7% in the chilling load, when the generation temperature, the condensing temperature and the evaporation temperature were 85 °C, 35 °C and 10 °C, respectively. Therefore, accurately controlling the TLCS corresponding to the optimal TLCS, which is derived on the basis of the optimal initial ratio, can effectively improve the performance of ECSPTEs. - Highlights: • ECSTPEs encounter challenges for a great waste of heat and chilling water. • Initial ratio optimization is proposed to improve the performance of ECSTPEs. • Based on the optimal initial ratio, the optimal TLCS control strategy is obtained. • With the optimal TLCS control, COP values of the ECSTPEs are effectively enhanced. • Accordingly, the chilling loads of the ECSTPEs are greatly reduced. - Abstract: An ejector cooling system with thermal pumping effect (ECSTPE) could operate without consumption of electric power, but it discards a great amount of thermal energy, which generally results in a lower COP value and a greater chilling load. An innovative concept for the optimal initial ratio is therefore proposed to develop the optimal time length of cooling stage (TLCS) control method. The optimal TLCS control method effectively improves the ECSTPE performance. First, in this context, it was theoretically proven that the optimal initial ratio could be used to reduce the energy loss and the chilling load. Second, it was formulated how to achieve the optimal initial

  8. Interaction effects in a microscopic quantum wire model with strong spin-orbit interaction

    Science.gov (United States)

    Winkler, G. W.; Ganahl, M.; Schuricht, D.; Evertz, H. G.; Andergassen, S.

    2017-06-01

    We investigate the effect of strong interactions on the spectral properties of quantum wires with strong Rashba spin-orbit (SO) interaction in a magnetic field, using a combination of matrix product state and bosonization techniques. Quantum wires with strong Rashba SO interaction and magnetic field exhibit a partial gap in one-half of the conducting modes. Such systems have attracted wide-spread experimental and theoretical attention due to their unusual physical properties, among which are spin-dependent transport, or a topological superconducting phase when under the proximity effect of an s-wave superconductor. As a microscopic model for the quantum wire we study an extended Hubbard model with SO interaction and Zeeman field. We obtain spin resolved spectral densities from the real-time evolution of excitations, and calculate the phase diagram. We find that interactions increase the pseudo gap at k = 0 and thus also enhance the Majorana-supporting phase and stabilize the helical spin order. Furthermore, we calculate the optical conductivity and compare it with the low energy spiral Luttinger liquid result, obtained from field theoretical calculations. With interactions, the optical conductivity is dominated by an excotic excitation of a bound soliton-antisoliton pair known as a breather state. We visualize the oscillating motion of the breather state, which could provide the route to their experimental detection in e.g. cold atom experiments.

  9. Charging-delay effect on longitudinal dust acoustic shock wave in strongly coupled dusty plasma

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Gupta, M.R.

    2005-01-01

    Taking into account the charging-delay effect, the nonlinear propagation characteristics of longitudinal dust acoustic wave in strongly coupled collisional dusty plasma described by generalized hydrodynamic model have been investigated. In the 'hydrodynamic limit', a Korteweg-de Vries Burger (KdVB) equation with a damping term arising due to dust-neutral collision is derived in which the Burger term is proportional to the dissipation due to dust viscosity through dust-dust correlation and charging-delay-induced anomalous dissipation. On the other hand, in the 'kinetic limit', a KdVB equation with a damping term and a nonlocal nonlinear forcing term arising due to memory-dependent strong correlation effect of dust fluid is derived in which the Burger term depends only on the charging-delay-induced dissipation. Numerical solution of integrodifferential equations reveals that (i) dissipation due to dust viscosity and principally due to charging delay causes excitation of the longitudinal dust acoustic shock wave in strongly coupled dusty plasma and (ii) dust-neutral collision does not appear to play any direct role in shock formation. The condition for the generation of shock is also discussed briefly

  10. Challenges in inflationary magnetogenesis: Constraints from strong coupling, backreaction, and the Schwinger effect

    Science.gov (United States)

    Sharma, Ramkishor; Jagannathan, Sandhya; Seshadri, T. R.; Subramanian, Kandaswamy

    2017-10-01

    Models of inflationary magnetogenesis with a coupling to the electromagnetic action of the form f2Fμ νFμ ν , are known to suffer from several problems. These include the strong coupling problem, the backreaction problem and also strong constraints due to the Schwinger effect. We propose a model which resolves all these issues. In our model, the coupling function, f , grows during inflation and transits to a decaying phase post-inflation. This evolutionary behavior is chosen so as to avoid the problem of strong coupling. By assuming a suitable power-law form of the coupling function, we can also neglect backreaction effects during inflation. To avoid backreaction post-inflation, we find that the reheating temperature is restricted to be below ≈1.7 ×104 GeV . The magnetic energy spectrum is predicted to be nonhelical and generically blue. The estimated present day magnetic field strength and the corresponding coherence length taking reheating at the QCD epoch (150 MeV) are 1.4 ×10-12 G and 6.1 ×10-4 Mpc , respectively. This is obtained after taking account of nonlinear processing over and above the flux-freezing evolution after reheating. If we consider also the possibility of a nonhelical inverse transfer, as indicated in direct numerical simulations, the coherence length and the magnetic field strength are even larger. In all cases mentioned above, the magnetic fields generated in our models satisfy the γ -ray bound below a certain reheating temperature.

  11. Effect of Water Vapor During Secondary Cooling on Hot Shortness in Fe-Cu-Ni-Sn-Si Alloys

    Science.gov (United States)

    Sampson, Erica; Sridhar, Seetharaman

    2014-10-01

    Residual Cu in recycled steel scrap can cause hot shortness when the iron matrix is oxidized. Hot shortness can occur directly after the solid steel is formed from continuous casting as the steel undergoes a cooling process known as secondary cooling where water is first sprayed on the surface to promote cooling. This is followed by a radiant cooling stage where the steel is cooled in air to room temperature. This investigation examines the roles of water vapor, Si content, temperature, and the presence of Sn in a Fe-0.2 wt pct Cu-0.05 wt pct Ni alloy on oxidation, separated Cu and Cu induced-hot shortness during simulations of the secondary cooling process. The secondary cooling from 1473 K (1200 °C) resulted in a slight increase in liquid quantity and grain boundary penetration as compared to the isothermal heating cycles at 1423 K (1150 °C) due to the higher temperatures experienced in the non-isothermal cycle. The addition of water vapor increased the sample oxidation as compared to samples processed in dry atmospheres due to increased scale adherence, scale plasticity, and inward transport of oxygen. The increase in weight gain of the wet atmosphere increased the liquid formation at the interface in the non-Si containing alloys. The secondary cooling cycle with water vapor and the effect of Sn lead to the formation of many small pools of Cu-rich liquid embedded within the surface of the metal due to the Sn allowing for increased grain boundary decohesion and the water vapor allowing for oxidation within liquid-penetrated grain boundaries. The presence of Si increased the amount of occlusion of Cu and Fe, significantly decreasing the quantity of liquid at the interface and the amount of grain boundary penetration.

  12. Effect of Silver or Copper Nanoparticles-Dispersed Silane Coatings on Biofilm Formation in Cooling Water Systems.

    Science.gov (United States)

    Ogawa, Akiko; Kanematsu, Hideyuki; Sano, Katsuhiko; Sakai, Yoshiyuki; Ishida, Kunimitsu; Beech, Iwona B; Suzuki, Osamu; Tanaka, Toshihiro

    2016-07-29

    Biofouling often occurs in cooling water systems, resulting in the reduction of heat exchange efficiency and corrosion of the cooling pipes, which raises the running costs. Therefore, controlling biofouling is very important. To regulate biofouling, we focus on the formation of biofilm, which is the early step of biofouling. In this study, we investigated whether silver or copper nanoparticles-dispersed silane coatings inhibited biofilm formation in cooling systems. We developed a closed laboratory biofilm reactor as a model of a cooling pipe and used seawater as a model for cooling water. Silver or copper nanoparticles-dispersed silane coating (Ag coating and Cu coating) coupons were soaked in seawater, and the seawater was circulated in the laboratory biofilm reactor for several days to create biofilms. Three-dimensional images of the surface showed that sea-island-like structures were formed on silane coatings and low concentration Cu coating, whereas nothing was formed on high concentration Cu coatings and low concentration Ag coating. The sea-island-like structures were analyzed by Raman spectroscopy to estimate the components of the biofilm. We found that both the Cu coating and Ag coating were effective methods to inhibit biofilm formation in cooling pipes.

  13. Effect of Cooling Rate on Morphology of TiAl3 Particles in Al–4Ti Master Alloy

    Directory of Open Access Journals (Sweden)

    Jianhua Zhao

    2017-02-01

    Full Text Available The Al–4Ti master alloy was fabricated by aluminum (Al and sponge titanium particle in a resistance furnace at different cooling rates. This work aims to investigate the relationship between the cooling rate and morphology of TiAl3. The microstructure and composition of master alloys at different cooling rates were characterized and analyzed by optical microscopy (OM, X-ray diffraction (XRD, differential scanning calorimetry (DSC, and SEM with energy dispersive spectroscopy (EDS. The results showed that various morphologies of TiAl3 particles in the Al–4Ti master alloy could be acquired at different cooling rates. Petal-like, blocky, and flake-like TiAl3 particles in the Al–4Ti master alloy were respectively acquired at the cooling rates of 3.36 K/s, 2.57 K/s, and 0.31 K/s. It was also found that the morphology of TiAl3 particles in the prepared master alloy changed from petal-like to blocky, then finally to flake-like, with the decrease of cooling rate. In addition, the morphology of the TiAl3 particles has no effect on the phase inversion temperature of Al–4Ti master alloy.

  14. Appropriate heat load ratio of generator for different types of air cooled lithium bromide–water double effect absorption chiller

    International Nuclear Information System (INIS)

    Li, Zeyu; Liu, Jinping

    2015-01-01

    Highlights: • Effect of heat load ratio of generator on the performance was analyzed. • The performance is sensitive to heat load ratio of generator. • The appropriate heat load ratio of generator for four systems was obtained. • The change of appropriate heat load ratio of generator for four systems was studied. - Abstract: The lower coefficient of performance and higher risk of crystallization in the higher surrounding temperature is the primary disadvantage of air cooled lithium bromide–water double effect absorption chiller. Since the coefficient of performance and risk of crystallization strongly depend on the heat load ratio of generator, the appropriate heat load ratio of generator can improve the performance as the surrounding temperature is higher. The paper mainly deals with the appropriate heat load ratio of generator of air cooled lithium bromide–water double effect absorption chiller. Four type systems named series, pre-parallel, rear parallel and reverse parallel flow configuration were considered. The corresponding parametric model was developed to analyze the comprehensive effect of heat load ratio of generator on the coefficient of performance and risk of crystallization. It was found that the coefficient of performance goes up linearly with the decrease of heat load ratio of generator. Simultaneously, the risk of crystallization also rises slowly at first but increases fast finally. Consequently, the appropriate heat load ratio of generator for the series and pre-parallel flow type systems is suggested to be 0.02 greater than the minimum heat load ratio of generator and that for the rear parallel and reverse parallel flow chillers should be 0.01 higher than the minimum heat load ratio of generator. Besides, the changes of minimum heat load ratio of generator for different type systems with the working condition were analyzed and compared. It was found that the minimum heat load ratio of generator goes up with the increase of

  15. Extended Parrondo's game and Brownian ratchets: Strong and weak Parrondo effect

    Science.gov (United States)

    Wu, Degang; Szeto, Kwok Yip

    2014-02-01

    Inspired by the flashing ratchet, Parrondo's game presents an apparently paradoxical situation. Parrondo's game consists of two individual games, game A and game B. Game A is a slightly losing coin-tossing game. Game B has two coins, with an integer parameter M. If the current cumulative capital (in discrete unit) is a multiple of M, an unfavorable coin pb is used, otherwise a favorable pg coin is used. Paradoxically, a combination of game A and game B could lead to a winning game, which is the Parrondo effect. We extend the original Parrondo's game to include the possibility of M being either M1 or M2. Also, we distinguish between strong Parrondo effect, i.e., two losing games combine to form a winning game, and weak Parrondo effect, i.e., two games combine to form a better-performing game. We find that when M2 is not a multiple of M1, the combination of B (M1) and B (M2) has strong and weak Parrondo effect for some subsets in the parameter space (pb,pg), while there is neither strong nor weak effect when M2 is a multiple of M1. Furthermore, when M2 is not a multiple of M1, a stochastic mixture of game A may cancel the strong and weak Parrondo effect. Following a discretization scheme in the literature of Parrondo's game, we establish a link between our extended Parrondo's game with the analysis of discrete Brownian ratchet. We find a relation between the Parrondo effect of our extended model to the macroscopic bias in a discrete ratchet. The slope of a ratchet potential can be mapped to the fair game condition in the extended model, so that under some conditions, the macroscopic bias in a discrete ratchet can provide a good predictor for the game performance of the extended model. On the other hand, our extended model suggests a design of a ratchet in which the potential is a mixture of two periodic potentials.

  16. Strong coupling effects between a meta-atom and MIM nanocavity

    Directory of Open Access Journals (Sweden)

    San Chen

    2012-09-01

    Full Text Available In this paper, we investigate the strong coupling effects between a meta-atom and a metal-insulator-metal (MIM nanocavity. By changing the meta-atom sizes, we achieve the meta-atomic electric dipole, quadrupole or multipole interaction with the plasmonic nanocavity, in which characteristic anticrossing behaviors demonstrate the occurrence of the strong coupling. The various interactions present obviously different splitting values and behaviors of dependence on the meta-atomic position. The largest Rabi-type splittings, about 360.0 meV and 306.1 meV, have been obtained for electric dipole and quadrupole interaction, respectively. We attribute the large splitting to the highly-confined cavity mode and the large transition dipole of the meta-atom. Also the Rabi-type oscillation in time domain is given.

  17. Realization of effective super Tonks-Girardeau gases via strongly attractive one-dimensional Fermi gases

    International Nuclear Information System (INIS)

    Chen Shu; Yin Xiangguo; Guan Liming; Guan Xiwen; Batchelor, M. T.

    2010-01-01

    A significant feature of the one-dimensional super Tonks-Girardeau gas is its metastable gas-like state with a stronger Fermi-like pressure than for free fermions which prevents a collapse of atoms. This naturally suggests a way to search for such strongly correlated behavior in systems of interacting fermions in one dimension. We thus show that the strongly attractive Fermi gas without polarization can be effectively described by a super Tonks-Girardeau gas composed of bosonic Fermi pairs with attractive pair-pair interaction. A natural description of such super Tonks-Girardeau gases is provided by Haldane generalized exclusion statistics. In particular, they are equivalent to ideal particles obeying more exclusive statistics than Fermi-Dirac statistics.

  18. Effects of Strong Correlations on the Disorder-Induced Zero Bias Anomaly

    Science.gov (United States)

    Atkinson, William; Song, Yun; Bulut, Sinan; Wortis, Rachel

    2009-03-01

    In conventional metals and semiconductors, density of states anomalies result from the interplay between disorder and interactions. Motivated by a number of experiments that find zero bias anomalies (ZBA) in transition metal oxides, we have performed calculations to determine the effect of strong correlations on the ZBA in disordered interacting systems. We use a self-consistent mean-field theory that incorporates strong correlations and treats spatial fluctuations of the disorder potential exactly. We discuss both the Anderson-Hubbard model and the extended Anderson-Hubbard model. We find that, even for a zero-range interaction, nonlocal self-energy corrections lead to the formation of an Altshuler-Aronov-like ZBA. In the extended Anderson-Hubbard model, Efros-Shklovskii-like physics dominates at large disorder.

  19. Employment of neural networks for analysis of chemical composition and cooling rate effect on CCT diagrams shape

    International Nuclear Information System (INIS)

    Dobrzanski, L.A.; Trzaska, J.

    2004-01-01

    The paper presents possibility of employment of the original supercooled austenite transformation anisothermic diagrams forecasting method for analysis of the chemical composition effect on the CCT diagrams shape. The developed model makes it possible to substitute computer simulation for the costly and time consuming experiments. The information derived from calculations make it possible to plot diagrams illustrating the effects of the particular elements or pairs of elements, as well as cooling rate and/or austenitizing temperature, on any temperature or time describing transformations in steel during its continuous cooling. Evaluation is also possible of the effect of the aforementioned factors on hardness and fractions of the particular structural constituents. (author)

  20. Effect of cooling rate on achieving thermodynamic equilibrium in uranium-plutonium mixed oxides

    Science.gov (United States)

    Vauchy, Romain; Belin, Renaud C.; Robisson, Anne-Charlotte; Hodaj, Fiqiri

    2016-02-01

    In situ X-ray diffraction was used to study the structural changes occurring in uranium-plutonium mixed oxides U1-yPuyO2-x with y = 0.15; 0.28 and 0.45 during cooling from 1773 K to room-temperature under He + 5% H2 atmosphere. We compare the fastest and slowest cooling rates allowed by our apparatus i.e. 2 K s-1 and 0.005 K s-1, respectively. The promptly cooled samples evidenced a phase separation whereas samples cooled slowly did not due to their complete oxidation in contact with the atmosphere during cooling. Besides the composition of the annealing gas mixture, the cooling rate plays a major role on the control of the Oxygen/Metal ratio (O/M) and then on the crystallographic properties of the U1-yPuyO2-x uranium-plutonium mixed oxides.

  1. [Impacts of urban cooling effect based on landscape scale: a review].

    Science.gov (United States)

    Yu, Zhao-wu; Guo, Qing-hai; Sun, Ran-hao

    2015-02-01

    The urban cooling island (UCI) effect is put forward in comparison with the urban heat island effect, and emphasizes on landscape planning for optimization of function and way of urban thermal environment. In this paper, we summarized current research of the UCI effects of waters, green space, and urban park from the perspective of patch area, landscape index, threshold value, landscape pattern and correlation analyses. Great controversy was found on which of the two factors patch area and shape index has a more significant impact, the quantification of UCI threshold is particularly lacking, and attention was paid too much on the UCI effect of landscape composition but little on that of landscape configuration. More attention should be paid on shape, width and location for water landscape, and on the type of green space, green area, configuration and management for green space landscape. The altitude of urban park and human activities could also influence UCI effect. In the future, the threshold determination should dominate the research of UCI effect, the reasons of controversy should be further explored, the study of time sequence should be strengthened, the UCI effects from landscape pattern and landscape configuration should be identified, and more attention should be paid to spatial scale and resolution for the precision and accuracy of the UCI results. Also, synthesizing the multidisciplinary research should be taken into consideration.

  2. Thermal Effectiveness Characteristics of Low Approach Indirect Evaporative Cooling Systems in Buildings

    OpenAIRE

    Costelloe, Ben; Finn, Donal

    2007-01-01

    Meteorological enthalpy analysis of temperate and maritime climates above latitude 45°N suggests that the water-side evaporative cooling technique has considerable unrealised potential with contemporary “high temperature” building cooling systems—such as chilled ceilings and displacement ventilation. As low approach conditions are the key to exploiting the cooling potential of the ambient air, thermal performance at such conditions needs to be investigated. To address the research issues, an ...

  3. On the possible effect of round-the-world surface seismic waves in the dynamics of repeated shocks after strong earthquakes

    Science.gov (United States)

    Zotov, O. D.; Zavyalov, A. D.; Guglielmi, A. V.; Lavrov, I. P.

    2018-01-01

    Based on the observation data for hundreds of the main shocks and thousands of aftershocks, the existence of effect of round-the-world surface seismic waves is demonstrated (let us conditionally refer to them as a round-the-world seismic echo) and the manifestations of this effect in the dynamics of the repeated shocks of strong earthquakes are analyzed. At the same time, we by no means believe this effect has been fully proven. We only present a version of our own understanding of the physical causes of the observed phenomenon and analyze the regularities in its manifestation. The effect is that the surface waves excited in the Earth by the main shock make a full revolution around the Earth and excite a strong aftershock in the epicentral zone of the main shock. In our opinion, the physical nature of this phenomenon consists in the fact that the superposition leads to a concentration of wave energy when the convergent surface waves reach the epicentral zone (cumulative effect). The effect of the first seismic echo is most manifest. Thus, the present work supports our hypothesis of the activation of rock failure under the cumulative impact of an round-the-world seismic echo on the source area which is releasing ("cooling") after the main shock. The spatial regularities in the manifestations of this effect are established, and the independence of the probability of its occurrence on the main shock magnitude is revealed. The effect of a round-the-world seismic echo can be used to improve the reliability of the forecasts of strong aftershocks in determining the scenario for the seismic process developing in the epicentral zone of a strong earthquake that has taken place.

  4. Effect of façade systems on the performance of cooling ceilings: In situ measurements

    Directory of Open Access Journals (Sweden)

    Katharina Eder

    2015-03-01

    Full Text Available This article presents an innovative façade system designed to increase the thermal comfort inside an office room and to enhance the cooling capacity of the suspended cooling ceiling. A series of measurements is conducted in an existing office building with different façade systems (i.e., a combination of glazing and shading. An innovative façade system is developed based on this intensive set of measurements. The new system enhances the thermal comfort and cooling capacity of the suspended cooling ceiling. The main usage of the new system is the refurbishment and improvement of existing façade systems.

  5. Effective action for superfluid Fermi systems in the strong-coupling limit

    International Nuclear Information System (INIS)

    Dupuis, N.

    2005-01-01

    We derive the low-energy effective action for three-dimensional superfluid Fermi systems in the strong-coupling limit, where superfluidity originates from Bose-Einstein condensation of composite bosons. Taking into account density and pairing fluctuations on the same footing, we show that the effective action involves only the fermion density ρ r and its conjugate variable, the phase θ r of the pairing order parameter Δ r . We recover the standard action of a Bose superfluid of density ρ r /2, where the bosons have a mass m B =2m and interact via a repulsive contact potential with amplitude g B =4πa B /m B ,a B =2a (a the s-wave scattering length associated to the fermion-fermion interaction in vacuum). For lattice models, the derivation of the effective action is based on the mapping of the attractive Hubbard model onto the Heisenberg model in a uniform magnetic field, and a coherent state path integral representation of the partition function. The effective description of the Fermi superfluid in the strong-coupling limit is a Bose-Hubbard model with an intersite hopping amplitude t B =J/2 and an on-site repulsive interaction U B =2Jz, where J=4t 2 /U (t and -U are the intersite hopping amplitude and the on-site attraction in the (fermionic) Hubbard model, z the number of nearest-neighbor sites)

  6. Effective action for superfluid Fermi systems in the strong-coupling limit

    Science.gov (United States)

    Dupuis, N.

    2005-07-01

    We derive the low-energy effective action for three-dimensional superfluid Fermi systems in the strong-coupling limit, where superfluidity originates from Bose-Einstein condensation of composite bosons. Taking into account density and pairing fluctuations on the same footing, we show that the effective action involves only the fermion density ρr and its conjugate variable, the phase θr of the pairing order parameter Δr . We recover the standard action of a Bose superfluid of density ρr/2 , where the bosons have a mass mB=2m and interact via a repulsive contact potential with amplitude gB=4πaB/mB,aB=2a ( a the s -wave scattering length associated to the fermion-fermion interaction in vacuum). For lattice models, the derivation of the effective action is based on the mapping of the attractive Hubbard model onto the Heisenberg model in a uniform magnetic field, and a coherent state path integral representation of the partition function. The effective description of the Fermi superfluid in the strong-coupling limit is a Bose-Hubbard model with an intersite hopping amplitude tB=J/2 and an on-site repulsive interaction UB=2Jz , where J=4t2/U ( t and -U are the intersite hopping amplitude and the on-site attraction in the (fermionic) Hubbard model, z the number of nearest-neighbor sites).

  7. Retrieval effects on ventilation and cooling requirements for a nuclear waste repository

    International Nuclear Information System (INIS)

    Hambley, D.F.

    1985-01-01

    The Nuclear Waste Policy Act of 1982 (Public Law 97-425) and the regulations promulgated in Title 10, Part 60 of the Code of Federal Regulations (10CFR60) by the US Nuclear Regulatory Commission (NRC) for an underground repository for spent fuel and high level nuclear waste (HLW) require that it is possible to retrieve waste, for whatever reason, from such a facility for a period of 50 years from initial storage or until the completion of the performance confirmation period, whichever comes first. This paper considers the effects that the retrievability option mandates on ventilation and cooling systems required for normal repository operations. An example is given for a hypothetical repository in salt. 18 refs., 1 tab

  8. Effects of acoustic ceiling units on the cooling performance of thermally activated building systems (TABS)

    DEFF Research Database (Denmark)

    Lacarte, Luis Marcos Domínguez; Rage, Niels; Kazanci, Ongun Berk

    2017-01-01

    removed by the TABS when 43% of the ceiling area was covered with free hanging horizontal sound absorbers at 300 mm (0.98 ft) from the active surface. This reduction was 23% for a ceiling coverage ratio of 60%. The decrease in heat absorbed by the TABS is less pronounced in the case of vertical sound...... absorbers for equivalent levels of sound absorption. A reduction of 12% of the heat removed by the TABS has been measured for vertical sound absorbers (equivalent sound absorption levels to 60% coverage ratio with horizontal sound absorbers). This reduction was of 13% for vertical sound absorbers...... the effects of two types of free hanging ceiling absorbers (horizontal and vertical) on the cooling performance of the TABS and the implications this has on the occupant thermal comfort. The measurements were carried out in a full-scale TABS test facility. The results show a reduction of 11% of the heat...

