WorldWideScience

Sample records for strobe pulse applied

  1. Period and pulse duration with "strobe" lights

    Science.gov (United States)

    Birriel, Jennifer

    2016-01-01

    Strobe lights have traditionally been discussed in The Physics Teacher in the context of stop action strobe photography. During the Halloween season most department and hardware stores sell inexpensive, compact "strobe" lights (although these can be found online year round). These lights generally sell for under 10 and usually employ LED lights. Most such devices have a rotary switch to adjust the rate at which the LED bulbs flash. This rotary switch is not calibrated—i.e., it has no markings to indicate the rate, but in general the greater the rotation of the switch from the off position, the faster the rate of flashing. We show how these simple devices can be used with a light sensor to study both the frequency of flashing and the duration of the light pulse. We briefly discuss if these devices are truly strobe lights.

  2. A demonstration of strobe lights to repel fish

    International Nuclear Information System (INIS)

    Martin, P.; Downing, J.; Taft, N.; Sullivan, C.

    1991-01-01

    This paper reports is an EPRI review of fish protection systems for hydroelectric facilities which identified strobe lights as a potential behavioral system to minimize fish entrainment. In 1988, EPRI initiated an evaluation of juvenile American shad response to strobe lights at Metropolitan Edison's York Haven Power Station on the Susquehanna River. During their fall migration, juvenile shad accumulate in the forebay. In 1988, using a raft mounted with four strobe lights, it was clearly demonstrated that shad could be excluded from the area in front of the trash racks, and bypassed through a sluiceway into the tailrace. Hydroacoustics were used to monitor the effectiveness of the strobe lights. In 1989, six rafts supporting 22 strobe light were moored in front of the trash racks. Unit outages and river flooding limited a full evaluation of the strobe system. Under limited test conditions, it was possible to confirm shad avoidance of strobe lights similar to that observed in 1988. In 1990, testing was performed with a fully operational strobe system under normal flow conditions and hydraulics. Testing showed that shad could be effectively passed around the York Haven Station. The results of the 1990 studies were more extensive than those of 1989, however, flood waters again limited complete testing of the system

  3. AGN Science with STROBE-X

    Science.gov (United States)

    Ballantyne, David; Balokovic, Mislav; Garcia, Javier; Koss, Michael; STROBE-X

    2018-01-01

    The probe concept STROBE-X, with its combination of large collecting area, wide-field monitor, broad bandpass, and rapid timing capability, is a powerful tool for studying many aspects of AGN astrophysics. This unique combination of features opens up the possibility for studying AGNs in ways current and other future missions are unable to accomplish. Here, we show a few of the novel new investigations made possible by STROBE-X: probing the structure of the BLR and torus with reverberation of the narrow Fe Kα line and line-of-sight column density, tracking changes in coronal parameters, investigating the origin of the soft excess, Fe Kα emission line surveys, and efficient Compton-thick characterization. Additional ideas and suggestions are always welcome and can be communicated to any member of the STROBE-X team.

  4. New insights into strobe reactions: An intriguing oscillatory combustion phenomenon (Nieuwe inzichten in strobe reactions: Een intrigerend oscillerend verbrandingsfenomeen)

    NARCIS (Netherlands)

    Corbel, J.M.L.

    2013-01-01

    Strobes are self-sustained oscillatory combustions that have various applications in the fireworks industry and also in the military area (signaling, missile decoys and crowd control). However, most of the strobe compositions were discovered using trial and error methods. The fundamentals mechanisms

  5. Using the STROBE statement to assess reporting in blindness prevalence surveys in low and middle income countries.

    Science.gov (United States)

    Ramke, Jacqueline; Palagyi, Anna; Jordan, Vanessa; Petkovic, Jennifer; Gilbert, Clare E

    2017-01-01

    Cross-sectional blindness prevalence surveys are essential to plan and monitor eye care services. Incomplete or inaccurate reporting can prevent effective translation of research findings. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement is a 32 item checklist developed to improve reporting of observational studies. The aim of this study was to assess the completeness of reporting in blindness prevalence surveys in low and middle income countries (LMICs) using STROBE. MEDLINE, EMBASE and Web of Science databases were searched on April 8 2016 to identify cross-sectional blindness prevalence surveys undertaken in LMICs and published after STROBE was published in December 2007. The STROBE tool was applied to all included studies, and each STROBE item was categorized as 'yes' (met criteria), 'no' (did not meet criteria) or 'not applicable'. The 'Completeness of reporting (COR) score' for each manuscript was calculated: COR score = yes / [yes + no]. In journals with included studies the instructions to authors and reviewers were checked for reference to STROBE. The 89 included studies were undertaken in 32 countries and published in 37 journals. The mean COR score was 60.9% (95% confidence interval [CI] 58.1-63.7%; range 30.8-88.9%). The mean COR score did not differ between surveys published in journals with author instructions referring to STROBE (10/37 journals; 61.1%, 95%CI 56.4-65.8%) or in journals where STROBE was not mentioned (60.9%, 95%CI 57.4-64.3%; p = 0.93). While reporting in blindness prevalence surveys is strong in some areas, others need improvement. We recommend that more journals adopt the STROBE checklist and ensure it is used by authors and reviewers.

  6. Multi-Head Very High Power Strobe System For Motion Picture Special Effects

    Science.gov (United States)

    Lovoi, P. A.; Fink, Michael L.

    1983-10-01

    A very large camera synchronizable strobe system has been developed for motion picture special effects. This system, the largest ever built, was delivered to MGM/UA to be used in the movie "War Games". The system consists of 12 individual strobe heads and a power supply distribution system. Each strobe head operates independently and may be flashed up to 24 times per second under computer control. An energy of 480 Joules per flash is used in six strobe heads and 240 Joules per flash in the remaining six strobe heads. The beam pattern is rectangular with a FWHM of 60° x 48°.

  7. Strobes: An oscillatory combustion

    NARCIS (Netherlands)

    Corbel, J.M.L.; Lingen, J.N.J. van; Zevenbergen, J.F.; Gijzeman, O.L.J.; Meijerink, A.

    2012-01-01

    Strobe compositions belong to the class of solid combustions. They are mixtures of powdered ingredients. When ignited, the combustion front evolves in an oscillatory fashion, and flashes of light are produced by intermittence. They have fascinated many scientists since their discovery at the

  8. New insights into strobe reactions: An intriguing oscillatory combustion phenomenon

    NARCIS (Netherlands)

    Corbel, J.M.L.

    2013-01-01

    Strobes are self-sustained oscillatory combustions that have various applications in the fireworks industry and also in the military area (signaling, missile decoys and crowd control). However, most of the strobe compositions were discovered using trial and error methods. The fundamentals mechanisms

  9. The STROBE statement and neuropsychology: lighting the way toward evidence-based practice.

    Science.gov (United States)

    Loring, David W; Bowden, Stephen C

    2014-01-01

    Reporting appropriate research detail across clinical disciplines is often inconsistent or incomplete. Insufficient report detail reduces confidence in findings, makes study replication more difficult, and decreases the precision of data available for critical review including meta-analysis. In response to these concerns, cooperative attempts across multiple specialties have developed explicit research reporting standards to guide publication detail. These recommendations have been widely adopted by high impact medical journals, but have not yet been widely embraced by neuropsychology. The STROBE Statement (STrengthening the Reporting of Observational studies in Epidemiology) is particularly relevant to neuropsychology since clinical research is often based on non-funded studies of patient samples. In this paper we describe the STROBE Statement and demonstrate how STROBE criteria, applied to reporting of neuropsychological findings, will maintain neuropsychology's position as a leader in quantifying brain-behavior relationships. We also provide specific recommendations for data reporting and disclosure of perceived conflicts of interest that will further enhance reporting transparency for possible perceived sources of bias. In an era in which evidence-based practice assumes an increasingly prominent role, improved reporting standards will promote better patient care, assist in developing quality practice guidelines, and ensure that neuropsychology remains a vigorous discipline in the clinical neurosciences that consciously aspires to high methodological rigor.

  10. Impact of STROBE statement publication on quality of observational study reporting: interrupted time series versus before-after analysis.

    Directory of Open Access Journals (Sweden)

    Sylvie Bastuji-Garin

    Full Text Available In uncontrolled before-after studies, CONSORT was shown to improve the reporting of randomised trials. Before-after studies ignore underlying secular trends and may overestimate the impact of interventions. Our aim was to assess the impact of the 2007 STROBE statement publication on the quality of observational study reporting, using both uncontrolled before-after analyses and interrupted time series.For this quasi-experimental study, original articles reporting cohort, case-control, and cross-sectional studies published between 2004 and 2010 in the four dermatological journals having the highest 5-year impact factors (≥ 4 were selected. We compared the proportions of STROBE items (STROBE score adequately reported in each article during three periods, two pre STROBE period (2004-2005 and 2006-2007 and one post STROBE period (2008-2010. Segmented regression analysis of interrupted time series was also performed.Of the 456 included articles, 187 (41% reported cohort studies, 166 (36.4% cross-sectional studies, and 103 (22.6% case-control studies. The median STROBE score was 57% (range, 18%-98%. Before-after analysis evidenced significant STROBE score increases between the two pre-STROBE periods and between the earliest pre-STROBE period and the post-STROBE period (median score2004-05 48% versus median score2008-10 58%, p<0.001 but not between the immediate pre-STROBE period and the post-STROBE period (median score2006-07 58% versus median score2008-10 58%, p = 0.42. In the pre STROBE period, the six-monthly mean STROBE score increased significantly, by 1.19% per six-month period (absolute increase 95%CI, 0.26% to 2.11%, p = 0.016. By segmented analysis, no significant changes in STROBE score trends occurred (-0.40%; 95%CI, -2.20 to 1.41; p = 0.64 in the post STROBE statement publication.The quality of reports increased over time but was not affected by STROBE. Our findings raise concerns about the relevance of uncontrolled before

  11. Study of a classical strobe composition

    NARCIS (Netherlands)

    Corbel, J.M.L.; Lingen, J.N.J. van; Zevenbergen, J.F.; Gijzeman, O.L.J.; Meijerink, A.

    2013-01-01

    Many strobe compositions were discovered in the past but only a few have been studied and none of them were fully understood. This article aimed at introducing the ternary composition of ammonium perchlorate as oxidizer, magnalium as fuel, and barium sulfate as metal salt. Parameters that influence

  12. Mejorar la comunicación de estudios observacionales en epidemiología (STROBE: explicación y elaboración Strengthening the reporting of observational studies in epidemiology (STROBE: explanation and elaboration

    Directory of Open Access Journals (Sweden)

    Jan P. Vandenbroucke

    2009-04-01

    Full Text Available Gran parte de la investigación biomédica es de tipo observacional. Los informes de los estudios observacionales a menudo poseen una calidad insuficiente, lo que dificulta la evaluación de sus fortalezas y debilidades para generalizar los resultados. Teniendo en cuenta la evidencia empírica y consideraciones teóricas, un grupo de expertos en metodología, investigadores y editores de revistas científicas, desarrollaron una lista de recomendaciones para aumentar la calidad de las publicaciones de los estudios observacionales: Strenghtening the Reporting of Observational Studies in Epidemiology (STROBE. La Declaración STROBE consiste en una lista de verificación de 22 puntos que guardan relación con las diferentes secciones de un artículo: título, resumen, introducción, metodología, resultados y discusión. De ellos, 18 puntos son comunes a los tres diseños de estudio: cohorte, casos y controles, y transversales; los otros cuatro son específicos para cada una de estas tres modalidades. La Declaración STROBE proporciona a los autores información sobre cómo mejorar la calidad de los artículos sobre estudios observacionales y facilita a los revisores, editores de revistas y lectores su apreciación crítica y su interpretación. Este documento explicativo tiene el propósito de impulsar el uso, la comprensión y la difusión de la Declaración STROBE. Se presentan el significado y el análisis razonado para cada punto de la lista de verificación, proporcionando uno o varios ejemplos publicados en la literatura y, en lo posible, referencias de estudios empíricos relevantes y literatura metodológica. También se incluyen ejemplos de diagramas de flujo. La Declaración STROBE, el presente documento y la página Web asociada (http://www.strobe-statement.org/ son recursos útiles para mejorar la divulgación de la investigación observacional.Much medical research is observational. The reporting of observational studies is often of

  13. Iniciativa STROBE: subsídios para a comunicação de estudos observacionais Prevalencia de extremos antropométricos en niños del estado de Alagoas, Noreste de Brasil STROBE initiative: guidelines on reporting observational studies

    Directory of Open Access Journals (Sweden)

    Monica Malta

    2010-06-01

    Full Text Available Freqüentemente, a descrição de pesquisas de natureza observacional é inadequada, dificultando a avaliação de seus pontos fracos e fortes e, em conseqüência, a generalização de seus resultados. A iniciativa denominada Strengthening the Reporting of Observational Studies in Epidemiology (STROBE, formulou uma lista de verificação que contém 22 itens, denominada STROBE Statement ("Declaração STROBE", com recomendações sobre o que deveria ser incluído em uma descrição mais precisa e completa de estudos observacionais. Entre junho e dezembro de 2008, um grupo de pesquisadores brasileiros dedicou-se à tradução e adaptação da "Declaração STROBE" para o português. O objetivo do estudo foi apresentar a tradução para o português, bem como introduzir a discussão sobre o contexto de utilização, as potencialidades e limitações da Iniciativa STROBE.El objetivo del artículo fue estimar la prevalencia de extremos antropométricos indicativos del estado nutricional de niños. Se realizó estudio transversal con muestra probabilística de 1.386 niños menores de cinco años del estado de Alagoas. Las prevalencias de déficit (zReporting of observational studies is often inadequate, hampering the assessment of their strengths and weaknesses and, consequently, the generalization of study results. The initiative named Strengthening the Reporting of Observational Studies in Epidemiology (STROBE developed a checklist of 22 items, the STROBE Statement, with recommendations about what should be included in a more accurate and complete description of observational studies. Between June and December 2008, a group of Brazilian researchers was dedicated to the translation and adaptation of the STROBE Statement into Portuguese. The present study aimed to show the translation into Portuguese, introduce the discussion on the context of use, the potential and limitations of the STROBE initiative.

  14. Explanation and Elaboration Document for the STROBE-Vet Statement: Strengthening the Reporting of Observational Studies in Epidemiology-Veterinary Extension

    DEFF Research Database (Denmark)

    O'Connor, A.M.; Sargeant, J.M.; Dohoo, I.R.

    2016-01-01

    The STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) statement was first published in 2007 and again in 2014. The purpose of the original STROBE was to provide guidance for authors, reviewers, and editors to improve the comprehensiveness of reporting; however, STROBE ...

  15. Explanation and Elaboration Document for the STROBE-Vet Statement: Strengthening the Reporting of Observational Studies in Epidemiology - Veterinary Extension

    DEFF Research Database (Denmark)

    O'Connor, A M; Sargeant, J M; Dohoo, I R

    2016-01-01

    The STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) statement was first published in 2007 and again in 2014. The purpose of the original STROBE was to provide guidance for authors, reviewers and editors to improve the comprehensiveness of reporting; however, STROBE h...

  16. A Behavior of Strobe Light in Non-Visibility (Dense Fog) Environments

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Choi, Young Soo; Jeong, Kyung Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, a strobe light was used to understand the behavior of light in an aerosol-like non-visibility environment. Fog was injected into a vinyl pleated cylindrical fog box that is 1 m in diameter and 5.5 m in length. After the fog concentration became saturated in the fog box, the strobe light was set off at regular time intervals until the fog particles almost dissipated in the box. Images of the behavior of the light from the strobe were taken from outside of the fog box with a digital camera in line with the strobe light sync signal. In the case of a DBA (or severe accident) of the nuclear power plant accident, coolant should be injected over the reactor pressure vessel to cool the reactor core. Cold coolant that has been poured into the reactor pressure vessel would be discharged through the nozzles of the core spray system or through pipelines in the fire protection system. The discharging cold coolant would impact high temperature structures with surface temperatures of around 250 .deg. C or higher, such as the reactor pressure vessel that surrounds the reactor core, and then evaporate and turn into steam. The steam cools while forming mist (aerosol including radioactivity), which can cause a sharp drop in visibility. Assuming that a robot has been deployed to manage and mitigate the DBA (or severe accident) at the nuclear power plant, the robot must perform its task in a non-visibility environment. A color CCD/CMOS camera corresponding to visible wavelength (400 - 700 nm) can be attached to the robot for observation and navigation. The camera needs lights in order to secure a clear field of view. Generally, the aperture of a lens is correlated to the intensity of illumination. The brighter the light, the smaller the aperture can be. If the aperture becomes narrower to the size of a pin hole, a clearer image in deep focus can be obtained. As the aperture decreases in the half, the required amount of light doubles. The observed behavior of the strobe

  17. A Behavior of Strobe Light in Non-Visibility (Dense Fog) Environments

    International Nuclear Information System (INIS)

    Cho, Jai Wan; Choi, Young Soo; Jeong, Kyung Min

    2015-01-01

    In this study, a strobe light was used to understand the behavior of light in an aerosol-like non-visibility environment. Fog was injected into a vinyl pleated cylindrical fog box that is 1 m in diameter and 5.5 m in length. After the fog concentration became saturated in the fog box, the strobe light was set off at regular time intervals until the fog particles almost dissipated in the box. Images of the behavior of the light from the strobe were taken from outside of the fog box with a digital camera in line with the strobe light sync signal. In the case of a DBA (or severe accident) of the nuclear power plant accident, coolant should be injected over the reactor pressure vessel to cool the reactor core. Cold coolant that has been poured into the reactor pressure vessel would be discharged through the nozzles of the core spray system or through pipelines in the fire protection system. The discharging cold coolant would impact high temperature structures with surface temperatures of around 250 .deg. C or higher, such as the reactor pressure vessel that surrounds the reactor core, and then evaporate and turn into steam. The steam cools while forming mist (aerosol including radioactivity), which can cause a sharp drop in visibility. Assuming that a robot has been deployed to manage and mitigate the DBA (or severe accident) at the nuclear power plant, the robot must perform its task in a non-visibility environment. A color CCD/CMOS camera corresponding to visible wavelength (400 - 700 nm) can be attached to the robot for observation and navigation. The camera needs lights in order to secure a clear field of view. Generally, the aperture of a lens is correlated to the intensity of illumination. The brighter the light, the smaller the aperture can be. If the aperture becomes narrower to the size of a pin hole, a clearer image in deep focus can be obtained. As the aperture decreases in the half, the required amount of light doubles. The observed behavior of the strobe

  18. Methods and Processes of Developing the Strengthening the Reporting of Observational Studies in Epidemiology—Veterinary (STROBE-Vet) Statement

    DEFF Research Database (Denmark)

    Sargeant, J. M.; O'Connor, A. M.; Dohoo, I. R.

    2016-01-01

    be modified or added to address unique issues related to observational studies in animal species with health, production, welfare, or food safety outcomes. During the meeting, each STROBE item was discussed to determine whether or not rewording was recommended, and whether additions were warranted. Anonymous...... voting was used to determine consensus. Six items required no modifications or additions. Modifications or additions were made to the STROBE items 1 (title and abstract), 3 (objectives), 5 (setting), 6 (participants), 7 (variables), 8 (data sources and measurement), 9 (bias), 10 (study size), 12...... (statistical methods), 13 (participants), 14 (descriptive data), 15 (outcome data), 16 (main results), 17 (other analyses), 19 (limitations), and 22 (funding). The methods and processes used were similar to those used for other extensions of the STROBE statement. The use of this STROBE statement extension...

  19. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement

    DEFF Research Database (Denmark)

    von Elm, Erik; Altman, Douglas G; Egger, Matthias

    2014-01-01

    Much biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study's generalisability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Initiative developed...... recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover three main study designs: cohort, case-control, and cross-sectional studies. We convened a 2-day workshop in September 2004, with methodologists...... and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE Statement) that relate to the title, abstract, introduction, methods, results, and discussion sections of articles. 18 items are common to all three study designs and four are specific for cohort, case...

  20. Methods and processes of developing the Strengthening the Reporting of Observational Studies in Epidemiology - Veterinary (STROBE-Vet) statement

    DEFF Research Database (Denmark)

    Sargeant, J. M.; O'Connor, A. M.; Dohoo, I. R.

    2016-01-01

    and biostatisticians, many of whom hold or have held editorial positionswith relevant journals.Methods: Prior to the meeting, 19 experts completed a survey about whether they felt any of the 22 itemsof the STROBE statement should be modified and if items should be added to address unique issues relatedto observational......Background: The reporting of observational studies in veterinary research presents many challenges thatoften are not adequately addressed in published reporting guidelines.Objective: To develop an extension of the STROBE (Strengthening the Reporting of Observational Studiesin Epidemiology......) statement that addresses unique reporting requirements for observational studies inveterinary medicine related to health, production, welfare, and food safety.Design: A consensus meeting of experts was organized to develop an extension of the STROBE statementto address observational studies in veterinary...

  1. Diagnostics and camera strobe timers for hydrogen pellet injectors

    International Nuclear Information System (INIS)

    Bauer, M.L.; Fisher, P.W.; Qualls, A.L.

    1993-01-01

    Hydrogen pellet injectors have been used to fuel fusion experimental devices for the last decade. As part of developments to improve pellet production and velocity, various diagnostic devices were implemented, ranging from witness plates to microwave mass meters to high speed photography. This paper will discuss details of the various implementations of light sources, cameras, synchronizing electronics and other diagnostic systems developed at Oak Ridge for the Tritium Proof-of-Principle (TPOP) experiment at the Los Alamos National Laboratory's Tritium System Test Assembly (TSTA), a system built for the Oak Ridge Advanced Toroidal Facility (ATF), and the Tritium Pellet Injector (TPI) built for the Princeton Tokamak Fusion Test Reactor (TFTR). Although a number of diagnostic systems were implemented on each pellet injector, the emphasis here will be on the development of a synchronization system for high-speed photography using pulsed light sources, standard video cameras, and video recorders. This system enabled near real-time visualization of the pellet shape, size and flight trajectory over a wide range of pellet speeds and at one or two positions along the flight path. Additionally, the system provides synchronization pulses to the data system for pseudo points along the flight path, such as the estimated plasma edge. This was accomplished using an electronic system that took the time measured between sets of light gates, and generated proportionally delayed triggers for light source strobes and pseudo points. Systems were built with two camera stations, one located after the end of the barrel, and a second camera located closer to the main reactor vessel wall. Two or three light gates were used to sense pellet velocity and various spacings were implemented on the three experiments. Both analog and digital schemes were examined for implementing the delay system. A digital technique was chosen

  2. Methods and Processes of Developing the Strengthening the Reporting of Observational Studies in Epidemiology - Veterinary (STROBE-Vet) Statement

    DEFF Research Database (Denmark)

    Sargeant, J. M.; O'Connor, A. M.; Dohoo, I. R.

    2016-01-01

    The reporting of observational studies in veterinary research presents many challenges that often are not adequately addressed in published reporting guidelines. A consensus meeting of experts was organized to develop an extension of the STROBE statement to address observational studies...... and biostatisticians, many of whom hold or have held editorial positions with relevant journals. Prior to the meeting, 19 experts completed a survey about whether they felt any of the 22 items of the STROBE statement should be modified and whether items should be added to address unique issues related to observational...... studies in animal species with health, production, welfare or food safety outcomes. At the meeting, the participants were provided with the survey responses and relevant literature concerning the reporting of veterinary observational studies. During the meeting, each STROBE item was discussed to determine...

  3. DIFFUSE DBD IN ATMOSPHERIC AIR AT DIFFERENT APPLIED PULSE WIDTHS

    Directory of Open Access Journals (Sweden)

    Ekaterina Alexandrovna Shershunova

    2015-02-01

    Full Text Available The paper deals with the realization and the diagnostics of the volume diffuse dielectric barrier discharge in 1-mm air gap when applying high voltage rectangular pulses to the electrodes. The effect of the applied pulse width on the discharge dissipated energy was studied in detail. It was found experimentally, the energy stayed nearly constant with the pulse elongation from 600 ns to 1 ms.

  4. Quality of reporting and study design of CKD cohort studies assessing mortality in the elderly before and after STROBE : A systematic review

    NARCIS (Netherlands)

    Rao, Anirudh; Brück, Katharina; Methven, Shona; Evans, Rebecca; Stel, Vianda S.; Jager, Kitty J.; Hooft, Lotty; Ben-Shlomo, Yoav; Caskey, Fergus

    2016-01-01

    Background: The STrengthening the Reporting of OBservational studies in Epidemiology (STROBE) statement was published in October 2007 to improve quality of reporting of observational studies. The aim of this review was to assess the impact of the STROBE statement on observational study reporting and

  5. Method for pulse to pulse dose reproducibility applied to electron linear accelerators

    International Nuclear Information System (INIS)

    Ighigeanu, D.; Martin, D.; Oproiu, C.; Cirstea, E.; Craciun, G.

    2002-01-01

    An original method for obtaining programmed beam single shots and pulse trains with programmed pulse number, pulse repetition frequency, pulse duration and pulse dose is presented. It is particularly useful for automatic control of absorbed dose rate level, irradiation process control as well as in pulse radiolysis studies, single pulse dose measurement or for research experiments where pulse-to-pulse dose reproducibility is required. This method is applied to the electron linear accelerators, ALIN-10 of 6.23 MeV and 82 W and ALID-7, of 5.5 MeV and 670 W, built in NILPRP. In order to implement this method, the accelerator triggering system (ATS) consists of two branches: the gun branch and the magnetron branch. ATS, which synchronizes all the system units, delivers trigger pulses at a programmed repetition rate (up to 250 pulses/s) to the gun (80 kV, 10 A and 4 ms) and magnetron (45 kV, 100 A, and 4 ms).The accelerated electron beam existence is determined by the electron gun and magnetron pulses overlapping. The method consists in controlling the overlapping of pulses in order to deliver the beam in the desired sequence. This control is implemented by a discrete pulse position modulation of gun and/or magnetron pulses. The instabilities of the gun and magnetron transient regimes are avoided by operating the accelerator with no accelerated beam for a certain time. At the operator 'beam start' command, the ATS controls electron gun and magnetron pulses overlapping and the linac beam is generated. The pulse-to-pulse absorbed dose variation is thus considerably reduced. Programmed absorbed dose, irradiation time, beam pulse number or other external events may interrupt the coincidence between the gun and magnetron pulses. Slow absorbed dose variation is compensated by the control of the pulse duration and repetition frequency. Two methods are reported in the electron linear accelerators' development for obtaining the pulse to pulse dose reproducibility: the method

  6. Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at the Grand Coulee Dam Third Powerplant Forebay, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.; McKinstry, C.; Simmons, C. (Pacific Northwest National Laboratory)

    2003-01-01

    Since 1995, the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes) have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation concluded that entrainment at Grand Coulee Dam ranged from 211,685 to 576,676 fish annually. Further analysis revealed that 85% of the total entrainment occurred at the dam's third powerplant. These numbers represent a significant loss to the tribal fisheries upstream of the dam. In response to a suggestion by the NWPPC Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the second year of the study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory. The 2002 study period extended from May 18 through July 30. The objective of the study was to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout. The prototype system consisted of six strobe lights affixed to an aluminum frame suspended vertically underwater from a barge secured in the center of the entrance to the third powerplant forebay. The lights, controlled by a computer, were aimed to illuminate a specific region directly upstream of the barge. Three light level treatments were used: 6 of 6 lights on, 3 of 6 lights on, and all lights off. These three treatment conditions were applied for an entire 24-hr day and were randomly assigned within a 3-day block throughout the study period. A seven

  7. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE)

    DEFF Research Database (Denmark)

    Vandenbroucke, Jan P; von Elm, Erik; Altman, Douglas G

    2014-01-01

    Much medical research is observational. The reporting of observational studies is often of insufficient quality. Poor reporting hampers the assessment of the strengths and weaknesses of a study and the generalisability of its results. Taking into account empirical evidence and theoretical...... to the title, abstract, introduction, methods, results and discussion sections of articles. Eighteen items are common to cohort studies, case-control studies and cross-sectional studies and four are specific to each of the three study designs. The STROBE Statement provides guidance to authors about how...

  8. The STROBE extensions: protocol for a qualitative assessment of content and a survey of endorsement.

    Science.gov (United States)

    Sharp, Melissa K; Utrobičić, Ana; Gómez, Guadalupe; Cobo, Erik; Wager, Elizabeth; Hren, Darko

    2017-10-22

    The STrengthening the Reporting of OBservational studies in Epidemiology (STROBE) Statement was developed in response to inadequate reporting of observational studies. In recent years, several extensions to STROBE have been created to provide more nuanced field-specific guidance for authors. The content and the prevalence of extension endorsement have not yet been assessed. Accordingly, there are two aims: (1) to classify changes made in the extensions to identify strengths and weaknesses of the original STROBE checklist and (2) to determine the prevalence and typology of endorsement by journals in fields related to extensions. Two independent researchers will assess additions in each extension. Additions will be coded as 'field specific' (FS) or 'not field specific' (NFS). FS is defined as particularly relevant information for a single field and guidance provided generally cannot be extrapolated beyond that field. NFS is defined as information that reflects epidemiological or methodological tenets and can be generalised to most, if not all, types of observational research studies. Intraclass correlation will be calculated to measure reviewers' concordance. On disagreement, consensus will be sought. Individual additions will be grouped by STROBE checklist items to identify the frequency and distribution of changes.Journals in fields related to extensions will be identified through National Library of Medicine PubMed Broad Subject Terms, screened for eligibility and further distilled via Ovid MEDLINE® search strategies for observational studies. Text describing endorsement will be extracted from each journal's website. A classification scheme will be created for endorsement types and the prevalence of endorsement will be estimated. Analyses will use NVivo V.11 and SAS University Edition. This study does not require ethical approval as it does not involve human participants. This study has been preregistered on Open Science Framework. © Article author(s) (or their

  9. Methods and Processes of Developing the Strengthening the Reporting of Observational Studies in Epidemiology—Veterinary (STROBE-Vet) Statement

    DEFF Research Database (Denmark)

    Sargeant, J. M.; O'Connor, A. M.; Dohoo, I. R.

    2016-01-01

    Reporting of observational studies in veterinary research presents challenges that often are not addressed in published reporting guidelines. Our objective was to develop an extension of the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) statement that addresses...... unique reporting requirements for observational studies in veterinary medicine related to health, production, welfare, and food safety. We conducted a consensus meeting with 17 experts in Mississauga, Canada. Experts completed a premeeting survey about whether items in the STROBE statement should...... should improve reporting of observational studies in veterinary research by recognizing unique features of observational studies involving food-producing and companion animals, products of animal origin, aquaculture, and wildlife....

  10. [The Strengthening the Reporting of Observational Studies in Epidemiology [STROBE] statement: guidelines for reporting observational studies

    DEFF Research Database (Denmark)

    Elm, E. von; Altman, D.G.; Egger, M.

    2008-01-01

    Much biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study's generalisability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) initiative developed...... recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover three main study designs: cohort, case-control, and cross-sectional studies. We convened a 2-day workshop in September, 2004, with methodologists...... and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE statement) that relate to the title, abstract, introduction, methods, results, and discussion sections of articles. 18 items are common to all three study designs and four are specific for cohort, case...

  11. Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at the Grand Coulee Dam Third Powerplant Forebay, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, M.; McKinstry, C.; Cook, C.

    2004-01-01

    Since 1995, the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes) have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation from 1996 to 1999 determined that from 211,685 to 576,676 fish were entrained annually at Grand Coulee Dam. Analysis of the entrainment data found that 85% of the total entrainment occurred at the dam's third powerplant. These numbers represent a significant loss to the tribal fisheries upstream of the dam. In response to a suggestion by the NWPPC Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the third year of the strobe light study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory. The objective of the study is to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout under field conditions. The prototype system consists of six strobe lights affixed to an aluminum frame suspended 15 m vertically underwater from a barge secured in the center of the entrance to the third powerplant forebay. The lights, controlled by a computer, illuminate a region directly upstream of the barge. The 2003 study period extended from June 16 through August 1. Three light treatments were used: all six lights on for 24 hours, all lights off for 24 hours, and three of six lights cycled on and off every hour for 24 hours. These three treatment conditions were assigned randomly

  12. The effect of applied electric field on pulsed radio frequency and pulsed direct current plasma jet array

    International Nuclear Information System (INIS)

    Hu, J. T.; Liu, X. Y.; Liu, J. H.; Xiong, Z. L.; Liu, D. W.; Lu, X. P.; Iza, F.; Kong, M. G.

    2012-01-01

    Here we compare the plasma plume propagation characteristics of a 3-channel pulsed RF plasma jet array and those of the same device operated by a pulsed dc source. For the pulsed-RF jet array, numerous long life time ions and metastables accumulated in the plasma channel make the plasma plume respond quickly to applied electric field. Its structure similar as “plasma bullet” is an anode glow indeed. For the pulsed dc plasma jet array, the strong electric field in the vicinity of the tube is the reason for the growing plasma bullet in the launching period. The repulsive forces between the growing plasma bullets result in the divergence of the pulsed dc plasma jet array. Finally, the comparison of 309 nm and 777 nm emissions between these two jet arrays suggests the high chemical activity of pulsed RF plasma jet array.

  13. Nano-dot and nano-pit fabrication on a GaAs substrate by a pulse applied AFM

    International Nuclear Information System (INIS)

    Kim, H C; Yu, J S; Ryu, S H

    2012-01-01

    The nano-patterning characteristics of GaAs is investigated using a pulse applied atomic force microscope (AFM). Very short range voltage pulses of micro to nano-seconds’ duration are applied to a conductive diamond-coated silicon (Si) tip in contact mode, to regulate the created feature size. The effects of pulse conditions such as pulse voltage, duration, frequency, offset voltage, anodization time, and applied tip pressure on nano-dot generation are characterized, based on the experiments. An interesting phenomenon, nano-pit creation instead of nano-dot creation, is observed when the applied pulse duration is less than 100 μs. Pulse frequency and offset voltage are also involved in nano-pit generation. The electrical spark discharge between the tip and the GaAs's surface is the most probable cause of the nano-pit creation and its generation mechanism is explained by considering the relevant pulse parameters. Nano-pits over 15 nm in depth are acquired on the GaAs substrate by adjusting the pulse conditions. This research facilitates the fabrication of more complex nano-structures on semiconductor materials since nano-dots and nano-pits could be easily made without any additional post-processes. (paper)

  14. Effect of applied voltage and inter-pulse delay in spark-assisted LIBS

    Science.gov (United States)

    Robledo-Martinez, A.; Sobral, H.; Garcia-Villarreal, A.

    2018-06-01

    We report the results obtained in an investigation on the effect of the time delay between the laser and electrical pulses in a spark-assisted laser-induced breakdown spectroscopy (LIBS) experiment. The electrical discharge is produced by the discharge of a charged coaxial cable. This arrangement produces a fast unipolar current pulse (500 ns) that applies high power ( 600 kW) to the laser ablation plasma. The delay between the laser pulse and the electric pulse can be controlled at will in order to find the optimal time in terms of enhancement of the emitted lines. It was found that the application of the high voltage pulse enhances the ionic lines emitted by up to two orders of magnitude. An additional enhancement by a factor of 2-4 can be obtained delaying the application of the electric pulse by a time of 0.6-20 μs. In the tests it was noticed that the ionic lines were found to be clearly responsive to increments in the applied electric energy while the neutral lines did so marginally. Our results show that the intensification of the lines is mainly due to reheating of the ablation plasma as the application of the electrical pulse increments the temperature of the ablation plasma by about 50%. It is demonstrated that the present technique is an efficient way of intensifying the lines emitted without incurring in additional damage to the sample.

  15. Thermal pulse measurements of space charge distributions under an applied electric field in thin films

    International Nuclear Information System (INIS)

    Zheng, Feihu; An, Zhenlian; Zhang, Yewen; Liu, Chuandong; Lin, Chen; Lei, Qingquan

    2013-01-01

    The thermal pulse method is a powerful method to measure space charge and polarization distributions in thin dielectric films, but a complicated calibration procedure is necessary to obtain the real distribution. In addition, charge dynamic behaviour under an applied electric field cannot be observed by the classical thermal pulse method. In this work, an improved thermal pulse measuring system with a supplemental circuit for applying high voltage is proposed to realize the mapping of charge distribution in thin dielectric films under an applied field. The influence of the modified measuring system on the amplitude and phase of the thermal pulse response current are evaluated. Based on the new measuring system, an easy calibration approach is presented with some practical examples. The newly developed system can observe space charge evolution under an applied field, which would be very helpful in understanding space charge behaviour in thin films. (paper)

  16. Pulsed Thermography Applied to the Study of Cultural Heritage

    Directory of Open Access Journals (Sweden)

    Fulvio Mercuri

    2017-09-01

    Full Text Available In this paper, an overview of the recent applications of pulsed infrared thermography is presented. Pulsed infrared thermography, which provides stratigraphic information by analyzing the heat diffusion process within the sample after a thermal perturbation, is applied to the investigation of different kinds of cultural heritage artefacts. In particular, it is used to analyze repairs, decorative elements, and casting faults on bronzes, to detect texts hidden or damaged in ancient books/documents, and to characterize paint decorations. Moreover, the integration of pulsed infrared thermography and three-dimensional shape recording methods is proposed in order to provide a three-dimensional representation of the thermographic results. Finally, it is shown how the obtained thermographic results may be crucial from the historical and artistic points of view for understanding the modus operandi of a specific artist and/or of a workshop and for reconstructing the manufacturing process of the analyzed artefacts.

  17. Weaknesses in the reporting of cross-sectional studies according to the STROBE statement

    Science.gov (United States)

    Malaga, German; Miranda, Jaime

    2015-01-01

    Introduction: The inadequate reporting of cross-sectional studies, as in the case of the prevalence of metabolic syndrome, could cause problems in the synthesis of new evidence and lead to errors in the formulation of public policies. Objective: To evaluate the reporting quality of the articles regarding metabolic syndrome prevalence in Peruvian adults using the STROBE recommendations. Methods: We conducted a thorough literature search with the terms "Metabolic Syndrome", "Sindrome Metabolico" and "Peru" in MEDLINE/PubMed, LILACS, SciELO, LIPECS and BVS-Peru until December 2014. We selected those who were population-based observational studies with randomized sampling that reported prevalence of metabolic syndrome in adults aged 18 or more of both sexes. Information was analysed through the STROBE score per item and recommendation. Results: Seventeen articles were included in this study. All articles met the recommendations related to the report of the study's rationale, design, and provision of summary measures. The recommendations with the lowest scores were those related to the sensitivity analysis (8%, n= 1/17), participant flowchart (18%, n= 3/17), missing data analysis (24%, n= 4/17), and number of participants in each study phase (24%, n= 4/17). Conclusion: Cross-sectional studies regarding the prevalence of metabolic syndrome in peruvian adults have an inadequate reporting on the methods and results sections. We identified a clear need to improve the quality of such studies. PMID:26848197

  18. STrengthening the REporting of Genetic Association Studies (STREGA – An Extension of the STROBE Statement

    Directory of Open Access Journals (Sweden)

    Julian Little

    2009-09-01

    Full Text Available Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modelling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.

  19. Wavelet Domain Radiofrequency Pulse Design Applied to Magnetic Resonance Imaging.

    Directory of Open Access Journals (Sweden)

    Andrew M Huettner

    Full Text Available A new method for designing radiofrequency (RF pulses with numerical optimization in the wavelet domain is presented. Numerical optimization may yield solutions that might otherwise have not been discovered with analytic techniques alone. Further, processing in the wavelet domain reduces the number of unknowns through compression properties inherent in wavelet transforms, providing a more tractable optimization problem. This algorithm is demonstrated with simultaneous multi-slice (SMS spin echo refocusing pulses because reduced peak RF power is necessary for SMS diffusion imaging with high acceleration factors. An iterative, nonlinear, constrained numerical minimization algorithm was developed to generate an optimized RF pulse waveform. Wavelet domain coefficients were modulated while iteratively running a Bloch equation simulator to generate the intermediate slice profile of the net magnetization. The algorithm minimizes the L2-norm of the slice profile with additional terms to penalize rejection band ripple and maximize the net transverse magnetization across each slice. Simulations and human brain imaging were used to demonstrate a new RF pulse design that yields an optimized slice profile and reduced peak energy deposition when applied to a multiband single-shot echo planar diffusion acquisition. This method may be used to optimize factors such as magnitude and phase spectral profiles and peak RF pulse power for multiband simultaneous multi-slice (SMS acquisitions. Wavelet-based RF pulse optimization provides a useful design method to achieve a pulse waveform with beneficial amplitude reduction while preserving appropriate magnetization response for magnetic resonance imaging.

  20. COMUNICACIÓN DE LOS RESULTADOS DE LA INVESTIGACIÓN OBSERVACIONAL: ANÁLISIS MEDIANTE LA GUÍA STROBE

    Directory of Open Access Journals (Sweden)

    Jordi Galera Llorca

    2011-01-01

    Full Text Available Fundamento: En la publicación de la investigación biomédica se detectan deficiencias que han llevado a la aparición de guías cuyo seguimiento mejora la calidad de la comunicación. El objetivo del estudio es analizar el cumplimiento de los criterios de la Iniciativa Strobe para la publicación de estudios observacionales. Métodos: Análisis descriptivo transversal de los estudios observacionales de las áreas Cardiovascular y Metabolismo (CVM publicados en 6 revistas españolas a lo largo de 2009 mediante la aplicación de los 34 puntos de la Iniciativa STROBE. Se describieron las frecuencias de las variables cualitativas y los estimadores muestrales y de dispersión de las variables cuantitativas. El análisis comparativo entre revistas se realizó mediante el test ANOVA (p<0,05. Resultados: En 2009 se publicaron 74 estudios observacionales en las revistas evaluadas. Los más frecuentes fueron estudios de cohortes 45 (60,8% y transversales 28 (37,8%. En cuanto al objetivo principal, la mayoría fueron sobre patología 55 (74,3%, seguidos de fármacos e intervenciones no farmacológicas 15 (20,3% y diagnóstico 4 (5,4%. La media de criterios cumplidos fue de 20 sobre 34 (DE±3,7, con un máximo de 24 (DE±2 en Gaceta Sanitaria y un mínimo de 19 (DE±2,8 en Hipertensión. Conclusiones: Solo algo más de la mitad de los artículos cumplían las recomendaciones de la Iniciativa STROBE. Los apartados de Resultados y Métodos fueron los que mostraron más carencias.

  1. A pulse stacking method of particle counting applied to position sensitive detection

    International Nuclear Information System (INIS)

    Basilier, E.

    1976-03-01

    A position sensitive particle counting system is described. A cyclic readout imaging device serves as an intermediate information buffer. Pulses are allowed to stack in the imager at very high counting rates. Imager noise is completely discriminated to provide very wide dynamic range. The system has been applied to a detector using cascaded microchannel plates. Pulse height spread produced by the plates causes some loss of information. The loss is comparable to the input loss of the plates. The improvement in maximum counting rate is several hundred times over previous systems that do not permit pulse stacking. (Auth.)

  2. [Use of multiple regression models in observational studies (1970-2013) and requirements of the STROBE guidelines in Spanish scientific journals].

    Science.gov (United States)

    Real, J; Cleries, R; Forné, C; Roso-Llorach, A; Martínez-Sánchez, J M

    In medicine and biomedical research, statistical techniques like logistic, linear, Cox and Poisson regression are widely known. The main objective is to describe the evolution of multivariate techniques used in observational studies indexed in PubMed (1970-2013), and to check the requirements of the STROBE guidelines in the author guidelines in Spanish journals indexed in PubMed. A targeted PubMed search was performed to identify papers that used logistic linear Cox and Poisson models. Furthermore, a review was also made of the author guidelines of journals published in Spain and indexed in PubMed and Web of Science. Only 6.1% of the indexed manuscripts included a term related to multivariate analysis, increasing from 0.14% in 1980 to 12.3% in 2013. In 2013, 6.7, 2.5, 3.5, and 0.31% of the manuscripts contained terms related to logistic, linear, Cox and Poisson regression, respectively. On the other hand, 12.8% of journals author guidelines explicitly recommend to follow the STROBE guidelines, and 35.9% recommend the CONSORT guideline. A low percentage of Spanish scientific journals indexed in PubMed include the STROBE statement requirement in the author guidelines. Multivariate regression models in published observational studies such as logistic regression, linear, Cox and Poisson are increasingly used both at international level, as well as in journals published in Spanish. Copyright © 2015 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.

  3. S100 lathe bed pulse generator applied to pulsed nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Cernicchiaro, G.R.C.; Rudge, M.G.; Albuquerque, M.P.

    1989-01-01

    The project and construction of four channel pulse generator in the S100 standard plate and its control software for microcomputer are described. The microcomputer has total control on the pulse generator, which has seven programable parameters, defining the position of four pulses and the width for the three first ones. This pulse generator is controlled by a software developed in c language, and is used in pulsed nuclear magnetic resonance experiences. (M.C.K.) [pt

  4. Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grand Coulee Dam Third Powerplant Forebay

    International Nuclear Information System (INIS)

    Simmons, Mary Ann; Johnson, Robert L.; McKinstry, Craig A.; Simmons, Carver S.; Cook, Chris B.; Brown, Richard S.; Tano, Daniel K.; Thorsten, Susan L.; Faber, Derrek M.; Lecaire, Richard; Francis, Stephen

    2004-01-01

    This report documents the third year of a four-year study to assess the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee salmon (Oncorhynchus nerka) and rainbow trout (O. mykiss) in the forebay to the third powerplant at Grand Coulee Dam. This work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by Pacific Northwest National Laboratory (PNNL) in conjunction with the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes)

  5. Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grand Coulee Dam Third Powerplant Forebay

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Mary Ann; Johnson, Robert L.; McKinstry, Craig A.; Simmons, Carver S.; Cook, Chris B.; Brown, Richard S.; Tano, Daniel K.; Thorsten, Susan L.; Faber, Derrek M.; Lecaire, Richard; Francis, Stephen

    2004-01-01

    This report documents the third year of a four-year study to assess the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee salmon (Oncorhynchus nerka) and rainbow trout (O. mykiss) in the forebay to the third powerplant at Grand Coulee Dam. This work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by Pacific Northwest National Laboratory (PNNL) in conjunction with the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes).

  6. Applying a CPLD for Refurbishment of a Multi-channel Pulse Height Analyzer

    International Nuclear Information System (INIS)

    Leetragunpichitchai, Supalerk; Thong-Aram, Decho; Ploykrachang, Kamontip

    2007-08-01

    Full text: This research applied a CPLD for construction of a 100 MHz, 2048 channel, Wilkinson type analog to digital converter (ADC) circuits for refurbishment of an original multi-channel pulse height analyzer (PHA) ADC. Introduction of the CPLD could reduce the complexity of the circuits, equipment size and also the power consumption while the operation speed was increased. The linearity test of the ADC was found to be excellent with an R2 = 0.9995 and a maximum pulse rate of 48.828 k cps could be converted in this system. Therefore the developed system was appropriate for replacing the original ADC

  7. [Negative air ions generated by plants upon pulsed electric field stimulation applied to soil].

    Science.gov (United States)

    Wu, Ren-ye; Deng, Chuan-yuan; Yang, Zhi-jian; Weng, Hai-yong; Zhu, Tie-jun-rong; Zheng, Jin-gui

    2015-02-01

    This paper investigated the capacity of plants (Schlumbergera truncata, Aloe vera var. chinensis, Chlorophytum comosum, Schlumbergera bridgesii, Gymnocalycium mihanovichii var. friedrichii, Aspidistra elatior, Cymbidium kanran, Echinocactus grusonii, Agave americana var. marginata, Asparagus setaceus) to generate negative air ions (NAI) under pulsed electric field stimulation. The results showed that single plant generated low amounts of NAI in natural condition. The capacity of C. comosum and G. mihanovichii var. friedrichii generated most NAI among the above ten species, with a daily average of 43 ion · cm(-3). The least one was A. americana var. marginata with the value of 19 ion · cm(-3). When proper pulsed electric field stimulation was applied to soil, the NAI of ten plant species were greatly improved. The effect of pulsed electric field u3 (average voltage over the pulse period was 2.0 x 10(4) V, pulse frequency was 1 Hz, and pulse duration was 50 ms) was the greatest. The mean NAI concentration of C. kanran was the highest 1454967 ion · cm(-3), which was 48498.9 times as much as that in natural condition. The lowest one was S. truncata with the value of 34567 ion · cm(-3), which was 843.1 times as much as that in natural condition. The capacity of the same plants to generate negative air ion varied extremely under different intensity pulsed electric fields.

  8. STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Microseconds to Years

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Ray, Paul S.; Maccarone, Thomas J.; Chakrabarty, Deepto; Gendreau, Keith C.; Arzoumanian, Zaven; Jenke, Peter; Ballantyne, David; Bozzo, Enrico; Brandt, Soren; Brenneman, Laura; Christophersen, Marc; DeRosa, Alessandra; Feroci, Marco; Goldstein, Adam; Hartmann, Dieter; Hernanz, Margarita; McDonald, Michael; Phlips, Bernard; Remillard, Ronald; Stevens, Abigail; Tomsick, John; Watts, Anna; Wood, Kent S.; Zane, Silvia; STROBE-X Collaboration

    2018-01-01

    We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER, with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT, to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with ~20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis. We include updated instrument designs resulting from the GSFC IDL run in November 2017.For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO/Virgo and neutrino events. Extragalactic science, such as constraining bulk metalicity

  9. STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Milliseconds to Years

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Ray, P. S.; Maccarone, T; Chakrabarty, D.; Gendreau, K.; Arzoumanian, Z.; Jenke, P.; Ballantyne, D.; Bozzo, E.; Brandt, S.; hide

    2018-01-01

    We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER [1], with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT [2], to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with approx. 20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis. For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO and neutrino events. Additional extragalactic science, such as high quality spectroscopy of clusters of galaxies and unprecedented timing investigations of

  10. Methods and Processes of Developing the Strengthening the Reporting of Observational Studies in Epidemiology - Veterinary (STROBE-Vet) Statement

    DEFF Research Database (Denmark)

    Sargeant, J. M.; O'Connor, A. M.; Dohoo, I. R.

    2016-01-01

    whether or not re-wording was recommended, and whether additions were warranted. Anonymous voting was used to determine whether there was consensus for each item change or addition. The consensus was that six items needed no modifications or additions. Modifications or additions were made to the STROBE...... items numbered as follows: 1 (title and abstract), 3 (objectives), 5 (setting), 6 (participants), 7 (variables), 8 (data sources/measurement), 9 (bias), 10 (study size), 12 (statistical methods), 13 (participants), 14 (descriptive data), 15 (outcome data), 16 (main results), 17 (other analyses), 19...

  11. Methods and processes of developing the Strengthening the Reporting of Observational Studies in Epidemiology - Veterinary (STROBE-Vet) statement

    DEFF Research Database (Denmark)

    Sargeant, J. M.; O'Connor, A. M.; Dohoo, I. R.

    2016-01-01

    or not re-wording was recommended and whether additions were warranted. Anonymous voting was used to determine consensus.Results: Six items required no modifications or additions. Modifications or additions were made to the STROBE items 1 (title and abstract), 3 (objectives), 5 (setting), 6 (participants......), 7 (variables), 8 (data sources-measurement), 9 (bias), 10 (study size), 12 (statistical methods), 13 (participants), 14 (descriptive data), 15 (outcome data), 16 (main results), 17 (other analyses), 19 (limitations), and 22 (funding).Conclusion: The methods and processes used were similar to those...

  12. Methods and Processes of Developing the Strengthening the Reporting of Observational Studies in Epidemiology - Veterinary (STROBE-Vet) Statement

    DEFF Research Database (Denmark)

    Sargeant, J.M.; O'Connor, A.M.; Dohoo, I.R.

    2016-01-01

    to determine whether or not re-wording was recommended, and whether additions were warranted. Anonymous voting was used to determine whether there was consensus for each item change or addition. Results:  The consensus was that six items needed no modifications or additions. Modifications or additions were...... made to the STROBE items numbered: 1 (title and abstract), 3 (objectives), 5 (setting), 6 (participants), 7 (variables), 8 (data sources/measurement), 9 (bias), 10 (study size), 12 (statistical methods), 13 (participants), 14 (descriptive data), 15 (outcome data), 16 (main results), 17 (other analyses...

  13. Chief Joseph Kokanee Enhancement Project : Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grond Coulee Dam Third Powerplant Forebay.

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, M.A.; McKinstry, C.A.; Simmons, C.S.

    2002-01-01

    Since 1995, the Colville Confederated Tribes have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council's (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation concluded that entrainment at Grand Coulee Dam ranged from 211,685 to 576,676 fish annually. Further analysis revealed that 85% of the total entrainment occurred at the dam's third powerplant. These numbers represent a significant loss to the tribal fisheries upstream of the dam. In response to a suggestion by the NWPPC's Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the first year of the study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory (PNNL). The objective of the study was to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout. Analysis of the effect of strobe lights on the distribution (numbers) and behavior of kokanee and rainbow trout was based on 51, 683 fish targets detected during the study period (June 30 through August 1, 2001). Study findings include the following: (1) Analysis of the count data indicated that significantly more fish were present when the lights were on compared to off. This was true for both the 24-hr tests as well as the 1-hr tests. Powerplant discharge, distance from lights, and date were significant factors in the analysis. (2) Behavioral results indicated that fish within 14 m of the lights were trying to avoid the lights by swimming across the lighted

  14. Optimisation of applied field pulses for microwave assisted magnetic recording

    Directory of Open Access Journals (Sweden)

    Simon John Greaves

    2017-05-01

    Full Text Available Grains in a recording medium experience field pulses from a write head during recording. In general, a short head field rise time and a square pulse shape have been viewed as optimal. This work investigates the optimum field pulse shape for microwave assisted magnetic recording on single layer and ECC media. A square pulse was found to give the best recording performance on single layer media, but an initially negative field pulse increasing at a constant rate was more suitable for ECC media.

  15. Weaknesses in the reporting of cross-sectional studies according to the STROBE statement: the case of metabolic syndrome in adults from Peru.

    Science.gov (United States)

    Tapia, Jose Carlos; Ruiz, Eloy F; Ponce, Oscar J; Malaga, German; Miranda, Jaime

    2015-12-30

    The inadequate reporting of cross-sectional studies, as in the case of the prevalence of metabolic syndrome, could cause problems in the synthesis of new evidence and lead to errors in the formulation of public policies. To evaluate the reporting quality of the articles regarding metabolic syndrome prevalence in Peruvian adults using the STROBE recommendations. We conducted a thorough literature search with the terms "Metabolic Syndrome", "Sindrome Metabolico" and "Peru" in MEDLINE/PubMed, LILACS, SciELO, LIPECS and BVS-Peru until December 2014. We selected those who were population-based observational studies with randomized sampling that reported prevalence of metabolic syndrome in adults aged 18 or more of both sexes. Information was analysed through the STROBE score per item and recommendation. Seventeen articles were included in this study. All articles met the recommendations related to the report of the study's rationale, design, and provision of summary measures. The recommendations with the lowest scores were those related to the sensitivity analysis (8%, n= 1/17), participant flowchart (18%, n= 3/17), missing data analysis (24%, n= 4/17), and number of participants in each study phase (24%, n= 4/17). Cross-sectional studies regarding the prevalence of metabolic syndrome in peruvian adults have an inadequate reporting on the methods and results sections. We identified a clear need to improve the quality of such studies.

  16. Strobe Light Testing and Kokanee Population Monitoring : Dworshak Dam Impacts Assessment and Fisheries Investigation Project, 97-99 : annual Progress Report for 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Maiolie, Melo A.; Harryman, Bill; Ament, William J.

    1999-12-01

    We tested the response of kokanee Oncorhynchus nerka to strobe lights. Testing was conducted on wild, free-ranging fish in their natural environment (i.e., the pelagic region of two large Idaho lakes). Split-beam hydroacoustics were used to record the distance kokanee moved away from the lights as well as the density of kokanee in the area near the lights. In control tests, where the strobe lights were lowered into the lake but kept turned off, kokanee remained within a few meters of the lights. Once the lights began flashing, kokanee quickly moved away from the light source. Kokanee were found to move an average of 30 to 136 m away from the lights in waters with Secchi transparencies from 2.8 to 17.5 m (p=0.00 to p=0.04). Kokanee densities near the lights were significantly lower (p=0.00 to p=0.07) when the lights were turned on than in control samples with no lights flashing. Flash rates of 300, 360, and 450 flashes/min elicited strong avoidance responses from the fish. Kokanee remained at least 24 m away from the lights during our longest test that lasted for 5 h 50 min. Kokanee appeared to be responding to flashes that were well less than 0.00016 lux above background lighting.

  17. Pc-based car license plate reading

    Science.gov (United States)

    Tanabe, Katsuyoshi; Marubayashi, Eisaku; Kawashima, Harumi; Nakanishi, Tadashi; Shio, Akio

    1994-03-01

    A PC-based car license plate recognition system has been developed. The system recognizes Chinese characters and Japanese phonetic hiragana characters as well as six digits on Japanese license plates. The system consists of a CCD camera, vehicle sensors, a strobe unit, a monitoring center, and an i486-based PC. The PC includes in its extension slots: a vehicle detector board, a strobe emitter board, and an image grabber board. When a passing vehicle is detected by the vehicle sensors, the strobe emits a pulse of light. The light pulse is synchronized with the time the vehicle image is frozen on an image grabber board. The recognition process is composed of three steps: image thresholding, character region extraction, and matching-based character recognition. The recognition software can handle obscured characters. Experimental results for hundreds of outdoor images showed high recognition performance within relatively short performance times. The results confirmed that the system is applicable to a wide variety of applications such as automatic vehicle identification and travel time measurement.

  18. Strobe Light Testing and Kokanee Population Monitoring : Dworshak Dam Impacts Assessment and Fisheries Investigation Project, 87-99 : Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Maiolie, Melo A.; Harryman, Bill; Ament, Willaim J.

    1999-11-01

    We tested the response of kokanee Oncorhynchus nerka to strobe lights. Testing was conducted on wild, free-ranging fish in their natural environment (i.e., the pelagic region of two large Idaho lakes). Split-beam hydroacoustics were used to record the distance kokanee moved away from the lights, as well as the density of kokanee in the area near the lights. In control tests, where strobe lights were lowered into the lake but kept turned off, kokanee remained within a few meters of the lights. Once the lights began flashing, kokanee quickly moved away from the light source. Kokanee moved 20 to 40 m away from the lights in waters with Secchi transparencies from 3 to 5 m. Kokanee densities near the lights were significantly lower (p=0.07 to p=0.00) when the lights were turned on than in control samples with no lights flashing. Flash rates of 300, 360, and 450 flashes/min elicited strong avoidance responses from the fish. Kokanee remained at least 24 m from the lights during our longest test that lasted for 5 h 50 min. We also continued annual monitoring of the kokanee population in Dworshak Reservoir. Spawner counts in four tributary streams that were used as an index of the adult population reached a record low of 144 spawners. No age-1 or age-2 kokanee were caught in 15 trawl hauls used to make population estimates. The population estimate of fry was 65,000 fish, {+-} 76% (90% C.I.). Flooding during the spring of 1996 was responsible for the low kokanee population.

  19. Investigation of optical and hydrodynamic processes initiated in biological tissues and liquids under the action of high-power pulses of 1.54 μm laser radiation

    Science.gov (United States)

    Belikov, Andrey V.; Fomicheva, Yana Yu.; Gagarskiy, Sergey V.; Sergeev, Andrey N.; Smirnov, Sergey N.; Zagorulko, Alexey M.

    2018-04-01

    The results of strobe-photographic study of steam-gas cavities formation in a bulk of saline as a result of high-power Yb,Er:Glass laser pulses impact are presented. The data on dynamics of laser pulse transmission through the laserproduced steam-gas cavity for different values of the distance h between the fiber end and the cuvette bottom (quartz plate) are presented. It was observed that the steam-gas cavity might be used for effective non-contact delivery of laser radiation to the submerged target: transmission value at maximum steam-gas cavity size reached 0.87 for h = 0.5 mm. The influence of steam-gas cavities parameters on ablation efficiency of eye lens destruction in vitro is also discussed. The ablation of cataract eye lens in liquid environment is more effective than in air. The efficiency of eye lens ablation decreases with the increase of h . The maximal values of ablation efficiency (2.14·10-3 mm3/pulse) were obtained in the case of underwater ablation at h = 0 mm.

  20. A pulsed magnetic stress applied to Drosophila melanogaster flies

    International Nuclear Information System (INIS)

    Delle Side, D; Giuffreda, E; Nassisi, V; Velardi, L; Bozzetti, M P; Friscini, A; Specchia, V

    2014-01-01

    We report the development of a system to feed pulsed magnetic stress to biological samples. The device is based on a RLC circuit that transforms the energy stored in a high voltage capacitor into a magnetic field inside a coil. The field has been characterized and we found that charging the capacitor with 24 kV results in a peak field of 0.4 T. In order to test its effect, we applied such a stress to the Drosophila melanogaster model and we examined its bio-effects. We analysed, in the germ cells, the effects on the control of specific DNA repetitive sequences that are activated after different environmental stresses. The deregulation of these sequences causes genomic instability and chromosomes breaks leading to sterility. The magnetic field treatment did not produce effects on repetitive sequences in the germ cells of Drosophila. Hence, this field doesn't produce deleterious effects linked to repetitive sequences derepression.

  1. A pulsed magnetic stress applied to Drosophila melanogaster flies

    Science.gov (United States)

    Delle Side, D.; Bozzetti, M. P.; Friscini, A.; Giuffreda, E.; Nassisi, V.; Specchia, V.; Velardi, L.

    2014-04-01

    We report the development of a system to feed pulsed magnetic stress to biological samples. The device is based on a RLC circuit that transforms the energy stored in a high voltage capacitor into a magnetic field inside a coil. The field has been characterized and we found that charging the capacitor with 24 kV results in a peak field of 0.4 T. In order to test its effect, we applied such a stress to the Drosophila melanogaster model and we examined its bio-effects. We analysed, in the germ cells, the effects on the control of specific DNA repetitive sequences that are activated after different environmental stresses. The deregulation of these sequences causes genomic instability and chromosomes breaks leading to sterility. The magnetic field treatment did not produce effects on repetitive sequences in the germ cells of Drosophila. Hence, this field doesn't produce deleterious effects linked to repetitive sequences derepression.

  2. Numerical Simulation on the Liquid Bridge Formation by the Applied Electric Pulse

    Science.gov (United States)

    Hong, Jin Seok; Kang, In Seok

    2010-11-01

    In this work, liquid bridge (LB) formation by the applied electric field is analyzed numerically. Numerical simulation captures the temporal behavior of liquid surface during the LB formation between a top plate and a bottom nozzle. Numerical results show the three stages of LB formation; interface elevation, impact/fast spreading and slow spreading/stabilization. The effect of the applied voltage pulse is also studied in terms of minimal electrical energy for LB formation. Non-linear behavior such as bubble trapping at the impact of liquid to plate is also captured and explained qualitatively. Grounded and floating plate is considered. The wetting criterion for LB formation is suggested and explained in terms of capillary pressure. The linear decrease of the final contact radius with the top plate contact angle is shown from the numerical results. In addition, the effects of the liquid properties on the dynamics are briefly discussed.

