WorldWideScience

Sample records for string input spaces

  1. String field theory in curved space

    International Nuclear Information System (INIS)

    Kikkawa, Keiji; Maeno, Masahiro; Sawada, Shiro

    1988-01-01

    The purely cubic action in the string field theory is shown to provide a set of equations of motion for background fields which agree to those obtained by the vanishing condition of β-functions in the non-linear sigma model. Using the sigma model as an auxiliary tool, a systematic method for solving the string field theory in curved space is proposed. (author)

  2. Space-Time Transitions in String Theory

    OpenAIRE

    Witten, Edward

    1993-01-01

    Simple mean field methods can be used to describe transitions between different space-time models in string theory. These include transitions between different Calabi-Yau manifolds, and more exotic things such as the Calabi-Yau/Landau-Ginzberg correspondence.

  3. String Theory on AdS Spaces

    NARCIS (Netherlands)

    de Boer, J.

    2000-01-01

    In these notes we discuss various aspects of string theory in AdS spaces. We briefly review the formulation in terms of Green-Schwarz, NSR, and Berkovits variables, as well as the construction of exact conformal field theories with AdS backgrounds. Based on lectures given at the Kyoto YITP Workshop

  4. Constraining de Sitter Space in String Theory.

    Science.gov (United States)

    Kutasov, David; Maxfield, Travis; Melnikov, Ilarion; Sethi, Savdeep

    2015-08-14

    We argue that the heterotic string does not have classical vacua corresponding to de Sitter space-times of dimension four or higher. The same conclusion applies to type II vacua in the absence of Ramond-Ramond fluxes. Our argument extends prior supergravity no-go results to regimes of high curvature. We discuss the interpretation of the heterotic result from the perspective of dual type II orientifold constructions. Our result suggests that the genericity arguments used in string landscape discussions should be viewed with caution.

  5. The broken string in Anti-de Sitter space

    Science.gov (United States)

    Vegh, David

    2018-02-01

    This paper describes an efficient method for solving the classical string equations of motion in (2+1)-dimensional anti-de Sitter spacetime. Exact string solutions are identified that are the analogs of piecewise linear strings in flat space. They can be used to approximate any smooth string motion to arbitrary accuracy. Cusps on the string move with the speed of light and their collisions are described by a reflection formula. Explicit examples are shown with the string ending on two boundary quarks. The technique is ideally suited for numerical simulations.

  6. Black Strings, Black Rings and State-space Manifold

    CERN Document Server

    Bellucci, Stefano

    2011-01-01

    State-space geometry is considered, for diverse three and four parameter non-spherical horizon rotating black brane configurations, in string theory and $M$-theory. We have explicitly examined the case of unit Kaluza-Klein momentum $D_1D_5P$ black strings, circular strings, small black rings and black supertubes. An investigation of the state-space pair correlation functions shows that there exist two classes of brane statistical configurations, {\\it viz.}, the first category divulges a degenerate intrinsic equilibrium basis, while the second yields a non-degenerate, curved, intrinsic Riemannian geometry. Specifically, the solutions with finitely many branes expose that the two charged rotating $D_1D_5$ black strings and three charged rotating small black rings consort real degenerate state-space manifolds. Interestingly, arbitrary valued $M_5$-dipole charged rotating circular strings and Maldacena Strominger Witten black rings exhibit non-degenerate, positively curved, comprehensively regular state-space con...

  7. New moduli spaces from string background independence consistency conditions

    International Nuclear Information System (INIS)

    Zwiebach, B.

    1996-01-01

    In string field theory an infinitesimal background deformation is implemented as a canonical transformation whose hamiltonian function is defined by moduli spaces of punctured Riemann surfaces having one special puncture. We show that the consistency conditions associated to the commutator of two deformations are implemented by virtue of the existence of moduli spaces of punctured surfaces with two special punctures. The spaces are antisymmetric under the exchange of the special punctures, and satisfy recursion relations relating them to moduli spaces with one special puncture and to string vertices. We develop the theory of moduli spaces of surfaces with arbitrary number of special punctures and indicate their relevance to the construction of a string field theory that makes no reference to a conformal background. Our results also imply a partial antibracket cohomology theorem for the string action. (orig.)

  8. Exactly solvable string models of curved space-time backgrounds

    CERN Document Server

    Russo, J.G.; Russo, J G; Tseytlin, A A

    1995-01-01

    We consider a new 3-parameter class of exact 4-dimensional solutions in closed string theory and solve the corresponding string model, determining the physical spectrum and the partition function. The background fields (4-metric, antisymmetric tensor, two Kaluza-Klein vector fields, dilaton and modulus) generically describe axially symmetric stationary rotating (electro)magnetic flux-tube type universes. Backgrounds of this class include both the dilatonic Melvin solution and the uniform magnetic field solution discussed earlier as well as some singular space-times. Solvability of the string sigma model is related to its connection via duality to a much simpler looking model which is a "twisted" product of a flat 2-space and a space dual to 2-plane. We discuss some physical properties of this model as well as a number of generalizations leading to larger classes of exact 4-dimensional string solutions.

  9. Reliability of the input admittance of bowed-string instruments measured by the hammer method.

    Science.gov (United States)

    Zhang, Ailin; Woodhouse, Jim

    2014-12-01

    The input admittance at the bridge, measured by hammer testing, is often regarded as the most useful and convenient measurement of the vibrational behavior of a bowed string instrument. However, this method has been questioned, due especially to differences between human bowing and hammer impact. The goal of the research presented here is to investigate the reliability and accuracy of this classic hammer method. Experimental studies were carried out on cellos, with three different driving conditions and three different boundary conditions. Results suggest that there is nothing fundamentally different about the hammer method, compared to other kinds of excitation. The third series of experiments offers an opportunity to explore the difference between the input admittance measuring from one bridge corner to another and that of single strings. The classic measurement is found to give a reasonable approximation to that of all four strings. Some possible differences between the hammer method and normal bowing and implications of the acoustical results are also discussed.

  10. String dynamics in curved space-time revisited

    International Nuclear Information System (INIS)

    Marrakchi, A.L.; Singh, L.P.

    1989-09-01

    The equations of motion of the general background of curved space-time, Einstein's equations, are derived simply by demanding the renormalized energy-momentum tensor of a bosonic string propagating in this background to be traceless. The energy-momentum tensor of such a string is then separable into a holomorphic and an antiholomorphic parts as a consequence of the conformal invariance of the theory regained at the quantum level. (author). 8 refs

  11. Higher genus moduli spaces in closed string field theory

    Science.gov (United States)

    Rahman, Sabbir Ahmed

    1997-10-01

    We provide an overview of covariant closed string field theory, covering briefly the geometry of moduli spaces of Riemann surfaces, conformal field theory in the operator formalism and the Batalin-Vilkovisky formalism. Several important applications are also described including connections on the space of conformal theories, quantum background independence, the ghost-dilaton theorem, and string field theory around non-conformal backgrounds. The proof of the ghost-dilaton theorem in string theory is completed by showing that the coupling constant dependence of the vacuum vertices appearing in the closed string action is given correctly by one-point functions of the ghost-dilaton. To prove this at genus one the formalism required to evaluate off-shell amplitudes on tori is developed. Higher order background independence conditions arising from multiple commutators of background deformations in quantum closed string field theory are analysed. The conditions are shown to amount to a vanishing theorem for ΔS cohomology classes. This holds by virtue of the existence of moduli spaces of higher genus surfaces with two kinds of punctures. Our result is a generalisation of a previous genus zero analysis relevant to the classical theory. The string theory operators /partial,/ [/cal K] and [/cal I] are shown to be expressible as inner derivations of the B-V algebra of string vertices. As a consequence, the recursion relations for the string vertices are found to take the form of a 'geometrical' quantum master equation, [1/over 2]/[[/cal B],[/cal B]/]+/Delta[/cal B]=0, where '[/cal B]' is the sum of string vertices. That the B-V delta operator cannot be an inner derivation on the algebra is also shown. The set of string vertices of non-negative dimension is completed in a consistent manner. As a consequence the string action takes the simple form S=f([/cal B]). That the action satisfies the B-V master equation follows immediately from the recursion relations for the string

  12. D-instantons and closed string tachyons in Misner space

    International Nuclear Information System (INIS)

    Hikida, Yasuaki; Tai, T.-S.

    2006-01-01

    We investigate closed string tachyon condensation in Misner space, a toy model for big bang universe. In Misner space, we are able to condense tachyonic modes of closed strings in the twisted sectors, which is supposed to remove the big bang singularity. In order to examine this, we utilize D-instanton as a probe. First, we study general properties of D-instanton by constructing boundary state and effective action. Then, resorting to these, we are able to show that tachyon condensation actually deforms the geometry such that the singularity becomes milder

  13. Parabosonic string and space-time non-commutativity

    Energy Technology Data Exchange (ETDEWEB)

    Seridi, M. A.; Belaloui, N. [Laboratoire de Physique Mathematique et Subatomique, Universite Mentouri Constantine (Algeria)

    2012-06-27

    We investigate the para-quantum extension of the bosonic strings in a non-commutative space-time. We calculate the trilinear relations between the mass-center variables and the modes and we derive the Virasoro algebra where a new anomaly term due to the non-commutativity is obtained.

  14. Exactly solvable string models of curved space-time backgrounds

    International Nuclear Information System (INIS)

    Russo, J.G.

    1995-01-01

    We consider a new 3-parameter class of exact 4-dimensional solutions in closed string theory and solve the corresponding string model, determining the physical spectrum and the partition function. The background fields (4-metric, antisymmetric tensor, two Kaluza-Klein vector fields, dilaton and modulus) generically describe axially symmetric stationary rotating (electro)magnetic flux-tube type universes. Backgrounds of this class include both the ''dilatonic'' (a=1) and ''Kaluza-Klein'' (a=√(3)) Melvin solutions and the uniform magnetic field solution, as well as some singular space-times. Solvability of the string σ-model is related to its connection via duality to a simpler model which is a ''twisted'' product of a flat 2-space and a space dual to 2-plane. We discuss some physical properties of this model (tachyonic instabilities in the spectrum, gyromagnetic ratio, issue of singularities, etc.). It provides one of the first examples of a consistent solvable conformal string model with explicit D=4 curved space-time interpretation. (orig.)

  15. Open string T-duality in double space

    Energy Technology Data Exchange (ETDEWEB)

    Sazdovic, B. [University of Belgrade, Institute of Physics, Belgrade (Serbia)

    2017-09-15

    The role of double space is essential in the new interpretation of T-duality and consequently in an attempt to construct M-theory. The case of the open string is missing in such an approach because until now there has been no appropriate formulation of open string T-duality. In the previous paper (Sazdovic, From geometry to non-geometry via T-duality, arXiv:1606.01938, 2017), we showed how to introduce vector gauge fields A{sup N}{sub a} and A{sup D}{sub i} at the end-points of an open string in order to enable open string invariance under local gauge transformations of the Kalb-Ramond field and its T-dual ''restricted general coordinate transformations''. We demonstrated that gauge fields A{sup N}{sub a} and A{sup D}{sub i} are T-dual to each other. In the present article we prove that all above results can be interpreted as coordinate permutations in double space. (orig.)

  16. String cohomology groups of complex projective spaces

    DEFF Research Database (Denmark)

    Ottosen, Iver Mølgaard; Bökstedt, Marcel

    2007-01-01

    Let X be a space and write LX for its free loop space equipped with the action of the circle group T given by dilation. The equivariant cohomology H*(LXhT;Z/p) is a module over H*(BT;Z/p). We give a computation of this module when X=CPr for any positive integer r and any prime number p. The compu......Let X be a space and write LX for its free loop space equipped with the action of the circle group T given by dilation. The equivariant cohomology H*(LXhT;Z/p) is a module over H*(BT;Z/p). We give a computation of this module when X=CPr for any positive integer r and any prime number p...

  17. The crystallographic space groups and Heterotic string theory

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2009-01-01

    While the 17 planar crystallographic groups were shown to correspond to 17 two and three Stein spaces with a total dimension equal to DimE12=5α-bar o ≅685, the present work reveals that the corresponding 219 three dimensional groups leads to a total dimensionality equal to N o ≅8872 which happens to be the exact total number of massless states of the transfinite version of Heterotic super string spectrum.

  18. The Hilbert space of the open bosonic string

    International Nuclear Information System (INIS)

    Nilsson, M.

    1988-01-01

    For a bosonic particle we know that the Hilbert space comes from the quantized constraints. The mass shell condition, p μ p μ = - m 2 becomes the Klein-Gordon equation after quantization. Thus the constraints lead to a field equation defined on spacetime. For a bosonic string the constraints will be functional equations after quantization. Using the mode expansion we solve for the dependence of the Fourier components with mode number greater than zero. The zero mode is the 'translational' mode and can thus be identified with spacetime. With mode expansion and the standard unification of constraints we arrive at the Virasoro conditions. Here we consider the Virasoro operators as a sum of differential operators. Thus the Virasoro conditions are here a set of differential equations. Discussing the properties of the solutions to these equations we show that the Virasoro conditions can be reduced to a set of field equations for the spacetime mode. We derive all the field equations thus we reduce the Hilbert space of the bosonic string to that of a field theory defined on spacetime. Thus we arrive at a string field theory. Our approach is close to the approach of the CERN group. We show that the field equations only relate fields of the same mass. From the field equations we also find the critical dimension, D=26, and the value of the intercept. (author)

  19. Diffeomorphisms as symplectomorphisms in history phase space: Bosonic string model

    International Nuclear Information System (INIS)

    Kouletsis, I.; Kuchar, K.V.

    2002-01-01

    The structure of the history phase space G of a covariant field system and its history group (in the sense of Isham and Linden) is analyzed on an example of a bosonic string. The history space G includes the time map T from the spacetime manifold (the two-sheet) Y to a one-dimensional time manifold T as one of its configuration variables. A canonical history action is posited on G such that its restriction to the configuration history space yields the familiar Polyakov action. The standard Dirac-ADM action is shown to be identical with the canonical history action, the only difference being that the underlying action is expressed in two different coordinate charts on G. The canonical history action encompasses all individual Dirac-ADM actions corresponding to different choices T of foliating Y. The history Poisson brackets of spacetime fields on G induce the ordinary Poisson brackets of spatial fields in the instantaneous phase space G 0 of the Dirac-ADM formalism. The canonical history action is manifestly invariant both under spacetime diffeomorphisms Diff Y and temporal diffeomorphisms Diff T. Both of these diffeomorphisms are explicitly represented by symplectomorphisms on the history phase space G. The resulting classical history phase space formalism is offered as a starting point for projection operator quantization and consistent histories interpretation of the bosonic string model

  20. Space-time versus world-sheet renormalization group equation in string theory

    International Nuclear Information System (INIS)

    Brustein, R.; Roland, K.

    1991-05-01

    We discuss the relation between space-time renormalization group equation for closed string field theory and world-sheet renormalization group equation for first-quantized strings. Restricting our attention to massless states we argue that there is a one-to-one correspondence between the fixed point solutions of the two renormalization group equations. In particular, we show how to extract the Fischler-Susskind mechanism from the string field theory equation in the case of the bosonic string. (orig.)

  1. de Sitter Space in Non-Critical String Theory

    Energy Technology Data Exchange (ETDEWEB)

    Silverstein, Eva M

    2002-08-13

    Supercritical string theories in D > 10 dimensions with no moduli are described, generalizing the asymmetric orientifold construction of one of the authors [1]. By taking the number of dimensions to be large and turning on fluxes, dilaton potentials are generated with nontrivial minima at arbitrarily small cosmological constant and D-dimensional string coupling, separated by a barrier from a flat-space linear dilaton region, but possibly suffering from strong coupling problems. The general issue of the decay of a de Sitter vacuum to flat space is discussed. For relatively small barriers, such decays are described by gravitational instantons. It is shown that for a sufficiently large potential barrier, the bubble wall crosses the horizon. At the same time the instanton decay time exceeds the Poincare recurrence time. It is argued that the inclusion of such instantons is neither physically meaningful nor consistent with basic principles such as causality. This raises the possibility that such de Sitter vacua are effectively stable. In the case of the supercritical flux models, decays to the linear dilaton region can be forbidden by such large barriers, but decays to lower flux vacua including AdS minima nevertheless proceed consistently with this criterion. These models provide concrete examples in which cosmological constant reduction by flux relaxation can be explored.

  2. Space market model space industry input-output model

    Science.gov (United States)

    Hodgin, Robert F.; Marchesini, Roberto

    1987-01-01

    The goal of the Space Market Model (SMM) is to develop an information resource for the space industry. The SMM is intended to contain information appropriate for decision making in the space industry. The objectives of the SMM are to: (1) assemble information related to the development of the space business; (2) construct an adequate description of the emerging space market; (3) disseminate the information on the space market to forecasts and planners in government agencies and private corporations; and (4) provide timely analyses and forecasts of critical elements of the space market. An Input-Output model of market activity is proposed which are capable of transforming raw data into useful information for decision makers and policy makers dealing with the space sector.

  3. Target space supergeometry of η and λ-deformed strings

    Energy Technology Data Exchange (ETDEWEB)

    Borsato, Riccardo; Wulff, Linus [Blackett Laboratory, Imperial College,London SW7 2AZ (United Kingdom)

    2016-10-10

    We study the integrable η and λ-deformations of supercoset string sigma models, the basic example being the deformation of the AdS{sub 5}×S{sup 5} superstring. We prove that the kappa symmetry variations for these models are of the standard Green-Schwarz form, and we determine the target space supergeometry by computing the superspace torsion. We check that the λ-deformation gives rise to a standard (generically type II*) supergravity background; for the η-model the requirement that the target space is a supergravity solution translates into a simple condition on the R-matrix which enters the definition of the deformation. We further construct all such non-abelian R-matrices of rank four which solve the homogeneous classical Yang-Baxter equation for the algebra so(2,4). We argue that most of the corresponding backgrounds are equivalent to sequences of non-commuting TsT-transformations, and verify this explicitly for some of the examples.

  4. String formulation of space charge forces in a deflecting bunch

    Directory of Open Access Journals (Sweden)

    Richard Talman

    2004-10-01

    Full Text Available The force between two moving point charges, because of its inverse square law singularity, cannot be applied directly in the numerical simulation of bunch dynamics; radiative effects make this especially true for short bunches being deflected by magnets. This paper describes a formalism circumventing this restriction in which the basic ingredient is the total force on a point charge comoving with a longitudinally aligned, uniformly charged string. Bunch evolution can then be treated using direct particle-to-particle, intrabeam scattering, with no need for an intermediate, particle-in-cell, step. Electric and magnetic fields do not appear individually in the theory. Since the basic formulas are both exact (in paraxial approximation and fully relativistic, they are applicable to beams of all particle types and all energies. But the theory is expected to be especially useful for calculating the emittance growth of the ultrashort electron bunches of current interest for energy recovery linacs and free-electron lasers. The theory subsumes coherent synchrotron radiation and centrifugal space charge force. Renormalized, on-axis, longitudinal field components are in excellent agreement with values from Saldin et al. [DESY Report No. DESY-TESLA-FEL-96-14, 1995; Nucl. Instrum. Methods Phys. Res., Sect. A 417, 158 (1998.NIMAER0168-900210.1016/S0168-9002(9800623-8

  5. Hyperbolic strings

    International Nuclear Information System (INIS)

    Popov, A.D.

    1991-01-01

    We introduce hyperbolic strings as closed bosonic strings with the target space R d-1,1 xT q+1,1 which has an additional time-like dimension in the internal space. The Fock spaces of the q-parametric family of standard bosonic, fermionic and heterotic strings with the target spaces of dimension n≤d+q are shown to be embedded into the Fock space of hyperbolic strings. The condition of the absence of anomaly fixes d and q for all three types of strings written in a bosonized form. (orig.)

  6. Space-time supersymmetry of extended fermionic strings in 2 + 2 dimensions

    International Nuclear Information System (INIS)

    Ketov, S.V.

    1993-04-01

    The N = 2 fermionic string theory is revisited in light of its recently proposed equivalence to the non-compact N = 4 fermionic string model. The issues of space-time Lorentz covariance and supersymmetry for the BRST quantized N = 2 strings living in uncompactified 2 + 2 dimensions are discussed. The equivalent local quantum supersymmetric field theory appears to be the most transparent way to represent the space-time symmetries of the extended fermionic strings and their interactions. Our considerations support the Siegel's ideas about the presence of SO(2,2) Lorentz symmetry as well as at least two self-dual space-time supersymmetries in the theory of the N = 2(4) fermionic strings, though we do not have a compelling reason to argue about the necessity of the maximal space-time supersymmetry. The world-sheet arguments about the absence of all string massive modes in the physical spectrum, and the vanishing of all string-loop amplitudes in the Polyakov approach, are given on the basis of general consistency of the theory. (orig.)

  7. Open string fluctuations in AdS space with and without torsion

    DEFF Research Database (Denmark)

    Larsen, A.L.; Lomholt, Michael Andersen

    2003-01-01

    The equations of motion and boundary conditions for the fluctuations around a classical open string, in a curved space-time with torsion, are considered in compact and world-sheet covariant form. The rigidly rotating open strings in anti-de Sitter space with and without torsion are investigated...... dangerous than expected in these cases. The general formalism can be straightforwardly used also to study the (bosonic part of the) fluctuations around the closed strings, recently considered in connection with the AdS/conformal field theory duality, on AdS ×S and AdS ×S ×T ....

  8. Phase-space lagrangians for null spinning strings

    Energy Technology Data Exchange (ETDEWEB)

    Barcelos-Neto, J.; Ruiz-Altaba, M. (European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.); Ramirez, C. (Heidelberg Univ. (Germany, F.R.). Inst. fuer Theoretische Physik)

    1990-07-01

    The striking fact that normal-ordered null strings have the same critical dimension as their usual non-zero tension siblings can be understood from the observation that one must, in the tensionless case, keep all the conjugate momenta as independent dynamical variables, thus doubling the number of physical degrees of freedom. The fermionic momenta give rise to a second-class constraint which cannot be solved covariantly, but can be successfully incorporated into the first-class constraint algebra after gauge-fixing. The ghost contributions to the anomaly consist of two b-c (and also two {beta}-{gamma} systems in the supersymmetric case), of the single Virasoro sub(super)algebra for the closed null (spinning) string. In the appropriate gauge, the null (super)string is (super)chiral. (orig.).

  9. Virasoro conditions, vertex operators, and string dynamics in curved space

    International Nuclear Information System (INIS)

    Jain, S.; Mandal, G.; Wadia, S.R.

    1987-01-01

    We present the perturbatively renormalized expression of a scalar vertex operator for strings in a background metric and dilaton field. The equations of motion for the background fields and the wave equation for the vertex function emerge upon imposing Virasoro conditions on the vertex operator

  10. String theory

    International Nuclear Information System (INIS)

    Chan Hongmo.

    1987-10-01

    The paper traces the development of the String Theory, and was presented at Professor Sir Rudolf Peierls' 80sup(th) Birthday Symposium. The String theory is discussed with respect to the interaction of strings, the inclusion of both gauge theory and gravitation, inconsistencies in the theory, and the role of space-time. The physical principles underlying string theory are also outlined. (U.K.)

  11. Vertex operators, virasoro conditions and string dynamics in curved space

    International Nuclear Information System (INIS)

    Wadia, S.R.

    1987-01-01

    String propagation in a background metric and dilation field are considered in the context of conformal invariant field theory. A perturbatively renormalized tachyon vertex in the presence of these background fields is presented. This generalises the Berezinsky-Kosterlitz-Thouless construction. The equations of motion for the background fields and the wave equation for the vertex function emerge upon imposing the Virasoro gauge conditions on the vertex operator. This is equivalent to calculating the equation of motion Qvertical barpsi> = 0 in the BRST approach

  12. The space-time operator product expansion in string theory duals of field theories

    International Nuclear Information System (INIS)

    Aharony, Ofer; Komargodski, Zohar

    2008-01-01

    We study the operator product expansion (OPE) limit of correlation functions in field theories which possess string theory duals, from the point of view of the string worldsheet. We show how the interesting ('single-trace') terms in the OPE of the field theory arise in this limit from the OPE of the worldsheet theory of the string dual, using a dominant saddle point which appears in computations of worldsheet correlation functions in the space-time OPE limit. The worldsheet OPE generically contains only non-physical operators, but all the non-physical contributions are resummed by the saddle point to a contribution similar to that of a physical operator, which exactly matches the field theory expectations. We verify that the OPE limit of the worldsheet theory does not have any other contributions to the OPE limit of space-time correlation functions. Our discussion is completely general and applies to any local field theory (conformal at high energies) that has a weakly coupled string theory dual (with arbitrary curvature). As a first application, we compare our results to a proposal of R. Gopakumar for the string theory dual of free gauge theories

  13. On black holes, space-time foam and the nature of time in string theory

    International Nuclear Information System (INIS)

    Mavromatos, N.E.; Grenoble-1 Univ., 74 - Annecy

    1993-04-01

    It is shown that the light particles in string theory obey an effective quantum mechanics modified by the inclusion of a quantum-gravitational friction term, induced by unavoidable couplings to unobserved massive string states in the space-time foam. This term is related to the W-symmetries that couple light particles to massive solitonic string states in black hole backgrounds, and has a formal similarity to simple models of environmental quantum friction. All properties follow from a definition of target-time as a Renormalization Group scale parameter and the associated (generic) properties of the renormalization group flow. Some experimental consequences, concerning CPT violation detectable in systems that are generally considered as sensitive probes of quantum mechanics (e.g. neutral kaons), are briefly discussed. (author). 52 refs., 1 fig

  14. Space/time noncommutativity in string theories without background electric field

    International Nuclear Information System (INIS)

    De Risi, Giuseppe; Grignani, Gianluca; Orselli, Marta

    2002-01-01

    The appearance of space/time non-commutativity in theories of open strings with a constant non-diagonal background metric is considered. We show that, even if the space-time coordinates commute, when there is a metric with a time-space component, no electric field and the boundary condition along the spatial direction is Dirichlet, a Moyal phase still arises in products of vertex operators. The theory is in fact dual to the non-commutatitive open string (NCOS) theory. The correct definition of the vertex operators for this theory is provided. We study the system also in the presence of a B field. We consider the case in which the Dirichlet spatial direction is compactified and analyze the effect of these backgrounds on the closed string spectrum. We then heat up the system. We find that the Hagedorn temperature depends in a non-extensive way on the parameters of the background and it is the same for the closed and the open string sectors. (author)

  15. State-Space Geometry, Statistical Fluctuations, and Black Holes in String Theory

    Directory of Open Access Journals (Sweden)

    Stefano Bellucci

    2014-01-01

    Full Text Available We study the state-space geometry of various extremal and nonextremal black holes in string theory. From the notion of the intrinsic geometry, we offer a state-space perspective to the black hole vacuum fluctuations. For a given black hole entropy, we explicate the intrinsic geometric meaning of the statistical fluctuations, local and global stability conditions, and long range statistical correlations. We provide a set of physical motivations pertaining to the extremal and nonextremal black holes, namely, the meaning of the chemical geometry and physics of correlation. We illustrate the state-space configurations for general charge extremal black holes. In sequel, we extend our analysis for various possible charge and anticharge nonextremal black holes. From the perspective of statistical fluctuation theory, we offer general remarks, future directions, and open issues towards the intrinsic geometric understanding of the vacuum fluctuations and black holes in string theory.

  16. Equivalence of meson scattering amplitudes in strong coupling lattice and flat space string theory

    Science.gov (United States)

    Armoni, Adi; Ireson, Edwin; Vadacchino, Davide

    2018-03-01

    We consider meson scattering in the framework of the lattice strong coupling expansion. In particular we derive an expression for the 4-point function of meson operators in the planar limit of scalar Chromodynamics. Interestingly, in the naive continuum limit the expression coincides with an independently known result, that of the worldline formalism. Moreover, it was argued by Makeenko and Olesen that (assuming confinement) the resulting scattering amplitude in momentum space is the celebrated expression proposed by Veneziano several decades ago. This motivates us to also use holography in order to argue that the continuum expression for the scattering amplitude is related to the result obtained from flat space string theory. Our results hint that at strong coupling and large-Nc the naive continuum limit of the lattice formalism can be related to a flat space string theory.

  17. State-space Geometry, Statistical Fluctuations and Black Holes in String Theory

    CERN Document Server

    Bellucci, Stefano

    2011-01-01

    We study the state-space geometry of various extremal and nonextremal black holes in string theory. From the notion of the intrinsic geometry, we offer a new perspective of black hole vacuum fluctuations. For a given black hole entropy, we explicate the intrinsic state-space geometric meaning of the statistical fluctuations, local and global stability conditions and long range statistical correlations. We provide a set of physical motivations pertaining to the extremal and nonextremal black holes, \\textit{viz.}, the meaning of the chemical geometry and physics of correlation. We illustrate the state-space configurations for general charge extremal black holes. In sequel, we extend our analysis for various possible charge and anticharge nonextremal black holes. From the perspective of statistical fluctuation theory, we offer general remarks, future directions and open issues towards the intrinsic geometric understanding of the vacuum fluctuations and black holes in string theory. Keywords: Intrinsic Geometry; ...

  18. Equivalence of meson scattering amplitudes in strong coupling lattice and flat space string theory

    Directory of Open Access Journals (Sweden)

    Adi Armoni

    2018-03-01

    Full Text Available We consider meson scattering in the framework of the lattice strong coupling expansion. In particular we derive an expression for the 4-point function of meson operators in the planar limit of scalar Chromodynamics. Interestingly, in the naive continuum limit the expression coincides with an independently known result, that of the worldline formalism. Moreover, it was argued by Makeenko and Olesen that (assuming confinement the resulting scattering amplitude in momentum space is the celebrated expression proposed by Veneziano several decades ago. This motivates us to also use holography in order to argue that the continuum expression for the scattering amplitude is related to the result obtained from flat space string theory. Our results hint that at strong coupling and large-Nc the naive continuum limit of the lattice formalism can be related to a flat space string theory.

  19. Closed String Amplitudes from Gauge Fixed String Field Theory

    OpenAIRE

    Drukker, Nadav

    2002-01-01

    Closed string diagrams are derived from cubic open string field theory using a gauge fixed kinetic operator. The basic idea is to use a string propagator that does not generate a boundary to the world sheet. Using this propagator and the closed string vertex, the moduli space of closed string surfaces is covered, so closed string scattering amplitudes should be reproduced. This kinetic operator could be a gauge fixed form of the string field theory action around the closed string vacuum.

  20. Open branes in space-time non-commutative little string theory

    International Nuclear Information System (INIS)

    Harmark, T.

    2001-01-01

    We conjecture the existence of two new non-gravitational six-dimensional string theories, defined as the decoupling limit of NS5-branes in the background of near-critical electrical two- and three-form RR fields. These theories are space-time non-commutative Little String Theories with open branes. The theory with (2,0) supersymmetry has an open membrane in the spectrum and reduces to OM theory at low energies. The theory with (1,1) supersymmetry has an open string in the spectrum and reduces to (5+1)-dimensional NCOS theory for weak NCOS coupling and low energies. The theories are shown to be T-dual with the open membrane being T-dual to the open string. The theories therefore provide a connection between (5+1)-dimensional NCOS theory and OM theory. We study the supergravity duals of these theories and we consider a chain of dualities that shows how the T-duality between the two theories is connected with the S-duality between (4+1)-dimensional NCOS theory and OM theory

  1. Congruences of null strings in complex space-times and some Cauchy--Kovalevski-like problems

    International Nuclear Information System (INIS)

    Robinson, I.; Rozga, K.

    1984-01-01

    It is shown that a problem of construction of a local congruence of null strings is equivalent to a natural Cauchy--Kovalevski-like problem, related to an equation for a spinor field k/sub A/ defining the congruence. Initial data are specified on two-dimensional submanifolds. In left-conformally-flat spaces, the solution of that problem exists for arbitrary initial data

  2. Bosonic strings

    CERN Document Server

    Jost, Jürgen

    2007-01-01

    This book presents a mathematical treatment of Bosonic string theory from the point of view of global geometry. As motivation, Jost presents the theory of point particles and Feynman path integrals. He provides detailed background material, including the geometry of Teichmüller space, the conformal and complex geometry of Riemann surfaces, and the subtleties of boundary regularity questions. The high point is the description of the partition function for Bosonic strings as a finite-dimensional integral over a moduli space of Riemann surfaces. Jost concludes with some topics related to open and closed strings and D-branes. Bosonic Strings is suitable for graduate students and researchers interested in the mathematics underlying string theory.

  3. Closed-String Tachyons and the Hagedorn Transition in AdS Space

    CERN Document Server

    Barbón, José L F

    2002-01-01

    We discuss some aspects of the behaviour of a string gas at the Hagedorn temperature from a Euclidean point of view. Using AdS space as an infrared regulator, the Hagedorn tachyon can be effectively quasi-localized and its dynamics controled by a finite energetic balance. We propose that the off-shell RG flow matches to an Euclidean AdS black hole geometry in a generalization of the string/black-hole correspondence principle. The final stage of the RG flow can be interpreted semiclassically as the growth of a cool black hole in a hotter radiation bath. The end-point of the condensation is the large Euclidan AdS black hole, and the part of spacetime behind the horizon has been removed. In the flat-space limit, holography is manifest by the system creating its own transverse screen at infinity. This leads to an argument, based on the energetics of the system, explaining why the non-supersymmetric type 0A string theory decays into the supersymmetric type IIB vacuum. We also suggest a notion of `boundary entropy'...

  4. Effect of Arm Position on Width of the Subacromial Space of Upper String Musicians.

    Science.gov (United States)

    Smithson, Elliot V; Reed Smith, Elizabeth; McIlvain, Gary; Timmons, Mark K

    2017-09-01

    Musicians often end their musical career due to musculoskeletal injury. A leading source of shoulder pain in upper string musicians is rotator cuff disease (RCD). Multiple factors contribute to its development. Compressive overload of the soft tissues of the subacromial space resulting from a decrease in the width of the subacromial space has been identified as an extrinsic factor contributing to RCD development. The purpose of this study was to characterize the width of the subacromial space by measuring acromial-humeral distance (AHD) of upper string musicians, while their arms are in standard playing positions. Experienced musicians (n=23) were recruited from local communities. Shoulder ultrasound images were collected using standard imaging techniques. Images were collected and the AHD measured while the musician's arm was in positions associated with playing the violin. On the right side, the arm position main effect was significant (pstring position (8.8±1.9 mm) was less than the 1st string (11.3±1.4 mm) and resting (11.7±1.3 mm) positions. There was no difference in AHD between resting (10.0±5.8 mm) and instrument-support positions (10.6±1.5 mm). The resting AHD was smaller (p=0.04) on the right side compared to the left (12.2±1.4 mm). There was not statistically significant difference (p=0.138) in the occupation ratio (supraspinatus tendon thickness/AHD) between the right (mean 0.543±0.80 mm) and left sides (mean 0.510±0.087 mm). The AHD measurement decreased in the playing positions compared to resting positions. Treatment interventions that help musicians maximize the width of their subacromial space might help reduce the prevalence of shoulder pain in this population.

  5. Cache-oblivious string dictionaries

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Fagerberg, Rolf

    2006-01-01

    We present static cache-oblivious dictionary structures for strings which provide analogues of tries and suffix trees in the cache-oblivious model. Our construction takes as input either a set of strings to store, a single string for which all suffixes are to be stored, a trie, a compressed trie......, or a suffix tree, and creates a cache-oblivious data structure which performs prefix queries in O(logB n + |P|/B) I/Os, where n is the number of leaves in the trie, P is the query string, and B is the block size. This query cost is optimal for unbounded alphabets. The data structure uses linear space....

  6. New Developments in String Gravity and String Cosmology.A Summary Report

    OpenAIRE

    Sanchez, Norma G.

    2002-01-01

    New Developments in String Gravity and String Cosmology are reported: 1-String driven cosmology and its Predictions. 2-The primordial gravitational wave background in string cosmology. 3-Non-singular string cosmologies from Exact Conformal Field Theories. 4-Quantum Field Theory, String Temperature and the String Phase of de Sitter space-time, 5-Hawking Radiation in String Theory and the String Phase of Black Holes. 6-New Dual Relation between Quantum Field Theory regimes and String regimes in...

  7. All conjugate-maximal-helicity-violating amplitudes from topological open string theory in twistor space.

    Science.gov (United States)

    Roiban, Radu; Volovich, Anastasia

    2004-09-24

    It has recently been proposed that the D-instanton expansion of the open topological B model on P(3|4) is equivalent to the perturbative expansion of the maximally supersymmetric Yang-Mills theory in four dimensions. In this letter we show how to construct the gauge theory results for all n-point conjugate-maximal-helicity-violating amplitudes by computing the integral over the moduli space of curves of degree n-3 in P(3|4), providing strong support to the string theory construction.

  8. Space-time Dependency of the Time and its Effect on the Relativistic Classical Equation of the String Theory

    Science.gov (United States)

    Gholibeigian, Hassan; Amirshahkarami, Abdolazim; Gholibeigian, Kazem

    2017-01-01

    In special relativity theory, time dilates in velocity of near light speed. Also based on ``Substantial motion'' theory of Sadra, relative time (time flux); R = f (mv , σ , τ) , for each atom is momentum of its involved fundamental particles, which is different from the other atoms. In this way, for modification of the relativistic classical equation of string theory and getting more precise results, we should use effect of dilation and contraction of time in equation. So we propose to add two derivatives of the time's flux to the equation as follows: n.tp∂/R ∂ τ +∂2Xμ/(σ , τ) ∂τ2 = n .tp (∂/R ∂ σ ) +c2∂2Xμ/(σ , τ) ∂σ2 In which, Xμ is space-time coordinates of the string, σ & τ are coordinates on the string world sheet, respectively space and time along the string, string's mass m , velocity of string's motion v , factor n depends on geometry of each hidden extra dimension which relates to its own flux time, and tp is Planck's time. AmirKabir University of Technology, Tehran, Iran.

  9. Coset space compactification of the field theory limit of a heterotic string

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.; Helayel-Neto, J.A.

    1986-07-01

    The D = 10 - E/sub 8/xE/sub 8/ field theory limit of the heterotic string is compactified on the non-symmetric coset space Sp(4)/SU(2) xU(1) that is known in the limit of decoupled gravity to give three standard fermion generations, with SU(5)xSU(3)sub(F)xU(1)sub(F) as a gauge group in D = 4. Allowing for non-vanishing fermion bilinear condensates, and assuming the conventional form of the supersymmetry transformations, the presence of a family of N = 1 supersymmetric background field configurations is proved. This requires the non-compact space to be flat: (Minkowski)/sup 4/, while the 3-form Hsub(MNP) is non-vanishing and proportional to the torsion on the internal manifold. All equations of motion, including that of the dilation, are satisfied.

  10. A coset space compactification of the field theory limit of a heterotic string

    International Nuclear Information System (INIS)

    Foda, O.; Helayel-Neto, J.A.

    1986-01-01

    The D = 10 - E 8 xE 8 field theory limit of the heterotic string is compactified on the non-symmetric coset space Sp(4)/SU(2) xU(1) that is known in the limit of decoupled gravity to give three standard fermion generations, with SU(5)xSU(3)sub(F)xU(1)sub(F) as a gauge group in D = 4. Allowing for non-vanishing fermion bilinear condensates, and assuming the conventional form of the supersymmetry transformations, the presence of a family of N = 1 supersymmetric background field configurations is proved. This requires the non-compact space to be flat: (Minkowski) 4 , while the 3-form Hsub(MNP) is non-vanishing and proportional to the torsion on the internal manifold. All equations of motion, including that of the dilation, are satisfied. (author)

  11. A coset-space compactification of the field-theory limit of a heterotic string

    International Nuclear Information System (INIS)

    Foda, O.; Helayel-Neto, J.A.