  9. Effect of orientation on critical heat flux in a 3-rod bundle cooled by Freon-12

    International Nuclear Information System (INIS)

    Dimmick, G.R.

    1979-06-01

    Critical heat flux measurements have been made in a segmented 3-rod test section cooled by Freon-12. Three test section orientations were used: vertical, inclined at 11 deg to the vertical, and horizontal. It was found that at flows of less than 2.5 Mg.m -2 .s -1 the transverse gravity force on the inclined and horizontal orientations reduced the magnitude of the critical heat flux and also changed the location of initial dryout when compared to the vertical data. To account for the effect of orientation during correlation of the data, the Reynolds number was modified to include a transverse gravity term. The minimum standard deviation for the data from the three orientations combined was 3.4 percent and less than 3.7 percent for the three orientations separately. (author)

  10. Effect of passive cooling strategies on overheating in low energy residential buildings for Danish climate

    DEFF Research Database (Denmark)

    Simone, Angela; Avantaggiato, Marta; de Carli, Michele

    2014-01-01

    Climate changes have progressively produced an increase of outdoors temperature resulting in tangible warmer summers even in cold climate regions. An increased interest for passive cooling strategies is rising in order to overcome the newly low energy buildings’ overheating issue. The growing level...... creating not negligible thermal discomfort. In the present work the effect of passive strategies, such as solar shading and natural night-time ventilation, are evaluated through computer simulations. The analyses are performed for 1½-storey single-family house in Copenhagen’s climate. The main result...... of air-tightness plays in low-energy buildings a double-acting role: reduction of energy demand and lack of adequate infiltration rate. In particular, the last one combined with higher outside air temperatures brings these new concepts buildings to progressively experience higher indoor temperatures...

  11. Effect of wafer bow on electrostatic chucking and back side gas cooling

    Science.gov (United States)

    Goodman, Daniel L.

    2008-12-01

    Electrostatic chucks (ESCs) are used in the semiconductor industry to clamp wafers to a pedestal and combined with back side gas (BSG) cooling to control temperature during processing. The effect of wafer bow in an ESC/BSG system is studied theoretically and experimentally. An equilibrium model is developed that predicts the maximum allowed bow for initial chucking and the maximum BSG pressure once the wafer is chucked. Experimental chucking and BSG pressure data show the maximum initial bow that can be chucked agree with model predictions. Hysteresis in pressure versus flow data is also consistent with the model. The model does not predict some features of thin wafers with highly stressed films. However, deviations between the model and data in this nonlinear regime are expected. By combining the theory with the experimental data, a method to determine a safe BSG/ESC operating range is given.

  12. Transient and cyclic effects on a PCM-cooled mobile device

    Directory of Open Access Journals (Sweden)

    Tso C.P.

    2015-01-01

    Full Text Available A mock handset with heat storage unit (HSU has been designed, fabricated, and experimented under various conditions to examine the effect of external heat sink on the handset’s transient temperature distribution, performance of the individual HSU under different power level and orientation, as well as under the more realistic cyclic heating. The cooling of the handset is through using a phase change material (PCM, n-eicosane, stored in the external HSU connected to the handset through a miniature heat pipe. The heat pipe channels the internal heat dissipation to the HSU where it is absorbed by the PCM. Results show that the temperature is significantly lowered with the PCM-based HSU.

  13. Effects of Micro-fin Structure on Spray Cooling Heat Transfer in Forced Convection and Nucleate Boiling Region

    International Nuclear Information System (INIS)

    Kim, Yeung Chan

    2010-01-01

    In the present study, spray cooling heat transfer was experimentally investigated for the case in which water is sprayed onto the surfaces of micro-fins in forced convection and nucleate boiling regions. The experimental results show that an increase in the droplet flow rate improves heat transfer due to forced convection and nucleate boiling in the both case of smooth surface and surfaces of micro-fins. However, the effect of subcooling for fixed droplet flow rate is very weak. Micro-fins surfaces enhance the spray cooling heat transfer significantly. In the dilute spray region, the micro-fin structure has a significant effect on the spray cooling heat transfer. However, this effect is weak in the dense spray region. A previously determined correlation between the Nusselt number and Reynolds number shows good agreement with the present experimental data for a smooth surface

  14. Effect of Cooling Rate on the Longitudinal Modulus of Cu3Sn Phase of Ag-Sn-Cu Amalgam Alloy (Part II

    Directory of Open Access Journals (Sweden)

    R. H. Rusli

    2015-10-01

    Full Text Available Effects of cooling rate (at the time of solidification on the elastic constants of Cu3Sn phase of Ag-Sn-Cu dental amalgam alloy were studied. In this study, three types of alloys were made, with the composition Cu-38-37 wt% Sn by means of casting, where each alloy was subjected to different cooling rate, such as cooling on the air (AC, air blown (AB, and quenched in the water (WQ. X-ray diffraction, metallography, and Scanning Electron Microscopy with Energy Dispersive Spectroscopy studies of three alloys indicated the existence of Cu3Sn phase. Determination of the modulus of elasticity of Cu3Sn (ε phase was carried out by the measurement of longitudinal and transversal waves velocity using ultrasonic technique. The result shows that Cu3Sn (ε phase on AC gives higher modulus of elasticity values than those of Cu3Sn (ε on AB and WQ. The high modulus of elasticity value will produce a strong Ag-Sn-Cu dental amalagam alloy.

  15. Effect of in-core instrumentation mounting location on external reactor vessel cooling

    International Nuclear Information System (INIS)

    Suh, Jungsoo; Ha, Huiun

    2017-01-01

    Highlights: • Numerical simulations were conducted for the evaluation of an IVR-ERVC application. • The ULPU-V experiment was simulated for the validation of numerical method. • The effect of ICI mounting location on an IVR-ERVC application was investigated. • TM-ICI is founded to be superior to BM-ICI for successful application of IVR-ERVC. - Abstract: The effect of in-core instrumentation (ICI) mounting location on the application of in-vessel corium retention through external reactor vessel cooling (IVR-ERVC), used to mitigate severe accidents in which the nuclear fuel inside the reactor vessel becomes molten, was investigated. Numerical simulations of the subcooled boiling flow within an advanced pressurized-water reactor (PWR) in IVR-ERVC applications were conducted for the cases of top-mounted ICI (TM-ICI) and bottom-mounted ICI (BM-ICI), using the commercially available computational fluid dynamics (CFD) software ANSYS-CFX. Shear stress transport (SST) and the RPI model were used for turbulence closure and subcooled flow boiling, respectively. To validate the numerical method for IVR applications, numerical simulations of ULPU-V experiments were also conducted. The BM-ICI reactor vessel was modeled using a simplified design of an advanced PWR with BM-ICI; the TM-ICI counterpart was modeled by removing the ICI parts from the original geometry. It was found that TM-ICI was superior to BM-ICI for successful application of IVR-ERVC. For the BM-ICI case, the flow field was complicated because of the existence of ICIs and a significant temperature gradient was observed near the ICI nozzles on the lower part of the reactor vessel, where the ICIs were attached. These observations suggest that the existence of ICI below the reactor vessel hinders reactor vessel cooling.

  16. Effect of electricity tariffs and cooling technologies on dairy farm electricity consumption, related costs and greenhouse gas emissions

    NARCIS (Netherlands)

    Upton, J.R.; Shalloo, L.; Murphy, M.; Groot Koerkamp, P.W.G.; Boer, de I.J.M.

    2014-01-01

    The aim of this study was to provide insight into the variations in dairy farm electricity costs across five electricity tariffs. The effect of four milk cooling scenarios is also simulated to illustrate the effect of technologies on the electricity consumption, related costs and CO2 emissions of a

  17. Drag Effect of Kompsat-1 During Strong Solar and Geomagnetic Activity

    Directory of Open Access Journals (Sweden)

    J. Park

    2007-06-01

    Full Text Available In this paper, we analyze the orbital variation of the KOrea Multi-Purpose SATellite-1(KOMPSAT-1 in a strong space environment due to satellite drag by solar and geomagnetic activities. The satellite drag usually occurs slowly, but becomes serious satellite drag when the space environment suddenly changes via strong solar activity like a big flare eruption or coronal mass ejections(CMEs. Especially, KOMPSAT-1 as a low earth orbit satellite has a distinct increase of the drag acceleration by the variations of atmospheric friction. We consider factors of solar activity to have serious effects on the satellite drag from two points of view. One is an effect of high energy radiation when the flare occurs in the Sun. This radiation heats and expands the upper atmosphere of the Earth as the number of neutral particles is suddenly increased. The other is an effect of Joule and precipitating particle heating caused by current of plasma and precipitation of particles during geomagnetic storms by CMEs. It also affects the density of neutral particles by heating the upper atmosphere. We investigate the satellite drag acceleration associated with the two factors for five events selected based on solar and geomagnetic data from 2001 to 2002. The major results can be summarized as follows. First, the drag acceleration started to increase with solar EUV radiation with the best cross-correlation (r = 0.92 for 1 day delayed F10.7. Second, the drag acceleration and Dst index have similar patterns when the geomagnetic storm is dominant and the drag acceleration abruptly increases during the strong geomagnetic storm. Third, the background variation of the drag accelerations is governed by the solar radiation, while their short term (less than a day variations is governed by geomagnetic storms.

  18. Poly-ϵ-caprolactone/chitosan nanoparticles provide strong adjuvant effect for hepatitis B antigen.

    Science.gov (United States)

    Jesus, Sandra; Soares, Edna; Borchard, Gerrit; Borges, Olga

    2017-10-01

    This work aims to investigate the adjuvant effect of poly-ϵ-caprolactone/chitosan nanoparticles (NPs) for hepatitis B surface antigen (HBsAg) and the plasmid DNA encoding HBsAg (pRC/CMV-HBs). Both antigens were adsorbed onto preformed NPs. Vaccination studies were performed in C57BL/6 mice. Transfection efficiency was investigated in A549 cell line. HBsAg-adsorbed NPs generated strong anti-HBsAg IgG titers, mainly of IgG1 isotype, and induced antigen-specific IFN-γ and IL-17 secretion by spleen cells. The addition of pRC/CMV-HBs to the HBsAg-adsorbed NPs inhibited IL-17 secretion but had minor effect on IFN-γ levels. Lastly, pRC/CMV-HBs-loaded NPs generated a weak serum antibody response. Poly-ϵ-caprolactone/chitosan NPs provide a strong humoral adjuvant effect for HBsAg and induce a Th1/Th17-mediated cellular immune responses worth explore for hepatitis B virus vaccination.

  19. Dispersion of Co/CNTs via strong electrostatic adsorption method: Thermal treatment effect

    Energy Technology Data Exchange (ETDEWEB)

    Akbarzadeh, Omid, E-mail: omid.akbarzadeh63@gmail.com; Abdullah, Bawadi, E-mail: bawadi-abdullah@petronas.com.my; Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my [Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Zabidi, Noor Asmawati Mohd, E-mail: noorasmawati-mzabidi@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    The effect of different thermal treatment temperature on the structure of multi-walled carbon nanotubes (MWCNTs) and Co particle dispersion on CNTs support is studied using Strong electrostatic adsorption (SEA) method. The samples tested by N{sub 2}-adsorption, field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). N{sub 2}-adsorption results showed BET surface area increased using thermal treatment and TEM images showed that increasing the thermal treatment temperature lead to flaky CNTs and defects introduced on the outer surface and Co particle dispersion increased.

  20. Gain length fitting formula for free-electron lasers with strong space-charge effects

    Directory of Open Access Journals (Sweden)

    G. Marcus

    2011-08-01

    Full Text Available We present a power-fit formula, obtained from a variational analysis using three-dimensional free-electron laser theory, for the gain length of a high-gain free-electron laser’s fundamental mode in the presence of diffraction, uncorrelated energy spread, and longitudinal space-charge effects. The approach is inspired by the work of Xie [Nucl. Instrum. Methods Phys. Res., Sect. A 445, 59 (2000NIMAER0168-900210.1016/S0168-9002(0000114-5], and provides a useful shortcut for calculating the gain length of the fundamental Gaussian mode of a free-electron laser having strong space-charge effects in the 3D regime. The results derived from analytic theory are in good agreement with detailed numerical particle simulations that also include higher-order space-charge effects, supporting the assumptions made in the theoretical treatment and the variational solutions obtained in the single-mode limit.

  1. Effect of diesel leakage in circulating cooling water system on preponderant bacteria diversity and bactericidal effect of biocides.

    Science.gov (United States)

    Zhong, Huiyun; Liu, Fang; Lu, Jinjin; Yang, Wei; Zhao, Chaocheng

    2015-01-01

    Petroleum products leakage results in adverse effect on the normal operation of a circulating cooling water system. However, relatively little research has been done to explore the effect of petroleum products leakage on circulating cooling water quality and biofilm preponderant bacteria diversity. Also, normal biocides application modes cannot fulfil the need for biofilm control. In this study, diesel oil was used as the experimental subject representing leaking petroleum products; the effect of diesel addition on biofilm preponderant bacteria diversity and the bactericidal effect of chlorine dioxide and tetradecyl dimethyl benzyl ammonium chloride (1427) was investigated. Bacterial community structures were examined by PCR-denaturing gradient gel electrophoresis and PCR cloning of 16S rDNA genes. Except for 100 mg/L diesel, increasing diesel concentration enhanced the biofilm detachment ratio compared with the control test. The microstructure of biofilm samples with 0, 300 and 900 mg/L diesel addition was observed. The species of preponderant bacteria in the biofilm sample with 300 mg/L diesel addition were more and the bacterial distribution was more uniform than those in the biofilm sample with 900 mg/L diesel addition. With ClO2 and 1427 addition, chemical oxygen demand increased, lipid phosphorus and bacterial count first decreased and then remained stable, and the bactericidal ratio first increased and then remained stable. Diesel addition variation has more obvious effect on ClO2 than 1427.

  2. Validation of cooling effect of insulated containers for the shipment of corneal tissue and recommendations for transport.

    Science.gov (United States)

    Miller, Thomas D; Maxwell, Andrew J; Lindquist, Thomas D; Requard, Jake

    2013-01-01

    To determine the cooling effect of generic insulated shipping containers in ambient and high-temperature environments. Twenty-seven shipping containers were packed with wet ice according to industry standards. The ice in each container was weighed. Ambient temperatures were recorded by data loggers affixed to the exterior. Internal temperatures were recorded by data loggers packed inside the containers, for as long as the data loggers remained at ≤8°C. The cooling effect, or minutes per gram of ice a data logger maintained a temperature of ≤8°C, was calculated using linear regression; 8 similar containers were subjected to elevated summer temperatures. Small, medium, and large containers held mean masses of wet ice of 685, 1929, and 4439 g, respectively. The linear regression equation for grams of ice to duration of time at ≤8°C was y = 0.1994x + 385.13 for small containers, y = 0.1854x + 1273.3 for medium, and y = 0.5892x + 1410.3 for large containers, resulting in a cooling effect of 25.1 hours for small, 58.9 hours for medium, and 85.7 hours for large containers at ambient temperature. The duration of cooling effect in the summer profile group was consistent with that of the ambient temperature group. All of the container sizes successfully maintained proper cooling when packed with the appropriate grams of wet ice for the needed time interval. This study validates current practice for the shipment of corneal tissue in inexpensive, generic containers that can maintain effective cooling for the duration required for local, national, and international shipment.

  3. Effect of nodule count and cooling rate on As-Cast matrix of a Cu-Mo spheroidal graphite

    Science.gov (United States)

    Salazar F., R.; Herrera-Trejo, M.; Castro, M.; Méndez N., J.; Torres T., J.; Méndez N., M.

    1999-06-01

    The transformation of austenite to ferrite and graphite or to pearlite in spheroidal graphite cast iron depends on a number of factors, among which are the nodule count and the cooling rate. In this study, the pearlite fraction decreased as the nodule count increased for a given cooling rate. Furthermore, as the cooling rate increased, the fraction of pearlite increased. Both effects were more sensitive at low nodule count. The effects of altering these parameters on the relative amount of pearlite and ferrite in the matrix of a copper-molybdenum (Cu-Mo) spheroidal graphite cast iron were addressed using heats carried out in an induction furnace, and the melts were treated with magnesium ferrosilicon in a ladle. To vary the nodule count, the melts were inoculated with two different amounts of ferrosilicon. Pouring was performed into sand molds of cylindrical cavities with different section size in order to achieve various cooling rates. Both the nodule count and the cooling rate affected the relative amount of ferrite and pearlite in the matrix.

  4. Effects of different cooling principles on thermal sensation and physiological responses

    DEFF Research Database (Denmark)

    Schellen, Lisje; Loomans, Marcel G.L.C.; De Wit, Martin H.

    2013-01-01

    convection in terms of increased air velocities) and active cooling (through convection or radiation). Furthermore, two different ventilation techniques were included: mixing and displacement ventilation. Ten male subjects (age: 20-29) were exposed to six different cases: (1) PC-C-M; passive cooling through...

  5. Effect of cooling to different sub-zero temperatures on boar sperm cryosurvival

    Directory of Open Access Journals (Sweden)

    Angelica Garcia-Olivares

    2016-03-01

    Conclusions: Cooling of pig sperm to −7 °C (no freezing damaged sperm function and structure; in contrast, cooling to either −3 °C or −5 °C did not change pig sperm survival after freeze-thawing.

  6. Heating and cooling rates and their effects upon heart rate in the ...

    African Journals Online (AJOL)

    The heating and cooling rates of adult Chersina angulata were investigated to ascertain whether these tortoises can physiologically alter their rates of heat exchange. In addition, heart rates were recorded to provide an insight into the control of heat exchange. C. angulata heats significantly faster than it cools. Heart rates ...

  7. Effect of pre-cooling and heat treatment on antioxidant enzymes ...

    African Journals Online (AJOL)

    SOD involved in detoxification of reactive oxygen species (ROS) were measured in mango var. Alphonso and banana var. Robusta. Increased CAT and POX activities in mango and banana during heat treatment followed by cooling at 8 ºC or 13 ºC indicated increased elimination of ROS. Pre-cooling of mango at 8 ºC ...

  8. Observed increase in local cooling effect of deforestation at higher latitudes

    Science.gov (United States)

    Xuhui Lee; Michael L. Goulden; David Y. Hollinger; Alan Barr; T. Andrew Black; Gil Bohrer; Rosvel Bracho; Bert Drake; Allen Goldstein; Lianhong Gu; Gabriel Katul; Thomas Kolb; Beverly E. Law; Hank Margolis; Tilden Meyers; Russell Monson; William Munger; Ram Oren; Kyaw Tha Paw U; Andrew D. Richardson; Hans Peter Schmid; Ralf Staebler; Steven Wofsy; Lei. Zhao

    2011-01-01

    Deforestation in mid- to high latitudes is hypothesized to have the potential to cool the Earth's surface by altering biophysical processes. In climate models of continental-scale land clearing, the cooling is triggered by increases in surface albedo and is reinforced by a land albedo–sea ice feedback. This feedback is crucial in the model predictions; without it...

  9. Numerical study by large-eddy simulation on effects and mechanism of air-cooling enhancing technologies

    International Nuclear Information System (INIS)

    Tamura, Akinori; Kawamura, Toshinori; Ishida, Naoyuki; Kitou, Kazuaki

    2014-01-01

    Learning from the lessons of the Fukushima Daiichi nuclear incident in which a long-term station black-out occurred, we have been developing an air-cooling system for boiling water reactors that can operate without electricity for a virtually indefinite time. Improvement in the heat transfer performance of air-cooling is key to the development of the air-cooling system. We developed air-cooling enhancing technologies for the air-cooling system by using heat transfer fins, turbulence-enhancing ribs and a micro-fabrication surface. In our previous study, the performance of these air-cooling enhancing technologies was evaluated by heat transfer tests using a single pipe of the air-cooling heat exchanger. To achieve further improvement of the heat transfer performance, it is important to understand the mechanism of the air-cooling enhancing technologies. In this study, we used the numerical analysis which is based on the filtered incompressible Navier-Stokes equation and the filtered energy equation with the large-eddy simulation in order to investigate the effects and the mechanism of the developed air-cooling enhancing technologies. We found that the analysis results agreed well with the experimental results and the empirical formula results. The heat transfer enhancement mechanism of the heat transfer fin is due to an increase in the heat transfer area. Due to a decrease in the flow velocity at the base of the fins, the increase in the Nusselt number was approximately 15% smaller than the estimated value from the area increase. In the heat transfer enhancement by the turbulence-enhancing ribs, the unsteady behavior of the large-scale vortex generated by the flow separation plays an important role. The enhancement ratio of the Nusselt number by the micro-fabrication surface can be explained by the apparent thermal conductivity. The Nusselt number was increased 4-8% by the micro-fabrication surface. The effect of the micro-fabrication surface is increased by applying

  10. Effect of Casting Die Cooling on Solidification Process and Microstructure of Hypereutectic Al-Si Alloy

    Directory of Open Access Journals (Sweden)

    Władysiak R.

    2016-12-01

    Full Text Available The work is a continuation of research concerning the influence of intensive cooling of permanent mold in order to increase the casting efficiency of aluminium alloys using the multipoint water mist cooling system. The paper presents results of investigation of crystallization process and microstructure of synthetic hypereutectic alloys: AlSi15 and AlSi19. Casts were made in permanent mold cooled with water mist stream. The study was conducted for unmodified silumins on the research station allowing the cooling of the special permanent probe using a program of computer control. Furthermore the study used a thermal imaging camera to analyze the solidification process of hypereutectic silumins. The study demonstrated that the use of mold cooled with water mist stream allows in wide range the formation of the microstructure of hypereutectic silumins. It leads to higher homogeneity of microstructure and refinement of crystallizing phases and also it increases subsequently the mechanical properties of casting.

  11. Coolant void effect investigation - case of a na-cooled fast reactor

    International Nuclear Information System (INIS)

    Glinatsis, G.; Gugiu, D.

    2013-01-01

    In the frame of the last EURATOM-FP7 Program, a large sized Sodium-cooled FR (SFR) has been studied. Mixed carbides fuel (U, Pu)C has been adopted for the backup core solution and important work has been also performed in order to obtain an ''optimised'' backup configuration ''close'' to the reference one, which is fueled by mixed oxides fuel (U, Pu)Ox. The peculiarity of both core designs (the reference configuration and the optimised backup configuration) is the adoption of a 60 cm Plenum zone in the upper part of each fuel assembly (FA), that is filled by coolant, in order to mitigate (when emptied) the core positive coolant void effect. This paper presents some results of a detailed study of the coolant void effect for the above SFR with mixed carbides core. Many aspects, like geometric heterogeneity, the burnup state, the operating conditions, etc., have been taken into consideration in order to obtain information about the ''propagation'' and the behaviour of the coolant void effect itself. The performed study investigates also the coolant void effect consequences on some reactivity coefficients, which are important for a safe behaviour of the reactor. The investigation consisted in the steady state simulations of the reactor on different operating conditions in Monte Carlo approach. (authors)

  12. Combined effects of cerium and cooling rate on microstructure and mechanical properties of AZ91 magnesium alloy

    Science.gov (United States)

    Cai, Huisheng; Guo, Feng; Su, Juan

    2018-01-01

    The specimens of AZ91–xCe(x = 0, 0.3, 0.6, 0.9, 1.2, mass fraction wt%) with different thicknesses were prepared by die casting process, their as-cast microstructure and room temperature mechanical properties were investigated to analyze the change rule of microstructure and mechanical properties of AZ91 magnesium alloy under combined effects of cooling rate and cerium content. The results show that, the microstructure and mechanical properties of AZ91 magnesium alloy were twofold influenced by cooling rate and cerium content. With the increase of cooling rate and Ce content, the average as-cast grain size is evidently refined; the amount of β-Mg17Al12 decreases and distribution becomes discrete. While decreasing cooling rate or increasing Ce content, Al4Ce phase is more and the morphology tends to strip and needle from granular and short rod-like. The tensile strength and elongation of AZ91–xCe magnesium alloy are improved with increasing cooling rate. With the increase of Ce content, the tensile strength and elongation of AZ91–xCe magnesium alloy increased first and decreased afterwards, besides the action of Ce to improve tensile strength and elongation is more evident under faster cooling rate. Mechanical properties of samples are optimal in this work, when Ce content is 0.96% and cooling rate is 39.6 K s‑1, tensile strength (259.7 MPa) and elongation (5.5%) are reached maximum, respectively.