  3. Signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy applied to different soils

    Energy Technology Data Exchange (ETDEWEB)

    Nicolodelli, Gustavo, E-mail: gunicolodelli@hotmail.com [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Senesi, Giorgio Saverio, E-mail: giorgio.senesi@imip.cnr.it [Institute of Inorganic Methodologies and Plasmas, CNR, Bari, 70126 Bari (Italy); Romano, Renan Arnon, E-mail: renan.romano@gmail.com [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Physics Institute of São Carlos, University of São Paulo, IFSC-USP, Av. Trabalhador são-carlense, 400 Pq. Arnold Schimid, 13566-590 São Carlos, SP (Brazil); Oliveira Perazzoli, Ivan Luiz de, E-mail: ivanperazzoli@hotmail.com [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Milori, Débora Marcondes Bastos Pereira, E-mail: debora.milori@embrapa.br [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil)

    2015-09-01

    Laser-induced breakdown spectroscopy (LIBS) is a well-known consolidated analytical technique employed successfully for the qualitative and quantitative analysis of solid, liquid, gaseous and aerosol samples of very different nature and origin. Several techniques, such as dual-pulse excitation setup, have been used in order to improve LIBS's sensitivity. The purpose of this paper was to optimize the key parameters as excitation wavelength, delay time and interpulse, that influence the double pulse (DP) LIBS technique in the collinear beam geometry when applied to the analysis at atmospheric air pressure of soil samples of different origin and texture from extreme regions of Brazil. Additionally, a comparative study between conventional single pulse (SP) LIBS and DP LIBS was performed. An optimization of DP LIBS system, choosing the correct delay time between the two pulses, was performed allowing its use for different soil types and the use of different emission lines. In general, the collinear DP LIBS system improved the analytical performances of the technique by enhancing the intensity of emission lines of some elements up to about 5 times, when compared with conventional SP-LIBS, and reduced the continuum emission. Further, the IR laser provided the best performance in re-heating the plasma. - Highlights: • The correct choice of the delay time between the two pulses is crucial for the DP system. • An optimization of DP LIBS system was performed allowing its use for different soil and the use of different emission lines. • The DP LIBS system improved the analytical performances of the technique up to about 5 times, when compared with SP LIBS. • The IR laser provided the best performance in re-heating the plasma.

  4. Can the use of pulsed direct current induce oscillation in the applied pressure during spark plasma sintering?

    International Nuclear Information System (INIS)

    Salamon, David; Eriksson, Mirva; Nygren, Mats; Shen Zhijian

    2012-01-01

    The spark plasma sintering (SPS) process is known for its rapid densification of metals and ceramics. The mechanism behind this rapid densification has been discussed during the last few decades and is yet uncertain. During our SPS experiments we noticed oscillations in the applied pressure, related to a change in electric current. In this study, we investigated the effect of pulsed electrical current on the applied mechanical pressure and related changes in temperature. We eliminated the effect of sample shrinkage in the SPS setup and used a transparent quartz die allowing direct observation of the sample. We found that the use of pulsed direct electric current in our apparatus induces pressure oscillations with the amplitude depending on the current density. While sintering Ti samples we observed temperature oscillations resulting from pressure oscillations, which we attribute to magnetic forces generated within the SPS apparatus. The described current–pressure–temperature relations might increase understanding of the SPS process.

  5. Pulsed rf excited spectrometer having improved pulse width control

    International Nuclear Information System (INIS)

    1977-01-01

    RF excitation for a spectrometer is obtained by pulse width modulating an RF carrier to produce the desired broadband RF exciting spectrum. The RF excitation includes a train of composite RF pulses, each composite pulse having a primary pulse portion of a first RF phase and a second pulse portion of a second RF phase opposite that of the first. In this manner, the finite rise and fall times of the primary pulse portion are compensated for by the corresponding rise and fall times of the secondary pulse portion. The primary pulse portion is lengthened by an amount equal to the secondary pulse portion so that the secondary pulse portion cancels the added primary pulse portion. In a spectrometer, the compensating second pulse component removes certain undesired side bands of the RF excitation caused by the finite rise and fall times of the applied RF pulses. The compensating second pulse component removes certain undesired side bands associated with each of the resonant lines of the excited resonance spectrum of the sample under analysis, particularly for wide band RF excitation

  6. Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at the Grand Coulee Dam Third Powerplant Forebay, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.; McKinstry, C.; Cook, C. [Pacific Northwest National Laboratory

    2005-02-01

    This report documents a four-year study(a) to assess the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee (Oncorhynchus nerka kennerlyi) and rainbow trout (O. mykiss) at the entrance to the forebay of the third powerplant at Grand Coulee Dam. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by Pacific Northwest National Laboratory (PNNL) in conjunction with the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes). In this report, emphasis is placed on the methodology and results associated with the fourth project year and compared with findings from the previous years to provide an overall project summary. Since 1995, the Colville Confederated Tribes have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power and Conservation Council Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph dams on the Columbia River (Figure S.1). A 42-month investigation from 1996 to 1999 determined that from 211,685 to 576,676 fish, including kokanee and rainbow trout, were entrained annually at Grand Coulee Dam. Analysis of the data found that 85% of the total entrainment occurred at the dam's third powerplant. Because these entrainment rates represent a significant loss to the tribal fisheries upstream of the dam, they have been judged unacceptable to fishery managers responsible for perpetuating the fishery in Lake Roosevelt. In an effort to reduce fish entrainment rates, the scope of work for the Chief Joseph Kokanee Enhancement Project was modified in 2001 to include a multiyear study of the efficacy of using strobe lights to deter fish from entering the third powerplant forebay. Pacific Northwest National Laboratory initiated the four-year study in collaboration with Colville

  7. SBS pulse compression applied to a commercial Q-switch Nd-YAG laser

    International Nuclear Information System (INIS)

    Aliaga-Rossel, R.; Bayley, J.; Mamin, A.; Nizienko, Y.

    1997-01-01

    In optical diagnosis of dense Z-pinches, sub-nanosecond laser pulses are required in order to freeze the movement of the plasma during the probing. Commercial lasers can provide such type of pulses but they are either very expensive, or they have a very low energy per pulse. A technique that uses Stimulated Brillouin Scattering (SBS) to compress a 8 ns pulse of a commercial Q-switched Nd-YAG laser is reported here. To carry out this passive compression technique, a frequency doubled laser pulse of 10 ns was focused into a single SBS gas cell, 2 m long, filled with a mixture of argon and sulphurhexafluoride (SF 6 ) at a total pressure of 40 bar. A shorter and high intensity pulse was reflected from the cell (created by SBS) and it travelled back along its original path until it was separated from its original direction by using a dichroic polariser. The pumping volume of the SBS cell, the convergence of the incident beam and the pressure of the gas cell, were optimised to maximise both temporal compression and the output energy. Pulses of 10 ns were compressed to less than 400 ps with a conversion efficiency of 80%. This SBS pulse compression system has been used to make most of the optical measurements of a dense fibre pinch plasma produced in the MAGPIE generator

  8. Applying short-duration pulses as a mean to enhance volatile organic compounds removal by air sparging.

    Science.gov (United States)

    Ben Neriah, Asaf; Paster, Amir

    2017-10-01

    Application of short-duration pulses of high air pressure, to an air sparging system for groundwater remediation, was tested in a two-dimensional laboratory setup. It was hypothesized that this injection mode, termed boxcar, can enhance the remediation efficiency due to the larger ZOI and enhanced mixing which results from the pressure pulses. To test this hypothesis, flow and transport experiments were performed. Results confirm that cyclically applying short-duration pressure pulses may enhance contaminant cleanup. Comparing the boxcar to conventional continuous air-injection shows up to a three-fold increase in the single well radius of influence, dependent on the intensity of the short-duration pressure-pulses. The cleanup efficiency of Toluene from the water was 95% higher than that achieved under continuous injection with the same average conditions. This improvement was attributed to the larger zone of influence and higher average air permeability achieved in the boxcar mode, relative to continuous sparging. Mixing enhancement resultant from recurring pressure pulses was suggested as one of the mechanisms which enhance the contaminant cleanup. The application of a boxcar mode in an existing, multiwell, air sparging setup can be relatively straightforward: it requires the installation of an on-off valve in each of the injection-wells and a central control system. Then, turning off some of the wells, for a short-duration, result in a stepwise increase in injection pressure in the rest of the wells. It is hoped that this work will stimulate the additional required research and ultimately a field scale application of this new injection mode. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Pulsed laser deposition of semiconductor-ITO composite films on electric-field-applied substrates

    International Nuclear Information System (INIS)

    Narazaki, Aiko; Sato, Tadatake; Kawaguchi, Yoshizo; Niino, Hiroyuki; Yabe, Akira; Sasaki, Takeshi; Koshizaki, Naoto

    2002-01-01

    The DC electric-field effect on the crystallinity of II-VI semiconductor in composite systems has been investigated for CdS-ITO films fabricated via alternative pulsed laser deposition (PLD) of CdS and indium tin oxide (ITO) on electric-field-applied substrates. The alternative laser ablation was performed under irradiation of ArF excimer laser in mixture gas of helium and oxygen. The application of electric-field facilitated the preferential crystal-growth of CdS in nanometer scale at low pressure, whereas all the films grown without the field were amorphous. There is a large difference in the crystallization between the films grown on field-applied and heated substrates; the latter showed the crystal-growth with random orientations. This difference indicates that the existence of electric-field has an influence on the transformation from amorphous to crystalline phase of CdS. The driving force for the field-induced crystallization is also discussed in the light of the Joule heat

  10. Electrophoretically applied dielectrics for amorphous metal foils used in pulsed power saturable reactors

    International Nuclear Information System (INIS)

    Sharp, D.J.; Harjes, H.C.; Mann, G.A.

    1989-01-01

    Amorphous metal foil-wound inductors have been tested as ferromagnetic saturable inductive elements for pulsed-power (multi-terawatt) switching modules in the inertial confinement fusion program at Sandia National Laboratories. In simulated capacitor testing premature dielectric breakdown of thin polyethylene terephthalate film insulation in the inductor windings occurs at considerably below 2500 V. This appears to be due to inadvertant dielectric damage from micro-spikes on the amorphous foil surface. Electron micrographs and dielectric breakdown data illustrate that electrophoretically-applied dielectric coatings, deposited from organic aqueous colloid dispersions, can be used to provide insulating coatings on the foil which provide a 240% improvement (6000 V) in the breakdown strength of wound amorphous foil inductors. The theory and operation of a dedicated electrophoretic continuous coating system is described. The machine was constructed and successfully applied for dielectric coating of amorphous metal foil. Additional possible applications exist for practical dielectric coating of metallic films or foils used in various commercial wound-type capacitor structures. 7 refs., 9 figs

  11. Influence of duration and rate of pulse rise of the applied voltage on ozone concentration in the barrier glow discharge

    International Nuclear Information System (INIS)

    Krasnyj, V.V.; Klosovski, A.V.; Knysh, A.S.; Shvets, O.M.; Taran, V.S.; Tereshin, V.I.

    2005-01-01

    The barrier glow discharge between two planar electrodes, covered with dielectric, is studied under high-voltage pulsed power supply. Wide applications of such type of discharges, in particular, for ozone production, stimulated a number of investigations in this direction. In this work we investigated the dependence of ozone concentration on the duration and the rate of pulse rise of the applied voltage. The thyristor converter circuit with the shortening of input pulses on the base of the saturable throttle was used for the realization of this task. The output pulses with amplitude up to 15 kV, repetition frequency of 1 kHz, pulse duration of 0.3 μs (or 7 μs) and the rate of pulse rise of 0.1 μs were generated with this scheme. Measurements of the ozone concentration produced in the air mixture have shown that its value increased by factor two with variation of the rate of pulse rise from 0.5 μs to 0.1 μs (for pulse duration of 7 μs). The dependence of the ozone concentration on the variation of air mixture pressure in the discharge gap of reactor was investigated also. It was shown proportional increase of the output concentration of ozone with increasing the pressure value. Spectroscopic measurements carried out in the ultraviolet spectrum made it possible to analyze changing the concentration of ozone and nitric components. (author)

  12. Characteristics of bipolar-pulse generator for intense pulsed heavy ion beam acceleration

    International Nuclear Information System (INIS)

    Igawa, K.; Tomita, T.; Kitamura, I.; Ito, H.; Masugata, K.

    2006-01-01

    Intense pulsed heavy ion beams are expected to be applied to the implantation technology for semiconductor materials. In the application it is very important to purify the ion beam. In order to improve the purity of an intense pulsed ion beams we have proposed a new type of pulsed ion beam accelerator named 'bipolar pulse accelerator (BPA)'. A prototype of the experimental system has been developed to perform proof of principle experiments of the accelerator. A bipolar pulse generator has been designed for the generation of the pulsed ion beam with the high purity via the bipolar pulse acceleration and the electrical characteristics of the generator were evaluated. The production of the bipolar pulse has been confirmed experimentally. (author)

  13. Pulsed electron beam generation with fast repetitive double pulse system

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Surender Kumar; Deb, Pankaj; Shyam, Anurag, E-mail: surender80@gmail.com [Energetics and Electromagnetics Division, Bhabha Atomic Research Centre, Visakhapatnam (India); Sharma, Archana [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Mumbai (India)

    2014-07-01

    Longer duration high voltage pulse (∼ 100 kV, 260 ns) is generated and reported using helical pulse forming line in compact geometry. The transmission line characteristics of the helical pulse forming line are also used to develop fast repetition double pulse system with very short inter pulse interval. It overcomes the limitations caused due to circuit parameters, power supplies and load characteristics for fast repetitive high voltage pulse generation. The high voltage double pulse of 100 kV, 100 ns with an inter pulse repetition interval of 30 ns is applied across the vacuum field emission diode for pulsed electron beam generation. The electron beam is generated from cathode material by application of negative high voltage (> 100 kV) across the diode by explosive electron emission process. The vacuum field emission diode is made of 40 mm diameter graphite cathode and SS mesh anode. The anode cathode gap was 6 mm and the drift tube diameter was 10 cm. The initial experimental results of pulsed electron beam generation with fast repetitive double pulse system are reported and discussed. (author)

  14. Simulation of subnanosecond streamers in atmospheric-pressure air: Effects of polarity of applied voltage pulse

    Energy Technology Data Exchange (ETDEWEB)

    Babaeva, N. Yu.; Naidis, G. V. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation)

    2016-08-15

    Results of simulation of subnanosecond streamer propagation in corona gap configuration, obtained in the framework of 2D fluid model, are presented. Effects related with the polarity of a voltage pulse applied to the stressed electrode are discussed. It is argued that these effects (dependence of the discharge current and propagation velocity on the polarity of applied voltage) observed in experiments can be attributed to the difference in initial (preceding the streamer formation) distributions of charged species inside the gap. This difference can be caused by preionization (at negative polarity) of the gas inside the discharge gap by runaway electrons. Calculated streamers have large widths (up to 1 cm) and move with velocities in the range of 10{sup 9}–10{sup 10 }cm s{sup −1}, similar to experimental data.

  15. Luminous flux improvement of xenon fluorescent lamps by applying synchronized high-voltage pulse to the auxiliary external electrode

    Energy Technology Data Exchange (ETDEWEB)

    Motomura, Hideki; Oka, Kojiro; Sogabe, Toru; Jinno, Masafumi, E-mail: hmoto@mayu.ee.ehime-u.ac.jp [Department of Electrical and Electronic Engineering, Ehime University 3 Bunkyo-cho, Matsuyama, Ehime 790-8577 (Japan)

    2011-06-08

    As the environmental awareness of people becomes stronger, the demand for mercury-free light sources also becomes stronger. The authors have been developing cold cathode fluorescent lamps in which xenon gas is filled as an ultraviolet radiator instead of mercury. Previously the authors reported the luminous flux enhancement method using a grounded auxiliary external electrode (AEE). In this paper, in order to improve the luminous flux much more, a positive voltage pulse which was synchronized to the main driving negative voltage pulse was applied to the AEE. As a result, the maximum input power increased under which the positive column did not constrict and the luminous flux improved by 70% at the xenon filling pressure of 6.7 kPa. It is proved that the positive voltage pulse application to the AEE with the amplitude of more than 2 kV expands the positive column in the radial direction. It is attributed to the phenomenon that the residual ions and electrons, which are generated by dielectric barrier discharge between the AEE and the anode during the falling edge of the negative pulse to the cathode, spread the discharge path from the anode towards the AEE during the cold cathode discharge mode. By increasing the xenon filling pressure, luminous efficacy was improved to 25 lm W{sup -1}.

  16. CW seeded optical parametric amplifier providing wavelength and pulse duration tunable nearly transform limited pulses.

    Science.gov (United States)

    Hädrich, S; Gottschall, T; Rothhardt, J; Limpert, J; Tünnermann, A

    2010-02-01

    An optical parametric amplifier that delivers nearly transform limited pulses is presented. The center wavelength of these pulses can be tuned between 993 nm and 1070 nm and, at the same time, the pulse duration is varied between 206 fs and 650 fs. At the shortest pulse duration the pulse energy was increased up to 7.2 microJ at 50 kHz repetition rate. Variation of the wavelength is achieved by applying a tunable cw seed while the pulse duration can be varied via altering the pump pulse duration. This scheme offers superior flexibility and scaling possibilities.

  17. System for increasing laser pulse rate

    International Nuclear Information System (INIS)

    1980-01-01

    A technique of static elements is disclosed for combining a plurality of laser beams having time sequenced, pulsed radiation to achieve an augmented pulse rate. The technique may also be applied in a system for combining both time sequenced pulses and frequency distinct pulses for use in a system for isotope enrichment. (author)

  18. Comparative study of pulsed laser cleaning applied to weathered marble surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, P., E-mail: mportcal@upo.es [Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville (Spain); Antúnez, V.; Ortiz, R.; Martín, J.M. [Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville (Spain); Gómez, M.A. [Instituto Andaluz de Patrimonio Histórico, Camino de los Descubrimientos s/n, 41092 Seville (Spain); Hortal, A.R.; Martínez-Haya, B. [Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville (Spain)

    2013-10-15

    The removal of unwanted matter from surface stones is a demanding task in the conservation of cultural heritage. This paper investigates the effectiveness of near-infrared (IR) and ultraviolet (UV) laser pulses for the cleaning of surface deposits, iron oxide stains and different types of graffiti (black, red and green sprays and markers, and black cutting-edge ink) on dolomitic white marble. The performance of the laser techniques is compared to common cleaning methods on the same samples, namely pressurized water and chemical treatments. The degree of cleaning achieved with each technique is assessed by means of colorimetric measurements and X-ray microfluorescence. Eventual morphological changes induced on the marble substrate are monitored with optical and electronic microscopy. It is found that UV pulsed laser ablation at 266 nm manages to clean all the stains except the cutting-edge ink, although some degree of surface erosion is produced. The IR laser pulses at 1064 nm can remove surface deposits and black spray acceptably, but a yellowing is observed on the stone surface after treatment. An economic evaluation shows that pulsed laser cleaning techniques are advantageous for the rapid cleaning of small or inaccessible surface areas, although their extensive application becomes expensive due to the long operating times required.

  19. Comparative study of pulsed laser cleaning applied to weathered marble surfaces

    International Nuclear Information System (INIS)

    Ortiz, P.; Antúnez, V.; Ortiz, R.; Martín, J.M.; Gómez, M.A.; Hortal, A.R.; Martínez-Haya, B.

    2013-01-01

    The removal of unwanted matter from surface stones is a demanding task in the conservation of cultural heritage. This paper investigates the effectiveness of near-infrared (IR) and ultraviolet (UV) laser pulses for the cleaning of surface deposits, iron oxide stains and different types of graffiti (black, red and green sprays and markers, and black cutting-edge ink) on dolomitic white marble. The performance of the laser techniques is compared to common cleaning methods on the same samples, namely pressurized water and chemical treatments. The degree of cleaning achieved with each technique is assessed by means of colorimetric measurements and X-ray microfluorescence. Eventual morphological changes induced on the marble substrate are monitored with optical and electronic microscopy. It is found that UV pulsed laser ablation at 266 nm manages to clean all the stains except the cutting-edge ink, although some degree of surface erosion is produced. The IR laser pulses at 1064 nm can remove surface deposits and black spray acceptably, but a yellowing is observed on the stone surface after treatment. An economic evaluation shows that pulsed laser cleaning techniques are advantageous for the rapid cleaning of small or inaccessible surface areas, although their extensive application becomes expensive due to the long operating times required.

  20. Comparative study of pulsed laser cleaning applied to weathered marble surfaces

    Science.gov (United States)

    Ortiz, P.; Antúnez, V.; Ortiz, R.; Martín, J. M.; Gómez, M. A.; Hortal, A. R.; Martínez-Haya, B.

    2013-10-01

    The removal of unwanted matter from surface stones is a demanding task in the conservation of cultural heritage. This paper investigates the effectiveness of near-infrared (IR) and ultraviolet (UV) laser pulses for the cleaning of surface deposits, iron oxide stains and different types of graffiti (black, red and green sprays and markers, and black cutting-edge ink) on dolomitic white marble. The performance of the laser techniques is compared to common cleaning methods on the same samples, namely pressurized water and chemical treatments. The degree of cleaning achieved with each technique is assessed by means of colorimetric measurements and X-ray microfluorescence. Eventual morphological changes induced on the marble substrate are monitored with optical and electronic microscopy. It is found that UV pulsed laser ablation at 266 nm manages to clean all the stains except the cutting-edge ink, although some degree of surface erosion is produced. The IR laser pulses at 1064 nm can remove surface deposits and black spray acceptably, but a yellowing is observed on the stone surface after treatment. An economic evaluation shows that pulsed laser cleaning techniques are advantageous for the rapid cleaning of small or inaccessible surface areas, although their extensive application becomes expensive due to the long operating times required.

  1. Generation of ozone by Ns-width pulsed power

    International Nuclear Information System (INIS)

    Shimomura, Naoyuki; Wakimoto, Masaya; Shinke, Yosuke; Nagata, Masayoshi; Namihira, Takao; Akiyama, Hidenori

    2002-01-01

    The demand of ozone will be increasing for wholesome and environment-conscious sterilizations. The generation of ozone using the pulsed power discharge will apply electron accelerations around the head of streamer discharge principally. The breakdown in reactor often limits the efficient generation. Therefore, the pulse shape should be controlled for dimension of the reactor. It is clear that a pulse shortening is one of effective approaches. Pulsed power voltage with ns-width applies for ozone generation. The effects, on concentration and efficiency of generation, of pulse shape, repetition rate of pulse, flow rate of oxygen gas, and dimension and configuration of reactor, are discussed. The dimension and configuration of the reactor are optimized for the pulse width

  2. Pulsed ultrasonic stir welding system

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  3. Digital pulse-shape discrimination applied to an ultra-low-background gas-proportional counting system. First results

    International Nuclear Information System (INIS)

    Aalseth, C.E.; Day, A.R.; Fuller, E.S.; Hoppe, E.W.; Keillor, M.E.; Mace, E.K.; Myers, A.W.; Overman, C.T.; Panisko, M.E.; Seifert, A.

    2013-01-01

    A new ultra-low-background proportional counter design was recently developed at Pacific Northwest National Laboratory (PNNL). This design, along with an ultra-low-background counting system which provides passive and active shielding with radon exclusion, has been developed to complement a new shallow underground laboratory (∼30 m water-equivalent) constructed at PNNL. After these steps to mitigate dominant backgrounds (cosmic rays, external gamma-rays, radioactivity in materials), remaining background events do not exclusively arise from ionization of the proportional counter gas. Digital pulse-shape discrimination (PSD) is thus employed to further improve measurement sensitivity. In this work, a template shape is generated for each individual sample measurement of interest, a 'self-calibrating' template. Differences in event topology can also cause differences in pulse shape. In this work, the temporal region analyzed for each event is refined to maximize background discrimination while avoiding unwanted sensitivity to event topology. This digital PSD method is applied to sample and background data, and initial measurement results from a biofuel methane sample are presented in the context of low-background measurements currently being developed. (author)

  4. Development of bipolar pulse accelerator for intense pulsed ion beam acceleration

    International Nuclear Information System (INIS)

    Fujioka, Y.; Mitsui, C.; Kitamura, I.; Takahashi, T.; Masugata, K.; Tanoue, H.; Arai, K.

    2003-01-01

    To improve the purity of an intense pulsed ion beams a new type of pulsed ion beam accelerator named 'bipolar pulse accelerator (BPA)' was proposed. In the accelerator purity of the beam is expected. To confirm the principle of the accelerator experimental system was developed. The system utilizes B y type magnetically insulated acceleration gap and operated with single polar negative pulse. A coaxial gas puff plasma gun placed in the grounded anode was used as an ion source, and source plasma (nitrogen) of current density approx. = 25 A/cm 2 , duration approx. = 1.5 μs was injected into the acceleration gap. The ions are successfully accelerated from the grounded anode to the drift tube by applying negative pulse of voltage 180 kV, duration 60 ns to the drift tube. Pulsed ion beam of current density approx. = 40 A/cm 2 , duration approx. 60 ns was obtained at 42 mm downstream from the anode surface. (author)

  5. Maskless patterning by pulsed-power plasma printing

    NARCIS (Netherlands)

    Huiskamp, T.; Brok, W.J.M.; Stevens, A.A.E.; Heesch, van E.J.M.; Pemen, A.J.M.

    2012-01-01

    In this paper, pulsed-power technology was applied to plasma printing, which is a maskless plasma patterning solution that is being developed for the fabrication process of printed electronics. A high-voltage pulse source was developed and applied to a high-speed plasma printer to improve the speed

  6. Hybrid pulse pile-up rejection system as applied to Rutherford backscattering

    International Nuclear Information System (INIS)

    Boie, R.A.; Wildnauer, K.R.

    1977-01-01

    The problems of pulse on pulse pile-up and noise limited pile-up rejectors are considered in detail for Rutherford backscattering spectra. The forms of these spectra allow the distortions from pile-up and the residual pile-up after rejection to be understood via a simple model. Extended calculations allow us to predict the effects quite accurately. A new pile-up rejection system is described. The ''linear'' rejection method is implemented with peak stretchers and advantageously combined with an event counting rejector to provide a versatile high performance system

  7. An ultrashort-pulse reconstruction software: GROG, applied to the FLAME laser system

    Science.gov (United States)

    Galletti, Mario

    2016-03-01

    The GRENOUILLE traces of FLAME Probe line pulses (60mJ, 10mJ after compression, 70fs, 1cm FWHM, 10Hz) were acquired in the FLAME Front End Area (FFEA) at the Laboratori Nazionali di Frascati (LNF), Instituto Nazionale di Fisica Nucleare (INFN). The complete characterization of the laser pulse parameters was made using a new algorithm: GRenouille/FrOG (GROG). A characterization with a commercial algorithm, QUICKFrog, was also made. The temporal and spectral parameters came out to be in great agreement for the two kinds of algorithms. In this experimental campaign the Probe line of FLAME has been completely characterized and it has been showed how GROG, the developed algorithm, works as well as QuickFrog algorithm with this type of pulse class.

  8. Monolitic integrated circuit for the strobed charge-to-time converter

    International Nuclear Information System (INIS)

    Bel'skij, V.I.; Bushnin, Yu.B.; Zimin, S.A.; Punzhin, Yu.N.; Sen'ko, V.A.; Soldatov, M.M.; Tokarchuk, V.P.

    1985-01-01

    The developed and comercially produced semiconducting circuit - gating charge-to-time converter KR1101PD1 is described. The considered integrated circuit is a short pulse charge-to-time converter with integration of input current. The circuit is designed for construction of time-to-pulse analog-to-digital converters utilized in multichannel detection systems when studying complex topology processes. Input resistance of the circuit is 0.1 Ω permissible input current is 50 mA, maximum measured charge is 300-1000 pC

  9. Modeling of Pulsed Direct-Current Glow Discharge

    International Nuclear Information System (INIS)

    Du Mu; Zheng Yaru; Fan Yujia; Zhang Nan; Liu Chengsen; Wang Dezhen

    2010-01-01

    A self-consistent model was adopted to study the time evolution of low-voltage pulsed DC glow discharge. The distributions of electric field, ion density and electron density in nitrogen were investigated in our simulation, and the temporal shape of the discharge current was also obtained. Our results show that the dynamic behaviors of the discharge depends strongly on the applied pulse voltage, and the use of higher pulse voltages results in a significantly increase of discharge current and a decrease of discharge delay time. The current-voltage characteristic calculated by adjusting secondary electron emission coefficient for different applied pulse voltage under the gas pressure of 1 Torr is found in a reasonable agreement with the experimental results.

  10. Comparison of low-intensity pulsed ultrasound and pulsed electromagnetic field treatments on OPG and RANKL expression in human osteoblast-like cells

    NARCIS (Netherlands)

    Borsje, Manon A.; Ren, Yijin; de Haan-Visser, H. Willy; Kuijer, Roel

    OBJECTIVE: To compare two clinically applied treatments to stimulate bone healing-low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic field (PEMF)-for their effects on RANKL and OPG expression in osteoblast-like cells in vitro. MATERIALS AND METHODS: LIPUS or PEMF was applied to

  11. Investigating Pulsed Discharge Polarity Employing Solid-State Pulsed Power Electronics

    DEFF Research Database (Denmark)

    Davari, Pooya; Zare, Firuz; Blaabjerg, Frede

    2015-01-01

    condition plays an important role in maintaining the desired performance. Investigating the system parameters contributed to the generated pulses is an effective way in improving the system performance further ahead. One of these parameters is discharge polarity which has received less attention....... In this paper, effects of applied voltage polarity on plasma discharge have been investigated in different mediums at atmospheric pressure. The experiments have been conducted based on high voltage DC power supply and high voltage pulse generator for point-to-point and point-to-plane geometries. Furthermore......, the influence of electric field distribution is analyzed using Finite Element simulations for the employed geometries and mediums. The experimental and simulation results have verified the important role of the applied voltage polarity, employed geometry and medium of the system on plasma generation....

  12. Development of bipolar-pulse accelerator for intense pulsed ion beam acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Masugata, Katsumi [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan)]. E-mail: masugata@eng.toyama-u.ac.jp; Shimizu, Yuichro [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan); Fujioka, Yuhki [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan); Kitamura, Iwao [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan); Tanoue, Hisao [National Institute of Advanced Industry Science and Technology, 1-1-1, Umezono, Tsukuba-shi, Ibaraki 305-8568 (Japan); Arai, Kazuo [National Institute of Advanced Industry Science and Technology, 1-1-1, Umezono, Tsukuba-shi, Ibaraki 305-8568 (Japan)

    2004-12-21

    To improve the purity of intense pulsed ion beams, a new type of pulsed ion beam accelerator named 'bipolar pulse accelerator' was proposed. To confirm the principle of the accelerator a prototype of the experimental system was developed. The system utilizes By type magnetically insulated acceleration gap and operated with single polar negative pulse. A coaxial gas puff plasma gun was used as an ion source, which was placed inside the grounded anode. Source plasma (nitrogen) of current density {approx}25A/cm2, duration {approx}1.5{mu}s was injected into the acceleration gap by the plasma gun. The ions were successfully accelerated from the grounded anode to the drift tube by applying negative pulse of voltage 240kV, duration 100ns to the drift tube. Pulsed ion beam of current density {approx}40A/cm2, duration {approx}50ns was obtained at 41mm downstream from the anode surface. To evaluate the irradiation effect of the ion beam to solid material, an amorphous silicon thin film of thickness {approx}500nm was used as the target, which was deposited on the glass substrate. The film was found to be poly-crystallized after 4-shots of the pulsed nitrogen ion beam irradiation.

  13. Development of pulse neutron coal analyzer

    International Nuclear Information System (INIS)

    Jing Shiwie; Gu Deshan; Qiao Shuang; Liu Yuren; Liu Linmao; Jing Shiwei

    2005-01-01

    This article introduced the development of pulsed neutron coal analyzer by pulse fast-thermal neutron analysis technology in the Radiation Technology Institute of Northeast Normal University. The 14 MeV pulse neutron generator and bismuth germanate detector and 4096 multichannel analyzer were applied in this system. The multiple linear regression method employed to process data solved the interferential problem of multiple elements. The prototype (model MZ-MKFY) had been applied in Changshan and Jilin power plant for about a year. The results of measuring the main parameters of coal such as low caloric power, whole total water, ash content, volatile content, and sulfur content, with precision acceptable to the coal industry, are presented

  14. An ultra short pulse reconstruction software applied to the GEMINI high power laser system

    Energy Technology Data Exchange (ETDEWEB)

    Galletti, Mario, E-mail: mario.gall22@gmail.com [INFN – LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Galimberti, Marco [Central Laser Facility, Rutherford Appleton Laboratory, Didcot (United Kingdom); Hooker, Chris [Central Laser Facility, Rutherford Appleton Laboratory, Didcot (United Kingdom); University of Oxford, Oxford (United Kingdom); Chekhlov, Oleg; Tang, Yunxin [Central Laser Facility, Rutherford Appleton Laboratory, Didcot (United Kingdom); Bisesto, Fabrizio Giuseppe [INFN – LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Curcio, Alessandro [INFN – LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Sapienza – University of Rome, P.le Aldo Moro, 2, 00185 Rome (Italy); Anania, Maria Pia [INFN – LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Giulietti, Danilo [Physics Department of the University and INFN, Pisa (Italy)

    2016-09-01

    The GRENOUILLE traces of Gemini pulses (15 J, 30 fs, PW, shot per 20 s) were acquired in the Gemini Target Area PetaWatt at the Central Laser Facility (CLF), Rutherford Appleton Laboratory (RAL). A comparison between the characterizations of the laser pulse parameters made using two different types of algorithms: Video Frog and GRenouille/FrOG (GROG), was made. The temporal and spectral parameters came out to be in great agreement for the two kinds of algorithms. In this experimental campaign it has been showed how GROG, the developed algorithm, works as well as VideoFrog algorithm with the PetaWatt pulse class. - Highlights: • Integration of the diagnostic tool on high power laser. • Validation of the GROG algorithm in comparison to a well-known commercial available software. • Complete characterization of the GEMINI ultra-short high power laser pulse.

  15. Pulsed ultrasonic stir welding method

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    A method of performing ultrasonic stir welding uses a welding head assembly to include a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. In the method, the rod is rotated about its longitudinal axis during a welding operation. During the welding operation, a series of on-off ultrasonic pulses are applied to the rod such that they propagate parallel to the rod's longitudinal axis. At least a pulse rate associated with the on-off ultrasonic pulses is controlled.

  16. A comparison of in-class learner engagement across lecture, problem-based learning, and team learning using the STROBE classroom observation tool.

    Science.gov (United States)

    Kelly, P Adam; Haidet, Paul; Schneider, Virginia; Searle, Nancy; Seidel, Charles L; Richards, Boyd F

    2005-01-01

    Having recently introduced team learning into the preclinical medical curriculum, evidence of the relative impact of this instructional method on in-class learner engagement was sought. To compare patterns of engagement behaviors among learners in class sessions across 3 distinct instructional methods: lecture, problem-based learning (PBL), and team learning. Trained observers used the STROBE classroom observation tool to measure learner engagement in 7 lecture, 4 PBL, and 3 team learning classrooms over a 12-month period. Proportions of different types of engagement behaviors were compared using chi-square. In PBL and team learning, the amount of learner-to-learner engagement was similar and much greater than in lecture, where most engagement was of the learner-to-instructor and self-engagement types. Also, learner-to-instructor engagement appeared greater in team learning than in PBL. Observed engagement behaviors confirm the potential of team learning to foster engagement similar to PBL, but with greater faculty input.

  17. Use of the Frank sequence in pulsed EPR

    DEFF Research Database (Denmark)

    Tseitlin, Mark; Quine, Richard W.; Eaton, Sandra S.

    2011-01-01

    The Frank polyphase sequence has been applied to pulsed EPR of triarylmethyl radicals at 256MHz (9.1mT magnetic field), using 256 phase pulses. In EPR, as in NMR, use of a Frank sequence of phase steps permits pulsed FID signal acquisition with very low power microwave/RF pulses (ca. 1.5m......W in the application reported here) relative to standard pulsed EPR. A 0.2mM aqueous solution of a triarylmethyl radical was studied using a 16mm diameter cross-loop resonator to isolate the EPR signal detection system from the incident pulses. Keyword: Correlation spectroscopy,Multi-pulse EPR,Low power pulses,NMR,EPR...

  18. Pulsed power supply and coaxial reactor applied to E. coli elimination in water by pulsed dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Quiroz V, V. E.; Lopez C, R.; Rodriguez M, B. G.; Pena E, R.; Mercado C, A.; Valencia A, R.; Hernandez A, A. N.; Barocio, S. R.; Munoz C, A. E. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); De la Piedad B, A., E-mail: regulo.lopez@inin.gob.mx [Instituto Tecnologico de Toluca, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico)

    2013-07-01

    The design and instrumentation intended for ATTC8739 Escherichia coli (E. coli) bacteria elimination in water, based on non thermal plasma generation at room pressure have been carried out by means of dielectric pulsed discharges. The latter have been produced by a power supply capable of providing voltages up to the order of 45 kV, 1-500 {mu}s pulse widths and variable frequencies between 100 Hz to 2000 Hz. This supply feeds a coaxial discharge reactor of the simple dielectric barrier type. The adequate operation of the system has been tested with the elimination of E. coli at 10{sup 4} and 10{sup 6} bacteria/ml concentrations, leading to reductions up to 85.3% and 95.1%, respectively, during the first 30 min of treatment. (Author)

  19. Acousto-optic replication of ultrashort laser pulses

    Science.gov (United States)

    Yushkov, Konstantin B.; Molchanov, Vladimir Ya.; Ovchinnikov, Andrey V.; Chefonov, Oleg V.

    2017-10-01

    Precisely controlled sequences of ultrashort laser pulses are required in various scientific and engineering applications. We developed a phase-only acousto-optic pulse shaping method for replication of ultrashort laser pulses in a TW laser system. A sequence of several Fourier-transform-limited pulses is generated from a single femtosecond laser pulse by means of applying a piecewise linear phase modulation over the whole emission spectrum. Analysis demonstrates that the main factor which limits maximum delay between the pulse replicas is spectral resolution of the acousto-optic dispersive delay line used for pulse shaping. In experiments with a Cr:forsterite laser system, we obtained delays from 0.3 to 3.5 ps between two replicas of 190 fs transform-limited pulses at the central wavelength of laser emission, 1230 nm.

  20. Plasma density enhancement in atmospheric-pressure dielectric-barrier discharges by high-voltage nanosecond pulse in the pulse-on period: a PIC simulation

    International Nuclear Information System (INIS)

    Sang Chaofeng; Sun Jizhong; Wang Dezhen

    2010-01-01

    A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.

  1. Plasma density enhancement in atmospheric-pressure dielectric-barrier discharges by high-voltage nanosecond pulse in the pulse-on period: a PIC simulation

    Science.gov (United States)

    Sang, Chaofeng; Sun, Jizhong; Wang, Dezhen

    2010-02-01

    A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.

  2. Supercoherent phenomena in pulsed power

    International Nuclear Information System (INIS)

    O'Rourke, R.C.

    1983-01-01

    This chapter proposes the formulation of programs of basic physics research to transform Pulsed Power Technology (PPT) to Pulsed Power Science and Technology (PPS and T) by formulating the laws of the quantized microscopic electromagnetic field; applying the microscopic electromagnetic field theory to the generation, propagation and deposition of pulses in nonlinear networks; learning more about the basic super coherent ''micro-structure'' in space and time of the many-photon states of pulsed laser beams; learning more about the basic super coherent ''micro-structure'' in space and time of the many-electronstates of pulsed electron and ion laser beams; and learning everything about the ''micro-picture'' of so-called ''dielectric breakdown'' and the associated absolute time delays. Promotes the idea that laser, electron and ion beams are similar kinds of pulses in the microscopic electromagnetic field. Presents expression for the microscopic electromagnetic field in order to show the role of supercoherence in PPS and T

  3. The Pulse Line Ion Accelerator Concept

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Richard J.

    2006-02-15

    The Pulse Line Ion Accelerator concept was motivated by the desire for an inexpensive way to accelerate intense short pulse heavy ion beams to regimes of interest for studies of High Energy Density Physics and Warm Dense Matter. A pulse power driver applied at one end of a helical pulse line creates a traveling wave pulse that accelerates and axially confines the heavy ion beam pulse. Acceleration scenarios with constant parameter helical lines are described which result in output energies of a single stage much larger than the several hundred kilovolt peak voltages on the line, with a goal of 3-5 MeV/meter acceleration gradients. The concept might be described crudely as an ''air core'' induction linac where the PFN is integrated into the beam line so the accelerating voltage pulse can move along with the ions to get voltage multiplication.

  4. Modular pulse sequencing in a tokamak system

    International Nuclear Information System (INIS)

    Chew, A.C.; Lee, S.; Saw, S.H.

    1992-01-01

    Pulse technique applied in the timing and sequencing of the various part of the MUT tokamak system are discussed. The modular architecture of the pulse generating device highlights the versatile application of the simple physical concepts in precise and complicated research experiment. (author)

  5. Improved stabilization scheme for computerized pulse-height analyzers

    International Nuclear Information System (INIS)

    Cohn, C.E.

    1982-01-01

    A stabilization scheme has been adapted from a 24-bit to a 16-bit computer. A precision pulse generator produces tagged reference pulses alternately of high and low amplitude. Gain and zero corrections are obtained from these and applied to each normal event. Provisions are made to make the system robust against pileup corruption of the reference pulses. (orig.)

  6. Thermodynamic analysis of a pulse tube engine

    International Nuclear Information System (INIS)

    Moldenhauer, Stefan; Thess, André; Holtmann, Christoph; Fernández-Aballí, Carlos

    2013-01-01

    Highlights: ► Numerical model of the pulse tube engine process. ► Proof that the heat transfer in the pulse tube is out of phase with the gas velocity. ► Proof that a free piston operation is possible. ► Clarifying the thermodynamic working principle of the pulse tube engine. ► Studying the influence of design parameters on the engine performance. - Abstract: The pulse tube engine is an innovative simple heat engine based on the pulse tube process used in cryogenic cooling applications. The working principle involves the conversion of applied heat energy into mechanical power, thereby enabling it to be used for electrical power generation. Furthermore, this device offers an opportunity for its wide use in energy harvesting and waste heat recovery. A numerical model has been developed to study the thermodynamic cycle and thereby help to design an experimental engine. Using the object-oriented modeling language Modelica, the engine was divided into components on which the conservation equations for mass, momentum and energy were applied. These components were linked via exchanged mass and enthalpy. The resulting differential equations for the thermodynamic properties were integrated numerically. The model was validated using the measured performance of a pulse tube engine. The transient behavior of the pulse tube engine’s underlying thermodynamic properties could be evaluated and studied under different operating conditions. The model was used to explore the pulse tube engine process and investigate the influence of design parameters.

  7. Comparison of pulsed corona plasma and pulsed electric fields for the decontamination of water containing Legionella pneumophila as model organism.

    Science.gov (United States)

    Banaschik, Robert; Burchhardt, Gerhard; Zocher, Katja; Hammerschmidt, Sven; Kolb, Juergen F; Weltmann, Klaus-Dieter

    2016-12-01

    Pulsed corona plasma and pulsed electric fields were assessed for their capacity to kill Legionella pneumophila in water. Electrical parameters such as in particular dissipated energy were equal for both treatments. This was accomplished by changing the polarity of the applied high voltage pulses in a coaxial electrode geometry resulting in the generation of corona plasma or an electric field. For corona plasma, generated by high voltage pulses with peak voltages of +80kV, Legionella were completely killed, corresponding to a log-reduction of 5.4 (CFU/ml) after a treatment time of 12.5min. For the application of pulsed electric fields from peak voltages of -80kV a survival of log 2.54 (CFU/ml) was still detectable after this treatment time. Scanning electron microscopy images of L. pneumophila showed rupture of cells after plasma treatment. In contrast, the morphology of bacteria seems to be intact after application of pulsed electric fields. The more efficient killing for the same energy input observed for pulsed corona plasma is likely due to induced chemical processes and the generation of reactive species as indicated by the evolution of hydrogen peroxide. This suggests that the higher efficacy and efficiency of pulsed corona plasma is primarily associated with the combined effect of the applied electric fields and the promoted reaction chemistry. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Time-resolved processes in a pulsed electrical discharge in argon bubbles in water

    Science.gov (United States)

    Gershman, S.; Belkind, A.

    2010-12-01

    A phenomenological picture of a pulsed electrical discharge in gas bubbles in water is produced by combining electrical, spectroscopic, and imaging characterization methods. The discharge is generated by applying 1 μ s pulses of 5 to 20 kV between a needle and a disk electrode submerged in water. An Ar gas bubble surrounds the tip of the needle electrode. Imaging, electrical characteristics, and time-resolved optical emission spectroscopic data suggest a fast streamer propagation mechanism and the formation of a plasma channel in the bubble. Comparing the electrical and imaging data for consecutive pulses applied to the bubble at a frequency of 1 Hz indicates that each discharge proceeds as an entirely new process with no memory of the previous discharge aside from the presence of long-lived chemical species, such as ozone and oxygen. Imaging and electrical data show the presence of two discharge events during each applied voltage pulse, a forward discharge near the beginning of the applied pulse depositing charge on the surface of the bubble and a reverse discharge removing the accumulated charge from the water/gas interface when the applied voltage is turned off. The pd value of ~ 300-500 torr cm, the 1 μs long pulse duration, low repetition rate, and unidirectional character of the applied voltage pulses make the discharge process here unique compared to the traditional corona or dielectric barrier discharges.

  9. Tolerance of human skin applying pulsed brachytherapy with large afterloading moulds

    International Nuclear Information System (INIS)

    Fritz, Peter; Hensley, Frank W.; Berns, Christiane; Schraube, Peter; Wannenmacher, Michael

    1995-01-01

    Purpose: The concept of pulsed brachytherapy suggested by Brenner and Hall requires an unusual fractionation scheme. The effectiveness and sequelae of this new irradiation method was observed on patients with disseminated cutaneous metastases of breast cancer. Materials and Methods: A flexible, re-usable skin mould (weight 110 g) was developed for use with a PDR afterload. An array of 18 parallel catheters (2 mm diameter) at equal distances of 10 mm was constructed by fixation of the catheters in a plastic wire mesh. The array is sewn between two foam rubber slabs of 5 mm thickness to provide a defined constant distance to the skin. Irradiations are performed up to a maximum field size of 17 x 23,5 cm 2 with a nominal 37 GBq Ir-192 source in pulses of 1 Gy per hour at the skin surface. The dose distribution is geometrically optimized to provide a homogeneous skin dose (100±10%). The 80% dose level lies at 5 mm below the skin surface. 20 patients suffering from cutaneous metastases at the thoracic wall were treated with 22 fields (area irradiated: 100-919 cm 2 ) at total doses of 40 to 50 Gy applying two PDR courses with a pause of 4 to 6 weeks. 12 of the fields were previously irradiated with external beam therapy to doses of 40 to 60 Gy at 7 to 22 months in advance. Results: Complete remissions (CR) were achieved in 21 out of 22 fields. (18(20)) patients were free of relapse at the time of death or evaluation. Pre-irradiated fields (n=12): follow-up times 6-21,5 months (median: 11,5 months). CR: (11(12)) fields. Recurrencies:(2(12)) fields. Maximum degree of early skin reactions: marked erythema: (8(12)) fields; epitheliolysis (>50% field size): (4(12)) fields. Intermediate skin reactions after minimum follow-up of 6 months: pigmentation/atrophy: (8(12)) fields; marked teleangiectasia: (3(12)) fields; small skin necrosis:(1(12)) fields. Newly irradiated fields (n=11): follow-up: 6-13,5 months (median:8 month). CR: (11(11)) fields. Recurrencies:(0(11)) fields

  10. Performance scaling via passive pulse shaping in cavity-enhanced optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Siddiqui, Aleem M; Moses, Jeffrey; Hong, Kyung-Han; Lai, Chien-Jen; Kärtner, Franz X

    2010-06-15

    We show that an enhancement cavity seeded at the full repetition rate of the pump laser can automatically reshape small-signal gain across the interacting pulses in an optical parametric chirped-pulse amplifier for close-to-optimal operation, significantly increasing both the gain bandwidth and the conversion efficiency, in addition to boosting gain for high-repetition-rate amplification. Applied to a degenerate amplifier, the technique can provide an octave-spanning gain bandwidth.

  11. High-intensity pulsed electric field variables affecting Staphylococcus aureus inoculated in milk.

    Science.gov (United States)

    Sobrino-López, A; Raybaudi-Massilia, R; Martín-Belloso, O

    2006-10-01

    Staphylococcus aureus is an important milk-related pathogen that is inactivated by high-intensity pulsed electric fields (HIPEF). In this study, inactivation of Staph. aureus suspended in milk by HIPEF was studied using a response surface methodology, in which electric field intensity, pulse number, pulse width, pulse polarity, and the fat content of milk were the controlled variables. It was found that the fat content of milk did not significantly affect the microbial inactivation of Staph. aureus. A maximum value of 4.5 log reductions was obtained by applying 150 bipolar pulses of 8 mus each at 35 kV/cm. Bipolar pulses were more effective than those applied in the monopolar mode. An increase in electric field intensity, pulse number, or pulse width resulted in a drop in the survival fraction of Staph. aureus. Pulse widths close to 6.7 micros lead to greater microbial death with a minimum number of applied pulses. At a constant treatment time, a greater number of shorter pulses achieved better inactivation than those treatments performed at a lower number of longer pulses. The combined action of pulse number and electric field intensity followed a similar pattern, indicating that the same fraction of microbial death can be reached with different combinations of the variables. The behavior and relationship among the electrical variables suggest that the energy input of HIPEF processing might be optimized without decreasing the microbial death.

  12. Energy and dose characteristics of ion bombardment during pulsed laser deposition of thin films under pulsed electric field

    International Nuclear Information System (INIS)

    Fominski, V.Yu.; Nevolin, V.N.; Smurov, I.

    2004-01-01

    Experiments on pulsed laser deposition of Fe films on Si substrates were performed with the aim to analyze the role of factors determining the formation of an energy spectrum and a dose of ions bombarding the film in strong pulsed electric fields. The amplitude of the high-voltage pulse (-40 kV) applied to the substrate and the laser fluence at the Fe target were fixed during the deposition. Owing to the high laser fluence (8 J/cm 2 ) at a relatively low power (20 mJ), the ionization of the laser plume was high, but the Fe vapor pressure near the substrate was low enough to avoid arcing. Electric signals from a target exposed to laser radiation were measured under different conditions (at different delay times) of application of electric pulses. The Si(100) substrates were analyzed using Rutherford ion backscattering/channeling spectrometry. The ion implantation dose occurred to be the highest if the high-voltage pulse was applied at a moment of time when the ion component of the plume approached the substrate. In this case, the implanted ions had the highest energy determined by the amplitude of the electric pulse. An advance or delay in applying a high-voltage pulse caused the ion dose and energy to decrease. A physical model incorporating three possible modes of ion implantation was proposed for the interpretation of the experimental results. If a laser plume was formed in the external field, ions were accelerated from the front of the dense plasma, and the ion current depended on the gas-dynamic expansion of the plume. The application of a high-voltage pulse, at the instant when the front approached the substrate, maintained the mode that was characteristic of the traditional plasma immersion ion implantation, and the ion current was governed by the dynamics of the plasma sheath in the substrate-to-target gap. In the case of an extremely late application of a high-voltage pulse, ions retained in the entire volume of the experimental chamber (as a result of the

  13. A 70 kV solid-state high voltage pulse generator based on saturable pulse transformer.

    Science.gov (United States)

    Fan, Xuliang; Liu, Jinliang

    2014-02-01

    High voltage pulse generators are widely applied in many fields. In recent years, solid-state and operating at repetitive mode are the most important developing trends of high voltage pulse generators. A solid-state high voltage pulse generator based on saturable pulse transformer is proposed in this paper. The proposed generator is consisted of three parts. They are charging system, triggering system, and the major loop. Saturable pulse transformer is the key component of the whole generator, which acts as a step-up transformer and main switch during working process of this generator. The circuit and working principles of the proposed pulse generator are introduced first in this paper, and the saturable pulse transformer used in this generator is introduced in detail. Circuit of the major loop is simulated to verify the design of the system. Demonstration experiments are carried out, and the results show that when the primary energy storage capacitor is charged to a high voltage, such as 2.5 kV, a voltage with amplitude of 86 kV can be achieved on the secondary winding. The magnetic core of saturable pulse transformer is saturated deeply and the saturable inductance of the secondary windings is very small. The switch function of the saturable pulse transformer can be realized ideally. Therefore, a 71 kV output voltage pulse is formed on the load. Moreover, the magnetic core of the saturable pulse transformer can be reset automatically.

  14. Chirped pulse amplification: Present and future

    International Nuclear Information System (INIS)

    Maine, P.; Strickland, D.; Pessot, M.; Squier, J.; Bado, P.; Mourou, G.; Harter, D.

    1988-01-01

    Short pulses with ultrahigh peak powers have been generated in Nd: glass and Alexandrite using the Chirped Pulse Amplification (CPA) technique. This technique has been successful in producing picosecond terawatt pulses with a table-top laser system. In the near future, CPA will be applied to large laser systems such as NOVA to produce petawatt pulses (1 kJ in a 1 ps pulse) with focused intensities exceeding 10/sup /plus/21/ W/cm 2 . These pulses will be associated with electric fields in excess of 100 e/a/sub o/ 2 and blackbody energy densities equivalent to 3 /times/ 10 10 J/cm 3 . This petawatt source will have important applications in x-ray laser research and will lead to fundamentally new experiments in atomic, nuclear, solid-state, plasma, and high-energy density physics. A review of present and future designs are discussed. 17 refs., 5 figs

  15. Pulse-height defect in single-crystal CVD diamond detectors

    Energy Technology Data Exchange (ETDEWEB)

    Beliuskina, O.; Imai, N. [The University of Tokyo, Center for Nuclear Study, Wako, Saitama (Japan); Strekalovsky, A.O.; Aleksandrov, A.A.; Aleksandrova, I.A.; Ilich, S.; Kamanin, D.V.; Knyazheva, G.N.; Kuznetsova, E.A.; Mishinsky, G.V.; Pyatkov, Yu.V.; Strekalovsky, O.V.; Zhuchko, V.E. [JINR, Flerov Laboratory of Nuclear Reactions, Dubna, Moscow Region (Russian Federation); Devaraja, H.M. [Manipal University, Manipal Centre for Natural Sciences, Manipal, Karnataka (India); Heinz, C. [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, Giessen (Germany); Heinz, S. [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, Giessen (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Hofmann, S.; Kis, M.; Kozhuharov, C.; Maurer, J.; Traeger, M. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Pomorski, M. [CEA, LIST, Diamond Sensor Laboratory, CEA/Saclay, Gif-sur-Yvette (France)

    2017-02-15

    The pulse-height versus deposited energy response of a single-crystal chemical vapor deposition (scCVD) diamond detector was measured for ions of Ti, Cu, Nb, Ag, Xe, Au, and of fission fragments of {sup 252} Cf at different energies. For the fission fragments, data were also measured at different electric field strengths of the detector. Heavy ions have a significant pulse-height defect in CVD diamond material, which increases with increasing energy of the ions. It also depends on the electrical field strength applied at the detector. The measured pulse-height defects were explained in the framework of recombination models. Calibration methods known from silicon detectors were modified and applied. A comparison with data for the pulse-height defect in silicon detectors was performed. (orig.)

  16. Pulsed Power Applications in High Intensity Proton Rings

    CERN Document Server

    Zhang, Wu; Ducimetière, Laurent; Fowler, Tony; Kawakubo, Tadamichi; Mertens, Volker; Sandberg, Jon; Shirakabe, Yoshihisa

    2005-01-01

    The pulsed power technology has been applied in particle accelerators and storage rings for over four decades. It is most commonly used in injection, extraction, beam manipulation, source, and focusing systems. These systems belong to the class of repetitive pulsed power. In this presentation, we review and discuss the history, present status, and future challenge of pulsed power applications in high intensity proton accelerators and storage rings.

  17. Femtosecond Pulse Characterization as Applied to One-Dimensional Photonic Band Edge Structures

    Science.gov (United States)

    Fork, Richard L.; Gamble, Lisa J.; Diffey, William M.

    1999-01-01

    The ability to control the group velocity and phase of an optical pulse is important to many current active areas of research. Electronically addressable one-dimensional photonic crystals are an attractive candidate to achieve this control. This report details work done toward the characterization of photonic crystals and improvement of the characterization technique. As part of the work, the spectral dependence of the group delay imparted by a GaAs/AlAs photonic crystal was characterized. Also, a first generation an electrically addressable photonic crystal was tested for the ability to electronically control the group delay. The measurement technique, using 100 femtosecond continuum pulses was improved to yield high spectral resolution (1.7 nanometers) and concurrently with high temporal resolution (tens of femtoseconds). Conclusions and recommendations based upon the work done are also presented.

  18. Correlation functions formed by a femtosecond pulse interferometer

    NARCIS (Netherlands)

    Cui, M.; Bhattacharya, N.; Urbach, H.P.; Van den berg, S.A.

    2008-01-01

    We experimentally demonstrate that a stabilized femtosecond frequency comb can be applied as a tool for distance measurement. The scheme is based on optical interference between individual pulses in a Michelson type interferometer. The cross-correlation functions between individual pulses with a

  19. Moderate and high intensity pulsed electric fields

    OpenAIRE

    Timmermans, Rian Adriana Hendrika

    2018-01-01

    Pulsed Electric Field (PEF) processing has gained a lot of interest the last decades as mild processing technology as alternative to thermal pasteurisation, and is suitable for preservation of liquid food products such as fruit juices. PEF conditions typically applied at industrial scale for pasteurisation are high intensity pulsed electric fields aiming for minimal heat load, with an electric field strength (E) in the range of 15 − 20 kV/cm and pulse width (τ) between 2 − 20 μs. Alternativel...

  20. Eradication of multidrug-resistant pseudomonas biofilm with pulsed electric fields.

    Science.gov (United States)

    Khan, Saiqa I; Blumrosen, Gaddi; Vecchio, Daniela; Golberg, Alexander; McCormack, Michael C; Yarmush, Martin L; Hamblin, Michael R; Austen, William G

    2016-03-01

    Biofilm formation is a significant problem, accounting for over eighty percent of microbial infections in the body. Biofilm eradication is problematic due to increased resistance to antibiotics and antimicrobials as compared to planktonic cells. The purpose of this study was to investigate the effect of Pulsed Electric Fields (PEF) on biofilm-infected mesh. Prolene mesh was infected with bioluminescent Pseudomonas aeruginosa and treated with PEF using a concentric electrode system to derive, in a single experiment, the critical electric field strength needed to kill bacteria. The effect of the electric field strength and the number of pulses (with a fixed pulse length duration and frequency) on bacterial eradication was investigated. For all experiments, biofilm formation and disruption were confirmed with bioluminescent imaging and Scanning Electron Microscopy (SEM). Computation and statistical methods were used to analyze treatment efficiency and to compare it to existing theoretical models. In all experiments 1500 V are applied through a central electrode, with pulse duration of 50 μs, and pulse delivery frequency of 2 Hz. We found that the critical electric field strength (Ecr) needed to eradicate 100-80% of bacteria in the treated area was 121 ± 14 V/mm when 300 pulses were applied, and 235 ± 6.1 V/mm when 150 pulses were applied. The area at which 100-80% of bacteria were eradicated was 50.5 ± 9.9 mm(2) for 300 pulses, and 13.4 ± 0.65 mm(2) for 150 pulses. 80% threshold eradication was not achieved with 100 pulses. The results indicate that increased efficacy of treatment is due to increased number of pulses delivered. In addition, we that showed the bacterial death rate as a function of the electrical field follows the statistical Weibull model for 150 and 300 pulses. We hypothesize that in the clinical setting, combining systemic antibacterial therapy with PEF will yield a synergistic effect leading to improved

  1. 77 FR 54848 - Airworthiness Directives; The Boeing Company Airplanes

    Science.gov (United States)

    2012-09-06

    ... prompted by a review of the tail strobe light installation, which revealed that the tail strobe light is... strobe light installation, located at the aft end of section 48, it was determined that the tail strobe... on the tail strobe light system wiring could create an ignition source and potential fire, which...

  2. Overview of The Pulse Line Ion Accelerator

    International Nuclear Information System (INIS)

    Briggs, R.J.; Bieniosek, F.M.; Coleman, J.E.; Eylon, S.; Henestroza, E.; Leitner, M.; Logan, B.G.; Reginato, L.L.; Roy, P.K.; Seidl, P.A.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Caporaso, G.J.; Friedman, A.; Grote, D.P.; Nelson, S.D.

    2006-01-01

    An overview of the Pulse Line Ion Accelerator (PLIA) concept and its development is presented. In the PLIA concept a pulse power driver applied to one end of a helical pulse line creates a traveling wave pulse that accelerates and axially confines a heavy ion beam pulse The motivation for its development at the IFE-VNL is the acceleration of intense, short pulse, heavy ion beams to regimes of interest for studies of High Energy Density Physics and Warm Dense Matter. Acceleration scenarios with constant parameter helical lines are described which result in output energies of a single stage much larger than the several hundred kilovolt peak voltages on the line, with a goal of 3-5 MeV/meter acceleration gradients. The main attraction of the concept is the very low cost it promises. It might be described crudely as an ''air core'' induction linac where the pulse-forming network is integrated into the beam line so the accelerating voltage pulse can move along with the ions to get voltage multiplication

  3. Application of pulsed OSL to polymineral fine-grained samples

    International Nuclear Information System (INIS)

    Feathers, James K.; Casson, M. Aksel; Schmidt, Amanda Henck; Chithambo, Makaiko L.

    2012-01-01

    Pulsed OSL is applied to nine fine-grained sediment samples from Sichuan province, China, using stimulating pulses of 10 μs on and 240 μs off, with an infrared exposure prior to each OSL measurement. Comparison of fading rates between pulsed and non-pulsed signals, the latter also obtained with a preceding IR exposure, shows that fading is significant for mainly the non-pulsed signals. Presence of a pulsed IRSL and the magnitudes of b-value to correct for lower alpha efficiency suggest that pulsing does not fully remove a significant feldspar signal, only a fading component. Comparison with ages of quartz extracts shows that pulsed OSL ages are consistent, while CW-OSL ages are slightly older and CW-IRSL ages are much older. The older ages suggest a less well-bleached feldspar component.

  4. Parametric study on femtosecond laser pulse ablation of Au films

    International Nuclear Information System (INIS)

    Ni Xiaochang; Wang Chingyue; Yang Li; Li Jianping; Chai Lu; Jia Wei; Zhang Ruobing; Zhang Zhigang

    2006-01-01

    Ablation process of 1 kHz rate femtosecond lasers (pulse duration 148 fs, wavelength 775 nm) with Au films on silica substrates has been systemically studied. The single-pulse threshold can be obtained directly. For the multiple pulses the ablation threshold varies with the number of pulses applied to the surface due to the incubation effect. From the plot of accumulated laser fluence N x φ th (N) and the number of laser pulses N, incubation coefficient of Au film can be obtained (s = 0.765). As the pulse energy is increased, the single pulse ablation rate is increasing following two ablation logarithmic regimes, which can be explained by previous research

  5. Effect of parallel magnetic field on repetitively unipolar nanosecond pulsed dielectric barrier discharge under different pulse repetition frequencies

    Science.gov (United States)

    Liu, Yidi; Yan, Huijie; Guo, Hongfei; Fan, Zhihui; Wang, Yuying; Wu, Yun; Ren, Chunsheng

    2018-03-01

    A magnetic field, with the direction parallel to the electric field, is applied to the repetitively unipolar positive nanosecond pulsed dielectric barrier discharge. The effect of the parallel magnetic field on the plasma generated between two parallel-plate electrodes in quiescent air is experimentally studied under different pulse repetition frequencies (PRFs). It is indicated that only the current pulse in the rising front of the voltage pulse occurs, and the value of the current is increased by the parallel magnetic field under different PRFs. The discharge uniformity is improved with the decrease in PRF, and this phenomenon is also observed in the discharge with the parallel magnetic field. By using the line-ratio technique of optical emission spectra, it is found that the average electron density and electron temperature under the considered PRFs are both increased when the parallel magnetic field is applied. The incremental degree of average electron density is basically the same under the considered PRFs, while the incremental degree of electron temperature under the higher-PRFs is larger than that under the lower-PRFs. All the above phenomena are explained by the effect of parallel magnetic field on diffusion and dissipation of electrons.