    1985-06-01

    The D=10-E 8 xE 8 field-theory limit of the heterotic string is compactified on the non-symmetric coset-space Sp(4)/SU(2)xU(1), that is known - in the limit of decoupled gravity - to give 3 standard fermion generations, with SU(5)xSU(3)sub(F)xU(1)sub(F) as a gauge group in D=4. Allowing for non-vanishing fermion-bilinear condensates, and assuming the conventional form of the supersymmetry transformations, we prove the presence of a family of N=1 supersymmetric background field configurations. This requires the non-compact space to be flat: (Minkowski) 4 , while the 3-form Hsub(MNP) is non-vanishing, and proportional to the torsion on the internal manifold. All equations of motion - including that of the dilaton - are satisfied. (author)

  12. The Moduli Space and M(Atrix) Theory of 9d N=1 Backgrounds of M/String Theory

    Energy Technology Data Exchange (ETDEWEB)

    Aharony, Ofer; /Weizmann Inst. /Stanford U., ITP /SLAC; Komargodski, Zohar; Patir, Assaf; /Weizmann Inst.

    2007-03-21

    We discuss the moduli space of nine dimensional N = 1 supersymmetric compactifications of M theory/string theory with reduced rank (rank 10 or rank 2), exhibiting how all the different theories (including M theory compactified on a Klein bottle and on a Moebius strip, the Dabholkar-Park background, CHL strings and asymmetric orbifolds of type II strings on a circle) fit together, and what are the weakly coupled descriptions in different regions of the moduli space. We argue that there are two disconnected components in the moduli space of theories with rank 2. We analyze in detail the limits of the M theory compactifications on a Klein bottle and on a Moebius strip which naively give type IIA string theory with an uncharged orientifold 8-plane carrying discrete RR flux. In order to consistently describe these limits we conjecture that this orientifold non-perturbatively splits into a D8-brane and an orientifold plane of charge (-1) which sits at infinite coupling. We construct the M(atrix) theory for M theory on a Klein bottle (and the theories related to it), which is given by a 2 + 1 dimensional gauge theory with a varying gauge coupling compactified on a cylinder with specific boundary conditions. We also clarify the construction of the M(atrix) theory for backgrounds of rank 18, including the heterotic string on a circle.

  13. Computational methods in the exploration of the classical and statistical mechanics of celestial scale strings: Rotating Space Elevators

    Science.gov (United States)

    Knudsen, Steven; Golubovic, Leonardo

    2015-04-01

    With the advent of ultra-strong materials, the Space Elevator has changed from science fiction to real science. We discuss computational and theoretical methods we developed to explore classical and statistical mechanics of rotating Space Elevators (RSE). An RSE is a loopy string reaching deep into outer space. The floppy RSE loop executes a motion which is nearly a superposition of two rotations: geosynchronous rotation around the Earth, and yet another faster rotational motion of the string which goes on around a line perpendicular to the Earth at its equator. Strikingly, objects sliding along the RSE loop spontaneously oscillate between two turning points, one of which is close to the Earth (starting point) whereas the other one is deeply in the outer space. The RSE concept thus solves a major problem in space elevator science which is how to supply energy to the climbers moving along space elevator strings. The exploration of the dynamics of a floppy string interacting with objects sliding along it has required development of novel finite element algorithms described in this presentation. We thank Prof. Duncan Lorimer of WVU for kindly providing us access to his computational facility.

  14. Topological string in harmonic space and correlation functions in S3 stringy cosmology

    International Nuclear Information System (INIS)

    Saidi, El Hassan; Sedra, Moulay Brahim

    2006-01-01

    We develop the harmonic space method for conifold and use it to study local complex deformations of T*S 3 preserving manifestly SL(2,C) isometry. We derive the perturbative manifestly SL(2,C) invariant partition function Z top of topological string B model on locally deformed conifold. Generic n momentum and winding modes of 2D c=1 noncritical theory are described by highest υ (n,0) and lowest components υ (0,n) of SL(2,C) spin s=n2 multiplets (υ (n-k,k) ), 0= α + and V α - . We also derive a dictionary giving the passage from Laurent (Fourier) analysis on T*S 1 (S 1 ) to the harmonic method on T*S 3 (S 3 ). The manifestly SU(2,C) covariant correlation functions of the S 3 quantum cosmology model of Gukov-Saraikin-Vafa are also studied

  15. Singularities in K-space and multi-brane solutions in cubic string field theory

    Science.gov (United States)

    Hata, Hiroyuki; Kojita, Toshiko

    2013-02-01

    In a previous paper [arXiv:1111.2389], we studied the multi-brane solutions in cubic string field theory by focusing on the topological nature of the "winding number" {N} which counts the number of branes. We found that {N} can be non-trivial owing to the singularity from the zero-eigenvalue of K of the KBc algebra, and that solutions carrying integer {N} and satisfying the EOM in the strong sense is possible only for {N} = 0 , ±1. In this paper, we extend the construction of multi-brane solutions to | {N} | ≥ 2. The solutions with N = ±2ismadepossiblebythefactthatthecorrelatorisinvariantunderatransformation exchanging K with 1 /K and hence K = ∞ eigenvalue plays the same role as K = 0. We further propose a method of constructing solutions with | {N} | ≥ 3 by expressing the eigenvalue space of K as a sum of intervals where the construction for | {N} | ≤ 2 is applicable.

  16. Singleton strings

    Energy Technology Data Exchange (ETDEWEB)

    Engquist, J. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University (Netherlands); Sundell, P. [INFN, Pisa (Italy); Scuola Normale Superiore, Pisa (Italy); Tamassia, L. [Instituut voor Theoretische Fysica, Katholieke Universiteit Leuven, Celestijnenlaan 200D, 3001 Leuven (Belgium)

    2007-05-15

    The group theoretical structure underlying physics in anti de Sitter (AdS) spacetime is intrinsically different with respect to the flat case, due to the presence of special ultra-short representations, named singletons, that do not admit a flat space limit. The purpose of this collaboration is to exploit this feature in the study of string and brane dynamics in AdS spacetime, in particular while trying to establish a connection between String Theory in AdS backgrounds (in the tensionless limit) and Higher-Spin Gauge Theory. (orig.)

  17. Space Vector Modulation for an Indirect Matrix Converter with Improved Input Power Factor

    Directory of Open Access Journals (Sweden)

    Nguyen Dinh Tuyen

    2017-04-01

    Full Text Available Pulse width modulation strategies have been developed for indirect matrix converters (IMCs in order to improve their performance. In indirect matrix converters, the LC input filter is used to remove input current harmonics and electromagnetic interference problems. Unfortunately, due to the existence of the input filter, the input power factor is diminished, especially during operation at low voltage outputs. In this paper, a new space vector modulation (SVM is proposed to compensate for the input power factor of the indirect matrix converter. Both computer simulation and experimental studies through hardware implementation were performed to verify the effectiveness of the proposed modulation strategy.

  18. Managing the natural disasters from space technology inputs

    Science.gov (United States)

    Jayaraman, V.; Chandrasekhar, M. G.; Rao, U. R.

    1997-01-01

    Natural disasters, whether of meteorological origin such as Cyclones, Floods, Tornadoes and Droughts or of having geological nature such as earthquakes and volcanoes, are well known for their devastating impacts on human life, economy and environment. With tropical climate and unstable land forms, coupled with high population density, poverty, illiteracy and lack of infrastructure development, developing countries are more vulnerable to suffer from the damaging potential of such disasters. Though it is almost impossible to completely neutralise the damage due to these disasters, it is, however possible to (i) minimise the potential risks by developing disaster early warning strategies (ii) prepare developmental plans to provide resilience to such disasters, (iii) mobilize resources including communication and telemedicinal services and (iv) to help in rehabilitation and post-disaster reconstruction. Space borne platforms have demonstrated their capability in efficient disaster management. While communication satellites help in disaster warning, relief mobilisation and telemedicinal support, Earth observation satellites provide the basic support in pre-disaster preparedness programmes, in-disaster response and monitoring activities, and post-disaster reconstruction. The paper examines the information requirements for disaster risk management, assess developing country capabilities for building the necessary decision support systems, and evaluate the role of satellite remote sensing. It describes several examples of initiatives from developing countries in their attempt to evolve a suitable strategy for disaster preparedness and operational framework for the disaster management Using remote sensing data in conjunction with other collateral information. It concludes with suggestions and recommendations to establish a worldwide network of necessary space and ground segments towards strengthening the technological capabilities for disaster management and mitigation.

  19. String test

    Science.gov (United States)

    Duodenal parasites test; Giardia - string test ... To have this test, you swallow a string with a weighted gelatin capsule on the end. The string is pulled out 4 hours later. Any bile , blood, or mucus attached to ...

  20. Target space interpretation of new module in 2D string theory

    International Nuclear Information System (INIS)

    Mahapatra, S.; Mukherji, S.; Sengupta, A.M.

    1992-01-01

    In this paper, the authors analyze the new states that have recently been discovered in 2D string theory by E. Witten and B. Zwiebach. Since the Liouville direction is uncompactified, the authors show that the deformations by the new ghost number two states generate equivalent classical solutions of the string fields. The authors argue that the new ghost number one states are responsible for generating transformations which relate such equivalent solutions. The authors also discuss the possible interpretation of higher ghost number states of these

  1. Anyonic strings and membranes in AdS space and dual Aharonov-Bohm effects

    OpenAIRE

    Hartnoll, Sean A.

    2006-01-01

    It is observed that strings in AdS_5 x S^5 and membranes in AdS_7 x S^4 exhibit long range phase interactions. Two well separated membranes dragged around one another in AdS acquire phases of 2\\pi/N. The same phases are acquired by a well separated F and D string dragged around one another. The phases are shown to correspond to both the standard and a novel type of Aharonov-Bohm effect in the dual field theory.

  2. String method for calculation of minimum free-energy paths in Cartesian space in freely-tumbling systems

    Science.gov (United States)

    Branduardi, Davide; Faraldo-Gómez, José D.

    2014-01-01

    The string method is a molecular-simulation technique that aims to calculate the minimum free-energy path of a chemical reaction or conformational transition, in the space of a pre-defined set of reaction coordinates that is typically highly dimensional. Any descriptor may be used as a reaction coordinate, but arguably the Cartesian coordinates of the atoms involved are the most unprejudiced and intuitive choice. Cartesian coordinates, however, present a non-trivial problem, in that they are not invariant to rigid-body molecular rotations and translations, which ideally ought to be unrestricted in the simulations. To overcome this difficulty, we reformulate the framework of the string method to integrate an on-the-fly structural-alignment algorithm. This approach, referred to as SOMA (String method with Optimal Molecular Alignment), enables the use of Cartesian reaction coordinates in freely tumbling molecular systems. In addition, this scheme permits the dissection of the free-energy change along the most probable path into individual atomic contributions, thus revealing the dominant mechanism of the simulated process. This detailed analysis also provides a physically-meaningful criterion to coarse-grain the representation of the path. To demonstrate the accuracy of the method we analyze the isomerization of the alanine dipeptide in vacuum and the chair-to-inverted-chair transition of β-D mannose in explicit water. Notwithstanding the simplicity of these systems, the SOMA approach reveals novel insights into the atomic mechanism of these isomerizations. In both cases, we find that the dynamics and the energetics of these processes are controlled by interactions involving only a handful of atoms in each molecule. Consistent with this result, we show that a coarse-grained SOMA calculation defined in terms of these subsets of atoms yields nearidentical minimum free-energy paths and committor distributions to those obtained via a highly-dimensional string. PMID

  3. Vacuum fluctuations of twisted fields in the space time of cosmic strings

    International Nuclear Information System (INIS)

    Matsas, G.E.A.

    1990-01-01

    A twisted scalar field conformally coupled to gravitation is used to calculate the vacuum stress-energy tensor in the background spacetime generated by an infinite straight gauge cosmic string. The result has an absolute numerical value close to the one obtained with a non-twisted conformal scalar field but their signals are opposite. (author) [pt

  4. Interpolating string field theories

    International Nuclear Information System (INIS)

    Zwiebach, B.

    1992-01-01

    This paper reports that a minimal area problem imposing different length conditions on open and closed curves is shown to define a one-parameter family of covariant open-closed quantum string field theories. These interpolate from a recently proposed factorizable open-closed theory up to an extended version of Witten's open string field theory capable of incorporating on shell closed strings. The string diagrams of the latter define a new decomposition of the moduli spaces of Riemann surfaces with punctures and boundaries based on quadratic differentials with both first order and second order poles

  5. Topics in string theory

    International Nuclear Information System (INIS)

    Neveu, A.

    1986-01-01

    There exist several string models. In the first lecture, the simplest one, the open bosonic string, which turns out to live most naturally in 26 dimensions will be described in some detail. In the second lecture, the closed bosonic strings, and the open and closed 10-dimensional strings (superstrings) are reviewed. In the third lecture, various compactification schemes which have been proposed to deal with the extra space dimensions, from 4 to 10 or 26 are dealt with; in particular, the Frenkel-Kac construction which builds non-Abelian internal symmetry groups out of the compactified dimensions, and the resulting heterotic string are described. Finally, in the fourth lecture, the important problem of the second quantization of string theories, and of the underlying gauge invariance which is responsible for the possibility of dealing, in a consistent fashion, with interacting high-spin states without negative metric is addressed. 41 references, 8 figures

  6. Integrability in the theories of strings-field and Hamilton flows in the space of physical systems

    International Nuclear Information System (INIS)

    Mironov, A.D.

    2003-01-01

    The integrability in the theories of strings/field originates by considering the dynamics in the space of the physical theories modules. The dynamics predetermined by the change in coupling constants, may be considered as a canonic transformation or as a Hamiltonian flow in the space of the physical systems. The example of the integrable mechanical systems is considered in this work. Then any T(p-vector, q-vector) function predetermines the monoparametric family of integrable systems in the vicinity of one system. The corresponding Hamiltonians T i (p-vector, q-vector) are in agreement with the Wythem equations and after the initial system quantization they become the operators, meeting the condition of the zero curvature in the coupling constants space [ru

  7. Open string model building

    International Nuclear Information System (INIS)

    Ishibashi, Nobuyuki; Onogi, Tetsuya

    1989-01-01

    Consistency conditions of open string theories, which can be a powerful tool in open string model building, are proposed. By making use of these conditions and assuming a simple prescription for the Chan-Paton factors, open string theories in several backgrounds are studied. We show that 1. there exist a large number of consistent bosonic open string theories on Z 2 orbifolds, 2. SO(32) type I superstring is the unique consistent model among fermionic string theories on the ten-dimensional flat Minkowski space, and 3. with our prescription for the Chan-Paton factors, there exist no consistent open superstring theories on (six-dimensional Minkowski space-time) x (Z 2 orbifold). (orig.)

  8. Strings with zero tension

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, R.; Barcelos-Neto, J.

    1988-05-01

    We describe bosonic strings by using a kind of Lagrangian compatible with the zero tension limit. The work is developed on an extended configuration space and the quantization is carried out with details.

  9. String Theory Rocks!

    CERN Multimedia

    2008-01-01

    String Theory supporters argue that the universe we live in has eleven dimensions, out of which three spacial dimensions and a temporal one, which define the void and the space-time environment we experience daily.

  10. Oriented open-closed string theory revisited

    International Nuclear Information System (INIS)

    Zwiebach, B.

    1998-01-01

    String theory on D-brane backgrounds is open-closed string theory. Given the relevance of this fact, we give details and elaborate upon our earlier construction of oriented open-closed string field theory. In order to incorporate explicitly closed strings, the classical sector of this theory is open strings with a homotopy associative A ∞ algebraic structure. We build a suitable Batalin-Vilkovisky algebra on moduli spaces of bordered Ricmann surfaces, the construction of which involves a few subtleties arising from the open string punctures and cyclicity conditions. All vertices coupling open and closed strings through disks are described explicitly. Subalgebras of the algebra of surfaces with boundaries are used to discuss symmetries of classical open string theory induced by the closed string sector, and to write classical open string field theory on general closed string backgrounds. We give a preliminary analysis of the ghost-dilaton theorem. copyright 1998 Academic Press, Inc

  11. Gravitational effects of global strings

    International Nuclear Information System (INIS)

    Aryal, M.; Everett, A.E.

    1986-01-01

    We have obtained the gravitational field, in the weak-field approximation, of cosmic strings formed in a phase transition in which a global symmetry is broken (global strings). The effect of this field on light rays passing a global string is found, and the resulting formation of double images and production of discontinuities in the microwave background temperature compared with the corresponding results for gauge strings. There are some differences in the case of global strings, reflecting the fact that the space surrounding such strings is not purely conical. However, the differences between gauge and global strings with masses suitable to explain galaxy formation are small, and the task of distinguishing them observationally appears difficult at best

  12. Input Space Regularization Stabilizes Pre-images for Kernel PCA De-noising

    DEFF Research Database (Denmark)

    Abrahamsen, Trine Julie; Hansen, Lars Kai

    2009-01-01

    Solution of the pre-image problem is key to efficient nonlinear de-noising using kernel Principal Component Analysis. Pre-image estimation is inherently ill-posed for typical kernels used in applications and consequently the most widely used estimation schemes lack stability. For de-noising appli...... mapping is non-linear, however, by applying a simple input space distance regularizer we can reduce variability with very limited sacrifice in terms of de-noising efficiency.......-noising applications we propose input space distance regularization as a stabilizer for pre-image estimation. We perform extensive experiments on the USPS digit modeling problem to evaluate the stability of three widely used pre-image estimators. We show that the previous methods lack stability when the feature...

  13. The theta-structure in string theories - 1: bosonic strings

    International Nuclear Information System (INIS)

    Li Miao.

    1985-09-01

    We explored the theta-structures in bosonic string theories which are similar to those in gauge field theories. The theta-structure of string is due to the multiply connected spatial compact subspace of space-time. The work of this paper shows that there is an energy band E(theta) in the string theory and one may move the tachyon out in theory by choosing some proper theta parameters. (author)

  14. Bowed Strings

    Science.gov (United States)

    Rossing, Thomas D.; Hanson, Roger J.

    In the next eight chapters, we consider some aspects of the science of bowed string instruments, old and new. In this chapter, we present a brief discussion of bowed strings, a subject that will be developed much more thoroughly in Chap. 16. Chapters 13-15 discuss the violin, the cello, and the double bass. Chapter 17 discusses viols and other historic string instruments, and Chap. 18 discusses the Hutchins-Schelleng violin octet.

  15. String theory compactifications

    CERN Document Server

    Graña, Mariana

    2017-01-01

    The lectures in this book provide graduate students and non-specialist researchers with a concise introduction to the concepts and formalism required to reduce the ten-dimensional string theories to the observable four-dimensional space-time - a procedure called string compactification. The text starts with a very brief introduction to string theory, first working out its massless spectrum and showing how the condition on the number of dimensions arises. It then dwells on the different possible internal manifolds, from the simplest to the most relevant phenomenologically, thereby showing that the most elegant description is through an extension of ordinary Riemannian geometry termed generalized geometry, which was first introduced by Hitchin. Last but not least, the authors review open problems in string phenomenology, such as the embedding of the Standard Model and obtaining de Sitter solutions.

  16. Hypermultiplets and topological strings

    NARCIS (Netherlands)

    Rocek, M.; Vafa, C.; Vandoren, S.

    2005-01-01

    The c-map relates classical hypermultiplet moduli spaces in compactifications of type II strings on a Calabi-Yau threefold to vector multiplet moduli spaces via a further compactification on a circle. We give an off-shell description of the c-map in N = 2 superspace. The superspace Lagrangian for

  17. Encoded expansion: an efficient algorithm to discover identical string motifs.

    Science.gov (United States)

    Azmi, Aqil M; Al-Ssulami, Abdulrakeeb

    2014-01-01

    A major task in computational biology is the discovery of short recurring string patterns known as motifs. Most of the schemes to discover motifs are either stochastic or combinatorial in nature. Stochastic approaches do not guarantee finding the correct motifs, while the combinatorial schemes tend to have an exponential time complexity with respect to motif length. To alleviate the cost, the combinatorial approach exploits dynamic data structures such as trees or graphs. Recently (Karci (2009) Efficient automatic exact motif discovery algorithms for biological sequences, Expert Systems with Applications 36:7952-7963) devised a deterministic algorithm that finds all the identical copies of string motifs of all sizes [Formula: see text] in theoretical time complexity of [Formula: see text] and a space complexity of [Formula: see text] where [Formula: see text] is the length of the input sequence and [Formula: see text] is the length of the longest possible string motif. In this paper, we present a significant improvement on Karci's original algorithm. The algorithm that we propose reports all identical string motifs of sizes [Formula: see text] that occur at least [Formula: see text] times. Our algorithm starts with string motifs of size 2, and at each iteration it expands the candidate string motifs by one symbol throwing out those that occur less than [Formula: see text] times in the entire input sequence. We use a simple array and data encoding to achieve theoretical worst-case time complexity of [Formula: see text] and a space complexity of [Formula: see text] Encoding of the substrings can speed up the process of comparison between string motifs. Experimental results on random and real biological sequences confirm that our algorithm has indeed a linear time complexity and it is more scalable in terms of sequence length than the existing algorithms.

  18. Cosmological Quantum String Vacua and String-String Duality

    OpenAIRE

    Rey, Soo-Jong

    1996-01-01

    Implications of string-string dualities to cosmological string vacua are discussed. Cosmological vacua of classical string theories comprise of disjoint classses mapped one another by scale-factor T-duality. Each classes are, however, afflicted with initial/final cosmological singularities. It is argued that quantum string theories and string-string dualities dramatically resolve these cosmological singularities out so that disjoint classical cosmological vacua are continuously connected in a...

  19. Rotating effects on the scalar field in the cosmic string spacetime, in the spacetime with space-like dislocation and in the spacetime with a spiral dislocation

    Science.gov (United States)

    Vitória, R. L. L.; Bakke, K.

    2018-03-01

    In the interface between general relativity and relativistic quantum mechanics, we analyse rotating effects on the scalar field subject to a hard-wall confining potential. We consider three different scenarios of general relativity given by the cosmic string spacetime, the spacetime with space-like dislocation and the spacetime with a spiral dislocation. Then, by searching for a discrete spectrum of energy, we analyse analogues effects of the Aharonov-Bohm effect for bound states and the Sagnac effect.

  20. Comparing double string theory actions

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, L. [Dipartimento di Fisica, Università degli Studi “Federico II” di Napoli,Complesso Universitario Monte S. Angelo ed. 6, via Cintia, 80126 Napoli (Italy); Gionti, S.J.G. [Specola Vaticana, Vatican City, V-00120, Vatican City State and Vatican Observatory Research Group, Steward Observatory, The University Of Arizona, 933 North Cherry Avenue, Tucson, Arizona 85721 (United States); Marotta, R.; Pezzella, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Napoli,Complesso Universitario di Monte S. Angelo ed. 6, via Cintia, 80126 Napoli (Italy)

    2014-04-28

    Aimed to a deeper comprehension of a manifestly T-dual invariant formulation of string theory, in this paper a detailed comparison between the non-covariant action proposed by Tseytlin and the covariant one proposed by Hull is done. These are obtained by making both the string coordinates and their duals explicitly appear, on the same footing, in the world-sheet action, so “doubling” the string coordinates along the compact dimensions. After a discussion on the nature of the constraints in both the models and the relative quantization, it results that the string coordinates and their duals behave like “non-commuting” phase space coordinates but their expressions in terms of Fourier modes generate the oscillator algebra of the standard bosonic string. A proof of the equivalence of the two formulations is given. Furthermore, open-string solutions are also discussed.

  1. Comparing double string theory actions

    International Nuclear Information System (INIS)

    De Angelis, L.; Gionti, S.J.G.; Marotta, R.; Pezzella, F.

    2014-01-01

    Aimed to a deeper comprehension of a manifestly T-dual invariant formulation of string theory, in this paper a detailed comparison between the non-covariant action proposed by Tseytlin and the covariant one proposed by Hull is done. These are obtained by making both the string coordinates and their duals explicitly appear, on the same footing, in the world-sheet action, so “doubling” the string coordinates along the compact dimensions. After a discussion on the nature of the constraints in both the models and the relative quantization, it results that the string coordinates and their duals behave like “non-commuting” phase space coordinates but their expressions in terms of Fourier modes generate the oscillator algebra of the standard bosonic string. A proof of the equivalence of the two formulations is given. Furthermore, open-string solutions are also discussed

  2. Deformations of topological open strings

    NARCIS (Netherlands)

    Hofman, C.; Ma, Whee Ky

    Deformations of topological open string theories are described, with an emphasis on their algebraic structure. They are encoded in the mixed bulk-boundary correlators. They constitute the Hochschild complex of the open string algebra - the complex of multilinear maps on the boundary Hilbert space.

  3. String-localized quantum fields

    International Nuclear Information System (INIS)

    Mund, Jens; Santos, Jose Amancio dos; Silva, Cristhiano Duarte; Oliveira, Erichardson de

    2009-01-01

    Full text. The principles of physics admit (unobservable) quantum fields which are localized not on points, but on strings in the sense of Mandelstam: a string emanates from a point in Minkowski space and extends to infinity in some space-like direction. This type of localization might permit the construction of new models, for various reasons: (a) in general, weaker localization implies better UV behaviour. Therefore, the class of renormalizable interactions in the string-localized has a chance to be larger than in the point-localized case; (b) for certain particle types, there are no point-localized (free) quantum fields - for example Anyons in d = 2 + 1, and Wigner's massless 'infinite spin' particles. For the latter, free string-localized quantum fields have been constructed; (c) in contrast to the point-localized case, string-localization admits covariant vector/tensor potentials for fotons and gravitons in a Hilbert space representation with positive energy. We shall present free string-localized quantum fields for various particle types, and some ideas about the perturbative construction of interacting string-localized fields. A central point will be an analogue of gauge theories, completely within a Hilbert space and without ghosts, trading gauge dependence with dependence on the direction of the localization string. In order to discuss renormalizability (item (a)), methods from microlocal analysis (wave front set and scaling degree) are needed. (author)

  4. On the effective theory of type II string compactifications on nilmanifolds and coset spaces

    International Nuclear Information System (INIS)

    Caviezel, Claudio

    2009-01-01

    In this thesis we analyzed a large number of type IIA strict SU(3)-structure compactifications with fluxes and O6/D6-sources, as well as type IIB static SU(2)-structure compactifications with fluxes and O5/O7-sources. Restricting to structures and fluxes that are constant in the basis of left-invariant one-forms, these models are tractable enough to allow for an explicit derivation of the four-dimensional low-energy effective theory. The six-dimensional compact manifolds we studied in this thesis are nilmanifolds based on nilpotent Lie-algebras, and, on the other hand, coset spaces based on semisimple and U(1)-groups, which admit a left-invariant strict SU(3)- or static SU(2)-structure. In particular, from the set of 34 distinct nilmanifolds we identified two nilmanifolds, the torus and the Iwasawa manifold, that allow for an AdS 4 , N = 1 type IIA strict SU(3)-structure solution and one nilmanifold allowing for an AdS 4 , N = 1 type IIB static SU(2)-structure solution. From the set of all the possible six-dimensional coset spaces, we identified seven coset spaces suitable for strict SU(3)-structure compactifications, four of which also allow for a static SU(2)-structure compactification. For all these models, we calculated the four-dimensional low-energy effective theory using N = 1 supergravity techniques. In order to write down the most general four-dimensional effective action, we also studied how to classify the different disconnected ''bubbles'' in moduli space. (orig.)

  5. Efficient parallel algorithms for string editing and related problems

    Science.gov (United States)

    Apostolico, Alberto; Atallah, Mikhail J.; Larmore, Lawrence; Mcfaddin, H. S.

    1988-01-01

    The string editing problem for input strings x and y consists of transforming x into y by performing a series of weighted edit operations on x of overall minimum cost. An edit operation on x can be the deletion of a symbol from x, the insertion of a symbol in x or the substitution of a symbol x with another symbol. This problem has a well known O((absolute value of x)(absolute value of y)) time sequential solution (25). The efficient Program Requirements Analysis Methods (PRAM) parallel algorithms for the string editing problem are given. If m = ((absolute value of x),(absolute value of y)) and n = max((absolute value of x),(absolute value of y)), then the CREW bound is O (log m log n) time with O (mn/log m) processors. In all algorithms, space is O (mn).

  6. Magnetic strings

    International Nuclear Information System (INIS)

    Chaves, Max

    2006-01-01

    The conception of the magnetic string is presented as an infinitely thin bundle of magnetic flux lines. The magnetic strings are surrounded by a film of current that rotates around them, and are a solution of Maxwell's equations. The magnetic potential contains a line singularity, and its stability can be established topologically. A few comments are added on the possibility that they may exist at a cosmological scale as relics of the Big Bang. (author) [es

  7. Lattice strings

    International Nuclear Information System (INIS)

    Thorn, C.B.

    1988-01-01

    The possibility of studying non-perturbative effects in string theory using a world sheet lattice is discussed. The light-cone lattice string model of Giles and Thorn is studied numerically to assess the accuracy of ''coarse lattice'' approximations. For free strings a 5 by 15 lattice seems sufficient to obtain better than 10% accuracy for the bosonic string tachyon mass squared. In addition a crude lattice model simulating string like interactions is studied to find out how easily a coarse lattice calculation can pick out effects such as bound states which would qualitatively alter the spectrum of the free theory. The role of the critical dimension in obtaining a finite continuum limit is discussed. Instead of the ''gaussian'' lattice model one could use one of the vertex models, whose continuum limit is the same as a gaussian model on a torus of any radius. Indeed, any critical 2 dimensional statistical system will have a stringy continuum limit in the absence of string interactions. 8 refs., 1 fig. , 9 tabs

  8. Matrix string partition function

    CERN Document Server

    Kostov, Ivan K; Kostov, Ivan K.; Vanhove, Pierre

    1998-01-01

    We evaluate quasiclassically the Ramond partition function of Euclidean D=10 U(N) super Yang-Mills theory reduced to a two-dimensional torus. The result can be interpreted in terms of free strings wrapping the space-time torus, as expected from the point of view of Matrix string theory. We demonstrate that, when extrapolated to the ultraviolet limit (small area of the torus), the quasiclassical expressions reproduce exactly the recently obtained expression for the partition of the completely reduced SYM theory, including the overall numerical factor. This is an evidence that our quasiclassical calculation might be exact.

  9. Progress in string theory research

    CERN Document Server

    2016-01-01

    At the first look, the String Theory seems just an interesting and non-trivial application of the quantum mechanics and the special relativity to vibrating strings. By itself, the quantization of relativistic strings does not call the attention of the particle physicist as a significant paradigm shift. However, when the string quantization is performed by applying the standard rules of the perturbative Quantum Field Theory, one discovers that the strings in certain states have the same physical properties as the gravity in the flat space-time. Chapter one of this book reviews the construction of the thermal bosonic string and D-brane in the framework of the Thermo Field Dynamics (TFD). It briefly recalls the wellknown light-cone quantization of the bosonic string in the conformal gauge in flat space-time, and gives a bird’s eye view of the fundamental concepts of the TFD. Chapter two examines a visual model inspired by string theory, on the system of interacting anyons. Chapter three investigate the late-ti...

  10. State Estimation of International Space Station Centrifuge Rotor With Incomplete Knowledge of Disturbance Inputs

    Science.gov (United States)

    Sullivan, Michael J.

    2005-01-01

    This thesis develops a state estimation algorithm for the Centrifuge Rotor (CR) system where only relative measurements are available with limited knowledge of both rotor imbalance disturbances and International Space Station (ISS) thruster disturbances. A Kalman filter is applied to a plant model augmented with sinusoidal disturbance states used to model both the effect of the rotor imbalance and the 155 thrusters on the CR relative motion measurement. The sinusoidal disturbance states compensate for the lack of the availability of plant inputs for use in the Kalman filter. Testing confirms that complete disturbance modeling is necessary to ensure reliable estimation. Further testing goes on to show that increased estimator operational bandwidth can be achieved through the expansion of the disturbance model within the filter dynamics. In addition, Monte Carlo analysis shows the varying levels of robustness against defined plant/filter uncertainty variations.

  11. Overview of Space-Time Adaptive Processing for Airborne Multiple-Input Multiple-Output Radar

    Directory of Open Access Journals (Sweden)

    Wang Ting

    2015-04-01

    Full Text Available Multiple-Input Multiple-Output (MIMO radar is an emerging radar system that is of great interest to military and academic organizations due to its advantages and extensive applications. The main purpose of Space-Time Adaptive Processing (STAP is to suppress ground clutter and realize Ground Moving Target Indication (GMTI. Nowadays, STAP technology has been extended to MIMO radar systems, and MIMO radar STAP has quickly become a hot research topic in international radar fields. This paper provides a detailed description of the extension and significant meaning of MIMO-STAP, and gives an overview of the current research status of clutter modeling, analysis of clutter Degree Of Freedom (DOF, reduced-dimension (reduced-rank processing, simultaneous suppression of clutter plus jamming, non-homogeneous environment processing, and so on. The future perspective for the development of MIMO-STAP technology is also discussed.

  12. Geometry, topology, and string theory

    Energy Technology Data Exchange (ETDEWEB)

    Varadarajan, Uday [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.

  13. Geometry, topology, and string theory

    International Nuclear Information System (INIS)

    Varadarajan, Uday

    2003-01-01

    A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated

  14. The confining trailing string

    CERN Document Server

    Kiritsis, E; Nitti, F

    2014-01-01

    We extend the holographic trailing string picture of a heavy quark to the case of a bulk geometry dual to a confining gauge theory. We compute the classical trailing confining string solution for a static as well as a uniformly moving quark. The trailing string is infinitely extended and approaches a confining horizon, situated at a critical value of the radial coordinate, along one of the space-time directions, breaking boundary rotational invariance. We compute the equations for the fluctuations around the classical solutions, which are used to obtain boundary force correlators controlling the Langevin dynamics of the quark. The imaginary part of the correlators has a non-trivial low-frequency limit, which gives rise to a viscous friction coefficient induced by the confining vacuum. The vacuum correlators are used to define finite-temperature dressed Langevin correlators with an appropriate high-frequency behavior.

  15. The confining trailing string

    Energy Technology Data Exchange (ETDEWEB)

    Kiritsis, Elias [APC, Université Paris 7, CNRS/IN2P3, CEA/IRFU, Obs. de Paris, Sorbonne Paris Cité,Bâtiment Condorcet, F-75205, Paris Cedex 13 (UMR du CNRS 7164) (France); Theory Group, Physics Department, CERN,CH-1211, Geneva 23 (Switzerland); Crete Center for Theoretical Physics, Department of Physics, University of Crete,71003 Heraklion (Greece); Mazzanti, Liuba [Institute for Theoretical Physics and Spinoza Institute, Utrecht University,3508 TD Utrecht (Netherlands); Nitti, Francesco [APC, Université Paris 7, CNRS/IN2P3, CEA/IRFU, Obs. de Paris, Sorbonne Paris Cité,Bâtiment Condorcet, F-75205, Paris Cedex 13 (UMR du CNRS 7164) (France)

    2014-02-19

    We extend the holographic trailing string picture of a heavy quark to the case of a bulk geometry dual to a confining gauge theory. We compute the classical trailing confining string solution for a static as well as a uniformly moving quark. The trailing string is infinitely extended and approaches a confining horizon, situated at a critical value of the radial coordinate, along one of the space-time directions, breaking boundary rotational invariance. We compute the equations for the fluctuations around the classical solutions, which are used to obtain boundary force correlators controlling the Langevin dynamics of the quark. The imaginary part of the correlators has a non-trivial low-frequency limit, which gives rise to a viscous friction coefficient induced by the confining vacuum. The vacuum correlators are used to define finite-temperature dressed Langevin correlators with an appropriate high-frequency behavior.

  16. Windings of twisted strings

    Science.gov (United States)

    Casali, Eduardo; Tourkine, Piotr

    2018-03-01

    Twistor string models have been known for more than a decade now but have come back under the spotlight recently with the advent of the scattering equation formalism which has greatly generalized the scope of these models. A striking ubiquitous feature of these models has always been that, contrary to usual string theory, they do not admit vibrational modes and thus describe only conventional field theory. In this paper we report on the surprising discovery of a whole new sector of one of these theories which we call "twisted strings," when spacetime has compact directions. We find that the spectrum is enhanced from a finite number of states to an infinite number of interacting higher spin massive states. We describe both bosonic and world sheet supersymmetric models, their spectra and scattering amplitudes. These models have distinctive features of both string and field theory, for example they are invariant under stringy T-duality but have the high energy behavior typical of field theory. Therefore they describe a new kind of field theories in target space, sitting on their own halfway between string and field theory.

  17. Poisson hierarchy of discrete strings

    Energy Technology Data Exchange (ETDEWEB)

    Ioannidou, Theodora, E-mail: ti3@auth.gr [Faculty of Civil Engineering, School of Engineering, Aristotle University of Thessaloniki, 54249, Thessaloniki (Greece); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108, Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200, Tours (France); Department of Physics, Beijing Institute of Technology, Haidian District, Beijing 100081 (China)

    2016-01-28

    The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.

  18. Poisson hierarchy of discrete strings

    International Nuclear Information System (INIS)

    Ioannidou, Theodora; Niemi, Antti J.

    2016-01-01

    The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.

  19. Testing string theory at LHC?

    CERN Multimedia

    CERN. Geneva

    2002-01-01

    A theory with such mathematical beauty cannot be wrong: this is one of the main arguments in favour of string theory, which unifies all known physical theories of fundamental interactions in a single coherent description of the universe. But no one has ever observed strings, not even indirectly, nor the space of extra dimensions where they live. However there are good reasons to believe that the 'hidden' dimensions of string theory may be much larger than what we thought in the past and that they may be within experimental reach in the near future - together with the strings themselves. In my talk, I will give an elementary introduction of string theory and describe the main experimental predictions.Organiser(s): Jasper Kirkby / EP DivisionNote: Tea & coffee will be served at 16.00 hrs.

  20. Remarks on entanglement entropy in string theory

    Science.gov (United States)

    Balasubramanian, Vijay; Parrikar, Onkar

    2018-03-01

    Entanglement entropy for spatial subregions is difficult to define in string theory because of the extended nature of strings. Here we propose a definition for bosonic open strings using the framework of string field theory. The key difference (compared to ordinary quantum field theory) is that the subregion is chosen inside a Cauchy surface in the "space of open string configurations." We first present a simple calculation of this entanglement entropy in free light-cone string field theory, ignoring subtleties related to the factorization of the Hilbert space. We reproduce the answer expected from an effective field theory point of view, namely a sum over the one-loop entanglement entropies corresponding to all the particle-excitations of the string, and further show that the full string theory regulates ultraviolet divergences in the entanglement entropy. We then revisit the question of factorization of the Hilbert space by analyzing the covariant phase-space associated with a subregion in Witten's covariant string field theory. We show that the pure gauge (i.e., BRST exact) modes in the string field become dynamical at the entanglement cut. Thus, a proper definition of the entropy must involve an extended Hilbert space, with new stringy edge modes localized at the entanglement cut.

  1. Conformal techniques in string theory and string field theory

    International Nuclear Information System (INIS)

    Giddings, S.B.