  13. Laser cooling of atoms and ions

    International Nuclear Information System (INIS)

    Morigi, G.

    1999-02-01

    This thesis covers my work in the field of theoretical quantum optics, focusing on laser cooling of trapped atoms and ions. Laser cooling has been extensively investigated in the last twenty years, opening the possibility in experiments to move well into the quantum regime, where quantum statistical or quantum motional effects become pronounced. The successful preparation of cold atoms by means of laser cooling has recently raised the interest in the preparation of several or even many particles in a pure quantum state of the whole system. This goal imposes certain experimental circumstances, in particular the interaction between the atoms may play a significant role and affect the conditions for laser cooling considerably. Hence, there is great interest in developing cooling schemes which are compatible with such experimental conditions and in studying theoretically laser cooling of interacting particles. The work contained in this thesis contributes to this rapidly developing field, and it can be divided in two parts. In the first part, it presents an investigation of new schemes of laser cooling of single atoms or ions in traps where the amplitude of the particle's motion is comparable with the laser wavelength. This regime is typical of experiments with ultracold, weakly interacting atomic gases, and equally relevant to quantum information processing with trapped ions. In the second part, laser cooling of strongly interacting ions in a trap is investigated, with particular attention to the effect of the Coulomb interaction on the cooling process. This system is a paradigm for the experimental implementation of a quantum computer and is currently intensively studied. The thesis is divided into five chapters, of which the first one constitutes an introduction to laser cooling and to a series of concepts which are recurrent throughout this work. The other four chapters present my personal contributions to the field. Each of them contains first a general

  14. STRONG FIELD EFFECTS ON EMISSION LINE PROFILES: KERR BLACK HOLES AND WARPED ACCRETION DISKS

    International Nuclear Information System (INIS)

    Wang Yan; Li Xiangdong

    2012-01-01

    If an accretion disk around a black hole is illuminated by hard X-rays from non-thermal coronae, fluorescent iron lines will be emitted from the inner region of the accretion disk. The emission line profiles will show a variety of strong field effects, which may be used as a probe of the spin parameter of the black hole and the structure of the accretion disk. In this paper, we generalize the previous relativistic line profile models by including both the black hole spinning effects and the non-axisymmetries of warped accretion disks. Our results show different features from the conventional calculations for either a flat disk around a Kerr black hole or a warped disk around a Schwarzschild black hole by presenting, at the same time, multiple peaks, rather long red tails, and time variations of line profiles with the precession of the disk. We show disk images as seen by a distant observer, which are distorted by the strong gravity. Although we are primarily concerned with the iron K-shell lines in this paper, the calculation is general and is valid for any emission lines produced from a warped accretion disk around a black hole.

  15. Non trivial effect of strong high-frequency excitation on a nonlinear controlled system

    DEFF Research Database (Denmark)

    Fidlin, A.; Thomsen, Jon Juel

    2004-01-01

    due to control is usually high compared to uncontrolled systems. A standard optimal controller for a standard nonlinear system (a movable cart used to balance a pendulum vertically) is shown to exhibit pronounced bias error in presence of HF-excitation. The bias increases with increased excitation......Nontrivial effects of high-frequency excitation on mechanical uncontrolled systems have been investigated intensively in the last decade. Some of these effects are usually used in controlled systems in form of dither to smoothen out undesired friction and hysteresis. However the level of damping...... intensity, but it also increases with the increased control power. Analytic prediction for the bias shows, the interaction between fast excitation and strong damping terms in the control system to be the cause of the permanent control error. A "slow observer" ignoring fast motions is shown...

  16. Trapped in the extinction vortex? Strong genetic effects in a declining vertebrate population

    Directory of Open Access Journals (Sweden)

    Larsson Mikael

    2010-02-01

    Full Text Available Abstract Background Inbreeding and loss of genetic diversity are expected to increase the extinction risk of small populations, but detailed tests in natural populations are scarce. We combine long-term population and fitness data with those from two types of molecular markers to examine the role of genetic effects in a declining metapopulation of southern dunlins Calidris alpina schinzii, an endangered shorebird. Results The decline is associated with increased pairings between related individuals, including close inbreeding (as revealed by both field observations of parentage and molecular markers. Furthermore, reduced genetic diversity seems to affect individual fitness at several life stages. Higher genetic similarity between mates correlates negatively with the pair's hatching success. Moreover, offspring produced by related parents are more homozygous and suffer from increased mortality during embryonic development and possibly also after hatching. Conclusions Our results demonstrate strong genetic effects in a rapidly declining population, emphasizing the importance of genetic factors for the persistence of small populations.

  17. Strong matrix effect in low-energy He+ ion scattering from carbon

    International Nuclear Information System (INIS)

    Mikhailov, S.N.; Van den Oetelaar, L.C.A.; Brongersma, H.H.

    1994-01-01

    In low-energy ion scattering the contribution of neutralization processes to the scattered ion yield is very important in quantification. Neutralization of low-energy (1-3.5 keV) He + ions by carbon is found to be much stronger for graphitic than for carbidic carbon. The ion fraction for graphitic carbon for 2.5 keV 3 He + scattering over 136 is about 60 times lower than that for carbidic carbon. For the 4 He + isotope the effect is even larger. Such a strong matrix effect for one element has not been measured before in low-energy (1-3.5 keV) inert-gas ion scattering. The neutralization behaviour is discussed in terms of a special quasi-resonant neutralization process for graphite. ((orig.))

  18. Strongly correlated Fermi-systems: Non-Fermi liquid behavior, quasiparticle effective mass and their interplay

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, V.R. [Petersburg Nuclear Physics Institute, RAS, Gatchina 188300 (Russian Federation); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: vrshag@thd.pnpi.spb.ru; Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Popov, K.G. [Komi Science Center, Ural Division, RAS, Syktyvkar 167982 (Russian Federation)

    2009-06-15

    Basing on the density functional theory of fermion condensation, we analyze the non-Fermi liquid behavior of strongly correlated Fermi-systems such as heavy-fermion metals. When deriving equations for the effective mass of quasiparticles, we consider solids with a lattice and homogeneous systems. We show that the low-temperature thermodynamic and transport properties are formed by quasiparticles, while the dependence of the effective mass on temperature, number density, magnetic fields, etc., gives rise to the non-Fermi liquid behavior. Our theoretical study of the heat capacity, magnetization, energy scales, the longitudinal magnetoresistance and magnetic entropy are in good agreement with the remarkable recent facts collected on the heavy-fermion metal YbRh{sub 2}Si{sub 2}.

  19. Strongly correlated Fermi-systems: Non-Fermi liquid behavior, quasiparticle effective mass and their interplay

    International Nuclear Information System (INIS)

    Shaginyan, V.R.; Amusia, M.Ya.; Popov, K.G.

    2009-01-01

    Basing on the density functional theory of fermion condensation, we analyze the non-Fermi liquid behavior of strongly correlated Fermi-systems such as heavy-fermion metals. When deriving equations for the effective mass of quasiparticles, we consider solids with a lattice and homogeneous systems. We show that the low-temperature thermodynamic and transport properties are formed by quasiparticles, while the dependence of the effective mass on temperature, number density, magnetic fields, etc., gives rise to the non-Fermi liquid behavior. Our theoretical study of the heat capacity, magnetization, energy scales, the longitudinal magnetoresistance and magnetic entropy are in good agreement with the remarkable recent facts collected on the heavy-fermion metal YbRh 2 Si 2 .

  20. Diffusion-weighted magnetic resonance imaging reveals the effects of different cooling temperatures on the diffusion of water molecules and perfusion within human skeletal muscle

    International Nuclear Information System (INIS)

    Yanagisawa, O.; Fukubayashi, T.

    2010-01-01

    Aim: To evaluate the effect of local cooling on the diffusion of water molecules and perfusion within muscle at different cooling temperatures. Materials and methods: Magnetic resonance diffusion-weighted (DW) images of the leg (seven males) were obtained before and after 30 min cooling (0, 10, and 20 o C), and after a 30 min recovery period. Two types of apparent diffusion coefficient (ADC; ADC1, reflecting both water diffusion and perfusion within muscle, and ADC2, approximating the true water diffusion coefficient) of the ankle dorsiflexors were calculated from DW images. T2-weighted images were also obtained to calculate T2 values of the ankle dorsiflexors. The skin temperature was measured before, during, and after cooling. Results: Both ADC values significantly decreased after cooling under all cooling conditions; the rate of decrease depended on the cooling temperature used (ADC1: -36% at 0 o C, -27.8% at 10 o C, and -22.6% at 20 o C; ADC2: -26% at 0 o C, -21.1% at 10 o C, and -14.6% at 20 o C). These significant decreases were maintained during the recovery period. Conversely, the T2 value showed no significant changes. Under all cooling conditions, skin temperature significantly decreased during cooling; the rate of decrease depended on the cooling temperature used (-74.8% at 0 o C, -51.1% at 10 o C, and -26.8% at 20 o C). Decreased skin temperatures were not restored to pre-cooling values during the recovery period under any cooling conditions. Conclusion: Local cooling decreased the water diffusion and perfusion within muscle with decreased skin temperature; the rates of decrease depended on the cooling temperature used. These decreases were maintained for 30 min after cooling.

  1. Effect of thawing time, cooling rate and boron nutrition on freezing point of the primordial shoot in norway spruce buds.

    Science.gov (United States)

    Räisänen, Mikko; Repo, Tapani; Lehto, Tarja

    2006-04-01

    Effects of cooling rates on bud frost hardiness have been studied but there is little information on bud responses to thawing. Since the cell wall pore size has been found to increase with boron (B) deficiency, B deficiency may affect the supercooling ability of buds in winter. The effects of duration of thawing time and rate of cooling on bud frost hardiness of Norway spruce (Picea abies) were studied in a B fertilization trial in February 2003 and March 2005. Frost hardiness of apical buds was determined by differential thermal analysis (DTA) and visual scoring of damage. In 2003, the freezing point of primordial shoots of buds (T(f)), i.e. the low-temperature exotherm (LTE), was, on average, -39 degrees C when buds were thawed for less than 3 h and the T(f) increased to -21 degrees C after 18 h of thawing. During the first 4 h of thawing, the rate of dehardening was 6 degrees C h(-1). In 2005, buds dehardened linearly from -39 degrees C to -35 degrees C at a rate of 0.7 degrees C h(-1). In 2003, different cooling rates of 1-5 degrees C h(-1) had a minor effect on T(f) but in 2005 with slow cooling rates T(f) decreased. In both samplings, at cooling rates of 2 and 1 degrees C h(-1), T(f) was slightly higher in B-fertilized than in non-fertilized trees. By contrast, at very short thawing times in 2003, T(f) was somewhat lower in B-fertilized trees. There was little evidence of reduced frost hardiness in trees with low B status. This study showed that buds deharden rapidly when exposed to above-freezing temperatures in winter, but if cooled again they reharden more slowly. According to this study, rapid dehardening of buds has to be taken into account in assessments of frost hardiness.

  2. Hydrodynamic stability of thermoviscous liquid film inside a rotating horizontal cylinder: Heating and cooling effects

    Science.gov (United States)

    Kumawat, Tara Chand; Tiwari, Naveen

    2018-03-01

    Steady two-dimensional solutions and their stability analysis are presented for thin film of a thermoviscous liquid flowing inside a cylinder rotating about its horizontal axis. The inner surface of the cylinder is either uniformly hotter or colder than the enveloping air. The mass, momentum, and energy equations are simplified using thin-film approximation. The analytically obtained film thickness evolution equation consists of various dimensionless parameters such as gravitational number, Bond number, Biot number, thermoviscosity number, and Marangoni number. The viscosity of the liquid is considered as an exponential function of temperature. The viscosity increases (decreases) within the film thickness away from the inner surface of the cylinder when the surface is uniformly hotter (colder) than the atmosphere. For hotter (colder) surface, the film thickness on the rising side decreases (increases) when convective heat transfer at the free surface is increased. The surface tension gradient at the free surface generates Marangoni stress that has a destabilizing (stabilizing) effect on the thin film flow in the case of a hotter (colder) cylinder. The thermoviscosity number stabilizes (destabilizes) the flow on a heating (cooling) surface and this effect increases with an increase in the heat transfer at the free surface. For a hotter surface and in the presence of Marangoni stress, the convective heat transfer at the interface has the destabilizing effect for small values of the Biot number and assumes a stabilizing role for larger values. Non-linear simulations show consistency with the linear stability analysis.

  3. Artificial cooling of the atmosphere - A discussion on the environmental effects

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Marcos Sebastiao de Paula [Pontifical Catholic University of Rio de Janeiro, PUC-Rio, Department of Mechanical Engineering, Rio de Janeiro, RJ (Brazil); de Araujo, Maria Silvia Muylaert [Energy and Environment Planning Program/Federal University of Rio de Janeiro, COPPE/UFRJ - Cidade Universitaria, Centro de Tecnologia, Bloco C, sala 211, Ilha do Fundao, CEP 21945-970, Caixa Postal: 68501 Rio de Janeiro, RJ (Brazil)

    2011-01-15

    This article presents a literature review to discuss some new technological options for climate change mitigation called as Geoengineering and the environmental impacts related to aerosol emissions. Some proposals to produce a cooler effect in the Earth surface at short term are defending the injection of a large quantity of aerosol particles in the stratosphere like a ''virtual Pinatubo''. In 15 June 1991 a volcanic eruption of the Pinatubo Mount in Philippines resulted in around -0.5 C variation in Earth surface temperature in 1992 and only in 1995 the temperature returned back to the former one. Several important environmental issues arise from this kind of mitigation proposal. Some of the topics which may be considered relevant in such analysis are: the level of acceptable risk of this kind of technological option for the human and the environment as a whole; the foreseen linear and non-linear impacts resultant from the artificial cooling effect in the Earth surface; the feasibility and cost-effectiveness of this kind of proposals. The environmental problems associated to aerosols injections into the stratosphere are the main topic discussed in the present article. (author)

  4. Effects of fitness, fatness, and age on men's responses to whole body cooling in air.

    Science.gov (United States)

    Budd, G M; Brotherhood, J R; Hendrie, A L; Jeffery, S E

    1991-12-01

    Simple and multiple regression analyses were used to assess the influence of 12 white men's fitness (aerobic capacity 44-58 ml O2.min-1.kg fat-free mass-1), fatness (mean skin-fold thickness 5-20 mm, body fat content 15-36%), and age (26-52 yr) on their thermal, metabolic, cardiovascular, and subjective responses to 2 h of whole body cooling, nude, in air at 10 degrees C. Fitter men had slower heart rates, and fatter men had higher blood pressures. Fitness had no effect (P greater than 0.39) on any measured response to cold. Fatness was associated (P less than 0.01) with reduced heat loss, heat production, and mean skin temperature; unchanged heat debt; and increased tissue insulation. Age had the opposite effects. When the confounding effects of fatness were held constant by multiple regression, older men responded to cold as though they were 1 mm of skinfold thickness leaner for each 3-4 yr of age. We conclude that aging, even between the relatively youthful ages of 26 and 52 yr, is accompanied by a progressive weakening of the vasoconstrictor response to cold.

  5. Effects of evaporative cooling on reproductive performance and milk production of dairy cows in hot wet conditions

    Science.gov (United States)

    Khongdee, S.; Chaiyabutr, N.; Hinch, G.; Markvichitr, K.; Vajrabukka, C.

    2006-05-01

    Fourteen animals of second and third lactation of Thai Friesian crossbred cows (87.5% Friesian × 12.5% Bos indicus) located at Sakol Nakhon Research and Breeding Centre, Department of Livestock Development, Ministry of Agriculture and Cooperatives, were divided randomly into two groups of seven each to evaluate the effects of evaporative cooling on reproductive and physiological traits under hot, humid conditions. Results indicated that installation of evaporating cooling in the open shed gave a further improvement in ameliorating heat stress in dairy cows in hot-wet environments by utilising the low humidity conditions that naturally occur during the day. The cows housed in an evaporatively cooled environment had both a rectal temperature and respiration rate (39.09°C, 61.39 breaths/min, respectively) significantly lower than that of the non-cooled cows (41.21°C; 86.87 breaths/min). The former group also had higher milk yield and more efficient reproductive performance (pregnancy rate and reduced days open) than the latter group. It is suggested that the non-evaporatively cooled cows did not gain benefit from the naturally lower heat stress during night time.

  6. Effects of Blood-cooling and Stasis-removing Formula on Hemorheology in Rats with Acute Blood Stasis

    Directory of Open Access Journals (Sweden)

    Songyi Ning

    2013-06-01

    Full Text Available Objective: To investigate the effects of blood-cooling and stasis-removing formula on hemorheology in rats with acute blood stasis induced by mutifactor stimuli. Methods: The selected SD rats orally took blood-cooling and stasis-removing granule for six days, then the model of acute blood stasis was prepared on the fifth day by injection of epinephrine combined with ice-water bath. The variations of blood-cooling and stasis-removing granule on hemorheology were detected. Results: The high-dose group of blood-cooling and stasis-removing formula can decrease plasma viscosity in rats with acute blood stasis, and obviously reduce the blood viscosity under the condition of shear rates (200s-1, 30s-1, 5s-1, 1s-1 (P < 0.01, P < 0.05. The middle-dose group can decrease the blood viscosity under the condition of shear rate (30s-1 (P < 0.05. Conclusion: Blood-cooling and stasis-removing formula can improve abnormal hemorheology in rats with acute blood stasis.

  7. Effect of Cooling Rate on Microstructures and Mechanical Properties in SA508 Gr4N High Strength Low Alloy Steel

    International Nuclear Information System (INIS)

    Kim, Minchul; Park, Sanggyu; Choi, Kwonjae; Lee, Bongsang

    2013-01-01

    The microstructure of Ni-Cr-Mo low alloy steel is a mixture of tempered martensite and tempered lower bainite and that of Mn-Mo-Ni low alloy steel is predominantly tempered upper bainite. Higher strength and toughness steels are very attractive as an eligible RPV steel, so several researchers have studied to use the Ni-Cr-Mo low alloy steel for the NPP application. Because of the thickness of reactor vessel, there are large differences in austenitizing cooling rates between the surface and the center locations of thickness in RPV. Because the cooling rates after austenitization determine the microstructure, it would affect the mechanical properties in Ni-Cr-Mo low alloy steel, and it may lead to inhomogeneous characteristics when the commercial scale of RPV is fabricated. In order to apply the Ni-Cr-Mo low alloy steel to RPV, it is necessary to evaluate the changes of microstructure and mechanical properties with varying phase fractions in Ni-Cr-Mo low alloy steel. In this study, the effects of martensite and bainite fractions on mechanical properties in Ni-Cr-Mo low alloy steel were examined by controlling the cooling rate after austenitization. First of all, continuous cooling transformation(CCT) diagram was established from the dilatometric analyses. Then, the phase fractions at each cooling rate were quantitatively evaluated. Finally, the mechanical properties were correlated with the phase fraction, especially fraction of martensite in Ni-Cr-Mo low alloy steel

  8. Bactericidal Effect of Strong Acid Electrolyzed Water against Flow Enterococcus faecalis Biofilms.

    Science.gov (United States)

    Cheng, Xiaogang; Tian, Yu; Zhao, Chunmiao; Qu, Tiejun; Ma, Chi; Liu, Xiaohua; Yu, Qing

    2016-07-01

    This study evaluated the bactericidal effect of strong acid electrolyzed water (SAEW) against flow Enterococcus faecalis biofilm and its potential application as a root canal irrigant. Flow E. faecalis biofilms were generated under a constant shear flow in a microfluidic system. For comparison, static E. faecalis biofilms were generated under a static condition on coverslip surfaces. Both the flow and static E. faecalis biofilms were treated with SAEW. Sodium hypochlorite (NaOCl, 5.25%) and normal saline (0.9%) were included as the controls. Bacterial reductions were evaluated using confocal laser scanning microscopy and the cell count method. Morphological changes of bacterial cells were observed using scanning electron microscopy. The confocal laser scanning microscopic and cell count results showed that SAEW had a bactericidal effect similar to that of 5.25% NaOCl against both the flow and static E. faecalis biofilms. The scanning electron microscopic results showed that smooth, consecutive, and bright bacteria surfaces became rough, shrunken, and even lysed after treated with SAEW, similar to those in the NaOCl group. SAEW had an effective bactericidal effect against both the flow and static E. faecalis biofilms, and it might be qualified as a root canal irrigant for effective root canal disinfection. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Long-term effects of the strong African American families program on youths' alcohol use.

    Science.gov (United States)

    Brody, Gene H; Chen, Yi-Fu; Kogan, Steven M; Murry, Velma McBride; Brown, Anita C

    2010-04-01

    This report extends earlier accounts by addressing the effects of the Strong African American Families (SAAF) program across 65 months. Two hypotheses were tested: (a) Rural African American youths randomly assigned to participate in SAAF would demonstrate lower rates of alcohol use than would control youths more than 5 years later, and (b) SAAF's effects on deterring the onset of alcohol use in early adolescence would carry forward to mediate the program's long-term effects. African American youths in rural Georgia (mean age at pretest = 10.8 years) were assigned randomly to the SAAF group (n = 369) or to a control group (n = 298). Past-month alcohol use was assessed at pretest and at 9, 18, 29, 53, and 65 months after pretest. SAAF participants increased their alcohol use at a slower rate than did adolescents in the control condition across the follow-up assessments. At the 65-month assessment, SAAF participants reported having drunk alcohol half as often as did youths in the control group. Consistent with the second hypothesis, SAAF's effects on deterring initiation carried forward to account for its effects on alcohol use across time. Training in protective parenting processes and self-regulatory skills during preadolescence may contribute to a self-sustaining trajectory of disinterest in and avoidance of alcohol use during adolescence when peers begin to model and sanction it. (c) 2010 APA, all rights reserved

  10. Measure Guideline: Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  11. Effect of Thermoelectric Cooling (TEC module and the water flow heatsink on Photovoltaic (PV panel performance

    Directory of Open Access Journals (Sweden)

    Amelia A.R.

    2017-01-01

    Full Text Available Photovoltaic (PV panel suffers in low conversion efficiency of the output performance affected by the elevated operating temperature of the PV panel. It is important to keep the PV panel to operate at low temperature. To address this issue, this paper proposes the cooling system using thermoelectric cooling (TEC and water block heatsink for enhancing the PV panel output performance. These both types cooling system were designed located on the back side of the PV panel to cool down the operating temperature of the PV panel. To evaluate the function for the existing cooling systems, the experiment was subsequently performed for PV panel without and with different design of the cooling system in outdoor weather conditions. By comparing the experimental results, it is concluded that by the hybrid cooling system which combining TEC module and the water block heatsink could improve the output performance of the PV panel. By the reduction temperature of the PV panel by 16.04 %, the average output power of the PV panel has been boosted up from 8.59 W to 9.03 W. In short, the output power of the PV panel was enhanced by the reduction of the operating temperature of the PV panel.

  12. Effect of Thermoelectric Cooling (TEC) module and the water flow heatsink on Photovoltaic (PV) panel performance

    Science.gov (United States)

    Amelia, A. R.; Jusoh, MA; Shamira Idris, Ida

    2017-11-01

    Photovoltaic (PV) panel suffers in low conversion efficiency of the output performance affected by the elevated operating temperature of the PV panel. It is important to keep the PV panel to operate at low temperature. To address this issue, this paper proposes the cooling system using thermoelectric cooling (TEC) and water block heatsink for enhancing the PV panel output performance. These both types cooling system were designed located on the back side of the PV panel to cool down the operating temperature of the PV panel. To evaluate the function for the existing cooling systems, the experiment was subsequently performed for PV panel without and with different design of the cooling system in outdoor weather conditions. By comparing the experimental results, it is concluded that by the hybrid cooling system which combining TEC module and the water block heatsink could improve the output performance of the PV panel. By the reduction temperature of the PV panel by 16.04 %, the average output power of the PV panel has been boosted up from 8.59 W to 9.03 W. In short, the output power of the PV panel was enhanced by the reduction of the operating temperature of the PV panel.

  13. Co-doping of LiYF4 crystal: a virtuous effect of cooling efficiency

    Science.gov (United States)

    Cittadino, Giovanni; Volpi, Azzurra; Di Lieto, Alberto; Tonelli, Mauro

    2018-04-01

    Anti-Stokes shift, provided by embedded rare earth (RE) ions in fluoride crystal host, is used to obtain a net cooling of a solid system. Yb3+ is currently the RE ion that presents the best cooling performance when inserted into a suitable host, like yttrium lithium fluoride (YLF). Recently, a new approach to laser cooling has been proposed, in which an enhancement of the cooling efficiency is reached by co-doping with Yb3+ and Tm3+. In this work, we compare, in terms of cooling efficiency, two samples 5%Yb:YLF and 5%Yb-0.0080%Tm:YLF, grown with the same starting material in order to avoid the difference in chemical composition of impurity. Some contaminants, like iron, are very detrimental for cooling efficiency and they make it difficult to compare grown crystals with different raw powders. We demonstrate that the presence of a small concentration of Tm3+ ions permits it to decrease the background absorption and to increase the cooling efficiency.