  6. Pulse amplitude and frequency effects in a pulsed packed column

    Energy Technology Data Exchange (ETDEWEB)

    Russell, S H

    1954-04-15

    A study has been made of the effect on the efficiency and capacity of applying pulses of varying amplitude and frequency to a packed column. In the efficiency studies, the maximum efficiency was obtained with a pulse having an amplitude of 3/8'' and a frequency of 140 cycles per minute. Under these conditions, the column was about five times as efficient as a simple packed column. Two general types of results were obtained in the capacity studies. Under certain conditions, the capacity increased over that of a simple packed column, but under others, it decreased. Some of the factors causing this were investigated but the fundamental reasons were not determined due to a lack of personnel for the necessary experiments. (author)

  7. Pulse amplitude and frequency effects in a pulsed packed column

    International Nuclear Information System (INIS)

    Russell, S.H.

    1954-04-01

    A study has been made of the effect on the efficiency and capacity of applying pulses of varying amplitude and frequency to a packed column. In the efficiency studies, the maximum efficiency was obtained with a pulse having an amplitude of 3/8'' and a frequency of 140 cycles per minute. Under these conditions, the column was about five times as efficient as a simple packed column. Two general types of results were obtained in the capacity studies. Under certain conditions, the capacity increased over that of a simple packed column, but under others, it decreased. Some of the factors causing this were investigated but the fundamental reasons were not determined due to a lack of personnel for the necessary experiments. (author)

  8. Contrast Enhancement in TOF cerebral angiography at 7 T using Saturation and MT pulses under SAR constraints: impact of VERSE and sparse pulses

    Science.gov (United States)

    Schmitter, Sebastian; Bock, Michael; Johst, Sören; Auerbach, Edward J.; Uğurbil, Kâmil; Van de Moortele, Pierre-François

    2011-01-01

    Cerebral 3D time of flight (TOF) angiography significantly benefits from ultra high fields, mainly due to higher SNR and to longer T1 relaxation time of static brain tissues, however, SAR significantly increases with B0. Thus, additional RF pulses commonly used at lower field strengths to improve TOF contrast such as saturation of venous signal and improved background suppression by magnetization transfer typically cannot be used at higher fields. In this work we aimed at reducing SAR for each RF pulse category in a TOF sequence. We use the VERSE principle for the slab selective TOF excitation as well as the venous saturation RF pulses. Additionally, MT pulses are implemented by sparsely applying the pulses only during acquisition of the central k-space lines to limit their SAR contribution. Image quality, angiographic contrast and SAR reduction were investigated as a function of VERSE parameters and of the total number of MT pulses applied. Based on these results, a TOF protocol was generated that increases the angiographic contrast by more than 50% and reduces subcutaneous fat signal while keeping the resulting SAR within regulatory limits. PMID:22139829

  9. Particle identification via pulse-shape discrimination with a charge-integrating ADC

    International Nuclear Information System (INIS)

    Heltsley, J.H.; Brandon, L.; Galonsky, A.; Heilbronn, L.; Remington, B.A.; Langer, S.; Van der Molen, A.; Yurkon, J.; Michigan State Univ., East Lansing; Kasagi, J.

    1988-01-01

    A charge-integrating ADC has been used to sample the intensity in two different time regions of a pulse and thus to sense the shape of the pulse. This idea has been applied to produce neutron/γ-ray discrimination from pulses in a liquid scintillation detector. Optimization of available parameters yields good pulse-shape discrimination for pulses greater than those produced by 100 keV electrons. The method uses only general purpose electronics. (orig.)

  10. Two-pulse acceleration for BEPCII injector linac

    International Nuclear Information System (INIS)

    Pei Shilun; Wang Shuhong; Lu Weibin

    2007-01-01

    In order to double the injection rate of positron beam from the linac to the storage ring of BEPC II, a two-pulse generation and acceleration scheme has been proposed. The two-pulse simulation by programs including LIAR, PARMELA, EGUN and TRANSPORT is described first and the method is applied in the beam dynamics studies of BEPC II linac. The experiment of two-pulse acceleration was performed in BEPC II linac and some preliminary results are obtained, which provides a good reference for further upgrading of BEPC II injector linac. (authors)

  11. Slow light and pulse propagation in semiconductor waveguides

    DEFF Research Database (Denmark)

    Hansen, Per Lunnemann

    This thesis concerns the propagation of optical pulses in semiconductor waveguide structures with particular focus on methods for achieving slow light or signal delays. Experimental pulse propagation measurements of pulses with a duration of 180 fs, transmitted through quantum well based waveguide...... structures, are presented. Simultaneous measurements of the pulse transmission and delay are measured as a function of input pulse energy for various applied electrical potentials. Electrically controlled pulse delay and advancement are demonstrated and compared with a theoretical model. The limits...... of the model as well as the underlying physical mechanisms are analysed and discussed. A method to achieve slow light by electromagnetically induced transparency (EIT) in an inhomogeneously broadened quantum dot medium is proposed. The basic principles of EIT are assessed and the main dissimilarities between...

  12. Tube welding by the pulsed tig method

    International Nuclear Information System (INIS)

    Dick, N.T.

    1973-01-01

    During the construction of the helical wound boiler pods for the AGR stations at Hartlepool and Heysham, automatic TIG-welding techniques were used. In some cases limited access excluded the use of wire feed techniques and autogenous techniques had to be used. To resolve the problem of excessive concavity which occurred when using constant current autogenous techniques on 14.5 mm OD mild steel tubes of 1.8 mm thickness, pulsed-TIG welding was applied. By modifying the trailing edge of the pulse to produce a crater fill with each pulse, susceptibility to porosity and solidification cracking was reduced. The incorporation of digital counter permitted pulse duration, background duration, and electrode indexing distance to be monitored. (U.K.)

  13. High-intensity pulsed beam source with tunable operation mode

    Science.gov (United States)

    Nashilevskiy, A. V.; Kanaev, G. G.; Ezhov, V. V.; Shamanin, V. I.

    2017-05-01

    The report presents the design of an electron and an ion pulsed accelerator. The powerful high-voltage pulse generator of the accelerator and the vacuum bushing insulator is able to change the polarity of the output voltage. The low-inductance matching transformer provides an increase in the DFL output impedance by 4 times. The generator based on a high voltage pulse transformer and a pseudo spark switch is applied for DFL charging. The high-impedance magnetically insulated focusing diode with Br magnetic field and the “passive” anode was used to realize the ion beam generation mode. The plasma is formed on the surface of the anode caused by an electrical breakdown at the voltage edge pulse; as a result, the carbon ion and proton beam is generated. This beam has the following parameters: the current density is about 400 A/cm2 (in focus): the applied voltage is up to 450 kV. The accelerator is designed for the research on the interaction of the charged particle pulsed beams with materials and for the development of technological processes of a material modification.

  14. Photoelectrocatalytic decomposition of ethylene using TiO2/activated carbon fiber electrode with applied pulsed direct current square-wave potential

    International Nuclear Information System (INIS)

    Ye, Sheng-ying; Zheng, Sen-hong; Song, Xian-liang; Luo, Shu-can

    2015-01-01

    Highlights: • Ethylene was decomposed by a photoelectrocatalytic (PEC) process. • A pulsed direct current square-wave (PDCSW) potential was applied to the PEC cell. • An electrode of TiO 2 or modified TiO 2 and activated carbon fiber (ACF) was used. • TiO 2 /ACF photocatalyst electrodes were modified by gamma radiolysis. • Efficiencies of the PEC process were higher than those of the process using DC. - Abstract: Removing ethylene (C 2 H 4 ) from the atmosphere of storage facilities for fruits and vegetable is one of the main challenges in their postharvest handling for maximizing their freshness, quality, and shelf life. In this study, we investigated the photoelectrocatalytic (PEC) degradation of ethylene gas by applying a pulsed direct current DC square-wave (PDCSW) potential and by using a Nafion-based PEC cell. The cell utilized a titanium dioxide (TiO 2 ) photocatalyst or γ-irradiated TiO 2 (TiO 2 * ) loaded on activated carbon fiber (ACF) as a photoelectrode. The apparent rate constant of a pseudo-first-order reaction (K) was used to describe the PEC degradation of ethylene. Parameters of the potential applied to the PEC cell in a reactor that affect the degradation efficiency in terms of the K value were studied. These parameters were frequency, duty cycle, and voltage. Ethylene degradation by application of a constant PDCSW potential to the PEC electrode of either TiO 2 /ACF cell or TiO 2 * /ACF cell enhanced the efficiency of photocatalytic degradation and PEC degradation. Gamma irradiation of TiO 2 in the electrode and the applied PDCSW potential synergistically increased the K value. Independent variables (frequency, duty cycle, and voltage) of the PEC cell fabricated from TiO 2 subjected 20 kGy γ radiation were optimized to maximize the K value by using response surface methodology with quadratic rotation–orthogonal composite experimental design. Optimized conditions were as follows: 358.36 Hz frequency, 55.79% duty cycle, and 64.65 V

  15. Method for controlling an accelerator-type neutron source, and a pulsed neutron source

    International Nuclear Information System (INIS)

    Givens, W.W.

    1991-01-01

    The patent deals with an accelerator-type neutron source which employs a target, an ionization section and a replenisher for supplying accelerator gas. A positive voltage pulse is applied to the ionization section to produce a burst of neutrons. A negative voltage pulse is applied to the ionization section upon the termination of the positive voltage pulse to effect a sharp cut-off to the burst of neutrons. 4 figs

  16. Subpicosecond pulse radiolysis studies on spur reactions and nanotechnology

    International Nuclear Information System (INIS)

    Tagawa, S.

    2003-01-01

    Recently we developed a subpicosecond pulse radiolysis system, although the time resolution of pulse radiolysis had remained about 30 ps for these 30 years. Time resolution and S/N ratio have been improved dramatically. The subpicosecond pulse radiolysis is a very powerful method to detect and observe transient phenomena in radiation chemistry and physics within 30 ps. By using the subpicosecond pulse radiolysis, many researches have been carried out on ultrafast phenomena in radiation chemistry, physics, biology and applied fields such as material science.Especially the spur reaction, which is one of the most important reactions in radiation chemistry, physics and biology, has been studied in the very wide time range from subpicosecond to several hundred nanoseconds by very high S/N ratio. These experimental results were analyzed theoretically and applied to the basic data for nanofabrication, which are very important in both next generation lithography and nanotechnology

  17. Pulsed critical current measurements of NbTi in perpendicular and parallel pulsed magnetic fields using the new Cryo-BI-Pulse System

    International Nuclear Information System (INIS)

    Stehr, V; Tan, K S; Hopkins, S C; Glowacki, B A; Keyser, A De; Bockstal, L Van; Deschagt, J

    2006-01-01

    Rapid transport current versus high magnetic field characterisation of high-irreversibility type II superconductors is important to maximise their critical parameters. HTS conductors are already used to produce insert coils that increase the fields of conventional magnets made from NbTi (Nb, Ta) 3 Sn and Nb 3 Al wires. There is fundamental interest in the study of HTS tapes and wires in magnetic fields higher than 21T, the current limit of superconducting magnets producing a DC field. Such fields can be obtained by using pulse techniques. High critical currents cannot be routinely measured with a continuous current applied at liquid helium, hydrogen or neon temperatures because of thermal and mechanical effects. A newly developed pulsed magnetic field and pulsed current system which allows rapid J c (B, T) measurements of the whole range of superconducting materials was tested with a multifilamentary NbTi wire in perpendicular and parallel orientations

  18. CO2 laser pulse shortening by laser ablation of a metal target

    International Nuclear Information System (INIS)

    Donnelly, T.; Mazoyer, M.; Lynch, A.; O'Sullivan, G.; O'Reilly, F.; Dunne, P.; Cummins, T.

    2012-01-01

    A repeatable and flexible technique for pulse shortening of laser pulses has been applied to transversely excited atmospheric (TEA) CO 2 laser pulses. The technique involves focusing the laser output onto a highly reflective metal target so that plasma is formed, which then operates as a shutter due to strong laser absorption and scattering. Precise control of the focused laser intensity allows for timing of the shutter so that different temporal portions of the pulse can be reflected from the target surface before plasma formation occurs. This type of shutter enables one to reduce the pulse duration down to ∼2 ns and to remove the low power, long duration tails that are present in TEA CO 2 pulses. The transmitted energy is reduced as the pulse duration is decreased but the reflected power is ∼10 MW for all pulse durations. A simple laser heating model verifies that the pulse shortening depends directly on the plasma formation time, which in turn is dependent on the applied laser intensity. It is envisaged that this plasma shutter will be used as a tool for pulse shaping in the search for laser pulse conditions to optimize conversion efficiency from laser energy to useable extreme ultraviolet (EUV) radiation for EUV source development.

  19. Thermal detection thresholds of Aδ- and C-fibre afferents activated by brief CO2 laser pulses applied onto the human hairy skin.

    Directory of Open Access Journals (Sweden)

    Maxim Churyukanov

    Full Text Available Brief high-power laser pulses applied onto the hairy skin of the distal end of a limb generate a double sensation related to the activation of Aδ- and C-fibres, referred to as first and second pain. However, neurophysiological and behavioural responses related to the activation of C-fibres can be studied reliably only if the concomitant activation of Aδ-fibres is avoided. Here, using a novel CO(2 laser stimulator able to deliver constant-temperature heat pulses through a feedback regulation of laser power by an online measurement of skin temperature at target site, combined with an adaptive staircase algorithm using reaction-time to distinguish between responses triggered by Aδ- and C-fibre input, we show that it is possible to estimate robustly and independently the thermal detection thresholds of Aδ-fibres (46.9±1.7°C and C-fibres (39.8±1.7°C. Furthermore, we show that both thresholds are dependent on the skin temperature preceding and/or surrounding the test stimulus, indicating that the Aδ- and C-fibre afferents triggering the behavioural responses to brief laser pulses behave, at least partially, as detectors of a change in skin temperature rather than as pure level detectors. Most importantly, our results show that the difference in threshold between Aδ- and C-fibre afferents activated by brief laser pulses can be exploited to activate C-fibres selectively and reliably, provided that the rise in skin temperature generated by the laser stimulator is well-controlled. Our approach could constitute a tool to explore, in humans, the physiological and pathophysiological mechanisms involved in processing C- and Aδ-fibre input, respectively.

  20. The effect of pulsed electric fields on carotenoids bioaccessibility

    NARCIS (Netherlands)

    Bot, Francesca; Verkerk, Ruud; Mastwijk, Hennie; Anese, Monica; Fogliano, Vincenzo; Capuano, Edoardo

    2018-01-01

    Tomato fractions were subjected to pulsed electric fields treatment combined or not with heating. Results showed that pulsed electric fields and heating applied in combination or individually induced permeabilization of cell membranes in the tomato fractions. However, no changes in β-carotene and

  1. Nanosecond bipolar pulse generators for bioelectrics.

    Science.gov (United States)

    Xiao, Shu; Zhou, Chunrong; Yang, Enbo; Rajulapati, Sambasiva R

    2018-04-26

    Biological effects caused by a nanosecond pulse, such as cell membrane permeabilization, peripheral nerve excitation and cell blebbing, can be reduced or cancelled by applying another pulse of reversed polarity. Depending on the degree of cancellation, the pulse interval of these two pulses can be as long as dozens of microseconds. The cancellation effect diminishes as the pulse duration increases. To study the cancellation effect and potentially utilize it in electrotherapy, nanosecond bipolar pulse generators must be made available. An overview of the generators is given in this paper. A pulse forming line (PFL) that is matched at one end and shorted at the other end allows a bipolar pulse to be produced, but no delay can be inserted between the phases. Another generator employs a combination of a resistor, an inductor and a capacitor to form an RLC resonant circuit so that a bipolar pulse with a decaying magnitude can be generated. A third generator is a converter, which converts an existing unipolar pulse to a bipolar pulse. This is done by inserting an inductor in a transmission line. The first phase of the bipolar pulse is provided by the unipolar pulse's rising phase. The second phase is formed during the fall time of the unipolar pulse, when the inductor, which was previously charged during the flat part of the unipolar pulse, discharges its current to the load. The fourth type of generator uses multiple MOSFET switches stacked to turn on a pre-charged, bipolar RC network. This approach is the most flexible in that it can generate multiphasic pulses that have different amplitudes, delays, and durations. However, it may not be suitable for producing short nanosecond pulses (<100 ns), whereas the PFL approach and the RLC approach with gas switches are used for this range. Thus, each generator has its own advantages and applicable range. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Accuracy improvement in measurement of arterial wall elasticity by applying pulse inversion to phased-tracking method

    Science.gov (United States)

    Miyachi, Yukiya; Arakawa, Mototaka; Kanai, Hiroshi

    2018-07-01

    In our studies on ultrasonic elasticity assessment, minute change in the thickness of the arterial wall was measured by the phased-tracking method. However, most images in carotid artery examinations contain multiple-reflection noise, making it difficult to evaluate arterial wall elasticity precisely. In the present study, a modified phased-tracking method using the pulse inversion method was examined to reduce the influence of the multiple-reflection noise. Moreover, aliasing in the harmonic components was corrected by the fundamental components. The conventional and proposed methods were applied to a pulsated tube phantom mimicking the arterial wall. For the conventional method, the elasticity was 298 kPa without multiple-reflection noise and 353 kPa with multiple-reflection noise on the posterior wall. That of the proposed method was 302 kPa without multiple-reflection noise and 297 kPa with multiple-reflection noise on the posterior wall. Therefore, the proposed method was very robust against multiple-reflection noise.

  3. Fast pulse amplifier

    International Nuclear Information System (INIS)

    Lepetit, J.; Poussier, E.

    1984-01-01

    This amplifier comprises an inverter transformer, the primary circuit of which receives a pulse and the secondary circuit of which is connected to several amplifying elements in parallel. The inverter transformer is made of coaxial cable segments winded around a magnetic torus; the cable cores connected in series constitute the primary circuit and the braiding of cables, connected in parallel, are the secondary circuit. The transformer comprises, besides, delay lines in series with each braiding of the secondary circuit, these ones are such that pulses issued from each braiding arrive together to the secondary circuit connectors. This invention applies, noticeably in the case of a high voltage amplifier, to the control of deflection blocks of particles used in medicine or in particle accelerators [fr

  4. A Novel Subnanosecond Monocycle Pulse Generator for UWB Radar Applications

    Directory of Open Access Journals (Sweden)

    Xinfan Xia

    2014-01-01

    Full Text Available A novel ultra-wideband (UWB monocycle pulse generator with good performance is designed and demonstrated in this paper. It contains a power supply circuit, a pulse drive circuit, a unique pulse forming circuit, and a novel monopolar-to-monocycle pulse transition circuit. The drive circuit employs wideband bipolar junction transistors (BJTs and linear power amplifier transistor to produce a high amplitude drive pulse, and the pulse forming circuit uses the transition characteristics of step recovery diode (SRD effectively to produce a negative narrow pulse. At last, the monocycle pulse forming circuit utilizes a novel inductance L short-circuited stub to generate the monocycle pulse directly. Measurement results show that the waveform of the generated monocycle pulses is over 76 V in peak-to-peak amplitude and 3.2 ns in pulse full-width. These characteristics of the monocycle pulse are advantageous for obtaining long detection range and high resolution, when it is applied to ultra-wideband radar applications.

  5. A study of new pulse auscultation system.

    Science.gov (United States)

    Chen, Ying-Yun; Chang, Rong-Seng

    2015-04-14

    This study presents a new type of pulse auscultation system, which uses a condenser microphone to measure pulse sound waves on the wrist, captures the microphone signal for filtering, amplifies the useful signal and outputs it to an oscilloscope in analog form for waveform display and storage and delivers it to a computer to perform a Fast Fourier Transform (FFT) and convert the pulse sound waveform into a heartbeat frequency. Furthermore, it also uses an audio signal amplifier to deliver the pulse sound by speaker. The study observed the principles of Traditional Chinese Medicine's pulsing techniques, where pulse signals at places called "cun", "guan" and "chi" of the left hand were measured during lifting (100 g), searching (125 g) and pressing (150 g) actions. Because the system collects the vibration sound caused by the pulse, the sensor itself is not affected by the applied pressure, unlike current pulse piezoelectric sensing instruments, therefore, under any kind of pulsing pressure, it displays pulse changes and waveforms with the same accuracy. We provide an acquired pulse and waveform signal suitable for Chinese Medicine practitioners' objective pulse diagnosis, thus providing a scientific basis for this Traditional Chinese Medicine practice. This study also presents a novel circuit design using an active filtering method. An operational amplifier with its differential features eliminates the interference from external signals, including the instant high-frequency noise. In addition, the system has the advantages of simple circuitry, cheap cost and high precision.

  6. Direct measurement of the pulse duration and frequency chirp of seeded XUV free electron laser pulses

    Science.gov (United States)

    Azima, Armin; Bödewadt, Jörn; Becker, Oliver; Düsterer, Stefan; Ekanayake, Nagitha; Ivanov, Rosen; Kazemi, Mehdi M.; Lamberto Lazzarino, Leslie; Lechner, Christoph; Maltezopoulos, Theophilos; Manschwetus, Bastian; Miltchev, Velizar; Müller, Jost; Plath, Tim; Przystawik, Andreas; Wieland, Marek; Assmann, Ralph; Hartl, Ingmar; Laarmann, Tim; Rossbach, Jörg; Wurth, Wilfried; Drescher, Markus

    2018-01-01

    We report on a direct time-domain measurement of the temporal properties of a seeded free-electron laser pulse in the extreme ultraviolet spectral range. Utilizing the oscillating electromagnetic field of terahertz radiation, a single-shot THz streak-camera was applied for measuring the duration as well as spectral phase of the generated intense XUV pulses. The experiment was conducted at FLASH, the free electron laser user facility at DESY in Hamburg, Germany. In contrast to indirect methods, this approach directly resolves and visualizes the frequency chirp of a seeded free-electron laser (FEL) pulse. The reported diagnostic capability is a prerequisite to tailor amplitude, phase and frequency distributions of FEL beams on demand. In particular, it opens up a new window of opportunities for advanced coherent spectroscopic studies making use of the high degree of temporal coherence expected from a seeded FEL pulse.

  7. Transient current changes induced in pin-diodes by nanosecond electron pulses

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Goldner, R.; Bos, J.; Mehnert, R.

    1984-01-01

    The electron pulse technique can be applied as a diagnostic method to measure charge carrier lifetimes, diffusion length or junction width in semiconductor p + -i-n + diodes. The described effect of the pulse length dependence on the electron energy might be of importance as an energy monitor for pulsed electron accelerators. (author)

  8. Generation of ultra short pulses by auto injection in the Nd: YAG laser

    International Nuclear Information System (INIS)

    Faria, I.C. de.

    1986-01-01

    Yhe work presented here, was concerned to the construction of a coherent light source in the near infrared region with pulses of 10 -10 seconds. The auto-injection technique was employed for generating these short pulses with posterior extraction of the pulse applied to a Nd=YAG-pulsed laser. (author) [pt

  9. Experimental Study of SO2 Removal by Pulsed DBD Along with the Application of Magnetic Field

    International Nuclear Information System (INIS)

    Rong Mingzhe; Liu Dingxin; Wang Xiaohua; Wang Junhua

    2007-01-01

    Dielectric barrier discharge (DBD) for SO 2 removal from indoor air is investigated. In order to improve the removal efficiency, two novel methods are combined in this paper, namely by applying a pulsed driving voltage with nanosecond rising time and applying a magnetic field. For SO 2 removal efficiency, different matches of electric field and magnetic field are discussed. And nanosecond rising edge pulsed power supply and microsecond rising edge pulsed power supply are compared. It can be concluded that a pulsed DBD with nanosecond rising edge should be adopted, and electrical field and magnetic field should be applied in an appropriate match

  10. A simple pulse shape discrimination technique applied to a silicon strip detector

    International Nuclear Information System (INIS)

    Figuera, P.; Lu, J.; Amorini, F.; Cardella, G.; DiPietro, A.; Papa, M.; Musumarra, A.; Pappalardo, G.; Rizzo, F.; Tudisco, S.

    2001-01-01

    Full text: Since the early sixties, it has been known that the shape of signals from solid state detectors can be used for particle identification. Recently, this idea has been revised in a group of papers where it has been shown that the shape of current signals from solid state detectors is mainly governed by the combination of plasma erosion time and charge carrier collection time effects. We will present the results of a systematic study on a pulse shape identification method which, contrary to the techniques proposed, is based on the use of the same electronic chain normally used in the conventional time of flight technique. The method is based on the use of charge preamplifiers, low polarization voltages (i.e. just above full depletion ones), rear side injection of the incident particles, and on a proper setting of the constant fraction discriminators which enhances the dependence of the timing output on the rise time of the input signals (which depends on the charge and energy of the incident ions). The method has been applied to an annular Si strip detector with an inner radius of about 16 mm and an outer radius of about 88 mm. The detector, manufactured by Eurisys Measures (Type Ips.73.74.300.N9), is 300 microns thick and consists of 8 independent sectors each divided into 9 circular strips. On beam tests have been performed at the cyclotron of the Laboratori Nazionali del Sud in Catania using a 25.7 MeV/nucleon 58 Ni beam impinging on a 51 V and 45 Sc composite target. Excellent charge identification from H up to the Ni projectile has been observed and typical charge identification thresholds are: ∼ 1.7 MeV/nucleon for Z ≅ 6, ∼ 3.0 MeV/nucleon for Z ≅ 11, and ∼ 5.5 MeV/nucleon for Z ≅ 20. Isotope identification up to A ≅ 13 has been observed with an energy threshold of about 6 MeV/nucleon. The identification quality has been studied as a function of the constant fraction settings. The method has been applied to all the 72 independent strips

  11. A Study of New Pulse Auscultation System

    Directory of Open Access Journals (Sweden)

    Ying-Yun Chen

    2015-04-01

    Full Text Available This study presents a new type of pulse auscultation system, which uses a condenser microphone to measure pulse sound waves on the wrist, captures the microphone signal for filtering, amplifies the useful signal and outputs it to an oscilloscope in analog form for waveform display and storage and delivers it to a computer to perform a Fast Fourier Transform (FFT and convert the pulse sound waveform into a heartbeat frequency. Furthermore, it also uses an audio signal amplifier to deliver the pulse sound by speaker. The study observed the principles of Traditional Chinese Medicine’s pulsing techniques, where pulse signals at places called “cun”, “guan” and “chi” of the left hand were measured during lifting (100 g, searching (125 g and pressing (150 g actions. Because the system collects the vibration sound caused by the pulse, the sensor itself is not affected by the applied pressure, unlike current pulse piezoelectric sensing instruments, therefore, under any kind of pulsing pressure, it displays pulse changes and waveforms with the same accuracy. We provide an acquired pulse and waveform signal suitable for Chinese Medicine practitioners’ objective pulse diagnosis, thus providing a scientific basis for this Traditional Chinese Medicine practice. This study also presents a novel circuit design using an active filtering method. An operational amplifier with its differential features eliminates the interference from external signals, including the instant high-frequency noise. In addition, the system has the advantages of simple circuitry, cheap cost and high precision.

  12. Pulsed pressure treatment for inactivation of escherichia coli and listeria innocua in whole milk

    Energy Technology Data Exchange (ETDEWEB)

    Buzrul, S; Largeteau, A; Demazeau, G [ICMCB, CNRS, Universite Bordeaux 1, site de l' ENSCPB, 87 avenue du Dr. A. Schweitzer, 33608 PESSAC cedex (France); Alpas, H [Food Engineering Department, Middle East Technical University, 06531, Ankara (Turkey)], E-mail: sbuzrul@metu.edu.tr

    2008-07-15

    E. coli and L. innocua in whole milk were subjected to continuous pressure treatments (300, 350, 400, 450, 500, 550 and 600 MPa) at ambient temperature for 5, 10, 15 and 20 min. These treatments underlined that at moderate pressure values (300, 350 and 400 MPa), increasing the pressurization time from 5 to 20 min did not improve cell death to a great extent. Therefore, pulsed pressure treatments (at 300, 350 and 400 MPa) for 5 min (2.5 min x 2 pulses, 1 min x 5 pulses and 0.5 min x 10 pulses), 10 min (5 min x 2 pulses, 2 min x 5 pulses and 1 min x 10 pulses), 15 min (5 min x 3 pulses, 3 min x 5 pulses and 1.5 min x 10 pulses) and 20 min (10 min x 2 pulses, 5 min x 4 pulses, 4 min x 5 pulses and 2 min x 10 pulses) were applied. As already observed in continuous pressure experiments, in pulsed pressure treatments the inactivation level is improved with increasing pressure level and in addition with the number of applied pulses; however, the effect of pulse number is not additive. Results obtained in this study indicated that pulsed pressure treatments could be used to pasteurize the whole milk at lower pressure values than the continuous pressure treatments. Nevertheless, an optimization appears definetely necessary between the number of pulses and pressure levels to reach the desirable number of log-reduction of microorganisms.

  13. Pulsed pressure treatment for inactivation of escherichia coli and listeria innocua in whole milk

    Science.gov (United States)

    Buzrul, S.; Largeteau, A.; Alpas, H.; Demazeau, G.

    2008-07-01

    E. coli and L. innocua in whole milk were subjected to continuous pressure treatments (300, 350, 400, 450, 500, 550 and 600 MPa) at ambient temperature for 5, 10, 15 and 20 min. These treatments underlined that at moderate pressure values (300, 350 and 400 MPa), increasing the pressurization time from 5 to 20 min did not improve cell death to a great extent. Therefore, pulsed pressure treatments (at 300, 350 and 400 MPa) for 5 min (2.5 min × 2 pulses, 1 min × 5 pulses and 0.5 min × 10 pulses), 10 min (5 min × 2 pulses, 2 min × 5 pulses and 1 min × 10 pulses), 15 min (5 min × 3 pulses, 3 min × 5 pulses and 1.5 min × 10 pulses) and 20 min (10 min × 2 pulses, 5 min × 4 pulses, 4 min × 5 pulses and 2 min × 10 pulses) were applied. As already observed in continuous pressure experiments, in pulsed pressure treatments the inactivation level is improved with increasing pressure level and in addition with the number of applied pulses; however, the effect of pulse number is not additive. Results obtained in this study indicated that pulsed pressure treatments could be used to pasteurize the whole milk at lower pressure values than the continuous pressure treatments. Nevertheless, an optimization appears definetely necessary between the number of pulses and pressure levels to reach the desirable number of log-reduction of microorganisms.

  14. Pulsed pressure treatment for inactivation of escherichia coli and listeria innocua in whole milk

    International Nuclear Information System (INIS)

    Buzrul, S; Largeteau, A; Demazeau, G; Alpas, H

    2008-01-01

    E. coli and L. innocua in whole milk were subjected to continuous pressure treatments (300, 350, 400, 450, 500, 550 and 600 MPa) at ambient temperature for 5, 10, 15 and 20 min. These treatments underlined that at moderate pressure values (300, 350 and 400 MPa), increasing the pressurization time from 5 to 20 min did not improve cell death to a great extent. Therefore, pulsed pressure treatments (at 300, 350 and 400 MPa) for 5 min (2.5 min x 2 pulses, 1 min x 5 pulses and 0.5 min x 10 pulses), 10 min (5 min x 2 pulses, 2 min x 5 pulses and 1 min x 10 pulses), 15 min (5 min x 3 pulses, 3 min x 5 pulses and 1.5 min x 10 pulses) and 20 min (10 min x 2 pulses, 5 min x 4 pulses, 4 min x 5 pulses and 2 min x 10 pulses) were applied. As already observed in continuous pressure experiments, in pulsed pressure treatments the inactivation level is improved with increasing pressure level and in addition with the number of applied pulses; however, the effect of pulse number is not additive. Results obtained in this study indicated that pulsed pressure treatments could be used to pasteurize the whole milk at lower pressure values than the continuous pressure treatments. Nevertheless, an optimization appears definetely necessary between the number of pulses and pressure levels to reach the desirable number of log-reduction of microorganisms

  15. Time dependent theory of two-step absorption of two pulses

    Energy Technology Data Exchange (ETDEWEB)

    Rebane, Inna, E-mail: inna.rebane@ut.ee

    2015-09-25

    The time dependent theory of two step-absorption of two different light pulses with arbitrary duration in the electronic three-level model is proposed. The probability that the third level is excited at the moment t is found in depending on the time delay between pulses, the spectral widths of the pulses and the energy relaxation constants of the excited electronic levels. The time dependent perturbation theory is applied without using “doorway–window” approach. The time and spectral behavior of the spectrum using in calculations as simple as possible model is analyzed. - Highlights: • Time dependent theory of two-step absorption in the three-level model is proposed. • Two different light pulses with arbitrary duration is observed. • The time dependent perturbation theory is applied without “door–window” approach. • The time and spectral behavior of the spectra is analyzed for several cases.

  16. Strong-field ionization with twisted laser pulses

    Science.gov (United States)

    Paufler, Willi; Böning, Birger; Fritzsche, Stephan

    2018-04-01

    We apply quantum trajectory Monte Carlo computations in order to model strong-field ionization of atoms by twisted Bessel pulses and calculate photoelectron momentum distributions (PEMD). Since Bessel beams can be considered as an infinite superposition of circularly polarized plane waves with the same helicity, whose wave vectors lie on a cone, we compared the PEMD of such Bessel pulses to those of a circularly polarized pulse. We focus on the momentum distributions in propagation direction of the pulse and show how these momentum distributions are affected by experimental accessible parameters, such as the opening angle of the beam or the impact parameter of the atom with regard to the beam axis. In particular, we show that we can find higher momenta of the photoelectrons, if the opening angle is increased.

  17. Wiring of instrument for measuring pulse count of pseudocoincidences in radiation detectors

    International Nuclear Information System (INIS)

    Hekrdle, J.

    1978-01-01

    A network is described consisting of a flip-flop circuit, a pulse counter, a shift register, a gate and a clock generator. Pulses from an alpha detector are applied to the adjusting input of the control flip-flop whose output is connected to the reset input of the pulse counter and to the control input of the gate for beta pulses delayed by the shift register. The pulse counter is supplied with pulses from the clock generator output. The pulses also energize the shift register. The control flip-flop is reset by the output of the pulse counter overflow and also by the beta pulse passing through the open gate to the output terminal. (H.S.)

  18. Electrical noise modulates perception of electrical pulses in humans: sensation enhancement via stochastic resonance.

    Science.gov (United States)

    Iliopoulos, Fivos; Nierhaus, Till; Villringer, Arno

    2014-03-01

    Although noise is usually considered to be harmful for signal detection and information transmission, stochastic resonance (SR) describes the counterintuitive phenomenon of noise enhancing the detection and transmission of weak input signals. In mammalian sensory systems, SR-related phenomena may arise both in the peripheral and the central nervous system. Here, we investigate behavioral SR effects of subliminal electrical noise stimulation on the perception of somatosensory stimuli in humans. We compare the likelihood to detect near-threshold pulses of different intensities applied on the left index finger during presence vs. absence of subliminal noise on the same or an adjacent finger. We show that (low-pass) noise can enhance signal detection when applied on the same finger. This enhancement is strong for near-threshold pulses below the 50% detection threshold and becomes stronger when near-threshold pulses are applied as brief trains. The effect reverses at pulse intensities above threshold, especially when noise is replaced by subliminal sinusoidal stimulation, arguing for a peripheral direct current addition. Unfiltered noise applied on longer pulses enhances detection of all pulse intensities. Noise applied to an adjacent finger has two opposing effects: an inhibiting effect (presumably due to lateral inhibition) and an enhancing effect (most likely due to SR in the central nervous system). In summary, we demonstrate that subliminal noise can significantly modulate detection performance of near-threshold stimuli. Our results indicate SR effects in the peripheral and central nervous system.

  19. Local eddy current measurements in pulsed fields

    Energy Technology Data Exchange (ETDEWEB)

    Espina-Hernandez, J.H. [SEPI-Electronica, ESIME-IPN, UPALM Edif. ' Z' . Zacatenco, Mexico DF 07738 (Mexico)], E-mail: jhespina@gmail.com; Groessinger, R. [Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria); Hallen, J.M. [Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico)

    2008-07-15

    This work presents new eddy current measurements in pulsed fields. A commercial point pick-up coil is used to detect the induction signal along the radius of Cu and Al samples with cylindrical shape and diameters between 5 and 35 mm. Local eddy current measurements were performed on the surface of conducting materials due to the small dimensions of the coil. A simple electrical circuit, used as a model, is proposed to describe the local eddy current effect in pulsed fields. The proposed model allows to calculate the phase shift angle between the signal proportional to eddy currents and the applied external field in a pulsed field magnetometer.

  20. The characterisation of polymers using pulsed NMR

    International Nuclear Information System (INIS)

    Charlesby, A.

    1983-01-01

    Broad line pulsed NMR is applied to obtain information on radiation-induced polymer changes and other aspects of polymer science based on the interpretation of spin-spin relaxation curves. Calculations are made to determine the molecular weight, the crosslink density of simple, low molecular weight, flexible polymers. For higher molecular weight polymers, a conclusion can be drawn on the concentrations of entangled and crosslinked units by means of pulsed NMR. Some typical applications of the technique are illustrated by the examples of polyethylenes, rubbers, filled polymeric systems and aqueous polyethylene oxide solutions. The morphology of polymers can be followed by pulsed NMR. (V.N.)

  1. Individualized prevention against hypertension based on Traditional Chinese Medicine Constitution Theory: A large community-based retrospective, STROBE-compliant study among Chinese population.

    Science.gov (United States)

    Li, Ying; Li, Xiao-Hui; Huang, Xin; Yin, Lu; Guo, Cheng-Xian; Liu, Chang; He, Yong-Mei; Liu, Xing; Yuan, Hong

    2017-11-01

    Traditional Chinese Medicine Constitution (TCMC) theory states that individuals with a biased TCMC are more likely to suffer from specific diseases. However, little is known regarding the influence of TCMC on susceptibility to hypertension. The aim of this study is to examine the possible relationship between TCMC and hypertension. Retrospective evaluation and observation were performed using the STROBE guidelines checklist. A large community-based cross-sectional study was conducted between 2009 and 2013 in Changsha, China. TCMC was assessed using a questionnaire that included 68 items. TCMC distributions and the associations of different TCMCs with hypertension risk were analyzed. In total, 144,439 subjects underwent evaluations of TCMC and blood pressure (BP). There were significant differences in the hypertension prevalence among the various TCMC groups (P medicine criteria; for example, phlegm wetness with hypertension was similar to obesity-related hypertension. Our results suggest that phlegm wetness, yin deficiency, blood stasis, and qi deficiency have different effects on the prevalence of hypertension. More attention should be paid to TCMCs associated with susceptibility to hypertension, and corresponding preventive and therapeutic treatments should be developed according to different TCMCs.

  2. Electronic instrumentation system for pulsed neutron measurements

    International Nuclear Information System (INIS)

    Burda, J.; Igielski, A.; Kowalik, W.

    1982-01-01

    An essential point of pulsed neutron measurement of thermal neutron parameters for different materials is the registration of the thermal neutron die-away curve after a fast neutron bursts have been injected into the system. An electronic instrumentation system which is successfully applied for pulsed neutron measurements is presented. An important part of the system is the control unit which has been designed and built in the Laboratory of Neutron Parameters of Materials. (author)

  3. Active listening for spatial orientation in a complex auditory scene.

    Science.gov (United States)

    Moss, Cynthia F; Bohn, Kari; Gilkenson, Hannah; Surlykke, Annemarie

    2006-04-01

    To successfully negotiate a complex environment, an animal must control the timing of motor behaviors in coordination with dynamic sensory information. Here, we report on adaptive temporal control of vocal-motor behavior in an echolocating bat, Eptesicus fuscus, as it captured tethered insects close to background vegetation. Recordings of the bat's sonar vocalizations were synchronized with high-speed video images that were used to reconstruct the bat's three-dimensional flight path and the positions of target and vegetation. When the bat encountered the difficult task of taking insects as close as 10-20 cm from the vegetation, its behavior changed significantly from that under open room conditions. Its success rate decreased by about 50%, its time to initiate interception increased by a factor of ten, and its high repetition rate "terminal buzz" decreased in duration by a factor of three. Under all conditions, the bat produced prominent sonar "strobe groups," clusters of echolocation pulses with stable intervals. In the final stages of insect capture, the bat produced strobe groups at a higher incidence when the insect was positioned near clutter. Strobe groups occurred at all phases of the wingbeat (and inferred respiration) cycle, challenging the hypothesis of strict synchronization between respiration and sound production in echolocating bats. The results of this study provide a clear demonstration of temporal vocal-motor control that directly impacts the signals used for perception.

  4. Principle study on the signal connection at transabdominal fetal pulse oximetry

    Directory of Open Access Journals (Sweden)

    Böttrich Marcel

    2016-09-01

    Full Text Available Transabdominal fetal pulse oximetry is an approach to measure oxygen saturation of the unborn child non-invasively. The principle of pulse oximetry is applied to the abdomen of a pregnant woman, such that the measured signal includes both, the maternal and the fetal pulse curve. One of the major challenges is to extract the shape of the fetal pulse curve from the mixed signal for computation of the oxygen saturation. In this paper we analyze the principle kind of connection of the fetal and maternal pulse curves in the measured signal. A time varying finite element model is used to rebuild the basic measurement environment, including a bulk tissue and two independently pulsing arteries to model the fetal and maternal blood circuit. The distribution of the light fluence rate in the model is computed by applying diffusion equation. From the detectors we extracted the time dependent fluence rate and analyzed the signal regarding its components. The frequency spectra of the signals show peaks at the fetal and maternal basic frequencies. Additional signal components are visible in the spectra, indicating multiplicative coupling of the fetal and maternal pulse curves. We conclude that the underlying signal model of algorithms for robust extraction of the shape of the fetal pulse curve, have to consider additive and multiplicative signal coupling.

  5. Square pulse linear transformer driver

    Directory of Open Access Journals (Sweden)

    A. A. Kim

    2012-04-01

    Full Text Available The linear transformer driver (LTD technological approach can result in relatively compact devices that can deliver fast, high current, and high-voltage pulses straight out of the LTD cavity without any complicated pulse forming and pulse compression network. Through multistage inductively insulated voltage adders, the output pulse, increased in voltage amplitude, can be applied directly to the load. The usual LTD architecture [A. A. Kim, M. G. Mazarakis, V. A. Sinebryukhov, B. M. Kovalchuk, V. A. Vizir, S. N Volkov, F. Bayol, A. N. Bastrikov, V. G. Durakov, S. V. Frolov, V. M. Alexeenko, D. H. McDaniel, W. E. Fowler, K. LeCheen, C. Olson, W. A. Stygar, K. W. Struve, J. Porter, and R. M. Gilgenbach, Phys. Rev. ST Accel. Beams 12, 050402 (2009PRABFM1098-440210.1103/PhysRevSTAB.12.050402; M. G. Mazarakis, W. E. Fowler, A. A. Kim, V. A. Sinebryukhov, S. T. Rogowski, R. A. Sharpe, D. H. McDaniel, C. L. Olson, J. L. Porter, K. W. Struve, W. A. Stygar, and J. R. Woodworth, Phys. Rev. ST Accel. Beams 12, 050401 (2009PRABFM1098-440210.1103/PhysRevSTAB.12.050401] provides sine shaped output pulses that may not be well suited for some applications like z-pinch drivers, flash radiography, high power microwaves, etc. A more suitable power pulse would have a flat or trapezoidal (rising or falling top. In this paper, we present the design and first test results of an LTD cavity that generates such a type of output pulse by including within its circular array a number of third harmonic bricks in addition to the main bricks. A voltage adder made out of a square pulse cavity linear array will produce the same shape output pulses provided that the timing of each cavity is synchronized with the propagation of the electromagnetic pulse.

  6. Intense resonance neutron source (IREN) - new pulsed source for nuclear physical and applied investigations

    International Nuclear Information System (INIS)

    Anan'ev, V.D.; Furman, W.I.; Kobets, V.V.; Meshkov, I.N.; Pyataev, V.G.; Shirkov, G.D.; Shvets, V.A.; Sumbaev, A.P.; Kuatbekov, R.P.; Tret'yakov, I.T.; Frolov, A.R.; Gurov, S.M.; Logachev, P.V.; Pavlov, V.M.; Skarbo, B.A.

    2005-01-01

    An accelerator-driven subcritical system (200 MeV electron linac + metallic plutonium subcritical core) IREN is constructed at the Joint Institute for Nuclear Research (JINR). The new pulsed neutron source IREN is optimized for maximal yield of resonance neutrons (1-10 5 eV). The S-band electron linac with a pulse duration near 200 ns, repetition rate up to 150 Hz and the mean beam power 10 kW delivers 200-MeV electrons onto a specially designed tungsten target (an electron-neutron converter) situated in the center of a very compact and fast subcritical assembly with K eff 15 per second. A mean fission power of the multiplying target is planned to be near 15 kW. The current status of the project is presented

  7. Analytical modeling of pulse-pileup distortion using the true pulse shape; applications to Fermi-GBM

    International Nuclear Information System (INIS)

    Chaplin, Vandiver; Bhat, Narayana; Briggs, Michael S.; Connaughton, Valerie

    2013-01-01

    Pulse-pileup affects most photon counting systems and occurs when photon detections occur faster than the detector's shaping and recovery time. At high input rates, shaped pulses interfere and the source spectrum, as well as intensity information, get distorted. For instruments using bipolar pulse shaping there are two aspects to consider: ‘peak’ and ‘tail’ pileup effects, which raise and lower the measured energy, respectively. Peak effects have been extensively modeled in the past. Tail effects have garnered less attention due to increased complexity. We leverage previous work to derive an accurate, semi-analytical prediction for peak and tail pileup including high order effects. We use the pulse shape of the detectors of the Fermi Gamma-ray Burst Monitor. The measured spectrum is calculated by expressing exposure time with a state-space expansion of overlapping pileup states and is valid up to very high rates. The model correctly predicts deadtime and pileup losses, and energy-dependent losses due to tail subtraction (sub-threshold) effects. We discuss total losses in terms of the true rate of photon detections versus the recorded count rate. -- Highlights: • A derivation of pulse-pileup spectral and intensity distortion is presented. • Applies to bipolar shaping instruments in general, but is calculated for Fermi-GBM. • Exposure time is partitioned with pulse widths as states of a Poisson process. • Each state has an associated energy distribution function for peak and tail pileup. • The total spectrum is the union of pulse states and their associated spectra

  8. Spatial and spectral effects in subcritical system pulsed experiments

    International Nuclear Information System (INIS)

    Dulla, S.; Nervo, M.; Ravetto, P.; Carta, M.

    2013-01-01

    Accurate neutronic models are needed for the interpretation of pulsed experiments in subcritical systems. In this work, the extent of spatial and spectral effects in the pulse propagation phenomena is investigated and the analysis is applied to the GUINEVERE experiment. The multigroup cross section data is generated by the Monte Carlo SERPENT code and the neutronic evolution following the source pulse is simulated by a kinetic diffusion code. The results presented show that important spatial and spectral aspects need to be properly accounted for and that a detailed energy approach may be needed to adequately capture the physical features of the system to the pulse injection. (authors)

  9. Pulse pile-up. I: Short pulses

    International Nuclear Information System (INIS)

    Wilkinson, D.H.

    1990-07-01

    The search for rare large pulses against an intense background of smaller ones involves consideration of pulse pile-up. Approximate methods are presented, based on ruin theory, by which the probability of such pile-up may be estimated for pulses of arbitrary form and of arbitrary pulse-height distribution. These methods are checked against cases for which exact solutions are available. The present paper is concerned chiefly with short pulses of finite total duration. (Author) (5 refs., 24 figs.)

  10. Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform.

    Science.gov (United States)

    Wu, Hau-Tieng; Wu, Han-Kuei; Wang, Chun-Li; Yang, Yueh-Lung; Wu, Wen-Hsiang; Tsai, Tung-Hu; Chang, Hen-Hong

    2016-01-01

    We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features.

  11. Approaches to the Optimal Nonlinear Analysis of Microcalorimeter Pulses

    Science.gov (United States)

    Fowler, J. W.; Pappas, C. G.; Alpert, B. K.; Doriese, W. B.; O'Neil, G. C.; Ullom, J. N.; Swetz, D. S.

    2018-03-01

    We consider how to analyze microcalorimeter pulses for quantities that are nonlinear in the data, while preserving the signal-to-noise advantages of linear optimal filtering. We successfully apply our chosen approach to compute the electrothermal feedback energy deficit (the "Joule energy") of a pulse, which has been proposed as a linear estimator of the deposited photon energy.

  12. Detection of SNM by Pulsed Neutron Interrogation

    International Nuclear Information System (INIS)

    Pedersen, Bent; Mayorov, Valeriy; Roesgen, Eric; Mosconi, Marita; Crochemore, Jean-Michel; Ocherashvili, Aharon; Beck, Arie; Ettedgui, Hanania

    2014-01-01

    A method for the detection of special nuclear materials (SNM) in shielded containers which is both sensitive and easily applicable under field conditions is presented. The method applies neutron induced fission in SNM by means of an external pulsed neutron source with subsequent detection of the fast prompt fission neutrons. Liquid scintillation detectors surrounding the container under investigation are able to discriminate gamma rays from fast neutrons by the so-called pulse shape discrimination technique (PSD)

  13. [Mechanism of ablation with nanosecond pulsed electric field].

    Science.gov (United States)

    Cen, Chao; Chen, Xin-hua; Zheng, Shu-sen

    2015-11-01

    Nanosecond pulsed electric field ablation has been widely applied in clinical cancer treatment, while its molecular mechanism is still unclear. Researchers have revealed that nanosecond pulsed electric field generates nanopores in plasma membrane, leading to a rapid influx of Ca²⁺; it has specific effect on intracellular organelle membranes, resulting in endoplasmic reticulum injuries and mitochondrial membrane potential changes. In addition, it may also change cellular morphology through damage of cytoskeleton. This article reviews the recent research advances on the molecular mechanism of cell membrane and organelle changes induced by nanosecond pulsed electric field ablation.

  14. Pulsed excitation terahertz tomography - multiparametric approach

    Science.gov (United States)

    Lopato, Przemyslaw

    2018-04-01

    This article deals with pulsed excitation terahertz computed tomography (THz CT). Opposite to x-ray CT, where just a single value (pixel) is obtained, in case of pulsed THz CT the time signal is acquired for each position. Recorded waveform can be parametrized - many features carrying various information about examined structure can be calculated. Based on this, multiparametric reconstruction algorithm was proposed: inverse Radon transform based reconstruction is applied for each parameter and then fusion of results is utilized. Performance of the proposed imaging scheme was experimentally verified using dielectric phantoms.

  15. Optimizing pulse compressibility in completely all-fibered Ytterbium chirped pulse amplifiers for in vivo two photon laser scanning microscopy.

    Science.gov (United States)

    Fernández, A; Grüner-Nielsen, L; Andreana, M; Stadler, M; Kirchberger, S; Sturtzel, C; Distel, M; Zhu, L; Kautek, W; Leitgeb, R; Baltuska, A; Jespersen, K; Verhoef, A

    2017-08-01

    A simple and completely all-fiber Yb chirped pulse amplifier that uses a dispersion matched fiber stretcher and a spliced-on hollow core photonic bandgap fiber compressor is applied in nonlinear optical microscopy. This stretching-compression approach improves compressibility and helps to maximize the fluorescence signal in two-photon laser scanning microscopy as compared with approaches that use standard single mode fibers as stretcher. We also show that in femtosecond all-fiber systems, compensation of higher order dispersion terms is relevant even for pulses with relatively narrow bandwidths for applications relying on nonlinear optical effects. The completely all-fiber system was applied to image green fluorescent beads, a stained lily-of-the-valley root and rat-tail tendon. We also demonstrated in vivo imaging in zebrafish larvae, where we simultaneously measure second harmonic and fluorescence from two-photon excited red-fluorescent protein. Since the pulses are compressed in a fiber, this source is especially suited for upgrading existing laser scanning (confocal) microscopes with multiphoton imaging capabilities in space restricted settings or for incorporation in endoscope-based microscopy.

  16. Numerical simulation of atmospheric-pressure helium discharge driven by combined radio frequency and trapezoidal pulse sources

    International Nuclear Information System (INIS)

    Wang Qi; Sun Jizhong; Zhang Jianhong; Ding Zhenfeng; Wang Dezhen

    2010-01-01

    Atmospheric-pressure capacitive discharges driven by combined radio frequency (rf) and trapezoidal pulse sources are investigated using a one-dimensional self-consistent fluid model. The results show that the plasma intensity in the rf discharge can be enhanced drastically when a low duty ratio short pulse source is additionally applied. The mechanism for the increase in the plasma density can be attributed to a strong localized electric field induced by the applied short pulse; the strong electric field generates a great number of high energy electrons and chemically active particles, which subsequently generate more electrons and ions. The rf capacitive discharges with the aid of externally applied short pulses can achieve a high plasma density with better power efficiency.

  17. Spatiotemporal optical pulse transformation by a resonant diffraction grating

    Energy Technology Data Exchange (ETDEWEB)

    Golovastikov, N. V.; Bykov, D. A., E-mail: bykovd@gmail.com; Doskolovich, L. L., E-mail: leonid@smr.ru; Soifer, V. A. [Russian Academy of Sciences, Image Processing Systems Institute (Russian Federation)

    2015-11-15

    The diffraction of a spatiotemporal optical pulse by a resonant diffraction grating is considered. The pulse diffraction is described in terms of the signal (the spatiotemporal incident pulse envelope) passage through a linear system. An analytic approximation in the form of a rational function of two variables corresponding to the angular and spatial frequencies has been obtained for the transfer function of the system. A hyperbolic partial differential equation describing the general form of the incident pulse envelope transformation upon diffraction by a resonant diffraction grating has been derived from the transfer function. A solution of this equation has been obtained for the case of normal incidence of a pulse with a central frequency lying near the guided-mode resonance of a diffraction structure. The presented results of numerical simulations of pulse diffraction by a resonant grating show profound changes in the pulse envelope shape that closely correspond to the proposed theoretical description. The results of the paper can be applied in creating new devices for optical pulse shape transformation, in optical information processing problems, and analog optical computations.

  18. Electromagnetically induced transparency with matched pulses

    International Nuclear Information System (INIS)

    Harris, S.E.

    1993-01-01

    In the last several years there have been studies and experiments showing how, by applying an additional laser beam, optically-thick transitions may be rendered nearly transparent to probing radiation. This transparency results from a quantum interference, very much like a Fano interference, which is established by the additional laser. This talk describes the difference between the quantum interference as exhibited by an independent atom and by an optically-thick ensemble of atoms. We find that an ensemble of atoms establishes transparency through a strong nonlinear interaction which, for a lambda system, tends to generate a matching temporal envelope on the complementary transition. For a ladder system, phase conjugate pulses are generated and, after a characteristic distance, establish transparency. The transparency of an optically-thick medium is therefore not a Beer's law superposition of the independent atom response. To transmit a pulse through an otherwise opaque media, the front edge of the complementary pulse should lead, in the manner of open-quotes counter-intuitiveclose quotes adiabatic transfer, the front edge of the pulse which is to be rendered transparent. Thereafter the pulses should be matched or, for a ladder system, phase-conjugately matched

  19. Process Performances of 2 ns Pulsed Discharge Plasma

    Science.gov (United States)

    Matsumoto, Takao; Wang, Douyan; Namihira, Takao; Akiyama, Hidenori

    2011-08-01

    Pulsed discharge plasmas have been used to treat exhaust gases. Since pulse duration and the rise time of applied voltage to the discharge electrode has a strong influence on the energy efficiency of pollutant removal, the development of a short-pulse generator is of paramount importance for practical applications. In this work, it is demonstrated that the non thermal plasma produced by the 2 ns pulsed discharge has a higher energy efficiency than the 5 ns pulsed discharge plasma for NO removal and ozone generation. Typically, the NO removal efficiency was 1.0 mol kW-1 h-1 for 70% NO removal (initial NO concentration = 200 ppm, gas flow = 10 L/min). Meanwhile, the ozone yield was 500 g kW-1 h-1 for 20 g/m3 ozone concentration in the case of oxygen feeding. These energy efficiencies are the highest in the literature.

  20. Validation of a pulsed electric field process to pasteurize strawberry puree

    Science.gov (United States)

    An inexpensive data acquisition method was developed to validate the exact number and shape of the pulses applied during pulsed electric fields (PEF) processing. The novel validation method was evaluated in conjunction with developing a pasteurization PEF process for strawberry puree. Both buffered...

  1. Rapid further heating of tokamak plasma by fast-rising magnetic pulse

    International Nuclear Information System (INIS)

    Inoue, N.; Nihei, H.; Yamazaki, K.; Ichimura, M.; Morikawa, J.; Hoshino, K.; Uchida, T.

    1977-01-01

    The object of the experiment was to study the rapid further heating of a tokamak plasma and its influence on confinement. For this purpose, a high-voltage theta-pinch pulse was applied to a tokamak plasma and production of a high-temperature (keV) plasma was ensured within a microsecond. The magnetic pulse is applied at the plasma current maximum parallel or antiparallel to the study toroidal field. In either case, the pulsed field quickly penetrates the plasma and the plasma resistivity estimated from the penetration time is about 100 times larger than the classical. A burst of energetic neutrals of approximately 1 μs duration was observed and the energy distribution had two components of the order of 1 keV and 0.1 keV in the antiparallel case. Doppler broadening measurement shows heating of ions to a temperature higher than 200 eV; however, the line profile is not always Maxwellian distribution. The X-rays disappear at the moment of applying the magnetic pulse and reappear about 100 μs later with an intensive burst, while both energy levels are the same (approximately 100 keV). (author)

  2. Nanosecond field emitted and photo-field emitted current pulses from ZrC tips

    International Nuclear Information System (INIS)

    Ganter, R.; Bakker, R.J.; Gough, C.; Paraliev, M.; Pedrozzi, M.; Le Pimpec, F.; Rivkin, L.; Wrulich, A.

    2006-01-01

    In order to find electron sources with low thermal emittance, cathodes based on single tip field emitter are investigated. Maximum peak current, measured from single tip in ZrC with a typical apex radius around 1 μm, are presented. Voltage pulses of 2 ns duration and up to 50 kV amplitude lead to field emission current up to 470 mA from one ZrC tip. Combination of high applied electric field with laser illumination gives the possibility to modulate the emission with laser pulses. Nanoseconds current pulses have been emitted with laser pulses at 1064 nm illuminating a ZrC tip under high-DC electric field. The dependence of photo-field emitted current with the applied voltage can be explained by the Schottky effect

  3. Nanosecond field emitted and photo-field emitted current pulses from ZrC tips

    Energy Technology Data Exchange (ETDEWEB)

    Ganter, R. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland)]. E-mail: romain.ganter@psi.ch; Bakker, R.J. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Gough, C. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Paraliev, M. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Pedrozzi, M. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Le Pimpec, F. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Rivkin, L. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Wrulich, A. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland)

    2006-09-15

    In order to find electron sources with low thermal emittance, cathodes based on single tip field emitter are investigated. Maximum peak current, measured from single tip in ZrC with a typical apex radius around 1 {mu}m, are presented. Voltage pulses of 2 ns duration and up to 50 kV amplitude lead to field emission current up to 470 mA from one ZrC tip. Combination of high applied electric field with laser illumination gives the possibility to modulate the emission with laser pulses. Nanoseconds current pulses have been emitted with laser pulses at 1064 nm illuminating a ZrC tip under high-DC electric field. The dependence of photo-field emitted current with the applied voltage can be explained by the Schottky effect.

  4. Realtime aspects of pulse-to-pulse modulation

    International Nuclear Information System (INIS)

    Steiner, R.; Riedel, C.; Roesch, W.

    1992-01-01

    The pulse-to-pulse modulation of the SIS-ESR control system is described. Fast response to operator interaction and to changes in process conditions is emphasized as well as the essential part played by the timing system in pulse-to-pulse modulation. (author)

  5. Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform.

    Directory of Open Access Journals (Sweden)

    Hau-Tieng Wu

    Full Text Available We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features.

  6. Intense pulsed heavy ion beam technology

    International Nuclear Information System (INIS)

    Masugata, Katsumi; Ito, Hiroaki

    2010-01-01

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm 2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm 2 was obtained. The beam consists of aluminum ions (Al (1-3)+ ) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89%. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were successively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm 2 was observed in the cathode, which suggests the bipolar pulse acceleration. (author)

  7. Prediction of electromagnetic pulse generation by picosecond avalanches in high-pressure air

    International Nuclear Information System (INIS)

    Mayhall, D.J.; Yee, J.H.

    1993-01-01

    The gas avalanche switch is a laser-activated, high-voltage switch, consisting of a set of pulse-charged electrodes in a high-pressure gas. Induced electrons from a picosecond-scale laser pulse initiate an avalanche discharge between high-voltage and grounded electrodes. If the voltage, pressure, and dimensions are correct, the rapid avalanche, fueled by the immense number of electrons available in the gas, collapses the applied voltage in picoseconds and generates electromagnetic pulses with widths as short as 1-10 ps and 3 dB bandwidths of 20-120 GHz. With proper voltage or pressure detuning, wider pulses and lower bandwidths occur. In addition to picosecond electromagnetic pulse generation, application of this switch should result in ultra-fast Marx bank pulsers. A number of versions of the switch are possible. The simplest is a parallel plate capacitor, consisting of a gas between two parallel plate conductors. High voltage is applied across the two plates. A parallel plate, Blumlein geometry features a center electrode between two grounded parallel plates. This geometry emits a single pulse in each direction along the parallel plates. A frozen wave geometry with multiple, oppositely charged center electrodes will emit AC pulses. Series switches consisting of gas gaps between two electrodes are also possible

  8. Transient digitizer with displacement current samplers

    Science.gov (United States)

    McEwan, Thomas E.

    1996-01-01

    A low component count, high speed sample gate, and digitizer architecture using the sample gates is based on use of a signal transmission line, a strobe transmission line and a plurality of sample gates connected to the sample transmission line at a plurality of positions. The sample gates include a strobe pickoff structure near the strobe transmission line which generates a charge displacement current in response to propagation of the strobe signal on the strobe transmission line sufficient to trigger the sample gate. The sample gate comprises a two-diode sampling bridge and is connected to a meandered signal transmission line at one end and to a charge-holding cap at the other. The common cathodes are reverse biased. A voltage step is propagated down the strobe transmission line. As the step propagates past a capacitive pickoff, displacement current i=c(dv/dT), flows into the cathodes, driving the bridge into conduction and thereby charging the charge-holding capacitor to a value related to the signal. A charge amplifier converts the charge on the charge-holding capacitor to an output voltage. The sampler is mounted on a printed circuit board, and the sample transmission line and strobe transmission line comprise coplanar microstrips formed on a surface of the substrate. Also, the strobe pickoff structure may comprise a planar pad adjacent the strobe transmission line on the printed circuit board.