    1987-01-01

    The application of some conformal and Riemann surface techniques to string theory and string field theory is described. First a brief review of Riemann surface techniques and of the Polyakov approach to string theory is presented. This is followed by a discussion of some features of string field theory and of its Feynman rules. Specifically, it is shown that the Feynman diagrams for Witten's string field theory respect modular invariance, and in particular give a triangulation of moduli space. The Polyakov formalism is then used to derive the Feynman rules that should follow from this theory upon gauge-fixing. It should also be possible to apply this derivation to deduce the Feynman rules for other gauge-fixed string field theories. Following this, Riemann surface techniques are turned to the problem of proving the equivalence of the Polyakov and light-cone formalisms. It is first shown that the light-cone diagrams triangulate moduli space. Then the Polyakov measure is worked out for these diagrams, and shown to equal that deduced from the light-cone gauge fixed formalism. Also presented is a short description of the comparison of physical states in the two formalisms. The equivalence of the two formalisms in particular constitutes a proof of the unitarity of the Polyakov framework for the closed bosonic string

  2. Strings draw theorists together

    International Nuclear Information System (INIS)

    Green, Michael

    2000-01-01

    Theorists are confident that they are closer than ever to finding a quantum theory that unites gravity with the three other fundamental forces in nature. Many of the leading figures in the world of string theory met at the California Institute of Technology in January to discuss recent progress in the field and to reflect on the state of the theory. The enthusiastic mood of the gathering was based on the fact that string theory provides an elegant framework for a unified theory of all the forces and particles in nature, and also gives a consistent quantum-mechanical description of general relativity. String theory, and more precisely superstring theory, describes the assortment of elementary particles such as quarks and leptons, and the gauge bosons responsible for mediating forces in a unified manner as different modes of vibration of a single extended string. This version of the theory also embodies supersymmetry a conjectured symmetry that unifies fermions and bosons. Furthermore, the fact that the string has a fundamental length scale - the ''string length'' - apparently cures the short-distance problems of uniting general relativity with quantum theory. The main problem with the early formulations of superstring theory was that they emphasized the ''perturbative'' point of view, an approximation that describes string-like quantum-mechanical particles moving through classical (that is non quantum-mechanical) space-time. However, very general arguments require that any quantum theory of gravity should also describe space-time geometry in a quantum-mechanical manner. The classical geometry of space-time should then emerge as an approximate description at distance scales much larger than the so-called Planck scale of 10 -33 m. This requires an understanding of the theory beyond the perturbative approximation. It is the quest for this more fundamental description of string theory that has provided the main challenge for string theorists over the past decade. Much

  3. Open bosonic string in background electromagnetic field

    International Nuclear Information System (INIS)

    Nesterenko, V.V.

    1987-01-01

    The classical and quantum dynamics of an open string propagating in the D-dimensional space-time in the presence of a background electromagnetic field is investigated. An important point in this consideration is the use of the generalized light-like gauge. There are considered the strings of two types; the neutral strings with charges at their ends obeying the condition q 1 +q 2 =0 and the charged strings having a net charge q 1 +q 2 ≠ 0. The consistency of theory demands that the background electric field does not exceed its critical value. The distance between the mass levels of the neutral open string decreases (1-e 2 ) times in comparison with the free string, where e is the dimensionless strength of the electric field. The magnetic field does not affect this distance. It is shown that at a classical level the squared mass of the neutral open string has a tachyonic contribution due to the motion of the string as a whole in transverse directions. The tachyonic term disappears if one considers, instead of M 2 , the string energy in a special reference frame where the projection of the total canonical momentum of the string onto the electric field vanishes. The contributions due to zero point fluctuations to the energy spectrum of the neutral string and to the Virasoro operators in the theory of charged string are found

  4. Transverse structure of the QCD string

    International Nuclear Information System (INIS)

    Meyer, Harvey B.

    2010-01-01

    The characterization of the transverse structure of the QCD string is discussed. We formulate a conjecture as to how the stress-energy tensor of the underlying gauge theory couples to the string degrees of freedom. A consequence of the conjecture is that the energy density and the longitudinal-stress operators measure the distribution of the transverse position of the string, to leading order in the string fluctuations, whereas the transverse-stress operator does not. We interpret recent numerical measurements of the transverse size of the confining string and show that the difference of the energy and longitudinal-stress operators is a particularly natural probe at next-to-leading order. Second, we derive the constraints imposed by open-closed string duality on the transverse structure of the string. We show that a total of three independent ''gravitational'' form factors characterize the transverse profile of the closed string, and obtain the interpretation of recent effective string theory calculations: the square radius of a closed string of length β defined from the slope of its gravitational form factor, is given by (d-1/2πσ)log(β/4r 0 ) in d space dimensions. This is to be compared with the well-known result that the width of the open string at midpoint grows as (d-1/2πσ)log(r/r 0 ). We also obtain predictions for transition form factors among closed-string states.

  5. A latent low-dimensional common input drives a pool of motor neurons: a probabilistic latent state-space model.

    Science.gov (United States)

    Feeney, Daniel F; Meyer, François G; Noone, Nicholas; Enoka, Roger M

    2017-10-01

    Motor neurons appear to be activated with a common input signal that modulates the discharge activity of all neurons in the motor nucleus. It has proven difficult for neurophysiologists to quantify the variability in a common input signal, but characterization of such a signal may improve our understanding of how the activation signal varies across motor tasks. Contemporary methods of quantifying the common input to motor neurons rely on compiling discrete action potentials into continuous time series, assuming the motor pool acts as a linear filter, and requiring signals to be of sufficient duration for frequency analysis. We introduce a space-state model in which the discharge activity of motor neurons is modeled as inhomogeneous Poisson processes and propose a method to quantify an abstract latent trajectory that represents the common input received by motor neurons. The approach also approximates the variation in synaptic noise in the common input signal. The model is validated with four data sets: a simulation of 120 motor units, a pair of integrate-and-fire neurons with a Renshaw cell providing inhibitory feedback, the discharge activity of 10 integrate-and-fire neurons, and the discharge times of concurrently active motor units during an isometric voluntary contraction. The simulations revealed that a latent state-space model is able to quantify the trajectory and variability of the common input signal across all four conditions. When compared with the cumulative spike train method of characterizing common input, the state-space approach was more sensitive to the details of the common input current and was less influenced by the duration of the signal. The state-space approach appears to be capable of detecting rather modest changes in common input signals across conditions. NEW & NOTEWORTHY We propose a state-space model that explicitly delineates a common input signal sent to motor neurons and the physiological noise inherent in synaptic signal

  6. Teaching Strings.

    Science.gov (United States)

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    Intended primarily for use by instrumental music teachers who do not have a major concentration in strings, this guide provides pertinent basic resources, materials, teaching--learning expectation, and a general overall guide to achievement levels at various stages of development. Discussions are presented of Choosing the Proper Method Book,…

  7. String phenomenology

    CERN Document Server

    Ibáñez, Luis E

    2015-01-01

    This chapter reviews a number of topics in the field of string phenomenology, focusing on orientifold/F-theory models yielding semirealistic low-energy physics. The emphasis is on the extraction of the low-energy effective action and possible tests of specific models at the LHC.

  8. Nonassociative gravity in string theory?

    Energy Technology Data Exchange (ETDEWEB)

    Blumenhagen, R [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Foehringer Ring 6, 80805 Muenchen (Germany); Plauschinn, E, E-mail: ralph.blumenhagen@mpp.mpg.d, E-mail: e.plauschinn@uu.n [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands)

    2011-01-07

    In an on-shell conformal field theory approach, we find indications of a three-bracket structure for target space coordinates in general closed string backgrounds. This generalizes the appearance of noncommutative gauge theories for open strings in two-form backgrounds to a putative noncommutative/nonassociative gravity theory for closed strings probing curved backgrounds with non-vanishing three-form flux. Several aspects and consequences of the three-bracket structure are discussed and a new type of generalized uncertainty principle is proposed.

  9. Influence of the input database in detecting fire space-time clusters

    Science.gov (United States)

    Pereira, Mário; Costa, Ricardo; Tonini, Marj; Vega Orozco, Carmen; Parente, Joana

    2015-04-01

    Fire incidence variability is influenced by local environmental variables such as topography, land use, vegetation and weather conditions. These induce a cluster pattern of the fire events distribution. The space-time permutation scan statistics (STPSS) method developed by Kulldorff et al. (2005) and implemented in the SaTScanTM software (http://www.satscan.org/) proves to be able to detect space-time clusters in many different fields, even when using incomplete and/or inaccurate input data. Nevertheless, the dependence of the STPSS method on the different characteristics of different datasets describing the same environmental phenomenon has not been studied yet. In this sense, the objective of this study is to assess the robustness of the STPSS for detecting real clusters using different input datasets and to justify the obtained results. This study takes advantage of the existence of two very different official fire datasets currently available for Portugal, both provided by the Institute for the Conservation of Nature and Forests. The first one is the aggregated Portuguese Rural Fire Database PRFD (Pereira et al., 2011), which is based on ground measurements and provides detailed information about the ignition and extinction date/time and the area burnt by each fire in forest, scrubs and agricultural areas. However, in the PRFD, the fire location of each fire is indicated by the name of smallest administrative unit (the parish) where the ignition occurred. Consequently, since the application of the STPSS requires the geographic coordinates of the events, the centroid of the parishes was considered. The second fire dataset is the national mapping burnt areas (NMBA), which is based on satellite measurements and delivered in shape file format. The NMBA provides a detailed spatial information (shape and size of each fire) but the temporal information is restricted to the year of occurrence. Besides these differences, the two datasets cover different periods, they

  10. String theory as a Lilliputian world

    International Nuclear Information System (INIS)

    Ambjørn, J.; Makeenko, Y.

    2016-01-01

    Lattice regularizations of the bosonic string do not allow us to probe the tachyon. This has often been viewed as the reason why these theories have never managed to make any contact to standard continuum string theories when the dimension of spacetime is larger than two. We study the continuum string theory in large spacetime dimensions where simple mean field theory is reliable. By keeping carefully the cutoff we show that precisely the existence of a tachyon makes it possible to take a scaling limit which reproduces the lattice-string results. We compare this scaling limit with another scaling limit which reproduces standard continuum-string results. If the people working with lattice regularizations of string theories are akin to Gulliver they will view the standard string-world as a Lilliputian world no larger than a few lattice spacings.

  11. String theory as a Lilliputian world

    Energy Technology Data Exchange (ETDEWEB)

    Ambjørn, J., E-mail: ambjorn@nbi.dk [The Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); IMAPP, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen (Netherlands); Makeenko, Y., E-mail: makeenko@nbi.dk [The Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya 25, 117218 Moscow (Russian Federation)

    2016-05-10

    Lattice regularizations of the bosonic string do not allow us to probe the tachyon. This has often been viewed as the reason why these theories have never managed to make any contact to standard continuum string theories when the dimension of spacetime is larger than two. We study the continuum string theory in large spacetime dimensions where simple mean field theory is reliable. By keeping carefully the cutoff we show that precisely the existence of a tachyon makes it possible to take a scaling limit which reproduces the lattice-string results. We compare this scaling limit with another scaling limit which reproduces standard continuum-string results. If the people working with lattice regularizations of string theories are akin to Gulliver they will view the standard string-world as a Lilliputian world no larger than a few lattice spacings.

  12. On exceptional instanton strings

    Science.gov (United States)

    Del Zotto, Michele; Lockhart, Guglielmo

    2017-09-01

    According to a recent classification of 6d (1 , 0) theories within F-theory there are only six "pure" 6d gauge theories which have a UV superconformal fixed point. The corresponding gauge groups are SU(3) , SO(8) , F 4 , E 6 , E 7, and E 8. These exceptional models have BPS strings which are also instantons for the corresponding gauge groups. For G simply-laced, we determine the 2d N=(0,4) worldsheet theories of such BPS instanton strings by a simple geometric engineering argument. These are given by a twisted S 2 compactification of the 4d N=2 theories of type H 2 , D 4 , E 6 , E 7 and E 8 (and their higher rank generalizations), where the 6d instanton number is mapped to the rank of the corresponding 4d SCFT. This determines their anomaly polynomials and, via topological strings, establishes an interesting relation among the corresponding T 2 × S 2 partition functions and the Hilbert series for moduli spaces of G instantons. Such relations allow to bootstrap the corresponding elliptic genera by modularity. As an example of such procedure, the elliptic genera for a single instanton string are determined. The same method also fixes the elliptic genus for case of one F 4 instanton. These results unveil a rather surprising relation with the Schur index of the corresponding 4d N=2 models.

  13. A novel string field theory solving string theory by liberating left and right movers

    International Nuclear Information System (INIS)

    Nielsen, Holger B.; Ninomiya, Masao

    2014-01-01

    We put forward ideas to a novel string field theory based on making some “objects” that essentially describe “liberated” left- and right- mover fields X L μ (τ+σ) and X R μ (τ−σ) on the string. Our novel string field theory is completely definitely different from any other string theory in as far as a “null set” of information in the string field theory Fock space has been removed relatively, to the usual string field theories. So our theory is definitely new. The main progress is that we manage to make our novel string field theory provide the correct mass square spectrum for the string. We finally suggest how to obtain the Veneziano amplitude in our model

  14. Deterministic indexing for packed strings

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Skjoldjensen, Frederik Rye

    2017-01-01

    Given a string S of length n, the classic string indexing problem is to preprocess S into a compact data structure that supports efficient subsequent pattern queries. In the deterministic variant the goal is to solve the string indexing problem without any randomization (at preprocessing time...... or query time). In the packed variant the strings are stored with several character in a single word, giving us the opportunity to read multiple characters simultaneously. Our main result is a new string index in the deterministic and packed setting. Given a packed string S of length n over an alphabet σ......, we show how to preprocess S in O(n) (deterministic) time and space O(n) such that given a packed pattern string of length m we can support queries in (deterministic) time O (m/α + log m + log log σ), where α = w/log σ is the number of characters packed in a word of size w = θ(log n). Our query time...

  15. Preventing Out-of-Sequence for Multicast Input-Queued Space-Memory-Memory Clos-Network

    DEFF Research Database (Denmark)

    Yu, Hao; Ruepp, Sarah Renée; Berger, Michael Stübert

    2011-01-01

    This paper proposes an out-of-sequence (OOS) preventative cell dispatching algorithm, the multicast flow-based round robin (MFRR), for multicast input-queued space-memory-memory (IQ-SMM) Clos-network architecture. Independently treating each incoming cell, such as the desynchronized static round...

  16. Out-of-Sequence Prevention for Multicast Input-Queuing Space-Memory-Memory Clos-Network

    DEFF Research Database (Denmark)

    Yu, Hao; Ruepp, Sarah; Berger, Michael Stübert

    2011-01-01

    This paper proposes two cell dispatching algorithms for the input-queuing space-memory-memory (IQ-SMM) Closnetwork to reduce out-of-sequence (OOS) for multicast traffic. The frequent connection pattern change of DSRR results in a severe OOS problem. Based on the principle of DSRR, MFDSRR is able...

  17. String Theory and M-Theory

    Science.gov (United States)

    Becker, Katrin; Becker, Melanie; Schwarz, John H.

    String theory is one of the most exciting and challenging areas of modern theoretical physics. This book guides the reader from the basics of string theory to recent developments. It introduces the basics of perturbative string theory, world-sheet supersymmetry, space-time supersymmetry, conformal field theory and the heterotic string, before describing modern developments, including D-branes, string dualities and M-theory. It then covers string geometry and flux compactifications, applications to cosmology and particle physics, black holes in string theory and M-theory, and the microscopic origin of black-hole entropy. It concludes with Matrix theory, the AdS/CFT duality and its generalizations. This book is ideal for graduate students and researchers in modern string theory, and will make an excellent textbook for a one-year course on string theory. It contains over 120 exercises with solutions, and over 200 homework problems with solutions available on a password protected website for lecturers at www.cambridge.org/9780521860697. Comprehensive coverage of topics from basics of string theory to recent developments Ideal textbook for a one-year course in string theory Includes over 100 exercises with solutions Contains over 200 homework problems with solutions available to lecturers on-line

  18. The "Magic" String

    Science.gov (United States)

    Hoover, Todd F.

    2010-01-01

    The "Magic" String is a discrepant event that includes a canister with what appears to be the end of two strings protruding from opposite sides of it. Due to the way the strings are attached inside the canister, it appears as if the strings can magically switch the way they are connected. When one string end is pulled, the observer's expectation…

  19. Open strings in the SL(2, R) WZWN model with solution for a rigidly rotating string

    DEFF Research Database (Denmark)

    Lomholt, Michael Andersen; Larsen, A.L.

    2003-01-01

    then consider open string boundary conditions corresponding to a certain field-dependent gluing condition. This allows us to consider open strings with constant energy and angular momentum. Classically, these open strings naturally generalize the open strings in flat Minkowski space. For rigidly rotating open...... strings, we show that the torsion leads to a bending and an unfolding. We also derive the SL(2, R) Regge relation, which generalizes the linear Minkowski Regge relation. For "high" mass, it takes the form L ≈ ± M/H, where H is the scale of the SL(2, R) group manifold....

  20. Identifying the relevant dependencies of the neural network response on characteristics of the input space

    CERN Document Server

    CERN. Geneva

    2018-01-01

    This talk presents an approach to identify those characteristics of the neural network inputs that are most relevant for the response and therefore provides essential information to determine the systematic uncertainties.

  1. Fingerprints in Compressed Strings

    DEFF Research Database (Denmark)

    Bille, Philip; Cording, Patrick Hagge; Gørtz, Inge Li

    2013-01-01

    The Karp-Rabin fingerprint of a string is a type of hash value that due to its strong properties has been used in many string algorithms. In this paper we show how to construct a data structure for a string S of size N compressed by a context-free grammar of size n that answers fingerprint queries....... That is, given indices i and j, the answer to a query is the fingerprint of the substring S[i,j]. We present the first O(n) space data structures that answer fingerprint queries without decompressing any characters. For Straight Line Programs (SLP) we get O(logN) query time, and for Linear SLPs (an SLP...... derivative that captures LZ78 compression and its variations) we get O(loglogN) query time. Hence, our data structures has the same time and space complexity as for random access in SLPs. We utilize the fingerprint data structures to solve the longest common extension problem in query time O(logNlogℓ) and O...

  2. Out-of-Sequence Preventative Cell Dispatching for Multicast Input-Queued Space-Memory-Memory Clos-Network

    DEFF Research Database (Denmark)

    Yu, Hao; Ruepp, Sarah Renée; Berger, Michael Stübert

    2011-01-01

    This paper proposes two out-of-sequence (OOS) preventative cell dispatching algorithms for the multicast input-queued space-memory-memory (IQ-SMM) Clos-network switch architecture, i.e. the multicast flow-based DSRR (MF-DSRR) and the multicast flow-based round-robin (MFRR). Treating each cell...... independently, the desynchronized static round-robin (DSRR) cell dispatching scheme can evenly distribute cells to the central switching modules, however, its frequent change of the input switching module connection pattern causes a serious OOS problem to the IQ-SMM architecture. Therefore large reassembly...

  3. String Gas Cosmology

    OpenAIRE

    Brandenberger, Robert H.

    2008-01-01

    String gas cosmology is a string theory-based approach to early universe cosmology which is based on making use of robust features of string theory such as the existence of new states and new symmetries. A first goal of string gas cosmology is to understand how string theory can effect the earliest moments of cosmology before the effective field theory approach which underlies standard and inflationary cosmology becomes valid. String gas cosmology may also provide an alternative to the curren...

  4. Closed string field theory

    International Nuclear Information System (INIS)

    Strominger, A.

    1987-01-01

    A gauge invariant cubic action describing bosonic closed string field theory is constructed. The gauge symmetries include local spacetime diffeomorphisms. The conventional closed string spectrum and trilinear couplings are reproduced after spontaneous symmetry breaking. The action S is constructed from the usual ''open string'' field of ghost number minus one half. It is given by the associator of the string field product which is non-vanishing because of associativity anomalies. S does not describe open string propagation because open string states associate and can thereby be shifted away. A field theory of closed and open strings can be obtained by adding to S the cubic open string action. (orig.)

  5. Looijenga’s weighted projective space, Tate’s algorithm and Mordell-Weil lattice in F-theory and heterotic string theory

    Energy Technology Data Exchange (ETDEWEB)

    Mizoguchi, Shun’ya [Theory Center, Institute of Particle and Nuclear Studies, KEK,1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan); SOKENDAI (The Graduate University for Advanced Studies),1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan); Tani, Taro [National Institute of Technology, Kurume College,1-1-1 Komorino, Kurume, Fukuoka, 830-8555 (Japan)

    2016-11-09

    It is now well known that the moduli space of a vector bundle for heterotic string compactifications to four dimensions is parameterized by a set of sections of a weighted projective space bundle of a particular kind, known as Looijenga’s weighted projective space bundle. We show that the requisite weighted projective spaces and the Weierstrass equations describing the spectral covers for gauge groups E{sub N}(N=4,⋯,8) and SU(n+1)(n=1,2,3) can be obtained systematically by a series of blowing-up procedures according to Tate’s algorithm, thereby the sections of correct line bundles claimed to arise by Looijenga’s theorem can be automatically obtained. They are nothing but the four-dimensional analogue of the set of independent polynomials in the six-dimensional F-theory parameterizing the complex structure, which is further confirmed in the constructions of D{sub 4}, A{sub 5}, D{sub 6}, E{sub 3} and SU(2)×SU(2) bundles. We also explain why we can obtain them in this way by using the structure theorem of the Mordell-Weil lattice, which is also useful for understanding the relation between the singularity and the occurrence of chiral matter in F-theory.

  6. Perturbative string theory in BRST invariant formalism

    International Nuclear Information System (INIS)

    Di Vecchia, P.; Hornfeck, K.; Frau, M.; Lerda, A.

    1988-01-01

    In this talk we present a constructive and very explicit way of calculating multiloop amplitudes in string theories. The main ingredients are the BRST invariant N String Vertex and the BRST invariant twisted propagator. This approach naturally leads to the Schottky parametrization of moduli space in terms of multipliers and fixed points of the g projective transformations which characterize a Riemann surface of genus g. The complete expression (including measure) of the multiloop corrections to the N String Vertex for the bosonic string is exhibited. (orig.)

  7. DSP: a protein shape string and its profile prediction server.

    Science.gov (United States)

    Sun, Jiangming; Tang, Shengnan; Xiong, Wenwei; Cong, Peisheng; Li, Tonghua

    2012-07-01

    Many studies have demonstrated that shape string is an extremely important structure representation, since it is more complete than the classical secondary structure. The shape string provides detailed information also in the regions denoted random coil. But few services are provided for systematic analysis of protein shape string. To fill this gap, we have developed an accurate shape string predictor based on two innovative technologies: a knowledge-driven sequence alignment and a sequence shape string profile method. The performance on blind test data demonstrates that the proposed method can be used for accurate prediction of protein shape string. The DSP server provides both predicted shape string and sequence shape string profile for each query sequence. Using this information, the users can compare protein structure or display protein evolution in shape string space. The DSP server is available at both http://cheminfo.tongji.edu.cn/dsp/ and its main mirror http://chemcenter.tongji.edu.cn/dsp/.

  8. From cosmic string to superconducting string

    CERN Document Server

    Kim, H C; Lee, B K

    1999-01-01

    We consider the dynamical symmetry breaking of a chirally-invariant Nambu-Jona-Lasinio model in the background gravity of a local cosmic string. By analyzing the one-loop effective action, we show how a cosmic string at a very high energy scale forms a global superconducting string to the spontaneous chiral symmetry breaking at a low energy.

  9. Dynamics of strings between walls

    International Nuclear Information System (INIS)

    Eto, Minoru; Fujimori, Toshiaki; Nagashima, Takayuki; Nitta, Muneto; Ohashi, Keisuke; Sakai, Norisuke

    2009-01-01

    Configurations of vortex strings stretched between or ending on domain walls were previously found to be 1/4 Bogomol'nyi-Prasad-Sommerfield (BPS) states in N=2 supersymmetric gauge theories in 3+1 dimensions. Among zero modes of string positions, the center of mass of strings in each region between two adjacent domain walls is shown to be non-normalizable whereas the rests are normalizable. We study dynamics of vortex strings stretched between separated domain walls by using two methods, the moduli space (geodesic) approximation of full 1/4 BPS states and the charged particle approximation for string end points in the wall effective action. In the first method we explicitly obtain the effective Lagrangian in the strong coupling limit, which is written in terms of hypergeometric functions, and find the 90 deg. scattering for head-on collision. In the second method the domain wall effective action is assumed to be U(1) N gauge theory, and we find a good agreement between two methods for well-separated strings.

  10. Quantized string models

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, E.S.; Tseytlin, A.A.

    1982-10-15

    We discuss and compare the Lorentz covariant path integral quantization of the three bose string models, namely, the Nambu, Eguchi and Brink-Di Vecchai-Howe-Polyakov (BDHP) ones. Along with a critical review of the subject with some uncertainties and ambiguities clearly stated, various new results are presented. We work out the form of the BDHP string ansatz for the Wilson average and prove a formal inequivalence of the exact Nambu and BDHP models for any space-time dimension d. The above three models known to be equivalent on the classical level, are shown to be equivalent in a semiclassical approximation near a minimal surface and also in the leading 1/d-approximation for the static q-barq-potential. We analyze scattering amplitudes predicted by the BDHP string and find that when exactly calculated for d<26 they are different from the old dual ones, and possess a non-linear spectrum which may be considered as free from tachyons in the ground state.

  11. An invariant string propagator

    International Nuclear Information System (INIS)

    Cohen, A.; Moore, G.; Nelson, P.; Polchinski, J.

    1986-01-01

    The authors show that the Polyakov path integral is used to define off-shell quantities in string theory. The path integral of Polyakov gives an elegant description of strings and their interactions. However, its use has been limited to obtaining the Koba-Nielsen expressions for S-matrix elements. It is not yet clear what quantities make sense in string theory. This study shows that the path integral can be used to define off-shell quantities as well. In particular it defines a natural n-point function in loop space as the sum of all world surfaces bounded by n specific spacetime curves. The reader is referred for more detail. The report first outlines general evaluation then discusses the additional features added by boundaries. Locally, the three gauge freedoms ξ/sup a/ and δphi can be used to take g/sub ab/ (σ) to the unit matrix. Globally, this is not quite possible. In general the researchers choose a family of fiducial metrics g/sub ab/ (σ,tau), depending on a finite number of Teichmuller parameters tau, and every metric is gauge equivalent to one of these

  12. OpenAnalogInput(): Hybrid Spaces, Self-Making and Power in the Internet of Things

    Science.gov (United States)

    Duarte, Fernanda da Costa Portugal

    2015-01-01

    This dissertation investigates how the emergence of the Internet of Things and the embeddedness of sensors and networked connectivity onto things, physical spaces and biological bodies rearticulates embodied spaces, devises practices of self-making and forms of power in the governance of the self and society. (Abstract shortened by ProQuest.).…

  13. Diffusion of massive particles around an Abelian-Higgs string

    Science.gov (United States)

    Saha, Abhisek; Sanyal, Soma

    2018-03-01

    We study the diffusion of massive particles in the space time of an Abelian Higgs string. The particles in the early universe plasma execute Brownian motion. This motion of the particles is modeled as a two dimensional random walk in the plane of the Abelian Higgs string. The particles move randomly in the space time of the string according to their geodesic equations. We observe that for certain values of their energy and angular momentum, an overdensity of particles is observed close to the string. We find that the string parameters determine the distribution of the particles. We make an estimate of the density fluctuation generated around the string as a function of the deficit angle. Though the thickness of the string is small, the length is large and the overdensity close to the string may have cosmological consequences in the early universe.

  14. Evidence for string substructure

    International Nuclear Information System (INIS)

    Bergman, O.

    1996-06-01

    The author argues that the behavior of string theory at high temperature and high longitudinal boosts, combined with the emergence of p-branes as necessary ingredients in various string dualities, point to a possible reformulation of strings, as well as p-branes, as composites of bits. He reviews the string-bit models, and suggests generalizations to incorporate p-branes

  15. State Estimation of International Space Station Centrifuge Rotor With Incomplete Knowledge of Disturbance Inputs

    National Research Council Canada - National Science Library

    Sullivan, Michael J

    2005-01-01

    This thesis develops a state estimation algorithm for the Centrifuge Rotor (CR) system where only relative measurements are available with limited knowledge of both rotor imbalance disturbances and International Space Station (ISS...

  16. Nuclear fuel string assembly

    International Nuclear Information System (INIS)

    Ip, A.K.; Koyanagi, K.; Tarasuk, W.R.

    1976-01-01

    A method of fabricating rodded fuels suitable for use in pressure tube type reactors and in pressure vessel type reactors is described. Fuel rods are secured as an inner and an outer sub-assembly, each rod attached between mounting rings secured to the rod ends. The two sub-assemblies are telescoped together and positioned by spaced thimbles located between them to provide precise positioning while permittng differential axial movement between the sub-assemblies. Such sub-assemblies are particularly suited for mounting as bundle strings. The method provides particular advantages in the assembly of annular-section fuel pins, which includes booster fuel containing enriched fuel material. (LL)

  17. A hybrid metaheuristic for closest string problem.

    Science.gov (United States)

    Mousavi, Sayyed Rasoul

    2011-01-01

    The Closest String Problem (CSP) is an optimisation problem, which is to obtain a string with the minimum distance from a number of given strings. In this paper, a new metaheuristic algorithm is investigated for the problem, whose main feature is relatively high speed in obtaining good solutions, which is essential when the input size is large. The proposed algorithm is compared with four recent algorithms suggested for the problem, outperforming them in more than 98% of the cases. It is also remarkably faster than all of them, running within 1 s in most of the experimental cases.

  18. Bianchi type I string cosmologies

    Indian Academy of Sciences (India)

    By making use of Letelier's form of energy–momentum tensor for a cloud of stringdust we present some classes of solutions of general relativistic field equations which describe cosmological string-dust models in Bianchi type I space-time. Some of the classes of models obey Takabayashi's equation of state whereas a class ...

  19. Monads, strings, and M theory

    NARCIS (Netherlands)

    Hofman, C.; Park, J.-S.

    1997-01-01

    The recent developmen ts in string theory suggest that the space-time coordinates should be generalized to non-comm uting matrices. P ostulating this suggestion as the fun- damen tal geometrical principle, w e form ulate a candidate for covariant second quantized RNS superstrings as a topological

  20. String theory in the bathtub

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The presence of the surrounding medium makes their dynamics dramatically different from those of ordinary string-like objects propagating in empty space, leading to quite peculiar phenomena, observed in experiments and simulations. I will argue that the effective theory provides an optimal theoretical framework to understand such phenomena, and to make precise quantitative predictions about them.

  1. Witten Genus and String Complete Intersections

    OpenAIRE

    Chen, Qingtao; Han, Fei

    2006-01-01

    In this note, we prove that the Witten genus of nonsingular string complete intersections in product of complex projective spaces vanishes. Our result generalizes a known result of Landweber and Stong (cf. [HBJ]).

  2. String Phenomenology: Past, Present and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Alon E. Faraggi

    2014-04-01

    Full Text Available The observation of a scalar resonance at the Large Hadron Collider (LHC, compatible with perturbative electroweak symmetry breaking, reinforces the Standard Model (SM parameterisation of all subatomic data. The logarithmic evolution of the SM gauge and matter parameters suggests that this parameterisation remains viable up to the Planck scale, where gravitational effects are of comparable strength. String theory provides a perturbatively consistent scheme to explore how the parameters of the Standard Model may be determined from a theory of quantum gravity. The free fermionic heterotic string models provide concrete examples of exact string solutions that reproduce the spectrum of the Minimal Supersymmetric Standard Model. Contemporary studies entail the development of methods to classify large classes of models. This led to the discovery of exophobic heterotic-string vacua and the observation of spinor-vector duality, which provides an insight to the global structure of the space of (2,0 heterotic-string vacua. Future directions entail the study of the role of the massive string states in these models and their incorporation in cosmological scenarios. A complementary direction is the formulation of quantum gravity from the principle of manifest phase space duality and the equivalence postulate of quantum mechanics, which suggest that space is compact. The compactness of space, which implies intrinsic regularisation, may be tightly related to the intrinsic finite length scale, implied by string phenomenology.

  3. The heterotic string

    International Nuclear Information System (INIS)

    Gross, D.J.

    1986-01-01

    Traditional string theories, either bosonic or supersymmetric, came in two varieties, closed string theories and open string theories. Closed string are neutral objects which describe at low energies gravity or supergravity. Open strings have geometrically invariant ends to which charge can be attached, thereby obtaining, in addition to gravity, Yang-Mills gauge interactions. Recently a new kind of string theory was discovered--the heterotic string, which is a chiral hybrid of the closed superstring and the closed bosonic string, and which produces by an internal dynamical mechanism gauge interactions of a totally specified kind. Although this theory is found in an attempt to produce a superstring theory which would yield a low energy E/sub 8/xE/sub 8/ supersymmetric, anomaly free, gauge theory, as suggested by the anomaly cancellation mechanism of Green and Schwarz, it fits naturally into the general framework of consistent string theories

  4. The STRING database in 2011

    DEFF Research Database (Denmark)

    Szklarczyk, Damian; Franceschini, Andrea; Kuhn, Michael

    2011-01-01

    and computational prediction techniques. However, public efforts to collect and present protein interaction information have struggled to keep up with the pace of interaction discovery, partly because protein-protein interaction information can be error-prone and require considerable effort to annotate. Here, we...... present an update on the online database resource Search Tool for the Retrieval of Interacting Genes (STRING); it provides uniquely comprehensive coverage and ease of access to both experimental as well as predicted interaction information. Interactions in STRING are provided with a confidence score......, and accessory information such as protein domains and 3D structures is made available, all within a stable and consistent identifier space. New features in STRING include an interactive network viewer that can cluster networks on demand, updated on-screen previews of structural information including homology...

  5. Towards optimal packed string matching

    DEFF Research Database (Denmark)

    Ben-Kiki, Oren; Bille, Philip; Breslauer, Dany

    2014-01-01

    In the packed string matching problem, it is assumed that each machine word can accommodate up to α characters, thus an n-character string occupies n/α memory words.(a) We extend the Crochemore–Perrin constant-space O(n)-time string-matching algorithm to run in optimal O(n/α) time and even in real......-time, achieving a factor α speedup over traditional algorithms that examine each character individually. Our macro-level algorithm only uses the standard AC0 instructions of the word-RAM model (i.e. no integer multiplication) plus two specialized micro-level AC0 word-size packed-string instructions. The main word...... matching work.(b) We also consider the complexity of the packed string matching problem in the classical word-RAM model in the absence of the specialized micro-level instructions wssm and wslm. We propose micro-level algorithms for the theoretically efficient emulation using parallel algorithms techniques...

  6. On the average complexity of sphere decoding in lattice space-time coded multiple-input multiple-output channel

    KAUST Repository

    Abediseid, Walid

    2012-12-21

    The exact average complexity analysis of the basic sphere decoder for general space-time codes applied to multiple-input multiple-output (MIMO) wireless channel is known to be difficult. In this work, we shed the light on the computational complexity of sphere decoding for the quasi- static, lattice space-time (LAST) coded MIMO channel. Specifically, we drive an upper bound of the tail distribution of the decoder\\'s computational complexity. We show that when the computational complexity exceeds a certain limit, this upper bound becomes dominated by the outage probability achieved by LAST coding and sphere decoding schemes. We then calculate the minimum average computational complexity that is required by the decoder to achieve near optimal performance in terms of the system parameters. Our results indicate that there exists a cut-off rate (multiplexing gain) for which the average complexity remains bounded. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Compressed and Practical Data Structures for Strings

    DEFF Research Database (Denmark)

    Christiansen, Anders Roy

    in the following. Finger Search in Grammar-Compressed Strings. Grammar-based compression, where one replaces a long string by a small context-free grammar that generates the string, is a simple and powerful paradigm that captures many popular compression schemes. Given a grammar, the random access problem...... string. We present new data structures that achieve optimal time for updates and queries while using space linear in the size of the optimal relative compression, for nearly all combinations of parameters. We also present solutions for restricted and extended sets of updates. To achieve these results, we...... revisit the dynamic partial sums problem and the substring concatenation problem. We present new optimal or near optimal bounds for these problems. Plugging in our new results we also immediately obtain new bounds for the string indexing for patterns with wildcards problem and the dynamic text and static...

  8. Field theory of relativistic strings: I. Trees

    International Nuclear Information System (INIS)

    Kaku, M.; Kikkawa, K.

    1985-01-01

    The authors present an entirely new kind of field theory, a field theory quantized not at space-time points, but quantized along an extended set of multilocal points on a string. This represents a significant departure from the usual quantum field theory, whose free theory represents a definite set of elementary particles, because the field theory on relativistic strings can accommodate an infinite set of linearly rising Regge trajectories. In this paper, the authors (1) present canonical quantization and the Green's function of the free string, (2) introduce three-string interactions, (3) resolve the question of multiple counting, (4) complete the counting arguments for all N-point trees, and (5) introduce four-string interactions which yield a Yang-Mills structure when the zero-slope limit is taken

  9. Knotlike cosmic strings in the early universe

    Science.gov (United States)

    Duan, Yi-shi; Liu, Xin

    2004-02-01

    In this paper, the knotlike cosmic strings in the Riemann-Cartan space-time of the early universe are discussed. It has been revealed that the cosmic strings can just originate from the zero points of the complex scalar quintessence field. In these strings we mainly study the knotlike configurations. Based on the integral of Chern-Simons 3-form a topological invariant for knotlike cosmic strings is constructed, and it is shown that this invariant is just the total sum of all the self-linking and linking numbers of the knots family. Furthermore, it is also pointed out that this invariant is preserved in the branch processes during the evolution of cosmic strings.

  10. Strings, Branes and Symmetries

    International Nuclear Information System (INIS)

    Westerberg, A.

    1997-01-01

    Recent dramatic progress in the understanding of the non-perturbative structure of superstring theory shows that extended objects of various kinds, collectively referred to as p-branes, are an integral part of the theory. In this thesis, comprising an introductory text and seven appended research papers, we study various aspects of p-branes with relevance for superstring theory. The first part of the introductory text is a brief review of string theory focussing on the role of p-branes. In particular, we consider the so-called D-branes which currently are attracting a considerable amount of attention. The purpose of this part is mainly to put into context the results of paper 4, 5 and 6 concerning action functionals describing the low-energy dynamics of D-branes. The discussion of perturbative string theory given in this part of the introduction is also intended to provide some background to paper 2 which contains an application of the Reggeon-sewing approach to the construction of string vertices. The second part covers a rather different subject, namely higher-dimensional loop algebras and their cohomology, with the aim of facilitating the reading of papers 1, 3 and 7. The relation to p-branes is to be found in paper 1 where we introduce a certain higher-dimensional generalization of the loop algebra and discuss its potential applicability as a symmetry algebra for p-branes. Papers 3 and 7 are mathematically oriented out-growths of this paper addressing the issue of realizing algebras of this kind, known in physics as current algebras, in terms of pseudo differential operators (PSDOs). The main result of paper 3 is a proof of the equivalence between certain Lie-algebra cocycles on the space of second-quantizable PSDOs

  11. Relativistic classical strings. II

    International Nuclear Information System (INIS)

    Galvao, C.A.P.

    1985-01-01

    The interactions of strings with electromagnetic and gravitational fields are extensively discussed. Some concepts of differential geometry are reviewed. Strings in Kaluza-Klein manifolds are studied. (L.C.) [pt

  12. std::string Append

    Science.gov (United States)

    2015-10-01

    UNCLASSIFIED AD-E403 689 Technical Report ARWSE-TR-14026 STD ::STRING APPEND Tom Nealis...DATES COVERED (From – To) 4. TITLE AND SUBTITLE STD ::STRING APPEND 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...two or more strings together while developing a C++ application is a very common task. For std ::strings, there are two primary ways to achieve the

  13. Strings in the Sun?

    International Nuclear Information System (INIS)

    Chudnovsky, E.; Vilenkin, A.

    1988-01-01

    If light superconducting strings were formed in the early Universe, then it is very likely that now they exist in abundance in the interstellar plasma and in stars. The dynamics of such strings can be dominated by friction, so that they are ''frozen'' into the plasma. Turbulence of the plasma twists and stretches the strings, forming a stochastic string network. Such networks must generate particles and magnetic fields, and may play an important role in the physics of stars and of the Galaxy

  14. On background-independent open-string field theory

    International Nuclear Information System (INIS)

    Witten, E.