  14. Heat transport and electron cooling in ballistic normal-metal/spin-filter/superconductor junctions

    International Nuclear Information System (INIS)

    Kawabata, Shiro; Vasenko, Andrey S.; Ozaeta, Asier; Bergeret, Sebastian F.; Hekking, Frank W.J.

    2015-01-01

    We investigate electron cooling based on a clean normal-metal/spin-filter/superconductor junction. Due to the suppression of the Andreev reflection by the spin-filter effect, the cooling power of the system is found to be extremely higher than that for conventional normal-metal/nonmagnetic-insulator/superconductor coolers. Therefore we can extract large amount of heat from normal metals. Our results strongly indicate the practical usefulness of the spin-filter effect for cooling detectors, sensors, and quantum bits

  15. Effects of Free-Hanging Horizontal Sound Absorbers on the Cooling Performance of Thermally Activated Building Systems

    DEFF Research Database (Denmark)

    Lacarte, Luis Marcos Domínguez; Rage, Nils; Kazanci, Ongun Berk

    2017-01-01

    with the performance of TABS and the occupant’s thermal comfort, but an appropriate acoustic design is needed to find the most suitable solution for each case. The results show a reduction of 11% of the cooling performance of the TABS when 43% of the ceiling area is covered with free-hanging horizontal sound absorbers...... the TABS and the room are desirable. In this study, the effects of free-hanging units on the cooling performance of TABS and the occupants’ thermal comfort was measured in a full-scale TABS laboratory. Investigations demonstrate that the use of freehanging sound absorbers are compatible...

  16. Optimum design of composite panel with photovoltaic-thermo module. Absorbing effect of cooling panel; Hikari netsu fukugo panel no saiteki sekkei. Reikyaku panel no kyunetsu koka

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Kikuchi, S.; Tani, T. [Science University of Tokyo, Tokyo (Japan); Kadotani, K.; Imaizumi, H. [Komatsu Ltd., Tokyo (Japan)

    1996-10-27

    The composite panel with photovoltaic-thermo module becomes higher in energy-saving than the conventional air-conditioning system by the independent radiational heating and cooling effect obtained when the generating panel using a solar cell module is combined with the heating and cooling panel using a thermo-element module. The output of a solar cell module can be directly used because the solar cell module operates in AC. This paper reports the relation between the absorbed value and power consumption of the cooling panel, while paying attention to the cooling panel. The performance coefficient of the maximum absorbed value from an non-absorbing substance to a cooling panel is 2 to 3. Assume that the cooling panel during non-adiabatic operation is operated using a solar cell module of 800 W/m{sup 2} in solar intensity and 15% in conversion efficiency. The cooling-surface temperature difference is 12.12 K, and the maximum absorbed value of a non-absorbing substance to a cooling panel is 39.12 W/m{sup 2}. The absorbed value of the outer temperature to the cooling panel is 74.4 W/m{sup 2}, and each performance coefficient is 3.26 and 0.62. The absorbed value must be calculated for evaluation from the cooling-surface temperature difference measured directly from the cooling panel. 4 refs., 8 figs., 1 tab.

  17. Smoothing effect of the thermal interface material on the temperature distribution in a stepwise varying width microchannel cooling device

    Science.gov (United States)

    Riera, Sara; Barrau, Jérôme; Rosell, Joan I.; Fréchette, Luc G.; Omri, Mohamed; Vilarrubí, Montse; Laguna, Gerard

    2017-09-01

    The impact of the thermal interface material (TIM) layer on the performance of a stepwise varying width microchannel cooling device is analysed. A numerical model shows that the TIM layer, besides its well known negative impact on the temperature, also generates a smoothing effect on the temperature distribution. In this study, an analytical model is used to define a nondimensional parameter, called Smoothing Resistance ratio, as the quotient between the origin of the temperature non uniformities and the TIM thermal resistance that flatten the temperature distribution. The relationship between the temperature uniformity of the cooled device, expressed through the temperature standard deviation, and the Smoothing Resistance ratio is shown to be linear. These results lead to the definition of a new design procedure for this kind of cooling device, which aims to reduce the Smoothing Resistance ratio. Two solutions are identified and their drawbacks are analysed.

  18. The effect of altering skin-surface cooling speeds on vasoconstriction and shivering thresholds.

    Science.gov (United States)

    Taniguchi, Yoshie; Lenhardt, Rainer; Sessler, Daniel I; Kurz, Andrea

    2011-09-01

    Both core and skin temperatures contribute to steady-state thermoregulatory control. Dynamic thermoregulatory responses trigger aggressive defenses against rapid thermal perturbations. These responses potentially complicate interpretation of thermoregulatory studies and could slow induction of therapeutic hypothermia. We thus tested the hypothesis that rapid external skin-cooling triggers vasoconstriction and shivering at higher mean skin temperatures than slow or moderate rates of skin cooling. Eleven healthy volunteers were cooled at 3 skin-cooling rates using forced air or/and conductive cooling in random order. One day volunteers received slow (≈2°C/h) skin cooling, and on another day, they received both medium (≈4°C/h) and fast (≈6°C/h) skin cooling. An endovascular heat-exchanging catheter maintained core temperature. Fingertip blood flow ≤0.25 mL/min defined onset of vasoconstriction; sustained ≥25% increase in oxygen consumption defined onset of shivering. Results were evaluated with repeated-measures analysis of variance, with P shivering were also comparable: 31.4°C (95% CI: 30.3°C, 32.5°C), 31.5°C (95% CI: 30.2°C, 32.8°C), and 30.7°C (95% CI: 28.9°C, 32.5°C), respectively. Onset of vasoconstriction and shivering occurred at similar mean skin temperatures with all 3 cooling rates. Aggressive surface cooling can thus be used in thermoregulatory studies and for induction of therapeutic hypothermia without provoking dynamic thermoregulatory defenses.

  19. Fitness is strongly influenced by rare mutations of large effect in a microbial mutation accumulation experiment.

    Science.gov (United States)

    Heilbron, Karl; Toll-Riera, Macarena; Kojadinovic, Mila; MacLean, R Craig

    2014-07-01

    Our understanding of the evolutionary consequences of mutation relies heavily on estimates of the rate and fitness effect of spontaneous mutations generated by mutation accumulation (MA) experiments. We performed a classic MA experiment in which frequent sampling of MA lines was combined with whole genome resequencing to develop a high-resolution picture of the effect of spontaneous mutations in a hypermutator (ΔmutS) strain of the bacterium Pseudomonas aeruginosa. After ∼644 generations of mutation accumulation, MA lines had accumulated an average of 118 mutations, and we found that average fitness across all lines decayed linearly over time. Detailed analyses of the dynamics of fitness change in individual lines revealed that a large fraction of the total decay in fitness (42.3%) was attributable to the fixation of rare, highly deleterious mutations (comprising only 0.5% of fixed mutations). Furthermore, we found that at least 0.64% of mutations were beneficial and probably fixed due to positive selection. The majority of mutations that fixed (82.4%) were base substitutions and we failed to find any signatures of selection on nonsynonymous or intergenic mutations. Short indels made up a much smaller fraction of the mutations that were fixed (17.4%), but we found evidence of strong selection against indels that caused frameshift mutations in coding regions. These results help to quantify the amount of natural selection present in microbial MA experiments and demonstrate that changes in fitness are strongly influenced by rare mutations of large effect. Copyright © 2014 by the Genetics Society of America.

  20. Effect of Floodplain Inundation on River Pollution in Taiwan's Strong Monsoonal Climate

    Science.gov (United States)

    Hester, E. T.; Lin, A. Y. C.

    2017-12-01

    River-floodplain interaction provides important benefits such as flood mitigation, provision of ecological habitat, and improved water quality. Human actions have historically reduced such interaction and associated benefits by diking, floodplain fill, and river regulation. In response, floodplain restoration has become popular in North America and Europe, but is less practiced in Asia. In Taiwan, unusually strong monsoons and steep terrain alter floodplain dynamics relative to elsewhere around the world, and provide a unique environment for floodplain management. We used numerical models of flow, transport, and reaction in river channels and floodplains to quantify the effect of river-floodplain interaction on water quality in Taiwan's strong monsoon and high topographic relief. We conducted sensitivity analyses of parameters such as river slope, monsoon severity, reservoir operation mode, degree of floodplain reconnection, contaminant reaction rate, and contaminant reaction type on floodplain connectivity and contaminant mitigation. We found significant differences in floodplain hydraulics and residence times in Taiwan's steep monsoonal environment relative to the shallower non-monsoonal environment typical of the eastern USA, with significant implications for water quality. For example, greater flashiness of floodplain inundation in Taiwan provides greater challenges for reconnecting sufficient floodplain volume to handle monsoonal runoff. Yet longer periods when floodplains are reliably dry means that such lands may have greater value for seasonal use such as parks or agriculture. The potential for floodplain restoration in Taiwan is thus significant, but qualitatively different than in the eastern USA.

  1. Mental health care and average happiness: strong effect in developed nations.

    Science.gov (United States)

    Touburg, Giorgio; Veenhoven, Ruut

    2015-07-01

    Mental disorder is a main cause of unhappiness in modern society and investment in mental health care is therefore likely to add to average happiness. This prediction was checked in a comparison of 143 nations around 2005. Absolute investment in mental health care was measured using the per capita number of psychiatrists and psychologists working in mental health care. Relative investment was measured using the share of mental health care in the total health budget. Average happiness in nations was measured with responses to survey questions about life-satisfaction. Average happiness appeared to be higher in countries that invest more in mental health care, both absolutely and relative to investment in somatic medicine. A data split by level of development shows that this difference exists only among developed nations. Among these nations the link between mental health care and happiness is quite strong, both in an absolute sense and compared to other known societal determinants of happiness. The correlation between happiness and share of mental health care in the total health budget is twice as strong as the correlation between happiness and size of the health budget. A causal effect is likely, but cannot be proved in this cross-sectional analysis.

  2. The effects of concentration and heating-cooling rate on rheological properties of Plantago lanceolata seed mucilage

    DEFF Research Database (Denmark)

    Hesarinejad, Mohammad Ali; Sami Jokandan, Maryam; Mohammadifar, Mohammad Amin

    2017-01-01

    In this study, the effect of concentration (0.5, 1, 1.5 and 2%) and heating-cooling rate (1, 5 and 10 °C min−1) on the rheological properties of Plantago lanceolata seed mucilage (PLSM) solutions were investigated. It was observed that the gum dispersions exhibited viscoelastic properties under t...

  3. Solar-assisted dual-effect adsorption cycle for the production of cooling effect and potable water

    KAUST Repository

    Ng, K. C.

    2009-05-17

    This paper investigates the performance of a solar-assisted adsorption (AD) cycle which produces two useful effects, namely cooling and desalination, with only a low-temperature heat input such as thermal energy from solar collectors. Heat sources varying from 65 to 80°C can be obtained from 215-m2 flat plate-type solar collectors to regenerate the proposed silica gel-water-based AD cycle. In this paper, both mathematical modelling and experimental results from the AD cycle operation are discussed, in terms of two key parameters, namely specific daily water production (SDWP) and specific cooling capacity (SCC). The experimental results show that the AD cycle is capable of producing chilled water at 7 to 10°C with varying SCC range of 25-35 Rton/tonne of silica gel. Simultaneously, the AD cycle produces a SDWP of 3-5 m3 per tonne of silica gel per day, rendering it as a dual-effect machine that has an overall conversion or performance ratio of 0.8-1.1. © The Author 2009. Published by Oxford University Press. All rights reserved.

  4. Biodiversity effects in the wild are common and as strong as key drivers of productivity

    Science.gov (United States)

    Duffy, J. Emmett; Godwin, Casey M.; Cardinale, Bradley J.

    2017-09-01

    More than 500 controlled experiments have collectively suggested that biodiversity loss reduces ecosystem productivity and stability. Yet the importance of biodiversity in sustaining the world’s ecosystems remains controversial, largely because of the lack of validation in nature, where strong abiotic forcing and complex interactions are assumed to swamp biodiversity effects. Here we test this assumption by analysing 133 estimates reported in 67 field studies that statistically separated the effects of biodiversity on biomass production from those of abiotic forcing. Contrary to the prevailing opinion of the previous two decades that biodiversity would have rare or weak effects in nature, we show that biomass production increases with species richness in a wide range of wild taxa and ecosystems. In fact, after controlling for environmental covariates, increases in biomass with biodiversity are stronger in nature than has previously been documented in experiments and comparable to or stronger than the effects of other well-known drivers of productivity, including climate and nutrient availability. These results are consistent with the collective experimental evidence that species richness increases community biomass production, and suggest that the role of biodiversity in maintaining productive ecosystems should figure prominently in global change science and policy.

  5. Biodiversity effects in the wild are common and as strong as key drivers of productivity.

    Science.gov (United States)

    Duffy, J Emmett; Godwin, Casey M; Cardinale, Bradley J

    2017-09-14

    More than 500 controlled experiments have collectively suggested that biodiversity loss reduces ecosystem productivity and stability. Yet the importance of biodiversity in sustaining the world's ecosystems remains controversial, largely because of the lack of validation in nature, where strong abiotic forcing and complex interactions are assumed to swamp biodiversity effects. Here we test this assumption by analysing 133 estimates reported in 67 field studies that statistically separated the effects of biodiversity on biomass production from those of abiotic forcing. Contrary to the prevailing opinion of the previous two decades that biodiversity would have rare or weak effects in nature, we show that biomass production increases with species richness in a wide range of wild taxa and ecosystems. In fact, after controlling for environmental covariates, increases in biomass with biodiversity are stronger in nature than has previously been documented in experiments and comparable to or stronger than the effects of other well-known drivers of productivity, including climate and nutrient availability. These results are consistent with the collective experimental evidence that species richness increases community biomass production, and suggest that the role of biodiversity in maintaining productive ecosystems should figure prominently in global change science and policy.

  6. The strong specific effect of coions on micellar growth from molecular-thermodynamic theory.

    Science.gov (United States)

    Koroleva, S V; Victorov, A I

    2014-09-07

    Viscoelastic solutions of ionic surfactants with an added salt exhibit a surprisingly strong dependence of their behavior on the nature of the added coion. We apply a recently proposed molecular-thermodynamic model to elucidate the effect of a coion's specificity on the aggregation of cationic and anionic surfactants. We show that micellar growth and branching are opposed by penetration of coions inside a micelle's corona leading to an increase of the aggregate's preferential curvature. These effects result from hydration/dehydration and dispersion attraction of coions and are only important at high salinity where electrostatic repulsion of coions from the micelle is screened and where branching of micelles and viscosity maxima are observed. At low and medium salinity, the coion plays a minor role; its effect on critical micelle concentration and sphere-to-rod transitions is insignificant. Our molecular-thermodynamic approach describes the specific effects of both counterions and coions and their different roles at different salinity levels based on a unified physical picture.

  7. Numerical Study of the Effect of a Power Plant Cooling Water Discharge in the Montevideo Bay

    Directory of Open Access Journals (Sweden)

    Mónica Fossati

    2011-01-01

    Full Text Available The numerical simulation of the water temperature in the Río de la Plata River and Montevideo's Bay was done using the numerical model of finite elements RMA-10 in its 2D vertical integrated mode. Parameters involved in the formulations of thermal exchange with the atmosphere were adjusted using measurements of water temperature in several locations of the water body. After calibrating the model, it was used to represent the operation of a power plant located in Montevideo's Bay. This central takes water from the bay in order to cool its generators and also discharges high-temperature water into the bay. The correct representation of temperatures at the water intake and discharge of the plant reflects that the model is able to represent the operation of the central. Several analysis were made to study the thermal plume, the effects of the water discharge on the water intake of the power plant, and the effect on environmental variables of the study area like currents.

  8. Cost-Effective Integration of Efficient Low-Lift Base Load Cooling Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wei; Winiarski, David W.; Katipamula, Srinivas; Armstrong, Peter R.

    2008-01-14

    The long-term goal of DOE’s Commercial Buildings Integration subprogram is to develop cost-effective technologies and building practices that will enable the design and construction of net Zero Energy Buildings — commercial buildings that produce as much energy as they use on an annual basis — by 2025. To support this long-term goal, DOE further called for — as part of its FY07 Statement of Needs — the development by 2010 of “five cost-effective design technology option sets using highly efficient component technologies, integrated controls, improved construction practices, streamlined commissioning, maintenance and operating procedures that will make new and existing commercial buildings durable, healthy and safe for occupants.” In response, PNNL proposed and DOE funded a scoping study investigation of one such technology option set, low-lift cooling, that offers potentially exemplary HVAC energy performance relative to ASHRAE Standard 90.1-2004. The primary purpose of the scoping study was to estimate the national technical energy savings potential of this TOS.

  9. Effects of Convective Aggregation on Radiative Cooling and Precipitation in a CRM

    Science.gov (United States)

    Naegele, A. C.; Randall, D. A.

    2017-12-01

    In the global energy budget, the atmospheric radiative cooling (ARC) is approximately balanced by latent heating, but on regional scales, the ARC and precipitation rates are inversely related. We use a cloud-resolving model to explore how the relationship between precipitation and the ARC is affected by convective aggregation, in which the convective activity is confined to a small portion of the domain that is surrounded by a much larger region of dry, subsiding air. Sensitivity tests show that the precipitation rate and ARC are highly sensitive to both SST and microphysics; a higher SST and 1-moment microphysics both act to increase the domain-averaged ARC and precipitation rates. In all simulations, both the domain-averaged ARC and precipitation rates increased due to convective aggregation, resulting in a positive temporal correlation. Furthermore, the radiative effect of clouds in these simulations is to decrease the ARC. This finding is consistent with our observational results of the cloud effect on the ARC, and has implications for convective aggregation and the geographic extent in which it can occur.

  10. Ecological effects of cooling water of a power plant at Kiel Fjord

    Energy Technology Data Exchange (ETDEWEB)

    Moller, H.

    1978-01-01

    The ecological changes caused by cooling water intake and heated water discharge of a power plant at Kiel Fjord, W. Germany, were evaluated. In addition, the bottom area affected by the intake and discharge was determined, and the relative importance of temperature and other parameters, such as artificial currents, to changes in benthic and fish fauna was studied. Increased transport of planktonic food caused elevated production of zoobenthos. Cod and eel were attracted to the warm discharge area because of high food concentrations. Few fish were damaged by intake screens. The presence of blue mussel and barnacles in the bottom region indicated a good oxygen supply. Zoobenthic population changes were limited to a bottom area of about 0.01 sq km near the intake and the discharge. Following a plant shut down in summer, shore crabs and eels invaded the discharge area; 10 days after the shut down, the benthic population was sharply reduced. The effects of artificial currents were more significant to zoobenthos than the effects of temperature increases were. (4 graphs, 3 maps, 49 references, 6 tables)

  11. Multi-purpose rainwater harvesting for water resource recovery and the cooling effect.

    Science.gov (United States)

    An, Kyoung Jin; Lam, Yun Fat; Hao, Song; Morakinyo, Tobi Eniolu; Furumai, Hiroaki

    2015-12-01

    The potential use of rainwater harvesting in conjunction with miscellaneous water supplies and a rooftop garden with rainwater harvesting facility for temperature reduction have been evaluated in this study for Hong Kong. Various water applications such as toilet flushing and areal climate controls have been systematically considered depending on the availability of seawater toilet flushing using the Geographic Information System (GIS). For water supplies, the district Area Precipitation per Demand Ratio (APDR) has been calculated to quantify the rainwater utilization potential of each administrative district in Hong Kong. Districts with freshwater toilet flushing prove to have higher potential for rainwater harvest and utilization compared to the areas with seawater toilet flushing. Furthermore, the effectiveness of using rainwater harvesting for miscellaneous water supplies in Hong Kong and Tokyo has been analyzed and compared; this revives serious consideration of diurnal and seasonal patterns of rainfall in applying such technology. In terms of the cooling effect, the implementation of a rooftop rainwater harvesting garden has been evaluated using the ENVI-met model. Our results show that a temperature drop of 1.3 °C has been observed due to the rainwater layer in the rain garden. This study provides valuable insight into the applicability of the rainwater harvesting for sustainable water management practice in a highly urbanized city. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Room temperature strong coupling effects from single ZnO nanowire microcavity

    KAUST Repository

    Das, Ayan

    2012-05-01

    Strong coupling effects in a dielectric microcavity with a single ZnO nanowire embedded in it have been investigated at room temperature. A large Rabi splitting of ?100 meV is obtained from the polariton dispersion and a non-linearity in the polariton emission characteristics is observed at room temperature with a low threshold of 1.63 ?J/cm2, which corresponds to a polariton density an order of magnitude smaller than that for the Mott transition. The momentum distribution of the lower polaritons shows evidence of dynamic condensation and the absence of a relaxation bottleneck. The polariton relaxation dynamics were investigated by timeresolved measurements, which showed a progressive decrease in the polariton relaxation time with increase in polariton density. © 2012 Optical Society of America.

  13. Global dynamics and bifurcation analysis of a host-parasitoid model with strong Allee effect.

    Science.gov (United States)

    Khan, Abdul Qadeer; Ma, Jiying; Xiao, Dongmei

    2017-12-01

    In this paper, we study the global dynamics and bifurcations of a two-dimensional discrete time host-parasitoid model with strong Allee effect. The existence of fixed points and their stability are analysed in all allowed parametric region. The bifurcation analysis shows that the model can undergo fold bifurcation and Neimark-Sacker bifurcation. As the parameters vary in a small neighbourhood of the Neimark-Sacker bifurcation condition, the unique positive fixed point changes its stability and an invariant closed circle bifurcates from the positive fixed point. From the viewpoint of biology, the invariant closed curve corresponds to the periodic or quasi-periodic oscillations between host and parasitoid populations. Furthermore, it is proved that all solutions of this model are bounded, and there exist some values of the parameters such that the model has a global attractor. These theoretical results reveal the complex dynamics of the present model.

  14. Strong-field effects in Rabi oscillations between a single state and a superposition of states

    International Nuclear Information System (INIS)

    Zhdanovich, S.; Milner, V.; Hepburn, J. W.

    2011-01-01

    Rabi oscillations of quantum population are known to occur in two-level systems driven by spectrally narrow laser fields. In this work we study Rabi oscillations induced by shaped broadband femtosecond laser pulses. Due to the broad spectral width of the driving field, the oscillations are initiated between a ground state and a coherent superposition of excited states, or a ''wave packet,'' rather than a single excited state. Our experiments reveal an intricate dependence of the wave-packet phase on the intensity of the laser field. We confirm numerically that the effect is associated with the strong-field nature of the interaction and provide a qualitative picture by invoking a simple theoretical model.

  15. The Effect of Variable Gravity on the Cooling Performance of a 16-Nozzle Spray Array

    National Research Council Canada - National Science Library

    Elston, Levi J; Yerkes, Kirk L; Thomas, Scott K; McQuillen, John

    2008-01-01

    The objective of this thesis was to investigate the cooling performance of a 16-nozzle spray array, using FC-72 as the working fluid, in variable gravity conditions with additional emphasis on fluid...

  16. Recycler Electron Cooling Project: Mechanical vibrations in the Pelletron and their effect on the beam

    International Nuclear Information System (INIS)

    Kazakevich, Grigory M.; Burov, A.; Boffo, C.; Joireman, P.; Saewert, G.; Schmidt, C.W.; Shemyakin, A.; Fermilab

    2005-01-01

    The Fermilab's Recycler ring will employ an electron cooler to cool stored 8.9 GeV antiprotons [1]. The cooler is based on an electrostatic accelerator, Pelletron [2], working in an energy-recovery regime. A full-scale prototype of the cooler has been assembled and commissioned in a separate building [3]. The main goal of the experiments with the prototype was to demonstrate stable operation with a 3.5 MeV, 0.5 A DC electron beam while preserving a high beam quality in the cooling section. The quality is characterized, first of all, by a spread of electron velocities in the cooling section, which may be significantly affected by mechanical vibration of the Pelletron elements. This paper describes the results of vibration measurements in the Pelletron terminal and correlates them with the beam motion in the cooling section

  17. Electron Cooling Dynamics for RHIC

    International Nuclear Information System (INIS)

    Fedotov, A.V.; Ben-Zvi, I.; Eidelman, Yu.; Litvinenko, V.N.; Malitsky, N.; Bruhwiler, D.; Meshkov, I.; Sidorin, A.; Smirnov, A.; Trubnikov, G.