  9. The effect of high voltage, high frequency pulsed electric field on slain ovine cortical bone.

    Science.gov (United States)

    Asgarifar, Hajarossadat; Oloyede, Adekunle; Zare, Firuz

    2014-04-01

    High power, high frequency pulsed electric fields known as pulsed power (PP) has been applied recently in biology and medicine. However, little attention has been paid to investigate the application of pulse power in musculoskeletal system and its possible effect on functional behavior and biomechanical properties of bone tissue. This paper presents the first research investigating whether or not PP can be applied safely on bone tissue as a stimuli and what will be the possible effect of these signals on the characteristics of cortical bone by comparing the mechanical properties of this type of bone pre and post expose to PP and in comparison with the control samples. A positive buck-boost converter was applied to generate adjustable high voltage, high frequency pulses (up to 500 V and 10 kHz). The functional behavior of bone in response to pulse power excitation was elucidated by applying compressive loading until failure. The stiffness, failure stress (strength) and the total fracture energy (bone toughness) were determined as a measure of the main bone characteristics. Furthermore, an ultrasonic technique was applied to determine and comprise bone elasticity before and after pulse power stimulation. The elastic property of cortical bone samples appeared to remain unchanged following exposure to pulse power excitation for all three orthogonal directions obtained from ultrasonic technique and similarly from the compression test. Nevertheless, the compressive strength and toughness of bone samples were increased when they were exposed to 66 h of high power pulsed electromagnetic field compared to the control samples. As the toughness and the strength of the cortical bone tissue are directly associated with the quality and integrity of the collagen matrix whereas its stiffness is primarily related to bone mineral content these overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network

  10. Theoretical and Experimental Investigations of Coincidences in Poisson Distributed Pulse Trains and Spectral Distortion Caused by Pulse Pileup.

    Science.gov (United States)

    Bristow, Quentin

    1990-01-01

    Part one of this two-part study is concerned with the multiple coincidences in pulse trains from X-ray and gamma radiation detectors which are the cause of pulse pileup. A sequence of pulses with inter-arrival times less than tau, the resolving time of the pulse-height analysis system used to acquire spectra, is called a multiple pulse string. Such strings can be classified on the basis of the number of pulses they contain, or the number of resolving times they cover. The occurrence rates of such strings are derived from theoretical considerations. Logic circuits were devised to make experimental measurements of multiple pulse string occurrence rates in the output from a NaI(Tl) scintillation detector over a wide range of count rates. Markov process theory was used to predict state transition rates in the logic circuits, enabling the experimental data to be checked rigorously for conformity with those predicted for a Poisson distribution. No fundamental discrepancies were observed. Part two of the study is concerned with a theoretical analysis of pulse pileup and the development of a discrete correction algorithm, based on the use of a function to simulate the coincidence spectrum produced by partial sums of pulses. Monte Carlo simulations, incorporating criteria for pulse pileup inherent in the operation of modern ADC's, were used to generate pileup spectra due to coincidences between two pulses, (1st order pileup) and three pulses (2nd order pileup), for different semi-Gaussian pulse shapes. Coincidences between pulses in a single channel produced a basic probability density function spectrum which can be regarded as an impulse response for a particular pulse shape. The use of a flat spectrum (identical count rates in all channels) in the simulations, and in a parallel theoretical analysis, showed the 1st order pileup distorted the spectrum to a linear ramp with a pileup tail. The correction algorithm was successfully applied to correct entire spectra for 1st and

  11. Production of ozone using nanosecond short pulsed power

    OpenAIRE

    Shimomura, N.; Wakimoto, M.; Togo, H.; Namihira, Takao; Akiyama, Hidenori; ナミヒラ, タカオ; アキヤマ, ヒデノリ; 浪平, 隆男; 秋山, 秀典

    2003-01-01

    Production of ozone is one of the most typical industrial and commercial applications of electrical discharge. The demand of ozone will be increasing for wholesome and environment-friendly sterilizations. The production of ozone using the pulsed power discharge will apply electron accelerations around the head of streamer discharge. The breakdowns in reactor, however, often limit the efficient production. The pulse shape should be controlled for dimension of the reactor. On the other hand, th...

  12. Generation of Quasi-Gaussian Pulses Based on Correlation Techniques

    Directory of Open Access Journals (Sweden)

    POHOATA, S.

    2012-02-01

    Full Text Available The Gaussian pulses have been mostly used within communications, where some applications can be emphasized: mobile telephony (GSM, where GMSK signals are used, as well as the UWB communications, where short-period pulses based on Gaussian waveform are generated. Since the Gaussian function signifies a theoretical concept, which cannot be accomplished from the physical point of view, this should be expressed by using various functions, able to determine physical implementations. New techniques of generating the Gaussian pulse responses of good precision are approached, proposed and researched in this paper. The second and third order derivatives with regard to the Gaussian pulse response are accurately generated. The third order derivates is composed of four individual rectangular pulses of fixed amplitudes, being easily to be generated by standard techniques. In order to generate pulses able to satisfy the spectral mask requirements, an adequate filter is necessary to be applied. This paper emphasizes a comparative analysis based on the relative error and the energy spectra of the proposed pulses.

  13. Interaction of solitary pulses in single mode optical fibres | Usman ...

    African Journals Online (AJOL)

    Two solitary waves launched, by way of incidence, into an optical fibre from a single pulse if the pulses are in-phase as understood from results of inverse scattering transform method applied to the cubic nonlinear Schrödinger equations, (CNLSE\\'s). The single CNLSE is then understood to describe evolution of coupled ...

  14. Interpreting the Effects of Pulse Remagnetization on Animal Behavior

    Science.gov (United States)

    Kirschvink, J. L.; Wang, C. X.; Golash, H. N.; Hilburn, I. A.; Wu, D. A.; Crucilla, S. J.; Badal, Y. D.; Shimojo, S.

    2017-12-01

    Observations of geomagnetic sensitivity by migratory and homing animals have puzzled biophysicists for over 70 years. Widely dismissed as biophysically implausible due to the lack of physiological ferromagnetic materials [e.g., D.R. Griffin, 1944, 1952], clear and reproducible responses to earth-strength magnetic fields is now firmly established in organisms ranging from Bacteria, Protists, and Animals from numerous phyla, including mollusks, arthropods, and the chordates. Behavior demands sensory transduction, as external stimuli only `get into the nervous system' through sensory cells specialized to transduce the physical stimulus into a modulated stream of action potentials in neurons. Three basic biophysical mechanisms could plausibly explain the biophysical transduction of geomagnetic cues, including electrical induction, hyperfine magnetic field effects on photo-activated free radicals (the `Quantum Compass'), or receptor cells containing biologically-precipitated crystals of a ferromagnetic mineral like magnetite (Fe3O4). The definitive test of a ferromagnetic receptor is the pulse-remagnetization experiment, in which you apply a brief, unidirectional magnetic pulse of about 1 mS in duration, configured to exceed the coercive force of the SD particles and reverse the orientation of the magnetic moment wrt to the crystal axis (typically, a pulse few tens of mT is adequate). A pulse configured in this fashion can be well below the dB/dt level needed to fire a sensory nerve through the induced electric fields. The pulse produces a permanent flip in magnetization direction, the same way information is coded on magnetic tape. Magnetotactic bacteria, exposed to such a pulse, reverse their magnetic swimming directions passively. There are now over 16 peer-reviewed papers in which this experiment has been applied to animals, including birds, all of which show clear and long-lasting effects of the pulse. Such a pulse would have no lasting effect on a quantum compass

  15. Single- and multi-pulse femtosecond laser ablation of optical filter materials

    International Nuclear Information System (INIS)

    Krueger, J.; Lenzner, M.; Martin, S.; Lenner, M.; Spielmann, C.; Fiedler, A.; Kautek, W.

    2003-01-01

    Ablation experiments employing Ti:sapphire laser pulses with durations from 30 to 340 fs (centre wavelength 800 nm, repetition rate 1 kHz) were performed in air. Absorbing filters (Schott BG18 and BG36) served as targets. The direct focusing technique was used under single- and multi-pulse irradiation conditions. Ablation threshold fluences were determined from a semi-logarithmic plot of the ablation crater diameter versus laser fluence. The threshold fluence decreases for a shorter pulse duration and an increasing number of pulses. The multi-pulse ablation threshold fluences are similar to those of undoped glass material (∼1 J cm -2 ). That means that the multi-pulse ablation threshold is independent on the doping level of the filters. For more than 100 pulses per spot and all pulse durations applied, the threshold fluence is practically constant. This leads to technically relevant ablation threshold values

  16. Direct determination of the hit locations from experimental HPGe pulses

    Energy Technology Data Exchange (ETDEWEB)

    Désesquelles, P., E-mail: Pierre.Desesquelles@in2p3.fr [Univ. Paris-Sud, CSNSM CNRS/IN2P3, 15 rue G. Clémenceau, 91405 Orsay (France); Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Dimmock, M.R. [Oliver Lodge Laboratory, The University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Lazarus, I.H. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Ljungvall, J. [Univ. Paris-Sud, CSNSM CNRS/IN2P3, 15 rue G. Clémenceau, 91405 Orsay (France); Nelson, L. [Oliver Lodge Laboratory, The University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Nga, D.-T. [Univ. Paris-Sud, CSNSM CNRS/IN2P3, 15 rue G. Clémenceau, 91405 Orsay (France); Nolan, P.J.; Rigby, S.V. [Oliver Lodge Laboratory, The University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Simpson, J. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Van-Oanh, N.-T. [Univ. Paris-Sud, LCP UMR8000 CNRS, 15 rue G. Clémenceau, 91405 Orsay (France)

    2013-11-21

    The gamma-tracking technique optimises the determination of the energy and emission angle of gamma-rays detected by modern segmented HPGe detectors. This entails the determination, using the delivered pulse shapes, of the interaction points of the gamma-ray within the crystal. The direct method presented here allows the localisation of the hits using only a large sample of pulses detected in the actual operating conditions. No external crystal scanning system or pulse shape simulation code is needed. In order to validate this method, it is applied to sets of pulses obtained using the University of Liverpool scanning system. The hit locations are determined by the method with good precision.

  17. A 1J LD pumped Nd:YAG pulsed laser system

    Science.gov (United States)

    Yi, Xue-bin; Wang, Bin; Yang, Feng; Li, Jing; Liu, Ya-Ping; Li, Hui-Jun; Wang, Yu; Chen, Ren

    2017-11-01

    A 1J LD pumped Nd;YAG pulsed laser was designed. The laser uses an oscillation and two-staged amplification structure, and applies diode bar integrated array as side-pump. The TEC temperature control device combing liquid cooling system is organized to control the temperature of the laser system. This study also analyzed the theoretical threshold of working material, the effect of thermal lens and the basic principle of laser amplification. The results showed that the laser system can achieve 1J, 25Hz pulse laser output, and the laser pulse can be output at two width: 6-7ns and 10ns, respectively, and the original beam angle is 1.2mrad. The laser system is characterized by small size, light weight, as well as good stability, which make it being applied in varied fields such as photovoltaic radar platform and etc

  18. Pulse width modulation inverter with battery charger

    Science.gov (United States)

    Slicker, James M.

    1985-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  19. Radiofrequency glow discharge time of flight mass spectrometry: pulsed vs. continuous mode

    International Nuclear Information System (INIS)

    Lobo, L.; Pereiro, R.; Sanz-Medel, A.; Bordel, N.; Tempez, A.; Chapon, P.; Hohl, M.; Michler, J.

    2009-01-01

    Full text: Glow discharge (GD) is a well established tool for the direct analysis of solids. The application field of the original direct current GD, restricted to conductive samples, has been extended by radiofrequency powered GDs that can be applied for conductive and non-conductive samples. Moreover, the introduction of pulsed GD has opened the possibility of applying higher instantaneous powers that can improve the atomization-ionization processes and therefore the sensitivity. Furthermore, pulsed-GD may enable temporal separation of discharge gas species from the sample ions. In this work the analytical performances of radiofrequency and pulsed radiofrequency glow discharges are evaluated by using a time of flight mass analyzer (TOFMS). (author)

  20. Energy constraints in pulsed phase control of chaos

    International Nuclear Information System (INIS)

    Meucci, R.; Euzzor, S.; Zambrano, S.; Pugliese, E.; Francini, F.; Arecchi, F.T.

    2017-01-01

    Phase control of chaos is a powerful technique but little is known about its physical constraints, relevant for real systems. As a fact, it has not been explored whether this technique can also be applied when the controlling perturbation is not harmonic. Here we apply phase control on a driven double well Duffing oscillator using periodic rectangular pulsed perturbations instead of the classical sinusoidal perturbations. Experimental measurements and numerical simulations show that this kind of perturbation is also able to stabilize the chaotic orbits for an adequate selection of the phase. Furthermore, as the duty cycle of the perturbation (that is, the fraction of the time that the periodically pulsed control is active) is increased, two separate regimes occur. In the first one, the perturbations leading to stabilization of periodic solutions are of constant energy (taken as the product of the duty cycle and the amplitude) and in the second one, a saturation phenomenon occurs, implying that increasing energy values of the perturbations are wasted. Our results unveil the versatility of the pulsed phase control scheme and the importance of energy constraints.

  1. Energy constraints in pulsed phase control of chaos

    Energy Technology Data Exchange (ETDEWEB)

    Meucci, R., E-mail: riccardo.meucci@ino.it [Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, Largo E. Fermi 6, 50125 Firenze (Italy); Euzzor, S. [Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, Largo E. Fermi 6, 50125 Firenze (Italy); Zambrano, S. [Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milano (Italy); Pugliese, E. [Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, Largo E. Fermi 6, 50125 Firenze (Italy); Dipartimento di Scienze della Terra, Università di Firenze, Via G. La Pira 4, 50100 Firenze (Italy); Francini, F. [Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, Largo E. Fermi 6, 50125 Firenze (Italy); Arecchi, F.T. [Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, Largo E. Fermi 6, 50125 Firenze (Italy); Università di Firenze, Firenze (Italy)

    2017-01-15

    Phase control of chaos is a powerful technique but little is known about its physical constraints, relevant for real systems. As a fact, it has not been explored whether this technique can also be applied when the controlling perturbation is not harmonic. Here we apply phase control on a driven double well Duffing oscillator using periodic rectangular pulsed perturbations instead of the classical sinusoidal perturbations. Experimental measurements and numerical simulations show that this kind of perturbation is also able to stabilize the chaotic orbits for an adequate selection of the phase. Furthermore, as the duty cycle of the perturbation (that is, the fraction of the time that the periodically pulsed control is active) is increased, two separate regimes occur. In the first one, the perturbations leading to stabilization of periodic solutions are of constant energy (taken as the product of the duty cycle and the amplitude) and in the second one, a saturation phenomenon occurs, implying that increasing energy values of the perturbations are wasted. Our results unveil the versatility of the pulsed phase control scheme and the importance of energy constraints.

  2. First-principles electron dynamics control simulation of diamond under femtosecond laser pulse train irradiation

    International Nuclear Information System (INIS)

    Wang Cong; Jiang Lan; Wang Feng; Li Xin; Yuan Yanping; Xiao Hai; Tsai, Hai-Lung; Lu Yongfeng

    2012-01-01

    A real-time and real-space time-dependent density functional is applied to simulate the nonlinear electron-photon interactions during shaped femtosecond laser pulse train ablation of diamond. Effects of the key pulse train parameters such as the pulse separation, spatial/temporal pulse energy distribution and pulse number per train on the electron excitation and energy absorption are discussed. The calculations show that photon-electron interactions and transient localized electron dynamics can be controlled including photon absorption, electron excitation, electron density, and free electron distribution by the ultrafast laser pulse train. (paper)

  3. Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials.

    Science.gov (United States)

    Maxwell, Adam D; Cain, Charles A; Hall, Timothy L; Fowlkes, J Brian; Xu, Zhen

    2013-03-01

    In this study, the negative pressure values at which inertial cavitation consistently occurs in response to a single, two-cycle, focused ultrasound pulse were measured in several media relevant to cavitation-based ultrasound therapy. The pulse was focused into a chamber containing one of the media, which included liquids, tissue-mimicking materials, and ex vivo canine tissue. Focal waveforms were measured by two separate techniques using a fiber-optic hydrophone. Inertial cavitation was identified by high-speed photography in optically transparent media and an acoustic passive cavitation detector. The probability of cavitation (P(cav)) for a single pulse as a function of peak negative pressure (p(-)) followed a sigmoid curve, with the probability approaching one when the pressure amplitude was sufficient. The statistical threshold (defined as P(cav) = 0.5) was between p(-) = 26 and 30 MPa in all samples with high water content but varied between p(-) = 13.7 and >36 MPa in other media. A model for radial cavitation bubble dynamics was employed to evaluate the behavior of cavitation nuclei at these pressure levels. A single bubble nucleus with an inertial cavitation threshold of p(-) = 28.2 megapascals was estimated to have a 2.5 nm radius in distilled water. These data may be valuable for cavitation-based ultrasound therapy to predict the likelihood of cavitation at various pressure levels and dimensions of cavitation-induced lesions in tissue. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  4. Bipolar pulse generator for intense pulsed ion beam accelerator

    International Nuclear Information System (INIS)

    Ito, H.; Igawa, K.; Kitamura, I.; Masugata, K.

    2007-01-01

    A new type of pulsed ion beam accelerator named ''bipolar pulse accelerator'' (BPA) has been proposed in order to improve the purity of intense pulsed ion beams. To confirm the principle of the BPA, we developed a bipolar pulse generator for the bipolar pulse experiment, which consists of a Marx generator and a pulse forming line (PFL) with a rail gap switch on its end. In this article, we report the first experimental result of the bipolar pulse and evaluate the electrical characteristics of the bipolar pulse generator. When the bipolar pulse generator was operated at 70% of the full charge condition of the PFL, the bipolar pulse with the first (-138 kV, 72 ns) and the second pulse (+130 kV, 70 ns) was successfully obtained. The evaluation of the electrical characteristics indicates that the developed generator can produce the bipolar pulse with fast rise time and sharp reversing time

  5. Ultrashort pulse laser technology laser sources and applications

    CERN Document Server

    Schrempel, Frank; Dausinger, Friedrich

    2016-01-01

    Ultrashort laser pulses with durations in the femtosecond range up to a few picoseconds provide a unique method for precise materials processing or medical applications. Paired with the recent developments in ultrashort pulse lasers, this technology is finding its way into various application fields. The book gives a comprehensive overview of the principles and applications of ultrashort pulse lasers, especially applied to medicine and production technology. Recent advances in laser technology are discussed in detail. This covers the development of reliable and cheap low power laser sources as well as high average power ultrashort pulse lasers for large scale manufacturing. The fundamentals of laser-matter-interaction as well as processing strategies and the required system technology are discussed for these laser sources with respect to precise materials processing. Finally, different applications within medicine, measurement technology or materials processing are highlighted.

  6. Power supply instrumentation for pulsed dielectric barrier discharges

    International Nuclear Information System (INIS)

    Quiroz Velázquez, V E; López Callejas, R; De la Piedad Beneitez, A; Rodríguez Méndez, B G; Peña Eguiluz, R; Muñoz Castro, A E; Barocio, S R; Mercado Cabrera, A; Valencia Alvarado, R

    2012-01-01

    The design and implementation of a pulsed high voltage supply intended to the production and control of pulsed dielectric barrier discharges are reported. The instrumentation includes three independently built DC sources coupled to Flyback-like converters using three 1:50 high voltage transformers. The system is capable of supplying voltages up to 70 kV at a 100-2000 Hz repetition rate, delivering 1-500 μs wide pulses. The system has been applied to the development of pulsed dielectric barrier discharges in a stainless steel coaxial reactor 30 cm long and with a 2.54 cm diameter. The inner nickel electrode diameter is 0.005 cm and is embedded in alumina. The discharges have been carried out in room pressure air. Discharges have been implemented. The discharge is made is a water environment for purposes of bacterial elimination.

  7. Real-time multiparameter pulse processing with decision tables

    International Nuclear Information System (INIS)

    Hull, K.; Griffin, H.

    1986-01-01

    Decision tables offer several advantages over other real-time multiparameter, data processing techniques. These include very high collection rates, minimum number of computer instructions, rates independent of the number of conditions applied per parameter, ease of adding or removing conditions during a session, and simplicity of implementation. Decisions table processing is important in multiparameter nuclear spectroscopy, coincidence experiments, multiparameter pulse processing (HgI 2 resolution enhancement, pulse discrimination, timing spectroscopy), and other applications can be easily implemented. (orig.)

  8. Environmental and biotechnological applications of high-voltage pulsed discharges in water

    International Nuclear Information System (INIS)

    Sato, Masayuki

    2008-01-01

    A high-voltage pulse has wide application in fields such as chemistry, physics and biology and their combinations. The high-voltage pulse forms two kinds of physical processes in water, namely (a) a pulsed electric field (PEF) in the parallel electrode configuration and (b) plasma generation by a pulsed discharge in the water phase with a concentrated electric field. The PEF can be used for inactivation of bacteria in liquid foods as a non-thermal process, and the underwater plasma is applicable not only for the decomposition of organic materials in water but also for biological treatment of wastewater. These discharge states are controlled mainly by the applied pulse voltage and the electrode shape. Some examples of environmental and biotechnological applications of a high-voltage pulse are reviewed.

  9. Breakdown of methylene blue and methyl orange by pulsed corona discharge

    NARCIS (Netherlands)

    Grabowski, L.R.; Veldhuizen, van E.M.; Pemen, A.J.M.; Rutgers, W.R.

    2007-01-01

    The recently developed corona above water technique is applied to water containing 10 mg l-1 methylene blue (MB) or methyl orange (MO). The corona discharge pulses are created with a spark gap switched capacitor followed by a transmission line transformer. The pulse amplitude is 40 kV; its duration

  10. Developing of CIAE2170 pulse shape discriminator

    International Nuclear Information System (INIS)

    Shen Guanren; Wuru Gongsang; Zhou Zuying; Guo Li; Gao Weixiang; Ni Hefeng; Sun Gong

    1995-01-01

    The pulse shape discriminator is very important electronics for reducing γ rays background. The CIAE2170 pulse shape discriminator is developed and is applied to the experiments on neutron and fission physics and measurements of nuclear data for more than 1500 h. It's very stable and reliable, and continually worked for more than 200 h. The main performance is carefully tested and is in the lead in china and arrived at international advanced level. Specially, the temperature stability is less than 0.10 ns/degree C in 5-45 degree C range

  11. Pulsed electrical discharge in gas bubbles in water

    Science.gov (United States)

    Gershman, Sophia

    A phenomenological picture of pulsed electrical discharge in gas bubbles in water is produced by combining electrical, spectroscopic, and imaging methods. The discharge is generated by applying one microsecond long 5 to 20 kilovolt pulses between the needle and disk electrodes submerged in water. A gas bubble is generated at the tip of the needle electrode. The study includes detailed experimental investigation of the discharge in argon bubbles and a brief look at the discharge in oxygen bubbles. Imaging, electrical characteristics, and time-resolved optical emission data point to a fast streamer propagation mechanism and formation of a plasma channel in the bubble. Spectroscopic methods based on line intensity ratios and Boltzmann plots of line intensities of argon, atomic hydrogen, and argon ions and the examination of molecular emission bands from molecular nitrogen and hydroxyl radicals provide evidence of both fast beam-like electrons and slow thermalized ones with temperatures of 0.6 -- 0.8 electron-volts. The collisional nature of plasma at atmospheric pressure affects the decay rates of optical emission. Spectroscopic study of rotational-vibrational bands of hydroxyl radical and molecular nitrogen gives vibrational and rotational excitation temperatures of the discharge of about 0.9 and 0.1 electron-volt, respectively. Imaging and electrical evidence show that discharge charge is deposited on the bubble wall and water serves as a dielectric barrier for the field strength and time scales of this experiment. Comparing the electrical and imaging information for consecutive pulses applied at a frequency of 1 Hz indicates that each discharge proceeds as an entirely new process with no memory of the previous discharge aside from long-lived chemical species, such as ozone and oxygen. Intermediate values for the discharge gap and pulse duration, low repetition rate, and unidirectional character of the applied voltage pulses make the discharge process here unique

  12. Active listening for spatial orientation in a complex auditory scene.

    Directory of Open Access Journals (Sweden)

    Cynthia F Moss

    2006-04-01

    Full Text Available To successfully negotiate a complex environment, an animal must control the timing of motor behaviors in coordination with dynamic sensory information. Here, we report on adaptive temporal control of vocal-motor behavior in an echolocating bat, Eptesicus fuscus, as it captured tethered insects close to background vegetation. Recordings of the bat's sonar vocalizations were synchronized with high-speed video images that were used to reconstruct the bat's three-dimensional flight path and the positions of target and vegetation. When the bat encountered the difficult task of taking insects as close as 10-20 cm from the vegetation, its behavior changed significantly from that under open room conditions. Its success rate decreased by about 50%, its time to initiate interception increased by a factor of ten, and its high repetition rate "terminal buzz" decreased in duration by a factor of three. Under all conditions, the bat produced prominent sonar "strobe groups," clusters of echolocation pulses with stable intervals. In the final stages of insect capture, the bat produced strobe groups at a higher incidence when the insect was positioned near clutter. Strobe groups occurred at all phases of the wingbeat (and inferred respiration cycle, challenging the hypothesis of strict synchronization between respiration and sound production in echolocating bats. The results of this study provide a clear demonstration of temporal vocal-motor control that directly impacts the signals used for perception.

  13. Measurements of picosecond pulses of a high-current electron accelerator

    International Nuclear Information System (INIS)

    Zheltov, K.A.; Petrenko, A.N.; Turundaevskaya, I.G.; Shalimanov, V.F.

    1997-01-01

    The duration of a picosecond high-current accelerator electron beam pulse duration is measured and its shape is determined using a measuring line, comprising a Faraday cup, a radiofrequency cable of minor length and a wide-band SRG-7 oscillograph. The procedure of data reconstruction according to regularization method is applied to determine the actual shape of the pulse measured

  14. Three-level system driven by delayed pulses of finite duration

    International Nuclear Information System (INIS)

    Ishkhanyan, Artur; Suominen, Kalle-Antti

    2002-01-01

    We find the exact solution to the three-state problem for a class of intuitive and counterintuitive sequences of delayed pulses of finite duration in terms of the Clausen's generalized hypergeometric function, which reduces to simple analytic expressions, involving elementary functions only, for final occupation probabilities. These analytic results show that the sequence of delayed pulses, independently of the pulse order and applied detunings, can completely remove the population from the initially populated state (thus creating a quantum superposition of two other involved states). This conclusion extends the original result of Vitanov and Stenholm [Phys. Rev. A 55, 648 (1997)], to the case of nonzero two-photon detuning and more general pulse shapes

  15. Short-wavelength soft-x-ray laser pumped in double-pulse single-beam non-normal incidence

    International Nuclear Information System (INIS)

    Zimmer, D.; Ros, D.; Guilbaud, O.; Habib, J.; Kazamias, S.; Zielbauer, B.; Bagnoud, V.; Ecker, B.; Aurand, B.; Kuehl, T.; Hochhaus, D. C.; Neumayer, P.

    2010-01-01

    We demonstrated a 7.36 nm Ni-like samarium soft-x-ray laser, pumped by 36 J of a neodymium:glass chirped-pulse amplification laser. Double-pulse single-beam non-normal-incidence pumping was applied for efficient soft-x-ray laser generation. In this case, the applied technique included a single-optic focusing geometry for large beam diameters, a single-pass grating compressor, traveling-wave tuning capability, and an optimized high-energy laser double pulse. This scheme has the potential for even shorter-wavelength soft-x-ray laser pumping.

  16. Pulse on pulse: modulation and signification in Rafael Lozano-Hemmer's Pulse Room

    Directory of Open Access Journals (Sweden)

    Merete Carlson

    2012-06-01

    Full Text Available This article investigates the relation between signifying processes and non-signifying material dynamism in the installation Pulse Room (2006 by Mexican Canadian artist Rafael Lozano-Hemmer. In Pulse Room the sense of pulse is ambiguous. Biorhythms are transmitted from the pulsing energy of the visitor's beating heart to the flashing of a fragile light bulb, thereby transforming each light bulb into a register of individual life. But at the same time the flashing light bulbs together produce a chaotically flickering light environment composed by various layers of repetitive rhythms, a vibrant and pulsating “room”. Hence, the visitor in Pulse Room is invited into a complex scenario that continuously oscillates between various aspects of signification (the light bulbs representing individual lives; the pulse itself as the symbolic “rhythm of life” and instants of pure material processuality (flickering light bulbs; polyrhythmic layers. Taking our point of departure in a discussion of Gilles Deleuze's concepts of modulation and signaletic material in relation to electronic media, we examine how the complex orchestration of pulsation between signification and material modulation produces a multilayered sense of time and space that is central to the sensory experience of Pulse Room as a whole. Pulse Room is, at the very same time, a relational subject–object intimacy and an all-encompassing immersive environment modulating continuously in real space-time.

  17. Pulsed magnetic field generation suited for low-field unilateral nuclear magnetic resonance systems

    Science.gov (United States)

    Gaunkar, Neelam Prabhu; Selvaraj, Jayaprakash; Theh, Wei-Shen; Weber, Robert; Mina, Mani

    2018-05-01

    Pulsed magnetic fields can be used to provide instantaneous localized magnetic field variations. In presence of static fields, pulsed field variations are often used to apply torques and in-effect to measure behavior of magnetic moments in different states. In this work, the design and experimental performance of a pulsed magnetic field generator suited for low static field nuclear magnetic resonance (NMR) applications is presented. One of the challenges of low bias field NMR measurements is low signal to noise ratio due to the comparable nature of the bias field and the pulsed field. Therefore, a circuit is designed to apply pulsed currents through an inductive load, leading to generation of pulsed magnetic fields which can temporarily overpower the effect of the bias field on magnetic moments. The designed circuit will be tuned to operate at the precession frequency of 1H (protons) placed in a bias field produced by permanent magnets. The designed circuit parameters may be tuned to operate under different bias conditions. Therefore, low field NMR measurements can be performed for different bias fields. Circuit simulations were used to determine design parameters, corresponding experimental measurements will be presented in this work.

  18. Fresh water disinfection by pulsed low electric field

    International Nuclear Information System (INIS)

    Zheng, C; Xu, Y; Liu, Z; Yan, K

    2013-01-01

    In this paper, we describe a pulsed low electric field process for water disinfection. Electric intensity of 0.6–1.7 kV cm −1 is applied. Experiments are performed with a 1.2 L axis-cylinder reactor. A bipolar pulsed power source with pulsed width of 25 μs and frequency of 100–3000 Hz is used. Water conductivity of 3–200 μs cm −1 is investigated, which can significantly affect pulsed voltage-current waveforms and injected energy. Energy per pulse rises with increased water conductivity. The initial E. Coli density and water conductivity are two major factors influencing the disinfection. No disinfection effect is performed with deionized water of 3 μs cm −1 . When water conductivity is 25 μs cm −1 and bacteria density is 10 4 –10 6 cfu ml −1 , significant disinfection effect is observed. More than 99% of the cells can be disinfected with an energy density of less than 70 J ml −1 , while water temperature is below 30 °C.

  19. Nonlinear laser pulse response in a crystalline lens.

    Science.gov (United States)

    Sharma, R P; Gupta, Pradeep Kumar; Singh, Ram Kishor; Strickland, D

    2016-04-01

    The propagation characteristics of a spatial Gaussian laser pulse have been studied inside a gradient-index structured crystalline lens with constant-density plasma generated by the laser-tissue interaction. The propagation of the laser pulse is affected by the nonlinearities introduced by the generated plasma inside the crystalline lens. Owing to the movement of plasma species from a higher- to a lower-temperature region, an increase in the refractive index occurs that causes the focusing of the laser pulse. In this study, extended paraxial approximation has been applied to take into account the evolution of the radial profile of the Gaussian laser pulse. To examine the propagation characteristics, variation of the beam width parameter has been observed as a function of the laser power and initial beam radius. The cavitation bubble formation, which plays an important role in the restoration of the elasticity of the crystalline lens, has been investigated.

  20. Electromagnetic pulses at the boundary of a nonlinear plasma

    International Nuclear Information System (INIS)

    Satorius, E.H.

    1975-01-01

    An investigation was made of the behavior of strong electromagnetic pulses at the boundary of a nonlinear, cold, collisionless, and uniform plasma. The nonlinearity considered here is due to the nonlinear terms in the fluid equation which is used to describe the plasma. Two cases are studied. First, the case where there is a voltage pulse applied across the plane boundary of a semi-infinite, nonlinear plasma. Two different voltage pulses are considered, i.e., a delta function pulse and a suddenly turned-on sinusoidal pulse. The resulting electromagnetic fields propagating in the nonlinear plasma are found in this case. In the second case, the reflection of incident E-polarized and H-polarized, electromagnetic pulses at various angles of incidence from a nonlinear, semi-infinite plasma are considered. Again, two forms of incident pulses are considered: a delta function pulse and a suddenly turned-on sinusoidal pulse. In case two, the reflected electromagnetic fields are found. In both cases, the method used for finding the fields is to first solve the fluid equation (which describes the plasma) for the nonlinear conduction current in terms of the electric field using a perturbation method (since the nonlinear effects are assumed to be small). Next, this current is substituted into Maxwell's equations, and finally the electromagnetic fields which satisfy the boundary conditions are found. (U.S.)

  1. Acoustic emission linear pulse holography

    Science.gov (United States)

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-10-25

    This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.

  2. Understanding the dynamic performance of microchannel plates in pulsed mode

    International Nuclear Information System (INIS)

    Ray Thomas; Ming Wu; Nathan Joseph; Craig Kruschwitz; Gregroy A. Rochau

    2007-01-01

    The dynamic performance of a microchannel plate (MCP) is highly dependent on the high-voltage waveforms that are applied to it. Impedance mismatches in MCP detectors can significantly vary the waveforms on the MCP compared to the input pulses. High-voltage pulse waveforms launched onto surface coatings on the MCPs have historically been difficult and expensive to measure. Over the past few years, we have developed and tested techniques utilizing probes to measure the voltage propagation on the surface of MCPs. Square and Gaussian pulses with widths ranging from 200 ps to 2 ns have been applied. We have investigated the effects of coating thickness, microstrip width, and openended versus terminated strips. These data provide a wealth of knowledge that is enabling a better understanding of images recorded with these devices. This presentation discusses a method for measuring voltage profiles on the surface of the MCP and presents Monte Carlo simulations of the optical gate profiles based on the measured waveforms. Excellent agreement in the optical gate profiles have been achieved between the simulations and the experimental measurements using a short-pulse ultraviolet laser

  3. Double pulse laser induced breakdown spectroscopy applied to natural and artificial materials from cultural heritages

    International Nuclear Information System (INIS)

    Brai, Maria; Gennaro, Gaetano; Schillaci, Tiziano; Tranchina, Luigi

    2009-01-01

    The laser-induced breakdown spectroscopy (LIBS) is an applied physical technique that has shown in recent years its great potential for rapid qualitative analysis of materials. Thanks to the possibility to implement a portable instrument that perform LIBS analysis, this technique is revealed to be particularly useful for in situ analysis in the field of cultural heritages. The purpose of this work is to evaluate the potentiality of LIBS technique in the field of cultural heritages, with respect to the chemical characterization of complex matrix as calcareous and refractory materials for further quantitative analyses on cultural heritages. X-Ray Fluorescence (XRF) analyses were used as reference. Calibration curves of certified materials used as standards were obtained by XRF analyses. The LIBS measurements were performed with a new mobile instrument called Modi (Mobile Double pulse Instrument for LIBS Analysis). The XRF analyses were performed with a portable instrument ArtTAX. LIBS and XRF measurement were performed on both reference materials and samples (bricks and mortars) sampled in the ancient Greek-Roman Theatre of Taormina. Although LIBS measurements performed on reference materials have shown non linear response to concentrations, and so we were not able to obtain quantitative results, an integrated study of XRF and LIBS signals permitted us to distinguish among chemical features and degradation state of measured building materials.

  4. Double pulse laser induced breakdown spectroscopy applied to natural and artificial materials from cultural heritages

    Energy Technology Data Exchange (ETDEWEB)

    Brai, Maria; Gennaro, Gaetano [Dipartimento di Fisica e Tecnologie Relative, Universita di Palermo, Viale delle Scienze Ed.18, 90128 Palermo (Italy); Schillaci, Tiziano, E-mail: tschillaci@unipa.i [Dipartimento di Fisica e Tecnologie Relative, Universita di Palermo, Viale delle Scienze Ed.18, 90128 Palermo (Italy); Tranchina, Luigi [Dipartimento di Fisica e Tecnologie Relative, Universita di Palermo, Viale delle Scienze Ed.18, 90128 Palermo (Italy)

    2009-10-15

    The laser-induced breakdown spectroscopy (LIBS) is an applied physical technique that has shown in recent years its great potential for rapid qualitative analysis of materials. Thanks to the possibility to implement a portable instrument that perform LIBS analysis, this technique is revealed to be particularly useful for in situ analysis in the field of cultural heritages. The purpose of this work is to evaluate the potentiality of LIBS technique in the field of cultural heritages, with respect to the chemical characterization of complex matrix as calcareous and refractory materials for further quantitative analyses on cultural heritages. X-Ray Fluorescence (XRF) analyses were used as reference. Calibration curves of certified materials used as standards were obtained by XRF analyses. The LIBS measurements were performed with a new mobile instrument called Modi (Mobile Double pulse Instrument for LIBS Analysis). The XRF analyses were performed with a portable instrument ArtTAX. LIBS and XRF measurement were performed on both reference materials and samples (bricks and mortars) sampled in the ancient Greek-Roman Theatre of Taormina. Although LIBS measurements performed on reference materials have shown non linear response to concentrations, and so we were not able to obtain quantitative results, an integrated study of XRF and LIBS signals permitted us to distinguish among chemical features and degradation state of measured building materials.

  5. Loss characteristics of FLTD magnetic cores under fast pulsed voltage

    International Nuclear Information System (INIS)

    Wang Zhiguo; Sun Fengju; Qiu Aici; Jiang Xiaofeng; Liang Tianxue; Yin Jiahui; Liu Peng; Wei Hao; Zhang Pengfei; Zhang Zhong

    2012-01-01

    The test platform has been developed to generate exciting pulsed voltages with the rise time less than 30 ns. The loss characteristics of cores of 25 μm 2605TCA Metglas and 50 μm DG6 electrical steel were then studied. A characteristic parameter, the gradient of the voltage pulse applied per unit core area, is proposed to describe the exciting condition applied on magnetic cores. The loss of the DG6 core is about 4 times that of the 2605TCA core. Most loss of the DG6 core, about 75%, is due to eddy current. For the 2605TCA core, the percentage is about 28%. (authors)

  6. Pulse number control of electrical resistance for multi-level storage based on phase change

    International Nuclear Information System (INIS)

    Nakayama, K; Takata, M; Kasai, T; Kitagawa, A; Akita, J

    2007-01-01

    Phase change nonvolatile memory devices composed of SeSbTe chalcogenide semiconductor thin film were fabricated. The resistivity of the SeSbTe system was investigated to apply to multi-level data storage. The chalcogenide semiconductor acts as a programmable resistor that has a large dynamic range. The resistance of the chalcogenide semiconductor can be set to intermediate resistances between the amorphous and crystalline states using electric pulses of a specified power, and it can be controlled by repetition of the electric pulses. The size of the memory cell used in this work is 200 nm thick with a contact area of 1 μm diameter. The resistance of the chalcogenide semiconductor gradually varies from 41 kΩ to 840 Ω within octal steps. The resistance of the chalcogenide semiconductor decreases with increasing number of applied pulses. The step-down characteristic of the resistance can be explained as the crystalline region of the active phase change region increases with increasing number of applied pulses. The extent of crystallization was also estimated by the overall resistivity of the active region of the memory cell

  7. Rapid hardening induced by electric pulse annealing in nanostructured pure aluminum

    DEFF Research Database (Denmark)

    Zeng, Wei; Shen, Yao; Zhang, Ning

    2012-01-01

    Nanostructured pure aluminum was fabricated by heavy cold-rolling and then subjected to recovery annealing either by applying electric pulse annealing or by traditional air furnace annealing. Both annealing treatments resulted in an increase in yield strength due to the occurrence of a “dislocation...... source-limited hardening” mechanism. However, the hardening kinetics was substantially faster for the electric pulse annealed material. Detailed microstructural characterization suggested that the rapid hardening during electric pulse annealing is related to an enhanced rate of recovery of dislocation...

  8. Effect of power modulation on properties of pulsed capacitively coupled radiofrequency discharges

    International Nuclear Information System (INIS)

    Samara, V; Bowden, M D; Braithwaite, N St J

    2010-01-01

    We describe measurements of plasma properties of pulsed, low pressure, capacitively coupled discharges operated in argon. The study aims to determine the effect of modulating the radiofrequency power during the discharge part of the pulse cycle. Measurements of local electron density and optical emission were made in capacitively coupled rf discharges generated in a Gaseous Electronics Conference (GEC) reference reactor. Gas pressure was in the range 7-70 Pa, rf power in the range 1-100 W and pulse durations in the range 10 μs-100 ms. The results indicate that the ignition and afterglow decay processes in pulsed discharges can be controlled by modulating the shape of applied radiofrequency pulse.

  9. High voltage pulse generator. [Patent application

    Science.gov (United States)

    Fasching, G.E.

    1975-06-12

    An improved high-voltage pulse generator is described which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of the first rectifier connected between the first and second capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. The output voltage can be readily increased by adding additional charging networks. The circuit allows the peak level of the output to be easily varied over a wide range by using a variable autotransformer in the charging circuit.

  10. Controlling the acoustic streaming by pulsed ultrasounds.

    Science.gov (United States)

    Hoyos, Mauricio; Castro, Angélica

    2013-01-01

    We propose a technique based on pulsed ultrasounds for controlling, reducing to a minimum observable value the acoustic streaming in closed ultrasonic standing wave fluidic resonators. By modifying the number of pulses and the repetition time it is possible to reduce the velocity of the acoustic streaming with respect to the velocity generated by the continuous ultrasound mode of operation. The acoustic streaming is observed at the nodal plane where a suspension of 800nm latex particles was focused by primary radiation force. A mixture of 800nm and 15μm latex particles has been also used for showing that the acoustic streaming is hardly reduced while primary and secondary forces continue to operate. The parameter we call "pulse mode factor" i.e. the time of applied ultrasound divided by the duty cycle, is found to be the adequate parameter that controls the acoustic streaming. We demonstrate that pulsed ultrasound is more efficient for controlling the acoustic streaming than the variation of the amplitude of the standing waves. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Application of dynamic response analysis to JET heat pulse data

    International Nuclear Information System (INIS)

    Griguoli, A.; Sips, A.C.C.

    1993-09-01

    The plasma dynamic response can be used to study transport processes in a tokamak plasma. A method has been developed for the application of dynamic response analysis to study perturbations away from the plasma equilibrium. In this report perturbations on the electron temperature following a sawtooth collapse in the center of the plasma are considered. The method has been used to find mathematical description of a series of heat pulses at the Joint European Torus project (JET). From the plasma dynamic response, the time constants which characterise the heat pulse are obtained. These time constants are compared to the transport coefficients found in previous analysis of the JET heat pulse data. Various methods are discussed for applying dynamic response analysis to JET heat pulse data. (author)

  12. Particle-in-cell simulation of Trichel pulses in pure oxygen

    International Nuclear Information System (INIS)

    Soria-Hoyo, C; Pontiga, F; Castellanos, A

    2007-01-01

    The development and propagation of Trichel pulses in oxygen have been numerically simulated using an improved fluid particle-in-cell (PIC) method. The numerical method has been optimized to accurately reproduce sequences of about 100 Trichel pulses (∼1 ms). A classical one-dimensional model of negative corona in sphere-to-plane geometry has been used to formulate the continuity equations for electrons and ions. The effects of ionization, attachment and secondary-electron emission from the cathode have all been considered. The electric field has been obtained from the solution of Poisson's equation in two dimensions. Using this model, the temporal and electrical characteristics of Trichel pulses have been investigated, in particular, the relation between applied voltage, pulse frequency and time-averaged current intensity and charge

  13. Effect of pulsed voltage on electrochemical migration of tin in electronics

    DEFF Research Database (Denmark)

    Verdingovas, Vadimas; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-01-01

    formation and increases the charge transferred between the electrodes over time. With increase of duty cycle, increases the anodic dissolution of tin, which was visualized using a tin ion indicator applied on the components prior to applying the voltage. The anodic dissolution of tin significantly...... respectively at 10 and 5 V, while the duty cycle and the pulse width were varied in the range of ms. The results showed that varying of pulse width at fixed duty cycle has a minor effect under investigated conditions, whereas increasing duty cycle significantly reduces the time to short due to dendrite...

  14. Moderate and high intensity pulsed electric fields

    NARCIS (Netherlands)

    Timmermans, Rian Adriana Hendrika

    2018-01-01

    Pulsed Electric Field (PEF) processing has gained a lot of interest the last decades as mild processing technology as alternative to thermal pasteurisation, and is suitable for preservation of liquid food products such as fruit juices. PEF conditions typically applied at industrial scale for

  15. In vivo lactate and beta-hydroxybutyrate editing using a pure-phase refocusing pulse train.

    Science.gov (United States)

    Shen, J; Novotny, E J; Rothman, D L

    1998-11-01

    A refocusing pulse train consisting of a semiselective refocusing pulse and a selective inversion pulse to obtain a pure-phase refocusing at the frequency of maximal excitation of the semiselective refocusing pulse is proposed and applied to in vivo lactate and beta-hydroxybutyrate editing using difference spectroscopy. It is shown, using both rotation matrix theory and phantom experiments, that the soft inversion pulse has to be halved to flank the semiselective pulse to obtain perfect refocusing and cancellation of interfering resonances. The editing method is used to obtain lactate and beta-hydroxybutyrate spectra from the occipital cortex of juvenile epilepsy patients before and after ketogenic diet treatment.

  16. International magnetic pulse compression workshop: (Proceedings)

    Energy Technology Data Exchange (ETDEWEB)

    Kirbie, H.C.; Newton, M.A.; Siemens, P.D.

    1991-04-01

    A few individuals have tried to broaden the understanding of specific and salient pulsed-power topics. One such attempt is this documentation of a workshop on magnetic switching as it applies primarily to pulse compression (power transformation), affording a truly international perspective by its participants under the initiative and leadership of Hugh Kirbie and Mark Newton of the Lawrence Livermore National Laboratory (LLNL) and supported by other interested organizations. During the course of the Workshop at Granlibakken, a great deal of information was amassed and a keen insight into both the problems and opportunities as to the use of this switching approach was developed. The segmented workshop format proved ideal for identifying key aspects affecting optimum performance in a variety of applications. Individual groups of experts addressed network and system modeling, magnetic materials, power conditioning, core cooling and dielectrics, and finally circuits and application. At the end, they came together to consolidate their input and formulate the workshop's conclusions, identifying roadblocks or suggesting research projects, particularly as they apply to magnetic switching's trump card--its high-average-power-handling capability (at least on a burst-mode basis). The workshop was especially productive both in the quality and quantity of information transfer in an environment conducive to a free and open exchange of ideas. We will not delve into the organization proper of this meeting, rather we wish to commend to the interested reader this volume, which provides the definitive and most up-to-date compilation on the subject of magnetic pulse compression from underlying principles to current state of the art as well as the prognosis for the future of magnetic pulse compression as a consensus of the workshop's organizers and participants.

  17. International magnetic pulse compression workshop: [Proceedings

    International Nuclear Information System (INIS)

    Kirbie, H.C.; Newton, M.A.; Siemens, P.D.

    1991-04-01

    A few individuals have tried to broaden the understanding of specific and salient pulsed-power topics. One such attempt is this documentation of a workshop on magnetic switching as it applies primarily to pulse compression (power transformation), affording a truly international perspective by its participants under the initiative and leadership of Hugh Kirbie and Mark Newton of the Lawrence Livermore National Laboratory (LLNL) and supported by other interested organizations. During the course of the Workshop at Granlibakken, a great deal of information was amassed and a keen insight into both the problems and opportunities as to the use of this switching approach was developed. The segmented workshop format proved ideal for identifying key aspects affecting optimum performance in a variety of applications. Individual groups of experts addressed network and system modeling, magnetic materials, power conditioning, core cooling and dielectrics, and finally circuits and application. At the end, they came together to consolidate their input and formulate the workshop's conclusions, identifying roadblocks or suggesting research projects, particularly as they apply to magnetic switching's trump card--its high-average-power-handling capability (at least on a burst-mode basis). The workshop was especially productive both in the quality and quantity of information transfer in an environment conducive to a free and open exchange of ideas. We will not delve into the organization proper of this meeting, rather we wish to commend to the interested reader this volume, which provides the definitive and most up-to-date compilation on the subject of magnetic pulse compression from underlying principles to current state of the art as well as the prognosis for the future of magnetic pulse compression as a consensus of the workshop's organizers and participants

  18. A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition

    International Nuclear Information System (INIS)

    Shiraishi, Taisuke; Urushihara, Tomonori; Gundersen, Martin

    2009-01-01

    Application of nanosecond pulsed low temperature plasma as an ignition technique for automotive gasoline engines, which require a discharge under conditions of high back pressure, has been studied experimentally using a single-cylinder engine. The nanosecond pulsed plasma refers to the transient (non-equilibrated) phase of a plasma before the formation of an arc discharge; it was obtained by applying a high voltage with a nanosecond pulse (FWHM of approximately 80 or 25 ns) between coaxial cylindrical electrodes. It was confirmed that nanosecond pulsed plasma can form a volumetric multi-channel streamer discharge at an energy consumption of 60 mJ cycle -1 under a high back pressure of 1400 kPa. It was found that the initial combustion period was shortened compared with the conventional spark ignition. The initial flame visualization suggested that the nanosecond pulsed plasma ignition results in the formation of a spatially dispersed initial flame kernel at a position of high electric field strength around the central electrode. It was observed that the electric field strength in the air gap between the coaxial cylindrical electrodes was increased further by applying a shorter pulse. It was also clarified that the shorter pulse improved ignitability even further.

  19. A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition

    Science.gov (United States)

    Shiraishi, Taisuke; Urushihara, Tomonori; Gundersen, Martin

    2009-07-01

    Application of nanosecond pulsed low temperature plasma as an ignition technique for automotive gasoline engines, which require a discharge under conditions of high back pressure, has been studied experimentally using a single-cylinder engine. The nanosecond pulsed plasma refers to the transient (non-equilibrated) phase of a plasma before the formation of an arc discharge; it was obtained by applying a high voltage with a nanosecond pulse (FWHM of approximately 80 or 25 ns) between coaxial cylindrical electrodes. It was confirmed that nanosecond pulsed plasma can form a volumetric multi-channel streamer discharge at an energy consumption of 60 mJ cycle-1 under a high back pressure of 1400 kPa. It was found that the initial combustion period was shortened compared with the conventional spark ignition. The initial flame visualization suggested that the nanosecond pulsed plasma ignition results in the formation of a spatially dispersed initial flame kernel at a position of high electric field strength around the central electrode. It was observed that the electric field strength in the air gap between the coaxial cylindrical electrodes was increased further by applying a shorter pulse. It was also clarified that the shorter pulse improved ignitability even further.

  20. A comparison between characteristics of atmospheric-pressure plasma jets sustained by nanosecond- and microsecond-pulse generators in helium

    International Nuclear Information System (INIS)

    Zhang, Cheng; Shao, Tao; Wang, Ruixue; Yan, Ping; Zhou, Zhongsheng; Zhou, Yixiao

    2014-01-01

    Power source is an important parameter that can affect the characteristics of atmospheric-pressure plasma jets (APPJs), because it can play a key role on the discharge characteristics and ionization process of APPJs. In this paper, the characteristics of helium APPJs sustained by both nanosecond-pulse and microsecond-pulse generators are compared from the aspects of plume length, discharge current, consumption power, energy, and optical emission spectrum. Experimental results showed that the pulsed APPJ was initiated near the high-voltage electrode with a small curvature radius, and then the stable helium APPJ could be observed when the applied voltage increased. Moreover, the discharge current of the nanosecond-pulse APPJ was larger than that of the microsecond-pulse APPJ. Furthermore, although the nanosecond-pulse generator consumed less energy than the microsecond-pulse generator, longer plume length, larger instantaneous power per pulse and stronger spectral line intensity could be obtained in the nanosecond-pulse excitation case. In addition, some discussion indicated that the rise time of the applied voltage could play a prominent role on the generation of APPJs

  1. Dynamical suppression of nuclear-spin decoherence time in Si and GaAs using inversion pulses

    International Nuclear Information System (INIS)

    Watanabe, S.; Harada, J.; Sasaki, S.; Hirayama, Y.

    2007-01-01

    We found that nuclear-spin decoherence is suppressed by applying inversion pulses such as alternating phase Carr-Purcell (APCP) and Carr-Purcell-Meiboom-Gill (CPMG) sequences in silicon and GaAs. The decoherence time reaches ∼1.3s by applying inversion pulses, which is ∼200 times as long as the characteristic decay time obtained from the Hahn echo sequence (∼6ms) in silicon

  2. Development of Long-Lifetime Pulsed Gas Valves for Pulsed Electric Thrusters

    Science.gov (United States)

    Burkhardt, Wendel M.; Crapuchettes, John M.; Addona, Brad M.; Polzin, Kurt A.

    2015-01-01

    even 10(exp 9) cycles is well above anything demonstrated, this lower value was selected as the design point for the present work. The valve seal must remain leak-tight throughout operation, and the body must maintain a low internal leakage at relatively high operating temperatures. The full set of design requirements used for this program are summarized in Table 1. In this work, we describe two pulsed gas valves that have been fabricated to have long lifetime and demonstrate the characteristics listed above. The first is a miniaturized, conventional electromagnet-based valve while the second is a piezoelectric-based valve design. The conventional valve, shown in Fig. 1, is opened by use of a solenoid electromagnetic actuator. When current is applied to the solenoid coil, magnetic forces pull the plunger away from the valve seat, allowing fluid to flow through the valve. Removal of electrical current permits the spring and fluid pressure to seat the plunger, halting the flow of fluid. The valve body is fabricated from 304L corrosion resistant steel (CRES) and while the parts that form the magnetic circuit are fabricated from 430 CRES. This material does not have optimum magnetic properties, but its corrosion resistance permits incorporation into a design without requiring an additional plating process. A viton O-ring compound (Parker V0884-75), selected for its mechanical strength at elevated temperatures, was used for the valve seat seal. The design was based solely on the use of analytical sizing calculations, as opposed to a more rigorous finite element analysis. While this valve is small and relatively lightweight, it does not represent a design that is optimized for mass and/or a given volume envelope. The piezoelectric valve is a "puller" valve design. Applying a voltage to the piezo crystal causes it to elongate and pull a pintle off the seat, opening the valve. The valve seal consists of the pintle with an external, spherically-formed tip fabricated from

  3. Detection of low caloric power of coal by pulse fast-thermal neutron analysis

    International Nuclear Information System (INIS)

    Gu De-shan; Sang Hai-feng; Qiao Shuang; Liu Yu-ren, Liu Lin-mao; Jing Shi-wei; Chinese Academy of Sciences, Changchun

    2004-01-01

    Analysis method and principle of pulse fast-thermal neutron analysis (PFTNA) are introduced. A system for the measurement of low caloric power of coal by PFTNA is also presented. The 14 MeV pulse neutron generator and BGO detector and 4096 MCA were applied in this system. A multiple linear regression method applied to the data solved the interferential problem of multiple elements. The error of low caloric power between chemical analysis and experiment was less than 0.4 MJ/kg. (author)

  4. Application of superconductivity to pulse fields

    International Nuclear Information System (INIS)

    Saito, Shigeo; Suzawa, Chizuru; Ohkura, Kengo; Nagata, Masayuki; Kawashima, Masao

    1984-01-01

    Numerous attempts to apply the superconductive phenomena of zero electrical resistivity to AC (pulsed) magnets in addition to conventional DC magnet fields are being made in the areas of poloidal coils of nuclear fusion, energy storage, rotary machines, and induction for stabilization of electric power systems. In pulsed superconductive magnets, the stability of the superconductivity and the generation of heat due to AC loss are serious problems. Based on the knowledge obtained through the development of various types of superconductors, magnets, cryostats, and other superconductive-related products, Cu-Ni/Cu/Nb-Ti mixed-matrix fine multifilamentary superconductor wire and the stable, low AC loss superconductors used therein, magnets, and FRP cryostats are developed and manufactured. (author)

  5. Charge pulse preamplifier

    International Nuclear Information System (INIS)

    Libs, Gerard.

    1973-01-01

    A charge pulse preamplifier with very low background noise is described. The inlet stage of that preamplifier comprises a cooled field-effect transistor receiving the signal to be amplified at its gate input. Preferably, the charge resistor of said transistor is a field effect transistor, the source inlet of which is connected to the drain inlet of the former transistor through a self-induction coil and a resistor mounted in series. This can be applied to the treatment of the signals delivered by a particle detector in the form of a semi-conductor [fr

  6. Physics of neutralization of intense high-energy ion beam pulses by electrons

    International Nuclear Information System (INIS)

    Kaganovich, I. D.; Davidson, R. C.; Dorf, M. A.; Startsev, E. A.; Sefkow, A. B.; Lee, E. P.; Friedman, A.

    2010-01-01

    Neutralization and focusing of intense charged particle beam pulses by electrons form the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self-magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100 G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the

  7. Physics of Neutralization of Intense High-Energy Ion Beam Pulses by Electrons

    International Nuclear Information System (INIS)

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.A.; Startsev, E.A.; Sefkow, A.B.; Lee, E.P.; Friedman, A.

    2010-01-01

    Neutralization and focusing of intense charged particle beam pulses by electrons forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self- magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the

  8. Dysthymia increases the risk of temporomandibular disorder: A population-based cohort study (A STROBE-Compliant Article).

    Science.gov (United States)

    Lin, Shang-Lun; Wu, Shang-Liang; Ko, Shun-Yao; Lu, Ching-Hsiang; Wang, Diew-Wei; Ben, Ren-Jy; Horng, Chi-Ting; Yang, Jung-Wu

    2016-07-01

    Numerous studies have investigated the relationship between depression and temporomandibular disorders (TMD), but the conclusions remain vague. The aim of this study was to examine the causal effect between depression and TMD.The reporting of this study conforms to the STROBE statement. In this retrospective cohort study, all samples were recruited from a representative subdataset of 1 million insured persons for the year 2005 Longitudinal Health Insurance Database, who were randomly selected from all beneficiaries enrolled in the National Health Insurance program of Taiwan. We used a propensity score and stratified 926,560 patients into 2 groups (propensity1 = 588,429 and propensity2 = 338,131) and 4 cohorts (propensity1 with depression = 18,038, propensity1 without depression = 570,391, propensity2 with depression = 38,656, propensity2 without depression = 299,475) to detect the development of TMD among the depressive and nondepressive patients between 2004 and 2013.The positive correlative factors of TMD included female, total number of times seeking medical advice (TTSMA) for anxiety state, TTSMA for generalized anxiety disorder, TTSMA for mandible fracture, and TTSMA for unspecified anomaly of jaw size. The propensity2 group was represented by elder and female-predominant patients who used more psychiatric health resources. Among 3 types of depression, only dysthymia (so-called chronic depression) had a causal impact on TMD in the propensity 2 group. In the propensity 2 group, the hazard ratio of dysthymia for TMD measured by Cox's regression was 1.64 (95% confidence interval 1.28-2.09), after adjusting for demographic factors, psychiatric comorbidities, and maxillofacial confounders. The first-onset mean time of TMD as the consequence of dysthymia was 3.56 years (sd = 2.74, min = 0.08, median = 2.99, max = 9.73).This study demonstrates that dysthymia increases the risk of TMD in elderly and female-predominant patients

  9. Electrostatic deposition of a micro solder particle using a single probe by applying a single rectangular pulse

    International Nuclear Information System (INIS)

    Nakabayashi, Daizo; Sawai, Kenji; Saito, Shigeki; Takahashi, Kunio

    2012-01-01

    Recently, micromanipulation techniques have been in high demand. A technique to deposit a metal microparticle onto a metal substrate by using a single metal probe has been proposed as one of the techniques. A solder particle with a diameter of 20–30 µm, initially adhering to the probe tip, is detached and deposited onto a substrate. The success rate of the particle deposition was 44% in the previous research, and is insufficient for industrial applications. In this paper, a technique of particle deposition by applying a single rectangular pulse is proposed, and the mechanism of the deposition is described. In the mechanism, an electric discharge between the probe and the particle when the particle reaches the substrate plays an important role in the particle deposition. Moreover, the mechanism of the proposed technique is verified by experiments of particle deposition, which are observed using a high-speed camera, a scanning electron microscope (SEM) and an oscilloscope. The success rate of the particle deposition has increased to 93% by the proposed technique. Furthermore, the damage to the particle by the electric discharge is evaluated using an RC circuit model, and the applicability of the proposed technique is discussed. (paper)

  10. Short-pulse optical parametric chirped-pulse amplification for the generation of high-power few-cycle pulses

    International Nuclear Information System (INIS)

    Major, Zs.; Osterhoff, J.; Hoerlein, R.; Karsch, S.; Fuoloep, J.A.; Krausz, F.; Ludwig-Maximilians Universitaet, Muenchen

    2006-01-01

    Complete test of publication follows. In the quest for a way to generate ultrashort, high-power, few-cycle laser pulses the discovery of optical parametric amplification (OPA) has opened up to the path towards a completely new regime, well beyond that of conventional laser amplification technology. The main advantage of this parametric amplification process is that it allows for an extremely broad amplification bandwidth compared to any known laser amplifier medium. When combined with the chirped-pulse amplification (CPA) principle (i.e. OPCPA), on one hand pulses of just 10 fs duration and 8 mJ pulse energy have been demonstrated. On the other hand, pulse energies of up to 30 J were also achieved on a different OPCPA system; the pulse duration in this case, however, was 100 fs. In order to combine ultrashort pulse durations (i.e. pulses in the few-cycle regime) with high pulse energies (i.e. in the Joule range) we propose tu pump on OPCPA chain with TW-scale short pulses (100 fs - 1 ps instead of > 100 ps of previous OPCPA systems) delivered by a conventional CPA system. This approach inherently improves the conditions for generating high-power ultrashort pulses using OPCPA in the following ways. Firstly, the short pump pulse duration reduces the necessary stretching factor for the seed pulse, thereby increasing stretching and compression fidelity. Secondly, also due to the shortened pump pulse duration, a much higher contrast is achieved. Finally, the significantly increased pump power makes the use of thinner OPCPA crystals possible, which implies an even broader amplification bandwidth, thereby allowing for even shorter pulses. We carried out theoretical investigations to show the feasibility of such a set-up. Alongside these studies we will also present preliminary experimental results of an OPCPA system pumped by the output of our Ti:Sapphire ATLAS laser, currently delivering 350 mJ in 43 fs. An insight into the planned scaling of this technique to petawatt

  11. Nanoparticle mechanics: deformation detection via nanopore resistive pulse sensing

    Science.gov (United States)

    Darvish, Armin; Goyal, Gaurav; Aneja, Rachna; Sundaram, Ramalingam V. K.; Lee, Kidan; Ahn, Chi Won; Kim, Ki-Bum; Vlahovska, Petia M.; Kim, Min Jun

    2016-07-01

    Solid-state nanopores have been widely used in the past for single-particle analysis of nanoparticles, liposomes, exosomes and viruses. The shape of soft particles, particularly liposomes with a bilayer membrane, can greatly differ inside the nanopore compared to bulk solution as the electric field inside the nanopores can cause liposome electrodeformation. Such deformations can compromise size measurement and characterization of particles, but are often neglected in nanopore resistive pulse sensing. In this paper, we investigated the deformation of various liposomes inside nanopores. We observed a significant difference in resistive pulse characteristics between soft liposomes and rigid polystyrene nanoparticles especially at higher applied voltages. We used theoretical simulations to demonstrate that the difference can be explained by shape deformation of liposomes as they translocate through the nanopores. Comparing our results with the findings from electrodeformation experiments, we demonstrated that the rigidity of liposomes can be qualitatively compared using resistive pulse characteristics. This application of nanopores can provide new opportunities to study the mechanics at the nanoscale, to investigate properties of great value in fundamental biophysics and cellular mechanobiology, such as virus deformability and fusogenicity, and in applied sciences for designing novel drug/gene delivery systems.Solid-state nanopores have been widely used in the past for single-particle analysis of nanoparticles, liposomes, exosomes and viruses. The shape of soft particles, particularly liposomes with a bilayer membrane, can greatly differ inside the nanopore compared to bulk solution as the electric field inside the nanopores can cause liposome electrodeformation. Such deformations can compromise size measurement and characterization of particles, but are often neglected in nanopore resistive pulse sensing. In this paper, we investigated the deformation of various

  12. Research and simulation of intense pulsed beam transfer in electrostatic accelerate tube

    International Nuclear Information System (INIS)

    Li Chaolong; Shi Haiquan; Lu Jianqin

    2012-01-01

    To study intense pulsed beam transfer in electrostatic accelerate tube, the matrix method was applied to analyze the transport matrixes in electrostatic accelerate tube of non-intense pulsed beam and intense pulsed beam, and a computer code was written for the intense pulsed beam transporting in electrostatic accelerate tube. Optimization techniques were used to attain the given optical conditions and iteration procedures were adopted to compute intense pulsed beam for obtaining self-consistent solutions in this computer code. The calculations were carried out by using ACCT, TRACE-3D and TRANSPORT for different beam currents, respectively. The simulation results show that improvement of the accelerating voltage ratio can enhance focusing power of electrostatic accelerate tube, reduce beam loss and increase the transferring efficiency. (authors)

  13. Pulse Distortion in Saturated Fiber Optical Parametric Chirped Pulse Amplification

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Da Ros, Francesco; Rottwitt, Karsten

    2012-01-01

    Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation.......Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation....