    1992-01-01

    A framework for background-independent open-string field theory is proposed. The approach involves using the Batalin-Vilkovisky formalism, in a way suggested by recent developments in closed-string field theory, to implicitly define a gauge-invariant Lagrangian in a hypothetical ''space of all open-string world-sheet theories.'' It is built into the formalism that classical solutions of the string field theory are Becchi-Rouet-Stora-Tyutin- (BRST-) invariant open-string world-sheet theories and that, when expanding around a classical solution, the infinitesimal gauge transformations are generated by the world-sheet BRST operator

  15. Note on closed-string interactions a la Witten

    Energy Technology Data Exchange (ETDEWEB)

    Romans, L.J.

    1987-08-20

    We consider the problem of formulating a field theory of interacting closed strings analogous to Witten's open-string field theory. Two natural candidates have been suggested for an off-shell three-string interaction vertex: one scheme involves a cyclic geometric overlap in spacetime, while the other is obtained by 'stuttering' the Fock-space realization of the open-string vertex. We demonstrate that these two approaches are in fact equivalent, utilizing the operator formalism as developed to describe Witten's theory. Implications of this result for the construction of closed-string theories are briefly discussed.

  16. A note on closed-string interactions a la Witten

    International Nuclear Information System (INIS)

    Romans, L.J.

    1987-01-01

    We consider the problem of formulating a field theory of interacting closed strings analogous to Witten's open-string field theory. Two natural candidates have been suggested for an off-shell three-string interaction vertex: one scheme involves a cyclic geometric overlap in spacetime, while the other is obtained by 'stuttering' the Fock-space realization of the open-string vertex. We demonstrate that these two approaches are in fact equivalent, utilizing the operator formalism as developed to describe Witten's theory. Implications of this result for the construction of closed-string theories are briefly discussed. (orig.)

  17. StringForce

    DEFF Research Database (Denmark)

    Barendregt, Wolmet; Börjesson, Peter; Eriksson, Eva

    2017-01-01

    In this paper, we present the forced collaborative interaction game StringForce. StringForce is developed for a special education context to support training of collaboration skills, using readily available technologies and avoiding the creation of a "mobile bubble". In order to play StringForce ...

  18. Dynamics of Carroll strings

    Energy Technology Data Exchange (ETDEWEB)

    Cardona, Biel [Departament d’Estructura i Constituents de la Matèriaand Institut de Ciències del Cosmos (ICCUB) Facultat de Física, Universitat de Barcelona,Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Gomis, Joaquim [Departament d’Estructura i Constituents de la Matèriaand Institut de Ciències del Cosmos (ICCUB) Facultat de Física, Universitat de Barcelona,Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Department of Physics, Faculty of Science, Chulalongkorn University,Bangkok 10330 (Thailand); Pons, Josep M. [Departament d’Estructura i Constituents de la Matèriaand Institut de Ciències del Cosmos (ICCUB) Facultat de Física, Universitat de Barcelona,Diagonal 647, E-08028 Barcelona, Catalonia (Spain)

    2016-07-11

    We construct the canonical action of a Carroll string doing the Carroll limit of a canonical relativistic string. We also study the Killing symmetries of the Carroll string, which close under an infinite dimensional algebra. The tensionless limit and the Carroll p-brane action are also discussed.

  19. Spinorial Regge trajectories and Hagedorn-like temperatures. Spinorial space-time and preons as an alternative to strings

    International Nuclear Information System (INIS)

    Gonzalez-Mestres, Luis

    2016-01-01

    The development of the statistical bootstrap model for hadrons, quarks and nuclear matter occurred during the 1960s and the 1970s in a period of exceptional theoretical creativity. And if the transition from hadrons to quarks and gluons as fundamental particles was then operated, a transition from standard particles to preons and from the standard space-time to a spinorial one may now be necessary, including related pre-Big Bang scenarios. We present here a brief historical analysis of the scientific problematic of the 1960s in Particle Physics and of its evolution until the end of the 1970s, including cosmological issues. Particular attention is devoted to the exceptional role of Rolf Hagedorn and to the progress of the statistical boostrap model until the experimental search for the quark-gluon plasma started being considered. In parallel, we simultaneously expose recent results and ideas concerning Particle Physics and in Cosmology, an discuss current open questions. Assuming preons to be constituents of the physical vacuum and the standard particles excitations of this vacuum (the superbradyon hypothesis we introduced in 1995), together with a spinorial space-time (SST), a new kind of Regge trajectories is expected to arise where the angular momentum spacing will be of 1/2 instead of 1. Standard particles can lie on such Regge trajectories inside associated internal symmetry multiplets, and the preonic vacuum structure can generate a new approach to Quantum Field Theory. As superbradyons are superluminal preons, some of the vacuum excitations can have critical speeds larger than the speed of light c, but the cosmological evolution selects by itself the particles with the smallest critical speed (the speed of light). In the new Particle Physics and Cosmology emerging from the pattern thus developed, Hagedornlike temperatures will naturally be present. As new space, time, momentum and energy scales are expected to be generated by the preonic vacuum dynamics, the

  20. String dualities and superpotential

    International Nuclear Information System (INIS)

    Ha, Tae-Won

    2010-09-01

    The main objective of this thesis is the computation of the superpotential induced by D5- branes in the type IIB string theory and by five-branes in the heterotic string theory. Both superpotentials have the same functional form which is the chain integral of the holomorphic three-form. Using relative (co)homology we can unify the flux and brane superpotential. The chain integral can be seen as an example of the Abel-Jacobi map. We discuss many structures such as mixed Hodge structure which allows for the computation of Picard-Fuchs differential equations crucial for explicit computations. We blow up the Calabi-Yau threefold along the submanifold wrapped by the brane to obtain geometrically more appropriate configuration. The resulting geometry is non-Calabi-Yau and we have a canonically given divisor. This blown-up geometry makes it possible to restrict our attention to complex structure deformations. However, the direct computation is yet very difficult, thus the main tool for computation will be the lift of the brane configuration to a F-theory compactification. In F-theory, since complex structure, brane and, if present, bundlemoduli are all contained in the complex structure moduli space of the elliptic Calabi-Yau fourfold, the computation can be dramatically simplified. The heterotic/F-theory duality is extended to include the blow-up geometry and thereby used to give the blow-up geometry amore physical meaning. (orig.)

  1. String dualities and superpotential

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Tae-Won

    2010-09-15

    The main objective of this thesis is the computation of the superpotential induced by D5- branes in the type IIB string theory and by five-branes in the heterotic string theory. Both superpotentials have the same functional form which is the chain integral of the holomorphic three-form. Using relative (co)homology we can unify the flux and brane superpotential. The chain integral can be seen as an example of the Abel-Jacobi map. We discuss many structures such as mixed Hodge structure which allows for the computation of Picard-Fuchs differential equations crucial for explicit computations. We blow up the Calabi-Yau threefold along the submanifold wrapped by the brane to obtain geometrically more appropriate configuration. The resulting geometry is non-Calabi-Yau and we have a canonically given divisor. This blown-up geometry makes it possible to restrict our attention to complex structure deformations. However, the direct computation is yet very difficult, thus the main tool for computation will be the lift of the brane configuration to a F-theory compactification. In F-theory, since complex structure, brane and, if present, bundlemoduli are all contained in the complex structure moduli space of the elliptic Calabi-Yau fourfold, the computation can be dramatically simplified. The heterotic/F-theory duality is extended to include the blow-up geometry and thereby used to give the blow-up geometry amore physical meaning. (orig.)

  2. Minimal open strings

    International Nuclear Information System (INIS)

    Hosomichi, Kazuo

    2008-01-01

    We study FZZT-branes and open string amplitudes in (p, q) minimal string theory. We focus on the simplest boundary changing operators in two-matrix models, and identify the corresponding operators in worldsheet theory through the comparison of amplitudes. Along the way, we find a novel linear relation among FZZT boundary states in minimal string theory. We also show that the boundary ground ring is realized on physical open string operators in a very simple manner, and discuss its use for perturbative computation of higher open string amplitudes.

  3. Cosmic strings and inflation

    International Nuclear Information System (INIS)

    Vishniac, E.T.

    1987-01-01

    We examine the compatibility of inflation with the cosmic string theory for galaxy formation. There is a general conflict between having sufficient string tension to effect galaxy formation, and reheating after inflation to a high enough temperature that strings may form in a thermal phase transition. To escape this conflict, we propose a class of models where the inflation is coupled to the string-producing field. The strings are formed late in inflation as the inflaton rolls towards its zero-temperature value. A large subset of these models have a novel large-scale distribution of galaxies that is fractal, displays biasing without dynamics or feedback mechanisms, and contains voids. (orig.)

  4. Introduction to string and superstring theory II

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1987-03-01

    Conformal field theory is reviewed, then conformal invariance is used to rederive the basic results on the embedding dimensionality for bosonic and fermionic strings. The spectrum of the bosonic and the computation of scattering amplitudes are discussed. The formalism used is extended to clarify the origin of Yang-Mills gauge invariance in the open bosonic string theory. The question of the general-coordinate gauge invariance of string theory is addressed, presenting two disparate viewpoints on this question. A brief introduction is then given of the reduction from the idealized string theory in 10 extended dimensions to more realistic solutions in which all but 4 of these dimensions are compactified. The state of knowledge about the space-time supersymmetry of the superstring from the covariant viewpoint is outlined. An approach for identifying possible 6-dimensional spaces which might represent the form of the compact dimensions is discussed, and the orbifold scheme of compactification is presented. 77 refs., 18 figs

  5. Pinching parameters for open (super) strings

    Science.gov (United States)

    Playle, Sam; Sciuto, Stefano

    2018-02-01

    We present an approach to the parametrization of (super) Schottky space obtained by sewing together three-punctured discs with strips. Different cubic ribbon graphs classify distinct sets of pinching parameters; we show how they are mapped onto each other. The parametrization is particularly well-suited to describing the region within (super) moduli space where open bosonic or Neveu-Schwarz string propagators become very long and thin, which dominates the IR behaviour of string theories. We show how worldsheet objects such as the Green's function converge to graph theoretic objects such as the Symanzik polynomials in the α ' → 0 limit, allowing us to see how string theory reproduces the sum over Feynman graphs. The (super) string measure takes on a simple and elegant form when expressed in terms of these parameters.

  6. Introduction to string and superstring theory II

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1987-03-01

    Conformal field theory is reviewed, then conformal invariance is used to rederive the basic results on the embedding dimensionality for bosonic and fermionic strings. The spectrum of the bosonic and the computation of scattering amplitudes are discussed. The formalism used is extended to clarify the origin of Yang-Mills gauge invariance in the open bosonic string theory. The question of the general-coordinate gauge invariance of string theory is addressed, presenting two disparate viewpoints on this question. A brief introduction is then given of the reduction from the idealized string theory in 10 extended dimensions to more realistic solutions in which all but 4 of these dimensions are compactified. The state of knowledge about the space-time supersymmetry of the superstring from the covariant viewpoint is outlined. An approach for identifying possible 6-dimensional spaces which might represent the form of the compact dimensions is discussed, and the orbifold scheme of compactification is presented. 77 refs., 18 figs. (LEW)

  7. Closed Strings From Nothing

    International Nuclear Information System (INIS)

    Lawrence, Albion

    2001-01-01

    We study the physics of open strings in bosonic and type II string theories in the presence of unstable D-branes. When the potential energy of the open string tachyon is at its minimum, Sen has argued that only closed strings remain in the perturbative spectrum. We explore the scenario of Yi and of Bergman, Hori and Yi, who argue that the open string degrees of freedom are strongly coupled and disappear through confinement. We discuss arguments using open string field theory and worldsheet boundary RG flows, which seem to indicate otherwise. We then describe a solitonic excitation of the open string tachyon and gauge field with the charge and tension of a fundamental closed string. This requires a double scaling limit where the tachyon is taken to its minimal value and the electric field is taken to its maximum value. The resulting flux tube has an unconstrained spatial profile; and for large fundamental string charge, it appears to have light, weakly coupled open strings living in the core. We argue that the flux tube acquires a size or order α' through sigma model and string coupling effects; and we argue that confinement effects make the light degrees of freedom heavy and strongly interacting

  8. Closed Strings From Nothing

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, Albion

    2001-07-25

    We study the physics of open strings in bosonic and type II string theories in the presence of unstable D-branes. When the potential energy of the open string tachyon is at its minimum, Sen has argued that only closed strings remain in the perturbative spectrum. We explore the scenario of Yi and of Bergman, Hori and Yi, who argue that the open string degrees of freedom are strongly coupled and disappear through confinement. We discuss arguments using open string field theory and worldsheet boundary RG flows, which seem to indicate otherwise. We then describe a solitonic excitation of the open string tachyon and gauge field with the charge and tension of a fundamental closed string. This requires a double scaling limit where the tachyon is taken to its minimal value and the electric field is taken to its maximum value. The resulting flux tube has an unconstrained spatial profile; and for large fundamental string charge, it appears to have light, weakly coupled open strings living in the core. We argue that the flux tube acquires a size or order {alpha}' through sigma model and string coupling effects; and we argue that confinement effects make the light degrees of freedom heavy and strongly interacting.

  9. The arithmetic of strings

    International Nuclear Information System (INIS)

    Freund, P.G.O.

    1988-01-01

    According to the author nobody has succeeded as yet in extracting any new numbers from string theory. This paper discusses how if one cannot get new numbers from string theory, maybe one can get new strings out of number theory. Number theory is generally regarded as the purest form of mathematics. So how can it conceivably make contact with physics which aims at describing nature? The author discusses how the connecting link of these two disciplines is provided by the compact Riemann surfaces. These appear as world sheets of interacting strings. For instance, string-string scattering at the three-loop level involves the four external strings attaching themselves to a genus three compact surface

  10. Towards a Database System for Large-scale Analytics on Strings

    KAUST Repository

    Sahli, Majed A.

    2015-07-23

    Recent technological advances are causing an explosion in the production of sequential data. Biological sequences, web logs and time series are represented as strings. Currently, strings are stored, managed and queried in an ad-hoc fashion because they lack a standardized data model and query language. String queries are computationally demanding, especially when strings are long and numerous. Existing approaches cannot handle the growing number of strings produced by environmental, healthcare, bioinformatic, and space applications. There is a trade- off between performing analytics efficiently and scaling to thousands of cores to finish in reasonable times. In this thesis, we introduce a data model that unifies the input and output representations of core string operations. We define a declarative query language for strings where operators can be pipelined to form complex queries. A rich set of core string operators is described to support string analytics. We then demonstrate a database system for string analytics based on our model and query language. In particular, we propose the use of a novel data structure augmented by efficient parallel computation to strike a balance between preprocessing overheads and query execution times. Next, we delve into repeated motifs extraction as a core string operation for large-scale string analytics. Motifs are frequent patterns used, for example, to identify biological functionality, periodic trends, or malicious activities. Statistical approaches are fast but inexact while combinatorial methods are sound but slow. We introduce ACME, a combinatorial repeated motifs extractor. We study the spatial and temporal locality of motif extraction and devise a cache-aware search space traversal technique. ACME is the only method that scales to gigabyte- long strings, handles large alphabets, and supports interesting motif types with minimal overhead. While ACME is cache-efficient, it is limited by being serial. We devise a lightweight

  11. Framework for the string theory landscape

    International Nuclear Information System (INIS)

    Freivogel, B.; Susskind, L.

    2004-01-01

    It seems likely that string theory has a landscape of vacua that includes very many metastable de Sitter spaces. However, as emphasized by Banks, Dine, and Gorbatov, no current framework exists for examining these metastable vacua in string theory. In this paper we attempt to correct this situation by introducing an eternally inflating background in which the entire collection of accelerating cosmologies is present as intermediate states. The background is a classical solution which consists of a bubble of zero cosmological constant inside de Sitter space, separated by a domain wall. At early and late times the flat space region becomes infinitely big, so an S-matrix can be defined. Quantum mechanically, the system can tunnel to an intermediate state which is pure de Sitter space. We present evidence that a string theory S-matrix makes sense in this background, and that it contains metastable de Sitter space as an intermediate state

  12. Strings, Fivebranes and an Expanding Universe

    OpenAIRE

    Khuri, Ramzi R.; Pokotilov, Andriy

    2002-01-01

    It was recently shown that velocity-dependent forces between parallel fundamental strings moving apart in a $D-$dimensional spacetime implied an accelerating expanding universe in $D-1$-dimensional space-time. Exact solutions were obtained for the early time expansion in $D=5,6$. Here we show that this result also holds for fundamental strings in the background of a fivebrane, and argue that the feature of an accelerating universe would hold for more general $p$-brane-seeded models.

  13. Towards natural inflation in string theory

    International Nuclear Information System (INIS)

    Ben-Dayan, Ido; Pedro, Francisco G.; Westphal, Alexander

    2014-07-01

    We provide type IIB string embeddings of two axion variants of natural inflation. We use a combination of RR 2 form axions as the inflaton field and have its potential generated by non perturbative effects in the superpotential. Besides giving rise to inflation, the models developed take into account the stabilization of the compact space, both in the KKLT and large volume scenario regimes, an essential condition for any semi-realistic model of string inflation.

  14. Fingerprints in compressed strings

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Cording, Patrick Hagge

    2017-01-01

    In this paper we show how to construct a data structure for a string S of size N compressed into a context-free grammar of size n that supports efficient Karp–Rabin fingerprint queries to any substring of S. That is, given indices i and j, the answer to a query is the fingerprint of the substring S......[i,j]. We present the first O(n) space data structures that answer fingerprint queries without decompressing any characters. For Straight Line Programs (SLP) we get O(log⁡N) query time, and for Linear SLPs (an SLP derivative that captures LZ78 compression and its variations) we get O(log⁡log⁡N) query time...

  15. Schwinger-type parametrization of open string worldsheets

    Directory of Open Access Journals (Sweden)

    Sam Playle

    2017-03-01

    Full Text Available A parametrization of (super moduli space near the corners corresponding to bosonic or Neveu–Schwarz open string degenerations is introduced for worldsheets of arbitrary topology. With this parametrization, Feynman graph polynomials arise as the α′→0 limit of objects on moduli space. Furthermore, the integration measures of string theory take on a very simple and elegant form.

  16. Tensor constructions of open string theories. I. Foundations

    International Nuclear Information System (INIS)

    Gaberdiel, M.R.; Zwiebach, B.

    1997-01-01

    The possible tensor constructions of open string theories are analyzed from first principles. To this end the algebraic framework of open string field theory is clarified, including the role of the homotopy associative A ∞ algebra, the odd symplectic structure, cyclicity, star conjugation, and twist. It is also shown that two string theories are off-shell equivalent if the corresponding homotopy associative algebras are homotopy equivalent in a strict sense. It is demonstrated that a homotopy associative star algebra with a compatible even bilinear form can be attached to an open string theory. If this algebra does not have a space-time interpretation, positivity and the existence of a conserved ghost number require that its cohomology is at degree zero, and that it has the structure of a direct sum of full matrix algebras. The resulting string theory is shown to be physically equivalent to a string theory with a familiar open string gauge group. (orig.)

  17. String pair production in non homogeneous backgrounds

    International Nuclear Information System (INIS)

    Bolognesi, S.; Rabinovici, E.; Tallarita, G.

    2016-01-01

    We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is less suppressed than the rate of particle pair production. We discuss in some detail how the critical field is affected by the non-homogeneity, for both time and space dependent electric field backgrouds. We also comment on what could be an interesting new prediction for the small field limit. The third case we consider is pair production in holographic confining backgrounds with homogeneous and non-homogeneous fields.

  18. String pair production in non homogeneous backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Bolognesi, S. [Department of Physics “E. Fermi” University of Pisa, and INFN - Sezione di Pisa,Largo Pontecorvo, 3, Ed. C, 56127 Pisa (Italy); Rabinovici, E. [Racah Institute of Physics, The Hebrew University of Jerusalem,91904 Jerusalem (Israel); Tallarita, G. [Departamento de Ciencias, Facultad de Artes Liberales,Universidad Adolfo Ibáñez, Santiago 7941169 (Chile)

    2016-04-28

    We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is less suppressed than the rate of particle pair production. We discuss in some detail how the critical field is affected by the non-homogeneity, for both time and space dependent electric field backgrouds. We also comment on what could be an interesting new prediction for the small field limit. The third case we consider is pair production in holographic confining backgrounds with homogeneous and non-homogeneous fields.

  19. Open-closed string correspondence in open string field theory

    International Nuclear Information System (INIS)

    Baumgartl, M.; Sachs, I.

    2008-01-01

    We address the problem of describing different closed string backgrounds in background independent open string field theory: A shift in the closed string background corresponds to a collective excitation of open strings. As an illustration we apply the formalism to the case where the closed string background is a group manifold. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  20. Algebras, lattices and strings 1986

    International Nuclear Information System (INIS)

    Olive, D.

    1987-01-01

    The formulation of the string theory of unified elementary particle interactions in terms of operators in a Fock space is now seen to relate to the representation theory of certain infinite dimensional algebras. This insight has enhanced the understanding of the physical and mathematical theories involved and furthermore has led to applications in other branches of theoretical physics. A brief account of the new results is given here. (orig.)

  1. FSG: Fast String Graph Construction for De Novo Assembly.

    Science.gov (United States)

    Bonizzoni, Paola; Vedova, Gianluca Della; Pirola, Yuri; Previtali, Marco; Rizzi, Raffaella

    2017-10-01

    The string graph for a collection of next-generation reads is a lossless data representation that is fundamental for de novo assemblers based on the overlap-layout-consensus paradigm. In this article, we explore a novel approach to compute the string graph, based on the FM-index and Burrows and Wheeler Transform. We describe a simple algorithm that uses only the FM-index representation of the collection of reads to construct the string graph, without accessing the input reads. Our algorithm has been integrated into the string graph assembler (SGA) as a standalone module to construct the string graph. The new integrated assembler has been assessed on a standard benchmark, showing that fast string graph (FSG) is significantly faster than SGA while maintaining a moderate use of main memory, and showing practical advantages in running FSG on multiple threads. Moreover, we have studied the effect of coverage rates on the running times.

  2. Strings, texture, and inflation

    International Nuclear Information System (INIS)

    Hodges, H.M.; Primack, J.R.

    1991-01-01

    We examine mechanisms, several of which are proposed here, to generate structure formation, or to just add large-scale features, through either gauged or global cosmic strings or global texture, within the framework of inflation. We first explore the possibility that strings or texture form if there is no coupling between the topological theory and the inflaton or spacetime curvature, via (1) quantum creation, and (2) a sufficiently high reheat temperature. In addition, we examine the prospects for the inflaton field itself to generate strings or texture. Then, models with the string/texture field coupled to the curvature, and an equivalent model with coupling to the inflaton field, are considered in detail. The requirement that inflationary density fluctuations are not so large as to conflict with observations leads to a number of constraints on model parameters. We find that strings of relevance for structure formation can form in the absence of coupling to the inflaton or curvature through the process of quantum creation, but only if the strings are strongly type I, or if they are global strings. If formed after reheating, naturalness suggests that gauged cosmic strings correspond to a type-I superconductor. Similarly, gauged strings formed during inflation via conformal coupling ξ=1/6 to the spacetime curvature (in a model suggested by Yokoyama in order to evade the millisecond pulsar constraint on cosmic strings) are expected to be strongly type I

  3. Highly excited strings I: Generating function

    Directory of Open Access Journals (Sweden)

    Dimitri P. Skliros

    2017-03-01

    Full Text Available This is the first of a series of detailed papers on string amplitudes with highly excited strings (HES. In the present paper we construct a generating function for string amplitudes with generic HES vertex operators using a fixed-loop momentum formalism. We generalise the proof of the chiral splitting theorem of D'Hoker and Phong to string amplitudes with arbitrary HES vertex operators (with generic KK and winding charges, polarisation tensors and oscillators in general toroidal compactifications E=RD−1,1×TDcr−D (with generic constant Kähler and complex structure target space moduli, background Kaluza–Klein (KK gauge fields and torsion. We adopt a novel approach that does not rely on a “reverse engineering” method to make explicit the loop momenta, thus avoiding a certain ambiguity pointed out in a recent paper by Sen, while also keeping the genus of the worldsheet generic. This approach will also be useful in discussions of quantum gravity and in particular in relation to black holes in string theory, non-locality and breakdown of local effective field theory, as well as in discussions of cosmic superstrings and their phenomenological relevance. We also discuss the manifestation of wave/particle (or rather wave/string duality in string theory.

  4. Document retrieval on repetitive string collections.

    Science.gov (United States)

    Gagie, Travis; Hartikainen, Aleksi; Karhu, Kalle; Kärkkäinen, Juha; Navarro, Gonzalo; Puglisi, Simon J; Sirén, Jouni

    2017-01-01

    Most of the fastest-growing string collections today are repetitive, that is, most of the constituent documents are similar to many others. As these collections keep growing, a key approach to handling them is to exploit their repetitiveness, which can reduce their space usage by orders of magnitude. We study the problem of indexing repetitive string collections in order to perform efficient document retrieval operations on them. Document retrieval problems are routinely solved by search engines on large natural language collections, but the techniques are less developed on generic string collections. The case of repetitive string collections is even less understood, and there are very few existing solutions. We develop two novel ideas, interleaved LCPs and precomputed document lists , that yield highly compressed indexes solving the problem of document listing (find all the documents where a string appears), top- k document retrieval (find the k documents where a string appears most often), and document counting (count the number of documents where a string appears). We also show that a classical data structure supporting the latter query becomes highly compressible on repetitive data. Finally, we show how the tools we developed can be combined to solve ranked conjunctive and disjunctive multi-term queries under the simple [Formula: see text] model of relevance. We thoroughly evaluate the resulting techniques in various real-life repetitiveness scenarios, and recommend the best choices for each case.

  5. Approximating Tree Edit Distance through String Edit Distance

    OpenAIRE

    Akutsu, Tatsuya; Fukagawa, Daiji; Takasu, Atsuhiro

    2010-01-01

    We present an algorithm to approximate edit distance between two ordered and rooted trees of bounded degree. In this algorithm, each input tree is transformed into a string by computing the Euler string, where labels of some edges in the input trees are modified so that structures of small subtrees are reflected to the labels. We show that the edit distance between trees is at least 1/6 and at most O(n 3/4) of the edit distance between the transformed strings, where n is the maximum size of t...

  6. N = 2 string amplitudes

    International Nuclear Information System (INIS)

    Ooguri, H.

    1995-08-01

    In physics, solvable models have played very important roles. Understanding a simple model in detail teaches us a lot about more complicated models in generic situations. Five years ago, C. Vafa and I found that the closed N = 2 string theory, that is a string theory with the N = 2 local supersymmetry on the worldsheet, is classically equivalent to the self-dual Einstein gravity in four spacetime dimensions. Thus this string theory is solvable at the classical level. More recently, we have examined the N = 2 string partition function for spacial compactifications, and computed it to all order in the string perturbation expansion. The fact that such computation is possible at all suggests that the N = 2 string theory is solvable even quantum mechanically

  7. Whiteheadian Actual Entitities and String Theory

    Science.gov (United States)

    Bracken, Joseph A.

    2012-06-01

    In the philosophy of Alfred North Whitehead, the ultimate units of reality are actual entities, momentary self-constituting subjects of experience which are too small to be sensibly perceived. Their combination into "societies" with a "common element of form" produces the organisms and inanimate things of ordinary sense experience. According to the proponents of string theory, tiny vibrating strings are the ultimate constituents of physical reality which in harmonious combination yield perceptible entities at the macroscopic level of physical reality. Given that the number of Whiteheadian actual entities and of individual strings within string theory are beyond reckoning at any given moment, could they be two ways to describe the same non-verifiable foundational reality? For example, if one could establish that the "superject" or objective pattern of self- constitution of an actual entity vibrates at a specific frequency, its affinity with the individual strings of string theory would be striking. Likewise, if one were to claim that the size and complexity of Whiteheadian 'societies" require different space-time parameters for the dynamic interrelationship of constituent actual entities, would that at least partially account for the assumption of 10 or even 26 instead of just 3 dimensions within string theory? The overall conclusion of this article is that, if a suitably revised understanding of Whiteheadian metaphysics were seen as compatible with the philosophical implications of string theory, their combination into a single world view would strengthen the plausibility of both schemes taken separately. Key words: actual entities, subject/superjects, vibrating strings, structured fields of activity, multi-dimensional physical reality.

  8. Instantons, hypermultiplets and the heterotic string

    International Nuclear Information System (INIS)

    Halmagyi, Nick; Melnikov, Ilarion V.; Sethi, Savdeep

    2007-01-01

    Hypermultiplet couplings in type IIA string theory on a Calabi-Yau space can be quantum corrected by D2-brane instantons wrapping special Lagrangian cycles. On the other hand, hypermultiplet couplings in the heterotic string on a K3 surface are corrected by world-sheet instantons wrapping curves. In a class of examples, we relate these two sets of instanton corrections. We first present an analogue of the c-map for the heterotic string via a dual flux compactification of M-theory. Using this duality, we propose two ways of capturing quantum corrections to hypermultiplets. We then use the orientifold limit of certain F-theory compactifications to relate curves in K3 to special Lagrangians in dual type IIA compactifications. We conclude with some results from perturbative string theory for hypermultiplet F-terms and a conjecture about the topology of brane instantons

  9. The dual faces of string theory

    CERN Document Server

    Kiritsis, Elias

    1993-01-01

    Duality symmetries for strings moving in non-trivial spacetime backgrounds are analysed. It is shown that, for backgrounds generated from compact WZW and coset models, such duality symmetries are exact to all orders in string perturbation theory. A global treatment of duality symmetries is given, by associating them to the known symmetries of affine current algebras (affine-Weyl group and external automorphisms). It is argued that self-duality symmetries of WZW and coset models generate the duality symmetries of their moduli space. Some remarks are presented, concerning the survival of such symmetries in the non-compact case. The implications of duality symmetries for string dynamics in non-trivial/singular spacetimes are discussed. (Talk given at the "Strings 93" Conference at Berkeley, May 1993)

  10. Effective string theory and QCD scattering amplitudes

    International Nuclear Information System (INIS)

    Makeenko, Yuri

    2011-01-01

    QCD string is formed at distances larger than the confinement scale and can be described by the Polchinski-Strominger effective string theory with a nonpolynomial action, which has nevertheless a well-defined semiclassical expansion around a long-string ground state. We utilize modern ideas about the Wilson-loop/scattering-amplitude duality to calculate scattering amplitudes and show that the expansion parameter in the effective string theory is small in the Regge kinematical regime. For the amplitudes we obtain the Regge behavior with a linear trajectory of the intercept (d-2)/24 in d dimensions, which is computed semiclassically as a momentum-space Luescher term, and discuss an application to meson scattering amplitudes in QCD.

  11. Optimal Packed String Matching

    DEFF Research Database (Denmark)

    Ben-Kiki, Oren; Bille, Philip; Breslauer, Dany

    2011-01-01

    In the packed string matching problem, each machine word accommodates – characters, thus an n-character text occupies n/– memory words. We extend the Crochemore-Perrin constantspace O(n)-time string matching algorithm to run in optimal O(n/–) time and even in real-time, achieving a factor – speedup...... over traditional algorithms that examine each character individually. Our solution can be efficiently implemented, unlike prior theoretical packed string matching work. We adapt the standard RAM model and only use its AC0 instructions (i.e., no multiplication) plus two specialized AC0 packed string...

  12. 6d string chains

    Science.gov (United States)

    Gadde, Abhijit; Haghighat, Babak; Kim, Joonho; Kim, Seok; Lockhart, Guglielmo; Vafa, Cumrun

    2018-02-01

    We consider bound states of strings which arise in 6d (1,0) SCFTs that are realized in F-theory in terms of linear chains of spheres with negative self-intersections 1,2, and 4. These include the strings associated to N small E 8 instantons, as well as the ones associated to M5 branes probing A and D type singularities in M-theory or D5 branes probing ADE singularities in Type IIB string theory. We find that these bound states of strings admit (0,4) supersymmetric quiver descriptions and show how one can compute their elliptic genera.

  13. String theory for dummies

    CERN Document Server

    Zimmerman Jones, Andrew

    2010-01-01

    Making Everything Easier!. String Theory for Dummies. Learn:. The basic concepts of this controversial theory;. How string theory builds on physics concepts;. The different viewpoints in the field;. String theory's physical implications. Andrew Zimmerman Jones. Physics Guide, About.com. with Daniel Robbins, PhD in Physics. Your plain-English guide to this complex scientific theory. String theory is one of the most complicated sciences being explored today. Not to worry though! This informative guide clearly explains the basics of this hot topic, discusses the theory's hypotheses and prediction

  14. QCD and hadronic strings

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, G.

    1989-01-01

    This series of lectures is devoted to review ot he connections between QCD and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality.(author)

  15. Heterotic cosmic strings

    International Nuclear Information System (INIS)

    Becker, Katrin; Becker, Melanie; Krause, Axel

    2006-01-01

    We show that all three conditions for the cosmological relevance of heterotic cosmic strings, the right tension, stability and a production mechanism at the end of inflation, can be met in the strongly coupled M-theory regime. Whereas cosmic strings generated from weakly coupled heterotic strings have the well-known problems posed by Witten in 1985, we show that strings arising from M5-branes wrapped around 4-cycles (divisors) of a Calabi-Yau in heterotic M-theory compactifications solve these problems in an elegant fashion

  16. Open string theory in 1+1 dimensions

    International Nuclear Information System (INIS)

    Bershadsky, M.; Kutasov, D.

    1992-01-01

    We show that tree level open two dimensional string theory is exactly solvable; the solution exhibits some unusual features, and is qualitatively different from the closed case. The open string 'tachyon' S-matrix describes free fermions, which can be interpreted as the quarks at the ends of the string. These 'quarks' live naturally on a lattice in space-time. We also find an exact vacuum solution of the theory, corresponding to a charged black hole. (orig.)

  17. Point splitting regularization of classical string field theory

    International Nuclear Information System (INIS)

    Strominger, A.

    1987-01-01

    We regulate Witten's star algebra using point splitting and conformal field theory techniques. Certain products of nonassociative operators and states are defined. This involves a refinement of star that exists in cases where Witten's star is ill-defined. A simple derivation of a recently discovered associativity anomaly is given. It is shown that there is no anomaly obstructing the equivalence of Witten's string theory action and the cubic action for string fields in the open string Fock space. (orig.)

  18. On the geometrical approach to the relativistic string theory

    International Nuclear Information System (INIS)

    Barbashov, B.M.; Nesterenko, V.V.

    1978-01-01

    In a geometrical approach to the string theory in the four-dimensional Minkowski space the relativistic invariant gauge proposed earlier for the string moving in three-dimensional space-time is used. In contrast to the results of previous paper the system of equations for the coefficients of the fundamental forms of the string model world sheet can be reduced now to one nonlinear Lionville equation again but for a complex valued function u. It is shown that in the case of space-time with arbitrary dimension there are such string motions which are described by one non-linear equation with a real function u. And as a consequence the soliton solutions investigated earlier take place in a geometrical approach to the string theory in any dimensional space-time

  19. String field theory. Algebraic structure, deformation properties and superstrings

    International Nuclear Information System (INIS)

    Muenster, Korbinian

    2013-01-01

    This thesis discusses several aspects of string field theory. The first issue is bosonic open-closed string field theory and its associated algebraic structure - the quantum open-closed homotopy algebra. We describe the quantum open-closed homotopy algebra in the framework of homotopy involutive Lie bialgebras, as a morphism from the loop homotopy Lie algebra of closed string to the involutive Lie bialgebra on the Hochschild complex of open strings. The formulation of the classical/quantum open-closed homotopy algebra in terms of a morphism from the closed string algebra to the open string Hochschild complex reveals deformation properties of closed strings on open string field theory. In particular, we show that inequivalent classical open string field theories are parametrized by closed string backgrounds up to gauge transformations. At the quantum level the correspondence is obstructed, but for other realizations such as the topological string, a non-trivial correspondence persists. Furthermore, we proof the decomposition theorem for the loop homotopy Lie algebra of closed string field theory, which implies uniqueness of closed string field theory on a fixed conformal background. Second, the construction of string field theory can be rephrased in terms of operads. In particular, we show that the formulation of string field theory splits into two parts: The first part is based solely on the moduli space of world sheets and ensures that the perturbative string amplitudes are recovered via Feynman rules. The second part requires a choice of background and determines the real string field theory vertices. Each of these parts can be described equivalently as a morphism between appropriate cyclic and modular operads, at the classical and quantum level respectively. The algebraic structure of string field theory is then encoded in the composition of these two morphisms. Finally, we outline the construction of type II superstring field theory. Specific features of the

  20. Superfermionic superconformal string model

    International Nuclear Information System (INIS)

    Kudryavtsev, V.A.

    1994-01-01

    A new approach to superconformal dynamics of string interactions is formulated in terms of two-dimensional fermion fields and without boson fields commonly used in string theories. The vertex operators for emission of π-mesons are constructed within the framework of this approach. 5 refs

  1. Semilocal and electroweak strings

    NARCIS (Netherlands)

    Achucarro, A; Vachaspati, T

    We review a class of non-topological defects in the standard electroweak model, and their implications. Starting with the semilocal string, which provides a counterexample to many well-known properties of topological vortices, we discuss electroweak strings and their stability with and without

  2. Inflationary string theory?

    Indian Academy of Sciences (India)

    Furthermore, the success of this description indicates that inflation is likely to be associated with physics at energies considerably higher than the weak scale, for which string theory is arguably our most promising candidate. These observations strongly motivate a detailed search for inflation within string theory, although it ...

  3. String-Math 2015

    CERN Document Server

    2015-01-01

    Welcome to String-Math 2015 at Sanya. The conference will be opened in December 31, 2015- January 4, 2016. String theory plays a central role in theoretical physics as a candidate for the quantum theory unifying gravity with other interactions. It has profound connections with broad branches of modern mathematics ever since the birth. In the last decades, the prosperous interaction, built upon the joint efforts from both mathematicians and physicists, has given rise to marvelous deep results in supersymmetric gauge theory, topological string, M-theory and duality on the physics side as well as in algebraic geometry, differential geometry, algebraic topology, representation theory and number theory on the mathematics side. The interplay is two-fold. The mathematics has provided powerful tools to fulfill the physical interconnection of ideas and clarify physical structures to understand the nature of string theory. On the other hand, ideas from string theory and quantum field theory have been a source of sign...

  4. Complex world-sheets from N=2 strings

    International Nuclear Information System (INIS)

    Barbon, J.L.F.

    1996-01-01

    We study some properties of target space strings constructed from (2,1) heterotic strings. We argue that world-sheet complexification is a general property of the bosonic sector of such target world-sheets. We give a target space interpretation of this fact and relate it to the non-gaussian nature of free string field theory. We provide several one-loop calculations supporting the stringy construction of critical world-sheets in terms of (2,1) models. Using finite-temperature boundary conditions in the underlying (2,1) string we obtain non-chiral target space spin structures, and point out some of the problems arising for chiral spin structures, such as the heterotic world-sheet. To this end, we study the torus partition function of the corresponding asymmetric orbifold of the (2,1) string. (orig.)

  5. Transplanckian censorship and global cosmic strings

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Matthew J. [ARC Centre of Excellence for Particle Physics at the Terascale,School of Physics, University of Melbourne,Melbourne, 3010 (Australia); Draper, Patrick; Kozaczuk, Jonathan; Patel, Hiren [Amherst Center for Fundamental Interactions, Department of Physics,University of Massachusetts,Amherst, MA 01003 (United States)

    2017-04-21

    Large field excursions are required in a number of axion models of inflation. These models also possess global cosmic strings, around which the axion follows a path mirroring the inflationary trajectory. Cosmic strings are thus an interesting theoretical laboratory for the study of transplanckian field excursions. We describe connections between various effective field theory models of axion monodromy and study the classical spacetimes around their supercritical cosmic strings. For small decay constants fM{sub p}/f, the EFT is under control and the string cores undergo topological inflation, which may be either of exponential or power-law type. We show that the exterior spacetime is nonsingular and equivalent to a decompactifying cigar geometry, with the radion rolling in a potential generated by axion flux. Signals are able to circumnavigate infinite straight strings in finite but exponentially long time, t∼e{sup Δa/M{sub p}}. For finite loops of supercritical string in asymptotically flat space, we argue that if topological inflation occurs, then topological censorship implies transplanckian censorship, or that external observers are forbidden from threading the loop and observing the full excursion of the axion.

