WorldWideScience

Sample records for strip vertex detector

  1. Vertex detectors

    International Nuclear Information System (INIS)

    Lueth, V.

    1992-07-01

    The purpose of a vertex detector is to measure position and angles of charged particle tracks to sufficient precision so as to be able to separate tracks originating from decay vertices from those produced at the interaction vertex. Such measurements are interesting because they permit the detection of weakly decaying particles with lifetimes down to 10 -13 s, among them the τ lepton and charm and beauty hadrons. These two lectures are intended to introduce the reader to the different techniques for the detection of secondary vertices that have been developed over the past decades. The first lecture includes a brief introduction to the methods used to detect secondary vertices and to estimate particle lifetimes. It describes the traditional technologies, based on photographic recording in emulsions and on film of bubble chambers, and introduces fast electronic registration of signals derived from scintillating fibers, drift chambers and gaseous micro-strip chambers. The second lecture is devoted to solid state detectors. It begins with a brief introduction into semiconductor devices, and then describes the application of large arrays of strip and pixel diodes for charged particle tracking. These lectures can only serve as an introduction the topic of vertex detectors. Time and space do not allow for an in-depth coverage of many of the interesting aspects of vertex detector design and operation

  2. Status of the silicon strip vertex detector for the Mark II experiment at the SLC

    International Nuclear Information System (INIS)

    Adolphsen, C.; Gratta, G.; Litke, A.

    1987-10-01

    We are constructing a silicon strip vertex detector to be used in the Mark II detector in the study of Z 0 decays at the SLAC Linear Collider. The status of the project, including the performance of the individual silicon detector modules, is presented. 6 refs., 8 figs., 2 tabs

  3. Proposed method of assembly for the BCD silicon strip vertex detector modules

    International Nuclear Information System (INIS)

    Lindenmeyer, C.

    1989-01-01

    The BCD Silicon strip Vertex Detector is constructed of 10 identical central region modules and 18 similar forward region modules. This memo describes a method of assembling these modules from individual silicon wafers. Each wafer is fitted with associated front end electronics and cables and has been tested to insure that only good wafers reach the final assembly stage. 5 figs

  4. Evaluation of the data of the HERA-B vertex detector with regards to the physical properties of the applied silicon strip counters

    International Nuclear Information System (INIS)

    Wagner, W.

    1999-01-01

    The HERA-B experiment at the DESY laboratory in Hamburg is dedicated to measuring CP-violation in the decays of neutral B-mesons. The primary purpose of the experiment in the measurement of the CP-asymmetry in the decay channel B 0 → J/ψK S 0 . In order to identify the B-mesons and to determine the time-dependent asymmetry, the decay length anti Δ anti l of the B-mesons must be measured to an accuracy of σ Δl ≤ 500 μm. To achieve this aim, HERA-B has a vertex detector which is based on double-sided silicon strip detectors mounted in a Roman pot system. One important specification of the vertex detector is to allow independent tracking with an efficiency above 95%. Therefore, it is required to select hits on the strip detectors with an efficiency above 99% and optimize the suppression of noise. This thesis describes a detailed investigation of the behaviour of the silicon strip detectors used in the vertex detector. The first part presents measurements performed in the laboratory using a tunable infrared dye laser to simulate the passage of charged particles through the detector. This includes measurements of the charge division between adjacent readout strips and mapping of the detector depletion. The results of the measurements agree excellently with the predictions from a detailed model calculation carried out in this thesis. The second part of the thesis the analysis of data recorded with the HERA-B vertex detector during the commissioning run of spring 1999. The analysis focusses on the investigation of cluster shapes and cluster sizes. In particular, the dependence of these distributions from the selection cuts is analyzed. Additionally, the differences between the two detector designs used, p-spray and p-stop detectors with intermediate strip or without respectively, are worked out. The measured distributions agree very well with the predictions from a model calculation taking all relevant detector parameters into account. The results of the data

  5. Readout of silicon strip detectors

    CERN Document Server

    Dabrowski, W

    2003-01-01

    Various architectural and technological options of readout electronics for silicon strip detectors in vertex and tracking applications are discussed briefly. The ABCD3T ASIC for the readout of silicon strip detectors in the ATLAS semiconductor tracker is presented. The architecture of the chip, some design issues and radiation effects are discussed.

  6. Design and development of a vertex reconstruction for the CMS (Compact Muon Solenoid) data. Study of gaseous and silicon micro-strips detectors (MSGC)

    International Nuclear Information System (INIS)

    Moreau, St.

    2002-12-01

    The work presented in this thesis has contributed to the development of the Compact Muon Solenoid detector (CMS) that will be installed at the future Large Hadron Collider (LHC) which will start running in summer 2007. This report is organised in three parts: the study of gaseous detectors and silicon micro-strips detectors, and a development of a software for the reconstruction and analysis of CMS data in the framework of ORCA. First, the micro-strips gaseous detectors (MSGC) study was on the ultimate critical irradiation test before their substitution in the CMS tracker. This test showed a really small number of lost anodes and a stable signal to noise ratio. This test proved that the described MSGC fulfill all the requirements to be integrated in the CMS tracker. The following contribution described a study of silicon micro-strips detectors and its electronics exposed to a 40 MHz bunched LHC like beam. These tests indicated a good behaviour of the data acquisition and control system. The signal to noise ratio, the bunch crossing identification and the cluster finding efficiency had also be analysed. The last study concern the design and the development of an ORCA algorithm dedicates to secondary vertex reconstruction. This iterative algorithm aims to be use for b tagging. This part analyse also primary vertex reconstruction in events without and with pile up. (author)

  7. LCFI vertex detector design studies

    Energy Technology Data Exchange (ETDEWEB)

    Milstene, C.; Sopczak, A.

    2005-12-01

    A vertex detector concept of the Linear Collider Flavor Identification (LCFI) collaboration, which studies CCD detectors for quark flavor identification, has been implemented in simulations for c-quark tagging in scalar top studies. The production and decay of scalar top quarks (stops) is particularly interesting for the development of the vertex detector as only two c-quarks and missing energy (from undetected neutralinos) are produced for light stops. Previous studies investigated the vertex detector design in scenarios with large mass differences between stop and neutralino, corresponding to large visible energy in the detector. In this study we investigate the tagging performance dependence on the vertex detector design in a scenario with small visible energy for the International Linear Collider (ILC).

  8. The Belle Silicon Vertex Detector

    CERN Document Server

    Kawasaki, T

    2002-01-01

    The Belle Silicon Vertex Detector (SVD) started working from June 1999 at the KEK B-factory experiment. The main purpose of the SVD is to make precise measurements of the B decay vertex position, which are essential for the observation of CP asymmetries. Excellent vertex resolution and a good detection efficiency are required for the SVD. In the present paper, the performance of Belle SVD is reviewed. The upgrade plan for the SVD2, which is under construction and will be installed in summer 2002, is also presented.

  9. The vertex detector for the Lepton/Photon collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J.P.; Boissevain, J.G.; Fox, D.; Hecke, H. van; Jacak, B.V.; Kapustinsky, J.S.; Leitch, M.J.; McGaughey, P.L.; Moss, J.M.; Sondheim, W.E. [Los Alamos National Lab., NM (United States)

    1991-12-31

    The conceptual design of the vertex detector for the Lepton/Photon Collaboration at RHIC is described, including simulations of its expected performance. The design consists of two con- centric layers of single-sided Si strips. The expected performance as a multiplicity detector and in measuring the pseudo-rapidity ({nu}) distribution is discussed as well as the expected vertex finding efficiency and accuracy. Various options which could be used to reduce the cost of the detector are also discussed.

  10. The vertex detector for the Lepton/Photon Collaboration

    International Nuclear Information System (INIS)

    Sullivan, J.P.; Boissevain, J.G.; Fox, D.; van Hecke, H.; Jacak, B.V.; Kapustinsky, J.S.; Leitch, M.J.; McGaughey, P.L.; Moss, J.M.; Sondheim, W.E.

    1991-01-01

    The conceptual design of the vertex detector for the Lepton/Photon Collaboration at RHIC is described, including simulations of its expected performance. The design consists of two concentric layers of single-sided Si strips. The expected performance as a multiplicity detector and in measuring the pseudo-rapidity η distribution is discussed as well as the expected vertex finding efficiency and accuracy. Various options which could be used to reduce the cost of the detector are also discussed

  11. Aleph silicon microstrip vertex detector

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    This microstrip vertex locator was located at the heart of the ALEPH experiment, one of the four experiments at the Large Electron-Positron (LEP) collider. In the experiments at CERN's LEP, which ran from 1989 to 2000, modern silicon microvertex detectors, such as those used at ALEPH, monitored the production of short-lived particles close to the beam pipe.

  12. STAR Vertex Detector Upgrade Development

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, Leo C.; Matis, Howard S.; Stezelberger, Thorsten; Vu,Chinh Q.; Wieman, Howard; Szelezniak, Michal; Sun, Xiangming

    2008-01-28

    We report on the development and prototyping efforts undertaken with the goal of producing a micro-vertex detector for the STAR experiment at the RHIC accelerator at BNL. We present the basic detector requirements and show a sensor development path, conceptual mechanical design candidates and readout architecture. Prototyping and beam test results with current generation MimoSTAR-2 sensors and a readout system featuring FPGA based on-the-fly hit finding and data sparsification are also presented.

  13. STAR Vertex Detector Upgrade Development

    International Nuclear Information System (INIS)

    Greiner, Leo C.; Matis, Howard S.; Stezelberger, Thorsten; Vu, Chinh Q.; Wieman, Howard; Szelezniak, Michal; Sun, Xiangming

    2008-01-01

    We report on the development and prototyping efforts undertaken with the goal of producing a micro-vertex detector for the STAR experiment at the RHIC accelerator at BNL. We present the basic detector requirements and show a sensor development path, conceptual mechanical design candidates and readout architecture. Prototyping and beam test results with current generation MimoSTAR-2 sensors and a readout system featuring FPGA based on-the-fly hit finding and data sparsification are also presented

  14. The Belle II Silicon Vertex Detector

    International Nuclear Information System (INIS)

    Friedl, M.; Ackermann, K.; Aihara, H.; Aziz, T.; Bergauer, T.; Bozek, A.; Campbell, A.; Dingfelder, J.; Drasal, Z.; Frankenberger, A.; Gadow, K.; Gfall, I.; Haba, J.; Hara, K.; Hara, T.; Higuchi, T.; Himori, S.; Irmler, C.; Ishikawa, A.; Joo, C.

    2013-01-01

    The KEKB machine and the Belle experiment in Tsukuba (Japan) are now undergoing an upgrade, leading to an ultimate luminosity of 8×10 35 cm −2 s −1 in order to measure rare decays in the B system with high statistics. The previous vertex detector cannot cope with this 40-fold increase of luminosity and thus needs to be replaced. Belle II will be equipped with a two-layer Pixel Detector surrounding the beam pipe, and four layers of double-sided silicon strip sensors at higher radii than the old detector. The Silicon Vertex Detector (SVD) will have a total sensitive area of 1.13m 2 and 223,744 channels—twice as many as its predecessor. All silicon sensors will be made from 150 mm wafers in order to maximize their size and thus to reduce the relative contribution of the support structure. The forward part has slanted sensors of trapezoidal shape to improve the measurement precision and to minimize the amount of material as seen by particles from the vertex. Fast-shaping front-end amplifiers will be used in conjunction with an online hit time reconstruction algorithm in order to reduce the occupancy to the level of a few percent at most. A novel “Origami” chip-on-sensor scheme is used to minimize both the distance between strips and amplifier (thus reducing the electronic noise) as well as the overall material budget. This report gives an overview on the status of the Belle II SVD and its components, including sensors, front-end detector ladders, mechanics, cooling and the readout electronics

  15. The Belle II Silicon Vertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Friedl, M., E-mail: markus.friedl@oeaw.ac.at [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Ackermann, K. [MPI Munich, Föhringer Ring 6, 80805 München (Germany); Aihara, H. [University of Tokyo, Department of Physics, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Aziz, T. [Tata Institute of Fundamental Research, Experimental High Energy Physics Group, Homi Bhabha Road, Mumbai 400 005 (India); Bergauer, T. [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Bozek, A. [Institute of Nuclear Physics, Division of Particle Physics and Astrophysics, ul. Radzikowskiego 152, 31 342 Krakow (Poland); Campbell, A. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Dingfelder, J. [University of Bonn, Department of Physics and Astronomy, Nussallee 12, 53115 Bonn (Germany); Drasal, Z. [Charles University, Institute of Particle and Nuclear Physics, Ke Karlovu 3, 121 16 Praha 2 (Czech Republic); Frankenberger, A. [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Gadow, K. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Gfall, I. [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Haba, J.; Hara, K.; Hara, T. [KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Higuchi, T. [University of Tokyo, Kavli Institute for Physics and Mathematics of the Universe, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Himori, S. [Tohoku University, Department of Physics, Aoba Aramaki Aoba-ku, Sendai 980-8578 (Japan); Irmler, C. [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Ishikawa, A. [Tohoku University, Department of Physics, Aoba Aramaki Aoba-ku, Sendai 980-8578 (Japan); Joo, C. [Seoul National University, High Energy Physics Laboratory, 25-107 Shinlim-dong, Kwanak-gu, Seoul 151-742 (Korea, Republic of); and others

    2013-12-21

    The KEKB machine and the Belle experiment in Tsukuba (Japan) are now undergoing an upgrade, leading to an ultimate luminosity of 8×10{sup 35}cm{sup −2}s{sup −1} in order to measure rare decays in the B system with high statistics. The previous vertex detector cannot cope with this 40-fold increase of luminosity and thus needs to be replaced. Belle II will be equipped with a two-layer Pixel Detector surrounding the beam pipe, and four layers of double-sided silicon strip sensors at higher radii than the old detector. The Silicon Vertex Detector (SVD) will have a total sensitive area of 1.13m{sup 2} and 223,744 channels—twice as many as its predecessor. All silicon sensors will be made from 150 mm wafers in order to maximize their size and thus to reduce the relative contribution of the support structure. The forward part has slanted sensors of trapezoidal shape to improve the measurement precision and to minimize the amount of material as seen by particles from the vertex. Fast-shaping front-end amplifiers will be used in conjunction with an online hit time reconstruction algorithm in order to reduce the occupancy to the level of a few percent at most. A novel “Origami” chip-on-sensor scheme is used to minimize both the distance between strips and amplifier (thus reducing the electronic noise) as well as the overall material budget. This report gives an overview on the status of the Belle II SVD and its components, including sensors, front-end detector ladders, mechanics, cooling and the readout electronics.

  16. CCD-based vertex detectors

    CERN Document Server

    Damerell, C J S

    2005-01-01

    Over the past 20 years, CCD-based vertex detectors have been used to construct some of the most precise 'tracking microscopes' in particle physics. They were initially used by the ACCMOR collaboration for fixed target experiments in CERN, where they enabled the lifetimes of some of the shortest-lived charm particles to be measured precisely. The migration to collider experiments was accomplished in the SLD experiment, where the original 120 Mpixel detector was later upgraded to one with 307 Mpixels. This detector was used in a range of physics studies which exceeded the capability of the LEP detectors, including the most precise limit to date on the Bs mixing parameter. This success, and the high background hit densities that will inevitably be encountered at the future TeV-scale linear collider, have established the need for a silicon pixel-based vertex detector at this machine. The technical options have now been broadened to include a wide range of possible silicon imaging technologies as well as CCDs (mon...

  17. The PHENIX Forward Silicon Vertex Detector

    International Nuclear Information System (INIS)

    Aidala, C.; Anaya, L.; Anderssen, E.; Bambaugh, A.; Barron, A.; Boissevain, J.G.; Bok, J.; Boose, S.; Brooks, M.L.; Butsyk, S.; Cepeda, M.; Chacon, P.; Chacon, S.; Chavez, L.; Cote, T.; D'Agostino, C.; Datta, A.; DeBlasio, K.; DelMonte, L.; Desmond, E.J.

    2014-01-01

    A new silicon detector has been developed to provide the PHENIX experiment with precise charged particle tracking at forward and backward rapidity. The Forward Silicon Vertex Tracker (FVTX) was installed in PHENIX prior to the 2012 run period of the Relativistic Heavy Ion Collider (RHIC). The FVTX is composed of two annular endcaps, each with four stations of silicon mini-strip sensors, covering a rapidity range of 1.2<|η|<2.2 that closely matches the two existing PHENIX muon arms. Each station consists of 48 individual silicon sensors, each of which contains two columns of mini-strips with 75 μm pitch in the radial direction and lengths in the ϕ direction varying from 3.4 mm at the inner radius to 11.5 mm at the outer radius. The FVTX has approximately 0.54 million strips in each endcap. These are read out with FPHX chips, developed in collaboration with Fermilab, which are wire bonded directly to the mini-strips. The maximum strip occupancy reached in central Au–Au collisions is approximately 2.8%. The precision tracking provided by this device makes the identification of muons from secondary vertices away from the primary event vertex possible. The expected distance of closest approach (DCA) resolution of 200 μm or better for particles with a transverse momentum of 5 GeV/c will allow identification of muons from relatively long-lived particles, such as D and B mesons, through their broader DCA distributions

  18. The design and performance of the ZEUS micro vertex detector

    International Nuclear Information System (INIS)

    Polini, A.; Brock, I.; Goers, S.

    2007-08-01

    In order to extend the tracking acceptance, to improve the primary and secondary vertex reconstruction and thus enhancing the tagging capabilities for short lived particles, the ZEUS experiment at the HERA Collider at DESY installed a silicon strip vertex detector. The barrel part of the detector is a 63 cm long cylinder with silicon sensors arranged around an elliptical beampipe. The forward part consists of four circular shaped disks. In total just over 200k channels are read out using 2.9 m 2 of silicon. In this report a detailed overview of the design and construction of the detector is given and the performance of the completed system is reviewed. (orig.)

  19. Design and development of a vertex reconstruction for the CMS (Compact Muon Solenoid) data. Study of gaseous and silicon micro-strips detectors (MSGC); Conception d'un algorithme de reconstruction de vertex pour les donnees de CMS. Etude de detecteurs gazeux (MSGC) et silicium a micropistes

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, St

    2002-12-01

    The work presented in this thesis has contributed to the development of the Compact Muon Solenoid detector (CMS) that will be installed at the future Large Hadron Collider (LHC) which will start running in summer 2007. This report is organised in three parts: the study of gaseous detectors and silicon micro-strips detectors, and a development of a software for the reconstruction and analysis of CMS data in the framework of ORCA. First, the micro-strips gaseous detectors (MSGC) study was on the ultimate critical irradiation test before their substitution in the CMS tracker. This test showed a really small number of lost anodes and a stable signal to noise ratio. This test proved that the described MSGC fulfill all the requirements to be integrated in the CMS tracker. The following contribution described a study of silicon micro-strips detectors and its electronics exposed to a 40 MHz bunched LHC like beam. These tests indicated a good behaviour of the data acquisition and control system. The signal to noise ratio, the bunch crossing identification and the cluster finding efficiency had also be analysed. The last study concern the design and the development of an ORCA algorithm dedicates to secondary vertex reconstruction. This iterative algorithm aims to be use for b tagging. This part analyse also primary vertex reconstruction in events without and with pile up. (author)

  20. ALICE Silicon Strip Detector

    CERN Multimedia

    Nooren, G

    2013-01-01

    The Silicon Strip Detector (SSD) constitutes the two outermost layers of the Inner Tracking System (ITS) of the ALICE Experiment. The SSD plays a crucial role in the tracking of the particles produced in the collisions connecting the tracks from the external detectors (Time Projection Chamber) to the ITS. The SSD also contributes to the particle identification through the measurement of their energy loss.

  1. Silicon strip detectors for the LHCb experiment

    OpenAIRE

    Steinkamp, O

    2005-01-01

    The LHCb experiment is a single-arm magnetic spectrometer. Silicon micro-strip detectors are employed in a significant fraction of the tracking system. The Vertex Locator consists of 21 detector stations that operate inside the LHC beam pipe and are separated from the beam vacuum by a thin aluminium foil. The Silicon Tracker is a large-surface silicon micro-strip detector that covers the full acceptance of the experiment in a single tracking station upstream of the spectrometer magnet and the...

  2. Vertex Detector Performance for CLICdet, FCCee & FCChh.

    CERN Document Server

    Rasmussen, Peter Winkel

    2017-01-01

    The performance of the vertex detectors planned for CLICdet, FCCee & FCChh was tested in this project. This was done my studying the figure of merit for a vertex detector which is the transverse impact parameter resolution $\\sigma(d_0)$. This was carried out by simulating single $\\mu^-$ at different energies, polar angles, $\\theta$ with a uniform distribution in the azimuthal angle $\\phi$. The events were reconstructed and the distribution $\\Delta(d_0) = d_{0,reco}-d_{0,true}$ was fitted with a Gaussian function where the width of the function resulted in $\\sigma(d_0)$. The effect of material budget and fit function on this was also tested.

  3. Vertex Reconstruction for AEGIS’ FACT Detector

    CERN Document Server

    Themistokleous, Neofytos

    2017-01-01

    My project dealt with the development of a vertex reconstruction technique to discriminate antihydrogen from background signals in the AEGIS apparatus. It involved the creation of a Toy Monte-Carlo to simulate particle annihilation events, and a vertex reconstruction utility based on the Bayesian theory of probability. The first results based on 107 generated events with single track in the detector are encouraging. For such events, the algorithm can reconstruct the z-coordinate accurately , while for the r-coordinate the result is less accurate.

  4. Design and Tests of the Silicon Sensors for the ZEUS Micro Vertex Detector

    OpenAIRE

    Dannheim, D.; Koetz, U.; Coldewey, C.; Fretwurst, E.; Garfagnini, A.; Klanner, R.; Martens, J.; Koffeman, E.; Tiecke, H.; Carlin, R.

    2002-01-01

    To fully exploit the HERA-II upgrade,the ZEUS experiment has installed a Micro Vertex Detector (MVD) using n-type, single-sided, silicon micro-strip sensors with capacitive charge division. The sensors have a readout pitch of 120 micrometers, with five intermediate strips (20 micrometer strip pitch). The designs of the silicon sensors and of the test structures used to verify the technological parameters, are presented. Results on the electrical measurements are discussed. A total of 1123 sen...

  5. The ZEUS vertex detector: Design and prototype

    International Nuclear Information System (INIS)

    Alvisi, C.; Anzivino, G.; Arzarello, F.; Barbagli, G.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, G.; Bruni, P.; Camerini, U.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Ciralli, F.; Contin, A.; Costa, M.; D'Auria, S.; Del Papa, C.; De Pasquale, S.; Fiori, F.; Forte, A.; Frasconi, F.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Lisowski, B.; Maccarrone, G.; Margotti, A.; Massam, T.; Nania, R.; O'Shea, V.; Palmonari, F.; Pelfer, P.; Pilastrini, R.; Qian, S.; Sartorelli, G.; Schioppa, M.; Susinno, G.; Timellini, R.; Zichichi, A.; Bologna Univ.; Cosenza Univ.; Florence Univ.; Istituto Nazionale di Fisica Nucleare, Bologna; Istituto Nazionale di Fisica Nucleare, Florence; Istituto Nazionale di Fisica Nucleare, Frascati; Consiglio Nazionale delle Ricerche, Florence

    1991-01-01

    A gas vertex detector, operated with dimethylether (DME) at atmospheric pressure, is presently being built for the ZEUS experiment at HERA. Its main design features, together with the performances of a prototype measured at various operating voltages, particle rates and geometrical conditions on a CERN Proton Synchrotron test beam, are presented. A spatial resolution down to 35 μm and an average wire efficiency of 96% have been achieved, for a 3 mm gas gap relative to each sense wire. (orig.)

  6. Performance of the Belle silicon vertex detector

    CERN Document Server

    Hazumi, M

    2001-01-01

    The performance of the Silicon Vertex Detector (SVD) in the Belle experiment at the KEK B factory is described. The resolution on the distance between B meson vertices is estimated to be 115 sub - sub 2 sub 6 sup + sup 2 sup 4 mu m, which is good enough for the precise measurement of the CP asymmetry in B decays. A plan for the upgrade of the SVD is also mentioned.

  7. The vertex detector of the UA2 experiment (a low mass self sustaining system of cylindrical multiwire proportional chambers)

    International Nuclear Information System (INIS)

    Dialinas, M.; Forget, J.; Geoffroy, D.; Jean, P.; Vergand, M.

    1983-07-01

    The construction of the cylindrical proportional strip chambers of the UA2 vertex detector is reported. The mechanical design, the engineering and the effective realization are described in detail. Possible improvements for the construction of such chambers are also given

  8. Developments in solid state vertex detectors

    International Nuclear Information System (INIS)

    Damerell, C.J.S.

    1984-12-01

    Since the discovery of the J/psi in November 1974, there has been a strong interest in the physics of particles containing higher-flavour quarks (charm, bottom, top, ...). High precision vertex detectors can be used to identify the decay products of parent particles which have lifetimes of the order 10 -13 s. The paper surveys the progress which is being made in developing silicon detectors with the necessary tracking precision (< approx. 5 μm) to be used for this purpose in fixed target experiments and also in colliders such as SLC and LEP. (author)

  9. Prototyping the CBM Micro Vertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Koziel, Michal [University of Frankfurt, Frankfurt am Main (Germany); Collaboration: CBM-MVD-Collaboration

    2013-07-01

    For the reconstruction of Open Charm Hadrons with the CBM experiment a Micro Vertex Detector (MVD) with an excellent resolution of the secondary decay vertex (< 70 μm along the beam axis) is required. To achieve this vertex resolution a material budget of a few 0.1% X0 is mandatory for the individual detector stations positioned downstream in close vicinity to the target. To further reduce the multiple scattering the MVD operates in vacuum. The need of prototyping and characterizing the CBM-MVD motivated the construction of an advanced device - a beam telescope - giving the opportunity to exercise the following aspects: handling and integration of ultra-thin CMOS sensors on advanced materials like CVD diamond, double sided sensor assembly for ultra-precise tracking, cooling, scalable readout and slow control, development of data analysis framework and first steps towards implementation of tracking algorithms into a FPGA-based hardware. This group report aims to summarize the activity towards fabrication of the CBM-MVD prototype.

  10. The LHCb Vertex Locator (VELO) Pixel Detector Upgrade

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00536755

    2017-01-01

    The LHCb experiment is designed to perform high-precision measurements of CP violation and the decays of beauty and charm hadrons at the Large Hadron Collider (LHC) at CERN. There is a planned upgrade during Long Shutdown 2 (LS2), expected in 2019, which will allow the detector to run at higher luminosities by transforming the entire readout to a trigger-less system. This will include a substantial upgrade of the Vertex Locator (VELO), the silicon tracker that surrounds the LHCb interaction region. The VELO is moving from silicon strip technology to hybrid pixel sensors, where silicon sensors are bonded to VeloPix ASICs. Sensor prototypes have undergone rigorous testing using the Timepix3 Telescope at the SPS, CERN. The main components of the upgrade are summarised and testbeam results presented.

  11. The silicon vertex detector of the Belle II experiment

    Science.gov (United States)

    Friedl, Markus; Bergauer, Thomas; Gfall, Immanuel; Irmler, Christian; Valentan, Manfred

    2011-02-01

    After 10 years of successful operation, the Belle experiment at KEK (Tsukuba, Japan) will be completed in 2010. Thereafter, a major upgrade of the KEK-B machine is foreseen until 2014, aiming at a final luminosity of 8×10 35 cm -2 s -1, which is about 40 times higher than the present peak value. Consequently, also the Belle experiment needs to be changed and the Silicon Vertex Detector (SVD) in particular will be completely replaced as it already operates close to its limits in the present system. The future SVD (a.k.a. SuperSVD) will consist of four layers of double-sided silicon strip detectors like the present one, but at larger radii, because it will be complemented by a two-layer pixel detector as the innermost sensing device. The SuperSVD will be entirely composed of silicon sensors made from 6 in. wafers read out by APV25 front-end chips that were originally developed for the CMS experiment at the LHC. Several years of R&D effort led to innovations such as the Origami chip-on-sensor concept and readout electronics with hit time finding which were successfully demonstrated on prototypes. These features will be included in the final system which is presently being designed. This paper will give an overview of the SuperSVD and present results from prototype tests ranging from detector modules to back-end electronics.

  12. The silicon vertex detector of the Belle II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Friedl, Markus, E-mail: friedl@hephy.a [Institute of High Energy Physics, Nikolsdorfergasse 18, A-1050 Vienna (Austria); Bergauer, Thomas; Gfall, Immanuel; Irmler, Christian; Valentan, Manfred [Institute of High Energy Physics, Nikolsdorfergasse 18, A-1050 Vienna (Austria)

    2011-02-01

    After 10 years of successful operation, the Belle experiment at KEK (Tsukuba, Japan) will be completed in 2010. Thereafter, a major upgrade of the KEK-B machine is foreseen until 2014, aiming at a final luminosity of 8x10{sup 35} cm{sup -2} s{sup -1}, which is about 40 times higher than the present peak value. Consequently, also the Belle experiment needs to be changed and the Silicon Vertex Detector (SVD) in particular will be completely replaced as it already operates close to its limits in the present system. The future SVD (a.k.a. SuperSVD) will consist of four layers of double-sided silicon strip detectors like the present one, but at larger radii, because it will be complemented by a two-layer pixel detector as the innermost sensing device. The SuperSVD will be entirely composed of silicon sensors made from 6 in. wafers read out by APV25 front-end chips that were originally developed for the CMS experiment at the LHC. Several years of R and D effort led to innovations such as the Origami chip-on-sensor concept and readout electronics with hit time finding which were successfully demonstrated on prototypes. These features will be included in the final system which is presently being designed. This paper will give an overview of the SuperSVD and present results from prototype tests ranging from detector modules to back-end electronics.

  13. The silicon vertex detector of the Belle II experiment

    International Nuclear Information System (INIS)

    Friedl, Markus; Bergauer, Thomas; Gfall, Immanuel; Irmler, Christian; Valentan, Manfred

    2011-01-01

    After 10 years of successful operation, the Belle experiment at KEK (Tsukuba, Japan) will be completed in 2010. Thereafter, a major upgrade of the KEK-B machine is foreseen until 2014, aiming at a final luminosity of 8x10 35 cm -2 s -1 , which is about 40 times higher than the present peak value. Consequently, also the Belle experiment needs to be changed and the Silicon Vertex Detector (SVD) in particular will be completely replaced as it already operates close to its limits in the present system. The future SVD (a.k.a. SuperSVD) will consist of four layers of double-sided silicon strip detectors like the present one, but at larger radii, because it will be complemented by a two-layer pixel detector as the innermost sensing device. The SuperSVD will be entirely composed of silicon sensors made from 6 in. wafers read out by APV25 front-end chips that were originally developed for the CMS experiment at the LHC. Several years of R and D effort led to innovations such as the Origami chip-on-sensor concept and readout electronics with hit time finding which were successfully demonstrated on prototypes. These features will be included in the final system which is presently being designed. This paper will give an overview of the SuperSVD and present results from prototype tests ranging from detector modules to back-end electronics.

  14. Drift chamber vertex detectors for SLC/LEP

    International Nuclear Information System (INIS)

    Hayes, K.G.

    1987-03-01

    The short but measurable lifetimes of the b and c quarks and the tau lepton have motivated the development of high precision tracking detectors capable of providing information on the decay vertex topology of events containing these particles. This paper reviews the OPAL, L3, and MARK II experiments vertex drift chambers

  15. R&D Challenges of a CLIC Vertex Detector

    CERN Document Server

    van der Kraaij, E

    2010-01-01

    The Compact Linear Collider (CLIC) is a concept for an electron-positron collider with a center- of-mass energy of up to 3 TeV. Given the unprecedented experimental conditions at CLIC none of the technologies available today can fulfill all requirements set for the vertex detector. At the conference these conditions and the challenges they pose for the R&D of a CLIC vertex detector were presented.

  16. B and c quark exclusive decays with the vertex detector

    International Nuclear Information System (INIS)

    Hayes, K.

    1987-01-01

    Physics topics as diverse as the forward backward charge asymmetry to CP violation can be studied with the aid of heavy quark exclusive decays at the Z 0 . The Mark II with its vertex detector is sufficiently powerful to do a good job on many of these topics with reasonable acceptances and sample purities. Measurements of the absolute value of V/sub bu/ using B 0 → π + π - and of the B 0 lifetime using the decay B 0 → D + + l - + neutrals (D + → K - π + π + ) have been illustrated in this paper. Unfortunately, given the small branching ratios for most exclusive decay modes, large numbers of Z 0 decays are needed. From the standpoint of vertex detector performance, the Mark II vertex detector can fully reconstruct the vertex topology of nearly all strange particle decays, but in general can only tag the presence of secondary b and c quark decay vertices with good efficiency. High efficiency full vertex reconstruction of heavy quark decays requires an order of magnitude improvement in impact parameter resolution. Analyses which use vertex detector information to make vertex topology cuts for b and c quark decay will have good efficiency if significant impact parameters (δ/σ > 3) are required for only a few tracks. 7 references, 6 figures

  17. The Micro-Vertex-Detector for the P-bar ANDA experiment

    International Nuclear Information System (INIS)

    Zotti, Laura

    2013-01-01

    P-bar ANDA is a fixed target experiment that will be carried out at the future FAIR facility. P-bar ANDA will provide an excellent tool to address fundamental question in the field of hadronic physics, with a physic program that extends from the investigation of QCD (providing insight in the mechanisms of mass generation and confinement) to the test of fundamental symmetries. The Micro-Vertex-Detector located in the innermost part of the central tracking system will be composed by hybrid pixel and double-sided micro-strip silicon detectors. The Micro-Vertex-Detector will play an important role for the P-bar ANDA physics goals. The possibility to reconstruct the secondary vertices and the applicability of a precise D meson tagging is essential for the spectroscopy in the open charm sector and the charmonium mass region. To this aim the Micro-Vertex-Detector features a spatial resolution better than 100μm, a time resolution better than 20ns, a limited material budget, and a high data rate capability in a triggerless environment. An overview of the Micro-Vertex-Detector related to the physics goals will be presented.

  18. 3D silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Parzefall, Ulrich [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany)], E-mail: ulrich.parzefall@physik.uni-freiburg.de; Bates, Richard [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Dalla Betta, Gian-Franco [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Kuehn, Susanne [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Lozano, Manuel [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Pellegrini, Giulio [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Piemonte, Claudio; Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Szumlak, Tomasz [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Zoboli, Andrea [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)

    2009-06-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10{sup 15}N{sub eq}/cm{sup 2}, which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10{sup 15}N{sub eq}/cm{sup 2}. The tests were performed with three systems: a highly focused IR-laser with 5{mu}m spot size to make position-resolved scans of the charge collection efficiency, an Sr{sup 90}{beta}-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of

  19. Preliminary studies for the LHCb vertex detector vacuum system

    CERN Document Server

    Doets, M; Van Bakel, N; Van den Brand, J F J; van den Brand, Jo

    2000-01-01

    We lay down some general considerations which will serve as a starting point for design studies of a realistic LHCb vertex detector vacuum system. Based on these considerations, we propose a design strategy and identify issues to be further studied. In particular we try to outline some boundary conditions imposed by LHC and LHCb on the vacuum system. We discuss two possibilities for the LHCb vertex detector vacuum system. The preferred strategy uses a differentially pumped vacuum system with the silicon detectors separated from the beam line vacuum. Some estimations on static vacuum pressures and gas flows are presented.

  20. Simulations with the PANDA micro-vertex-detector

    International Nuclear Information System (INIS)

    Kliemt, Ralf

    2013-01-01

    The PANDA experiment will be built at the upcoming FAIR facility at GSI in Darmstadt, featuring antiproton-proton reactions hadron physics in a medium energy range. Charm physics will play an important role and therefore secondary decays relatively close to the interaction zone as well. The MVD will be the detector closest to these and will provide high-quality vertex position measurements. Alongside the detector layout and hardware development a detailed detector simulation and reconstruction software is required. This work contains the detailed description and the performance studies of the software developed for the MVD. Furthermore, vertexing tools are introduced and their performance is studied for the MVD.

  1. Simulations with the PANDA micro-vertex-detector

    Energy Technology Data Exchange (ETDEWEB)

    Kliemt, Ralf

    2013-07-17

    The PANDA experiment will be built at the upcoming FAIR facility at GSI in Darmstadt, featuring antiproton-proton reactions hadron physics in a medium energy range. Charm physics will play an important role and therefore secondary decays relatively close to the interaction zone as well. The MVD will be the detector closest to these and will provide high-quality vertex position measurements. Alongside the detector layout and hardware development a detailed detector simulation and reconstruction software is required. This work contains the detailed description and the performance studies of the software developed for the MVD. Furthermore, vertexing tools are introduced and their performance is studied for the MVD.

  2. The vertex detector trigger data model

    CERN Document Server

    Koratzinos, M

    1998-01-01

    The aim of this note is to discuss the various issues arising from Different choices in the design of the Vertex Trigger Data Model and define a Baseline model. The pros and cons of the different choices will be presented with A recommendation of which choice constitutes the baseline solution and with a suggestion of the work plan to arrive to the final solution. This note does not try and define the definite version of the data model. However it is important to have a first version at this stage of the Vertex Trigger project.

  3. Primary vertex reconstruction with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00286780

    2016-01-01

    Efficient and precise reconstruction of the primary vertex in a LHC collision is essential for determining the full kinematic properties of a hard-scatter event and of soft interactions as a measure of the amount of pile-up. The reconstruction of primary vertices in the busy, high pile-up environment of Run-2 of the LHC is a challenging task. The algorithms developed by the ATLAS experiments to reconstruct multiple vertices with small spatial separation are presented.

  4. The L3 vertex detector: design and performance

    Science.gov (United States)

    Akbari, H.; Alverson, G.; Anderhub, H.; Bao, J.; Behner, F.; Behrens, J.; Beissel, F.; Betev, B.; Biland, A.; Böhm, A.; Camps, C.; Chien, C.-Y.; Commichau, V.; Dieters, K.; Donat, A.; Djambazov, L.; Fisher, P.; Freibel, W.; Göttlicher, P.; Haensli, M.; Hangarter, K.; Hasan, A.; Heller, R.; Herten, U.; Hofer, H.; Glaubman, M.; Jung, H.; Leedom, I.; Leiste, R.; Liebmann, H.; Lohmann, W.; Neyer, C.; Newman, D.; MacDermott, M.; Maolinbay, M.; McNally, D.; Mnich, J.; Möller, M.; Orndorff, J.; Peng, Y.; Pevsner, A.; Pohl, M.; Quadleig, K.; Rahal-Callot, G.; Ren, D.; Reucroft, S.; Rieb, N.; Rinsche, U.; Röser, U.; Röhner, S.; Rose, J.; Schmitz, P.; Schulte, R.; Schultze, K.; Sens, J. C.; Spangler, J.; Spartiotis, C.; Spickermann, T.; Starosta, R.; Sultanov, G.; Suter, H.; Szcesny, H.; Taylor, L.; Tonisch, F.; Trowitzsch, G.; Ulbricht, J.; Viertel, G.; Vikas, P.; Virnich, H.; Vogt, H.; Von Gunten, H. P.; Waldmeier, S.; Weber, J.; Winands, T.; Zemp, P.

    1992-05-01

    The L3 vertex detector is comprised of the time expansion chamber (TEC), the Z-chamber and a layer of plastic scintillating fibers. The TEC has shown a high spatial resolution and an excellent multi-track reconstruction capability at LEP luminosity. The Z-chamber provides information about the z-coordinates of the tracks and the fibers are used for calibrating the drift velocity with a high precision. A description of the L3 vertex detector, its readout and data acquisition and its performance during the 1990 LEP running period is presented in this paper.

  5. First results of the Belle II Silicon Vertex Detector readout system

    International Nuclear Information System (INIS)

    Friedl, M; Bergauer, T; Buchsteiner, F; Irmler, C; Lettenbichler, J; Casarosa, G; Forti, F; Paoloni, E; Hara, K; Itoh, R; Nakamura, K R; Nakao, M; Suzuki, S Y; Higuchi, T; Konno, T; Liu, Z-A; Natkaniec, Z; Ostrowicz, W; Schlüter, T; Schnell, M

    2014-01-01

    At the heart of the Belle II experiment at KEK (Japan), there will be a Vertex Detector (VXD) composed of 2 layers of DEPFET pixels (PXD) and 4 layers of double-sided silicon strip detectors (SVD). The latter use the APV25 front-end chip — originally developed for CMS — which is reading out the inner part of the SVD sensors through the Origami chip-on-sensor concept, including a state-of-the-art two-phase CO 2 cooling. The whole system (including the full DAQ chain) was successfully tested in a beam at DESY in January 2014 and first results are presented here

  6. The MAPS based PXL vertex detector for the STAR experiment

    International Nuclear Information System (INIS)

    Contin, G.; Anderssen, E.; Greiner, L.; Silber, J.; Stezelberger, T.; Vu, C.; Wieman, H.; Woodmansee, S.; Schambach, J.; Sun, X.; Szelezniak, M.

    2015-01-01

    The Heavy Flavor Tracker (HFT) was installed in the STAR experiment for the 2014 heavy ion run of RHIC. Designed to improve the vertex resolution and extend the measurement capabilities in the heavy flavor domain, the HFT is composed of three different silicon detectors based on CMOS monolithic active pixels (MAPS), pads and strips respectively, arranged in four concentric cylinders close to the STAR interaction point. The two innermost HFT layers are placed at a radius of 2.7 and 8 cm from the beam line, respectively, and accommodate 400 ultra-thin (50 μ m) high resolution MAPS sensors arranged in 10-sensor ladders to cover a total silicon area of 0.16 m 2 . Each sensor includes a pixel array of 928 rows and 960 columns with a 20.7 μ m pixel pitch, providing a sensitive area of ∼ 3.8 cm 2 . The architecture is based on a column parallel readout with amplification and correlated double sampling inside each pixel. Each column is terminated with a high precision discriminator, is read out in a rolling shutter mode and the output is processed through an integrated zero suppression logic. The results are stored in two SRAM with ping-pong arrangement for a continuous readout. The sensor features 185.6 μ s readout time and 170 mW/cm 2 power dissipation. The detector is air-cooled, allowing a global material budget as low as 0.39% on the inner layer. A novel mechanical approach to detector insertion enables effective installation and integration of the pixel layers within an 8 hour shift during the on-going STAR run.In addition to a detailed description of the detector characteristics, the experience of the first months of data taking will be presented in this paper, with a particular focus on sensor threshold calibration, latch-up protection procedures and general system operations aimed at stabilizing the running conditions. Issues faced during the 2014 run will be discussed together with the implemented solutions. A preliminary analysis of the detector

  7. Vertex detectors: The state of the art and future prospects

    International Nuclear Information System (INIS)

    Damerell, C.J.S.

    1997-01-01

    We review the current status of vertex detectors (tracking microscopes for the recognition of charm and bottom particle decays). The reasons why silicon has become the dominant detector medium are explained. Energy loss mechanisms are reviewed, as well as the physics and technology of semiconductor devices, emphasizing the areas of most relevance for detectors. The main design options (microstrips and pixel devices, both CCD's and APS's) are discussed, as well as the issue of radiation damage, which probably implies the need to change to detector media beyond silicon for some vertexing applications. Finally, the evolution of key performance parameters over the past 15 years is reviewed, and an attempt is made to extrapolate to the likely performance of detectors working at the energy frontier ten years from now

  8. Vertex detectors: The state of the art and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Damerell, C.J.S. [Rutherford Appleton Laboratory, Didcot (United Kingdom)

    1997-01-01

    We review the current status of vertex detectors (tracking microscopes for the recognition of charm and bottom particle decays). The reasons why silicon has become the dominant detector medium are explained. Energy loss mechanisms are reviewed, as well as the physics and technology of semiconductor devices, emphasizing the areas of most relevance for detectors. The main design options (microstrips and pixel devices, both CCD`s and APS`s) are discussed, as well as the issue of radiation damage, which probably implies the need to change to detector media beyond silicon for some vertexing applications. Finally, the evolution of key performance parameters over the past 15 years is reviewed, and an attempt is made to extrapolate to the likely performance of detectors working at the energy frontier ten years from now.

  9. The charge collection in silicon strip detectors

    International Nuclear Information System (INIS)

    Boehringer, T.; Hubbeling, L.; Weilhammer, P.; Kemmer, J.; Koetz, U.; Riebesell, M.; Belau, E.; Klanner, R.; Lutz, G.; Neugebauer, E.; Seebrunner, H.J.; Wylie, A.

    1983-02-01

    The charge collection in silicon detectors has been studied, by measuring the response to high-energy particles of a 20μm pitch strip detector as a function of applied voltage and magnetic field. The results are well described by a simple model. The model is used to predict the spatial resolution of silicon strip detectors and to propose a detector with optimized spatial resolution. (orig.)

  10. Performance of the CDF Silicon VerteX detector

    International Nuclear Information System (INIS)

    Schneider, O.

    1992-11-01

    The current status of the online and offline performance of the CDF Silicon VerteX detector is presented. So far, at low radiation dose, the device delivers good quality data. After the latest alignment using collision data, a spatial resolution of 13 pm is achieved in the transverse plane, demonstrating that CDF has a powerful tool to detect b decay vertices

  11. Technical Design Report for the: PANDA Micro Vertex Detector

    CERN Document Server

    Erni, W; Krusche, B; Steinacher, M; Heng, Y; Liu, Z; Liu, H; Shen, X; Wang, Q; Xu, H; Albrecht, M; Becker, J; Eickel, K; Feldbauer, F; Fink, M; Friedel, P; Heinsius, F H; Held, T; Koch, H; Kopf, B; Leyhe, M; Motzko, C; Pelizäus, M; Pychy, J; Roth, B; Schröder, T; Schulze, J; Steinke, M; Trifterer, T; Wiedner, U; Zhong, J; Beck, R; Becker, M; Bianco, S; Brinkmann, K -Th; Hammann, C; Hinterberger, F; Jäkel, R; Kaiser, D; Kliemt, R; Koop, K; Schmidt, C; Schnell, R; Thoma, U; Vlasov, P; Wendel, C; Winnebeck, A; Würschig, Th; Zaunick, H -G; Bianconi, A; Bragadireanu, M; Caprini, M; Ciubancan, M; Pantea, D; Tarta, P -D; De Napoli, M; Giacoppo, F; Rapisarda, E; Sfienti, C; Fiutowski, T; Idzik, N; Mindur, B; Przyborowski, D; Swientek, K; Bialkowski, E; Budzanowski, A; Czech, B; Kliczewski, S; Kozela, A; Kulessa, P; Lebiedowicz, P; Malgorzata, K; Pysz, K; Schäfer, W; Siudak, R; Szczurek, A; Brandys, P; Czyzewski, T; Czyzycki, W; Domagala, M; Hawryluk, M; Filo, G; Kwiatkowski, D; Lisowski, E; Lisowski, F; Bardan, W; Gil, D; Kamys, B; Kistryn, St; Korcyl, K; Krzemieñ, W; Magiera, A; Moskal, P; Rudy, Z; Salabura, P; Smyrski, J; Wroñska, A; Al-Turany, M; Arora, R; Augustin, I; Deppe, H; Dutta, D; Flemming, H; Götzen, K; Hohler, G; Karabowicz, R; Lehmann, D; Lewandowski, B; Lühning, J; Maas, F; Orth, H; Peters, K; Saito, T; Schepers, G; Schmidt, C J; Schmitt, L; Schwarz, C; Schwiening, J; Voss, B; Wieczorek, P; Wilms, A; Abazov, V M; Alexeev, G D; Arefiev, V A; Astakhov, V I; Barabanov, M Yu; Batyunya, B V; Davydov, Yu I; Dodokhov, V Kh; Efremov, A A; Fedunov, A G; Feshchenko, A A; Galoyan, A S; Grigoryan, S; Karmokov, A; Koshurnikov, E K; Lobanov, V I; Lobanov, Yu Yu; Makarov, A F; Malinina, L V; Malyshev, V L; Mustafaev, G A; Olshevski, A G; Pasyuk, M A; Perevalova, E A; Piskun, A A; Pocheptsov, T A; Pontecorvo, G; Rodionov, V K; Rogov, Yu N; Salmin, R A; Samartsev, A G; Sapozhnikov, M G; Shabratova, G S; Skachkova, A N; Skachkov, N B; Strokovsky, E A; Suleimanov, M K; Teshev, R Sh; Tokmenin, V V; Uzhinsky, V V; Vodopyanov, A S; Zaporozhets, S A; Zhuravlev, N I; Zorin, A G; Branford, D; Glazier, D; Watts, D; Woods, P; Britting, A; Eyrich, W; Lehmann, A; Uhlig, F; Dobbs, S; Metreveli, Z; Seth, K; Tann, B; Tomaradze, A; Bettoni, D; Carassiti, V; Dalpiaz, P; Drago, A; Fioravanti, E; Garzia, I; Negrini, M; Savriè, M; Stancari, G; Dulach, B; Gianotti, P; Guaraldo, C; Lucherini, V; Pace, E; Bersani, A; Macri, M; Marinelli, M; Parodi, R F; Dormenev, V; Drexler, P; Düren, M; Eisner, T; Foehl, K; Hayrapetyan, A; Koch, P; Krïoch, B; Kühn, W; Lange, S; Liang, Y; Liu, M; Merle, O; Metag, V; Moritz, M; Nanova, M; Novotny, R; Spruck, B; Stenzel, H; Strackbein, C; Thiel, M; Wang, Q; Clarkson, T; Euan, C; Hill, G; Hoek, M; Ireland, D; Kaiser, R; Keri, T; Lehmann, I; Livingston, K; Lumsden, P; MacGregor, D; McKinnon, B; Montgomery, R; Murray, M; Protopopescu, D; Rosner, G; Seitz, B; Yang, G; Babai, M; Biegun, A K; Glazenborg-Kluttig, A; Guliyev, E; Jothi, V S; Kavatsyuk, M; Lemmens, P; Löhner, H; Messchendorp, J; Poelman, T; Smit, H; van der Weele, J C; Sohlbach, H; Büscher, M; Dosdall, R; Dzhygadlo, R; Esch, S; Gillitzer, A; Goldenbaum, F; Grunwald, D; Jha, V; Kemmerling, G; Kleines, H; Lehrach, A; Maier, R; Mertens, M; Ohm, H; Pohl, D L; Prasuhn, D; Randriamalala, T; Ritman, J; Roeder, M; Sterzenbach, G; Stockmanns, T; Wintz, P; Wüstner, P; Xu, H; Kisiel, J; Li, S; Li, Z; Sun, Z; Xu, H; Fissum, K; Hansen, K; Isaksson, L; Lundin, M; Schröder, B; Achenbach, P; Denig, A; Distler, M; Fritsch, M; Kangh, D; Karavdina, A; Lauth, W; Michel, M; Espi, M C Mora; Pochodzalla, J; Sanchez, S; Sanchez-Lorente, A; Sfienti, C; Weber, T; Dormenev, V I; Fedorov, A A; Korzhik, M V; Missevitch, O V; Boukharov, A; Malyshev, O; Marishev, I; Semenov, A; Varma, R; Höppner, C; Ketzer, B; Konorov, I; Mann, A; Neubert, S; Paul, S; Vandenbroucke, M; Zhang, Q; Khoukaz, A; Rausmann, T; Täschner, A; Wessels, J; Baldin, E; Kotov, K; Peleganchuk, S; Tikhonov, Yu; Hennino, T; Imre, M; Kunne, R; Galliard, C Le; Normand, J P Le; Marchand, D; Maroni, A; Ong, S; Pouthas, J; Ramstein, B; Rosier, P; Sudol, M; Theneau, C; Tomasi-Gustafsson, E; Van de Wiele, J; Zerguerras, T; Boca, G; Braghieri, A; Costanza, S; Fontana, A; Genova, P; Lavezzi, L; Montagna, P; Rotondi, A; Buda, V; Abramov, V V; Davidenko, A M; Derevschikov, A A; Goncharenko, Y M; Grishin, V N; Kachanov, V A; Konstantinov, D A; Kormilitsin, V A; Matulenko, Y A; Melnik, Y M; Meschanin, A P; Minaev, N G; Mochalov, V V; Morozov, D A; Nogach, L V; Nurushev, S B; Ryazantsev, A V; Semenov, P A; Soloviev, L F; Uzunian, A V; Vasiliev, A N; Yakutin, A E; Belostotski, S; Gavrilov, G; Itzotov, A; Kisselev, A; Kravchenko, P; Manaenkov, S; Miklukho, O; Naryshkin, Y; Veretennikov, D; Vikhrov, V; Zhadanov, A; Bäck, T; Cederwall, B; Bargholtz, C; Gerén, L; Tegnér, P E; Thørngren, P; von Würtemberg, K M; Fava, L; Alberto, D; Amoroso, A; Bussa, M P; Busso, L; De Mori, F; Destefanis, M; Ferrero, L; Greco, M; Kugathasan, T; Maggiora, M; Marcello, S; Sosio, S; Spataro, S; Calvo, D; Coli, S; De Remigis, P; Filippi, A; Giraudo, G; Lusso, S; Mazza, G; Mignone, M; Rivetti, A; Wheadon, R; Zotti, L; Morra, O; Iazzi, F; Lavagno, A; Quarati, P; Szymanska, K; Birsa, R; Bradamante, F; Bressan, A; Martin, A; Clement, H; Galnander, B; Calén, H; Fransson, K; Johansson, T; Kupsc, A; Marciniewski, P; Thomé, E; Wolke, M; Zlomanczuk, J; Díaz, J; Ortiz, A; Buda, P; Dmowski, K; Korzeniewski, R; Przemyslaw, D; Slowinski, B; Borsuk, S; Chlopik, A; Guzik, Z; Kopec, J; Kozlowski, T; Melnychuk, D; Plominski, M; Szewinski, J; Traczyk, K; Zwieglinski, B; Bühler, P; Gruber, A; Kienle, P; Marton, J; Widmann, E; Zmeskal, J

    2012-01-01

    This document illustrates the technical layout and the expected performance of the Micro Vertex Detector (MVD) of the PANDA experiment. The MVD will detect charged particles as close as possible to the interaction zone. Design criteria and the optimisation process as well as the technical solutions chosen are discussed and the results of this process are subjected to extensive Monte Carlo physics studies. The route towards realisation of the detector is outlined.

  12. RAVE-a Detector-independent vertex reconstruction toolkit

    International Nuclear Information System (INIS)

    Waltenberger, Wolfgang; Mitaroff, Winfried; Moser, Fabian

    2007-01-01

    A detector-independent toolkit for vertex reconstruction (RAVE) is being developed, along with a standalone framework (VERTIGO) for testing, analyzing and debugging. The core algorithms represent state of the art for geometric vertex finding and fitting by both linear (Kalman filter) and robust estimation methods. Main design goals are ease of use, flexibility for embedding into existing software frameworks, extensibility, and openness. The implementation is based on modern object-oriented techniques, is coded in C++ with interfaces for Java and Python, and follows an open-source approach. A beta release is available

  13. 3D circuit integration for Vertex and other detectors

    Energy Technology Data Exchange (ETDEWEB)

    Yarema, Ray; /Fermilab

    2007-09-01

    High Energy Physics continues to push the technical boundaries for electronics. There is no area where this is truer than for vertex detectors. Lower mass and power along with higher resolution and radiation tolerance are driving forces. New technologies such as SOI CMOS detectors and three dimensional (3D) integrated circuits offer new opportunities to meet these challenges. The fundamentals for SOI CMOS detectors and 3D integrated circuits are discussed. Examples of each approach for physics applications are presented. Cost issues and ways to reduce development costs are discussed.

  14. The Belle silicon vertex detector Present performance and upgrade plans

    CERN Document Server

    Taylor, Geoffrey

    2003-01-01

    The Belle detector has been operating at the KEKB colliding beam B- factory since 1999. It is a general purpose detector optimized to measure decay products of BB over bar pairs created at the Y(4S) resonance. The vertexing function provided by the Silicon Vertex Detector (SVD) is crucial for accurate B-decay measurements, particularly in searching for asymmetries in decay times of B over bar and B mesons, the essence of CP violation being studied at Belle. High radiation levels during early KEKB running soon rendered "SVD1.0" inoperable. It was replaced by another of the same design, built in parallel with the installation of SVD1.0. Improvement of the beam operating conditions allowed "SVD1.1" to provide vertex information for the first year of operation. During this time "SVD1.4" was built. This was mechanically identical, so needed no new tooling or structure development but used a radiation tolerant 0.8mum process VA1 prime chip and an upgraded detector design from Hamamatsu. SVD1.4 was installed in Bell...

  15. Impact parameter trigger and vertex detector for forward collider

    International Nuclear Information System (INIS)

    Selove, W.

    1993-01-01

    In a forward collider design, Coulomb scattering produces an unavoidable smearing of the vertex region by low-p t tracks. A detector and triggering design is described which aims at differentiating B events from minimum bias events with high efficiency, in spite of this smearing, by measuring momentum and p t of all tracks in real time, and triggering only when an event shows a number of high-p t tracks with substantial impact parameters. Triggering efficiency an order of magnitude larger than for a lepton trigger can be anticipated. Detector planes are located within 4 millimeters of the beam line; a replaceable-vertex-region design provides for rapid replacement of radiation damaged closest elements at time intervals of a few months

  16. Silicon vertex detector upgrade in the ALPHA experiment

    CERN Document Server

    Amole, C; Ashkezari, M.D; Baquero-Ruiz, M; Bertsche, W; Burrows, C; Butler, E; Capra, A; Cesar, C.L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M.C; Gill, D.R; Gutierrez, A; Hangst, J.S; Hardy, W.N; Hayden, M.E; Humphries, A.J; Isaac, C.A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J.T.K; Menary, S; Napoli, S.C; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C.Ø; Robicheaux, F; Sacramento, R.L; Sampson, J.A; Sarid, E; Seddon, D; Silveira, D.M; So, C; Stracka, S; Tharp, T; Thompson, R.I; Thornhill, J; Tooley, M.P; Van Der Werf, D.P; Wells, D

    2013-01-01

    The Silicon Vertex Detector (SVD) is the main diagnostic tool in the ALPHA-experiment. It provides precise spatial and timing information of antiproton (antihydrogen) annihilation events (vertices), and most importantly, the SVD is capable of directly identifying and analysing single annihilation events, thereby forming the basis of ALPHA ' s analysis. This paper describes the ALPHA SVD and its upgrade, installed in the ALPHA ' s new neutral atom trap.

  17. The effect of radiation damage on the vertex detector efficiency

    CERN Document Server

    Cooke, O

    1997-01-01

    97-023 This note describes a brief study into the effects of the radiation damage on the vertex detectorperformance. The noise increases as the detector is irradiated. Fixing the fraction of noise clusters to 0.1% by adjusting the thresholds brings about a loss in efficiency with increased irradiation. This loss in efficiency is parameterized, and some effects on the B->pi+pi- channel are shown.

  18. Vertex measurement at a hadron collider. The ATLAS pixel detector

    International Nuclear Information System (INIS)

    Grosse-Knetter, J.

    2008-03-01

    The ATLAS Pixel Detector is the innermost layer of the ATLAS tracking system and will contribute significantly to the ATLAS track and vertex reconstruction. The detector consists of identical sensor-chip-hybrid modules, arranged in three barrels in the centre and three disks on either side for the forward region. The position of the Pixel Detector near the interaction point requires excellent radiation hardness, fast read-out, mechanical and thermal robustness, good long-term stability, all combined with a low material budget. The new design concepts used to meet the challenging requirements are discussed with their realisation in the Pixel Detector, followed by a description of a refined and extensive set of measurements to assess the detector performance during and after its construction. (orig.)

  19. A bottom collider vertex detector design, Monte-Carlo simulation and analysis package

    International Nuclear Information System (INIS)

    Lebrun, P.

    1990-01-01

    A detailed simulation of the BCD vertex detector is underway. Specifications and global design issues are briefly reviewed. The BCD design based on double sided strip detector is described in more detail. The GEANT3-based Monte-Carlo program and the analysis package used to estimate detector performance are discussed in detail. The current status of the expected resolution and signal to noise ratio for the ''golden'' CP violating mode B d → π + π - is presented. These calculations have been done at FNAL energy (√s = 2.0 TeV). Emphasis is placed on design issues, analysis techniques and related software rather than physics potentials. 20 refs., 46 figs

  20. TRACKING AND VERTEXING WITH THE ATLAS INNER DETECTOR IN THE LHC RUN2 AND BEYOND

    CERN Document Server

    Choi, Kyungeon; The ATLAS collaboration

    2017-01-01

    Run-2 of the LHC has provided new challenges to track and vertex reconstruction with higher centre-of-mass energies and luminosity leading to increasingly high-multiplicity environments, boosted, and highly-collimated physics objects. To achieve this goal, ATLAS is equipped with the Inner Detector tracking system built using different technologies, silicon planar sensors (pixel and micro-strip) and gaseous drift- tubes, all embedded in a 2T solenoidal magnetic field. In addition, the Insertable B-layer (IBL) is a fourth pixel layer, which was inserted at the centre of ATLAS during the first long shutdown of the LHC. An overview of the use of each of these subdetectors in track and vertex reconstruction, as well as the algorithmic approaches taken to the specific tasks of pattern recognition and track fitting, is given. The performance of the Inner Detector tracking and vertexing will be summarised. These include a factor of three reduction in the reconstruction time, optimisation for the expected conditions, ...

  1. Tracking and Vertexing with the ATLAS Inner Detector in the LHC Run2 and Beyond

    CERN Document Server

    Swift, Stewart Patrick; The ATLAS collaboration

    2017-01-01

    Run-2 of the LHC has provided new challenges to track and vertex reconstruction with higher centre-of-mass energies and luminosity leading to increasingly high-multiplicity environments, boosted, and highly-collimated physics objects. To achieve this goal, ATLAS is equipped with the Inner Detector tracking system built using different technologies, silicon planar sensors (pixel and micro-strip) and gaseous drift- tubes, all embedded in a 2T solenoidal magnetic field. In addition, the Insertable B-layer (IBL) is a fourth pixel layer, which was inserted at the centre of ATLAS during the first long shutdown of the LHC. An overview of the use of each of these subdetectors in track and vertex reconstruction, as well as the algorithmic approaches taken to the specific tasks of pattern recognition and track fitting, is given. The performance of the Inner Detector tracking and vertexing will be summarised. These include a factor of three reduction in the reconstruction time, optimisation for the expected conditions, ...

  2. Internal alignement of the BABAR silicon vertex tracking detector

    CERN Document Server

    Brown, D; Roberts, D

    2007-01-01

    The BABAR Silicon Vertex Tracker (SVT ) is a five-layer double-sided silicon detector designed to provide precise measurements of the position and direction of primary tracks, and to fully reconstruct low-momentum tracks produced in e+e¡ collisions at the PEP-II asymmetric collider at Stanford Linear Accelerator Center. This paper describes the design, implementation, performance and validation of the local alignment procedure used to determine the relative positions and orientations of the 340 Silicon Vertex Trackerwafers. This procedure uses a tuned mix of lab-bench measurements and complementary in-situ experimental data to control systematic distortions. Wafer positions and orientations are determined by minimizing a Â2 computed using these data for each wafer individually, iterating to account for between-wafer correlations. A correction for aplanar distortions of the silicon wafers is measured and applied. The net effect of residual mis-alignments on relevant physical variables evaluated in special co...

  3. Superconducting nano-strip particle detectors

    International Nuclear Information System (INIS)

    Cristiano, R; Ejrnaes, M; Casaburi, A; Zen, N; Ohkubo, M

    2015-01-01

    We review progress in the development and applications of superconducting nano-strip particle detectors. Particle detectors based on superconducting nano-strips stem from the parent devices developed for single photon detection (SSPD) and share with them ultra-fast response times (sub-nanosecond) and the ability to operate at a relatively high temperature (2–5 K) compared with other cryogenic detectors. SSPDs have been used in the detection of electrons, neutral and charged ions, and biological macromolecules; nevertheless, the development of superconducting nano-strip particle detectors has mainly been driven by their use in time-of-flight mass spectrometers (TOF-MSs) where the goal of 100% efficiency at large mass values can be achieved. Special emphasis will be given to this case, reporting on the great progress which has been achieved and which permits us to overcome the limitations of existing mass spectrometers represented by low detection efficiency at large masses and charge/mass ambiguity. Furthermore, such progress could represent a breakthrough in the field. In this review article we will introduce the device concept and detection principle, stressing the peculiarities of the nano-strip particle detector as well as its similarities with photon detectors. The development of parallel strip configuration is introduced and extensively discussed, since it has contributed to the significant progress of TOF-MS applications. (paper)

  4. The Mark II vertex detectors: Status and prospects

    International Nuclear Information System (INIS)

    Jaros, J.A.