  14. Particle-in-cell simulation of Trichel pulses in pure oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Soria-Hoyo, C [Dpto. Electronica y Electromagnetismo, Universidad de Sevilla, Avda. Reina Mercedes s/n, Sevilla 41012 (Spain); Pontiga, F [Dpto. Fisica Aplicada II, Universidad de Sevilla, Avda. Reina Mercedes s/n, Sevilla 41012 (Spain); Castellanos, A [Dpto. Electronica y Electromagnetismo, Universidad de Sevilla, Avda. Reina Mercedes s/n, Sevilla 41012 (Spain)

    2007-08-07

    The development and propagation of Trichel pulses in oxygen have been numerically simulated using an improved fluid particle-in-cell (PIC) method. The numerical method has been optimized to accurately reproduce sequences of about 100 Trichel pulses ({approx}1 ms). A classical one-dimensional model of negative corona in sphere-to-plane geometry has been used to formulate the continuity equations for electrons and ions. The effects of ionization, attachment and secondary-electron emission from the cathode have all been considered. The electric field has been obtained from the solution of Poisson's equation in two dimensions. Using this model, the temporal and electrical characteristics of Trichel pulses have been investigated, in particular, the relation between applied voltage, pulse frequency and time-averaged current intensity and charge.

  15. Recrystallization and grain growth behavior of rolled tungsten under VDE-like short pulse high heat flux loads

    International Nuclear Information System (INIS)

    Yuan, Y.; Greuner, H.; Böswirth, B.; Krieger, K.; Luo, G.-N.; Xu, H.Y.; Fu, B.Q.; Li, M.; Liu, W.

    2013-01-01

    Highlights: ► Recrystallization temperature of a rolled W was ∼2480 °C under applied HHF loads. ► Fine grains were obtained under HHF loads with appropriate short pulse length. ► With increasing pulse length, the recrystallized grains significantly grew larger. ► A linear relationship between ln d and 1/T max was found. ► Activation energy for grain growth in T evolution up to T max in 1.5 s was obtained. -- Abstract: Short pulse heat loads expected for vertical displacement events (VDEs) in ITER were applied in the high heat flux (HHF) test facility GLADIS at IPP-Garching onto samples of rolled W. Pulsed neutral beams with the central heat flux of 23 MW/m 2 were applied for 0.5, 1.0 and 1.5 s, respectively. Rapid recrystallization of the adiabatically loaded 3 mm thick samples was observed when the pulse duration was up to 1.0 s. Grains grew markedly following recrystallization with increasing pulse length. The recrystallization temperature and temperature dependence of the recrystallized grain size were also investigated. The results showed that the recrystallization temperature of the W grade was around 2480 °C under the applied heat loading condition, which was nearly 1150 °C higher than the conventional recrystallization temperature, and the grains were much finer. A linear relationship between the logarithm of average grain size (ln d) and the inverse of maximum surface temperature (1/T max ) was found and accordingly the activation energy for grain growth in temperature evolution up to T max in 1.5 s of the short pulse HHF load was deduced to be 4.1 eV. This provided an effective clue to predict the structure evolution under short pulse HHF loads

  16. Principles and applications of multiplane pulsed eddy currents

    International Nuclear Information System (INIS)

    David, B.; Champonnois, F.; Joffre, F.

    1989-01-01

    A pulsed device using eddy currents, producing 8 shape signals on the screen like a sine wave system, has been developed. The method has been applied to the well-known problem of defects in stainless claddings of PWR reactor vessels

  17. A SiGe Quadrature Pulse Modulator for Superconducting Qubit State Manipulation

    Science.gov (United States)

    Kwende, Randy; Bardin, Joseph

    Manipulation of the quantum states of microwave superconducting qubits typically requires the generation of coherent modulated microwave pulses. While many off-the-shelf instruments are capable of generating such pulses, a more integrated approach is likely required if fault-tolerant quantum computing architectures are to be implemented. In this work, we present progress towards a pulse generator specifically designed to drive superconducing qubits. The device is implemented in a commercial silicon process and has been designed with energy-efficiency and scalability in mind. Pulse generation is carried out using a unique approach in which modulation is applied directly to the in-phase and quadrature components of a carrier signal in the 1-10 GHz frequency range through a unique digital-analog conversion process designed specifically for this application. The prototype pulse generator can be digitally programmed and supports sequencing of pulses with independent amplitude and phase waveforms. These amplitude and phase waveforms can be digitally programmed through a serial programming interface. Detailed performance of the pulse generator at room temperature and 4 K will be presented.

  18. Pasteurization of strawberry puree using a pilot plant pulsed electric fields (PEF) system

    Science.gov (United States)

    The processing of strawberry puree by pulsed electric fields (PEF) in a pilot plant system has never been evaluated. In addition, a method does not exist to validate the exact number and shape of the pulses applied during PEF processing. Both buffered peptone water (BPW) and fresh strawberry puree (...

  19. Optimized transmission-line impedance transformers for petawatt-class pulsed-power accelerators

    Directory of Open Access Journals (Sweden)

    D. R. Welch

    2008-03-01

    Full Text Available We have developed 1D analytic and 2D fully electromagnetic models of radial transmission-line impedance transformers. The models have been used to quantify the power-transport efficiency and pulse sharpening of such transformers as a function of voltage pulse width and impedance profile. For the cases considered, we find that in the limit as Γ→0 (where Γ is the ratio of the pulse width to the one-way transit time of the transformer, the transport efficiency is maximized when the impedance profile is exponential. As Γ increases from zero, the optimum profile gradually deviates from an exponential. A numerical procedure is presented that determines the optimum profile for a given pulse shape and width. The procedure can be applied to optimize the design of impedance transformers used in petawatt-class pulsed-power accelerators.

  20. Updating the induction module from single-pulse to double-pulses

    International Nuclear Information System (INIS)

    Huang Ziping; Wang Huacen; Deng Jianjun

    2002-01-01

    A double-pulse Linear Induced Accelerator (LIA) module is reconstructed based on a usual simple-pulse LIA module. By changing the length of one of the cables between the inductive cell and the Blumlein pulse forming line, two induction pulses with 90 ns FWHM and 150 kV pulse voltage are generated by the ferrite cores inductive cell. The interval time of the pulses is adjustable by changing the lengths of the cable

  1. Harmonic pulse testing for well performance monitoring

    NARCIS (Netherlands)

    Fokker, Peter A.; Salina Borello, Eloisa; Verga, Francesca; Viberti, Dario

    2018-01-01

    Harmonic testing was developed as a form of well testing that can be applied during ongoing production or injection operations, as a pulsed signal is superimposed on the background pressure trend. Thus no interruption of well and reservoir production is needed before and during the test. If the

  2. Evaluation of bipolar pulse generator for high-purity pulsed ion beam

    International Nuclear Information System (INIS)

    Ito, H.; Kitamura, I.; Masugata, K.

    2008-01-01

    A new type of pulsed ion beam accelerator named 'bipolar pulse accelerator (BPA)' has been proposed in order to improve the purity of intense pulsed ion beams. To confirm the principle of the BPA, we developed a bipolar pulse generator, which consists of a Marx generator and a pulse forming line (PFL) with a rail gap switch on its end. In this article, we report the experimental results of the bipolar pulse and evaluate the electrical characteristics of the bipolar pulse generator. When the bipolar pulse generator was operated at 70% of the full charge condition of the PEL, the bipolar pulse with the first (-138 kV, 72 ns) and the second pulse (+130 kV, 70 ns) was successfully obtained. The evaluation of the electrical characteristics indicates that the developed generator can produce the bipolar pulse with fast rise time and sharp reversing time. At present the bipolar pulse generator is installed in the B y type magnetically insulated ion diode and we carry out the experiment on the production of an intense pulsed ion beam by the bipolar pulse accelerator. (author)

  3. Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the spark regime

    International Nuclear Information System (INIS)

    Pai, David Z; Lacoste, Deanna A; Laux, Christophe O

    2010-01-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N 2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 10 15 cm -3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 10 11 cm -3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 10 8 cm -3 .

  4. Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the spark regime

    Science.gov (United States)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-12-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 1015 cm-3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 1011 cm-3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 108 cm-3.

  5. Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the spark regime

    Energy Technology Data Exchange (ETDEWEB)

    Pai, David Z; Lacoste, Deanna A; Laux, Christophe O [Laboratoire EM2C, CNRS UPR288, Ecole Centrale Paris, 92295 Chatenay-Malabry (France)

    2010-12-15

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N{sub 2} (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 10{sup 15} cm{sup -3} towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 10{sup 11} cm{sup -3} produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 10{sup 8} cm{sup -3}.

  6. Pulsed radiofrequency on radial nerve under ultrasound guidance for treatment of intractable lateral epicondylitis.

    Science.gov (United States)

    Oh, Dae Seok; Kang, Tae Hyung; Kim, Hyae Jin

    2016-06-01

    Lateral epicondylitis is a painful and functionally limiting disorder. Although lateral elbow pain is generally self-limiting, in a minority of people symptoms persist for a long time. When various conservative treatments fail, surgical approach is recommended. Surgical denervation of several nerves that innervate the lateral humeral epicondyle could be considered in patients with refractory pain because it denervates the region of pain. Pulsed radiofrequency is a minimally invasive procedure that improves chronic pain when applied to various neural tissues without causing any significant destruction and painful complication. This procedure is safe, minimally invasive, and has less risk of complications relatively compared to the surgical approach. The radial nerve can be identified as a target for pulsed radiofrequency lesioning in lateral epicondylitis. This innovative method of pulsed radiofrequency applied to the radial nerve has not been reported before. We reported on two patients with intractable lateral epicondylitis suffering from elbow pain who did not respond to nonoperative treatments, but in whom the ultrasound-guided pulsed radiofrequency neuromodulation of the radial nerve induced symptom improvement. After a successful diagnostic nerve block, radiofrequency probe adjustment around the radial nerve was performed on the lateral aspect of the distal upper arm under ultrasound guidance and multiple pulsed treatments were applied. A significant reduction in pain was reported over the follow-up period of 12 weeks.

  7. Interaction of intense femtosecond laser pulses with high-Z solids

    International Nuclear Information System (INIS)

    Zhidkov, A.; Sasaki, Akira; Utsumi, Takayuki; Fukumoto, Ichirou; Tajima, Toshiki; Yoshida, Masatake; Kondo, Kenichi

    2000-01-01

    A plasma irradiated by an intense very short pulse laser can be an ultimate high brightness source of incoherent inner-shell X-ray emission of 1-30 keV. The recently developed 100 TW, 20 fs laser facility in JAERI can make considerable enhancement here. To show this a hybrid model combining hydrodynamics and collisional particle-in-cell simulations is applied. Effect of laser prepulse on the interaction of an intense s-polarized femtosecond, ∼20/40 fs, laser pulse with high-Z solid targets is studied. A new absorption mechanism originating from the interaction of the laser pulse with plasma waves excited by the relativistic component of the Lorentz force is found to increase the absorption rate over 30% even for a very short laser pulse. The obtained hot electron temperature exceeds 0.5-1 MeV at optimal conditions for absorption. Results of the simulation for lower laser pulse intensities are in good agreement with the experimental measurements of the hot electron energy distribution. (author)

  8. Beam pulsing of C60 electrostatic injector accelerator for linac

    International Nuclear Information System (INIS)

    Takahashi, Y.; Hattori, T.; Kashiwagi, H.; Hata, T.; Noda, K.

    2000-01-01

    The research which measured the energy loss by the interaction between C 60 fullerene beam and solid film using the TOF method was started. The beam pulsing equipment was manufactured in this reason. The method by the copping was adopted for the pulsing, and 10 kHz high frequency was applied between electrodes, and the 20 V maximum voltage between electrodes was obtained. The 600 keV acceleration will be carried out by the 200 kV accelerating column, after pulsing is sent to C 60 fullerene beam drawn from electron impact type ion source at 300 V in pulse intervals 50 μs and 4.6 μs pulse width. The APF-IH type linear accelerator that it settles the fullerene more and more using the APF focusing and accelerates at the high acceleration is designed and is manufactured, and this is made to be a linear accelerator of back step, the high energy acceleration will be carried out. (author)

  9. Pulse discrimination of background and gamma-ray source by digital pulse shape discrimination in a BF3 detector

    International Nuclear Information System (INIS)

    Kim, Jinhyung; Kim, J. H.; Choi, H. D.

    2014-01-01

    As a representative method of non-destructive assay, accurate neutron measurement is difficult due to large background radiation such as γ-ray, secondary radiation, spurious pulse, etc. In a BF 3 detector, the process of signal generation is different between neutron and other radiations. As the development of detection technique, all of signal data can be digitized by digital measurement method. In the previous study, Applied Nuclear Physics Group in Seoul National University has developed digital Pulse Shape Discrimination (PSD) method using digital oscilloscope. In this study, optimization of parameters for pulse discrimination is discussed and γ-ray region is determined by measuring 60 Co source. The background signal of BF 3 detector is discriminated by digital PSD system. Parameters for PSD are optimized through FOM calculation. And the γ-ray region is determined by measuring 60 Co source. In the future, the performance of developed system will be tested in low and high intensity neutron field

  10. Macrophage and tumor cell responses to repetitive pulsed X-ray radiation

    Science.gov (United States)

    Buldakov, M. A.; Tretyakova, M. S.; Ryabov, V. B.; Klimov, I. A.; Kutenkov, O. P.; Kzhyshkowska, J.; Bol'shakov, M. A.; Rostov, V. V.; Cherdyntseva, N. V.

    2017-05-01

    To study a response of tumor cells and macrophages to the repetitive pulsed low-dose X-ray radiation. Methods. Tumor growth and lung metastasis of mice with an injected Lewis lung carcinoma were analysed, using C57Bl6. Monocytes were isolated from a human blood, using CD14+ magnetic beads. IL6, IL1-betta, and TNF-alpha were determined by ELISA. For macrophage phenotyping, a confocal microscopy was applied. “Sinus-150” was used for the generation of pulsed X-ray radiation (the absorbed dose was below 0.1 Gy, the pulse repetition frequency was 10 pulse/sec). The irradiation of mice by 0.1 Gy pulsed X-rays significantly inhibited the growth of primary tumor and reduced the number of metastatic colonies in the lung. Furthermore, the changes in macrophage phenotype and cytokine secretion were observed after repetitive pulsed X-ray radiation. Conclusion. Macrophages and tumor cells had a different response to a low-dose pulsed X-ray radiation. An activation of the immune system through changes of a macrophage phenotype can result in a significant antitumor effect of the low-dose repetitive pulsed X-ray radiation.

  11. X-ray spectroscopic diagnostics of plasma produced by femtosecond laser pulses at interaction with cluster target

    International Nuclear Information System (INIS)

    Skobelev, I.Yu.; Faenov, A.Ya.; Magunov, A.I.

    2002-01-01

    By means of X-ray spectroscopy one determined parameters of plasma produced at interaction of supershort laser pulses with cluster targets. One investigated into the effect of both initial properties of a cluster target and properties of a laser pulse on plasma characteristics. To diagnose plasma one applied a model of production of emitting spectra covering a whole number of free parameters. The conducted experimental investigations show that the investigated model of cluster heating by supershort pulses is the actual physical model, while the applied fitting parameters have a meaning of average values of plasma parameters [ru

  12. Recrystallization and grain growth behavior of rolled tungsten under VDE-like short pulse high heat flux loads

    Science.gov (United States)

    Yuan, Y.; Greuner, H.; Böswirth, B.; Krieger, K.; Luo, G.-N.; Xu, H. Y.; Fu, B. Q.; Li, M.; Liu, W.

    2013-02-01

    Short pulse heat loads expected for vertical displacement events (VDEs) in ITER were applied in the high heat flux (HHF) test facility GLADIS at IPP-Garching onto samples of rolled W. Pulsed neutral beams with the central heat flux of 23 MW/m2 were applied for 0.5, 1.0 and 1.5 s, respectively. Rapid recrystallization of the adiabatically loaded 3 mm thick samples was observed when the pulse duration was up to 1.0 s. Grains grew markedly following recrystallization with increasing pulse length. The recrystallization temperature and temperature dependence of the recrystallized grain size were also investigated. The results showed that the recrystallization temperature of the W grade was around 2480 °C under the applied heat loading condition, which was nearly 1150 °C higher than the conventional recrystallization temperature, and the grains were much finer. A linear relationship between the logarithm of average grain size (ln d) and the inverse of maximum surface temperature (1/Tmax) was found and accordingly the activation energy for grain growth in temperature evolution up to Tmax in 1.5 s of the short pulse HHF load was deduced to be 4.1 eV. This provided an effective clue to predict the structure evolution under short pulse HHF loads.

  13. Pulse-shaping strategies in short-pulse fiber amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Schimpf, Damian Nikolaus

    2010-02-09

    Ultrashort pulse lasers are an important tool in scientific and industrial applications. However, many applications are demanding higher average powers from these ultrashort pulse sources. This can be achieved by combining direct diode pumping with novel gain media designs. In particular, ultrashort pulse fiber lasers are now delivering average powers in the kW range. However, the design of fiber lasers, producing pulses with high peak-powers, is challenging due to the impact of nonlinear effects. To significantly reduce these detrimental effects in ultrashort pulse fiber amplifers, the combination of chirped pulse amplification (CPA) and large mode area fibers is employed. Using these methods, the pulse energy of fiber lasers has been steadily increasing for the past few years. Recently, a fiber-based CPA-system has been demonstrated which produces pulse energies of around 1 mJ. However, both the stretching and the enlargement of the mode area are limited, and therefore, the impact of nonlinearity is still noticed in systems employing such devices. The aim of this thesis is the analysis of CPA-systems operated beyond the conventional nonlinear limit, which corresponds to accumulated nonlinear phase-shifts around 1 rad. This includes a detailed discussion of the influence of the nonlinear effect self-phase modulation on the output pulse of CPA-systems. An analytical model is presented. Emphasis is placed on the design of novel concepts to control the impact of self-phase modulation. Pulse-shaping is regarded as a powerful tool to accomplish this goal. Novel methods to control the impact of SPM are experimentally demonstrated. The design of these concepts is based on the theoretical findings. Both amplitude- and phase-shaping are studied. Model-based phase-shaping is implemented in a state-of-the-art fiber CPA-system. The influence of the polarization state is also highlighted. Additionally, existing techniques and recent advances are put into context. (orig.)

  14. Pulse-shaping strategies in short-pulse fiber amplifiers

    International Nuclear Information System (INIS)

    Schimpf, Damian Nikolaus

    2010-01-01

    Ultrashort pulse lasers are an important tool in scientific and industrial applications. However, many applications are demanding higher average powers from these ultrashort pulse sources. This can be achieved by combining direct diode pumping with novel gain media designs. In particular, ultrashort pulse fiber lasers are now delivering average powers in the kW range. However, the design of fiber lasers, producing pulses with high peak-powers, is challenging due to the impact of nonlinear effects. To significantly reduce these detrimental effects in ultrashort pulse fiber amplifers, the combination of chirped pulse amplification (CPA) and large mode area fibers is employed. Using these methods, the pulse energy of fiber lasers has been steadily increasing for the past few years. Recently, a fiber-based CPA-system has been demonstrated which produces pulse energies of around 1 mJ. However, both the stretching and the enlargement of the mode area are limited, and therefore, the impact of nonlinearity is still noticed in systems employing such devices. The aim of this thesis is the analysis of CPA-systems operated beyond the conventional nonlinear limit, which corresponds to accumulated nonlinear phase-shifts around 1 rad. This includes a detailed discussion of the influence of the nonlinear effect self-phase modulation on the output pulse of CPA-systems. An analytical model is presented. Emphasis is placed on the design of novel concepts to control the impact of self-phase modulation. Pulse-shaping is regarded as a powerful tool to accomplish this goal. Novel methods to control the impact of SPM are experimentally demonstrated. The design of these concepts is based on the theoretical findings. Both amplitude- and phase-shaping are studied. Model-based phase-shaping is implemented in a state-of-the-art fiber CPA-system. The influence of the polarization state is also highlighted. Additionally, existing techniques and recent advances are put into context. (orig.)

  15. Pulse Generator

    Science.gov (United States)

    Greer, Lawrence (Inventor)

    2017-01-01

    An apparatus and a computer-implemented method for generating pulses synchronized to a rising edge of a tachometer signal from rotating machinery are disclosed. For example, in one embodiment, a pulse state machine may be configured to generate a plurality of pulses, and a period state machine may be configured to determine a period for each of the plurality of pulses.

  16. Application of Denisyuk pulsed holography to material testing

    NARCIS (Netherlands)

    Renesse, R.L. van; Burgmeijer, J.W.

    1983-01-01

    When holography is applied outside the laboratory, some well known problems are experienced: vibrations, rigid body motion, stray daylight. Pulse holography can overcome the difficulties with vibrations, but the other problems are less easily solved. When the object area to be holographically tested

  17. Separation of large DNA molecules by applying pulsed electric field to size exclusion chromatography-based microchip

    Science.gov (United States)

    Azuma, Naoki; Itoh, Shintaro; Fukuzawa, Kenji; Zhang, Hedong

    2018-02-01

    Through electrophoresis driven by a pulsed electric field, we succeeded in separating large DNA molecules with an electrophoretic microchip based on size exclusion chromatography (SEC), which was proposed in our previous study. The conditions of the pulsed electric field required to achieve the separation were determined by numerical analyses using our originally proposed separation model. From the numerical results, we succeeded in separating large DNA molecules (λ DNA and T4 DNA) within 1600 s, which was approximately half of that achieved under a direct electric field in our previous study. Our SEC-based electrophoresis microchip will be one of the effective tools to meet the growing demand of faster and more convenient separation of large DNA molecules, especially in the field of epidemiological research of infectious diseases.

  18. Pulse design for multilevel systems by utilizing Lie transforms

    Science.gov (United States)

    Kang, Yi-Hao; Chen, Ye-Hong; Shi, Zhi-Cheng; Huang, Bi-Hua; Song, Jie; Xia, Yan

    2018-03-01

    We put forward a scheme to design pulses to manipulate multilevel systems with Lie transforms. A formula to reverse construct a control Hamiltonian is given and is applied in pulse design in the three- and four-level systems as examples. To demonstrate the validity of the scheme, we perform numerical simulations, which show the population transfers for cascaded three-level and N -type four-level Rydberg atoms can be completed successfully with high fidelities. Therefore, the scheme may benefit quantum information tasks based on multilevel systems.

  19. Pulsed water jet generated by pulse multiplication

    Czech Academy of Sciences Publication Activity Database

    Dvorský, R.; Sitek, Libor; Sochor, T.

    2016-01-01

    Roč. 23, č. 4 (2016), s. 959-967 ISSN 1330-3651 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : high- pressure pulses * pulse intensifier * pulsed water jet * water hammer effect Subject RIV: JQ - Machines ; Tools Impact factor: 0.723, year: 2016 http://hrcak.srce.hr/163752?lang=en

  20. PULSE Pilot Certification Results

    Directory of Open Access Journals (Sweden)

    Pamela Pape-Lindstrom

    2015-08-01

    Full Text Available The pilot certification process is an ambitious, nationwide endeavor designed to motivate important changes in life sciences education that are in line with the recommendations of the 2011 Vision and Change Report: A Call to Action (American Association for the Advancement of Science [AAAS], 2011.  It is the goal of the certification process to acknowledge departments that have progressed towards full implementation of the tenets of Vision and Change and to motivate departments that have not begun to adopt the recommendations to consider doing so.  More than 70 life science departments applied to be part of the pilot certification process, funded by a National Science Foundation grant, and eight were selected based on initial evidence of transformed and innovative educational practices.  The programs chosen represent a wide variety of schools, including two-year colleges, liberal-arts institutions, regional comprehensive colleges, research universities and minority serving institutions.  Outcomes from this pilot were released June 1, 2015 (www.pulsecommunity.org, with all eight programs being recognized as having progressed along a continuum of change.  Five levels of achievement were defined as PULSE Pilot Progression Levels.  Of the eight departments in the pilot, one achieved “PULSE Progression Level III: Accomplished”.  Six departments achieved “PULSE Progression Level II: Developing” and one pilot department achieved “PULSE Progression Level I: Beginning”.  All of the schools have made significant movement towards the recommendations of Vision and Change relative to a traditional life sciences curriculum.  Overall, the response from the eight pilot schools has been positive. 

  1. High Resolution Spectrometer (HRS) particle-identification system

    International Nuclear Information System (INIS)

    Pratt, J.C.; Spencer, J.E.; Whitten, C.A.

    1977-08-01

    The functions of the particle-identification system (PIDS) designed for the High Resolution Spectrometer facility (HRS) at LAMPF are described, together with the mechanical layout, counter hardware, and associated electronics. The system was designed for easy use and to be applicable to currently proposed experiments at HRS. The several strobe signals that can be generated correspond to different event types or characteristics, and logic configuration and timing can be remotely controlled by computer. Concepts of discrete pattern recognition and multidimensional, analog pulse discrimination are used to distinguish between different event types

  2. Time differentiated nuclear resonance spectroscopy coupled with pulsed laser heating in diamond anvil cells

    Energy Technology Data Exchange (ETDEWEB)

    Kupenko, I., E-mail: kupenko@esrf.fr; Strohm, C. [Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth (Germany); ESRF-The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9 (France); McCammon, C.; Cerantola, V.; Petitgirard, S.; Dubrovinsky, L. [Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth (Germany); Glazyrin, K. [Photon Science, DESY, D-22607 Hamburg (Germany); Vasiukov, D.; Aprilis, G. [Laboratory of Crystallography, Material Physics and Technology at Extreme Conditions, Universität Bayreuth, D-95440 Bayreuth (Germany); Chumakov, A. I.; Rüffer, R. [ESRF-The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9 (France)

    2015-11-15

    Developments in pulsed laser heating applied to nuclear resonance techniques are presented together with their applications to studies of geophysically relevant materials. Continuous laser heating in diamond anvil cells is a widely used method to generate extreme temperatures at static high pressure conditions in order to study the structure and properties of materials found in deep planetary interiors. The pulsed laser heating technique has advantages over continuous heating, including prevention of the spreading of heated sample and/or the pressure medium and, thus, a better stability of the heating process. Time differentiated data acquisition coupled with pulsed laser heating in diamond anvil cells was successfully tested at the Nuclear Resonance beamline (ID18) of the European Synchrotron Radiation Facility. We show examples applying the method to investigation of an assemblage containing ε-Fe, FeO, and Fe{sub 3}C using synchrotron Mössbauer source spectroscopy, FeCO{sub 3} using nuclear inelastic scattering, and Fe{sub 2}O{sub 3} using nuclear forward scattering. These examples demonstrate the applicability of pulsed laser heating in diamond anvil cells to spectroscopic techniques with long data acquisition times, because it enables stable pulsed heating with data collection at specific time intervals that are synchronized with laser pulses.

  3. Characteristics of pulse corona discharge over water surface

    Science.gov (United States)

    Fujii, Tomio; Arao, Yasushi; Rea, Massimo

    2008-12-01

    Production of ozone and OH radical is required to advance the plasma chemical reactions in the NOx removal processes for combustion gas treatment. The corona discharge to the water surface is expected to induce the good conditions for the proceeding of the NO oxidation and the NO2 dissolution removal into water. In order to get the fundamental data of the corona discharge over the water surface, the positive and negative V-I characteristics and the ozone production were measured with the multi needle and the saw-edge type of the discharge electrodes. The pulse corona characteristics were also measured with some different waveforms of the applied pulse voltage. The experiments were carried out under the atmospheric pressure and room temperature. Both the DC and the pulse corona to the water surface showed a stable and almost the same V-I characteristics as to plate electrodes though the surface of water was waved by corona wind. The positive streamer corona showed more ozone production than the negative one both in the DC and in the pulse corona.

  4. Electron heating enhancement by frequency-chirped laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, E.; Afarideh, H., E-mail: hafarideh@aut.ac.ir [Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sadighi-Bonabi, R., E-mail: Sadighi@sharif.ir [Department of Physics, Sharif University of Technology, P.O. Box 11365-9567, Tehran (Iran, Islamic Republic of); Riazi, Z. [Physics and Accelerator School, Tehran (Iran, Islamic Republic of); Hora, H. [Department of Theoretical Physics, University of New South Wales, Sydney 2052 (Australia)

    2014-09-14

    Propagation of a chirped laser pulse with a circular polarization through an uprising plasma density profile is studied by using 1D-3V particle-in-cell simulation. The laser penetration depth is increased in an overdense plasma compared to an unchirped pulse. The induced transparency due to the laser frequency chirp results in an enhanced heating of hot electrons as well as increased maximum longitudinal electrostatic field at the back side of the solid target, which is very essential in target normal sheath acceleration regime of proton acceleration. For an applied chirp parameter between 0.008 and 0.01, the maximum amount of the electrostatic field is improved by a factor of 2. Furthermore, it is noticed that for a chirped laser pulse with a₀=5, because of increasing the plasma transparency length, the laser pulse can penetrate up to about n{sub e}≈6n{sub c}, where n{sub c} is plasma critical density. It shows 63% increase in the effective critical density compared to the relativistic induced transparency regime for an unchirped condition.

  5. Characteristics of pulse corona discharge over water surface

    International Nuclear Information System (INIS)

    Fujii, Tomio; Arao, Yasushi; Rea, Massimo

    2008-01-01

    Production of ozone and OH radical is required to advance the plasma chemical reactions in the NOx removal processes for combustion gas treatment. The corona discharge to the water surface is expected to induce the good conditions for the proceeding of the NO oxidation and the NO 2 dissolution removal into water. In order to get the fundamental data of the corona discharge over the water surface, the positive and negative V-I characteristics and the ozone production were measured with the multi needle and the saw-edge type of the discharge electrodes. The pulse corona characteristics were also measured with some different waveforms of the applied pulse voltage. The experiments were carried out under the atmospheric pressure and room temperature. Both the DC and the pulse corona to the water surface showed a stable and almost the same V-I characteristics as to plate electrodes though the surface of water was waved by corona wind. The positive streamer corona showed more ozone production than the negative one both in the DC and in the pulse corona.

  6. Physics of Neutralization of Intense Charged Particle Beam Pulses by a Background Plasma

    International Nuclear Information System (INIS)

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.A.; Startsev, E.A.; Sefkow, A.B; Friedman, A.F.; Lee, E.P.

    2009-01-01

    Neutralization and focusing of intense charged particle beam pulses by a background plasma forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self-magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating

  7. New methods of generation of ultrashort laser pulses for ranging

    Science.gov (United States)

    Jelinkova, Helena; Hamal, Karel; Kubecek, V.; Prochazka, Ivan

    1993-01-01

    To reach the millimeter satellite laser ranging accuracy, the goal for nineties, new laser ranging techniques have to be applied. To increase the laser ranging precision, the application of the ultrashort laser pulses in connection with the new signal detection and processing techniques, is inevitable. The two wavelength laser ranging is one of the ways to measure the atmospheric dispersion to improve the existing atmospheric correction models and hence, to increase the overall system ranging accuracy to the desired value. We are presenting a review of several nonstandard techniques of ultrashort laser pulses generation, which may be utilized for laser ranging: compression of the nanosecond pulses using stimulated Brillouin and Raman backscattering; compression of the mode-locked pulses using Raman backscattering; passive mode-locking technique with nonlinear mirror; and passive mode-locking technique with the negative feedback.

  8. Low-induction pulse current generator with a volume bus arrangement

    International Nuclear Information System (INIS)

    Bocharov, Yu.N.; Krivosheev, S.I.; Lapin, N.G.; Shneerson, G.A.

    1993-01-01

    Pulse current generator (PC6) with 38 kj stored energy designed for up to 50 kV charging voltage used to obtain magnetic fields within megagauss range, is described. Space (volume) bus arrangement of its modules is used to reduce eigen inductance of PC6. Current is commutated by solid-body spark gaps. Under 3uH inductive load PC6 provides for formation of up to 2.25 MA current pulse with 3.3x10 12 A/s pulse rise time. Technique to determine low inductances as applied to PC6 elements is described. The described PC6 is used for experiments on generation of super-strong pulse magnetic fields in single-loop solenoid with volume occupied by magnetic field, 5-7 mm. Magnetic field with up to 350 T induction amplitude is obtained in these experiments

  9. Mapping the lattice-vibration potential using terahertz pulses

    Science.gov (United States)

    Korpa, C. L.; Tóth, Gy; Hebling, J.

    2018-02-01

    We develop a method for mapping the anharmonic lattice potential using the time-dependent electric field of the transmitted pulse through thin sample supported by a substrate of non-negligible thickness. Assuming linear propagation in the substrate we fully take into account internal reflection in it while the sample can show arbitrary nonlinear response. We examine the effect of frequency averaging appropriate for broad-band pulse and compare the results taking into account the full frequency dependence. We illustrate the procedure applying it to a model based on recently observed ferroelectric soft mode nonlinearity in SrTiO3.

  10. Frequency Dependent PD-pulse Distortion in Rotating Machines

    DEFF Research Database (Denmark)

    Holbøll, Joachim T.; Henriksen, Mogens

    1996-01-01

    at the machine terminals. The results show a variation of the attenuation of the discharge pulses inside the machine of about 20 dB highest for pulses from the far end, i.e. the neutral point. The capability of exact localization of the discharges in the winding gives a correct measure of the range...... of the current transformer based detection method, when being applied to rotating machines. The results are discussed with regard to the practical application of PD detection systems on rotating machines, particularly considering aspects of range and applicability of systems in the HF ranges...

  11. New schemes for high-voltage pulsed generators based on stepped transmission lines

    International Nuclear Information System (INIS)

    Bossamykin, V.S.; Gordeev, V.S.; Pavlovskii, A.I.

    1993-01-01

    Wave processes were analyzed from the point of effective energy delivery in pulsed power systems based on transmission lines. A series of new schemes for the pulsed generators based on multistage stepped transmission lines both with the capacitive and inductive energy storage was found. These devices can provide voltage or current transformation up to 5-10 times due to wave processes if stage's characteristic impedances are in a certain correlation. The schemes suggested can be widely applied in the new powerful pulsed power accelerators. The theoretical conclusions are justified experimentally

  12. Development of fast pulsed power driver for radiography and Z-pinch

    International Nuclear Information System (INIS)

    Qiu Aici; Sun Fengju

    2008-01-01

    Z-pinch and flash X-ray radiography have an important application in inertial confine fusion (ICF) and nuclear radiation effects simulation and high performance hydrodynamic test, etc. Z-pinch ICF and multi-pulse multi-axis high energy X-ray radiography put forward a huge challenge for pulsed power driver, so the direct-driven-load fast pulsed power driver are developed actively in home and abroard. The paper summarized the recent advances and developing trends of the fast pulsed power driver based on fast Marx(FMG) and fast linear transformer driver (LTD), and analysized the advantages and disadvantages and restricting factors about FMG and FLTD and their key technologies, then introduced the state-of-arts on the investigation in Northwest Institute of Nuclear Technology. In the end, the paper presented some advices and views about studying fast pulsed power driver applied to Z-pinch and flash X-ray radiography in home. (authors)

  13. Stochastic analysis of a pulse-type prey-predator model

    Science.gov (United States)

    Wu, Y.; Zhu, W. Q.

    2008-04-01

    A stochastic Lotka-Volterra model, a so-called pulse-type model, for the interaction between two species and their random natural environment is investigated. The effect of a random environment is modeled as random pulse trains in the birth rate of the prey and the death rate of the predator. The generalized cell mapping method is applied to calculate the probability distributions of the species populations at a state of statistical quasistationarity. The time evolution of the population densities is studied, and the probability of the near extinction time, from an initial state to a critical state, is obtained. The effects on the ecosystem behaviors of the prey self-competition term and of the pulse mean arrival rate are also discussed. Our results indicate that the proposed pulse-type model shows obviously distinguishable characteristics from a Gaussian-type model, and may confer a significant advantage for modeling the prey-predator system under discrete environmental fluctuations.

  14. Pulsed TRIGA reactor as substitute for long pulse spallation neutron source

    International Nuclear Information System (INIS)

    Whittemore, W.L.

    1999-01-01

    TRIGA reactor cores have been used to demonstrate various pulsing applications. The TRIGA reactor fuel (U-ZrH x ) is very robust especially in pulsing applications. The features required to produce 50 pulses per second have been successfully demonstrated individually, including pulse tests with small diameter fuel rods. A partially optimized core has been evaluated for pulses at 50 Hz with peak pulsed power up to 100 MW and an average power up to 10 MW. Depending on the design, the full width at half power of the individual pulses can range between 2000 μsec to 3000 μsec. Until recently, the relatively long pulses (2000 μsec to 3000 μsec) from a pulsed thermal reactor or a long pulse spallation source (LPSS) have been considered unsuitable for time-of-flight measurements of neutron scattering. More recently considerable attention has been devoted to evaluating the performance of long pulse (1000 to 4000 μs) spallation sources for the same type of neutron measurements originally performed only with short pulses from spallation sources (SPSS). Adequate information is available to permit meaningful comparisons between CW, SPSS, and LPSS neutron sources. Except where extremely high resolution is required (fraction of a percent), which does require short pulses, it is demonstrated that the LPSS source with a 1000 msec or longer pulse length and a repetition rate of 50 to 60 Hz gives results comparable to those from the 60 MW ILL (CW) source. For many of these applications the shorter pulse is not necessarily a disadvantage, but it is not an advantage over the long pulse system. In one study, the conclusion is that a 5 MW 2000 μsec LPSS source improves the capability for structural biology studies of macromolecules by at least a factor of 5 over that achievable with a high flux reactor. Recent studies have identified the advantages and usefulness of long pulse neutron sources. It is evident that the multiple pulse TRIGA reactor can produce pulses comparable to

  15. Dielectric breakdown and healing of anodic oxide films on aluminium under single pulse anodizing

    International Nuclear Information System (INIS)

    Sah, Santosh Prasad; Tatsuno, Yasuhiro; Aoki, Yoshitaka; Habazaki, Hiroki

    2011-01-01

    Research highlights: → We examined dielectric breakdown of anodic alumina by single pulse anodizing. → Current transients and morphology of discharge channels are dependent upon electrolyte and voltage. → There is a good correlation between current transient and morphology of discharge channel. → Healing of open discharge pores occurs in alkaline silicate, but not in pentaborate electrolyte. - Abstract: Single pulse anodizing of aluminium micro-electrode has been employed to study the behaviour of dielectric breakdown and subsequent oxide formation on aluminium in alkaline silicate and pentaborate electrolytes. Current transients during applying pulse voltage have been measured, and surface has been observed by scanning electron microscopy. Two types of current transients are observed, depending on the electrolyte and applied voltage. There is a good correlation between the current transient behaviour and the shape of discharge channels. In alkaline silicate electrolyte, circular open pores are healed by increasing the pulse width, but such healing is not obvious in pentaborate electrolyte.

  16. Heat pulse excitability of vestibular hair cells and afferent neurons

    Science.gov (United States)

    Brichta, Alan M.; Tabatabaee, Hessam; Boutros, Peter J.; Ahn, JoongHo; Della Santina, Charles C.; Poppi, Lauren A.; Lim, Rebecca

    2016-01-01

    In the present study we combined electrophysiology with optical heat pulse stimuli to examine thermodynamics of membrane electrical excitability in mammalian vestibular hair cells and afferent neurons. We recorded whole cell currents in mammalian type II vestibular hair cells using an excised preparation (mouse) and action potentials (APs) in afferent neurons in vivo (chinchilla) in response to optical heat pulses applied to the crista (ΔT ≈ 0.25°C per pulse). Afferent spike trains evoked by heat pulse stimuli were diverse and included asynchronous inhibition, asynchronous excitation, and/or phase-locked APs synchronized to each infrared heat pulse. Thermal responses of membrane currents responsible for APs in ganglion neurons were strictly excitatory, with Q10 ≈ 2. In contrast, hair cells responded with a mix of excitatory and inhibitory currents. Excitatory hair cell membrane currents included a thermoelectric capacitive current proportional to the rate of temperature rise (dT/dt) and an inward conduction current driven by ΔT. An iberiotoxin-sensitive inhibitory conduction current was also evoked by ΔT, rising in heat pulse excitability in vestibular sensory organs and provide quantitative methods for rational application of optical heat pulses to examine protein biophysics and manipulate cellular excitability. PMID:27226448

  17. REFLECTANCE PULSE OXIMETRY AT THE FOREHEAD IMPROVES BY PRESSURE ON THE PROBE

    NARCIS (Netherlands)

    DASSEL, ACM; GRAAFF, R; SIKKEMA, M; ZIJLSTRA, WG; AARNOUDSE, JG

    In this study, we investigated the possibility of improving reflectance (back-scatter) pulse oximetry measurements by pressure applied to the probe. Optimal signal detection, with the probe applied to an easily accessible location, is important to prevent erroneous oxygen saturation readouts. At the

  18. Cubic phase control of ultrashort laser pulses

    International Nuclear Information System (INIS)

    Mecseki, K.; Erdelyi, M.; Kovacs, A.P.; Szabo, G.

    2006-01-01

    Complete test of publication follows. The temporal shape of an ultrashort laser pulse may change upon propagating through a linear dispersive medium having a phase shift ψω. The change can be characterized by the Taylor-coefficients of the phase shift which are calculated around the central frequency ω 0 of the pulse. Measurements and independent control of the group delay dispersion (GDD, ψ'(ω 0 )) and the third order dispersion (TOD, ψ'(ω 0 )) are important in several research fields, particularly in the generation of ultrashort laser pulses by chirped pulse amplification (CPA) and pulse shaping for molecular control. The GDD and the TOD of an ideal pulse compressor are equal to the negative of the corresponding dispersion coefficients of the medium. However, in the case of prism-pair and grating-pair compressor is different from the ratio of the coefficients of the medium to be compensated for. Therefore it is necessary to develop so-called cubic compressors that are able to control the TOD of the pulse, yet, do not affect the GDD. In this paper a new cubic compressor setup is investigated theoretically and experimentally, which resembles the set-up proposed by White, however, we control the GDD and the TOD by the position of a birefringent, semi-cylinder crystal place around the focal point of an achromatic lens. For the evaluation of the phase shift introduced by the proposed cubic compressor, a ray tracing program was written. The program allows optimizing the compressor parameters, such as the radius of the crystal, magnification of the lens etc. Calcite was applied because it is a strong birefringent material. Calculations showed that there is a trajectory, along which shifting the crystal the TOD can be tuned independently of the GDD. The value of the TOD changed in a relatively wide range between -3.15 x 10 5 fs 3 and -1.67 x 10 5 fs 3 . Although the defocus also affects the angular dispersion of the pulse leaving the compressor, if does not exceed

  19. Molecular isomerization induced by ultrashort infrared pulses. II. Pump-dump isomerization using pairs of time-delayed half-cycle pulses.

    Science.gov (United States)

    Uiberacker, Christoph; Jakubetz, Werner

    2004-06-22

    We investigate population transfer across the barrier in a double-well potential, induced by a pair of time-delayed single-lobe half-cycle pulses. We apply this setup both to a one-dimensional (1D) quartic model potential and to a three-dimensional potential representing HCN-->HNC isomerization. Overall the results for the two systems are similar, although in the 3D system some additional features appear not seen in the 1D case. The generic mechanism of population transfer is the preparation by the pump pulse of a wave packet involving delocalized states above the barrier, followed by the essentially 1D motion of the delocalized part of wave packet across the barrier, and the eventual de-excitation by the dump pulse to localized states in the other well. The correct timing is given by the well-to-well passage time of the wave packet and its recurrence properties, and by the signs of the field lobes which determine the direction and acceleration or deceleration of the wave packet motion. In the 3D system an additional pump-pump-dump mechanism linked to wave packet motion in the reagent well can mediate isomerization. Since the transfer time and the pulse durations are of the same order of magnitude, there is also a marked dependence of the dynamics and the transfer yield on the pulse duration. Our analysis also sheds light on the pronounced carrier envelope phase dependence previously observed for isomerization and molecular dissociation with one-cycle and sub-one-cycle pulses. (c) 2004 American Institute of Physics.

  20. Forward voltage short-pulse technique for measuring high power laser array junction temperature

    Science.gov (United States)

    Meadows, Byron L. (Inventor); Amzajerdian, Frazin (Inventor); Barnes, Bruce W. (Inventor); Baker, Nathaniel R. (Inventor)

    2012-01-01

    The present invention relates to a method of measuring the temperature of the P-N junction within the light-emitting region of a quasi-continuous-wave or pulsed semiconductor laser diode device. A series of relatively short and low current monitor pulses are applied to the laser diode in the period between the main drive current pulses necessary to cause the semiconductor to lase. At the sufficiently low current level of the monitor pulses, the laser diode device does not lase and behaves similar to an electronic diode. The voltage across the laser diode resulting from each of these low current monitor pulses is measured with a high degree of precision. The junction temperature is then determined from the measured junction voltage using their known linear relationship.

  1. Cryosurgery with Pulsed Electric Fields

    Science.gov (United States)

    Daniels, Charlotte S.; Rubinsky, Boris

    2011-01-01

    This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to

  2. Cryosurgery with pulsed electric fields.

    Directory of Open Access Journals (Sweden)

    Charlotte S Daniels

    Full Text Available This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused

  3. Studies of nonlinear femtosecond pulse propagation in bulk materials

    Science.gov (United States)

    Eaton, Hilary Kaye

    2000-10-01

    thesis applies FROG as a powerful tool for science and not just a useful pulse diagnostic technique. Studies of three-dimensional propagation provide an in-depth understanding of the processes involved in femtosecond pulse splitting. In addition, the experimental investigations of continuum generation and pulse propagation in liquids provide new insights into the possible processes involved and should provide a useful comparison for developing theories.

  4. Narrowband pulse-enhanced upconversion of chirped broadband pulses

    International Nuclear Information System (INIS)

    Zhao, Kun; Yuan, Peng; Zhong, Haizhe; Zhang, Dongfang; Zhu, Heyuan; Qian, Liejia; Chen, Liezun; Wen, Shuangchun

    2010-01-01

    We propose and demonstrate an efficient sum-frequency mixing scheme based on narrowband and chirped broadband pulses. It combines the advantages of wider spectral acceptance bandwidth and of alleviating the temporal walk-off, which are both beneficial to higher conversion efficiency. Chirped sum-frequency pulses at 455 nm with energy up to 360 µJ, corresponding to a conversion efficiency of ∼ 40%, are obtained and the pulses can be compressed to ∼ 110 fs. The sum-frequency mixing scheme may provide a promising route to the efficient generation of deep-ultraviolet femtosecond pulses

  5. Development of optical parametric chirped-pulse amplifiers and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Nobuhisa

    2006-11-21

    In this work, optical pulse amplification by parametric chirped-pulse amplification (OPCPA) has been applied to the generation of high-energy, few-cycle optical pulses in the near-infrared (NIR) and infrared (IR) spectral regions. Amplification of such pulses is ordinarily difficult to achieve by existing techniques of pulse amplification based on standard laser gain media followed by external compression. Potential applications of few-cycle pulses in the IR have also been demonstrated. The NIR OPCPA system produces 0.5-terawatt (10 fs,5 mJ) pulses by use of noncollinearly phase-matched optical parametric amplification and a down-chirping stretcher and up-chirping compressor pair. An IR OPCPA system was also developed which produces 20-gigawatt (20 fs,350 {mu}J) pulses at 2.1 {mu}m. The IR seed pulse is generated by optical rectification of a broadband pulse and therefore it exhibits a self-stabilized carrier-envelope phase (CEP). In the IR OPCPA a common laser source is used to generate the pump and seed resulting in an inherent sub-picosecond optical synchronization between the two pulses. This was achieved by use of a custom-built Nd:YLF picosecond pump pulse amplifier that is directly seeded with optical pulses from a custom-built ultrabroadband Ti:sapphire oscillator. Synchronization between the pump and seed pulses is critical for efficient and stable amplification. Two spectroscopic applications which utilize these unique sources have been demonstrated. First, the visible supercontinuum was generated in a solid-state media by the infrared optical pulses and through which the carrier-envelope phase (CEP) of the driving pulse was measured with an f-to-3f interferometer. This measurement confirms the self-stabilization mechanism of the CEP in a difference frequency generation process and the preservation of the CEP during optical parametric amplification. Second, high-order harmonics with energies extending beyond 200 eV were generated with the few

  6. Transient thermal analysis of semiconductor diode lasers under pulsed operation

    Science.gov (United States)

    Veerabathran, G. K.; Sprengel, S.; Karl, S.; Andrejew, A.; Schmeiduch, H.; Amann, M.-C.

    2017-02-01

    Self-heating in semiconductor lasers is often assumed negligible during pulsed operation, provided the pulses are `short'. However, there is no consensus on the upper limit of pulse width for a given device to avoid-self heating. In this paper, we present an experimental and theoretical analysis of the effect of pulse width on laser characteristics. First, a measurement method is introduced to study thermal transients of edge-emitting lasers during pulsed operation. This method can also be applied to lasers that do not operate in continuous-wave mode. Secondly, an analytical thermal model is presented which is used to fit the experimental data to extract important parameters for thermal analysis. Although commercial numerical tools are available for such transient analyses, this model is more suitable for parameter extraction due to its analytical nature. Thirdly, to validate this approach, it was used to study a GaSb-based inter-band laser and an InP-based quantum cascade laser (QCL). The maximum pulse-width for less than 5% error in the measured threshold currents was determined to be 200 and 25 ns for the GaSb-based laser and QCL, respectively.

  7. Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm

    International Nuclear Information System (INIS)

    Smith, Arlee V.; Do, Binh T.

    2008-01-01

    We measured bulk and surface dielectric breakdown thresholds of pure silica for 14 ps and 8 ns pulses of 1064 nm light. The thresholds are sharp and reproducible. For the 8 ns pulses the bulk threshold irradiance is 4.75 ± 0.25 kW/μm 2 . The threshold is approximately three times higher for 14 ps pulses. For 8 ns pulses the input surface damage threshold can be made equal to the bulk threshold by applying an alumina or silica surface polish

  8. Applications of pulsed power in advanced oxidation and reduction processes for pollution control

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Coogan, J.J.; Secker, D.A.; Smith, J.D.

    1993-01-01

    A growing social awareness of the adverse impact of pollutants on our environment and the promulgation of environmental laws and regulations has recently stimulated the development of technologies for pollution abatement and hazardous waste destruction. Pulsed power shows strong promise for contributing to the development of innovative technologies aimed at these applications. At Los Alamos we are engaged in two projects which apply pulsed power technology to the environment: the use of relativistic electron beams and nonequilibrium plasmas for the destruction of hazardous organic compounds in aqueous-based and gaseous-based medial, respectively. Electron beams and nonequilibrium plasmas have also been applied to the treatment of flue gases such as SO x and NO x by other researchers. In this paper, we will describe our electron-beam and plasma experiments carried out on hazardous waste destruction. Additionally, we will describe the scaling of electron-beam and nonequilibrium plasma systems to industrial sizes, including discussions of electron accelerator architecture, comparison of continuous-duty versus repetitively pulsed accelerators, plasma-discharge modulators, and needed pulsed power technology development

  9. Phase dependency of electrotonic spread of hyperpolarizing current pulses in the rabbit sinoatrial node

    NARCIS (Netherlands)

    Duivenvoorden, J. J.; Bouman, L. N.; Bukauskas, F. F.; Opthof, T.; Jongsma, H. J.

    1990-01-01

    Electrotonic current spread in the SA node of the rabbit was measured by means of hyperpolarizing current pulses (1 to 10 microA, 60 ms), which were injected intracellularly through a K(+)-perfused suction electrode. The pulses were applied at the beginning, middle or end of the diastolic

  10. International Year of Pulses 2016 | 2016 International Year of Pulses

    Science.gov (United States)

    the Year in collaboration with Governments, relevant organizations, non-governmental organizations and the composition of pulses Image 4 Wrapping up the International Year of Pulses The 5 key messages to food security Infographic Pulses and climate change International Year of Pulses 2016 The 68th UN

  11. 50 mm Diameter digital DC/pulse neutron generator for subcritical reactor test

    International Nuclear Information System (INIS)

    Li Gang; Zhang Zhongshuai; Chi Qian; Liu Linmao

    2012-01-01

    A 50 mm diameter digital DC/pulse neutron generator was developed with 25 mm ceramic drive-in target neutron tube. It was applied in the subcritical reactor test of China Institute of Atomic Energy (CIAE). The generator can produce neutron in three modes: DC, pulse and multiple pulse. The maximum neutron yield of the generator is 1 × 10 8 n/s, while the maximum pulse frequency is 10 kHz, and the minimum pulse width is 10 μs. As a remote controlled generator, it is small in volume, easy to be connected and controlled. The tested results indicate that penning ion source has the feature of delay time in glow discharge, and it is easier for glow discharge to happen when switching the DC voltage of penning ion source into pulse. According to these two characteristics, the generator has been modified. This improved generator can be used in many other areas including Prompt Gamma Neutron Activation Analysis (PGNAA), neutron testing and experiment.

  12. 50 mm Diameter digital DC/pulse neutron generator for subcritical reactor test

    Energy Technology Data Exchange (ETDEWEB)

    Li Gang; Zhang Zhongshuai [Northeast Normal University, Changchun 130024 (China); Chi Qian [Guang Hua College of Chang Chun University, Changchun 130117 (China); Liu Linmao, E-mail: ll888@nenu.edu.cn [Northeast Normal University, Changchun 130024 (China)

    2012-11-01

    A 50 mm diameter digital DC/pulse neutron generator was developed with 25 mm ceramic drive-in target neutron tube. It was applied in the subcritical reactor test of China Institute of Atomic Energy (CIAE). The generator can produce neutron in three modes: DC, pulse and multiple pulse. The maximum neutron yield of the generator is 1 Multiplication-Sign 10{sup 8} n/s, while the maximum pulse frequency is 10 kHz, and the minimum pulse width is 10 {mu}s. As a remote controlled generator, it is small in volume, easy to be connected and controlled. The tested results indicate that penning ion source has the feature of delay time in glow discharge, and it is easier for glow discharge to happen when switching the DC voltage of penning ion source into pulse. According to these two characteristics, the generator has been modified. This improved generator can be used in many other areas including Prompt Gamma Neutron Activation Analysis (PGNAA), neutron testing and experiment.

  13. Jitter-Robust Orthogonal Hermite Pulses for Ultra-Wideband Impulse Radio Communications

    Directory of Open Access Journals (Sweden)

    Ryuji Kohno

    2005-03-01

    Full Text Available The design of a class of jitter-robust, Hermite polynomial-based, orthogonal pulses for ultra-wideband impulse radio (UWB-IR communications systems is presented. A unified and exact closed-form expression of the auto- and cross-correlation functions of Hermite pulses is provided. Under the assumption that jitter values are sufficiently smaller than pulse widths, this formula is used to decompose jitter-shifted pulses over an orthonormal basis of the Hermite space. For any given jitter probability density function (pdf, the decomposition yields an equivalent distribution of N-by-N matrices which simplifies the convolutional jitter channel model onto a multiplicative matrix model. The design of jitter-robust orthogonal pulses is then transformed into a generalized eigendecomposition problem whose solution is obtained with a Jacobi-like simultaneous diagonalization algorithm applied over a subset of samples of the channel matrix distribution. Examples of the waveforms obtained with the proposed design and their improved auto- and cross-correlation functions are given. Simulation results are presented, which demonstrate the superior performance of a pulse-shape modulated (PSM- UWB-IR system using the proposed pulses, over the same system using conventional orthogonal Hermite pulses, in jitter channels with additive white Gaussian noise (AWGN.

  14. Experimental Study of RF Pulsed Heating on Oxygen Free Electronic Copper

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2003-02-10

    When the thermal stresses induced by RF pulsed heating are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Therefore, pulsed heating limits the maximum surface magnetic field and through it the maximum achievable accelerating gradient. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz was designed to study pulsed heating on Oxygen Free Electronic (OFE) copper. An X-band klystron delivered up to 10 MW to the cavities in 1.5 {micro}s pulses at 60 Hz repetition rate. One run was executed at a temperature rise of 120 K for 56 x 10{sup 6} pulses. Cracks at grain boundaries, slip bands and cracks associated with these slip bands were observed. The second run consisted of 86 x 10{sup 6} pulses with a temperature rise of 82 K, and cracks at grain boundaries and slip bands were seen. Additional information can be derived from the power-coupling iris, and we conclude that a pulsed temperature rise of 250 K for several million pulses leads to destruction of copper. These results can be applied to any mode of any OFE copper cavity.

  15. A coaxial-output capacitor-loaded annular pulse forming line.

    Science.gov (United States)

    Li, Rui; Li, Yongdong; Su, Jiancang; Yu, Binxiong; Xu, Xiudong; Zhao, Liang; Cheng, Jie; Zeng, Bo

    2018-04-01

    A coaxial-output capacitor-loaded annular pulse forming line (PFL) is developed in order to reduce the flat top fluctuation amplitude of the forming quasi-square pulse and improve the quality of the pulse waveform produced by a Tesla-pulse forming network (PFN) type pulse generator. A single module composed of three involute dual-plate PFNs is designed, with a characteristic impedance of 2.44 Ω, an electrical length of 15 ns, and a sustaining voltage of 60 kV. The three involute dual-plate PFNs connected in parallel have the same impedance and electrical length. Due to the existed small inductance and capacitance per unit length in each involute dual-plate PFN, the upper cut-off frequency of the PFN is increased. As a result, the entire annular PFL has better high-frequency response capability. Meanwhile, the three dual-plate PFNs discharge in parallel, which is much closer to the coaxial output. The series connecting inductance between adjacent two modules is significantly reduced when the annular PFL modules are connected in series. The pulse waveform distortion is reduced when the pulse transfers along the modules. Finally, the shielding electrode structure is applied on both sides of the module. The electromagnetic field is restricted in the module when a single module discharges, and the electromagnetic coupling between the multi-stage annular PFLs is eliminated. Based on the principle of impedance matching between the multi-stage annular PFL and the coaxial PFL, the structural optimization design of a mixed PFL in a Tesla type pulse generator is completed with the transient field-circuit co-simulation method. The multi-stage annular PFL consists of 18 stage annular PFL modules in series, with the characteristic impedance of 44 Ω, the electrical length of 15 ns, and the sustaining voltage of 1 MV. The mixed PFL can generate quasi-square electrical pulses with a pulse width of 43 ns, and the fluctuation ratio of the pulse flat top is less than 8% when the

  16. A coaxial-output capacitor-loaded annular pulse forming line

    Science.gov (United States)

    Li, Rui; Li, Yongdong; Su, Jiancang; Yu, Binxiong; Xu, Xiudong; Zhao, Liang; Cheng, Jie; Zeng, Bo

    2018-04-01

    A coaxial-output capacitor-loaded annular pulse forming line (PFL) is developed in order to reduce the flat top fluctuation amplitude of the forming quasi-square pulse and improve the quality of the pulse waveform produced by a Tesla-pulse forming network (PFN) type pulse generator. A single module composed of three involute dual-plate PFNs is designed, with a characteristic impedance of 2.44 Ω, an electrical length of 15 ns, and a sustaining voltage of 60 kV. The three involute dual-plate PFNs connected in parallel have the same impedance and electrical length. Due to the existed small inductance and capacitance per unit length in each involute dual-plate PFN, the upper cut-off frequency of the PFN is increased. As a result, the entire annular PFL has better high-frequency response capability. Meanwhile, the three dual-plate PFNs discharge in parallel, which is much closer to the coaxial output. The series connecting inductance between adjacent two modules is significantly reduced when the annular PFL modules are connected in series. The pulse waveform distortion is reduced when the pulse transfers along the modules. Finally, the shielding electrode structure is applied on both sides of the module. The electromagnetic field is restricted in the module when a single module discharges, and the electromagnetic coupling between the multi-stage annular PFLs is eliminated. Based on the principle of impedance matching between the multi-stage annular PFL and the coaxial PFL, the structural optimization design of a mixed PFL in a Tesla type pulse generator is completed with the transient field-circuit co-simulation method. The multi-stage annular PFL consists of 18 stage annular PFL modules in series, with the characteristic impedance of 44 Ω, the electrical length of 15 ns, and the sustaining voltage of 1 MV. The mixed PFL can generate quasi-square electrical pulses with a pulse width of 43 ns, and the fluctuation ratio of the pulse flat top is less than 8% when the

  17. Programmable pulse generator

    International Nuclear Information System (INIS)

    Xue Zhihua; Lou Binqiao; Duan Xiaohui

    2002-01-01

    The author introduces the design of programmable pulse generator that is based on a micro-controller and controlled by RS232 interface of personal computer. The whole system has good stability. The pulse generator can produce TTL pulse and analog pulse. The pulse frequency can be selected by EPLD. The voltage amplitude and pulse width of analog pulse can be adjusted by analog switches and digitally-controlled potentiometers. The software development tools of computer is National Instruments LabView5.1. The front panel of this virtual instrumentation is intuitive and easy-to-use. Parameters can be selected and changed conveniently by knob and slide

  18. Models of brachial to finger pulse wave distortion and pressure decrement.

    Science.gov (United States)

    Gizdulich, P; Prentza, A; Wesseling, K H

    1997-03-01

    To model the pulse wave distortion and pressure decrement occurring between brachial and finger arteries. Distortion reversion and decrement correction were also our aims. Brachial artery pressure was recorded intra-arterially and finger pressure was recorded non-invasively by the Finapres technique in 53 adult human subjects. Mean pressure was subtracted from each pressure waveform and Fourier analysis applied to the pulsations. A distortion model was estimated for each subject and averaged over the group. The average inverse model was applied to the full finger pressure waveform. The pressure decrement was modelled by multiple regression on finger systolic and diastolic levels. Waveform distortion could be described by a general, frequency dependent model having a resonance at 7.3 Hz. The general inverse model has an anti-resonance at this frequency. It converts finger to brachial pulsations thereby reducing average waveform distortion from 9.7 (s.d. 3.2) mmHg per sample for the finger pulse to 3.7 (1.7) mmHg for the converted pulse. Systolic and diastolic level differences between finger and brachial arterial pressures changed from -4 (15) and -8 (11) to +8 (14) and +8 (12) mmHg, respectively, after inverse modelling, with pulse pressures correct on average. The pressure decrement model reduced both the mean and the standard deviation of systolic and diastolic level differences to 0 (13) and 0 (8) mmHg. Diastolic differences were thus reduced most. Brachial to finger pulse wave distortion due to wave reflection in arteries is almost identical in all subjects and can be modelled by a single resonance. The pressure decrement due to flow in arteries is greatest for high pulse pressures superimposed on low means.