    2005-01-01

    Research towards high-energy electron cooling of RHIC is presently underway at Brookhaven National Laboratory. In this new regime, electron cooling has many unique features and challenges. At high energy, due to the difficulty of providing operational reserves, the expected cooling times must be estimated with a high degree of accuracy compared to extant low-energy coolers. To address these high-energy cooling issues, a detailed study of cooling dynamics based on computer codes and experimental benchmarking was launched at BNL. In this paper, we present an update of the high-energy cooling dynamics studies. We also include a discussion of some features of electron cooling relevant to colliders, such as the effects of rapid cooling of the beam core and an accurate treatment of the intra-beam scattering for such cooled ion distributions

  18. Effect of hydro cooling and packaging on the shelf life of cold stored ...

    African Journals Online (AJOL)

    Selected litchi fruits cultivar Taiso harvested at full red color stage were destalked and were (a) non-hydro cooled and (b) hydro cooled at 0 - 1ºC for 12 to 15 minutes until the core pulp temperature reached 5ºC and were packed in LDPE plastic packaging, clip-on barquettes , opaque plastic bags,70 micron thick and cold ...

  19. Effects of spray-cooling processes on the microbiological conditions of decontaminated beef carcasses.

    Science.gov (United States)

    Gill, C O; Landers, C

    2003-07-01

    Spray processes for cooling decontaminated carcasses were examined at four beef packing plants. Temperature histories were collected from deep leg sites on 25 carcasses and from randomly selected sites on the surfaces of a further 25 carcasses selected at random from carcasses undergoing cooling at each plant. Carcass cooling rates were similar at all four plants. Proliferation values calculated from surface temperature histories indicated similar increases of 0.5 log units in the numbers of Escherichia coli on carcasses at plants A and B and plants C and D, respectively. The numbers of aerobes recovered from carcasses after cooling were about 1 log unit larger than the numbers recovered from carcasses before cooling at plants A, B, and C but >1.5 log units larger at plant D. These increases in numbers of aerobes were in agreement with the estimated proliferations of pseudomonads. The larger increase in the number of aerobes on carcasses at plant D may be attributable to carcasses not being pasteurized at that plant, while carcasses were pasteurized at all of the other plants. The numbers of E. coli recovered from carcasses after cooling at plants B, C, and D were also in agreement with the increases calculated from surface temperature histories. However, numbers of E. coli declined by about 1 log unit during carcass cooling at plant A. This decline may have been due to death occurring during chilling for some E. coli cells that were injured rather than killed by pasteurization with sprayed hot water at plant A, whereas pasteurization with steam at plants B and C seemingly left few injured E. coli cells. The growth of bacteria on decontaminated carcasses during spray cooling at the four plants was apparently constrained by temperature alone.

  20. Channel-closing effects in strong-field ionization by a bicircular field

    Science.gov (United States)

    Milošević, D. B.; Becker, W.

    2018-03-01

    Channel-closing effects, such as threshold anomalies and resonantlike intensity-dependent enhancements in strong-field ionization by a bicircular laser field are analyzed. A bicircular field consists of two coplanar corotating or counter-rotating circularly polarized fields having different frequencies. For the total detachment rate of a negative ion by a bicircular field we observe threshold anomalies and explain them using the Wigner threshold law and energy and angular momentum conservation. For the corotating bicircular case, these effects are negligible, while for the counter-rotating case they are pronounced and their position depends on the magnetic quantum number of the initial state. For high-order above-threshold ionization of rare-gas atoms by a counter-rotating bicircular laser field we observe very pronounced intensity-dependent enhancements. We find all four types of threshold anomalies known from collision theory. Contrary to the case of linear polarization, channel-closing effects for a bicircular field are visible also in the cutoff region of the electron energy spectrum, which is explained using quantum-orbit theory.

  1. Strong quantum-confined stark effect in germanium quantum-well structures on silicon

    International Nuclear Information System (INIS)

    Kuo, Y.; Lee, Y. K.; Gei, Y.; Ren, S; Roth, J. E.; Miller, D. A.; Harris, J. S.

    2006-01-01

    Silicon is the dominant semiconductor for electronics, but there is now a growing need to integrate such component with optoelectronics for telecommunications and computer interconnections. Silicon-based optical modulators have recently been successfully demonstrated but because the light modulation mechanisms in silicon are relatively weak, long (for example, several millimeters) devices or sophisticated high-quality-factor resonators have been necessary. Thin quantum-well structures made from III-V semiconductors such as GaAs, InP and their alloys exhibit the much stronger Quantum-Confined Stark Effect (QCSE) mechanism, which allows modulator structures with only micrometers of optical path length. Such III-V materials are unfortunately difficult to integrate with silicon electronic devices. Germanium is routinely integrated with silicon in electronics, but previous silicon-germanium structures have also not shown strong modulation effects. Here we report the discovery of the QCSE, at room temperature, in thin germanium quantum-well structures grown on silicon. The QCSE here has strengths comparable to that in III-V materials. Its clarity and strength are particularly surprising because germanium is an indirect gap semiconductor, such semiconductors often display much weak optical effects than direct gap materials (such as the III-V materials typically used for optoelectronics). This discovery is very promising for small, high-speed, low-power optical output devices fully compatible with silicon electronics manufacture. (author)

  2. Strong mechanically induced effects in DC current-biased suspended Josephson junctions

    Science.gov (United States)

    McDermott, Thomas; Deng, Hai-Yao; Isacsson, Andreas; Mariani, Eros

    2018-01-01

    Superconductivity is a result of quantum coherence at macroscopic scales. Two superconductors separated by a metallic or insulating weak link exhibit the AC Josephson effect: the conversion of a DC voltage bias into an AC supercurrent. This current may be used to activate mechanical oscillations in a suspended weak link. As the DC-voltage bias condition is remarkably difficult to achieve in experiments, here we analyze theoretically how the Josephson effect can be exploited to activate and detect mechanical oscillations in the experimentally relevant condition with purely DC current bias. We unveil how changing the strength of the electromechanical coupling results in two qualitatively different regimes showing dramatic effects of the oscillations on the DC-voltage characteristic of the device. These include the appearance of Shapiro-type plateaus for weak coupling and a sudden mechanically induced retrapping for strong coupling. Our predictions, measurable in state-of-the-art experimental setups, allow the determination of the frequency and quality factor of the resonator using DC only techniques.

  3. Infrared Thermographic Assessment of Cooling Effectiveness in Selected Dental Implant Systems

    Directory of Open Access Journals (Sweden)

    Karol Kirstein

    2016-01-01

    Full Text Available The excessive temperature fluctuations during dental implant site preparation may affect the process of bone-implant osseointegration. In the presented studies, we aimed to assess the quality of cooling during the use of 3 different dental implant systems (BEGO®, NEO BIOTECH®, and BIOMET 3i®. The swine rib was chosen as a study model. The preparation of dental implant site was performed with the use of 3 different speeds of rotation (800, 1,200, and 1,500 rpm and three types of cooling: with saline solution at room temperature, with saline solution cooled down to 3°C, and without cooling. A statistically significant difference in temperature fluctuations was observed between BEGO and NEO BIOTECH dental systems when cooling with saline solution at 3°C was used (22.3°C versus 21.8°C. In case of all three evaluated dental implant systems, the highest temperature fluctuations occurred when pilot drills were used for implant site preparation. The critical temperature, defined in the available literature, was exceeded only in case of pilot drills (of all 3 systems used at rotation speed of 1,500 rpm without cooling.

  4. Effects of oral rehydration and external cooling on physiology, perception, and performance in hot, dry climates.

    Science.gov (United States)

    Muñoz, C X; Carney, K R; Schick, M K; Coburn, J W; Becker, A J; Judelson, D A

    2012-12-01

    Only limited research evaluates possible benefits of combined drinking and external cooling (by pouring cold water over the body) during exercise. Therefore, this study examined cold water drinking and external cooling on physiological, perceptual, and performance variables in hot, dry environments. Ten male runners completed four trials of walking 90 min at 30% VO(2max) followed by running a 5-km time trial in 33 ± 1 °C and 30 ± 4% relative humidity. Trials examined no intervention (CON), oral rehydration (OR), external cooling (EC), and oral rehydration plus external cooling (OR + EC). Investigators measured rectal temperature, skin temperatures, heart rate, thirst, thermal sensation, and ratings of perceived exertion (RPE). Oral rehydration (OR and OR + EC) significantly lowered heart rate (P External cooling (EC and OR + EC) significantly reduced chest and thigh temperature (P external cooling (CON and OR) during low-intensity exercise. Performance exhibited no differences (CON = 23.86 ± 4.57 min, OR = 22.74 ± 3.20 min, EC = 22.96 ± 3.11 min, OR + EC = 22.64 ± 3.73 min, P = 0.379). Independent of OR, pouring cold water on the body benefited skin temperature, thermal sensation, and RPE during low-intensity exercise in hot, dry conditions but failed to influence high-intensity performance. © 2012 John Wiley & Sons A/S.

  5. Coupled Effect of Elevated Temperature and Cooling Conditions on the Properties of Ground Clay Brick Mortars

    Science.gov (United States)

    Ali Abd El Aziz, Magdy; Abdelaleem, Salh; Heikal, Mohamed

    2013-12-01

    When a concrete structure is exposed to fire and cooling, some deterioration in its chemical resistivity and mechanical properties takes place. This deterioration can reach a level at which the structure may have to be thoroughly renovated or completely replaced. In this investigation, four types of cement mortars, ground clay bricks (GCB)/sand namely 0/3, 1/2, 2/1 and 3/0, were used. Three different cement contents were used: 350, 400 and 450 kg/m3. All the mortars were prepared and cured in tap water for 3 months and then kept in laboratory atmospheric conditions up to 6 months. The specimens were subjected to elevated temperatures up to 700°C for 3h and then cooled by three different conditions: water, furnace, and air cooling. The results show that all the mortars subjected to fire, irrespective of cooling mode, suffered a significant reduction in compressive strength. However, the mortars cooled in air exhibited a relativity higher reduction in compressive strength rather than those water or furnace cooled. The mortars containing GCB/sand (3/0) and GCB/sand (1/2) exhibited a relatively higher thermal stability than the others.

  6. Effect of Salted Ice Bags on Surface and Intramuscular Tissue Cooling and Rewarming Rates.

    Science.gov (United States)

    Hunter, Eric J; Ostrowski, Jennifer; Donahue, Matthew; Crowley, Caitlyn; Herzog, Valerie

    2016-02-01

    Many researchers have investigated the effectiveness of different cryotherapy agents at decreasing intramuscular tissue temperatures. However, no one has looked at the effectiveness of adding salt to an ice bag. To compare the cooling effectiveness of different ice bags (wetted, salted cubed, and salted crushed) on cutaneous and intramuscular temperatures. Repeated-measures counterbalanced design. University research laboratory. 24 healthy participants (13 men, 11 women; age 22.46 ± 2.33 y, height 173.25 ± 9.78 cm, mass 74.51 ± 17.32 kg, subcutaneous thickness 0.63 ± 0.27 cm) with no lower-leg injuries, vascular diseases, sensitivity to cold, compromised circulation, or chronic use of NSAIDs. Ice bags made of wetted ice (2000 mL ice and 300 mL water), salted cubed ice (intervention A; 2000 mL of cubed ice and 1/2 tablespoon of salt), and salted crushed ice (intervention B; 2000 mL of crushed ice and 1/2 tablespoon of salt) were applied to the posterior gastrocnemius for 30 min. Each participant received all conditions with at least 4 d between treatments. Cutaneous and intramuscular (2 cm plus adipose thickness) temperatures of nondominant gastrocnemius were measured during a 10-min baseline period, a 30-min treatment period, and a 45-min rewarming period. Differences from baseline were observed for all treatments. The wetted-ice and salted-cubed-ice bags produced significantly lower intramuscular temperatures than the salted-crushed-ice bag. Wetted-ice bags produced the greatest temperature change for cutaneous tissues. Wetted- and salted-cubed-ice bags were equally effective at decreasing intramuscular temperature at 2 cm subadipose. Clinical practicality may favor salted-ice bags over wetted-ice bags.

  7. Effects of cooling and freezing storage on the stability of bioactive factors in human colostrum.

    Science.gov (United States)

    Ramírez-Santana, C; Pérez-Cano, F J; Audí, C; Castell, M; Moretones, M G; López-Sabater, M C; Castellote, C; Franch, A

    2012-05-01

    Breast milk constitutes the best form of newborn alimentation because of its nutritional and immunological properties. Banked human milk is stored at low temperature, which may produce losses of some bioactive milk components. During lactation, colostrum provides the requirements of the newborn during the first days of life. The aim of this study was to evaluate the effect of cooling storage at 4°C and freezing storage at -20°C and -80°C on bioactive factors in human colostrum. For this purpose, the content of IgA, growth factors such as epidermal growth factor, transforming growth factor (TGF)-β1 and TGF-β2, and some cytokines such as IL-6, IL-8, IL-10, and tumor necrosis factor (TNF)-α, and its type I receptor TNF-RI, were quantified. Some colostrum samples were stored for 6, 12, 24, and 48 h at 4°C and others were frozen at -20°C or -80°C for 6 and 12 mo. We quantified IgA, epidermal growth factor, TGF-β1, and TGF-β2 by indirect ELISA. Concentrations of IL-6, IL-10, and TNF-α cytokines, IL-8 chemokine, and TNF-RI were measured using the BD Cytometric Bead Array (BD Biosciences, Erembodegem, Belgium). Bioactive immunological factors measured in this study were retained in colostrum after cooling storage at 4°C for at least 48h, with the exception of IL-10. None of the initial bioactive factor concentrations was modified after 6 mo of freezing storage at either -20°C or -80°C. However, freezing storage of colostrum at -20°C and -80°C for 12 mo produced a decrease in the concentrations of IgA, IL-8, and TGF-β1. In summary, colostrum can be stored at 4°C for up to 48 h or at -20°C or -80°C for at least 6 mo without losing its immunological properties. Future studies are necessary to develop quality assurance guidelines for the storage of colostrum in human milk banks, and to focus not only on the microbiological safety but also on the maintenance of the immunological properties of colostrum. Copyright © 2012 American Dairy Science Association

  8. Egg Yolk Protective Effect in Boar Spermatozoa Cooled at 5ºC

    Directory of Open Access Journals (Sweden)

    Alexandru-Vasile Rusu

    2011-05-01

    Full Text Available Nowadays, many boar reproduction researches are directed to improve extenders and to increase cold shock protection of semen. Little research is focused on the influence of egg yolk combined with alternative cold shock protective media. Egg yolk could interfere with other compounds present in the extender composition. The influence of egg yolk addition was assessed in boar sperm cells, cooled at 5ºC, to elucidate its effect on motility and membrane integrity. Flow Cytometry and Computer Assisted Semen Analysis (CASA were used to determine the rate of sperm with intact plasma and acrosomal membrane, respectively the sperm cells motility. Statistical analyses (T-Test were performed using GraphPad Prism version 5.00. Androhep Plus supplemented with 20% egg yolk (AhPlus+20%EY indicated a higher cold shock protection in progressive motility (93.9±2.64% and membrane integrity (79.78±4.14%, rather than the extender without egg yolk (p0.05. The combination egg yolk-AhPlus seems to be an alternative to standard extenders, conferring stability in boar sperm cells against cold shock.

  9. Effects of Water Radiolysis in Water Cooled Reactors, NERI Proposal No.99-0010

    International Nuclear Information System (INIS)

    Pimblott, S.M.

    2000-01-01

    OAK B188 Effects of Water Radiolysis in Water Cooled Reactors, NERI Proposal No.99-0010. The aim of this project is to develop an experiment-and-theory based model for the radiolysis of nonstandard aqueous systems like those that will be encountered in the Advance Light Water reactor. Three aspects of the radiation chemistry of aqueous systems at elevated temperatures are considered in the project: the radiation-induced reaction within the primary track and with additives, the homogeneous production of H 2 O 2 at high radiation doses, and the heterogeneous reaction of the radiation-induced species escaping the track. The goals outlined for Phase 1 of the program were: the compilation of information on the radiation chemistry of water at elevated temperatures, the simulation of existing experimental data on the escape yields of e aq - , OH, H 2 and H 2 O 2 in γ radiolysis at elevated temperatures, the measurement of low LET and high LET production of H 2 O 2 at room temperature, the compilation of information on the radiation chemistry of water-(metal) oxide interfaces, and the synthesis and characterization the heterogeneous water-oxide systems of interest

  10. Analysis of the effects of evaporative cooling on the evaporation of liquid droplets using a combined field approach

    Science.gov (United States)

    Xu, Xuefeng; Ma, Liran

    2015-01-01

    During liquid evaporation, the equations for the vapor concentration in the atmosphere and for the temperature in the liquid are coupled and must be solved in an iterative manner. In the present paper, a combined field approach which unifies the coupled fields into one single hybrid field and thus makes the iteration unnecessary is proposed. By using this approach, the influences of the evaporative cooling on the evaporation of pinned sessile droplets are investigated, and its predictions are found in good agreement with the previous theoretical and experimental results. A dimensionless number Ec which can evaluate the strength of the evaporative cooling is then introduced, and the results show that both the evaporation flux along the droplet surface and the total evaporation rate of the droplet decrease as the evaporative cooling number Ec increases. For drying droplets, there exists a critical value EcCrit below which the evaporative cooling effect can be neglected and above which the significance of the effect increases dramatically. The present work may also have more general applications to coupled field problems in which all the fields have the same governing equation. PMID:25721987

  11. Control rod shadowing and anti-shadowing effects in a large gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Girardin, G.; Chawla, R.; Rimpault, G.; Coddington, P.

    2007-01-01

    An investigation of control rod shadowing and anti-shadowing (interaction) effects has been carried out in the context of a design study of the control rod pattern for the large 2400 MWth Generation IV Gas-cooled Fast Reactor (GFR). For the calculations, the deterministic code system ERANOS-2.0 has been used, in association with a full core model including a European Fast Reactor (EFR)-type pattern for the control rods. More specifically, the core contains a total of 33 control (CSD) and safety (DSD) rods implemented in three banks: -1) a first bank of 6 CSD rods, placed at 64 cm from core centre in the inner fuel zone (Pu content 16.3 % vol.), -2) a safety bank consisting of 9 DSD rods, at an average distance of 118 cm, and -3) a third bank with 18 CSD rods, placed at 171 cm, i.e. at the interface between the inner and outer (Pu content 19.2 % vol.) core regions. Each control rod has been modelled as a homogeneous material containing 90%-enriched B 4 C, steel and helium. Considerable shadowing effects have been observed between the first bank and the safety bank, as also between individual rods within the first bank. Large anti-shadowing effects take place in an even greater number of the studied rod configurations. The largest interaction is between the two CSD banks, the anti-shadowing value being 46% in this case, implying that the total rod worth is increased by a factor of almost 2 when compared to the sum of the individual bank values. Additional investigations have been performed, in particular the computation of the first order eigenvalue and the eigenvalue separation. The main finding is that the interactions are lower when one of the control rod banks is located at a radial position corresponding to half the core radius. (authors)

  12. Effects of hypobaric pressure on human skin: implications for cryogen spray cooling (part II).

    Science.gov (United States)

    Aguilar, Guillermo; Franco, Walfre; Liu, Jie; Svaasand, Lars O; Nelson, J Stuart

    2005-02-01

    Clinical results have demonstrated that dark purple port wine stain (PWS) birthmarks respond favorably to laser induced photothermolysis after the first three to five treatments. Nevertheless, complete blanching is rarely achieved and the lesions stabilize at a red-pink color. In a feasibility study (Part I), we showed that local hypobaric pressure on PWS human skin prior to laser irradiation induced significant lesion blanching. The objective of the present study (Part II) is to investigate the effects of hypobaric pressures on the efficiency of cryogen spray cooling (CSC), a technique that assists laser therapy of PWS and other dermatoses. Experiments were carried out within a suction cup and vacuum chamber to study the effect of hypobaric pressure on the: (1) interaction of cryogen sprays with human skin; (2) spray atomization; and (3) thermal response of a model skin phantom. A high-speed camera was used to acquire digital images of spray impingement on in vivo human skin and spray cones generated at different hypobaric pressures. Subsequently, liquid cryogen was sprayed onto a skin phantom at atmospheric and 17, 34, 51, and 68 kPa (5, 10, 15, and 20 in Hg) hypobaric pressures. A fast-response temperature sensor measured sub-surface phantom temperature as a function of time. Measurements were used to solve an inverse heat conduction problem to calculate surface temperatures, heat flux, and overall heat extraction at the skin phantom surface. Under hypobaric pressures, cryogen spurts did not produce skin indentation and only minimal frost formation. Sprays also showed shorter jet lengths and better atomization. Lower minimum surface temperatures and higher overall heat extraction from skin phantoms were reached. The combined effects of hypobaric pressure result in more efficient cryogen evaporation that enhances heat extraction and, therefore, improves the epidermal protection provided by CSC. (c) 2005 Wiley-Liss, Inc.

  13. Regional atmospheric cooling and wetting effect of permafrost thaw-induced boreal forest loss.

    Science.gov (United States)

    Helbig, Manuel; Wischnewski, Karoline; Kljun, Natascha; Chasmer, Laura E; Quinton, William L; Detto, Matteo; Sonnentag, Oliver

    2016-12-01

    In the sporadic permafrost zone of North America, thaw-induced boreal forest loss is leading to permafrost-free wetland expansion. These land cover changes alter landscape-scale surface properties with potentially large, however, still unknown impacts on regional climates. In this study, we combine nested eddy covariance flux tower measurements with satellite remote sensing to characterize the impacts of boreal forest loss on albedo, eco-physiological and aerodynamic surface properties, and turbulent energy fluxes of a lowland boreal forest region in the Northwest Territories, Canada. Planetary boundary layer modelling is used to estimate the potential forest loss impact on regional air temperature and atmospheric moisture. We show that thaw-induced conversion of forests to wetlands increases albedo: and bulk surface conductance for water vapour and decreases aerodynamic surface temperature. At the same time, heat transfer efficiency is reduced. These shifts in land surface properties increase latent at the expense of sensible heat fluxes, thus, drastically reducing Bowen ratios. Due to the lower albedo of forests and their masking effect of highly reflective snow, available energy is lower in wetlands, especially in late winter. Modelling results demonstrate that a conversion of a present-day boreal forest-wetland to a hypothetical homogeneous wetland landscape could induce a near-surface cooling effect on regional air temperatures of up to 3-4 °C in late winter and 1-2 °C in summer. An atmospheric wetting effect in summer is indicated by a maximum increase in water vapour mixing ratios of 2 mmol mol -1 . At the same time, maximum boundary layer heights are reduced by about a third of the original height. In fall, simulated air temperature and atmospheric moisture between the two scenarios do not differ. Therefore, permafrost thaw-induced boreal forest loss may modify regional precipitation patterns and slow down regional warming trends. © 2016 John Wiley

  14. Biological effects of electromagnetic fields and recently updated safety guidelines for strong static magnetic fields

    International Nuclear Information System (INIS)

    Yamaguchi-Sekino, Sachiko; Sekino, Masaki; Ueno, Shoogo

    2011-01-01

    Humans are exposed daily to artificial and naturally occurring magnetic fields that originate from many different sources. We review recent studies that examine the biological effects of and medical applications involving electromagnetic fields, review the properties of static and pulsed electromagnetic fields that affect biological systems, describe the use of a pulsed electromagnetic field in combination with an anticancer agent as an example of a medical application that incorporates an electromagnetic field, and discuss the recently updated safety guidelines for static electromagnetic fields. The most notable modifications to the 2009 International Commission on Non-Ionizing Radiation Protection guidelines are the increased exposure limits, especially for those who work with or near electromagnetic fields (occupational exposure limits). The recommended increases in exposure were determined using recent scientific evidence obtained from animal and human studies. Several studies since the 1994 publication of the guidelines have examined the effects on humans after exposure to high static electromagnetic fields (up to 9.4 tesla), but additional research is needed to ascertain further the safety of strong electromagnetic fields. (author)

  15. Biological effects of electromagnetic fields and recently updated safety guidelines for strong static magnetic fields.

    Science.gov (United States)

    Yamaguchi-Sekino, Sachiko; Sekino, Masaki; Ueno, Shoogo

    2011-01-01

    Humans are exposed daily to artificial and naturally occurring magnetic fields that originate from many different sources. We review recent studies that examine the biological effects of and medical applications involving electromagnetic fields, review the properties of static and pulsed electromagnetic fields that affect biological systems, describe the use of a pulsed electromagnetic field in combination with an anticancer agent as an example of a medical application that incorporates an electromagnetic field, and discuss the recently updated safety guidelines for static electromagnetic fields. The most notable modifications to the 2009 International Commission on Non-Ionizing Radiation Protection guidelines are the increased exposure limits, especially for those who work with or near electromagnetic fields (occupational exposure limits). The recommended increases in exposure were determined using recent scientific evidence obtained from animal and human studies. Several studies since the 1994 publication of the guidelines have examined the effects on humans after exposure to high static electromagnetic fields (up to 9.4 tesla), but additional research is needed to ascertain further the safety of strong electromagnetic fields.