    1987-03-01

    The art of detecting the decay vertices from heavy quarks and leptons is comparatively new at electron-positron storage rings. So far, drift chambers positioned just outside the vacuum pipes which surround the interfaction region have provided the first accurate determinations of the tau and bottom lifetimes, and confirmed earlier measurements of charmed particle lifetimes. ''Second generation'' vertex detectors have demonstrated the feasibility of tagging heavy flavors by observing decay vertices, and are being used to search for anomalous decay topologies. These chambers have modest resolution on the scale of the effects they seek to measure, but are now well-understood and reliable tools. A generation of vertex detectors, considerably more ambitious, is under construction for experiments at SLC and LEP. They boast impact parameter resolution improved by a factor of four or more over previous detectors, and sub-millimeter track-pair resolution. The Mark II collaboration hopes to reach these goals with a high pressure precision drift chamber, and eventually surpass them with the addition of a silicon microstrip detector

  5. The Mark II vertex detectors: Status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Jaros, J.A.

    1987-03-01

    The art of detecting the decay vertices from heavy quarks and leptons is comparatively new at electron-positron storage rings. So far, drift chambers positioned just outside the vacuum pipes which surround the interfaction region have provided the first accurate determinations of the tau and bottom lifetimes, and confirmed earlier measurements of charmed particle lifetimes. ''Second generation'' vertex detectors have demonstrated the feasibility of tagging heavy flavors by observing decay vertices, and are being used to search for anomalous decay topologies. These chambers have modest resolution on the scale of the effects they seek to measure, but are now well-understood and reliable tools. A generation of vertex detectors, considerably more ambitious, is under construction for experiments at SLC and LEP. They boast impact parameter resolution improved by a factor of four or more over previous detectors, and sub-millimeter track-pair resolution. The Mark II collaboration hopes to reach these goals with a high pressure precision drift chamber, and eventually surpass them with the addition of a silicon microstrip detector.

  6. Development of floating strip micromegas detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bortfeldt, Jonathan

    2014-04-28

    Micromegas are high-rate capable, high-resolution micro-pattern gaseous detectors. Square meter sized resistive strip Micromegas are foreseen as replacement of the currently used precision tracking detectors in the Small Wheel, which is part of the forward region of the ATLAS muon spectrometer. The replacement is necessary to ensure tracking and triggering performance of the muon spectrometer after the luminosity increase of the Large Hadron Collider beyond its design value of 10{sup 34} cm{sup -2}s{sup -1} around 2020. In this thesis a novel discharge tolerant floating strip Micromegas detector is presented and described. By individually powering copper anode strips, the effects of a discharge are confined to a small region of the detector. This reduces the impact of discharges on the efficiency by three orders of magnitude, compared to a standard Micromegas. The physics of the detector is studied and discussed in detail. Several detectors are developed: A 6.4 x 6.4 cm{sup 2} floating strip Micromegas with exchangeable SMD capacitors and resistors allows for an optimization of the floating strip principle. The discharge behavior is investigated on this device in depth. The microscopic structure of discharges is quantitatively explained by a detailed detector simulation. A 48 x 50 cm{sup 2} floating strip Micromegas is studied in high energy pion beams. Its homogeneity with respect to pulse height, efficiency and spatial resolution is investigated. The good performance in high-rate background environments is demonstrated in cosmic muon tracking measurements with a 6.4 x 6.4 cm{sup 2} floating strip Micromegas under lateral irradiation with 550 kHz 20 MeV proton beams. A floating strip Micromegas doublet with low material budget is developed for ion tracking without limitations from multiple scattering in imaging applications during medical ion therapy. Highly efficient tracking of 20 MeV protons at particle rates of 550 kHz is possible. The reconstruction of the

  7. Power pulsing schemes for vertex detectors at CLIC

    CERN Document Server

    Blanchot, G

    2013-01-01

    The precision requirements of the vertex detector at CLIC impose strong limitations on the mass of such a detector ( < 0.2% of a radiation length, Xo, per layer). To achieve such a low mass, ultra-thin hybrid pixel detectors are foreseen, while the mass for cooling and services will be reduced by implementing a power-pulsing scheme that takes advantage of the low duty cycle of the accelerator. The principal aim is to achieve significant power reduction without compromising the power integrity supplied to the front-end electronics. A power-pulsing scheme is proposed for the analog electronics and its electrical features are discussed on the basis of measurements.

  8. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    OpenAIRE

    Alipour Tehrani, Niloufar; Arfaoui, Samir; Benoit, Mathieu; Dannheim, Dominik; Dette, Karola; Hynds, Daniel; Kulis, Szymon; Peric, Ivan; Petric, Marko; Redford, Sophie; Sicking, Eva; Valerio, Pierpaolo

    2016-01-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued...

  9. A silicon pixel detector prototype for the CLIC vertex detector

    CERN Multimedia

    Vicente Barreto Pinto, Mateus

    2017-01-01

    A silicon pixel detector prototype for CLIC, currently under study for the innermost detector surrounding the collision point. The detector is made of a High-Voltage CMOS sensor (top) and a CLICpix2 readout chip (bottom) that are glued to each other. Both parts have a size of 3.3 x 4.0 $mm^2$ and consist of an array of 128 x 128 pixels of 25 x 25 $\\micro m^2$ size.

  10. A Proposal to Upgrade the Silicon Strip Detector

    Energy Technology Data Exchange (ETDEWEB)

    Matis, Howard; Michael, LeVine; Jonathan, Bouchet; Stephane, Bouvier; Artemios, Geromitsos; Gerard, Guilloux; Sonia, Kabana; Christophe, Renard; Howard, Matis; Jim, Thomas; Vi Nham, Tram

    2007-11-05

    The STAR Silicon Strip Detector (SSD) was built by a collaboration of Nantes, Strasbourg and Warsaw collaborators. It is a beautiful detector; it can provide 500 mu m scale pointing resolution at the vertex when working in combination with the TPC. It was first used in Run 4, when half the SSD was installed in an engineering run. The full detector was installed for Run 5 (the Cu-Cu run) and the operation and performance of the detector was very successful. However, in preparation for Run 6, two noisy ladders (out of 20) were replaced and this required that the SSD be removed from the STAR detector. The re-installation of the SSD was not fully successful and so for the next two Runs, 6 and 7, the SSD suffered a cooling system failure that allowed a large fraction of the ladders to overheat and become noisy, or fail. (The cause of the SSD cooling failure was rather trivial but the SSD could not be removed betweens Runs 6 and 7 due to the inability of the STAR detector to roll along its tracks at that time.)

  11. A Proposal to Upgrade the Silicon Strip Detector

    International Nuclear Information System (INIS)

    Matis, Howard; Michael, LeVine; Jonathan, Bouchet; Stephane, Bouvier; Artemios, Geromitsos; Gerard, Guilloux; Sonia, Kabana; Christophe, Renard; Howard, Matis; Jim, Thomas; Vi Nham, Tram

    2007-01-01

    The STAR Silicon Strip Detector (SSD) was built by a collaboration of Nantes, Strasbourg and Warsaw collaborators. It is a beautiful detector; it can provide 500 mu m scale pointing resolution at the vertex when working in combination with the TPC. It was first used in Run 4, when half the SSD was installed in an engineering run. The full detector was installed for Run 5 (the Cu-Cu run) and the operation and performance of the detector was very successful. However, in preparation for Run 6, two noisy ladders (out of 20) were replaced and this required that the SSD be removed from the STAR detector. The re-installation of the SSD was not fully successful and so for the next two Runs, 6 and 7, the SSD suffered a cooling system failure that allowed a large fraction of the ladders to overheat and become noisy, or fail. (The cause of the SSD cooling failure was rather trivial but the SSD could not be removed between Runs 6 and 7 due to the inability of the STAR detector to roll along its tracks at that time.)

  12. CCD vertex detector for the future linear collider

    CERN Document Server

    Stefanov, K D

    2003-01-01

    The R and D program at the LCFI collaboration is dedicated to the building of CCD-based vertex detector, satisfying the challenging requirements of the proposed future linear colliders. The mechanical part of the program targets the development of precision thin detector ladders, using large back-thinned unsupported CCDs under tension. Another part of the program aims to achieve very fast readout of the sensors using column-parallel CCDs, bump bonded to a dedicated CMOS readout chip. Each column of the CCD is read and processed independently, which gives the ultimate speed performance. Some results on modelling of the proposed column parallel CCD with device simulator CAD tools are presented. Tests on fast commercial CCD are being carried out to provide information on noise performance and handling of MIP-like charges at high clock frequencies.

  13. Superconducting strip detectors as position sensitive particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Scherschel, M. (Lab. fuer Festkoerperphysik, ETH-Hoenggerberg, Zuerich (Switzerland) Paul Scherrer Inst., Solid State Div., Villigen (Switzerland)); Finkbeiner, F. (Paul Scherrer Inst., Solid State Div., Villigen (Switzerland)); Zhao, S.P. (Paul Scherrer Inst., Solid State Div., Villigen (Switzerland)); Jaggi, A. (Paul Scherrer Inst., Solid State Div., Villigen (Switzerland)); Maier, T. (Paul Scherrer Inst., Solid State Div., Villigen (Switzerland)); Lerch, P. (Paul Scherrer Inst., Solid State Div., Villigen (Switzerland)); Zehnder, A. (Paul Scherrer Inst., Solid State Div., Villigen (Switzerland)); Ott, H.R. (Lab. fuer Festkoerperphysik, ETH-Hoenggerberg, Zuerich (Switzerland) Paul Scherrer Inst., Solid State Div., Villigen (Switzerland))

    1994-02-01

    The feasibility of using of current-biased superconducting strips for radiation detection is investigated. Narrow Ta strips are exposed to 5.5 MeV [alpha]-particle radiation and the rise-time of the induced voltage pulses is measured as function of temperature and bias current. The rise-time of the voltage signal strongly depends on the site on the strip which is hit by the [alpha]-particle. In order to determine the spatial resolution of a superconducting strip detector, position-sensitive measurements were performed. The maximum lateral resolution estimated so far is 25[mu]m in a 7[mu]m wide, 340 nm thick and 0.6 mm long Ta-strip. (orig.)

  14. The Small Acceptance Vertex Detector of NA61/SHINE

    Directory of Open Access Journals (Sweden)

    Deveaux M.

    2018-01-01

    Full Text Available Charmonium production in heavy ion collisions is considered as an important diagnostic probe for studying the phase diagram of strongly interacting matter for potential phase transitions. The interpretation of existing data from the CERN SPS is hampered by a lack of knowledge on the properties of open charm particle production in the fireball. Moreover, open charm production in heavy ion collisions by itself is poorly understood. To overcome this obstacle, the NA61/SHINE was equipped with a Small Acceptance Vertex Detector (SAVD, which is predicted to make the experiment sensitive to open charm mesons produced in A-A collisions at the SPS top energy. This paper will introduce the concept and the hardware of the SAVD. Moreover, first running experience as obtained in a commissioning run with a 150 AGeV/c Pb+Pb collision system will be reported.

  15. System software design for the CDF Silicon Vertex Detector

    International Nuclear Information System (INIS)

    Tkaczyk, S.; Bailey, M.

    1991-11-01

    An automated system for testing and performance evaluation of the CDF Silicon Vertex Detector (SVX) data acquisition electronics is described. The SVX data acquisition chain includes the Fastbus Sequencer and the Rabbit Crate Controller and Digitizers. The Sequencer is a programmable device for which we developed a high level assembly language. Diagnostic, calibration and data acquisition programs have been developed. A distributed software package was developed in order to operate the modules. The package includes programs written in assembly and Fortran languages that are executed concurrently on the SVX Sequencer modules and either a microvax or an SSP. Test software was included to assist technical personnel during the production and maintenance of the modules. Details of the design of different components of the package are reported

  16. The Small Acceptance Vertex Detector of NA61/SHINE

    Science.gov (United States)

    Deveaux, M.; Aduszkiewicz, A.; Ali, Y.; Baszczyk, M.; Brylinski, W.; Dorosz, P.; Di Luise, S.; Feofilov, G.; Gazdzicki, M.; Igolkin, S.; Jablonski, M.; Kovalenko, V.; Koziel, M.; Kucewicz, W.; Larsen, D.; Lazareva, T.; Martinengo, P.; Merzlaya, A.; Mik, L.; Planeta, R.; Snoch, A.; Vechernin, V.; Tefelski, D.; Suljic, M.; Staszel, P.

    2018-02-01

    Charmonium production in heavy ion collisions is considered as an important diagnostic probe for studying the phase diagram of strongly interacting matter for potential phase transitions. The interpretation of existing data from the CERN SPS is hampered by a lack of knowledge on the properties of open charm particle production in the fireball. Moreover, open charm production in heavy ion collisions by itself is poorly understood. To overcome this obstacle, the NA61/SHINE was equipped with a Small Acceptance Vertex Detector (SAVD), which is predicted to make the experiment sensitive to open charm mesons produced in A-A collisions at the SPS top energy. This paper will introduce the concept and the hardware of the SAVD. Moreover, first running experience as obtained in a commissioning run with a 150 AGeV/c Pb+Pb collision system will be reported.

  17. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(SzGeCERN)734627; Benoit, Mathieu; Dannheim, Dominik; Dette, Karola; Hynds, Daniel; Kulis, Szymon; Peric, Ivan; Petric, Marko; Redford, Sophie; Sicking, Eva; Valerio, Pierpaolo

    2016-01-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor. Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.

  18. The track finding algorithm of the Belle II vertex detectors

    Directory of Open Access Journals (Sweden)

    Bilka Tadeas

    2017-01-01

    Full Text Available The Belle II experiment is a high energy multi purpose particle detector operated at the asymmetric e+e− - collider SuperKEKB in Tsukuba (Japan. In this work we describe the algorithm performing the pattern recognition for inner tracking detector which consists of two layers of pixel detectors and four layers of double sided silicon strip detectors arranged around the interaction region. The track finding algorithm will be used both during the High Level Trigger on-line track reconstruction and during the off-line full reconstruction. It must provide good efficiency down to momenta as low as 50 MeV/c where material effects are sizeable even in an extremely thin detector as the VXD. In addition it has to be able to cope with the high occupancy of the Belle II detectors due to the background. The underlying concept of the track finding algorithm, as well as details of the implementation are outlined. The algorithm is proven to run with good performance on simulated ϒ(4S → BB̄ events with an efficiency for reconstructing tracks of above 90% over a wide range of momentum.

  19. Mechanical and thermal behavior of a prototype support structure for a large silicon vertex detector (BCD)

    International Nuclear Information System (INIS)

    Mulderink, H.; Michels, N.; Joestlein, H.

    1989-01-01

    The Bottom Collider Detector (BCD) has been proposed as a device to study large numbers of events containing B mesons. To identify secondary vertices in hadronic events it will employ the most ambitious silicon strip tracking detector proposed to-date. This report will discuss results from measurements on a first mechanical/thermal model of the vertex detector support structure. The model that was built and used for the studies described here is made of brass. Brass was used because it is readily available and easily assembled by soft soldering, and, for appropriate thicknesses, it will behave similarly to the beryllium that will be used in the actual detector. The trough was built to full scale with the reinforcement webbing and the cooling channels in place. There were no detector modules in place. We plan, however, to install modules in the trough in the future. The purpose of the model was to address two concerns that have arisen about the proposed structure of the detector. The first is whether or not the trough will be stable enough. The trough must be very light in weight yet have a high degree of rigidity. Because of the 3m length of the detector there is question as to the stiffness of the proposed trough. The main concern is that there will sagging or movement of the trough in the middle region. The second problem is the heat load. There will be a great deal of heat generated by the electronics attached to the detector modules. So the question arises as to whether or not the silicon detectors can be kept cool enough so that when the actual experiment is run the readings will be valid. The heat may also induce motion by differential expansion of support components. 26 figs

  20. From vertex detectors to inner trackers with CMOS pixel sensors

    CERN Document Server

    Besson, A.

    2017-01-01

    The use of CMOS Pixel Sensors (CPS) for high resolution and low material vertex detectors has been validated with the 2014 and 2015 physics runs of the STAR-PXL detector at RHIC/BNL. This opens the door to the use of CPS for inner tracking devices, with 10-100 times larger sensitive area, which require therefore a sensor design privileging power saving, response uniformity and robustness. The 350 nm CMOS technology used for the STAR-PXL sensors was considered as too poorly suited to upcoming applications like the upgraded ALICE Inner Tracking System (ITS), which requires sensors with one order of magnitude improvement on readout speed and improved radiation tolerance. This triggered the exploration of a deeper sub-micron CMOS technology, Tower-Jazz 180 nm, for the design of a CPS well adapted for the new ALICE-ITS running conditions. This paper reports the R&D results for the conception of a CPS well adapted for the ALICE-ITS.

  1. Readout, first- and second-level triggers of the new Belle silicon vertex detector

    Science.gov (United States)

    Friedl, M.; Abe, R.; Abe, T.; Aihara, H.; Asano, Y.; Aso, T.; Bakich, A.; Browder, T.; Chang, M. C.; Chao, Y.; Chen, K. F.; Chidzik, S.; Dalseno, J.; Dowd, R.; Dragic, J.; Everton, C. W.; Fernholz, R.; Fujii, H.; Gao, Z. W.; Gordon, A.; Guo, Y. N.; Haba, J.; Hara, K.; Hara, T.; Harada, Y.; Haruyama, T.; Hasuko, K.; Hayashi, K.; Hazumi, M.; Heenan, E. M.; Higuchi, T.; Hirai, H.; Hitomi, N.; Igarashi, A.; Igarashi, Y.; Ikeda, H.; Ishino, H.; Itoh, K.; Iwaida, S.; Kaneko, J.; Kapusta, P.; Karawatzki, R.; Kasami, K.; Kawai, H.; Kawasaki, T.; Kibayashi, A.; Koike, S.; Korpar, S.; Križan, P.; Kurashiro, H.; Kusaka, A.; Lesiak, T.; Limosani, A.; Lin, W. C.; Marlow, D.; Matsumoto, H.; Mikami, Y.; Miyake, H.; Moloney, G. R.; Mori, T.; Nakadaira, T.; Nakano, Y.; Natkaniec, Z.; Nozaki, S.; Ohkubo, R.; Ohno, F.; Okuno, S.; Onuki, Y.; Ostrowicz, W.; Ozaki, H.; Peak, L.; Pernicka, M.; Rosen, M.; Rozanska, M.; Sato, N.; Schmid, S.; Shibata, T.; Stamen, R.; Stanič, S.; Steininger, H.; Sumisawa, K.; Suzuki, J.; Tajima, H.; Tajima, O.; Takahashi, K.; Takasaki, F.; Tamura, N.; Tanaka, M.; Taylor, G. N.; Terazaki, H.; Tomura, T.; Trabelsi, K.; Trischuk, W.; Tsuboyama, T.; Uchida, K.; Ueno, K.; Ueno, K.; Uozaki, N.; Ushiroda, Y.; Vahsen, S.; Varner, G.; Varvell, K.; Velikzhanin, Y. S.; Wang, C. C.; Wang, M. Z.; Watanabe, M.; Watanabe, Y.; Yamada, Y.; Yamamoto, H.; Yamashita, Y.; Yamashita, Y.; Yamauchi, M.; Yanai, H.; Yang, R.; Yasu, Y.; Yokoyama, M.; Ziegler, T.; Žontar, D.

    2004-12-01

    A major upgrade of the Silicon Vertex Detector (SVD 2.0) of the Belle experiment at the KEKB factory was installed along with new front-end and back-end electronics systems during the summer shutdown period in 2003 to cope with higher particle rates, improve the track resolution and meet the increasing requirements of radiation tolerance. The SVD 2.0 detector modules are read out by VA1TA chips which provide "fast or" (hit) signals that are combined by the back-end FADCTF modules to coarse, but immediate level 0 track trigger signals at rates of several tens of a kHz. Moreover, the digitized detector signals are compared to threshold lookup tables in the FADCTFs to pass on hit information on a single strip basis to the subsequent level 1.5 trigger system, which reduces the rate below the kHz range. Both FADCTF and level 1.5 electronics make use of parallel real-time processing in Field Programmable Gate Arrays (FPGAs), while further data acquisition and event building is done by PC farms running Linux. The new readout system hardware is described and the first results obtained with cosmics are shown.

  2. Readout, first- and second-level triggers of the new Belle silicon vertex detector

    International Nuclear Information System (INIS)

    Friedl, M.; Abe, R.; Abe, T.

    2004-01-01

    A major upgrade of the Silicon Vertex Detector (SVD 2.0) of the Belle experiment at the KEKB factory was installed along with new front-end and back-end electronics systems during the summer shutdown period in 2003 to cope with higher particle rates, improve the track resolution and meet the increasing requirements of radiation tolerance. The SVD 2.0 detector modules are read out by VA1TA chips which provide 'fast or' (hit) signals that are combined by the back-end FADCTF modules to coarse, but immediate level 0 track trigger signals at rates of several tens of a kHz. Moreover, the digitized detector signals are compared to threshold lookup tables in the FADCTFs to pass on hit information on a single strip basis to the subsequent level 1.5 trigger system, which reduces the rate below the kHz range. Both FADCTF and level 1.5 electronics make use of parallel real-time processing in Field Programmable Gate Arrays (FPGAs), while further data acquisition and event building is done by PC farms running Linux. The new readout system hardware is described and the first results obtained with cosmics are shown

  3. Novel integrated CMOS pixel structures for vertex detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kleinfelder, Stuart; Bieser, Fred; Chen, Yandong; Gareus, Robin; Matis, Howard S.; Oldenburg, Markus; Retiere, Fabrice; Ritter, Hans Georg; Wieman, Howard H.; Yamamoto, Eugene

    2003-10-29

    Novel CMOS active pixel structures for vertex detector applications have been designed and tested. The overriding goal of this work is to increase the signal to noise ratio of the sensors and readout circuits. A large-area native epitaxial silicon photogate was designed with the aim of increasing the charge collected per struck pixel and to reduce charge diffusion to neighboring pixels. The photogate then transfers the charge to a low capacitance readout node to maintain a high charge to voltage conversion gain. Two techniques for noise reduction are also presented. The first is a per-pixel kT/C noise reduction circuit that produces results similar to traditional correlated double sampling (CDS). It has the advantage of requiring only one read, as compared to two for CDS, and no external storage or subtraction is needed. The technique reduced input-referred temporal noise by a factor of 2.5, to 12.8 e{sup -}. Finally, a column-level active reset technique is explored that suppresses kT/C noise during pixel reset. In tests, noise was reduced by a factor of 7.6 times, to an estimated 5.1 e{sup -} input-referred noise. The technique also dramatically reduces fixed pattern (pedestal) noise, by up to a factor of 21 in our tests. The latter feature may possibly reduce pixel-by-pixel pedestal differences to levels low enough to permit sparse data scan without per-pixel offset corrections.

  4. Study of gluing and wire bonding for the Belle II Silicon Vertex Detector

    International Nuclear Information System (INIS)

    Kang, K.H.; Hara, K.; Higuchi, T.; Hyun, H.J.; Jeon, H.B.; Joo, C.W.; Kah, D.H.; Kim, H.J.; Mibe, T.; Onuki, Y.; Park, H.; Rao, K.K.; Sato, N.; Shimizu, N.; Tanida, K.; Tsuboyama, T.; Uozumi, S.

    2014-01-01

    This paper describes an investigation into gluing and wire bonding for assembling the Silicon Vertex Detector (SVD) for the Belle II experiment at KEK in Japan. Optimizing the gluing of the silicon microstrip sensors, the support frame, and the readout flex cables is important for achieving the required mechanical precision. The wire bonding between the sensors and the readout electronic chips also needs special care to maximize the physics capability of the SVD. The silicon sensors and signal fan out flex circuits (pitch adapters) are glued and connected using wire bonding. We determine that gluing quality is important for achieving good bonding efficiency. The standard deviation in the glue thickness for the best result is measured to be 3.11 μm. Optimal machine parameters for wire bonding are determined to be 70 mW power, 20 gf force, and 20 ms for the pitch adapter and 60 mW power, 20 gf force, and 20 ms for the silicon strip sensors; these parameters provide a pull force of (10.92±0.72) gf. With these settings, 75% of the pitch adapters and 25% of the strip sensors experience the neck-broken type of break

  5. Detector and Front-end electronics for ALICE and STAR silicon strip layers

    CERN Document Server

    Arnold, L; Coffin, J P; Guillaume, G; Higueret, S; Jundt, F; Kühn, C E; Lutz, Jean Robert; Suire, C; Tarchini, A; Berst, D; Blondé, J P; Clauss, G; Colledani, C; Deptuch, G; Dulinski, W; Hu, Y; Hébrard, L; Kucewicz, W; Boucham, A; Bouvier, S; Ravel, O; Retière, F

    1998-01-01

    Detector modules consisting of Silicon Strip Detector (SSD) and Front End Electronics (FEE) assembly have been designed in order to provide the two outer layers of the ALICE Inner Tracker System (ITS) [1] as well as the outer layer of the STAR Silicon Vertex Tracker (SVT) [2]. Several prototypes have beenproduced and tested in the SPS and PS beam at CERN to validate the final design. Double-sided, AC-coupled SSD detectors provided by two different manufacturers and also a pair of single-sided SSD have been asssociated to new low-power CMOS ALICE128C ASIC chips in a new detector module assembly. The same detectors have also been associated to current Viking electronics for reference purpose. These prototype detector modules are described and some first results are presented.

  6. A bonding study toward the quality assurance of Belle-II silicon vertex detector modules

    Energy Technology Data Exchange (ETDEWEB)

    Kang, K.H.; Jeon, H.B. [RSRI, Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Park, H., E-mail: sunshine@knu.ac.kr [RSRI, Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Uozumi, S. [RSRI, Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Adamczyk, K. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Aihara, H. [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Angelini, C. [Dipartimento di Fisica, Universitá di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Aziz, T.; Babu, V. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Bacher, S. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Bahinipati, S. [Indian Institute of Technology Bhubaneswar, Satya Nagar (India); Barberio, E.; Baroncelli, T. [School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia); Basith, A.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Batignani, G. [Dipartimento di Fisica, Universitá di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bauer, A. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Behera, P.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Bergauer, T. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Bettarini, S. [Dipartimento di Fisica, Universitá di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bhuyan, B. [Indian Institute of Technology Guwahati, Assam 781039 (India); and others

    2016-09-21

    A silicon vertex detector (SVD) for the Belle-II experiment comprises four layers of double-sided silicon strip detectors (DSSDs), assembled in a ladder-like structure. Each ladder module of the outermost SVD layer has four rectangular and one trapezoidal DSSDs supported by two carbon-fiber ribs. In order to achieve a good signal-to-noise ratio and minimize material budget, a novel chip-on-sensor “Origami” method has been employed for the three rectangular sensors that are sandwiched between the backward rectangular and forward (slanted) trapezoidal sensors. This paper describes the bonding procedures developed for making electrical connections between sensors and signal fan-out flex circuits (i.e., pitch adapters), and between pitch adapters and readout chips as well as the results in terms of the achieved bonding quality and pull force. - Highlights: • Gluing and wire binding for Belle-II SVD are studied. • Gluing robot and Origami module are used. • QA are satisfied in terms of the achieved bonding throughput and the pull force. • Result will be applied for L6 ladder assembly.

  7. A bonding study toward the quality assurance of Belle-II silicon vertex detector modules

    International Nuclear Information System (INIS)

    Kang, K.H.; Jeon, H.B.; Park, H.; Uozumi, S.; Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, T.; Basith, A.K.; Batignani, G.; Bauer, A.; Behera, P.K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.

    2016-01-01

    A silicon vertex detector (SVD) for the Belle-II experiment comprises four layers of double-sided silicon strip detectors (DSSDs), assembled in a ladder-like structure. Each ladder module of the outermost SVD layer has four rectangular and one trapezoidal DSSDs supported by two carbon-fiber ribs. In order to achieve a good signal-to-noise ratio and minimize material budget, a novel chip-on-sensor “Origami” method has been employed for the three rectangular sensors that are sandwiched between the backward rectangular and forward (slanted) trapezoidal sensors. This paper describes the bonding procedures developed for making electrical connections between sensors and signal fan-out flex circuits (i.e., pitch adapters), and between pitch adapters and readout chips as well as the results in terms of the achieved bonding quality and pull force. - Highlights: • Gluing and wire binding for Belle-II SVD are studied. • Gluing robot and Origami module are used. • QA are satisfied in terms of the achieved bonding throughput and the pull force. • Result will be applied for L6 ladder assembly.

  8. Prototype Strip Barrel Modules for the ATLAS ITk Strip Detector

    CERN Document Server

    Sawyer, Craig; The ATLAS collaboration

    2017-01-01

    The module design for the Phase II Upgrade of the new ATLAS Inner Tracker (ITk) detector at the LHC employs integrated low mass assembly using single-sided flexible circuits with readout ASICs and a powering circuit incorporating control and monitoring of HV, LV and temperature on the module. Both readout and powering circuits are glued directly onto the silicon sensor surface resulting in a fully integrated, extremely low radiation length module which simultaneously reduces the material requirements of the local support structure by allowing a reduced width stave structure to be employed. Such a module concept has now been fully demonstrated using so-called ABC130 and HCC130 ASICs fabricated in 130nm CMOS technology to readout ATLAS12 n+-in-p silicon strip sensors. Low voltage powering for these demonstrator modules has been realised by utilising a DCDC powerboard based around the CERN FEAST ASIC. This powerboard incorporates an HV multiplexing switch based on a Panasonic GaN transistor. Control and monitori...

  9. Digital autoradiography using silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Overdick, M.

    1998-05-01

    Spatially resolving radiation detection systems operating in real time can be used to acquire autoradiographic images. An overview over alternatives to traditional autoradiography is given and the special features of these filmless methods are discussed. On this basis the design of a system for digital autoradiography using silicon strip detectors is presented. Special emphasis is put on the physical background of the detection process in the semiconductor and on the self-triggering read-out technique. The practical performance of the system is analyzed with respect to energy and spatial resolution. This analysis is complemented by case studies from cell biology (especially electrophoresis), botany and mineralogy. Also the results from a time-resolved autoradiographic experiment are presented. (orig.) 80 refs.

  10. Silicon strip detectors for the ATLAS upgrade

    CERN Document Server

    Gonzalez Sevilla, S; The ATLAS collaboration

    2011-01-01

    The Large Hadron Collider at CERN will extend its current physics program by increasing the peak luminosity by one order of magnitude. For ATLAS, one of the two general-purpose experiments of the LHC, an upgrade scenario will imply the complete replacement of its internal tracker due to the harsh conditions in terms of particle rates and radiation doses. New radiation-hard prototype n-in-p silicon sensors have been produced for the short-strip region of the future ATLAS tracker. The sensors have been irradiated up to the fluences expected in the high-luminous LHC collider. This paper summarizes recent results on the performance of the irradiated n-in-p detectors.

  11. Development of new assembly techniques for a silicon micro-vertex detector unit using the flip-chip bonding method

    International Nuclear Information System (INIS)

    Saitoh, Y.; Takeuchi, H.; Mandai, M.; Kanazawa, H.; Yamanaka, J.; Miyahara, S.; Kamiya, M.; Fujita, Y.; Higashi, Y.; Ikeda, H.; Ikeda, M.; Koike, S.; Matsuda, T.; Ozaki, H.; Tanaka, M.; Tsuboyama, T.; Avrillon, S.; Okuno, S.; Haba, J.; Hanai, H.; Mori, S.; Yusa, K.; Fukunaga, C.

    1994-01-01

    Full-size models of a detector unit for a silicon micro-vertex detector were built for the KEK B factory. The Flip-Chip Bonding (FCB) method using a new type anisotropic conductive film was examined. The structure using the FCB method successfully provides a new architecture for the silicon micro-vertex detector unit. (orig.)

  12. The silicon drift vertex detector for the STAR experiment at RHIC

    CERN Document Server

    Pandey, S U; Beuttenmüller, Rolf H; Caines, H; Chen, W; Dimassimo, D; Dyke, H; Elliot, D; Eremin, V; Grau, M; Hoffmann, G W; Humanic, T; Ilyashenko, Yu S; Kotov, I; Kraner, H W; Kuczewski, P; Leonhardt, B; Li, Z; Liaw, C J; Lo Curto, G; Middelkamp, P; Minor, R; Munhoz, M; Ott, G; Pruneau, C A; Rykov, V L; Schambach, J; Sedlmeir, J; Soja, B; Sugarbaker, E R; Takahashi, J; Wilson, K; Wilson, R

    2002-01-01

    The current status of the STAR Silicon Vertex Tracker (SVT) is presented. The performance of the Silicon Drift Detectors (SDD) is discussed. Results for a recent 15 layer SDD tracker which prototypes all components of the SVT are presented. The enhanced physics capabilities of the STAR detector due to the addition of the SVT are addressed.

  13. Characterisation of a radiation hard front-end chip for the vertex detector of the LHCb experiment at CERN

    International Nuclear Information System (INIS)

    Bakel, N. van; Baumeister, D.; Beuzekom, M. van; Bulten, H.J.; Feuerstack-Raible, M.; Jans, E.; Ketel, T.; Klous, S.; Loechner, S.; Sexauer, E.; Smale, N.; Snoek, H.; Trunk, U.; Verkooijen, H.

    2003-01-01

    The Beetle is a 128 channel analog pipelined readout chip which is intended for use in the silicon vertex locator (VELO) of the LHCb experiment at CERN. The Beetle chip is specially designed to withstand high radiation doses. Two Beetle1.1 chips bonded to a silicon strip detector have been tested with minimum ionizing particles. The main goal was to measure the signal-to-noise (S/N) ratio of the Beetle1.1 connected to a prototype VELO detector. Furthermore we investigated the general behaviour of the Beetle1.1. In this note we present the chip architecture, the measured (S/N) numbers as well as some characteristics (e.g. risetime, spillover) of the Beetle1.1 chip. Results from a total ionizing dose irradiation test are reported

  14. Neutrino interaction vertex location with the help of electronic detectors in the OPERA experiment

    International Nuclear Information System (INIS)

    Gornushkin, Yu.A.; Dmitrievskij, S.G.; Chukanov, A.V.

    2015-01-01

    OPERA experiment is designed for the direct observation of ν τ appearance from ν μ →ν τ oscillation in a ν μ beam. Description of the procedure of neutrino interaction vertex localization (Brick Finding) by the electronic detectors of a hybrid OPERA setup is presented. The procedure includes muon track and hadronic shower axis reconstruction and determination of the target bricks with the highest probability to contain the vertex.

  15. Strip type radiation detector and method of making same

    International Nuclear Information System (INIS)

    Jantsch, O.; Feigt, I.; Willig, W.R.

    1976-01-01

    An improved strip detector and a method for making such a detector in which a high resistivity N conduction semiconductor body has electrode strips formed thereon by diffusion is described. The strips are formed so as to be covered by an oxide layer at the surface point of the PN junction and in which the opposite side of the semiconductor body then has a substantial amount of material etched away to form a thin semiconductor upon which strip electrodes which are perpendicular to the electrodes on the first side are then placed

  16. The secondary vertex finding algorithm with the ATLAS detector

    CERN Document Server

    Heer, Sebastian; The ATLAS collaboration

    2017-01-01

    A high performance identification of jets, produced via fragmentation of bottom quarks, is crucial for the ATLAS physics program. These jets can be identified by exploiting the presence of cascade decay vertices from bottom hadrons. A general vertex-finding algorithm is introduced and its ap- plication to the search for secondary vertices inside jets is described. Kinematic properties of the reconstructed vertices are used to construct several b-jet identification algorithms. The features and performance of the secondary vertex finding algorithm in a jet, as well as the performance of the jet tagging algorithms, are studied using simulated $pp$ -> $t\\bar{t}$ events at a centre-of-mass energy of 13 TeV.

  17. The STAR silicon vertex tracker: a large area silicon drift detector

    CERN Document Server

    Lynn, D; Beuttenmüller, Rolf H; Caines, H; Chen, W; Dimassimo, D; Dyke, H; Elliot, D; Eremin, V; Grau, M; Hoffmann, G W; Humanic, T; Ilyashenko, Yu S; Kotov, I; Kraner, H W; Kuczewski, P; Leonhardt, B; Li, Z; Liaw, C J; Lo Curto, G; Middelkamp, P; Minor, R; Munhoz, M; Ott, G; Pandey, S U; Pruneau, C A; Rykov, V L; Schambach, J; Sedlmeir, J; Soja, B; Sugarbaker, E R; Takahashi, J; Wilson, K; Wilson, R

    2000-01-01

    The Solenoidal Tracker At RHIC-Silicon Vertex Tracker (STAR-SVT) is a three barrel microvertex detector based upon silicon drift detector technology. As designed for the STAR-SVT, silicon drift detectors (SDDs) are capable of providing unambiguous two-dimensional hit position measurements with resolutions on the order of 20 mu m in each coordinate. Achievement of such resolutions, particularly in the drift direction coordinate, depends upon certain characteristics of silicon and drift detector geometry that are uniquely critical for silicon drift detectors hit measurements. Here we describe features of the design of the STAR-SVT SDDs and the front-end electronics that are motivated by such characteristics.

  18. Measurement of the charm and beauty structure functions using the H1 vertex detector at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Aldaya Martin, M. [DESY, Hamburg (Germany); Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (RO)] (and others)

    2009-06-15

    Inclusive charm and beauty cross sections are measured in e{sup -}p and e{sup +}p neutral current collisions at HERA in the kinematic region of photon virtuality 5{<=}Q{sup 2}{<=}2000 GeV{sup 2} and Bjorken scaling variable 0.0002{<=}x{<=}0.05. The data were collected with the H1 detector in the years 2006 and 2007 corresponding to an integrated luminosity of 189 pb{sup -1}. The numbers of charm and beauty events are determined using variables reconstructed by the H1 vertex detector including the impact parameter of tracks to the primary vertex and the position of the secondary vertex. The measurements are combined with previous data and compared to QCD predictions. (orig.)

  19. Measurement of the Charm and Beauty Structure Functions using the H1 Vertex Detector at HERA

    CERN Document Server

    Aaron, FD; Alexa, C; Alimujiang, K; Andreev, V; Antunovic, B; Asmone, A; Backovic, S; Baghdasaryan, A; Barrelet, E; Bartel, W; Begzsuren, K; Belousov, A; Bizot, J C; Boudry, V; Bozovic-Jelisavcic, I; Bracinik, J; Brandt, G; Brinkmann, M; Brisson, V; Bruncko, D; Bunyatyan, A; Buschhorn, G; Bystritskaya, L; Campbell, A J; Cantun Avila, K B; Cassol-Brunner, F; Cerny, K; Cerny, V; Chekelian, V; Cholewa, A; Contreras, J G; Coughlan, J A; Cozzika, G; Cvach, J; Dainton, J B; Daum, K; Deak, M; de Boer, Y; Delcourt, B; Del Degan, M; Delvax, J; De Wolf, E A; Diaconu, C; Dodonov, V; Dossanov, A; Dubak, A; Eckerlin, G; Efremenko, V; Egli, S; Eliseev, A; Elsen, E; Falkiewicz, A; Favart, L; Fedotov, A; Felst, R; Feltesse, J; Ferencei, J; Fischer, D -J; Fleischer, M; Fomenko, A; Gabathuler, E; Gayler, J; Ghazaryan, Samvel; Glazov, A; Glushkov, I; Goerlich, L; Gogitidze, N; Gouzevitch, M; Grab, C; Greenshaw, T; Grell, B R; Grindhammer, G; Habib, S; Haidt, D; Helebrant, C; Henderson, R C W; Hennekemper, E; Henschel, H; Herbst, M; Herrera, G; Hildebrandt, M; Hiller, K H; Hoffmann, D; Horisberger, R; Hreus, T; Jacquet, M; Janssen, M E; Janssen, X; Jonsson, L; Jung, Andreas Werner; Jung, H; Kapichine, M; Katzy, J; Kenyon, I R; Kiesling, C; Klein, M; Kleinwort, C; Kluge, T; Knutsson, A; Kogler, R; Kostka, P; Kraemer, M; Krastev, K; Kretzschmar, J; Kropivnitskaya, A; Kruger, K; Kutak, K; Landon, M P J; Lange, W; Lastovicka-Medin, G; Laycock, P; Lebedev, A; Leibenguth, G; Lendermann, V; Levonian, S; Li, G; Lipka, K; Liptaj, A; List, B; List, J; Loktionova, N; Lopez-Fernandez, R; Lubimov, V; Lytkin, L; Makankine, A; Malinovski, E; Marage, P; Marti, Ll; Martyn, H -U; Maxfield, S J; Mehta, A; Meyer, A B; Meyer, H; Meyer, H; Meyer, J; Michels, V; Mikocki, S; Milcewicz-Mika, I; Moreau, F; Morozov, A; Morris, J V; Mozer, Matthias Ulrich; Mudrinic, M; Muller, K; Murin, P; Naumann, Th; Newman, P R; Niebuhr, C; Nikiforov, A; Nowak, G; Nowak, K; Nozicka, M; Olivier, B; Olsson, J E; Osman, S; Ozerov, D; Palichik, V; Panagoulias, I; Pandurovic, M; Papadopoulou, Th; Pascaud, C; Patel, G D; Pejchal, O; Perez, E; Petrukhin, A; Picuric, I; Piec, S; Pitzl, D; Placakyte, R; Pokorny, B; Polifka, R; Povh, B; Preda, T; Radescu, V; Rahmat, A J; Raicevic, N; Raspiareza, A; Ravdandorj, T; Reimer, P; Rizvi, E; Robmann, P; Roland, B; Roosen, R; Rostovtsev, A; Rotaru, M; Ruiz Tabasco, J E; Rurikova, Z; Rusakov, S; Salek, D; Sankey, D P C; Sauter, M; Sauvan, E; Schmitt, S; Schoeffel, L; Schoning, A; Schultz-Coulon, H -C; Sefkow, F; Shaw-West, R N; Shtarkov, L N; Shushkevich, S; Sloan, T; Smiljanic, Ivan; Soloviev, Y; Sopicki, P; South, D; Spaskov, V; Specka, Arnd E; Staykova, Z; Steder, M; Stella, B; Stoicea, G; Straumann, U; Sunar, D; Sykora, T; Tchoulakov, V; Thompson, G; Thompson, P D; Toll, T; Tomasz, F; Tran, T H; Traynor, D; Trinh, T N; Truol, P; Tsakov, I; Tseepeldorj, B; Turnau, J; Urban, K; Valkarova, A; Vallee, C; Van Mechelen, P; Vargas Trevino, A; Vazdik, Y; Vinokurova, S; Volchinski, V; von den Driesch, M; Wegener, D; Wissing, Ch; Wunsch, E; Zacek, J; Zalesak, J; Zhang, Z; Zhokin, A; Zimmermann, T; Zohrabyan, H; Zomer, F; Zus, R

    2010-01-01

    Inclusive charm and beauty cross sections are measured in e-p and e+p neutral current collisions at HERA in the kinematic region of photon virtuality 5detector in the years 2006 and 2007 corresponding to an integrated luminosity of 189 pb^-1. The numbers of charm and beauty events are determined using variables reconstructed by the H1 vertex detector including the impact parameter of tracks to the primary vertex and the position of the secondary vertex. The measurements are combined with previous data and compared to QCD predictions.

  20. Measurement of the charm and beauty structure functions using the H1 vertex detector at HERA

    International Nuclear Information System (INIS)

    Aaron, F.D.; Alexa, C.; Preda, T.; Rotaru, M.; Stoicea, G.; Zus, R.; Aldaya Martin, M.; Alimujiang, K.; Antunovic, B.; Bartel, W.; Brandt, G.; Campbell, A.J.; Cholewa, A.; Deak, M.; Boer, Y. de; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Glazov, A.; Gouzevitch, M.; Grell, B.R.; Haidt, D.; Helebrant, C.; Janssen, M.E.; Jung, H.; Katzy, J.; Kleinwort, C.; Knutsson, A.; Kraemer, M.; Krastev, K.; Kutak, K.; Levonian, S.; Lipka, K.; List, J.; Marti, L.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Niebuhr, C.; Nikiforov, A.; Nozicka, M.; Olsson, J.E.; Panagoulias, I.; Papadopoulou, T.; Pitzl, D.; Placakyte, R.; Radescu, V.; Rurikova, Z.; Schmitt, S.; Schoeffel, L.; Sefkow, F.; Staykova, Z.; Steder, M.; Vargas Trevino, A.; Vinokurova, S.; Driesch, M. von den; Wissing, C.; Wuensch, E.; Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y.; Asmone, A.; Stella, B.; Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N.; Baghdasaryan, A.; Ghazaryan, S.; Volchinski, V.; Zohrabyan, H.; Barrelet, E.; Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B.; Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Li, G.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F.; Boudry, V.; Moreau, F.; Specka, A.; Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I.; Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Shaw-West, R.N.; Thompson, P.D.; Brinkmann, M.; Habib, S.; List, B.; Pokorny, B.; Toll, T.; Bruncko, D.; Cerny, V.; Ferencei, J.; Murin, P.; Tomasz, F.; Bunyatyan, A.; Buschhorn, G.; Chekelian, V.; Dossanov, A.; Grindhammer, G.; Kiesling, C.; Kogler, R.; Liptaj, A.; Olivier, B.; Raspiareza, A.; Shushkevich, S.; Bystritskaya, L.; Efremenko, V.; Fedotov, A.; Kropivnitskaya, A.; Lubimov, V.; Ozerov, D.; Petrukhin, A.; Rostovtsev, A.; Zhokin, A.; Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E.; Cassol-Brunner, F.; Diaconu, C.; Hoffmann, D.; Sauvan, E.; Trinh, T.N.; Vallee, C.; Cerny, K.; Pejchal, O.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Coughlan, J.A.; Morris, J.V.; Sankey, D.P.C.; Cozzika, G.; Feltesse, J.; Perez, E.; Cvach, J.; Reimer, P.; Zalesak, J.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Rahmat, A.J.; Daum, K.; Meyer, H.; Del Degan, M.; Grab, C.; Leibenguth, G.; Sauter, M.; Zimmermann, T.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Marage, P.; Mozer, M.U.; Roland, B.; Roosen, R.; Sunar, D.; Sykora, T.; Mechelen, P. van; Dodonov, V.; Lytkin, L.; Povh, B.; Egli, S.; Hildebrandt, M.; Horisberger, R.; Falkiewicz, A.; Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J.; Glushkov, I.; Henschel, H.; Hiller, K.H.; Kostka, P.; Lange, W.; Naumann, T.; Piec, S.; Henderson, R.C.W.; Sloan, T.; Hennekemper, E.; Herbst, M.; Jung, A.W.; Krueger, K.; Lendermann, V.; Schultz-Coulon, H.C.; Urban, K.; Herrera, G.; Lopez-Fernandez, R.; Joensson, L.; Osman, S.; Kapichine, M.; Makankine, A.; Morozov, A.; Palichik, V.; Spaskov, V.; Tchoulakov, V.; Landon, M.P.J.; Rizvi, E.; Thompson, G.; Traynor, D.; Martyn, H.U.; Mueller, K.; Nowak, K.; Robmann, P.; Straumann, U.; Truoel, P.; Schoening, A.; South, D.; Wegener, D.; Tsakov, I.

    2010-01-01

    Inclusive charm and beauty cross sections are measured in e - p and e + p neutral current collisions at HERA in the kinematic region of photon virtuality 5≤Q 2 ≤2000 GeV 2 and Bjorken scaling variable 0.0002≤x≤0.05. The data were collected with the H1 detector in the years 2006 and 2007 corresponding to an integrated luminosity of 189 pb -1 . The numbers of charm and beauty events are determined using variables reconstructed by the H1 vertex detector including the impact parameter of tracks to the primary vertex and the position of the secondary vertex. The measurements are combined with previous data and compared to QCD predictions. (orig.)

  1. Quality Tests of Double-Sided Silicon Strip Detectors

    CERN Document Server

    Cambon, T; CERN. Geneva; Fintz, P; Guillaume, G; Jundt, F; Kuhn, C; Lutz, Jean Robert; Pagès, P; Pozdniakov, S; Rami, F; Sparavec, K; Dulinski, W; Arnold, L

    1997-01-01

    The quality of the SiO2 insulator (AC coupling between metal and implanted strips) of double-sided Silicon strip detectors has been studied by using a probe station. Some tests performed on 23 wafers are described and the results are discussed. Remark This note seems to cause problems with ghostview but it can be printed without any problem.

  2. Study of a DEPFET vertex detector and of supersymmetric smuons at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xun

    2009-01-21

    This thesis is devoted to the study of the performance of a pixel vertex detector based on DEPFET technology at the International Linear Collider (ILC). The ILC is the proposed next generation e{sup +}e{sup -} collider to explore the physics at the Terascale. At the ILC with its well-defined initial state of collisions, possible discoveries at the Large Hadron Collider can be verified and studied more accurately. It is expected that the precision measurements of the ILC will answer many fundamental questions about the universe, such as the generation of particle masses and the origin of electroweak spontaneous symmetry breaking. The ambitious physics goals present challenges to the ILC detectors. Several detector concepts have been proposed in recent years. A crucial device for all these concepts is the pixel vertex detector. It provides precise impact parameter information of charged particles, jet flavor tagging and improves overall tracking efficiency. To meet the requirements of the ILC environment, the vertex detector will be arranged in a concentric multi-layer array around the interaction point to cover as large a solid angle as possible. Endcap disks are considered in some designs. Silicon pixel sensor technologies must be employed to provide excellent point resolution. The DEPFET technology, which integrates the first level of amplification into a depleted silicon bulk, is one of the promising candidates. The DEPFET sensor is very sensitive with a high signal-to-noise ratio. Power consumption is minimized due to the internal storage of signal charges. The good radiation tolerance makes it capable of working close to the interaction point. In this thesis, we discuss the detailed simulation of the DEPFET vertex detector, following the general vertex detector layout proposed by the TESLA collaboration. The simulation is used to evaluate the impact parameter resolution. We also discuss the DEPFET test beam analysis on two-track resolution. The whole analysis

  3. Study of a DEPFET vertex detector and of supersymmetric smuons at the ILC

    International Nuclear Information System (INIS)

    Chen, Xun

    2009-01-01

    This thesis is devoted to the study of the performance of a pixel vertex detector based on DEPFET technology at the International Linear Collider (ILC). The ILC is the proposed next generation e + e - collider to explore the physics at the Terascale. At the ILC with its well-defined initial state of collisions, possible discoveries at the Large Hadron Collider can be verified and studied more accurately. It is expected that the precision measurements of the ILC will answer many fundamental questions about the universe, such as the generation of particle masses and the origin of electroweak spontaneous symmetry breaking. The ambitious physics goals present challenges to the ILC detectors. Several detector concepts have been proposed in recent years. A crucial device for all these concepts is the pixel vertex detector. It provides precise impact parameter information of charged particles, jet flavor tagging and improves overall tracking efficiency. To meet the requirements of the ILC environment, the vertex detector will be arranged in a concentric multi-layer array around the interaction point to cover as large a solid angle as possible. Endcap disks are considered in some designs. Silicon pixel sensor technologies must be employed to provide excellent point resolution. The DEPFET technology, which integrates the first level of amplification into a depleted silicon bulk, is one of the promising candidates. The DEPFET sensor is very sensitive with a high signal-to-noise ratio. Power consumption is minimized due to the internal storage of signal charges. The good radiation tolerance makes it capable of working close to the interaction point. In this thesis, we discuss the detailed simulation of the DEPFET vertex detector, following the general vertex detector layout proposed by the TESLA collaboration. The simulation is used to evaluate the impact parameter resolution. We also discuss the DEPFET test beam analysis on two-track resolution. The whole analysis procedures

  4. First results of the front-end ASIC for the strip detector of the PANDA MVD

    Science.gov (United States)

    Quagli, T.; Brinkmann, K.-T.; Calvo, D.; Di Pietro, V.; Lai, A.; Riccardi, A.; Ritman, J.; Rivetti, A.; Rolo, M. D.; Stockmanns, T.; Wheadon, R.; Zambanini, A.

    2017-03-01

    PANDA is a key experiment of the future FAIR facility and the Micro Vertex Detector (MVD) is the innermost part of its tracking system. PASTA (PAnda STrip ASIC) is the readout chip for the strip part of the MVD. The chip is designed to provide high resolution timestamp and charge information with the Time over Threshold (ToT) technique. Its architecture is based on Time to Digital Converters with analog interpolators, with a time bin width of 50 ps. The chip implements Single Event Upset (SEU) protection techniques for its digital parts. A first full-size prototype with 64 channels was produced in a commercial 110 nm CMOS technology and the first characterizations of the prototype were performed.

  5. Efficiency measurements for 3D silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Parzefall, Ulrich, E-mail: ulrich.parzefall@physik.uni-freiburg.d [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Dalla Betta, Gian-Franco [INFN Trento and Universita di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Koehler, Michael; Kuehn, Susanne; Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris; Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Zoboli, Andrea [INFN Trento and Universita di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)

    2010-11-01

    Silicon strip detectors are widely used as part of the inner tracking layers in particle physics experiments. For applications at the luminosity upgrade of the Large Hadron Collider (LHC), the sLHC, silicon detectors with extreme radiation hardness are required. The 3D detector design, where electrodes are processed from underneath the strips into the silicon bulk material, provides a way to enhance the radiation tolerance of standard planar silicon strip detectors. Detectors with several innovative 3D designs that constitute a simpler and more cost-effective processing than the 3D design initially proposed were connected to read-out electronics from LHC experiments and subsequently tested. Results on the amount of charge collected, the noise and the uniformity of charge collection are given.

  6. Studies of radiation hardness of MOS devices for application in a linear collider vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Qingyu

    2008-10-17

    The proposed International Linear Collider (ILC) together with the Large Hadron Collider (LHC) at CERN serve as a combined tool to explore the mysteries of the universe: the former is a precision machine and the latter can be considered as a finding machine. The key component of the ILC is the vertex detector that should be placed as close as possible to the Interaction Point (IP) and has better radiation tolerance against the dominant electron-positron pair production background from beam-beam interactions. A new generation of MOS-type Depleted-Field-Effect Transistor (MOSDEPFET) active pixel detectors has been proposed and developed by Semiconductor Labor Munich for Physics and for extraterrestrial Physics in order to meet the requirements of the vertex detector at the ILC. Since all MOS devices are susceptible to ionizing radiation, the main topic is focused on the radiation hardness of detectors, by which a series of physical processes are analyzed: e.g. surface damage due to ionizing radiation as well as damage mechanisms and their associated radiation effects. As a consequence, the main part of this thesis consists of a large number of irradiation experiments and the corresponding discussions. Finally, radiation hardness of the detectors should be improved through a set of concluded experiences that are based on a series of analysis of the characteristic parameters using different measurement techniques. The feasibility of the MOSDEPFET-based vertex detector is, therefore, predicted at ILC. (orig.)

  7. A new strips tracker for the upgraded ATLAS ITk detector

    Science.gov (United States)

    David, C.

    2018-01-01

    The ATLAS detector has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the next-generation tracking detector proposed for the High Luminosity LHC (HL-LHC), the so-called ATLAS Phase-II Upgrade, the fluences and radiation levels will be higher by as much as a factor of ten. The new sub-detectors must thus be faster, of larger area, more segmented and more radiation hard while the amount of inactive material should be minimized and the power supply to the front-end systems should be increased. For those reasons, the current inner tracker of the ATLAS detector will be fully replaced by an all-silicon tracking system that consists of a pixel detector at small radius close to the beam line and a large area strip tracker surrounding it. This document gives an overview of the design of the strip inner tracker (Strip ITk) and summarises the intensive R&D activities performed over the last years by the numerous institutes within the Strips ITk collaboration. These studies are accompanied with a strong prototyping effort to contribute to the optimisation of the Strip ITk's structure and components. This effort culminated recently in the release of the ATLAS Strips ITk Technical Design Report (TDR).

  8. Impact of radiation on breakdown performance of Si strip detectors

    CERN Document Server

    Bhardwaj, A; Chatterji, S; Ranjan, Kirti; Shivpuri, E K; Srivastava-Ajay, K

    2002-01-01

    The very intense radiation environment of high luminosity future colliding beam experiments, like Large Hadron Collider (LHC etc.) makes radiation hardness the most urgent demand for Si detectors. The radiation hardness of Si strip detectors especially developed for LHC experiment was investigated with respect to ionizing and nonionizing radiation using computer simulations. (10 refs).

  9. Power pulsing scheme for analog and digital electronics of the vertex detectors at CLIC

    CERN Document Server

    Blanchot, Georges

    2015-01-01

    The precision requirements of the vertex detector at CLIC impose strong limitations on the mass of such a detector (< 0.2% of a radiation length, Xo, per layer). To achieve such a low material budget, ultra-thin hybrid pixel detectors are foreseen, while the mass for cooling and services will be reduced by implementing a power pulsing scheme that takes advantage of the low duty cycle of the accelerator. The principal aim is to achieve significant power reduction without compromising the power integrity supplied to the front-end electronics. This report summarises the study of a power pulsing scheme to power the vertex barrel electronics of the future CLIC experiment. Its main goal is to describe in more detail what has been already presented in TWEPP conferences and other presentations. The report can therefore serve as an operator manual for future use and development of the system

  10. The SLD Vertex Detector Upgrade (VXD3) and a study of b anti bg events

    International Nuclear Information System (INIS)

    Dervan, P.J.

    1998-04-01

    This thesis presents a variety of work concerning the design, construction and use of the SLD's vertex detector. SLD's pioneering 120 Mpixel vertex detector, VXD2, was replaced by VXD3, a 307Mpixel CCD vertex detector in january 1996. The motivation for the up-grade detector and its subsequent construction and testing are described in some detail. This work represents the collaborative work of a large number of people. The authors' work was mainly carried out at EEV on the testing of the CCDs and subsequent ladders. VXD3 was commissioned during the 1996 SLD run and performed very close to design specifications. Monitoring the position of VXD3 is crucial for reconstructing the data in the detector for physics analysis. This was carried out using a capacitive wire position monitoring system. The system indicated that VXD3 was very stable during the whole of the 1996 run, except for known controlled movements. VXD3 was aligned globally for each period in-between these known movements using the tracks from e + e - → Z 0 → hadrons. The structure of three-jet b anti bg events has been studied using hadronic Z 0 decays from the 1993--1995 SLD data. Three-jet final states were selected and the CCD-based vertex detector was used to identify two of the jets as a b or anti b. The distributions of the gluon energy and polar angle with respect to the electron beam direction were examined and were compared with perturbative QCD predictions. It was found that the QCD Parton Shower prediction was needed to describe the data well

  11. Performance of the AFS vertex detector at the CERN ISR

    International Nuclear Information System (INIS)

    Botner, O.; Burkert, V.; Cockerill, D.; Fabjan, C.W.; Ferbel, T.; Frandsen, P.; Hallgren, A.; Heck, B.; Hilke, H.J.; Hogue, R.

    1982-01-01

    The central detector of the axial field spectrometer (AFS) is a cylindrical drift chamber using a 'bicycle-wheel' geometry. Its design has been optimized for jet-like events with high track densities. This is accomplished through a high degree of azimuthal segmentation (4 0 sectors) with up to 42 space points per track, using measurements of drift time and charge division. Particle identification in the non-relativistic region is obtained by (dE/dchi) sampling. The detector is operated in an inhomogeneous magnetic field at event rates of typically 5 x 10 5 collisions per second. Results will be presented on the detector performance after one year of operation at the ISR. (orig.)

  12. Performance of the AFS vertex detector at the CERN ISR

    International Nuclear Information System (INIS)

    Botner, O.; Burkert, V.; Cockerill, D.

    1981-01-01

    The central detector of the Axial Field Spectrometer (AFS) is a cylindrical drift chamber using a bicycle-wheel geometry. Its design has been optimized for jet-like events with high track densities. This is accomplished through a high degree of azimuthal segmentation (4 0 sectors) with up to 42 space points per track, using measurements of drift time and charge division. Particle identification in the non-relativistic region is obtained by (dE/dx) sampling. The detector is operated in an inhomogeneous magnetic field at event rates of typically 5 x 10 5 collisions per second. Preliminary results will be presented on the detector performance achieved after one year of operation at the ISR

  13. System Electronics for the ATLAS Upgraded Strip Detector

    CERN Document Server

    Affolder, T; The ATLAS collaboration; Clark, A; Dabrowskic, W; Dewitt, J; Diez Cornell, S; Dressdant, N; Fadeyev, V; Farthouat, P; Ferrere, D; Greenall, A; Grillo, A; Kaplon, J; Key-Charriere, M; La Marra, D; Lipeles, E; Lynn, D; Newcomer, M; Pereirab, F; Phillips, P; Spencer, E; Swientekc, K; Warren, M; Weidberg, A

    2013-01-01

    The basic concept of the front-end system of the Silicon Strip Detector in the Atlas Detector upgraded for the HL-LHC is being elaborated and proposed. The readout electronics of this new detector is based on front-end chips (ABC130), Hybrid Controller chips (HCC) and End of Stave Controller chips (EOSC). This document defines the basic functionality of the front-end system and of the different ASICs.

  14. Design and optimization of vertex detector foils by superplastic forming

    NARCIS (Netherlands)

    Snippe, Q.H.C.

    2011-01-01

    The production of one of the parts in a particle detector, called the RF Foil, has been a very intensive process in the past. The design and production process, which had a trial and error character, led eventually to an RF Foil that met the most important requirement: a sufficient leak tightness

  15. Antiproton tagging and vertex fitting in a Timepix3 detector

    CERN Document Server

    Aghion, S.; The AEGIS collaboration; Antonello, M.; Belov, A.; Bonomi, G.; Brusah, R. S.; Caccia, M.; Camper, A.; Caravita, R.; Castelli, F.; Cerchiari, G.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Evans, C.; Fanì, M.; Ferragut, R.; Fesel, J.; Fontana, A.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Guatieri, F.; Hackstock, P.; Haider, S.; Hinterberger, A.; Holmestad, H.; Kellerbauer, A.; Khalidova, O.; Krasnický, D.; Lagomarsino, V.; Lansonneur, P.; Lebrun, P.; Malbrunot, C.; Mariazzi, S.; Marton, J.; Matveev, V.; Müller, S. R.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petracek, V.; Prelz, F.; Prevedelli, M.; Rienaecker, B.; Robert, J.; Røhne, O. M.; Rotondi, A.; Sandaker, H.; Santoro, R.; Smestad, L.; Sorrentino, F.; Testera, G.; Tietje, I. C.; Widmann, E.; Yzombard, P.; Zimmer, C.; Zmeskal, J.; Zurlo, N.

    2018-01-01

    Studies of antimatter are important for understanding our universe at a fundamental level. There are still unsolved problems, such as the matter-antimatter asymmetry in the universe. The AEgIS experiment at CERN aims at measuring the gravitational fall of antihydrogen in order to determine the gravitational force on antimatter. The proposed method will make use of a position-sensitive detector to measure the annihilation point of antihydrogen. Such a detector must be able to tag the antiproton, measure its time of arrival and reconstruct its annihilation point with high precision in the vertical direction. This work explores a new method for tagging antiprotons and reconstructing their annihilation point. Antiprotons from the Antiproton Decelerator at CERN was used to obtain data on direct annihilations on the surface of a silicon pixel sensor with Timepix3 readout. These data were used to develop and verify a detector response model for annihilation of antiprotons in this detector. Using this model and the a...

  16. Development, prototyping and characterization of double sided silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Topkar, Anita, E-mail: anita@barc.gov.in; Singh, Arvind; Aggarwal, Bharti; Kumar, Amit; Kumar, Arvind; Murali Krishna, L.V.; Das, D.

    2016-10-21

    Double sided DC-coupled silicon strip detectors with geometry of 65 mm×65 mm have been developed in India for nuclear physics experiments. The detectors have 64 P{sup +} strips on the front side and 64 N{sup +} strips on the backside with a pitch of 0.9 mm. These detectors were fabricated using a twelve mask layer process involving double sided wafer processing technology. Semiconductor process and device simulations were carried out in order to theoretically estimate the impact of important design and process parameters on the breakdown voltage of detectors. The performance of the first lot of prototype detectors has been studied using static characterization tests and using an alpha source. The characterization results demonstrate that the detectors have low leakage currents and good uniformity over the detector area of about 40 cm{sup 2}. Overview of the detector design, fabrication process, simulation results and initial characterization results of the detectors are presented in this paper.