  19. Microencapsulation of silicon cavities using a pulsed excimer laser

    KAUST Repository

    Sedky, Sherif M.

    2012-06-07

    This work presents a novel low thermal-budget technique for sealing micromachined cavities in silicon. Cavities are sealed without deposition, similar to the silicon surface-migration sealing process. In contrast to the 1100°C furnace anneal required for the migration process, the proposed technique uses short excimer laser pulses (24ns), focused onto an area of 23mm 2, to locally heat the top few microns of the substrate, while the bulk substrate remains near ambient temperature. The treatment can be applied to selected regions of the substrate, without the need for special surface treatments or a controlled environment. This work investigates the effect of varying the laser pulse energy from 400 mJ cm 2to 800 mJ cm 2, the pulse rate from 1Hz to 50Hz and the pulse count from 200 to 3000 pulses on sealing microfabricated cavities in silicon. An analytical model for the effect of holes on the surface temperature distribution is derived, which shows that much higher temperatures can be achieved by increasing the hole density. A mechanism for sealing the cavities is proposed, which indicates how complete sealing is feasible. © 2012 IOP Publishing Ltd.

  20. Pulsed-coil magnet systems for applying uniform 10-30 T fields to centimeter-scale targets on Sandia's Z facility.

    Science.gov (United States)

    Rovang, D C; Lamppa, D C; Cuneo, M E; Owen, A C; McKenney, J; Johnson, D W; Radovich, S; Kaye, R J; McBride, R D; Alexander, C S; Awe, T J; Slutz, S A; Sefkow, A B; Haill, T A; Jones, P A; Argo, J W; Dalton, D G; Robertson, G K; Waisman, E M; Sinars, D B; Meissner, J; Milhous, M; Nguyen, D N; Mielke, C H

    2014-12-01

    Sandia has successfully integrated the capability to apply uniform, high magnetic fields (10-30 T) to high energy density experiments on the Z facility. This system uses an 8-mF, 15-kV capacitor bank to drive large-bore (5 cm diameter), high-inductance (1-3 mH) multi-turn, multi-layer electromagnets that slowly magnetize the conductive targets used on Z over several milliseconds (time to peak field of 2-7 ms). This system was commissioned in February 2013 and has been used successfully to magnetize more than 30 experiments up to 10 T that have produced exciting and surprising physics results. These experiments used split-magnet topologies to maintain diagnostic lines of sight to the target. We describe the design, integration, and operation of the pulsed coil system into the challenging and harsh environment of the Z Machine. We also describe our plans and designs for achieving fields up to 20 T with a reduced-gap split-magnet configuration, and up to 30 T with a solid magnet configuration in pursuit of the Magnetized Liner Inertial Fusion concept.

  1. Controlling the porosity of collagen, gelatin and elastin biomaterials by ultrashort laser pulses

    International Nuclear Information System (INIS)

    Daskalova, A.; Nathala, Chandra S.R.; Bliznakova, I.; Stoyanova, E.; Zhelyazkova, A.; Ganz, T.; Lueftenegger, S.; Husinsky, W.

    2014-01-01

    We report on the structural investigation of self-organized micropores generated in thin gelatin, collagen, and collagen–elastin films after single and multishot irradiation with pulse durations ranging from 30–100 fs at 800 nm. We systematically studied the effect of laser parameters: laser energy, number of pulses, and pulse duration on the development of the micropores. This work showed that applying laser pulses at different rates significantly modified the thin film surface. The results clearly revealed that femtosecond laser treatment of thin films of biomaterials: gelatin, collagen and collagen–elastin, results in creation of micro/nanopores with different size of cavity formations. Experimentally, it is demonstrated that it is possible to influence the dimensions of the pore sizes, ranging from 100 nm to 2 μm by tuning the laser parameters. We are currently further exploring the possibility of structuring these biomaterials by applying a time delay between separate pulses. First results from cell culture experiments on laser created surface foam of collagen–elastin were successfully obtained, showing the potential of the method to cultivate cells on superficial porous substrates and the preferable selectivity of the cells to proliferate on the laser modified parts of the biopolymer substrate.

  2. Controlling the porosity of collagen, gelatin and elastin biomaterials by ultrashort laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Daskalova, A., E-mail: a_daskalova@code.bg [Institute of Electronics, Bulgarian Academy of Sciences, 72, Tsarigradsko Chaussee blvd., 1784 Sofia (Bulgaria); Nathala, Chandra S.R. [IAP, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Vienna (Austria); Femtolasers Productions GmbH, Fernkorngasse10, 1100 Vienna (Austria); Bliznakova, I. [Institute of Electronics, Bulgarian Academy of Sciences, 72, Tsarigradsko Chaussee blvd., 1784 Sofia (Bulgaria); Stoyanova, E. [IBIR, Department of Molecular Immunology, Bulgarian Academy of Sciences, 73, Tzarigradsko Chaussee blvd., 1113 Sofia (Bulgaria); Zhelyazkova, A. [Institute of Electronics, Bulgarian Academy of Sciences, 72, Tsarigradsko Chaussee blvd., 1784 Sofia (Bulgaria); Ganz, T. [Femtolasers Productions GmbH, Fernkorngasse10, 1100 Vienna (Austria); Lueftenegger, S.; Husinsky, W. [IAP, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Vienna (Austria)

    2014-02-15

    We report on the structural investigation of self-organized micropores generated in thin gelatin, collagen, and collagen–elastin films after single and multishot irradiation with pulse durations ranging from 30–100 fs at 800 nm. We systematically studied the effect of laser parameters: laser energy, number of pulses, and pulse duration on the development of the micropores. This work showed that applying laser pulses at different rates significantly modified the thin film surface. The results clearly revealed that femtosecond laser treatment of thin films of biomaterials: gelatin, collagen and collagen–elastin, results in creation of micro/nanopores with different size of cavity formations. Experimentally, it is demonstrated that it is possible to influence the dimensions of the pore sizes, ranging from 100 nm to 2 μm by tuning the laser parameters. We are currently further exploring the possibility of structuring these biomaterials by applying a time delay between separate pulses. First results from cell culture experiments on laser created surface foam of collagen–elastin were successfully obtained, showing the potential of the method to cultivate cells on superficial porous substrates and the preferable selectivity of the cells to proliferate on the laser modified parts of the biopolymer substrate.

  3. Increasing flexibility in two-dimensional liquid chromatography by pulsed elution of the first dimension

    DEFF Research Database (Denmark)

    Jakobsen, Simon S.; Christensen, Jan H.; Verdier, Sylvain

    2017-01-01

    This work demonstrates the development of an online two-dimensional liquid chromatography (2D-LC) method where the first dimension column is eluted by a sequence of pulses of increasing eluotropic strength generated by the LC pumps (pulsed-elution 2D-LC). Between the pulses, the first dimension...... online comprehensive 2D-LC: undersampling, difficulties in refocusing, and lack of flexibility in the selection of column dimensions and flow rates because the two dimensions constrain each other. The pulsed-elution 2D-LC was applied for the analysis of a basic fraction of vacuum gas oil. Peak capacity...

  4. Electronic constant current and current pulse signal generator for nuclear instrumentation testing

    International Nuclear Information System (INIS)

    Brown, R.A.

    1994-01-01

    Circuitry is described for testing the ability of an intermediate range nuclear instrument to detect and measure a constant current and a periodic current pulse. The invention simulates the resistance and capacitance of the signal connection of a nuclear instrument ion chamber detector and interconnecting cable. An LED flasher/oscillator illuminates an LED at a periodic rate established by a timing capacitor and circuitry internal to the flasher/oscillator. When the LED is on, a periodic current pulse is applied to the instrument. When the LED is off, a constant current is applied. An inductor opposes battery current flow when the LED is on. 1 figures

  5. Effects of pulse-to-pulse residual species on discharges in repetitively pulsed discharges through packed bed reactors

    Science.gov (United States)

    Kruszelnicki, Juliusz; Engeling, Kenneth W.; Foster, John E.; Kushner, Mark J.

    2016-09-01

    Atmospheric pressure dielectric barrier discharges (DBDs) sustained in packed bed reactors (PBRs) are being investigated for conversion of toxic and waste gases, and CO2 removal. These discharges are repetitively pulsed having varying flow rates and internal geometries, which results in species from the prior pulse still being in the discharge zone at the time the following discharge pulse occurs. A non-negligible residual plasma density remains, which effectively acts as preionization. This residual charge changes the discharge properties of subsequent pulses, and may impact important PBR properties such as chemical selectivity. Similarly, the residual neutral reactive species produced during earlier pulses will impact the reaction rates on subsequent pulses. We report on results of a computational investigation of a 2D PBR using the plasma hydrodynamics simulator nonPDPSIM. Results will be discussed for air flowing though an array of dielectric rods at atmospheric pressure. The effects of inter-pulse residual species on PBR discharges will be quantified. Means of controlling the presence of residual species in the reactor through gas flow rate, pulse repetition, pulse width and geometry will be described. Comparisons will be made to experiments. Work supported by US DOE Office of Fusion Energy Science and the National Science Foundation.

  6. Acetic acid denaturing pulsed field capillary electrophoresis for RNA separation.

    Science.gov (United States)

    Li, Zhenqing; Dou, Xiaoming; Ni, Yi; Sumitomo, Keiko; Yamaguchi, Yoshinori

    2010-10-01

    Based on our previous work of in-capillary denaturing polymer electrophoresis, we present a study of RNA molecular separation up to 6.0 kilo nucleotide by pulsed field CE. This is the first systematic investigation of electrophoresis of a larger molecular mass RNA in linear hydroxyethylcellulose (HEC) under pulsed field conditions. The parameters that may influence the separation performance, e.g. gel polymer concentration, modulation depth and pulse frequency, are analyzed in terms of resolution and mobility. For denaturing and separating RNA in the capillary simultaneously, 2 M acetic acid was added into the HEC polymer to serve as separation buffer. Result shows that (i) in pulsed field conditions, RNA separation can be achieved in a wide range of concentration of HEC polymer, and RNA fragments between 0.3 and 0.6 kilo nucleotide are sensitive to the polymer concentration; (ii) under certain pulsed field conditions, RNA fragments move linearly as the modulation depth increases; (iii) 12.5 Hz is the resonance frequency for RNA reorientation time and applied frequency.

  7. The role of pulse shape in motor cortex transcranial magnetic stimulation using full-sine stimuli

    DEFF Research Database (Denmark)

    Delvendahl, Igor; Gattinger, Norbert; Berger, Thomas

    2014-01-01

    A full-sine (biphasic) pulse waveform is most commonly used for repetitive transcranial magnetic stimulation (TMS), but little is known about how variations in duration or amplitude of distinct pulse segments influence the effectiveness of a single TMS pulse to elicit a corticomotor response. Using......) compared monophasic, half-sine, and full-sine pulses, (ii) applied two-segment pulses consisting of two identical half-sines, and (iii) manipulated amplitude, duration, and current direction of the first or second full-sine pulse half-segments. RMT was significantly higher using half-sine or monophasic...... in considerably higher RMT, whereas varying the amplitude of the half-segment inducing anterior-posterior current had a smaller effect. These findings provide direct experimental evidence that the pulse segment inducing a posterior-anterior directed current in M1 contributes most to corticospinal pathway...

  8. Pulsed power bibliography. Volume 1: Indices

    Science.gov (United States)

    Bemesderfer, J.; Druce, R. L.; Frantz, B.; Guenther, A. H.; Kristiansen, M.; Oloughlin, J. P.; Pendleton, W. K.

    1983-08-01

    Pulsed power and high-voltage technologies are playing an ever increasing role in weapons' effects simulation, fusion power research, power distribution, materials processing and medical research. It is a rapidly expanding field of applied physics as evidenced by the growth in published literature. Three years ago, the Air Force Weapons Laboratory (AFWL) initiated a project to compile a computerized data base of pulsed power research papers. The data base is stored on our IBM System 2000. This AFWL Technical Report is the first release of the bibliography to date. It contains about 2,500 full bibliographic citations, original sources, availability, key words and abstract. There are three indices: Subject, Personal Author, and Corporate Author. There are 30 main subject headings, from Breakdown Studies to Switching. The indices are contained in Volume 1.

  9. Warm dense mater: another application for pulsed power hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Reinovsky, Robert Emil [Los Alamos National Laboratory

    2009-01-01

    Pulsed Power Hydrodynamics (PPH) is an application of low-impedance pulsed power, and high magnetic field technology to the study of advanced hydrodynamic problems, instabilities, turbulence, and material properties. PPH can potentially be applied to the study of the properties of warm dense matter (WDM) as well. Exploration of the properties of warm dense matter such as equation of state, viscosity, conductivity is an emerging area of study focused on the behavior of matter at density near solid density (from 10% of solid density to slightly above solid density) and modest temperatures ({approx}1-10 eV). Conditions characteristic of WDM are difficult to obtain, and even more difficult to diagnose. One approach to producing WDM uses laser or particle beam heating of very small quantities of matter on timescales short compared to the subsequent hydrodynamic expansion timescales (isochoric heating) and a vigorous community of researchers are applying these techniques. Pulsed power hydrodynamic techniques, such as large convergence liner compression of a large volume, modest density, low temperature plasma to densities approaching solid density or through multiple shock compression and heating of normal density material between a massive, high density, energetic liner and a high density central 'anvil' are possible ways to reach relevant conditions. Another avenue to WDM conditions is through the explosion and subsequent expansion of a conductor (wire) against a high pressure (density) gas background (isobaric expansion) techniques. However, both techniques demand substantial energy, proper power conditioning and delivery, and an understanding of the hydrodynamic and instability processes that limit each technique. In this paper we will examine the challenges to pulsed power technology and to pulsed power systems presented by the opportunity to explore this interesting region of parameter space.

  10. Simulation of pulsed dielectric barrier discharge xenon excimer lamp

    International Nuclear Information System (INIS)

    Bogdanov, E A; Kudryavtsev, A A; Arslanbekov, R R; Kolobov, V I

    2004-01-01

    Recently, it has been shown that the efficiency of excimer lamps can be drastically increased in a pulsed regime. A one-dimensional simulation of pulsed excimer lamps has been performed by Carman and Mildren (2003 J. Phys. D: Appl. Phys. 36 19) (C and M). However, some computational results of the work of C and M are questionable and need to be revisited. In this paper, a dielectric barrier discharge (DBD) in xenon has been simulated for operating conditions similar to those of C and M to better understand plasma dynamics in a pulsed regime. Our simulation results differ considerably from the computational results of C and M. Although these differences do not affect profoundly the plasma macro parameters measured in the C and M experiments, they offer a better understanding of plasma dynamics in pulsed DBDs and form a solid foundation for computational optimization of excimer lamps. It was found that the dynamics of breakdown and the current pulse depend significantly on the initial densities of species after a previous pulse, and so it is important to accurately simulate the plasma evolution in both the afterglow and active stages. It seems possible to modify the power deposition in the plasma by varying external discharge parameters such as the amplitude and the rise time of the applied voltage, and to modify the plasma composition by changing the pulse repetition rate and plasma decay in the afterglow stage

  11. Pulsed-field gel electrophoresis typing of Staphylococcus aureus isolates

    Science.gov (United States)

    Pulsed-field gel electrophoresis (PFGE) is the most applied and effective genetic typing method for epidemiological studies and investigation of foodborne outbreaks caused by different pathogens, including Staphylococcus aureus. The technique relies on analysis of large DNA fragments generated by th...

  12. Pulse shape analysis using CsI(Tl) Crystals

    International Nuclear Information System (INIS)

    Silva, J.; Fiori, E.; Loher, B.; Savran, D.; Wirth, R.; Vencelj, M.

    2013-06-01

    The decay time of CsI(Tl) scintillating material consists of more than a single exponential component. The ratio between the intensity of these components varies as a function of the ionizing power of the absorbed particles, such as γ -rays or protons, and the temperature. This property can therefore be used for particle discrimination and for temperature monitoring, using pulse shape analysis. An unsupervised method that uses fuzzy clustering algorithms for particle identification based on pulse shape analysis is presented. The method is applied to discriminate between photon and proton-induced signals in CsI(Tl) scintillator detectors. The first results of a method that uses pulse shape analysis for correcting the temperature-dependent gain effect of the detector are also presented. The method aims at conserving a good energy resolution in a temperature varying environment without the need to measure the temperature of the detector externally (authors)

  13. Femtosecond laser pulse written Volume Bragg Gratings

    Directory of Open Access Journals (Sweden)

    Richter Daniel

    2013-11-01

    Full Text Available Femtosecond laser pulses can be applied for structuring a wide range of ransparent materials. Here we want to show how to use this ability to realize Volume-Bragg-Gratings in various- mainly non-photosensitive - glasses. We will further present the characteristics of the realized gratings and a few elected applications that have been realized.

  14. The effect of pulsed electric fields on carotenoids bioaccessibility: The role of tomato matrix.

    Science.gov (United States)

    Bot, Francesca; Verkerk, Ruud; Mastwijk, Hennie; Anese, Monica; Fogliano, Vincenzo; Capuano, Edoardo

    2018-02-01

    Tomato fractions were subjected to pulsed electric fields treatment combined or not with heating. Results showed that pulsed electric fields and heating applied in combination or individually induced permeabilization of cell membranes in the tomato fractions. However, no changes in β-carotene and lycopene bioaccessibility were found upon combined and individual pulsed electric fields and heating, except in the following cases: (i) in tissue, a significant decrease in lycopene bioaccessibility upon combined pulsed electric fields and heating and heating only was observed; (ii) in chromoplasts, both β-carotene and lycopene bioaccessibility significantly decreased upon combined pulsed electric fields and heating and pulsed electric fields only. The reduction in carotenoids bioaccessibility was attributed to modification in chromoplasts membrane and carotenoids-protein complexes. Differences in the effects of pulsed electric fields on bioaccessibility among different tomato fractions were related to tomato structure complexity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Ozone Synthesis Efficiency Upgrading in the Pulsed Point-to-Plane Gas Discharge

    International Nuclear Information System (INIS)

    Golota, V.I.; Zavada, L.M.; Kotyukov, O.V.; Polyakov, A.V.; Pugach, S.G.

    2006-01-01

    Results are reported from the studies into electrodynamic characteristics of the barrierless point-to-plane gas discharge as a HV pulse of positive polarity is applied to the point electrode. The efficiency of ozone synthesis has been determined as a function of the length and repetition frequency of the HV pulse. It has been demonstrated that the electrodynamic characteristics of the discharge and the efficiency of ozone synthesis in oxygen-containing gas mixtures essentially depend on the parameters of HV power supply. The HV switch HTS-300 (BEHLKE Electronic GmbH) was used for HV pulse shaping

  16. Repeated pulsed x-ray emission equipment

    International Nuclear Information System (INIS)

    Terauchi, Hikaru; Iida, Satoshi

    1982-01-01

    X-ray diffraction technique has been applied to determine the spatial positions of atoms which compose a material, and it is needless to say that the technique is a fundamental means regardless of the fields of research. However, the application of X-ray diffraction to the research on physical properties has been so far limited to know the spatial positions of atoms or molecules under thermal equilibrium condition. The addition of time element to the conventional technique, that is, the analysis of material structure including the time-varying processes under non-equilibrium conditions, is considered to approach the elucidation of the essence of materials. The authors call this dynamic structural analysis. The authors have planned to analyze X-ray diffraction intensity which has the resolution of about 10 -8 s in the real time which is conjugate with energy. However, present pulsed X-ray sources are not suitable for diffraction experiment because the pulse width is too long or X-ray wavelength is too short. Accordingly, the authors have made for trial a pulsed X-ray source for diffraction experiment. Its specifications are: diode voltage (X-ray tube voltage) from 200 to 300 kV, diode current from 2 to 5 kA, pulse width of about 30ns, maximum repetition frequency 10 pps, and X-ray focus size of 2 mm diameter. One of the features of this source is the repeated generation of pulsed X-ray. This is the first trial in the world, and is indispensable to the dynamic structural analysis described above. The quality of the emitted X-ray is also written. (Wakatsuki, Y.)

  17. Formation of very short pulse by neutron spin flip chopper for J-PARC

    International Nuclear Information System (INIS)

    Ebisawa, T.; Soyama, K.; Yamazaki, D.; Tasaki, S.; Sakai, K.; Oku, T.; Maruyama, R.; Hino, M.

    2004-01-01

    We have developed neutron spin flip choppers with high S/N ratio and high intensity for pulsed sources using multi-stage spin flip choppers. It is not easy for us to obtain a very short neutron pulse less than 10 μs using a spin flip chopper, due to the time constant L/R in the normal LR circuit. We will discuss a method obtaining a very short neutron pulse applying the modified push-pull circuit proposed by Ito and Takahashi [4] to the double spin flip chopper with polarizing guides

  18. Scintillation-based Search for Off-pulse Radio Emission from Pulsars

    Science.gov (United States)

    Ravi, Kumar; Deshpande, Avinash A.

    2018-05-01

    We propose a new method to detect off-pulse (unpulsed and/or continuous) emission from pulsars using the intensity modulations associated with interstellar scintillation. Our technique involves obtaining the dynamic spectra, separately for on-pulse window and off-pulse region, with time and frequency resolutions to properly sample the intensity variations due to diffractive scintillation and then estimating their mutual correlation as a measure of off-pulse emission, if any. We describe and illustrate the essential details of this technique with the help of simulations, as well as real data. We also discuss the advantages of this method over earlier approaches to detect off-pulse emission. In particular, we point out how certain nonidealities inherent to measurement setups could potentially affect estimations in earlier approaches and argue that the present technique is immune to such nonidealities. We verify both of the above situations with relevant simulations. We apply this method to the observation of PSR B0329+54 at frequencies of 730 and 810 MHz made with the Green Bank Telescope and present upper limits for the off-pulse intensity at the two frequencies. We expect this technique to pave the way for extensive investigations of off-pulse emission with the help of existing dynamic spectral data on pulsars and, of course, with more sensitive long-duration data from new observations.

  19. Multichannel computerized control system of current pulses in LIU-30 electron accelerator

    CERN Document Server

    Gerasimov, A I; Kulgavchuk, V V; Pluzhnikov, A V

    2002-01-01

    In LIU-30 power linear pulsed induction electron accelerator (40 MeV, 10 kA, 25 ns) 288 radial lines with water insulation serve as energy accumulators and shapers of accelerating voltage pulses. The lines are charged simultaneously up to 500 kV using a system comprising 72 Arkadiev-Marx screened generators. To control parameter of synchronous pulses of charging current with up to 60 kA amplitude and 0.85 mu s duration in every of 72 charging circuits one applies a computer-aided system. Current pulse is recorded at output of every generator using the Rogowski coil signal from which via a cable line is transmitted to an analog-digital converter, is processed with 50 ns sampling and is recorded to a memory unit. Upon actuation of accelerator the signals are sequentially or selectively displayed and are compared with pulse typical shape

  20. Treatment of emulsified oils by electrocoagulation: pulsed voltage applications.

    Science.gov (United States)

    Genc, Ayten; Bakirci, Busra

    2015-01-01

    The effect of pulsed voltage application on energy consumption during electrocoagulation was investigated. Three voltage profiles having the same arithmetic average with respect to time were applied to the electrodes. The specific energy consumption for these profiles were evaluated and analyzed together with oil removal efficiencies. The effects of applied voltages, electrode materials, electrode configurations, and pH on oil removal efficiency were determined. Electrocoagulation experiments were performed by using synthetic and real wastewater samples. The pulsed voltages saved energy during the electrocoagulation process. In continuous operation, energy saving was as high as 48%. Aluminum electrodes used for the treatment of emulsified oils resulted in higher oil removal efficiencies in comparison with stainless steel and iron electrodes. When the electrodes gap was less than 1 cm, higher oil removal efficiencies were obtained. The highest oil removal efficiencies were 95% and 35% for the batch and continuous operating modes, respectively.

  1. Pulsed Laser Annealing of Thin Films of Self-Assembled Nanocrystals

    KAUST Repository

    Baumgardner, William J.; Choi, Joshua J.; Bian, Kaifu; Fitting Kourkoutis, Lena; Smilgies, Detlef-M.; Thompson, Michael O.; Hanrath, Tobias

    2011-01-01

    We investigated how pulsed laser annealing can be applied to process thin films of colloidal nanocrystals (NCs) into interconnected nanostructures. We illustrate the relationship between incident laser fluence and changes in morphology of PbSe NC

  2. Measuring sub-bandage pressure: comparing the use of pressure monitors and pulse oximeters.

    Science.gov (United States)

    Satpathy, A; Hayes, S; Dodds, S R

    2006-03-01

    To test the use of low-cost sub-bandage pressure monitors and pulse oximeters as part of a quality-control measure for graduated compression bandaging in leg ulcer clinics. Twenty-five healthy volunteers (mean age 40 years) providing 50 limbs were bandaged with a four-layer compression bandaging system. The ankle systolic pressure (ASP) was measured using a pulse oximeter (Nellcor NBP-40) before applying the graduated compression bandages. Interface pressure was measured by placing pressure sensors on the skin at three points (2cm above the medial malleolus; the widest part of the calf; and a point midway between them) in the supine and standing positions. The ASP was measured again with the pulse oximeter after the bandage had been applied, and the effect of the bandage on the ASP was recorded. The actual pressure created by the bandage was compared with the required pressure profile. Interface pressures varied with change of position and movement. With the operator blinded to the pressure monitors while applying the bandages, the target pressure of 35-40mmHg at the ankle was achieved in only 36% of limbs ([mean +/- 95% confidence interval]; 32.3 +/- 1.6mmHg [supine]; 38.4 +/- 2.4mmHg [standing position]). With the help of the pressure monitors, the target pressure was achieved in 78% of the limbs. There was no correlation between the pressure monitors and pulse oximeter pressures, demonstrating that the pulse oximeter is not a useful tool for measuring sub-bandage pressures. The results suggest a tool (interface pressure monitors) that is easy to operate should be available as part of quality assurance for treatment, training of care providers and education.

  3. Application of thermoluminescence dosimeter on the measurement of hard X-ray pulse energy spectrum

    International Nuclear Information System (INIS)

    Song Zhaohui; Wang Baohui; Wang Kuilu; Hei Dongwei; Sun Fengrong; Li Gang

    2003-01-01

    This paper introduces the application of thermoluminescence dosimeter (TLD) which composed by TLD-3500 reader and GR-100 M chips on the measurement of hard X-ray pulse energy spectrum. The idea using Filter Fluorescence Method (FFM) and TLD to measure hard X-ray pulse energy spectrum (from 10 keV to 100 keV) is discussed in details. Considering all the factors of the measuring surrounding, the measurement system of hard X-ray pulse has been devised. The calibration technique of absolute energy response of TLD is established. This method has been applied successfully on the radiation parameters measurement of the huge pulse radiation device-high-power pulser I. Hard X-ray pulse energy spectrum data of the pulser are acquired

  4. Pulsed DC Electric Field-Induced Differentiation of Cortical Neural Precursor Cells.

    Directory of Open Access Journals (Sweden)

    Hui-Fang Chang

    Full Text Available We report the differentiation of neural stem and progenitor cells solely induced by direct current (DC pulses stimulation. Neural stem and progenitor cells in the adult mammalian brain are promising candidates for the development of therapeutic neuroregeneration strategies. The differentiation of neural stem and progenitor cells depends on various in vivo environmental factors, such as nerve growth factor and endogenous EF. In this study, we demonstrated that the morphologic and phenotypic changes of mouse neural stem and progenitor cells (mNPCs could be induced solely by exposure to square-wave DC pulses (magnitude 300 mV/mm at frequency of 100-Hz. The DC pulse stimulation was conducted for 48 h, and the morphologic changes of mNPCs were monitored continuously. The length of primary processes and the amount of branching significantly increased after stimulation by DC pulses for 48 h. After DC pulse treatment, the mNPCs differentiated into neurons, astrocytes, and oligodendrocytes simultaneously in stem cell maintenance medium. Our results suggest that simple DC pulse treatment could control the fate of NPCs. With further studies, DC pulses may be applied to manipulate NPC differentiation and may be used for the development of therapeutic strategies that employ NPCs to treat nervous system disorders.

  5. Pulsed DC Electric Field-Induced Differentiation of Cortical Neural Precursor Cells.

    Science.gov (United States)

    Chang, Hui-Fang; Lee, Ying-Shan; Tang, Tang K; Cheng, Ji-Yen

    2016-01-01

    We report the differentiation of neural stem and progenitor cells solely induced by direct current (DC) pulses stimulation. Neural stem and progenitor cells in the adult mammalian brain are promising candidates for the development of therapeutic neuroregeneration strategies. The differentiation of neural stem and progenitor cells depends on various in vivo environmental factors, such as nerve growth factor and endogenous EF. In this study, we demonstrated that the morphologic and phenotypic changes of mouse neural stem and progenitor cells (mNPCs) could be induced solely by exposure to square-wave DC pulses (magnitude 300 mV/mm at frequency of 100-Hz). The DC pulse stimulation was conducted for 48 h, and the morphologic changes of mNPCs were monitored continuously. The length of primary processes and the amount of branching significantly increased after stimulation by DC pulses for 48 h. After DC pulse treatment, the mNPCs differentiated into neurons, astrocytes, and oligodendrocytes simultaneously in stem cell maintenance medium. Our results suggest that simple DC pulse treatment could control the fate of NPCs. With further studies, DC pulses may be applied to manipulate NPC differentiation and may be used for the development of therapeutic strategies that employ NPCs to treat nervous system disorders.

  6. Electric field measurements in a nanosecond pulse discharge in atmospheric air

    International Nuclear Information System (INIS)

    Simeni Simeni, Marien; Frederickson, Kraig; Lempert, Walter R; Adamovich, Igor V; Goldberg, Benjamin M; Zhang, Cheng

    2017-01-01

    The paper presents the results of temporally and spatially resolved electric field measurements in a nanosecond pulse discharge in atmospheric air, sustained between a razor edge high-voltage electrode and a plane grounded electrode covered by a thin dielectric plate. The electric field is measured by picosecond four-wave mixing in a collinear phase-matching geometry, with time resolution of approximately 2 ns, using an absolute calibration provided by measurements of a known electrostatic electric field. The results demonstrate electric field offset on the discharge center plane before the discharge pulse due to surface charge accumulation on the dielectric from the weaker, opposite polarity pre-pulse. During the discharge pulse, the electric field follows the applied voltage until ‘forward’ breakdown occurs, after which the field in the plasma is significantly reduced due to charge separation. When the applied voltage is reduced, the field in the plasma reverses direction and increases again, until the weak ‘reverse’ breakdown occurs, producing a secondary transient reduction in the electric field. After the pulse, the field is gradually reduced on a microsecond time scale, likely due to residual surface charge neutralization by transport of opposite polarity charges from the plasma. Spatially resolved electric field measurements show that the discharge develops as a surface ionization wave. Significant surface charge accumulation on the dielectric surface is detected near the end of the discharge pulse. Spatially resolved measurements of electric field vector components demonstrate that the vertical electric field in the surface ionization wave peaks ahead of the horizontal electric field. Behind the wave, the vertical field remains low, near the detection limit, while the horizontal field is gradually reduced to near the detection limit at the discharge center plane. These results are consistent with time-resolved measurements of electric field

  7. Effects of pulse duration on magnetostimulation thresholds

    International Nuclear Information System (INIS)

    Saritas, Emine U.; Goodwill, Patrick W.; Conolly, Steven M.

    2015-01-01

    Purpose: Medical imaging techniques such as magnetic resonance imaging and magnetic particle imaging (MPI) utilize time-varying magnetic fields that are subject to magnetostimulation limits, which often limit the speed of the imaging process. Various human-subject experiments have studied the amplitude and frequency dependence of these thresholds for gradient or homogeneous magnetic fields. Another contributing factor was shown to be number of cycles in a magnetic pulse, where the thresholds decreased with longer pulses. The latter result was demonstrated on two subjects only, at a single frequency of 1.27 kHz. Hence, whether the observed effect was due to the number of cycles or due to the pulse duration was not specified. In addition, a gradient-type field was utilized; hence, whether the same phenomenon applies to homogeneous magnetic fields remained unknown. Here, the authors investigate the pulse duration dependence of magnetostimulation limits for a 20-fold range of frequencies using homogeneous magnetic fields, such as the ones used for the drive field in MPI. Methods: Magnetostimulation thresholds were measured in the arms of six healthy subjects (age: 27 ± 5 yr). Each experiment comprised testing the thresholds at eight different pulse durations between 2 and 125 ms at a single frequency, which took approximately 30–40 min/subject. A total of 34 experiments were performed at three different frequencies: 1.2, 5.7, and 25.5 kHz. A solenoid coil providing homogeneous magnetic field was used to induce stimulation, and the field amplitude was measured in real time. A pre-emphasis based pulse shaping method was employed to accurately control the pulse durations. Subjects reported stimulation via a mouse click whenever they felt a twitching/tingling sensation. A sigmoid function was fitted to the subject responses to find the threshold at a specific frequency and duration, and the whole procedure was repeated at all relevant frequencies and pulse durations

  8. Transcranial stimulability of phosphenes by long lightning electromagnetic pulses

    International Nuclear Information System (INIS)

    Peer, J.; Kendl, A.

    2010-01-01

    The electromagnetic pulses of rare long (order of seconds) repetitive lightning discharges near strike point (order of 100 m) are analyzed and compared to magnetic fields applied in standard clinical transcranial magnetic stimulation (TMS) practice. It is shown that the time-varying lightning magnetic fields and locally induced electric fields are in the same order of magnitude and frequency as those established in TMS experiments to study stimulated perception phenomena, like magnetophosphenes. Lightning electromagnetic pulse induced transcranial magnetic stimulation of phosphenes in the visual cortex is concluded to be a plausible interpretation of a large class of reports on luminous perceptions during thunderstorms.

  9. Transcranial stimulability of phosphenes by long lightning electromagnetic pulses

    Energy Technology Data Exchange (ETDEWEB)

    Peer, J. [Institut fuer Ionenphysik und Angewandte Physik, Universitaet Innsbruck, A-6020 Innsbruck (Austria); Kendl, A., E-mail: alexander.kendl@uibk.ac.a [Institut fuer Ionenphysik und Angewandte Physik, Universitaet Innsbruck, A-6020 Innsbruck (Austria)

    2010-06-28

    The electromagnetic pulses of rare long (order of seconds) repetitive lightning discharges near strike point (order of 100 m) are analyzed and compared to magnetic fields applied in standard clinical transcranial magnetic stimulation (TMS) practice. It is shown that the time-varying lightning magnetic fields and locally induced electric fields are in the same order of magnitude and frequency as those established in TMS experiments to study stimulated perception phenomena, like magnetophosphenes. Lightning electromagnetic pulse induced transcranial magnetic stimulation of phosphenes in the visual cortex is concluded to be a plausible interpretation of a large class of reports on luminous perceptions during thunderstorms.

  10. Development of the pulse transformer for NLC klystron pulse modulator

    International Nuclear Information System (INIS)

    Akemoto, M.; Gold, S.; Koontz, R.; Krasnykh, A.

    1997-05-01

    We have studied a conventional pulse transformer for the NLC klystron pulse modulator. The transformer has been analyzed using a simplified lumped circuit model. It is found that a fast rise time requires low leakage inductance and low distributed capacitance and can be realized by reducing the number of secondary turns, but it produces larger pulse droop and core size. After making a tradeoff among these parameters carefully, a conventional pulse transformer with a rise time of 250ns and pulse droop of 3.6% has been designed and built. The transmission characteristics and pulse time-response were measured. The data were compared with the model. The agreement with the model was good when the measured values were used in the model simulation. The results of the high voltage tests are also presented

  11. Dynamic Characterization of Fiber Optical Chirped Pulse Amplification for Sub-ps Pulses

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Rishøj, Lars Søgaard

    2013-01-01

    We investigate experimentally the propagation of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers, showing a significant broadening of the pulses from 450 fs up to 720 fs due to dispersion and self-phase modulation.......We investigate experimentally the propagation of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers, showing a significant broadening of the pulses from 450 fs up to 720 fs due to dispersion and self-phase modulation....

  12. A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.

    Science.gov (United States)

    Binh, P H; Trong, V D; Renucci, P; Marie, X

    2013-08-01

    We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.

  13. The Pulse Thermal Processing of NdFeB-Based Nanocomposite Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Z. Q. [University of Texas; Wang, Z. L. [Georgia Institute of Technology; Liu, J. P. [University of Texas; Kadolkar, Puja [ORNL; Ott, Ronald D [ORNL

    2006-01-01

    Pulse-thermal processing (PTP) based on high-density plasma arc lamp technology has been utilized to crystallize melt-spun NdFeB-based amorphous ribbons to form magnetic nanocomposites consisting of Nd{sub 2}Fe{sub 14}B and {alpha}-Fe phases. After applying suitable pulses, the NdFeB-based ribbons were developed with hard magnetic properties. The highest coercivity can be obtained for ribbons with a thickness of 40 {micro}m after PTP treatments consisting of a 400 A pulse for 0.25 s for ten times. The correlation between PTP parameters and magnetic properties indicates that PTP is an effective approach to control the structure and properties of nanostructured magnetic materials.

  14. Digital coherent detection research on Brillouin optical time domain reflectometry with simplex pulse codes

    International Nuclear Information System (INIS)

    Hao Yun-Qi; Ye Qing; Pan Zheng-Qing; Cai Hai-Wen; Qu Rong-Hui

    2014-01-01

    The digital coherent detection technique has been investigated without any frequency-scanning device in the Brillouin optical time domain reflectometry (BOTDR), where the simplex pulse codes are applied in the sensing system. The time domain signal of every code sequence is collected by the data acquisition card (DAQ). A shift-averaging technique is applied in the frequency domain for the reason that the local oscillator (LO) in the coherent detection is fix-frequency deviated from the primary source. With the 31-bit simplex code, the signal-to-noise ratio (SNR) has 3.5-dB enhancement with the same single pulse traces, accordant with the theoretical analysis. The frequency fluctuation for simplex codes is 14.01 MHz less than that for a single pulse as to 4-m spatial resolution. The results are believed to be beneficial for the BOTDR performance improvement. (general)

  15. HPGe detectors timing using pulse shape analysis techniques

    International Nuclear Information System (INIS)

    Crespi, F.C.L.; Vandone, V.; Brambilla, S.; Camera, F.; Million, B.; Riboldi, S.; Wieland, O.

    2010-01-01

    In this work the Pulse Shape Analysis has been used to improve the time resolution of High Purity Germanium (HPGe) detectors. A set of time aligned signals was acquired in a coincidence measurement using a coaxial HPGe and a cerium-doped lanthanum chloride (LaCl 3 :Ce) scintillation detector. The analysis using a Constant Fraction Discriminator (CFD) time output versus the HPGe signal shape shows that time resolution ranges from 2 to 12 ns depending on the slope in the initial part of the signal. An optimization procedure of the CFD parameters gives the same final time resolution (8 ns) as the one achieved after a correction of the CFD output based on the current pulse maximum position. Finally, an algorithm based on Pulse Shape Analysis was applied to the experimental data and a time resolution between 3 and 4 ns was obtained, corresponding to a 50% improvement as compared with that given by standard CFDs.

  16. Brief review on pulse laser propulsion

    Science.gov (United States)

    Yu, Haichao; Li, Hanyang; Wang, Yan; Cui, Lugui; Liu, Shuangqiang; Yang, Jun

    2018-03-01

    Pulse laser propulsion (PLP) is an advanced propulsion concept can be used across a variety of fields with a wide range of applications. PLP reflects superior payload as well as decreased launch costs in comparison with other conventional methods of producing thrust, such as chemical propulsion or electric propulsion. Numerous researchers have attempted to exploit the potential applications of PLP. This paper first reviews concepts relevant to PLP, including the propulsion modes, breakdown regimes, and propulsion efficiency; the propulsion targets for different materials with the pulse laser are then discussed in detail, including the propulsion of solid and liquid microspheres. PLP applications such as the driven microsatellite, target surface particle removal, and orbital debris removal are also discussed. Although the PLP has been applied to a variety of fields, further research is yet warranted to establish its application in the aerospace field.

  17. Ion pulse propagation through a previously unfilled electrostatic aperture lens accelerating column

    International Nuclear Information System (INIS)

    Rutkowski, H.L.; Eylon, S.; Keeney, D.S.; Chen, Y.J.; Hewett, D.W.; Barnard, J.

    1993-01-01

    Heavy Ion Fusion experiments require very high current beams with excellent beam quality during a short pulse. Scaled experiments planned at LBL require very short pulses (μsec) compared to what one expects in an HIF driver (20-30 μs). A 1MV acceleration column composed of aperture lenses has been constructed at LBL in order to study the propagation effects on such ion pulses. The column is initially empty of space charge but with the full acceleration potential applied. A short current pulse is then injected into the column with a planar diode open-quotes current valve.close quotes Effects on the pulse propagation due to rise time, pulse duration, and beam size have been studied. Experiments on transported beam current and emittance have been conducted using a carbon arc plasma source (2 double-prime and .5 double-prime diameter) and a 1 double-prime diameter alumino-silicate potassium ion source. Computer simulations using a 2.5D time dependent code are compared with the experimental data

  18. Scattering of an ultrashort electromagnetic radiation pulse by an atom in a broad spectral range

    International Nuclear Information System (INIS)

    Astapenko, V. A.

    2011-01-01

    The scattering of an ultrashort electromagnetic pulse by atomic particles is described using a consistent quantum-mechanical approach taking into account excitation of a target and nondipole electromagnetic interaction, which is valid in a broad spectral range. This approach is applied to the scattering of single- and few-cycle pulses by a multielectron atom and a hydrogen atom. Scattering spectra are obtained for ultrashort pulses of different durations. The relative contribution of “elastic” scattering of a single-cycle pulse by a hydrogen atom is studied in the high-frequency limit as a function of the carrier frequency and scattering angle.

  19. Petawatt pulsed-power accelerator

    Science.gov (United States)

    Stygar, William A.; Cuneo, Michael E.; Headley, Daniel I.; Ives, Harry C.; Ives, legal representative; Berry Cottrell; Leeper, Ramon J.; Mazarakis, Michael G.; Olson, Craig L.; Porter, John L.; Wagoner; Tim C.

    2010-03-16

    A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.

  20. Electric field measurements in nanosecond pulse discharges in air over liquid water surface

    Science.gov (United States)

    Simeni Simeni, Marien; Baratte, Edmond; Zhang, Cheng; Frederickson, Kraig; Adamovich, Igor V.

    2018-01-01

    Electric field in nanosecond pulse discharges in ambient air is measured by picosecond four-wave mixing, with absolute calibration by a known electrostatic field. The measurements are done in two geometries, (a) the discharge between two parallel cylinder electrodes placed inside quartz tubes, and (b) the discharge between a razor edge electrode and distilled water surface. In the first case, breakdown field exceeds DC breakdown threshold by approximately a factor of four, 140 ± 10 kV cm-1. In the second case, electric field is measured for both positive and negative pulse polarities, with pulse durations of ˜10 ns and ˜100 ns, respectively. In the short duration, positive polarity pulse, breakdown occurs at 85 kV cm-1, after which the electric field decreases over several ns due to charge separation in the plasma, with no field reversal detected when the applied voltage is reduced. In a long duration, negative polarity pulse, breakdown occurs at a lower electric field, 30 kV cm-1, after which the field decays over several tens of ns and reverses direction when the applied voltage is reduced at the end of the pulse. For both pulse polarities, electric field after the pulse decays on a microsecond time scale, due to residual surface charge neutralization by transport of opposite polarity charges from the plasma. Measurements 1 mm away from the discharge center plane, ˜100 μm from the water surface, show that during the voltage rise, horizontal field component (Ex ) lags in time behind the vertical component (Ey ). After breakdown, Ey is reduced to near zero and reverses direction. Further away from the water surface (≈0.9 mm), Ex is much higher compared to Ey during the entire voltage pulse. The results provide insight into air plasma kinetics and charge transport processes near plasma-liquid interface, over a wide range of time scales.

  1. Experimental Investigation of Pulsed Nanosecond Streamer Discharges for CO2 Reforming

    Science.gov (United States)

    Pachuilo, Michael; Levko, Dima; Raja, Laxminarayan; Varghese, Philip

    2016-09-01

    Rapid global industrialization has led to an increase in atmospheric greenhouse gases, specifically carbon dioxide levels. Plasmas present a great potential for efficient reforming of greenhouse gases. There are several plasma discharges which have been reported for reforming process: dielectric barrier discharges (DBD), microwave discharges, and glide-arcs. Microwave discharges have CO2 conversion energy efficiency of up to 40% at atmospheric conditions, while glide-arcs have 43% and DBD 2-10%. In our study, we analyze a single nanosecond pulsed cathode directed streamer discharge in CO2 at atmospheric pressure and temperature. We have conducted time resolved imaging with spectral bandpass filters of a streamer discharge with an applied negative polarity pulse. The image sequences have been correlated to the applied voltage and current pulses. From the spectral filters we can determine where spatially and temporally excited species are formed. In this talk we report on spectroscopic studies of the discharge and estimate plasma properties such as temperature and density of excited species and electrons. Furthermore, we report on the effects of pulse polarity as well as anodic streamer discharges on the CO2 conversion efficiency. Finally, we will focus on the effects of vibrational excitation on carbon dioxide reforming efficiency for streamer discharges. Our experimental results will be compared with an accompanying plasma computational model studies.

  2. Spectral Phase Modulation and chirped pulse amplification in High Gain Harmonic Generation

    CERN Document Server

    Wu, Zilu; Krinsky, Sam; Loos, Henrik; Murphy, James; Shaftan, Timur; Sheehy, Brian; Shen, Yuzhen; Wang, Xijie; Yu Li Hua

    2004-01-01

    High Gain Harmonic Generation (HGHG), because it produces longitudinally coherent pulses derived from a coherent seed, presents remarkable possibilities for manipulating FEL pulses. If spectral phase modulation imposed on the seed modulates the spectral phase of the HGHG in a deterministic fashion, then chirped pulse amplification, pulse shaping, and coherent control experiments at short wavelengths become possible. In addition, the details of the transfer function will likely depend on electron beam and radiator dynamics and so prove to be a useful tool for studying these. Using the DUVFEL at the National Synchrotron Light Source at Brookhaven National Laboratory, we present spectral phase analyses of both coherent HGHG and incoherent SASE ultraviolet FEL radiation, applying Spectral Interferometry for Direct Electric Field Reconstruction (SPIDER), and assess the potential for employing compression and shaping techniques.

  3. Fiscal 1999 regional consortium R and D project. Report of R and D results on regional consortium energy (R and D of hybrid pulse plasma coating (HPPC) system - 2nd year); 1999 nendo hybrid gata pulse plasma coating (HPPC) system no kenkyu kaihatsu seika hokokusho. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    A surface reforming system was developed which enables DLC or ceramic films to be uniformly and adhesively coated on the surfaces of objects such as metallic dies and tools of complicated shape, which used to be impossible by a conventional dry coating. This paper describes the fiscal 1999 results. The technologies consist of pulse introduction of gaseous materials, pulse generation of plasma, application of negative high-voltage pulse, the HPPC (hybrid pulse plasma coating) system of advanced hybrid control, etc. Technologies were developed for 1 Hz pulse on/off introduction of methane and toluene gas, with the film forming experiment carried out. The density of Ar plasma formed by RF was measured by a Langmuir probe method. High densities of plasma were successfully achieved by a magnetic field. In the experiment of applying a negative pulse voltage to a model metallic die, it was possible to apply up to 14 kV pulse voltage. Elucidated was a plasma chemical phenomenon at the time of pulse gas introduction and pulse plasma formation, using a quadrupole mass spectrometer capable of measuring ion types in plasma, with the control conditions optimized. (NEDO)

  4. Laser-Induced Damage with Femtosecond Pulses

    Science.gov (United States)

    Kafka, Kyle R. P.

    The strong electric fields of focused femtosecond laser pulses lead to non-equilibrium dynamics in materials, which, beyond a threshold intensity, causes laser-induced damage (LID). Such a strongly non-linear and non-perturbative process renders important LID observables like fluence and intensity thresholds and damage morphology (crater) extremely difficult to predict quantitatively. However, femtosecond LID carries a high degree of precision, which has been exploited in various micro/nano-machining and surface engineering applications, such as human eye surgery and super-hydrophobic surfaces. This dissertation presents an array of experimental studies which have measured the damage behavior of various materials under femtosecond irradiation. Precision experiments were performed to produce extreme spatio-temporal confinement of the femtosecond laser-solid damage interaction on monocrystalline Cu, which made possible the first successful direct-benchmarking of LID simulation with realistic damage craters. A technique was developed to produce laser-induced periodic surface structures (LIPSS) in a single pulse (typically a multi-pulse phenomenon), and was used to perform a pump-probe study which revealed asynchronous LIPSS formation on copper. Combined with 1-D calculations, this new experimental result suggests more drastic electron heating than expected. Few-cycle pulses were used to study the LID performance and morphology of commercial ultra-broadband optics, which had not been systematically studied before. With extensive surface analysis, various morphologies were observed, including LIPSS, swelling (blisters), simple craters, and even ring-shaped structures, which varied depending on the coating design, number of pulses, and air/vacuum test environment. Mechanisms leading to these morphologies are discussed, many of which are ultrafast in nature. The applied damage behavior of multi-layer dielectric mirrors was measured and compared between long pulse (150 ps

  5. Effect of high-hydrostatic pressure and moderate-intensity pulsed electric field on plum.

    Science.gov (United States)

    García-Parra, J; González-Cebrino, F; Delgado-Adámez, J; Cava, R; Martín-Belloso, O; Élez-Martínez, P; Ramírez, R

    2018-03-01

    Moderate intensity pulse electric fields were applied in plum with the aim to increase bioactive compounds content of the fruit, while high-hydrostatic pressure was applied to preserve the purées. High-hydrostatic pressure treatment was compared with an equivalent thermal treatment. The addition of ascorbic acid during purée manufacture was also evaluated. The main objective of this study was to assess the effects on microorganisms, polyphenoloxidase, color and bioactive compounds of high-hydrostatic pressure, or thermal-processed plum purées made of moderate intensity pulse electric field-treated or no-moderate intensity pulse electric field-treated plums, after processing during storage. The application of moderate intensity pulse electric field to plums slightly increased the levels of anthocyanins and the antioxidant activity of purées. The application of Hydrostatic-high pressure (HHP) increased the levels of bioactive compounds in purées, while the thermal treatment preserved better the color during storage. The addition of ascorbic acid during the manufacture of plum purée was an important factor for the final quality of purées. The color and the bioactive compounds content were better preserved in purées with ascorbic acid. The no inactivation of polyphenoloxidase enzyme with treatments applied in this study affected the stability purées. Probably more intense treatments conditions (high-hydrostatic pressure and thermal treatment) would be necessary to reach better quality and shelf life during storage.

  6. Pulse transformer R and D for NLC klystron pulse modulator

    International Nuclear Information System (INIS)

    Akemoto, M.; Gold, S.; Krasnykh, A.; Koontz, R.

    1997-07-01

    The authors have studied a conventional pulse transformer for the NLC klystron pulse modulator. The transformer has been analyzed using a simplified lumped circuit model. It is found that a fast rise time requires low leakage inductance and low distributed capacitance and can be realized by reducing the number of secondary turns, but it produces larger pulse droop and requires a larger core size. After making a tradeoff among these parameters carefully, a conventional pulse transformer with a rise time of 250ns and a pulse droop of 3.6% has been designed and built. The transmission characteristics and pulse time-response were measured. The data were compared with the model. The agreement with the model was good when the measured values were used in the model simulation. The results of the high voltage tests using a klystron load are also presented

  7. Multiple High Voltage Pulse Stressing of Polymer Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    Busi Rambabu

    2014-01-01

    Full Text Available The purpose of this paper is to study high voltage interactions in polymer thick film resistors, namely, polyvinyl chloride- (PVC- graphite thick film resistors, and their applications in universal trimming of these resistors. High voltages in the form of impulses for various pulse durations and with different amplitudes have been applied to polymer thick film resistors and we observed the variation of resistance of these resistors with high voltages. It has been found that the resistance of polymer thick film resistors decreases in the case of higher resistivity materials and the resistance of polymer thick film resistor increases in the case of lower resistivity materials when high voltage impulses are applied to them. It has been also found that multiple high voltage pulse (MHVP stressing can be used to trim the polymer thick film resistors either upwards or downwards.

  8. Random pulse generator

    International Nuclear Information System (INIS)

    Guo Ya'nan; Jin Dapeng; Zhao Dixin; Liu Zhen'an; Qiao Qiao; Chinese Academy of Sciences, Beijing

    2007-01-01

    Due to the randomness of radioactive decay and nuclear reaction, the signals from detectors are random in time. But normal pulse generator generates periodical pulses. To measure the performances of nuclear electronic devices under random inputs, a random generator is necessary. Types of random pulse generator are reviewed, 2 digital random pulse generators are introduced. (authors)

  9. Fiber Optical Parametric Chirped Pulse Amplification of Sub-Picosecond Pulses

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Da Ros, Francesco

    2013-01-01

    We demonstrate experimentally, for the first time to our knowledge, fiber optical parametric chirped pulse amplification of 400-fs pulses. The 400-fs signal is stretched, amplified by 26 dB and compressed back to 500 fs.......We demonstrate experimentally, for the first time to our knowledge, fiber optical parametric chirped pulse amplification of 400-fs pulses. The 400-fs signal is stretched, amplified by 26 dB and compressed back to 500 fs....

  10. Effects of pulse duration on magnetostimulation thresholds

    Energy Technology Data Exchange (ETDEWEB)

    Saritas, Emine U., E-mail: saritas@ee.bilkent.edu.tr [Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720-1762 (United States); Department of Electrical and Electronics Engineering, Bilkent University, Bilkent, Ankara 06800 (Turkey); National Magnetic Resonance Research Center (UMRAM), Bilkent University, Bilkent, Ankara 06800 (Turkey); Goodwill, Patrick W. [Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720-1762 (United States); Conolly, Steven M. [Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720-1762 (United States); Department of EECS, University of California, Berkeley, California 94720-1762 (United States)

    2015-06-15

    Purpose: Medical imaging techniques such as magnetic resonance imaging and magnetic particle imaging (MPI) utilize time-varying magnetic fields that are subject to magnetostimulation limits, which often limit the speed of the imaging process. Various human-subject experiments have studied the amplitude and frequency dependence of these thresholds for gradient or homogeneous magnetic fields. Another contributing factor was shown to be number of cycles in a magnetic pulse, where the thresholds decreased with longer pulses. The latter result was demonstrated on two subjects only, at a single frequency of 1.27 kHz. Hence, whether the observed effect was due to the number of cycles or due to the pulse duration was not specified. In addition, a gradient-type field was utilized; hence, whether the same phenomenon applies to homogeneous magnetic fields remained unknown. Here, the authors investigate the pulse duration dependence of magnetostimulation limits for a 20-fold range of frequencies using homogeneous magnetic fields, such as the ones used for the drive field in MPI. Methods: Magnetostimulation thresholds were measured in the arms of six healthy subjects (age: 27 ± 5 yr). Each experiment comprised testing the thresholds at eight different pulse durations between 2 and 125 ms at a single frequency, which took approximately 30–40 min/subject. A total of 34 experiments were performed at three different frequencies: 1.2, 5.7, and 25.5 kHz. A solenoid coil providing homogeneous magnetic field was used to induce stimulation, and the field amplitude was measured in real time. A pre-emphasis based pulse shaping method was employed to accurately control the pulse durations. Subjects reported stimulation via a mouse click whenever they felt a twitching/tingling sensation. A sigmoid function was fitted to the subject responses to find the threshold at a specific frequency and duration, and the whole procedure was repeated at all relevant frequencies and pulse durations

  11. Femtosecond and Subfemtosecond X-Ray Pulses from a SASE Based Free-Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    Emma, P

    2004-03-10

    We propose a novel method to generate femtosecond and sub-femtosecond photon pulses in a free electron laser by selectively spoiling the transverse emittance of the electron beam. Its merits are simplicity and ease of implementation. When the system is applied to the Linac Coherent Light Source, it can provide x-ray pulses the order of 1 femtosecond in duration containing about 1010 transversely coherent photons.

  12. Generation of Attosecond X-Ray Pulse through Coherent Relativistic Nonlinear Thomson Scattering

    CERN Document Server

    Lee, K; Jeong, Y U; Lee, B C; Park, S H

    2005-01-01

    In contrast to some recent experimental results, which state that the Nonlinear Thomson Scattered (NTS) radiation is incoherent, a coherent condition under which the scattered radiation of an incident laser pulse by a bunch of electrons can be coherently superposed has been investigated. The Coherent Relativistic Nonlinear Thomson Scattered (C-RNTS) radiation makes it possible utilizing the ultra-short pulse nature of NTS radiation with a bunch of electrons, such as plasma or electron beams. A numerical simulation shows that a 25 attosecond X-ray pulse can be generated by irradiating an ultra-intense laser pulse of 4x10(19) W/cm2 on an ultra-thin solid target of 50 nm thickness, which is commercially available. The coherent condition can be easily extended to an electron beam from accelerators. Different from the solid target, much narrower electron beam is required for the generation of an attosecond pulse. Instead, this condition could be applied for the generation of intense Compton scattered X-rays with a...

  13. Heat pulse excitability of vestibular hair cells and afferent neurons.

    Science.gov (United States)

    Rabbitt, Richard D; Brichta, Alan M; Tabatabaee, Hessam; Boutros, Peter J; Ahn, JoongHo; Della Santina, Charles C; Poppi, Lauren A; Lim, Rebecca

    2016-08-01

    In the present study we combined electrophysiology with optical heat pulse stimuli to examine thermodynamics of membrane electrical excitability in mammalian vestibular hair cells and afferent neurons. We recorded whole cell currents in mammalian type II vestibular hair cells using an excised preparation (mouse) and action potentials (APs) in afferent neurons in vivo (chinchilla) in response to optical heat pulses applied to the crista (ΔT ≈ 0.25°C per pulse). Afferent spike trains evoked by heat pulse stimuli were diverse and included asynchronous inhibition, asynchronous excitation, and/or phase-locked APs synchronized to each infrared heat pulse. Thermal responses of membrane currents responsible for APs in ganglion neurons were strictly excitatory, with Q10 ≈ 2. In contrast, hair cells responded with a mix of excitatory and inhibitory currents. Excitatory hair cell membrane currents included a thermoelectric capacitive current proportional to the rate of temperature rise (dT/dt) and an inward conduction current driven by ΔT An iberiotoxin-sensitive inhibitory conduction current was also evoked by ΔT, rising in protein biophysics and manipulate cellular excitability. Copyright © 2016 the American Physiological Society.

  14. The shaped pulses control and operation on the SG-III prototype facility

    Science.gov (United States)

    Ping, Li; Wei, Wang; Sai, Jin; Wanqing, Huang; Wenyi, Wang; Jingqin, Su; Runchang, Zhao

    2018-04-01

    The laser driven inertial confined fusion experiments require careful temporal shape control of the laser pulse. Two approaches are introduced to improve the accuracy and efficiency of the close loop feedback system for long term operation in TIL; the first one is a statistical model to analyze the variation of the parameters obtained from previous shots, the other is a matrix algorithm proposed to relate the electrical signal and the impulse amplitudes. With the model and algorithm applied in the pulse shaping in TIL, a variety of shaped pulses were produced with a 10% precision in half an hour for almost three years under different circumstance.

  15. Pulsed EPR studies of small reactive radicals produced by ionizing radiation

    International Nuclear Information System (INIS)

    Lawler, R.G.

    1985-01-01

    For several years we have participated in a collaborative research effort to apply the pulsed EPR-pulse radiolysis technique to several problems associated with the dynamics of small reactive radicals formed during radiolysis of aqueous solutions using 3 MeV electrons from a Van de Graaff accelerator. We will discuss experimental techniques and applications arising from this work, with particular emphasis on problems requiring high initial radical concentrations and EPR time resolution of one microsecond or better. 2 figs., 2 tabs

  16. Modeling associations between latent event processes governing time series of pulsing hormones.

    Science.gov (United States)

    Liu, Huayu; Carlson, Nichole E; Grunwald, Gary K; Polotsky, Alex J

    2017-10-31

    This work is motivated by a desire to quantify relationships between two time series of pulsing hormone concentrations. The locations of pulses are not directly observed and may be considered latent event processes. The latent event processes of pulsing hormones are often associated. It is this joint relationship we model. Current approaches to jointly modeling pulsing hormone data generally assume that a pulse in one hormone is coupled with a pulse in another hormone (one-to-one association). However, pulse coupling is often imperfect. Existing joint models are not flexible enough for imperfect systems. In this article, we develop a more flexible class of pulse association models that incorporate parameters quantifying imperfect pulse associations. We propose a novel use of the Cox process model as a model of how pulse events co-occur in time. We embed the Cox process model into a hormone concentration model. Hormone concentration is the observed data. Spatial birth and death Markov chain Monte Carlo is used for estimation. Simulations show the joint model works well for quantifying both perfect and imperfect associations and offers estimation improvements over single hormone analyses. We apply this model to luteinizing hormone (LH) and follicle stimulating hormone (FSH), two reproductive hormones. Use of our joint model results in an ability to investigate novel hypotheses regarding associations between LH and FSH secretion in obese and non-obese women. © 2017, The International Biometric Society.

  17. Pulse-to-pulse variations in accreting X-ray pulsars

    Directory of Open Access Journals (Sweden)

    Kretschmar Peter

    2014-01-01

    Full Text Available In most accreting X-ray pulsars, the periodic signal is very clear and easily shows up as soon as data covering sufficient pulse periods (a few ten are available. The mean pulse profile is often quite typical for a given source and with minor variations repeated and recognisable across observations done years or even decades apart. At the time scale of individual pulses, significant pulse-to-pulse variations are commonly observed. While at low energies some of these variations might be explained by absorption, in the hard X-rays they will reflect changes in the accretion and subsequent emission. The amount of these variations appears to be quite different between sources and contains information about the surrounding material as well ass possibly interactions at the magnetosphere. We investigate such variations for a sample of well-known sources.

  18. Direct Patterning of Oxides by Pulsed Laser Stencil Deposition

    NARCIS (Netherlands)

    te Riele, P.M.

    2008-01-01

    This thesis describes a detailed study of the application of stencil technology in the patterning of epitaxial oxide thin films by pulsed laser deposition (PLD). Stencil patterning has been applied in thin film sub-micron patterning of metals successfully for decades since it has several advantages

  19. Formation of low time-bandwidth product, single-sided exponential optical pulses in free-electron laser oscillators

    NARCIS (Netherlands)

    MacLeod, A. M.; Yan, X.; Gillespie, W. A.; Knippels, G.M.H.; Oepts, D.; van der Meer, A. F. G.; Rella, C. W.; Smith, T. J.; Schwettman, H. A.

    2000-01-01

    The detailed shape of picosecond optical pulses from a free-electron laser (FEL) oscillator has been studied for various cavity detunings. For large values of the cavity detuning the optical pulse develops an exponential leading edge, with a time constant proportional to the applied cavity detuning

  20. Distortions in frequency spectra of signals associated with sampling-pulse shapes

    International Nuclear Information System (INIS)

    Njau, E.C.