  16. Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum

    Science.gov (United States)

    Fujiwara, Yoshihisa; Tomishige, Masahiko; Itoh, Yasuhiro; Fujiwara, Masao; Shibata, Naho; Kosaka, Toshikazu; Hosoya, Hiroshi; Tanimoto, Yoshifumi

    2006-05-01

    Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum was studied by using a superconducting magnet. Around a centre of a round vessel, random swimming at 0 T and aligned swimming parallel to the magnetic field (MF) of 8 T were observed. Near a wall of the vessel, however, swimming round and round along the wall at 0 T and aligned swimming of turning at right angles upon collision with the wall, which was remarkable around 1-4 T, were detected. It was experimentally revealed that the former MF-induced parallel swimming at the vessel centre was caused physicochemically by the parallel magnetic orientation of the cell itself. From magnetic field dependence of the extent of the orientation, the magnetic susceptibility anisotropy (χ ∥-χ ⊥) was first obtained to be 3.4× 10-23 emu cell-1 at 298 K for Paramecium caudatum. The orientation of the cell was considered to result from the magnetic orientation of the cell membrane. On the other hand, although mechanisms of the latter swimming near the vessel wall regardless of the absence and presence of the magnetic field are unclear at present, these experimental results indicate that whether the cell exists near the wall alters the magnetic field effect on the swimming in the horizontal magnetic field.

  17. Heat acclimation improves intermittent sprinting in the heat but additional pre-cooling offers no further ergogenic effect.

    Science.gov (United States)

    Castle, Paul; Mackenzie, Richard W; Maxwell, Neil; Webborn, Anthony D J; Watt, Peter W

    2011-08-01

    The aim of this study was to determine the effect of 10 days of heat acclimation with and without pre-cooling on intermittent sprint exercise performance in the heat. Eight males completed three intermittent cycling sprint protocols before and after 10 days of heat acclimation. Before acclimation, one sprint protocol was conducted in control conditions (21.8 ± 2.2°C, 42.8 ± 6.7% relative humidity) and two sprint protocols in hot, humid conditions (33.3 ± 0.6°C, 52.2 ± 6.8% relative humidity) in a randomized order. One hot, humid condition was preceded by 20 min of thigh pre-cooling with ice packs (-16.2 ± 4.5°C). After heat acclimation, the two hot, humid sprint protocols were repeated. Before heat acclimation, peak power output declined in the heat (P < 0.05) but pre-cooling prevented this. Ten days of heat acclimation reduced resting rectal temperature from 37.8 ± 0.3°C to 37.4 ± 0.3°C (P < 0.01). When acclimated, peak power output increased by ∼2% (P < 0.05, main effect) and no reductions in individual sprint peak power output were observed. Additional pre-cooling offered no further ergogenic effect. Unacclimated athletes competing in the heat should pre-cool to prevent reductions in peak power output, but heat acclimate for an increased peak power output.

  18. Detailed site effect estimation in the presence of strong velocity reversals within a small-aperture strong-motion array in Iceland

    KAUST Repository

    Rahpeyma, Sahar

    2016-08-11

    The rock site characterization for earthquake engineering applications in Iceland is common due to the easily exposed older bedrock and more recent volcanic lava rock. The corresponding site amplification is generally assumed to be low but has not been comprehensively quantified, especially for volcanic rock. The earthquake strong-motion of the Mw6.3 Ölfus earthquake on 29 May 2008 and 1705 of its aftershocks recorded on the first small-aperture strong-motion array (ICEARRAY I) in Iceland showed consistent and significant variations in ground motion amplitudes over short distances (<2 km) in an urban area located mostly on lava rock. This study analyses the aftershock recordings to quantify the local site effects using the Horizontal to Vertical Spectral Ratio (HVSR) and Standard Spectral Ratio (SSR) methods. Additionally, microseismic data has been collected at array stations and analyzed using the HVSR method. The results between the methods are consistent and show that while the amplification levels remain relatively low, the predominant frequency varies systematically between stations and is found to correlate with the geological units. In particular, for stations on lava rock the underlying geologic structure is characterized by repeated lava-soil stratigraphy characterized by reversals in the shear wave velocity with depth. As a result, standard modeling of HVSR using vertically incident body waves does not apply. Instead, modeling the soil structure as a two-degree-of-freedom dynamic system is found to capture the observed predominant frequencies of site amplification. The results have important implications for earthquake resistant design of structures on rock sites characterized by velocity reversals. © 2016 Elsevier Ltd

  19. Effective potential in the strong-coupling lattice QCD with next-to-next-to-learning order effects

    International Nuclear Information System (INIS)

    Nakano, Takashi Z.; Miura, Kohtaroh; Ohnishi, Akira

    2010-01-01

    We derive an analytic expression of the effective potential at finite temperature (T) and chemical potential (μ) in the strong-coupling lattice QCD for color SU(3) including next-to-next-to-leading order (NNLO) effects in the strong coupling expansion. NNLO effective action terms are systematically evaluated in the leading order of the large dimensional (1/d) expansion, and are found to come from some types of connected two-plaquette configurations. We apply the extended Hubbard-Stratonovich transformation and a gluonic-dressed fermion technique to the effective action, and obtain the effective potential as a function of T, μ, and two order parameters: chiral condensate and vector potential field. The next-to-leading order (NLO) and NNLO effects result in modifications of the wave function renormalization factor, quark mass, and chemical potential. We find that T c,μ =0 and μ c,T =0 are similar to the NLO results, whereas the position of the critical point is sensitive to NNLO corrections. (author)

  20. Effects of evaporative cooling on the regulation of body water and milk production in crossbred Holstein cattle in a tropical environment

    Science.gov (United States)

    Chaiyabutr, N.; Chanpongsang, S.; Suadsong, S.

    2008-09-01

    The aim of this study was to determine how evaporative cooling modifies body function with respect to water metabolism and other variables relevant to milk synthesis in crossbred cattle. The study was conducted on two groups of 0.875HF:0.125RS crossbred Holstein cattle (87.5%) housed in an open-sided barn with a tiled roof (non-cooled animals) and in a close-sided barn under an evaporative cooling system (cooled animals). The maximum ambient temperature and relative humidity for the non-cooled group were 33°C and 61%, with the corresponding values for the evaporatively cooled barn being 28°C and 84%, respectively. The temperature humidity index (THI) of under non-cooled conditions was higher ( P triglyceride of cooled animals were not significantly different compared with values for non-cooled animals. No differences were seen in plasma hormonal levels for triiodotyronine (T3) and insulin-like growth factor-1 (IGF-1), but plasma cortisol and thyroxine (T4) levels tended to be lower in non-cooled animals. This study suggests that low cooling temperature accompanied by high humidity influences a galactopoietic effect, in part through increases in ECF, blood volume and plasma volume in association with an increase in DMI, which partitions the distribution of nutrients to the mammary gland for milk synthesis. Cooled animals were unable to maintain high milk yield as lactation advances even though a high level of body fluids was maintained during long-term cooled exposure. The decline in milk yield, coinciding with a decrease in net energy for lactation as lactation advances, could be attributed to a local change within the mammary gland.

  1. Investigation of light gas effects on passive containment cooling system in ALWR

    International Nuclear Information System (INIS)

    Paladino, D.; Auban, O.; Huggenberger, M.; Andreani, M.

    2003-01-01

    The large-scale thermal-hydraulic PANDA facility has been used for the last years for investigating passive decay-heat removal systems and related containment phenomena relevant for current and next generation of light water reactors. Passive Containment Cooling System (PCCS) systems operate by transferring heat from the containment to a water pool located outside the containment by steam condensation, and serve to mitigate long-term pressure build-up in the event of steam discharge from the primary circuit. As part of the 5 th Euratom framework program project TEMPEST, a new series of tests was performed in the PANDA facility to experimentally investigate the distribution of non-condensable gases inside the containment and their effect on the performance of PCCS of the European Simplified Boiling Water Reactor (ESBWR). The influence of light gas(hydrogen) on the PCCs performance is of special interest. Hydrogen release caused by the metalwater reaction in case of severe accident was simulated in PANDA by injecting helium into the lines feeding the break flow from the reactor pressure vessel to the Drywells. The paper combines the presentation of experimental results for a number of PANDA tests and the analysis performed using the GOTHIC code. As GOTHIC has 3-D modeling capabilities, gas distribution effects could be studied. The comparison of GOTHIC calculations (two pre-test and one post-test with the same model) with selected TEMPEST tests showed that the code is capable to predict well gas stratification in the drywell, while the system pressure increase due to the release of light gas is slightly overestimated. The analysis aiming to clarify the discordance between the GOTHIC simulation and the experimental results is included in this paper

  2. Cross-winds effect on the performance of natural draft wet cooling towers

    Energy Technology Data Exchange (ETDEWEB)

    Al-Waked, R. [Dhofar Univ., Mechanical Engineering Dept., College of Engineering, Sultanate of Oman (Oman)

    2010-01-15

    Effects of cross-winds on the thermal performance of natural draft wet cooling towers (NDWCTs) have been investigated. A three-dimensional CFD model has been used to determine the effect of cross-winds on NDWCTs performance surrounded by power plant building structures. The three-dimensional CFD model has utilized the standard k-{epsilon} turbulence model as the turbulence closure. Two cases have been investigated: a stand-alone NDWCT and two NDWCTs within a proposed power plant structures (PPS). It has been found that regardless of the cross-winds direction, an increase of 1.3 k or more could be predicted at cross-winds speeds greater than 4 m/s. Furthermore, the performance of NDWCTs under cross-winds has been found to be dependent on the three major factors: the structure of the approaching cross-winds and whether it is disturbed or undisturbed, the location of the NDWCT in the wake of the other NDWCT, and the location of the NDWCT in front of/in the wake of the PPS. When comparing results from the stand-alone and from the NDWCTs within PPS simulations, differences in {delta}T{sub wo} were found to be less than 1 K for the whole span of cross-winds speeds and could be decreased to 0.7 K for speeds less than 8 m/s. Finally, results obtained from the simulation of a stand-alone NDWCT could be used instead of those from NDWCTs within PPS at a certain cross-winds direction for qualitative comparisons. (authors)

  3. Cross-winds effect on the performance of natural draft wet cooling towers

    International Nuclear Information System (INIS)

    Al-Waked, R.

    2010-01-01

    Effects of cross-winds on the thermal performance of natural draft wet cooling towers (NDWCTs) have been investigated. A three-dimensional CFD model has been used to determine the effect of cross-winds on NDWCTs performance surrounded by power plant building structures. The three-dimensional CFD model has utilized the standard k-ε turbulence model as the turbulence closure. Two cases have been investigated: a stand-alone NDWCT and two NDWCTs within a proposed power plant structures (PPS). It has been found that regardless of the cross-winds direction, an increase of 1.3 k or more could be predicted at cross-winds speeds greater than 4 m/s. Furthermore, the performance of NDWCTs under cross-winds has been found to be dependent on the three major factors: the structure of the approaching cross-winds and whether it is disturbed or undisturbed, the location of the NDWCT in the wake of the other NDWCT, and the location of the NDWCT in front of/in the wake of the PPS. When comparing results from the stand-alone and from the NDWCTs within PPS simulations, differences in ΔT wo were found to be less than 1 K for the whole span of cross-winds speeds and could be decreased to 0.7 K for speeds less than 8 m/s. Finally, results obtained from the simulation of a stand-alone NDWCT could be used instead of those from NDWCTs within PPS at a certain cross-winds direction for qualitative comparisons. (authors)

  4. An analysis of heat removal during cryogen spray cooling and effects of simultaneous airflow application.

    Science.gov (United States)

    Torres, J H; Tunnell, J W; Pikkula, B M; Anvari, B

    2001-01-01

    Cryogen spray cooling (CSC) is a method used to protect the epidermis from non-specific thermal injury that may occur as a result of various dermatological laser procedures. However, better understanding of cryogen deposition and skin thermal response to CSC is needed to optimize the technique. Temperature measurements and video imaging were carried out on an epoxy phantom as well as human skin during CSC with and without simultaneous application of airflow which was intended to accelerate cryogen evaporation from the substrate surface. An inverse thermal conduction model was used to estimate heat flux and total heat removed. Lifetime of the cryogen film deposited on the surface of skin and epoxy phantom lasted several hundred milliseconds beyond the spurt, but could be reduced to the spurt duration by application of airflow. Values over 100 J/cm(3) were estimated for volumetric heat removed from the epidermis using CSC. "Film cooling" instead of "evaporative cooling" appears to be the dominant mode of CSC on skin. Estimated values of heat removed from the epidermis suggest that a cryogen spurt as long as 200 milliseconds is required to counteract heat generated by high laser fluences (e.g., in treatment of port wine stains) in patients with high concentration of epidermal melanin. Additional cooling beyond spurt termination can be avoided by simultaneous application of airflow, although it is unclear at the moment if avoiding the additional cooling would be beneficial in the actual clinical situation. Copyright 2001 Wiley-Liss, Inc.

  5. The effect of cooling procedure on the characteristics and quality of raw milk

    Directory of Open Access Journals (Sweden)

    Slavko Kirin

    2001-04-01

    Full Text Available Prompt cooling of the milk after milking is vital to preserve milkcharacteristics untill manufacture. The way and the speed of the cooling as well as cooling time and temperature have an important influence on physicochemical characteristics and psychrophilic and psychrotrophic microflora development in milk. Intensity of these changes are especially evident in milk kept at low temperatures more than 48 hours, which make this milk unusable for further processing. The minerals balance is disturbed and the casein micelles properties are changed thus having an influence on technological process, characteristics and the yield of product. Psychrotrophic microflora present in milk is mostly derived from the milk producing environment and poor hygienic conditions including water quality. Dominating psychrotrophic microflora, in low temperature cooled milk, are Pseudomonas bacteria. Pasteurisation destroys these bacteria but not theirs thermoduric proteolytic and lipolytic enzymes, degrading milk proteins and fats thus contributing to off-flavours and other defects of milk products. Although cooling procedure certainly improves the microbiological quality of raw milk, good hygienic practice is of vital importance in milk production, transportation and storage.

  6. Data acquisition and analysis of passive solar cooling effects by storage of out door air in the middle of the night; Shin'ya gaiki chikurei ni yoru shizen reibo koka no jissoku to kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, H.; Kasutani, A. [Komazawa Womens Junior College, Tokyo (Japan); Koizumi, H.

    1998-12-05

    Passive cooling by storing coolness of out door air in the middle of the night in rock bed is realized by air type solar system without any additional equipment. The advantage of the passive cooling is confirmed with measuring performance of the passive cooling effect of air type solar system equipped in our Komazawa Womens Junior College last year. (author)

  7. Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations

    Science.gov (United States)

    Deng, Lu; Du, Jincheng

    2018-01-01

    Borosilicate glasses form an important glass forming system in both glass science and technologies. The structure and property changes of borosilicate glasses as a function of thermal history in terms of cooling rate during glass formation and simulation system sizes used in classical molecular dynamics (MD) simulation were investigated with recently developed composition dependent partial charge potentials. Short and medium range structural features such as boron coordination, Si and B Qn distributions, and ring size distributions were analyzed to elucidate the effects of cooling rate and simulation system size on these structure features and selected glass properties such as glass transition temperature, vibration density of states, and mechanical properties. Neutron structure factors, neutron broadened pair distribution functions, and vibrational density of states were calculated and compared with results from experiments as well as ab initio calculations to validate the structure models. The results clearly indicate that both cooling rate and system size play an important role on the structures of these glasses, mainly by affecting the 3B and 4B distributions and consequently properties of the glasses. It was also found that different structure features and properties converge at different sizes or cooling rates; thus convergence tests are needed in simulations of the borosilicate glasses depending on the targeted properties. The results also shed light on the complex thermal history dependence on structure and properties in borosilicate glasses and the protocols in MD simulations of these and other glass materials.

  8. Disorder effects on helical edge transport in graphene under a strong tilted magnetic field

    Science.gov (United States)

    Huang, Chunli; Cazalilla, Miguel A.

    2015-10-01

    In a recent experiment, Young et al. [Nature (London) 505, 528 (2014), 10.1038/nature12800] observed a metal to insulator transition as well as transport through helical edge states in monolayer graphene under a strong, tilted magnetic field. Under such conditions, the bulk is a magnetic insulator which can exhibit metallic conduction through helical edges. It was found that the two-terminal conductance of the helical channels deviates from the expected quantized value (=e2/h per edge, at zero temperature). Motivated by this observation, we study the effect of disorder on the conduction through the edge channels. We show that, unlike for helical edges of topological insulators in semiconducting quantum wells, a disorder Rashba spin-orbit coupling does not lead to backscattering, at least to leading order. Instead, we find that the lack of perfect antialignment of the electron spins in the helical channels to be the most likely cause for backscattering arising from scalar (i.e., spin-independent) impurities. The intrinsic spin-orbit coupling and other time-reversal symmetry-breaking and/or sublattice parity-breaking potentials also lead to (subleading) corrections to the channel conductance.

  9. Effect of dipole polarizability on positron binding by strongly polar molecules

    International Nuclear Information System (INIS)

    Gribakin, G F; Swann, A R

    2015-01-01

    A model for positron binding to polar molecules is considered by combining the dipole potential outside the molecule with a strongly repulsive core of a given radius. Using existing experimental data on binding energies leads to unphysically small core radii for all of the molecules studied. This suggests that electron–positron correlations neglected in the simple model play a large role in determining the binding energy. We account for these by including the polarization potential via perturbation theory and non-perturbatively. The perturbative model makes reliable predictions of binding energies for a range of polar organic molecules and hydrogen cyanide. The model also agrees with the linear dependence of the binding energies on the polarizability inferred from the experimental data (Danielson et al 2009 J. Phys. B: At. Mol. Opt. Phys. 42 235203). The effective core radii, however, remain unphysically small for most molecules. Treating molecular polarization non-perturbatively leads to physically meaningful core radii for all of the molecules studied and enables even more accurate predictions of binding energies to be made for nearly all of the molecules considered. (paper)

  10. Strong gravity effects of rotating black holes: quasi-periodic oscillations

    International Nuclear Information System (INIS)

    Aliev, Alikram N; Esmer, Göksel Daylan; Talazan, Pamir

    2013-01-01

    We explore strong gravity effects of the geodesic motion in the spacetime of rotating black holes in general relativity and braneworld gravity. We focus on the description of the motion in terms of three fundamental frequencies: the orbital frequency, the radial and vertical epicyclic frequencies. For a Kerr black hole, we perform a detailed numerical analysis of these frequencies at the innermost stable circular orbits and beyond them as well as at the characteristic stable orbits, at which the radial epicyclic frequency attains its highest value. We find that the values of the epicyclic frequencies for a class of stable orbits exhibit good qualitative agreement with the observed frequencies of the twin peaks quasi-periodic oscillations (QPOs) in some black hole binaries. We also find that at the characteristic stable circular orbits, where the radial (or the vertical) epicyclic frequency has maxima, the vertical and radial epicyclic frequencies exhibit an approximate 2:1 ratio even in the case of near-extreme rotation of the black hole. Next, we perform a similar analysis of the fundamental frequencies for a rotating braneworld black hole and argue that the existence of such a black hole with a negative tidal charge, whose angular momentum exceeds the Kerr bound in general relativity, does not confront with the observations of high-frequency QPOs. (paper)

  11. Peak ground motions, effective duration of strong motions and frequency content of Iranian earthquakes

    International Nuclear Information System (INIS)

    Tehranizadeh, M.; Hamedi, F.

    2002-01-01

    The characteristics of earthquake ground motion have great influences on the response of structures to the earthquakes. Peak ground motions, duration of strong motions and frequency content are important characteristics of earthquakes, which are studied in this paper. The relation between peak ground acceleration, velocity and displacement have been taken into account and the effects of magnitude, epicentral distance and recorded duration of earthquakes on peak ground acceleration have been presented as graphs. The frequency content of ground motion can be examined by power spectral density of accel ero grams. In this study the power spectral density of the records have been determined and normalized power spectral densities are compared. There are different formulas for the smoothed power spectral density function such as Kanai-Tajimi's model. In this study, comparing with Kanai-Tajim's formula, the extreme value model is suggested for the spectral density function. This model is evaluated for accel ero grams on different soil conditions and the smoothed mean power spectral density function are determined for each soil groups. The central frequency and predominant period of earthquakes are also estimated

  12. Numerical simulation of the effects of hanging sound absorbers on TABS cooling performance

    DEFF Research Database (Denmark)

    Rage, Nils; Kazanci, Ongun Berk; Olesen, Bjarne W.

    2016-01-01

    Recently there has been a considerable increase in the use of Thermally-Active Building Systems (TABS) in Europe as an energy-efficient and economical cooling and heating solution for buildings. However, this widespread solution requires large uncovered hard surfaces indoors, which can lead...... to a degradation of the room acoustic comfort. Therefore, challenges arise when this system has to be combined with acoustic requirements. Soffit-hanging sound absorbers embody a promising solution. This study focuses on quantifying their impact on the cooling performance of TABS, assessed by means of the cooling.......4% with a coverage of 80%. The presence of acoustic panels also affects the thermal comfort: the operative temperature in the room increases by 0.9°C in the former case and up to 1.6°C in the latter. Results also show that comfort ventilation supplied to the enclosure has a considerable influence on the thermal...

  13. Effect of cooling to different sub-zero temperatures on boar sperm cryosurvival

    OpenAIRE

    Angelica Garcia-Olivares; Cesar Garzon-Perez; Oscar Gutierrez-Perez; Alfredo Medrano

    2016-01-01

    Objective: To compare different cooling temperatures before ice formation on pig sperm quality, before and after cryopreservation. Methods: Semen diluted in BF5 was cooled from 23 °C to 5 °C (1% glycerol, 200 × 106 cells/mL). Sperm were packaged in plastic straws, and maintained at +5 °C per 16 h. 1. Freezing point of diluted spermatozoa was determined by exposing straws to nitrogen vapors. 2. Straws (at +5 °C) were further cooled to −3 °C, −5 °C, and −7 °C, and rewarmed. 3. Straws (at +5 ...

  14. The effect of cooling techniques on intrapulpal temperature during direct fabrication of provisional restorations.

    Science.gov (United States)

    Moulding, M B; Loney, R W

    1991-01-01

    In vitro measurements were made of the heat transferred to the pulp chamber during the direct fabrication of extracoronal provisional restorations. The temperature was monitored for the following four groups: (1) control--the provisional restoration was left on the tooth with no coolant used; (2) removal--the provisional restoration was removed upon initial resin polymerization; (3) in situ--the provisional restoration was left in place and cooled with an air/water spray; and (4) on/off--the provisional restoration was repeatedly removed and replaced upon initial polymerization while using an air/water spray. The intrapulpal temperature rises were as follows: control 7.08 degrees C, removal 2.39 degrees C, in situ 2.36 degrees C, and on/off 3.12 degrees C. The temperature rise for all cooling techniques was significantly lower than that of the control. No significant differences were found between the three cooling techniques.

  15. Ventilative Cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Kolokotroni, Maria

    This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state-of-the-art of ventil......This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state......-of-the-art of ventilative cooling potentials and limitations, its consideration in current energy performance regulations, available building components and control strategies and analysis methods and tools. In addition, the report provides twenty six examples of operational buildings using ventilative cooling ranging from...

  16. Strong mutagenic effects of diesel engine emissions using vegetable oil as fuel.

    Science.gov (United States)

    Bünger, Jürgen; Krahl, Jürgen; Munack, Axel; Ruschel, Yvonne; Schröder, Olaf; Emmert, Birgit; Westphal, Götz; Müller, Michael; Hallier, Ernst; Brüning, Thomas

    2007-08-01

    Diesel engine emissions (DEE) are classified as probably carcinogenic to humans. In recent years every effort was made to reduce DEE and their content of carcinogenic and mutagenic polycyclic aromatic compounds. Since 1995 we observed an appreciable reduction of mutagenicity of DEE driven by reformulated or newly designed fuels in several studies. Recently, the use of rapeseed oil as fuel for diesel engines is rapidly growing among German transportation businesses and agriculture due to economic reasons. We compared the mutagenic effects of DEE from two different batches of rapeseed oil (RSO) with rapeseed methyl ester (RME, biodiesel), natural gas derived synthetic fuel (gas-to-liquid, GTL), and a reference diesel fuel (DF). The test engine was a heavy-duty truck diesel running the European Stationary Cycle. Particulate matter from the exhaust was sampled onto PTFE-coated glass fibre filters and extracted with dichloromethane in a soxhlet apparatus. The gas phase constituents were sampled as condensates. The mutagenicity of the particle extracts and the condensates was tested using the Salmonella typhimurium/mammalian microsome assay with tester strains TA98 and TA100. Compared to DF the two RSO qualities significantly increased the mutagenic effects of the particle extracts by factors of 9.7 up to 59 in tester strain TA98 and of 5.4 up to 22.3 in tester strain TA100, respectively. The condensates of the RSO fuels caused an up to factor 13.5 stronger mutagenicity than the reference fuel. RME extracts had a moderate but significant higher mutagenic response in assays of TA98 with metabolic activation and TA100 without metabolic activation. GTL samples did not differ significantly from DF. In conclusion, the strong increase of mutagenicity using RSO as diesel fuel compared to the reference DF and other fuels causes deep concern on future usage of this biologic resource as a replacement of established diesel fuels.