  17. The New Silicon Strip Detectors for the CMS Tracker Upgrade

    CERN Document Server

    Dragicevic, Marko

    2010-01-01

    The first introductory part of the thesis describes the concept of the CMS experiment. The tasks of the various detector systems and their technical implementations in CMS are explained. To facilitate the understanding of the basic principles of silicon strip sensors, the subsequent chapter discusses the fundamentals in semiconductor technology, with particular emphasis on silicon. The necessary process steps to manufacture strip sensors in a so-called planar process are described in detail. Furthermore, the effects of irradiation on silicon strip sensors are discussed. To conclude the introductory part of the thesis, the design of the silicon strip sensors of the CMS Tracker are described in detail. The choice of the substrate material and the complex geometry of the sensors are reviewed and the quality assurance procedures for the production of the sensors are presented. Furthermore the design of the detector modules are described. The main part of this thesis starts with a discussion on the demands on the ...

  18. Detectors for Linear Colliders: Tracking and Vertexing (2/4)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    Efficient and precise determination of the flavour of partons in multi-hadron final states is essential to the anticipated LC physics program. This makes tracking in the vicinity of the interaction region of great importance. Tracking extrapolation and momentum resolution are specified by precise physics requirements. The R&D towards detectors able to meet these specifications will be discussed, together with some of their application beyond particle physics.

  19. Operation of a drift chamber vertex detector at the ISR

    International Nuclear Information System (INIS)

    Cockerill, D.; Fabjan, C.W.; Frandsen, P.; Hallgren, A.; Heck, B.; Hilke, H.J.; Hogue, R.; Killian, T.; Kreisler, M.; Lindsay, J.

    1980-01-01

    A cylindrical drift chamber with bicycle-wheel geometry has been constructed as the central detector for the Axial Field Spectrometer (AFS) at the ISR. To permit particle separation in jet-like events at high event rates, a considerable degree of azimuthal segmentation was chosen together with up to 42 space points per track. These points are obtained from measurements of drift time and charge division. Some particle identification is achieved with ionization loss sampling dE/dx). This contribution presents details on the construction and the operation of the drift chamber at the ISR and preliminary performance results. (orig.)

  20. A neural network for locating the primary vertex in a pixel detector

    International Nuclear Information System (INIS)

    Kantowski, R.; Marzban, C.

    1995-01-01

    Using simulated collider data for p+p→2Jets interactions in a two-barrel pixel detector, a neural network is trained to construct the coordinate of the primary vertex to a high degree of accuracy. Three other estimates of this coordinate are also considered and compared to that of the neural network. It is shown that the network can match the best of the traditional estimates. ((orig.))

  1. Development of an ASIC for CCD readout at the vertex detectors of the intrenational linear collider

    CERN Document Server

    Murray, P; Stefanov, K D; Woolliscroft, T

    2007-01-01

    The Linear Collider Flavour Identification Collaboration is developing sensors and readout electronics suitable for the International Linear Collider vertex detector. In order to achieve high data rates the proposed detector utilises column parallel CCDs, each read out by a custom designed ASIC. The prototype chip (CPR2) has 250 channels of electronics, each with a preamplifier, 5-bit flash ADC, data sparsification logic for identification of significant data clusters, and local memory for storage of data awaiting readout. CPR2 also has hierarchical 2-level data multiplexing and intermediate data memory, enabling readout of the sparsified data via the 5-bit data output bus.

  2. Silicon strip detectors for the ATLAS HL-LHC upgrade

    CERN Document Server

    Gonzalez Sevilla, S; The ATLAS collaboration

    2011-01-01

    The LHC upgrade is foreseen to increase the ATLAS design luminosity by a factor ten, implying the need to build a new tracker suited to the harsh HL-LHC conditions in terms of particle rates and radiation doses. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. To successfully face the increased radiation dose, a new generation of extremely radiation hard silicon detectors is being designed. We give an overview of the ATLAS tracker upgrade project, in particular focusing on the crucial innermost silicon strip layers. Results from a wide range of irradiated silicon detectors for the strip region of the future ATLAS tracker are presented. Layout concepts for lightweight yet mechanically very rigid detector modules with high service integration are shown.

  3. Recent progress in sensor- and mechanics-R and D for the Belle II Silicon Vertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Bergauer, T., E-mail: thomas.bergauer@oeaw.ac.at [Institute of High Energy Physics, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria); Doljeschi, P.; Frankenberger, A.; Friedl, M.; Gfall, I.; Irmler, C. [Institute of High Energy Physics, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria); Onuki, Y. [University of Tokyo, Department of Physics, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Smiljic, D. [Institute of High Energy Physics, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria); Tsuboyama, T. [KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Valentan, M. [Institute of High Energy Physics, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria)

    2013-08-01

    The Belle experiment at the KEKB electron/positron collider in Tsukuba (Japan) was successfully running for more than ten years. A major update of the machine to SuperKEKB is now foreseen until 2015, aiming a peak luminosity which is 40 times the peak value of the previous system. This also requires a redesign of the Belle detector (leading to Belle II) and especially its Silicon Vertex Detector (SVD), which surrounds the beam pipe. The future Belle II SVD will consist of four layers of double-sided silicon strip sensors based on 6 in. silicon wafers. Three of the four layers will be equipped with trapezoidal sensors in the slanted forward region. Moreover, two inner layers with pixel detectors based on DEPFET technology will complement the SVD as innermost detector. Since the KEKB-factory operates at relatively low energy, material inside the active volume has to be minimized in order to reduce multiple scattering. This can be achieved by arranging the sensors in the so-called “Origami chip-on-sensor concept”, and a very light-weight mechanical support structure made from carbon fiber reinforced Airex foam. Moreover, CO{sub 2} cooling for the front-end chips will ensure high efficiency at minimum material budget. In this paper, an overview of the future Belle II SVD design will be given, covering the silicon sensors, the readout electronics and the mechanics. A strong emphasis will be given to our R and D work on double-sided sensors where different p-stop layouts for the n-side of the detectors were compared. Moreover, this paper gives updated numbers for the mechanical dimensions of the ladders and their radii.

  4. Recent progress in sensor- and mechanics-R and D for the Belle II Silicon Vertex Detector

    International Nuclear Information System (INIS)

    Bergauer, T.; Doljeschi, P.; Frankenberger, A.; Friedl, M.; Gfall, I.; Irmler, C.; Onuki, Y.; Smiljic, D.; Tsuboyama, T.; Valentan, M.

    2013-01-01

    The Belle experiment at the KEKB electron/positron collider in Tsukuba (Japan) was successfully running for more than ten years. A major update of the machine to SuperKEKB is now foreseen until 2015, aiming a peak luminosity which is 40 times the peak value of the previous system. This also requires a redesign of the Belle detector (leading to Belle II) and especially its Silicon Vertex Detector (SVD), which surrounds the beam pipe. The future Belle II SVD will consist of four layers of double-sided silicon strip sensors based on 6 in. silicon wafers. Three of the four layers will be equipped with trapezoidal sensors in the slanted forward region. Moreover, two inner layers with pixel detectors based on DEPFET technology will complement the SVD as innermost detector. Since the KEKB-factory operates at relatively low energy, material inside the active volume has to be minimized in order to reduce multiple scattering. This can be achieved by arranging the sensors in the so-called “Origami chip-on-sensor concept”, and a very light-weight mechanical support structure made from carbon fiber reinforced Airex foam. Moreover, CO 2 cooling for the front-end chips will ensure high efficiency at minimum material budget. In this paper, an overview of the future Belle II SVD design will be given, covering the silicon sensors, the readout electronics and the mechanics. A strong emphasis will be given to our R and D work on double-sided sensors where different p-stop layouts for the n-side of the detectors were compared. Moreover, this paper gives updated numbers for the mechanical dimensions of the ladders and their radii

  5. Parallel superconducting strip-line detectors: reset behaviour in the single-strip switch regime

    International Nuclear Information System (INIS)

    Casaburi, A; Heath, R M; Tanner, M G; Hadfield, R H; Cristiano, R; Ejrnaes, M; Nappi, C

    2014-01-01

    Superconducting strip-line detectors (SSLDs) are an important emerging technology for the detection of single molecules in time-of-flight mass spectrometry (TOF-MS). We present an experimental investigation of a SSLD laid out in a parallel configuration, designed to address selected single strip-lines operating in the single-strip switch regime. Fast laser pulses were tightly focused onto the device, allowing controllable nucleation of a resistive region at a specific location and study of the subsequent device response dynamics. We observed that in this regime, although the strip-line returns to the superconducting state after triggering, no effective recovery of the bias current occurs, in qualitative agreement with a phenomenological circuit simulation that we performed. Moreover, from theoretical considerations and by looking at the experimental pulse amplitude distribution histogram, we have the first confirmation of the fact that the phenomenological London model governs the current redistribution in these large area devices also after detection events. (paper)

  6. Parallel superconducting strip-line detectors: reset behaviour in the single-strip switch regime

    Science.gov (United States)

    Casaburi, A.; Heath, R. M.; Tanner, M. G.; Cristiano, R.; Ejrnaes, M.; Nappi, C.; Hadfield, R. H.

    2014-04-01

    Superconducting strip-line detectors (SSLDs) are an important emerging technology for the detection of single molecules in time-of-flight mass spectrometry (TOF-MS). We present an experimental investigation of a SSLD laid out in a parallel configuration, designed to address selected single strip-lines operating in the single-strip switch regime. Fast laser pulses were tightly focused onto the device, allowing controllable nucleation of a resistive region at a specific location and study of the subsequent device response dynamics. We observed that in this regime, although the strip-line returns to the superconducting state after triggering, no effective recovery of the bias current occurs, in qualitative agreement with a phenomenological circuit simulation that we performed. Moreover, from theoretical considerations and by looking at the experimental pulse amplitude distribution histogram, we have the first confirmation of the fact that the phenomenological London model governs the current redistribution in these large area devices also after detection events.

  7. Digital Images of Breast Biopsies using a Silicon Strip Detector

    International Nuclear Information System (INIS)

    Montano, Luis M.; Diaz, Claudia C.; Leyva, Antonio; Cabal, Fatima; Ortiz, Carlos M.

    2006-01-01

    In our study we have used a silicon strip detector to obtain digital images of some breast tissues with micro calcifications. Some of those images will be shown and we will discuss the perspectives of using this technique as an improvement of breast cancer diagnostics

  8. Development of the H1 backward silicon strip detector

    International Nuclear Information System (INIS)

    Eick, W.; Hansen, K.; Lange, W.; Prell, S.; Zimmermann, W.; Bullough, M.A.; Greenwood, N.M.; Lucas, A.D.; Newton, A.M.; Wilburn, C.D.; Horisberger, R.; Pitzl, D.; Haynes, W.J.; Noyes, G.

    1996-10-01

    The development and first results are described of a silicon strip detector telescope for the HERA experiment H1 designed to measure the polar angle of deep inelastic scattered electrons at small Bjorken x and low momentum transfers Q 2 . (orig.)

  9. An asynchronous data-driven readout prototype for CEPC vertex detector

    Science.gov (United States)

    Yang, Ping; Sun, Xiangming; Huang, Guangming; Xiao, Le; Gao, Chaosong; Huang, Xing; Zhou, Wei; Ren, Weiping; Li, Yashu; Liu, Jianchao; You, Bihui; Zhang, Li

    2017-12-01

    The Circular Electron Positron Collider (CEPC) is proposed as a Higgs boson and/or Z boson factory for high-precision measurements on the Higgs boson. The precision of secondary vertex impact parameter plays an important role in such measurements which typically rely on flavor-tagging. Thus silicon CMOS Pixel Sensors (CPS) are the most promising technology candidate for a CEPC vertex detector, which can most likely feature a high position resolution, a low power consumption and a fast readout simultaneously. For the R&D of the CEPC vertex detector, we have developed a prototype MIC4 in the Towerjazz 180 nm CMOS Image Sensor (CIS) process. We have proposed and implemented a new architecture of asynchronous zero-suppression data-driven readout inside the matrix combined with a binary front-end inside the pixel. The matrix contains 128 rows and 64 columns with a small pixel pitch of 25 μm. The readout architecture has implemented the traditional OR-gate chain inside a super pixel combined with a priority arbiter tree between the super pixels, only reading out relevant pixels. The MIC4 architecture will be introduced in more detail in this paper. It will be taped out in May and will be characterized when the chip comes back.

  10. Operational issues of present ATLAS strip detector

    CERN Document Server

    Yacoob, S; The ATLAS collaboration

    2013-01-01

    Current results from the successful operation of the Semi-Conductor Tracker (SCT) Detector at the LHC and its status after three years of operation is presented. This note reports on the operation of the detector including an overview of the issues we encountered and the observation of significant increases in leakage currents from bulk damage due to non-ionising radiation, there have been a small number of significant changes effecting detector operation since the contribution to the previous conference in the series [1]. The main emphasis is given to the tracking performance of the SCT and the data quality during the many months of data-taking (the LHC delivered 47 pb

  11. Exploratory study of a novel low occupancy vertex detector architecture based on high precision timing for high luminosity particle colliders

    Energy Technology Data Exchange (ETDEWEB)

    Orel, Peter, E-mail: porel@hawaii.edu; Varner, Gary S.; Niknejadi, Pardis

    2017-06-11

    Vertex detectors provide space–time coordinates for the traversing charged particle decay products closest to the interaction point. Resolving these increasingly intense particle fluences at high luminosity particle colliders, such as SuperKEKB, is an ever growing challenge. This results in a non-negligible occupancy of the vertex detector using existing low material budget techniques. Consequently, new approaches are being studied that meet the vertexing requirements while lowering the occupancy. In this paper, we introduce a novel vertex detector architecture. Its design relies on an asynchronous digital pixel matrix in combination with a readout based on high precision time-of-flight measurement. Denoted the Timing Vertex Detector (TVD), it consists of a binary pixel array, a transmission line for signal collection, and a readout ASIC. The TVD aims to have a spatial resolution comparable to the existing Belle2 vertex detector. At the same time it offers a reduced occupancy by a factor of ten while decreasing the channel count by almost three orders of magnitude. Consequently, reducing the event size from about 1 MB/event to about 5.9 kB/event.

  12. Evaluation of silicon micro strip detectors with large read-out pitch

    International Nuclear Information System (INIS)

    Senyo, K.; Yamamura, K.; Tsuboyama, T.; Avrillon, S.; Asano, Y.; Bozek, A.; Natkaniec, Z.; Palka, H.; Rozanska, M.; Rybicki, K.

    1996-01-01

    For the development of the silicon micro-strip detector with the pitch of the readout strips as large as 250 μm on the ohmic side, we made samples with different structures. Charge collection was evaluated to optimize the width of implant strips, aluminum read-out strips, and/or the read-out scheme among strips. (orig.)

  13. Performance of the ATLAS silicon strip detector modules

    International Nuclear Information System (INIS)

    Albiol, F.; Ballester, F.

    1998-01-01

    The performance of the silicon strip detector prototypes developed for use in ATLAS at the LHC is reported. Baseline detector assemblies (''modules'') of 12 cm length were read out with binary electronics at 40 MHz clock speed. For both irradiated and unirradiated modules, the tracking efficiency, noise occupancy, and position resolution were measured as a function of bias voltage, binary hit threshold, and detector rotation angle in a 1.56 T magnetic field. Measurements were also performed at a particle flux comparable to the one expected at the LHC. (orig.)

  14. ATLAS ITk Strip Detector for High-Luminosity LHC

    CERN Document Server

    Kroll, Jiri; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is currently preparing for an upgrade of the tracking system in the course of the High-Luminosity LHC that is scheduled for 2026. The expected peak instantaneous luminosity up to 7.5E34 per second and cm2 corresponding to approximately 200 inelastic proton-proton interactions per beam crossing, radiation damage at an integrated luminosity of 3000/fb and hadron fluencies over 1E16 1 MeV neutron equivalent per cm2, as well as fast hardware tracking capability that will bring Level-0 trigger rate of a few MHz down to a Level-1 trigger rate below 1 MHz require a replacement of existing Inner Detector by an all-silicon Inner Tracker (ITk) with a pixel detector surrounded by a strip detector. The current prototyping phase, that is working with ITk Strip Detector consisting of a four-layer barrel and a forward region composed of six discs on each side of the barrel, has resulted in the ATLAS ITk Strip Detector Technical Design Report (TDR), which starts the pre-production readiness phase at the ...

  15. ATLAS ITk Strip Detector for High-Luminosity LHC

    CERN Document Server

    Kroll, Jiri; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is currently preparing for an upgrade of the tracking system in the course of the High-Luminosity LHC that is scheduled for 2026. The expected peak instantaneous luminosity up to $7.5\\times10^{34}\\;\\mathrm{cm}^{-2}\\mathrm{s}^{-1}$ corresponding to approximately 200 inelastic proton-proton interactions per beam crossing, radiation damage at an integrated luminosity of $3000\\;\\mathrm{fb}^{-1}$ and hadron fluencies over $2\\times10^{16}\\;\\mathrm{n}_{\\mathrm{eq}}/\\mathrm{cm}^{2}$, as well as fast hardware tracking capability that will bring Level-0 trigger rate of a few MHz down to a Level-1 trigger rate below 1 MHz require a replacement of existing Inner Detector by an all-silicon Inner Tracker with a pixel detector surrounded by a strip detector. The current prototyping phase, that is working with ITk Strip Detector consisting of a four-layer barrel and a forward region composed of six disks on each side of the barrel, has resulted in the ATLAS Inner Tracker Strip Detector Technical Design R...

  16. First Results from the LHCb Vertex Locator

    CERN Document Server

    Borghi, S

    2010-01-01

    LHCb is a dedicated experiment to study new physics in the decays of beauty and charm hadrons at the Large Hadron Collider (LHC) at CERN. The Vertex Locator (VELO) is the silicon detector surrounding the interaction point, and compared to the vertex detectors of the other LHC experiments, it is the closest LHC vertex detector to the beam interaction point, being located only 7 mm from the beam during normal operation. The detector operates in an extreme and highly non-uniform radiation environment. The VELO consists of two retractable detector halves with 21 silicon micro-strip tracking modules each. The VELO has been commissioned and successfully operated during the initial running period of the LHC. The preliminary operational results and detector performances are reported.

  17. MUST: A silicon strip detector array for radioactive beam experiments

    CERN Document Server

    Blumenfeld, Y; Sauvestre, J E; Maréchal, F; Ottini, S; Alamanos, N; Barbier, A; Beaumel, D; Bonnereau, B; Charlet, D; Clavelin, J F; Courtat, P; Delbourgo-Salvador, P; Douet, R; Engrand, M; Ethvignot, T; Gillibert, A; Khan, E; Lapoux, V; Lagoyannis, A; Lavergne, L; Lebon, S; Lelong, P; Lesage, A; Le Ven, V; Lhenry, I; Martin, J M; Musumarra, A; Pita, S; Petizon, L; Pollacco, E; Pouthas, J; Richard, A; Rougier, D; Santonocito, D; Scarpaci, J A; Sida, J L; Soulet, C; Stutzmann, J S; Suomijärvi, T; Szmigiel, M; Volkov, P; Voltolini, G

    1999-01-01

    A new and innovative array, MUST, based on silicon strip technology and dedicated to the study of reactions induced by radioactive beams on light particles is described. The detector consists of 8 silicon strip - Si(Li) telescopes used to identify recoiling light charged particles through time of flight, energy loss and energy measurements and to determine precisely their scattering angle through X, Y position measurements. Each 60x60 mm sup 2 double sided silicon strip detector with 60 vertical and 60 horizontal strips yields an X-Y position resolution of 1 mm, an energy resolution of 50 keV, a time resolution of around 1 ns and a 500 keV energy threshold for protons. The backing Si(Li) detectors stop protons up to 25 MeV with a resolution of approximately 50 keV. CsI crystals read out by photo-diodes which stop protons up to 70 MeV are added to the telescopes for applications where higher energy particles need to be detected. The dedicated electronics in VXIbus standard allow us to house the 968 logic and a...

  18. Strip Detector for the ATLAS Detector Upgrade for the High-Luminosity LHC

    CERN Document Server

    Sperlich, Dennis; The ATLAS collaboration

    2016-01-01

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential of the LHC through a sizeable increase in the luminosity, reaching 1*10^35 cm2s-1 after 10 years of operation. A consequence of this increased luminosity is the expected radiation damage at an integrated luminosity of 3000/fb, requiring the tracking detectors to withstand hadron fluencies to over 1*10^16 1 MeV neutron equivalent per cm2. With the addition of increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk), which will consist of both strip and pixelated silicon detectors. The physics motivations, required performance characteristics and basic design of the proposed upgrade of the strip detector will be a subject of this talk. Present ideas and solutions for the strip detector and current research and development program will be discussed.

  19. Strip Detector for the ATLAS Detector Upgrade for the High - Luminosity LHC

    CERN Document Server

    Sperlich, Dennis; The ATLAS collaboration

    2016-01-01

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential of the LHC through a sizeable increase in the luminosity, reaching 1*10^35 cm2s-1 after 10 years of operation. A consequence of this increased luminosity is the expected radiation damage at an integrated luminosity of 3000/fb, requiring the tracking detectors to withstand hadron fluencies to over 1*10^16 1 MeV neutron equivalent per cm2. With the addition of increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk), which will consist of both strip and pixelated silicon detectors. The physics motivations, required performance characteristics and basic design of the proposed upgrade of the strip detector will be a subject of this talk. Present ideas and solutions for the strip detector and current research and development program will be discussed.

  20. Beam test of CSES silicon strip detector module

    Science.gov (United States)

    Zhang, Da-Li; Lu, Hong; Wang, Huan-Yu; Li, Xin-Qiao; Xu, Yan-Bing; An, Zheng-Hua; Yu, Xiao-xia; Wang, Hui; Shi, Feng; Wang, Ping; Zhao, Xiao-Yun

    2017-05-01

    The silicon-strip tracker of the China Seismo-Electromagnetic Satellite (CSES) consists of two double-sided silicon strip detectors (DSSDs) which provide incident particle tracking information. A low-noise analog ASIC VA140 was used in this study for DSSD signal readout. A beam test on the DSSD module was performed at the Beijing Test Beam Facility of the Beijing Electron Positron Collider (BEPC) using a 400-800 MeV/c proton beam. The pedestal analysis results, RMSE noise, gain correction, and intensity distribution of incident particles of the DSSD module are presented. Supported by the XXX Civil Space Programme

  1. The Belle II DEPFET pixel vertex detector. Development of a full-scale module prototype

    International Nuclear Information System (INIS)

    Lemarenko, Mikhail

    2013-11-01

    The Belle II experiment, which will start after 2015 at the SuperKEKB accelerator in Japan, will focus on the precision measurement of the CP-violation mechanism and on the search for physics beyond the Standard Model. A new detection system with an excellent spatial resolution and capable of coping with considerably increased background is required. To address this challenge, a pixel detector based on DEPFET technology has been proposed. A new all silicon integrated circuit, called Data Handling Processor (DHP), is implemented in 65 nm CMOS technology. It is designed to steer the detector and preprocess the generated data. The scope of this thesis covers DHP tests and optimization as well the development of its test environment, which is the first Full-Scale Module Prototype of the DEPFET Pixel Vertex detector.

  2. Electronics and mechanics for the Silicon Vertex Detector of the Belle II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Irmler, C; Bergauer, T; Friedl, M; Gfall, I; Valentan, M, E-mail: irmler@hephy.oeaw.ac.a [Institute of High Energy Physics, Austrian Academy of Sciences, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria)

    2010-12-15

    A major upgrade of the KEK-B factory (Tsukuba, Japan), aiming at a peak luminosity of 8 x 10{sup 35}cm{sup -2}s{sup -1}, which is 40 times the present value, is foreseen until 2014. Consequently an upgrade of the Belle detector and in particular its Silicon Vertex Detector (SVD) is required. We will introduce the concept and prototypes of the full readout chain of the Belle II SVD. Its APV25 based front-end utilizes the Origami chip-on-sensor concept, while the back-end VME system provides online data processing as well as hit time finding using FPGAs. Furthermore, the design of the double-sided silicon detectors and the mechanics will be discussed.

  3. Electronics and mechanics for the Silicon Vertex Detector of the Belle II experiment

    International Nuclear Information System (INIS)

    Irmler, C; Bergauer, T; Friedl, M; Gfall, I; Valentan, M

    2010-01-01

    A major upgrade of the KEK-B factory (Tsukuba, Japan), aiming at a peak luminosity of 8 x 10 35 cm -2 s -1 , which is 40 times the present value, is foreseen until 2014. Consequently an upgrade of the Belle detector and in particular its Silicon Vertex Detector (SVD) is required. We will introduce the concept and prototypes of the full readout chain of the Belle II SVD. Its APV25 based front-end utilizes the Origami chip-on-sensor concept, while the back-end VME system provides online data processing as well as hit time finding using FPGAs. Furthermore, the design of the double-sided silicon detectors and the mechanics will be discussed.

  4. A Low Mass On-Chip Readout Scheme for Double-Sided Silicon Strip Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Irmler, C., E-mail: christian.irmler@oeaw.ac.at [HEPHY Vienna – Institute of High Energy Physics of the Austrian Academy of Sciences, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria); Bergauer, T.; Frankenberger, A.; Friedl, M.; Gfall, I. [HEPHY Vienna – Institute of High Energy Physics of the Austrian Academy of Sciences, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria); Higuchi, T. [University of Tokyo, Kavli Institute for Physics and Mathematics of the Universe, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Ishikawa, A. [Tohoku University, Department of Physics, Aoba Aramaki Aoba-ku, Sendai 980-8578 (Japan); Joo, C. [Seoul National University, High Energy Physics Laboratory, 25-107 Shinlim-dong, Kwanak-gu, Seoul 151-742 (Korea, Republic of); Kah, D.H.; Kang, K.H. [Kyungpook National University, Department of Physics, 1370 Sankyuk Dong, Buk Gu, Daegu 702-701 (Korea, Republic of); Rao, K.K. [Tata Institute of Fundamental Research, Experimental High Energy Physics Group, Homi Bhabha Road, Mumbai 400 005 (India); Kato, E. [Tohoku University, Department of Physics, Aoba Aramaki Aoba-ku, Sendai 980-8578 (Japan); Mohanty, G.B. [Tata Institute of Fundamental Research, Experimental High Energy Physics Group, Homi Bhabha Road, Mumbai 400 005 (India); Negishi, K. [Tohoku University, Department of Physics, Aoba Aramaki Aoba-ku, Sendai 980-8578 (Japan); Onuki, Y.; Shimizu, N. [University of Tokyo, Department of Physics, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Tsuboyama, T. [KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Valentan, M. [HEPHY Vienna – Institute of High Energy Physics of the Austrian Academy of Sciences, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria)

    2013-12-21

    B-factories like the KEKB in Tsukuba, Japan, operate at relatively low energies and thus require detectors with very low material budget in order to minimize multiple scattering. On the other hand, front-end chips with short shaping time like the APV25 have to be placed as close to the sensor strips as possible to reduce the capacitive load, which mainly determines the noise figure. In order to achieve both – minimal material budget and low noise – we developed a readout scheme for double-sided silicon detectors, where the APV25 chips are placed on a flexible circuit, which is glued onto the top side of the sensor. The bottom-side strips are connected by two flexible circuits, which are bent around the edge of the sensor. This so-called “Origami” design will be utilized to build the Silicon Vertex Detector of the Belle II experiment, which will consist of four layers made from ladders with up to five double-sided silicon strip sensors in a row. Each ladder will be supported by two ribs made of a carbon fiber and Airex foam core sandwich. The heat dissipated by the front-end chips will be removed by a highly efficient two-phase CO{sub 2} system. Thanks to the Origami concept, all APV25 chips are aligned in a row and thus can be cooled by a single thin cooling pipe per ladder. We present the concept and the assembly procedure of the Origami chip-on-sensor modules.

  5. A Low Mass On-Chip Readout Scheme for Double-Sided Silicon Strip Detectors

    International Nuclear Information System (INIS)

    Irmler, C.; Bergauer, T.; Frankenberger, A.; Friedl, M.; Gfall, I.; Higuchi, T.; Ishikawa, A.; Joo, C.; Kah, D.H.; Kang, K.H.; Rao, K.K.; Kato, E.; Mohanty, G.B.; Negishi, K.; Onuki, Y.; Shimizu, N.; Tsuboyama, T.; Valentan, M.

    2013-01-01

    B-factories like the KEKB in Tsukuba, Japan, operate at relatively low energies and thus require detectors with very low material budget in order to minimize multiple scattering. On the other hand, front-end chips with short shaping time like the APV25 have to be placed as close to the sensor strips as possible to reduce the capacitive load, which mainly determines the noise figure. In order to achieve both – minimal material budget and low noise – we developed a readout scheme for double-sided silicon detectors, where the APV25 chips are placed on a flexible circuit, which is glued onto the top side of the sensor. The bottom-side strips are connected by two flexible circuits, which are bent around the edge of the sensor. This so-called “Origami” design will be utilized to build the Silicon Vertex Detector of the Belle II experiment, which will consist of four layers made from ladders with up to five double-sided silicon strip sensors in a row. Each ladder will be supported by two ribs made of a carbon fiber and Airex foam core sandwich. The heat dissipated by the front-end chips will be removed by a highly efficient two-phase CO 2 system. Thanks to the Origami concept, all APV25 chips are aligned in a row and thus can be cooled by a single thin cooling pipe per ladder. We present the concept and the assembly procedure of the Origami chip-on-sensor modules

  6. The readout chain for the P-bar ANDA MVD strip detector

    International Nuclear Information System (INIS)

    Schnell, R.; Brinkmann, K.-Th.; Pietro, V. Di; Riccardi, A.; Zaunick, H.-G.; Kleines, H.; Goerres, A.; Rivetti, A.; Rolo, M.D.; Sohlbach, H.

    2015-01-01

    The P-bar ANDA (antiProton ANnihilation at DArmstadt) experiment will study the strong interaction in annihilation reactions between an antiproton beam and a stationary gas jet target. The detector will comprise different sub-detectors for tracking, particle identification and calorimetry. The Micro-Vertex Detector (MVD) as the innermost part of the tracking system will allow precise tracking and detection of secondary vertices. For the readout of the double-sided silicon strip sensors a custom-made ASIC is being developed, employing the Time-over-Threshold (ToT) technique for digitization and utilize time-to-digital converters (TDC) to provide a high-precision time stamp of the hit. A custom-made Module Data Concentrator ASIC (MDC) will multiplex the data of all front-ends of one sensor towards the CERN-developed GBT chip set (GigaBit Transceiver). The MicroTCA-based MVD Multiplexer Board (MMB) at the off-detector site will receive and concentrate the data from the GBT links and transfer it to FPGA-based compute nodes for global event building

  7. The ATLAS Tracker Upgrade: Short Strips Detectors for the SLHC

    CERN Document Server

    Soldevila, U; Lacasta, C; Marti i García, S; Miñano, M

    2009-01-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN around 2018 by about an order of magnitude, with the upgraded machine dubbed Super-LHC or sLHC. The ATLAS experiment will require a new tracker for SLHC operation. In order to cope with the order of magnitude increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. The new strip detector will use significantly shorter strips than the current SCT in order to minimise the occupancy. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. A massive R&D programme is underway to develop silicon sensors with sufficient radiation hardness. New front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics ...

  8. Spatial and vertex resolution studies on the ATLAS Pixel Detector based on Combined Testbeam 2004 data

    CERN Document Server

    Reisinger, Ingo; Klingenberg, Reiner

    2006-01-01

    This diploma thesis deals with spatial and vertex resolution studies on the ATLAS Pixel detector based on real data taken during the Combined Testbeam period 2004 (17th May - 15th November). For the Combined Testbeam a barrel segment of the ATLAS Detector was build up and tested under real experimental conditions. Several data sets, being recorded during that time, are reconstructed by the ATLAS control framework called ATHENA. The input information for the reconstruction of the particle tracks through the Pixel Detector are the so-called spacepoints. Their uncertainty affects the resolution of the reconstructed particle tracks and thus, also the accuracy of the vertex reconstruction. Since traversing particles deposite their charge mostly (but not compellingly) within more than one pixel, all pixels corresponding to one hit have to be grouped together to a cluster. To compute the spacepoint from the cluster information two different strategies can be performed. The first one is a digital clustering, w...

  9. The CAD model of the PANDA Micro-Vertex-Detector in physics simulations

    International Nuclear Information System (INIS)

    Bianco, Simone; Wuerschig, Thomas; Stockmanns, Tobias; Brinkmann, Kai-Thomas

    2011-01-01

    The Micro-Vertex-Detector (MVD) constitutes the inner tracker of the PANDA experiment, one of the large installations at the forthcoming FAIR facility. An optimization of the overall design has been accomplished. Currently the project is making rapid progress in hardware developments towards a finalized technical solution for the detector assembly. Therefore, suited tools are necessary to validate the impact of engineering solutions on the physics performance and to introduce a more realistic description of the detector. The cross-link between engineering developments and detector simulations is important for both further optimization of the detector assembly and appropriate implementation of the MVD into the PANDA simulation framework. In this article, a full chain of the migration of a detailed CAD model including all technical and engineering input to the software framework used for detector simulations and future data analysis of the PANDA experiment is presented. First, a short introduction to the experiment and a description of the conceptual layout is given. Afterward, the detailed MVD model and introduction to the physics simulation framework are described. Finally, first results of coverage tests performed and radiation length studies are exemplarily presented in order to demonstrate the successful migration of the entire detector model.

  10. A facility for long term evaluation and quality assurance of LHCb Vertex Detector modules

    CERN Document Server

    Marinho, F; Dimattia, R; Doherty, F; Dumps, R; Gersabeck, M; Melone, J; Parkes, C; Saavedra, A; Tobin, M

    2007-01-01

    This note describes the facility developed for long term evaluation and quality assurance of the LHCb Vertex Detector modules, known as the 'Glasgow Burn-in System'. This facility was developed to ensure that the modules conform to stringent quality levels. The system was able to uncover any weaknesses that could be introduced during the manufacturing and assembly of the components or during the transport of the modules to CERN. The system consisted of: a high resolution microscope for visual inspections; and a burn-in system to operate cooled modules in vacuum. The main components of the burn-in system were a vacuum system, a cooling system and a DAQ system.

  11. Development of CMOS Pixel Sensors fully adapted to the ILD Vertex Detector Requirements

    CERN Document Server

    Winter, Marc; Besson, Auguste; Claus, Gilles; Dorokhov, Andrei; Goffe, Mathieu; Hu-Guo, Christine; Morel, Frederic; Valin, Isabelle; Voutsinas, Georgios; Zhang, Liang

    2012-01-01

    CMOS Pixel Sensors are making steady progress towards the specifications of the ILD vertex detector. Recent developments are summarised, which show that these devices are close to comply with all major requirements, in particular the read-out speed needed to cope with the beam related background. This achievement is grounded on the double- sided ladder concept, which allows combining signals generated by a single particle in two different sensors, one devoted to spatial resolution and the other to time stamp, both assembled on the same mechanical support. The status of the development is overviewed as well as the plans to finalise it using an advanced CMOS process.

  12. Development of ultra-light pixelated ladders for an ILC vertex detector

    CERN Document Server

    Chon-Sen, N.; Claus, G.; De Masi, R.; Deveaux, M.; Dulinski, W.; Goffe, M.; Goldstein, J.; Gregor, I.-M.; Hu-Guo, Ch.; Imhoff, M.; Muntz, C.; Nomerotski, A.; Santos, C.; Schrader, C.; Specht, M.; Stroth, J.; Winter, M.

    2010-01-01

    The development of ultra-light pixelated ladders is motivated by the requirements of the ILD vertex detector at ILC. This paper summarizes three projects related to system integration. The PLUME project tackles the issue of assembling double-sided ladders. The SERWIETE project deals with a more innovative concept and consists in making single-sided unsupported ladders embedded in an extra thin plastic enveloppe. AIDA, the last project, aims at building a framework reproducing the experimental running conditions where sets of ladders could be tested.

  13. Strip detector for the ATLAS detector upgrade for the High-Luminosity LHC

    CERN Document Server

    Veloce, Laurelle Maria; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is currently preparing for an upgrade of the tracking system in the course of the High Luminosity LHC, scheduled for 2025. The expected radiation damage at an integrated luminosity of 3000fb-1 will require the tracking detectors to withstand hadron fluencies to over 1x1016 1 MeV neutron equivalent per cm2. With the addition of increased readout rates, the existing Inner Detector will have to be replaced by an all-silicon Inner Tracker (ITk) with a pixel detector surrounded by a strip detector. The ITk strip detector consists of a four-layer barrel and a forward region composed of six discs on each side of the barrel. The current prototyping phase has resulted in the ITk Strip Detector Technical Design Report (TDR), which starts the pre-production readiness phase at the involved institutes. In this contribution we present the design of the ITk Strip Detector and current status of R&D of various detector components.

  14. Silicon strip detector qualification for the CMS experiment

    International Nuclear Information System (INIS)

    Kaussen, Gordon

    2008-01-01

    To provide the best spatial resolution for the particle trajectory reconstruction and a very fast readout, the inner tracking system of CMS is build up of silicon detectors with a pixel tracker in the center surrounded by a strip tracker. The silicon strip tracker consists of so-called modules representing the smallest detection unit of the tracking device. These modules are mounted on higher-level structures called shells in the tracker inner barrel (TIB), rods in the tracker outer barrel (TOB), disks in the tracker inner disks (TID) and petals in the tracker end caps (TEC). The performance of the participating two shells of the TIB, four rods of the TOB and two petals of the TEC (representing about 1% of the final strip tracker) could be studied in different magnetic fields over a period of approximately two month using cosmic muon signals. The last test before inserting the tracker in the CMS experiment was the Tracker Slice Test performed in spring/summer 2007 at the Tracker Integration Facility (TIF) at CERN after installing all subdetectors in the tracker support tube. Approximately 25% of the strip tracker +z side was powered and read out using a cosmic ray trigger built up of scintillation counters. In total, about 5 million muon events were recorded under various operating conditions. These events together with results from commissioning runs were used to study the detector response like cluster charges, signal-to-noise ratios and single strip noise behaviour as well as to identify faulty channels which turned out to be in the order of a few per mille. The performance of the silicon strip tracker during these different construction stages is discussed in this thesis with a special emphasis on the tracker end caps. (orig.)

  15. Silicon strip detector qualification for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kaussen, Gordon

    2008-10-06

    To provide the best spatial resolution for the particle trajectory reconstruction and a very fast readout, the inner tracking system of CMS is build up of silicon detectors with a pixel tracker in the center surrounded by a strip tracker. The silicon strip tracker consists of so-called modules representing the smallest detection unit of the tracking device. These modules are mounted on higher-level structures called shells in the tracker inner barrel (TIB), rods in the tracker outer barrel (TOB), disks in the tracker inner disks (TID) and petals in the tracker end caps (TEC). The performance of the participating two shells of the TIB, four rods of the TOB and two petals of the TEC (representing about 1% of the final strip tracker) could be studied in different magnetic fields over a period of approximately two month using cosmic muon signals. The last test before inserting the tracker in the CMS experiment was the Tracker Slice Test performed in spring/summer 2007 at the Tracker Integration Facility (TIF) at CERN after installing all subdetectors in the tracker support tube. Approximately 25% of the strip tracker +z side was powered and read out using a cosmic ray trigger built up of scintillation counters. In total, about 5 million muon events were recorded under various operating conditions. These events together with results from commissioning runs were used to study the detector response like cluster charges, signal-to-noise ratios and single strip noise behaviour as well as to identify faulty channels which turned out to be in the order of a few per mille. The performance of the silicon strip tracker during these different construction stages is discussed in this thesis with a special emphasis on the tracker end caps. (orig.)

  16. HELIX128S-2 - A readout chip for the silicon vertex detector and inner tracker detector of HERA-B

    International Nuclear Information System (INIS)

    Trunk, U.; Fallot-Burghardt, W.; Sexauer, E.; Knoepfle, K-T.; Hofmann, W.; Cuje, M.; Glass, B.; Feuerstack-Raible, M.; Eisele, F.; Straumann, U.

    1998-01-01

    HERA-B is a fixed target experiment at the HERA proton storage ring dedicated to examine CP-violation in the B-Meson system. Based on the RD20-FElix concept a readout chip has been designed in AMS's 0.8 μm CMOS process for the HERA-B silicon vertex and inner tracker (MSGC) detectors. Various test chips have been submitted and successfully tested since '95, thus enabling the submission of a fully integrated 128 channel version in April '97. Design features of this chip (HELIX128S-2) and test results of its predecessor HELIX128 are presented

  17. Radiation damage status of the ATLAS silicon strip detectors (SCT)

    CERN Document Server

    Kondo, Takahiko; The ATLAS collaboration

    2017-01-01

    The Silicon microstrip detector system (SCT) of the ATLAS experiment at LHC has been working well for about 7 years since 2010. The innermost layer has already received a few times of 10**13 1-MeV neutron-equivalent fluences/cm2. The evolutions of the radiation damage effects on strip sensors such as leakage current and full depletion voltages will be presented.

  18. Beam tests of ATLAS SCT silicon strip detector modules

    CERN Document Server

    Campabadal, F; Key, M; Lozano, M; Martínez, C; Pellegrini, G; Rafí, J M; Ullán, M; Johansen, L; Pommeresche, B; Stugu, B; Ciocio, A; Fadeev, V; Gilchriese, M G D; Haber, C; Siegrist, J; Spieler, H; Vu, C; Bell, P J; Charlton, D G; Dowell, John D; Gallop, B J; Homer, R J; Jovanovic, P; Mahout, G; McMahon, T J; Wilson, J A; Barr, A J; Carter, J R; Fromant, B P; Goodrick, M J; Hill, J C; Lester, C G; Palmer, M J; Parker, M A; Robinson, D; Sabetfakhri, A; Shaw, R J; Anghinolfi, F; Chesi, Enrico Guido; Chouridou, S; Fortin, R; Grosse-Knetter, J; Gruwé, M; Ferrari, P; Jarron, P; Kaplon, J; MacPherson, A; Niinikoski, T O; Pernegger, H; Roe, S; Rudge, A; Ruggiero, G; Wallny, R; Weilhammer, P; Bialas, W; Dabrowski, W; Grybos, P; Koperny, S; Blocki, J; Brückman, P; Gadomski, S; Godlewski, J; Górnicki, E; Malecki, P; Moszczynski, A; Stanecka, E; Stodulski, M; Szczygiel, R; Turala, M; Wolter, M; Ahmad, A; Benes, J; Carpentieri, C; Feld, L; Ketterer, C; Ludwig, J; Meinhardt, J; Runge, K; Mikulec, B; Mangin-Brinet, M; D'Onofrio, M; Donega, M; Moêd, S; Sfyrla, A; Ferrère, D; Clark, A G; Perrin, E; Weber, M; Bates, R L; Cheplakov, A P; Saxon, D H; O'Shea, V; Smith, K M; Iwata, Y; Ohsugi, T; Kohriki, T; Kondo, T; Terada, S; Ujiie, N; Ikegami, Y; Unno, Y; Takashima, R; Brodbeck, T; Chilingarov, A G; Hughes, G; Ratoff, P; Sloan, T; Allport, P P; Casse, G L; Greenall, A; Jackson, J N; Jones, T J; King, B T; Maxfield, S J; Smith, N A; Sutcliffe, P; Vossebeld, Joost Herman; Beck, G A; Carter, A A; Lloyd, S L; Martin, A J; Morris, J; Morin, J; Nagai, K; Pritchard, T W; Anderson, B E; Butterworth, J M; Fraser, T J; Jones, T W; Lane, J B; Postranecky, M; Warren, M R M; Cindro, V; Kramberger, G; Mandic, I; Mikuz, M; Duerdoth, I P; Freestone, J; Foster, J M; Ibbotson, M; Loebinger, F K; Pater, J; Snow, S W; Thompson, R J; Atkinson, T M; Bright, G; Kazi, S; Lindsay, S; Moorhead, G F; Taylor, G N; Bachindgagyan, G; Baranova, N; Karmanov, D; Merkine, M; Andricek, L; Bethke, Siegfried; Kudlaty, J; Lutz, Gerhard; Moser, H G; Nisius, R; Richter, R; Schieck, J; Cornelissen, T; Gorfine, G W; Hartjes, F G; Hessey, N P; de Jong, P; Muijs, A J M; Peeters, S J M; Tomeda, Y; Tanaka, R; Nakano, I; Dorholt, O; Danielsen, K M; Huse, T; Sandaker, H; Stapnes, S; Bargassa, Pedrame; Reichold, A; Huffman, T; Nickerson, R B; Weidberg, A; Doucas, G; Hawes, B; Lau, W; Howell, D; Kundu, N; Wastie, R; Böhm, J; Mikestikova, M; Stastny, J; Broklová, Z; Broz, J; Dolezal, Z; Kodys, P; Kubík, P; Reznicek, P; Vorobel, V; Wilhelm, I; Chren, D; Horazdovsky, T; Linhart, V; Pospísil, S; Sinor, M; Solar, M; Sopko, B; Stekl, I; Ardashev, E N; Golovnya, S N; Gorokhov, S A; Kholodenko, A G; Rudenko, R E; Ryadovikov, V N; Vorobev, A P; Adkin, P J; Apsimon, R J; Batchelor, L E; Bizzell, J P; Booker, P; Davis, V R; Easton, J M; Fowler, C; Gibson, M D; Haywood, S J; MacWaters, C; Matheson, J P; Matson, R M; McMahon, S J; Morris, F S; Morrissey, M; Murray, W J; Phillips, P W; Tyndel, M; Villani, E G; Dorfan, D E; Grillo, A A; Rosenbaum, F; Sadrozinski, H F W; Seiden, A; Spencer, E; Wilder, M; Booth, P; Buttar, C M; Dawson, I; Dervan, P; Grigson, C; Harper, R; Moraes, A; Peak, L S; Varvell, K E; Chu Ming Lee; Hou Li Shing; Lee Shih Chang; Teng Ping Kun; Wan Chang Chun; Hara, K; Kato, Y; Kuwano, T; Minagawa, M; Sengoku, H; Bingefors, N; Brenner, R; Ekelöf, T J C; Eklund, L; Bernabeu, J; Civera, J V; Costa, M J; Fuster, J; García, C; García, J E; González-Sevilla, S; Lacasta, C; Llosa, G; Martí i García, S; Modesto, P; Sánchez, J; Sospedra, L; Vos, M; Fasching, D; González, S; Jared, R C; Charles, E

    2005-01-01

    The design and technology of the silicon strip detector modules for the Semiconductor Tracker (SCT) of the ATLAS experiment have been finalised in the last several years. Integral to this process has been the measurement and verification of the tracking performance of the different module types in test beams at the CERN SPS and the KEK PS. Tests have been performed to explore the module performance under various operating conditions including detector bias voltage, magnetic field, incidence angle, and state of irradiation up to 3 multiplied by 1014 protons per square centimetre. A particular emphasis has been the understanding of the operational consequences of the binary readout scheme.

  19. Calibration and Monitoring of the CMS Silicon Strip Tracker detector

    CERN Document Server

    Giordano, D

    2008-01-01

    The CMS Silicon Strip Tracker (SST) is the largest detector of this kind ever built for a high energy physics experiment. It consists of more than ten millions of analog read-out channels, split between 15,148 detector modules. To ensure that the SST performance fully meets the physics requirements of the CMS experiment, the detector is precisely calibrated and constantly monitored to identify, at a very early stage, any possible problem both in the data acquisition and in the reconstruction chain. Due to its high granularity, the operation of the CMS SST is a challenging task. In this paper we describe the reconstruction strategies, the calibration procedures and the data quality monitoring system that the CMS Collaboration has devised to accurately operate the SST detector.

  20. Simulations of ATLAS silicon strip detector modules in ATHENA framework

    CERN Document Server

    Broklova, Zdenka; Dolezal, Zdenek

    2004-01-01

    This diploma thesis deals with properties of the silicon strip detector (SCT) modules of the ATLAS detector and building their software model. First part of the thesis consists of a brief overview of the ATLAS detector properties and focuses on the Inner Detector and its SCT part. Besides mechanical characteristics, analysis of capability to measure the charged particle momentum is placed there as well. Main features of the Athena framework and of the entire ATLAS offine software can be found in the further part. Athena framework is developed for simulations and future analyzing of the whole ATLAS measured data. This text is intended mainly for Athena newcomers. The main contribution of this thesis to ATLAS offine software preparation is implementation of the new SCT end-cap modules' geometry model, its detailed checking and preparation of the necessary software component for whole SCT subsystem for the Combined Testbeam (CTB - summer 2004). We perform checking the functionality of the whole simulation sequen...

  1. The ATLAS tracker strip detector for HL-LHC

    CERN Document Server

    Cormier, Kyle James Read; The ATLAS collaboration

    2016-01-01

    As part of the ATLAS upgrades for the High Luminsotiy LHC (HL-LHC) the current ATLAS Inner Detector (ID) will be replaced by a new Inner Tracker (ITk). The ITk will consist of two main components: semi-conductor pixels at the innermost radii, and silicon strips covering larger radii out as far as the ATLAS solenoid magnet including the volume currently occupied by the ATLAS Transition Radiation Tracker (TRT). The primary challenges faced by the ITk are the higher planned read out rate of ATLAS, the high density of charged particles in HL-LHC conditions for which tracks need to be resolved, and the corresponding high radiation doses that the detector and electronics will receive. The ITk strips community is currently working on designing and testing all aspects of the sensors, readout, mechanics, cooling and integration to meet these goals and a Technical Design Report is being prepared. This talk is an overview of the strip detector component of the ITk, highlighting the current status and the road ahead.

  2. A vertically integrated pixel readout device for the Vertex Detector at the International Linear Collider

    International Nuclear Information System (INIS)

    Deptuch, Grzegorz; Christian, David; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom

    2008-01-01

    3D-Integrated Circuit technology enables higher densities of electronic circuitry per unit area without the use of nanoscale processes. It is advantageous for mixed mode design with precise analog circuitry because processes with conservative feature sizes typically present lower process dispersions and tolerate higher power supply voltages, resulting in larger separation of a signal from the noise floor. Heterogeneous wafers (different foundries or different process families) may be combined with some 3D integration methods, leading to the optimization of each tier in the 3D stack. Tracking and vertexing in future High-Energy Physics (HEP) experiments involves construction of detectors composed of up to a few billions of channels. Readout electronics must record the position and time of each measurement with the highest achievable precision. This paper reviews a prototype of the first 3D readout chip for HEP, designed for a vertex detector at the International Linear Collider. The prototype features 20 x 20 (micro)m 2 pixels, laid out in an array of 64 x 64 elements and was fabricated in a 3-tier 0.18 (micro)m Fully Depleted SOI CMOS process at MIT-Lincoln Laboratory. The tests showed correct functional operation of the structure. The chip performs a zero-suppressed readout. Successive submissions are planned in a commercial 3D bulk 0.13 (micro)m CMOS process to overcome some of the disadvantages of an FDSOI process

  3. Design of the cooling systems for the multiplicity and vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Bernardin, J.D.; Cunningham, R.

    1997-11-01

    The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory is being constructed to investigate a phase of matter termed the quark-gluon plasma. The plasma will be produced through the collision of two heavy ions. The multiplicity and vertex detector (MVD) located in the center of PHENIX will characterize the events, determine the collision point, and act as a central trigger. This report presents the final mechanical designs of the cooling systems for the Multiplicity and Vertex Detector (MVD). In particular, the design procedure and layouts are discussed for two different air cooling systems for the multichip modules and MVD enclosure, and a liquid cooling system for the low dropout voltage regulators. First of all, experimental prototype cooling system test results used to drive the final mechanical designs are summarized and discussed. Next, the cooling system requirements and design calculation for the various subsystem components are presented along with detailed lists of supply vendors, components, and costs. Finally, safety measures incorporated in the final mechanical design and operation procedures for each of the subsystems are detailed.

  4. Evaporative CO2 cooling using microchannels etched in silicon for the future LHCb vertex detector

    CERN Document Server

    Nomerotski, A.; Collins, P.; Dumps, R.; Greening, E.; John, M.; Mapelli, A.; Leflat, A.; Li, Y.; Romagnoli, G.; Verlaat, B.

    2013-01-01

    The extreme radiation dose received by vertex detectors at the Large Hadron Collider dictates stringent requirements on their cooling systems. To be robust against radiation damage, sensors should be maintained below -20 degree C and at the same time, the considerable heat load generated in the readout chips and the sensors must be removed. Evaporative CO2 cooling using microchannels etched in a silicon plane in thermal contact with the readout chips is an attractive option. In this paper, we present the first results of microchannel prototypes with circulating, two-phase CO2 and compare them to simulations. We also discuss a practical design of upgraded VELO detector for the LHCb experiment employing this approach.

  5. Development and characterization of a DEPFET pixel prototype system for the ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Kohrs, Robert

    2008-09-15

    For the future TeV-scale linear collider ILC (International Linear Collider) a vertex detector of unprecedented performance is needed to fully exploit its physics potential. By incorporating a field effect transistor into a fully depleted sensor substrate the DEPFET (Depleted Field Effect Transistor) sensor combines radiation detection and in-pixel amplification. For the operation at a linear collider the excellent noise performance of DEPFET pixels allows building very thin detectors with a high spatial resolution and a low power consumption. With this thesis a prototype system consisting of a 64 x 128 pixels sensor, dedicated steering and readout ASICs and a data acquisition board has been developed and successfully operated in the laboratory and under realistic conditions in beam test environments at DESY and CERN. A DEPFET matrix has been successfully read out using the on-chip zero-suppression of the readout chip CURO 2. The results of the system characterization and beam test results are presented. (orig.)

  6. Expected performance of tracking and vertexing with the HL-LHC ATLAS detector

    CERN Document Server

    Calace, Noemi; The ATLAS collaboration

    2018-01-01

    The High Luminosity LHC (HL-LHC) aims to increase the LHC data-set by an order of magnitude in order to increase its potential for discoveries. Starting from the middle of 2026, the HL-LHC is expected to reach the peak instantaneous luminosity of $7.5 \\cdot 10^{34} cm^{-2}s^{-1}$ which corresponds to about 200 inelastic proton-proton collisions per beam crossing. To cope with the large radiation doses and high pileup, the current ATLAS Inner Detector will be replaced with a new all-silicon Inner Tracker. In this talk the expected performance of tracking and vertexing with the HL-LHC tracker is presented. Comparison is made to the performance with the Run2 detector. Ongoing developments of the track reconstruction for the HL-LHC are also discussed.

  7. Development and characterization of a DEPFET pixel prototype system for the ILC vertex detector

    International Nuclear Information System (INIS)

    Kohrs, Robert

    2008-09-01

    For the future TeV-scale linear collider ILC (International Linear Collider) a vertex detector of unprecedented performance is needed to fully exploit its physics potential. By incorporating a field effect transistor into a fully depleted sensor substrate the DEPFET (Depleted Field Effect Transistor) sensor combines radiation detection and in-pixel amplification. For the operation at a linear collider the excellent noise performance of DEPFET pixels allows building very thin detectors with a high spatial resolution and a low power consumption. With this thesis a prototype system consisting of a 64 x 128 pixels sensor, dedicated steering and readout ASICs and a data acquisition board has been developed and successfully operated in the laboratory and under realistic conditions in beam test environments at DESY and CERN. A DEPFET matrix has been successfully read out using the on-chip zero-suppression of the readout chip CURO 2. The results of the system characterization and beam test results are presented. (orig.)

  8. Front-end module readout and control electronics for the PHENIX Multiplicity Vertex Detector

    International Nuclear Information System (INIS)

    Ericson, M.N.; Allen, M.D.; Boissevain, J.

    1997-11-01

    Front-end module (FEM) readout and control are implemented as modular, high-density, reprogrammable functions in the PHENIX Multiplicity Vertex Detector. FEM control is performed by the heap manager, an FPGA-based circuit in the FEM unit. Each FEM has 256 channels of front-end electronics, readout, and control, all located on an MCM. Data readout, formatting, and control are performed by the heap manager along with 4 interface units that reside outside the MVD detector cylinder. This paper discusses the application of a generic heap manager and the addition of 4 interface module types to meet the specific control and data readout needs of the MVD. Unit functioning, interfaces, timing, data format, and communication rates will be discussed in detail. In addition, subsystem issues regarding mode control, serial architecture and functions, error handling, and FPGA implementation and programming will be presented

  9. MUST: A silicon strip detector array for radioactive beam experiments

    International Nuclear Information System (INIS)

    Blumenfeld, Y.; Auger, F.; Sauvestre, J.E.; Marechal, F.; Ottini, S.; Alamanos, N.; Barbier, A.; Beaumel, D.; Bonnereau, B.; Charlet, D.; Clavelin, J.F.; Courtat, P.; Delbourgo-Salvador, P.; Douet, R.; Engrand, M.; Ethvignot, T.; Gillibert, A.; Khan, E.; Lapoux, V.; Lagoyannis, A.; Lavergne, L.; Lebon, S.; Lelong, P.; Lesage, A.; Le Ven, V.; Lhenry, I.; Martin, J.M.; Musumarra, A.; Pita, S.; Petizon, L.; Pollacco, E.; Pouthas, J.; Richard, A.; Rougier, D.; Santonocito, D.; Scarpaci, J.A.; Sida, J.L.; Soulet, C.; Stutzmann, J.S.; Suomijaervi, T.; Szmigiel, M.; Volkov, P.; Voltolini, G.

    1999-01-01

    A new and innovative array, MUST, based on silicon strip technology and dedicated to the study of reactions induced by radioactive beams on light particles is described. The detector consists of 8 silicon strip - Si(Li) telescopes used to identify recoiling light charged particles through time of flight, energy loss and energy measurements and to determine precisely their scattering angle through X, Y position measurements. Each 60x60 mm 2 double sided silicon strip detector with 60 vertical and 60 horizontal strips yields an X-Y position resolution of 1 mm, an energy resolution of 50 keV, a time resolution of around 1 ns and a 500 keV energy threshold for protons. The backing Si(Li) detectors stop protons up to 25 MeV with a resolution of approximately 50 keV. CsI crystals read out by photo-diodes which stop protons up to 70 MeV are added to the telescopes for applications where higher energy particles need to be detected. The dedicated electronics in VXIbus standard allow us to house the 968 logic and analog channels of the array in one crate placed adjacent to the reaction chamber and fully remote controlled, including pulse visualization on oscilloscopes. A stand alone data acquisition system devoted to the MUST array has been developed. Isotope identification of light charged particles over the full energy range has been achieved, and the capability of the system to measure angular distributions of states populated in inverse kinematics reactions has been demonstrated

  10. The new silicon strip detectors for the CMS tracker upgrade

    International Nuclear Information System (INIS)

    Dragicevic, M.

    2010-01-01

    The first introductory part of the thesis describes the concept of the CMS experiment. The tasks of the various detector systems and their technical implementations in CMS are explained. To facilitate the understanding of the basic principles of silicon strip sensors, the subsequent chapter discusses the fundamentals in semiconductor technology, with particular emphasis on silicon. The necessary process steps to manufacture strip sensors in a so-called planar process are described in detail. Furthermore, the effects of irradiation on silicon strip sensors are discussed. To conclude the introductory part of the thesis, the design of the silicon strip sensors of the CMS Tracker are described in detail. The choice of the substrate material and the complex geometry of the sensors are reviewed and the quality assurance procedures for the production of the sensors are presented. Furthermore the design of the detector modules are described. The main part of this thesis starts with a discussion on the demands on the tracker caused by the increase in luminosity which is proposed as an upgrade to the LHC accelerator (sLHC). This chapter motivates the work I have conducted and clarifies why the solutions proposed by myself are important contributions to the upgrade of the CMS tracker. The following chapters present the concepts that are necessary to operate the silicon strip sensors at sLHC luminosities and additional improvements to the construction and quality assurance of the sensors and the detector modules. The most important concepts and works presented in chapters 7 to 9 are: Development of a software framework to enable the flexible and quick design of test structures and sensors. Selecting a suitable sensor material which is sufficiently radiation hard. Design, implementation and production of a standard set of test structures to enable the quality assurance of such sensors and any future developments. Electrical characterisation of the test structures and analysis

  11. Thermal simulations of the new design for the BELLE silicon vertex detector

    International Nuclear Information System (INIS)

    Dragic, J.

    2000-01-01

    Full text: The experienced imperfections of the BELLE silicon vertex detector, SVD1 motioned the design of a new detector, SVD2, which targets on improving the main weaknesses encountered in the old design. In this report we focus on tile thermal aspects of the SVD2 ladder, whereby sufficient cooling of the detector is necessary in order to minimise the detector leakage currents. It is estimated that reducing the temperature of the silicon detector from 25 deg C to 15 deg C would result in a 50% reduction in leak current. Further, cooling the detector would help minimize mechanical stresses from the thermal cycling. Our task is to ensure that the heat generated by the readout chips is conducted down the SVD hybrid unit effectively, such that the chip and the hybrid temperature does not overbear the SVD silicon sensor temperature. We considered the performance of two materials to act as a heat spreading plate which is glued between the two hybrids in order to improve the heat conductivity of the hybrid unit, namely Copper and Thermal Pyrolytic Graphite (TPG). The effects of other ladder components were also considered in order to enhance the cooling of the silicon detectors. Finite element analysis with ANSYS software was used to simulate the thermal conditions of the SVD2 hybrid unit, in accordance with the baseline design for the mechanical structure of the ladder. It was found that Cu was a preferred material as it achieved equivalent silicon sensor cooling (3.6 deg C above cooling point), while its mechanical properties rendered it a lot more practical. Suppressing, the thermal path via a rib support block, by increasing its thermal resistivity, as well as increasing thermal conductivity of the ribs in the hybrid region, were deemed essential in the effective cooling of the silicon sensors

  12. EMC Diagnosis and Corrective Actions for Silicon Strip Tracker Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Arteche, F.; /CERN /Imperial Coll., London; Rivetta, C.; /SLAC

    2006-06-06

    The tracker sub-system is one of the five sub-detectors of the Compact Muon Solenoid (CMS) experiment under construction at CERN for the Large Hadron Collider (LHC) accelerator. The tracker subdetector is designed to reconstruct tracks of charged sub-atomic particles generated after collisions. The tracker system processes analogue signals from 10 million channels distributed across 14000 silicon micro-strip detectors. It is designed to process signals of a few nA and digitize them at 40 MHz. The overall sub-detector is embedded in a high particle radiation environment and a magnetic field of 4 Tesla. The evaluation of the electromagnetic immunity of the system is very important to optimize the performance of the tracker sub-detector and the whole CMS experiment. This paper presents the EMC diagnosis of the CMS silicon tracker sub-detector. Immunity tests were performed using the final prototype of the Silicon Tracker End-Caps (TEC) system to estimate the sensitivity of the system to conducted noise, evaluate the weakest areas of the system and take corrective actions before the integration of the overall detector. This paper shows the results of one of those tests, that is the measurement and analysis of the immunity to CM external conducted noise perturbations.

  13. Investigation of DEPFET as vertex detector at ILC. Intrinsic properties, radiation hardness and alternative readout schemes

    Energy Technology Data Exchange (ETDEWEB)

    Rummel, Stefan

    2009-07-20

    The International Linear Collider (ILC) is supposed to be the next generation lepton collider. The detectors at ILC are intended to be precision instruments improving the performance in impact parameter (IP), momentum and energy resolution significantly compared to previous detectors at lepton colliders. To achieve this goal it is necessary to develop new detector technologies or pushing existing technologies to their technological edges. Regarding the Vertex detector (VTX) this implies challenges in resolution, material budget, power consumption and readout speed. A promising technology for the Vertex detector is the Depleted Field Effect Transistor (DEPFET). The DEPFET is a semiconductor device with in-pixel ampli cation integrated on a fully depleted bulk. This allows building detectors with intrinsically high SNR due to the large sensitive volume and the small input capacitance at the rst ampli er. To reach the ambitious performance goals it is important to understand its various features: clear performance, internal amplification, noise and radiation hardness. The intrinsic noise is analyzed, showing that the contribution of the DEPFET is below 50 e{sup -} at the required speed. Moreover it is possible to show that the internal ampli cation could be further improved to more than 1nA/e{sup -} using the standard DEPFET technology. The clear performance is investigated on matrix level utilizing a dedicated setup for single pixel testing which allows direct insight into the DEPFET operation, without the complexity of the full readout system. It is possible to show that a full clear could be achieved with a voltage pulse of 10 V. Furthermore a novel clear concept - the capacitive coupled clear gate - is demonstrated. The radiation hardness is studied with respect to the system performance utilizing various irradiations with ionizing and non ionizing particles. The impact on the bulk as well as the interface damage is investigated. Up to now the readout is performed

  14. Study of inter-strip gap effects and efficiency for full energy detection of double sided silicon strip detectors

    International Nuclear Information System (INIS)

    Fisichella, M.; Forneris, J.; Grassi, L.