    1983-04-01

    A method developed earlier by the author [IC/82/44; IC/82/45] is used to investigate distortions introduced into frequency spectra of signals by the shapes of the sampling pulses involved. Conditions are established under which the use of trapezoid or exponentially-edged pulses to digitize signals can make the frequency spectra of the resultant data samples devoid of the main features of the signals. This observation does not, however, apply in any way to cosinusoidally-edged pulses or to pulses with cosine-squared edges. Since parts of the Earth's surface and atmosphere receive direct solar energy in discrete samples (i.e. only from sunrise to sunset) we have extended the technique and attempted to develop a theory that explains the observed solar terrestrial relationships. A very good agreement is obtained between the theory and previous long-term and short-term observations. (author)

  1. Deposition of diamond-like carbon films by plasma source ion implantation with superposed pulse

    International Nuclear Information System (INIS)

    Baba, K.; Hatada, R.

    2003-01-01

    Diamond-like carbon (DLC) films were prepared on silicon wafer substrate by plasma source ion implantation with superposed negative pulse. Methane and acetylene gases were used as working gases for plasma. A negative DC voltage and a negative pulse voltage were superposed and applied to the substrate holder. The DC voltage was changed in the range from 0 to -4 kV and the pulse voltage was changed from 0 to -18 kV. The surface of DLC films was very smooth. The deposition rate of DLC films increased with increasing in superposed DC bias voltage. Carbon ion implantation was confirmed for the DLC film deposited from methane plasma with high pulse voltage. I D /I G ratios of Raman spectroscopy were around 1.5 independent on pulse voltage. The maximum hardness of 20.3 GPa was observed for the film prepared with high DC and high pulse voltage

  2. Pulse to pulse klystron diagnosis system

    International Nuclear Information System (INIS)

    Nowak, J.; Davidson, V.; Genova, L.; Johnson, R.; Reagan, D.

    1981-03-01

    This report describes a system used to study the behavior of SLAC high powered klystrons operating with a twice normal pulse width of 5 μs. At present, up to eight of the klystrons installed along the accelerator can be operated with long pulses and monitored by this system. The report will also discuss some of the recent findings and investigations

  3. Decomposition of methane to hydrogen using nanosecond pulsed plasma reactor with different active volumes, voltages and frequencies

    International Nuclear Information System (INIS)

    Khalifeh, Omid; Mosallanejad, Amin; Taghvaei, Hamed; Rahimpour, Mohammad Reza; Shariati, Alireza

    2016-01-01

    Highlights: • CH 4 conversion into H 2 is investigated in a nanosecond pulsed DBD reactor. • The absence of CO and CO 2 in the product gas is highly favorable. • Effects of external electrode length, applied voltage and frequency are examined. • The maximum efficiency of 7.23% is achieved at the electrode length of 15 cm. • The maximum CH 4 conversion of 87.2% is obtained at discharge power 268.92 W. - Abstract: In this paper, the methane conversion into hydrogen is investigated experimentally in a nanosecond pulsed DBD reactor. In order to achieve pure hydrogen production with minimum power consumption, effects of some operating parameters including external electrode length, applied voltage and pulse repetition frequency have been evaluated. Results show that although higher CH 4 conversion and H 2 concentration can be obtained at longer electrode lengths, higher applied voltages and pulse repetition frequencies, these parameters should be optimized for efficient hydrogen production. Actually, the maximum CH 4 conversion of 87.2% and maximum hydrogen percentage of 80% are obtained at the external electrode length, discharge power, voltage and frequency of 15 cm, 268.92 W, 12 kV and 10 kHz, respectively. However, the maximum efficiency of 7.23% is achieved at the external electrode length of 15 cm, applied voltage of 6 kV, pulse repetition frequency of 0.9 kHz and discharge power of 4 W. Furthermore, at this condition, due to low temperature of discharge zone very little amount of solid carbon was observed on the inner electrode surface of the reactor.

  4. Efficient chirped-pulse amplification of sub-20 fs laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Shinichi; Yamakawa, Koichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    We have developed a model for ultrabroadband and ultrashort pulse amplification including the effects of a pulse shaper for regenerative pulse shaping, gain narrowing and gain saturation in the amplifiers. Thin solid etalons are used to control both gain narrowing and gain saturation during amplification. This model has been used to design an optimized Ti:sapphire amplifier system for producing efficiently pulses of < 20-fs duration with approaching peak and average powers of 100 TW and 20 W. (author)

  5. Pulsed Laser Annealing of Thin Films of Self-Assembled Nanocrystals

    KAUST Repository

    Baumgardner, William J.

    2011-09-27

    We investigated how pulsed laser annealing can be applied to process thin films of colloidal nanocrystals (NCs) into interconnected nanostructures. We illustrate the relationship between incident laser fluence and changes in morphology of PbSe NC films relative to bulk-like PbSe films. We found that laser pulse fluences in the range of 30 to 200 mJ/cm2 create a processing window of opportunity where the NC film morphology goes through interesting transformations without large-scale coalescence of the NCs. NC coalescence can be mitigated by depositing a thin film of amorphous silicon (a-Si) on the NC film. Remarkably, pulsed laser annealing of the a-Si/PbSe NC films crystallized the silicon while NC morphology and translational order of the NC film are preserved. © 2011 American Chemical Society.

  6. Selective photoionization of isotopic atoms with pulsed lasers

    International Nuclear Information System (INIS)

    Dai Changjian

    1994-01-01

    The dynamics of isotopically selective interactions between the radiation of three pulsed lasers and atoms with a four-levels scheme has been studied. Starting from the time-dependent Schroedinger equation with the rotating-wave approximation, authors applied Sylvester theorem to the dynamic equations associated with near-and off-resonant excitations, respectively. Authors obtained the explicit expressions for the four-levels occupation probabilities. The analytic treatment explored the properties of coherent oscillations occurred in the atomic excitation processes with intense monochromatic lasers. The conditions under which the population inversion takes place are derived from near-resonant excitations. The criteria to select the basic parameters of pulsed lasers involved in the process are also provided

  7. Robust quantum gates between trapped ions using shaped pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Ping, E-mail: zouping@m.scnu.edu.cn; Zhang, Zhi-Ming, E-mail: zmzhang@scnu.edu.cn

    2015-12-18

    We improve two existing entangling gate schemes between trapped ion qubits immersed in a large linear crystal. Based on the existing two-qubit gate schemes by applying segmented forces on the individually addressed qubits, we present a systematic method to optimize the shapes of the forces to suppress the dominant source of infidelity. The spin-dependent forces in the scheme can be from periodic photon kicks or from continuous optical pulses. The entangling gates are fast, robust, and have high fidelity. They can be used to implement scalable quantum computation and quantum simulation. - Highlights: • We present a systematic method to optimize the shape of the pulses to decouple qubits from intermediary motional modes. • Our optimized scheme can be applied to both the ultrafast gate and fast gate. • Our optimized scheme can suppress the dominant source of infidelity to arbitrary order. • When the number of trapped ions increase, the number of needed segments increases slowly.

  8. Patterns of digital volume pulse waveform and pulse transit time in ...

    African Journals Online (AJOL)

    In this study the digital volume pulse wave and the pulse transit time of the thumb and big toe were analyzed in young and older subjects some of whom were hypertensive. We aimed to study the components and patterns of the pulse waveform and the pulse transit time and how they might change. Material and Methods: ...

  9. Characterization of Pulse Reverses Electroforming on Hard Gold Coating.

    Science.gov (United States)

    Byoun, Young-Min; Noh, Young-Tai; Kim, Young-Geun; Ma, Seung-Hwan; Kim, Gwan-Hoon

    2018-03-01

    Effect of pulse reverse current (PRC) method on brass coatings electroplated from gold solution was investigated by various plating parameters such as plating duration, the anodic duty cycle, the anodic current density and the cathodic current density. The reversed current results in a significant change in the morphology of electrodeposits, improvement of the overall current efficiency and reduction of deposit porosity. With longer pulses, hemispherical surface features are generated, while larger grains result from shorter pulse widths. The porosity of the plated samples is found to decrease compared with results at the same time-average plating rate obtained from DC or Pulse plating. A major impediment to reducing gold later thickness is the corrosion of the underlying substrate, which is affected by the porosity of the gold layer. Both the morphology and the hydrogen evolution reaction have significant impact on porosity. PRC plating affect hydrogen gold and may oxidize hydrogen produced during the cathodic portion of the waveform. Whether the dissolution of gold and oxidation of hydrogen occur depends on the type of plating bath and the plating conditions adapted. In reversed pulse plating, the amount of excess near-surface cyanide is changed after the cathodic current is applied, and the oxidation of gold under these conditions has not been fully addressed. The effects of the current density, pulse-reverse ratio and brightener concentration of the electroplating process were investigated and optimized for suitable performance.

  10. The use of logarithmic pulse height and energy scales in organic scintillator spectroscopy

    International Nuclear Information System (INIS)

    Whittlestone, S.

    1980-01-01

    The use of logarithmic pulse height and energy scales is advantageous for organic for organic scintillator neutron spectroscopy, providing an expanded dynamic range and economy of computer usage. An experimental logarithmic pulse height analysis system is shown to be feasible. A pulse height spectrum from a neutron measurement has been analysed using linear and logarithmic scales; the latter reduced the computer storage requirements by a factor of 13 and analysis time by 8.7, and there was no degradation of the analysed spectrum. Most of the arguments favouring use of logarithmic scales apply equally well to other types of scintillation spectroscopy. (orig.)

  11. Attempts to use pulsed light as an emerging technology for inactivation of mould naturally present on rye

    Directory of Open Access Journals (Sweden)

    NICOLETA ARON MAFTEI

    2011-12-01

    Full Text Available Pulsed light technology was used to inactivate moulds, naturally present on rye. The experiments were performed on samples containing 3.5·104 CFU/g and 4.3·103 CFU/g. Treatments of different duration (5, 10, 15, 20, 30, and 40 pulses at intensity of 0.4 J·cm-2 per pulse were applied and mould inactivation was evaluated. Besides confirming the utilisation of pulsed light as decontamination method for cereals, this work contributes with new information regarding the effects of the spectral range of pulsed light, proving that the whole UV range of the spectrum accounts for the lethal effect against moulds. This research supports pulsed light as emerging technology in food preservation.

  12. Nuclear quadrupole resonance applied for arsenic oxide study

    International Nuclear Information System (INIS)

    Correia, J.A.S.

    1991-04-01

    The objectives of this study are mounting a pulsed Nuclear Quadrupole Resonance (NQR) building a flow cryostat capable of varying the temperature continuously from 77 K to 340 K and using the spectrometer and the cryostat to study the polycrystalline arsenic oxide. The spin-lattice relaxation time (T 1 ), the spin-spin relaxation time (T 2 ) and the resonance frequency are obtained as a function of temperature. These data are obtained in 77 to 330 K interval. The relaxation times are obtained using the spin echo technique. The spin echo phenomenon is due to refocusing spins, when a 180 0 C pulse is applied after a 90 0 C pulse. The spin-lattice relaxation time is obtained using the plot of echo amplitude versus the repetition time. The spin-spin relaxation time is obtained using the plot of echo amplitude versus the separation between the 90 0 C - 180 0 C pulses. The theory developed by Bayer is used to explain the spin-lattice relaxation time and the frequency temperature dependence. The spin-spin relaxation time is discussed using the Bloch equations. (author)

  13. Efficient activation of T cells by human monocyte-derived dendritic cells (HMDCs pulsed with Coxiella burnetii outer membrane protein Com1 but not by HspB-pulsed HMDCs

    Directory of Open Access Journals (Sweden)

    Wang Xile

    2011-09-01

    Full Text Available Abstract Background Coxiella burnetii is an obligate intracellular bacterium and the etiologic agent of Q fever; both coxiella outer membrane protein 1 (Com1 and heat shock protein B (HspB are its major immunodominant antigens. It is not clear whether Com1 and HspB have the ability to mount immune responses against C. burnetii infection. Results The recombinant proteins Com1 and HspB were applied to pulse human monocyte-derived dendritic cells (HMDCs, and the pulsed HMDCs were used to stimulate isogenic T cells. Com1-pulsed HMDCs expressed substantially higher levels of surface molecules (CD83, CD40, CD80, CD86, CD54, and CD58 and a higher level of interleukin-12 than HspB-pulsed HMDCs. Moreover, Com1-pulsed HMDCs induced high-level proliferation and activation of CD4+ and CD8+ cells, which expressed high levels of T-cell activation marker CD69 and inflammatory cytokines IFN-γ and TNF-α. In contrast, HspB-pulsed HMDCs were unable to induce efficient T-cell proliferation and activation. Conclusions Our results demonstrate that Com1-pulsed HMDCs are able to induce efficient T-cell proliferation and drive T cells toward Th1 and Tc1 polarization; however, HspB-pulsed HMDCs are unable to do so. Unlike HspB, Com1 is a protective antigen, which was demonstrated by the adoptive transfer of Com1-pulsed bone marrow dendritic cells into naive BALB/c mice.

  14. A 350 KV nanosecond pulse voltage generator with adjustable pulsed-width

    International Nuclear Information System (INIS)

    Wang, X.; Wang, M.; Chen, Y.Q.; Zeng, L.G.; Han, M.

    2002-01-01

    This paper presents a 350 kV nanosecond pulse voltage generator (NPVG). The voltage pulsed-width can be adjusted from 30 to 160 ns. The generator consists of: Marx generator, pulsed forming line (PFL), main switch and matched impedance. The output voltage of Marx generator is over than nU c (n- the stage number of Marx generator, U c -the charging voltage of capacitor). When the pulse forming line is terminated with an impedance that is over than the characteristic impedance of PFL, the higher voltage pulse was provided for the load

  15. The application of thermoluminescence dosimeter on the measurement of hard X-ray pulse energy spectrum

    International Nuclear Information System (INIS)

    Song Zhaohui; Wang Baohui; Wang Kuilu; Hei Dongwei; Sun Fengrong; Li Gang

    2001-01-01

    This paper introduce the application of thermoluminescence dosimeter (TLD) which composed by TLD-3500 Reader and TLD-100M chips on the measurement of hard X-ray pulse energy spectrum. The idea, using Filter Fluorescence Method (FFM) and TLD to measure hard X-ray pulse energy spectrum (from 10 keV to 100 keV), is discussed in details. Considering all the factors of the measuring surroundings, the measurement system of hard X-ray pulse has been devised. The calibration technique of absolute energy response of TLD is established. This method has been applied successfully on the radiation parameters measurement of the huge pulse radiation device -high-power pulser I. Hard X-ray pulse energy spectrum data of the pulser are acquired

  16. The Design of Nanosecond Fast-switch Pulsed High Voltage Power Supply Based on Solid-state

    International Nuclear Information System (INIS)

    Chen Wenguang; Chen Wei; Rao Yihua

    2009-01-01

    The high voltage pulsed power supply is applied in the experiment of the nuclear science widely. It main consist of DC high-voltage power supply (HVPS) and pulse modulator. The high-frequency series-resonant inverter technology and IGBT series technology are used to design the HVPS and the modulator, respectively. The main circuit, control circuit, high voltage transformer and solid-state switch are illuminated in the paper. The apparatus can operate at a maximum output voltage of 6 kilovolt, which can be modulated single pulse and also be modulated by series pulse. A prototype is fabricated and tested, experimental results show that the pulsed power supply is well-designed and rising edge time to meet the nsclass; it can achieve the requirement of rapid modulation. (authors)

  17. An Efficient Digital Pulse Shape Discrimination Technique for Scintillation Detectors Based on FPGA

    International Nuclear Information System (INIS)

    Kamel, M.S.

    2014-01-01

    Different techniques for pulse discrimination (PSD) of the scintillation pulses have been developed. The PSD of scintillation pulese can been used in several applications as Positron Emission Topography (PET) system. Each technique analyzes the resulting pulses from the absorption of radiation in the scintillation pulses were filtered and digitized then it is captured using DAQ, and it sent to the host computer for processing. The spatial resolution of images that generated in PET system can be improved by applying the proposed PSD. In this thesis various digital PSD techniques are proposed to discriminate the scintillation pulses. These techniques are based on discrete sine transform (DST). discrete cosine transform (DCT). Discrete hartley transform (DHT), Discrete Goertzel transform (DGT),and principal component analysis (PCA). Then the output coefficients of the discrete transforms are classified using one of the following classifiers T-test,tuned, or support vector machine (SVM).

  18. Investigation of the interaction dynamics of a pair of laser-induced bubbles generated at the same time through double-exposure strobe method and numerical simulations

    Science.gov (United States)

    Han, Bing; Liu, Liu; Ni, Xiao-Wu

    2017-08-01

    In order to understand the interaction dynamics of a pair of laser-induced bubbles, a double-exposure strobe photography experimental setup is build up to study the temporal evolution of the bubble pairs and to measure the transient bubble-interface moving speed. The interaction mechanisms of the bubble pairs are discussed together with the numerical results obtained through OpenFOAM. It is shown that the direction and the velocity of the jetting could be controlled by the relative size and the relative initiation distance of the bubble pair, when the bubbles are generated at the same time, i.e., in-phase. The liquid jet is considered to be a penetrating jet. The jet is originated from the smaller bubble and clearly protruding outside of the bigger bubble. The parameter space of the relative size and the initiation distance of the bubble pair allowing the formation of the penetrating jet are very narrow. It is concluded that the liquid jet induced by the bubble interactions resulted from the collapse and the rebound of the smaller bubble nearby the bigger bubble. This is defined as the "catapult effect." Such a directional liquid transportation is a promising tool as a micro-injector or a micro-pump. The investigation results could be also supplementary to the understandings of the bubble dynamics.

  19. Nanosecond electric pulses differentially affect inward and outward currents in patch clamped adrenal chromaffin cells.

    Directory of Open Access Journals (Sweden)

    Lisha Yang

    Full Text Available This study examined the effect of 5 ns electric pulses on macroscopic ionic currents in whole-cell voltage-clamped adrenal chromaffin cells. Current-voltage (I-V relationships first established that the early peak inward current was primarily composed of a fast voltage-dependent Na+ current (INa, whereas the late outward current was composed of at least three ionic currents: a voltage-gated Ca2+ current (ICa, a Ca2+-activated K+ current (IK(Ca, and a sustained voltage-dependent delayed rectifier K+ current (IKV. A constant-voltage step protocol was next used to monitor peak inward and late outward currents before and after cell exposure to a 5 ns pulse. A single pulse applied at an electric (E-field amplitude of 5 MV/m resulted in an instantaneous decrease of ~4% in peak INa that then declined exponentially to a level that was ~85% of the initial level after 10 min. Increasing the E-field amplitude to 8 or 10 MV/m caused a twofold greater inhibitory effect on peak INa. The decrease in INa was not due to a change in either the steady-state inactivation or activation of the Na+ channel but instead was associated with a decrease in maximal Na+ conductance. Late outward current was not affected by a pulse applied at 5 MV/m. However, for a pulse applied at the higher E-field amplitudes of 8 and 10 MV/m, late outward current in some cells underwent a progressive ~22% decline over the course of the first 20 s following pulse exposure, with no further decline. The effect was most likely concentrated on ICa and IK(Ca as IKV was not affected. The results of this study indicate that in whole-cell patch clamped adrenal chromaffin cells, a 5 ns pulse differentially inhibits specific voltage-gated ionic currents in a manner that can be manipulated by tuning E-field amplitude.

  20. Nuclear magnetic resonance in pulse radiolysis. Chemically induced dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Trifunac, A.D.; Johnson, K.W.; Lowers, R.H.

    1976-01-01

    Nuclear magnetic resonance and chemically induced dynamic nuclear polarization (CIDNP) were applied to the study of pulse radiolysis. Samples were irradiated with a 3-MeV electron beam from the Argonne Van de Graaff accelerator in an EPR magnet (approximately 4000 G) which had axial holes for beam access. A fast flow system transferred the irradiated solution to the rotating 5-mm NMR sample tube. The NMR spectra of mixtures of sodium acetate and methanol were presented to demonstrate the features of the CIDNP in pulse radiolysis

  1. Statistical assessment of fish behavior from split-beam hydro-acoustic sampling

    International Nuclear Information System (INIS)

    McKinstry, Craig A.; Simmons, Mary Ann; Simmons, Carver S.; Johnson, Robert L.

    2005-01-01

    Statistical methods are presented for using echo-traces from split-beam hydro-acoustic sampling to assess fish behavior in response to a stimulus. The data presented are from a study designed to assess the response of free-ranging, lake-resident fish, primarily kokanee (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) to high intensity strobe lights, and was conducted at Grand Coulee Dam on the Columbia River in Northern Washington State. The lights were deployed immediately upstream from the turbine intakes, in a region exposed to daily alternating periods of high and low flows. The study design included five down-looking split-beam transducers positioned in a line at incremental distances upstream from the strobe lights, and treatments applied in randomized pseudo-replicate blocks. Statistical methods included the use of odds-ratios from fitted loglinear models. Fish-track velocity vectors were modeled using circular probability distributions. Both analyses are depicted graphically. Study results suggest large increases of fish activity in the presence of the strobe lights, most notably at night and during periods of low flow. The lights also induced notable bimodality in the angular distributions of the fish track velocity vectors. Statistical/SUMmaries are presented along with interpretations on fish behavior

  2. Pulsed homodyne Gaussian quantum tomography with low detection efficiency

    Science.gov (United States)

    Esposito, M.; Benatti, F.; Floreanini, R.; Olivares, S.; Randi, F.; Titimbo, K.; Pividori, M.; Novelli, F.; Cilento, F.; Parmigiani, F.; Fausti, D.

    2014-04-01

    Pulsed homodyne quantum tomography usually requires a high detection efficiency, limiting its applicability in quantum optics. Here, it is shown that the presence of low detection efficiency (<50%) does not prevent the tomographic reconstruction of quantum states of light, specifically, of Gaussian states. This result is obtained by applying the so-called ‘minimax’ adaptive reconstruction of the Wigner function to pulsed homodyne detection. In particular, we prove, by both numerical and real experiments, that an effective discrimination of different Gaussian quantum states can be achieved. Our finding paves the way to a more extensive use of quantum tomographic methods, even in physical situations in which high detection efficiency is unattainable.

  3. Pulsed homodyne Gaussian quantum tomography with low detection efficiency

    International Nuclear Information System (INIS)

    Esposito, M; Benatti, F; Randi, F; Titimbo, K; Pividori, M; Parmigiani, F; Fausti, D; Floreanini, R; Olivares, S; Novelli, F; Cilento, F

    2014-01-01

    Pulsed homodyne quantum tomography usually requires a high detection efficiency, limiting its applicability in quantum optics. Here, it is shown that the presence of low detection efficiency (<50) does not prevent the tomographic reconstruction of quantum states of light, specifically, of Gaussian states. This result is obtained by applying the so-called ‘minimax’ adaptive reconstruction of the Wigner function to pulsed homodyne detection. In particular, we prove, by both numerical and real experiments, that an effective discrimination of different Gaussian quantum states can be achieved. Our finding paves the way to a more extensive use of quantum tomographic methods, even in physical situations in which high detection efficiency is unattainable

  4. Control of trapped-ion quantum states with optical pulses

    International Nuclear Information System (INIS)

    Rangan, C.; Monroe, C.; Bucksbaum, P.H.; Bloch, A.M.

    2004-01-01

    We present new results on the quantum control of systems with infinitely large Hilbert spaces. A control-theoretic analysis of the control of trapped-ion quantum states via optical pulses is performed. We demonstrate how resonant bichromatic fields can be applied in two contrasting ways--one that makes the system completely uncontrollable and the other that makes the system controllable. In some interesting cases, the Hilbert space of the qubit-harmonic oscillator can be made finite, and the Schroedinger equation controllable via bichromatic resonant pulses. Extending this analysis to the quantum states of two ions, a new scheme for producing entangled qubits is discovered

  5. Pulsed-laser polymerization in compartmentalized liquids. 1. Polymerization in vesicles

    NARCIS (Netherlands)

    Jung, M.; Casteren, van I.A.; Monteiro, M.J.; Herk, van A.M.; German, A.L.

    2000-01-01

    Polymerization in vesicles is a novel type of polymerization in heterogeneous media, leading to parachute-like vesicle-polymer hybrid morphologies. To explore the kinetics of vesicle polymerizations and to learn more about the actual locus of polymerization we applied the pulsed-laser polymerization

  6. A novel method of calculating the energy deposition curve of nanosecond pulsed surface dielectric barrier discharge

    International Nuclear Information System (INIS)

    He, Kun; Wang, Xinying; Lu, Jiayu; Cui, Quansheng; Pang, Lei; Di, Dongxu; Zhang, Qiaogen

    2015-01-01

    To obtain the energy deposition curve is very important in the fields to which nanosecond pulse dielectric barrier discharges (NPDBDs) are applied. It helps the understanding of the discharge physics and fast gas heating. In this paper, an equivalent circuit model, composed of three capacitances, is introduced and a method of calculating the energy deposition curve is proposed for a nanosecond pulse surface dielectric barrier discharge (NPSDBD) plasma actuator. The capacitance C d and the energy deposition curve E R are determined by mathematically proving that the mapping from C d to E R is bijective and numerically searching one C d that satisfies the requirement for E R to be a monotonically non-decreasing function. It is found that the value of capacitance C d varies with the amplitude of applied pulse voltage due to the change of discharge area and is dependent on the polarity of applied voltage. The bijectiveness of the mapping from C d to E R in nanosecond pulse volumetric dielectric barrier discharge (NPVDBD) is demonstrated and the feasibility of the application of the new method to NPVDBD is validated. This preliminarily shows a high possibility of developing a unified approach to calculate the energy deposition curve in NPDBD. (paper)

  7. Optical pulse compression

    International Nuclear Information System (INIS)

    Glass, A.J.

    1975-01-01

    The interest in using large lasers to achieve a very short and intense pulse for generating fusion plasma has provided a strong impetus to reexamine the possibilities of optical pulse compression at high energy. Pulse compression allows one to generate pulses of long duration (minimizing damage problems) and subsequently compress optical pulses to achieve the short pulse duration required for specific applications. The ideal device for carrying out this program has not been developed. Of the two approaches considered, the Gires--Tournois approach is limited by the fact that the bandwidth and compression are intimately related, so that the group delay dispersion times the square of the bandwidth is about unity for all simple Gires--Tournois interferometers. The Treacy grating pair does not suffer from this limitation, but is inefficient because diffraction generally occurs in several orders and is limited by the problem of optical damage to the grating surfaces themselves. Nonlinear and parametric processes were explored. Some pulse compression was achieved by these techniques; however, they are generally difficult to control and are not very efficient. (U.S.)

  8. Light storage in a doped solid enhanced by feedback-controlled pulse shaping

    International Nuclear Information System (INIS)

    Beil, F.; Buschbeck, M.; Heinze, G.; Halfmann, T.

    2010-01-01

    We report on experiments dealing with feedback-controlled pulse shaping to optimize the efficiency of light storage by electromagnetically induced transparency (EIT) in a Pr 3+ :Y 2 SiO 5 crystal. A learning loop in combination with an evolutionary algorithm permits the automatic determination of optimal temporal profiles of intensities and frequencies in the driving laser pulses (i.e., the probe and coupling pulses). As a main advantage, the technique finds optimal solutions even in the complicated multilevel excitation scheme of a doped solid, involving large inhomogeneous broadening. The learning loop experimentally determines optimal temporal intensity profiles of the coupling pulses for a given probe pulse. The optimized intensity pulse shapes enhance the light-storage efficiency in the doped solid by a factor of 2. The learning loop also determines a fast and efficient preparation pulse sequence, which serves to optically prepare the crystal prior to light-storage experiments. The optimized preparation sequence is 5 times faster than standard preparation sequences. Moreover, the optimized preparation sequence enhances the optical depth in the medium by a factor of 5. As a consequence, the efficiency of light storage also increases by another factor of 3. Our experimental data clearly demonstrate the considerable potential of feedback-controlled pulse shaping, applied to EIT-driven light storage in solid media.

  9. Comparison of different applied voltage waveforms on CO{sub 2} reforming of CH{sub 4} in an atmospheric plasma system

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Duc Ba; Lee, Won Gyu [Kangwon National University, Chuncheon (Korea, Republic of)

    2015-01-15

    Sinusoidal and pulse waveforms of applied voltage were employed for CO{sub 2} reforming of CH{sub 4} to syngas in an atmospheric dielectric barrier discharge reactor. The discharge power of a pulse waveform was higher than that of sinusoidal waveform at the same applied voltage. The plasma reaction by a pulse waveform enhanced the conversion of CO{sub 2} and CH{sub 4} and the selectivity of H{sub 2} and CO. It was confirmed that CO{sub 2} reforming of CH{sub 4} can be improved by the adaption of pulse-type power supply in a dielectric barrier discharge reactor immersed in an electrically insulating oil bath.

  10. Pulse induction heating

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, A S; Kachanov, B Y; Kogan, B V

    1993-12-31

    Induction heating and three types of pulse processes were studied. It was found that in pulse processes the frequency and pulse duration of heat treatments do not remain constant. High frequency pulse heat treatments can be used on sprayed coatings; such treatments will result in stronger surfaces with no cracks. For induction hardening, the rate of specific power was 1 to 1.5 kW/sq.cm, for forging it was 0.2 to 0.3 kW/sq.cm and for melting it was 0.05 to 0.1 kW/sq.cm. The application of pulse heating will result in higher rates of specific power.

  11. Time resolved studies of H2+ dissociation with phase-stabilized laser pulses

    International Nuclear Information System (INIS)

    Fischer, Bettina

    2010-01-01

    In the course of this thesis, experimental studies on the dissociation of H 2 + (H 2 + →p+H) in ultrashort laser pulses with a stabilized carrier-envelope phase (CEP) were carried out. In single-pulse measurements, the ability to control the emission direction of low energetic protons, i.e. the localization of the bound electron at one of the nuclei after dissociation, by the CEP was demonstrated. The coincident detection of the emitted protons and electrons and the measurement of their three-dimensional momentum vectors with a reaction microscope allowed to clarify the localization mechanism. Further control was achieved by a pump-control scheme with two timedelayed CEP-stabilized laser pulses. Here the neutral H 2 molecule was ionized in the first pulse and dissociation was induced by the second pulse. Electron localization was shown to depend on the properties of the bound nuclear wave packet in H 2 + at the time the control pulse is applied, demonstrating the ability to use the shape and dynamics of the nuclear wave packet as control parameters. Wave packet simulations were performed reproducing qualitatively the experimental results of the single and the two-pulse measurements. For both control schemes, intuitive models are presented, which qualitatively explain the main features of the obtained results. (orig.)

  12. Combining multi-pulse excitation and chirp coding in contrast-enhanced ultrasound imaging

    International Nuclear Information System (INIS)

    Crocco, M; Sciallero, C; Trucco, A; Pellegretti, P

    2009-01-01

    The development of techniques to separate the response of the contrast agent from that of the biological tissues is of great importance in ultrasound medical imaging. In the literature, one can find various solutions involving the use of multiple transmitted signals and the weighted sum of related echoes. In this paper, the combination of one of these multi-pulse techniques with a coded excitation is proposed and assessed. Coded excitation has been used mainly to increase the signal-to-noise ratio (SNR) and the penetration depth, provided that a matched filtering is applied in the reception chain. However, it has been shown that a signal with a long duration time also increases the backscattered echoes produced by the microbubbles and, consequently, the contrast-to-tissue ratio. Therefore, the implementation of a multi-pulse technique using a long coded pulse can yield a better contrast-to-tissue ratio and SNR. This paper investigates the combination of the linear chirp pulse with a multi-pulse technique based on the transmission of three pulses. The performance was evaluated using both simulated and real signals, assessing the improvement in the contrast-to-tissue ratio and SNR, the visual quality of the images obtained and the axial accuracy. A comparison with the same multi-pulse technique implemented using a traditional amplitude-modulated pulse revealed that the deployment of a chirp pulse produces several noticeable advantages and only a minor drawback

  13. Pulse-shaping mechanism in colliding-pulse mode-locked laser diodes

    DEFF Research Database (Denmark)

    Bischoff, Svend; Sørensen, Mads Peter; Mørk, J.

    1995-01-01

    The large signal dynamics of passively colliding pulse mode-locked laser diodes is studied. We derive a model which explains modelocking via the interplay of gain and loss dynamics; no bandwidth limiting element is necessary for pulse formation. It is found necessary to have both fast and slow...... absorber dynamics to achieve mode-locking. Significant chirp is predicted for pulses emitted from long lasers, in agreement with experiment. The pulse width shows a strong dependence on both cavity and saturable absorber length. (C) 1995 American Institute of Physics....

  14. Overvoltage effect on electrical discharge type in medium-conductivity water in inhomogeneous pulsed electric field

    Science.gov (United States)

    Panov, V. A.; Vasilyak, L. M.; Pecherkin, V. Ya; Vetchinin, S. P.; Son, E. E.

    2018-01-01

    The transition between thermal and streamer discharges has been observed experimentally in water solution with conductivity 100 μS/cm applying positive voltage pulses to pin-to-rod electrodes. The transition happens at five-fold pulse amplitude. Considering streamer propagation as an ionization wave helped to establish relation between the parameters governing transition from one to another discharge mechanism.

  15. Retrieval process development and enhancements FY96 pulsed-air mixer testing and deployment study

    International Nuclear Information System (INIS)

    Powell, M.R.; Hymas, C.R.

    1996-08-01

    Millions of gallons of radioactive wastes resides in underground tanks at US Department of Energy sites. The waste was generated primarily by the processing of nuclear fuel elements to remove fissile radionuclides for use in atomic weapons. Plans call for the waste to be removed from the tanks and processed to create immobile waste forms, which will be stored to prevent release to the environment. The consistency of the waste ranges from liquid, to slurry, to sticky sludge, to hard saltcake. a variety of waste- retrieval and processing methods are being evaluated and implemented. One such method is pulsed-air mixing, which is the subject of this report. Pulsed-air mixing equipment has been successfully applied to a number of difficult mixing applications in various chemical-process industries. Most previous applications involved the mixing of particle-free viscous fluids. The study described in this report was preformed to improve the understanding of how pulsed-air mixing applies to slurries. This document describes work conducted to evaluate the potential application of pulsed-air mixers to the slurry- mixing needs of the US Department of Energy's waste-retrieval programs

  16. Hydroxyapatite thin films grown by pulsed laser deposition and matrix assisted pulsed laser evaporation: Comparative study

    Science.gov (United States)

    Popescu-Pelin, G.; Sima, F.; Sima, L. E.; Mihailescu, C. N.; Luculescu, C.; Iordache, I.; Socol, M.; Socol, G.; Mihailescu, I. N.

    2017-10-01

    Pulsed Laser Deposition (PLD) and Matrix Assisted Pulsed Laser Evaporation (MAPLE) techniques were applied for growing hydroxyapatite (HA) thin films on titanium substrates. All experiments were conducted in a reaction chamber using a KrF* excimer laser source (λ = 248 nm, τFWHM ≈ 25 ns). Half of the samples were post-deposition thermally treated at 500 °C in a flux of water vapours in order to restore crystallinity and improve adherence. Coating surface morphologies and topographies specific to the deposition method were evidenced by scanning electron, atomic force microscopy investigations and profilometry. They were shown to depend on deposition technique and also on the post-deposition treatment. Crystalline structure of the coatings evaluated by X-ray diffraction was improved after thermal treatment. Biocompatibility of coatings, cellular adhesion, proliferation and differentiation tests were conducted using human mesenchymal stem cells (MSCs). Results showed that annealed MAPLE deposited HA coatings were supporting MSCs proliferation, while annealed PLD obtained films were stimulating osteogenic differentiation.

  17. Q-switched all-fiber laser with short pulse duration based on tungsten diselenide

    Science.gov (United States)

    Li, Wenyi; OuYang, Yuyi; Ma, Guoli; Liu, Mengli; Liu, Wenjun

    2018-05-01

    Fiber lasers are widely used in industrial processing, sensing, medical and communications applications due to their simple structure, good stability and low cost. With the rapid development of fiber lasers and the sustained improvement of industrial laser quality requirements, researchers in ultrafast optics focus on how to get laser pulses with high output power and narrow pulse duration. Q-switched technology is one of the most effective techniques to generate ultrashort pulses. In this paper, a tungsten diselenide saturable absorber with 16.82% modulation depth is prepared by chemical vapor deposition. Experimental results show that when the pump power changes from 115.7 mW to 630 mW, the all-fiber laser can achieve a stable Q-switched pulse output. The repetition rate of the output pulse varies from 80.32 kHz to 204.2 kHz, the pulse duration is 581 ns, the maximum output power is 17.1 mW and the maximum pulse energy is 83.7 nJ. Results in this paper show that tungsten diselenide can be applied to ultrafast optics, which is a kind of saturable absorption material with excellent properties.

  18. Experimental studies of the overshoot and undershoot in pulse-modulated radio-frequency atmospheric discharge

    Energy Technology Data Exchange (ETDEWEB)

    Huo, W. G.; Li, R. M.; Shi, J. J. [School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029 (China); Ding, Z. F., E-mail: huowg.wg@tom.com [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China)

    2016-08-15

    The overshoot and undershoot of the applied voltage on the electrodes, the discharge current, and radio frequency (RF) power were observed at the initial phase of pulse-modulated (PM) RF atmospheric pressure discharges, but factors influencing the overshoot and undershoot have not been fully elucidated. In this paper, the experimental studies were performed to seek the reasons for the overshoot and undershoot. The experimental results show that the overshoot and undershoot are associated with the pulse frequency, the rise time of pulse signal, and the series capacitor C{sub s} in the inversely L-shaped matching network. In the case of a high RF power discharge, these overshoot and undershoot become serious when shortening the rise time of a pulse signal (5 ns) or operating at a moderate pulse frequency (500 Hz or 1 kHz).

  19. Optimization of IGCT for pulsed power

    International Nuclear Information System (INIS)

    Chen Fanglin; Tang Longgu; Chen Yongmin; Pan Xuejun

    2014-01-01

    In order to develop high-performance IGCT devices applied in pulse power, cathode finger layout is optimized, the finger structure is modified, minority carrier lifetime is properly controlled and gate triggering characteristics is improved. As a result of these measures, the IGCT turn -on di/dt is improved, current handling capability is enhanced and switching response speed is increased. The feasibility and validity of the optimization study on the IGCT is verified by simulation and experimental results. (authors)

  20. Investigation on the Effect of Pulsed Energy on Strength of Fillet Lap Laser Welded AZ31B Magnesium Alloys

    Science.gov (United States)

    Salleh, M. N. M.; Ishak, M.; Aiman, M. H.; Idris, S. R. A.; Romlay, F. R. M.

    2017-09-01

    AZ31B magnesium alloy have been hugely applied in the aerospace, automotive, and electronic industries. However, welding thin sheet AZ31B was challenging due to its properties which is easily to evaporated especially using conventional fusion welding method such as metal inert gas (MIG). Laser could be applied to weld this metal since it produces lower heat input. The application of fiber laser welding has been widely since this type of laser could produce better welding product especially in the automotive sectors. Low power fiber laser was used to weld this non-ferrous metal where pulse wave (PW) mode was used. Double fillet lap joint was applied to weld as thin as 0.6 mm thick of AZ31B and the effect of pulsed energy on the strength was studied. Bond width, throat length, and penetration depth also was studied related to the pulsed energy which effecting the joint. Higher pulsed energy contributes to the higher fracture load with angle of irradiation lower than 3 °

  1. FY 1998 annual summary report on research and development of hybrid pulse plasma coating (HPPC) system (first year); 1998 nendo hybrid gata pulse plasma coating (HPPC) system no kenkyu kaihatsu seika hokokusho. Daiichinendo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The R and D program was implemented for a hybrid pulse plasma coating system, where organometallic gases as the feed gases were selected, and methods for feeding them and treating the exhaust gases to remove organic metals were studied, as the preliminary steps for the pulse introduction tests. The tests of combining an rf plasma with microwaves and pulse plasma generation have been started. The power source characteristics, e.g., pulse width, voltage and current, were analyzed, and high-voltage pulse voltage application tests were conducted, in order to grasp the power source characteristics related to the pulse voltage application. Generation of high-density plasma has been confirmed by the tests with microwaves absorbed by an rf plasma, and the plasma density measurement has been started using the single probe and double probe methods. It is also confirmed that a pulse voltage can be applied to a high-density plasma. A plasma source type ion injector (PSII) has been made on a trial basis, to collect the data for the injector. (NEDO).

  2. Sensing of phase transition in medium with terahertz pulsed spectroscopy

    International Nuclear Information System (INIS)

    Zaytsev, Kirill I; Fokina, Irina N; Fedorov, Aleksey K; Yurchenko, Stanislav O

    2014-01-01

    Phase state identification and phase transition registration in condensed matter are significant applications of terahertz spectroscopy. A set of fundamental and applied problems are associated with the phase state problem. Our report is devoted to the experimental analysis of the spectral characteristics of water and water solution during the phase transition from the solid state to the liquid state via the method of terahertz pulsed spectroscopy. In this work transformation of the sample spectral characteristics during the phase transition were observed and discussed. Possible application of terahertz pulsed spectroscopy as an effective instrument for phase transition sensing was considered

  3. Investigation of Vacuum Insulator Surface Dielectric Strength with Nanosecond Pulses

    International Nuclear Information System (INIS)

    Nunnally, W.C.; Krogh, M.; Williams, C.; Trimble, D.; Sampayan, S.; Caporaso, G.

    2003-01-01

    The maximum vacuum insulator surface dielectric strength determines the acceleration electric field gradient possible in a short pulse accelerator. Previous work has indicated that higher electric field strengths along the insulator-vacuum interface might be obtained as the pulse duration is decreased. In this work, a 250 kV, single ns wide impulse source was applied to small diameter, segmented insulators samples in a vacuum to evaluate the multi-layer surface dielectric strength of the sample construction. Resonances in the low inductance test geometry were used to obtain unipolar, pulsed electric fields in excess of 100 MV/m on the insulator surface. The sample construction, experimental arrangement and experimental results are presented for the initial data in this work. Modeling of the multi-layer structure is discussed and methods of improving insulator surface dielectric strength in a vacuum are proposed

  4. Laser pulse stacking method

    Science.gov (United States)

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  5. Controllable pulse parameter transcranial magnetic stimulator with enhanced circuit topology and pulse shaping

    Science.gov (United States)

    Peterchev, Angel V.; DʼOstilio, Kevin; Rothwell, John C.; Murphy, David L.

    2014-10-01

    Objective. This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach. We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with a lower voltage rating than prior cTMS devices. Main results. cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (\\lt 10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in ten healthy volunteers. Significance. The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool.

  6. Genetic algorithms applied to nonlinear and complex domains

    International Nuclear Information System (INIS)

    Barash, D; Woodin, A E

    1999-01-01

    The dissertation, titled ''Genetic Algorithms Applied to Nonlinear and Complex Domains'', describes and then applies a new class of powerful search algorithms (GAS) to certain domains. GAS are capable of solving complex and nonlinear problems where many parameters interact to produce a ''final'' result such as the optimization of the laser pulse in the interaction of an atom with an intense laser field. GAS can very efficiently locate the global maximum by searching parameter space in problems which are unsuitable for a search using traditional methods. In particular, the dissertation contains new scientific findings in two areas. First, the dissertation examines the interaction of an ultra-intense short laser pulse with atoms. GAS are used to find the optimal frequency for stabilizing atoms in the ionization process. This leads to a new theoretical formulation, to explain what is happening during the ionization process and how the electron is responding to finite (real-life) laser pulse shapes. It is shown that the dynamics of the process can be very sensitive to the ramp of the pulse at high frequencies. The new theory which is formulated, also uses a novel concept (known as the (t,t') method) to numerically solve the time-dependent Schrodinger equation Second, the dissertation also examines the use of GAS in modeling decision making problems. It compares GAS with traditional techniques to solve a class of problems known as Markov Decision Processes. The conclusion of the dissertation should give a clear idea of where GAS are applicable, especially in the physical sciences, in problems which are nonlinear and complex, i.e. difficult to analyze by other means

  7. Experiment for water-flow measurement by pulsed-neutron activation

    International Nuclear Information System (INIS)

    Drozdowicz, K.

    1994-08-01

    An experiment is presented which constitutes a feasibility study for applying the neutron activation method for measurement of the water mass transport in pipings, e.g. in nuclear power stations. The fast neutron generator has been used as a pulsed-neutron activation source for oxygen in water which circulated in a closed system. The γ radiation of the nitrogen product isotope has been measured by the scintillation detectors placed in two positions at the piping. The two time distributions of the pulses have been recorded by a multiscaler (a software design based on CAMAC). The water flow velocity has been estimated from the peak-to-peak time distance. The tests have been performed under different experimental conditions (the neutron pulse duration, the time channel width, the water flow velocity) to define the stability, reproducibility and reliability of the measurement. The detailed results are presented in tables and in time distribution plots. The method has been found useful for the application considered. 4 refs, 17 figs, 5 tabs

  8. Characterization of power IGBTs under pulsed power conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Gregory E [Los Alamos National Laboratory; Vangordon, James [UNIV OF MISSOURI; Kovaleski, Scott [UNIV OF MISSOURI

    2009-01-01

    The power insulated gate bipolar transistor (IGBT) is used in many types of applications. Although the use of the power IGBT has been well characterized for many continuous operation power electronics applications, little published information is available regarding the performance of a given IGBT under pulsed power conditions. Additionally, component libraries in circuit simulation software packages have a finite number of IGBTs. This paper presents a process for characterizing the performance of a given power IGBT under pulsed power conditions. Specifically, signals up to 3.5 kV and 1 kA with 1-10 {micro}s pulse widths have been applied to a Powerex QIS4506001 IGBT. This process utilizes least squares curve fitting techniques with collected data to determine values for a set of modeling parameters. These parameters were used in the Oziemkiewicz implementation of the Hefner model for the IGBT that is utilized in some circuit simulation software packages. After the nominal parameter values are determined, they can be inserted into the Oziemkiewicz implementation to simulate a given IGBT.

  9. The possibility of multi-layer nanofabrication via atomic force microscope-based pulse electrochemical nanopatterning

    Science.gov (United States)

    Kim, Uk Su; Morita, Noboru; Lee, Deug Woo; Jun, Martin; Park, Jeong Woo

    2017-05-01

    Pulse electrochemical nanopatterning, a non-contact scanning probe lithography process using ultrashort voltage pulses, is based primarily on an electrochemical machining process using localized electrochemical oxidation between a sharp tool tip and the sample surface. In this study, nanoscale oxide patterns were formed on silicon Si (100) wafer surfaces via electrochemical surface nanopatterning, by supplying external pulsed currents through non-contact atomic force microscopy. Nanoscale oxide width and height were controlled by modulating the applied pulse duration. Additionally, protruding nanoscale oxides were removed completely by simple chemical etching, showing a depressed pattern on the sample substrate surface. Nanoscale two-dimensional oxides, prepared by a localized electrochemical reaction, can be defined easily by controlling physical and electrical variables, before proceeding further to a layer-by-layer nanofabrication process.

  10. Production of quasi ellipsoidal laser pulses for next generation high brightness photoinjectors

    Energy Technology Data Exchange (ETDEWEB)

    Rublack, T., E-mail: Tino.Rublack@desy.de [DESY, Zeuthen (Germany); Good, J.; Khojoyan, M.; Krasilnikov, M.; Stephan, F. [DESY, Zeuthen (Germany); Hartl, I.; Schreiber, S. [DESY, Hamburg (Germany); Andrianov, A.; Gacheva, E.; Khazanov, E.; Mironov, S.; Potemkin, A.; Zelenogorskii, V.V. [IAP/RAS, Nizhny Novgorod (Russian Federation); Syresin, E. [JINR, Dubna (Russian Federation)

    2016-09-01

    The use of high brightness electron beams in Free Electron Laser (FEL) applications is of increasing importance. One of the most promising methods to generate such beams is the usage of shaped photocathode laser pulses. It has already demonstrated that temporal and transverse flat-top laser pulses can produce very low emittance beams [1]. Nevertheless, based on beam simulations further improvements can be achieved using quasi-ellipsoidal laser pulses, e.g. 30% reduction in transverse projected emittance at 1 nC bunch charge. In a collaboration between DESY, the Institute of Applied Physics of the Russian Academy of Science (IAP RAS) in Nizhny Novgorod and the Joint Institute of Nuclear Research (JINR) in Dubna such a laser system capable of producing trains of laser pulses with a quasi-ellipsoidal distribution, has been developed. The prototype of the system was installed at the Photo Injector Test facility at DESY in Zeuthen (PITZ) and is currently in the commissioning phase. In the following, the laser system will be introduced, the procedure of pulse shaping will be described and the last experimental results will be shown.

  11. Simple and robust generation of ultrafast laser pulse trains using polarization-independent parallel-aligned thin films

    Science.gov (United States)

    Wang, Andong; Jiang, Lan; Li, Xiaowei; Wang, Zhi; Du, Kun; Lu, Yongfeng

    2018-05-01

    Ultrafast laser pulse temporal shaping has been widely applied in various important applications such as laser materials processing, coherent control of chemical reactions, and ultrafast imaging. However, temporal pulse shaping has been limited to only-in-lab technique due to the high cost, low damage threshold, and polarization dependence. Herein we propose a novel design of ultrafast laser pulse train generation device, which consists of multiple polarization-independent parallel-aligned thin films. Various pulse trains with controllable temporal profile can be generated flexibly by multi-reflections within the splitting films. Compared with other pulse train generation techniques, this method has advantages of compact structure, low cost, high damage threshold and polarization independence. These advantages endow it with high potential for broad utilization in ultrafast applications.

  12. Dynamical cancellation of pulse-induced transients in a metallic shielded room for ultra-low-field magnetic resonance imaging

    International Nuclear Information System (INIS)

    Zevenhoven, Koos C. J.; Ilmoniemi, Risto J.; Dong, Hui; Clarke, John

    2015-01-01

    Pulse-induced transients such as eddy currents can cause problems in measurement techniques where a signal is acquired after an applied preparatory pulse. In ultra-low-field magnetic resonance imaging, performed in magnetic fields typically of the order of 100 μT, the signal-to-noise ratio is enhanced in part by prepolarizing the proton spins with a pulse of much larger magnetic field and in part by detecting the signal with a Superconducting QUantum Interference Device (SQUID). The pulse turn-off, however, can induce large eddy currents in the shielded room, producing an inhomogeneous magnetic-field transient that both seriously distorts the spin dynamics and exceeds the range of the SQUID readout. It is essential to reduce this transient substantially before image acquisition. We introduce dynamical cancellation (DynaCan), a technique in which a precisely designed current waveform is applied to a separate coil during the later part and turn off of the polarizing pulse. This waveform, which bears no resemblance to the polarizing pulse, is designed to drive the eddy currents to zero at the precise moment that the polarizing field becomes zero. We present the theory used to optimize the waveform using a detailed computational model with corrections from measured magnetic-field transients. SQUID-based measurements with DynaCan demonstrate a cancellation of 99%. Dynamical cancellation has the great advantage that, for a given system, the cancellation accuracy can be optimized in software. This technique can be applied to both metal and high-permeability alloy shielded rooms, and even to transients other than eddy currents

  13. Experiments of a 100 kV-level pulse generator based on metal-oxide varistor

    Science.gov (United States)

    Cui, Yan-cheng; Wu, Qi-lin; Yang, Han-wu; Gao, Jing-ming; Li, Song; Shi, Cheng-yu

    2018-03-01

    This paper introduces the development and experiments of a 100 kV-level pulse generator based on a metal-oxide varistor (MOV). MOV has a high energy handling capacity and nonlinear voltage-current (V-I) characteristics, which makes it useful for high voltage pulse shaping. Circuit simulations based on the measured voltage-current characteristics of MOV verified the shaping concept and showed that a circuit containing a two-section pulse forming network (PFN) will result in better defined square pulse than a simple L-C discharging circuit. A reduced-scale experiment was carried out and the result agreed well with simulation prediction. Then a 100 kV-level pulse generator with multiple MOVs in a stack and a two-section pulse forming network (PFN) was experimented. A pulse with a voltage amplitude of 90 kV, rise time of about 50 ns, pulse width of 500 ns, and flat top of about 400 ns was obtained with a water dummy load of 50 Ω. The results reveal that the combination of PFN and MOV is a practical way to generate high voltage pulses with better flat top waveforms, and the load voltage is stable even if the load's impedance varies. Such pulse generator can be applied in many fields such as surface treatment, corona plasma generation, industrial dedusting, and medical disinfection.

  14. Radiation chemistry and advanced polymer materials studied by picosecond pulse radiolysis combined with femtosecond laser

    International Nuclear Information System (INIS)

    Tagawa, S.; Yoshida, Y.; Miki, M.; Yamamoto, T.; Ushida, K.; Izumi, Y.

    1996-01-01

    We have synchronized a single picosecond MeV electron pulse from L-band linear accelerator (linac) of The Institute of Scientific and Industrial Research of Osaka University to a single femtosecond laser pulse of Ti:Sapphire laser. It is an essential technique for the future femtosecond pulse radiolysis and is also applied to many kinds of combined application of more than two different beams from accelerators in very short time range. Radiation chemistry and new type of polymers have been studied by LL (laser-linac) twin picosecond pulse radiolysis. Especially the early events in radiation chemistry such as geminate recombination processes of electrons and radical cations are have been studied in both liquids and solids. (author)

  15. RF Pulsed Heating

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2002-01-03

    RF pulsed heating is a process by which a metal is heated from magnetic fields on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic field on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1.5 {micro}s pulses. The test pieces of the cavity are designed to be removable to allow testing of different materials with different surface preparations. A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE{sub 012} mode to steady-state in the cavity at 18 GHz and measuring the change in reflected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 x 10{sup 6} pulses. The second run was executed at a calculated temperature rise of 82 K for 86 x 10{sup 6} pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  16. Optimal pulse fishing policy in stage-structured models with birth pulses

    International Nuclear Information System (INIS)

    Gao Shujing; Chen Lansun; Sun Lihua

    2005-01-01

    In this paper, we propose exploited models with stage structure for the dynamics in a fish population for which periodic birth pulse and pulse fishing occur at different fixed time. Using the stroboscopic map, we obtain an exact cycle of system, and obtain the threshold conditions for its stability. Bifurcation diagrams are constructed with the birth rate (or pulse fishing time or harvesting effort) as the bifurcation parameter, and these are observed to display complex dynamic behaviors, including chaotic bands with period windows, period-doubling, multi-period-halving and incomplete period-doubling bifurcation, pitch-fork and tangent bifurcation, non-unique dynamics (meaning that several attractors or attractor and chaos coexist) and attractor crisis. This suggests that birth pulse and pulse fishing provide a natural period or cyclicity that make the dynamical behaviors more complex. Moreover, we show that the pulse fishing has a strong impact on the persistence of the fish population, on the volume of mature fish stock and on the maximum annual-sustainable yield. An interesting result is obtained that, after the birth pulse, the population can sustain much higher harvesting effort if the mature fish is removed as early as possible

  17. Study of the mechanisms of flux enhancement through hairless mouse skin by pulsed DC iontophoresis

    International Nuclear Information System (INIS)

    Pikal, M.J.; Shah, S.

    1991-01-01

    Enhanced iontophoretic transport using pulsed DC is usually explained by citing the observed decrease in skin resistance caused by an increase in AC pulse frequency at very small currents. Alternately, it has been suggested that the on-to-off nature of pulsed DC imparts an impact energy to the fluid, thereby increasing transport. This report provides a test of these mechanisms for enhanced delivery via pulsed iontophoresis. The DC resistance of hairless mouse skin during continuous and pulsed DC iontophoresis is measured as a function of time for selected pulse frequencies and duty cycles using current densities ranging from 0.1 to 1.0 mA/cm2. As a test of the impact energy mechanism, the iontophoretic transport of 14C-glucose measured with pulsed DC is compared with similar data obtained previously using continuous DC. It is suggested that pulsed current can yield lower resistance and enhanced drug delivery provided that (a) the steady-state current during the on phase of the pulse is very small and (b) the frequency is low enough to allow depolarization of the skin during the off phase of the pulse. The glucose transport results suggest that the impact energy concept does not apply to iontophoresis

  18. Effect of heat-induced pain stimuli on pulse transit time and pulse wave amplitude in healthy volunteers.

    Science.gov (United States)

    van Velzen, Marit H N; Loeve, Arjo J; Kortekaas, Minke C; Niehof, Sjoerd P; Mik, Egbert G; Stolker, Robert J

    2016-01-01

    Pain is commonly assessed subjectively by interpretations of patient behaviour and/or reports from patients. When this is impossible the availability of a quantitative objective pain assessment tool based on objective physiological parameters would greatly benefit clinical practice and research beside the standard self-report tests. Vasoconstriction is one of the physiological responses to pain. The aim of this study was to investigate whether pulse transit time (PTT) and pulse wave amplitude (PWA) decrease in response to this vasoconstriction when caused by heat-induced pain. The PTT and PWA were measured in healthy volunteers, on both index fingers using photoplethysmography and electrocardiography. Each subject received 3 heat-induced pain stimuli using a Temperature-Sensory Analyzer thermode block to apply a controlled, increasing temperature from 32.0 °C to 50.0 °C to the skin. After reaching 50.0 °C, the thermode was immediately cooled down to 32.0 °C. The study population was divided into 2 groups with a time-interval between the stimuli 20s or 60s. The results showed a significant (p  Heat-induced pain causes a decrease of PTT and PWA. Consequently, it is expected that, in the future, PTT and PWA may be applied as objective indicators of pain, either beside the standard self-report test, or when self-report testing is impossible.

  19. Versatile pulse programmer for pulsed nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Adduci, D.J.

    1979-05-01

    A description of the sequence of events and the decisions leading to the design of a versatile pulse programmer for pulsed NMR are presented. Background and application information is discussed in order that the reader might better understand the role of the pulse programmer in a NMR spectrometer. Various other design approaches are presented as a basis for comparison. Specifications for this design are proposed, the hardware implementation of the specifications is discussed, and the software operating system is presented

  20. Versatile pulse programmer for pulsed nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Adduci, D.J.

    1979-05-01

    A description of the sequence of events and the decisions leading to the design of a versatile pulse programmer for pulsed NMR are presented. Background and application information is discussed in order that the reader might better understand the role of the pulse programmer in a NMR spectrometer. Various other design approaches are presented as a basis for comparison. Specifications for this design are proposed, the hardware implementation of the specifications is discussed, and the software operating system is presented.

  1. A compact bipolar pulse-forming network-Marx generator based on pulse transformers.

    Science.gov (United States)

    Zhang, Huibo; Yang, Jianhua; Lin, Jiajin; Yang, Xiao

    2013-11-01

    A compact bipolar pulse-forming network (PFN)-Marx generator based on pulse transformers is presented in this paper. The high-voltage generator consisted of two sets of pulse transformers, 6 stages of PFNs with ceramic capacitors, a switch unit, and a matched load. The design is characterized by the bipolar pulse charging scheme and the compact structure of the PFN-Marx. The scheme of bipolar charging by pulse transformers increased the withstand voltage of the ceramic capacitors in the PFNs and decreased the number of the gas gap switches. The compact structure of the PFN-Marx was aimed at reducing the parasitic inductance in the generator. When the charging voltage on the PFNs was 35 kV, the matched resistive load of 48 Ω could deliver a high-voltage pulse with an amplitude of 100 kV. The full width at half maximum of the load pulse was 173 ns, and its rise time was less than 15 ns.

  2. Producing High Intense Attosecond Pulse Train by Interaction of Three-Color Pulse and Overdense Plasma

    Science.gov (United States)

    Salehi, M.; Mirzanejad, S.

    2017-05-01

    Amplifying the attosecond pulse by the chirp pulse amplification method is impossible. Furthermore, the intensity of attosecond pulse is low in the interaction of laser pulse and underdense plasma. This motivates us to propose using a multi-color pulse to produce the high intense attosecond pulse. In the present study, the relativistic interaction of a three-color linearly-polarized laser-pulse with highly overdense plasma is studied. We show that the combination of {{ω }}1, {{ω }}2 and {{ω }}3 frequencies decreases the instance full width at half maximum reflected attosecond pulse train from the overdense plasma surface. Moreover, we show that the three-color pulse increases the intensity of generated harmonics, which is explained by the relativistic oscillating mirror model. The obtained results demonstrate that if the three-color laser pulse interacts with overdense plasma, it will enhance two orders of magnitude of intensity of ultra short attosecond pulses in comparison with monochromatic pulse.

  3. The Study for Shortening the Process Time at Soy Food Production by using the Pulsed Electric Field

    Science.gov (United States)

    Saito, Tsukasa; Jinushi, Makoto; Minamitani, Yasushi

    We investigated method to osmose water and seasoner to dried soybeans fast by pulsed electric field, in order to make soybeans a processed food fast. By applying the pulsed electric field to the dried soybeans in water, osmosis time of water to the soybean became approximately half. Then the emission of the discharge was observed on dried soybean. The color of coffee permeated more into the soybean treated than no-treated by the pulsed electric field.

  4. Concave pulse shaping of a circularly polarized laser pulse from non-uniform overdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Min Sup [School of Natural Science, UNIST, BanYeon-Ri 100, Ulju-gun, Ulsan, 689-798 (Korea, Republic of); Kulagin, Victor V. [Sternberg Astronomical Institute, Moscow State University, Universitetsky prosp. 13, Moscow, 119992 (Russian Federation); Suk, Hyyong, E-mail: hysuk@gist.ac.kr [Department of Physics and Photon Science, GIST, 123 Cheomdan-gwangiro, Buk-gu, Gwangju, 500-712 (Korea, Republic of)

    2015-03-20

    Pulse shaping of circularly polarized laser pulses in nonuniform overdense plasmas are investigated numerically. Specifically we show by two-dimensional particle-in-cell simulations the generation of a concave pulse front of a circularly polarized, a few tens of petawatt laser pulse from a density-tapered, overdense plasma slab. The concept used for the transverse-directional shaping is the differential transmittance depending on the plasma density, and the laser intensity. For suitable selection of the slab parameters for the concave pulse shaping, we studied numerically the pulse transmittance, which can be used for further parameter design of the pulse shaping. The concavely shaped circularly polarized pulse is expected to add more freedom in controlling the ion-beam characteristics in the RPDA regime. - Highlights: • Laser pulse shaping for a concave front by non-uniform overdense plasma was studied. • Particle-in-cell (PIC) simulations were used for the investigation. • A laser pulse can be shaped by a density-tapered overdense plasma. • The concave and sharp pulse front are useful in many laser–plasma applications. • They are important for ion acceleration, especially in the radiation pressure dominant regime.

  5. Computed neutron coincidence counting applied to passive waste assay

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, M.; Baeten, P.; De Boeck, W.; Carchon, R. [Nuclear Research Centre, Mol (Belgium)

    1997-11-01

    Neutron coincidence counting applied for the passive assay of fissile material is generally realised with dedicated electronic circuits. This paper presents a software based neutron coincidence counting method with data acquisition via a commercial PC-based Time Interval Analyser (TIA). The TIA is used to measure and record all time intervals between successive pulses in the pulse train up to count-rates of 2 Mpulses/s. Software modules are then used to compute the coincidence count-rates and multiplicity related data. This computed neutron coincidence counting (CNCC) offers full access to all the time information contained in the pulse train. This paper will mainly concentrate on the application and advantages of CNCC for the non-destructive assay of waste. An advanced multiplicity selective Rossi-alpha method is presented and its implementation via CNCC demonstrated. 13 refs., 4 figs., 2 tabs.