  17. Autler-Townes effect in a strongly driven electromagnetically induced transparency resonance

    International Nuclear Information System (INIS)

    Yang Lijun; Zhang Lianshui; Li Xiaoli; Han Li; Fu Guangsheng; Manson, Neil B.; Suter, Dieter; Wei Changjiang

    2005-01-01

    In this paper we study the nonlinear behavior of an electromagnetically induced transparency (EIT) resonance subject to a coherent driving field. The EIT is associated with a Λ three-level system where two hyperfine levels within an electronic ground state are coupled to a common excited state level by a coupling field and a probe field. In addition there is an radio-frequency (rf) field driving a hyperfine transition within the ground state. The paper contrasts two different situations. In one case the rf-driven transition shares a common level with the probed transition and in the second case it shares a common level with the coupled transition. In both cases the EIT resonance is split into a doublet and the characteristics of the EIT doublet are determined by the strength and frequency of the rf-driving field. The doublet splitting originates from the rf-field induced dynamic Stark effect and has close analogy with the Autler-Townes effect observed in three-level pump-probe spectroscopy study. The situation changes when the rf field is strong and the two cases are very different. One is analogous to two Λ three-level systems with EIT resonance associated with each. The other corresponds to a doubly driven three-level system with rf-field-induced electromagnetically induced absorption resonance. The two situations are modeled using numerical solutions of the relevant equation of motion of density matrix. In addition a physical account of their behaviors is given in terms of a dressed state picture

  18. Effects of Undercooling and Cooling Rate on Peritectic Phase Crystallization Within Ni-Zr Alloy Melt

    Science.gov (United States)

    Lü, P.; Wang, H. P.

    2018-04-01

    The liquid Ni-16.75 at. pct Zr peritectic alloy was substantially undercooled and containerlessly solidified by an electromagnetic levitator and a drop tube. The dependence of the peritectic solidification mode on undercooling was established based on the results of the solidified microstructures, crystal growth velocity, as well as X-ray diffraction patterns. Below a critical undercooling of 124 K, the primary Ni7Zr2 phase preferentially nucleates and grows from the undercooled liquid, which is followed by a peritectic reaction of Ni7Zr2+L → Ni5Zr. The corresponding microstructure is composed of the Ni7Zr2 dendrites, peritectic Ni5Zr phase, and inter-dendritic eutectic. Nevertheless, once the liquid undercooling exceeds the critical undercooling, the peritectic Ni5Zr phase directly precipitates from this undercooled liquid. However, a negligible amount of residual Ni7Zr2 phase still appears in the microstructure, indicating that nucleation and growth of the Ni7Zr2 phase are not completely suppressed. The micromechanical property of the peritectic Ni5Zr phase in terms of the Vickers microhardness is enhanced, which is ascribed to the transition of the peritectic solidification mode. To suppress the formation of the primary phase completely, this alloy was also containerlessly solidified in free fall experiments. Typical peritectic solidified microstructure forms in large droplets, while only the peritectic Ni5Zr phase appears in smaller droplets, which gives an indication that the peritectic Ni5Zr phase directly precipitates from the undercooled liquid by completely suppressing the growth of the primary Ni7Zr2 phase and the peritectic reaction due to the combined effects of the large undercooling and high cooling rate.

  19. Effect of biomolecules adsorption on oxide layers developed on metallic materials used in cooling water systems

    International Nuclear Information System (INIS)

    Torres-Bautista, Blanca-Estela

    2014-01-01

    This thesis was carried out in the frame of the BIOCOR ITN European project, in collaboration with the industrial partner RSE S.p.A. (Italy). Metallic materials commonly used in cooling systems of power plants may be affected by bio-corrosion induced by biofilm formation. The objective of this work was to study the influence of biomolecules adsorption, which is the initial stage of biofilm formation, on the electrochemical behaviour and the surface chemical composition of three metallic materials (70Cu-30Ni alloy, 304L stainless steel and titanium) in seawater environments. In a first step, the interactions between a model protein, the bovine serum albumin (BSA), and the surface of these materials were investigated. Secondly, tightly bound (TB) and loosely bound (LB) extracellular polymeric substances (EPS), that play a fundamental role in the different stages of biofilm formation, maturation and maintenance, were extracted from Pseudomonas NCIMB 2021 marine strain, and their effects on oxide layers were also evaluated. For that purpose, electrochemical measurements (corrosion potential E(corr) vs time, polarization curves and electrochemical impedance spectroscopy (EIS)) performed during the very first steps of oxide layers formation (1 h immersion time) were combined to surface analysis by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ions mass spectrometry (ToF-SIMS). Compared to 70Cu-30Ni alloy in static artificial seawater (ASW) without biomolecules, for which a thick duplex oxide layer (outer redeposited Cu 2 O layer and inner oxidized nickel layer) is shown, the presence of BSA, TB EPS and LB EPS leads to a mixed oxide layer (oxidized copper and nickel) with a lower thickness. In the biomolecules-containing solutions, this oxide layer is covered by an adsorbed organic layer, mainly composed of proteins. A model is proposed to analyse impedance data obtained at E(corr). The results show a slow-down of the anodic reaction in the presence

  20. EFFECT OF ACTIVE COOLING AND α-2 ADRENOCEPTOR ANTAGONISM ON CORE TEMPERATURE IN ANESTHETIZED BROWN BEARS (URSUS ARCTOS).

    Science.gov (United States)

    Ozeki, Larissa Mourad; Caulkett, Nigel; Stenhouse, Gordon; Arnemo, Jon M; Fahlman, Åsa

    2015-06-01

    Hyperthermia is a common complication during anesthesia of bears, and it can be life threatening. The objective of this study was to evaluate the effectiveness of active cooling on core body temperature for treatment of hyperthermia in anesthetized brown bears (Ursus arctos). In addition, body temperature after reversal with atipamezole was also evaluated. Twenty-five adult and subadult brown bears were captured with a combination of zolazepam-tiletamine and xylazine or medetomidine. A core temperature capsule was inserted into the bears' stomach or 15 cm into their rectum or a combination of both. In six bears with gastric temperatures≥40.0°C, an active cooling protocol was performed, and the temperature change over 30 min was analyzed. The cooling protocol consisted of enemas with 2 L of water at approximately 5°C/100 kg of body weight every 10 min, 1 L of intravenous fluids at ambient temperature, water or snow on the paws or the inguinal area, intranasal oxygen supplementation, and removing the bear from direct sunlight or providing shade. Nine bears with body temperature>39.0°C that were not cooled served as control for the treated animals. Their body temperatures were recorded for 30 min, prior to administration of reversal. At the end of the anesthetic procedure, all bears received an intramuscular dose of atipamezole. In 10 bears, deep rectal temperature change over 30 min after administration of atipamezole was evaluated. The active cooling protocol used in hyperthermic bears significantly decreased their body temperatures within 10 min, and it produced a significantly greater decrease in their temperature than that recorded in the control group.

  1. Effects of spin-orbit coupling on laser cooling of BeI and MgI.

    Science.gov (United States)

    Wan, Mingjie; Huang, Duohui; Shao, Juxiang; Yu, You; Li, Song; Li, Yuanyuan

    2015-10-28

    We present the ab initio study of spin-orbit coupling effects on laser cooling of BeI and MgI molecules. Potential energy curves for the X(2)Σ(+)(1/2), A(2)Π(1/2,3/2), and 2(2)Π(3/2,1/2) states are calculated using multi-reference configuration interaction method plus Davidson corrections. Spectroscopic parameters of BeI and MgI are in excellent agreement with available experimental and theoretical values. The A(2)Π(3/2) state of MgI is a repulsive state. It is an unsuitable scheme for the A(2)Π(3/2)(υ')← X(2)Σ(+)(1/2) (υ″) transition for laser cooling of MgI. Highly diagonally distributed Franck-Condon factors f00 for the A(2)Π(1/2,3/2) (υ' = 0) ← X(2)Σ(+)(1/2) (υ″ = 0) transitions and suitable radiative lifetimes τ for the A(2)Π(1/2,3/2) (υ' = 0) of BeI and MgI are obtained. Three laser wavelength drives are required for the A(2)Π(1/2,3/2)(υ')←X(2)Σ(+)(1/2) (υ″) transitions of BeI and MgI. The proposed cooling wavelengths of BeI and MgI are both in the violet region. The results imply the feasibility of laser cooling of BeI and MgI, and that laser cooling of BeI is more possible.

  2. Effect of cooling (4°C) and cryopreservation on cytoskeleton actin and protein tyrosine phosphorylation in buffalo spermatozoa.

    Science.gov (United States)

    Naresh, Sai

    2016-02-01

    Semen cryopreservation is broadly utilized as a part of the bovine reproducing industry, a large portion of the spermatozoa does not survive and the majority of those that do survive experience various molecular and physiological changes that influence their fertilizing capacity. The main aim of this study is to determine the effect of cooling (4 °C) and cryopreservation on cytoskeleton actin, tyrosine phosphorylation and quality of buffalo spermatozoa, and to determine the similarity between in vitro capacitation and cryopreservation induced capacitation like changes. To achieve this, Western blot was used to examine the changes in actin expression and protein tyrosine phosphorylation, whereas changes in actin polymerization, localization of actin and protein tyrosine phosphorylation during capacitation and cryopreservation were evaluated by indirect immunofluorescence technique. Localization studies revealed that the actin localized to flagella and acrosome membrane regions and following, capacitation it migrated towards the acrosome region of sperm. Time dependent increase in actin polymerization and protein tyrosine phosphorylation was observed during in vitro capacitation. The cooling phase (4 °C) and cryopreservation processes resulted in the loss/damage of cytoskeleton actin. In addition, we performed the actin polymerization and protein tyrosine phosphorylation in cooled and cryopreserved buffalo spermatozoa. Interestingly, cooling and cryopreservation induces actin polymerization and protein tyrosine phosphorylation, which were similar to in vitro capacitation (cryo-capacitation). These changes showed 1.3 folds reduction in the sperm quality parameters which includes motility, viability and plasma membrane integrity. Furthermore, our findings indicate that cooling and cryopreservation damages the cytoskeleton actin and also induces capacitation like changes such as protein tyrosine phosphorylation and actin polymerization. This could be one of the

  3. Effects of the Coulomb potential in interference patterns of strong-field holography with photoelectrons

    Science.gov (United States)

    Shvetsov-Shilovski, N. I.; Lein, M.

    2018-01-01

    Using the semiclassical two-step model for strong-field ionization we investigate the interference structures emerging in strong-field photoelectron holography, taking into account the Coulomb potential of the atomic core. For every kind of the interference pattern predicted by the three-step model, we calculate the corresponding structure in the presence of the Coulomb field, showing that the Coulomb potential modifies the interference patterns significantly.

  4. Meta-analysis of the effects of microclimate cooling systems on human performance under thermal stressful environments: potential applications to occupational workers.

    Science.gov (United States)

    Chan, Albert P C; Song, Wenfang; Yang, Yang

    2015-01-01

    This study aims to determine the appropriate microclimate cooling systems (MCSs) to reduce heat stress and improve human performance of occupational workers and their practicality in the occupational field. Meta-analysis was employed to summarize, analyze, and compare the effects of various MCSs on human performance with corresponding physiological and psychological responses, thereby providing solid suggestions for selecting suitable MCSs for occupational workers. Wearing MCSs significantly attenuated the increases in core temperature (-0.34 °C/h) and sweating rate (-0.30 L/h), and significantly improved human performance (+29.9%, effect size [EFS] = 1.1) compared with no cooling condition (CON). Cold air-cooled garments (ACG-Cs; +106.2%, EFS = 2.32) exhibited greater effects on improving human performance among various microclimate cooling garments (MCGs), followed by liquid cooling garments (LCGs; +68.1%, EFS = 1.86) and hybrid cooling garment combining air and liquid cooling (HBCG-AL; +59.1%, EFS=3.38), natural air-cooled garments (ACG-Ns; +39.9%, EFS = 1.12), and phase change material cooling garments (PCMCGs; +19.5%, EFS = 1.2). Performance improvement was observed to be positively and linearly correlated to the differences of core temperature increase rate (r = 0.65, p < 0.01) and sweating rate (r = 0.80, p < 0.001) between MCSs and CON. Considering their application in industrial settings, ACG-Cs, LCGs, and HBCG-AL are practical for work, in which workers do not move frequently, whereas ACG-Ns and PCMCGs are more applicable for the majority of occupational workers. Further enhancement of the cooling efficiency of these two cooling strategies should be initiated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Effect of hydro cooling and packaging on the shelf life of cold stored ...

    African Journals Online (AJOL)

    browned by more than 25 percent in the stored pack. Thick opaque plastic 70 micron compared to other packaging types is less permeable to gas exchange and water vapor, has accumulated excessive moisture and water condensation in stored pack generated by hydro cooled fruits which can also enhance senescence,.

  6. Safety and effectiveness of scalp cooling in cancer patients undergoing cytotoxic treatment

    NARCIS (Netherlands)

    Hurk, Corina Johanna Geertruida van den

    2013-01-01

    Various cytotoxics cause severe alopecia, it is estimated to affect more than 15.000 Dutch cancer patients per year. Hair loss has high impact on the majority of these patients, they describe it as stigmatizing and a constant reminder of cancer disease. Scalp cooling decreases hair loss and is well

  7. HIGH COOLING WATER TEMPERATURE EFFECTS ON DESIGN AND OPERATIONAL SAFETY OF NPPS IN THE GULF REGION

    Directory of Open Access Journals (Sweden)

    BYUNG KOO KIM

    2013-12-01

    Full Text Available The Arabian Gulf region has one of the highest ocean temperatures, reaching above 35 degrees and ambient temperatures over 50 degrees in the summer. Two nuclear power plants (NPP are being introduced in the region for the first time, one at Bushehr (1,000 MWe PWR plant from Russia, and a much larger one at Barakah (4X1,400 MWe PWR from Korea. Both plants take seawater from the Gulf for condenser cooling, having to modify the secondary/tertiary side cooling systems design by increasing the heat transfer surface area from the country of origin. This paper analyses the secondary side of a typical PWR plant operating under the Rankine cycle with a simplified thermal-hydraulic model. Parametric study of ocean cooling temperatures is conducted to estimate thermal efficiency variations and its associated design changes for the secondary side. Operational safety is reviewed to deliver rated power output with acceptable safety margins in line with technical specifications, mainly in the auxiliary systems together with the cooling water temperature. Impact on the Gulf seawater as the ultimate heat sink is considered negligible, affecting only the adjacent water near the NPP site, when compared to the solar radiation on the sea surface.

  8. Evaporative cooling: Effective latent heat of evaporation in relation to evaporation distance from the skin

    NARCIS (Netherlands)

    Havenith, G.; Bröde, P.; Hartog, E.A. den; Kuklane, K.; Holmer, I.; Rossi, R.M.; Richards, M.; Farnworth, B.; Wang, X.

    2013-01-01

    Calculation of evaporative heat loss is essential to heat balance calculations. Despite recognition that the value for latent heat of evaporation, used in these calculations, may not always reflect the real cooling benefit to the body, only limited quantitative data on this is available, which has

  9. Effect of Fin Passage Length on Optimization of Cylinder Head Cooling Fins

    Science.gov (United States)

    Siegel, R.; Graham, R. W.

    1977-01-01

    The heat transfer performance of baffled cooling fins on cylinder heads of small, air-cooled, general-aviation aircraft engines was analyzed to determine the potential for improving cooling fin design. Flow baffles were assumed to be installed tightly against the fin end edges, an ideal baffle configuration for guiding all flow between the fins. A rectangular flow passage is thereby formed between each set of two adjacent fins, the fin base surface, and the baffle. These passages extend around each side of the cylinder head, and the cooling air absorbs heat as it flows within them. For each flow passage length, the analysis was concerned with optimizing fin spacing and thickness to achieve the best heat transfer for each fin width. Previous literature has been concerned mainly with maximizing the local fin conductance and has not considered the heating of the gas in the flow direction, which leads to higher wall temperatures at the fin passage exits. If the fins are close together, there is a large surface area, but the airflow is restricted.

  10. Cost-Effective Integration of Efficient Low-Lift Baseload Cooling Equipment: FY08 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Katipamula, Srinivas; Armstrong, P. R.; Wang, Weimin; Fernandez, Nicholas; Cho, Heejin; Goetzler, W.; Burgos, J.; Radhakrishnan, R.; Ahlfeldt, C.

    2010-01-31

    Documentation of a study to investigate one heating, ventilation and air conditioning (HVAC) system option, low-lift cooling, which offers potentially exemplary HVAC energy performance relative to American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004.

  11. Effects of surface finish and mechanical training on Ni-Ti sheets for elastocaloric cooling

    DEFF Research Database (Denmark)

    Engelbrecht, Kurt; Tusek, Jaka; Sanna, Simone

    2016-01-01

    Elastocaloric cooling has emerged as a promising alternative to vapor compression in recent years. Although the technology has the potential to be more efficient than current technologies, there are many technical challenges that must be overcome to realize devices with high performance and accep...

  12. Cooling towers: a bibliography

    International Nuclear Information System (INIS)

    Whitson, M.O.

    1981-02-01

    This bibliography cites 300 selected references containing information on various aspects of large cooling tower technology, including design, construction, operation, performance, economics, and environmental effects. The towers considered include natural-draft and mechanical-draft types employing wet, dry, or combination wet-dry cooling. A few references deal with alternative cooling methods, principally ponds or spray canals. The citations were compiled for the DOE Energy Information Data Base (EDB) covering the period January to December 1980. The references are to reports from the Department of Energy and its contractors, reports from other government or private organizations, and journal articles, books, conference papers, and monographs from US originators

  13. Modeling consequences of prolonged strong unpredictable stress in zebrafish: Complex effects on behavior and physiology.

    Science.gov (United States)

    Song, Cai; Liu, Bai-Ping; Zhang, Yong-Ping; Peng, Zhilan; Wang, JiaJia; Collier, Adam D; Echevarria, David J; Savelieva, Katerina V; Lawrence, Robert F; Rex, Christopher S; Meshalkina, Darya A; Kalueff, Allan V

    2018-02-02

    Chronic stress is the major pathogenetic factor of human anxiety and depression. Zebrafish (Danio rerio) have become a novel popular model species for neuroscience research and CNS drug discovery. The utility of zebrafish for mimicking human affective disorders is also rapidly growing. Here, we present a new zebrafish model of clinically relevant, prolonged unpredictable strong chronic stress (PUCS). The 5-week PUCS induced overt anxiety-like and motor retardation-like behaviors in adult zebrafish, also elevating whole-body cortisol and proinflammatory cytokines - interleukins IL-1β and IL-6. PUCS also elevated whole-body levels of the anti-inflammatory cytokine IL-10 and increased the density of dendritic spines in zebrafish telencephalic neurons. Chronic treatment of fish with an antidepressant fluoxetine (0.1mg/L for 8days) normalized their behavioral and endocrine phenotypes, as well as corrected stress-elevated IL-1β and IL-6 levels, similar to clinical and rodent data. The CNS expression of the bdnf gene, the two genes of its receptors (trkB, p75), and the gfap gene of glia biomarker, the glial fibrillary acidic protein, was unaltered in all three groups. However, PUCS elevated whole-body BDNF levels and the telencephalic dendritic spine density (which were corrected by fluoxetine), thereby somewhat differing from the effects of chronic stress in rodents. Together, these findings support zebrafish as a useful in-vivo model of chronic stress, also calling for further cross-species studies of both shared/overlapping and distinct neurobiological responses to chronic stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Effects of strong bite force on the facial vertical dimension of pembarong performers

    Directory of Open Access Journals (Sweden)

    C. Christina

    2017-06-01

    Full Text Available Background: A pembarong performer is a reog dancer who bites on a piece of wood inserted into his/her mouth in order to support a 60 kg Barongan or Dadak Merak mask. The teeth supporting this large and heavy mask are directly affected, as the strong bite force exerted during a dance could affect their vertical and sagital facial dimensions. Purpose: This study aimed to examine the influence of the bite force of pembarong performers due to their vertical and sagital facial dimensions. Methods: The study reported here involved fifteen pembarong performers and thirteen individuals with normal occlusion (with specific criteria. The bite force of these subjects was measured with a dental prescale sensor during its centric occlusion. A cephalometric variation measurement was subsequently performed on all subjects with its effects on their vertical and sagital facial dimensions being measured. Results: The bite force value of the pembarong performers was 394.3816 ± 7.68787 Newtons, while the normal occlusion was 371.7784 ± 4.77791 Newtons. There was no correlation between the bite force and the facial sagital dimension of these subjects. However, a significant correlation did exist between bite force and lower facial height/total facial height (LFH/TFH ratio (p = 0.013. Conversely, no significant correlation between bite force and posterior facial height/total facial height (PFH/TFH ratio (p = 0.785 was detected. There was an inverse correlation between bite force and LFH/TFH ratio (r = -.464. Conclusion: Bite force is directly related to the decrease in LFH/TFH ratio. Occlusal pressure exerted by the posterior teeth on the alveolar bone may increase bone density at the endosteal surface of cortical bone.

  15. Strong and nonlinear effects of fragmentation on ecosystem service provision at multiple scales

    Science.gov (United States)

    Mitchell, Matthew G. E.; Bennett, Elena M.; Gonzalez, Andrew

    2015-09-01

    Human actions, such as converting natural land cover to agricultural or urban land, result in the loss and fragmentation of natural habitat, with important consequences for the provision of ecosystem services. Such habitat loss is especially important for services that are supplied by fragments of natural land cover and that depend on flows of organisms, matter, or people across the landscape to produce benefits, such as pollination, pest regulation, recreation and cultural services. However, our quantitative knowledge about precisely how different patterns of landscape fragmentation might affect the provision of these types of services is limited. We used a simple, spatially explicit model to evaluate the potential impact of natural land cover loss and fragmentation on the provision of hypothetical ecosystem services. Based on current literature, we assumed that fragments of natural land cover provide ecosystem services to the area surrounding them in a distance-dependent manner such that ecosystem service flow depended on proximity to fragments. We modeled seven different patterns of natural land cover loss across landscapes that varied in the overall level of landscape fragmentation. Our model predicts that natural land cover loss will have strong and unimodal effects on ecosystem service provision, with clear thresholds indicating rapid loss of service provision beyond critical levels of natural land cover loss. It also predicts the presence of a tradeoff between maximizing ecosystem service provision and conserving natural land cover, and a mismatch between ecosystem service provision at landscape versus finer spatial scales. Importantly, the pattern of landscape fragmentation mitigated or intensified these tradeoffs and mismatches. Our model suggests that managing patterns of natural land cover loss and fragmentation could help influence the provision of multiple ecosystem services and manage tradeoffs and synergies between services across different human

  16. Effects of cooling rate on vermicular graphite percentage in a brake drum produced by one-step cored wire injection

    Directory of Open Access Journals (Sweden)

    Yu-shuang Feng

    2015-09-01

    Full Text Available In this research, a vermicular graphite cast iron brake drum was produced by cored wire injection in a one-step method. Silica sand and low-density alumina-silicate ceramic were used as molding materials in order to investigate the effect of cooling rate on percentage of vermicular graphite and mechanical properties of the brake drum casting. Several thermocouples were inserted into the casting in the desired positions to measure the temperature change. By means of one-step cored wire injection, the two residual concentrations of Mg and RE were effectively controlled in the ranges of 0.013%-0.017% and 0.019%-0.025%, respectively, which are crucial for the production of vermicular graphite cast iron and the formation of vermicular graphite. In addition, the cooling rate had a significant effect on the vermicular graphite percentage. In the case of the silica mold brake drum casting, there was an obvious difference in the cooling rate with the wall change, leading to a change in vermicular graphite percentage from 70.8% to 90%. In the low-density alumina-silicate ceramic mold casting, no obvious change in temperature was detected by the thermocouples and the percentage of the vermicular graphite was stable at 85%. Therefore, the vermicular graphite cast iron brake drum with a better combination of mechanical properties could be obtained.

  17. The effect of ultrasound irradiation on the convective heat transfer rate during immersion cooling of a stationary sphere.

    Science.gov (United States)

    Kiani, Hossein; Sun, Da-Wen; Zhang, Zhihang

    2012-11-01

    were the main cause of heating effect. The results showed that closer distances to the transducer surface showed higher cooling rates. On the other hand, despite having a bigger distance from the transducer, when the sphere was located close to the gas-liquid interface the enhancement factor of heat transfer was higher. Ultrasound irradiation showed promising effect for the enhancement of convective heat transfer rate during immersion cooling. More investigations are required to demonstrate the behavior of ultrasound assisted heat transfer and resolve the proper way of the application of ultrasound to assist the cooling and/or freezing processes. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. The Effect of Cooled Perches on Immunological Parameters of Caged White Leghorn Hens during the Hot Summer Months.