  6. Bosonization and current algebra of spinning strings

    International Nuclear Information System (INIS)

    Stern, A.

    1996-01-01

    We write down a general geometric action principle for spinning strings in d-dimensional Minkowski space, which is formulated without the use of Grassmann coordinates. Instead, it is constructed in terms of the pull-back of a left invariant Maurer-Cartan form on the d-dimensional Poincare group to the world-sheet. The system contains some interesting special cases. Among them are the Nambu string (as well as, null and tachyonic strings) where the spin vanishes, and also the case of a string with a spin current - but no momentum current. We find the general form for the Virasoro generators, and show that they are first class constraints in the Hamiltonian formulation of the theory. The current algebra associated with the momentum and angular momentum densities are shown, in general, to contain rather complicated anomaly terms which obstruct quantization. As expected, the anomalies vanish when one specializes to the case of the Nambu string, and there one simply recovers the algebra associated with the Poincare loop group. We speculate that there exist other cases where the anomalies vanish, and that these cases give the bosonization of the known pseudoclassical formulations of spinning strings. (orig.)

  7. Transplanckian censorship and global cosmic strings

    Science.gov (United States)

    Dolan, Matthew J.; Draper, Patrick; Kozaczuk, Jonathan; Patel, Hiren

    2017-04-01

    Large field excursions are required in a number of axion models of inflation. These models also possess global cosmic strings, around which the axion follows a path mirroring the inflationary trajectory. Cosmic strings are thus an interesting theoretical laboratory for the study of transplanckian field excursions. We describe connections be-tween various effective field theory models of axion monodromy and study the classical spacetimes around their supercritical cosmic strings. For small decay constants f M p /f , the EFT is under control and the string cores undergo topological inflation, which may be either of exponential or power-law type. We show that the exterior spacetime is nonsingular and equivalent to a decompactifying cigar geometry, with the radion rolling in a potential generated by axion flux. Signals are able to circumnavigate infinite straight strings in finite but exponentially long time, t ˜ e Δ a/ M p . For finite loops of supercritical string in asymptotically flat space, we argue that if topological inflation occurs, then topological censorship implies transplanckian censorship, or that external observers are forbidden from threading the loop and observing the full excursion of the axion.

  8. Breakdown of String Perturbation Theory for Many External Particles.

    Science.gov (United States)

    Ghosh, Sudip; Raju, Suvrat

    2017-03-31

    We consider massless string scattering amplitudes in a limit where the number of external particles becomes very large, while the energy of each particle remains small. Using the growth of the volume of the relevant moduli space, and by means of independent numerical evidence, we argue that string perturbation theory breaks down in this limit. We discuss some remarkable implications for the information paradox.

  9. Static potential for a string with a topological term

    International Nuclear Information System (INIS)

    Zaikov, R.P.; Zlatev, S.I.

    1991-01-01

    We study the static potential for a string in (2+1)-dimensional space-time with action including a topological term. An appropriate static solution is found and the corresponding potential is obtained. Such a solution does not exist beyond a critical distance between the ends of the string. The one-loop corrections to the static potential are calculated. (orig.)

  10. Stationary strings near a higher-dimensional rotating black hole

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Stevens, Kory A.

    2004-01-01

    We study stationary string configurations in a space-time of a higher-dimensional rotating black hole. We demonstrate that the Nambu-Goto equations for a stationary string in the 5D (five-dimensional) Myers-Perry metric allow a separation of variables. We present these equations in the first-order form and study their properties. We prove that the only stationary string configuration that crosses the infinite redshift surface and remains regular there is a principal Killing string. A worldsheet of such a string is generated by a principal null geodesic and a timelike at infinity Killing vector field. We obtain principal Killing string solutions in the Myers-Perry metrics with an arbitrary number of dimensions. It is shown that due to the interaction of a string with a rotating black hole, there is an angular momentum transfer from the black hole to the string. We calculate the rate of this transfer in a space-time with an arbitrary number of dimensions. This effect slows down the rotation of the black hole. We discuss possible final stationary configurations of a rotating black hole interacting with a string

  11. Comparison of string models for heavy ion collisions

    International Nuclear Information System (INIS)

    Werner, K.

    1990-01-01

    An important method to explore new domains in physics is to compare new results with extrapolations from known areas. For heavy ion collision this can be done with string models, which extrapolate from light to heavy systems and which also may be used to extrapolate to higher energies. That does not mean that these string models are only background models, one may easily implement new ideas on top of the known aspects, providing much more reliable models than those formed from scratch. All the models to be considered in this paper have in common that they consist of three independent building blocks: (a) geometry, (b) string formation and (c) string fragmentation. The geometry aspect is treated quite similar in all models: nucleons are distributed inside each nucleus according to some standard parameterization of nuclear densities. The nuclei move through each other on a straight line trajectory, with all the nucleon positions being fixed. Whenever a projectile and a target nucleon come close, they interact. Such an interaction results in string formation. In the last step these strings decay into observable hadrons according to some string fragmentation procedure. The three building blocks are independent, so one can combine different methods in an arbitrary manner. Therefore rather than treating the models one after the other, the author discusses the procedures for string formation and string fragmentation as used by the models. He considers string models in a very general sense, so he includes models where the authors never use the word string, but which may be most naturally interpreted as string models and show strong similarities with real string models. Although very important he does not discuss - for time and space reasons - recent developments concerning secondary scattering

  12. String field theory

    International Nuclear Information System (INIS)

    Kaku, M.

    1987-01-01

    In this article, the authors summarize the rapid progress in constructing string field theory actions, such as the development of the covariant BRST theory. They also present the newer geometric formulation of string field theory, from which the BRST theory and the older light cone theory can be derived from first principles. This geometric formulation allows us to derive the complete field theory of strings from two geometric principles, in the same way that general relativity and Yang-Mills theory can be derived from two principles based on global and local symmetry. The geometric formalism therefore reduces string field theory to a problem of finding an invariant under a new local gauge group they call the universal string group (USG). Thus, string field theory is the gauge theory of the universal string group in much the same way that Yang-Mills theory is the gauge theory of SU(N). The geometric formulation places superstring theory on the same rigorous group theoretical level as general relativity and gauge theory

  13. Duality relation between charged elastic strings and superconducting cosmic strings

    International Nuclear Information System (INIS)

    Carter, B.

    1989-01-01

    The mechanical properties of macroscopic electromagnetically coupled string models in a flat or curved background are treated using a covariant formalism allowing the construction of a duality transformation that relates the category of uniform ''electric'' string models, constructed as the (nonconducting) charged generalisation of ordinary uncoupled (violin type) elastic strings, to a category of ''magnetic'' string models comprising recently discussed varieties of ''superconducting cosmic strings''. (orig.)

  14. Final Report: "Strings 2014"

    Energy Technology Data Exchange (ETDEWEB)

    Witten, Edward

    2015-10-21

    The Strings 2014 meeting was held at Princeton University June 23-27, 2014, co-sponsored by Princeton University and the Institute for Advanced Study. The goal of the meeting was to provide a stimulating and up-to-date overview of research in string theory and its relations to other areas of physics and mathematics, ranging from geometry to quantum field theory, condensed matter physics, and more. This brief report lists committee members and speakers but contains no scientific information. Note that the talks at Strings 2014 were videotaped and are available on the conference website: http://physics.princeton.edustrings2014/Talk_titles.shtml.

  15. String theory for pedestrians

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    In this 3-lecture series I will discuss the basics of string theory, some physical applications, and the outlook for the future. I will begin with the main concepts of the classical theory and the application to the study of cosmic superstrings. Then I will turn to the quantum theory and discuss applications to the investigation of hadronic spectra and the recently discovered quark-gluon plasma. I will conclude with a sketch of string models of particle physics and showing some avenues that may lead to a complete formulation of string theory.

  16. Superconducting cosmic strings

    International Nuclear Information System (INIS)

    Chudnovsky, E.M.; Field, G.B.; Spergel, D.N.; Vilenkin, A.

    1986-01-01

    Superconducting loops of string formed in the early Universe, if they are relatively light, can be an important source of relativistic particles in the Galaxy. They can be observed as sources of synchrotron radiation at centimeter wavelengths. We propose a string model for two recently discovered radio sources, the ''thread'' in the galactic center and the source G357.7-0.1, and predict that the filaments in these sources should move at relativistic speeds. We also consider superheavy superconducting strings, and the possibility that they be observed as extragalactic radio sources

  17. Application of nonlinear autoregressive moving average exogenous input models to Geospace: Advances in understanding and space weather forecasts

    OpenAIRE

    Boynton, RJ; Balikhin, MA; Billings, SA; Amariutei, OA

    2013-01-01

    The nonlinear autoregressive moving average with exogenous inputs (NARMAX) system identification technique is applied to various aspects of the magnetospheres dynamics. It is shown, from an example system, how the inputs to a system can be found from the error reduction ratio (ERR) analysis, a key concept of the NARMAX approach. The application of the NARMAX approach to the Dst (disturbance storm time) index and the electron fluxes at geostationary Earth orbit (GEO) are reviewed, revealing ne...

  18. Cosmic strings and cosmic structure

    International Nuclear Information System (INIS)

    Albrecht, A.; Brandenberger, R.; Turok, N.

    1987-01-01

    The paper concerns the application of the theory of cosmic strings to explain the structure of the Universe. The formation of cosmic strings in the early Universe is outlined, along with the Big Bang theory, Grand Unified theories, and the first three minutes after the Big Bang. A description is given of the shaping of the Universe by cosmic strings, including the evolution of the string. The possibility for direct observation of cosmic strings is discussed. (U.K.)

  19. International conference on string theory

    CERN Document Server

    2017-01-01

    The Strings 2017 conference is part of the "Strings" series of annual conferences, that bring the entire string theory community together. It will include reviews of major developments in the field, and specialized talks on specific topics. There will also be several public lectures given by conference participants, a pre-Strings school at the Technion, and a post-Strings workshop at the Weizmann Institute.

  20. String Motion in Fivebrane Geometry

    OpenAIRE

    Khuri, Ramzi R.; La, HoSeong

    1992-01-01

    The classical motion of a test string in the transverse space of two types of heterotic fivebrane sources is fully analyzed, for arbitrary instanton scale size. The singular case is treated as a special case and does not arise in the continuous limit of zero instanton size. We find that the orbits are either circular or open, which is a solitonic analogy with the motion of an electron around a magnetic monopole, although the system we consider is quantitatively different. We emphasize that at...

  1. Subsurface drill string

    Science.gov (United States)

    Casper, William L [Rigby, ID; Clark, Don T [Idaho Falls, ID; Grover, Blair K [Idaho Falls, ID; Mathewson, Rodney O [Idaho Falls, ID; Seymour, Craig A [Idaho Falls, ID

    2008-10-07

    A drill string comprises a first drill string member having a male end; and a second drill string member having a female end configured to be joined to the male end of the first drill string member, the male end having a threaded portion including generally square threads, the male end having a non-threaded extension portion coaxial with the threaded portion, and the male end further having a bearing surface, the female end having a female threaded portion having corresponding female threads, the female end having a non-threaded extension portion coaxial with the female threaded portion, and the female end having a bearing surface. Installation methods, including methods of installing instrumented probes are also provided.

  2. Field theory of strings

    International Nuclear Information System (INIS)

    Ramond, P.

    1987-01-01

    We review the construction of the free equations of motion for open and closed strings in 26 dimensions, using the methods of the Florida Group. Differing from previous treatments, we argue that the constraint L 0 -anti L 0 =0 should not be imposed on all the fields of the closed string in the gauge invariant formalism; we show that it can be incorporated in the gauge invariant formalism at the price of being unable to extract the equations of motion from a Langrangian. We then describe our purely algebraic method to introduce interactions, which works equally well for open and closed strings. Quartic interactions are absent except in the Physical Gauge. Finally, we speculate on the role of the measure of the open string path functional. (orig.)

  3. The QCD Effective String

    International Nuclear Information System (INIS)

    Espriu, D.

    2003-01-01

    QCD can be described in a certain kinematical regime by an effective string theory. This string must couple to background chiral fields in a chirally invariant manner, thus taking into account the true chirally non-invariant QCD vacuum. By requiring conformal symmetry of the string and the unitarity constraint on chiral fields we reconstruct the equations of motion for the latter ones. These provide a consistent background for the propagation of the string. By further requiring locality of the effective action we recover the Lagrangian of non-linear sigma model of pion interactions. The prediction is unambiguous and parameter-free. The estimated chiral structural constants of Gasser and Leutwyler fit very well the phenomenological values. (author)

  4. Field theory of strings

    International Nuclear Information System (INIS)

    Ramond, P.

    1986-01-01

    We review the construction of the free equations of motion for open and closed strings in 26 dimensions, using the methods of the Florida Group. Differing from previous treatments, we argue that the constraint L 0 - L 0 -bar = 0 should not be imposed on all the fields of the closed string in the gauge invariant formalism: we show that it can be incorporated in the invariant formalism at the price of being unable to extract the equations of motion from a Lagrangian. We then describe our purely algebraic method to introduce interactions, which works equally well for open and closed strings. Quartic interactions are absent except in the Physical Gauge. Finally, we speculate on the role of the measure of the open string path functional. 20 refs

  5. Open Wilson lines as states of closed string

    International Nuclear Information System (INIS)

    Murakami, Koichi; Nakatsu, Toshio

    2003-01-01

    A system of a D-brane in bosonic string theory on a constant B field background is studied in order to obtain further insight into the bulk-boundary duality. Boundary states which describe arbitrary numbers of open-string tachyons and gluons are given. The UV behavior of field theories on the non-commutative world-volume is investigated by using these states. We take the zero-slope limits of the generating functions of one-loop amplitudes of gluons (and open-string tachyons) in which the region of the small open-string proper time is magnified. The existence of a B field allows the limits to be slightly different from the standard field theory limits of a closed-string. These limits enable us to obtained world-volume theories at a trans-string scale. In this limit the generating functions are shown to be factorized into two curved open Wilson lines (and their analogues) and become integrals on the space of paths with a Gaussian distribution around straight lines. These facts indicate the possibility that field theories on the non-commutative world-volume are topological at such a trans-string scale. We also give a proof of the Dhar-Kitazawa conjecture by determining an explicit correspondence between the closed-string states and the paths. Momentum eigenstates of closed-string or momentum loops also play an important role in these analyses. (author)

  6. Improved algorithms for approximate string matching (extended abstract

    Directory of Open Access Journals (Sweden)

    Papamichail Georgios

    2009-01-01

    Full Text Available Abstract Background The problem of approximate string matching is important in many different areas such as computational biology, text processing and pattern recognition. A great effort has been made to design efficient algorithms addressing several variants of the problem, including comparison of two strings, approximate pattern identification in a string or calculation of the longest common subsequence that two strings share. Results We designed an output sensitive algorithm solving the edit distance problem between two strings of lengths n and m respectively in time O((s - |n - m|·min(m, n, s + m + n and linear space, where s is the edit distance between the two strings. This worst-case time bound sets the quadratic factor of the algorithm independent of the longest string length and improves existing theoretical bounds for this problem. The implementation of our algorithm also excels in practice, especially in cases where the two strings compared differ significantly in length. Conclusion We have provided the design, analysis and implementation of a new algorithm for calculating the edit distance of two strings with both theoretical and practical implications. Source code of our algorithm is available online.

  7. Maximum margin classifier working in a set of strings.

    Science.gov (United States)

    Koyano, Hitoshi; Hayashida, Morihiro; Akutsu, Tatsuya

    2016-03-01

    Numbers and numerical vectors account for a large portion of data. However, recently, the amount of string data generated has increased dramatically. Consequently, classifying string data is a common problem in many fields. The most widely used approach to this problem is to convert strings into numerical vectors using string kernels and subsequently apply a support vector machine that works in a numerical vector space. However, this non-one-to-one conversion involves a loss of information and makes it impossible to evaluate, using probability theory, the generalization error of a learning machine, considering that the given data to train and test the machine are strings generated according to probability laws. In this study, we approach this classification problem by constructing a classifier that works in a set of strings. To evaluate the generalization error of such a classifier theoretically, probability theory for strings is required. Therefore, we first extend a limit theorem for a consensus sequence of strings demonstrated by one of the authors and co-workers in a previous study. Using the obtained result, we then demonstrate that our learning machine classifies strings in an asymptotically optimal manner. Furthermore, we demonstrate the usefulness of our machine in practical data analysis by applying it to predicting protein-protein interactions using amino acid sequences and classifying RNAs by the secondary structure using nucleotide sequences.

  8. Strings - Links between conformal field theory, gauge theory and gravity

    International Nuclear Information System (INIS)

    Troost, J.

    2009-05-01

    String theory is a candidate framework for unifying the gauge theories of interacting elementary particles with a quantum theory of gravity. The last years we have made considerable progress in understanding non-perturbative aspects of string theory, and in bringing string theory closer to experiment, via the search for the Standard Model within string theory, but also via phenomenological models inspired by the physics of strings. Despite these advances, many deep problems remain, amongst which a non-perturbative definition of string theory, a better understanding of holography, and the cosmological constant problem. My research has concentrated on various theoretical aspects of quantum theories of gravity, including holography, black holes physics and cosmology. In this Habilitation thesis I have laid bare many more links between conformal field theory, gauge theory and gravity. Most contributions were motivated by string theory, like the analysis of supersymmetry preserving states in compactified gauge theories and their relation to affine algebras, time-dependent aspects of the holographic map between quantum gravity in anti-de-Sitter space and conformal field theories in the bulk, the direct quantization of strings on black hole backgrounds, the embedding of the no-boundary proposal for a wave-function of the universe in string theory, a non-rational Verlinde formula and the construction of non-geometric solutions to supergravity

  9. Manipulating Strings in Python

    Directory of Open Access Journals (Sweden)

    William J. Turkel

    2012-07-01

    Full Text Available This lesson is a brief introduction to string manipulation techniques in Python. Knowing how to manipulate strings plays a crucial role in most text processing tasks. If you’d like to experiment with the following lessons, you can write and execute short programs as we’ve been doing, or you can open up a Python shell / Terminal to try them out on the command line.

  10. String dynamics in QCD

    International Nuclear Information System (INIS)

    Gervais, J.L.; Neveu, A.

    1980-01-01

    Recent works of the authors on string interpretation of the Wilson loop operators in QCD are reviewed in a self-contained fashion. Although most of the results habe already appeared in print, some new material is presented in renormalization of the Wilson loop operator and on the use of light-cone expansion to derive a linear string-like equation in light-cone formalism. (orig.)

  11. String Indexing for Patterns With Wildcards

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Vildhøj, Hjalte Wedel

    2012-01-01

    We consider the problem of indexing a string t of length n to report the occurrences of a query pattern p containing m characters and j wildcards. Let occ be the number of occurrences of p in t, and σ the size of the alphabet. We obtain the following results. - A linear space index with query time...

  12. Duality and supersymmetry breaking in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, S. (European Organization for Nuclear Research, Geneva (Switzerland) California Univ., Los Angeles (USA)); Magnoli, N.; Veneziano, G. (European Organization for Nuclear Research, Geneva (Switzerland)); Taylor, T.R. (Northeastern Univ., Boston, MA (USA))

    1990-08-16

    Target-space duality is incorporated in previously proposed effective actions describing non-perturbative supersymmetry breaking in string theory via gaugino condensation. Duality-preserving vacua with broken supersymmetry and fixed unified coupling constant do generically occur. The question of the vanishing of the cosmological constant is also briefly addressed. (orig.).

  13. String Indexing for Patterns with Wildcards

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Vildhøj, Hjalte Wedel

    2014-01-01

    We consider the problem of indexing a string t of length n to report the occurrences of a query pattern p containing m characters and j wildcards. Let occ be the number of occurrences of p in t, and σ the size of the alphabet. We obtain the following results. A linear space index with query time O...

  14. Some physical aspects of Liouville string dynamics

    CERN Document Server

    Ellis, John R.; Nanopoulos, Dimitri V.

    1994-01-01

    We discuss some physical aspects of our Liouville approach to non-critical strings, including the emergence of a microscopic arrow of time, effective field theories as classical ``pointer'' states in theory space, CPT violation and the possible apparent non-conservation of angular momentum. We also review the application of a phenomenological parametrization of this formalism to the neutral kaon system.

  15. String scattering amplitudes and deformed cubic string field theory

    Directory of Open Access Journals (Sweden)

    Sheng-Hong Lai

    2018-01-01

    Full Text Available We study string scattering amplitudes by using the deformed cubic string field theory which is equivalent to the string field theory in the proper-time gauge. The four-string scattering amplitudes with three tachyons and an arbitrary string state are calculated. The string field theory yields the string scattering amplitudes evaluated on the world sheet of string scattering whereas the conventional method, based on the first quantized theory brings us the string scattering amplitudes defined on the upper half plane. For the highest spin states, generated by the primary operators, both calculations are in perfect agreement. In this case, the string scattering amplitudes are invariant under the conformal transformation, which maps the string world sheet onto the upper half plane. If the external string states are general massive states, generated by non-primary field operators, we need to take into account carefully the conformal transformation between the world sheet and the upper half plane. We show by an explicit calculation that the string scattering amplitudes calculated by using the deformed cubic string field theory transform into those of the first quantized theory on the upper half plane by the conformal transformation, generated by the Schwarz–Christoffel mapping.

  16. Modeling Regular Replacement for String Constraint Solving

    Science.gov (United States)

    Fu, Xiang; Li, Chung-Chih

    2010-01-01

    Bugs in user input sanitation of software systems often lead to vulnerabilities. Among them many are caused by improper use of regular replacement. This paper presents a precise modeling of various semantics of regular substitution, such as the declarative, finite, greedy, and reluctant, using finite state transducers (FST). By projecting an FST to its input/output tapes, we are able to solve atomic string constraints, which can be applied to both the forward and backward image computation in model checking and symbolic execution of text processing programs. We report several interesting discoveries, e.g., certain fragments of the general problem can be handled using less expressive deterministic FST. A compact representation of FST is implemented in SUSHI, a string constraint solver. It is applied to detecting vulnerabilities in web applications

  17. Merging of multi-string BWTs with applications.

    Science.gov (United States)

    Holt, James; McMillan, Leonard

    2014-12-15

    The throughput of genomic sequencing has increased to the point that is overrunning the rate of downstream analysis. This, along with the desire to revisit old data, has led to a situation where large quantities of raw, and nearly impenetrable, sequence data are rapidly filling the hard drives of modern biology labs. These datasets can be compressed via a multi-string variant of the Burrows-Wheeler Transform (BWT), which provides the side benefit of searches for arbitrary k-mers within the raw data as well as the ability to reconstitute arbitrary reads as needed. We propose a method for merging such datasets for both increased compression and downstream analysis. We present a novel algorithm that merges multi-string BWTs in [Formula: see text] time where LCS is the length of their longest common substring between any of the inputs, and N is the total length of all inputs combined (number of symbols) using [Formula: see text] bits where F is the number of multi-string BWTs merged. This merged multi-string BWT is also shown to have a higher compressibility compared with the input multi-string BWTs separately. Additionally, we explore some uses of a merged multi-string BWT for bioinformatics applications. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Origin of gauge invariance in string theory

    Science.gov (United States)

    Horowitz, G. T.; Strominger, A.

    1986-01-01

    A first quantization of the space-time embedding Chi exp mu and the world-sheet metric rho of the open bosonic string. The world-sheet metric rho decouples from S-matrix elements in 26 dimensions. This formulation of the theory naturally includes 26-dimensional gauge transformations. The gauge invariance of S-matrix elements is a direct consequence of the decoupling of rho. Second quantization leads to a string field Phi(Chi exp mu, rho) with a gauge-covariant equation of motion.

  19. Twistor approach to string compactifications: A review

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrov, Sergei, E-mail: salexand@univ-montp2.fr

    2013-01-01

    We review a progress in obtaining the complete non-perturbative effective action of type II string theory compactified on a Calabi–Yau manifold. This problem is equivalent to understanding quantum corrections to the metric on the hypermultiplet moduli space. We show how all these corrections, which include D-brane and NS5-brane instantons, are incorporated in the framework of the twistor approach, which provides a powerful mathematical description of hyperkähler and quaternion-Kähler manifolds. We also present new insights on S-duality, quantum mirror symmetry, connections to integrable models and topological strings.

  20. Information as the Fifth Dimension of the Universe which Fundamental Particles (strings), Dark Matter/Energy and Space-time are Floating in it While they are Listening to its Whispering for Getting Order

    Science.gov (United States)

    Gholibeigian, Hassan; Gholibeigian, Ghasem; Amirshahkarami, Azim; Gholibeigian, Kazem

    2017-01-01

    Four animated sub-particles (sub-strings) as origin of the life and generator of momentum (vibration) of elementary particles (strings) are communicated for transferring information for processing and preparing fundamental particles for the next step. It means that information may be a ``dimension'' of the nature which fundamental particles, dark matter/energy and space-time are floating in it and listening to its whispering and getting quantum information packages about their conditions and laws. So, communication of information which began before the spark to B.B. (Convection Bang), may be a ``Fundamental symmetry'' in the nature because leads other symmetries and supersymmetry as well as other phenomena. The processed information are always carried by fundamental particles as the preserved history and entropy of Universe. So, information wouldn't be destroyed, lost or released by black hole. But the involved fundamental particles of thermal radiation, electromagnetic and gravitational fields carry processed information during emitting from black hole, while they are communicated from fifth dimension for their new movement. AmirKabir University of Technology, Tehran, Iran.

  1. Bianchi-IX string cosmological model in Lyra geometry

    Indian Academy of Sciences (India)

    Abstract. A class of cosmological solutions of massive strings for the Bianchi-IX space-time are obtained within the framework of Lyra geometry. Various physical and kinematical properties of the models are discussed.

  2. Strings, Axions and Solitons.

    Science.gov (United States)

    Dabholkar, Atish

    This thesis is divided into two chapters. Chapter I is about the dynamics of radiating axionic strings and the lower bound on the mass of the invisible axion. It has been suggested that, without inflation, the decay of axionic strings produced after the Peccei -Quinn phase transition is the primary source of cosmic relic axions. Knowing the density of these axions would then allow the derivation of a cosmological bound on the mass of the axion. In order to obtain a sharp bound it is essential to know the spectrum of the emitted axions and the detailed motion of a global string strongly coupled to the axionic field. To this end, following the analogy with Dirac's treatment of classical radiating electrons, self-consistent renormalized equations are obtained that describe the dynamics of a radiating global string interacting with its surrounding axionic field. The numerical formalism for evolving string trajectories using these equations is described, and is applied to the case of a circular loop. It is argued that for large wavelength oscillations of cosmic string loops, the motion is well approximated by the motion of a free Nambu-Goto string with appropriate renormalization. Consequently, a lower bound of 10 ^{-3} eV on the mass of the axion is obtained. Together with the recent upperbound of 4 times 10^{-4 } eV from the supernova SN1987a, it marginally rules out the invisible axion. Chapter II is about superstrings and solitons. It is shown that the quantum renormalization of the superstring tension vanishes to all orders in string perturbation theory. A low-energy analysis of macroscopic superstrings is presented and various analogies between these superstrings and solitons in supersymmetric theories are discussed. These include the existence of exact multi-string solutions of the low -energy supergravity super-Yang-Mills equations of motion and a Bogomol'nyi bound for the energy per unit length which is saturated by these solutions. Arguments are presented that

  3. Matrix theory interpretation of discrete light cone quantization string worldsheets

    Science.gov (United States)

    Grignani; Orland; Paniak; Semenoff

    2000-10-16

    We study the null compactification of type-IIA string perturbation theory at finite temperature. We prove a theorem about Riemann surfaces establishing that the moduli spaces of infinite-momentum-frame superstring worldsheets are identical to those of branched-cover instantons in the matrix-string model conjectured to describe M theory. This means that the identification of string degrees of freedom in the matrix model proposed by Dijkgraaf, Verlinde, and Verlinde is correct and that its natural generalization produces the moduli space of Riemann surfaces at all orders in the genus expansion.

  4. Kahler stabilized, modular invariant heterotic string models

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, Mary K.; Gaillard, Mary K.; Nelson, Brent D.

    2007-03-19

    We review the theory and phenomenology of effective supergravity theories based on orbifold compactifications of the weakly-coupled heterotic string. In particular, we consider theories in which the four-dimensional theory displays target space modular invariance and where the dilatonic mode undergoes Kahler stabilization. A self-contained exposition of effective Lagrangian approaches to gaugino condensation and heterotic string theory is presented, leading to the development of the models of Binétruy, Gaillard and Wu. Various aspects of the phenomenology of this class of models are considered. These include issues of supersymmetry breaking and superpartner spectra, the role of anomalous U(1) factors, issues of flavor and R-parity conservation, collider signatures, axion physics, and early universe cosmology. For the vast majority of phenomenological considerations the theories reviewed here compare quite favorably to other string-derived models in the literature. Theoretical objections to the framework and directions for further research are identified and discussed.

  5. On Climbing Scalars in String Theory

    CERN Document Server

    Dudas, E; Sagnotti, A

    2010-01-01

    In string models with "brane supersymmetry breaking" exponential potentials emerge at (closed-string) tree level but are not accompanied by tachyons. Potentials of this type have long been a source of embarrassment in flat space, but can have interesting implications for Cosmology. For instance, in ten dimensions the logarithmic slope |V'/V| lies precisely at a "critical" value where the Lucchin--Matarrese attractor disappears while the scalar field is \\emph{forced} to climb up the potential when it emerges from the Big Bang. This type of behavior is in principle perturbative in the string coupling, persists after compactification, could have trapped scalar fields inside potential wells as a result of the cosmological evolution and could have also injected the inflationary phase of our Universe.

  6. Towards a Theory of the QCD String

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    I will review recent progress in understanding the dynamics of confining strings in non-supersymmetric gluodynamics in 3 and 4 space time dimensions. I will argue that the present lattice data allows to formulate a non-trivial straw man Ansatz for the worldsheet theory of long confining strings. According to this Ansatz, pure gluodynamics in 3D is described by a non-critical bosonic string theory without any extra local worldsheet degrees of freedom. I argue that the Ansatz allows to fix quantum numbers of (almost) all glueball states. I confront the resulting predictions with the properties of approximately 39 lightest glueball states observed on a lattice and find a good agreement.

  7. Perturbative string thermodynamics near black hole horizons

    International Nuclear Information System (INIS)

    Mertens, Thomas G.; Verschelde, Henri; Zakharov, Valentin I.

    2015-01-01

    We provide further computations and ideas to the problem of near-Hagedorn string thermodynamics near (uncharged) black hole horizons, building upon our earlier work http://dx.doi.org/10.1007/JHEP03(2014)086. The relevance of long strings to one-loop black hole thermodynamics is emphasized. We then provide an argument in favor of the absence of α ′ -corrections for the (quadratic) heterotic thermal scalar action in Rindler space. We also compute the large k limit of the cigar orbifold partition functions (for both bosonic and type II superstrings) which allows a better comparison between the flat cones and the cigar cones. A discussion is made on the general McClain-Roth-O’Brien-Tan theorem and on the fact that different torus embeddings lead to different aspects of string thermodynamics. The black hole/string correspondence principle for the 2d black hole is discussed in terms of the thermal scalar. Finally, we present an argument to deal with arbitrary higher genus partition functions, suggesting the breakdown of string perturbation theory (in g s ) to compute thermodynamical quantities in black hole spacetimes.

  8. Perturbative string thermodynamics near black hole horizons

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, Thomas G.; Verschelde, Henri [Department of Physics and Astronomy, Ghent University, Krijgslaan, 281-S9, 9000 Gent (Belgium); Zakharov, Valentin I. [ITEP,B. Cheremushkinskaya 25, Moscow, 117218 (Russian Federation); Moscow Institute of Physics & Technology,Dolgoprudny, Moscow Region, 141700 (Russian Federation); School of Biomedicine, Far Eastern Federal University,Sukhanova str. 8, Vladivostok, 690950 (Russian Federation)

    2015-06-24

    We provide further computations and ideas to the problem of near-Hagedorn string thermodynamics near (uncharged) black hole horizons, building upon our earlier work http://dx.doi.org/10.1007/JHEP03(2014)086. The relevance of long strings to one-loop black hole thermodynamics is emphasized. We then provide an argument in favor of the absence of α{sup ′}-corrections for the (quadratic) heterotic thermal scalar action in Rindler space. We also compute the large k limit of the cigar orbifold partition functions (for both bosonic and type II superstrings) which allows a better comparison between the flat cones and the cigar cones. A discussion is made on the general McClain-Roth-O’Brien-Tan theorem and on the fact that different torus embeddings lead to different aspects of string thermodynamics. The black hole/string correspondence principle for the 2d black hole is discussed in terms of the thermal scalar. Finally, we present an argument to deal with arbitrary higher genus partition functions, suggesting the breakdown of string perturbation theory (in g{sub s}) to compute thermodynamical quantities in black hole spacetimes.

  9. PT-symmetric strings

    International Nuclear Information System (INIS)

    Amore, Paolo; Fernández, Francisco M.; Garcia, Javier; Gutierrez, German

    2014-01-01

    We study both analytically and numerically the spectrum of inhomogeneous strings with PT-symmetric density. We discuss an exactly solvable model of PT-symmetric string which is isospectral to the uniform string; for more general strings, we calculate exactly the sum rules Z(p)≡∑ n=1 ∞ 1/E n p , with p=1,2,… and find explicit expressions which can be used to obtain bounds on the lowest eigenvalue. A detailed numerical calculation is carried out for two non-solvable models depending on a parameter, obtaining precise estimates of the critical values where pair of real eigenvalues become complex. -- Highlights: •PT-symmetric Hamiltonians exhibit real eigenvalues when PT symmetry is unbroken. •We study PT-symmetric strings with complex density. •They exhibit regions of unbroken PT symmetry. •We calculate the critical parameters at the boundaries of those regions. •There are exact real sum rules for some particular complex densities

  10. Perspectives on string phenomenology

    CERN Document Server

    Kane, Gordon; Kumar, Piyush

    2015-01-01

    The remarkable recent discovery of the Higgs boson at the CERN Large Hadron Collider completed the Standard Model of particle physics and has paved the way for understanding the physics which may lie beyond it. String/M theory has emerged as a broad framework for describing a plethora of diverse physical systems, which includes condensed matter systems, gravitational systems as well as elementary particle physics interactions. If string/M theory is to be considered as a candidate theory of Nature, it must contain an effectively four-dimensional universe among its solutions that is indistinguishable from our own. In these solutions, the extra dimensions of string/M Theory are “compactified” on tiny scales which are often comparable to the Planck length. String phenomenology is the branch of string/M theory that studies such solutions, relates their properties to data, and aims to answer many of the outstanding questions of particle physics beyond the Standard Model. This book contains perspectives on stri...

  11. Black strings, low viscosity fluids, and violation of cosmic censorship.

    Science.gov (United States)

    Lehner, Luis; Pretorius, Frans

    2010-09-03

    We describe the behavior of 5-dimensional black strings, subject to the Gregory-Laflamme instability. Beyond the linear level, the evolving strings exhibit a rich dynamics, where at intermediate stages the horizon can be described as a sequence of 3-dimensional spherical black holes joined by black string segments. These segments are themselves subject to a Gregory-Laflamme instability, resulting in a self-similar cascade, where ever-smaller satellite black holes form connected by ever-thinner string segments. This behavior is akin to satellite formation in low-viscosity fluid streams subject to the Rayleigh-Plateau instability. The simulation results imply that the string segments will reach zero radius in finite asymptotic time, whence the classical space-time terminates in a naked singularity. Since no fine-tuning is required to excite the instability, this constitutes a generic violation of cosmic censorship.

  12. Large-D gravity and low-D strings.

    Science.gov (United States)

    Emparan, Roberto; Grumiller, Daniel; Tanabe, Kentaro

    2013-06-21

    We show that in the limit of a large number of dimensions a wide class of nonextremal neutral black holes has a universal near-horizon limit. The limiting geometry is the two-dimensional black hole of string theory with a two-dimensional target space. Its conformal symmetry explains the properties of massless scalars found recently in the large-D limit. For black branes with string charges, the near-horizon geometry is that of the three-dimensional black strings of Horne and Horowitz. The analogies between the α' expansion in string theory and the large-D expansion in gravity suggest a possible effective string description of the large-D limit of black holes. We comment on applications to several subjects, in particular to the problem of critical collapse.

  13. SAGE: String-overlap Assembly of GEnomes.

    Science.gov (United States)

    Ilie, Lucian; Haider, Bahlul; Molnar, Michael; Solis-Oba, Roberto

    2014-09-15

    De novo genome assembly of next-generation sequencing data is one of the most important current problems in bioinformatics, essential in many biological applications. In spite of significant amount of work in this area, better solutions are still very much needed. We present a new program, SAGE, for de novo genome assembly. As opposed to most assemblers, which are de Bruijn graph based, SAGE uses the string-overlap graph. SAGE builds upon great existing work on string-overlap graph and maximum likelihood assembly, bringing an important number of new ideas, such as the efficient computation of the transitive reduction of the string overlap graph, the use of (generalized) edge multiplicity statistics for more accurate estimation of read copy counts, and the improved use of mate pairs and min-cost flow for supporting edge merging. The assemblies produced by SAGE for several short and medium-size genomes compared favourably with those of existing leading assemblers. SAGE benefits from innovations in almost every aspect of the assembly process: error correction of input reads, string-overlap graph construction, read copy counts estimation, overlap graph analysis and reduction, contig extraction, and scaffolding. We hope that these new ideas will help advance the current state-of-the-art in an essential area of research in genomics.

  14. String field theory solution for any open string background

    Czech Academy of Sciences Publication Activity Database

    Erler, T.; Maccaferri, Carlo

    2014-01-01

    Roč. 10, Oct (2014), 1-37 ISSN 1029-8479 R&D Projects: GA ČR GBP201/12/G028 Institutional support: RVO:68378271 Keywords : tachyon condensation * string field theory * conformal field models in string theory * bosonic strings Subject RIV: BE - Theoretical Physics Impact factor: 6.111, year: 2014

  15. Interacting-string picture of the fermionic string

    International Nuclear Information System (INIS)

    Mandelstam, S.

    1986-01-01

    This report gives a review of the interacting-string picture of the Bose string. In the present lecture, the author outlines a similar treatment of the Fermionic string. The quantization of the free Fermionic string is carried out to the degrees of freedom x, representing the displacement of the string. Also presented are Grassman degrees of freedom S distributed along the string. The report pictures the fermionic string as a string of dipoles. The general picture of the interaction of such strings by joining and splitting is the same as for the Bose string. The author does not at present have the simplest formula for fermion string scattering amplitudes. A less detailed treatment is given than for the Bose string. The report sets up the functional-integration formalism, derives the analog mode, and indicates in general, terms how the conformal transformation to the z-plane may be performed. The paper concludes by stating without proof the formula for the N-article tree amplitude in the manifestly supersymmetric formalism

  16. 78 FR 32241 - U.S. Air Force Seeks Industry Input for National Security Space Launch Assessment

    Science.gov (United States)

    2013-05-29

    ..., seeks industry views and perspectives to inform an on-going strategic National Security Space Launch... the U.S. Government. 2. What are the critical issues that concern current and prospective launch...

  17. Strings for quantumchromodynamics

    International Nuclear Information System (INIS)

    Schomerus, V.

    2007-04-01

    During the last decade, intriguing dualities between gauge and string theory have been found and explored. they provide a novel window on strongly couplde gauge physics, including QCD-like models. Based on a short historical review of modern string theory, we explain how so-called AdS/CFT dualities emerged at the end of the 1990s. Some of their concrete implications and remarkable recent progress are then illustrated for the simplest example, namely the multicolor limit of N=4 SYM theory in four dimensions. We end with a few comments on existing extensions to more realistic models and applications, in particular to the sQGP. This text is meant as a non-technical introduction to gauge/string dualities for (particle) physicists. (orig.)