    2015-01-01

    We performed a characterization of Double Sided Silicon Strip Detectors (DSSSD) with the aim to carry out a systematic study of the inter-strip effects on the energy measurement of charged particles. The dependence of the DSSSD response on ion, energy and applied bias has been investigated. (author)

  15. Development of a customized SSC pixel detector readout for vertex tracking

    International Nuclear Information System (INIS)

    Barkan, O.; Atlas, E.L.; Marking, W.L.; Worley, S.; Yacoub, G.Y.; Kramer, G.; Arens, J.F.; Jernigan, J.G.; Shapiro, S.L.; Nygren, D.; Spieler, H.; Wright, M.

    1990-01-01

    The authors describe the readout architecture and progress to date in the development of hybrid PIN diode arrays for use as vertex detectors in the SSC environment. The architecture supports a self-timed mechanism for time stamping hit pixels, storing their xy coordinates and later selectively reading out only those pixels containing interesting data along with their coordinates. The peripheral logic resolves ambiguous pixel ghost locations and controls pixel neighbor readout to achieve high spatial resolution. A test lot containing 64 x 32 pixel arrays has been processed and is currently being tested. Each pixel contains 23 transistors and six capacitors consuming an area of 50μm by 150μm and dissipating about 20μW of power

  16. Development of a customized SSC pixel detector readout for vertex tracking

    International Nuclear Information System (INIS)

    Barkan, O.; Atlas, E.L.; Marking, W.L.; Worley, S.; Yacoub, G.Y.; Kramer, G.; Arens, J.F.; Jernigan, J.G.; Nygren, D.; Spieler, H.; Wright, M.

    1990-10-01

    We describe the readout architecture and progress to date in the development of hybrid PIN diode arrays for use as vertex detectors in the SSC environment. The architecture supports a self-timed mechanism for time stamping hit pixels, storing their xy coordinates and later selectively reading out only those pixels containing interesting data along with their coordinates. The peripheral logic resolves ambiguous pixel ghost locations and controls pixel neighbor readout to achieve high spatial resolution. A test lot containing 64 x 32 pixel arrays has been processed and is currently being tested. Each pixel contains 23 transistors and six capacitors consuming an area of 50 μm by 150 μm and dissipating about 20μW of power. 6 refs., 2 figs

  17. Vertex based missing mass calculator for 3-prong hadronically decaying tau leptons in the ATLAS detector

    CERN Document Server

    Maddocks, Harvey

    In this thesis my personal contributions to the ATLAS experiment are presented, these consist of studies and analyses relating to tau leptons. The first main section contains work on the identification of hadronically decaying tau leptons, and my specific contribution the electron veto. This work involved improving the choice of variables to discriminate against electrons that had been incorrectly identified as tau leptons. These variables were optimised to be robust against increasing pile-up, which is present in this data period. The resulting efficiencies are independent of this pile-up. The second main section contains an analysis of Z → τ τ decays, my specific contribution was the calculation of the detector acceptance factors and systematics. The third, and final section contains an analysis of the performance of a new vertex based missing mass calculator for 3-prong hadronically decaying tau leptons. It was found that in its current state it performs just as well as the existing methods. However it...

  18. Performance of the reconstruction algorithms of the FIRST experiment pixel sensors vertex detector

    CERN Document Server

    Rescigno, R; Juliani, D; Spiriti, E; Baudot, J; Abou-Haidar, Z; Agodi, C; Alvarez, M A G; Aumann, T; Battistoni, G; Bocci, A; Böhlen, T T; Boudard, A; Brunetti, A; Carpinelli, M; Cirrone, G A P; Cortes-Giraldo, M A; Cuttone, G; De Napoli, M; Durante, M; Gallardo, M I; Golosio, B; Iarocci, E; Iazzi, F; Ickert, G; Introzzi, R; Krimmer, J; Kurz, N; Labalme, M; Leifels, Y; Le Fevre, A; Leray, S; Marchetto, F; Monaco, V; Morone, M C; Oliva, P; Paoloni, A; Patera, V; Piersanti, L; Pleskac, R; Quesada, J M; Randazzo, N; Romano, F; Rossi, D; Rousseau, M; Sacchi, R; Sala, P; Sarti, A; Scheidenberger, C; Schuy, C; Sciubba, A; Sfienti, C; Simon, H; Sipala, V; Tropea, S; Vanstalle, M; Younis, H

    2014-01-01

    Hadrontherapy treatments use charged particles (e.g. protons and carbon ions) to treat tumors. During a therapeutic treatment with carbon ions, the beam undergoes nuclear fragmentation processes giving rise to significant yields of secondary charged particles. An accurate prediction of these production rates is necessary to estimate precisely the dose deposited into the tumours and the surrounding healthy tissues. Nowadays, a limited set of double differential carbon fragmentation cross-section is available. Experimental data are necessary to benchmark Monte Carlo simulations for their use in hadrontherapy. The purpose of the FIRST experiment is to study nuclear fragmentation processes of ions with kinetic energy in the range from 100 to 1000 MeV/u. Tracks are reconstructed using information from a pixel silicon detector based on the CMOS technology. The performances achieved using this device for hadrontherapy purpose are discussed. For each reconstruction step (clustering, tracking and vertexing), different...

  19. Past Experiences and Future Trends on Vertex Detector Cooling at LHC

    CERN Document Server

    Petagna, Paolo

    2014-01-01

    Substantially different approaches have been ad opted for the refrigeration plants of the first generation of vertex detectors at LHC: those of ALICE, ATLAS and CMS use PFC fluids, either in single phase or in a traditional Joule-Thomson cycle, while carbon dioxide in a pumped two-phase loop has been selected for the LHCb VELO. For what concerns the on-board thermal management of the sensors and related electronics, a traditional design has been followed, based on a common general approach and only differing in the specific choices related to the local configuration. Although the global performance of the detectors in this first phase of LHC operation can be claimed as fully satisfactory, it appears that the additional challenges posed by the coming upgrade phases can only be tackled through an effort on technology innovation and, in particular on much stronger and earlier integration of all the cooling-related aspects in the detector conception. Carbon dioxide seems to be the preferred choice for the refrige...

  20. Analysis of the radiation tolerance of the LHCb silicon vertex detector

    CERN Document Server

    Feick, H

    1998-01-01

    This note analyses the radiation tolerance of the LHC-B silicon vertex detector in the framework of the latest damage models put forward by the ROSE / CERN RD 48 Collaboration. The calculations assume constant temperature and constant flux for a one year beam period of 240 d. It is found that the ultimate failure of the detectors is due to the damage-induced doping changes causing the loss of sensitive volume. Increases in the leakage current and carrier trapping stay at a tolerable level. Given a suitable operating temperature (5 degree C) and initial resistivity, detectors of 150 _m (480 \\Omega cm) and 200 _m (850\\Omega cm) thickness are expected to remain fully depleted with 200 V up to equivalent 1-MeV neutron fluences of 5 \\Theta 1014cm\\Gamma 2and 9 \\Theta 1014cm\\Gamma 2, respectively. Admitting partially depleted operation, the lower benchmarkfigure of 7000 collected electrons is reached at radiation doses as high as 8 \\Theta 1014cm\\Gamma 2 and1 \\Theta 1015cm\\Gamma 2, respectively. A conservative 50 4.0...

  1. Data quality monitoring of the CMS Silicon Strip Tracker detector

    International Nuclear Information System (INIS)

    Benucci, L.

    2010-01-01

    The Physics and Data Quality Monitoring (DQM) framework aims at providing a homogeneous monitoring environment across various applications related to data taking at the CMS experiment. In this contribution, the DQM system for the Silicon Strip Tracker will be introduced. The set of elements to assess the status of detector will be mentioned, along with the way to identify problems and trace them to specific tracker elements. Monitoring tools, user interfaces and automated software will be briefly described. The system was used during extensive cosmic data taking of CMS in Autumn 2008, where it demonstrated to have a flexible and robust implementation and has been essential to improve the understanding of the detector. CMS Collaboration believes that this tool is now mature to face the forthcoming data-taking era.

  2. Design, fabrication and characterization of multi-guard-ring furnished p+n-n+ silicon strip detectors for future HEP experiments

    Science.gov (United States)

    Lalwani, Kavita; Jain, Geetika; Dalal, Ranjeet; Ranjan, Kirti; Bhardwaj, Ashutosh

    2016-07-01

    Si detectors, in various configurations (strips and pixels), have been playing a key role in High Energy Physics (HEP) experiments due to their excellent vertexing and high precision tracking information. In future HEP experiments like upgrade of the Compact Muon Solenoid experiment (CMS) at the Large Hadron Collider (LHC), CERN and the proposed International Linear Collider (ILC), the Si tracking detectors will be operated in a very harsh radiation environment, which leads to both surface and bulk damage in Si detectors which in turn changes their electrical properties, i.e. change in the full depletion voltage, increase in the leakage current and decrease in the charge collection efficiency. In order to achieve the long term durability of Si-detectors in future HEP experiments, it is required to operate these detectors at very high reverse biases, beyond the full depletion voltage, thus requiring higher detector breakdown voltage. Delhi University (DU) is involved in the design, fabrication and characterization of multi-guard-ring furnished ac-coupled, single sided, p+n-n+ Si strip detectors for future HEP experiments. The design has been optimized using a two-dimensional numerical device simulation program (TCAD-Silvaco). The Si strip detectors are fabricated with eight-layers mask process using the planar fabrication technology by Bharat Electronic Lab (BEL), India. Further an electrical characterization set-up is established at DU to ensure the quality performance of fabricated Si strip detectors and test structures. In this work measurement results on non irradiated Si Strip detectors and test structures with multi-guard-rings using Current Voltage (IV) and Capacitance Voltage (CV) characterization set-ups are discussed. The effect of various design parameters, for example guard-ring spacing, number of guard-rings and metal overhang on breakdown voltage of test structures have been studied.

  3. Silicon strip detector qualification for the CMS experiment

    CERN Document Server

    Kaußen, Gordon

    2008-01-01

    The Compact Muon Solenoid (CMS) is one of the four experiments being installed at the Large Hadron Collider (LHC) which is located at the european organization for nuclear research CERN in Geneva. This proton-proton collider will explore a new energy regime of up to 14TeV center-of-mass energy. To provide the best spatial resolution for the particle trajectory reconstruction and a very fast readout, the inner tracking system of CMS is build up of silicon detectors with a pixel tracker in the center surrounded by a strip tracker. The silicon strip tracker consists of so-called modules representing the smallest detection unit of the tracking device. These modules are mounted on higher-level structures called shells in the tracker inner barrel (TIB), rods in the tracker outer barrel (TOB), disks in the tracker inner disks (TID) and petals in the tracker end caps (TEC). The entire strip tracker spans an active area of about 198m2 and consists of approximately 16000 modules. Before the silicon sensors were assembl...

  4. Strip detector for the ATLAS detector upgrade for the high-luminosity LHC

    CERN Document Server

    Madaffari, Daniele; The ATLAS collaboration

    2017-01-01

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential of the LHC through a sizeable increase in the luminosity, reaching 1x10$^{35}$ cm$^{-2}$s$^{-1}$ after 10 years of operation. A consequence of this increased luminosity is the expected radiation damage at an integrated luminosity of 3000 fb$^{-1}$, requiring the tracking detectors to withstand hadron fluencies to over 1x10$^{16}$ 1 MeV neutron equivalent per cm$^2$. With the addition of increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk), which will consist of both strip and pixelated silicon detectors. The physics motivations, required performance characteristics and basic design of the proposed upgrade of the strip detector will be a subject of this talk. Present ideas and solutions for the strip detector and current research and development program will be discussed.

  5. A readout system for the micro-vertex-detector demonstrator for the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Schrader, Christoph

    2011-06-09

    The Compressed Baryonic Matter Experiment (CBM) is a fixed target heavy ion experiment currently in preparation at the future FAIR accelerator complex in Darmstadt. The CBM experiment focuses on the measurements of diagnostic probes of the early and dense phase of the fireball at beam energies from 8 up to 45 AGeV. As observables, rare hadronic, leptonic and photonic probes are used, including open charm. Open charm will be identified by reconstructing the secondary decay vertex of the corresponding short lived particles. As the central component for track reconstruction, a detector system based on silicon semiconductor detectors is planned. The first three stations of the Silicon Tracking System (STS) make up the so-called Micro-Vertex-Detector (MVD) operating in moderate vacuum. Because of the well-balanced compromise between an excellent spatial resolution (few {mu}m), low material budget ({proportional_to}50 {mu}m Si), adequate radiation tolerance and readout speed, Monolithic Active Pixel Sensors (MAPS) based on CMOS technology are more suited than any other technology for the reconstruction of the secondary vertex in CBM. A new detector concept has to be developed. Two MVD-Demonstrator modules have been successfully tested with 120 GeV pions at the CERN-SPS. The main topic of this thesis is the development of a control and readout concept of several MVD-Demonstrator modules with a common data acquisition system. In order to achieve the required results a front-end electronics device has been developed which is capable of reading the analogue signals of two sensors on a ex-print cable. The high data rate of the MAPS sensors (1.2 Gbit per second and sensor by 50 MHz and 12 bit ADC resolution) requires a readout system which processes the data on-line in a pipeline to avoid dead times. In order to implement the pipeline processing an FPGA is used, which is located on an additional hardware platform. In order to integrate the MVD-Demonstrator readout board in the

  6. A readout system for the micro-vertex-detector demonstrator for the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Schrader, Christoph

    2011-01-01

    The Compressed Baryonic Matter Experiment (CBM) is a fixed target heavy ion experiment currently in preparation at the future FAIR accelerator complex in Darmstadt. The CBM experiment focuses on the measurements of diagnostic probes of the early and dense phase of the fireball at beam energies from 8 up to 45 AGeV. As observables, rare hadronic, leptonic and photonic probes are used, including open charm. Open charm will be identified by reconstructing the secondary decay vertex of the corresponding short lived particles. As the central component for track reconstruction, a detector system based on silicon semiconductor detectors is planned. The first three stations of the Silicon Tracking System (STS) make up the so-called Micro-Vertex-Detector (MVD) operating in moderate vacuum. Because of the well-balanced compromise between an excellent spatial resolution (few μm), low material budget (∝50 μm Si), adequate radiation tolerance and readout speed, Monolithic Active Pixel Sensors (MAPS) based on CMOS technology are more suited than any other technology for the reconstruction of the secondary vertex in CBM. A new detector concept has to be developed. Two MVD-Demonstrator modules have been successfully tested with 120 GeV pions at the CERN-SPS. The main topic of this thesis is the development of a control and readout concept of several MVD-Demonstrator modules with a common data acquisition system. In order to achieve the required results a front-end electronics device has been developed which is capable of reading the analogue signals of two sensors on a ex-print cable. The high data rate of the MAPS sensors (1.2 Gbit per second and sensor by 50 MHz and 12 bit ADC resolution) requires a readout system which processes the data on-line in a pipeline to avoid dead times. In order to implement the pipeline processing an FPGA is used, which is located on an additional hardware platform. In order to integrate the MVD-Demonstrator readout board in the HADES data

  7. Characterisation of capacitively coupled HV/HR-CMOS sensor chips for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(SzGeCERN)756402

    2017-01-01

    The capacitive coupling between an active sensor and a readout ASIC has been considered in the framework of the CLIC vertex detector study. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is a High-Voltage CMOS sensor chip produced in a commercial 180 nm HV-CMOS process for this purpose. The sensor was designed to be connected to the CLICpix2 readout chip. It therefore matches the dimensions of the readout chip, featuring a matrix of 128 × 128 square pixels with 25 μm pitch. The sensor chip has been produced with the standard value for the substrate resistivity (∼ 20 Ωcm) and it has been characterised in standalone testing mode, before receiving and testing capacitively coupled assemblies. The standalone measurement results show a rise time of ∼ 20 ns for a power consumption of 5 μW/pixel. Production of the C3PD HV-CMOS sensor chip with higher substrate resistivity wafers (∼ 20, 80, 200 and 1000 Ωcm) is foreseen. The expected benefits of the higher substrate resistivity will be studied using...

  8. Test-beam measurements and simulation studies of thin pixel sensors for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00574329; Dannheim, Dominik

    The multi-$TeV$ $e^{+}e^{-}$ Compact Linear Collider (CLIC) is one of the options for a future high-energy collider for the post-LHC era. It would allow for searches of new physics and simultaneously offer the possibility for precision measurements of standard model processes. The physics goals and experimental conditions at CLIC set high precision requirements on the vertex detector made of pixel detectors: a high pointing resolution of 3 $\\mu m$, very low mass of 0.2% $X_{0}$ per layer, 10 ns time stamping capability and low power dissipation of 50 mW/$cm^{2}$ compatible with air-flow cooling. In this thesis, hybrid assemblies with thin active-edge planar sensors are characterised through calibrations, laboratory and test-beam measurements. Prototypes containing 50 $\\mu m$ to 150 $\\mu m$ thin planar silicon sensors bump-bonded to Timepix3 readout ASICs with 55 $\\mu m$ pitch are characterised in test beams at the CERN SPS in view of their detection efficiency and single-point resolution. A digitiser for AllP...

  9. Development of Fast and High Precision CMOS Pixel Sensors for an ILC Vertex Detector

    CERN Document Server

    Hu-Guo, Christine

    2010-01-01

    The development of CMOS pixel sensors with column parallel read-out and integrated zero-suppression has resulted in a full size, nearly 1 Megapixel, prototype with ~100 \\mu s read-out time. Its performances are quite close to the ILD vertex detector specifications, showing that the sensor architecture can presumably be evolved to meet these specifications exactly. Starting from the existing architecture and achieved performances, the paper will expose the details of how the sensor will be evolved in the coming 2-3 years in perspective of the ILD Detector Baseline Document, to be delivered in 2012. Two different devices are foreseen for this objective, one being optimized for the inner layers and their fast read-out requirement, while the other exploits the dimmed background in the outer layers to reduce the power consumption. The sensor evolution relies on a high resistivity epitaxial layer, on the use of an advanced CMOS process and on the combination of column-level ADCs with a pixel array. The paper will p...

  10. Qualification of barrel pixel detector modules for the Phase 1 Upgrade of the CMS vertex detector

    CERN Document Server

    Kudella, Simon

    2016-01-01

    To withstand the higher particle rates of LHC Runs 2 and 3, with expected luminosities of up to $2\\times 10^{34}\\,\\mathrm{cm^{-2}s^{-1}}$, the current CMS pixel detector at the LHC will be replaced as part of the CMS Phase I Upgrade during the extended winter shutdown in 2016/17. The new pixel detector features a new geometry with one additional detector layer in the barrel region~(BPIX) and one pair of additional disks in the forward region~(FPIX), new digital readout chips as well as a new CO$_{2}$-based cooling system for both the barrel and forward region. The BPIX detector module production is summarized, with special focus on the different stages of quality assurance. The quality tests as well as the calibrations which all produced modules undergo in a temperature and humidity controlled environment are described. Exemplarily, the KIT/Aachen production line and its subprocesses are presented together with its quality and yields.

  11. The Control System for the CMS Strip Tracking Detector

    CERN Document Server

    Fahrer, Manuel; Chen, Jie; Dierlamm, Alexander; Frey, Martin; Masetti, Lorenzo; Militaru, Otilia; Shah, Yousaf; Stringer, Robert; Tsirou, Andromachi

    2008-01-01

    The Tracker of the CMS silicon strip tracking detector covers a surface of 206 m2. 9648128 channels are available on 75376 APV front-end chips on 15232 modules, built of 24328 silicon sensors. The power supply of the detector modules is split up in 1944 power supplies with two low voltage for front end power and two high voltage channels each for the bias voltage of the silicon sensors. In addition 356 low voltage channels are needed to power the control chain. The tracker will run at -20°C at low relative humidity for at least 10 years. The Tracker Control System handles all interdependencies of control, low and high voltages, as well as fast ramp downs in case of higher than allowed temperatures or currents in the detector and experimental cavern problems. This is ensured by evaluating $10^{4}$ power supply parameters, $10^{3}$ information from Tracker Safety System and $10^{5}$ information from the tracker front end.

  12. Analysis of test-beam data with hybrid pixel detector prototypes for the Compact LInear Collider (CLIC) vertex detectors

    CERN Document Server

    Pequegnot, Anne-Laure

    2013-01-01

    The LHC is currently the most powerful accelerator in the world. This proton-proton collider is now stoppped to increase significantly its luminosity and energy, which would provide a larger discovery potential in 2014 and beyond. A high-energy $e^{+}e^{-}$ collider, such as CLIC, is an option to complement and to extend the LHC physics programme. Indeed, a lepton collider gives access to additional physics processes, beyond those observable at the LHC, and therefore provides new discovery potential. It can also provide complementary and/or more precise information about new physics uncovered at the LHC. Many essential features of a detector are required to deliver the full physics potential of this CLIC machine. In this present report, I present my work on the vertex detector R\\&D for this future linear collider, which aims at developping highly granular and ultra-thin position sensitive detection devices with very low power consumption and fast time-stamping capability. We tested here thin silicon pixel...

  13. The TORCH time-of-flight detector for particle identification and photon vertex association

    Science.gov (United States)

    Castillo García, L.; Brook, N.; Cussans, D.; Föhl, K.; Forty, R.; Frei, C.; Gao, R.; Gys, T.; Harnew, N.; Piedigrossi, D.; Rademacker, J.; Ros García, A.; van Dijk, M.

    2017-02-01

    TORCH (Time Of internally Reflected CHerenkov light) is a novel time-of-flight detector, designed to provide π /K/p particle identification up to 0~ 1 GeV/c momentum and beyond. To achieve this, a time resolution of ~ 15 ps combining information from 0~ 3 detected photons is required over a 10 m flight path. Large areas can be covered with TORCH, nominally up to 30 m2. One such application is for the LHCb experiment, to complement the particle identification capabilities of its RICH detectors. TORCH has a DIRC-like construction with 10 mm-thick synthetic amorphous fused-silica plates as a radiator. Cherenkov photons propagate by total internal reflection to the plate edges and there are focussed onto an array of position-sensitive photodetectors. Custom-built micro-channel plate photo-multipliers (MCP-PMTs) are being developed in collaboration with industry to provide the lifetime, granularity and time resolution to meet the TORCH specifications. In the present paper, laboratory tests of the MCP-PMTs developed for TORCH and its readout electronics are presented. Test beam measurements of a prototype TORCH detector in a low-momentum mixed beam of pions and protons are highlighted. Time resolutions for individual photons approaching 100 ps is achieved, after correction for dispersion effects in the quartz medium. In addition to the particle identification capabilities, the high-precision timing information that TORCH provides could be used at the high-luminosity LHC to associate high-energy photons with the correct primary interaction vertex amongst the many expected.

  14. The TORCH time-of-flight detector for particle identification and photon vertex association

    International Nuclear Information System (INIS)

    García, L. Castillo; Gao, R.; Harnew, N.; Dijk, M. van; Brook, N.; Cussans, D.; Rademacker, J.; García, A. Ros; Föhl, K.; Forty, R.; Frei, C.; Gys, T.; Piedigrossi, D.

    2017-01-01

    TORCH (Time Of internally Reflected CHerenkov light) is a novel time-of-flight detector, designed to provide π /K/p particle identification up to 0∼ 1 GeV/c momentum and beyond. To achieve this, a time resolution of ∼ 15 ps combining information from 0∼ 3 detected photons is required over a 10 m flight path. Large areas can be covered with TORCH, nominally up to 30 m 2 . One such application is for the LHCb experiment, to complement the particle identification capabilities of its RICH detectors. TORCH has a DIRC-like construction with 10 mm-thick synthetic amorphous fused-silica plates as a radiator. Cherenkov photons propagate by total internal reflection to the plate edges and there are focussed onto an array of position-sensitive photodetectors. Custom-built micro-channel plate photo-multipliers (MCP-PMTs) are being developed in collaboration with industry to provide the lifetime, granularity and time resolution to meet the TORCH specifications. In the present paper, laboratory tests of the MCP-PMTs developed for TORCH and its readout electronics are presented. Test beam measurements of a prototype TORCH detector in a low-momentum mixed beam of pions and protons are highlighted. Time resolutions for individual photons approaching 100 ps is achieved, after correction for dispersion effects in the quartz medium. In addition to the particle identification capabilities, the high-precision timing information that TORCH provides could be used at the high-luminosity LHC to associate high-energy photons with the correct primary interaction vertex amongst the many expected.

  15. Synchrotron applications of pixel and strip detectors at Diamond Light Source

    International Nuclear Information System (INIS)

    Marchal, J.; Tartoni, N.; Nave, C.

    2009-01-01

    A wide range of position-sensitive X-ray detectors have been commissioned on the synchrotron X-ray beamlines operating at the Diamond Light Source in UK. In addition to mature technologies such as image-plates, CCD-based detectors, multi-wire and micro-strip gas detectors, more recent detectors based on semiconductor pixel or strip sensors coupled to CMOS read-out chips are also in use for routine synchrotron X-ray diffraction and scattering experiments. The performance of several commercial and developmental pixel/strip detectors for synchrotron studies are discussed with emphasis on the image quality achieved with these devices. Examples of pixel or strip detector applications at Diamond Light Source as well as the status of the commissioning of these detectors on the beamlines are presented. Finally, priorities and ideas for future developments are discussed.

  16. Pulse processing CMOS ASIC for Si-strip/PIN detectors

    International Nuclear Information System (INIS)

    Chandratre, V.B.; Sardesai, S.V.; Kataria, S.K.

    2004-01-01

    The paper presents the design of an 8-channel front-end signal processing ASIC for Si-strip detectors with capacitance from 1 to 40 pf. Each channel consists of a charge amplifier, a shaper amplifier (CR-RC 3 ) and a track-hold stage. The channel outputs are connected to an analog multiplexer which is controlled by an external clock for serial readout. The peaking time is adjustable over 500 ns-1.2us in steps by external control. There is provision for changing gain and polarity. The circuit has a power dissipation of 16 mw per channel and is designed to fabricate in 1.2 um CMOS technology. The 0pf noise is ∼400e. The chip has an area of 5 by 5 mm with target package 48 pin CLCC. (author)

  17. The ATLAS ITk Strip Detector. Status of R&D

    CERN Document Server

    AUTHOR|(SzGeCERN)727037; The ATLAS collaboration

    2016-01-01

    While the LHC at CERN is ramping up luminosity after the discovery of the Higgs Boson in the ATLAS and CMS experiments in 2012, upgrades to the LHC and experiments are planned. The major upgrade is foreseen for 2024, with a roughly tenfold increase in luminosity, resulting in corresponding increases in particle rates and radiation doses. In ATLAS the entire Inner Detector will be replaced for Phase-2 running with an all-silicon system. This paper concentrates on the strip part. Its layout foresees low-mass and modular yet highly integrated double-sided structures for the barrel and forward region. The design features conceptually simple modules made from electronic hybrids glued directly onto the silicon. Modules will then be assembled on both sides of large carbon-core structures with integrated cooling and electrical services.

  18. Design and performance studies of the micro-vertex-detector for the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Amar-Youcef, Samir

    2012-04-12

    The CBM experiment is a fixed target experiment to be installed at the future accelerator facility at GSI/FAIR. It will investigate the properties of nuclear matter at extreme conditions and its underlying strong interaction. The research of the CBM experiment, which focuses on the regime of highest net-baryon densities and moderate temperatures, is complementary to this of the experiments at RHIC/BNL (STAR) and LHC/CERN (ALICE), which mainly focuses on the regime of high energy and zero net-baryon densities. The corresponding conditions in the CBM experiment can be produced in heavy-ion collisions at beam energies between 10 and 40 AGeV. Heavy particles, as e.g. charm carrying particles, could be sensitive to the properties of the medium in the early phase of the collision. However due to the short lifetime of open charm particles, they can only be reconstructed via their decay products and the corresponding track topology. Consequently in order to reconstruct the decay vertex with a high accuracy an ultrathin detector system with excellent spatial resolution is required. For the precise vertexing a microvertex detector (MVD) is envisaged, which has to be located directly behind the target and has to operate in the vacuum. Monolithic Active Pixel Sensors (MAPS) are the most promising candidates for the underlying sensor technology for the MVD of the CBM experiment. In the context of this thesis first attempts haven been initiated in order to integrate mechanically MAPS sensors into an ultra-thin detector dedicated to the CBM experiment. The mechanical integration necessarily needs to contain the MAPS sensors, electrical services and a support structure to cool and mount the sensors. As, apart from the intrinsic properties of the sensor, the support structures contribute notably to the specific functions and properties of the detector, particular care has to be taken during its development. Its implementation is not meant to push already the limits, rather it is

  19. Design and performance studies of the micro-vertex-detector for the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Amar-Youcef, Samir

    2012-01-01

    The CBM experiment is a fixed target experiment to be installed at the future accelerator facility at GSI/FAIR. It will investigate the properties of nuclear matter at extreme conditions and its underlying strong interaction. The research of the CBM experiment, which focuses on the regime of highest net-baryon densities and moderate temperatures, is complementary to this of the experiments at RHIC/BNL (STAR) and LHC/CERN (ALICE), which mainly focuses on the regime of high energy and zero net-baryon densities. The corresponding conditions in the CBM experiment can be produced in heavy-ion collisions at beam energies between 10 and 40 AGeV. Heavy particles, as e.g. charm carrying particles, could be sensitive to the properties of the medium in the early phase of the collision. However due to the short lifetime of open charm particles, they can only be reconstructed via their decay products and the corresponding track topology. Consequently in order to reconstruct the decay vertex with a high accuracy an ultrathin detector system with excellent spatial resolution is required. For the precise vertexing a microvertex detector (MVD) is envisaged, which has to be located directly behind the target and has to operate in the vacuum. Monolithic Active Pixel Sensors (MAPS) are the most promising candidates for the underlying sensor technology for the MVD of the CBM experiment. In the context of this thesis first attempts haven been initiated in order to integrate mechanically MAPS sensors into an ultra-thin detector dedicated to the CBM experiment. The mechanical integration necessarily needs to contain the MAPS sensors, electrical services and a support structure to cool and mount the sensors. As, apart from the intrinsic properties of the sensor, the support structures contribute notably to the specific functions and properties of the detector, particular care has to be taken during its development. Its implementation is not meant to push already the limits, rather it is

  20. Characterization of a dose verification system dedicated to radiotherapy treatments based on a silicon detector multi-strips

    International Nuclear Information System (INIS)

    Bocca, A.; Cortes Giraldo, M. A.; Gallardo, M. I.; Espino, J. M.; Aranas, R.; Abou Haidar, Z.; Alvarez, M. A. G.; Quesada, J. M.; Vega-Leal, A. P.; Perez Neto, F. J.

    2011-01-01

    In this paper, we present the characterization of a silicon detector multi-strips (SSSSD: Single Sided Silicon Strip Detector), developed by the company Micron Semiconductors Ltd. for use as a verification system for radiotherapy treatments.

  1. Technical Design Report for the ATLAS Inner Tracker Strip Detector

    CERN Document Server

    Collaboration, ATLAS

    2017-01-01

    This is the first of two Technical Design Report documents that describe the upgrade of the central tracking system for the ATLAS experiment for the operation at the High Luminosity LHC (HL-LHC) starting in the middle of 2026. At this time the LHC will have been upgraded to reach a peak instantaneous luminosity of 7.5x10^34 cm^[-2]s^[-1], which corresponds to approximately 200 inelastic proton-proton collisions per beam crossing. The new Inner Tracker (ITk) will be operational for more than ten years, during which ATLAS aims to accumulate a total data set of 3,000 fb^[-1]. Meeting these requirements presents a unique challenge for the design of an all-silicon tracking system that consists of a pixel detector at small radius close to the beam line and a large-area strip tracking detector surrounding it. This document presents in detail the requirements of the new tracker, its layout and expected performance including the results of several benchmark physics studies at the highest numbers of collisions per beam...

  2. Design of a current based readout chip and development of a DEPFET pixel prototype system for the ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Trimpl, M.

    2005-12-15

    The future TeV-scale linear collider ILC (International Linear Collider) offers a large variety of precision measurements complementary to the discovery potential of the LHC (Large Hadron Collider). To fully exploit its physics potential, a vertex detector with unprecedented performance is needed. One proposed technology for the ILC vertex detector is the DEPFET active pixel sensor. The DEPFET sensor offers particle detection with in-pixel amplification by incorporating a field effect transistor into a fully depleted high-ohmic silicon substrate. The device provides an excellent signal-to-noise ratio and a good spatial resolution at the same time. To establish a very fast readout of a DEPFET pixel matrix with row rates of 20 MHz and more, the 128 channel CURO II ASIC has been designed and fabricated. The architecture of the chip is completely based on current mode techniques (SI) perfectly adapted to the current signal of the sensor. For the ILC vertex detector a prototype system with a 64 x 128 DEPFET pixel matrix read out by the CURO II chip has been developed. The design issues and the standalone performance of the readout chip as well as first results with the prototype system will be presented. (orig.)

  3. Design of a current based readout chip and development of a DEPFET pixel prototype system for the ILC vertex detector

    International Nuclear Information System (INIS)

    Trimpl, M.

    2005-12-01

    The future TeV-scale linear collider ILC (International Linear Collider) offers a large variety of precision measurements complementary to the discovery potential of the LHC (Large Hadron Collider). To fully exploit its physics potential, a vertex detector with unprecedented performance is needed. One proposed technology for the ILC vertex detector is the DEPFET active pixel sensor. The DEPFET sensor offers particle detection with in-pixel amplification by incorporating a field effect transistor into a fully depleted high-ohmic silicon substrate. The device provides an excellent signal-to-noise ratio and a good spatial resolution at the same time. To establish a very fast readout of a DEPFET pixel matrix with row rates of 20 MHz and more, the 128 channel CURO II ASIC has been designed and fabricated. The architecture of the chip is completely based on current mode techniques (SI) perfectly adapted to the current signal of the sensor. For the ILC vertex detector a prototype system with a 64 x 128 DEPFET pixel matrix read out by the CURO II chip has been developed. The design issues and the standalone performance of the readout chip as well as first results with the prototype system will be presented. (orig.)

  4. MUST, a set of strip detectors for studying radioactive beams induced reactions

    International Nuclear Information System (INIS)

    Blumenfeld, Y.; Barbier, A.; Beaumel, D.; Charlet, D.; Clavelin, J.F.; Douet, R.; Engrand, M.; Lebon, S.; Lelong, P.; Lesage, A.; Leven, V.; Lhenry, I.; Marechal, F.; Petizon, L.; Pouthas, J.; Richard, A.; Rougier, D.; Soulet, C.; Suomijaervi, T.; Volkov, P.; Voltolini, G.

    1996-01-01

    This report states the specificity of light particles elastic scattering, and the need of detecting recoil protons to improve angular resolution. Then the development of a specific MUST strip detector is detailed: 60 strips detectors with Si O sub 2 dielectric, that yield 500 ps time resolution, and Si (Li) detectors following next. A versatile data acquisition system has been developed too, with CAMAC interface to suit to any experimental plant. (D.L.)

  5. LHCb VELO Closing Control, Vertex Resolution and Luminosity Measurement

    CERN Document Server

    Redford, S

    2010-01-01

    The LHCb Vertex Locator (VELO) surrounds the collision point at IP8 of the LHC ring and performs precise tracking and vertexing. This silicon micro-strip detector is built in two halves, which each move independently in the transverse plane so as to approach the collision region during data taking, but retract whilst the beams are injected and adjusted. The closing procedure of the VELO is detailed, along with an analysis of the primary vertex resolution and a description of the role of the VELO in the LHCb luminosity measurement.

  6. Silicon Strip Detectors for ATLAS at the HL-LHC Upgrade

    CERN Document Server

    Hara, K; The ATLAS collaboration

    2012-01-01

    The present ATLAS silicon strip (SCT) and transition radiation (TRT) trackers will be replaced with new silicon strip detectors, as part of the Inner Tracker System (ITK), for the Phase-2 upgrade of the Large Hadron Collider, HL-LHC. We have carried out intensive R&D programs to establish radiation harder strip detectors that can survive in a radiation level up to 3000 fb-1 of integrated luminosity based on n+-on-p microstrip detector. We describe main specifications for this year’s sensor fabrication, followed by a description of possible module integration schema

  7. Studies for a 10{mu}s, thin, high resolution CMOS pixel sensor for future vertex detectors

    Energy Technology Data Exchange (ETDEWEB)

    Voutsinas, G. [IPHC/IN2P3/CNRS and Universite de Strasbourg, Strasbourg (France); Amar-Youcef, S. [IFK, Goethe-Universitaet, Frankfurt am Main (Germany); Baudot, J.; Bertolone, G.; Brogna, A.; Chon-Sen, N.; Claus, G.; Colledani, C.; Dorokhov, A.; Doziere, G.; Dulinski, W. [IPHC/IN2P3/CNRS and Universite de Strasbourg, Strasbourg (France); Degerli, Y. [IRFU / SEDI (CEA) Saclay (France); De Masi, R. [IPHC/IN2P3/CNRS and Universite de Strasbourg, Strasbourg (France); Deveaux, M. [IFK, Goethe-Universitaet, Frankfurt am Main (Germany); Gelin, M.; Goffe, M.; Hu-Guo, Ch.; Himmi, A.; Jaaskelainen, K.; Koziel, M. [IPHC/IN2P3/CNRS and Universite de Strasbourg, Strasbourg (France)

    2011-06-15

    Future high energy physics (HEP) experiments require detectors with unprecedented performances for track and vertex reconstruction. These requirements call for high precision sensors, with low material budget and short integration time. The development of CMOS sensors for HEP applications was initiated at IPHC Strasbourg more than 10 years ago, motivated by the needs for vertex detectors at the International Linear Collider (ILC) [R. Turchetta et al, NIM A 458 (2001) 677]. Since then several other applications emerged. The first real scale digital CMOS sensor MIMOSA26 equips Flavour Tracker at RHIC, as well as for the microvertex detector of the CBM experiment at FAIR. MIMOSA sensors may also offer attractive performances for the ALICE upgrade at LHC. This paper will demonstrate the substantial performance improvement of CMOS sensors based on a high resistivity epitaxial layer. First studies for integrating the sensors into a detector system will be addressed and finally the way to go to a 10{mu}s readout sensor will be discussed.

  8. Double peak electric field distortion in heavily irradiated silicon strip detectors

    CERN Document Server

    Eremin, Vladimir; Roe, Shaun; Ruggiero, G; Verbitskaya, E

    2004-01-01

    Non-uniform distribution of the electric field outlined as double peak distortion (DPD) is considered for heavily irradiated silicon strip detectors, which were developed for the CERN-ATLAS semiconductor tracker. DPD originates from the non-uniform accumulation of electrons and holes from the bulk generated current that are captured by radiation induced defects: deep acceptors and donors with mid-gap energy levels. This corresponds to the formation of the low electric field region in the detector central part that consequently will delay charge collection. The electric field distributions at different reverse biases, fluences and detector operational temperatures are calculated using a one-dimensional Poisson equation as it was done earlier for pad detectors. It has been shown that due to the electric field focusing at the strips the DPD effect is more pronounced for strip detectors as compared to that in pad detectors. The double peak electric field distribution is evinced experimentally in current pulse res...

  9. Assembly of an endcap of the ATLAS silicon strip detector at NIKHEF, Amsterdam.

    CERN Multimedia

    Ginter, P

    2005-01-01

    Assembly of an endcap of the ATLAS silicon strip detector (SCT) at NIKHEF, Amsterdam. Technicians are mounting the power distribution cables on the cylinder that houses nine disks with silicon sensors.

  10. The LHCb Vertex Locator performance and Vertex Locator upgrade

    CERN Document Server

    INSPIRE-00259789

    2012-01-01

    LHCb is an experiment dedicated to the study of new physics in the decays of beauty and charm hadrons at the Large Hadron Collider (LHC) at CERN. The Vertex Locator (VELO) is the silicon detector surrounding the LHCb interaction point. The detector operates in a severe and highly non-uniform radiation environment. The small pitch and analogue readout result in a best single hit precision of 4 $\\rm \\mu$m. The upgrade of the LHCb experiment, planned for 2018, will transform the entire readout to a trigger-less system operating at 40 MHz event rate. The vertex detector will have to cope with radiation levels up to 10$^{16}$ 1 MeV$\\rm n_{eq}/cm^2$, more than an order of magnitude higher than those expected at the current experiment. A solution is under development with a pixel detector, based on the Timepix/Medipix family of chips with 55 x 55 $\\rm \\mu m$ pixels. In addition a micro-strip solution is also under development, with finer pitch, higher granularity and lower mass than the current detector. The current...

  11. An experimental investigation of a liquid cooling scheme for the low dropout voltage regulators of the multiplicity and vertex detector

    International Nuclear Information System (INIS)

    Bernardin, J.D.; Bosze, E.

    1997-10-01

    This report presents a summary of an experimental investigation of a liquid cooling system for the low dropout voltage regulators in the multiplicity and vertex detector (MVD), a device used to determine and characterize the collision location of two accelerated heavy ions. The coolant temperatures and flow rates as well as the voltage regulator operating temperatures were used to assess and optimize the performance of the proposed cooling system, identify potential assembly problems and system limitations, and provide the necessary information for designing and sizing the final MVD cooling system components. The MVD is part of the PHENIX experiment at Brookhaven RHIC

  12. First generation of deep n-well CMOS MAPS with in-pixel sparsification for the ILC vertex detector

    International Nuclear Information System (INIS)

    Traversi, Gianluca; Bulgheroni, Antonio; Caccia, Massimo; Jastrzab, Marcin; Manghisoni, Massimo; Pozzati, Enrico; Ratti, Lodovico; Re, Valerio

    2009-01-01

    In this paper we present the characterization results relevant to a deep n-well (DNW) CMOS active pixel sensor chip designed for vertexing applications at the International Linear Collider. In this chip, named sparsified digital readout (SDR0), for the first time we implemented a sparsification logic at the pixel level. The DNW available in deep submicron CMOS processes is used to collect the charge released in the substrate, and signal processing is performed by a classical optimum amplifying stage for capacitive detectors. In this work, the experimental characterization of the SDR0 chip, including data from radioactive source ( 55 Fe) tests, will be presented.

  13. First Results from the LHCb Vertex Locator

    CERN Multimedia

    Borghi, S

    2010-01-01

    LHCb is a dedicated experiment to study new physics in the decays of beauty and charm hadrons at the Large Hadron Collider (LHC) at CERN. The beauty and charm hadrons are identified through their flight distance in the Vertex Locator (VELO), and hence the detector is critical for both the trigger and offline physics analyses. The VELO is the silicon detector surrounding the interaction point, and is the closest LHC vertex detector to the interaction point, located only 7 mm from the LHC beam during normal operation. The detector will operate in an extreme and highly non-uniform radiation environment. The VELO consists of two retractable detector halves with 21 silicon micro-strip tracking modules each. A module is composed of two n+-on-n 300 micron thick half disc sensors with R-measuring and Phi-measuring micro-strip geometry, mounted on a carbon fibre support paddle. The minimum pitch is approximately 40 $\\mu$m. The detector is also equipped with one n-on-p module. The detectors are operated in vacuum and a...

  14. Response of CZT drift-strip detector to X- and gamma rays

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Gerward, Leif

    2001-01-01

    The drift-strip method for improving the energy response of a CdZnTe (CZT) detector to hard X- and gamma rays is discussed. Results for a 10 x 10 x 3 mm(3) detector crystal demonstrate a remarkable improvement of the energy resolution. The full width at half maximum (FWHM) is 2.18 keV (3.6%), 2...

  15. Development of a Compton camera for medical applications based on silicon strip and scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Krimmer, J., E-mail: j.krimmer@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Lyon 1, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne cedex (France); Ley, J.-L. [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Lyon 1, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne cedex (France); Abellan, C.; Cachemiche, J.-P. [Aix-Marseille Université, CNRS/IN2P3, CPPM UMR 7346, 13288 Marseille (France); Caponetto, L.; Chen, X.; Dahoumane, M.; Dauvergne, D. [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Lyon 1, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne cedex (France); Freud, N. [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA - Lyon, Université Lyon 1, Centre Léon Bérard (France); Joly, B.; Lambert, D.; Lestand, L. [Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 Clermont-Ferrand (France); Létang, J.M. [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA - Lyon, Université Lyon 1, Centre Léon Bérard (France); Magne, M. [Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 Clermont-Ferrand (France); and others

    2015-07-01

    A Compton camera is being developed for the purpose of ion-range monitoring during hadrontherapy via the detection of prompt-gamma rays. The system consists of a scintillating fiber beam tagging hodoscope, a stack of double sided silicon strip detectors (90×90×2 mm{sup 3}, 2×64 strips) as scatter detectors, as well as bismuth germanate (BGO) scintillation detectors (38×35×30 mm{sup 3}, 100 blocks) as absorbers. The individual components will be described, together with the status of their characterization.

  16. Silicon two-coordinate detector with separable pad-strip readout

    International Nuclear Information System (INIS)

    Barabash, L.S.; Babukh, A.V.; Frolov, V.N.; Kazarinov, M.Yu.; Popov, A.A.; Sandukovskij, V.G.; Chalyshev, V.V.

    1996-01-01

    The characteristics of resistive layer Si microstrip detector with two versions of the readout system are presented. One version used the usual single coordinate strip system of 1 mm pitch. The second version used a two coordinate pad-strip system of 3.6 mm pitch ('chess board'). The registration precision of the detector was studied with a UV laser. The two-dimensional imaging ability of the detector with α-particles and with an 241 Am γ-source is shown. 5 refs., 9 figs

  17. Design and standalone characterisation of a capacitively coupled HV-CMOS sensor chip for the CLIC vertex detector

    Science.gov (United States)

    Kremastiotis, I.; Ballabriga, R.; Campbell, M.; Dannheim, D.; Fiergolski, A.; Hynds, D.; Kulis, S.; Peric, I.

    2017-09-01

    The concept of capacitive coupling between sensors and readout chips is under study for the vertex detector at the proposed high-energy CLIC electron positron collider. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is an active High-Voltage CMOS sensor, designed to be capacitively coupled to the CLICpix2 readout chip. The chip is implemented in a commercial 180 nm HV-CMOS process and contains a matrix of 128×128 square pixels with 25μm pitch. First prototypes have been produced with a standard resistivity of ~20 Ωcm for the substrate and tested in standalone mode. The results show a rise time of ~20 ns, charge gain of 190 mV/ke- and ~40 e- RMS noise for a power consumption of 4.8μW/pixel. The main design aspects, as well as standalone measurement results, are presented.

  18. Performance of the LHCb Vertex Locator

    CERN Document Server

    Latham, T

    2012-01-01

    LHCb is a dedicated flavour physics experiment at the Large Hadron Collider (LHC) at CERN. The Vertex Locator (VELO) is an essential part of the LHCb detector, permitting precision measurements of the production and decay vertices of beauty and charm particles. The VELO consists of a series of silicon micro-strip detectors, arranged in two retractable halves. Positioned only 7 mm from the beam during normal operations, it must withstand very high levels of radiation. The performance of the LHCb VELO during the first year of LHC physics running is presented.

  19. Technology Development on P-type Silicon Strip Detectors for Proton Beam Dosimetry

    International Nuclear Information System (INIS)

    Aouadi, K.; Bouterfa, M.; Delamare, R.; Flandre, D.; Bertrand, D.; Henry, F.

    2013-06-01

    In this paper, we present a technology for the fabrication of n-in-p silicon strip detectors, which is based on the use of Al 2 O 3 oxide compared to p-spray insulation scheme. This technology has been developed using the best technological parameters deduced from simulations, particularly for the p-spray implantation parameters. Different wafers were processed towards the fabrication of the radiation detectors with p-spray insulation and Al 2 O 3 . The evaluation of the prototype detectors has been carried out by performing the electrical characterization of the devices through the measurement of current-voltage and capacitance-voltage characteristics, as well as the measurement of detection response under radiation. The results of electrical measurements indicate that detectors fabricated with Al 2 O 3 exhibit a dark current several times lower than p-spray detectors and show an excellent electrical insulation between strips with a higher inter-strip resistance. Response of Al 2 O 3 strip detector under radiation has been found better. The resulting improved output signal dynamic range finally makes the use of Al 2 O 3 more attractive. (authors)

  20. Investigation of the charge collection for strongly irradiated silicon strip detectors of the CMS ECAL Preshower

    International Nuclear Information System (INIS)

    Bloch, Ph.; Peisert, A.; Chang, Y.H.; Chen, A.E.; Hou, S.; Lin, W.T.; Cheremukhin, A.E.; Golutvin, I.A.; Urkinbaev, A.R.; Zamyatin, N.I.; Loukas, D.

    2001-01-01

    Strongly irradiated (2.3·10 14 n/cm 2 ) silicon strip detectors of different size, thickness and different design options were tested in a muon beam at CERN in 1999. A charge collection efficiency in excess of 85% and a signal-to-noise ratio of about 6 are obtained in all cases at high enough bias voltage. Details of the charge collection in the interstrip and the guard ring region and cross-talk between strips were also studied. We find that the charge collection efficiency and the cross-talk between strips depend on the interstrip distance

  1. Silicon Strip Detectors for ATLAS at the HL-LHC Upgrade

    CERN Document Server

    Hara, K; The ATLAS collaboration

    2012-01-01

    present ATLAS silicon strip tracker (SCT) and transition radiation tracker(TRT) are to be replaced with new silicon strip detectors as part of the Inner Tracker System (ITK) for the Phase-II upgrade of the Large Hadron Collider, HL-LHC. We have carried out intensive R&D programs based on n+-on-p microstrip detectors to fabricate improved radiation hard strip detectors that can survive the radiation levels corresponding to the integrated luminosity of up to 3000 fb−1. We describe the main specifications for this year’s sensor fabrication and the related R&D results, followed by a description of the candidate schema for module integration.

  2. Beam tests of ATLAS SCT silicon strip detector modules

    Czech Academy of Sciences Publication Activity Database

    Campabadal, F.; Fleta, C.; Key, M.; Böhm, Jan; Mikeštíková, Marcela; Šťastný, Jan

    2005-01-01

    Roč. 538, - (2005), s. 384-407 ISSN 0168-9002 R&D Projects: GA MŠk(CZ) 1P04LA212 Institutional research plan: CEZ:AV0Z10100502 Keywords : ATLAS * silicon * micro-strip * beam * test Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.224, year: 2005

  3. Effects of the interstrip gap on the efficiency and response of Double Sided Silicon Strip Detectors

    Directory of Open Access Journals (Sweden)

    Torresi D.

    2016-01-01

    Full Text Available In this work the effects of the segmentation of the electrodes of Double Sided Silicon Strip Detectors (DSSSDs are investigated. In order to characterize the response of the DSSSDs we perform a first experiment by using tandem beams of different energies directly sent on the detector and a second experiment by mean of a proton microbeam. Results show that the effective width of the inter-strip region and the efficiency for full energy detection, varies with both detected energy and bias voltage. The experimental results are qualitatively reproduced by a simplified model based on the Shockley-Ramo-Gunn framework.

  4. Commissioning, operation and performance of the CMS Silicon Strip Tracker detector

    CERN Document Server

    Demina, Regina

    2009-01-01

    The CMS silicon strip tracker is the largest device of this type ever built for detection of charge particles produced in beam-beam collisions. There are 24244 single-sided micro-strip sensors covering an active area of over 200 square meters, and nearly 10 millions channels to be read out. The detector was installed inside CMS in December 2007, and it was commissioned during the summer 2008. Since then it integrated several global CMS cosmic muons data taking and performances were measured. The commissioning strategy, operational experience learned during the data taking period, and detector performance results will be presented.

  5. CZT drift strip detectors for high energy astrophysics

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Caroli, E.

    2010-01-01

    Requirements for X- and gamma ray detectors for future High Energy Astrophysics missions include high detection efficiency and good energy resolution as well as fine position sensitivity even in three dimensions.We report on experimental investigations on the CZT drift detector developed DTU Spac...

  6. Radiation damage measurements on CZT drift strip detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Korsbech, Uffe C C

    2003-01-01

    from 2 x 10(8) to 60 x 10(8) p(+)/cm(2). Even for the highest fluences, which had a dramatic effect on the spectroscopic performance, we were able to recover the detectors after an appropriate annealing procedure. The radiation damage was studied as a function of depth inside the detector material...

  7. GaAs strip detectors: the Australian production program

    International Nuclear Information System (INIS)

    Butcher, K.S.A.; Alexiev, D.

    1995-01-01

    The Australian High Energy Physics consortium (composed of the University of Melbourne, the University of Sydney and ANSTO) has been investigating the possibility of producing a large area wheel of SI GaAs detectors for the ATLAS detector array. To help assess the extent of Australia's role in this venture a few SI GaAs microstrip detectors are to be manufactured under contract by the CSIRO division of Radiophysics GaAs IC Prototyping Facility. The planned production of the devices is discussed. First, the reasons for producing the detectors here in Australia are examined, then some basic characteristics of the material are considered, and finally details are provided of the design used for the manufacture of the devices. Two sets of detectors will be produced using the standard Glasgow production recipe; SIGaAs and GaN. The Glasgow mask set is being used as a benchmark against which to compare the Australian devices

  8. Neural networks, cellular automata, and robust approach applications for vertex localization in the opera target tracker detector

    International Nuclear Information System (INIS)

    Dmitrievskij, S.G.; Gornushkin, Yu.A.; Ososkov, G.A.

    2005-01-01

    A neural-network (NN) approach for neutrino interaction vertex reconstruction in the OPERA experiment with the help of the Target Tracker (TT) detector is described. A feed-forward NN with the standard back propagation option is used. The energy functional minimization of the network is performed by the method of conjugate gradients. Data preprocessing by means of cellular automaton algorithm is performed. The Hough transform is applied for muon track determination and the robust fitting method is used for shower axis reconstruction. A comparison of the proposed approach with earlier studies, based on the use of the neural network package SNNS, shows their similar performance. The further development of the approach is underway

  9. A new semicustom integrated bipolar amplifier for silicon strip detectors

    International Nuclear Information System (INIS)

    Zimmerman, T.

    1989-01-01

    The QPA02 is a four channel DC coupled two stage transimpedance amplifier designed at Fermilab on a semicustom linear array (Quickchip 2S) manufactured by Tektronix. The chip was developed as a silicon strip amplifier but may have other applications as well. Each channel consists of a preamplifier and a second stage amplifier/sharper with differential output which can directly drive a transmission line (90 to 140 ohms). External bypass capacitors are the only discrete components required. QPA02 has been tested and demonstrated to be an effective silicon strip amplifier. Other applications may exist which can use this amplifier or a modified version of this amplifier. For example, another design is now in progress for a wire chamber amplifier, QPA03, to be reported later. Only a relatively small effort was required to modify the design and layout for this application. 11 figs

  10. Development of a silicon micro-strip detector for tracking high intensity secondary beams

    Science.gov (United States)

    Kiuchi, R.; Asano, H.; Hasegawa, S.; Honda, R.; Ichikawa, Y.; Imai, K.; Joo, C. W.; Nakazawa, K.; Sako, H.; Sato, S.; Shirotori, K.; Sugimura, H.; Tanida, K.; Watabe, T.

    2014-11-01

    A single-sided silicon micro-strip detector (SSD) has been developed as a tracking detector for hadron experiments at J-PARC where secondary meson beams with intensities of up to 108 Hz are available. The performance of the detector has been investigated and verified in a series of test beam experiments in the years 2009-2011. The hole mobility was deduced from the analysis of cluster events. The beam rate dependence was measured in terms of timing resolution, signal-to-noise ratio, and hit efficiency. This paper describes the detector with its read-out system, details of the test experiments, and discusses the performance achieved.

  11. Development of a silicon micro-strip detector for tracking high intensity secondary beams

    Energy Technology Data Exchange (ETDEWEB)

    Kiuchi, R. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Asano, H. [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Hasegawa, S. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Honda, R. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Ichikawa, Y. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Imai, K. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Joo, C.W. [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Nakazawa, K. [Physics Department, Gifu University, Gifu 501-1193 (Japan); Sako, H.; Sato, S. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Shirotori, K. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Sugimura, H. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Tanida, K., E-mail: tanida@phya.snu.ac.kr [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Watabe, T. [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)

    2014-11-01

    A single-sided silicon micro-strip detector (SSD) has been developed as a tracking detector for hadron experiments at J-PARC where secondary meson beams with intensities of up to 10{sup 8} Hz are available. The performance of the detector has been investigated and verified in a series of test beam experiments in the years 2009–2011. The hole mobility was deduced from the analysis of cluster events. The beam rate dependence was measured in terms of timing resolution, signal-to-noise ratio, and hit efficiency. This paper describes the detector with its read-out system, details of the test experiments, and discusses the performance achieved.

  12. Current and expected performance of tracking and vertexing with the ATLAS detector at the LHC and the HL-LHC.

    CERN Document Server

    Kastanas, Alex; The ATLAS collaboration

    2018-01-01

    The ATLAS detector at the Large Hadron Collider (LHC) has had an extremely successful data collecting period during 2017, recording over 45 fb-1 of proton-proton collision data at sqrt(s) = 13 TeV. This was achieved, in part, by running the LHC at a high instantaneous lumi- nosity level of over 1.5 x 10+34 cm-2s-1, which corresponds to over 57 inelastic proton-proton collisions per beam crossing. This talk will highlight the tracking and vertexing performance of the tracking detector within ATLAS (Inner Detector) throughout this successful year of data taking. In order to increase its potential for discoveries, the High Luminosity Large Hadron Collider (HL-LHC) aims to increase the LHC data-set by an order of magnitude by collecting 3,000 fb-1 of recorded data. Starting, from mid-2026, the HL-LHC is expected to reach the peak instantaneous luminosity of 7.5 x 10+34 cm-2s-1, which corresponds to about 200 inelastic proton-proton collisions per beam crossing. To cope with the large radiation doses and high pile...

  13. Design,construction and commissioning of a cylinder of double-sided silicon micro-strips detectors for the Star experiment at RHIC

    International Nuclear Information System (INIS)

    Guedon, M.

    2005-05-01

    This study has been performed in the frame of quark gluon plasma physics research in the STAR experiment at RHIC. It deals with the design, the construction and the commissioning of a barrel of silicon-strip detectors (SSD). Added to the Silicon Vertex Tracker (SVT) of the STAR detector, it extends the capabilities of track reconstruction for charged particles emitted in ultra-relativistic heavy-ion collisions. It also contributes to the general study of the quark-gluon plasma production undertaken at STAR. The SSD is a cylinder of 1 m long and of 23 cm radius, and it is composed of 320 compact identical modules. Each module includes one double-sided silicon micro-strip detector, 12 readout chips ALICE 128C, 12 TAB ribbons, 2 COSTAR control chips and 2 hybrids supporting all the components. The document explains why the SSD is an important and relevant element, and justifies the technological choices as well as their validation by in-beam characterization. All component functionalities, characteristics and test procedures are presented. The data and test results are stored in a database for tracing purpose. Component and module production is described. Two parallel studies have been performed, analysed and described. One on the temperature dependence of the module performances and the other one on the optimal adjustments of the analogue blocks inside the ALICE 128C chip. The SSD installation on the RHIC site as well as the commissioning are presented together with the first data takings. (author)

  14. Status and prospects of the LHCb Vertex Locator

    CERN Document Server

    van Beuzekom, Martin

    2007-01-01

    The Vertex Locator of the LHCb experiment is a dedicated subdetector for the reconstruction of primary and secondary vertices in b-hadron decays. The vertex detector features two halves with 21 modules each, mounted on retractable bases. Each module consists of two half-disk silicon micro-strip sensors measuring hits in R and $\\Phi$ coordinates. The strip pitch ranges from 40 to about 100 $\\mu$m. A vacuum boy with a 300 $\\mu$m thick aluminium foil shields the sensors from the wakefields of the proton beams which are passing at a distance of 8 mm from the active area of the sensors. Because of the harsh non-uniform radiation environment we opted for n-on-n strips in diffusion oxygenated float zone silicon. The current status of the vertex detector, which has recently entered the commissioning phase, will be discussed. Given the limited lifetime of the detector due to the radiation environment, developments for a detector replacement with n-on-p type modules have already started. Possible upgrade scenarios fo...

  15. Design optimization of the PANDA micro-vertex-detector for high performance spectroscopy in the charm quark sector

    International Nuclear Information System (INIS)

    Wuerschig, Thomas

    2011-01-01

    The PANDA experiment is one of the key projects at the future FAIR facility, which is currently under construction at GSI Darmstadt. Measurements will be performed with antiprotons using a fixed-target setup. The main scope of PANDA is the study of the strong interaction in the charm quark sector. Therefore, high precision spectroscopy of hadronic systems in this energy domain is a prerequisite. The Micro-Vertex-Detector (MVD) as innermost part of the tracking system plays an important role to achieve this goal. At present, the PANDA project has exceeded the initial phase of conceptual design studies. Based on these results, an optimization of the individual detector subsystems, and thus also for the MVD, is necessary to continue the overall detector development towards its commissioning. Therefore, a comprehensive and realistic detector model must be developed, which on the one hand fulfils the physics requirements but on the other hand also includes feasible engineering solutions. This task is the main scope of the present work. The outcome of these studies will deliver important contributions to the technical design report for the PANDA MVD, which is the next step towards the final detector assembly. In the first part of this work, main physics aspects of the charm spectroscopy are highlighted and a complete review of the experimental status in this field is given. Afterwards, all relevant details of the PANDA experiment are summarized. The conceptual design and associated hardware developments for the MVD are discussed separately in the following chapters. They deliver basic input for the performed detector optimization, which is presented in the central part. Furthermore, this section describes the development of a comprehensive detector model for the MVD and its introduction into the physics simulation framework of PANDA. The final part contains a compilation of extended simulations with the developed detector model. This includes the determination of basic

  16. Design optimization of the PANDA micro-vertex-detector for high performance spectroscopy in the charm quark sector

    Energy Technology Data Exchange (ETDEWEB)

    Wuerschig, Thomas

    2011-07-19

    The PANDA experiment is one of the key projects at the future FAIR facility, which is currently under construction at GSI Darmstadt. Measurements will be performed with antiprotons using a fixed-target setup. The main scope of PANDA is the study of the strong interaction in the charm quark sector. Therefore, high precision spectroscopy of hadronic systems in this energy domain is a prerequisite. The Micro-Vertex-Detector (MVD) as innermost part of the tracking system plays an important role to achieve this goal. At present, the PANDA project has exceeded the initial phase of conceptual design studies. Based on these results, an optimization of the individual detector subsystems, and thus also for the MVD, is necessary to continue the overall detector development towards its commissioning. Therefore, a comprehensive and realistic detector model must be developed, which on the one hand fulfils the physics requirements but on the other hand also includes feasible engineering solutions. This task is the main scope of the present work. The outcome of these studies will deliver important contributions to the technical design report for the PANDA MVD, which is the next step towards the final detector assembly. In the first part of this work, main physics aspects of the charm spectroscopy are highlighted and a complete review of the experimental status in this field is given. Afterwards, all relevant details of the PANDA experiment are summarized. The conceptual design and associated hardware developments for the MVD are discussed separately in the following chapters. They deliver basic input for the performed detector optimization, which is presented in the central part. Furthermore, this section describes the development of a comprehensive detector model for the MVD and its introduction into the physics simulation framework of PANDA. The final part contains a compilation of extended simulations with the developed detector model. This includes the determination of basic

  17. A new strips tracker for the upgraded ATLAS ITk detector

    CERN Document Server

    David, Claire; The ATLAS collaboration

    2017-01-01

    The inner detector of the present ATLAS detector has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the next-generation tracking detector proposed for the High Luminosity LHC (HL-LHC), the so-called ATLAS Phase-II Upgrade, the particle densities and radiation levels will be higher by as much as a factor of ten. The new detectors must be faster, they need to be more highly segmented, and covering more area. They also need to be more resistant to radiation, and they require much greater power delivery to the front-end systems. At the same time, they cannot introduce excess material which could undermine performance. For those reasons, the inner tracker of the ATLAS detector must be redesigned and rebuilt completely. The design of the ATLAS Upgrade inner tracker (ITk) has already been defined. It consists of several layers of silicon particle detectors. The innermost layers will be composed of silicon pixel sensors, and the outer layers will consist of s...

  18. SVX3: A deadtimeless readout chip for silicon strip detectors

    International Nuclear Information System (INIS)

    Zimmerman, T.; Huffman, T.; Srage, J.; Stroehmer, R.; Yarema, R.; Garcia-Sciveras, M.; Luo, L.; Milgrome, O.