  6. Computed neutron coincidence counting applied to passive waste assay

    International Nuclear Information System (INIS)

    Bruggeman, M.; Baeten, P.; De Boeck, W.; Carchon, R.

    1997-01-01

    Neutron coincidence counting applied for the passive assay of fissile material is generally realised with dedicated electronic circuits. This paper presents a software based neutron coincidence counting method with data acquisition via a commercial PC-based Time Interval Analyser (TIA). The TIA is used to measure and record all time intervals between successive pulses in the pulse train up to count-rates of 2 Mpulses/s. Software modules are then used to compute the coincidence count-rates and multiplicity related data. This computed neutron coincidence counting (CNCC) offers full access to all the time information contained in the pulse train. This paper will mainly concentrate on the application and advantages of CNCC for the non-destructive assay of waste. An advanced multiplicity selective Rossi-alpha method is presented and its implementation via CNCC demonstrated. 13 refs., 4 figs., 2 tabs

  7. Characteristics of ionization chambers for intense pulsed x-rays and Co-60 #betta#-rays, (2)

    International Nuclear Information System (INIS)

    Kanazawa, Tamotsu; Okabe, Shigeru; Fukuda, Kyue; Furuta, Junichiro; Fujino, Takahiro

    1981-01-01

    Mean ionization currents and pulse figures of parallel plate ionization chambers enclosed with various gases were measured when they were exposed to intense pulsed X-rays and continuous #betta#-rays. Relation between the measured ionization current and the intensity of X-rays was obtained at the applied voltage of 1000 V. In the case of intense pulsed X-rays, ionization current was smaller in comparison with the case of continuous #betta#-rays, under the X-rays of equal intensity. Pulse figures were observed with chambers which were filled with the gases of air and O 2 and they are considered to be caused by the free electrons of these gases. In these cases, polarity effects of the electric field on the pulse figures were not recognized. Various figures and their changes were also observed from chambers filled with He, Ne, N 2 , Ar, kr, and Xe, respectively. Polarity effects were recognized on those pulse figures. (author)

  8. Effects of a pulsed operation on ozone production in dielectric barrier air discharges

    OpenAIRE

    Ruggero Barni; Ilaria Biganzoli; Elisa Dell’Orto; Claudia Riccardi

    2014-01-01

    We have performed an experimental investigation of ozone production in a pulsed dielectric barrier discharge (DBD) reactor. Measurements of ozone in the gas-phase as a function of the power level show that in continuous mode a maximum concentration is achieved before a decrease presumably connected with gas-phase heating. When the reactor is employed in pulsed mode, by applying a definite duty cycle, a strong increase in ozone concentration is generally observed, with a maximum which happens...

  9. A pulsed power hydrodynamics approach to exploring properties of warm dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Reinovsky, Robert Emil [Los Alamos National Laboratory

    2008-01-01

    Pulsed Power Hydrodynamics, as an application of low-impedance, pulsed power, and high magnetic field technology developed over the last decade to study advanced hydrodynamic problems, instabilities, turbulence, and material properties, can potentially be applied to the study of the behavior and properties of warm dense matter (WDM) as well. Exploration of the properties, such as equation of state and conductivity, of warm dense matter is an emerging area of study focused on the behavior of matter at density near solid density (from 10% of solid density to a few times solid density) and modest temperatures ({approx}1-10 eV). Warm dense matter conditions can be achieved by laser or particle beam heating of very small quantities of matter on timescales short compared to the subsequent hydrodynamic expansion timescales (isochoric heating) and a vigorous community of researchers is applying these techniques using petawatt scale laser systems, but the microscopic size scale of the WDM produced in this way limits access to some physics phenomena. Pulsed power hydrodynamics techniques, either through high convergence liner compression of a large volume, modest density, low temperature plasma to densities approaching solid density or through the explosion and subsequent expansion of a conductor (wire) against a high pressure (density) gas background (isobaric expansion) techniques both offer the prospect for producing warm dense matter in macroscopic quantities. However, both techniques demand substantial energy, proper power conditioning and delivery, and an understanding of the hydrodynamic and instability processes that limit each technique. Similarly, liner compression of normal density material, perhaps using multiple reflected shocks can provide access to the challenging region above normal density -- again with the requirement of very large amounts of driving energy. In this paper we will provide an introduction to techniques that might be applied to explore this

  10. Long pulse, plasma cathode E-gun

    International Nuclear Information System (INIS)

    Goebel, D.M.; Schumacher, R.W.; Watkins, R.M.

    1993-01-01

    A unique, long-pulse E-gun has been developed for high-power tube applications. The Hollow-Cathode-Plasma (HCP) E-gun overcomes the limitations of conventional thermionic-cathode guns that have limited current density (typically ≤ 10 A/cm 2 ) or field-emission guns that offer high current density but suffer from short pulsewidth capability (typically 50 A/cm 2 ), long-pulse operation without gap closure, and also requires no cathode-heater power. The gun employs a low-pressure glow discharge inside a hollow cathode (HC) structure to provide a stable, uniform plasma surface from which a high current-density electron beam can be extracted. The plasma density is controlled by a low-voltage HC discharge pulser to produce the desired electron current density at the first grid of a multi-grid accelerator system. A dc high-voltage electron-beam supply accelerates the electrons across the gap, while the HC pulser modulates the beam current to generate arbitrary pulse waveforms. The electron accelerator utilizes a multi-aperture array that produces a large area, high perveance (>35 μpervs) beam consisting initially of many individual beamlets. The E-beam is normally operated without an applied magnetic field in the ion-focused regime, where the plasma produced by beam ionization of a background gas space-charge neutralizes the beam, and the Bennett self-pinch compresses the beamlets and increases the current density. The self-pinched beam has been observed to propagate over a meter without beam breakup or instabilities. The HCP E-gun has been operated at voltages up to 150 kV, currents up to 750 A, and pulse lengths of up to 120 μsec

  11. Long-pulse applications of pulse-forming lines for high-power linac application

    International Nuclear Information System (INIS)

    Hoeberling, R.F.; Tallerico, P.J.

    1981-01-01

    The ever present demands for high efficiency in the RF power stations for particle accelerators have caused increased interest in longer RF pulses (ten's of microseconds) for linacs such as the Pion Generator for Medical Irradiation (PIGMI) and Free Electron Laser (FEL). For either RF power station, a fundamental decision is whether to use a modulating anode/hard-tube driver or pulsed cathode/line-type pulser configuration. The choices in the extremes of low power for very long pulses or for very-high-power, short pulses are, respectively, a modulated anode/hard tube modulator and pulsed cathode/pulse forming line. However, the demarcation between these two extremes is not clearcut. The criteria (cost, flexibility performance, reliability, efficiency) that resulted in the RF station definition of these two specific systems will be described

  12. Pulse frequency dependency of photobiomodulation on the bioenergetic functions of human dental pulp stem cells.

    Science.gov (United States)

    Kim, Hong Bae; Baik, Ku Youn; Choung, Pill-Hoon; Chung, Jong Hoon

    2017-11-21

    Photobiomodulation (PBM) therapy contributes to pain relief, wound healing, and tissue regeneration. The pulsed wave (PW) mode has been reported to be more effective than the continuous wave (CW) mode when applying PBM to many biological systems. However, the reason for the higher effectiveness of PW-PBM is poorly understood. Herein, we suggest using delayed luminescence (DL) as a reporter of mitochondrial activity after PBM treatment. DL originates mainly from mitochondrial electron transport chain systems, which produce reactive oxygen species (ROS) and adenosine triphosphate (ATP). The decay time of DL depends on the pulse frequencies of applied light, which correlate with the biological responses of human dental pulp stem cells (hDPSCs). Using a low-power light whose wavelength is 810 nm and energy density is 38 mJ/cm 2 , we find that a 300-Hz pulse frequency prolonged the DL pattern and enhanced alkaline phosphatase activity. In addition, we analyze mitochondrial morphological changes and their volume density and find evidence supporting mitochondrial physiological changes from PBM treatment. Our data suggest a new methodology for determining the effectiveness of PBM and the specific pulse frequency dependency of PBM in the differentiation of hDPSCs.

  13. Dynamical modeling of pulsed two-photon interference

    International Nuclear Information System (INIS)

    Fischer, Kevin A; Lagoudakis, Konstantinos G; Vučković, Jelena; Müller, Kai

    2016-01-01

    Single-photon sources are at the heart of quantum-optical networks, with their uniquely quantum emission and phenomenon of two-photon interference allowing for the generation and transfer of nonclassical states. Although a few analytical methods have been briefly investigated for describing pulsed single-photon sources, these methods apply only to either perfectly ideal or at least extremely idealized sources. Here, we present the first complete picture of pulsed single-photon sources by elaborating how to numerically and fully characterize non-ideal single-photon sources operating in a pulsed regime. In order to achieve this result, we make the connection between quantum Monte-Carlo simulations, experimental characterizations, and an extended form of the quantum regression theorem. We elaborate on how an ideal pulsed single-photon source is connected to its photocount distribution and its measured degree of second- and first-order optical coherence. By doing so, we provide a description of the relationship between instantaneous source correlations and the typical experimental interferometers (Hanbury-Brown and Twiss, Hong–Ou–Mandel, and Mach–Zehnder) used to characterize such sources. Then, we use these techniques to explore several prototypical quantum systems and their non-ideal behaviors. As an example numerical result, we show that for the most popular single-photon source—a resonantly excited two-level system—its error probability is directly related to its excitation pulse length. We believe that the intuition gained from these representative systems and characters can be used to interpret future results with more complicated source Hamiltonians and behaviors. Finally, we have thoroughly documented our simulation methods with contributions to the Quantum Optics Toolbox in Python in order to make our work easily accessible to other scientists and engineers. (paper)

  14. Melodic algorithms for pulse oximetry to allow audible discrimination of abnormal systolic blood pressures.

    Science.gov (United States)

    Chima, Ranjit S; Ortega, Rafael; Connor, Christopher W

    2014-12-01

    An anesthesiologist must remain vigilant of the patient's clinical status, incorporating many independent physiological measurements. Oxygen saturation and heart rate are represented by continuous audible tones generated by the pulse oximeter, a mandated monitoring device. Other important clinical parameters--notably blood pressure--lack any audible representation beyond arbitrarily-configured threshold alarms. Attempts to introduce further continuous audible tones have apparently foundered; the complexity and interaction of these tones have exceeded the ability of clinicians to interpret them. Instead, we manipulate the tonal and rhythmic structure of the accepted pulse oximeter tone pattern melodically. Three melodic algorithms were developed to apply tonal and rhythmic variations to the continuous pulse oximeter tone, dependent on the systolic blood pressure. The algorithms distort the original audible pattern minimally, to facilitate comprehension of both the underlying pattern and the applied variations. A panel of anesthesia practitioners (attending anesthesiologists, residents and nurse anesthetists) assessed these algorithms in characterizing perturbations in cardiopulmonary status. Twelve scenarios, incorporating combinations of oxygen desaturation, bradycardia, tachycardia, hypotension and hypertension, were tested. A rhythmic variation in which additional auditory information was conveyed only at halftime intervals, with every other "beat" of the pulse oximeter, was strongly favored. The respondents also strongly favored the use of musical chords over single tones. Given three algorithms of tones embedded in the pulse oximeter signal, anesthesiologists preferred a melodic tone to signal a significant change in blood pressure.

  15. New opportunities in neutron capture research using advanced pulsed neutron sources

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1987-08-01

    The extraordinary neutron intensities available from the new spallation pulsed neutron sources open up exciting opportunities for basic and applied research in neutron nuclear physics. Prospective experiments are reviewed with particular attention to those with a strong connection to capture gamma-ray spectroscopy

  16. Integral-equation based methods for parameter estimation in output pulses of radiation detectors: Application in nuclear medicine and spectroscopy

    Science.gov (United States)

    Mohammadian-Behbahani, Mohammad-Reza; Saramad, Shahyar

    2018-04-01

    Model based analysis methods are relatively new approaches for processing the output data of radiation detectors in nuclear medicine imaging and spectroscopy. A class of such methods requires fast algorithms for fitting pulse models to experimental data. In order to apply integral-equation based methods for processing the preamplifier output pulses, this article proposes a fast and simple method for estimating the parameters of the well-known bi-exponential pulse model by solving an integral equation. The proposed method needs samples from only three points of the recorded pulse as well as its first and second order integrals. After optimizing the sampling points, the estimation results were calculated and compared with two traditional integration-based methods. Different noise levels (signal-to-noise ratios from 10 to 3000) were simulated for testing the functionality of the proposed method, then it was applied to a set of experimental pulses. Finally, the effect of quantization noise was assessed by studying different sampling rates. Promising results by the proposed method endorse it for future real-time applications.

  17. Spot size and pulse number dependence of femtosecond laser ablation thresholds of silicon and stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Armbruster, Oskar; Naghilou, Aida [University of Vienna, Department of Physical Chemistry, Währinger Straße 42, A-1090 Vienna (Austria); Kitzler, Markus [TU Wien, Photonics Institute, Gusshausstraße 27-29, A-1040 Vienna (Austria); Kautek, Wolfgang, E-mail: wolfgang.kautek@univie.ac.at [University of Vienna, Department of Physical Chemistry, Währinger Straße 42, A-1090 Vienna (Austria)

    2017-02-28

    Highlights: • Influence of laser spot size and pulse number on the ablation of solids. • An extended defect model describes the dependence of the threshold fluence on the basis of high and low density defects. • Successfully applied to silicon and stainless steel. - Abstract: Laser spot size and pulse number are two major parameters influencing the ablation of solids. The extended defect model describes the dependence of the threshold fluence on the basis of high and low density defects. This model was successfully applied to silicon and stainless steel. It is demonstrated that heat accumulation cannot describe the experimental results.

  18. Pulsed Power Peer Review Committee Report

    International Nuclear Information System (INIS)

    Bloomquist, Douglas D.

    2000-01-01

    In 1993, the Government Performance and Results Act (GPRA, PL 103-62) was enacted. GPRA, which applies to all federal programs, has three components: strategic plans, annual performance plans, and metrics to show how well annual plans are being followed. As part of meeting the GRPA requirement in FY2000, a 14-member external peer review panel (the Garwin Committee) was convened on May 17-19, 2000 to review Sandia National Laboratories' Pulsed Power Programs as a component of the Performance Appraisal Process negotiated with the Department of Energy (DOE). The scope of the review included activities in inertial confinement fission (ICF), weapon physics, development of radiation sources for weapons effects simulation, x-ray radiography, basic research in high energy density physics (HEDP), and pulsed power technology research and development. In his charge to the committee, Jeffrey Quintenz, Director of Pulsed Power Sciences (1600) asked that the review be based on four criteria (1) quality of science, technology, and engineering, (2) programmatic performance, management, and planning, (3) relevance to national needs and agency missions, and (4) performance in the operation and construction of major research facilities. In addition, specific programmatic questions were posed by the director and by the DOE-Defense Programs (DP). The accompanying report, produced as a SAND document, is the report of the committee's findings

  19. Ultrafast two-photon absorption optical thresholding of spectrally coded pulses

    Science.gov (United States)

    Zheng, Z.; Shen, S.; Sardesai, H.; Chang, C.-C.; Marsh, J. H.; Karkhanehchi, M. M.; Weiner, A. M.

    1999-08-01

    We report studies on two-photon absorption (TPA) GaAs p-i-n waveguide photodetectors as optical thresholders for proposed ultrashort pulse optical code-division multiple-access (CDMA) systems. For either chirped optical pulses or spectrally phase coded pseudonoise bursts, the TPA photocurrent response reveals a strong pulseshape dependence and shows good agreement with theoretical predictions and results from conventional SHG measurements. The performance limits of the TPA optical thresholders set by the encoded bandwidth in the spectral encoding-decoding process are also discussed based on numerical simulations. Our results show the feasibility of applying such devices as nonlinear intensity discriminators in ultrahigh-speed optical network applications.

  20. Measurement of far-infrared subpicosecond coherent radiation for pulse radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Kozawa, T. E-mail: kozawa@sanken.osaka-u.ac.jp; Mizutani, Y.; Yokoyama, K.; Okuda, S.; Yoshida, Y.; Tagawa, S

    1999-06-01

    Using a magnetic bunch compression method, a 26.5 MeV subpicosecond electron single bunch was generated with the L-band linac of Osaka University. The coherent transition radiation emitted from the subpicosecond single bunch was observed at wavelengths from 100 to 700 {mu}m. The intensity was 7.9x10{sup 9} times higher than that of the incoherent transition radiation obtained by calculation. The length of the compressed electron bunch was evaluated to be roughly 50 fs (rms) from the analysis of the spectra of the transition radiation. The coherent transition radiation has high enough intensity to be applied to pulse radiolysis as a pulsed light source.

  1. Knee implant imaging at 3 Tesla using high-bandwidth radiofrequency pulses.

    Science.gov (United States)

    Bachschmidt, Theresa J; Sutter, Reto; Jakob, Peter M; Pfirrmann, Christian W A; Nittka, Mathias

    2015-06-01

    To investigate the impact of high-bandwidth radiofrequency (RF) pulses used in turbo spin echo (TSE) sequences or combined with slice encoding for metal artifact correction (SEMAC) on artifact reduction at 3 Tesla in the knee in the presence of metal. Local transmit/receive coils feature increased maximum B1 amplitude, reduced SAR exposition and thus enable the application of high-bandwidth RF pulses. Susceptibility-induced through-plane distortion scales inversely with the RF bandwidth and the view angle, hence blurring, increases for higher RF bandwidths, when SEMAC is used. These effects were assessed for a phantom containing a total knee arthroplasty. TSE and SEMAC sequences with conventional and high RF bandwidths and different contrasts were tested on eight patients with different types of implants. To realize scan times of 7 to 9 min, SEMAC was always applied with eight slice-encoding steps and distortion was rated by two radiologists. A local transmit/receive knee coil enables the use of an RF bandwidth of 4 kHz compared with 850 Hz in conventional sequences. Phantom scans confirm the relation of RF bandwidth and through-plane distortion, which can be reduced up to 79%, and demonstrate the increased blurring for high-bandwidth RF pulses. In average, artifacts in this RF mode are rated hardly visible for patients with joint arthroplasties, when eight SEMAC slice-encoding steps are applied, and for patients with titanium fixtures, when TSE is used. The application of high-bandwidth RF pulses by local transmit coils substantially reduces through-plane distortion artifacts at 3 Tesla. © 2014 Wiley Periodicals, Inc.

  2. Macro-grazer herbivory regulates seagrass response to pulse and press nutrient loading.

    Science.gov (United States)

    Ravaglioli, Chiara; Capocchi, Antonella; Fontanini, Debora; Mori, Giovanna; Nuccio, Caterina; Bulleri, Fabio

    2018-05-01

    Coastal ecosystems are exposed to multiple stressors. Predicting their outcomes is complicated by variations in their temporal regimes. Here, by means of a 16-month experiment, we investigated tolerance and resistance traits of Posidonia oceanica to herbivore damage under different regimes of nutrient loading. Chronic and pulse nutrient supply were combined with simulated fish herbivory, treated as a pulse stressor. At ambient nutrient levels, P. oceanica could cope with severe herbivory, likely through an increase in photosynthetic activity. Elevated nutrient levels, regardless of the temporal regime, negatively affected plant growth and increased leaf nutritional quality. This ultimately resulted in a reduction of plant biomass that was particularly severe under chronic fertilization. Our results suggest that both chronic and pulse nutrient loadings increase plant palatability to macro-grazers. Strategies for seagrass management should not be exclusively applied in areas exposed to chronic fertilization since even short-term nutrient pulses could alter seagrass meadows. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Pulsed power bibliography. Volume 1. Indices. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bemesderfer, J.; Druce, R.L.; Frantz, B.; Guenther, A.H.; Kristiansen, M.

    1983-08-01

    Pulsed power and high-voltage technologies are playing an ever increasing role in weapons' effects simulation, fusion power research, power distribution, materials processing and medical research. It is a rapidly expanding field of applied physics as evidenced by the growth in published literature. Three years ago, the Air Force Weapons Laboratory (AFWL) initiated a project to compile a computerized data base of pulsed power research papers. The data base is stored on our IBM System 2000. This AFWL Technical Report is the first release of the bibliography to date. It contains about 2,500 full bibliographic citations, original sources, availability, key words and abstract. There are three indices: Subject, Personal Author, and Corporate Author. There are 30 main subject headings, from Breakdown Studies to Switching. The indices are contained in Volume I.

  4. Erbium:ytterbium fiber-laser system delivering watt-level femtosecond pulses using divided pulse amplification

    Science.gov (United States)

    Herda, Robert; Zach, Armin

    2015-03-01

    We present an Erbium:Ytterbium codoped fiber-amplifer system based on Divided-Pulses-Amplification (DPA) for ultrashort pulses. The output from a saturable-absorber mode-locked polarization-maintaining (PM) fiber oscillator is amplified in a PM normal-dispersion Erbium-doped fiber. After this stage the pulses are positively chirped and have a duration of 2.0 ps at an average power of 93 mW. A stack of 5 birefringent Yttrium-Vanadate crystals divides these pulses 32 times. We amplify these pulses using a double-clad Erbium:Ytterbium codoped fiber pumped through a multimode fiber combiner. The pulses double pass the amplifier and recombine in the crystals using non-reciprocal polarization 90° rotation by a Faraday rotating mirror. Pulses with a duration of 144 fs are obtained after separation from the input beam using a polarizing beam splitter cube. These pulses have an average power of 1.85 W at a repetition rate of 80 MHz. The generation of femtosecond pulses directly from the amplifier was enabled by a positively chirped seed pulse, normally dispersive Yttrium-Vanadate crystals, and anomalously dispersive amplifier fibers. Efficient frequency doubling to 780 nm with an average power of 725 mW and a pulse duration of 156 fs is demonstrated. In summary we show a DPA setup that enables the generation of femtosecond pulses at watt-level at 1560 nm without the need for further external dechirping and demonstrate a good pulse quality by efficient frequency doubling. Due to the use of PM fiber components and a Faraday rotator the setup is environmentally stable.

  5. Low cost MATLAB-based pulse oximeter for deployment in research and development applications.

    Science.gov (United States)

    Shokouhian, M; Morling, R C S; Kale, I

    2013-01-01

    Problems such as motion artifact and effects of ambient lights have forced developers to design different signal processing techniques and algorithms to increase the reliability and accuracy of the conventional pulse oximeter device. To evaluate the robustness of these techniques, they are applied either to recorded data or are implemented on chip to be applied to real-time data. Recorded data is the most common method of evaluating however it is not as reliable as real-time measurements. On the other hand, hardware implementation can be both expensive and time consuming. This paper presents a low cost MATLAB-based pulse oximeter that can be used for rapid evaluation of newly developed signal processing techniques and algorithms. Flexibility to apply different signal processing techniques, providing both processed and unprocessed data along with low implementation cost are the important features of this design which makes it ideal for research and development purposes, as well as commercial, hospital and healthcare application.

  6. Control of π-Electron Rotations in Chiral Aromatic Molecules Using Intense Laser Pulses

    Science.gov (United States)

    Kanno, Manabu; Kono, Hirohiko; Fujimura, Yuichi

    Our recent theoretical studies on laser-induced π-electron rotations in chiral aromatic molecules are reviewed. π electrons of a chiral aromatic molecule can be rotated along its aromatic ring by a nonhelical, linearly polarized laser pulse. An ansa aromatic molecule with a six-membered ring, 2,5-dichloro[n](3,6) pyrazinophane, which belongs to a planar-chiral molecule group, and its simplified molecule 2,5-dichloropyrazine are taken as model molecules. Electron wavepacket simulations in the frozen-molecular-vibration approximation show that the initial direction of π-electron rotation depends on the polarization direction of a linearly polarized laser pulse applied. Consecutive unidirectional rotation can be achieved by applying a sequence of linearly polarized pump and dump pulses to prevent reverse rotation. Optimal control simulations of π-electron rotation show that another controlling factor for unidirectional rotation is the relative optical phase between the different frequency components of an incident pulse in addition to photon polarization direction. Effects of nonadiabatic coupling between π-electron rotation and molecular vibrations are also presented, where the constraints of the frozen approximation are removed. The angular momentum gradually decays mainly owing to nonadiabatic coupling, while the vibrational amplitudes greatly depend on their rotation direction. This suggests that the direction of π-electron rotation on an attosecond timescale can be identified by detecting femtosecond molecular vibrations.

  7. Preliminary study of steep pulse irreversible electroporation technology in human large cell lung cancer cell lines L9981

    Directory of Open Access Journals (Sweden)

    Song Zuoqing

    2013-01-01

    Full Text Available Our aim was to validate the effectiveness of steep pulse irreversible electroporation technology in human large cell lung cancer cells and to screen the optimal treatment of parameters for human large cell lung cancer cells. Three different sets of steep pulse therapy parameters were applied on the lung cancer cell line L9981. The cell line L9981 inhibition rate and proliferation capacity were detected by Vi-Cell vitality analysis and MTT. Steep pulsed irreversible electroporation technology for large cell lung cancer L9981 presents killing effects with various therapy parameters. The optimal treatment parameters are at a voltage amplitude of 2000V/cm, pulse width of 100μs, pulse frequency of 1 Hz, pulse number 10. With this group of parameters, steep pulse could have the best tumor cell-killing effects.

  8. SmartPET: Applying HPGe and pulse shape analysis to small-animal PET

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.J. [Department of Physics, University of Liverpool (United Kingdom)], E-mail: rjc@ns.ph.liv.ac.uk; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Grint, A.N.; Mather, A.R.; Nolan, P.J.; Scraggs, D.P.; Turk, G. [Department of Physics, University of Liverpool (United Kingdom); Hall, C.J.; Lazarus, I. [CCLRC Daresbury Laboratory, Warrington, Cheshire (United Kingdom); Berry, A.; Beveridge, T.; Gillam, J.; Lewis, R.A. [School of Physics and Materials Engineering, Monash University, Melbourne (Australia)

    2007-08-21

    The SmartPET project is the development of a prototype small-animal imaging system based on the use of Hyperpure Germanium (HPGe) detectors. The use of digital electronics and application of Pulse Shape Analysis (PSA) techniques provide fine spatial resolution, while the excellent intrinsic energy resolution of HPGe detectors makes the system ideal for multi-nuclide imaging. As a result, the SmartPET system has the potential to function as a dual modality imager, operating as a dual-head Positron Emission Tomography (PET) camera or in a Compton Camera configuration for Single Photon Emission Computed Tomography (SPECT) imaging. In this paper, we discuss how the use of simple PSA techniques greatly improves the position sensitivity of the detector yielding improved spatial resolution in reconstructed images. The PSA methods presented have been validated by comparison to data from high-precision scanning of the detectors. Results from this analysis are presented along with initial images from the SmartPET system, which demonstrates the impact of these techniques on PET images.

  9. A program to calculate pulse transmission responses through transversely isotropic media

    Science.gov (United States)

    Li, Wei; Schmitt, Douglas R.; Zou, Changchun; Chen, Xiwei

    2018-05-01

    We provide a program (AOTI2D) to model responses of ultrasonic pulse transmission measurements through arbitrarily oriented transversely isotropic rocks. The program is built with the distributed point source method that treats the transducers as a series of point sources. The response of each point source is calculated according to the ray-tracing theory of elastic plane waves. The program could offer basic wave parameters including phase and group velocities, polarization, anisotropic reflection coefficients and directivity patterns, and model the wave fields, static wave beam, and the observed signals for pulse transmission measurements considering the material's elastic stiffnesses and orientations, sample dimensions, and the size and positions of the transmitters and the receivers. The program could be applied to exhibit the ultrasonic beam behaviors in anisotropic media, such as the skew and diffraction of ultrasonic beams, and analyze its effect on pulse transmission measurements. The program would be a useful tool to help design the experimental configuration and interpret the results of ultrasonic pulse transmission measurements through either isotropic or transversely isotropic rock samples.

  10. Pulse shape simulation for drift chambers with long drift paths

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, H J

    1987-09-15

    A detailed Monte Carlo program for the simulation of drift chamber pulse shapes is described. It has been applied to the case of a jet chamber with drift paths up to 24 cm. Results on pulse shapes and corresponding spatial and double hit resolution are discussed and compared to recent measurements of the OPAL central detector jet chamber full size prototype and to measurements of a small 20-wire prototype, which was designed to study the pulse shapes generated by tracks in a magnetic field. Simulated pulse shapes and spatial resolutions agree well with the experimental data. Clustering, saturation and wire crosstalk are shown to be necessary ingredients in the simulation. A deterioration in resolution due to the influence of crosstalk signals is correctly reproduced, as well as the cancellation of this effect by a hardwired first and second neighbour crosstalk compensation. The simulation correctly describes the asymmetry in spatial resolution observed for tracks with positive or negative inclination against the wire plane when a magnetic field is present. The effect of saturation on double hit resolution is found to be small. The magnetic field is predicted to improve the double hit resolution.

  11. Pulse shape simulation for drift chambers with long drift paths

    International Nuclear Information System (INIS)

    Mayer, H.J.

    1987-01-01

    A detailed Monte Carlo program for the simulation of drift chamber pulse shapes is described. It has been applied to the case of a jet chamber with drift paths up to 24 cm. Results on pulse shapes and corresponding spatial and double hit resolution are discussed and compared to recent measurements of the OPAL central detector jet chamber full size prototype and to measurements of a small 20-wire prototype, which was designed to study the pulse shapes generated by tracks in a magnetic field. Simulated pulse shapes and spatial resolutions agree well with the experimental data. Clustering, saturation and wire crosstalk are shown to be necessary ingredients in the simulation. A deterioration in resolution due to the influence of crosstalk signals is correctly reproduced, as well as the cancellation of this effect by a hardwired first and second neighbour crosstalk compensation. The simulation correctly describes the asymmetry in spatial resolution observed for tracks with positive or negative inclination against the wire plane when a magnetic field is present. The effect of saturation on double hit resolution is found to be small. The magnetic field is predicted to improve the double hit resolution. (orig.)

  12. Characteristics of 2-heptanone decomposition using nanosecond pulsed discharge plasma

    Science.gov (United States)

    Nakase, Yuki; Fukuchi, Yuichi; Wang, Douyan; Namihira, Takao; Akiyama, Hidenori; Kumamoto University Collaboration

    2015-09-01

    Volatile organic compounds (VOC) evaporate at room temperature. VOCs typically consist of toluene, benzene and ethyl acetate, which are used in cosmetics, dry cleaning products and paints. Exposure to elevated levels of VOCs may cause headaches, dizziness and irritation to the eyes, nose, and throat; they may also cause environmental problems such as air pollution, acid rain and photochemical smog. As such, they require prompt removal. Nanosecond pulsed discharge is a kind of non-thermal plasma consisting of a streamer discharge. Several advantages of nanosecond pulsed discharge plasma have been demonstrated by studies of our research group, including low heat loss, highly energetic electron generation, and the production of highly active radicals. These advantages have shown ns pulsed discharge plasma capable of higher energy efficiency for processes, such as air purification, wastewater treatment and ozone generation. In this research, nanosecond pulsed discharge plasma was employed to treat 2-heptanone, which is a volatile organic compound type and presents several harmful effects. Characteristics of treatment dependent on applied voltage, gas flow rate and input energy density were investigated. Furthermore, byproducts generated by treatment were also investigated.

  13. DogPulse

    DEFF Research Database (Denmark)

    Skovgaard, Christoffer; Thomsen, Josephine Raun; Verdezoto, Nervo

    2015-01-01

    This paper presents DogPulse, an ambient awareness system to support the coordination of dog walking among family members at home. DogPulse augments a dog collar and leash set to activate an ambient shape-changing lamp and visualize the last time the dog was taken for a walk. The lamp gradually...... changes its form and pulsates its lights in order to keep the family members aware of the dog walking activity. We report the iterative prototyping of DogPulse, its implementation and its preliminary evaluation. Based on our initial findings, we present the limitations and lessons learned as well...

  14. Perspective pulse devices and automatic systems fire explosive protection of the radioactive infected objects

    International Nuclear Information System (INIS)

    Zakhmatov, V.D.; Kozhemyakin, A.S.; Pyatova, A.V.

    1999-01-01

    The suppression of fires in Chernobyl zone has shown complete unprofitable of traditional fire engineering to work on is radioactive of the infected district. In this connection as effective ways extinguishive in object 'Shelter' alongside with known traditional means and the systems offer to apply more perspective pulse systems, based on use energy small practically safe charges of gunpowder or explosive substances, in particular. Pulse explosive cone extinguishive of the device various sizes

  15. The effects of pulsed low-level EM fields on memory processes

    International Nuclear Information System (INIS)

    Maier, R.; Greter, S.E.; Schaller, G.; Hommel, G.

    2004-01-01

    This pilot study examined the effects of pulsed electromagnetic fields on the organism in humans. Using a psychophysiological test, the changes in memory performance were tested in 33 volunteers both at rest and upon exposure to pulsed fields (GSM standard). To evaluate the cognition performance, we applied a psycho-physiological test paradigm (auditory discrimination task) based on the ''Order Threshold''. The investigation took place in an acoustically-shielded room, and the volunteers were requested to relax on a stretcher. The exposure to electromagnetic fields took place during this relaxation time (30 minutes). Measurements were performed before and after the exposure phase, and compared to a reference situation of change in vigilance. Exposure to pulsed fields resulted in reduced mental-regeneration performance in 21 of the 33 test participants, as reflected by an increase of order threshold. (orig.)

  16. Influence of pulsed plasma streams processing on wear behavior of steels in different friction conditions

    International Nuclear Information System (INIS)

    Bandura, A.N.; Byrka, O.V.; Tereshin, V.I.; Bovda, A.M.; Tortika, A.S.

    2000-01-01

    Pulsed plasma streams processing was applied for surface modification of industrial steel samples. Different types of wear tests (pin-on-disk,flat-on-flat, abrasive,cavitation) were carried out for samples irradiated by pulsed nitrogen plasma streams. There was achieved essential decrease of wear and tear of processed surfaces of all kinds of steels including previously thermally quenched ones. Obtained results are of importance for both determination of optimal regimes of plasma streams processing and the most resulting use of pulsed plasma streams for technology purpose, i.e. for identification of wear modes and optimal friction conditions for steels processed by plasma streams

  17. Theory of spin and lattice wave dynamics excited by focused laser pulses

    Science.gov (United States)

    Shen, Ka; Bauer, Gerrit E. W.

    2018-06-01

    We develop a theory of spin wave dynamics excited by ultrafast focused laser pulses in a magnetic film. We take into account both the volume and surface spin wave modes in the presence of applied, dipolar and magnetic anisotropy fields and include the dependence on laser spot exposure size and magnetic damping. We show that the sound waves generated by local heating by an ultrafast focused laser pulse can excite a wide spectrum of spin waves (on top of a dominant magnon–phonon contribution). Good agreement with recent experiments supports the validity of the model.

  18. The energy spectrum of the 'runaway' electrons from a high voltage pulsed discharge

    International Nuclear Information System (INIS)

    Ruset, C.

    1985-01-01

    Some experimental results are presented on the influence of the pressure upon the energy spectrum of the runaway electrons generated into a pulsed high voltage argon discharge. These electrons enter a state of continuous acceleration between two collisions with rapidly increasing free path. The applied discharge current varies from 10 to 300 A, the pulse time is about 800 ns. Relativistic effects are taken into consideration. Theoretical explanation is based on the pnenomenon of electron spreading on plasma oscillations. (D.Gy.)

  19. Growth inhibition and recovery of Lemna gibba after pulse exposure to sulfonylurea herbicides

    DEFF Research Database (Denmark)

    Rosenkrantz, Rikke Tjørnhøj; Baun, Anders; Kusk, Kresten Ole

    2013-01-01

    The exposure of non-target aquatic organisms to pesticides often happens as short-term, high exposure events (pulses) and effects of these must be addressed in the current regulation in the EU. It is, however, questionable whether the effects of pulse exposures are adequately covered by the stand...... tests. The approach of this study enables experimentally based comparisons between observations of effects between the two exposure regimes. We propose that results obtained in this way be applied in effect assessments for intermittent releases....

  20. Optimization methods of pulse-to-pulse alignment using femtosecond pulse laser based on temporal coherence function for practical distance measurement

    Science.gov (United States)

    Liu, Yang; Yang, Linghui; Guo, Yin; Lin, Jiarui; Cui, Pengfei; Zhu, Jigui

    2018-02-01

    An interferometer technique based on temporal coherence function of femtosecond pulses is demonstrated for practical distance measurement. Here, the pulse-to-pulse alignment is analyzed for large delay distance measurement. Firstly, a temporal coherence function model between two femtosecond pulses is developed in the time domain for the dispersive unbalanced Michelson interferometer. Then, according to this model, the fringes analysis and the envelope extraction process are discussed. Meanwhile, optimization methods of pulse-to-pulse alignment for practical long distance measurement are presented. The order of the curve fitting and the selection of points for envelope extraction are analyzed. Furthermore, an averaging method based on the symmetry of the coherence function is demonstrated. Finally, the performance of the proposed methods is evaluated in the absolute distance measurement of 20 μ m with path length difference of 9 m. The improvement of standard deviation in experimental results shows that these approaches have the potential for practical distance measurement.

  1. Effect of magnetic pulses on Caribbean spiny lobsters: implications for magnetoreception.

    Science.gov (United States)

    Ernst, David A; Lohmann, Kenneth J

    2016-06-15

    The Caribbean spiny lobster, Panulirus argus, is a migratory crustacean that uses Earth's magnetic field as a navigational cue, but how these lobsters detect magnetic fields is not known. Magnetic material thought to be magnetite has previously been detected in spiny lobsters, but its role in magnetoreception, if any, remains unclear. As a first step toward investigating whether lobsters might have magnetite-based magnetoreceptors, we subjected lobsters to strong, pulsed magnetic fields capable of reversing the magnetic dipole moment of biogenic magnetite crystals. Lobsters were subjected to a single pulse directed from posterior to anterior and either: (1) parallel to the horizontal component of the geomagnetic field (i.e. toward magnetic north); or (2) antiparallel to the horizontal field (i.e. toward magnetic south). An additional control group was handled but not subjected to a magnetic pulse. After treatment, each lobster was tethered in a water-filled arena located within 200 m of the capture location and allowed to walk in any direction. Control lobsters walked in seemingly random directions and were not significantly oriented as a group. In contrast, the two groups exposed to pulsed fields were significantly oriented in approximately opposite directions. Lobsters subjected to a magnetic pulse applied parallel to the geomagnetic horizontal component walked westward; those subjected to a pulse directed antiparallel to the geomagnetic horizontal component oriented approximately northeast. The finding that a magnetic pulse alters subsequent orientation behavior is consistent with the hypothesis that magnetoreception in spiny lobsters is based at least partly on magnetite-based magnetoreceptors. © 2016. Published by The Company of Biologists Ltd.

  2. Additional ion bombardment in PVD processes generated by a superimposed pulse bias voltage

    International Nuclear Information System (INIS)

    Olbrich, W.; Kampschulte, G.

    1993-01-01

    The superimposed pulse bias voltage is a tool to apply an additional ion bombardment during deposition in physical vapour deposition (PVD) processes. It is generated by the combination of a d.c. ground voltage and a higher d.c. pulse voltage. Using a superimposed pulse bias voltage in ion-assisted PVD processes effects an additional all-around ion bombardment on the surface with ions of higher energy. Both metal and reactive or inert-gas ions are accelerated to the surface. The basic principles and important characteristics of this newly developed process such as ion fluxes or deposition rates are shown. Because of pulsing the high voltage, the deposition temperature does not increase much. The adhesion, structure, morphology and internal stresses are influenced by these additional ion impacts. The columnar growth of the deposited films could be suppressed by using the superimposed pulse bias voltage without increasing the deposition temperature. Different metallizations (Cr and Cu) produced by arc and sputter ion plating are investigated. Carbon-fibre-reinforced epoxy are coated with PVD copper films for further treatment in electrochemical processes. (orig.)

  3. Pulse frequency in pulsed brachytherapy based on tissue repair kinetics

    International Nuclear Information System (INIS)

    Sminia, Peter; Schneider, Christoph J.; Koedooder, Kees; Tienhoven, Geertjan van; Blank, Leo E.C.M.; Gonzalez Gonzalez, Dionisio

    1998-01-01

    Purpose: Investigation of normal tissue sparing in pulsed brachytherapy (PB) relative to continuous low-dose rate irradiation (CLDR) by adjusting pulse frequency based on tissue repair characteristics. Method: Using the linear quadratic model, the relative effectiveness (RE) of a 20 Gy boost was calculated for tissue with an α/β ratio ranging from 2 to 10 Gy and a half-time of sublethal damage repair between 0.1 and 3 h. The boost dose was considered to be delivered either in a number of pulses varying from 2 to 25, or continuously at a dose rate of 0.50, 0.80, or 1.20 Gy/h. Results: The RE of 20 Gy was found to be identical for PB in 25 pulses of 0.80 Gy each h and CLDR delivered at 0.80 Gy/h for any α/β value and for a repair half-time > 0.75 h. When normal tissue repair half-times are assumed to be longer than tumor repair half-times, normal tissue sparing can be obtained, within the restriction of a fixed overall treatment time, with higher dose per pulse and longer period time (time elapsed between start of pulse n and start of pulse n + 1). An optimum relative normal tissue sparing larger than 10% was found with 4 pulses of 5 Gy every 8 h. Hence, a therapeutic gain might be obtained when changing from CLDR to PB by adjusting the physical dose in such a way that the biological dose on the tumor is maintained. The normal tissue-sparing phenomenon can be explained by an increase in RE with longer period time for tissue with high α/β ratio and fast or intermediate repair half-time, and the RE for tissue with low α/β ratio and long repair half-time remains almost constant. Conclusion: Within the benchmark of the LQ model, advantage in normal tissue-sparing is expected when matching the pulse frequency to the repair kinetics of the normal tissue exposed. A period time longer than 1 h may lead to a reduction of late normal tissue complications. This theoretical advantage emphasizes the need for better knowledge of human tissue-repair kinetics

  4. Development of high-current pulsed heavy-ion-beam technology for applications to materials processing

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hiroaki; Ochiai, Yasushi; Masugata, Katsumi [University of Toyama, Toyama (Japan)

    2011-12-15

    Development of intense pulsed heavy ion beam technology for applications to materials processing is described. We have developed a magnetically insulated ion diode for the generation of intense pulsed metallic ion beams in which a vacuum arc plasma gun is used as the ion source. When the ion diode was successfully operated at a diode voltage of 220 kV and a diode current of 10 kA, an ion beam with an ion current density of >200 A/cm{sup 2} and a pulse duration of 40 ns was obtained. The ion composition was evaluated by using a Thomson parabola spectrometer, and the ion beam consisted of aluminum ions (Al{sup (1-3)+}) with an energy of 140 - 740 keV and protons with an energy of 160 - 190 keV; the purity was estimated to be 89%, which was much higher than that of the pulsed ion beam produced in a conventional ion diode. The development of a bipolar pulse accelerator (BPA) was reported in order to improve the purity of intense pulsed ion beams. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. When a bipolar pulse with a voltage of {+-}90 kV and a pulse duration of about 65 ns was applied to the drift tube of the BPA, the ion beam with an ion current density of 2 A/cm{sup 2} and a pulse duration of 30 ns was observed 25 mm downstream from the cathode surface, which suggested bipolar pulse acceleration.

  5. Controlling output pulse and prepulse in a resonant microwave pulse compressor

    International Nuclear Information System (INIS)

    Shlapakovski, A.; Artemenko, S.; Chumerin, P.; Yushkov, Yu.

    2013-01-01

    A resonant microwave pulse compressor with a waveguide H-plane-tee-based energy extraction unit was studied in terms of its capability to produce output pulses that comprise a low-power long-duration (prepulse) and a high-power short-duration part. The application of such combined pulses with widely variable prepulse and high-power pulse power and energy ratios is of interest in the research area of electronic hardware vulnerability. The characteristics of output radiation pulses are controlled by the variation of the H-plane tee transition attenuation at the stage of microwave energy storage in the compressor cavity. Results of theoretical estimations of the parameters tuning range and experimental investigations of the prototype S-band compressor (1.5 MW, 12 ns output pulse; ∼13.2 dB gain) are presented. The achievable maximum in the prepulse power is found to be about half the power of the primary microwave source. It has been shown that the energy of the prepulse becomes comparable with that of the short-duration (nanosecond) pulse, while the power of the latter decreases insignificantly. The possible range of variation of the prepulse power and energy can be as wide as 40 dB. In the experiments, the prepulse level control within the range of ∼10 dB was demonstrated.

  6. Radiation-Induced Chemical Dynamics in Ar Clusters Exposed to Strong X-Ray Pulses

    Science.gov (United States)

    Kumagai, Yoshiaki; Jurek, Zoltan; Xu, Weiqing; Fukuzawa, Hironobu; Motomura, Koji; Iablonskyi, Denys; Nagaya, Kiyonobu; Wada, Shin-ichi; Mondal, Subhendu; Tachibana, Tetsuya; Ito, Yuta; Sakai, Tsukasa; Matsunami, Kenji; Nishiyama, Toshiyuki; Umemoto, Takayuki; Nicolas, Christophe; Miron, Catalin; Togashi, Tadashi; Ogawa, Kanade; Owada, Shigeki; Tono, Kensuke; Yabashi, Makina; Son, Sang-Kil; Ziaja, Beata; Santra, Robin; Ueda, Kiyoshi

    2018-06-01

    We show that electron and ion spectroscopy reveals the details of the oligomer formation in Ar clusters exposed to an x-ray free electron laser (XFEL) pulse, i.e., chemical dynamics triggered by x rays. With guidance from a dedicated molecular dynamics simulation tool, we find that van der Waals bonding, the oligomer formation mechanism, and charge transfer among the cluster constituents significantly affect ionization dynamics induced by an XFEL pulse of moderate fluence. Our results clearly demonstrate that XFEL pulses can be used not only to "damage and destroy" molecular assemblies but also to modify and transform their molecular structure. The accuracy of the predictions obtained makes it possible to apply the cluster spectroscopy, in connection with the respective simulations, for estimation of the XFEL pulse fluence in the fluence regime below single-atom multiple-photon absorption, which is hardly accessible with other diagnostic tools.

  7. Magnetic pulse compression circuits for plasma devices

    Energy Technology Data Exchange (ETDEWEB)

    Georgescu, N; Zoita, V; Presura, R [Inst. of Physics and Technology of Radiation Devices, Bucharest (Romania)

    1997-12-31

    Two magnetic pulse compression circuits (MPCC), for two different plasma devices, are presented. The first is a 20 J/pulse, 3-stage circuit designed to trigger a low pressure discharge. The circuit has 16-18 kV working voltage, and 200 nF in each stage. The saturable inductors are realized with toroidal 25 {mu}m strip-wound cores, made of a Fe-Ni alloy, with 1.5 T saturation induction. The total magnetic volume is around 290 cm{sup 3}. By using a 25 kV/1 A thyratron as a primary switch, the time compression is from 3.5 {mu}s to 450 ns, in a short-circuit load. The second magnetic pulser is a 200 J/pulse circuit, designed to drive a high average power plasma focus soft X-ray source, for X-ray microlithography as the main application. The 3-stage pulser should supply a maximum load current of 100 kA with a rise-time of 250 - 300 ns. The maximum pulse voltage applied on the plasma discharge chamber is around 20 - 25 kV. The three saturable inductors in the circuit are made of toroidal strip-wound cores with METGLAS 2605 CO amorphous alloy as the magnetic material. The total, optimized mass of the magnetic material is 34 kg. The maximum repetition rate is limited at 100 Hz by the thyratron used in the first stage of the circuit, the driver supplying to the load about 20 kW average power. (author). 1 tab., 3 figs., 3 refs.

  8. Dynamics of traveling reaction pulses

    International Nuclear Information System (INIS)

    Dovzhenko, A. Yu.; Rumanov, E. N.

    2007-01-01

    The growth of activator losses is accompanied by the decay of a traveling reaction pulse. In a ring reactor, this propagation threshold is present simultaneously with a threshold related to the ring diameter. The results of numerical experiments with pulses of an exothermal reaction reveal the transition from pulse propagation to a homogeneous hot regime, established regimes with periodic variations of the pulse velocity, and oscillatory decay of the pulse. When the medium becomes 'bistable' as a result of the variation in parameters, this factor does not prevent the propagation of pulses, but leads to changes in the pulse structure

  9. Applications of ultrashort shaped pulses in microscopy and for controlling chemical reactions

    International Nuclear Information System (INIS)

    Lozovoy, Vadim V.; Andegeko, Yair; Zhu Xin; Dantus, Marcos

    2008-01-01

    This article presents a new perspective on laser control based on insights into the effect of spectral phase on nonlinear optical processes. Gaining this understanding requires the systematic evaluation of the molecular response as a function of a series of pre-defined accurately shaped laser pulses. The effort required is rewarded with robust, highly reproducible, results. This approach is illustrated by results on selective two-photon excitation microscopy of biological samples, where higher signal and less photobleaching damage are achieved by accurate phase measurement and elimination of high-order phase distortions from the ultrashort laser pulses. A similar systematic approach applied to laser control of gas phase chemical reactions reveals surprising general trends. Molecular fragmentation pattern is found to be dependent on phase shaping. Differently shaped pulses with similar pulse duration have been found to produce similar fragmentation patterns. This implies that any single parameter that is proportional to the pulse duration, such as second harmonic generation intensity, allows us to predict the molecular fragmentation pattern within the experimental noise. This finding, is illustrated here for a series of isomers. Bond selectivity, coherent photochemistry and their applications are discussed in light of results from these systematic studies

  10. Near threshold pulse shape discrimination techniques in scintillating CsI(Tl) crystals

    International Nuclear Information System (INIS)

    Wu, S.C.; Yue, Q.; Lai, W.P.; Li, H.B.; Li, J.; Lin, S.T.; Liu, Y.; Singh, V.; Wang, M.Z.; Wong, H.T.; Xin, B.; Zhou, Z.Y.

    2004-01-01

    There are recent interests with CsI(Tl) scintillating crystals for Dark Matter experiments. The key merit is the capability to differentiate nuclear recoil (nr) signatures from the background β/γ-events due to ambient radioactivity on the basis of their different pulse shapes. One of the major experimental challenges is to perform such pulse shape analysis in the statistics-limited domain where the light output is close to the detection threshold. Using data derived from measurements with low-energy γ's and nuclear recoils due to neutron elastic scatterings, it was verified that the pulse shapes between β/γ-events are different. Several methods of pulse shape discrimination (PSD) are studied, and their relative merits are compared. Full digitization of the pulse shapes is crucial to achieve good discrimination. Advanced software techniques with mean time, neural network and likelihood ratios give rise to satisfactory performance, and are superior to the conventional Double Charge method commonly applied at higher energies. PSD becomes effective starting at a light yield of about 20 photo-electrons. This corresponds to a detection threshold of about 5 keV electron-equivalence energy, or 40-50 keV recoil kinetic energy, in realistic experiments

  11. Towards optimized suppression of dephasing in systems subject to pulse timing constraints

    International Nuclear Information System (INIS)

    Hodgson, Thomas E.; D'Amico, Irene; Viola, Lorenza

    2010-01-01

    We investigate the effectiveness of different dynamical decoupling protocols for storage of a single qubit in the presence of a purely dephasing bosonic bath, with emphasis on comparing quantum coherence preservation under uniform versus nonuniform delay times between pulses. In the limit of instantaneous bit-flip pulses, this is accomplished by establishing a different representation of the controlled qubit evolution, where the decoherence behavior after an arbitrary number of pulses is directly expressed in terms of the uncontrolled decoherence function. In particular, analytical expressions are obtained for approximation of the long- and short-term coherence behavior for both Ohmic and supra-Ohmic environments. By focusing on the realistic case of pure dephasing in an excitonic qubit, we quantitatively assess the impact of physical constraints on achievable pulse separations, and show that little advantage of high-level decoupling schemes based on concatenated or optimal design may be expected if pulses cannot be applied sufficiently fast. In such constrained scenarios, we demonstrate how simple modifications of repeated periodic-echo protocols can offer significantly improved coherence preservation in realistic parameter regimes. We expect similar conclusions to be relevant to other constrained qubit devices exposed to quantum or classical phase noise.

  12. The influence of pulse duration on the stress levels in ablation of ceramics: A finite element study

    International Nuclear Information System (INIS)

    Verde, A. Vila; Ramos, Marta M.D.

    2006-01-01

    We present a finite element model to investigate the dynamic thermal and mechanical response of ceramic materials to pulsed infrared radiation. The model was applied to the specific problem of determining the influence of the pulse duration on the stress levels reached in human dental enamel irradiated by a CO 2 laser at 10.6 μm with pulse durations between 0.1 and 100 μs and sub-ablative fluence. Our results indicate that short pulses with durations much larger than the characteristic acoustic relaxation time of the material can still cause high stress transients at the irradiated site, and indicate that pulse durations of the order of 10 μs may be more adequate both for enamel surface modification and for ablation than pulse durations up to 1 μs. The model presented here can easily be modified to investigate the dynamic response of ceramic materials to mid-infrared radiation and help determine optimal pulse durations for specific procedures

  13. P-wave pulse analysis to retrieve source and propagation effects in the case of Vrancea earthquakes

    International Nuclear Information System (INIS)

    Popescu, E.; Popa, M.; Placinta, A.; Grecu, B.; Radulian, M.

    2004-01-01

    Seismic source parameters and attenuation structure properties are obtained from the first P-wave pulse analysis and empirical Green's function deconvolution. The P pulse characteristics are combined effects of source and path properties. To reproduce the real source and structure parameters it is crucial to apply a method able to distinguish between the different factors affecting the observed seismograms. For example the empirical Green's function deconvolution method (Hartzell, 1978) allows the retrieval of the apparent source time function or source spectrum corrected for path, site and instrumental effects. The apparent source duration is given by the width of the deconvoluted source pulse and is directly related to the source dimension. Once the source time function established, next we can extract the parameters related to path effects. The difference between the pulse recorded at a given station and the source pulse obtained by deconvolution is a measure of the attenuation along the path from focus to the station. On the other hand, the pulse width variations with azimuth depend critically on the fault plane orientation and source directivity. In favourable circumstances (high signal/noise ratio, high resolution and station coverage), the method of analysis proposed in this paper allows the constraint of the rupture plane among the two nodal planes characterizing the fault plane solution, even for small events. P-wave pulse analysis was applied for 25 Vrancea earthquakes recorded between 1999 and 2003 by the Romanian local network to determine source parameters and attenuation properties. Our results outline high-stress drop seismic energy release with relatively simple rupture process for the considered events and strong lateral variation of attenuation of seismic waves across Carpathians Arc. (authors)

  14. River water remediation using pulsed corona, pulsed spark or ozonation

    Energy Technology Data Exchange (ETDEWEB)

    Izdebski, T.; Dors, M. [Polish Academy of Sciences, Szewalski Inst. of Fluid Flow Machiney, Fiszera (Poland). Centre for Plasma and Laser Engineering; Mizeraczyk, J. [Polish Academy of Sciences, Szewalski Inst. of Fluid Flow Machiney, Fiszera (Poland). Centre for Plasma and Laser Engineering; Gdynia Maritime Univ., Morska (Poland). Dept. of Marine Electronics

    2010-07-01

    The most common reason for epidemic formation is the pollution of surface and drinking water by wastewater bacteria. Pathogenic microorganisms that form the largest part of this are fecal bacteria, such as escherichia coli (E. coli). Wastewater treatment plants reduce the amount of the fecal bacteria by 1-3 orders of magnitude, depending on the initial number of bacteria. There is a lack of data on waste and drinking water purification by the electrohydraulic discharges method, which causes the destruction and inactivation of viruses, yeast, and bacteria. This paper investigated river water cleaning from microorganisms using pulsed corona, spark discharge and ozonization. The paper discussed the experimental setup and results. It was concluded that ozonization is the most efficient method of water disinfection as compared with pulsed spark and pulsed corona discharges. The pulsed spark discharge in water was capable of killing all microorganism similarly to ozonization, but with much lower energy efficiency. The pulsed corona discharge was found to be the less effective method of water disinfection. 21 refs., 4 figs.

  15. Genetic algorithms applied to nonlinear and complex domains; TOPICAL

    International Nuclear Information System (INIS)

    Barash, D; Woodin, A E

    1999-01-01

    The dissertation, titled ''Genetic Algorithms Applied to Nonlinear and Complex Domains'', describes and then applies a new class of powerful search algorithms (GAS) to certain domains. GAS are capable of solving complex and nonlinear problems where many parameters interact to produce a ''final'' result such as the optimization of the laser pulse in the interaction of an atom with an intense laser field. GAS can very efficiently locate the global maximum by searching parameter space in problems which are unsuitable for a search using traditional methods. In particular, the dissertation contains new scientific findings in two areas. First, the dissertation examines the interaction of an ultra-intense short laser pulse with atoms. GAS are used to find the optimal frequency for stabilizing atoms in the ionization process. This leads to a new theoretical formulation, to explain what is happening during the ionization process and how the electron is responding to finite (real-life) laser pulse shapes. It is shown that the dynamics of the process can be very sensitive to the ramp of the pulse at high frequencies. The new theory which is formulated, also uses a novel concept (known as the (t,t') method) to numerically solve the time-dependent Schrodinger equation Second, the dissertation also examines the use of GAS in modeling decision making problems. It compares GAS with traditional techniques to solve a class of problems known as Markov Decision Processes. The conclusion of the dissertation should give a clear idea of where GAS are applicable, especially in the physical sciences, in problems which are nonlinear and complex, i.e. difficult to analyze by other means

  16. The Underlying Mechanism of Preventing Facial Nerve Stimulation by Triphasic Pulse Stimulation in Cochlear Implant Users Assessed With Objective Measure.

    Science.gov (United States)

    Bahmer, Andreas; Baumann, Uwe

    2016-10-01

    Triphasic pulse stimulation prevents from facial nerve stimulation (FNS) because of a different electromyographic input-output function compared with biphasic pulse stimulation. FNS is sometimes observed in cochlear implant users as an unwanted side effect of electrical stimulation of the auditory nerve. The common stimulation applied in current cochlear implant consists of biphasic pulse patterns. Two common clinical remedies to prevent unpleasant FNS caused by activation of certain electrodes are to expand their pulse phase duration or simply deactivate them. Unfortunately, in some patients these methods do not provide sufficient FNS prevention. In these patients triphasic pulse can prevent from FNS. The underlying mechanism is yet unclear. Electromyographic (EMG) recordings of muscles innervated by the facial nerve (musculi orbicularis ori and oculi) were applied to quantitatively assess the effects on FNS. Triphasic and biphasic fitting maps were compared in four subjects with severe FNS. Based on the recordings, a model is presented which intends to explain the beneficial effects of triphasic pulse application. Triphasic stimulation provided by fitting of an OPUS 2 speech processor device. For three patients, EMG was successfully recorded depending on stimulation level up to uncomfortable and intolerable FNS stimulation as upper boarder. The obtained EMG recordings demonstrated high individual variability. However, a difference between the input-output function for biphasic and triphasic pulse stimulation was visually observable. Compared with standard biphasic stimulation, triphasic pulses require higher stimulation levels to elicit an equal amount of FNS, as reflected by EMG amplitudes. In addition, we assume a steeper slope of the input-output function for biphasic pulse stimulation compared with triphasic pulse stimulation. Triphasic pulse stimulation prevents from FNS because of a smaller gradient of EMG input-output function compared with biphasic pulse

  17. Physical model of reactor pulse

    International Nuclear Information System (INIS)

    Petrovic, A.; Ravnik, M.

    2004-01-01

    Pulse experiments have been performed at J. Stefan Institute TRIGA reactor since 1991. In total, more than 130 pulses have been performed. Extensive experimental information on the pulse physical characteristics has been accumulated. Fuchs-Hansen adiabatic model has been used for predicting and analysing the pulse parameters. The model is based on point kinetics equation, neglecting the delayed neutrons and assuming constant inserted reactivity in form of step function. Deficiencies of the Fuchs-Hansen model and systematic experimental errors have been observed and analysed. Recently, the pulse model was improved by including the delayed neutrons and time dependence of inserted reactivity. The results explain the observed non-linearity of the pulse energy for high pulses due to finite time of pulse rod withdrawal and the contribution of the delayed neutrons after the prompt part of the pulse. The results of the improved model are in good agreement with experimental results. (author)

  18. Simulations of piezoelectric pressure sensor for radial artery pulse measurement

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Abhay B. [Department of Electronic Science, University of Pune, Pune 411 007 (India); Kalange, Ashok E. [Department of Electronic Science, University of Pune, Pune 411 007 (India); Tuljaram Chaturchand College, Baramati 413 102 (India); Bodas, Dhananjay, E-mail: dhananjay.bodas@gmail.co [Center for Nanobio Sciences, Agharkar Research Institute, Pune 411 004 (India); Gangal, S.A. [Department of Electronic Science, University of Pune, Pune 411 007 (India)

    2010-04-15

    A radial artery pulse is used to diagnose human body constitution (Prakruti) in Ayurveda. A system consisting of piezoelectric sensor (22 mm x 12 mm), data acquisition card and LabView software was used to record the pulse data. The pulse obtained from the sensor was noisy, even though signal processing was done. Moreover due to large sized senor accurate measurements were not possible. Hence, a need was felt to develop a sensor of the size of the order of finger tip with a resonant frequency of the order of 1 Hz. A micromachined pressure sensor based on piezoelectric sensing mechanism was designed and simulated using CoventorWare. Simulations were carried out by varying dimensions of the sensor to optimize the resonant frequency, stresses and voltage generated as a function of applied pressure. All simulations were done with pressure ranging of 1-30 kPa, which is the range used by Ayurvedic practitioners for diagnosis. Preliminary work on fabrication of such a sensor was carried out successfully.

  19. Simulations of piezoelectric pressure sensor for radial artery pulse measurement

    International Nuclear Information System (INIS)

    Joshi, Abhay B.; Kalange, Ashok E.; Bodas, Dhananjay; Gangal, S.A.

    2010-01-01

    A radial artery pulse is used to diagnose human body constitution (Prakruti) in Ayurveda. A system consisting of piezoelectric sensor (22 mm x 12 mm), data acquisition card and LabView software was used to record the pulse data. The pulse obtained from the sensor was noisy, even though signal processing was done. Moreover due to large sized senor accurate measurements were not possible. Hence, a need was felt to develop a sensor of the size of the order of finger tip with a resonant frequency of the order of 1 Hz. A micromachined pressure sensor based on piezoelectric sensing mechanism was designed and simulated using CoventorWare. Simulations were carried out by varying dimensions of the sensor to optimize the resonant frequency, stresses and voltage generated as a function of applied pressure. All simulations were done with pressure ranging of 1-30 kPa, which is the range used by Ayurvedic practitioners for diagnosis. Preliminary work on fabrication of such a sensor was carried out successfully.

  20. The characterisation of magnetic pigment dispersions using pulsed magnetic fields

    International Nuclear Information System (INIS)

    Blackwell, J.J.; O'Grady, K.; Nelson, N.K.; Sharrock, M.P.

    2003-01-01

    In this work, we describe the application of pulsed field magnetometry techniques for the characterisation of magnetic pigment dispersions. Magnetic pigment dispersions are important technological materials as in one form they are the material which are used to coat base film in order to make magnetic recording tape. It is these materials that have been evaluated. In this work, we describe the use of two pulsed field magnetometers, one being a low-field instrument with a maximum field of 750 Oe and the other a high-field instrument with a maximum field of 4.1 kOe. Using inductive sensing, the magnetisation is monitored in real time as the pulse is applied. We find that using these techniques we can successfully monitor the progress of the dispersion process, the effects of different resin systems and the effect of different processing conditions. We find that our results are consistent with rheological and other measurements