  18. String theory meets QCD

    CERN Document Server

    Evans, N

    2003-01-01

    String theory began life in the late 1960s as an attempt to understand the properties of nuclear matter such as protons and neutrons. Although it was not successful it has since developed a life of its own as a possible theory of everything - with the potential to incorporate quantum gravity as well as the other forces of nature. However, in a remarkable about face in the last five years, it has now been discovered that string theory and the standard theory of nuclear matter - QCD - might in fact describe the same physics. This is an exciting development that was the centre of discussion at a major workshop in Seattle in February. After spending 30 years as a possible theory of everything, string theory is returning to its roots to describe the interactions of quarks and gluons. (U.K.)

  19. Deriving the four-string and open-closed string interactions from geometric string field theory

    International Nuclear Information System (INIS)

    Kaku, M.

    1990-01-01

    One of the questions concerning the covariant open string field theory is why there are two distinct BRST theories and why the four-string interaction appears in one version but not the other. The authors solve this mystery by showing that both theories are gauge-fixed versions of a higher gauge theory, called the geometric string field theory, with a new field, a string verbein e μσ νρ , which allows us to gauge the string length and σ parametrization. By fixing the gauge, the authors can derive the endpoint gauge (the covariantized light cone gauge), the midpoint gauge of Witten, or the interpolating gauge with arbitrary string length. The authors show explicitly that the four-string interaction is a gauge artifact of the geometric theory (the counterpart of the four-fermion instantaneous Coulomb term of QED). By choosing the interpolating gauge, they produce a new class of four-string interactions which smoothly interpolate between the endpoint gauge and the midpoint gauge (where it vanishes). Similarly, they can extract the closed string as a bound state of the open string, which appears in the endpoint gauge but vanishes in the midpoint gauge. Thus, the four-string and open-closed string interactions do not have to be added to the action as long as the string vierbein is included

  20. Instability of colliding metastable strings

    Energy Technology Data Exchange (ETDEWEB)

    Hiramatsu, Takashi [Kyoto Univ. (Japan). Yukawa Inst. for Theoretical Physics; Eto, Minoru [Yamagata Univ. (Japan). Dept. of Physics; Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics; Ookouchi, Yutaka [Kyoto Univ. (Japan). Dept. of Physics; Kyoto Univ. (Japan). The Hakubi Center for Advanced Research

    2013-04-15

    We investigate the collision dynamics of two metastable strings which can be viewed as tube-like domain walls with winding numbers interpolating a false vacuum and a true vacuum. We find that depending on the relative angle and speed of two strings, instability of strings increases and the false vacuum is filled out by rapid expansion of the strings or of a remnant of the collision.

  1. String theory in four dimensions

    International Nuclear Information System (INIS)

    Dine, M.

    1988-01-01

    A representative sample of current ideas about how one might develop a string phenomenology is presented. Some of the obstacles which lie in between string theory and contact with experiment are described. It is hoped that this volume will provide the reader with ways of thinking about string theory in four dimensions and provide tools for asking questions about string theory and ordinary physics. 102 refs

  2. Cover array string reconstruction

    OpenAIRE

    Crochemore, Maxime; S. Iliopoulos, Costas; P. Pissis, Solon; Tischler, German

    2010-01-01

    International audience; A proper factor u of a string y is a cover of y if every letter of y is within some occurrence of u in y. The concept generalises the notion of periods of a string. An integer array C is the minimal-cover (resp. maximal-cover) array of y if C[i] is the minimal (resp. maximal) length of covers of y[0.. i], or zero if no cover exists. In this paper, we present a constructive algorithm checking the validity of an array as a minimal-cover or maximal-cover array of some str...

  3. Ray trajectories for a spinning cosmic string and a manifestation of self-cloaking

    International Nuclear Information System (INIS)

    Anderson, Tom H.; Mackay, Tom G.; Lakhtakia, Akhlesh

    2010-01-01

    A study of ray trajectories was undertaken for the Tamm medium which represents the spacetime of a zero-tension cosmic spinning string, under the geometric-optics approximation. Our numerical studies revealed that: (i) rays never cross the string's boundary; (ii) the Tamm medium supports evanescent waves in regions of phase space that correspond to those regions of the string's spacetime which could support closed timelike curves; and (iii) a spinning string can be slightly visible while a non-spinning string is almost perfectly invisible.

  4. String theory in four dimensions

    CERN Document Server

    1988-01-01

    ``String Theory in Four Dimensions'' contains a representative collection of papers dealing with various aspects of string phenomenology, including compactifications on smooth manifolds and more general conformal field theories. Together with the lucid introduction by M. Dine, this material gives the reader a good working knowledge of our present ideas for connecting string theory to nature.

  5. Why Strings? Grand Masters Series.

    Science.gov (United States)

    Klotman, Robert H.

    2000-01-01

    Discusses the reasons to teach stringed instruments: (1) strings can be adapted to the size of the child; (2) home performance material resource availability; (3) stringed music skills contribute to developing basic skills; and (4) the importance of interaction in music. (CMK)

  6. Wavy strings: Black or bright?

    International Nuclear Information System (INIS)

    Kaloper, N.; Myers, R.C.; Roussel, H.

    1997-01-01

    Recent developments in string theory have brought forth considerable interest in time-dependent hair on extended objects. This novel new hair is typically characterized by a wave profile along the horizon and angular momentum quantum numbers l,m in the transverse space. In this work, we present an extensive treatment of such oscillating black objects, focusing on their geometric properties. We first give a theorem of purely geometric nature, stating that such wavy hair cannot be detected by any scalar invariant built out of the curvature and/or matter fields. However, we show that the tidal forces detected by an infalling observer diverge at the open-quotes horizonclose quotes of a black string superposed with a vibration in any mode with l≥1. The same argument applied to longitudinal (l=0) waves detects only finite leading-order tidal forces. We also provide an example with a manifestly smooth metric, proving that at least a certain class of these longitudinal waves have regular horizons. copyright 1997 The American Physical Society

  7. Unity from duality: gravity, gauge theory and strings

    International Nuclear Information System (INIS)

    Bachas, C.; Bilal, A.; Douglas, M.; Nekrasov, N.; David, F.

    2002-01-01

    The 76. session of the summer school in theoretical physics was devoted to recent developments in string theory, gauge theories and quantum gravity. Superstring theory is the leading candidate for a unified theory of all fundamental physical forces and elementary particles. The discovery of dualities and of important tools such as D-branes, has greatly reinforced this point of view. This document gathers the papers of 9 lectures: 1) supergravity, 2) supersymmetric gauge theories, 3) an introduction to duality symmetries, 4) large N field theories and gravity, 5) D-branes on the conifold and N = 1 gauge/gravity dualities, 6) de Sitter space, 7) string compactification with N = 1 supersymmetry, 8) open strings and non-commutative gauge theories, and 9) condensates near the Argyres-Douglas point in SU(2) gauge theory with broken N = 2 supersymmetry, and of 8 seminars: 1) quantum field theory with extra dimensions, 2) special holonomy spaces and M-theory, 3) four dimensional non-critical strings, 4) U-opportunities: why ten equal to ten?, 5) exact answers to approximate questions - non-commutative dipoles, open Wilson lines and UV-IR duality, 6) open-string models with broken supersymmetry, 7) on a field theory of open strings, tachyon condensation and closed strings, and 8) exceptional magic. (A.C.)

  8. ASR in a Human Word Recognition Model: Generating Phonemic Input for Shortlist

    OpenAIRE

    Scharenborg, O.E.; Boves, L.W.J.; Veth, J.M. de

    2002-01-01

    The current version of the psycholinguistic model of human word recognition Shortlist suffers from two unrealistic constraints. First, the input of Shortlist must consist of a single string of phoneme symbols. Second, the current version of the search in Shortlist makes it difficult to deal with insertions and deletions in the input phoneme string. This research attempts to fully automatically derive a phoneme string from the acoustic signal that is as close as possible to the number of phone...

  9. A Vibrating String Experiment

    Science.gov (United States)

    Tsutsumanova, Gichka; Russev, Stoyan

    2013-01-01

    A simple experiment demonstrating the excitation of a standing wave in a metal string is presented here. Several tasks using the set-up are considered, which help the students to better understand the standing waves, the interaction between electric current and magnetic field and the resonance phenomena. This can serve also as a good lecture…

  10. New Z3 strings

    Directory of Open Access Journals (Sweden)

    Marco A.C. Kneipp

    2016-12-01

    Full Text Available We consider a Yang–Mills–Higgs theory with the gauge group SU(3 broken to its center Z3 by two scalar fields in the adjoint representation and obtain new Z3 strings asymptotic configurations with the gauge field and magnetic field in the direction of the step operators.

  11. On exceptional instanton strings

    NARCIS (Netherlands)

    Del Zotto, M.; Lockhart, G.

    According to a recent classification of 6d (1, 0) theories within F-theory there are only six “pure” 6d gauge theories which have a UV superconformal fixed point. The corresponding gauge groups are SU(3), SO(8), F4, E6, E7, and E8. These exceptional models have BPS strings which are also instantons

  12. SUPERCOLLIDER: String test success

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    On 14 August at the Superconducting Supercollider (SSC) Laboratory in Ellis County, Texas, the Accelerator Systems String Test (ASST) successfully met its objective by operating a half-cell of five collider dipole magnets, one quadrupole magnet, and two spool pieces at the design current of 6500 amperes

  13. Disordered chaotic strings

    DEFF Research Database (Denmark)

    Schäfer, Mirko; Greiner, Martin

    Chaotic strings are coupled Tchebyscheff maps on a ring-network. With a well-specified empirical prescription they are able to explain the coupling constants of the standard model of elementary particle physics. This empirical relationship is tested further by introducing a tunable disorder to ch...

  14. Disordered chaotic strings

    DEFF Research Database (Denmark)

    Schäfer, Mirko; Greiner, Martin

    2011-01-01

    Chaotic strings are coupled Tchebyscheff maps on a ring-network. With a well-specified empirical prescription they are able to explain the coupling constants of the standard model of elementary particle physics. This empirical relationship is tested further by introducing a tunable disorder to ch...

  15. Help from the strings

    CERN Multimedia

    2007-01-01

    "How can the nature of basic particles be defined beyond the mechanisms presiding over their creation? Besides the standard model of particle physics - resulting from the postulations of quantum mechanics - contemporary science has pinned its hopes on the totally new unifying notion provided by the highly mathematical string theory."(2 pages)

  16. The Hagedorn transition in noncommutative open string theory

    Energy Technology Data Exchange (ETDEWEB)

    Gubser, S. S.; Gukov, S.; Klebanov, I. R.; Rangamani, M.; Witten, E.

    2001-07-01

    The Hagedorn transition in noncommutative open string theory (NCOS) is relatively simple because gravity decouples. For NCOS theories in no more than five space--time dimensions, the Hagedorn transition is second order, and the high temperature phase involves long, nearly straight fundamental strings separating from the D-brane on which the NCOS theory is defined. Above five spacetime dimensions interaction effects become important below the Hagedorn temperature. Although this complicates studies of the transition, we believe that the high temperature phase again involves long strings liberated from the bound state.

  17. Non-Perturbative Nekrasov Partition Function from String Theory

    CERN Document Server

    Antoniadis, Ignatios; Hohenegger, Stefan; Narain, K S; Assi, Ahmad Zein

    2014-01-01

    We calculate gauge instanton corrections to a class of higher derivative string effective couplings introduced in [1]. We work in Type I string theory compactified on K3xT2 and realise gauge instantons in terms of D5-branes wrapping the internal space. In the field theory limit we reproduce the deformed ADHM action on a general {\\Omega}-background from which one can compute the non-perturbative gauge theory partition function using localisation. This is a non-perturbative extension of [1] and provides further evidence for our proposal of a string theory realisation of the {\\Omega}-background.

  18. Lecture notes in topics in path integrals and string representations

    CERN Document Server

    Botelho, Luiz C L

    2017-01-01

    Functional Integrals is a well-established method in mathematical physics, especially those mathematical methods used in modern non-perturbative quantum field theory and string theory. This book presents a unique, original and modern treatment of strings representations on Bosonic Quantum Chromodynamics and Bosonization theory on 2d Gauge Field Models, besides of rigorous mathematical studies on the analytical regularization scheme on Euclidean quantum field path integrals and stochastic quantum field theory. It follows an analytic approach based on Loop space techniques, functional determinant exact evaluations and exactly solubility of four dimensional QCD loop wave equations through Elfin Botelho fermionic extrinsic self avoiding string path integrals.

  19. Lectures on strings and dualities

    International Nuclear Information System (INIS)

    Vafa, C.

    1997-01-01

    In this set of lectures I review recent developments in string theory emphasizing their non-perturbative aspects and their recently discovered duality symmetries. The goal of the lectures is to make the recent exciting developments in string theory accessible to those with no previous background in string theory who wish to join the research effort in this area. Topics covered include a brief review of string theory, its compactifications, solitons and D-branes, black hole entropy and wed of string dualities. (author)

  20. A Liouville string approach to microscopic time and cosmology

    CERN Document Server

    Ellis, John R.; Nanopoulos, Dimitri V.

    1993-01-01

    In the non-critical string framework that we have proposed recently, the time $t$ is identified with a dynamical local renormalization group scale, the Liouville mode, and behaves as a statistical evolution parameter, flowing irreversibly from an infrared fixed point - which we conjecture to be a topological string phase - to an ultraviolet one - which corresponds to a static critical string vacuum. When applied to a toy two-dimensional model of space-time singularities, this formalism yields an apparent renormalization of the velocity of light, and a $t$-dependent form of the uncertainty relation for position and momentum of a test string. We speculate within this framework on a stringy alternative to conventional field-theoretical inflation, and the decay towards zero of the cosmological constant in a maximally-symmetric space.

  1. Device for balancing parallel strings

    Science.gov (United States)

    Mashikian, Matthew S.

    1985-01-01

    A battery plant is described which features magnetic circuit means in association with each of the battery strings in the battery plant for balancing the electrical current flow through the battery strings by equalizing the voltage across each of the battery strings. Each of the magnetic circuit means generally comprises means for sensing the electrical current flow through one of the battery strings, and a saturable reactor having a main winding connected electrically in series with the battery string, a bias winding connected to a source of alternating current and a control winding connected to a variable source of direct current controlled by the sensing means. Each of the battery strings is formed by a plurality of batteries connected electrically in series, and these battery strings are connected electrically in parallel across common bus conductors.

  2. A shadowing lemma for quasi-hyperbolic strings of flows

    Science.gov (United States)

    Han, Bo; Wen, Xiao

    2018-01-01

    In this paper we prove a shadowing lemma for pseudo orbits made by quasi-hyperbolic strings. We allow singularities in question and hence, in particular, the quasi-hyperbolic strings are formulated by the rescaled linear Poincaré flow instead of the usual linear Poincaré flow. We also introduce the sectional Poincaré map and rescaled sectional Poincaré map for Lipschitz vector fields on Banach spaces in the article.

  3. Higher YM Theories and the Compactification in String Theory

    Science.gov (United States)

    Król, J.

    2007-11-01

    The Higher YM theories generalize these of the standard model of particles. From the string theory side, the geometrical constructions of gerbes appear, when describing non-vanishing B-fields on branes. Both, higher YM and gerbes are proved to be the same mathematical object. Thus, a natural candidate for the intermediate stage of the compactification in string theory appears. Moreover, replacing smooth 2-spaces by some categories of smooth topoi gives rise to the generalized spacetime based on topoi.

  4. Optimal shapes of compact strings

    International Nuclear Information System (INIS)

    Maritan, A.; Micheletti, C.; Trovato, A.; Banavar, J.R.

    2000-07-01

    Optimal geometrical arrangements, such as the stacking of atoms, are of relevance in diverse disciplines. A classic problem is the determination of the optimal arrangement of spheres in three dimensions in order to achieve the highest packing fraction; only recently has it been proved that the answer for infinite systems is a face-centred-cubic lattice. This simply stated problem has had a profound impact in many areas, ranging from the crystallization and melting of atomic systems, to optimal packing of objects and subdivision of space. Here we study an analogous problem-that of determining the optimal shapes of closely packed compact strings. This problem is a mathematical idealization of situations commonly encountered in biology, chemistry and physics, involving the optimal structure of folded polymeric chains. We find that, in cases where boundary effects are not dominant, helices with a particular pitch-radius ratio are selected. Interestingly, the same geometry is observed in helices in naturally-occurring proteins. (author)

  5. Boundary operators in effective string theory

    Energy Technology Data Exchange (ETDEWEB)

    Hellerman, Simeon [Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo,Kashiwa, Chiba 277-8582 (Japan); Swanson, Ian [Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo,Kashiwa, Chiba 277-8582 (Japan)

    2017-04-13

    Various universal features of relativistic rotating strings depend on the organization of allowed local operators on the worldsheet. In this paper, we study the set of Neumann boundary operators in effective string theory, which are relevant for the controlled study of open relativistic strings with freely moving endpoints. Relativistic open strings are thought to encode the dynamics of confined quark-antiquark pairs in gauge theories in the planar approximation. Neumann boundary operators can be organized by their behavior under scaling of the target space coordinates X{sup μ}, and the set of allowed X-scaling exponents is bounded above by +1/2 and unbounded below. Negative contributions to X-scalings come from powers of a single invariant, or “dressing' operator, which is bilinear in the embedding coordinates. In particular, we show that all Neumann boundary operators are dressed by quarter-integer powers of this invariant, and we demonstrate how this rule arises from various ways of regulating the short-distance singularities of the effective theory.

  6. Worldsheet Realization of the Refined Topological String

    CERN Document Server

    Antoniadis, I; Hohenegger, S; Narain, K S; Assi, A Zein

    2013-01-01

    A worldsheet realization of the refined topological string is proposed in terms of physical string amplitudes that compute generalized N=2 F-terms of the form F_{g,n} W^{2g}Y^{2n} in the effective supergravity action. These terms involve the chiral Weyl superfield W and a superfield Y defined as an N=2 chiral projection of a particular anti-chiral T-bar vector multiplet. In Heterotic and Type I theories, obtained upon compactification on the six-dimensional manifold K3xT2, T is the usual K\\"ahler modulus of the T2 torus. These amplitudes are computed exactly at the one-loop level in string theory. They are shown to reproduce the correct perturbative part of the Nekrasov partition function in the field theory limit when expanded around an SU(2) enhancement point of the string moduli space. The two deformation parameters epsilon_- and epsilon_+ of the Omega-supergravity background are then identified with the constant field-strength backgrounds for the anti-self-dual graviphoton and self-dual gauge field of the...

  7. Stringing physics along

    Energy Technology Data Exchange (ETDEWEB)

    Riordan, M. [Stanford University and the University of California, Santa Cruz (United States)]. E-mail: mriordan@ucsc.edu

    2007-02-15

    In the last few decades, however, physical theory has drifted away from the professional norms advocated by Newton and other enlightenment philosophers. A vast outpouring of hypotheses has occurred under the umbrella of what is widely called string theory. But string theory is not really a 'theory' at all - at least not in the strict sense that scientists generally use the term. It is instead a dense, weedy thicket of hypotheses and conjectures badly in need of pruning. That pruning, however, can come only from observation and experiment, to which string theory (a phrase I will grudgingly continue using) is largely inaccessible. String theory was invented in the 1970s in the wake of the Standard Model of particle physics. Encouraged by the success of gauge theories of the strong, weak and electromagnetic forces, theorists tried to extend similar ideas to energy and distance scales that are orders of magnitude beyond what can be readily observed or measured. The normal, healthy intercourse between theory and experiment - which had led to the Standard Model - has broken down, and fundamental physics now finds itself in a state of crisis. So it is refreshing to hear from a theorist - one who was deeply involved with string theory and championed it in his previous book, Three Roads to Quantum Gravity - that all is not well in this closeted realm. Smolin argues from the outset that viable hypotheses must lead to observable consequences by which they can be tested and judged. String theory by its very nature does not allow for such probing, according to Smolin, and therefore it must be considered as an unprovable conjecture. Towards the end of his book, Smolin suggests other directions fundamental physics can take, particularly in the realm of quantum gravity, to resolve its crisis and reconnect with the observable world. From my perspective, he leans a bit too heavily towards highly speculative ideas such as doubly special relativity, modified Newtonian

  8. The Lie algebra of the N=2-string

    International Nuclear Information System (INIS)

    Kugel, K.

    2006-01-01

    The theory of generalized Kac-Moody algebras is a generalization of the theory of finite dimensional simple Lie algebras. The physical states of some compactified strings give realizations of generalized Kac-Moody algebras. For example the physical states of a bosonic string moving on a 26 dimensional torus form a generalized Kac-Moody algebra and the physical states of a N=1 string moving on a 10 dimensional torus form a generalized Kac-Moody superalgebra. A natural question is whether the physical states of the compactified N=2-string also realize such an algebra. In this thesis we construct the Lie algebra of the compactified N=2-string, study its properties and show that it is not a generalized Kac-Moody algebra. The Fock space of a N=2-string moving on a 4 dimensional torus can be described by a vertex algebra constructed from a rational lattice of signature (8,4). Here 6 coordinates with signature (4,2) come from the matter part and 6 coordinates with signature (4,2) come from the ghost part. The physical states are represented by the cohomology of the BRST-operator. The vertex algebra induces a product on the vector space of physical states that defines the structure of a Lie algebra on this space. This Lie algebra shares many properties with generalized Kac-Moody algebra but we will show that it is not a generalized Kac-Moody algebra. (orig.)

  9. The Lie algebra of the N=2-string

    Energy Technology Data Exchange (ETDEWEB)

    Kugel, K.

    2006-07-01

    The theory of generalized Kac-Moody algebras is a generalization of the theory of finite dimensional simple Lie algebras. The physical states of some compactified strings give realizations of generalized Kac-Moody algebras. For example the physical states of a bosonic string moving on a 26 dimensional torus form a generalized Kac-Moody algebra and the physical states of a N=1 string moving on a 10 dimensional torus form a generalized Kac-Moody superalgebra. A natural question is whether the physical states of the compactified N=2-string also realize such an algebra. In this thesis we construct the Lie algebra of the compactified N=2-string, study its properties and show that it is not a generalized Kac-Moody algebra. The Fock space of a N=2-string moving on a 4 dimensional torus can be described by a vertex algebra constructed from a rational lattice of signature (8,4). Here 6 coordinates with signature (4,2) come from the matter part and 6 coordinates with signature (4,2) come from the ghost part. The physical states are represented by the cohomology of the BRST-operator. The vertex algebra induces a product on the vector space of physical states that defines the structure of a Lie algebra on this space. This Lie algebra shares many properties with generalized Kac-Moody algebra but we will show that it is not a generalized Kac-Moody algebra. (orig.)

  10. Refined topological strings on local ℙ2

    International Nuclear Information System (INIS)

    Iqbal, Amer; Kozçaz, Can

    2017-01-01

    We calculate the refined topological string partition function of the Calabi-Yau threefold which is the total space of the canonical bundle on ℙ 2 (the local ℙ 2 ). The refined topological vertex formalism can not be directly applied to local ℙ 2 therefore we use the properties of the refined Hopf link to define a new two legged vertex which together with the refined vertex gives the partition function of the local ℙ 2 .

  11. Riemann surfaces with boundaries and string theory

    International Nuclear Information System (INIS)

    Morozov, A.Yu.; Roslyj, A.A.

    1989-01-01

    A consideration of the cutting and joining operations for Riemann surfaces permits one to express the functional integral on a Riemann surface in terms of integrals over its pieces which are suarfaces with boundaries. This yields an expression for the determinant of the Laplacian on a Riemann surface in terms of Krichever maps for its pieces. Possible applications of the methods proposed to a study of the string perturbation theory in terms of an universal moduli space are mentioned

  12. Scattering amplitudes of regularized bosonic strings

    Science.gov (United States)

    Ambjørn, J.; Makeenko, Y.

    2017-10-01

    We compute scattering amplitudes of the regularized bosonic Nambu-Goto string in the mean-field approximation, disregarding fluctuations of the Lagrange multiplier and an independent metric about their mean values. We use the previously introduced Lilliputian scaling limit to recover the Regge behavior of the amplitudes with the usual linear Regge trajectory in space-time dimensions d >2 . We demonstrate a stability of this minimum of the effective action under fluctuations for d <26 .

  13. Case Study: Using The OMG SWRADIO Profile and SDR Forum Input for NASA's Space Telecommunications Radio System

    Science.gov (United States)

    Briones, Janette C.; Handler, Louis M.; Hall, Steve C.; Reinhart, Richard C.; Kacpura, Thomas J.

    2009-01-01

    The Space Telecommunication Radio System (STRS) standard is a Software Defined Radio (SDR) architecture standard developed by NASA. The goal of STRS is to reduce NASA s dependence on custom, proprietary architectures with unique and varying interfaces and hardware and support reuse of waveforms across platforms. The STRS project worked with members of the Object Management Group (OMG), Software Defined Radio Forum, and industry partners to leverage existing standards and knowledge. This collaboration included investigating the use of the OMG s Platform-Independent Model (PIM) SWRadio as the basis for an STRS PIM. This paper details the influence of the OMG technologies on the STRS update effort, findings in the STRS/SWRadio mapping, and provides a summary of the SDR Forum recommendations.

  14. Methods and systems for determining angular orientation of a drill string

    Science.gov (United States)

    Cobern, Martin E.

    2010-03-23

    Preferred methods and systems generate a control input based on a periodically-varying characteristic associated with the rotation of a drill string. The periodically varying characteristic can be correlated with the magnetic tool face and gravity tool face of a rotating component of the drill string, so that the control input can be used to initiate a response in the rotating component as a function of gravity tool face.

  15. Yang-Mills glueballs as closed bosonic strings

    Science.gov (United States)

    Dubovsky, Sergei; Hernández-Chifflet, Guzmán

    2017-02-01

    We put forward the Axionic String Ansatz (ASA), which provides a unified description for the worldsheet dynamics of confining strings in pure Yang-Mills theory both in D = 3 and D = 4 space-time dimensions. The ASA is motivated by the excitation spectrum of long confining strings, as measured on a lattice, and by recently constructed integrable axionic non-critical string models. According to the ASA, pure gluodynamics in 3D is described by a non-critical bosonic string theory without any extra local worldsheet degrees of freedom. We argue that this assumption fixes the set of quantum numbers (spins, P-and C-parities) of almost all glueball states. We confront the resulting predictions with the properties of approximately 12 + 22 + 32 + 52 = 39 lightest glueball states measured on a lattice and find a good agreement. On the other hand, the spectrum of low lying glueballs in 4D gluodynamics suggests the presence of a massive pseudoscalar mode on the string worldsheet, in agreement with the ASA and lattice data for long strings.

  16. Yang-Mills glueballs as closed bosonic strings

    Energy Technology Data Exchange (ETDEWEB)

    Dubovsky, Sergei [Center for Cosmology and Particle Physics, Department of Physics, New York University,New York, NY, 10003 (United States); Perimeter Institute for Theoretical Physics,Waterloo, Ontario N2L 2Y5 (Canada); Hernández-Chifflet, Guzmán [Center for Cosmology and Particle Physics, Department of Physics, New York University,New York, NY, 10003 (United States); Instituto de Física, Facultad de Ingeniería, Universidad de la República,Montevideo, 11300 (Uruguay)

    2017-02-06

    We put forward the Axionic String Ansatz (ASA), which provides a unified description for the worldsheet dynamics of confining strings in pure Yang-Mills theory both in D=3 and D=4 space-time dimensions. The ASA is motivated by the excitation spectrum of long confining strings, as measured on a lattice, and by recently constructed integrable axionic non-critical string models. According to the ASA, pure gluodynamics in 3D is described by a non-critical bosonic string theory without any extra local worldsheet degrees of freedom. We argue that this assumption fixes the set of quantum numbers (spins, P- and C-parities) of almost all glueball states. We confront the resulting predictions with the properties of approximately 1{sup 2}+2{sup 2}+3{sup 2}+5{sup 2}=39 lightest glueball states measured on a lattice and find a good agreement. On the other hand, the spectrum of low lying glueballs in 4D gluodynamics suggests the presence of a massive pseudoscalar mode on the string worldsheet, in agreement with the ASA and lattice data for long strings.

  17. Quantum stabilization of a hedgehog type of cosmic string

    Science.gov (United States)

    Quandt, M.; Graham, N.; Weigel, H.

    2017-10-01

    Within a slightly simplified version of the electroweak standard model we investigate the stabilization of cosmic strings by fermion quantum fluctuations. Previous studies of quantum energies considered variants of the Nielsen-Olesen profile embedded in the electroweak gauge group and showed that configurations are favored for which the Higgs vacuum expectation value drops near the string core and the gauge field is suppressed. This work found that the strongest binding was obtained from strings that differ significantly from Nielsen-Olesen configurations, deforming essentially only the Higgs field in order to generate a strong attraction without inducing large gradients. Extending this analysis, we consider the leading quantum correction to the energy per unit length of a hedgehog type string, which, in contrast to the Nielsen-Olesen configuration, contains a pseudoscalar field. To employ the spectral method we develop the scattering and bound state problems for fermions in the background of a hedgehog string. Explicit occupation of bound state levels leads to strings that carry the quantum numbers of the bound fermions. We discuss the parameter space for which stable, hedgehog type cosmic strings emerge and reflect on phenomenological consequences of these findings.

  18. Axions in String Theory

    Energy Technology Data Exchange (ETDEWEB)

    Svrcek, Peter; /Stanford U., Phys. Dept. /SLAC; Witten, Edward; /Princeton, Inst. Advanced Study

    2006-06-09

    In the context of string theory, axions appear to provide the most plausible solution of the strong CP problem. However, as has been known for a long time, in many string-based models, the axion coupling parameter Fa is several orders of magnitude higher than the standard cosmological bounds. We re-examine this problem in a variety of models, showing that Fa is close to the GUT scale or above in many models that have GUT-like phenomenology, as well as some that do not. On the other hand, in some models with Standard Model gauge fields supported on vanishing cycles, it is possible for Fa to be well below the GUT scale.

  19. Fractional bosonic strings

    Science.gov (United States)

    Diaz, Victor Alfonzo; Giusti, Andrea

    2018-03-01

    The aim of this paper is to present a simple generalization of bosonic string theory in the framework of the theory of fractional variational problems. Specifically, we present a fractional extension of the Polyakov action, for which we compute the general form of the equations of motion and discuss the connection between the new fractional action and a generalization the Nambu-Goto action. Consequently, we analyze the symmetries of the modified Polyakov action and try to fix the gauge, following the classical procedures. Then we solve the equations of motion in a simplified setting. Finally, we present a Hamiltonian description of the classical fractional bosonic string and introduce the fractional light-cone gauge. It is important to remark that, throughout the whole paper, we thoroughly discuss how to recover the known results as an "integer" limit of the presented model.

  20. Half-string oscillator approach to string field theory

    International Nuclear Information System (INIS)

    Bordes, J.; Chan Hongmo; Nellen, L.; Tsou Sheungtsun

    1989-05-01

    We give an operator formulation of the string field theory proposed by E. Witten using half-string oscillator modes. This formalism, identifying the physical string states as infinite matrices, is developed in such a way that interactions at the level of vertices can be calculated in terms of products and traces of these matrices without relying on ill-defined manipulations of functional integrals. (author)

  1. Retrieving Backbone String Neighbors Provides Insights Into Structural Modeling of Membrane Proteins*

    Science.gov (United States)

    Sun, Jiang-Ming; Li, Tong-Hua; Cong, Pei-Sheng; Tang, Sheng-Nan; Xiong, Wen-Wei

    2012-01-01

    Identification of protein structural neighbors to a query is fundamental in structure and function prediction. Here we present BS-align, a systematic method to retrieve backbone string neighbors from primary sequences as templates for protein modeling. The backbone conformation of a protein is represented by the backbone string, as defined in Ramachandran space. The backbone string of a query can be accurately predicted by two innovative technologies: a knowledge-driven sequence alignment and encoding of a backbone string element profile. Then, the predicted backbone string is employed to align against a backbone string database and retrieve a set of backbone string neighbors. The backbone string neighbors were shown to be close to native structures of query proteins. BS-align was successfully employed to predict models of 10 membrane proteins with lengths ranging between 229 and 595 residues, and whose high-resolution structural determinations were difficult to elucidate both by experiment and prediction. The obtained TM-scores and root mean square deviations of the models confirmed that the models based on the backbone string neighbors retrieved by the BS-align were very close to the native membrane structures although the query and the neighbor shared a very low sequence identity. The backbone string system represents a new road for the prediction of protein structure from sequence, and suggests that the similarity of the backbone string would be more informative than describing a protein as belonging to a fold. PMID:22415040

  2. Retrieving backbone string neighbors provides insights into structural modeling of membrane proteins.

    Science.gov (United States)

    Sun, Jiang-Ming; Li, Tong-Hua; Cong, Pei-Sheng; Tang, Sheng-Nan; Xiong, Wen-Wei

    2012-07-01

    Identification of protein structural neighbors to a query is fundamental in structure and function prediction. Here we present BS-align, a systematic method to retrieve backbone string neighbors from primary sequences as templates for protein modeling. The backbone conformation of a protein is represented by the backbone string, as defined in Ramachandran space. The backbone string of a query can be accurately predicted by two innovative technologies: a knowledge-driven sequence alignment and encoding of a backbone string element profile. Then, the predicted backbone string is employed to align against a backbone string database and retrieve a set of backbone string neighbors. The backbone string neighbors were shown to be close to native structures of query proteins. BS-align was successfully employed to predict models of 10 membrane proteins with lengths ranging between 229 and 595 residues, and whose high-resolution structural determinations were difficult to elucidate both by experiment and prediction. The obtained TM-scores and root mean square deviations of the models confirmed that the models based on the backbone string neighbors retrieved by the BS-align were very close to the native membrane structures although the query and the neighbor shared a very low sequence identity. The backbone string system represents a new road for the prediction of protein structure from sequence, and suggests that the similarity of the backbone string would be more informative than describing a protein as belonging to a fold.

  3. How to simulate global cosmic strings with large string tension

    Energy Technology Data Exchange (ETDEWEB)

    Klaer, Vincent B.; Moore, Guy D., E-mail: vklaer@theorie.ikp.physik.tu-darmstadt.de, E-mail: guy.moore@physik.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 2, Darmstadt, D-64289 Germany (Germany)

    2017-10-01

    Global string networks may be relevant in axion production in the early Universe, as well as other cosmological scenarios. Such networks contain a large hierarchy of scales between the string core scale and the Hubble scale, ln( f {sub a} / H ) ∼ 70, which influences the network dynamics by giving the strings large tensions T ≅ π f {sub a} {sup 2} ln( f {sub a} / H ). We present a new numerical approach to simulate such global string networks, capturing the tension without an exponentially large lattice.

  4. Maximal unbordered factors of random strings

    DEFF Research Database (Denmark)

    Cording, Patrick Hagge; Knudsen, Mathias Bæk Tejs

    2016-01-01

    A border of a string is a non-empty prefix of the string that is also a suffix of the string, and a string is unbordered if it has no border. Loptev, Kucherov, and Starikovskaya [CPM 2015] conjectured the following: If we pick a string of length n from a fixed alphabet uniformly at random...

  5. LSG: An External-Memory Tool to Compute String Graphs for Next-Generation Sequencing Data Assembly.

    Science.gov (United States)

    Bonizzoni, Paola; Vedova, Gianluca Della; Pirola, Yuri; Previtali, Marco; Rizzi, Raffaella

    2016-03-01

    The large amount of short read data that has to be assembled in future applications, such as in metagenomics or cancer genomics, strongly motivates the investigation of disk-based approaches to index next-generation sequencing (NGS) data. Positive results in this direction stimulate the investigation of efficient external memory algorithms for de novo assembly from NGS data. Our article is also motivated by the open problem of designing a space-efficient algorithm to compute a string graph using an indexing procedure based on the Burrows-Wheeler transform (BWT). We have developed a disk-based algorithm for computing string graphs in external memory: the light string graph (LSG). LSG relies on a new representation of the FM-index that is exploited to use an amount of main memory requirement that is independent from the size of the data set. Moreover, we have developed a pipeline for genome assembly from NGS data that integrates LSG with the assembly step of SGA (Simpson and Durbin, 2012 ), a state-of-the-art string graph-based assembler, and uses BEETL for indexing the input data. LSG is open source software and is available online. We have analyzed our implementation on a 875-million read whole-genome dataset, on which LSG has built the string graph using only 1GB of main memory (reducing the memory occupation by a factor of 50 with respect to SGA), while requiring slightly more than twice the time than SGA. The analysis of the entire pipeline shows an important decrease in memory usage, while managing to have only a moderate increase in the running time.

  6. Gravitational-wave stochastic background from cosmic strings.

    Science.gov (United States)

    Siemens, Xavier; Mandic, Vuk; Creighton, Jolien

    2007-03-16

    We consider the stochastic background of gravitational waves produced by a network of cosmic strings and assess their accessibility to current and planned gravitational wave detectors, as well as to big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and pulsar timing constraints. We find that current data from interferometric gravitational wave detectors, such as Laser Interferometer Gravitational Wave Observatory (LIGO), are sensitive to areas of parameter space of cosmic string models complementary to those accessible to pulsar, BBN, and CMB bounds. Future more sensitive LIGO runs and interferometers such as Advanced LIGO and Laser Interferometer Space Antenna (LISA) will be able to explore substantial parts of the parameter space.

  7. Gravitational-Wave Stochastic Background from Cosmic Strings

    International Nuclear Information System (INIS)

    Siemens, Xavier; Creighton, Jolien; Mandic, Vuk

    2007-01-01

    We consider the stochastic background of gravitational waves produced by a network of cosmic strings and assess their accessibility to current and planned gravitational wave detectors, as well as to big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and pulsar timing constraints. We find that current data from interferometric gravitational wave detectors, such as Laser Interferometer Gravitational Wave Observatory (LIGO), are sensitive to areas of parameter space of cosmic string models complementary to those accessible to pulsar, BBN, and CMB bounds. Future more sensitive LIGO runs and interferometers such as Advanced LIGO and Laser Interferometer Space Antenna (LISA) will be able to explore substantial parts of the parameter space

  8. Counting Dependent and Independent Strings

    Science.gov (United States)

    Zimand, Marius

    We derive quantitative results regarding sets of n-bit strings that have different dependency or independency properties. Let C(x) be the Kolmogorov complexity of the string x. A string y has α dependency with a string x if C(y) - C(y |x) ≥ α. A set of strings {x 1, ..., x t } is pairwise α-independent if for all inot=j, C(x i ) - C(x i |x j ) ≤ α. A tuple of strings (x 1, ..., x t ) is mutually α-independent if C(x π(1) ... x π(t)) ≥ C(x 1) + ... + C(x t ) - α, for every permutation π of [t]. We show that:

  9. Quantum backreaction in string theory

    International Nuclear Information System (INIS)

    Evnin, O.

    2012-01-01

    There are situations in string theory when a finite number of string quanta induce a significant backreaction upon the background and render the perturbation theory infrared-divergent. The simplest example is D0-brane recoil under an impact by closed strings. A more physically interesting case is backreaction on the evolution of a totally compact universe due to closed string gas. Such situations necessitate qualitative amendments to the traditional formulation of string theory in a fixed classical background. In this contribution to the proceedings of the XVII European Workshop on String Theory in Padua, I review solved problems and current investigations in relation to this kind of quantum backreaction effects. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Fast Searching in Packed Strings

    DEFF Research Database (Denmark)

    Bille, Philip

    2009-01-01

    Given strings P and Q the (exact) string matching problem is to find all positions of substrings in Q matching P. The classical Knuth-Morris-Pratt algorithm [SIAM J. Comput., 1977] solves the string matching problem in linear time which is optimal if we can only read one character at the time....... However, most strings are stored in a computer in a packed representation with several characters in a single word, giving us the opportunity to read multiple characters simultaneously. In this paper we study the worst-case complexity of string matching on strings given in packed representation. Let m...... word-RAM with logarithmic word size we present an algorithm using time O(n/log(sigma) n + m + occ) Here occ is the number of occurrences of P in Q. For m = o(n) this improves the O(n) bound...