    1997-12-01

    A new silicon strip readout chip called the SVX3 has been designed for the 720,000 channel CDF silicon upgrade at Fermilab. SVX3 incorporates an integrator, analog delay pipeline, ADC, and data sparsification for each of 128 identical channels. Many of the operating parameters are programmable via a serial bit stream, which allows the chip to be used under a variety of conditions. Distinct features of SVX3 include use of a backside substrate contact for optimal ground referencing, and the capability of simultaneous signal acquisition and digital readout allowing deadtimeless operation in the Fermilab Tevatron

  19. Characterization of Si detectors, search for vertex and potentiality of detecting a light charged Higgs boson in the CMS experiment; Caracterisation des detecteurs silicium, recherche de Vertex et etude du potentiel de decouverte d'un boson de Higgs charge leger dans l'experience CMS

    Energy Technology Data Exchange (ETDEWEB)

    Estre, N

    2004-07-01

    The CMS (compact muon solenoid) detector that will be set on the future LHC (large hadron collider) accelerator will enable us to continue our search for the Higgs boson as well as to look for any hint for a new physics beyond the standard model. CMS is composed of an efficient muon detector, an electromagnetic calorimeter and of a tracker with high spatial resolution, this tracker is the topic of this thesis. The tracker will allow an accurate reconstruction of charged-particles trajectories and the reconstruction of the primary interaction vertex. The tracker's technology is based on micro-strip Si detectors, tests performed with the SPS particle beam show that these detectors have an impact reconstruction efficiency greater than 98% and a piling-up rate limited to 6%. The spatial resolution concerning particle trajectories is about 45 {mu}m for an interval of 183 {mu}m between 2 strips. The simulation for the search for a light charged Higgs boson show that an excess of {tau}{nu}{sub {tau}} + bb-bar + qq-bar' events is possible to be observed for any value of tan({beta}) up to M{sub A} = 122 GeV/c{sup 2} during the first year of operation and up to 136 GeV/c{sup 2} afterwards. With the assumption that this event excess is due to the decay of charged Higgs bosons we can state that the assessment of its mass will be possible till m{sub H} = 150 GeV/c{sup 2} with an accuracy of 15 GeV/c{sup 2}. (A.C.)

  20. Performance updating of CdZnTe strip-drift detectors

    DEFF Research Database (Denmark)

    Shorohov, M.; Tsirkunova, I.; Loupilov, A.

    2007-01-01

    59.6 and 662 keV correspondingly. Recently, significant progress was done in CdZnTe crystals growth technology. In the present paper we present preliminary result of performance updating of CdZnTe strip-drift detectors based on crystal of 10 x 10 x 6 mm 3 produced by Yinnel Tech company. Results...

  1. Charge collection and depth sensing investigation on CZT drift strip detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Caroli, E.

    2010-01-01

    CZT drift strip detectors with Planar Transverse Field (PTF) configuration are suitable for high energy astrophysics instrumentation, where high efficiency, high energy and position resolution are required from the sensors. We report on experimental investigations on the DTU Space developed CZT...

  2. Beam test measurements on GaAs strip and pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Albertz, D.; Braunschweig, W.; Breibach, J.; Graessel, D.; Kubicki, T.; Luebelsmeyer, K.; Rente, C.; Roeper, C.; Siedling, R.; Syben, O.; Tenbusch, F.; Toporowski, M.; Xiao, W.J. [Technische Hochschule Aachen (Germany). I. Physikalisches Institut

    1998-06-01

    GaAs strip and pixel detectors constructed in Aachen have been tested in a 1.4 GeV electron beam in Bonn and in a 5 GeV electron beam at DESY in February and May 1997. The strip detectors had a pitch of 50 {mu}m with a strip width of 25 {mu}m and were made of a 250 {mu}m thick Freiberger SI-GaAs wafer. The strip detectors included a punch-through bias structure and an integrated coupling capacitor. Additionally, an improved backside contact was formed, allowing a safe operation of the detector in a soft breakdown regime. Using the fast PreMux128 preamplifier multiplexer chip ({tau}{sub p}=50 ns) a signal-to-noise ratio of 13 was obtained at normal beam incidence for a bias voltage of 200 V, leading to a spatial resolution of 11 {mu}m with a simple COG algorithm. The 8 x 16 pixel array with a pixel size of 125 x 125 {mu}m{sup 2} was read out with the PreMux128 as well. With a double-metal technique, it was possible to bond the single-pixels linearly to the amplifier chip. The obtained signal-to-noise ratio of 30 in combination with a COG algorithm lead to the digital resolution value of 36 {mu}m for both pixel coordinates. (orig.) 10 refs.

  3. A Test-Bench for Measurement of Electrical Static Parameters of Strip Silicon Detectors

    CERN Document Server

    Golutvin, I A; Danilevich, V G; Dmitriev, A Yu; Elsha, V V; Zamiatin, Y I; Zubarev, E V; Ziaziulia, F E; Kozus, V I; Lomako, V M; Stepankov, D V; Khomich, A P; Shumeiko, N M; Cheremuhin, A E

    2003-01-01

    An automated test-bench for electrical parameters input control of the strip silicon detectors, used in the End-Cap Preshower detector of the CMS experiment, is described. The test-bench application allows one to solve a problem of silicon detectors input control in conditions of mass production - 1800 detectors over 2 years. The test-bench software is realized in Delphi environment and contains a user-friendly operator interface for measurement data processing and visualization as well as up-to-date facilities for MS-Windows used for the network database. High operating characteristics and reliability of the test-bench were confirmed while more than 800 detectors were tested. Some technical solutions applied to the test-bench could be useful for design and construction of automated facilities for electrical parameters measurements of the microstrip detectors input control.

  4. A test-bench for measurement of electrical static parameters of strip silicon detectors

    International Nuclear Information System (INIS)

    Golutvin, I.A.; Dmitriev, A.Yu.; Elsha, V.V.

    2003-01-01

    An automated test-bench for electrical parameters input control of the strip silicon detectors, used in the End-Cap Preshower detector of the CMS experiment, is described. The test-bench application allows one to solve a problem of silicon detectors input control in conditions of mass production - 1800 detectors over 2 years. The test-bench software is realized in Delphi environment and contains a user-friendly operator interface for data processing and visualization as well as up-to-date facilities for MS-Windows used for the network database. High operating characteristics and reliability of the test-bench were confirmed while more than 800 detectors were tested. Some technical solutions applied to the test-bench could be useful for design and construction of automated facilities for electrical parameters measurements of the microstrip detectors input control. (author)

  5. The LHCb Vertex Locator – Performance and Radiation Damage

    CERN Document Server

    Oblakowska-Mucha, A

    2014-01-01

    LHCb is a dedicated flavour physics experiment at the Large Hadron Collider at CERN. The Vertex Locator (VELO) is an important part of a LHCb tracking system, enabling precision measurement of beauty and charm mesons’ flight distance. The VELO consist of a set of silicon micro-strip detectors, arranged in two retractable halves, operating only 7 mm from the interac- tion region. In these proceedings the VELO performance during the Run 1 is summarised and radiation damage studies are presented.

  6. Application of a wedge strip anode in micro-pattern gaseous detectors

    International Nuclear Information System (INIS)

    Tian Yang; Yang Yigang; Li Yulan; Li Yuanjing

    2013-01-01

    The wedge strip anode (WSA) has been widely used in 2-D position-sensitive detectors. A circular WSA with an effective diameter of 52 mm is successfully coupled to a tripe gas electron multiplier (GEM) detector through a simple resistive layer. A spatial resolution of 440 μm (FWHM) is achieved for a 10 kVp X-ray using 1 atm Ar:CO 2 =70:30 gas. The simple electronics of only three channels makes it very useful in applications strongly requiring simple interface design, e.g. sealed tubes and high pressure detectors. (authors)

  7. A silicon strip module for the ATLAS inner detector upgrade in the super LHC collider

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Sevilla, S., E-mail: Sergio.Gonzalez.Sevilla@cern.ch [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Barbier, G. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Anghinolfi, F. [European Organization for Nuclear Research, CERN CH-1211, Geneva 23 (Switzerland); Cadoux, F.; Clark, A. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Dabrowski, W.; Dwuznik, M. [AGH University of Sceince and Technology, Faculty of Physics and Applied Computer Science, Krakow (Poland); Ferrere, D. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Garcia, C. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); Ikegami, Y. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Hara, K. [University of Tsukuba, School of Pure and Applied Sciences, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Jakobs, K. [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Kaplon, J. [European Organization for Nuclear Research, CERN CH-1211, Geneva 23 (Switzerland); Koriki, T. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Lacasta, C. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); La Marra, D. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Marti i Garcia, S. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); Parzefall, U. [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Pohl, M. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Terada, S. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan)

    2011-04-21

    The ATLAS detector is a general purpose experiment designed to fully exploit the discovery potential of the Large Hadron Collider (LHC) at a nominal luminosity of 10{sup 34} cm{sup -2} s{sup -1}. It is expected that after several years of successful data-taking, the LHC physics program will be extended by increasing the peak luminosity by one order of magnitude. For ATLAS, an upgrade scenario will imply the complete replacement of the Inner Detector (ID), since the current tracker will not provide the required performance due to cumulated radiation damage and a dramatic increase in the detector occupancy. In this paper, a proposal of a double-sided silicon micro-strip module for the short-strip region of the future ATLAS ID is presented. The expected thermal performance based upon detailed FEA simulations is discussed. First electrical results from a prototype version of the next generation readout front-end chips are also shown.

  8. Tracking and b-tagging with pixel vertex detector in ATLAS experiment at LHC

    International Nuclear Information System (INIS)

    Vacavant, L.

    1997-06-01

    The capability of the ATLAS detector to tag b-jets is studied, using the impact parameter of charged tracks. High b-tagging performance is needed at LHC, especially during the first years of running, in order to see evidence of the Higgs boson if its mass lies between 80 and 120 GeV/c 2 . A pattern-recognition algorithm has been developed for this purpose, using a detailed simulation of the ATLAS inner detector. Track-finding starts from the pixel detector layers. A 'hyper-plane' concept allows the use of a simple tracking algorithm though the complex geometry. High track-finding efficiency and reconstruction quality ensure the discrimination of b-jets from other kinds of jets. After full simulation and reconstruction of H → bb-bar, H → gg, H → uu-bar, H → ss-bar and H → cc-bar events (m H = 100 GeV/c 2 ), the mean rejections achieved against non-b-jets for a 50% b-jet tagging efficiency are as follows: R g =39±5 R u = 60 ± 9 R s = 38 ± 5 R c = 9 ± 1 The analysis of data from the first radiation-hard pixel detector prototypes justifies the potential of these detectors for track-finding and high-precision impact parameter measurement at LHC. (author)

  9. Radiation damage measurements on CZT drift strip detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Korsbech, Uffe C C

    2003-01-01

    from 2 x 10(8) to 60 x 10(8) p(+)/cm(2). Even for the highest fluences, which had a dramatic effect on the spectroscopic performance, we were able to recover the detectors after an appropriate annealing procedure. The radiation damage was studied as a function of depth inside the detector material...... with the proton dose. The radiation contribution to the electron trapping was found to obey the following relation: (mutau(e)(-1))(rad) = (2.5+/-0.2) x 10(-7) x Phi (V/cm)(2) with the proton fluence, Phi in p(+)/cm(2). The trapping depth dependence, however, did not agree well with the damage profile calculated...

  10. Performance of the AFS-vertex detector at the CERN ISR

    International Nuclear Information System (INIS)

    Cockerill, D.; Fabjan, C.W.; Frandsen, P.; Hallgren, A.; Heck, B.; Hilke, H.J.; Hogue, R.; Jeffreys, P.; Jensen, H.B.; Killian, T.; Kreisler, M.; Lindsay, J.; Ludlam, T.; Lissauer, D.; Molzon, W.; Nielsen, B.S.; Oren, Y.; Queru, P.; Rosselet, L.; Rosso, E.; Rudge, A.; Scire, M.; Wang, D.W.; Wang, Ch.J.; Willis, W.J.; Botner, O.; Boeggild, H.; Dahl-Jensen, E.; Dahl-Jensen, I.; Dam, Ph.; Damgaard, G.; Hansen, K.H.; Hooper, J.; Moeller, R.; Nielsen, S.Oe.; Schistad, B.; Akesson, T.; Almehed, S.; Dardel, G. von; Henning, S.; Jarlskog, G.; Loestad, B.; Melin, A.; Mjoenmark, U.; Nilsson, A.; Albrow, M.G.; McCubbin, N.A.; Evans, W.M.

    1981-01-01

    The central detector of the Axial Field Spectrometer (AFS) is a cylindrical drift chamber using a 'bicycle-wheel' geometry. Its design has been optimized for jet-like events with high track densities. This is accomplished through a high degree of azimuthal segmentation (4 0 sectors) with up to 42 space points per track, using measurements of drift time and charge division. Particle identification in the non-relativistic region is obtained by (dE/dx) sampling. The detector is operated in an inhomogeneous magnetic field at event rates of typically >5x10 5 collisions per second. Preliminary results are presented on the detector performance achieved after the first months of operation at the ISR. (Auth.)

  11. Performance of the AFS-vertex detector at the CERN ISR

    CERN Document Server

    Cockerill, D J A; Frandsen, Poul Kjaer; Hallgren, A; Heck, B; Hilke, Hans Jürgen; Hogue, R W; Jeffreys, P; Jensen, H B; Killian, T; Kreisler, M N; Lindsay, J; Ludlam, Thomas W; Lissauer, D; Molzon, W R; Nielsen, B S; Oren, Y; Quéru, Paul; Rosselet, L; Rosso, E; Rudge, A; Sciré, M; Wang, D W; Wang, C J; Willis, W J; Botner, O; Bøggild, H; Dahl-Jensen, Erik; Dahl-Jensen, I; Dam, P; Damgaard, G; Hansen, K H; Hooper, J; Møller, R; Nielsen, S Ø; Schistad, B L; Åkesson, T; Almehed, S; von Dardel, Guy F; Henning, S; Jarlskog, G; Lörstad, B; Melin, A; Mjörnmark, U; Nilsson, A; Albrow, Michael G; McCubbin, N A; Evans, W M

    1981-01-01

    The central detector of the Axial Field Spectrometer (AFS) is a cylindrical drift chamber using a 'bicycle-wheel' geometry. Its design has been optimized for jet-like events with high track densities. This is accomplished through a high degree of azimuthal segmentation (4 degrees sectors) with up to 42 space points per track, using measurements of drift time and charge division. Particle identification in the nonrelativistic region is obtained by (dE/dx) sampling. The detector is operated in an inhomogeneous magnetic field at event rates of typically >5*10/sup 5/ collisions per second. Preliminary results will be presented on the detector performance achieved after the first months of operation at the ISR. (5 refs).

  12. Mechanical integration studies for the CLIC vertex and inner tracking detectors

    CERN Document Server

    Villarejo Bermudez, M.A.; Gerwig, H.

    2015-01-01

    Since the publication of the CLIC Conceptual Design Report, work has proceeded in order to establish a preliminary mechanical design for the innermost CLIC detector region. This note proposes a design for the main Carbon-Fibre Reinforced Polymer (CFRP) structural elements of the inner detectors, for the beam pipe and their supports. It also describes an assembly sequence for the integration of the sensors and the mechanical components. Mechanical simulations of different structural elements and a material budget estimation are appended. Details of a proposed cabling layout for all the subdetectors are included.

  13. Micro-strip Metal Foil Detectors for the Beam Profile Monitoring

    CERN Document Server

    Pugatch, V M; Fedorovitch, O A; Mikhailenko, A V; Prystupa, S V; Pylypchenko, Y

    2005-01-01

    The Micro-strip Metal Foil Detectors (MMFD) designed and used for the Beam Profile Monitoring (BPM) are discussed. Fast particles hitting a metal strip initiate Secondary Electron Emission (SEE) which occurs at 10 - 50 nm surface layers of a strip. The SEE yield is measured by a sensitive Charge Integrator with built-in current-to-frequency converter (1 Hz per 1 fA). The MMFD (deposited onto the 20 μm thick Si-wafer) with 32 Al strips (10 μm wide, 32 μm pitch) has been used for the BPM of the 32 MeV alpha-particle beam at the MPIfK (Heidelberg) Tandem generator for Single-Event-Upset studies of the BEETLE micro-chip. Similar MMFD (0.5 μm thick Ni-strips) with totally removed Si-wafer (by plasma-chemistry, at the working area of 8 x 10 mm2) has been applied for the on-line X-ray BPM at the HASYLAB (DESY). The number of photons (11.3 GeV, mean X-ray energy 18 keV) producing out of a strip a single SEE was evaluated as (1.5 ±0.5)* 104. MMFD has demonstrated stable...

  14. Operational Experience, Improvements, and Performance of the CDF Run II Silicon Vertex Detector

    CERN Document Server

    Aaltonen, T; Boveia, A.; Brau, B.; Bolla, G; Bortoletto, D; Calancha, C; Carron, S.; Cihangir, S.; Corbo, M.; Clark, D.; Di Ruzza, B.; Eusebi, R.; Fernandez, J.P.; Freeman, J.C.; Garcia, J.E.; Garcia-Sciveres, M.; Gonzalez, O.; Grinstein, S.; Hartz, M.; Herndon, M.; Hill, C.; Hocker, A.; Husemann, U.; Incandela, J.; Issever, C.; Jindariani, S.; Junk, T.R.; Knoepfel, K.; Lewis, J.D.; Martinez-Ballarin, R.; Mathis, M.; Mattson, M.; Merkel, P; Mondragon, M.N.; Moore, R.; Mumford, J.R.; Nahn, S.; Nielsen, J.; Nelson, T.K.; Pavlicek, V.; Pursley, J.; Redondo, I.; Roser, R.; Schultz, K.; Spalding, J.; Stancari, M.; Stanitzki, M.; Stuart, D.; Sukhanov, A.; Tesarek, R.; Treptow, K.; Wallny, R.; Worm, S.

    2013-01-01

    The Collider Detector at Fermilab (CDF) pursues a broad physics program at Fermilab's Tevatron collider. Between Run II commissioning in early 2001 and the end of operations in September 2011, the Tevatron delivered 12 fb-1 of integrated luminosity of p-pbar collisions at sqrt(s)=1.96 TeV. Many physics analyses undertaken by CDF require heavy flavor tagging with large charged particle tracking acceptance. To realize these goals, in 2001 CDF installed eight layers of silicon microstrip detectors around its interaction region. These detectors were designed for 2--5 years of operation, radiation doses up to 2 Mrad (0.02 Gy), and were expected to be replaced in 2004. The sensors were not replaced, and the Tevatron run was extended for several years beyond its design, exposing the sensors and electronics to much higher radiation doses than anticipated. In this paper we describe the operational challenges encountered over the past 10 years of running the CDF silicon detectors, the preventive measures undertaken, an...

  15. Model analysis and experimental characterization of a microstrip vertex detector for a e+e- collider

    International Nuclear Information System (INIS)

    Walter, C.P.

    1989-09-01

    This thesis is constituted by several topics, apparently weakly correlated, but that are all addressed to improve the performances of the ALEPH microvertex detector both in the present version and in the upgraded one with JFET-CMOS electronics. A wide program of computer simulations about the upgraded JFET-CMOS version of the read-out electronics have been carried out to test its working principle and radiation hardness measurements have been performed on the prototypes of the same electronics to test its capability to stand the radiation environment foreseen in ALEPH. Extensive calculations of the capacitances in a microstrip detector are presented and their influence on the detector, both from the point of view of its noise performances and of the capacitive charge division method, has been analyzed theoretically, both through analytic calculations and numerical simulations; experimental measurements on the same relevant capacitances are discussed. Strictly connected to this point a computer code simulating the interaction of a minimum ionizing particle with the detector has been written and algorithms to determine the interaction point have been studied. This code has been later inserted in the Monte Carlo program of ALEPH. A point not strictly connected to ALEPH and still treated here is the analysis of the noise of two JFET devices, that is however interesting not as much for the results themselves, as for the analysis technique used that brought to identify noise sources that are usually difficult to detect and neglected. (orig.)

  16. Study of planar pixel sensors hardener to radiations for the upgrade of the ATLAS vertex detector

    International Nuclear Information System (INIS)

    Benoit, M.

    2011-05-01

    In this work, we present a study, using TCAD (Technology Computer-Assisted Design) simulation, of the possible methods of designing planar pixel sensors by reducing their inactive area and improving their radiation hardness for use in the Insertable B-Layer (IBL) project and for SLHC upgrade phase for the ATLAS experiment. Different physical models available have been studied to develop a coherent model of radiation damage in silicon that can be used to predict silicon pixel sensor behavior after exposure to radiation. The Multi-Guard Ring Structure, a protection structure used in pixel sensor design was studied to obtain guidelines for the reduction of inactive edges detrimental to detector operation while keeping a good sensor behavior through its lifetime in the ATLAS detector. A campaign of measurement of the sensor process parameters and electrical behavior to validate and calibrate the TCAD simulation models and results are also presented. A model for diode charge collection in highly irradiated environment was developed to explain the high charge collection observed in highly irradiated devices. A simple planar pixel sensor digitization model to be used in test beam and full detector system is detailed. It allows for easy comparison between experimental data and prediction by the various radiation damage models available. The digitizer has been validated using test beam data for unirradiated sensors and can be used to produce the first full scale simulation of the ATLAS detector with the IBL that include sensor effects such as slim edge and thinning of the sensor. (author)

  17. ATLAS Tracker Upgrade: Silicon Strip Detectors and Modules for the SLHC

    CERN Document Server

    Minano, M

    2010-01-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN by a factor ten, with the upgraded machine dubbed Super-LHC or sLHC. The ATLAS experiment will require a new tracker for sLHC operation. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. The new strip detector will use significantly shorter strips than the current SCT in order to minimise the occupancy. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. Extensive R&D programmes are underway to develop silicon sensors with sufficient radiation hardness. In parallel, new front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics will be shown.

  18. The ATLAS Tracker Upgrade Short Strips Detectors for the sLHC

    CERN Document Server

    Soldevila, U; Lacasta, C; Marti i García, S; Miñano, M

    2010-01-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN around 2018 by about an order of magnitude, with the upgraded machine dubbed Super-LHC or sLHC. The ATLAS experiment will require a new tracker for SLHC operation. In order to cope with the order of magnitude increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. The new strip detector will use significantly shorter strips than the current SCT in order to minimise the occupancy. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. A massive R&D programme is underway to develop silicon sensors with sufficient radiation hardness. New front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics ...

  19. ATLAS Tracker Upgrade: Silicon Strip Detectors for the sLHC

    CERN Document Server

    Koehler, M

    2010-01-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN by a factor ten, with the upgraded machine dubbed Super-LHC or sLHC. The ATLAS experiment will require a new tracker for sLHC operation. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. The new strip detector will use significantly shorter strips than the current SCT in order to minimise the occupancy. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. Extensive R&D programmes are underway to develop silicon sensors with sufficient radiation hardness. In parallel, new front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics will be shown. A key issue ...

  20. Atlas Tracker Upgrade: Silicon Strip Detectors and Modules for the SLHC

    CERN Document Server

    Minano, M

    2010-01-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN by a significant factor, with the upgraded machine dubbed Super-LHC. The ATLAS experiment will require a new tracker for Super-LHC operation. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. The new strip detector will use significantly shorter strips than the current SCT in order to minimise the occupancy. As the increased luminosity will imply a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. Extensive R&D programmes are underway to develop silicon sensors with sufficient radiation hardness. In parallel, new front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics will be shown.

  1. ATLAS Tracker Upgrade: Silicon Strip Detectors and Modules for the sLHC

    International Nuclear Information System (INIS)

    Lefebvre, Michel; Minano Moya, Mercedes

    2010-01-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN by a factor ten, with the upgraded machine dubbed Super-LHC or sLHC. The ATLAS experiment will require a new tracker for sLHC operation. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. The new strip detector will use significantly shorter strips than the current SCT in order to minimise the occupancy. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. Extensive R programmes are underway to develop silicon sensors with sufficient radiation hardness. In parallel, new front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics will be shown. (authors)

  2. Silicon strip detector for a novel 2D dosimetric method for radiotherapy treatment verification

    Science.gov (United States)

    Bocci, A.; Cortés-Giraldo, M. A.; Gallardo, M. I.; Espino, J. M.; Arráns, R.; Alvarez, M. A. G.; Abou-Haïdar, Z.; Quesada, J. M.; Pérez Vega-Leal, A.; Pérez Nieto, F. J.

    2012-05-01

    The aim of this work is to characterize a silicon strip detector and its associated data acquisition system, based on discrete electronics, to obtain in a near future absorbed dose maps in axial planes for complex radiotherapy treatments, using a novel technique. The experimental setup is based on two phantom prototypes: the first one is a polyethylene slab phantom used to characterize the detector in terms of linearity, percent depth dose, reproducibility, uniformity and penumbra. The second one is a cylindrical phantom, specifically designed and built to recreate conditions close to those normally found in clinical environments, for treatment planning assessment. This system has been used to study the dosimetric response of the detector, in the axial plane of the phantom, as a function of its angle with respect to the irradiation beam. A software has been developed to operate the rotation of this phantom and to acquire signals from the silicon strip detector. As an innovation, the detector was positioned inside the cylindrical phantom parallel to the beam axis. Irradiation experiments were carried out with a Siemens PRIMUS linac operating in the 6 MV photon mode at the Virgen Macarena Hospital. Monte Carlo simulations were performed using Geant4 toolkit and results were compared to Treatment Planning System (TPS) calculations for the absorbed dose-to-water case. Geant4 simulations were used to estimate the sensitivity of the detector in different experimental configurations, in relation to the absorbed dose in each strip. A final calibration of the detector in this clinical setup was obtained by comparing experimental data with TPS calculations.

  3. Micro channel evaporative $CO_2$ cooling for the upgrade of the LHCb vertex detector

    CERN Document Server

    Buytaert, J; Dumps, R; Greening, E; John, M; Leflat, A; Li, Y; Mapelli, A; Nomerotski, A; Romagnoli, G; Verlaat, B

    2013-01-01

    Local thermal management of detector electronics through ultra-thin micro-structured silicon cooling plates is a very promising technique for pixel detectors in high energy physics experiments, especially at the LHC where the heavily irradiated sensors must be operated at temperatures below − 20 1 C. It combines a very high thermal ef fi ciency with a very low addition of mass and space, and suppresses all problems of CTE mismatch between the heat source and the heat sink. In addition, the use of CO 2 as evaporative coolant liquid brings all the bene fi ts of reliable and stable operation, but the high pressures involved impose additional challenges on the micro channel design and the fl uidic connectivity. A series of designs have already been prototyped and tested for LHCb. The challenges, the current status of the measurements and the solutions under development will be described

  4. Gas detector with a μm size strips anode

    International Nuclear Information System (INIS)

    Oed, A.

    1988-01-01

    A flat electrode device for an ionizing radiation multidetector, particularly for an X-ray detector used in tomodensitometry, is presented. It consists of either two active electrodes of the same kind, or an anode-electrode and a cathode electrode, on opposite sides of a base plate. The device avoids problems linked to flatness and parallelism, and the base plate consists of at least two intermediate plates separated by a space containing at least layer of binding material. The device thus overcomes difficulties associated with thickness and the need to stop ionizing radiation from passing from one cell to another by traversing the base plate. The steps of the fabrication process are detailed [fr

  5. Characterisation of micro-strip and pixel silicon detectors before and after hadron irradiation

    CERN Document Server

    Allport, P.P

    2012-01-01

    The use of segmented silicon detectors for tracking and vertexing in particle physics has grown substantially since their introduction in 1980. It is now anticipated that roughly 50,000 six inch wafers of high resistivity silicon will need to be processed into sensors to be deployed in the upgraded experiments in the future high luminosity LHC (HL-LHC) at CERN. These detectors will also face an extremely severe radiation environment, varying with distance from the interaction point. The volume of required sensors is large and their delivery is required during a relatively short time, demanding a high throughput from the chosen suppliers. The current situation internationally, in this highly specialist market, means that security of supply for large orders can therefore be an issue and bringing additional potential vendors into the field can only be an advantage. Semiconductor companies that could include planar sensors suitable for particle physics in their product lines will, however, need to prove their pro...

  6. High-luminosity primary vertex selection in top-quark studies using the Collider Detector at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Buzatu, Adrian; /McGill U.

    2006-08-01

    Improving our ability to identify the top quark pair (t{bar t}) primary vertex (PV) on an event-by-event basis is essential for many analyses in the lepton-plus-jets channel performed by the Collider Detector at Fermilab (CDF) Collaboration. We compare the algorithm currently used by CDF (A1) with another algorithm (A2) using Monte Carlo simulation at high instantaneous luminosities. We confirm that A1 is more efficient than A2 at selecting the t{bar t} PV at all PV multiplicities, both with efficiencies larger than 99%. Event selection rejects events with a distance larger than 5 cm along the proton beam between the t{bar t} PV and the charged lepton. We find flat distributions for the signal over background significance of this cut for all cut values larger than 1 cm, for all PV multiplicities and for both algorithms. We conclude that any cut value larger than 1 cm is acceptable for both algorithms under the Tevatron's expected instantaneous luminosity improvements.

  7. Power and area efficient 4-bit column-level ADC in a CMOS pixel sensor for the ILD vertex detector

    International Nuclear Information System (INIS)

    Zhang, L; Morel, F; Hu-Guo, Ch; Hu, Y

    2013-01-01

    A 48 × 64 pixels prototype CMOS pixel sensor (CPS) integrated with 4-bit column-level, self triggered ADCs for the outer layers of the ILD vertex detector (VTX) was developed and fabricated in a 0.35 μm CMOS process with a pixel pitch of 35 μm. The pixel concept combines in-pixel amplification with a correlated double sampling (CDS) operation. The ADCs accommodating the pixel read out in a rolling shutter mode complete the conversion by performing a multi-bit/step approximation. The design was optimised for power saving at sampling frequency. The prototype sensor is currently at the stage of being started testing and evaluation. So what is described is based on post simulation results rather than test data. This 4-bit ADC dissipates, at a 3-V supply and 6.25-MS/s sampling rate, 486 μW in its inactive mode, which is by far the most frequent. This value rises to 714 μW in case of the active mode. Its footprint amounts to 35 × 545 μm 2 .

  8. Degradation of charge sharing after neutron irradiation in strip silicon detectors with different geometries

    International Nuclear Information System (INIS)

    Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Huse, T.; Tsurin, I.; Wormald, M.

    2013-01-01

    The aim of the CERN/RD50 collaboration is the improvement of the radiation tolerance of semiconductor detectors for future experiments at high-luminosity colliders. In the RD50 framework, evidence of enhanced signal charge in severely irradiated silicon detectors (diodes, segmented planar and 3D devices) was found. The underlying mechanism was labelled charge multiplication. This has been one of the most exciting results from the research activity of RD50 because it could allow for a greatly extended radiation tolerance, if the mechanism is to be found controllable and tuneable. The charge multiplication mechanism is governed by impact ionisation from electrons drifting in high electric field. The electric field profile is influenced by the geometry of the implanted electrodes. In order to investigate the influence of the diode implantation geometry on charge multiplication, the RD50 collaboration has commissioned the production of miniature microstrip silicon sensors with various choices of strip pitch and strip width over pitch (w/p) ratios. Moreover, some of the sensors were produced interleaving readout strips with dummy intermediate ones in order to modify the electric field profile. These geometrical solutions can influence both charge multiplication and charge sharing between adjacent strips. The initial results of this study are here presented

  9. Interference coupling mechanisms in Silicon Strip Detectors - CMS tracker "wings" A learned lesson for SLHC

    CERN Document Server

    Arteche, F; Rivetta, C

    2009-01-01

    The identification of coupling mechanisms between noise sources and sensitive areas of the front-end electronics (FEE) in the previous CMS tracker sub-system is critical to optimize the design and integration of integrated circuits, sensors and power distribution circuitry for the proposed SLHC Silicon Strip Tracker systems. This paper presents a validated model of the noise sensitivity observed in the Silicon Strip Detector-FEE of the CMS tracker that allows quantifying both the impact of the noise coupling mechanisms and the system immunity against electromagnetic interferences. This model has been validated based on simulations using finite element models and immunity tests conducted on prototypes of the Silicon Tracker End-Caps (TEC) and Outer Barrel (TOB) systems. The results of these studies show important recommendations and criteria to be applied in the design of future detectors to increase the immunity against electromagnetic noise.

  10. Pixel readout electronics development for the ALICE pixel vertex and LHCb RICH detector

    CERN Document Server

    Snoeys, W; Cantatore, E; Cencelli, V; Dinapoli, R; Heijne, Erik H M; Jarron, Pierre; Lamanna, P; Minervini, D; O'Shea, V; Quiquempoix, V; San Segundo-Bello, D; Van Koningsveld, B; Wyllie, Ken H

    2001-01-01

    The ALICE1LHCB pixel readout chip emerged from previous experience at CERN. The RD-19 collaboration provided the basis for the installation of a pixel system in the WA97 and NA57 experiments. Operation in these experiments was key in the understanding of the system issues. In parallel the RD-49 collaboration provided the basis to obtain radiation tolerance in commercial submicron CMOS through special circuit layout. The new ALICE1LMB chip was developed to serve two different applications: particle tracking in the ALICE Silicon Pixel Detector and particle identification in the LHCb Ring Imaging Cherenkov detector. To satisfy the different needs for these two experiments, the chip can be operated in two different modes. In tracking mode all the 50 mu m*435 mu m pixel cells in the 256*32 array are read out individually, whilst in particle identification mode they are combined in groups of 8 to form a 32*32 array of 400 mu m*425 mu m cells. The circuit is currently being manufactured in a commercial 0.25 mu m CMO...

  11. Design of the micro vertex detector of the CBM experiment. Development of a detector response model and feasibility studies of open charm measurement

    International Nuclear Information System (INIS)

    Dritsa, Christina Anna

    2011-01-01

    The PhD addresses the feasibility of reconstructing open charm mesons with the Compressed Baryonic Matter experiment, which will be installed at the FAIR accelerator complex at Darmstadt/Germany. The measurements will be carried out by means of a dedicated Micro Vertex Detector (MVD), which will be equipped with CMOS Monolithic Active Pixel Sensors (MAPS). The feasibility of reconstructing the particles with a proposed detector setup was studied. To obtain conclusive results, the properties of a MAPS prototype were measured in a beam test at the CERN-SPS accelerator. Based on the results achieved, a dedicated simulation software for the sensors was developed and implemented into the software framework of CBM (CBMRoot). Simulations on the reconstruction of D 0 -mesons were carried out. It is concluded that the reconstruction of those particles is possible. The PhD introduces the physics motivation of doing open charm measurements, represents the results of the measurements of MAPS and introduces the innovative simulation model for those sensors as much as the concept and results of simulations of the D 0 reconstruction.

  12. Design and characterization of integrated front-end transistors in a micro-strip detector technology

    International Nuclear Information System (INIS)

    Simi, G.; Angelini, C.; Batignani, G.; Bettarini, S.; Bondioli, M.; Boscardin, M.; Bosisio, L.; Dalla Betta, G.-F.; Dittongo, S.; Forti, F.; Giorgi, M.; Gregori, P.; Manghisoni, M.; Morganti, M.; U. Pignatel, G.; Ratti, L.; Re, V.; Rizzo, G.; Speziali, V.; Zorzi, N.

    2002-01-01

    We present the developments in a research program aimed at the realization of silicon micro-strip detectors with front-end electronics integrated in a high resistivity substrate to be used in high-energy physics, space and medical/industrial imaging applications. We report on the fabrication process developed at IRST (Trento, Italy), the characterization of the basic wafer parameters and measurements of the relevant working characteristics of the integrated transistors and related test structures

  13. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Y., E-mail: cycjty@sophie.q.t.u-tokyo.ac.jp [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shimazoe, K.; Yan, X. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ueda, O.; Ishikura, T. [Fuji Electric Co., Ltd., Fuji, Hino, Tokyo 191-8502 (Japan); Fujiwara, T. [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Uesaka, M.; Ohno, M. [Nuclear Professional School, the University of Tokyo, 2-22 Shirakata-shirane, Tokai, Ibaraki 319-1188 (Japan); Tomita, H. [Department of Quantum Engineering, Nagoya University, Furo, Chikusa, Nagoya 464-8603 (Japan); Yoshihara, Y. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Takahashi, H. [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-09-11

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  14. Prototyping of Silicon Strip Detectors for the Inner Tracker of the ALICE Experiment

    CERN Document Server

    Sokolov, Oleksiy

    2006-01-01

    The ALICE experiment at CERN will study heavy ion collisions at a center-of-mass energy 5.5∼TeV per nucleon. Particle tracking around the interaction region at radii r<45 cm is done by the Inner Tracking System (ITS), consisting of six cylindrical layers of silicon detectors. The outer two layers of the ITS use double-sided silicon strip detectors. This thesis focuses on testing of these detectors and performance studies of the detector module prototypes at the beam test. Silicon strip detector layers will require about 20 thousand HAL25 front-end readout chips and about 3.5 thousand hybrids each containing 6 HAL25 chips. During the assembly procedure, chips are bonded on a patterned TAB aluminium microcables which connect to all the chip input and output pads, and then the chips are assembled on the hybrids. Bonding failures at the chip or hybrid level may either render the component non-functional or deteriorate its the performance such that it can not be used for the module production. After each bond...

  15. Radiation Damage Effects and Performance of Silicon Strip Detectors using LHC Readout Electronics

    CERN Document Server

    AUTHOR|(CDS)2067734

    1998-01-01

    Future high energy physics experiments as the ATLAS experiment at CERN, will use silicon strip detectors for fast and high precision tracking information. The high hadron fluences in these experiments cause permanent damage in the silicon.Additional energy levels are introduced in the bandgap thus changing the electrical properties such as leakage current and full depletion voltage V_fd .Very high leakage currents are observed after irradiation and lead to higher electronic noise and thus decrease the spatial resolution.V_fd increases to a few hundred volts after irradiation and eventually beyond the point of stable operating voltages. Prototype detectors with either p-implanted strips (p-in-n) and n-implanted strip detectors (n-in-n) were irradiated to the maximum expected fluence in ATLAS.The irradiation and the following study of the current and V_fd were carried out under ATLAS operational conditions.The evolution of V_fd after irradiation is compared to models based on diode irradiations.The qualitative ...

  16. The design and construction of the BaBar silicon vertex tracker

    CERN Document Server

    Bozzi, C; Ramusino, A C; Dittongo, S; Folegani, M; Piemontese, L; Abbott, B K; Breon, A B; Clark, A R; Dow, S; Fan, Q; Goozen, F; Hernikl, C; Karcher, A; Kerth, L T; Kipnis, I; Kluth, S; Lynch, G; Levi, M; Luft, P; Luo, L; Nyman, M A; Pedrali-Noy, M; Roe, N A; Zizka, G; Roberts, D; Barni, D; Brenna, E; Defendi, I; Forti, A C; Giugni, D; Lanni, F; Palombo, F; Vaniev, V; Leona, A; Mandelli, E; Manfredi, P F; Perazzo, A; Re, V; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bosi, F; Calderini, G; Carpinelli, M; Dutra, F; Forti, F; Gagliardi, D; Giorgi, M A; Lusiani, A; Mammini, P; Morganti, M; Morsani, F; Paoloni, E; Profeti, A; Rama, M; Rampino, G; Rizzo, G; Sandrelli, F; Simi, G; Triggiani, G; Tritto, S; Vitale, R; Burchat, Patricia R; Cheng, C; Kirkby, D; Meyer, T; Roat, C; Bóna, M; Bianchi, F; Daudo, F; Girolamo, B D; Gamba, D; Giraudo, G; Grosso, P; Romero, A; Smol, A; Trapani, P; Zanin, D; Bosisio, L; Della Ricca, G; Lanceri, L; Pompili, A; Poropat, P; Prest, M; Rastelli, C; Vallazza, E; Vuagnin, G; Hast, C; Potter, E P; Sharma, V; Burke, S; Callahan, D; Campagnari, C; Dahmes, B; Eppich, A; Hale, D; Hall, K; Hart, P; Kuznetsova, N; Kyre, S; Levy, S; Long, O; May, J; Richman, J; Verkerke, W; Witherell, M; Beringer, J; Eisner, A M; Frey, A; Grillo, A; Grothe, M; Johnson, R; Kröger, W; Lockman, W; Pulliam, T; Rowe, W; Schmitz, R; Seiden, A; Spencer, E; Turri, M; Wilder, M; Charles, E; Elmer, P; Nielsen, J; Orejudos, W; Scott, I; Walsh, J; Zobernig, H

    2000-01-01

    The Silicon Vertex Tracker (SVT) of the BaBar experiment at the PEP-II asymmetric B factory consists of five layers of double-sided, AC-coupled silicon strip detectors. The detectors are readout with a custom IC, capable of simultaneous acquisition, digitization and transmission of data. The SVT geometry is shown and the construction phases of its modules are described in detail, with emphasis on the bending procedures needed for the arch-modules of the outer layers.

  17. Measurement of beauty and charm photoproduction using inclusive secondary vertexing with the ZEUS detector at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Schoenberg, Verena Ellen

    2010-04-15

    Photoproduction of heavy quarks in events with two jets has been measured with the ZEUS detector at HERA using data recorded in the years 2006-2007 corresponding to an integrated luminosity of 128 pb{sup -1}. The beauty and charm content was extracted using the decay-length significance of the b and c hadrons and the invariant mass of the decay vertices. Differential cross sections as a function of P{sup Jet}{sub T} and {eta}{sup Jet} were compared with the PYTHIA leading order plus parton shower Monte Carlo and QCD predictions calculated at next-to-leading order. In order to study the theoretical description of higher-order effects correlations between the two highest energy jets were also investigated. (orig.)

  18. Measurement of beauty and charm photoproduction using inclusive secondary vertexing with the ZEUS detector at HERA

    International Nuclear Information System (INIS)

    Schoenberg, Verena Ellen

    2010-04-01

    Photoproduction of heavy quarks in events with two jets has been measured with the ZEUS detector at HERA using data recorded in the years 2006-2007 corresponding to an integrated luminosity of 128 pb -1 . The beauty and charm content was extracted using the decay-length significance of the b and c hadrons and the invariant mass of the decay vertices. Differential cross sections as a function of P Jet T and η Jet were compared with the PYTHIA leading order plus parton shower Monte Carlo and QCD predictions calculated at next-to-leading order. In order to study the theoretical description of higher-order effects correlations between the two highest energy jets were also investigated. (orig.)

  19. Radiation hard 3D diamond sensors for vertex detectors at HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00336619; Quadt, Arnulf; Grosse-Knetter, Jörn; Weingarten, Jens

    Diamond is a good candidate to replace silicon as sensor material in the innermost layer of a tracking detector at HL-LHC, due to its high radiation tolerance. After particle fluences of $10^{16}\\,{\\rm protons/cm^2}$, diamond sensors are expected to achieve a higher signal to noise ratio than silicon. In order to use low grade polycrystalline diamonds as sensors, electrodes inside the diamond bulk, so called 3D electrodes, are produced. Typically, this kind of diamond material has a lower charge collection distance (CCD) than higher grade diamond, which results in a decreased signal amplitude. With 3D electrodes it is possible to achieve full charge collection even in samples with low CCDs by decoupling the spacing of the electrodes from the thickness of the diamond bulk. The electrodes are produced using a femtosecond laser, which changes the phase of the diamond material. The phase changed material is conductive and identified as nanocrystalline graphite using Raman spectroscopy. Due to a crater like struct...

  20. Search for decaying neutralions at HERA and clustering optimisation for the ZEUS micro vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Blohm, Christian

    2010-03-15

    A search for gravitinos produced in supersymmetric events in electron proton collision has been performed with data recorded with the ZEUS detector at HERA in the years 2003 to 2007. In R-parity violating supersymmetric models a neutralino can be produced by t-channel exchange of a selectron between the incoming electron and a quark of the proton. In the Gauge Mediated Supersymmetry Breaking model (GMSB), where the gravitino is the lightest supersymmetric particle, the neutralino in large regions of the parameter space dominantly decays into a gravitino and a photon, leading to events with an isolated high energetic photon and large missing transverse momentum. To separate signal and background, a multi-variate discriminant method was used. No evidence for supersymmetry was found, and limits were derived for the R-parity violating coupling strength and the messes of the selectron and the lightest neutralino. Moreover, the cluster position reconstruction system of the ZEUS experiment was improved by modifying and implementing an algorithm which uses estimated track angle and impact position from the pattern recognition phase of the tracking system to yield a better position resolution. (orig.)

  1. Direct search for Higgs boson in LHCb and contribution to the development of the Vertex Detector

    CERN Document Server

    Locatelli, L

    2007-01-01

    The LHCb experiment (Large Hadron Collider beauty) is one of the four experiments under construction at the LHC (Large Hadron Collider) at CERN near Geneva. It is planned to start in 2007 and its goal is the study of b-quark physics. The LHC is a circular accelerator in which collide protons-protons at a center-of-mass energy of sqrt{s} = 14 TeV. This generates a large number of high energy b-bbar pairs which are predominantly produced in the same forward cone. The LHCb detector is therefore a forward single arm spectrometer designed to exploit the large b-bbar production cross section (\\sigma b-bbar ~ 500 \\mu b) and to perform precise measurements of CP violation in b-hadrons decays. One of the actual greatest challenges in High Energy Physics is the discovery of the Higgs boson which is responsible for the Model Standard particles mass generation through the Spontaneous Symmetry Breaking process. The Higgs mass is not known and cannot be predicted by the theory. However the recent results of LEP at CERN hav...

  2. Count rate performance of a silicon-strip detector for photon-counting spectral CT

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X., E-mail: olivia@mi.physics.kth.se; Grönberg, F.; Sjölin, M.; Karlsson, S.; Danielsson, M.

    2016-08-11

    A silicon-strip detector is developed for spectral computed tomography. The detector operates in photon-counting mode and allows pulse-height discrimination with 8 adjustable energy bins. In this work, we evaluate the count-rate performance of the detector in a clinical CT environment. The output counts of the detector are measured for x-ray tube currents up to 500 mA at 120 kV tube voltage, which produces a maximum photon flux of 485 Mphotons/s/mm{sup 2} for the unattenuated beam. The corresponding maximum count-rate loss of the detector is around 30% and there are no saturation effects. A near linear relationship between the input and output count rates can be observed up to 90 Mcps/mm{sup 2}, at which point only 3% of the input counts are lost. This means that the loss in the diagnostically relevant count-rate region is negligible. A semi-nonparalyzable dead-time model is used to describe the count-rate performance of the detector, which shows a good agreement with the measured data. The nonparalyzable dead time τ{sub n} for 150 evaluated detector elements is estimated to be 20.2±5.2 ns.

  3. Count rate performance of a silicon-strip detector for photon-counting spectral CT

    Science.gov (United States)

    Liu, X.; Grönberg, F.; Sjölin, M.; Karlsson, S.; Danielsson, M.

    2016-08-01

    A silicon-strip detector is developed for spectral computed tomography. The detector operates in photon-counting mode and allows pulse-height discrimination with 8 adjustable energy bins. In this work, we evaluate the count-rate performance of the detector in a clinical CT environment. The output counts of the detector are measured for x-ray tube currents up to 500 mA at 120 kV tube voltage, which produces a maximum photon flux of 485 Mphotons/s/mm2 for the unattenuated beam. The corresponding maximum count-rate loss of the detector is around 30% and there are no saturation effects. A near linear relationship between the input and output count rates can be observed up to 90 Mcps/mm2, at which point only 3% of the input counts are lost. This means that the loss in the diagnostically relevant count-rate region is negligible. A semi-nonparalyzable dead-time model is used to describe the count-rate performance of the detector, which shows a good agreement with the measured data. The nonparalyzable dead time τn for 150 evaluated detector elements is estimated to be 20.2±5.2 ns.

  4. Output factor determination for dose measurements in axial and perpendicular planes using a silicon strip detector

    Science.gov (United States)

    Abou-Haïdar, Z.; Bocci, A.; Alvarez, M. A. G.; Espino, J. M.; Gallardo, M. I.; Cortés-Giraldo, M. A.; Ovejero, M. C.; Quesada, J. M.; Arráns, R.; Prieto, M. Ruiz; Vega-Leal, A. Pérez; Nieto, F. J. Pérez

    2012-04-01

    In this work we present the output factor measurements of a clinical linear accelerator using a silicon strip detector coupled to a new system for complex radiation therapy treatment verification. The objective of these measurements is to validate the system we built for treatment verification. The measurements were performed at the Virgin Macarena University Hospital in Seville. Irradiations were carried out with a Siemens ONCOR™ linac used to deliver radiotherapy treatment for cancer patients. The linac was operating in 6 MV photon mode; the different sizes of the fields were defined with the collimation system provided within the accelerator head. The output factor was measured with the silicon strip detector in two different layouts using two phantoms. In the first, the active area of the detector was placed perpendicular to the beam axis. In the second, the innovation consisted of a cylindrical phantom where the detector was placed in an axial plane with respect to the beam. The measured data were compared with data given by a commercial treatment planning system. Results were shown to be in a very good agreement between the compared set of data.

  5. Charge collection mapping of a novel ultra-thin silicon strip detector for hadrontherapy beam monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bouterfa, Mohamed, E-mail: mohamed.bouterfa@uclouvain.be [ICTEAM Institute, Universite catholique de Louvain, Louvain-la-Neuve (Belgium); Alexandre, Geoffrey; Cortina Gil, Eduardo [IRPM Institute, Universite catholique de Louvain, Louvain-la-Neuve (Belgium); Flandre, Denis [ICTEAM Institute, Universite catholique de Louvain, Louvain-la-Neuve (Belgium)

    2013-12-21

    In precise hadrontherapy treatments, the particle beam must be monitored in real time without being degraded. Silicon strip detectors have been fabricated over an area as large as 4.5×4.5 cm{sup 2} with ultra low thickness of 20μm. These offer the following considerable advantages: significantly reduced beam scattering, higher radiation hardness which leads to improved detector lifetime, and much better collection efficiency. In a previous work, the novel sensor has been described and a global macroscopic dosimetry characterization has been proposed. This provides practical information for the detector daily use but not about the local microscopic knowledge of the sensor. This work therefore presents a micrometric-accuracy charge-collection characterization of this new generation of ultra-thin silicon strip detectors. This goal is reached thanks to a 1060 nm-wavelength micrometric-sized laser that can be positioned relatively to the sensor with a submicron precision for the three different axes. This study gives a much better knowledge of the inefficient areas of the sensor and allows therefore optimization for future designs.

  6. Integrated USB based readout interface for silicon strip detectors of the ATLAS SCT module

    Science.gov (United States)

    Masek, P.; Linhart, V.; Granja, C.; Pospisil, S.; Husak, M.

    2011-12-01

    An integrated portable USB based readout interface for the ATLAS semiconductor trackers (SCT) has been built. The ATLAS SCT modules are large area silicon strip detectors designed for tracking of high-energy charged particles resulting in collisions on Large Hadron Collider (LHC) in CERN. These modules can be also used on small accelerators for medical or industry applications where a compact and configurable readout interface would be useful. A complete custom made PC-host software tool was written for Windows platform for control and DAQ with build-in online visualization. The new constructed interface provides integrated power, control and DAQ and configurable communication between the detector module and the controlling PC. The interface is based on the Field Programmable Gate Array (FPGA) and the high speed USB 2.0 standard. This design permits to operate the modules under high particle fluence while minimizing the dead time of the whole detection system. Utilization of the programmable device simplifies the operation and permits future expansion of the functionality without any hardware changes. The device includes the high voltage source for detector bias up to 500 V and it is equipped with number of devices for monitoring the operation and conditions of measurement (temperature, humidity, voltage). These features are particularly useful as the strip detector must be operated in a well controlled environment. The operation of the interface will be demonstrated on data measured with different particles from radiation sources.

  7. First testbeam results of prototype modules for the upgrade of the ATLAS strip tracking detector

    CERN Document Server

    Kuehn, Susanne; The ATLAS collaboration

    2016-01-01

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential of the LHC through a sizeable increase in the luminosity, totalling 1x1035cm-2s-1 after 10 years of operation. A consequence of this increased luminosity is the expected radiation damage at a integrated luminosity of 3000fb-1, requiring the tracking detectors to withstand hadron equivalences to over 1x1016 1 MeV neutron equivalent per cm2. With the addition of increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk), which will consist of both strip and pixellated silicon detectors. The silicon strip tracker exploits the concept of modularity. Fast readout electronics, deploying 130nm CMOS front-end electronics is glued on top of a silicon sensor. These so-called modules are glued on carbon structures and will span about 200m2 of active area. A broad R&D program is ongoing to develop and prototype many detector components. The modu...

  8. Electromagnetic noise studies in a silicon strip detector, used as part of a luminosity monitor at LEP

    Science.gov (United States)

    Ødegaard, Trygve; Tafjord, Harald; Buran, Torleiv

    1995-02-01

    As part of the luminosity monitor, SAT, in the DELPHI [1] experiment at CERN's Large Electron Positron collider, a tracking detector constructed from silicon strip detector elements was installed in front of an electromagnetic calorimeter. The luminosity was measured by counting the number of Bhabha events at the interaction point of the electron and the positron beans. The tracking detector reconstructs from the interaction point and the calorimeter measures the corresponding particles' energies. The SAT Tracker [2] consists of 504 silicon strip detectors. The strips are DC-coupled to CMOS VLSI-chips, baptized Balder [3,4]. The chip performs amplification, zero-suppression, digitalisation, and multiplexing. The requirements of good space resolution and high efficiency put strong requirements on noise control. A short description of the geometry and the relevant circuit layout is given. We describe the efforts made to minimise the electromagnetic noise in the detector and present some numbers of the noise level using various techniques.

  9. Charged Particle Tracking and Vertex Detection Group summary report

    International Nuclear Information System (INIS)

    Hanson, G.; Meyer, D.

    1984-09-01

    Charged particle tracking is essential in order to investigate the new physics expected at the SSC. The Tracking Group studied radiation damage and rate limitations to tracking devices, vertex detectors, and central tracking. The Group concluded that silicon strips and large wire tracking chambers with small cells can probably survive at the design luminosity of 10 33 cm -2 sec -1 ; however, the presently designed electronics for silicon strip vertex detectors can withstand a luminosity of only 10 31 cm -2 sec -1 . Wire chambers at a radius of less than about 25 cm can withstand a luminosity of less than or equal to 10 32 cm -2 sec -1 only. Actual tracking and pattern recognition in central tracking chambers at a luminosity of 10 33 cm -2 sec -1 will be very difficult because of multiple interactions within the resolving time of the chambers; detailed simulations are needed in order to decide whether tracking is indeed possible at this luminosity. Scintillating glass fibers are an interesting possibility both for vertex detectors and for central trackers, but much research and development is still needed both on the fibers themselves and on the readout

  10. Application of a double-sided silicon-strip detector as a differential pumping barrier for NESR experiments at FAIR

    NARCIS (Netherlands)

    Streicher, B.; Egelhof, P.; Ilieva, S.; Kalantar-Nayestanaki, N.; Kollmus, H.; Kroell, Th; Mutterer, M.; von Schmid, M.; Traeger, M.

    2011-01-01

    The presented work focuses on the development of a differential pumping system using double-sided silicon-strip detectors to separate the ultra-high vacuum of a storage ring from subsequent detectors and outgassing components placed in an auxiliary vacuum. Such a technical concept will give the

  11. Measurement of characteristic impedance of silicon fiber sheet based readout strip panel for RPC detector in INO

    Science.gov (United States)

    Singh, M. K.; Kumar, A.; Marimuthu, N.; Singh, V.; Subrahmanyam, V. S.

    2017-01-01

    The India-based Neutrino Observatory (INO) is a mega science project of India, which is going to use about 30,000 Resistive Plate Chambers (RPC) as active detector elements for the study of atmoshpheric neutrino oscillations. Each RPC detector will consist of two orthogonally placed readout strip panel for picking the signals generated in the gas chamber. The area of RPC detector in INO-ICAL (Iron Calorimeter) experiment will be 2 m × 2 m, therefore the dimensions of readout strip panel should also be 2 m × 2 m. To get undistorted signals pass through the readout strip panel to front-end electronics, their characteristic impedance should be matched with each other. In the present paper, we describe the need and search of new dielectric material for the fabrication of flame resistant, waterproof and flexible readout strip panel. We will also describe the measurement of characteristic impedance of Plastic Honeycomb (PH) based readout strip panel and Silicon Fiber Sheet (SFS) based readout strip panel in a comparative way, and its variation under loading and with time. Based on this study, we found that a 5 mm thick SFS-based readout strip panel has a minimum signal reflection at 49.5 ohm characteristic impedance value. Our study shows that SFS is a good dielectric material for the purpose.

  12. LHCb - SALT, a dedicated readout chip for strip detectors in the LHCb Upgrade experiment

    CERN Multimedia

    Swientek, Krzysztof Piotr

    2015-01-01

    Silicon strip detectors in the upgraded Tracker of LHCb experiment will require a new readout 128-channel ASIC called SALT. It will extract and digitise analogue signals from the sensor, perform digital processing and transmit serial output data. SALT is designed in CMOS 130 nm process and uses a novel architecture comprising of analogue front-end and ultra-low power ($<$0.5 mW) fast (40 MSps) sampling 6-bit ADC in each channel. A prototype of first 8-channel version of SALT chip, comprising all important functionalities, was submitted. Its design and possibly first tests results will be presented.

  13. A digital X-ray imaging system based on silicon strip detectors working in edge-on configuration

    Energy Technology Data Exchange (ETDEWEB)

    Bolanos, L. [CEADEN, Calle 30 502 e/ 5ta y 7ma Avenida, Playa, Ciudad Habana (Cuba); Boscardin, M. [IRST, Fondazione Bruno Kessler, Via Sommarive 18, Povo, 38100 Trento (Italy); Cabal, A.E. [CEADEN, Calle 30 502 e/ 5ta y 7ma Avenida, Playa, Ciudad Habana (Cuba); Diaz, M. [InSTEC, Ave. Salvador Allende esq. Luaces, Quinta de los Molinos, Ciudad Habana (Cuba); Grybos, P.; Maj, P. [Faculty of Electrical Engineering, Automatics, Computer Science and Electronics, Department of Measurement and Instrumentation, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Prino, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, 10125 Torino (Italy); Ramello, L. [Dipartimento di Scienze e Tecnologie Avanzate, Universita del Piemonte Orientale, Via T. Michel 11, 15100 Alessandria (Italy)], E-mail: luciano.ramello@mfn.unipmn.it; Szczygiel, R. [Faculty of Electrical Engineering, Automatics, Computer Science and Electronics, Department of Measurement and Instrumentation, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland)

    2009-09-21

    We present the energy resolution and imaging performance of a digital X-ray imaging system based on a 512-strip silicon strip detector (SSD) working in the edge-on configuration. The SSDs tested in the system are 300 {mu}m thick with 1 or 2-cm-long strips and 100 {mu}m pitch. To ensure a very small dead area of the SSD working in edge-on configuration, the detector is cut perpendicular to the strips at a distance of only 20 {mu}m from the end of the strips. The 512-strip silicon detector is read out by eight 64-channel integrated circuits called DEDIX [Grybos et al., IEEE Trans. Nucl. Sci. NS-54 (2007) 1207]. The DEDIX IC operates in a single photon counting mode with two independent amplitude discriminators per channel. The readout electronic channel connected to a detector with effective input capacitance of about 2 pF has an average equivalent noise charge (ENC) of about 163 el. rms and is able to count 1 Mcps of average rate of input pulses. The system consisting of 512 channels has an excellent channel-to-channel uniformity-the effective threshold spread calculated to the charge-sensitive amplifier inputs is 12 el. rms (at one sigma level). With this system a few test images of a phantom have been taken in the 10-30 keV energy range.

  14. On the behavior of ion implanted silicon strip detectors in high intensity low energy heavy ion beam experiments

    CERN Document Server

    Bradfield, W; Parker, P D; Visser, D W

    2002-01-01

    In a recent investigation of the development of leakage currents in Silicon Strip Detectors used in experiments with high intensity stable beams, anomalous behavior was observed. Over a very short period of time the leakage current rose to levels that could be damaging to the detectors. A discussion of this evidence and how the problem was solved, with a viable model, will be given, leading to guidelines for use of such detectors in a stable beam environment.

  15. Performance of the LHCb Vertex Locator

    CERN Document Server

    van Beuzekom, Martin

    2012-01-01

    LHCb is a dedicated experiment to study new physics in the decays of beauty and charm hadrons at the Large Hadron Collider (LHC) at CERN. The beauty and charm hadrons are identified through their flight distance in the Vertex Locator (VELO), and hence the detector is essential for both the trigger and physics analyses. The VELO is the silicon micro- strip detector surrounding the LHCb interaction point, and is located only 8 mm from the LHC beam during normal operation. It consists of two retractable detector halves with 21 silicon micro-strip tracking modules each and is moved into position for each fill of the LHC, once stable beams are obtained. The detector operates in an extreme and highly non-uniform radiation environment, and the effects of surface and bulk radiation damage have already been measured. The VELO has been successfully operated for the first LHC physics run. Operational results show a signal to noise ratio of > 17 and a cluster finding efficiency of 99.5%. The small pitch a...

  16. Degradation of charge sharing after neutron irradiation in strip silicon detectors with different geometries

    CERN Document Server

    Casse, G

    2013-01-01

    The aim of the CERN/RD50 collaboration is the improvement of the radiation tolerance of semiconductor detectors for future experiments at high-luminosity colliders. In the RD50 framework, evidence of enhanced signal charge in severely irradiated silicon detectors (diodes, segmented planar and 3D devices) was found. The underlying mechanism was labelled charge multiplication. This has been one of the most exciting results from the research activity of RD50 because it could allow for a greatly extended radiation tolerance, if the mechanism is to be found controllable and tuneable. The charge multiplication mechanism is governed by impact ionisation from electrons drifting in high electric field. The electric field profile is influenced by the geometry of the implanted electrodes. In order to investigate the influence of the diode implantation geometry on charge multiplication, the RD50 collaboration has commissioned the production of miniature microstrip silicon sensors with various choices of strip pitch and s...

  17. CMOS front end analog signal readout chip for Si-strip/PIN detectors

    International Nuclear Information System (INIS)

    Chandratre, V.B.; Sardesai, S.V.; Kataria, S.K.

    2001-01-01

    The paper presents the design of an 8-channel front-end chip for Si-strip detectors, ranging in capacitance from 1 to 30 pf. Each channel consists of a charge amplifier, a shaper amplifier (CR-RC 3 ) and a track-hold stage. The channel outputs are connected to an analog multiplexer which is controlled by an external clock for serial readout. The peaking time is adjustable over 250ns-2us in four fixed steps by external control. There is provision for changing gain low/high. A derivative of the chip is also developed for dosimeter application that uses small area diodes as detectors. The circuit has a power dissipation of 6 MW per channel and is designed to fabricate in 1.2um CMOS technology. The Opf noise is ∼400e. The design approach is presented and the results of simulation are shown. (author)

  18. An experimental investigation of an air cooling scheme for removing environmentally imposed heat loads from the multiplicity and vertex detector's main enclosure

    International Nuclear Information System (INIS)

    Cunningham, R.; Bernardin, J.D.; Simon-Gillo, J.

    1997-11-01

    This report presents a summary of an experimental investigation of a closed loop air cooling system designed to control the temperature and humidity in the main enclosure of the multiplicity and vertex detector (MVD). Measurements of the cooling air flow rate, the humidity levels inside and outside of the MVD, and the cooling air temperatures were used to assess the performance of the system and to characterize the system limitations and potential assembly problems. The results of the study indicate that several design changes are needed in the final design to meet the temperature and humidity operating requirements. A thorough set of design change recommendations that satisfy these operating criteria completes this report

  19. Study of 236U/238U ratio at CIRCE using a 16-strip silicon detector with a TOF system

    Directory of Open Access Journals (Sweden)

    De Cesare M.

    2015-01-01

    Full Text Available Accelerator Mass Spectrometry (AMS is presently the most sensitive technique for the measurement of long-lived actinides, e.g. 236U and xPu isotopes. A new actinide AMS system, based on a 3-MV pelletron tandem accelerator, is operated at the Center for Isotopic Research on Cultural and Environmental Heritage (CIRCE in Caserta, Italy. In this paper we report on the procedure adopted to increase the 236U abundance sensitivity as low as possible. The energy and position determinations of the 236U ions, using a 16-strip silicon detector have been obtained. A 236U/238U isotopic ratio background level of about 2.9×10−11 was obtained, summing over all the strips, using a Time of Flight-Energy (TOF-E system with a 16-strip silicon detector (4.9×10−12 just with one strip.