    Directory of Open Access Journals (Sweden)

    Rebecca A Strong

    Full Text Available The objective of this study was to determine if thermally cooled perches improve hen immunity during hot summer. White Leghorn pullets at 16 week of age were randomly assigned to 18 cages of 3 banks at 9 hens per cage. Each bank was assigned to 1 of the 3 treatments up to 32 week of age: 1 thermally cooled perches, 2 perches with ambient air, and 3 cages without perches. Hens were exposed to natural ambient temperatures from June through September 2013 in Indiana with a 4 h acute heat episode at 27.6 week of age. The packed cell volume, heterophil to lymphocyte (H/L ratio, plasma concentrations of total IgG, and cytokines of interleukin-1β and interleukin-6, plus lipopolysaccharide-induced tumor necrosis factor-α factor were measured at both 27.6 and 32 week of age. The mRNA expressions of these cytokines, toll-like receptor-4, and inducible nitric oxide synthase were also examined in the spleen of 32 week-old hens. Except for H/L ratio, thermally cooled perches did not significantly improve currently measured immunological indicators. These results indicated that the ambient temperature of 2013 summer in Indiana (24°C, 17.1 to 33.1°C was not high enough and the 4 h heat episode at 33.3°C (32 to 34.6°C was insufficient in length to evoke severe heat stress in hens. However, cooled perch hens had a lower H/L ratio than both air perch hens and control hens at 27.6 week of age and it was still lower compared to control hens (P < 0.05, respectively at 32 week of age. The lowered H/L ratio of cooled perch hens may suggest that they were able to cope with acute heat stress more effectively than control hens. Further studies are needed to evaluate the effectiveness of thermally cooled perches on hen health under higher ambient temperatures.

  19. Cool WISPs for stellar cooling excesses

    Energy Technology Data Exchange (ETDEWEB)

    Giannotti, Maurizio [Barry Univ., Miami Shores, FL (United States). Physical Sciences; Irastorza, Igor [Zaragoza Univ. (Spain). Dept. de Fisica Teorica; Redondo, Javier [Zaragoza Univ. (Spain). Dept. de Fisica Teorica; Max-Planck-Institut fuer Physik, Muenchen (Germany); Ringwald, Andreas [DESY Hamburg (Germany). Theory Group

    2015-12-15

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a preference for a mild non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP represents the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO.

  20. Simulations of High-Energy Electron Cooling

    CERN Document Server

    Fedotov, Alexei V; Bruhwiler, David L; Eidelman, Yury I; Litvinenko, Vladimir N; Malitsky, Nikolay; Meshkov, Igor; Sidorin, Anatoly O; Smirnov, Alexander V; Troubnikov, Grigory

    2005-01-01

    High-energy electron cooling of RHIC presents many unique features and challenges. An accurate estimate of the cooling times requires a detailed calculation of the cooling process, which takes place simultaneously with various diffusive mechanisms in RHIC. In addition, many unexplored effects of high-energy cooling in a collider complicate the task of getting very accurate estimates of cooling times. To address these high-energy cooling issues, a detailed study of cooling dynamics based on computer codes is underway at Brookhaven National Laboratory. In this paper, we present an update on code development and its application to the high-energy cooling dynamics studies for RHIC.

  1. SIMULATIONS OF HIGH-ENERGY ELECTRON COOLING.

    Energy Technology Data Exchange (ETDEWEB)

    FEDOTOV,A.V.; BEN-ZVI,I.; EIDELMAN, YU.; LITVINENKO, V.; MALITSKY, N.

    2005-05-16

    High-energy electron cooling of RHIC presents many unique features and challenges. An accurate estimate of the cooling times requires a detailed calculation of the cooling process, which takes place simultaneously with various diffusive mechanisms in RHIC. In addition, many unexplored effects of high-energy cooling in a collider complicate the task of getting very accurate estimates of cooling times. To address these high-energy cooling issues, a detailed study of cooling dynamics based on computer codes is underway at Brookhaven National Laboratory. In this paper, we present an update on code development and its application to the high-energy cooling dynamics studies for RHIC.

  2. SIMULATIONS OF HIGH-ENERGY ELECTRON COOLING

    International Nuclear Information System (INIS)

    FEDOTOV, A.V.; BEN-ZVI, I.; EIDELMAN, YU.; LITVINENKO, V.; MALITSKY, N.

    2005-01-01

    High-energy electron cooling of RHIC presents many unique features and challenges. An accurate estimate of the cooling times requires a detailed calculation of the cooling process, which takes place simultaneously with various diffusive mechanisms in RHIC. In addition, many unexplored effects of high-energy cooling in a collider complicate the task of getting very accurate estimates of cooling times. To address these high-energy cooling issues, a detailed study of cooling dynamics based on computer codes is underway at Brookhaven National Laboratory. In this paper, we present an update on code development and its application to the high-energy cooling dynamics studies for RHIC

  3. Immediate effects of transcutaneous electrical nerve stimulation and focal knee joint cooling on quadriceps activation.

    Science.gov (United States)

    Pietrosimone, Brian G; Hart, Joseph M; Saliba, Susan A; Hertel, Jay; Ingersoll, Christopher D

    2009-06-01

    To determine whether transcutaneous electrical nerve stimulation (TENS) and focal knee joint cooling will affect the quadriceps central activation ratio (CAR) in patients with tibiofemoral osteoarthritis. Thirty-three participants with diagnosed tibiofemoral osteoarthritis were randomly allocated to the 45-min TENS treatment (six males and four females, 56 +/- 10.1 yr, 174.11 +/- 10.78 cm, 89.34 +/- 21.3 kg), the 20-min focal knee joint cooling treatment (six males and five females, 58 +/- 8.4 yr, 176.41 +/- 8.29 cm, 83.18 +/- 17.97 kg), or the control group (five males and seven females, 54 +/- 9.9 yr, 166.37 +/- 13.07 cm, 92.14 +/- 25.37 kg). Volitional quadriceps activation, maximal voluntary isometric contraction, and subjective pain measurements were conducted at baseline and at 20, 30, and 45 min. The 20-min focal knee joint cooling intervention consisted of two 1.5-L ice bags to the anterior and posterior aspects of the knee. The TENS group received 45 min of a sensory, biphasic square wave stimulation (150-mus phase duration and 150 pps) from four 2 x 2-inch electrodes positioned around the patella. : TENS resulted in a significantly higher percent change in CAR scores compared with control at 20 min (6.4 +/- 4.8 vs -3.5 +/- 8, P = 0.006), 30 min (9.7 +/- 10.16 vs -1 +/- 7.9, P = 0.025), and 45 min (11.25 +/- 6.96 vs 0.81 +/- 9.4, P = 0.029). Focal knee joint cooling resulted in significantly higher percent change scores compared with the control group at 20 min (5.75 +/- 7.25 vs -3.5 +/- 8, P = 0.009) and trended to be higher at 45 min (9.06 +/- 9.63 vs 0.81 +/- 9.4, P = 0.098). No significant differences in percent change for CAR were found between the TENS and the focal knee joint cooling group. Both TENS and focal knee joint cooling increased the quadriceps CAR immediately after application in participants with tibiofemoral osteoarthritis.

  4. Pressure and cooling rate effect on polyhedron clusters in Cu-Al alloy by using molecular dynamics simulation

    Science.gov (United States)

    Celik, Fatih Ahmet

    2014-10-01

    In this study, the microstructural evolution of crystal-type and icosahedral (icos)-type polyhedrons in Cu-50 at%Al alloy based on the embedded atom method (EAM) model is studied at two cooling rates under normal and high pressures by using the molecular dynamics (MD) simulation method. The cluster-type index method (CTIM) which describes icos and defective icos polyhedrons and the new cluster-type index method (CTIM-2) which describes crystal-type polyhedrons have been used to perform polyhedron analysis in the model alloy system. The results of our simulations demonstrate that the effects of the cooling rate and pressure play an important role in the numbers of polyhedrons and their structures in the system.

  5. Pressure and cooling rate effect on polyhedron clusters in Cu–Al alloy by using molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Fatih Ahmet, E-mail: facelik@beu.edu.tr

    2014-10-01

    In this study, the microstructural evolution of crystal-type and icosahedral (icos)-type polyhedrons in Cu–50 at%Al alloy based on the embedded atom method (EAM) model is studied at two cooling rates under normal and high pressures by using the molecular dynamics (MD) simulation method. The cluster-type index method (CTIM) which describes icos and defective icos polyhedrons and the new cluster-type index method (CTIM-2) which describes crystal-type polyhedrons have been used to perform polyhedron analysis in the model alloy system. The results of our simulations demonstrate that the effects of the cooling rate and pressure play an important role in the numbers of polyhedrons and their structures in the system.

  6. Numerical Investigation of Wall Cooling and Suction Effects on Supersonic Flat-Plate Boundary Layer Transition Using Large Eddy Simulation

    Directory of Open Access Journals (Sweden)

    Suozhu Wang

    2015-02-01

    Full Text Available Reducing friction resistance and aerodynamic heating has important engineering significance to improve the performances of super/hypersonic aircraft, so the purpose of transition control and turbulent drag reduction becomes one of the cutting edges in turbulence research. In order to investigate the influences of wall cooling and suction on the transition process and fully developed turbulence, the large eddy simulation of spatially evolving supersonic boundary layer transition over a flat-plate with freestream Mach number 4.5 at different wall temperature and suction intensity is performed in the present work. It is found that the wall cooling and suction are capable of changing the mean velocity profile within the boundary layer and improving the stability of the flow field, thus delaying the onset of the spatial transition process. The transition control will become more effective as the wall temperature decreases, while there is an optimal wall suction intensity under the given conditions. Moreover, the development of large-scale coherent structures can be suppressed effectively via wall cooling, but wall suction has no influence.

  7. Effect of Cooling Rates on the Transformation Behavior and Mechanical Properties of a Ni-Rich NiTi Alloy

    Science.gov (United States)

    Coan, Stephen; Shamimi, Ali; Duerig, T. W.

    2017-12-01

    Slightly nickel-rich Ni-Ti alloys (typically 50.5-51% atomic percent nickel) are commonly used to produce devices that are superelastic at body temperature. This excess nickel can be tolerated in the NiTi matrix when its temperature is above the solvus of about 600 °C, but will precipitate out during lower temperatures. Recent work has been done on exploring the effect lower temperatures have on the material properties of NiTi. Findings showed that properties begin to change at temperatures as low as 100 °C. It is because of these results that it was deemed important to better understand what may be happening during the quenching process itself. Through running a combination of DSC and tensile tests on samples cooled at varying rates, it was found that the cooling rate has an effect on properties when heat treated above a specific temperature. Understanding how quickly the alloy must be cooled to fully retain the supersaturated NiTi matrix is important to optimizing processes and anticipating material properties after a heat treatment.

  8. The effect of the melting spinning cooling rate on transformation temperatures in ribbons Ti-Ni-Cu shape memory

    International Nuclear Information System (INIS)

    Ramos, A.P.; Castro, W.B.; Anselmo, G.C. dos S.

    2014-01-01

    Ti-Ni-Cu alloys have been attracting attention by their high performance of shape memory effect and decrease of thermal and stress hysteresis in comparison with Ti-Ni binary alloys. One important challenge of microsystems design is the implementation of miniaturized actuation principles efficient at the micro-scale. Shape memory alloys (SMAs) have early on been considered as a potential solution to this problem as these materials offer attractive properties like a high-power to weight ratio, large deformation and the capability to be processed at the micro-scale. Shape memory characteristics of Ti-37,8Cu-18,7Ni alloy ribbons prepared by melt spinning were investigated by means of differential scanning calorimetry and X-ray diffraction. In these experiments particular attention has been paid to change of the velocity of cooling wheel from 21 to 63 m/s. Then the cooling rates of ribbons were controlled. The effect of this cooling rate on austenitic and martensitic transformations behaviors is discussed. (author)

  9. Use of local convective and radiant cooling at warm environment: effect on thermal comfort and perceived air quality

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Duszyk, Marcin; Krejcirikova, Barbora

    2012-01-01

    compared to without cooling. The acceptability of the thermal environment was similar for all cooling devices. The acceptability of air movement and PAQ increased when the local cooling methods were used. The best results were achieved with personalized ventilation and cooling fan. The improvement in PAQ...

  10. Thermoelectric transport and Peltier cooling of cold atomic gases

    Science.gov (United States)

    Grenier, Charles; Kollath, Corinna; Georges, Antoine

    2016-12-01

    This brief review presents the emerging field of mesoscopic physics with cold atoms, with an emphasis on thermal and 'thermoelectric' transport, i.e. coupled transport of particles and entropy. We review in particular the comparison between theoretically predicted and experimentally observed thermoelectric effects in such systems. We also show how combining well-designed transport properties and evaporative cooling leads to an equivalent of the Peltier effect with cold atoms, which can be used as a new cooling procedure with improved cooling power and efficiency compared to the evaporative cooling currently used in atomic gases. This could lead to a new generation of experiments probing strong correlation effects of ultracold fermionic atoms at low temperatures.

  11. Observation of strong magnetic effects in visible-infrared sum frequency generation from magnetic structures

    NARCIS (Netherlands)

    Kirilyuk, A.; Knippels, G.M.H.; van der Meer, A. F. G.; Renard, S.; Rasing, T.; Heskamp, I. R.; Lodder, J. C.

    2000-01-01

    We have observed very strong magnetization-induced changes of the infrared-visible sum-frequency generation (SFG) intensity from thin magnetic films using a free electron laser as a tunable infrared source. With the help of a magnetic grating a clear resonance is observed due to the excitation of

  12. Flavor changing strong interaction effects on top quark physics at the CERN LHC

    International Nuclear Information System (INIS)

    Ferreira, P.M.; Santos, R.; Oliveira, O.

    2006-01-01

    We perform a model independent analysis of the flavor changing strong interaction vertices relevant to the LHC. In particular, the contribution of dimension six operators to single top production in various production processes is discussed, together with possible hints for identifying signals and setting bounds on physics beyond the standard model

  13. Parametric Analysis of Design Parameter Effects on the Performance of a Solar Desiccant Evaporative Cooling System in Brisbane, Australia

    Directory of Open Access Journals (Sweden)

    Yunlong Ma

    2017-06-01

    Full Text Available Solar desiccant cooling is widely considered as an attractive replacement for conventional vapor compression air conditioning systems because of its environmental friendliness and energy efficiency advantages. The system performance of solar desiccant cooling strongly depends on the input parameters associated with the system components, such as the solar collector, storage tank and backup heater, etc. In order to understand the implications of different design parameters on the system performance, this study has conducted a parametric analysis on the solar collector area, storage tank volume, and backup heater capacity of a solid solar desiccant cooling system for an office building in Brisbane, Australia climate. In addition, a parametric analysis on the outdoor air humidity ratio control set-point which triggers the operation of the desiccant wheel has also been investigated. The simulation results have shown that either increasing the storage tank volume or increasing solar collector area would result in both increased solar fraction (SF and system coefficient of performance (COP, while at the same time reduce the backup heater energy consumption. However, the storage tank volume is more sensitive to the system performance than the collector area. From the economic aspect, a storage capacity of 30 m3/576 m2 has the lowest life cycle cost (LCC of $405,954 for the solar subsystem. In addition, 100 kW backup heater capacity is preferable for the satisfaction of the design regeneration heating coil hot water inlet temperature set-point with relatively low backup heater energy consumption. Moreover, an outdoor air humidity ratio control set-point of 0.008 kgWater/kgDryAir is more reasonable, as it could both guarantee the indoor design conditions and achieve low backup heater energy consumption.

  14. Effective water cooling of very hot surfaces during the LOCA accident.

    Czech Academy of Sciences Publication Activity Database

    Štepánek, J.; Bláha, V.; Dostál, V.; Entler, Slavomír

    2017-01-01

    Roč. 124, November (2017), s. 1211-1214 ISSN 0920-3796. [SOFT 2016: Symposium on Fusion Technology /29./. Prague, 05.09.2016-09.09.2016] Institutional support: RVO:61389021 Keywords : LOCA * Quenching * Divertor cooling * Heat transfer * Rewetting Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 1.319, year: 2016 http://www.sciencedirect.com/science/article/pii/S0920379617303733

  15. Effect of a patent foramen ovale in humans on thermal responses to passive cooling and heating.

    Science.gov (United States)

    Davis, James T; Hay, Madeline W; Hardin, Alyssa M; White, Matthew D; Lovering, Andrew T

    2017-12-01

    Humans with a patent foramen ovale (PFO) have a higher esophageal temperature (T esoph ) than humans without a PFO (PFO-). Thus the presence of a PFO might also be associated with differences in thermal responsiveness to passive cooling and heating such as shivering and hyperpnea, respectively. The purpose of this study was to determine whether thermal responses to passive cooling and heating are different between PFO- subjects and subjects with a PFO (PFO+). We hypothesized that compared with PFO- subjects PFO+ subjects would cool down more rapidly and heat up slower and that PFO+ subjects who experienced thermal hyperpnea would have a blunted increase in ventilation. Twenty-seven men (13 PFO+) completed two trials separated by >48 h: 1 ) 60 min of cold water immersion (19.5 ± 0.9°C) and 2 ) 30 min of hot water immersion (40.5 ± 0.2°C). PFO+ subjects had a higher T esoph before and during cold water and hot water immersion ( P heating. NEW & NOTEWORTHY Patent foramen ovale (PFO) is found in ~25-40% of the population. The presence of a PFO appears to be associated with a greater core body temperature and blunted ventilatory responses during passive heating. The reason for this blunted ventilatory response to passive heating is unknown but may suggest differences in thermal sensitivity in PFO+ subjects compared with PFO- subjects. Copyright © 2017 the American Physiological Society.

  16. Effectiveness of indirect evaporative cooling and thermal mass in a hot arid climate

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Eduardo [Programa de Pos-Graduacao em Tecnologia/Programa de Pos-Graduacao em Engenharia Civil, Departamento de Construcao Civil, Universidade Tecnologica Federal do Parana - UTFPR, Av. Sete de Setembro, 3165. Curitiba PR, CEP. 80230-901 (Brazil); Gonzalez Cruz, Eduardo [Instituto de Investigaciones de la Facultad de Arquitectura y Diseno (IFAD), Universidad del Zulia, Nucleo Tecnico de LUZ, Av. Goajira (16) con Calle 67, Maracaibo, CP 4011-A-526 (Venezuela); Givoni, Baruch [Department of Architecture, School of Arts and Architecture, UCLA, Los Angeles CA, USA, and Ben Gurion University (Israel)

    2010-06-15

    In this paper, we compare results of a long-term temperature monitoring in a building with high thermal mass to indoor temperature predictions of a second building that uses an indirect evaporative cooling system as a means of passive cooling (Vivienda Bioclimatica Prototipo -VBP-1), for the climatic conditions of Sde Boqer, Negev region of Israel (local latitude 30 52'N, longitude 34 46'E, approximately 480 m above sea level). The high-mass building was monitored from January through September 2006 and belongs to a student dormitory complex located at the Sde Boqer Campus of Ben-Gurion University. VBP-1 was designed and built in Maracaibo, Venezuela (latitude 10 34'N, longitude 71 44'W, elevation 66 m above sea level) and had its indoor air temperatures, below and above a shaded roof pond, as well as the pond temperature monitored from February to September 2006. Formulas were developed for the VBP-1, based on part of the whole monitoring period, which represent the measured daily indoor maximum, average and minimum temperatures. The formulas were then validated against measurements taken independently in different time periods. The developed formulas were here used for estimating the building's thermal and energy performance at the climate of Sde Boqer, allowing a comparison of two different strategies: indirect evaporative cooling and the use of thermal mass. (author)

  17. Should Cooling Vests Be Used to Treat Exertional Heatstroke? A Critically Appraised Topic.

    Science.gov (United States)

    Keen, Megan L; Miller, Kevin C

    2017-05-01

    Clinical Scenario: Exercise performed in hot and humid environments increases core body temperature (T C ). If T C exceeds 40.5°C for prolonged periods of time, exertional heat stroke (EHS) may occur. EHS is a leading cause of sudden death in athletes. Mortality and morbidity increase the longer the patient's T C remains above 40.5°C; thus, it is imperative to initiate cooling as quickly as possible. Acceptable cooling rates in EHS situations are 0.08-0.15°C/min, while ideal cooling rates are above 0.16°C/min. Cooling vests are popular alternatives for cooling hyperthermic adults. Most vests cover the anterior and posterior torso and have varying numbers of pouches for phase-change materials (eg, gel packs); some vests only use circulating water to cool. While cooling vests offer several advantages (eg, portability), studies demonstrating their effectiveness at rapidly reducing T C in EHS scenarios are limited. Are T C cooling rates acceptable (ie, >0.08°C/min) when hyperthermic humans are treated with cooling vests postexercise? No significant differences in T C cooling rates occurred between cooling vests and no cooling vests. Cooling rates across all studies were ≤0.053°C/min. Clinical Bottom Line: Cooling vests do not provide acceptable cooling rates of hyperthermic humans postexercise and should not be used to treat EHS. Instead, EHS patients should be treated with cold-water immersion within 30 min of collapse to avoid central nervous system dysfunction and organ failure. Strength of Recommendation: Strong evidence (eg, level 2 studies with PEDro scores ≥5) suggests that cooling vests do not reduce T C quickly and thus should not be used in EHS scenarios.

  18. Effect of Cooling Rate on the Microstructure and Mechanical Properties of C-Mn-Al-Si-Nb Hot-Rolled TRIP Steels

    Science.gov (United States)

    Fu, B.; Y Lu, M.; Y Yang, W.; Li, L. F.; Y Zhao, Z.

    2017-12-01

    A novel thermomechanical process to manufacture hot-rolled TRIP steels has been proposed based on dynamic transformation of undercooled austenite (DTUA). The cooling rate between DTUA and isothermal bainitic treatment in the novel process is important. In the present study, effect of this cooling rate on the final microstructures and mechanical properties of a C-Mn-Al-Si-Nb TRIP steel was investigated. The results showed that the volume fractions of acicular ferrite and retained austenite were increased with the increment of cooling rate. As a consequence, higher yield strength and larger total elongation were obtained for the investigated steel with higher cooling rate. In addition, a value of 30.24 GPa% for the product of tensile strength and total elongation was acquired when the cooling rate was 25 K/s. This value has met the standard of the “Third Generation” of advanced high strength sheet steels.

  19. Cooling rate and size effects on the medium-range structure of multicomponent oxide glasses simulated by molecular dynamics

    International Nuclear Information System (INIS)

    Tilocca, Antonio

    2013-01-01

    A set of molecular dynamics simulations were performed to investigate the effect of cooling rate and system size on the medium-range structure of melt-derived multicomponent silicate glasses, represented by the quaternary 45S5 Bioglass composition. Given the significant impact of the glass degradation on applications of these materials in biomedicine and nuclear waste disposal, bulk structural features which directly affect the glass dissolution process are of particular interest. Connectivity of the silicate matrix, ion clustering and nanosegregation, distribution of ring and chain structural patterns represent critical features in this context, which can be directly extracted from the models. A key issue is represented by the effect of the computational approach on the corresponding glass models, especially in light of recent indications questioning the suitability of conventional MD approaches (that is, involving melt-and-quench of systems containing ∼10 3 atoms at cooling rates of 5-10 K/ps) when applied to model these glasses. The analysis presented here compares MD models obtained with conventional and nonconventional cooling rates and system sizes, highlighting the trend and range of convergence of specific structural features in the medium range. The present results show that time-consuming computational approaches involving much lower cooling rates and/or significantly larger system sizes are in most cases not necessary in order to obtain a reliable description of the medium-range structure of multicomponent glasses. We identify the convergence range for specific properties and use them to discuss models of several glass compositions for which a possible influence of cooling-rate or size effects had been previously hypothesized. The trends highlighted here represent an important reference to obtain reliable models of multicomponent glasses and extract converged medium-range structural features which affect the glass degradation and thus their application

  20. Experimental investigation on the effects of cooling system on surface quality in high speed milling of an aluminium alloy

    Science.gov (United States)

    Chirita, B.; Tampu, N. C.; Brabie, G.; Radu, M. C.

    2016-08-01

    Surface quality is often an important feature of industrial products, not only from the impact it has on the aesthetic aspect but also for the functional role of the parts. High quality surface increases corrosion resistance, assures a longer life cycle for the product and lowers the wear. For a machined part, surface quality is influenced by a series of factors such as the material of the part, the process type, tool geometry, cutting parameters or the cooling system. The choice of the cooling system is especially important, taking into account that the proper conditions will not only assure a superior surface quality, but will also lower the costs and reduce the environmental impact and health risks. The present study aims to investigate the performance of the cooling system and the effect of the cutting parameters on the characteristics of the surfaces resulted from high speed face milling of some parts made of Al 7050-T7451 aluminium alloy. Dry cutting conditions and minimum quantity lubrication (MQL) where used. The results were analysed using analysis of variance (ANOVA).