  11. Classical theory of radiating strings

    Science.gov (United States)

    Copeland, Edmund J.; Haws, D.; Hindmarsh, M.

    1990-01-01

    The divergent part of the self force of a radiating string coupled to gravity, an antisymmetric tensor and a dilaton in four dimensions are calculated to first order in classical perturbation theory. While this divergence can be absorbed into a renormalization of the string tension, demanding that both it and the divergence in the energy momentum tensor vanish forces the string to have the couplings of compactified N = 1 D = 10 supergravity. In effect, supersymmetry cures the classical infinities.

  12. Introduction to strings and superstrings

    International Nuclear Information System (INIS)

    Traubenberg, M.R. de.

    1988-01-01

    We discuss the main features on the formulation of string theory that, in a primitive level, describe the hadronic phenomenon of duality. We also study an extension of the models of closed and strings with spin. Then, by using supersymmetry, it is formulated the theory of superstrings and heterotic strings with the aim of unify the fundamental interactions and matter. (M.W.O.) [pt

  13. Cosmic strings and galaxy formation

    International Nuclear Information System (INIS)

    Kibble, T.W.B.

    1986-01-01

    The evolution of a system of strings created at a phase transition early in the history of the universe is reviewed. The two possible end points are a string-dominated universe, which behaves much like a matter-dominated one, and a scaling solution, in which the persistence length of the system of strings scales with the horizon distance. The latter is the basis for a very attractive theory of galaxy formation. (Auth.)

  14. Domain Walls with Strings Attached

    Energy Technology Data Exchange (ETDEWEB)

    Shmakova, Marina

    2001-08-20

    We have constructed a bulk and brane action of IIA theory which describes a pair of BPS domain walls on S{sub 1}/Z{sub 2}, with strings attached. The walls are given by two orientifold O8-planes with coincident D8-branes and F1-D0-strings are stretched between the walls. This static configuration satisfies all matching conditions for the string and domain wall sources and has 1/4 of unbroken supersymmetry.

  15. String theory and applications to phenomenology and cosmology

    International Nuclear Information System (INIS)

    Florakis, I.G.

    2011-07-01

    This thesis treats applications of String Theory to problems of cosmology and high energy phenomenology. In particular, we investigate problems related to the description of the initial state of the universe, using the methods of perturbative String Theory. After a review of the string-theoretic tools that will be employed, we discuss a novel degeneracy symmetry between the bosonic and fermionic massive towers of states (MSDS symmetry), living at particular points of moduli space. We study the marginal deformations of MSDS vacua and exhibit their natural thermal interpretation, in connection with the resolution of the Hagedorn divergences of string thermodynamics. The cosmological evolution of a special, 2-dimensional thermal 'Hybrid' model is presented and the correct implementation of the full stringy degrees of freedom leads to the absence of gravitational singularities, within a fully perturbative treatment. (author)

  16. Quantum A∞-structures for open-closed topological strings

    International Nuclear Information System (INIS)

    Herbst, M.

    2006-02-01

    We study factorizations of topological string amplitudes on higher genus Riemann surfaces with multiple boundary components and find quantum A ∞ -relations, which are the higher genus analog of the (classical) A ∞ -relations on the disk. For topological strings with c=3 the quantum A ∞ -relations are trivially satisfied on a single D-brane, whereas in a multiple D-brane configuration they may be used to compute open higher genus amplitudes recursively from disk amplitudes. This can be helpful in open Gromov-Witten theory in order to determine open string higher genus instanton corrections. Finally, we find that the quantum A ∞ -structure cannot quite be recast into a quantum master equation on the open string moduli space. (orig.)

  17. Dynamics of cosmic strings with higher-dimensional windings

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, Daisuke [Research Center for the Early Universe, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Lake, Matthew J. [The Institute for Fundamental Study, “The Tah Poe Academia Institute' , Naresuan University, Phitsanulok 65000 (Thailand); Thailand Center of Excellence in Physics, Ministry of Education,Bangkok 10400 (Thailand)

    2015-06-11

    We consider F-strings with arbitrary configurations in the Minkowski directions of a higher-dimensional spacetime, which also wrap and spin around S{sup 1} subcycles of constant radius in an arbitrary internal manifold, and determine the relation between the higher-dimensional and the effective four-dimensional quantities that govern the string dynamics. We show that, for any such configuration, the motion of the windings in the compact space may render the string effectively tensionless from a four-dimensional perspective, so that it remains static with respect to the large dimensions. Such a critical configuration occurs when (locally) exactly half the square of the string length lies in the large dimensions and half lies in the compact space. The critical solution is then seen to arise as a special case, in which the wavelength of the windings is equal to their circumference. As examples, long straight strings and circular loops are considered in detail, and the solutions to the equations of motion that satisfy the tensionless condition are presented. These solutions are then generalized to planar loops and arbitrary three-dimensional configurations. Under the process of dimensional reduction, in which higher-dimensional motion is equivalent to an effective worldsheet current (giving rise to a conserved charge), this phenomenon may be seen as the analogue of the tensionless condition which arises for superconducting and chiral-current carrying cosmic strings.

  18. Dynamics of cosmic strings with higher-dimensional windings

    International Nuclear Information System (INIS)

    Yamauchi, Daisuke; Lake, Matthew J.

    2015-01-01

    We consider F-strings with arbitrary configurations in the Minkowski directions of a higher-dimensional spacetime, which also wrap and spin around S 1 subcycles of constant radius in an arbitrary internal manifold, and determine the relation between the higher-dimensional and the effective four-dimensional quantities that govern the string dynamics. We show that, for any such configuration, the motion of the windings in the compact space may render the string effectively tensionless from a four-dimensional perspective, so that it remains static with respect to the large dimensions. Such a critical configuration occurs when (locally) exactly half the square of the string length lies in the large dimensions and half lies in the compact space. The critical solution is then seen to arise as a special case, in which the wavelength of the windings is equal to their circumference. As examples, long straight strings and circular loops are considered in detail, and the solutions to the equations of motion that satisfy the tensionless condition are presented. These solutions are then generalized to planar loops and arbitrary three-dimensional configurations. Under the process of dimensional reduction, in which higher-dimensional motion is equivalent to an effective worldsheet current (giving rise to a conserved charge), this phenomenon may be seen as the analogue of the tensionless condition which arises for superconducting and chiral-current carrying cosmic strings

  19. Planckian axions in string theory

    International Nuclear Information System (INIS)

    Bachlechner, Thomas C.; Long, Cody; McAllister, Liam

    2015-01-01

    We argue that super-Planckian diameters of axion fundamental domains can arise in Calabi-Yau compactifications of string theory. In a theory with N axions θ i , the fundamental domain is a polytope defined by the periodicities of the axions, via constraints of the form −πspace, and also, crucially, the largest eigenvalue of (QQ ⊤ ) −1 . At large N, QQ ⊤ approaches a Wishart matrix, due to universality, and we show that the diameter is at least Nf N , exceeding the naive Pythagorean range by a factor >√N. This result is robust in the presence of P>N constraints, while for P=N the diameter is further enhanced by eigenvector delocalization to N 3/2 f N . We directly verify our results in explicit Calabi-Yau compactifications of type IIB string theory. In the classic example with h 1,1 =51 where parametrically controlled moduli stabilization was demonstrated by Denef et al. in http://dx.doi.org/10.4310/ATMP.2005.v9.n6.a1, the largest metric eigenvalue obeys f N ≈0.013M pl . The random matrix analysis then predicts, and we exhibit, axion diameters ≈M pl for the precise vacuum parameters found in http://dx.doi.org/10.4310/ATMP.2005.v9.n6.a1. Our results provide a framework for pursuing large-field axion inflation in well-understood flux vacua.

  20. Splitting strings on integrable backgrounds

    International Nuclear Information System (INIS)

    Vicedo, Benoit

    2011-05-01

    We use integrability to construct the general classical splitting string solution on R x S 3 . Namely, given any incoming string solution satisfying a necessary self-intersection property at some given instant in time, we use the integrability of the worldsheet σ-model to construct the pair of outgoing strings resulting from a split. The solution for each outgoing string is expressed recursively through a sequence of dressing transformations, the parameters of which are determined by the solutions to Birkhoff factorization problems in an appropriate real form of the loop group of SL 2 (C). (orig.)

  1. String Theory in a Nutshell

    CERN Document Server

    Kiritsis, Elias

    2007-01-01

    This book is the essential new introduction to modern string theory, by one of the world's authorities on the subject. Concise, clearly presented, and up-to-date, String Theory in a Nutshell brings together the best understood and most important aspects of a theory that has been evolving since the early 1980s. A core model of physics that substitutes one-dimensional extended ""strings"" for zero-dimensional point-like particles (as in quantum field theory), string theory has been the leading candidate for a theory that would successfully unify all fundamental forces of nature, includin

  2. Evolution of cosmic string networks

    International Nuclear Information System (INIS)

    Albrecht, A.; Turok, N.; Princeton Univ., NJ

    1989-06-01

    We summarize our new results on cosmic strings. These results include: the application of non-equilibrium statistical mechanics to cosmic string evolution, a simple ''one scale'' model for the long strings which has a great deal of predictive power, results from large scale numerical simulations, and a discussion of the observational consequences of our results. An upper bond on Gμ of approximately 10 -7 emerges from the millisecond pulsar gravity wave bound. We discuss how numerical uncertainties affect this. Any changes which weaken the bound would probably also give the long strings the dominant role in producing observational consequences. 22 refs

  3. The ABCDEFG of Little Strings

    OpenAIRE

    Haouzi, Nathan; Kozçaz, Can

    2017-01-01

    Starting from type IIB string theory on an $ADE$ singularity, the (2,0) little string arises when one takes the string coupling $g_s$ to 0. In this setup, we give a unified description of the codimension-two defects of the little string, for any simple Lie algebra ${\\mathfrak{g}}$. Geometrically, these are D5 branes wrapping 2-cycles of the singularity. Equivalently, the defects are specified by a certain set of weights of $^L {\\mathfrak{g}}$, the Langlands dual of ${\\mathfrak{g}}$. As a firs...

  4. A primer on string theory

    CERN Document Server

    Schomerus, Volker

    2017-01-01

    Since its conception in the 1960s, string theory has been hailed as one of the most promising routes we have to unify quantum mechanics and general relativity. This book provides a concise introduction to string theory explaining central concepts, mathematical tools and covering recent developments in physics including compactifications and gauge/string dualities. With string theory being a multidisciplinary field interfacing with high energy physics, mathematics and quantum field theory, this book is ideal for both students with no previous knowledge of the field and scholars from other disciplines who are looking for an introduction to basic concepts.

  5. On the boundary gauge dual of closed tensionless free strings in AdS

    Energy Technology Data Exchange (ETDEWEB)

    Bonelli, Giulio [Physique Theorique et Mathematique and International Solvay Institutes, Universite Libre de Bruxelles, Campus Plaine C.P. 231, B- 1050 Brussels (Belgium)]. E-mail: gbonelli@ulb.ac.be

    2004-11-01

    We consider closed free tensionless strings in AdS{sub d}, calculate exactly the boundary/boundary string evolution kernel and find the string dynamics to be completely frozen. We interpret therefore the boundary configurations as Wilson loop operators in a confining phase. This is taken as an argument in favor to the dual weakly coupled abelian gauge theory being that of (d-4)-forms in the (d-1) dimensional boundary Minkowski space. (author)

  6. One-loop masses of open-string scalar fields in string theory

    International Nuclear Information System (INIS)

    Kitazawa, Noriaki

    2008-01-01

    In phenomenological models with D-branes, there are in general open-string massless scalar fields, in addition to closed-string massless moduli fields corresponding to the compactification. It is interesting to focus on the fate of such scalar fields in models with broken supersymmetry, because no symmetry forbids their masses. The one-loop effect may give non-zero masses to them, and in some cases mass squared may become negative, which means the radiative gauge symmetry breaking. In this article we investigate and propose a simple method for calculating the one-loop corrections using the boundary state formalism. There are two categories of massless open-string scalar fields. One consists the gauge potential fields corresponding to compactified directions, which can be understood as scalar fields in uncompactified space-time (related with Wilson line degrees of freedom). The other consists 'gauge potential fields' corresponding to transverse directions of D-brane, which emerge as scalar fields in D-brane world-volume (related with brane moduli fields). The D-brane boundary states with constant backgrounds of these scalar fields are constructed, and one-loop scalar masses are calculated in the closed string picture. Explicit calculations are given in the following four concrete models: one D25-brane with a circle compactification in bosonic string theory, one D9-brane with a circle compactification in superstring theory, D3-branes at a supersymmetric C 3 /Z 3 orbifold singularity, and a model of brane supersymmetry breaking with D3-branes and anti-D7-branes at a supersymmetric C 3 /Z 3 orbifold singularity. We show that the sign of the mass squared has a strong correlation with the sign of the related open-string one-loop vacuum amplitude.

  7. Multi-input multioutput orthogonal frequency division multiplexing radar waveform design for improving the detection performance of space-time adaptive processing

    Science.gov (United States)

    Wang, Hongyan

    2017-04-01

    This paper addresses the waveform optimization problem for improving the detection performance of multi-input multioutput (MIMO) orthogonal frequency division multiplexing (OFDM) radar-based space-time adaptive processing (STAP) in the complex environment. By maximizing the output signal-to-interference-and-noise-ratio (SINR) criterion, the waveform optimization problem for improving the detection performance of STAP, which is subjected to the constant modulus constraint, is derived. To tackle the resultant nonlinear and complicated optimization issue, a diagonal loading-based method is proposed to reformulate the issue as a semidefinite programming one; thereby, this problem can be solved very efficiently. In what follows, the optimized waveform can be obtained to maximize the output SINR of MIMO-OFDM such that the detection performance of STAP can be improved. The simulation results show that the proposed method can improve the output SINR detection performance considerably as compared with that of uncorrelated waveforms and the existing MIMO-based STAP method.

  8. Differential geometry of groups in string theory

    International Nuclear Information System (INIS)

    Schmidke, W.B. Jr.

    1990-09-01

    Techniques from differential geometry and group theory are applied to two topics from string theory. The first topic studied is quantum groups, with the example of GL (1|1). The quantum group GL q (1|1) is introduced, and an exponential description is derived. The algebra and coproduct are determined using the invariant differential calculus method introduced by Woronowicz and generalized by Wess and Zumino. An invariant calculus is also introduced on the quantum superplane, and a representation of the algebra of GL q (1|1) in terms of the super-plane coordinates is constructed. The second topic follows the approach to string theory introduced by Bowick and Rajeev. Here the ghost contribution to the anomaly of the energy-momentum tensor is calculated as the Ricci curvature of the Kaehler quotient space Diff(S 1 )/S 1 . We discuss general Kaehler quotient spaces and derive an expression for their Ricci curvatures. Application is made to the string and superstring diffeomorphism groups, considering all possible choices of subgroup. The formalism is extended to associated holomorphic vector bundles, where the Ricci curvature corresponds to the anomaly for different ghost sea levels. 26 refs

  9. Puppets on a String in a Theatre of Display? Interactions of Image, Text, Material, Space and Motion in "The Family of Man" (ca. 1950s-1960s)

    Science.gov (United States)

    Priem, Karin; Thyssen, Geert

    2013-01-01

    In the past few decades, increasing attention has been devoted within various disciplines to aspects previously considered trivial, among which are images, material objects and spaces. While the visual, the material and the spatial are receiving ever more consideration and the myriad issues surrounding them are being tackled, their convergence in…

  10. 3D Structures & dynamic of the solar corona: inputs from stereovision technics and joigned Ground Based and Space Observatories for the development of Space Weather

    Science.gov (United States)

    Portier-Fozzani, F.; Stereo/Secchi Team At Mpae

    While taking into account the difficulties encountered by 3D imaging specialists with usual objects over the last 20 years, we derived appropriate stereoscopic methods that we could use for the very specific case of the solar corona. Tomographic methods which should be better for such optically thin EUV lines need lots of different quasi-simultaneous viewpoints which is not possible. Usual objects reconstructed by stereovision are mainly optical thick objects such as lands, buildings, planes, tanks with variable external luminosity. Directlty applied, classical algorithms give at least big uncertainties due to the light emission integration along the line of sight. Also structures extractions and maching between images are very difficult to derived. Epipolar geometry has to be determined before all other steps and decomposing each image in wavelet spatial frequencies with Multiscale Vision Model for example, improves a lot the extract/match step. Results of such automatization of the method are presented in the paper. Another shorter method is to derive some 3D parameters with an 'a priori geometry' shape of the object observed. It has been used for loops studies. For an emerging active region loops, twist variations together with the expansion have been measured with consequences on the helicity. With such method, sigmoids evolution can be also described. When we limit the 3D study for some structures (such as filaments forming CMEs) to the calculation of the plane of expansion or the degree of twist, some evolution can be partly described from SOHO in the space weather context, which would be even better described when STEREO would take simultaneous images at different angle to take into account more the dynamic of the solar corona with less evolution necessary assumption. The two methods will be mixed in the future with the philosophy of computer learning in 3D image processing for automatic space weather alerts.

  11. On the domain of string perturbation theory

    International Nuclear Information System (INIS)

    Davis, S.

    1989-06-01

    For a large class of effectively closed surfaces, it is shown that the only divergences in string scattering amplitudes at each order in perturbation theory are those associated with the coincidence of vertex operators and the boundary of moduli space. This class includes all closed surfaces of finite genus, and infinite-genus surfaces which can be uniformized by a group of Schottky type. While the computation is done explicitly for bosonic strings in their ground states, it can also be extended to excited states and to superstrings. The properties of these amplitudes lead to a definition of the domain of perturbation theory as the set of effectively closed surfaces. The implications of the restriction to effectively closed surfaces on the behavior of the perturbation series are discussed. (author). 20 refs, 6 figs

  12. Bookmarks in Grammar-Compressed Strings

    DEFF Research Database (Denmark)

    Cording, Patrick Hagge; Gawrychowski, Pawel; Weimann, Oren

    2016-01-01

    We consider the problem of storing a grammar of size n compressing a string of size N, and a set of positions {i1, . . . , i } (bookmarks) such that any substring of length l crossing one of the positions can be decompressed in O(l) time. Our solution uses space O((n + b) max{1, log* n − log*( n....../b + b/n)}). Existing solutions for the bookmarking problem either require more space or a super-constant “kick-off” time to start the decompression....

  13. Drill string gas data

    Energy Technology Data Exchange (ETDEWEB)

    Siciliano, E.R.

    1998-05-12

    Data and supporting documentation were compiled and analyzed for 26 cases of gas grab samples taken during waste-tank core sampling activities between September 1, 1995 and December 31, 1997. These cases were tested against specific criteria to reduce uncertainties associated with in-tank sampling location and conditions. Of the 26 possible cases, 16 qualified as drill-string grab samples most likely to represent recently released waste gases. The data from these 16 ``confirmed`` cases were adjusted to remove non-waste gas contributions from core-sampling activities (argon or nitrogen purge), the atmospheric background, and laboratory sampler preparation (helium). The procedure for subtracting atmospheric, laboratory, and argon purge gases was unambiguous. No reliable method for determining the exact amount of nitrogen purge gas was established. Thus, the final set of ``Adjusted`` drill string gas data for the 6 nitrogen-purged cases had a greater degree of uncertainty than the final results for the 10 argon-purged cases. Including the appropriate amounts of uncertainty, this final set of data was added to the set of high-quality results from the Retained Gas Sampler (RGS), and good agreement was found for the N{sub 2}, H{sub 2}, and N{sub 2}O mole fractions sampled from common tanks. These results indicate that under favorable sampling conditions, Drill-String (DS) grab samples can provide reasonably accurate information about the dominant species of released gas. One conclusion from this set of total gas data is that the distribution of the H{sub 2} mole fractions is bimodal in shape, with an upper bound of 78%.

  14. String-inspired cosmology

    International Nuclear Information System (INIS)

    Wands, David

    2002-01-01

    I discuss cosmological models either derived from, or inspired by, string theory or M-theory. In particular, I discuss solutions in the low-energy effective theory and the role of the dilaton, moduli and antisymmetric form fields in the dimensionally reduced effective action. The pre-big-bang model is an attempt to use cosmological solutions to make observational predictions. I then discuss the effective theory of gravity found in recent braneworld models where we live on a 3-brane embedded in a five-dimensional spacetime and how the study of cosmological perturbations may enable us to test these ideas

  15. Sequestering in String Theory

    Energy Technology Data Exchange (ETDEWEB)

    Kachru, Shamit; McAllister, Liam; Sundrum, Raman

    2007-04-04

    We study sequestering, a prerequisite for flavor-blind supersymmetry breaking in several high-scale mediation mechanisms, in compactifications of type IIB string theory. We find that although sequestering is typically absent in unwarped backgrounds, strongly warped compactifications do readily sequester. The AdS/CFT dual description in terms of conformal sequestering plays an important role in our analysis, and we establish how sequestering works both on the gravity side and on the gauge theory side. We pay special attention to subtle compactification effects that can disrupt sequestering. Our result is a step toward realizing an appealing pattern of soft terms in a KKLT compactification.

  16. Sequestering in string theory

    International Nuclear Information System (INIS)

    Kachru, Shamit; McAllister, Liam; Sundrum, Raman

    2007-01-01

    We study sequestering, a prerequisite for flavor-blind supersymmetry breaking in several high-scale mediation mechanisms, in compactifications of type IIB string theory. We find that although sequestering is typically absent in unwarped backgrounds, strongly warped compactifications do readily sequester. The AdS/CFT dual description in terms of conformal sequestering plays an important role in our analysis, and we establish how sequestering works both on the gravity side and on the gauge theory side. We pay special attention to subtle compactification effects that can disrupt sequestering. Our result is a step toward realizing an appealing pattern of soft terms in a KKLT compactification

  17. Transmutations for Strings

    Directory of Open Access Journals (Sweden)

    Amin Boumenir

    2008-07-01

    Full Text Available We investigate the existence and representation of transmutations, also known as transformation operators, for strings. Using measure theory and functional analytic methods we prove their existence and study their representation. We show that in general they are not close to unity since their representation does not involve a Volterra operator but rather the eigenvalue parameter. We also obtain conditions under which the transmutation is either a bounded or a compact operator. Explicit examples show that they cannot be reduced to Volterra type operators.  

  18. New ambitwistor string theories

    Energy Technology Data Exchange (ETDEWEB)

    Casali, Eduardo [DAMTP, University of Cambridge,Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Geyer, Yvonne; Mason, Lionel; Monteiro, Ricardo [Mathematical Institute, University of Oxford,Woodstock Road, Oxford OX2 6GG (United Kingdom); Roehrig, Kai A. [DAMTP, University of Cambridge,Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2015-11-05

    We describe new ambitwistor string theories that give rise to the recent amplitude formulae for Einstein-Yang-Mills, (Dirac)-Born-Infeld, Galileons and others introduced by Cachazo, He and Yuan. In the case of the Einstein-Yang-Mills amplitudes, an important role is played by a novel worldsheet conformal field theory that provides the appropriate colour factors precisely without the spurious multitrace terms of earlier models that had to be ignored by hand. This is needed to obtain the correct multitrace terms that arise when Yang-Mills is coupled to gravity.

  19. Energy in a String Wave

    Science.gov (United States)

    Ng, Chiu-king

    2010-01-01

    When one end of a taut horizontal elastic string is shaken repeatedly up and down, a transverse wave (assume sine waveform) will be produced and travel along it. College students know this type of wave motion well. They know when the wave passes by, each element of the string will perform an oscillating up-down motion, which in mechanics is termed…

  20. Experimenting with String Musical Instruments

    Science.gov (United States)

    LoPresto, Michael C.

    2012-01-01

    What follows are several investigations involving string musical instruments developed for and used in a "Science of Sound & Light" course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when…

  1. Cool Runnings For String 2

    CERN Multimedia

    2001-01-01

    String 2 is a series of superconducting magnets that are prototypes of those which will be installed in the LHC. It was cooled down to 1.9 Kelvin on September 14th. On Thursday last week, the dipoles of String 2 were successfully taken to nominal current, 11850 A.

  2. Differential formulation in string theories

    International Nuclear Information System (INIS)

    Guzzo, M.M.

    1987-01-01

    The equations of gauge invariance motion for theories of boson open strings and Neveu-Schwarz and Ramond superstring are derived. A construction for string theories using differential formalism, is introduced. The importance of BRST charge for constructing such theories and the necessity of introduction of auxiliary fields are verified. (M.C.K.) [pt

  3. Tadpole resummations in string theory

    International Nuclear Information System (INIS)

    Kitazawa, Noriaki

    2008-01-01

    While R-R tadpoles should be canceled for consistency, string models with broken supersymmetry generally have uncanceled NS-NS tadpoles. Their presence signals that the background does not solve the field equations, so that these models are in 'wrong' vacua. In this Letter we investigate, with reference to some prototype examples, whether the true values of physical quantities can be recovered resumming the NS-NS tadpoles, hence by an approach that is related to the analysis based on String Field Theory by open-closed duality. We show that, indeed, the positive classical vacuum energy of a Dp-brane of the bosonic string is exactly canceled by the negative contribution arising from tree-level tadpole resummation, in complete agreement with Sen's conjecture on open-string tachyon condensation and with the consequent analysis based on String Field Theory. We also show that the vanishing classical vacuum energy of the SO(8192) unoriented bosonic open-string theory does not receive any tree-level corrections from the tadpole resummation. This result is consistent with the fact that this (unstable) configuration is free from tadpoles of massless closed-string modes, although there is a tadpole of the closed string tachyon. The application of this method to superstring models with broken supersymmetry is also discussed

  4. String theory and water waves

    International Nuclear Information System (INIS)

    Iyer, Ramakrishnan; Johnson, Clifford V; Pennington, Jeffrey S

    2011-01-01

    We uncover a remarkable role that an infinite hierarchy of nonlinear differential equations plays in organizing and connecting certain c-hat <1 string theories non-perturbatively. We are able to embed the type 0A and 0B (A, A) minimal string theories into this single framework. The string theories arise as special limits of a rich system of equations underpinned by an integrable system known as the dispersive water wave hierarchy. We observe that there are several other string-like limits of the system, and conjecture that some of them are type IIA and IIB (A, D) minimal string backgrounds. We explain how these and several string-like special points arise and are connected. In some cases, the framework endows the theories with a non-perturbative definition for the first time. Notably, we discover that the Painleve IV equation plays a key role in organizing the string theory physics, joining its siblings, Painleve I and II, whose roles have previously been identified in this minimal string context.

  5. String theory and cosmological singularities

    Indian Academy of Sciences (India)

    recent times, string theory is providing new perspectives of such singularities which may lead to an understanding of these in the standard framework of time evolution in quantum mechanics. In this article, we describe some of these approaches. Keywords. String theory; cosmological singularities. PACS Nos 11.25.

  6. String theory and particle physics

    International Nuclear Information System (INIS)

    Uranga, Angel

    2006-01-01

    I will provide a basic introduction to string theory as a unified theory of gravitational and gauge interactions. I will review recent constructions of string theory models leading at low energies to the Standard Model of particle interactions, and which include interesting new phenomenology beyond the standard model, like supersymmetry, boranes, and (possible large) extra dimensions

  7. Bianchi type I string cosmologies

    Indian Academy of Sciences (India)

    sidered to portray early universe reasonably well. Letelier [2] obtained some particular. Bianchi type I string-dust models in which at a certain epoch, strings disappear with a phase transition to an anisotropic fluid. Another Bianchi type I model has been presented by Banerjee et al [3] which obeys Takabayashi's equation of ...

  8. String theory : physics or metaphysics?

    CERN Document Server

    Veneziano, Gabriele

    2010-01-01

    I will give arguments for why the enormous progress made during the last century on understanding elementary particles and their fundamental interactions suggests strings as the truly elementary constituents of Nature. I will then address the issue of whether the string paradigm can in principle be falsified or whether it should be considered as mere metaphysics.

  9. Bit-string scattering theory

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H.P.

    1990-01-29

    We construct discrete space-time coordinates separated by the Lorentz-invariant intervals h/mc in space and h/mc{sup 2} in time using discrimination (XOR) between pairs of independently generated bit-strings; we prove that if this space is homogeneous and isotropic, it can have only 1, 2 or 3 spacial dimensions once we have related time to a global ordering operator. On this space we construct exact combinatorial expressions for free particle wave functions taking proper account of the interference between indistinguishable alternative paths created by the construction. Because the end-points of the paths are fixed, they specify completed processes; our wave functions are born collapsed''. A convenient way to represent this model is in terms of complex amplitudes whose squares give the probability for a particular set of observable processes to be completed. For distances much greater than h/mc and times much greater than h/mc{sup 2} our wave functions can be approximated by solutions of the free particle Dirac and Klein-Gordon equations. Using a eight-counter paradigm we relate this construction to scattering experiments involving four distinguishable particles, and indicate how this can be used to calculate electromagnetic and weak scattering processes. We derive a non-perturbative formula relating relativistic bound and resonant state energies to mass ratios and coupling constants, equivalent to our earlier derivation of the Bohr relativistic formula for hydrogen. Using the Fermi-Yang model of the pion as a relativistic bound state containing a nucleon-antinucleon pair, we find that (G{sub {pi}N}{sup 2}){sup 2} = (2m{sub N}/m{sub {pi}}){sup 2} {minus} 1. 21 refs., 1 fig.

  10. Bit-string scattering theory

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1990-01-01

    We construct discrete space-time coordinates separated by the Lorentz-invariant intervals h/mc in space and h/mc 2 in time using discrimination (XOR) between pairs of independently generated bit-strings; we prove that if this space is homogeneous and isotropic, it can have only 1, 2 or 3 spacial dimensions once we have related time to a global ordering operator. On this space we construct exact combinatorial expressions for free particle wave functions taking proper account of the interference between indistinguishable alternative paths created by the construction. Because the end-points of the paths are fixed, they specify completed processes; our wave functions are ''born collapsed''. A convenient way to represent this model is in terms of complex amplitudes whose squares give the probability for a particular set of observable processes to be completed. For distances much greater than h/mc and times much greater than h/mc 2 our wave functions can be approximated by solutions of the free particle Dirac and Klein-Gordon equations. Using a eight-counter paradigm we relate this construction to scattering experiments involving four distinguishable particles, and indicate how this can be used to calculate electromagnetic and weak scattering processes. We derive a non-perturbative formula relating relativistic bound and resonant state energies to mass ratios and coupling constants, equivalent to our earlier derivation of the Bohr relativistic formula for hydrogen. Using the Fermi-Yang model of the pion as a relativistic bound state containing a nucleon-antinucleon pair, we find that (G πN 2 ) 2 = (2m N /m π ) 2 - 1. 21 refs., 1 fig

  11. Oscillons from string moduli

    Science.gov (United States)

    Antusch, Stefan; Cefalà, Francesco; Krippendorf, Sven; Muia, Francesco; Orani, Stefano; Quevedo, Fernando

    2018-01-01

    A generic feature of string compactifications is the presence of many scalar fields, called moduli. Moduli are usually displaced from their post-inflationary minimum during inflation. Their relaxation to the minimum could lead to the production of oscillons: localised, long-lived, non-linear excitations of the scalar fields. Here we discuss under which conditions oscillons can be produced in string cosmology and illustrate their production and potential phenomenology with two explicit examples: the case of an initially displaced volume modulus in the KKLT scenario and the case of a displaced blow-up Kähler modulus in the Large Volume Scenario (LVS). One, in principle, observable consequence of oscillon dynamics is the production of gravitational waves which, contrary to those produced from preheating after high scale inflation, could have lower frequencies, closer to the currently observable range. We also show that, for the considered parameter ranges, oscillating fibre and volume moduli do not develop any significant non-perturbative dynamics. Furthermore, we find that the vacua in the LVS and the KKLT scenario are stable against local overshootings of the field into the decompatification region, which provides an additional check on the longevity of these metastable configurations.

  12. Quark Confinement and Strings

    Science.gov (United States)

    't Hooft, Gerardus

    QCD was proposed as a theory for the strong interactions long before we had any idea as to how it could be that its fundamental constituents, the quarks, are never seen as physical particles. Massless gluons also do not exist as free particles. How can this be explained? The first indication that this question had to be considered in connection with the topological structure of a gauge theory came when Nielsen and Olesen observed the occurrence of stable magnetic vortex structures [1] in the Abelian Higgs model. Expanding on such ideas, the magnetic monopole solution was found [2]. Other roundabout attempts to understand confinement involve instantons. Today, we have better interpretations of these topological structures, including a general picture of the way they do lead to unbound potentials confining quarks. It is clear that these unbound potentials can be ascribed to a string-like structure of the vortices formed by the QCD field lines. Can string theory be used to analyze QCD? Many researchers think so. The leading expert on this is Sacha Polyakov. In his instructive account he adds how he experienced the course of events in Gauge Theory, emphasizing the fact that quite a few discoveries often ascribed to researchers from the West, actually were made independently by scientists from the Soviet Union…

  13. Twist Field as Three String Interaction Vertex in Light Cone String Field Theory

    OpenAIRE

    Kishimoto, Isao; Moriyama, Sanefumi; Teraguchi, Shunsuke

    2006-01-01

    It has been suggested that matrix string theory and light-cone string field theory are closely related. In this paper, we investigate the relation between the twist field, which represents string interactions in matrix string theory, and the three-string interaction vertex in light-cone string field theory carefully. We find that the three-string interaction vertex can reproduce some of the most important OPEs satisfied by the twist field.

  14. Random Access to Grammar-Compressed Strings and Trees

    DEFF Research Database (Denmark)

    Bille, Philip; Landau, Gad M.; Raman, Rajeev

    2015-01-01

    Grammar-based compression, where one replaces a long string by a small context-free grammar that generates the string, is a simple and powerful paradigm that captures (sometimes with slight reduction in efficiency) many of the popular compression schemes, including the Lempel-Ziv family, run...... representations of S achieving O(log N) random access time, and either O(n · αk(n)) construction time and space on the pointer machine model, or O(n) construction time and space on the RAM. Here, αk(n) is the inverse of the kth row of Ackermann's function. Our representations also efficiently support...

  15. Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors

    Science.gov (United States)

    Aasi, J.; Abadie, J.; Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.R.; Accadia, T.; Adams, C.; Adams, T.; Adhikari, R.X.; hide

    2014-01-01

    Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension (Newton's Constant x mass per unit length) below 10(exp -8) in some regions of the cosmic string parameter space.

  16. String tightening as a self-organizing phenomenon.

    Science.gov (United States)

    Banerjee, Bonny

    2007-09-01

    The phenomenon of self-organization has been of special interest to the neural network community throughout the last couple of decades. In this paper, we study a variant of the self-organizing map (SOM) that models the phenomenon of self-organization of the particles forming a string when the string is tightened from one or both of its ends. The proposed variant, called the string tightening self-organizing neural network (STON), can be used to solve certain practical problems, such as computation of shortest homotopic paths, smoothing paths to avoid sharp turns, computation of convex hull, etc. These problems are of considerable interest in computational geometry, robotics path-planning, artificial intelligence (AI) (diagrammatic reasoning), very large scale integration (VLSI) routing, and geographical information systems. Given a set of obstacles and a string with two fixed terminal points in a 2-D space, the STON model continuously tightens the given string until the unique shortest configuration in terms of the Euclidean metric is reached. The STON minimizes the total length of a string on convergence by dynamically creating and selecting feature vectors in a competitive manner. Proof of correctness of this anytime algorithm and experimental results obtained by its deployment have been presented in the paper.

  17. ncRNA consensus secondary structure derivation using grammar strings.

    Science.gov (United States)

    Achawanantakun, Rujira; Sun, Yanni; Takyar, Seyedeh Shohreh

    2011-04-01

    Many noncoding RNAs (ncRNAs) function through both their sequences and secondary structures. Thus, secondary structure derivation is an important issue in today's RNA research. The state-of-the-art structure annotation tools are based on comparative analysis, which derives consensus structure of homologous ncRNAs. Despite promising results from existing ncRNA aligning and consensus structure derivation tools, there is a need for more efficient and accurate ncRNA secondary structure modeling and alignment methods. In this work, we introduce a consensus structure derivation approach based on grammar string, a novel ncRNA secondary structure representation that encodes an ncRNA's sequence and secondary structure in the parameter space of a context-free grammar (CFG) and a full RNA grammar including pseudoknots. Being a string defined on a special alphabet constructed from a grammar, grammar string converts ncRNA alignment into sequence alignment. We derive consensus secondary structures from hundreds of ncRNA families from BraliBase 2.1 and 25 families containing pseudoknots using grammar string alignment. Our experiments have shown that grammar string-based structure derivation competes favorably in consensus structure quality with Murlet and RNASampler. Source code and experimental data are available at http://www.cse.msu.edu/~yannisun/grammar-string.

  18. String theory inspired deformations of quantum field theories

    Science.gov (United States)

    Chiou, Dah-Wei

    In this dissertation, some extensions on field theories with deformations inspired by string theory are explored and their implications are investigated. These are: (i) noncommutative dipole field theory (DFT) and unitarity; (ii) three dimensional super Yang-Mills theory and mini-twistor string theory; (iii) massive super Yang-Mills theory and twistor string theory; and (iv) a deformation of twistor space and N = 4 super Yang-Mills theory with a chiral mass term. The DFT with fixed spacetime vectors ("dipole-vectors") is formulated for gauge theory coupled with a scalar field of adjoint charge. The argument for the violation of unitarity in field theories on a noncommutative spacetime is extended to the case of DFT: with a timelike dipole vector, 1-loop amplitudes are shown not to obey the optical theorem and thus violate unitarity. Likewise, a simple 0 + 1D quantum mechanical system with nonlocal potential of finite extent in time also gives violation of unitarity. Associated with D = 3 super Yang-Mills theory, the topological B-model is constructed for the twistor string theory, of which the target space is the (super-)mini-twistor space. As the D = 4 twistor space can be considered as a fibration over D = 3 mini-twistor space, the dimensional reduction from D = 4 to D = 3 is conducted to obtain the scattering amplitudes for D = 3 super Yang-Mills theory. The result shows that, analogous to the D = 4 case, the twistor transformed D = 3 amplitudes are supported on holomorphic curves in the (super-)mini-twistor space. Another alternative twistor description---Berkovits's open string theory---is also analyzed. By the prescription which interrelates Witten's B-model and Berkovits's open string theory, the dimensional reduction can be made for Berkovits's model as well, in which the enhanced R-symmetry Spin(7) is recognized, whereas only the subgroup SU(4) is manifest in the B-model. The extension of the twistor string theory by adding mass terms is then proposed and

  19. Unusual motions of a vibrating string

    Science.gov (United States)

    Hanson, Roger J.

    2003-10-01

    The actual motions of a sinusoidally driven vibrating string can be very complex due to nonlinear effects resulting from varying tension and longitudinal motion not included in simple linear theory. Commonly observed effects are: generation of motion perpendicular to the driving force, sudden jumps in amplitude, hysteresis, and generation of higher harmonics. In addition, these effects are profoundly influenced by wire asymmetries which in a brass harpsichord wire can cause a small splitting of each natural frequency of free vibration into two closely spaced frequencies (relative separation ~0.2% to 2%), each associated with transverse motion along two orthogonal characteristic wire axes. Some unusual resulting patterns of complex motions of a point on the wire are exhibited on videotape. Examples include: sudden changes of harmonic content, generation of subharmonics, and motion which appears nearly chaotic but which has a pattern period of over 10 s. Another unusual phenomenon due to entirely different causes can occur when a violin string is bowed with a higher than normal force resulting in sounds ranging from about a musical third to a twelfth lower than the sound produced when the string is plucked.