  20. Study of 236U/238U ratio at CIRCE using a 16-strip silicon detector with a TOF system

    Science.gov (United States)

    De Cesare, M.; De Cesare, N.; D'Onofrio, A.; Gialanella, L.; Terrasi, F.

    2015-04-01

    Accelerator Mass Spectrometry (AMS) is presently the most sensitive technique for the measurement of long-lived actinides, e.g. 236U and xPu isotopes. A new actinide AMS system, based on a 3-MV pelletron tandem accelerator, is operated at the Center for Isotopic Research on Cultural and Environmental Heritage (CIRCE) in Caserta, Italy. In this paper we report on the procedure adopted to increase the 236U abundance sensitivity as low as possible. The energy and position determinations of the 236U ions, using a 16-strip silicon detector have been obtained. A 236U/238U isotopic ratio background level of about 2.9×10-11 was obtained, summing over all the strips, using a Time of Flight-Energy (TOF-E) system with a 16-strip silicon detector (4.9×10-12 just with one strip).

  1. Transparent silicon strip sensors for the optical alignment of particle detector systems

    International Nuclear Information System (INIS)

    Blum, W.; Kroha, H.; Widmann, P.

    1995-05-01

    Modern large-area precision tracking detectors require increasing accuracy for the alignment of their components. A novel multi-point laser alignment system has been developed for such applications. The position of detector components with respect to reference laser beams is monitored by semi-transparent optical position sensors which work on the principle of silicon strip photodiodes. Two types of custom designed transparent strip sensors, based on crystalline and on amorphous silicon as active material, have been studied. The sensors are optimised for the typical diameters of collimated laser beams of 3-5 mm over distances of 10-20 m. They provide very high position resolution, on the order of 1 μm, uniformly over a wide measurement range of several centimeters. The preparation of the sensor surfaces requires special attention in order to achieve high light transmittance and minimum distortion of the traversing laser beams. At selected wavelengths, produced by laser diodes, transmission rates above 90% have been achieved. This allows to position more than 30 sensors along one laser beam. The sensors will be equipped with custom designed integrated readout electronics. (orig.)

  2. A Silicon Strip Detector for the Phase II High Luminosity Upgrade of the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    INSPIRE-00425747; McMahon, Stephen J

    2015-01-01

    ATLAS is a particle physics experiment at the Large Hadron Collider (LHC) that detects proton-proton collisions at a centre of mass energy of 14 TeV. The Semiconductor Tracker is part of the Inner Detector, implemented using silicon microstrip detectors with binary read-out, providing momentum measurement of charged particles with excellent resolution. The operation of the LHC and the ATLAS experiment started in 2010, with ten years of operation expected until major upgrades are needed in the accelerator and the experiments. The ATLAS tracker will need to be completely replaced due to the radiation damage and occupancy of some detector elements and the data links at high luminosities. These upgrades after the first ten years of operation are named the Phase-II Upgrade and involve a re-design of the LHC, resulting in the High Luminosity Large Hadron Collider (HL-LHC). This thesis presents the work carried out in the testing of the ATLAS Phase-II Upgrade electronic systems in the future strips tracker a...

  3. Silicon strip tracking detector development and prototyping for the Phase-2 Upgrade of the ATLAS experiment

    CERN Document Server

    Kuehn, Susanne; The ATLAS collaboration

    2015-01-01

    In about ten years from now, the Phase-2 upgrade of the LHC is planned. This will result in a severe radiation dose and high particle rates for the multipurpose exeperiments because of a foreseen luminosity of ten times higher the LHC design luminosity. Several detector components will have to be upgraded in the experiments. In the ATLAS experiment the current inner detector will be replaced by an all silicon tracking detector aiming for high performance. The poster will present the development and the latest prototyping of the upgrade silicon strip tracking detector. Its layout foresees low mass and modular double-sided structures for the barrel and forward region. Silicon sensors and readout electronics, so-called modules, are planned to be assembled double-sided on larger carbon-core structures. The modularity allows assembly and testing at multiple sites. Many components need to be developed and their prototyping towards full-size components is ongoing. New developments and test results will be presented....

  4. The honeycomb strip chamber: A two coordinate and high precision muon detector

    Energy Technology Data Exchange (ETDEWEB)

    Tolsma, H.P.T.

    1996-04-19

    This thesis describes the construction and performance of the Honeycomb Strip Chamber (HSC). The HSC offers several advantages with respect to classical drift chambers and drift tubes. The main features of the HSC are: -The detector offers the possibility of simultaneous readout of two orthogonal coordinates with approximately the same precision. - The HSC technology is optimised for mass production. This means that the design is modular (monolayers) and automisation of most of the production steps is possible (folding and welding machines). - The technology is flexible. The cell diameter can easily be changed from a few millimetres to at least 20 mm by changing the parameters in the computer programme of the folding machine. The number of monolayers per station can be chosen freely to the demands of the experiment. -The honeycomb structure gives the detector stiffness and makes it self supporting. This makes the technology a very transparent one in terms of radiation length which is important to prevent multiple scattering of high energetic muons. - The dimensions of the detector are defined by high precision templates. Those templates constrain for example the overall tolerance on the wire positions to 20 {mu}m rms. Reproduction of the high precision assembly of the detector is thus guaranteed. (orig.).

  5. The honeycomb strip chamber: A two coordinate and high precision muon detector

    International Nuclear Information System (INIS)

    Tolsma, H.P.T.

    1996-01-01

    This thesis describes the construction and performance of the Honeycomb Strip Chamber (HSC). The HSC offers several advantages with respect to classical drift chambers and drift tubes. The main features of the HSC are: -The detector offers the possibility of simultaneous readout of two orthogonal coordinates with approximately the same precision. - The HSC technology is optimised for mass production. This means that the design is modular (monolayers) and automisation of most of the production steps is possible (folding and welding machines). - The technology is flexible. The cell diameter can easily be changed from a few millimetres to at least 20 mm by changing the parameters in the computer programme of the folding machine. The number of monolayers per station can be chosen freely to the demands of the experiment. -The honeycomb structure gives the detector stiffness and makes it self supporting. This makes the technology a very transparent one in terms of radiation length which is important to prevent multiple scattering of high energetic muons. - The dimensions of the detector are defined by high precision templates. Those templates constrain for example the overall tolerance on the wire positions to 20 μm rms. Reproduction of the high precision assembly of the detector is thus guaranteed. (orig.)

  6. Measurements on GaAs strip and pixel detectors in a 50 GeV pion beam

    Energy Technology Data Exchange (ETDEWEB)

    Syben, O. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Arbabi, S. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Braunschweig, W. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Breibach, J. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Chu, Z. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Karpinski, W. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Krais, R. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Kubicki, Th. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Luebelsmeyer, K. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Rente, C. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Siedling, R. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Tenbusch, F. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Toporowski, M. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Wittmer, B. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Xiao, W.J. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.

    1997-04-01

    GaAs strip and pixel detectors constructed in Aachen have been tested at CERN in a 50 GeV pion beam in September 1995 in collaboration with the CMS Tracker group. The strip detectors had a pitch of 100 {mu}m and were made of a 250 {mu}m thick Freiberger SI-GaAs wafer. The three strip detectors had a strip width of 25, 50 and 75 {mu}m, respectively. Using the fast PreMux128 preamplifier multiplexer chip ({tau}{sub p}=50 ns) a signal to noise ratio of 15 was obtained for the widest strips at normal beam incidence for a bias voltage of 170 V. The 8 x 8 pixel arrays with a pixel size of 1 x 1 mm{sup 2} and 0.5 x 0.5 mm{sup 2}, respectively, were read out with the PreMux128 as well. Here a signal of 12500e{sup -} was obtained for both detectors, leading to a maximum signal to noise ratio of 20 at perpendicular beam incidence and 170 V bias voltage. (orig.).

  7. Performance of the LHCb Vertex Locator

    CERN Document Server

    Aaij, R.; Akiba, K.; Alexander, M.; Ali, S.; Appleby, R.B.; Artuso, M.; Bates, A.; Bay, A.; Behrendt, O.; Benton, J.; van Beuzekom, M.; Bjornstad, P.M.; Bogdanova, G.; Borghi, S.; Borgia, A.; Bowcock, T.J.V.; van den Brand, J.; Brown, H.; Buytaert, J.; Callot, O.; Carroll, J.; Casse, G.; Collins, P.; De Capua, S.; Doets, M.; Donleavy, S.; Dossett, D.; Dumps, R.; Eckstein, D.; Eklund, L.; Farinelli, C.; Farry, S.; Ferro-Luzzi, M.; Frei, R.; Garofoli, J.; Gersabeck, M.; Gershon, T.; Gong, A.; Gong, H.; Gordon, H.; Haefeli, G.; Harrison, J.; Heijne, V.; Hennessy, K.; Hulsbergen, W.; Huse, T.; Hutchcroft, D.; Jaeger, A.; Jalocha, P.; Jans, E.; John, M.; Keaveney, J.; Ketel, T.; Korolev, M.; Kraan, M.; Lastovicka, T.; Lafferty, G.; Latham, T.; Lefeuvre, G.; Leflat, A.; Liles, M.; van Lysebetten, A.; MacGregor, G.; Marinho, F.; McNulty, R.; Merkin, M.; Moran, D.; Mountain, R.; Mous, I.; Mylroie-Smith, J.; Needham, M.; Nikitin, N.; Noor, A.; Oblakowska-Mucha, A.; Papadelis, A.; Pappagallo, M.; Parkes, C.; Patel, G.D.; Rakotomiaramanana, B.; Redford, S.; Reid, M.; Rinnert, K.; Rodrigues, E.; Saavedra, A.F.; Schiller, M.; Schneider, O.; Shears, T.; Silva Coutinho, R.; Smith, N.A.; Szumlak, T.; Thomas, C.; van Tilburg, J.; Tobin, M.; Velthuis, J.; Verlaat, B.; Viret, S.; Volkov, V.; Wallace, C.; Wang, J.; Webber, A.; Whitehead, M.; Zverev, E.

    2014-01-01

    The Vertex Locator (VELO) is a silicon microstrip detector that surrounds the proton-proton interaction region in the LHCb experiment. The performance of the detector during the first years of its physics operation is reviewed. The system is operated in vacuum, uses a bi-phase CO2 cooling system, and the sensors are moved to 7 mm from the LHC beam for physics data taking. The performance and stability of these characteristic features of the detector are described, and details of the material budget are given. The calibration of the timing and the data processing algorithms that are implemented in FPGAs are described. The system performance is fully characterised. The sensors have a signal to noise ratio of approximately 20 and a best hit resolution of 4 microns is achieved at the optimal track angle. The typical detector occupancy for minimum bias events in standard operating conditions in 2011 is around 0.5%, and the detector has less than 1% of faulty strips. The proximity of the detector to the beam means ...

  8. Prototyping of petalets for the Phase-II upgrade of the silicon strip tracking detector of the ATLAS experiment

    Science.gov (United States)

    Kuehn, S.; Benítez, V.; Fernández-Tejero, J.; Fleta, C.; Lozano, M.; Ullán, M.; Lacker, H.; Rehnisch, L.; Sperlich, D.; Ariza, D.; Bloch, I.; Díez, S.; Gregor, I.; Keller, J.; Lohwasser, K.; Poley, L.; Prahl, V.; Zakharchuk, N.; Hauser, M.; Jakobs, K.; Mahboubi, K.; Mori, R.; Parzefall, U.; Bernabéu, J.; Lacasta, C.; Marco-Hernandez, R.; Rodriguez Rodriguez, D.; Santoyo, D.; Solaz Contell, C.; Soldevila Serrano, U.; Affolder, T.; Greenall, A.; Gallop, B.; Phillips, P. W.; Cindro, V.

    2018-03-01

    In the high luminosity era of the Large Hadron Collider, the instantaneous luminosity is expected to reach unprecedented values, resulting in about 200 proton-proton interactions in a typical bunch crossing. To cope with the resultant increase in occupancy, bandwidth and radiation damage, the ATLAS Inner Detector will be replaced by an all-silicon system, the Inner Tracker (ITk). The ITk consists of a silicon pixel and a strip detector and exploits the concept of modularity. Prototyping and testing of various strip detector components has been carried out. This paper presents the developments and results obtained with reduced-size structures equivalent to those foreseen to be used in the forward region of the silicon strip detector. Referred to as petalets, these structures are built around a composite sandwich with embedded cooling pipes and electrical tapes for routing the signals and power. Detector modules built using electronic flex boards and silicon strip sensors are glued on both the front and back side surfaces of the carbon structure. Details are given on the assembly, testing and evaluation of several petalets. Measurement results of both mechanical and electrical quantities are shown. Moreover, an outlook is given for improved prototyping plans for large structures.

  9. Readout of non-irradiated and irradiated strip detectors with fast analogue electronics

    CERN Document Server

    Cindro, V; Mikuz, M; Zontar, D; Kaplon, J; Riedler, P; Roe, S; Weilhammer, Peter; Dabrowski, W

    2000-01-01

    Silicon microstrip detectors with 50 mu m readout pitch were connected to fast LHC-type analogue readout electronics (DMILL SCT32A) and their performance evaluated before and after irradiation. The p-type strips with a length of 4 cm were fabricated on high- resistivity n-bulk wafers by CSEM. Fast neutrons from the TRIGA research reactor in Ljubljana were used to irradiate detectors to two different fluences: 4.5*10/sup 13/ and 1.5*10/sup 14//cm/sup 2/ 1 MeV neutron equivalent non-ionizing energy loss. A /sup 90/Sr beta source setup was used for detector performance measurements. Most of the observed signal/noise degradation after irradiation could be attributed to the signal loss. Around 82Xharge collection efficiency was measured at higher fluence 100 V above full depletion voltage as determined with C-V measurements. Measurements were performed during annealing and reverse annealing of effective dopant concentration. (9 refs).

  10. Silicon Strip detectors for the ATLAS End-Cap Tracker at the HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00232570

    Inside physics programme of the LHC different experiment upgrades are foreseen. After the phase-II upgrade of the ATLAS detector the luminosity will be increased up to 5-7.5x10E34 cm-2s-1. This will mean a considerable increase in the radiation levels, above 10E16 neq/cm2 in the inner regions. This thesis is focused on the development of silicon microstrip detectors enough radiation hard to cope with the particle fluence expected at the ATLAS detector during HL-LHC experiment. In particular on the electrical characterization of silicon sensors for the ATLAS End-Caps. Different mechanical and thermal tests are shown using a Petal core as well as the electrical characterization of the silicon sensors that will be used with the Petal structure. Charge collection efficiency studies are carried out on sensors with different irradiation fluences using the ALiBaVa system and two kinds of strips connection are also analized (DC and AC ganging) with a laser system. The Petalet project is presented and the electrical c...

  11. Design,construction and commissioning of a cylinder of double-sided silicon micro-strips detectors for the Star experiment at RHIC; Developpement et mise en oeuvre de detecteurs silicium a micropistes pour l'experience star

    Energy Technology Data Exchange (ETDEWEB)

    Guedon, M

    2005-05-15

    This study has been performed in the frame of quark gluon plasma physics research in the STAR experiment at RHIC. It deals with the design, the construction and the commissioning of a barrel of silicon-strip detectors (SSD). Added to the Silicon Vertex Tracker (SVT) of the STAR detector, it extends the capabilities of track reconstruction for charged particles emitted in ultra-relativistic heavy-ion collisions. It also contributes to the general study of the quark-gluon plasma production undertaken at STAR. The SSD is a cylinder of 1 m long and of 23 cm radius, and it is composed of 320 compact identical modules. Each module includes one double-sided silicon micro-strip detector, 12 readout chips ALICE 128C, 12 TAB ribbons, 2 COSTAR control chips and 2 hybrids supporting all the components. The document explains why the SSD is an important and relevant element, and justifies the technological choices as well as their validation by in-beam characterization. All component functionalities, characteristics and test procedures are presented. The data and test results are stored in a database for tracing purpose. Component and module production is described. Two parallel studies have been performed, analysed and described. One on the temperature dependence of the module performances and the other one on the optimal adjustments of the analogue blocks inside the ALICE 128C chip. The SSD installation on the RHIC site as well as the commissioning are presented together with the first data takings. (author)

  12. LabVIEW-based control and acquisition system for the dosimetric characterization of a silicon strip detector

    Science.gov (United States)

    Ovejero, M. C.; Pérez Vega-Leal, A.; Gallardo, M. I.; Espino, J. M.; Selva, A.; Cortés-Giraldo, M. A.; Arráns, R.

    2017-02-01

    The aim of this work is to present a new data acquisition, control, and analysis software system written in LabVIEW. This system has been designed to obtain the dosimetry of a silicon strip detector in polyethylene. It allows the full automation of the experiments and data analysis required for the dosimetric characterization of silicon detectors. It becomes a useful tool that can be applied in the daily routine check of a beam accelerator.

  13. The design of fast analog channels for the readout of strip detectors in the inner layers of the SuperB SVT

    Science.gov (United States)

    Gaioni, L.; Manghisoni, M.; Ratti, L.; Re, V.; Traversi, G.

    2013-08-01

    Six layers of microstrip detectors are foreseen in the present baseline design of the SuperB Silicon Vertex Tracker. Different strip pitches and lengths will be used in the various SVT layers; however, the capability of standing a high background rate and of operating with high hit detection efficiency will be a common feature of the innermost layers. These requirements set the need for a readout chip with analog channels with a short signal shaping time (25-200 ns in layers 0-3) to achieve an adequate time stamp resolution and a small pulse overlap. These channels are also required to provide a 4-bit hit amplitude resolution for dE / dx measurements. A new chip is being designed in a 130 nm CMOS process to comply with these specifications. This paper discusses the solutions that are adopted in this chip for the various blocks of the analog channels, and will present the simulation results for the current design along with the expected performance in terms of parameters such as signal-to-noise ratio, dynamic range, linearity, power dissipation.

  14. Beam loss studies on silicon strip detector modules for the CMS experiment

    CERN Document Server

    Fahrer, Manuel

    2006-01-01

    The large beam energy of the LHC demands for a save beam abort system. Nevertheless, failures cannot be excluded with last assurance and are predicted to occur once per year. As the CMS experiment is placed in the neighboured LHC octant, it is affected by such events. The effect of an unsynchronized beam abort on the silicon strip modules of the CMS tracking detector has been investigated in this thesis by performing one accelerator and two lab experiments. The dynamical behaviour of operational parameters of modules and components has been recorded during simulated beam loss events to be able to disentangle the reasons of possible damages. The first study with high intensive proton bunches at the CERN PS ensured the robustness of the module design against beam losses. A further lab experiment with pulsed IR LEDs clarified the physical and electrical processes during such events. The silicon strip sensors on a module are protected against beam losses by a part of the module design that originally has not been...

  15. Non-invasive characterization and quality assurance of silicon micro-strip detectors using pulsed infrared laser

    Science.gov (United States)

    Ghosh, P.

    2016-01-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR is composed of 8 tracking stations consisting of roughly 1300 double sided silicon micro-strip detectors of 3 different dimensions. For the quality assurance of prototype micro-strip detectors a non-invasive detector charaterization is developed. The test system is using a pulsed infrared laser for charge injection and characterization, called Laser Test System (LTS). The system is aimed to develop a set of characterization procedures which are non-invasive (non-destructive) in nature and could be used for quality assurances of several silicon micro-strip detectors in an efficient, reliable and reproducible way. The procedures developed (as reported here) uses the LTS to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. The prototype detector modules which are tested with the LTS so far have 1024 strips with a pitch of 58 μm on each side. They are read-out using a self-triggering prototype read-out electronic ASIC called n-XYTER. The LTS is designed to measure sensor response in an automatized procedure at several thousand positions across the sensor with focused infra-red laser light (spot size ≈ 12 μm, wavelength = 1060 nm). The pulse with a duration of ≈ 10 ns and power ≈ 5 mW of the laser pulse is selected such, that the absorption of the laser light in the 300 μm thick silicon sensor produces ≈ 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. The laser scans different prototype sensors and various non-invasive techniques to determine characteristics of the detector modules for the quality assurance is reported.

  16. Performance of a CMS Silicon Strip Detector Module with APV25 Readout

    CERN Document Server

    Friedl, Markus; Bauer, Thomas; Hrubec, Josef; Krammer, Manfred

    2002-01-01

    The Compact Muon Solenoid experiment (CMS) at the Large Hadron Collider (LHC) at CERN will include a Silicon Strip Tracker covering a sensitive area of 206m2 with about ten million readout channels. Its silicon detectors, made from 6" wafers, will be read out by APV25 front-end chips, fabricated in the 0.25um deep submicron process which is intrinsically radiation-tolerant. A first prototype module has been built consisting of two chained silicon sensors of 320um thickness and three APV25 chips (version S0). The performance of this module has been evaluated in a pion and proton beam at the Paul Scherrer Institute (Villigen/CH).

  17. Development of a 2D silicon strip detector system for mammographic imaging using particle physics technology

    CERN Document Server

    Royle, G J; Speller, R D; Hall, G; Iles, G; Raymond, M; Corrin, E; Stelt, P F; Manthos, N; Triantis, F A

    2002-01-01

    2D silicon strip sensors using particle physics readout technology have been evaluated as mammographic detectors. Two different versions of the APV series of front-end electronics were used that provided different noise levels. The sensors were evaluated using a typical mammography X-ray spectrum. The spatial resolution was evaluated using line pair test patterns and the modulation transfer function (MTF) was measured using the Edge Response Function. Low contrast performance was measured using the TOR(MAX) test object. Limiting spatial resolution of 52 mu m was obtained and an MTF value of 0.1 at 16 lp/mm. The low contrast performance was estimated from 250, 500 mu m and 6 mm diameter objects and was found to be 11.5%, 7% and better than 3.8%, respectively.

  18. SALT, a dedicated readout chip for high precision tracking silicon strip detectors at the LHCb Upgrade

    Science.gov (United States)

    Bugiel, Sz.; Dasgupta, R.; Firlej, M.; Fiutowski, T.; Idzik, M.; Kuczynska, M.; Moron, J.; Swientek, K.; Szumlak, T.

    2016-02-01

    The Upstream Tracker (UT) silicon strip detector, one of the central parts of the tracker system of the modernised LHCb experiment, will use a new 128-channel readout ASIC called SALT. It will extract and digitise analogue signals from the UT sensors, perform digital signal processing and transmit a serial output data. The SALT is being designed in CMOS 130 nm process and uses a novel architecture comprising of analog front-end and fast (40 MSps) ultra-low power (<0.5 mW) 6-bit ADC in each channel. The prototype ASICs of important functional blocks, like analogue front-end, 6-bit SAR ADC, PLL, and DLL, were designed, fabricated and tested. A prototype of an 8-channel version of the SALT chip, comprising all important functionalities was also designed and fabricated. The architecture and design of the SALT, together with the selected preliminary tests results, are presented.

  19. Prototyping of hybrids and modules for the forward silicon strip tracking detector for the ATLAS Phase-II upgrade

    Science.gov (United States)

    Kuehn, S.; Benítez, V.; Fernández-Tejero, J.; Fleta, C.; Lozano, M.; Ullán, M.; Lacker, H.; Rehnisch, L.; Sperlich, D.; Ariza, D.; Bloch, I.; Díez, S.; Gregor, I.; Keller, J.; Lohwasser, K.; Poley, L.; Prahl, V.; Zakharchuk, N.; Hauser, M.; Jakobs, K.; Mahboubi, K.; Mori, R.; Parzefall, U.; Bernabéu, J.; Lacasta, C.; Marco-Hernandez, R.; Santoyo, D.; Solaz Contell, C.; Soldevila Serrano, U.; Affolder, T.; Greenall, A.; Gallop, B.; Phillips, P. W.

    2017-05-01

    For the High-Luminosity upgrade of the Large Hadron Collider an increased instantaneous luminosity of up to 7.5 ṡ 1034 cm-2 s-1, leading to a total integrated luminosity of up to 3000 fb-1, is foreseen. The current silicon and transition radiation tracking detectors of the ATLAS experiment will be unable to cope with the increased track densities and radiation levels, and will need to be replaced. The new tracking detector will consist entirely of silicon pixel and strip detectors. In this paper, results on the development and tests of prototype components for the new silicon strip detector in the forward regions (end-caps) of the ATLAS detector are presented. Flex-printed readout boards with fast readout chips, referred to as hybrids, and silicon detector modules are investigated. The modules consist of a hybrid glued onto a silicon strip sensor. The channels on both are connected via wire-bonds for readout and powering. Measurements of important performance parameters and a comparison of two possible readout schemes are presented. In addition, the assembly procedure is described and recommendations for further prototyping are derived.

  20. Assembly and Electrical Tests of the First Full-size Forward Module for the ATLAS ITk Strip Detector

    CERN Document Server

    Garcia-Argos, Carlos; The ATLAS collaboration

    2018-01-01

    The ATLAS experiment will replace the existing Inner Detector by an all-silicon detector named the Inner Tracker (ITk) for the High Luminosity LHC upgrades. In the outer region of the Inner Tracker is the strip detector, which consists of a four layer barrel and six discs to each side of the barrel, with silicon-strip modules as basic units. Each module is composed of a sensor and one or more flex circuits that hold the read-out electronics. In the experiment, the modules are mounted on support structures with integrated power and cooling. The modules are designed with geometries that accommodate the central and forward regions, with rectangular sensors in the barrels and wedge shaped sensors in the end-caps. The strips lengths and pitch sizes vary according to the occupancy of the region. In this contribution, we present the construction and results of the electrical tests of the first full-size module of the innermost forward region, named \\textit{Ring 0} in the ATLAS ITk strip detector nomenclature. This m...

  1. Mechanical and Cooling Design Studies for an Integrated Stave Concept for Silicon Strip Detectors for the Super LHC

    CERN Document Server

    Cepeda, M; Gilchriese, M G D; Haber, C; Miller, W K; Miller, W O; Post, R

    2008-01-01

    Design studies for the mechanical and thermal performance of an integrated stave concept for large-area silicon-strip detector support and cooling are described. The fabrication and test of small-scale prototypes are also presented. Finite-element and other calculations have been completed to develop the design concept and to compare with the measurements on prototypes.

  2. Assembly and Electrical Tests of the First Full-size Forward Module for the ATLAS ITk Strip Detector

    CERN Document Server

    Garcia-Argos, Carlos; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment will replace the existing Inner Detector by an all-silicon detector named the Inner Tracker (ITk) for the High Luminosity LHC upgrades. In the outer region of the Inner Tracker is the strip detector, which consists of a four layer barrel and six discs to each side of the barrel, with silicon-strip modules as basic units. Each module is composed of a sensor and one or more flex circuits that hold the read-out electronics. In the experiment, the modules are mounted on support structures with integrated power and cooling. The modules are designed with geometries that accommodate the central and forward regions, with rectangular sensors in the barrels and wedge shaped sensors in the end-caps. The strips lengths and pitch sizes vary according to the occupancy of the region. In this contribution, we present the construction and the results of the electrical tests of the first full-size module of the innermost forward region, named Ring 0 in the ATLAS ITk strip detector nomenclature. This module...

  3. The use of a silicon strip detector dose magnifying glass in stereotactic radiotherapy QA and dosimetry

    International Nuclear Information System (INIS)

    Wong, J. H. D.; Knittel, T.; Downes, S.; Carolan, M.; Lerch, M. L. F.; Petasecca, M.; Perevertaylo, V. L.; Metcalfe, P.; Jackson, M.; Rosenfeld, A. B.

    2011-01-01

    Purpose: Stereotactic radiosurgery/therapy (SRS/SRT) is the use of radiation ablation in place of conventional surgical excision to remove or create fibrous tissue in small target volumes. The target of the SRT/SRS treatment is often located in close proximity to critical organs, hence the requirement of high geometric precision including a tight margin on the planning target volume and a sharp dose fall off. One of the major problems with quality assurance (QA) of SRT/SRS is the availability of suitable detectors with the required spatial resolution. The authors present a novel detector that they refer to as the dose magnifying glass (DMG), which has a high spatial resolution (0.2 mm) and is capable of meeting the stringent requirements of QA and dosimetry in SRS/SRT therapy. Methods: The DMG is an array of 128 phosphor implanted n + strips on a p-type Si wafer. The sensitive area defined by a single n + strip is 20x2000 μm 2 . The Si wafer is 375 μm thick. It is mounted on a 0.12 mm thick Kapton substrate. The authors studied the dose per pulse (dpp) and angular response of the detector in a custom-made SRS phantom. The DMG was used to determine the centers of rotation and positioning errors for the linear accelerator's gantry, couch, and collimator rotations. They also used the DMG to measure the profiles and the total scatter factor (S cp ) of the SRS cones. Comparisons were made with the EBT2 film and standard S cp values. The DMG was also used for dosimetric verification of a typical SRS treatment with various noncoplanar fields and arc treatments when applied to the phantom. Results: The dose per pulse dependency of the DMG was found to be cp agrees very well with the standard data with an average difference of 1.2±1.1%. Comparison of the relative intensity profiles of the DMG and EBT2 measurements for a simulated SRS treatment shows a maximum difference of 2.5%. Conclusions: The DMG was investigated for dose per pulse and angular dependency. Its

  4. Electromagnetic noise studies in a silicon strip detector, used as part of a luminosity monitor at LEP

    International Nuclear Information System (INIS)

    Oedegaard, T.; Tafjord, H.; Buran, T.

    1994-12-01

    As part of the luminosity monitor SAT in the DELPHI experiment at CERN's Large Electron Positron collider, a tracking detector constructed from silicon strip detector elements was installed in front of an electromagnetic calorimeter. The luminosity was measured by counting the number of Bhabha events at the interaction point of the electron and the positron beams. The tracking detector reconstructs tracks from the interaction point and the calorimeter measures the corresponding particles' energies.The SAT Tracker consists of 504 silicon strip detectors. The strips are DC-coupled to CMOS VLSI-chips, baptized Balder. The chip performs amplification, zero-suppression, digitalisation, and multiplexing. The requirements of good space resolution and high efficiency put strong requirements on noise control. A short description of the geometry and the relevant circuit layout is given. The authors describe the efforts made to minimise the electromagnetic noise in the detector and present some numbers of the noise level using various techniques. 11 refs., 5 figs., 4 tabs

  5. Noise characterization of silicon strip detectors-comparison of sensors with and without integrated jfet source-follower.

    CERN Document Server

    Giacomini, Gabriele

    Noise is often the main factor limiting the performance of detector systems. In this work a detailed study of the noise contributions in different types of silicon microstrip sensors is carried on. We investigate three sensors with double-sided readout fabricated by different suppliers for the ALICE experiment at the CERN LHC, in addition to detectors including an integrated JFET Source-Follower as a first signal conditioning stage. The latter have been designed as an attempt at improving the performance when very long strips, obtained by gangling together several sensors, are required. After a description of the strip sensors and of their operation, the “static” characterization measurements performed on them (current and capacitance versus voltage and/or frequency) are illustrated and interpreted. Numerical device simulation has been employed as an aid in interpreting some of the measurement results. The commonly used models for expressing the noise of the detector-amplifier system in terms of its relev...

  6. LHCb: Performance and Radiation Damage Effects in the LHCb Vertex Locator

    CERN Multimedia

    Carvalho Akiba, K

    2014-01-01

    LHCb is a dedicated experiment to study New Physics in the decays of heavy hadrons at the LHC. Heavy hadrons are identified through their flight distance in the Vertex Locator (VELO), hence the detector is critical for both the trigger and offline physics analyses. The VELO is the retractable silicon-strip detector surrounding the LHCb interaction point. It is located only 7 mm from the LHC beam during normal LHC operation, once moved into its closed position for each LHC fill when stable beams are obtained. During insertion the detector is centred around the LHC beam by the online reconstruction of the primary vertex position. Both VELO halves comprise 21 silicon micro-strip modules each. A module is made of two n-on-n 300 $\\mu$m thick half-disc sensors with R-measuring and $\\phi$-measuring micro-strip geometry, mounted on a carbon fibre support paddle. The minimum pitch is approximately 40 $\\mu$m. The detector is also equipped with the only n-on-p sensors operating at the LHC. The detectors are operated in ...

  7. Characterization of a double-sided silicon strip detector autoradiography system

    Energy Technology Data Exchange (ETDEWEB)

    Örbom, Anders, E-mail: anders.orbom@med.lu.se; Ahlstedt, Jonas; Östlund, Karl; Strand, Sven-Erik [Department of Medical Radiation Physics, Lund University, Lund SE-22185 (Sweden); Serén, Tom; Auterinen, Iiro; Kotiluoto, Petri [VTT Technical Research Centre of Finland, Espoo FI-02044 (Finland); Hauge, Håvard [Biomolex AS, Oslo NO-0319 (Norway); Olafsen, Tove; Wu, Anna M.; Dahlbom, Magnus [Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095 (United States)

    2015-02-15

    Purpose: The most commonly used technology currently used for autoradiography is storage phosphor screens, which has many benefits such as a large field of view but lacks particle-counting detection of the time and energy of each detected radionuclide decay. A number of alternative designs, using either solid state or scintillator detectors, have been developed to address these issues. The aim of this study is to characterize the imaging performance of one such instrument, a double-sided silicon strip detector (DSSD) system for digital autoradiography. A novel aspect of this work is that the instrument, in contrast to previous prototype systems using the same detector type, provides the ability for user accessible imaging with higher throughput. Studies were performed to compare its spatial resolution to that of storage phosphor screens and test the implementation of multiradionuclide ex vivo imaging in a mouse preclinical animal study. Methods: Detector background counts were determined by measuring a nonradioactive sample slide for 52 h. Energy spectra and detection efficiency were measured for seven commonly used radionuclides under representative conditions for tissue imaging. System dead time was measured by imaging {sup 18}F samples of at least 5 kBq and studying the changes in count rate over time. A line source of {sup 58}Co was manufactured by irradiating a 10 μm nickel wire with fast neutrons in a research reactor. Samples of this wire were imaged in both the DSSD and storage phosphor screen systems and the full width at half maximum (FWHM) measured for the line profiles. Multiradionuclide imaging was employed in a two animal study to examine the intratumoral distribution of a {sup 125}I-labeled monoclonal antibody and a {sup 131}I-labeled engineered fragment (diabody) injected in the same mouse, both targeting carcinoembryonic antigen. Results: Detector background was 1.81 × 10{sup −6} counts per second per 50 × 50 μm pixel. Energy spectra and

  8. Spectral CT of the extremities with a silicon strip photon counting detector

    Science.gov (United States)

    Sisniega, A.; Zbijewski, W.; Stayman, J. W.; Xu, J.; Taguchi, K.; Siewerdsen, J. H.

    2015-03-01

    Purpose: Photon counting x-ray detectors (PCXDs) are an important emerging technology for spectral imaging and material differentiation with numerous potential applications in diagnostic imaging. We report development of a Si-strip PCXD system originally developed for mammography with potential application to spectral CT of musculoskeletal extremities, including challenges associated with sparse sampling, spectral calibration, and optimization for higher energy x-ray beams. Methods: A bench-top CT system was developed incorporating a Si-strip PCXD, fixed anode x-ray source, and rotational and translational motions to execute complex acquisition trajectories. Trajectories involving rotation and translation combined with iterative reconstruction were investigated, including single and multiple axial scans and longitudinal helical scans. The system was calibrated to provide accurate spectral separation in dual-energy three-material decomposition of soft-tissue, bone, and iodine. Image quality and decomposition accuracy were assessed in experiments using a phantom with pairs of bone and iodine inserts (3, 5, 15 and 20 mm) and an anthropomorphic wrist. Results: The designed trajectories improved the sampling distribution from 56% minimum sampling of voxels to 75%. Use of iterative reconstruction (viz., penalized likelihood with edge preserving regularization) in combination with such trajectories resulted in a very low level of artifacts in images of the wrist. For large bone or iodine inserts (>5 mm diameter), the error in the estimated material concentration was errors of 20-40% were observed and motivate improved methods for spectral calibration and optimization of the edge-preserving regularizer. Conclusion: Use of PCXDs for three-material decomposition in joint imaging proved feasible through a combination of rotation-translation acquisition trajectories and iterative reconstruction with optimized regularization.

  9. Optimising of design parameters of the TESLA vertex detector and search for events with isolated leptons and large missing transverse momentum with the ZEUS-experiment (HERA II)

    Energy Technology Data Exchange (ETDEWEB)

    Adler, V.

    2006-06-15

    In this thesis, a search for events with isolated leptons and large missing transverse momentum at HERA is presented. Data with an integrated luminosity of 40.76 pb{sup -1} of e{sup +}p-collisions collected with the ZEUS detector at a CMS energy of 318 GeV during the HERA II running period in the years 2003 and 2004 were used. Some extensions of the SM contain FCNC processes at tree level, which could lead to a significantly enhanced rate of singly produced t-quarks at HERA (e{sup {+-}}p {yields} e{sup {+-}}tX). The signature of interest originates from the decay t {yields} bW{sup +} with a subsequent leptonic decay of the W-boson (W{sup +} {yields} e{sup +}{nu}{sub e}, {mu}{sup +}{nu}{sub {mu}}, {tau}{sup +}{nu}{sub {tau}}). After the final selection, one event was found in data in the combined e- and {mu}-channels, where 1.27{+-}0.15 were expected from SM predictions. The selection efficiency in these channels was 13.4{sup +1.8}{sub -0.8}% for a t-quark mass of 175 GeV. In combination with independent searches in HERA I data in both, the leptonic and hadronic channel, limits on the FCNC couplings through photon and Z-boson exchange were derived. The NLO limit {kappa}{sub tu{gamma}}<0.160{sup +0.014}{sub -0.012} at 95% CL for a t-quark mass of 175 GeV is the most stringent so far. Together with the most stingent limit on v{sub tuz} of 0.37, an upper cross section limit of {sigma}{sub single} {sub t}<0.186{sup +0.029}{sub -0.012} pb was obtained.Also a limit on the cross section of single W-boson production of {sigma}{sub single} {sub W}<1.54{sup +0.67}{sub -0.41} pb was obtained at 95% CL. In this thesis, also a simulation study to optimise design parameters of a MAPS based vertex detector for a future ILC is presented. The study was based on the TESLA TDR. In order to evaluate the effect of different design options for the vertex detector on the physics performance of the whole detector, the reconstruction of the t-quark mass from the signal process e{sup +}e

  10. Silicon strip tracking detector development and prototyping for the Phase-II upgrade of the ATLAS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, S., E-mail: susanne.kuehn@cern.ch

    2016-07-11

    In about ten years from now, the Phase-II upgrade of the LHC will be carried out. Due to increased luminosity, a severe radiation dose and high particle rates will occur for the experiments. In consequence, several detector components will have to be upgraded. In the ATLAS experiment, the current inner detector will be replaced by an all-silicon tracking detector with the goal of at least delivering the present detector performance also in the harsh Phase-II LHC conditions. This report presents the current planning and results from first prototype measurements of the upgrade silicon strip tracking detector. - Highlights: • Upgrade of current inner detector of the ATLAS experiment foreseen for High-Luminosity-LHC. • Silicon strip tracker for the upgrade has a modular design, single units are built and tested standalone before assembly in larger structures. • The prototyping is well advanced and approaching maturity. • Several integrated objects have been built, e.g. 70 barrel and 40 endcap prototype modules show low noise test results. • Many additional R & D tasks are ongoing and the collaboration is planning for preparing a technical design report before the end of 2016.

  11. High Precision Axial Coordinate Readout for an Axial 3-D PET Detector Module using a Wave Length Shifter Strip Matrix

    CERN Document Server

    Braem, André; Joram, C; Séguinot, Jacques; Weilhammer, P; De Leo, R; Nappi, E; Lustermann, W; Schinzel, D; Johnson, I; Renker, D; Albrecht, S

    2007-01-01

    We describe a novel method to extract the axial coordinate from a matrix of long axially oriented crystals, which is based on wavelength shifting plastic strips. The method allows building compact 3-D axial gamma detector modules for PET scanners with excellent 3-dimensional spatial, timing and energy resolution while keeping the number of readout channels reasonably low. A voxel resolution of about 10 mm3 is expected. We assess the performance of the method in two independent ways, using classical PMTs and G-APDs to read out the LYSO (LSO) scintillation crystals and the wavelength shifting strips. We observe yields in excess of 35 photoelectrons from the strips for a 511 keV gamma and reconstruct the axial coordinate with a precision of about 2.5 mm (FWHM).

  12. Lithium analysis using a double-sided silicon strip detector at LIBAF

    Science.gov (United States)

    De La Rosa, Nathaly; Kristiansson, Per; Nilsson, E. J. Charlotta; Ros, Linus; Elfman, Mikael; Pallon, Jan

    2017-08-01

    Quantification and mapping possibilities of lithium in geological material, by Nuclear Reaction Analysis (NRA), was evaluated at the Lund Ion Beam Analysis Facility (LIBAF). LiF and two Standard Reference Materials, (SRM 610 and SRM 612) were used in the investigation. The main part of the data was obtained at the beam energy 635 keV studying the high Q-value reaction 7Li(p, α)4He, but reaction yield and detection limits were also briefly investigated as a function of the energy. A double-sided silicon strip detector (DSSSD) was used to detect the α -particles emitted in the reaction in the backward direction. The combination of the high Q-value, a reasonably good cross-section and the possibility to use a high beam current have been demonstrated to allow for measurement of concentrations down below 50 ppm. Proton energies below 800 keV were demonstrated to be appropriate energies for extracting lithium in combination with boron analysis.

  13. Diagnostic analysis of silicon strips detector readout in the ATLAS Semi-Conductor Tracker module production

    CERN Document Server

    Ciocio, Alessandra

    2005-01-01

    The ATLAS Semi-Conductor Tracker (SCT) Collaboration is currently in the production phase of fabricating and testing silicon strips modules for the ATLAS detector at the Large Hadron Collider being built at the CERN laboratory in Geneva, Switzerland. A small but relevant percentage of ICs developed a new set of defects after being mounted on hybrids that were not detected in the wafer screening. To minimize IC replacement and outright module failure, analysis methods were developed to study IC problems during the production of SCT modules. These analyses included studying wafer and hybrid data correlations to finely tune the selection of ICs and tests to utilize the ability to adjust front-end parameters of the IC in order to reduce the rejection and replacement rate of fabricated components. This paper will discuss a few examples of the problems encountered during the production of SCT hybrids and modules in the area of ICs performance, and will demonstrate the value of the flexibility built into the ABCD3T ...

  14. Design and performance of the ABCD3TA ASIC for readout of silicon strip detectors in the ATLAS semiconductor tracker

    Czech Academy of Sciences Publication Activity Database

    Campabadal, F.; Fleta, C.; Key, M.; Böhm, Jan; Mikeštíková, Marcela; Šťastný, Jan

    2005-01-01

    Roč. 552, - (2005), s. 292-328 ISSN 0168-9002 R&D Projects: GA MŠk 1P04LA212 Institutional research plan: CEZ:AV0Z10100502 Keywords : front-end electronics * binary readout * silicon strip detectors * application specific integrated circuits * quality assurance Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.224, year: 2005

  15. Parallel Configuration For Fast Superconducting Strip Line Detectors With Very Large Area In Time Of Flight Mass Spectrometry

    International Nuclear Information System (INIS)

    Casaburi, A.; Zen, N.; Suzuki, K.; Ohkubo, M.; Ejrnaes, M.; Cristiano, R.; Pagano, S.

    2009-01-01

    We realized a very fast and large Superconducting Strip Line Detector based on a parallel configuration of nanowires. The detector with size 200x200 μm 2 recorded a sub-nanosecond pulse width of 700 ps in FWHM (400 ps rise time and 530 ps relaxation time) for lysozyme monomers/multimers molecules accelerated at 175 keV in a Time of Flight Mass Spectrometer. This record is the best in the class of superconducting detectors and comparable with the fastest NbN superconducting single photon detector of 10x10 μm 2 . We succeeded in acquiring mass spectra as the first step for a scale-up to ∼mm pixel size for high throughput MS analysis, while keeping a fast response.

  16. Gamma Large Area Silicon Telescope (GLAST): Applying silicon strip detector technology to the detection of gamma rays in space

    International Nuclear Information System (INIS)

    Atwood, W.B.

    1993-06-01

    The recent discoveries and excitement generated by space satellite experiment EGRET (presently operating on Compton Gamma Ray Observatory -- CGRO) have prompted an investigation into modern detector technologies for the next generation space based gamma ray telescopes. The GLAST proposal is based on silicon strip detectors as the open-quotes technology of choiceclose quotes for space application: no consumables, no gas volume, robust (versus fragile), long lived, and self triggerable. The GLAST detector basically has two components: a tracking module preceding a calorimeter. The tracking module has planes of crossed strip (x,y) 300 μm pitch silicon detectors coupled to a thin radiator to measure the coordinates of converted electron-positron pairs. The gap between the layers (∼5 cm) provides a lever arm for track fitting resulting in an angular resolution of <0.1 degree at high energy. The status of this R ampersand D effort is discussed including details on triggering the instrument, the organization of the detector electronics and readout, and work on computer simulations to model this instrument

  17. Study of the physical processes involved in the operating mode of the micro-strips gas detector Micromegas

    International Nuclear Information System (INIS)

    Barouch, G.

    2001-04-01

    Micromegas is a micro-strip gaseous detector invented in 1996. It consists of two volumes of gas separated by a micro-mesh. The first volume of gas, 3 mm thick, is used to liberate ionization electrons from the incident charged particle. In the second volume, only 100 μm thick, an avalanche phenomenon amplifies the electrons produced in the first volume. Strips printed on an insulating substrate collect the electrons from the avalanche. The geometrical configuration of Micromegas showed many advantages. The short anode-cathode distance combined with a high granularity provide high rate capabilities due to a fast collection of ions produced during the avalanche development. Moreover, the possibility to localize the avalanche with strips printed about every hundreds of micrometers allows to measure the position of the incident particle with a good resolution. In this work, experimental tests of Micromegas are presented along with detailed Monte Carlo simulations used to understand and optimize the detector's performances. The prototypes were tested several times at the PS accelerator at CERN. The analysis of the date showed a stable and efficient behavior of Micromegas combined with an excellent space resolution. In fact, spatial resolutions of less than 15 μm were obtained. In parallel with the in-beam tests, several simulations have been developed in order to gain a better understanding of the detector's response. (author)

  18. NaI(Tl) scintillator detectors stripping procedure for air kerma measurements of diagnostic X-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, L.S.R. [Centro Tecnológico do Exército, CTEx (Brazilian Army Technological Center), Av. das Américas n° 28705, 23085-470 Rio de Janeiro (Brazil); Instituto de Radioprotecão e Dosimetria, CNEN/IRD (Institute for Radioprotection and Dosimetry, CNEN/IRD), Av. Salvador Allende s/no, P.O. Box 37750, 22783-127 Barra da Tijuca, Rio de Janeiro (Brazil); Conti, C.C., E-mail: ccconti@ird.gov.br [Instituto de Radioprotecão e Dosimetria, CNEN/IRD (Institute for Radioprotection and Dosimetry, CNEN/IRD), Av. Salvador Allende s/no, P.O. Box 37750, 22783-127 Barra da Tijuca, Rio de Janeiro (Brazil); Amorim, A.S.; Balthar, M.C.V. [Centro Tecnológico do Exército, CTEx (Brazilian Army Technological Center), Av. das Américas n° 28705, 23085-470 Rio de Janeiro (Brazil)

    2013-03-21

    Air kerma is an essential quantity for the calibration of national standards used in diagnostic radiology and the measurement of operating parameters used in radiation protection. Its measurement within the appropriate limits of accuracy, uncertainty and reproducibility is important for the characterization and control of the radiation field for the dosimetry of the patients submitted to diagnostic radiology and, also, for the assessment of the system which produces radiological images. Only the incident beam must be considered for the calculation of the air kerma. Therefore, for energy spectrum, counts apart the total energy deposition in the detector must be subtracted. It is necessary to establish a procedure to sort out the different contributions to the original spectrum and remove the counts representing scattered photons in the detector’s materials, partial energy deposition due to the interactions in the detector active volume and, also, the escape peaks contributions. The main goal of this work is to present spectrum stripping procedure, using the MCNP Monte Carlo computer code, for NaI(Tl) scintillation detectors to calculate the air kerma due to an X-ray beam usually used in medical radiology. The comparison between the spectrum before stripping procedure against the reference value showed a discrepancy of more than 63%, while the comparison with the same spectrum after the stripping procedure showed a discrepancy of less than 0.2%.

  19. T-CAD analysis of electric fields in n-in-p silicon strip detectors in dependence on the p-stop pattern and doping concentration

    CERN Document Server

    Printz, Martin

    2015-01-01

    However, n-in-p detectors necessarily need an isolation layer of the n+ strips due to an accumula- tion layer of electrons caused by positive charge in the SiO$_2$ at the sensor surface. An additional implantation of acceptors like boron between the n+ strips cuts the co...

  20. Characterization of a dose verification system dedicated to radiotherapy treatments based on a silicon detector multi-strips; Caracterizacion de un sistema de verificacion de dosis dedicado a tratamientos de radioterapia basado en un detector de silicio de multi-tiras

    Energy Technology Data Exchange (ETDEWEB)

    Bocca, A.; Cortes Giraldo, M. A.; Gallardo, M. I.; Espino, J. M.; Aranas, R.; Abou Haidar, Z.; Alvarez, M. A. G.; Quesada, J. M.; Vega-Leal, A. P.; Perez Neto, F. J.

    2011-07-01

    In this paper, we present the characterization of a silicon detector multi-strips (SSSSD: Single Sided Silicon Strip Detector), developed by the company Micron Semiconductors Ltd. for use as a verification system for radiotherapy treatments.

  1. Hadron-therapy beam monitoring: Towards a new generation of ultra-thin p-type silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bouterfa, M.; Aouadi, K. [Inst. of Information and Communication Technologies, Electronics and Applied Mathematics ICTEAM, Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium); Bertrand, D. [Particle Therapy Dept., Ion Beam Application IBA, 1348 Louvain-la-Neuve (Belgium); Olbrechts, B.; Delamare, R. [Inst. of Information and Communication Technologies, Electronics and Applied Mathematics ICTEAM, Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium); Raskin, J. P.; Gil, E. C. [Institut de Recherche en Mathematique et Physique IRMP, Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium); Flandre, D. [Inst. of Information and Communication Technologies, Electronics and Applied Mathematics ICTEAM, Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium)

    2011-07-01

    Hadron-therapy has gained increasing interest for cancer treatment especially within the last decade. System commissioning and quality assurance procedures impose to monitor the particle beam using 2D dose measurements. Nowadays, several monitoring systems exist for hadron-therapy but all show a relatively high influence on the beam properties: indeed, most devices consist of several layers of materials that degrade the beam through scattering and energy losses. For precise treatment purposes, ultra-thin silicon strip detectors are investigated in order to reduce this beam scattering. We assess the beam size increase provoked by the Multiple Coulomb Scattering when passing through Si, to derive a target thickness. Monte-Carlo based simulations show a characteristic scattering opening angle lower than 1 mrad for thicknesses below 20 {mu}m. We then evaluated the fabrication process feasibility. We successfully thinned down silicon wafers to thicknesses lower than 10 {mu}m over areas of several cm{sup 2}. Strip detectors are presently being processed and they will tentatively be thinned down to 20 {mu}m. Moreover, two-dimensional TCAD simulations were carried out to investigate the beam detector performances on p-type Si substrates. Additionally, thick and thin substrates have been compared thanks to electrical simulations. Reducing the pitch between the strips increases breakdown voltage, whereas leakage current is quite insensitive to strips geometrical configuration. The samples are to be characterized as soon as possible in one of the IBA hadron-therapy facilities. For hadron-therapy, this would represent a considerable step forward in terms of treatment precision. (authors)

  2. Hadron-therapy beam monitoring: Towards a new generation of ultra-thin p-type silicon strip detectors

    International Nuclear Information System (INIS)

    Bouterfa, M.; Aouadi, K.; Bertrand, D.; Olbrechts, B.; Delamare, R.; Raskin, J. P.; Gil, E. C.; Flandre, D.

    2011-01-01

    Hadron-therapy has gained increasing interest for cancer treatment especially within the last decade. System commissioning and quality assurance procedures impose to monitor the particle beam using 2D dose measurements. Nowadays, several monitoring systems exist for hadron-therapy but all show a relatively high influence on the beam properties: indeed, most devices consist of several layers of materials that degrade the beam through scattering and energy losses. For precise treatment purposes, ultra-thin silicon strip detectors are investigated in order to reduce this beam scattering. We assess the beam size increase provoked by the Multiple Coulomb Scattering when passing through Si, to derive a target thickness. Monte-Carlo based simulations show a characteristic scattering opening angle lower than 1 mrad for thicknesses below 20 μm. We then evaluated the fabrication process feasibility. We successfully thinned down silicon wafers to thicknesses lower than 10 μm over areas of several cm 2 . Strip detectors are presently being processed and they will tentatively be thinned down to 20 μm. Moreover, two-dimensional TCAD simulations were carried out to investigate the beam detector performances on p-type Si substrates. Additionally, thick and thin substrates have been compared thanks to electrical simulations. Reducing the pitch between the strips increases breakdown voltage, whereas leakage current is quite insensitive to strips geometrical configuration. The samples are to be characterized as soon as possible in one of the IBA hadron-therapy facilities. For hadron-therapy, this would represent a considerable step forward in terms of treatment precision. (authors)

  3. Application of a powder diffractometer equipped with a strip detector and Johansson monochromator to phase analysis and structure refinement

    Science.gov (United States)

    Paszkowicz, Wojciech

    2005-10-01

    During the past two decades, 1D and 2D semiconductor photon-counting detectors found applications, e.g., in detection of elementary particles and in medicine. More recent is their use for the X-ray diffraction and spectroscopy, where they become highly competitive with other detector types. Practical applications of such 1D detectors, built from up to about a hundred (at laboratory diffractometers) to several hundred (at a synchrotron beamline) of strips of size of the order 0.1×10 mm, to diffraction purposes started at the turn of the century. In the present study, selected properties of a laboratory X-ray powder diffractometer equipped with a linear photon-counting detector and a primary-beam Johansson monochromator are described. Aberrations characteristic to Bragg-Brentano instruments equipped with linear detectors are experimentally shown to be weak for 2.1° angular range covered by the detector used in this study. The counting statistics provided by this setting is shown to largely outperform that obtained with the settings equipped with point detectors. Consequently, diffraction peaks are detectable down to the level of 0.1% intensity, permitting for identification of minor impurity phases. Using illustrative examples, it is demonstrated that, with the described instrument, phase analysis of bulk polycrystals and thin polycrystalline layers is facilitated, and that structure refinement of collected data can be successfully performed.

  4. Characterisation of edgeless technologies for pixellated and strip silicon detectors with a micro-focused X-ray beam

    Science.gov (United States)

    Bates, R.; Blue, A.; Christophersen, M.; Eklund, L.; Ely, S.; Fadeyev, V.; Gimenez, E.; Kachkanov, V.; Kalliopuska, J.; Macchiolo, A.; Maneuski, D.; Phlips, B. F.; Sadrozinski, H. F.-W.; Stewart, G.; Tartoni, N.; Zain, R. M.

    2013-01-01

    Reduced edge or ``edgeless'' detector design offers seamless tileability of sensors for a wide range of applications from particle physics to synchrotron and free election laser (FEL) facilities and medical imaging. Combined with through-silicon-via (TSV) technology, this would allow reduced material trackers for particle physics and an increase in the active area for synchrotron and FEL pixel detector systems. In order to quantify the performance of different edgeless fabrication methods, 2 edgeless detectors were characterized at the Diamond Light Source using an 11 μm FWHM 15 keV micro-focused X-ray beam. The devices under test were: a 150 μm thick silicon active edge pixel sensor fabricated at VTT and bump-bonded to a Medipix2 ROIC; and a 300 μm thick silicon strip sensor fabricated at CIS with edge reduction performed by SCIPP and the NRL and wire bonded to an ALiBaVa readout system. Sub-pixel resolution of the 55 μm active edge pixels was achieved. Further scans showed no drop in charge collection recorded between the centre and edge pixels, with a maximum deviation of 5% in charge collection between scanned edge pixels. Scans across the cleaved and standard guard ring edges of the strip detector also show no reduction in charge collection. These results indicate techniques such as the scribe, cleave and passivate (SCP) and active edge processes offer real potential for reduced edge, tiled sensors for imaging detection applications.

  5. Testbeam Results from Pre and Post Irradiated Modules for the Upgrade of the ATLAS Strip Tracking Detector

    CERN Document Server

    Blue, Andrew; The ATLAS collaboration

    2016-01-01

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential of the LHC through a sizeable increase in the luminosity, reaching 1x1035cm-2s-1 after 10 years of operation. A consequence of this increased luminosity is the expected radiation damage at a integrated luminosity of 3000fb-1, requiring the tracking detectors to withstand hadron fluencies to over 1x1016 1 MeV neutron equivalent per cm2. With the addition of increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk), which will consist of both strip and pixelated silicon detectors. The silicon strip tracker exploits the concept of modularity. Fast readout electronics, deploying 130nm CMOS front-end electronics is glued on top of a silicon sensor. These so-called modules are glued on carbon structures and will span about 200m^2 of active area. A broad R&D program is ongoing to develop and prototype many detector components. The modules ...

  6. Performance of a single photon counting microstrip detector for strip pitches down to 10 μm

    Science.gov (United States)

    Bergamaschi, A.; Broennimann, Ch.; Dinapoli, R.; Eikenberry, E.; Gozzo, F.; Henrich, B.; Kobas, M.; Kraft, P.; Patterson, B.; Schmitt, B.

    2008-06-01

    The MYTHEN detector is a one-dimensional microstrip detector with single photon counting readout optimized for time resolved powder diffraction experiments at the Swiss Light Source (SLS). The system has been successfully tested for many different synchrotron radiation applications including phase contrast and tomographic imaging, small angle scattering, diffraction and time resolved pump and probe experiments for X-ray energies down to 5 keV and counting rate up to 3 MHz. The frontend electronics is designed in order to be coupled to 50 μm pitch microstrip sensors but some interest in enhancing the spatial resolution is arising for imaging and powder diffraction experiments. A test structure with strip pitches in the range 10-50 μm has been tested and the gain and noise on the readout electronics have been measured for the different strip pitches, observing no large difference down to 25 μm. Moreover, the effect of the charge sharing between neighboring strips on the spatial resolution has been quantified by measuring the Point Spread Function (PSF) of the system for the different pitches.

  7. Real-time alignment of the LHCb vertex detector and observation of charmless baryonic decays $B^0_{(s)} \\rightarrow p \\overline{p} h^+ h^{\\prime-}$

    CERN Document Server

    Dujany, Giulio

    This thesis presents measurements of the branching fractions of the charmless baryonic decays $B^0_{(s)}\\to p\\overline{p} h^+h^{\\prime-}$ , where $h^{(\\prime)}$ denotes a kaon or a pion. Three new modes ($B^0\\to p\\overline{p} \\pi^+\\pi^-$, $B^0_{s}\\to p\\overline{p} K^+K^-$ and $B^0_{s}\\to p\\overline{p} K^{\\pm}\\pi^{\\mp}$) are observed for the first time and evidence is found for a fourth ($B^0\\to p\\overline{p} K^+K^-$). The inclusive branching fraction of $B^0\\to p\\overline{p} K^{\\pm}\\pi^{\\mp}$ is measured for the first time and the upper limit is set on the branching fraction of the $B^0_{s}\\to p\\overline{p} \\pi^+\\pi^-$ decay. This represents the first observation of four-body charmless baryonic decays of a $B_s$ meson and one of the first observations of baryonic $B^0_{s}$ decays. The implementation of the real-time alignment of LHCb's vertex detector is also described. The novel real-time alignment and calibration strategy adopted by LHCb is essential to allow more stable data taking conditions and an optima...

  8. Automatised Data Quality Monitoring of the LHCb Vertex Locator

    CERN Multimedia

    Szumlak, Tomasz

    2016-01-01

    The LHCb Vertex Locator (VELO) is a silicon strip semiconductor detector operating at just 8mm distance to the LHC beams. Its 172,000 strips are read at a frequency of 1 MHz and processed by off-detector FPGAs followed by a PC cluster that reduces the event rate to about 10 kHz. During the second run of the LHC, which lasts from 2015 until 2018, the detector performance will undergo continued change due to radiation damage effects. This necessitates a detailed monitoring of the data quality to avoid adverse effects on the physics analysis performance. The VELO monitoring infrastructure has been re-designed compared to the first run of the LHC when it was based on manual checks. The new system is based around an automatic analysis framework, which monitors the performance of new data as well as long-term trends and flags issues whenever they arise. An unbiased subset of the detector data are processed about once per hour by monitoring algorithms. The new analysis framework then analyses the plots that are prod...

  9. Characterisation of strip silicon detectors for the ATLAS Phase-II Upgrade with a micro-focused X-ray beam

    Science.gov (United States)

    Poley, L.; Blue, A.; Bates, R.; Bloch, I.; Díez, S.; Fernandez-Tejero, J.; Fleta, C.; Gallop, B.; Greenall, A.; Gregor, I.-M.; Hara, K.; Ikegami, Y.; Lacasta, C.; Lohwasser, K.; Maneuski, D.; Nagorski, S.; Pape, I.; Phillips, P. W.; Sperlich, D.; Sawhney, K.; Soldevila, U.; Ullan, M.; Unno, Y.; Warren, M.

    2016-07-01

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential through a sizable increase in the luminosity up to 6·1034 cm-2s-1. A consequence of this increased luminosity is the expected radiation damage at 3000 fb-1 after ten years of operation, requiring the tracking detectors to withstand fluences to over 1·1016 1 MeV neq/cm2. In order to cope with the consequent increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk). Two proposed detectors for the ATLAS strip tracker region of the ITk were characterized at the Diamond Light Source with a 3 μm FWHM 15 keV micro focused X-ray beam. The devices under test were a 320 μm thick silicon stereo (Barrel) ATLAS12 strip mini sensor wire bonded to a 130 nm CMOS binary readout chip (ABC130) and a 320 μm thick full size radial (end-cap) strip sensor - utilizing bi-metal readout layers - wire bonded to 250 nm CMOS binary readout chips (ABCN-25). A resolution better than the inter strip pitch of the 74.5 μm strips was achieved for both detectors. The effect of the p-stop diffusion layers between strips was investigated in detail for the wire bond pad regions. Inter strip charge collection measurements indicate that the effective width of the strip on the silicon sensors is determined by p-stop regions between the strips rather than the strip pitch.

  10. Commissioning of the scatter component of a Compton camera consisting of a stack of Si strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Liprandi, S.; Marinsek, T.; Bortfeldt, J.; Lang, C.; Lutter, R.; Dedes, G.; Parodi, K.; Thirolf, P.G. [LMU Munich, Garching (Germany); Aldawood, S. [LMU Munich, Garching (Germany); King Saud University, Riyadh (Saudi Arabia); Maier, L.; Gernhaeuser, R. [TU Munich, Garching (Germany); Kolff, H. van der [LMU Munich, Garching (Germany); TU Delft (Netherlands); Castelhano, I. [LMU Munich, Garching (Germany); University of Lisbon, Lisbon (Portugal); Schaart, D.R. [TU Delft (Netherlands)

    2015-07-01

    At LMU Munich in Garching a Compton camera is presently being developed aiming at the range verification of proton (or ion) beams for hadron therapy via imaging of prompt γ rays from nuclear reactions in the tissue. The poster presentation focuses on the characterization of the scatter component of the Compton camera, consisting of a stack of six double-sided Si strip detectors (50 x 50 mm{sup 2}, 0.5 mm thick, 128 strips/side). The overall 1536 electronics channels are processed by a readout system based on the GASSIPLEX ASIC chip, feeding into a VME-based data acquisition system. The status of the offline and online characterization studies is presented.

  11. Strip defect recognition in electrical tests of silicon microstrip sensors

    Energy Technology Data Exchange (ETDEWEB)

    Valentan, Manfred, E-mail: valentan@mpp.mpg.de

    2017-02-11

    This contribution describes the measurement procedure and data analysis of AC-coupled double-sided silicon microstrip sensors with polysilicon resistor biasing. The most thorough test of a strip sensor is an electrical measurement of all strips of the sensor; the measured observables include e.g. the strip's current and the coupling capacitance. These measurements are performed to find defective strips, e.g. broken capacitors (pinholes) or implant shorts between two adjacent strips. When a strip has a defect, its observables will show a deviation from the “typical value”. To recognize and quantify certain defects, it is necessary to determine these typical values, i.e. the values the observables would have without the defect. As a novel approach, local least-median-of-squares linear fits are applied to determine these “would-be” values of the observables. A least-median-of-squares fit is robust against outliers, i.e. it ignores the observable values of defective strips. Knowing the typical values allows to recognize, distinguish and quantify a whole range of strip defects. This contribution explains how the various defects appear in the data and in which order the defects can be recognized. The method has been used to find strip defects on 30 double-sided trapezoidal microstrip sensors for the Belle II Silicon Vertex Detector, which have been measured at the Institute of High Energy Physics, Vienna (Austria).

  12. Design and performance of the ABCD chip for the binary readout of silicon strip detectors in the ATLAS semiconductor tracker

    CERN Document Server

    Dabrowski, W; Buttar, C M; Cindro, V; Clarks, A G; Dawson, I; Dorfan, D; Dubbs, T; Falconer, N; French, M; Greenall, A; Grillo, A A; Happer, R; Jarron, Pierre; Kaplon, J; Kudlaty, J; Kramberger, G; Lacasta, C; La Marra, D; Macina, Daniela; Mandic, I; Mikuz, M; Meddeler, G; Milgrome, O; Niggli, H; Phillips, P W; Roe, S; Smith, A; Spieler, H; Spencer, E; Szczygiel, R; Weilhammer, Peter; Wolter, M; Zsenei, A

    2000-01-01

    The ABCD design is a single chip implementation of the binary readout architecture for silicon strip detectors in the ATLAS semiconductor tracker. The prototype chip has been manufactured successfully in the DMILL process. In the paper we present the design of the chip and the measurement results. The basic analogue performance of the ABCD design has been evaluated using a prototype SCT module equipped with the ABCD chips. The digital performance has been evaluated using a general purpose IC tester. The measurements confirmed that all blocks of the ABCD design are fully functional and the chips meet all basic requirements of the SCT. (7 refs).

  13. Development of a free-running readout ASIC for the PANDA micro vertex detector and investigation of the performance to reconstruct anti pp → anti Ξ+Ξ-(1690)

    International Nuclear Information System (INIS)

    Zambanini, Andre

    2015-01-01

    The PANDA experiment is a multi-purpose particle detector, investigating hadron physics topics in the strange and charm quark mass regime. PANDA will measure antiproton-proton annihilation reactions at the FAIR complex, which is currently under construction. Caused by the initial reaction, signal and background events are similar to each other. Hence, self-triggering readout electronics is required throughout all sub-detectors. The innermost sub-detector, the Micro Vertex Detector, is based on silicon sensors with pixel and microstrip segmentation. This thesis describes the development of a readout solution (PASTA) for the microstrip sensors and the preparations for a characterization setup to perform laboratory measurements with this readout prototype. Furthermore, an exploratory study on the reconstructability of the reaction anti pp→ anti Ξ + Ξ - (1690) with PANDA's software framework is presented.

  14. Development of a free-running readout ASIC for the PANDA micro vertex detector and investigation of the performance to reconstruct anti pp → anti Ξ{sup +}Ξ{sup -}(1690)

    Energy Technology Data Exchange (ETDEWEB)

    Zambanini, Andre

    2015-12-08

    The PANDA experiment is a multi-purpose particle detector, investigating hadron physics topics in the strange and charm quark mass regime. PANDA will measure antiproton-proton annihilation reactions at the FAIR complex, which is currently under construction. Caused by the initial reaction, signal and background events are similar to each other. Hence, self-triggering readout electronics is required throughout all sub-detectors. The innermost sub-detector, the Micro Vertex Detector, is based on silicon sensors with pixel and microstrip segmentation. This thesis describes the development of a readout solution (PASTA) for the microstrip sensors and the preparations for a characterization setup to perform laboratory measurements with this readout prototype. Furthermore, an exploratory study on the reconstructability of the reaction anti pp→ anti Ξ{sup +}Ξ{sup -}(1690) with PANDA's software framework is presented.

  15. First-year experience with the Ba Bar silicon vertex tracker

    CERN Document Server

    Bozzi, C; Cotta-Ramusino, A; Dittongo, S; Folegani, M; Piemontese, L; Abbott, B K; Breon, A B; Clark, A R; Dow, S; Fan, Q; Goozen, F; Hernikl, C; Karcher, A; Kerth, L T; Kipnis, I; Kluth, S; Lynch, G; Levi, M; Luft, P; Luo, L; Nyman, M A; Pedrali-Noy, M; Roe, N A; Zizka, G; Roberts, D; Schieck, J; Barni, D; Brenna, E; Defendi, I; Forti, A C; Giugni, D; Lanni, F; Palombo, F; Vaniev, V; Leona, A; Mandelli, E; Manfredi, P F; Perazzo, A; Re, V; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bosi, F; Calderini, G; Carpinelli, M; Forti, F; Gagliardi, D; Giorgi, M A; Lusiani, A; Mammini, P; Morganti, M; Morsani, F; Neri, N; Paoloni, E; Profeti, A; Rama, M; Rampino, G; Rizzo, G; Sandrelli, F; Simi, G; Triggiani, G; Tritto, S; Vitale, R; Walsh, J; Burchat, Patricia R; Cheng, C; Kirkby, D; Meyer, T; Roat, C; Bóna, M; Bianchi, F; Daudo, F; Di Girolamo, B; Gamba, D; Giraudo, G; Grosso, P; Romero, A; Smol, A; Trapani, P; Zanin, D; Bosisio, L; Della Ricca, G; Rashevskaia, I; Lanceri, L; Pompili, A; Poropat, P; Prest, M; Rastelli, C; Vallazza, E; Vuagnin, G; Hast, C; Potter, E P; Sharma, V; Burke, S; Callahan, D; Campagnari, C; Dahmes, B; Eppich, A; Hale, D; Hall, K; Hart, P; Kuznetsova, N; Kyre, S; Levy, S; Long, O; May, J; Richman, J; Verkerke, W; Witherell, M; Beringer, J; Eisner, A M; Frey, A; Grillo, A; Grothe, M; Johnson, R; Kröger, W; Lockman, W; Pulliam, T; Rowe, W; Schmitz, R; Seiden, A; Spencer, E; Turri, M; Walkowiak, W; Wilder, M; Charles, E; Elmer, P; Nielsen, J; Orejudos, W; Scott, I; Zobernig, H

    2001-01-01

    Within its first year of operation, the BaBar Silicon Vertex Tracker (SVT) has accomplished its primary design goal, measuring the z vertex coordinate with sufficient accuracy as to allow the measurement of the time-dependent CP asymmetry in the neutral B-meson system. The SVT consists of five layers of double-sided, AC-coupled silicon-strip detectors of 300 mu m thickness with a readout strip pitch of 50-210 mu m and a stereo angle of 90 deg. between the strips on the two sides. Detector alignment and performance with respect to spatial resolution and efficiency in the reconstruction of single hits are discussed. In the day-to-day operation of the SVT, radiation damage and protection issues were of primary concern. The SVT is equipped with a dedicated system (SVTRAD) for radiation monitoring and protection, using reverse-biased photodiodes. The evolution of the SVTRAD thresholds on the tolerated radiation level is described. Results on the first-year radiation exposure as measured with the SVTRAD system and ...

  16. Assembly procedure for the silicon pixel ladder for PHENIX silicon vertex tracker

    International Nuclear Information System (INIS)

    Onuki, Y.; Akiba, Y.; En'yo, H.; Fujiwara, K.; Haki, Y.; Hashimoto, K.; Ichimiya, R.; Kasai, M.; Kawashima, M.; Kurita, K.; Kurosawa, M.; Mannel, E.J.; Nakano, K.; Pak, R.; Sekimoto, M.; Sondheim, W.E.; Taketani, A.; Togawa, M.; Yamamoto, Y.

    2009-01-01

    The silicon vertex tracker (VTX) will be installed in the summer of 2010 to enhance the physics capabilities of the Pioneering High Energy Nuclear Interaction eXperiment (PHENIX) experiment at Brookhaven National Laboratory. The VTX consists of two types of silicon detectors: a pixel detector and a strip detector. The pixel detector consists of 30 pixel ladders placed on the two inner cylindrical layers of the VTX. The ladders are required to be assembled with high precision, however, they should be assembled in both cost and time efficient manner. We have developed an assembly bench for the ladder with several assembly fixtures and a quality assurance (Q/A) system using a 3D measurement machine. We have also developed an assembly procedure for the ladder, including a method for dispensing adhesive uniformly and encapsulation of bonding wires. The developed procedures were adopted in the assembly of the first pixel ladder and satisfy the requirements.

  17. Operational experience of ATLAS SCT and Pixel Detector

    CERN Document Server

    Kocian, Martin; The ATLAS collaboration

    2017-01-01

    The ATLAS Inner Detector based on silicon sensors is consisting of a strip detector (SCT) and a pixel detector. It is the crucial component for vertexing and tracking in the ATLAS experiment. With the excellent performance of the LHC well beyond the original specification the silicon tracking detectors are facing substantial challenges in terms of data acquisition, radiation damage to the sensors, and SEUs in the readout ASICs. The approaches on how the detector systems cope with the demands of high luminosity operation while maintaining excellent performance through hardware upgrades, software and firmware algorithms, and operational settings, are presented.

  18. Development of AC-coupled, poly-silicon biased, p-on-n silicon strip detectors in India for HEP experiments

    Science.gov (United States)

    Jain, Geetika; Dalal, Ranjeet; Bhardwaj, Ashutosh; Ranjan, Kirti; Dierlamm, Alexander; Hartmann, Frank; Eber, Robert; Demarteau, Marcel

    2018-02-01

    P-on-n silicon strip sensors having multiple guard-ring structures have been developed for High Energy Physics applications. The study constitutes the optimization of the sensor design, and fabrication of AC-coupled, poly-silicon biased sensors of strip width of 30 μm and strip pitch of 55 μm. The silicon wafers used for the fabrication are of 4 inch n-type, having an average resistivity of 2-5 k Ω cm, with a thickness of 300 μm. The electrical characterization of these detectors comprises of: (a) global measurements of total leakage current, and backplane capacitance; (b) strip and voltage scans of strip leakage current, poly-silicon resistance, interstrip capacitance, interstrip resistance, coupling capacitance, and dielectric current; and (c) charge collection measurements using ALiBaVa setup. The results of the same are reported here.

  19. Radiation tolerance of oxygenated n-strip read-out detectors

    CERN Document Server

    Allport, P P; Greenall, A

    2003-01-01

    Following earlier work on 'oxygenated' detectors in terms of charge collection efficiencies after proton irradiation, full-size detectors for the LHC have been processed with n-side read-out on oxygen enhanced n-type silicon substrates. Two hundred-micron-thick detectors have been inhomogeneously irradiated up to doses of 7 multiplied by 10**1**4p/cm**2 using 24 GeV protons from the CERN PS. Results are presented on the charge collection efficiencies as a function of operating voltage for regions of the detectors irradiated to different doses, using LHC speed analogue read-out electronics. The measurements confirm the expectations which led to our original proposal of such detectors which are now being envisaged for the silicon-based detector systems at the LHC designed to withstand the greatest doses. The possibilities for survival at an upgraded luminosity LHC (Super-LHC) are also briefly discussed.

  20. ALICE silicon strip module

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    This small silicon detector strip will be inserted into the inner tracking system (ITS) on the ALICE detector at CERN. This detector relies on state-of-the-art particle tracking techniques. These double-sided silicon strip modules have been designed to be as lightweight and delicate as possible as the ITS will eventually contain five square metres of these devices.

  1. Results from the first beam-induced reconstructed tracks in the LHCb vertex locator

    CERN Document Server

    Rodrigues, E

    2010-01-01

    LHCb is a dedicated experiment at the LHC to study CP violation and rare $b$ decays. The vertex locator (VELO) is a silicon strip detector designed to measure precisely the production and decay vertices of $B$-mesons. The detector is positioned at 8 mm of the LHC beams and will operate in an extremely harsh radiation environment. The VELO consists of two retractable detector halves with 21 silicon micro-strip tracking modules each. A module is composed of two n$^+$-on-n 300 $\\mu$m thick half disc sensors with $R$ and $\\Phi$ micro-strip geometry. The detectors are operated in vacuum and a bi-phase CO$_2$ cooling system is used. The full system has been operated since June 2008 and its commissioning experience will be reported. During the LHC synchronization tests in August and September 2008, and June 2009 the LHCb detectors measured secondary particles produced by the interaction of the LHC primary beam on a beam dump. About 50,000 tracks were reconstructed in the VELO and they were used to derive the relativ...

  2. Use of a track and vertex processor in a fixed-target charm experiment

    International Nuclear Information System (INIS)

    Schub, M.H.; Carey, T.A.; Hsiung, Y.B.; Kaplan, D.M.; Lee, C.; Miller, G.; Sa, J.; Teng, P.K.

    1996-01-01

    We have constructed and operated a high-speed parallel-pipelined track and vertex processor and used it to trigger data acquisition in a high-rate charm and beauty experiment at Fermilab. The processor uses information from hodoscopes and wire chambers to reconstruct tracks in the bend view of a magnetic spectrometer, and uses these tracks to find the corresponding tracks in a set of silicon-strip detectors. The processor then forms vertices and triggers the experiment if at least one vertex is downstream of the target. Under typical charm running conditions, with an interaction rate of ∼5 MHz, the processor rejects 80-90% of lower-level triggers while maintaining efficiency of ∼70% for two-prong D-meson decays. (orig.)

  3. Analysis and comparison of the breakdown performance of semi- insulator and dielectric passivated Si strip detectors

    CERN Document Server

    Ranjan, Kirti; Chatterji, S; Srivastava-Ajay, K; Shivpuri, R K

    2002-01-01

    The harsh radiation environment in future high-energy physics (HEP) experiments like LHC provides a challenging task to the performance of Si microstrip detectors. Normal operating condition for silicon detectors in HEP experiments are in most cases not as favourable as for experiments in nuclear physics. In HEP experiments the detector may be exposed to moisture and other adverse atmospheric environment. It is therefore utmost important to protect the sensitive surfaces against such poisonous effects. These instabilities can be nearly eliminated and the performance of Si detectors can be improved by implementing suitably passivated metal-overhang structures. This paper presents the influence of the relative permittivity of the passivant on the breakdown performance of the Si detectors using computer simulations. The semi-insulator and the dielectric passivated metal-overhang structures are compared under optimal conditions. The influence of various parameters such as passivation layer thickness, junction dep...

  4. Developing silicon strip detectors with a large-scale commercial foundry

    Energy Technology Data Exchange (ETDEWEB)

    König, A., E-mail: axel.koenig@oeaw.ac.at [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria); Bartl, U. [Infineon Technologies Austria AG, Villach (Austria); Bergauer, T.; Dragicevic, M. [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria); Hacker, J. [Infineon Technologies Austria AG, Villach (Austria); Treberspurg, W. [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria)

    2016-07-11

    Since 2009 the Institute of High Energy Physics (HEPHY) in Vienna is developing a production process for planar silicon strip sensors on 6-in. wafers together with the semiconductor manufacturer Infineon Technologies. Four runs with several batches of wafers, each comprising six different sensors, were manufactured and characterized. A brief summary of the recently completed 6-in. campaign is given. Milestones in sensor development as well as techniques to improve the sensor quality are discussed. Particular emphasis is placed on a failure causing areas of defective strips which accompanied the whole campaign. Beam tests at different irradiation facilities were conducted to validate the key capability of particle detection. Another major aspect is to prove the radiation hardness of sensors produced by Infineon. Therefore, neutron irradiation studies were performed.

  5. A silicon strip detector array for energy verification and quality assurance in heavy ion therapy.

    Science.gov (United States)

    Debrot, Emily; Newall, Matthew; Guatelli, Susanna; Petasecca, Marco; Matsufuji, Naruhiro; Rosenfeld, Anatoly B

    2018-02-01

    The measurement of depth dose profiles for range and energy verification of heavy ion beams is an important aspect of quality assurance procedures for heavy ion therapy facilities. The steep dose gradients in the Bragg peak region of these profiles require the use of detectors with high spatial resolution. The aim of this work is to characterize a one dimensional monolithic silicon detector array called the "serial Dose Magnifying Glass" (sDMG) as an independent ion beam energy and range verification system used for quality assurance conducted for ion beams used in heavy ion therapy. The sDMG detector consists of two linear arrays of 128 silicon sensitive volumes each with an effective size of 2mm × 50μm × 100μm fabricated on a p-type substrate at a pitch of 200 μm along a single axis of detection. The detector was characterized for beam energy and range verification by measuring the response of the detector when irradiated with a 290 MeV/u 12 C ion broad beam incident along the single axis of the detector embedded in a PMMA phantom. The energy of the 12 C ion beam incident on the detector and the residual energy of an ion beam incident on the phantom was determined from the measured Bragg peak position in the sDMG. Ad hoc Monte Carlo simulations of the experimental setup were also performed to give further insight into the detector response. The relative response profiles along the single axis measured with the sDMG detector were found to have good agreement between experiment and simulation with the position of the Bragg peak determined to fall within 0.2 mm or 1.1% of the range in the detector for the two cases. The energy of the beam incident on the detector was found to vary less than 1% between experiment and simulation. The beam energy incident on the phantom was determined to be (280.9 ± 0.8) MeV/u from the experimental and (280.9 ± 0.2) MeV/u from the simulated profiles. These values coincide with the expected energy of 281 MeV/u. The sDMG detector

  6. Simulation of the D{sub s} semileptonic decay with the PANDA detector and experimental verification of the Micro-Vertex-Detector pixel readout ASIC with proton test beam

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lu

    2016-07-14

    The PANDA experiment will study a wide range of physics topics with beams of antiprotons incident on fixed proton or complex nuclear targets. One issue is the D{sub s} semileptonic decay, which is governed by the weak and strong forces. The interaction can be parameterized by a transition form factor. The performance of PANDA to measure the decay form factor of D{sup +}{sub s}→ηe{sup +}ν{sub e} is evaluated via Monte Carlo simulation. This thesis concentrates on describing the software development and the evaluation of the expected precision. A preliminary estimate of the expected count rate is obtained. In this measurement, it is essential to reconstruct the D{sub s} semileptonic decay with high efficiency and purity in order to overcome the many orders of magnitude higher background. The Micro-Vertex-Detector plays an import role in the whole tracking system. The rate capability and tracking performance of the recent ASIC prototype for the readout of the MVD is tested using a beam of high-energy protons.

  7. Characteristic performance evaluation of a photon counting Si strip detector for low dose spectral breast CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyo-Min; Ding, Huanjun; Molloi, Sabee, E-mail: symolloi@uci.edu [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States); Barber, William C.; Iwanczyk, Jan S. [DxRay Inc., Northridge, California 91324 (United States)

    2014-09-15

    Purpose: The possible clinical applications which can be performed using a newly developed detector depend on the detector's characteristic performance in a number of metrics including the dynamic range, resolution, uniformity, and stability. The authors have evaluated a prototype energy resolved fast photon counting x-ray detector based on a silicon (Si) strip sensor used in an edge-on geometry with an application specific integrated circuit to record the number of x-rays and their energies at high flux and fast frame rates. The investigated detector was integrated with a dedicated breast spectral computed tomography (CT) system to make use of the detector's high spatial and energy resolution and low noise performance under conditions suitable for clinical breast imaging. The aim of this article is to investigate the intrinsic characteristics of the detector, in terms of maximum output count rate, spatial and energy resolution, and noise performance of the imaging system. Methods: The maximum output count rate was obtained with a 50 W x-ray tube with a maximum continuous output of 50 kVp at 1.0 mA. A{sup 109}Cd source, with a characteristic x-ray peak at 22 keV from Ag, was used to measure the energy resolution of the detector. The axial plane modulation transfer function (MTF) was measured using a 67 μm diameter tungsten wire. The two-dimensional (2D) noise power spectrum (NPS) was measured using flat field images and noise equivalent quanta (NEQ) were calculated using the MTF and NPS results. The image quality parameters were studied as a function of various radiation doses and reconstruction filters. The one-dimensional (1D) NPS was used to investigate the effect of electronic noise elimination by varying the minimum energy threshold. Results: A maximum output count rate of 100 million counts per second per square millimeter (cps/mm{sup 2}) has been obtained (1 million cps per 100 × 100 μm pixel). The electrical noise floor was less than 4 keV. The

  8. ATLAS strip detector: Operational Experience and Run1 → Run2 transition

    CERN Document Server

    NAGAI, K; The ATLAS collaboration

    2014-01-01

    The ATLAS SCT operational experience and the detector performance during the RUN1 period of LHC will be reported. Additionally the preparation outward to RUN2 during the long shut down 1 will be mentioned.

  9. Application of neural networks to digital pulse shape analysis for an array of silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J.L. [Dpto de Ingeniería Eléctrica y Térmica, Universidad de Huelva (Spain); Martel, I. [Dpto de Física Aplicada, Universidad de Huelva (Spain); CERN, ISOLDE, CH 1211 Geneva, 23 (Switzerland); Jiménez, R. [Dpto de Ingeniería Electrónica, Sist. Informáticos y Automática, Universidad de Huelva (Spain); Galán, J., E-mail: jgalan@diesia.uhu.es [Dpto de Ingeniería Electrónica, Sist. Informáticos y Automática, Universidad de Huelva (Spain); Salmerón, P. [Dpto de Ingeniería Eléctrica y Térmica, Universidad de Huelva (Spain)

    2016-09-11

    The new generation of nuclear physics detectors that used to study nuclear reactions is considering the use of digital pulse shape analysis techniques (DPSA) to obtain the (A,Z) values of the reaction products impinging in solid state detectors. This technique can be an important tool for selecting the relevant reaction channels at the HYDE (HYbrid DEtector ball array) silicon array foreseen for the Low Energy Branch of the FAIR facility (Darmstadt, Germany). In this work we study the feasibility of using artificial neural networks (ANNs) for particle identification with silicon detectors. Multilayer Perceptron networks were trained and tested with recent experimental data, showing excellent identification capabilities with signals of several isotopes ranging from {sup 12}C up to {sup 84}Kr, yielding higher discrimination rates than any other previously reported.

  10. Performance of a double metal n-on-n and a Czochralski silicon strip detector read out at 40 MHz

    CERN Document Server

    Palacios, J P; Buytaert, J; Collins, P; Eckstein, D; Härkönen, J; Luukka, Panja; Parkes, C; Tuovinen, E

    2004-01-01

    The R&D undertaken by the VELO group in order to produce a sensor that satisfies the tight radiation hardness, efficiency, resolution and low material requirements of LHCb has resulted in the choice of an n-on-n double metal layer solution. First, measurements of the performance of the latest prototype and its related front end electronics, designed to function at the LHC speed of 40 MHz, are presented here. In addition, research has been carried out into new materials which could retain good performance in high-radiation environments at and beyond the LHC, and could provide an alternative for a possible VELO upgrade. For the first time, a full size Czochralski silicon detector sample with 50 mum pitch strips has been irradiated with high energy protons and its performance has been measured in a test beam with 40 MHz electronics. The results of this test will be presented.

  11. Performance of a double metal n-on-n and a Czochralski silicon strip detector read out at 40 MHz

    CERN Document Server

    Palacios, J P; Buytaert, J; Collins, P; Eckstein, D; Harkonen, J; Tuovinen, E; Luukka, P

    2006-01-01

    The R&D undertaken by the VELO group in order to produce a sensor that satisfies the tight radiation hardness, efficiency, resolution and low material requirements of LHCb has resulted in the choice of an n-on-n double metal layer solution. First measurements of the performance of the latest prototype and its related front end electronics, designed to function at the LHC speed of 40 MHz, are presented here. In addition, research has been carried out into new materials which could retain good performance in high radiation environments at and beyond the LHC, and could provide an alternative for a possible VELO upgrade. For the first time a full size Czochralski silicon detector sample with 50$\\mu$m pitch strips has been irradiated with high energy protons and its performance has been measured in a test beam with 40 MHz electronics. The results of this test will be presented.

  12. Vertex Reconstruction in CMS

    CERN Document Server

    Chabanat, E; D'Hondt, J; Vanlaer, P; Prokofiev, K; Speer, T; Frühwirth, R; Waltenberger, W

    2005-01-01

    Because of the high track multiplicity in the final states expected in proton collisions at the LHC experiments, novel vertex reconstruction algorithms are required. The vertex reconstruction problem can be decomposed into a pattern recognition problem ("vertex finding") and an estimation problem ("vertex fitting"). Starting from least-square methods, ways to render the classical algorithms more robust are discussed and the statistical properties of the novel methods are shown. A whole set of different approaches for the vertex finding problem is presented and compared in relevant physics channels.

  13. Vertex reconstruction in CMS

    International Nuclear Information System (INIS)

    Chabanat, E.; D'Hondt, J.; Estre, N.; Fruehwirth, R.; Prokofiev, K.; Speer, T.; Vanlaer, P.; Waltenberger, W.

    2005-01-01

    Due to the high track multiplicity in the final states expected in proton collisions at the LHC experiments, novel vertex reconstruction algorithms are required. The vertex reconstruction problem can be decomposed into a pattern recognition problem ('vertex finding') and an estimation problem ('vertex fitting'). Starting from least-squares methods, robustifications of the classical algorithms are discussed and the statistical properties of the novel methods are shown. A whole set of different approaches for the vertex finding problem is presented and compared in relevant physics channels

  14. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS Inner Detector

    CERN Document Server

    INSPIRE-00407830; Bloch, Ingo; Edwards, Sam; Friedrich, Conrad; Gregor, Ingrid M.; Jones, T; Lacker, Heiko; Pyatt, Simon; Rehnisch, Laura; Sperlich, Dennis; Wilson, John

    2016-05-24

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). This glue has several disadvantages, which motivated the search for an alternative. This paper presents a study concerning the use of six ultra-violet (UV) cure glues and a glue pad for use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, the thermal conduction and shear strength, thermal cycling, radiation hardness, corrosion resistance and shear strength tests. These investigatio...

  15. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS inner detector

    International Nuclear Information System (INIS)

    Poley, Luise; Bloch, Ingo; Edwards, Sam

    2016-04-01

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). This glue has several disadvantages, which motivated the search for an alternative. This paper presents a study concerning the use of six ultra-violet (UV) cure glues and a glue pad for use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, the thermal conduction and shear strength, thermal cycling, radiation hardness, corrosion resistance and shear strength tests. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives. Results from electrical tests of first prototype modules constructed using these glues are presented.

  16. A novel laser alignment system for tracking detectors using transparent silicon strip sensors

    International Nuclear Information System (INIS)

    Blum, W.; Kroha, H.; Widmann, P.

    1995-02-01

    Modern large-area precision tracking detectors require increasing accuracy of the geometrical alignment over large distances. A novel optical multi-point alignment system has been developed for the muon spectrometer of the ATLAS detector at the Large Hadron Collider. The system uses collimated laser beams as alignment references which are monitored by semi-transparent optical position sensors. The custom designed sensors provide very precise and uniform position information on the order of 1 μm over a wide measurement range. At suitable laser wavelengths, produced by laser diodes, transmission rates above 90% have been achieved which allow to align more than 30 sensors along one laser beam. With this capability and equipped with integrated readout electronics, the alignment system offers high flexibility for precision applications in a wide range of detector systems. (orig.)

  17. Prototyping of Silicon Strip Detectors for the Inner Tracker of the ALICE Experiment

    NARCIS (Netherlands)

    Sokolov, Oleksiy

    2006-01-01

    The ALICE experiment at CERN will study heavy ion collisions at a center-of-mass energy 5.5∼TeV per nucleon. Particle tracking around the interaction region at radii r<45 cm is done by the Inner Tracking System (ITS), consisting of six cylindrical layers of silicon detectors. The outer two layers of

  18. Study of pressure vessels for micro-strip-gas-counters as two-dimensional neutron position sensitive detectors

    International Nuclear Information System (INIS)

    Yamagishi, Hideshi; Kaneko, Junichi

    2001-01-01

    The development of two-dimensional position sensitive neutron detectors that have performances of a fast response and a very small space-resolution are required for various neutron scattering experiments using high-intensity pulse-neutron sources in a high-intensity proton accelerator facility. We put forward the development of a micro-strip gas counter (MSGC) filled with helium-3 gas as the two-dimensional position sensitive neutron detector. The MSGC requests a pressure vessel that withstands gas pressure of 5-10 atm. For obtainment of a small neutron-attenuation, the pressure vessel requires a neutron-window that is made thin wall and has small cross sections of absorption and scattering for low energy neutrons. We have studied and compared three kinds of neutron-windows for manufacturing the pressure vessel. After the study, we were able to design the pressure vessel with neutron-window thickness of 2 mm on conditions that are a window area of 100 x 100 mm, material of aluminum and inner pressure of 10 atm. (author)

  19. Tracking and Vertexing for the Heavy Photon Search Experiment

    Science.gov (United States)

    Uemura, Sho; HPS Collaboration

    2015-04-01

    The Heavy Photon Search (HPS) requires precision tracking and vertexing of e+e- pairs against a high background in a difficult experimental environment. The silicon vertex tracker (SVT) for HPS uses actively cooled silicon microstrip sensors with fast readout electronics. To maximize acceptance and vertex resolution with a relatively small detector, the SVT operates directly downstream of the target, close to the beam line, and inside of a dipole magnet. This talk presents the design and performance of the HPS SVT.

  20. Mechanical studies towards a silicon micro-strip super module for the ATLAS inner detector upgrade at the high luminosity LHC

    International Nuclear Information System (INIS)

    Barbier, G; Cadoux, F; Clark, A; Favre, Y; Ferrere, D; Gonzalez-Sevilla, S; Iacobucci, G; Marra, D La; Perrin, E; Seez, W; Endo, M; Hanagaki, K; Hara, K; Ikegami, Y; Nakamura, K; Takubo, Y; Terada, S; Jinnouchi, O; Nishimura, R; Takashima, R

    2014-01-01

    It is expected that after several years of data-taking, the Large Hadron Collider (LHC) physics programme will be extended to the so-called High-Luminosity LHC, where the instantaneous luminosity will be increased up to 5 × 10 34  cm −2  s −1 . For the general-purpose ATLAS experiment at the LHC, a complete replacement of its internal tracking detector will be necessary, as the existing detector will not provide the required performance due to the cumulated radiation damage and the increase in the detector occupancy. The baseline layout for the new ATLAS tracker is an all-silicon-based detector, with pixel sensors in the inner layers and silicon micro-strip detectors at intermediate and outer radii. The super-module (SM) is an integration concept proposed for the barrel strip region of the future ATLAS tracker, where double-sided stereo silicon micro-strip modules (DSM) are assembled into a low-mass local support (LS) structure. Mechanical aspects of the proposed LS structure are described

  1. The ATLAS inner detector semiconductor tracker (Si and GaAs strips) review of the 1995 beam tests at the CERN SPS H8 beamline

    CERN Document Server

    Moorhead, G F

    1995-01-01

    This talk will consist of a brief review of the ATLAS Inner Detector (ID) Semiconductor Tracker (SCT) strip detector (both silicon and gallium arsenide) beam tests conducted at the ATLAS test beam facility at the CERN SPS H8 beamline. It will include a brief overview of the H8 facilities, the experimental layout of the SCT/Strip apparatus, the data acquisition system, some of the online software tools and the high precision silicon hodoscope and timing modules used. A very brief indication of some of the main varieties of detector systems tested and the measurements performed will be given. Throughout some emphasis will be placed on the contributions and-interests of members of the Melbourne group. (author).

  2. Beam test results for the SuperB-SVT thin striplet detector

    Science.gov (United States)

    Fabbri, L.; Comotti, D.; Manghisoni, M.; Re, V.; Traversi, G.; Gabrielli, A.; Giorgi, F.; Pellegrini, G.; Sbarra, C.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.; Berra, A.; Lietti, D.; Prest, M.; Bevan, A.; Wilson, F.; Beck, G.; Morris, J.; Ganaway, F.; Cenci, R.; Bombelli, L.; Citterio, M.; Coelli, S.; Fiorini, C.; Liberali, V.; Monti, M.; Nasri, B.; Neri, N.; Palombo, F.; Stabile, A.; Balestri, G.; Batignani, G.; Bernardelli, A.; Bettarini, S.; Bosi, F.; Casarosa, G.; Ceccanti, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Mammini, P.; Morsani, F.; Oberhof, B.; Paoloni, E.; Perez, A.; Petragnani, G.; Profeti, A.; Rizzo, G.; Soldani, A.; Walsh, J.; Gaioni, L.; Manazza, A.; Quartieri, E.; Ratti, L.; Zucca, S.; Alampi, G.; Cotto, G.; Gamba, D.; Zambito, S.; Dalla Betta, G.-F.; Fontana, G.; Pancheri, L.; Povoli, M.; Verzellesi, G.; Bomben, M.; Bosisio, L.; Cristaudo, P.; Lanceri, L.; Liberti, B.; Rashevskaya, I.; Stella, C.; Vitale, L.

    2013-08-01

    The baseline detector option for the first layer of the SuperB Silicon Vertex Tracker (SVT) is a high resistivity double-sided silicon device with short strips (striplets) at 45° angle to the detector's edge. A prototype was tested with a 120 GeV/c pion beam in September 2011 at the SPS-H6 test-beam line at CERN. In this paper studies on efficiency, resolution and cluster size are reported.

  3. MUST, a set of strip detectors for studying radioactive beams induced reactions; MUST, un ensemble de detecteurs a pistes pour l`etude des reactions induites par faisceaux radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Blumenfeld, Y.; Barbier, A.; Beaumel, D.; Charlet, D.; Clavelin, J.F.; Douet, R.; Engrand, M.; Lebon, S.; Lelong, P.; Lesage, A.; Leven, V.; Lhenry, I.; Marechal, F.; Petizon, L.; Pouthas, J.; Richard, A.; Rougier, D.; Soulet, C.; Suomijaervi, T.; Volkov, P.; Voltolini, G. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Auger, F.; Ottini, S.; Alamanos, N. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee; Sauvestre, J.E.; Bonnereau, B.; Champion, L.; Delbourgo-Salvador, P.; Ethvignot, T.; Szmigiel, M. [CEA Centre d`Etudes de Bruyeres-le-Chatel, 91 (France)

    1996-12-31

    This report states the specificity of light particles elastic scattering, and the need of detecting recoil protons to improve angular resolution. Then the development of a specific MUST strip detector is detailed: 60 strips detectors with Si O sub 2 dielectric, that yield 500 ps time resolution, and Si (Li) detectors following next. A versatile data acquisition system has been developed too, with CAMAC interface to suit to any experimental plant. (D.L.). 27 refs.

  4. Performance, Radiation Damage Effects and Upgrade of the LHCb Vertex Locator

    CERN Document Server

    De Capua, S

    2013-01-01

    LHCb is a dedicated experiment to study New Physics in the decays of heavy hadrons at the Large Hadron Collider (LHC). Heavy hadrons are identified through their flight distance in the VELO, the retractable silicon-strip vertex detector surrounding the LHCb interaction point at only 7 mm from the beam during normal LHC operation. Both VELO halves comprise 21 silicon micro-strip modules each. A module is made of two n-on-n 300 µm thick half-disc sensors with R- and phi-measuring geometry, mounted on a carbon fibre support paddle. The minimum pitch is approximately 40 µm. The detector is also equipped with the only n-on-p module operating at the LHC. The performance of the VELO in its three years of successful operation during the LHC physics runs will be presented. Highlights will include alignment, cluster finding efficiency, single hit resolution, and impact parameter and vertex resolutions. The VELO module sensors receive a large and non-uniform radiation dose having inner and outer radii of only 7 and 42...

  5. The refined topological vertex

    International Nuclear Information System (INIS)

    Iqbal, Amer; Kozcaz, Can; Vafa, Cumrun

    2009-01-01

    We define a refined topological vertex which depends in addition on a parameter, which physically corresponds to extending the self-dual graviphoton field strength to a more general configuration. Using this refined topological vertex we compute, using geometric engineering, a two-parameter (equivariant) instanton expansion of gauge theories which reproduce the results of Nekrasov. The refined vertex is also expected to be related to Khovanov knot invariants.

  6. Design of a secondary-vertex trigger system

    International Nuclear Information System (INIS)

    Husby, D.; Chew, P.; Sterner, K.; Selove, W.

    1995-06-01

    For the selection of beauty and charm events with high efficiency at the Tevatron, a secondary-vertex trigger system is under design. It would operate on forward-geometry events. The system would use on-line tracking of all tracks in the vertex detector, to identify events with clearly detached secondary vertices

  7. Alignment of the LHCb vertex locator

    International Nuclear Information System (INIS)

    Gersabeck, M.

    2009-01-01

    LHCb will commence data taking as the first dedicated heavy flavour experiment at a hadron collider in 2008. A very high hit precision from its vertex detector (vertex locator, VELO) is essential to meet the tight requirements of vertex reconstruction in B-physics. The single hit precision of the VELO is better than 10μm. However, the VELO is operated only 8 mm from the beam and must be retracted and reinserted each LHC fill. Hence, the detector places unique demands on its alignment algorithm. The partially assembled VELO system has already been tested in a beam test. The novel software alignment methods are presented together with their interplay with the metrology measurements. Results from Monte Carlo simulation studies are discussed and recent beam test results are shown that prove the method's precision at the micron level.

  8. Mirror of the refined topological vertex from a matrix model

    CERN Document Server

    Eynard, B

    2011-01-01

    We find an explicit matrix model computing the refined topological vertex, starting from its representation in terms of plane partitions. We then find the spectral curve of that matrix model, and thus the mirror symmetry of the refined vertex. With the same method we also find a matrix model for the strip geometry, and we find its mirror curve. The fact that there is a matrix model shows that the refined topological string amplitudes also satisfy the remodeling the B-model construction.

  9. Lifetime tests for MAC vertex chamber

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, H.N.

    1986-07-01

    A vertex chamber for MAC was proposed to increase precision in the measurement of the B hadron and tau lepton lifetimes. Thin-walled aluminized mylar drift tubes were used for detector elements. A study of radiation hardness was conducted under the conditions of the proposed design using different gases and different operating conditions. (LEW)

  10. Nanoparticle-Based Immunochromatographic Test Strip with Fluorescent Detector for Quantification of Phosphorylated Acetycholinesterase: An Exposure Biomarker of Organophosphorous Agents

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiying; Ge, Xiaoxiao; Tang, Yong; Du, Dan; Liu, Deli; Lin, Yuehe

    2013-09-21

    A nanoparticle-based fluorescence immunochromatographic test strip (FITS) coupled with a hand-held detector for highly selective and sensitive detection of phosphorylated acetylcholinesterase (AChE), an exposure biomarker of organophosphate (OP) pesticides and nerve agents, is reported. In this approach, OP-AChE adducts were selectively captured by quantum dot-tagged anti-AChE antibodies (Qdot-anti-AChE) and zirconia nanoparticles (ZrO2 NPs). The sandwich-like immunoreactions were performed among the Qdot-anti-AChE, OP-AChE and ZrO2 NPs to form Qdot-anti-AChE/OP-AChE/ZrO2 complex, which was detected by recording the fluorescence intensity of Qdot captured on the test line. Paraoxon was used as the model OP pesticides. Under optimal conditions, this portable FITS immunosensor demonstrates a highly linear absorption response over the range of 0.01 nM to 10 nM OP-AChE, with a detection limit of 4 pM, coupled with a good reproducibility. Moreover, the FITS immunosensor has been validated with OP-AChE spiked human plasma samples. This is the first report on the development of ZrO2 NPs-based FITS for detection of OP-AChE adduct. The FITS immunosensor provides a sensitive and low-cost sensing platform for on-site screening/evaluating OP pesticides and nerve agents poisoning.

  11. Search for anomalous couplings in the $Wtb$ vertex from the measurement of double differential angular decay rates of single top quarks produced in the $t$-channel with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bruscino, Nello; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; French, Sky; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henkelmann, Steffen; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Spearman, William Robert; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2016-04-05

    The electroweak production and subsequent decay of single top quarks is determined by the properties of the $Wtb$ vertex. This vertex can be described by the complex parameters of an effective Lagrangian. An analysis of angular distributions of the decay products of single top quarks produced in the $t$-channel constrains these parameters simultaneously. The analysis described in this paper uses 4.6 fb$^{-1}$ of proton--proton collision data at $\\sqrt{s}$ = 7 TeV collected with the ATLAS detector at the LHC.Two parameters are measured simultaneously in this analysis. The fraction $f_1$ of decays containing transversely polarised $W$ bosons is measured to be $0.37 \\pm 0.07$ (stat.$\\oplus$syst.). The phase $\\delta_{-}$ between amplitudes for transversely and longitudinally polarised $W$ bosons recoiling against left-handed $b$-quarks is measured to be $-0.14\\pi \\pm 0.036\\pi$ (stat.$\\oplus$syst.).The correlation in the measurement of these parameters is $0.15$. These values result in two-dimensional limits at th...

  12. Optimization, evaluation and calibration of a cross-strip DOI detector

    Science.gov (United States)

    Schmidt, F. P.; Kolb, A.; Pichler, B. J.

    2018-02-01

    This study depicts the evaluation of a SiPM detector with depth of interaction (DOI) capability via a dual-sided readout that is suitable for high-resolution positron emission tomography and magnetic resonance (PET/MR) imaging. Two different 12  ×  12 pixelated LSO scintillator arrays with a crystal pitch of 1.60 mm are examined. One array is 20 mm-long with a crystal separation by the specular reflector Vikuiti enhanced specular reflector (ESR), and the other one is 18 mm-long and separated by the diffuse reflector Lumirror E60 (E60). An improvement in energy resolution from 22.6% to 15.5% for the scintillator array with the E60 reflector is achieved by taking a nonlinear light collection correction into account. The results are FWHM energy resolutions of 14.0% and 15.5%, average FWHM DOI resolutions of 2.96 mm and 1.83 mm, and FWHM coincidence resolving times of 1.09 ns and 1.48 ns for the scintillator array with the ESR and that with the E60 reflector, respectively. The measured DOI signal ratios need to be assigned to an interaction depth inside the scintillator crystal. A linear and a nonlinear method, using the intrinsic scintillator radiation from lutetium, are implemented for an easy to apply calibration and are compared to the conventional method, which exploits a setup with an externally collimated radiation beam. The deviation between the DOI functions of the linear or nonlinear method and the conventional method is determined. The resulting average of differences in DOI positions is 0.67 mm and 0.45 mm for the nonlinear calibration method for the scintillator array with the ESR and with the E60 reflector, respectively; Whereas the linear calibration method results in 0.51 mm and 0.32 mm for the scintillator array with the ESR and the E60 reflector, respectively; and is, due to its simplicity, also applicable in assembled detector systems.

  13. Development of fast and radiation hard Monolithic Active Pixel Sensors (MAPS) optimized for open charm meson detection with the CBM - vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Deveaux, Michael

    2008-03-20

    The work presented in this thesis addresses a key issue of the CBM experiment at FAIR, which aims to study charm production in heavy ion collisions at energies ranging from 10 to 40 AGeV. For the first time in this kinematical range, open charm mesons will be used as a probe of the nuclear fireball. Despite of their short decay length, which is typically in the order of few 100 {mu}m in the laboratory frame, those mesons will be identified by reconstructing their decay vertex. (orig.)

  14. Development of fast and radiation hard Monolithic Active Pixel Sensors (MAPS) optimized for open charm meson detection with the CBM - vertex detector

    International Nuclear Information System (INIS)

    Deveaux, Michael

    2008-01-01

    The work presented in this thesis addresses a key issue of the CBM experiment at FAIR, which aims to study charm production in heavy ion collisions at energies ranging from 10 to 40 AGeV. For the first time in this kinematical range, open charm mesons will be used as a probe of the nuclear fireball. Despite of their short decay length, which is typically in the order of few 100 μm in the laboratory frame, those mesons will be identified by reconstructing their decay vertex. (orig.)

  15. Development and evaluation of test stations for the quality assurance of the silicon micro-strip detector modules for the CMS experiment

    International Nuclear Information System (INIS)

    Poettgens, M.

    2007-01-01

    CMS (Compact Muon Solenoid) is one of four large-scale detectors which will be operated at the LHC (Large Hadron Collider) at the European Laboratory for Particle Physics (CERN). For the search for new physics the reconstruction of the collision products and their properties is essential. In the innermost part of the CMS detector the traces of ionizing particles are measured utilizing a silicon tracker. A large fraction of this detector is equipped with silicon micro-strip modules which provide a precise space resolution in 1-dimension. A module consists of a sensor for detection of particles, the corresponding read-out electronics (hybrid) and a mechanical support structure. Since the 15,148 modules, which will be installed in the silicon micro-strip detector, have a total sensitive surface area of about 198 m 2 , the inner tracker of CMS is the largest silicon tracking detector, which has ever been built. While the sensors and hybrids are produced in industry, the construction of the modules and the control of the quality is done by the members of the 21 participating institutes. Since the access to the silicon micro-strip tracker will be very limited after the installation in the CMS detector the installed modules must be of high quality. For this reason the modules are thoroughly tested and the test results are uploaded to a central database. By the development of a read-out system and the corresponding software the III. Physikalisches Institut made an important contribution for the electrical and functional quality control of hybrids and modules. The read-out system provides all features for the operation and test of hybrids and modules and stands out due to high reliability and simple handling. Because a very user-friedly and highly automated software it became the official test tool and was integrated in various test stands. The test stands, in which the read-out system is integrated in, are described and the tests which are implemented in the corresponding

  16. Development and Evaluation of Test Stations for the Quality Assurance of the Silicon Micro-Strip Detector Modules for the CMS Experiment

    CERN Document Server

    Pöttgens, Michael

    2007-01-01

    CMS (Compact Muon Solenoid) is one of four large-scale detectors which will be operated at the LHC (Large Hadron Collider) at the European Laboratory for Particle Physics (CERN). For the search for new physics the reconstruction of the collision products and their properties is essential. In the innermost part of the CMS detector the traces of ionizing particles are measured utilizing a silicon tracker. A large fraction of this detector is equipped with silicon micro-strip modules which provide a precise space resolution in 1-dimension. A module consists of a sensor for detection of particles, the corresponding read-out electronics (hybrid) and a mechanical support structure. Since the 15,148 modules, which will be installed in the silicon micro-strip detector, have a total sensitive surface area of about 198 m2, the inner tracker of CMS is the largest silicon tracking detector, which has ever been built. While the sensors and hybrids are produced in industry, the construction of the modules and the control o...

  17. Characterisation of strip silicon detectors for the ATLAS Phase-II Upgrade with a micro-focused X-ray beam

    CERN Document Server

    INSPIRE-00407830; Blue, Andrew; Bates, Richard; Bloch, Ingo; Diez, Sergio; Fernandez-Tejero, Javier; Fleta, Celeste; Gallop, Bruce; Greenall, Ashley; Gregor, Ingrid-Maria; Hara, Kazuhiko; Ikegami, Yoichi; Lacasta, Carlos; Lohwasser, Kristin; Maneuski, Dzmitry; Nagorski, Sebastian; Pape, Ian; Phillips, Peter W.; Sperlich, Dennis; Sawhney, Kawal; Soldevila, Urmila; Ullan, Miguel; Unno, Yoshinobu; Warren, Matt

    2016-07-29

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential through a sizable increase in the luminosity, totalling 1x10^35 cm^-2 s^-1 after 10 years of operation. A consequence of this increased luminosity is the expected radiation damage at 3000 fb^-1, requiring the tracking detectors to withstand hadron equivalences to over 1x10^16 1 MeV neutrons per cm^2. With the addition of increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk). Two proposed detectors for the ATLAS strip tracker region of the ITk were characterized at the Diamond Light Source with a 3 micron FWHM 15 keV micro focused X-ray beam. The devices under test were a 320 micron thick silicon stereo (Barrel) ATLAS12 strip mini sensor wire bonded to a 130 nm CMOS binary readout chip (ABC130) and a 320 micron thick full size radial (Endcap) strip sensor - utilizing bi-metal readout layers - wire bonded to 250 nm CMOS binary readout...

  18. Design and Characterisation of a Fast Architecture Providing Zero Suppressed Digital Output Integrated in a High Resolution CMOS Pixel Sensor for the STAR Vertex Detector and the EUDET Beam Telescope

    CERN Document Server

    Hu-guo, C

    2008-01-01

    CMOS Monolithic Active Pixel Sensors (MAPS) have demonstrated their strong potential for tracking devices, particularly for flavour tagging. They are foreseen to equip several vertex detectors and beam telescopes. Most applications require high read-out speed, imposing sensors to feature digital output with integrated zero suppression. The most recent development of MAPS at IPHC and IRFU addressing this issue will be reviewed. An architecture will be presented, combining a pixel array, column-level discriminators and zero suppression circuits. Each pixel features a preamplifier and a correlated double sampling (CDS) micro-circuit reducing the temporal and fixed pattern noises. The sensor is fully programmable and can be monitored. It will equip experimental apparatus starting data taking in 2009/2010.

  19. A Method to Simulate the Observed Surface Properties of Proton Irradiated Silicon Strip Sensors

    CERN Document Server

    INSPIRE-00335524; Bhardwaj, A.; Dalal, R.; Eber, R.; Eichhorn, T.; Lalwani, K.; Messineo, A.; Printz, M.; Ranjan, K.

    2015-04-23

    During the scheduled high luminosity upgrade of LHC, the world's largest particle physics accelerator at CERN, the position sensitive silicon detectors installed in the vertex and tracking part of the CMS experiment will face more intense radiation environment than the present system was designed for. To upgrade the tracker to required performance level, extensive measurements and simulations studies have already been carried out. A defect model of Synopsys Sentaurus TCAD simulation package for the bulk properties of proton irradiated devices has been producing simulations closely matching with measurements of silicon strip detectors. However, the model does not provide expected behavior due to the fluence increased surface damage. The solution requires an approach that does not affect the accurate bulk properties produced by the proton model, but only adds to it the required radiation induced properties close to the surface. These include the observed position dependency of the strip detector's charge collec...

  20. Evaluation of the performance of irradiated silicon strip sensors for the forward detector of the ATLAS Inner Tracker Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Mori, R., E-mail: riccardo.mori@physik.uni-freiburg.de [Physikalisches Institut, Universität Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Allport, P.P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J.P.; Wilson, J.A. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Kierstead, J.; Kuczewski, P.; Lynn, D. [Brookhaven National Laboratory, Physics Department and Instrumentation Division, Upton, NY 11973-5000 (United States); Arratia-Munoz, M.I.; Hommels, L.B.A. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Ullan, M.; Fleta, C.; Fernandez-Tejero, J. [Centro Nacional de Microelectronica (IMB-CNM, CSIC), Campus UAB-Bellaterra, 08193 Barcelona (Spain); Bloch, I.; Gregor, I.M.; Lohwasser, K. [DESY, Notkestrasse 85, 22607 Hambrug (Germany); and others

    2016-09-21

    The upgrade to the High-Luminosity LHC foreseen in about ten years represents a great challenge for the ATLAS inner tracker and the silicon strip sensors in the forward region. Several strip sensor designs were developed by the ATLAS collaboration and fabricated by Hamamatsu in order to maintain enough performance in terms of charge collection efficiency and its uniformity throughout the active region. Of particular attention, in the case of a stereo-strip sensor, is the area near the sensor edge where shorter strips were ganged to the complete ones. In this work the electrical and charge collection test results on irradiated miniature sensors with forward geometry are presented. Results from charge collection efficiency measurements show that at the maximum expected fluence, the collected charge is roughly halved with respect to the one obtained prior to irradiation. Laser measurements show a good signal uniformity over the sensor. Ganged strips have a similar efficiency as standard strips.

  1. Forward Tracking with the silicon vertex detector at the CDF experiment in RUN II. Spurrekonstruktion in Vorwärtsrichtung mit dem Silizium-Vertexdetektor des CDF-Experiments in RUN II

    Energy Technology Data Exchange (ETDEWEB)

    Scheidle, Thorsten [Univ. of Karlsruhe (TH) (Germany)

    2007-02-01

    The Standard Model of particle physics describes the fundamental particles of matter and their interactions. In order to test the Standard Model, determine free parameters and search for new particles beyond the Standard Model, large accelerator complexes produce particle collisions which are recorded by large detectors. Until the start of the Large Hadron Collider at CERN, the Tevatron accelerator at Fermilab provides particle collisions with the highest center-of-mass energy of √s = 1.96 TeV. The two multipurpose detector systems CDF and DØ record the collisions. A multipurpose detector system is built of several specialized sub-detectors to measure different particle properties. A particle which passes the detector deposits energy by interacting with the detector material. A silicon strip detector and a wire drift chamber detect charged particles close to the collision point. The energy loss in these systems is relatively small, instead many different small energy depositions are produced by one passing particle. These so-called hits can be combined to a track, indicating the path of the particle. A homogeneous magnetic field surrounding the tracking system forces a charged particle to a helix path which allows a momentum measurement by measuring the curvature. The reconstruction of particle tracks is a non-trivial task. First all position measurements belonging to a particle along a hypothetical helix have to be found and then all position information has to be combined to a reconstructed track and its parameters. I focused my work on the track reconstruction in the silicon detector which provides a good position resolution of the measurements.

  2. Performance of a 128 channel analogue front-end chip for read-out of Si strip detector modules for LHC experiments

    CERN Document Server

    Chesi, Enrico Guido; Cindro, V; Dabrowski, W; Ferrère, D; Kramberger, G; Kaplon, J; Lacasta, C; Lozano-Bahilo, J; Mikuz, M; Morone, C; Roe, S; Szczygiel, R; Tadel, M; Weilhammer, Peter; Zsenei, A

    2000-01-01

    We present a 128-channel analogue front-end chip, SCT128A-HC, for readout of silicon strip detectors employed in the inner tracking detectors of the LHC experiment. The chip is produced in the radiation hard DMILL technology. The architecture of the chip and critical design issues are discussed. The performance of the chip has been evaluated in details in the test bench and is presented in the paper. The chip is used to read out prototype analogue modules compatible in size, functionality and performance with the ATLAS SCT base line modules. Several full size detector modules equipped with SCT128A-HC chips has been built and tested successfully in the lab with beta particles as well as in the test beam. The results concerning the signal-to-noise ratio, noise occupancy, efficiency and spatial resolution are presented. The radiation hardness issues are discussed. (5 refs).

  3. Barrel silicon vertex tracker for PHENIX at RHIC

    International Nuclear Information System (INIS)

    Ohnishi, Hiroaki

    2005-01-01

    The barrel silicon vertex tracker has been proposed as an upgrade project of the PHENIX experiment at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. The prime motivation for this new detector is to provide precision measurements of heavy-quark production (charm and beauty) in A + A, p(d) + A, and polarized p + p collisions. The current design of the silicon vertex tracker comprises a four-layer barrel detector, built from two internal layers of pixel detectors and two external layers of projective 'stripixels' which complement the central spectrometer arms of PHENIX. In this paper, the physics motivation of the silicon vertex tracker upgrade and the concept of the new detector will be discussed. Moreover, the status of the new development and beginning production of the silicon detectors will be presented

  4. Probing the $Wtb$ vertex structure in $t$-channel single-top-quark production and decay in $pp$ collisions at $\\sqrt{\\mathrm{s}}=8$ TeV with the ATLAS detector

    CERN Document Server

    Aaboud, Morad; ATLAS Collaboration; Abbott, Brad; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adachi, Shunsuke; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alshehri, Azzah Aziz; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antel, Claire; Antonelli, Mario; Antonov, Alexey; Antrim, Daniel Joseph; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Araujo Ferraz, Victor; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Bajic, Milena; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska-Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethani, Agni; Bethke, Siegfried; Bevan, Adrian John; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Billoud, Thomas Remy Victor; Bilokon, Halina; Bindi, Marcello; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bisanz, Tobias; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blue, Andrew; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burger, Angela Maria; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas Peter; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Callea, Giuseppe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carlson, Benjamin Taylor; Carminati, Leonardo; Carney, Rebecca; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelijn, Remco; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chatterjee, Avishek; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chiu, Yu Him Justin; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocca, Claudia; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cormier, Felix; Cormier, Kyle James Read; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cueto, Ana; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Czirr, Hendrik; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Merlin; Davison, Peter; Dawe, Edmund; Dawson, Ian; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Deigaard, Ingrid; Del Gaudio, Michela; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Petrillo, Karri Folan; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Díez Cornell, Sergio; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dolejsi, Jiri; Dolezal, Zdenek; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudder, Andreas Christian; Duffield, Emily Marie; Duflot, Laurent; Dührssen, Michael; Dumancic, Mirta; Duncan, Anna Kathryn; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edwards, Nicholas Charles; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Federica; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farina, Edoardo Maria; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Rob Roy MacGregor; Flick, Tobias; Flierl, Bernhard Matthias; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gagliardi, Guido; Gagnon, Louis Guillaume; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Ganguly, Sanmay; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gasnikova, Ksenia; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisen, Marc; Geisler, Manuel Patrice; Gellerstedt, Karl; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; Gentsos, Christos; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giannetti, Paola; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Gama, Rafael; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Gui, Bin; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Wen; Guo, Yicheng; Gupta, Ruchi; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Hadef, Asma; Hageböck, Stephan; Hagihara, Mutsuto; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Han, Shuo; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hartmann, Nikolai Marcel; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, Ahmed; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayakawa, Daiki; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heidegger, Kim Katrin; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Herde, Hannah; Herget, Verena; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hladik, Ondrej; Hoad, Xanthe; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Holmes, Tova Ray; Homann, Michael; Honda, Shunsuke; Honda, Takuya; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hoya, Joaquin; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Qipeng; Hu, Shuyang; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Huo, Peng; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuriy; Iliadis, Dimitrios; Ilic, Nikolina; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Ishijima, Naoki; Ishino, Masaya; Ishitsuka, Masaki; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Paul; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansky, Roland; Janssen, Jens; Janus, Michel; Janus, Piotr Andrzej; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Javurkova, Martina; Jeanneau, Fabien; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jenni, Peter; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiang, Zihao; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Jivan, Harshna; Johansson, Per; Johns, Kenneth; Johnson, Christian; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kaji, Toshiaki; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kanjir, Luka; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khader, Mazin; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Kharlamova, Tatyana; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kilby, Callum; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; Kirchmeier, David; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klapdor-Kleingrothaus, Thorwald; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Köhler, Nicolas Maximilian; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Koulouris, Aimilianos; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kravchenko, Anton; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kuprash, Oleg; Kurashige, Hisaya; Kurchaninov, Leonid; Kurochkin, Yurii; Kurth, Matthew Glenn; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lanfermann, Marie Christine; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Lapertosa, Alessandro; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Benoit; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Lerner, Giuseppe; Leroy, Claude; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Dave; Leyton, Michael; Li, Bing; Li, Changqiao; Li, Haifeng; Li, Lei; Li, Liang; Li, Qi; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Hongbin; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina Maria; Loch, Peter; Loebinger, Fred; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopez, Jorge; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Claire; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Luciano; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Maznas, Ioannis; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McDonald, Emily; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Melo, Matej; Meloni, Federico; Menary, Stephen Burns; Meng, Lingxin; Meng, Xiangting; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Minegishi, Yuji; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mizukami, Atsushi; Mjörnmark, Jan-Ulf; Mlynarikova, Michaela; Moa, Torbjoern; Mochizuki, Kazuya; Mogg, Philipp; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Stefanie; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moschovakos, Paris; Mosidze, Maia; Moss, Harry James; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Muškinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Manh, Tuan; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganini, Michela; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palazzo, Serena; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Panagiotopoulou, Evgenia; Panagoulias, Ilias; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Perez Codina, Estel; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puddu, Daniele; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Ratti, Maria Giulia; Rauch, Daniel; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Ravinovich, Ilia; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reed, Robert; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reiss, Andreas; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Resseguie, Elodie Deborah; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Roberts, Rhys Thomas; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodina, Yulia; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Roloff, Jennifer; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosien, Nils-Arne; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sánchez, Javier; Sanchez Martinez, Victoria; Sanchez Pineda, Arturo Rodolfo; Sandaker, Heidi; Sandbach, Ruth Laura; Sandhoff, Marisa; Sandoval, Carlos; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sato, Koji; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Savic, Natascha; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Leigh; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schott, Matthias; Schouwenberg, Jeroen; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schulte, Alexandra; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shirabe, Shohei; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shope, David Richard; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sideras Haddad, Elias; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Siral, Ismet; Sivoklokov, Serguei; Sjölin, Jörgen; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smiesko, Juraj; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Joshua Wyatt; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Ian Michael; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Hong Ye; Sood, Alexander; Sopczak, Andre; Sopko, Vit; Sorin, Veronica; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Stark, Simon Holm; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Suster, Carl; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Swift, Stewart Patrick; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tanaka, Junichi; Tanaka, Masahiro; Tanaka, Reisaburo; Tanaka, Shuji; Tanioka, Ryo; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Paul; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Tornambe, Peter; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tu, Yanjun; Tudorache, Alexandra; Tudorache, Valentina; Tulbure, Traian Tiberiu; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turgeman, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Ucchielli, Giulia; Ueda, Ikuo; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usui, Junya; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valéry, Lo\\"ic; Valkar, Stefan; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vasquez, Gerardo; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veeraraghavan, Venkatesh; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vishwakarma, Akanksha; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Qing; Wang, Rui; Wang, Song-Ming; Wang, Tingting; Wang, Wenxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Weber, Stephen; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Michael David; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wobisch, Markus; Wolf, Tim Michael Heinz; Wolff, Robert; Wolter, Marcin Wladyslaw; Wolters, Helmut; Worm, Steven; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xi, Zhaoxu; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zacharis, Georgios; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Liqing; Zhang, Matt; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Yu; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Maosen; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zwalinski, Lukasz

    2017-04-20

    To probe the $Wtb$ vertex structure, top-quark and $W$-boson polarisation observables are measured from $t$-channel single-top-quark events produced in proton--proton collisions at a centre-of-mass energy of 8 TeV. The dataset corresponds to an integrated luminosity of 20.2 fb$^{-1}$, recorded with the ATLAS detector at the LHC. Selected events contain one isolated electron or muon, large missing transverse momentum and exactly two jets, with one of them identified as likely to contain a $b$-hadron. Stringent selection requirements are applied to discriminate $t$-channel single-top-quark events from background. The polarisation observables are extracted from asymmetries in angular distributions measured with respect to spin quantisation axes appropriately chosen for the top quark and the $W$ boson. The asymmetry measurements are performed at parton level by correcting the observed angular distributions for detector effects and hadronisation after subtracting the background contributions. The measured t...

  5. ILC Vertex Tracker R&D

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, Marco; Bussat, Jean-Marie; Contarato, Devis; Denes,Peter; Glesener, Lindsay; Greiner, Leo; Hooberman, Benjamin; Shuman,Derek; Tompkins, Lauren; Vu, Chinh; Bisello, Dario; Giubilato, Piero; Pantano, Devis; Costa, Marco; La Rosa, Alessandro; Bolla, Gino; Bortoletto, Daniela; Children, Isaac

    2007-10-01

    This document summarizes past achievements, current activities and future goals of the R&D program aimed at the design, prototyping and characterization of a full detector module, equipped with monolithic pixel sensors, matching the requirements for the Vertex Tracker at the ILC. We provide a plan of activities to obtain a demonstrator multi-layered vertex tracker equipped with sensors matching the ILC requirements and realistic lightweight ladders in FY11, under the assumption that ILC detector proto-collaborations will be choosing technologies and designs for the Vertex Tracker by that time. The R&D program discussed here started at LBNL in 2004, supported by a Laboratory Directed R&D (LDRD) grant and by funding allocated from the core budget of the LBNL Physics Division and from the Department of Physics at UC Berkeley. Subsequently additional funding has been awarded under the NSF-DOE LCRD program and also personnel have become available through collaborative research with other groups. The aim of the R&D program carried out by our collaboration is to provide a well-integrated, inclusive research effort starting from physics requirements for the ILC Vertex Tracker and addressing Si sensor design and characterization, engineered ladder design, module system issues, tracking and vertex performances and beam test validation. The broad scope of this program is made possible by important synergies with existing know-how and concurrent programs both at LBNL and at the other collaborating institutions. In particular, significant overlaps with LHC detector design, SLHC R&D as well as prototyping for the STAR upgrade have been exploited to optimize the cost per deliverable of our program. This activity is carried out as a collaborative effort together with Accelerator and Fusion Research, the Engineering and the Nuclear Science Divisions at LBNL, INFN and the Department of Physics in Padova, Italy, INFN and the Department of Physics in Torino, Italy and the Department

  6. Alignment strategy for the LHCb vertex locator

    CERN Document Server

    AUTHOR|(CDS)2075236

    2007-01-01

    LHCb is one of the four main experiments of the Large Hadron Collider (LHC) project, which will start at CERN in 2008. The experiment is primarily dedicated to B-Physics and hence requires precise vertex reconstruction. These requirements place strict constraints on the LHCb vertex locator (VELO) alignment. Additional challenges arise from the VELO being retracted between each fill of the LHC and from its unique circular disc R/$\\Phi$ strip geometry. This paper describes the software alignment procedure developed for the VELO, which is primarily based on a non-iterative method using a matrix inversion technique. The procedure is demonstrated with simulated events, and results obtained during runs in external test-beams are also presented.

  7. A 2 × 2 mm2 superconducting strip-line detector for high-performance time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Casaburi, A; Esposito, E; Ejrnaes, M; Cristiano, R; Suzuki, K; Ohkubo, M; Pagano, S

    2012-01-01

    We present the fabrication and characterization of the latest generation of superconducting strip-line detectors (SSLD) for application in time-of-flight mass spectrometer (TOF MS) of heavy molecules. The SSLD is realized in the parallel strip-line configuration to achieve a 2 × 2 mm 2 sensitive area. The parallel SSLD is mounted in a TOF MS and tested at 4.2 K under bombardment of lysozyme molecules. The detector exhibits output pulses with rise and fall times of 500 ps and 2.3 ns respectively. We also present measurements of the time evolution during the acquisition of the singly and doubly charged monomers and singly charged dimers peaks in the mass spectrum. We argue that the observed behavior proves that parallel SSLD can perform charge state discrimination. The achievement of a 2 × 2 mm 2 sensitive area with an output pulse rise time in the region of the sub-nanosecond and a fall time of a few nanoseconds is a milestone in the development of superconducting detectors for TOF MS applications because it addresses important issues such as high mass resolution and high-throughput analysis. (paper)

  8. A pixel unit-cell targeting 16 ns resolution and radiation hardness in a column read-out particle vertex detector

    International Nuclear Information System (INIS)

    Wright, M.; Millaud, J.; Nygren, D.

    1992-10-01

    A pixel unit cell (PUC) circuit architecture, optimized for a column read out architecture, is reported. Each PUC contains an integrator, active filter, comparator, and optional analog store. The time-over-threshold (TOT) discriminator allows an all-digital interface to the array periphery readout while passing an analog measure of collected charge. Use of (existing) radiation hard processes, to build a detector bump-bonded to a pixel readout array, is targeted. Here, emphasis is on a qualitative explanation of how the unique circuit implementation benefits operation for Super Collider (SSC) detector application

  9. ATLAS ITk Short Strip Prototype Module with Integrated DCDC Powering and Control Phase II Upgrade of the ATLAS Inner Tracker detector at the HL - LHC

    CERN Document Server

    Greenall, Ashley; The ATLAS collaboration

    2017-01-01

    The prototype Barrel module design, for the Phase II upgrade of the of the new Inner Tracker (ITk) detector at the LHC, has adopted an integrated low mass assembly featuring single-sided flexible circuits, with readout ASICs, glued to the silicon strip sensor. Further integration has been achieved by the attachment of module DCDC powering, HV sensor biasing switch and autonomous monitoring and control to the sensor. This low mass, integrated module approach benefits further in a reduced width stave structure to which the modules are attached. The results of preliminary electrical tests of such an integrated module will be presented.

  10. The ALICE forward multiplicity detector

    DEFF Research Database (Denmark)

    Holm Christensen, Christian; Gulbrandsen, Kristjan; Sogaard, Carsten

    2007-01-01

    The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4......The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4...

  11. Alignment of the LHCb Vertex Locator

    CERN Document Server

    Gersabeck, Marco

    2009-01-01

    LHCb will commence data taking as the first dedicated heavy flavour experiment at a hadron collider in 2008. A very high hit precision from its vertex detector (VELO) is essential to meet the tight requirements of vertex reconstruction in B-physics. The single hit precision of the VELO is better than 10 micron. However, the VELO is operated only 8 mm from the beam and must be retracted and reinserted each LHC fill. Hence, the detector places unique demands on its alignment algorithm. The partially assembled VELO system has already been tested in a beam test. The novel software alignment methods are presented together with their interplay with the metrology measurements. Results from Monte Carlo simulation studies are discussed and recent beam test results are shown that prove the method's precision at the micron level.

  12. The LHCb Vertex Locator Upgrade

    Science.gov (United States)

    Szumlak, T.

    2017-12-01

    The Large Hadron Collider beauty LHCb detector is a dedicated flavour physics experiment, designed to efficiently detect decays of b- and c-hadrons to perform precise studies of CP violation and rare decays. At the end of Run 2, many of the LHCb measurements will remain statistically dominated. In order to increase the trigger yield for purely hadronic channels, the hardware trigger will be removed, and the full detector will be read out at 40 MHz. This, in combination with the five-fold increase in luminosity necessitates radical changes to LHCb's electronics with entire subdetector replacements required in some cases. The Vertex Locator (VELO) surrounding the interaction region is used to reconstruct the proton-proton collision points (primary vertices) and decay vertices of long-lived particles (secondary vertices). The upgraded VELO will be equipped with silicon hybrid pixel sensors, each read out by VeloPix ASICs. The highest occupancy ASICs will have pixel hit rates of 900 Mhit/s and produce an output data rate of over 15 Gbit/s, with a total rate of 1.6 Tbit/s anticipated for the whole detector. Selected highlights of this challenging and ambitious project are described in this paper.

  13. Development and evaluation of test stations for the quality assurance of the silicon micro-strip detector modules for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Poettgens, M.

    2007-11-22

    CMS (Compact Muon Solenoid) is one of four large-scale detectors which will be operated at the LHC (Large Hadron Collider) at the European Laboratory for Particle Physics (CERN). For the search for new physics the reconstruction of the collision products and their properties is essential. In the innermost part of the CMS detector the traces of ionizing particles are measured utilizing a silicon tracker. A large fraction of this detector is equipped with silicon micro-strip modules which provide a precise space resolution in 1-dimension. A module consists of a sensor for detection of particles, the corresponding read-out electronics (hybrid) and a mechanical support structure. Since the 15,148 modules, which will be installed in the silicon micro-strip detector, have a total sensitive surface area of about 198 m{sup 2}, the inner tracker of CMS is the largest silicon tracking detector, which has ever been built. While the sensors and hybrids are produced in industry, the construction of the modules and the control of the quality is done by the members of the 21 participating institutes. Since the access to the silicon micro-strip tracker will be very limited after the installation in the CMS detector the installed modules must be of high quality. For this reason the modules are thoroughly tested and the test results are uploaded to a central database. By the development of a read-out system and the corresponding software the III. Physikalisches Institut made an important contribution for the electrical and functional quality control of hybrids and modules. The read-out system provides all features for the operation and test of hybrids and modules and stands out due to high reliability and simple handling. Because a very user-friedly and highly automated software it became the official test tool and was integrated in various test stands. The test stands, in which the read-out system is integrated in, are described and the tests which are implemented in the

  14. The Panda Strip Asic: Pasta

    Science.gov (United States)

    Lai, A.

    2018-01-01

    PASTA is the 64 channel front-end chip, designed in a 110 nm CMOS technology to read out the strip sensors of the Micro Vertex Detector (MVD) of the PANDA experiment. This chip provides high resolution timestamp and deposited charge information by means of the time-over-threshold technique. Its working principle is based on a predecessor, the TOFPET ASIC, that was designed for medical applications. A general restructuring of the architecture was needed, in order to meet the specific requirements imposed by the physics programme of PANDA, especially in terms of radiation tolerance, spatial constraints, and readout in absence of a first level hardware trigger. The first revision of PASTA is currently under evaluation at the Forschungszentrum Jülich, where a data acquisition system dedicated to the MVD prototypes has been developed. This paper describes the main aspect of the chip design, gives an overview of the data acquisition system used for the verification, and shows the first results regarding the performance of PASTA.

  15. Design and Construction of Precision Tooling for the Construction of Resistive Strip Micromegas Detectors for the ATLAS Small Wheel Upgrade Project

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00389964; The ATLAS collaboration

    2015-01-01

    Mechanical precision is a key-aspect of the $2~m^2$ high-rate capable Micromegas detectors for the upgrade of the Small Wheels of the ATLAS muon spectrometer. 32 SM2 quadruplets will be built by four German sites with cathodes and strip-anodes made of stable honeycomb sandwiches.\\\\ To achieve the required single plane resolution below $100\\mu m$ the deviation from planarity of a single detector plane must not exceed $80\\mu m$ in direction perpendicular to the precision coordinate. The global position of the readout strips has to be within $30\\mu m$ for a single readout-plane of three PCBs, as well as between all four planes of a quadruplet.\\\\ Precision tooling is used for the correct positioning of readout PCBs and readout sandwich planes. For quality control of the planarity of the sandwich planes a laser distance sensor combined with a coordinate measurement system has been developed. Deviation from planarity below 10 $\\mu$m can be easily resolved.\\\\ We will present key features of the challenging construct...

  16. Analysis of the $Wtb$ vertex from the measurement of triple differential angular decay rates of single top quarks produced in the $t$-channel at $\\sqrt{s}=$8 TeV with ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00354087

    2017-07-01

    The electroweak production and subsequent decay of single top quarks is determined by the properties of the $Wtb$ vertex, which can be described by the complex parameters of an effective Lagrangian. An analysis of angular distributions of the decay products of single top quarks produced in the $t$-channel constrains these parameters simultaneously. The thesis presents an analysis using 20.2 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of 8 TeV collected with the ATLAS detector at the LHC. The fraction $f_1$ of decays containing transversely polarised $W$ bosons is measured to be $f_1=0.296^{+0.048}_{-0.051}$ (stat. + syst.). The phase $\\delta_-$ between amplitudes for transversely and longitudinally polarised $W$ bosons recoiling against left-handed $b$-quarks, is measured to be $\\delta_- = 0.002\\pi^{+0.016\\pi}_{-0.017\\pi}$ (stat. + syst.), giving no indication of $CP$ violation. The fraction of longitudinal to transverse $W$ bosons accompanied by right-handed $b$-quarks are also const...

  17. An efficient, FPGA-based, cluster detection algorithm implementation for a strip detector readout system in a Time Projection Chamber polarimeter

    Science.gov (United States)

    Gregory, Kyle J.; Hill, Joanne E.; Black, J. Kevin; Baumgartner, Wayne H.; Jahoda, Keith

    2016-05-01

    A fundamental challenge in a spaceborne application of a gas-based Time Projection Chamber (TPC) for observation of X-ray polarization is handling the large amount of data collected. The TPC polarimeter described uses the APV-25 Application Specific Integrated Circuit (ASIC) to readout a strip detector. Two dimensional photo- electron track images are created with a time projection technique and used to determine the polarization of the incident X-rays. The detector produces a 128x30 pixel image per photon interaction with each pixel registering 12 bits of collected charge. This creates challenging requirements for data storage and downlink bandwidth with only a modest incidence of photons and can have a significant impact on the overall mission cost. An approach is described for locating and isolating the photoelectron track within the detector image, yielding a much smaller data product, typically between 8x8 pixels and 20x20 pixels. This approach is implemented using a Microsemi RT-ProASIC3-3000 Field-Programmable Gate Array (FPGA), clocked at 20 MHz and utilizing 10.7k logic gates (14% of FPGA), 20 Block RAMs (17% of FPGA), and no external RAM. Results will be presented, demonstrating successful photoelectron track cluster detection with minimal impact to detector dead-time.

  18. The LDC detector concept

    Indian Academy of Sciences (India)

    ), the large detector concept (LDC) is being developed. The main points of the LDC are a large volume gaseous tracking system, combined with high precision vertex detector and an extremely granular calorimeter. The main design force ...

  19. Scalar top study: Detector optimization

    Indian Academy of Sciences (India)

    Previous studies investigated the vertex detector design in scenarios with large mass differences between stop and neutralino, corresponding to large visible energy in the detector. In this study we investigate the tagging performance dependence on the vertex detector design in a scenario with small visible energy for the.

  20. Vertex routing models

    International Nuclear Information System (INIS)

    Markovic, D; Gros, C

    2009-01-01

    A class of models describing the flow of information within networks via routing processes is proposed and investigated, concentrating on the effects of memory traces on the global properties. The long-term flow of information is governed by cyclic attractors, allowing to define a measure for the information centrality of a vertex given by the number of attractors passing through this vertex. We find the number of vertices having a nonzero information centrality to be extensive/subextensive for models with/without a memory trace in the thermodynamic limit. We evaluate the distribution of the number of cycles, of the cycle length and of the maximal basins of attraction, finding a complete scaling collapse in the thermodynamic limit for the latter. Possible implications of our results for the information flow in social networks are discussed.

  1. The ARGUS vertex trigger

    International Nuclear Information System (INIS)

    Koch, N.; Kolander, M.; Kolanoski, H.; Siegmund, T.; Bergter, J.; Eckstein, P.; Schubert, K.R.; Waldi, R.; Imhof, M.; Ressing, D.; Weiss, U.; Weseler, S.

    1995-09-01

    A fast second level trigger has been developed for the ARGUS experiment which recognizes tracks originating from the interaction region. The processor compares the hits in the ARGUS Micro Vertex Drift Chamber to 245760 masks stored in random access memories. The masks which are fully defined in three dimensions are able to reject tracks originating in the wall of the narrow beampipe of 10.5 mm radius. (orig.)

  2. Characterization of a silicon strip detector for photon-counting spectral CT using monoenergetic photons from 40 keV to 120 keV

    Science.gov (United States)

    Liu, Xuejin; Bornefalk, Hans; Chen, Han; Danielsson, Mats; Karlsson, Staffan; Persson, Mats; Xu, Cheng; Huber, Ben

    2014-03-01

    Background: We are developing a segmented silicon strip detector that operates in photon-counting mode and allows pulse-height discrimination with 8 adjustable energy bins. In this work, we determine the energy resolution of the detector using monoenergetic x-ray radiation from 40 keV to 120 keV. We further investigate the effects of pulse pileup and charge sharing between detector channels that may lead to a decreased energy resolution. Methods: For each incident monochromatic x-ray energy, we obtain count spectra at different photon fluxes. These spectra corresponds to the pulse-height response of the detector and allow the determination of energy resolution and charge-sharing probability. The energy resolution, however, is influenced by signal pileup and charge sharing. Both effects are quantified using Monte Carlo simulations of the detector that aim to reproduce the conditions during the measurements. Results: The absolute energy resolution is found to increase from 1.7 to 2.1 keV for increasing energies 40 keV to 120 keV at the lowest measured photon flux. The effect of charge sharing is found to increase the absolute energy resolution by a factor of 1.025 at maximum. This increase is considered as negligibly small. The pileup of pulses leads to a deterioration rate of the energy resolution of 4 · 10-3 keV Mcps-1 mm2, corresponding to an increase of 0.04keV per 10 Mcps increase of the detected count rate.

  3. A Silicon-Strip Detector for Photon-Counting Spectral CT: Energy Resolution From 40 keV to 120 keV

    Science.gov (United States)

    Liu, Xuejin; Bornefalk, Hans; Chen, Han; Danielsson, Mats; Karlsson, Staffan; Persson, Mats; Xu, Cheng; Huber, Ben

    2014-06-01

    We are developing a segmented silicon-strip detector for spectral computed tomography. The detector operates in photon-counting mode and allows pulse-height discrimination with 8 adjustable energy bins. In this work, we determine the energy resolution of a detector module using monoenergetic x-rays from 40 keV to 120 keV, provided at the European Synchrotron Radiation Facility, Grenoble. For each incident x-ray energy, pulse height spectra at different input photon fluxes are obtained. We investigate changes of the energy resolution due to charge sharing between pixels and pulse pileup. The different incident energies are used to channel-wise calibrate the pulse-height response in terms of signal gain and offset and to probe the homogeneity of the detector module. The detector shows a linear pulse-height response in the energy range from 40 keV to 120 keV. The gain variation among the channels is below 4%, whereas the variation of the offsets is on the order of 1 keV. We find an absolute energy resolution ( σE) that degrades from 1.5 keV to 1.9 keV with increasing x-ray energy from 40 keV to 100 keV. With increasing input count rate, σE degrades by approximately 4 ·10-3 keV Mcps-1 mm2, which is, within error bars, the same for the different energies. The effect of charge sharing on the width of the response peak is found to be negligible.

  4. Vertex Reconstruction and Performance in ATLAS

    CERN Document Server

    Whitmore, Ben William; The ATLAS collaboration

    2017-01-01

    Efficient and precise reconstruction of the primary vertices in LHC collisions is essential in both the reconstruction of the full kinematic properties of a hard-scatter event and of soft interactions as a measure of the amount of pile-up. The reconstruction of the primary vertices in the busy, high pile up environment of the LHC is a challenging task. The challenges and novel methods developed by the ATLAS experiment to reconstruct vertices in such environments will be presented. The performance of the current vertexing algorithms using Run-2 data will be presented and compared to results from simulation. Additionally, data-driven methods to evaluate vertex resolution, and details of upgrades to the ATLAS inner detector will be presented.

  5. The ITk strips tracker for the phase-II upgrade of the ATLAS detector of the HL-LHC

    CERN Document Server

    Koutoulaki, Afroditi; The ATLAS collaboration

    2016-01-01

    The inner detector of the present ATLAS detector has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the next-generation tracking detector proposed for the High Luminosity LHC (HL-LHC), the so-called ATLAS Phase-II Upgrade, the particle densities and radiation levels will be higher by as much as a factor of ten. The new detectors must be faster, they need to be more highly segmented, and covering more area. They also need to be more resistant to radiation, and they require much greater power delivery to the front-end systems. At the same time, they cannot introduce excess material which could undermine performance. For those reasons, the inner tracker of the ATLAS detector must be redesigned and rebuilt completely. The design of the ATLAS Upgrade inner tracker (ITk) has already been defined. It consists of several layers of silicon particle detectors. The innermost layers will be composed of silicon pixel sensors, and the outer layers will consist of s...

  6. Analysis of the Wtb vertex from the measurement of triple-differential angular decay rates of single top quarks produced in the t-channel at √{s}=8 TeV with the ATLAS detector

    Science.gov (United States)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Akerstedt, H.; Åkesson, T. P. A.; Akilli, E.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albicocco, P.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M. I.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Araujo Ferraz, V.; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagnaia, P.; Bahrasemani, H.; Baines, J. T.; Bajic, M.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barkeloo, J. T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Beyer, J.; Bianchi, R. M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao De Mendizabal, J.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bolz, A. E.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.

    2017-12-01

    The electroweak production and subsequent decay of single top quarks in the t-channel is determined by the properties of the Wtb vertex, which can be described by the complex parameters of an effective Lagrangian. An analysis of a triple-differential decay rate in t-channel production is used to simultaneously determine five generalised helicity fractions and phases, as well as the polarisation of the produced top quark. The complex parameters are then constrained. This analysis is based on 20.2 fb-1 of proton-proton collision data at a centre-of-mass energy of 8 TeV collected with the ATLAS detector at the LHC. The fraction of decays containing transversely polarised W bosons is measured to be f 1 = 0.30 ± 0.05. The phase between amplitudes for transversely and longitudinally polarised W bosons recoiling against left-handed b-quarks is measured to be δ - = 0.002 π + 0.017 π + 0.016 π , giving no indication of CP violation. The fractions of longitudinal or transverse W bosons accompanied by right-handed b-quarks are also constrained. Based on these measurements, limits are placed at 95% CL on the ratio of the complex coupling parameters Re [ g R/V L ∈ [-0.12, 0.17] and Im [ g R/VL ∈ [-0.07, 0.06]. Constraints are also placed on the ratios | V R/ V L| and | g L/ V L|. In addition, the polarisation of single top quarks in the t-channel is constrained to be P > 0.72 (95% CL). None of the above measurements make assumptions about the value of any of the other parameters or couplings and all of them are in agreement with the Standard Model. [Figure not available: see fulltext.

  7. A measurement of the Z0 hadronic branching fraction to bottom quarks and the charged multiplicity of bottom quark events using precision vertex detectors at Ecm = 91 GeV

    International Nuclear Information System (INIS)

    Koetke, D.S.

    1992-06-01

    Using the precision vertex detectors of the Mark 2 at the SLC, an impact parameter tag was developed to select a sample of hadronic Z degree decays enriched in its fraction of bottom quark events. The nominal tagging method requires that there be at least three tracks whose impact parameters are inconsistent with the track having originated at the electron-position interaction point. A tagging efficiency for b bar b events of 50% with a enriched sample purity of 85% was achieved. This impact parameter tag was used to measure the fraction hadronic Z degree decays which produce b bar b events, F b . It is found that F b = 0.232 -0.045 +0.053 (stat) -0.021 +0.025 (syst). This result is consistent with those found using other tagging methods as well as the Standard Model prediction of 0.217. The b bar b-enriched event sample was also used to measure the difference between the average charged multiplicity of b bar b events and that of all hadronic Z degree decays, δ bar n b = 2.11 ± 1.82(stat) ± 0.57(syst). Using previous measurements of the total hadronic charged multiplicity, the corresponding total multiplicity for b bar b events is bar n b =23.05 ± 1.82 (stat) ± 0.60 (syst). Subtracting the contribution to the multiplicity from B hadron decays yields the multiplicity of the b bar b non-leading system, bar n nl = 12.04 ± 1.82 (stat) ± 0.63(syst). Comparing this non-leading multiplicity to the total hadronic multiplicity data at lower energy supports the hypothesis that the non-leading particle production is independent of the flavor of the initial quarks

  8. Development of a silicon tracking and vertex detection system for the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Heuser, Johann M.

    2007-01-01

    The compressed baryonic matter (CBM) experiment is a fixed-target heavy-ion spectrometer planned at the future international Facility for Antiproton and Ion Research (FAIR) at GSI. The CBM research program will explore the phase diagram of Quantum Chromo Dynamics (QCD) in the region of high baryon chemical potentials, in other words nuclear matter at extreme densities. Matter of such forms is believed to exist in the interior of neutron stars and in the cores of certain types of supernovae. In the laboratory, the dense nuclear medium is created in collisions of heavy-ion beams with nuclear targets. With beam intensities of up to 10 12 ions per pulse, beam energies up to 45 GeV/nucleon, and high availability the SIS-300 synchrotron of FAIR will offer unique opportunities for this research. The CBM detector will identify hadrons and leptons in nuclear collisions with up to 1000 charged particles at event rates up to 10 MHz. The experiment will be optimized in particular for the detection of rare probes, like hadronic decays of D mesons and leptonic decays of light vector mesons, that can yield information on the initial dense phase of the collisions. The challenge is to accomplish in this environment high-resolution charged particle tracking, momentum measurement and secondary vertex selection with a silicon tracking and vertex detection system, the central component of the CBM detector. The system requirements include a very low material budget, radiation tolerant sensors with high spatial resolution, and a fast readout compatible with high-level-only triggers. The paper discusses the concept of the silicon detection system, the optimization of its layout, and the R and D on micro-strip and pixel sensors as well as front-end electronics for the building blocks of the detector stations

  9. Recent T980 Crystal Collimation Studies at the Tevatron Exploiting a Pixel Detector System and a Multi-strip Crystal Array

    CERN Document Server

    Still, D; Carrigan, R A; Drozhdin, A I; Johnson, T R; Mokhov, N V; Previtali, V; Rivera, R; Shiltsev, V; Zagel, J; Zvoda, V V; Mirarchi, D; Redaelli, S; Guidi, V; Mazzolari, A; Ivanov, Y M; Yazynin, I A; Chesnokov, Y A

    2012-01-01

    With the shutdown of the Tevatron, the T-980 crystal collimation experiment at Fermilab has been successfully completed. Results of dedicated beam studies in May 2011 are described in this paper. For these studies, two multi-strip crystals were installed in the vertical goniometer and an O-shaped crystal installed in a horizontal goniometer. A two-plane CMS pixel detector was also installed in order to enhance the experiment with the capability to image the profile of crystal channeled or multiple volume reflected beam. The experiment successfully imaged channeled beam from a crystal for 980-GeV protons for the first time. This new enhanced hardware yielded impressive results. The performance and characterization of the crystals studied have been very reproducible over time and consistent with simulations.

  10. Analysis and comparison of the breakdown performance of semi-insulator and dielectric passivated Si strip detectors

    Science.gov (United States)

    Ranjan, Kirti; Bhardwaj, Ashutosh; Namrata; Chatterji, Sudeep; Srivastava, Ajay K.; Shivpuri, R. K.

    2002-12-01

    The harsh radiation environment in future high-energy physics (HEP) experiments like LHC provides a challenging task to the performance of Si microstrip detectors. Normal operating condition for silicon detectors in HEP experiments are in most cases not as favourable as for experiments in nuclear physics. In HEP experiments the detector may be exposed to moisture and other adverse atmospheric environment. It is therefore utmost important to protect the sensitive surfaces against such poisonous effects. These instabilities can be nearly eliminated and the performance of Si detectors can be improved by implementing suitably passivated metal-overhang structures. This paper presents the influence of the relative permittivity of the passivant on the breakdown performance of the Si detectors using computer simulations. The semi-insulator and the dielectric passivated metal-overhang structures are compared under optimal conditions. The influence of various parameters such as passivation layer thickness, junction depth, metal-overhang width, device depth, substrate resistivity and fixed oxide charge on the junction breakdown voltage of these structures is extensively studied. The results presented in this work clearly demonstrate the superiority of the metal-overhang structure design employing semi-insulator passivated structures over dielectric passivated ones in realising a given breakdown voltage. The effect of bulk damage caused by hadron environment in the passivated Si detectors is simulated, to a first order approximation, by varying effective carrier concentration (calculated using Hamburg Model) and minority carrier lifetime. This approach allows getting an insight of the device behaviour after radiation damage by evaluating the electric field distribution, and thus proves helpful in predicting some interesting results.

  11. micro strip gas chamber

    CERN Multimedia

    1998-01-01

    About 16 000 Micro Strip Gas Chambers like this one will be used in the CMS tracking detector. They will measure the tracks of charged particles to a hundredth of a millimetre precision in the region near the collision point where the density of particles is very high. Each chamber is filled with a gas mixture of argon and dimethyl ether. Charged particles passing through ionise the gas, knocking out electrons which are collected on the aluminium strips visible under the microscope. Such detectors are being used in radiography. They give higher resolution imaging and reduce the required dose of radiation.

  12. Prototype system for proton beam range measurement based on gamma electron vertex imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Rim [Neutron Utilization Technology Division, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Kim, Sung Hun; Park, Jong Hoon [Department of Nuclear Engineering, Hanyang University, Seongdong-gu, Seoul 04763 (Korea, Republic of); Jung, Won Gyun [Heavy-ion Clinical Research Division, Korean Institute of Radiological & Medical Sciences, Seoul 01812 (Korea, Republic of); Lim, Hansang [Department of Electronics Convergence Engineering, Kwangwoon University, Seoul 01897 (Korea, Republic of); Kim, Chan Hyeong, E-mail: chkim@hanyang.ac.kr [Department of Nuclear Engineering, Hanyang University, Seongdong-gu, Seoul 04763 (Korea, Republic of)

    2017-06-11

    In proton therapy, for both therapeutic effectiveness and patient safety, it is very important to accurately measure the proton dose distribution, especially the range of the proton beam. For this purpose, recently we proposed a new imaging method named gamma electron vertex imaging (GEVI), in which the prompt gammas emitting from the nuclear reactions of the proton beam in the patient are converted to electrons, and then the converted electrons are tracked to determine the vertices of the prompt gammas, thereby producing a 2D image of the vertices. In the present study, we developed a prototype GEVI system, including dedicated signal processing and data acquisition systems, which consists of a beryllium plate (= electron converter) to convert the prompt gammas to electrons, two double-sided silicon strip detectors (= hodoscopes) to determine the trajectories of those converted electrons, and a plastic scintillation detector (= calorimeter) to measure their kinetic energies. The system uses triple coincidence logic and multiple energy windows to select only the events from prompt gammas. The detectors of the prototype GEVI system were evaluated for electronic noise level, energy resolution, and time resolution. Finally, the imaging capability of the GEVI system was tested by imaging a {sup 90}Sr beta source, a {sup 60}Co gamma source, and a 45-MeV proton beam in a PMMA phantom. The overall results of the present study generally show that the prototype GEVI system can image the vertices of the prompt gammas produced by the proton nuclear interactions.

  13. Prototype system for proton beam range measurement based on gamma electron vertex imaging

    Science.gov (United States)

    Lee, Han Rim; Kim, Sung Hun; Park, Jong Hoon; Jung, Won Gyun; Lim, Hansang; Kim, Chan Hyeong

    2017-06-01

    In proton therapy, for both therapeutic effectiveness and patient safety, it is very important to accurately measure the proton dose distribution, especially the range of the proton beam. For this purpose, recently we proposed a new imaging method named gamma electron vertex imaging (GEVI), in which the prompt gammas emitting from the nuclear reactions of the proton beam in the patient are converted to electrons, and then the converted electrons are tracked to determine the vertices of the prompt gammas, thereby producing a 2D image of the vertices. In the present study, we developed a prototype GEVI system, including dedicated signal processing and data acquisition systems, which consists of a beryllium plate (= electron converter) to convert the prompt gammas to electrons, two double-sided silicon strip detectors (= hodoscopes) to determine the trajectories of those converted electrons, and a plastic scintillation detector (= calorimeter) to measure their kinetic energies. The system uses triple coincidence logic and multiple energy windows to select only the events from prompt gammas. The detectors of the prototype GEVI system were evaluated for electronic noise level, energy resolution, and time resolution. Finally, the imaging capability of the GEVI system was tested by imaging a 90Sr beta source, a 60Co gamma source, and a 45-MeV proton beam in a PMMA phantom. The overall results of the present study generally show that the prototype GEVI system can image the vertices of the prompt gammas produced by the proton nuclear interactions.

  14. Track and Vertex Reconstruction in the ATLAS Experiment

    CERN Document Server

    Lacuesta, V; The ATLAS collaboration

    2012-01-01

    The track and vertex reconstruction algorithms of the ATLAS Inner Detector have demonstrated excellent performance in the early data from the LHC. However, the rapidly increas- ing number of interactions per bunch crossing introduces new challenges both in computational aspects and physics performance. The combination of both silicon and gas based detectors provides high precision impact parameter and momentum measurement of charged particles, with high efficiency and small fake rate. Vertex reconstruction is used to identify with high efficiency the hard scattering process and to measure the amount of pile-up interactions, both aspects are cru- cial for many physics analyses. The performance of track and vertex reconstruction efficiency and resolution achieved in the 2011 and 2012 data-taking period are presented.

  15. Track and Vertex Reconstruction in the ATLAS Experiment

    CERN Document Server

    Lacuesta, V; The ATLAS collaboration

    2012-01-01

    The track and vertex reconstruction algorithms of the ATLAS Inner Detector have demonstrated excellent performance in the early data from the LHC. However, the rapidly increas- ing number of interactions per bunch crossing introduces new challenges both in computational aspects and physics performance. The combination of both silicon and gas based detectors pro- vides high precision impact parameter and momentum measurement of charged particles, with high efficiency and small fake rate. Vertex reconstruction is used to identify with high efficiency the hard scattering process and to measure the amount of pile-up interactions, both aspects are cru- cial for many physics analyses. The performance of track and vertex reconstruction efficiency and resolution achieved in the 2011 and 2012 data-taking period are presented.

  16. Track and vertex reconstruction in the ATLAS experiment

    International Nuclear Information System (INIS)

    Lacuesta, V

    2013-01-01

    The track and vertex reconstruction algorithms of the ATLAS Inner Detector have demonstrated excellent performance in the early data from the LHC. However, the rapidly increasing number of interactions per bunch crossing introduces new challenges both in computational aspects and physics performance. The combination of both silicon and gas based detectors provides high precision impact parameter and momentum measurement of charged particles, with high efficiency and small fake rate. Vertex reconstruction is used to identify with high efficiency the hard scattering process and to measure the amount of pile-up interactions, both aspects are crucial for many physics analyses. The performance of track and vertex reconstruction efficiency and resolution achieved in the 2011 and 2012 data-taking period are presented.

  17. Measurement of Rb Using a Vertex Mass Tag

    International Nuclear Information System (INIS)

    Steiner, R.; Benvenuti, A.C.; Coller, J.A.; Hedges, S.J.; Johnson, A.S.; Shank, J.T.; Whitaker, J.S.; Allen, N.J.; Cotton, R.; Dervan, P.J.; Hasan, A.; McKemey, A.K.; Watts, S.J.; Caldwell, D.O.; Lu, A.; Yellin, S.J.; Cavalli-Sforza, M.; Coyne, D.G.; Fernandez, J.P.; Liu, X.; Reinertsen, P.L.; Schalk, T.; Schumm, B.A.; DOliveira, A.; Johnson, R.A.; Meadows, B.T.; Nussbaum, M.; Dima, M.; Harton, J.L.; Smy, M.B.; Staengle, H.; Wilson, R.J.; Baranko, G.; Fahey, S.; Fan, C.; Krishna, N.M.; Lauber, J.A.; Nauenberg, U.; Wagner, D.L.; Bazarko, A.O.; Bolton, T.; Rowson, P.C.; Shaevitz, M.H.; Camanzi, B.; Mazzucato, E.; Piemontese, L.; Calcaterra, A.; De Sangro, R.; Peruzzi, I.; Piccolo, M.; Eisenstein, B.I.; Gladding, G.; Karliner, I.; Shapiro, G.; Steiner, H.; Bardon, O.; Burrows, P.N.; Busza, W.; Cowan, R.F.; Dong, D.N.; Fero, M.J.; Gonzalez, S.; Kendall, H.W.; Lath, A.; Lia, V.; Osborne, L.S.; Quigley, J.; Taylor, F.E.; Torrence, E.; Verdier, R.; Williams, D.C.

    1998-01-01

    We report a new measurement of R b =Γ Z 0 →bbar b /Γ Z 0 →hadrons using a double tag technique, where the b hemisphere selection is based on the reconstructed mass of the B hadron decay vertex. The measurement was performed using a sample of 130x10 3 hadronic Z 0 events, collected with the SLD detector at SLC. The method utilizes the 3D vertexing abilities of the CCD pixel vertex detector and the small stable SLC beams to obtain a high b -tagging efficiency and purity. We obtain R b =0.2142±0.0034(stat) ±0.0015(syst)±0.0002( R c ) . copyright 1998 The American Physical Society

  18. Representing vertex-transitive Vertex-transitive graphs on Groupoids

    African Journals Online (AJOL)

    Vertex-transitive graphs are one of the most favoured class of graphs in modelling scientific phenomena if symmetry is at issue. An understanding of these graphs should, therefore, be an obvious undertaking. Here, we present a characterisation of vertex-transitive graphs as left loop graphs and expose the measure of ...

  19. A fast, low-power, 6-bit SAR ADC for readout of strip detectors in the LHCb Upgrade experiment.

    CERN Document Server

    Firlej, M; Idzik, M; Moron, J; Swientek, K

    2014-01-01

    The readout of silicon strip sensors in the upgraded Tracker System of Large Hadron Collider beauty (LHCb) experiment will require a novel complex Application Specific Integrated Circuit (ASIC). The ASIC will extract and digitise analogue signal from the sensor and subsequently will perform digital processing and serial data transmission. One of the key processing blocks, placed in each channel, will be an Analogue to Digital Converter (ADC). A prototype of fast, low-power 6-bit Successive Approximation Register (SAR) ADC was designed, fabricated and tested. The measurements of ADC prototypes confirmed simulation results showing excellent overall performance. In particular, very good resolution with Effective Number Of Bits (ENOB) 5.85 was obtained together with very low power consumption of 0.35 mW at 40 MS/s sampling rate. The results of the performed static and dynamic measurements confirm excellent ADC operation for higher sampling rates up to 80 MS/s.

  20. A fast, low-power, 6-bit SAR ADC for readout of strip detectors in the LHCb Upgrade experiment

    Science.gov (United States)

    Firlej, M.; Fiutowski, T.; Idzik, M.; Moron, J.; Swientek, K.

    2014-07-01

    The readout of silicon strip sensors in the upgraded Tracker System of Large Hadron Collider beauty (LHCb) experiment will require a novel complex Application Specific Integrated Circuit (ASIC). The ASIC will extract and digitise analogue signal from the sensor and subsequently will perform digital processing and serial data transmission. One of the key processing blocks, placed in each channel, will be an Analogue to Digital Converter (ADC). A prototype of fast, low-power 6-bit Successive Approximation Register (SAR) ADC was designed, fabricated and tested. The measurements of ADC prototypes confirmed simulation results showing excellent overall performance. In particular, very good resolution with Effective Number Of Bits (ENOB) 5.85 was obtained together with very low power consumption of 0.35 mW at 40 MS/s sampling rate. The results of the performed static and dynamic measurements confirm excellent ADC operation for higher sampling rates up to 80 MS/s.

  1. B Decay Charm Counting via Topological Vertexing

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Aaron S

    2001-10-15

    We present a new and unique measurement of the branching fractions of b hadrons to states with 0, 1, and 2 open charm hadrons, using a sample of 350,000 hadronic Z{sup 0} decays collected during the SLD/SLC 97-98 run. The method takes advantage of the excellent vertexing resolution of the VXD3, a pixel-based CCD vertex detector, which allows the separation of B and cascade D decay vertices. A fit of the vertex count and the decay length distributions to distribution shapes predicted by Monte Carlo simulation allows the extraction of the inclusive branching fractions. We measure: BR(B {yields} (0D)X) = (3.7{+-}1.1(stat) {+-} 2.1(syst))%; and BR(B {yields} (2D)X) = (17.9{+-}1.4(stat) {+-} 3.3(syst))% where B and D represent mixtures of open b and open c hadrons. The corresponding charm count, N{sub c} = 1.188 {+-} 0.010 {+-} 0.040 {+-} 0.006 is consistent with previous measurement averages but slightly closer to theoretical expectations.

  2. The Mark II Vertex Drift Chamber

    International Nuclear Information System (INIS)

    Alexander, J.P.; Baggs, R.; Fujino, D.

    1989-03-01

    We have completed constructing and begun operating the Mark II Drift Chamber Vertex Detector. The chamber, based on a modified jet cell design, achieves 30 μm spatial resolution and 2 gas mixtures. Special emphasis has been placed on controlling systematic errors including the use of novel construction techniques which permit accurate wire placement. Chamber performance has been studied with cosmic ray tracks collected with the chamber located both inside and outside the Mark II. Results on spatial resolution, average pulse shape, and some properties of CO 2 mixtures are presented. 10 refs., 12 figs., 1 tab

  3. Fast simulation and topological vertex finding in JAVA

    International Nuclear Information System (INIS)

    Walkowiak, Wolfgang

    2001-01-01

    An overview of the fast Monte Carlo simulation for NLC detector studies as currently provided in the Java Analysis Studio environment is presented. Special emphasis is given to the simulation of tracks. In addition, the SLD collaboration's topological vertex finding algorithm (ZVTOP) has been implemented in the Java Analysis Studio framework

  4. SVT: an online silicon vertex tracker for the CDF upgrade

    International Nuclear Information System (INIS)

    Bardi, A.; Belforte, S.; Berryhill, J.

    1997-07-01

    The SVT is an online tracker for the CDF upgrade which will reconstruct 2D tracks using information from the Silicon VerteX detector (SVXII) and Central Outer Tracker (COT). The precision measurement of the track impact parameter will then be used to select and record large samples of B hadrons. We discuss the overall architecture, algorithms, and hardware implementation of the system

  5. Modeling and simulation of Positron Emission Mammography (PEM) based on double-sided CdTe strip detectors

    OpenAIRE

    Özşahin, İlker; Ünlü, Mehmet Zübeyir

    2014-01-01

    Breast cancer is the most common leading cause of cancer death among women. Positron Emission Tomography (PET) Mammography, also known as Positron Emission Mammography (PEM), is a method for imaging primary breast cancer. Over the past few years, PEMs based on scintillation crystals dramatically increased their importance in diagnosis and treatment of early stage breast cancer. However, these detectors have significant limitations like poor energy resolution resulting with false-negative resu...

  6. The CMS Silicon Strip Tracker

    CERN Document Server

    Azzurri, P

    2005-01-01

    With over 200 square meters of sensitive Silicon and almost 10 million readout channels, the Silicon Strip Tracker of the CMS experiment at the LHC will be the largest Silicon strip detector ever built. The design, construction and expected performance of the CMS Tracker is reviewed in the following.

  7. Micro vertex detector design for collider geometries

    International Nuclear Information System (INIS)

    Atkinson, M.; Crennell, D.; Fisher, C.M.; Hughes, P.; Kurtz, N.

    1984-05-01

    Previously the analysis of fixed target jet events using a scintillating optical fibre target to provide a projection of the topology on the plane transverse to the event axis has been considered. It was argued that this transverse plane projection is optimal for the detection of charm or beauty particle decay vertices. The idea is generalised to a jet analysis in a collider geometry particularly when associated with a high Psub(perpendicular to) or missing Esub(T) trigger. This report proposes a simple arrangement of fibres to give high precision track elements in the transverse plane projection coupled with a fast read-out capability. The principle physics aim of the design is to provide a tag for selecting top quark jets by detecting a beauty flavoured particle in the jet. (U.K.)

  8. Status of the CDF silicon detector

    Science.gov (United States)

    Bolla, Gino

    CDF is a collider experiment that is running at the Tevatron. The core of the CDF detector is an 8 layer silicon micro strip tracker. There are 722,432 active strips with pitches that range from 25 to 140 μm. This device is an essential part of the heavy flavor tagging and forward tracking capabilities of the experiment and it is one of the largest silicon detectors in present use by an HEP experiment. A of the experience in commissioning and operating this double-sided detector during the first 2 years of Run II is presented. A description of the encountered failure modes follows a general view of the design. After more than 2 years of data taking, we report on the performance of the tracker and its effect on physics analyses. A short description of the SVT, the level 2 Silicon Vertex Trigger, will be given as well. PACS: 29.40.GX Tracking and position sensitive detectors - 29.40.Wk Solid-state detectors

  9. ATLAS Inner Detector: Commissioning with Cosmics Data

    CERN Document Server

    The ATLAS collaboration

    2009-01-01

    The ATLAS experiment at the CERN Large Hadron Collider (LHC) has started taking data last autumn with the inauguration of the LHC. Determination of vertex position and charged particle tracks is performed in the Inner Detector which consists of pixel and microstrip Silicon sensors and transition radiation tubes. In this talk construction and commissioning of these three detectors will be presented. The Pixel Detector is the innermost detector of the ATLAS experiment with approx. 80 million readout channels. After connection of cooling and services and verification of their operation the ATLAS Pixel Detector is now in the final stage of its commissioning phase. Prior to the first beams expected in Autumn 2009, a full characterization of the detector is performed. The SemiConductor Tracker (SCT) is made up from silicon micro-strip detectors processed in the planar p-in-n technology. Sensors are assembled into 4000 modules with 6 million readout channels. The completed SCT detector was operated for many months u...

  10. The LHCb Vertex Locator

    CERN Document Server

    Eckstein, D

    2003-01-01

    The dedicated CP violation experiment at the LHC, LHCb, will be equipped with a novel silicon detector (VELO). The VELO will provide precise measurements of tracks from displaced $b$-vertices and will allow to trigger on them. The entire detector will be housed in a mobile secondary vacuum system, and after the injection and stabilisation of the beams each fill, the silicon detectors will move inwards and approach to within $7\\,$mm of the beams. In order to fulfil the trigger requirements, the VELO must combine in an unprecedented way the use of high resolution silicon detectors and large CPU farms. The extreme, non-uniform radiation environment puts additional constraints on the sensor design. The design of the VELO is described, along with the R\\&D of the silicon sensors and its production status.

  11. The VELO (VErtex LOcator) at the LHCb experiment

    CERN Document Server

    De Capua, S.

    2008-01-01

    The LHCb silicon vertex locator (VELO) is an array of silicon planes installed in a retractable roman pot system, which will enable the LHCb experiment to reconstruct and trigger on b-hadrons produced in collisions at the LHC. The VELO will be also used to attempt measuring the absolute luminosity with a novel method based on vertex reconstruction of beam gas interactions. In this paper the VELO system, its construction and the results from the commissioning phase are presented. The options for a possible upgraded detector are also discussed.

  12. LHCb siliicon detectors: the Run 1 to Run 2 transition and first experience of Run 2

    CERN Document Server

    Rinnert, Kurt

    2015-01-01

    LHCb is a dedicated experiment to study New Physics in the decays of heavy hadrons at the Large Hadron Collider (LHC) at CERN. The detector includes a high precision tracking system consisting of a silicon-strip vertex detector (VELO) surrounding the pp interaction region, a large- area silicon-strip detector located upstream of a dipole magnet (TT), and three stations of silicon- strip detectors (IT) and straw drift tubes placed downstream (OT). The operational transition of the silicon detectors VELO, TT and IT from LHC Run 1 to Run 2 and first Run 2 experiences will be presented. During the long shutdown of the LHC the silicon detectors have been maintained in a safe state and operated regularly to validate changes in the control infrastructure, new operational procedures, updates to the alarm systems and monitoring software. In addition, there have been some infrastructure related challenges due to maintenance performed in the vicinity of the silicon detectors that will be discussed. The LHCb silicon dete...

  13. Silicon microstrip detector development in the Institute for High Energy Physics Zeuthen, GDR

    International Nuclear Information System (INIS)

    Lange, W.; Nowak, W.D.; Truetzschler, K.

    1990-01-01

    This paper reports that in regard of the growing interest to study short living particles demanding for high resolution vertex detectors the authors started to build Si microstrip detectors. The first detector generation was characterized by a small area of silicon and a readout via printed circuit board fan out. Now they can assemble detectors with larger areas and VLSI readout. A special cleanroom has been built. Equipment and tools necessary are available. Silicon wafers and thick film hybrid circuits are fabricated under collaboration by the GDR industry. Applications of their detectors were several test-runs at CERN to calibrate the L3 time expansion chamber (TEC) and the L3 muon chambers. A 10-layer telescope is designed now and it is planned to calibrate a high resolution scintillation fiber target. Future applications will be high resolution vertex detectors, e.g. L3 upgrading (LEP, CERN) or KEDR (VEPP-5, Novosibirsk). Further investigations will concern AC coupled strip detectors (single and double sided) and pixel and/or pad detectors

  14. Photosensitive Strip RETHGEM

    CERN Document Server

    Peskov, Vladimir; Nappi, E.; Oliveira, R.; Paic, G.; Pietropaolo, F.; Picchi, P.

    2008-01-01

    An innovative photosensitive gaseous detector, consisting of a GEM like amplification structure with double layered electrodes (instead of commonly used metallic ones) coated with a CsI reflective photocathode, is described. In one of our latest designs, the inner electrode consists of a metallic grid and the outer one is made of resistive strips; the latter are manufactured by a screen printing technology on the top of the metallic strips grid The inner metallic grid is used for 2D position measurements whereas the resistive layer provides an efficient spark protected operation at high gains - close to the breakdown limit. Detectors with active areas of 10cm x10cm and 10cm x20cm were tested under various conditions including the operation in photosensitive gas mixtures containing ethylferrocene or TMAE vapors. The new technique could have many applications requiring robust and reliable large area detectors for UV visualization, as for example, in Cherenkov imaging devices.

  15. Performance of the CLAS12 Silicon Vertex Tracker modules

    Energy Technology Data Exchange (ETDEWEB)

    Antonioli, Mary Ann [JLAB; Boiarinov, Serguie; Bonneau, Peter R. [JLAB; Elouadrhiri, Latifa [JLAB; Eng, Brian J. [JLAB; Gotra, Yuri N. [JLAB; Kurbatov, Evgeny O. [Moscow State U.; Leffel, Mindy A. [JLAB; Mandal, Saptarshi [JLAB; McMullen, Marc E. [JLAB; Merkin, Mikhail M. [Moscow State U.; Raydo, Benjamin J. [JLAB; Teachey, Robert W, [JLAB; Tucker, Ross J. [Arizona State U.; Ungaro, Maurizio [JLAB; Yegneswaran, Amrit S. [JLAB; Ziegler, Veronique [JLAB

    2013-12-01

    For the 12 GeV upgrade, the CLAS12 experiment has designed a Silicon Vertex Tracker (SVT) using single sided microstrip sensors fabricated by Hamamatsu. The sensors have graded angle design to minimize dead areas and a readout pitch of 156{micro}m, with intermediate strip. Double sided SVT module hosts three daisy-chained sensors on each side with a full strip length of 33 cm. There are 512 channels per module read out by four Fermilab Silicon Strip Readout (FSSR2) chips featuring data driven architecture, mounted on a rigid-flex hybrid. Modules are assembled on the barrel using unique cantilevered geometry to minimize the amount of material in the tracking volume. Design and performance of the SVT modules are presented, focusing on results of electrical measurements.

  16. The silicon vertex locator for the LHCb upgrade

    CERN Document Server

    Head, Tim

    2014-01-01

    The upgrade of the LHCb experiment, planned for 2018, will transform the entire readout to a triggerless system being read out at 40 MHz. The upgraded silicon vertex detector (VELO) must be light weight, radiation hard, and compatible with LHC vacuum requirements. It must be capable of fast pattern recognition, fast track reconstruction and high precision vertexing. This challenge is being met with a new VELO design based on hybrid pixel detectors positioned to within 5 mm of the LHC colliding beams. The detector will be shielded from the beam by a View the MathML source~300μm thick aluminium foil. Evaporative CO2 coolant circulating in micro-channels embedded in a thin silicon substrate will be used for cooling.

  17. Study of the physical processes involved in the operating mode of the micro-strips gas detector Micromegas; Analyse des phenomenes physiques lies au fonctionnement du detecteur gazeux a micropistes micromegas

    Energy Technology Data Exchange (ETDEWEB)

    Barouch, G

    2001-04-01

    Micromegas is a micro-strip gaseous detector invented in 1996. It consists of two volumes of gas separated by a micro-mesh. The first volume of gas, 3 mm thick, is used to liberate ionization electrons from the incident charged particle. In the second volume, only 100 {mu}m thick, an avalanche phenomenon amplifies the electrons produced in the first volume. Strips printed on an insulating substrate collect the electrons from the avalanche. The geometrical configuration of Micromegas showed many advantages. The short anode-cathode distance combined with a high granularity provide high rate capabilities due to a fast collection of ions produced during the avalanche development. Moreover, the possibility to localize the avalanche with strips printed about every hundreds of micrometers allows to measure the position of the incident particle with a good resolution. In this work, experimental tests of Micromegas are presented along with detailed Monte Carlo simulations used to understand and optimize the detector's performances. The prototypes were tested several times at the PS accelerator at CERN. The analysis of the date showed a stable and efficient behavior of Micromegas combined with an excellent space resolution. In fact, spatial resolutions of less than 15 {mu}m were obtained. In parallel with the in-beam tests, several simulations have been developed in order to gain a better understanding of the detector's response. (author)

  18. Elastic strips

    OpenAIRE

    Chubelaschwili, David; Pinkall, Ulrich

    2010-01-01

    Motivated by the problem of finding an explicit description of a developable narrow Moebius strip of minimal bending energy, which was first formulated by M. Sadowsky in 1930, we will develop the theory of elastic strips. Recently E.L. Starostin and G.H.M. van der Heijden found a numerical description for an elastic Moebius strip, but did not give an integrable solution. We derive two conservation laws, which describe the equilibrium equations of elastic strips. In applying these laws we find...

  19. The PASTA chip for the silicon micro strip sensor of the PANDA MVD

    Energy Technology Data Exchange (ETDEWEB)

    Riccardi, Alberto; Brinkmann, Kai-Thomas; Di Pietro, Valentino; Quagli, Tommaso; Schnell, Robert; Zaunick, Hans-Georg [II. Physikalisches Institut, Justus-Liebig-Universitaet, Giessen (Germany); Ritman, James; Stockmanns, Tobias; Zambanini, Andre [Forschungszentrum Juelich (Germany); Rivetti, Angelo; Rolo, Manuel [INFN Sezione di Torino (Italy); Collaboration: PANDA-Collaboration

    2016-07-01

    In the Micro Vertex Detector, which is the innermost detector of PANDA, there are two different types of sensors: hybrid pixel and double sided micro strips. My work is focused on the development of the ASIC readout for the strips, which in the PANDA experiment must cope with a hit rate up to 50 kHz per channel. The energy loss measurement of the particles crossing the silicon sensor is obtained by implementing the Time over Threshold technique. The first PASTA (PANDA Strip ASIC) prototype is based on a Time to Digital Converter with an analog clock interpolator which combines good time resolution with a low power consumption. A full size chip was developed in a 0.11μ m CMOS technology and delivered in Autumn 2015. It features 64 channels with both analog and digital parts, a digital global controller, LVDS drivers and integrated bias. In the presentation, an overview of PASTA and the results of the first tests is presented.

  20. Vertex and Tracker Research and Development for CLIC

    CERN Document Server

    Munker, M

    2017-01-01

    Challenging detector requirements are imposed by the physics goals at the future multi-TeV e+e− Compact Linear Collider (CLIC). A single point resolution of 3 μm for the vertex detector and 7 μm for the tracker is required. Moreover, the CLIC vertex detector and tracker need to be extremely light weighted with a material budget of 0.2%X0 per layer in the vertex detector and 1 - 2%X0 in the tracker. A fast time slicing of 10 ns is further required to suppress background from beam-beam interactions. A wide range of sensor and readout ASIC technologies are investigated within the CLIC silicon pixel R&D; effort. Various hybrid planar sensor assemblies with a pixel size of 25 × 25 μm2 and 55 × 55 μm2 have been produced and characterised by laboratory measurements and during test-beam campaigns. Experimental and simulation results for thin (50 μm- 500 μm) slim edge and active-edge planar, and High-Voltage CMOS sensors hybridised to various readout ASICs (Timepix, Timepix3, CLICpix) are presented.

  1. Performance of the CLAS12 Silicon Vertex Tracker modules

    Energy Technology Data Exchange (ETDEWEB)

    Antonioli, M.A.; Boiarinov, S.; Bonneau, P.; Elouadrhiri, L.; Eng, B. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Gotra, Y., E-mail: gotra@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Kurbatov, E. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow (Russian Federation); Leffel, M.; Mandal, S.; McMullen, M. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Merkin, M. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow (Russian Federation); Raydo, B.; Teachey, W. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Tucker, R. [Arizona State University, Tempe, AZ (United States); Ungaro, M.; Yegneswaran, A.; Ziegler, V. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2013-12-21

    For the 12 GeV upgrade, the CLAS12 experiment has designed a Silicon Vertex Tracker (SVT) using single sided microstrip sensors fabricated by Hamamatsu. The sensors have graded angle design to minimize dead areas and a readout pitch of 156μm, with intermediate strip. Double sided SVT module hosts three daisy-chained sensors on each side with a full strip length of 33 cm. There are 512 channels per module read out by four Fermilab Silicon Strip Readout (FSSR2) chips featuring data driven architecture, mounted on a rigid-flex hybrid. Modules are assembled on the barrel using unique cantilevered geometry to minimize the amount of material in the tracking volume. Design and performance of the SVT modules are presented, focusing on results of electrical measurements. -- Highlights: •A Silicon Vertex Tracker has been designed for the central tracker of the CLAS12 experiment. •Using cantilevered module geometry allows minimizing amount of material in the tracking volume. •A dedicated Hybrid Flex Circuit Board has been developed to read out double sided module. •Module performance meets design goals of the CLAS12 Central Tracker.

  2. Primary Vertex Reconstruction for Upgrade at LHCb

    CERN Document Server

    Wanczyk, Joanna

    2016-01-01

    The aim of the LHCb experiment is the study of beauty and charm hadron decays with the main focus on CP violating phenomena and searches for physics beyond the Standard Model through rare decays. At the present, the second data taking period is ongoing, which is called Run II. After 2018 during the long shutdown, the replacement of signicant parts of the LHCb detector is planned. One of main changes is upgrade of the present software and hardware trigger to a more rapid full software trigger. Primary Vertex (PV) is a basis for the further tracking and it is sensitive to the LHC running conditions, which are going to change for the Upgrade. In particular, the center-of-mass collision energy should reach the maximum value of 14 TeV. As a result the quality of the reconstruction has to be studied and the reconstruction algorithms have to be optimized.

  3. Development of a super B-factory monolithic active pixel detector-the Continuous Acquisition Pixel (CAP) prototypes

    International Nuclear Information System (INIS)

    Varner, G.; Barbero, M.; Bozek, A.; Browder, T.; Fang, F.; Hazumi, M.; Igarashi, A.; Iwaida, S.; Kennedy, J.; Kent, N.; Olsen, S.; Palka, H.; Rosen, M.; Ruckman, L.; Stanic, S.; Trabelsi, K.; Tsuboyama, T.; Uchida, K.

    2005-01-01

    Over the last few years great progress has been made in the technological development of Monolithic Active Pixel Sensors (MAPS) such that upgrades to existing vertex detectors using this technology are now actively being considered. Future vertex detection at an upgraded KEK-B factory, already the highest luminosity collider in the world, will require a detector technology capable of withstanding the increased track densities and larger radiation exposures. Near the beam pipe the current silicon strip detectors have projected occupancies in excess of 100%. Deep sub-micron MAPS look very promising to address this problem. In the context of an upgrade to the Belle vertex detector, the major obstacles to realizing such a device have been concerns about radiation hardness and readout speed. Two prototypes implemented in the TSMC 0.35 μm process have been developed to address these issues. Denoted the Continuous Acquisition Pixel, or CAP, the two variants of this architecture are distinguished in that CAP2 includes an 8-deep sampling pipeline within each 22.5 μm 2 pixel. Preliminary test results and remaining R and D issues are presented

  4. Tracking and vertexing at ATLAS

    OpenAIRE

    Ferrari, Pamela

    2007-01-01

    Several algorithms for tracking and for primary and secondary vertex reconstruction have been developed by the ATLAS collaboration following different approaches. This has allowed a thorough cross-check of the performances of the algorithms and of the reconstruction software. The results of the most recent studies on this topic are discussed and compared.

  5. Vertex algebras and mirror symmetry

    International Nuclear Information System (INIS)

    Borisov, L.A.

    2001-01-01

    Mirror Symmetry for Calabi-Yau hypersurfaces in toric varieties is by now well established. However, previous approaches to it did not uncover the underlying reason for mirror varieties to be mirror. We are able to calculate explicitly vertex algebras that correspond to holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in toric varieties. We establish the relation between these vertex algebras for mirror Calabi-Yau manifolds. This should eventually allow us to rewrite the whole story of toric mirror symmetry in the language of sheaves of vertex algebras. Our approach is purely algebraic and involves simple techniques from toric geometry and homological algebra, as well as some basic results of the theory of vertex algebras. Ideas of this paper may also be useful in other problems related to maps from curves to algebraic varieties.This paper could also be of interest to physicists, because it contains explicit description of holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in terms of free bosons and fermions. (orig.)

  6. EAMJ Vertex June.indd

    African Journals Online (AJOL)

    2009-06-06

    Jun 6, 2009 ... haematoma who presented with signs of severe head injury with upper limb decerebrate posture. We discuss the ... B. Axial CT image in bone window setting showing the bilateral linear parietal fracture (open arrow) at the vertex. A. B. Anterior (Frontal area). Scalp incision for craniotomy. Posterior (Occipital ...

  7. The international linear collider. Technical design report. Vol. 4. Detectors

    International Nuclear Information System (INIS)

    Behnke, Ties; Brau, James E.; Burrows, Philip; Fuster, Juan; Peskin, Michael; Stanitzki, Marcel; Sugimoto, Yasuhiro; Yamada, Sakue; Yamamoto, Hitoshi

    2013-01-01

    The following topics are dealt with: The Si Vertex detectors, the main tracker, calorimetry, muon detectors, the superconducting spectrometer magnet, the detector electronics and data acquisition, simulation and reconstruction, benchmarking, costs. (HSI)

  8. The international linear collider. Technical design report. Vol. 4. Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, Ties; Brau, James E.; Burrows, Philip; Fuster, Juan; Peskin, Michael; Stanitzki, Marcel; Sugimoto, Yasuhiro; Yamada, Sakue; Yamamoto, Hitoshi (eds.)

    2013-10-01

    The following topics are dealt with: The Si Vertex detectors, the main tracker, calorimetry, muon detectors, the superconducting spectrometer magnet, the detector electronics and data acquisition, simulation and reconstruction, benchmarking, costs. (HSI)

  9. A new tool for constrained vertex fitting in ATLAS

    CERN Document Server

    Colijn, Auke Pieter; Limper, Maaike; Prokofiev, Kirill

    2009-01-01

    The precise reconstruction of trajectories of charged and neutral particles and their decay vertices is crucial for many physics analyses. Studying the tracking performance on well known benchmark channels helps to understand the properties of the ATLAS detector during the initial phase of the LHC. In order to exploit the correlations between reconstructed parameters of final state tracks having the same mother particle, a new tool for vertex fitting with possibility of simultaneous application of kinematic constraints has been developed. Using this tool on a benchmark channel such as J/psi to μ+μ− helps to correct shifts in the reconstructed curvature induced by systematic deformations of the detector.

  10. Searches for $CP$ violation in multi-body charm decays and studies of radiation damage in the LHCb VELO detector

    CERN Document Server

    Chen, Shanzhen; Gersabeck, Marco

    This thesis presents two searches for direct charge-parity ($CP$) violation in multi-body decays in the charm-sector at LHCb, the development of techniques for performing model-independent searches for direct $CP$ violation in multi-body decays, and the development of studies of radiation damage effects in the LHCb vertex detector. LHCb is a dedicated experiment to study New Physics in the decays of heavy hadrons at the Large Hadron Collider (LHC) at CERN. The detector includes a high precision vertex detector surrounding the $pp$ interaction region made with silicon strip sensors. Studies of the effects of radiation damage in LHC run-2 for the operation of this detector are presented and the determination of the operational bias voltages of the silicon strip sensors is discussed. An unbinned model independent technique for $CP$ violation searches in multi-body decays called the energy test is used for the first time. The selection and treatment of the coordinates used to describe the phase-space of the de...

  11. A Novel Vertex Affinity for Community Detection

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Andy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sanders, Geoffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Henson, Van [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vassilevski, Panayot [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-05

    We propose a novel vertex affinity measure in this paper. The new vertex affinity quantifies the proximity between two vertices in terms of their clustering strength and is ideal for such graph analytics applications as community detection. We also developed a framework that combines simple graph searches and resistance circuit formulas to compute the vertex affinity efficiently. We study the properties of the new affinity measure empirically in comparison to those of other popular vertex proximity metrics. Our results show that the existing metrics are ill-suited for community detection due to their lack of fundamental properties that are essential for correctly capturing inter- and intra-cluster vertex proximity.

  12. A new micro-strip tracker for the new generation of experiments at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Dinardo, Mauro E. [Univ. of Milan (Italy)

    2005-12-01

    This thesis concerns the development and characterization of a prototype Silicon micro-strip detector that can be used in the forward (high rapidity) region of a hadron collider. These detectors must operate in a high radiation environment without any important degradation of their performance. The innovative feature of these detectors is the readout electronics, which, being completely data-driven, allows for the direct use of the detector information at the lowest level of the trigger. All the particle hits on the detector can be readout in real-time without any external trigger and any particular limitation due to dead-time. In this way, all the detector information is available to elaborate a very selective trigger decision based on a fast reconstruction of tracks and vertex topology. These detectors, together with the new approach to the trigger, have been developed in the context of the BTeV R&D program; our aim was to define the features and the design parameters of an optimal experiment for heavy flavour physics at hadron colliders. Application of these detectors goes well beyond the BTeV project and, in particular, involves the future upgrades of experiments at hadron colliders, such as Atlas, CMS and LHCb. These experiments, indeed, are already considering for their future high-intensity runs a new trigger strategy a la BTeV. Their aim is to select directly at trigger level events containing Bhadrons, which, on several cases, come from the decay of Higgs bosons, Zo's or W±'s; the track information can also help on improving the performance of the electron and muon selection at the trigger level. For this reason, they are going to develop new detectors with practically the same characteristics as those of BTeV. To this extent, the work accomplished in this thesis could serve as guide-line for those upgrades.

  13. A nonperturbative fermion-boson vertex

    International Nuclear Information System (INIS)

    Bashir, A.; Raya, A.

    2002-01-01

    We calculate the massive fermion propagator at one-loop order in QED3. The Ward-Takahashi identity (WTI) relates the propagator to the vertex. This allows us to split the vertex into its longitudinal and transverse parts. The former is fixed by the WTI. Following the scheme of Ball and Chiu later modified by Kizilersue et. al., we calculate the full vertex at one-loop order. A mere subtraction of the longitudinal part of the vertex gives us the transverse part. The α dependence in the transverse vertex