  20. Experimental investigation of the piano hammer-string interaction.

    Science.gov (United States)

    Birkett, Stephen

    2013-04-01

    Experimental techniques for investigating the piano hammer-string interaction are described. It is argued that the accuracy, consistency, and scope of conclusions of previous studies can be compromised by limitations of the conventional methods relating to key inputs; physical distortion; numerical distortion, particularly when differentiation or integration of measured signals is used to derive primary response variables; contact identification; and synchronization issues. These problems are discussed, and experimental methods that have been devised to avoid them are described and illustrated by detailed results from a study of the hammer-string interaction in a vertical piano. High resolution displacements are obtained directly by non-contact high-speed imaging and quantitative motion tracking. The attention focused on achieving very accurate and consistent temporal and spatial alignment, including the objective procedure used for contact identification, allows meaningful comparisons of responses from separate tests. String motion at the strike point and on each side of it, as well as hammer motion, is obtained for eight dynamic levels from 1.06 to 2.98 m/s impact velocity. Detailed observations of the force-compression behavior of the hammer interacting with real strings are presented. The direct effects of hammer shank deflection and agraffe string pulses on the interaction are also highlighted.

  1. Color characters for white hot string bits

    Science.gov (United States)

    Curtright, Thomas L.; Raha, Sourav; Thorn, Charles B.

    2017-10-01

    The state space of a generic string bit model is spanned by N ×N matrix creation operators acting on a vacuum state. Such creation operators transform in the adjoint representation of the color group U (N ) [or S U (N ) if the matrices are traceless]. We consider a system of b species of bosonic bits and f species of fermionic bits. The string, emerging in the N →∞ limit, identifies P+=m M √{2 } where M is the bit number operator and P-=H √{2 } where H is the system Hamiltonian. We study the thermal properties of this string bit system in the case H =0 , which can be considered the tensionless string limit: the only dynamics is restricting physical states to color singlets. Then the thermal partition function Tr e-β m M can be identified, putting x =e-β m, with a generating function χ0b f(x ), for which the coefficient of xn in its expansion about x =0 is the number of color singlets with bit number M =n . This function is a purely group theoretic object, which is well studied in the literature. We show that at N =∞ this system displays a Hagedorn divergence at x =1 /(b +f ) with ultimate temperature TH=m /ln (b +f ). The corresponding function for finite N is perfectly finite for 0

  2. Matrix realization of string algebra axioms and conditions of invariance

    International Nuclear Information System (INIS)

    Babichev, L.F.; Kuvshinov, V.I.; Fedorov, F.I.

    1990-01-01

    The matrix representations of Witten's and B-algebras of the field string theory in finite dimensional space of the ghost states are suggested for the case of Virasoro algebra truncated to its SU(1,1) subalgebra. In this case all algebraic operations of Witten's and B-algebras are realized in explicit form as some matrix operations in the graded complex vector space. The structure of string action coincides with the universal non-linear cubic matrix form of action for the gauge field theories. These representations lead to matrix conditions of theory invariance which can be used for finding of the explicit form of corresponding operators of the string algebras. (author)

  3. On the Evaporation of Black Holes in String Theory

    CERN Document Server

    Ellis, Jonathan Richard; Nanopoulos, Dimitri V

    1992-01-01

    We show that, in string theory, the quantum evaporation and decay of black holes in two-dimensional target space is related to imaginary parts in higher-genus string amplitudes. These arise from the regularisation of modular infinities due to the sum over world-sheet configurations, that are known to express the instabilities of massive string states in general, and are not thermal in character. The absence of such imaginary parts in the matrix model limit confirms that the latter constitutes the final stage of the evaporation process, at least in perturbation theory. Our arguments appear to be quite generic, related only to the summation over world-sheet surfaces, and hence should also apply to higher-dimensional target spaces.

  4. Extensions of string theories

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, R.; Barcelos-Neto, J. (Universidade Federal do Rio de Janeiro, RJ (Brazil). Inst. de Fisica)

    1993-06-01

    With the motivation that critical dimensions D[ne]4 might be suggeting that string theories have not been completely formulated, we study more general alternatives. We first consider a direct extension in the world-sheet formulation with N[sub B] bosons and N[sub F] fermions and analyze the conditions for canceling the anomaly in all possible combinations of N[sub B], N[sub F] and D. Later on we incorporate degrees of freedom of antisymmetric tensors to the previous model. The only possibility to cancel the anomaly in this case is with N[sub B]=N[sub F]=1 and the our everyday spacetime dimension D=4. (orig.).

  5. Field theory and strings

    International Nuclear Information System (INIS)

    Bonara, L.; Cotta-Ramusino, P.; Rinaldi, M.

    1987-01-01

    It is well-known that type I and heterotic superstring theories have a zero mass spectrum which correspond to the field content of N=1 supergravity theory coupled to supersymmetric Yang-Mills theory in 10-D. The authors study the field theory ''per se'', in the hope that simple consistency requirements will determine the theory completely once one knows the field content inherited from string theory. The simplest consistency requirements are: N=1 supersymmetry; and absence of chiral anomalies. This is what the authors discuss in this paper here leaving undetermined the question of the range of validity of the resulting field theory. As is known, a model of N=1 supergravity (SUGRA) coupled to supersymmetric Yang-Mills (SYM) theory was known in the form given by Chapline and Manton. The coupling of SUGRA to SYM was determined by the definition of the ''field strength'' 3-form H in this paper

  6. Gravity and strings

    CERN Document Server

    Ortín, Tomás

    2015-01-01

    Self-contained and comprehensive, this definitive new edition of Gravity and Strings is a unique resource for graduate students and researchers in theoretical physics. From basic differential geometry through to the construction and study of black-hole and black-brane solutions in quantum gravity - via all the intermediate stages - this book provides a complete overview of the intersection of gravity, supergravity, and superstrings. Now fully revised, this second edition covers an extensive array of topics, including new material on non-linear electric-magnetic duality, the electric-tensor formalism, matter-coupled supergravity, supersymmetric solutions, the geometries of scalar manifolds appearing in 4- and 5-dimensional supergravities, and much more. Covering reviews of important solutions and numerous solution-generating techniques, and accompanied by an exhaustive index and bibliography, this is an exceptional reference work.

  7. On the Classical String Solutions and String/Field Theory Duality

    OpenAIRE

    Aleksandrova, D.; Bozhilov, P.

    2003-01-01

    We classify almost all classical string configurations, considered in the framework of the semi-classical limit of the string/gauge theory duality. Then, we describe a procedure for obtaining the conserved quantities and the exact classical string solutions in general string theory backgrounds, when the string embedding coordinates depend non-linearly on the worldsheet time parameter.

  8. String Formatting Considered Harmful for Novice Programmers

    Science.gov (United States)

    Hughes, Michael C.; Jadud, Matthew C.; Rodrigo, Ma. Mercedes T.

    2010-01-01

    In Java, "System.out.printf" and "String.format" consume a specialised kind of string commonly known as a format string. In our study of first-year students at the Ateneo de Manila University, we discovered that format strings present a substantial challenge for novice programmers. Focusing on their first laboratory we found…

  9. Test particle trajectories near cosmic strings

    Indian Academy of Sciences (India)

    We present a detailed analysis of the motion of test particle in the gravitational field of cosmic strings in different situations using the Hamilton–Jacobi (H–J) formalism. We have discussed the trajectories near static cosmic string, cosmic string in Brans–Dicke theory and cosmic string in dilaton gravity.

  10. Interaction of cosmic strings with gravitational waves

    International Nuclear Information System (INIS)

    Frolov, V.P.; Garfinkle, D.

    1990-01-01

    We find solutions of Einstein's equation representing a gravitational wave interacting with a cosmic-string traveling wave. The motion of test cosmic strings in the gravitational field of a cosmic-string traveling wave is also examined. A solution representing traveling waves on several parallel cosmic strings is also found

  11. String matching with variable length gaps

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Vildhøj, Hjalte Wedel

    2012-01-01

    We consider string matching with variable length gaps. Given a string T and a pattern P consisting of strings separated by variable length gaps (arbitrary strings of length in a specified range), the problem is to find all ending positions of substrings in T that match P. This problem is a basic...

  12. Triality in little string theories

    Science.gov (United States)

    Bastian, Brice; Hohenegger, Stefan; Iqbal, Amer; Rey, Soo-Jong

    2018-02-01

    We study a class of eight-supercharge little string theories (LSTs) on the world volume of N M5-branes with transverse space S1×(C2/ZM). These M-brane configurations compactified on a circle are dual to M D5-branes intersecting N NS5-branes on T2×R7 ,1 as well as to F-theory compactified on a toric Calabi-Yau threefold XN ,M. We argue that the Kähler cone of XN ,M admits three regions associated with weakly coupled quiver gauge theories of gauge groups [U (N )]M,[U (M )]N, and [U (N/M k )]k where k =gcd (N ,M ). These provide low-energy descriptions of different LSTs. The duality between the first two gauge theories is well known and is a consequence of the S-duality between D5- and NS5-branes or the T-duality of the LSTs. The triality involving the third gauge theory is new, and we demonstrate it using several examples. We also discuss implications of this triality for the W-algebras associated with the Alday-Gaiotto-Tachikawa dual theories.

  13. STRING v9.1

    DEFF Research Database (Denmark)

    Franceschini, A.; Simonovic, M.; Roth, A.

    2013-01-01

    data is desirable, including lower-quality data and/or computational predictions. The STRING database (http://string-db.org/) aims to provide such a global perspective for as many organisms as feasible. Known and predicted associations are scored and integrated, resulting in comprehensive protein...... networks covering >1100 organisms. Here, we describe the update to version 9.1 of STRING, introducing several improvements: (i) we extend the automated mining of scientific texts for interaction information, to now also include full-text articles; (ii) we entirely re-designed the algorithm for transferring...

  14. Spin chain for quantum strings

    International Nuclear Information System (INIS)

    Beisert, N.

    2005-01-01

    We review and compare the integrable structures in N=4 gauge theory and string theory on AdS 5 x S 5 . Recently, Bethe ansaetze for gauge theory/weak coupling and string theory/strong coupling were proposed to describe scaling dimensions in the su(2) subsector. Here we investigate the Bethe equations for quantum string theory, naively extrapolated to weak coupling. Excitingly, we find a spin chain Hamiltonian similar, but not equal, to the gauge theory dilatation operator. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  15. Covariant N-string amplitude

    International Nuclear Information System (INIS)

    Di Vecchia, P.; Sciuto, S.; Nakayama, R.; Petersen, J.L.; Sidenius, J.R.

    1986-11-01

    The BRST-invariant N-Reggeon vertex (for the bosonic string) previously given by us in the operator formulation is considered in more detail. In particular we present a direct derivation from the string path integral. Several crucial symmetry properties found a posteriori before, become a priori clearer in this formulation. A number of delicate points related to zero modes, cut off procedures and normal ordering prescriptions are treated in some detail. The old technique of letting the string field acquire a small dimension ε/2 → 0 + is found especially elegant. (orig.)

  16. Plucked Strings and the Harpsichord

    Science.gov (United States)

    GIORDANO, N.; WINANS, J. P.

    1999-07-01

    The excitation of a harpsichord string when it is set into motion, i.e., plucked, by a plectrum is studied. We find that the amplitude of the resulting string vibration is approximately independent of the velocity with which the key is depressed. This result is in accord with conventional wisdom, but at odds with a recent theoretical model. A more realistic theoretical treatment of the plucking process is then described, and shown to be consistent with our measurements. The experiments reveal several other interesting aspects of the plectrum-string interaction.

  17. M-strings, Elliptic Genera and N=4 String Amplitudes

    CERN Document Server

    Hohenegger, Stefan

    2014-01-01

    We study mass-deformed N=2 gauge theories from various points of view. Their partition functions can be computed via three dual approaches: firstly, (p,q)-brane webs in type II string theory using Nekrasov's instanton calculus, secondly, the (refined) topological string using the topological vertex formalism and thirdly, M theory via the elliptic genus of certain M-strings configurations. We argue for a large class of theories that these approaches yield the same gauge theory partition function which we study in detail. To make their modular properties more tangible, we consider a fourth approach by connecting the partition function to the equivariant elliptic genus of R^4 through a (singular) theta-transform. This form appears naturally as a specific class of one-loop scattering amplitudes in type II string theory on T^2, which we calculate explicitly.

  18. M-strings, elliptic genera and N = 4 string amplitudes

    International Nuclear Information System (INIS)

    Hohenegger, S.; Iqbal, A.

    2014-01-01

    We study mass-deformed N = 2 gauge theories from various points of view. Their partition functions can be computed via three dual approaches: firstly, (p,q)-brane webs in type II string theory using Nekrasov's instanton calculus, secondly, the (refined) topological string using the topological vertex formalism and thirdly, M theory via the elliptic genus of certain M-strings configurations. We argue for a large class of theories that these approaches yield the same gauge theory partition function which we study in detail. To make their modular properties more tangible, we consider a fourth approach by connecting the partition function to the equivariant elliptic genus of C 2 through a (singular) theta-transform. This form appears naturally as a specific class of one-loop scattering amplitudes in type II string theory on T 2 , which we calculate explicitly. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Critical non-Abelian vortex in four dimensions and little string theory

    Science.gov (United States)

    Shifman, M.; Yung, A.

    2017-08-01

    As was shown recently, non-Abelian vortex strings supported in four-dimensional N =2 supersymmetric QCD with the U(2) gauge group and Nf=4 quark multiplets (flavors) become critical superstrings. In addition to the translational moduli, non-Abelian strings under consideration carry six orientational and size moduli. Together, they form a ten-dimensional target space required for a superstring to be critical. The target space of the string sigma model is a product of the flat four-dimensional space and a Calabi-Yau noncompact threefold, namely, the conifold. We study closed string states which emerge in four dimensions and identify them with hadrons of four-dimensional N =2 QCD. One massless state was found previously; it emerges as a massless hypermultiplet associated with the deformation of the complex structure of the conifold. In this paper, we find a number of massive states. To this end, we exploit the approach used in LST little string theory, namely, the equivalence between the critical string on the conifold and noncritical c =1 string with the Liouville field and a compact scalar at the self-dual radius. The states we find carry "baryonic" charge (its definition differs from standard). We interpret them as "monopole necklaces" formed (at strong coupling) by the closed string with confined monopoles attached.

  20. On the choice of the adjusting mouth electrode profile at the input of a linear accelerator with space-uniform quadrupole focusing

    International Nuclear Information System (INIS)

    Balabin, A.I.; Kapchinskij, I.M.; Lipkin, I.M.

    1983-01-01

    Beam matching of an electrostatical injector with a linear accelerator is an important problem, since acceptance at the inlet of a linac with space-homogeneous quadrupole focusing (SHQF) does not remain constant but rotates with the frequency of an accelerating field. A possibility of transverse stationary beam matching with the SHQF at the inlet of the linac can be ensured to a considerable extent by means of an initial matching section (matching mouth) at the length of which focusing hardness varies according to a certain law. In this case the purpose of creating beam matching conditions practically independent of the phases of particles at the inlet into the mouth is attained. Transverse beam matching for different laws of focusing hardness variation along the non-modulated mouth is investigated. It is shown that for earlier suggested laws of hardness variation the matching conditions at the mouth inlet are critically dependent on the input phases of particles at high phase densities of the beam current j. Laws of hardness variation ensuring actual matching condition independence of the phases of particles up to j=2 A/cmxmrad (for protons) are suggested. A case of beam matching by means of the modulated mouth is also considered. Recommendations on mouth modulation laws are given

  1. Susceptibility mapping and estimation of rainfall threshold using space based input for assessment of landslide hazard in Guwahati city in North East India

    Science.gov (United States)

    Bhusan, K.; Kundu, S. S.; Goswami, K.; Sudhakar, S.

    2014-11-01

    Slopes are the most common landforms in North Eastern Region (NER) of India and because of its relatively immature topography, active tectonics, and intense rainfall activities; the region is susceptible to landslide incidences. The scenario is further aggravated due to unscientific human activities leading to destabilization of slopes. Guwahati, the capital city of Assam also experiences similar hazardous situation especially during monsoon season thus demanding a systematic study towards landslide risk reduction. A systematic assessment of landslide hazard requires understanding of two components, "where" and "when" that landslides may occur. Presently no such system exists for Guwahati city due to lack of landslide inventory data, high resolution thematic maps, DEM, sparse rain gauge network, etc. The present study elucidates the potential of space-based inputs in addressing the problem in absence of field-based observing networks. First, Landslide susceptibility map in 1 : 10,000 scale was derived by integrating geospatial datasets interpreted from high resolution satellite data. Secondly, the rainfall threshold for dynamic triggering of landslide was estimated using rainfall estimates from Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis. The 3B41RT data for 1 hourly rainfall estimates were used to make Intensity-Duration plot. Critical rainfall was estimated for every incidence by analysing cumulative rainfall leading to a landslide for total of 19 incidences and an empirical rainfall intensity-duration threshold for triggering shallow debris slides was developed (Intensity = 5.9 Duration-0.479).

  2. Charting the landscape of supercritical string theory.

    Science.gov (United States)

    Hellerman, Simeon; Swanson, Ian

    2007-10-26

    Special solutions of string theory in supercritical dimensions can interpolate in time between theories with different numbers of spacetime dimensions and different amounts of world sheet supersymmetry. These solutions connect supercritical string theories to the more familiar string duality web in ten dimensions and provide a precise link between supersymmetric and purely bosonic string theories. Dimension quenching and c duality appear to be natural concepts in string theory, giving rise to large networks of interconnected theories.

  3. Charting the Landscape of Supercritical String Theory

    International Nuclear Information System (INIS)

    Hellerman, Simeon; Swanson, Ian

    2007-01-01

    Special solutions of string theory in supercritical dimensions can interpolate in time between theories with different numbers of spacetime dimensions and different amounts of world sheet supersymmetry. These solutions connect supercritical string theories to the more familiar string duality web in ten dimensions and provide a precise link between supersymmetric and purely bosonic string theories. Dimension quenching and c duality appear to be natural concepts in string theory, giving rise to large networks of interconnected theories

  4. Matrix string theory on pp-waves

    Energy Technology Data Exchange (ETDEWEB)

    Bonelli, Giulio

    2003-06-21

    After a brief review on matrix string theory on flat backgrounds, we formulate matrix string models on different pp-wave backgrounds. This will be done both in the cases of constant and variable RR background flux for certain exact string geometries. We exhibit the non-perturbative representation of string interaction and show how the eigenvalue tunnelling drives the WKB expansion to give the usual perturbative string interaction also in supersymmetric pp-wave background cases.

  5. The Graceful Exit in String Cosmology

    CERN Document Server

    Cartier, C.; Madden, R.

    2000-01-01

    We re-examine the graceful exit problem in the pre-big bang scenario of string cosmology, by considering the most general time-dependent classical correction to the Lagrangian with up to four derivatives. By including possible forms for quantum loop corrections we examine the allowed region of parameter space for the coupling constants which enable our solutions to link smoothly the two asymptotic low-energy branches of the pre-big bang scenario, and observe that these solutions can satisfy recently proposed entropic bounds on viable singularity free cosmologies.

  6. String theory and the dark glueball problem

    Science.gov (United States)

    Halverson, James; Nelson, Brent D.; Ruehle, Fabian

    2017-02-01

    We study cosmological constraints on dark pure Yang-Mills sectors. Dark glueballs are overproduced for large regions of ultraviolet parameter space. The problem may be alleviated in two ways: via a large preferential reheating into the visible sector, motivating certain inflation or modulus decay models, or via decays into axions or moduli, which are strongly constrained by nucleosynthesis and Δ Neff bounds. String models frequently have multiple hidden Yang-Mills sectors, which are subject to even stronger constraints due to the existence of multiple dark glueballs.

  7. The emergence of spacetime in string theory

    CERN Document Server

    Vistarini, Tiziana

    2018-01-01

    The nature of space and time is one of the most fascinating and fundamental philosophical issues which presently engages at the deepest level with physics. During the last thirty years this notion has been object of an intense critical review in the light of new scientific theories which try to combine the principles of both general relativity and quantum theory—called theories of quantum gravity. This book considers the way string theory shapes its own account of spacetime disappearance from the fundamental level.

  8. 2-D gravisolitons in string theory

    CERN Document Server

    Bakas, Ioannis

    1996-01-01

    Several gravitational string backgrounds can be interpreted as 2-dim soliton solutions of reduced axion-dilaton gravity. They include black-hole and worm-hole solutions as well as cosmological models with an exact conformal field theory description. We illustrate the use of gravisolitons for the particular example of Nappi-Witten universe which is thus "created" from flat space by soliton dressing. We also make some general comments about the status of gravisolitons in comparison to soliton solutions of other 2-dim integrable systems without gravity. (Contribution to the proceedings of the 2nd International Sakharov Conference, Moscow)

  9. Stochastic quantization of gravity and string fields

    International Nuclear Information System (INIS)

    Rumpf, H.

    1986-01-01

    The stochastic quantization method of Parisi and Wu is generalized so as to make it applicable to Einstein's theory of gravitation. The generalization is based on the existence of a preferred metric in field configuration space, involves Ito's calculus, and introduces a complex stochastic process adapted to Lorentzian spacetime. It implies formally the path integral measure of DeWitt, a causual Feynman propagator, and a consistent stochastic perturbation theory. The lineraized version of the theory is also obtained from the stochastic quantization of the free string field theory of Siegel and Zwiebach. (Author)

  10. c-Map as c=1 string

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrov, Sergei, E-mail: Sergey.Alexandrov@univ-montp2.fr [Universite Montpellier 2 and CNRS, Laboratoire Charles Coulomb UMR 5221, F-34095, Montpellier (France)

    2012-10-01

    We show the existence of a duality between the c-map space describing the universal hypermultiplet at tree level and the matrix model description of two-dimensional string theory compactified at a self-dual radius and perturbed by a sine-Liouville potential. It appears as a particular case of a general relation between the twistor description of four-dimensional quaternionic geometries and the Lax formalism for Toda hierarchy. Furthermore, we give an evidence that the instanton corrections to the c-map metric coming from NS5-branes can be encoded into the Baker-Akhiezer function of the integrable hierarchy.

  11. String theory and cosmological singularities

    Indian Academy of Sciences (India)

    time' can have a beginning or end. Well-known examples are singularities inside black holes and initial or final singularities in expanding or contracting universes. In recent times, string theory is providing new perspectives of such singularities ...

  12. String and Sticky Tape Experiments.

    Science.gov (United States)

    Edge, R. D., Ed.

    1979-01-01

    Explains how to demonstrate the fundamentals of one dimensional kinematics such as Newton's third law of motion, and collision between bodies, using simple materials of marbles, strings, sticky tape, drinking straws, and rubber bands. (GA)

  13. Spin chains and string theory.

    Science.gov (United States)

    Kruczenski, Martin

    2004-10-15

    Recently, an important test of the anti de Sitter/conformal field theory correspondence has been done using rotating strings with two angular momenta. We show that such a test can be described more generally as the agreement between two actions: one a low energy description of a spin chain appearing in the field theory side, and the other a limit of the string action in AdS5xS5. This gives a map between the mean value of the spin in the boundary theory and the position of the string in the bulk, and shows how a string action can emerge from a gauge theory in the large-N limit.

  14. Pattern recognition and string matching

    CERN Document Server

    Cheng, Xiuzhen

    2002-01-01

    The research and development of pattern recognition have proven to be of importance in science, technology, and human activity. Many useful concepts and tools from different disciplines have been employed in pattern recognition. Among them is string matching, which receives much theoretical and practical attention. String matching is also an important topic in combinatorial optimization. This book is devoted to recent advances in pattern recognition and string matching. It consists of twenty eight chapters written by different authors, addressing a broad range of topics such as those from classifica­ tion, matching, mining, feature selection, and applications. Each chapter is self-contained, and presents either novel methodological approaches or applications of existing theories and techniques. The aim, intent, and motivation for publishing this book is to pro­ vide a reference tool for the increasing number of readers who depend upon pattern recognition or string matching in some way. This includes student...

  15. String moduli inflation. An overview

    International Nuclear Information System (INIS)

    Cicoli, Michele; Quevedo, Fernando

    2011-06-01

    We present an overview of inflationary models derived from string theory focusing mostly on closed string moduli as inflatons. After a detailed discussion of the η-problem and different approaches to address it, we describe possible ways to obtain a de Sitter vacuum with all closed string moduli stabilised. We then look for inflationary directions and present some of the most promising scenarios where the inflatons are either the real or the imaginary part of Kaehler moduli. We pay particular attention on extracting potential observable implications, showing how most of the scenarios predict negligible gravitational waves and could therefore be ruled out by the Planck satellite. We conclude by briefly mentioning some open challenges in string cosmology beyond deriving just inflation. (orig.)

  16. String theory or field theory?

    International Nuclear Information System (INIS)

    Marshakov, A.V.

    2002-01-01

    The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments, which are our concern in this review [ru

  17. SDR Input Power Estimation Algorithms

    Science.gov (United States)

    Nappier, Jennifer M.; Briones, Janette C.

    2013-01-01

    The General Dynamics (GD) S-Band software defined radio (SDR) in the Space Communications and Navigation (SCAN) Testbed on the International Space Station (ISS) provides experimenters an opportunity to develop and demonstrate experimental waveforms in space. The SDR has an analog and a digital automatic gain control (AGC) and the response of the AGCs to changes in SDR input power and temperature was characterized prior to the launch and installation of the SCAN Testbed on the ISS. The AGCs were used to estimate the SDR input power and SNR of the received signal and the characterization results showed a nonlinear response to SDR input power and temperature. In order to estimate the SDR input from the AGCs, three algorithms were developed and implemented on the ground software of the SCAN Testbed. The algorithms include a linear straight line estimator, which used the digital AGC and the temperature to estimate the SDR input power over a narrower section of the SDR input power range. There is a linear adaptive filter algorithm that uses both AGCs and the temperature to estimate the SDR input power over a wide input power range. Finally, an algorithm that uses neural networks was designed to estimate the input power over a wide range. This paper describes the algorithms in detail and their associated performance in estimating the SDR input power.

  18. On Field Theory of Open Strings, Tachyon Condensation and Closed Strings

    OpenAIRE

    Shatashvili, Samson L.

    2001-01-01

    I review the physical properties of different vacua in the background independent open string field theory. Talk presented at Strings 2001, Mumbai, India, http://theory.theory.tifr.res.in/strings/Proceedings/#sha-s.

  19. Tree-level stability without spacetime fermions: novel examples in string theory

    International Nuclear Information System (INIS)

    Israel, Dan; Niarchos, Vasilis

    2007-01-01

    Is perturbative stability intimately tied with the existence of spacetime fermions in string theory in more than two dimensions? Type 0'B string theory in ten-dimensional flat space is a rare example of a non-tachyonic, non-supersymmetric string theory with a purely bosonic closed string spectrum. However, all known type 0' constructions exhibit massless NSNS tadpoles signaling the fact that we are not expanding around a true vacuum of the theory. In this note, we are searching for perturbatively stable examples of type 0' string theory without massless tadpoles in backgrounds with a spatially varying dilaton. We present two examples with this property in non-critical string theories that exhibit four- and six-dimensional Poincare invariance. We discuss the D-branes that can be embedded in this context and the type of gauge theories that can be constructed in this manner. We also comment on the embedding of these non-critical models in critical string theories and their holographic (Little String Theory) interpretation and propose a general conjecture for the role of asymptotic supersymmetry in perturbative string theory

  20. Black strings and classical hair

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Yang, H.

    1997-01-01

    We examine the geometry near the event horizon of a family of black string solutions with traveling waves. It has previously been shown that the metric is continuous there. Contrary to expectations, we find that the geometry is not smooth, and the horizon becomes singular whenever a wave is present. Both five-dimensional and six-dimensional black strings are considered with similar results. copyright 1997 The American Physical Society

  1. Strings in the abelized picture

    International Nuclear Information System (INIS)

    Embacher, F.

    1990-01-01

    The transformation properties of the bosonic string variables under the recently discovered abelizing operator are exhibited. The intimate relation of this operator to the light-cone gauge condition is illustrated for the classical string. As an application of the formalism, the derivation of the BRST cohomology by the method of Freeman and Olive is carried over to the abelized picture, where it takes a particulary simple form. 14 refs. (Author)

  2. Semiclassical Strings in Supergravity PFT

    OpenAIRE

    Banerjee, Aritra; Biswas, Sagar; Panigrahi, Kamal L.

    2014-01-01

    Puff field theory (PFT) is an example of a non-local field theory which arises from a novel embedding of D-branes in a Melvin universe. We study several rotating and pulsating string solutions of the F-string equations of motion in the supergravity dual of the PFT. Further, we find a PP-wave geometry from this non-local spacetime by applying a Penrose limit and comment on its similarity with the maximally supersymmetric PP-wave background.

  3. String Lagrangian for the Bardakci-Halpern model

    International Nuclear Information System (INIS)

    Antonov, E.N.; Kudryavtsev, V.A.; Lyakhov, K.B.

    1984-01-01

    The string Lagrangian is constructed for the Bardakci-Halpern model. The anticommuting operators carrying spin are spinors in n-dimensional space-time, rather than vectors, as in the conventional Neveu-Schwarz-Ramond model. The conservation laws leading to the gauge conditions are found

  4. Higher-dimensional string theory in Lyra geometry

    Indian Academy of Sciences (India)

    Cosmic strings as source of gravitational field in general relativity was discussed by many authors [6]. While attempting to unify gravitation and electromagnetism in a single space-time ge- ometry, Weyl [7] showed how one can introduce a vector field with an intrinsic geometrical significance. But this theory was not accepted ...

  5. On the cosmological constant in the heterotic string theory

    International Nuclear Information System (INIS)

    Gava, E.; Iengo, R.

    1987-01-01

    We examine the possible physical assumptions which can be made in the heterotic string theory in order to derive the vanishing of the cosmological constant within the theory of modular forms on the moduli space. It seems that more mathematical information is needed to reach a definite result. (author)

  6. The path-integral formulation of supersymmetric string theory

    International Nuclear Information System (INIS)

    Verlinde, H.L.

    1988-01-01

    The loop corrections to superstring scattering amplitudes are studied. An explicit construction of the partition and correlation functions of all the string fields on an arbitrary ordinary Riemann surface is given in terms of theta-functions. The amplitudes of the space-time supersymmetry current are studied. These are shown to contain unphysical singularities. 94 refs.; 4 figs

  7. Bianchi type-V string cosmological models in general relativity

    Indian Academy of Sciences (India)

    Abstract. Bianchi type-V string cosmological models in general relativity are investigated. To get the exact solution of Einstein's field equations, we have taken some scale transformations used by Camci et al [Astrophys. Space Sci. 275, 391 (2001)]. It is shown that Einstein's field equations are solvable for any arbitrary ...

  8. Dynamical behavior and Jacobi stability analysis of wound strings

    Energy Technology Data Exchange (ETDEWEB)

    Lake, Matthew J. [Naresuan University, The Institute for Fundamental Study, ' ' The Tah Poe Academia Institute' ' , Phitsanulok (Thailand); Thailand Center of Excellence in Physics, Ministry of Education, Bangkok (Thailand); Harko, Tiberiu [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); University College London, Department of Mathematics, London (United Kingdom)

    2016-06-15

    We numerically solve the equations of motion (EOM) for two models of circular cosmic string loops with windings in a simply connected internal space. Since the windings cannot be topologically stabilized, stability must be achieved (if at all) dynamically. As toy models for realistic compactifications, we consider windings on a small section of R{sup 2}, which is valid as an approximation to any simply connected internal manifold if the winding radius is sufficiently small, and windings on an S{sup 2} of constant radius R. We then use Kosambi-Cartan-Chern (KCC) theory to analyze the Jacobi stability of the string equations and determine bounds on the physical parameters that ensure dynamical stability of the windings. We find that, for the same initial conditions, the curvature and topology of the internal space have nontrivial effects on the microscopic behavior of the string in the higher dimensions, but that the macroscopic behavior is remarkably insensitive to the details of the motion in the compact space. This suggests that higher-dimensional signatures may be extremely difficult to detect in the effective (3+1)-dimensional dynamics of strings compactified on an internal space, even if configurations with nontrivial windings persist over long time periods. (orig.)

  9. Bianchi type-V string cosmological models in general relativity

    Indian Academy of Sciences (India)

    Bianchi type-V string cosmological models in general relativity are investigated. To get the exact solution of Einstein's field equations, we have taken some scale transformations used by Camci et al [Astrophys. Space Sci. 275, 391 (2001)]. It is shown that Einstein's field equations are solvable for any arbitrary cosmic scale ...

  10. Open string Regge trajectory and its field theory limit

    International Nuclear Information System (INIS)

    Rojas, Francisco; Thorn, Charles B.

    2011-01-01

    We study the properties of the leading Regge trajectory in open string theory including the open string planar one-loop corrections. With SU(N) Chan-Paton factors, the sum over planar open string multiloop diagrams describes the 't Hooft limit N→∞ with Ng s 2 fixed. Our motivation is to improve the understanding of open string theory at finite α ' as a model of gauge field theories. SU(N) gauge theories in D space-time dimensions are described by requiring open strings to end on a stack of N Dp-branes of space-time dimension D=p+1. The large N leading trajectory α(t)=1+α ' t+Σ(t) can be extracted, through order g 2 , from the s→-∞ limit, at fixed t, of the four open string tree and planar loop diagrams. We analyze the t→0 behavior with the result that Σ(t)∼-Cg 2 (-α ' t) (D-4)/2 /(D-4). This result precisely tracks the 1-loop Reggeized gluon of gauge theory in D>4 space-time dimensions. In particular, for D→4 it reproduces the known infrared divergences of gauge theory in 4 dimensions with a Regge trajectory behaving as -ln(-α ' t). We also study Σ(t) in the limit t→-∞ and show that, when D ' t/(ln(-α ' t)) γ , where γ>0 depends on D and the number of massless scalars. Thus, as long as 4 ' t arbitrarily large. Finally we present the results of numerical calculations of Σ(t) for all negative t.

  11. String theory on the edge

    International Nuclear Information System (INIS)

    Thorlacius, L.

    1989-01-01

    Open string vacuum configurations are described in terms of a one-dimensional field theory on the worldsheet boundary. The one-dimensional path integral has direct physical interpretation as a source term for closed string fields. This means that the vacuum divergences (Mobius infinities) of the path integral must be renormalized correctly. The author shows that reparametrization invariance Ward identities, apart from specifying the equations of motion of spacetime background gauge fields, also serve to fix the renormalization scheme of the vacuum divergences. He argues that vacuum configurations of open strings correspond to Caldeira-Leggett models of dissipative quantum mechanics (DQM) evaluated at a delocalization critical point. This connection reveals that critical DQM will manifest reparametrization invariance (inherited from the conformal invariance of string theory) rather than just scale invariance. This connection should open up new ways of constructing analytic and approximate solutions of open string theory (in particular, topological solitons such as monopoles and instantons). Type I superstring theory gives rise to a supersymmetric boundary field theory. Bose-Fermi cancellation eliminates vacuum divergences but the one-loop beta function remains the same as in the bosonic theory. Reparametrization invariance Ward identities dictate a boundary state normalization which yields consistent string-loop corrections to spacetime equations of motion, in both the periodic and anti-periodic fermion sectors

  12. Experimental observation of Bethe strings

    Science.gov (United States)

    Wang, Zhe; Wu, Jianda; Yang, Wang; Bera, Anup Kumar; Kamenskyi, Dmytro; Islam, A. T. M. Nazmul; Xu, Shenglong; Law, Joseph Matthew; Lake, Bella; Wu, Congjun; Loidl, Alois

    2018-02-01

    Almost a century ago, string states—complex bound states of magnetic excitations—were predicted to exist in one-dimensional quantum magnets. However, despite many theoretical studies, the experimental realization and identification of string states in a condensed-matter system have yet to be achieved. Here we use high-resolution terahertz spectroscopy to resolve string states in the antiferromagnetic Heisenberg-Ising chain SrCo2V2O8 in strong longitudinal magnetic fields. In the field-induced quantum-critical regime, we identify strings and fractional magnetic excitations that are accurately described by the Bethe ansatz. Close to quantum criticality, the string excitations govern the quantum spin dynamics, whereas the fractional excitations, which are dominant at low energies, reflect the antiferromagnetic quantum fluctuations. Today, Bethe’s result is important not only in the field of quantum magnetism but also more broadly, including in the study of cold atoms and in string theory; hence, we anticipate that our work will shed light on the study of complex many-body systems in general.

  13. Fast searching in packed strings

    DEFF Research Database (Denmark)

    Bille, Philip

    2011-01-01

    Given strings P and Q the (exact) string matching problem is to find all positions of substrings in Q matching P. The classical Knuth–Morris–Pratt algorithm [SIAM J. Comput. 6 (2) (1977) 323–350] solves the string matching problem in linear time which is optimal if we can only read one character...... at the time. However, most strings are stored in a computer in a packed representation with several characters in a single word, giving us the opportunity to read multiple characters simultaneously. In this paper we study the worst-case complexity of string matching on strings given in packed representation....... Let m⩽n be the lengths P and Q, respectively, and let σ denote the size of the alphabet. On a standard unit-cost word-RAM with logarithmic word size we present an algorithm using timeO(nlogσn+m+occ). Here occ is the number of occurrences of P in Q. For m=o(n) this improves the O(n) bound of the Knuth...

  14. Chern-Simons couplings for dielectric F-strings in matrix string theory

    International Nuclear Information System (INIS)

    Brecher, Dominic; Janssen, Bert; Lozano, Yolanda

    2002-01-01

    We compute the non-abelian couplings in the Chern-Simons action for a set of coinciding fundamental strings in both the type IIA and type IIB Matrix string theories. Starting from Matrix theory in a weakly curved background, we construct the linear couplings of closed string fields to type IIA Matrix strings. Further dualities give a type IIB Matrix string theory and a type IIA theory of Matrix strings with winding. (Abstract Copyright[2002], Wiley Periodicals, Inc.)

  15. New expressions for string loop amplitudes leading to an ultra-simple conception of string dynamics

    International Nuclear Information System (INIS)

    Chan Hongmo; Tsou Sheungtsun; Bordes, J.; Nellen, L.

    1990-11-01

    New expressions are derived for string loop amplitudes as overlap integrals of string wave functionals. They are shown to take the form of exchange terms coming from the Bose-Einstein symmetrisation between string segments. One is thus led to the ultra-simple conception that string theory is basically free, and that 'string interactions' are due merely to the fact that strings are composite objects with Bose-Einstein segments as constituents. (author)

  16. Accelerating String Set Matching in FPGA Hardware for Bioinformatics Research

    Directory of Open Access Journals (Sweden)

    Burgess Shane C

    2008-04-01

    Full Text Available Abstract Background This paper describes techniques for accelerating the performance of the string set matching problem with particular emphasis on applications in computational proteomics. The process of matching peptide sequences against a genome translated in six reading frames is part of a proteogenomic mapping pipeline that is used as a case-study. The Aho-Corasick algorithm is adapted for execution in field programmable gate array (FPGA devices in a manner that optimizes space and performance. In this approach, the traditional Aho-Corasick finite state machine (FSM is split into smaller FSMs, operating in parallel, each of which matches up to 20 peptides in the input translated genome. Each of the smaller FSMs is further divided into five simpler FSMs such that each simple FSM operates on a single bit position in the input (five bits are sufficient for representing all amino acids and special symbols in protein sequences. Results This bit-split organization of the Aho-Corasick implementation enables efficient utilization of the limited random access memory (RAM resources available in typical FPGAs. The use of on-chip RAM as opposed to FPGA logic resources for FSM implementation also enables rapid reconfiguration of the FPGA without the place and routing delays associated with complex digital designs. Conclusion Experimental results show storage efficiencies of over 80% for several data sets. Furthermore, the FPGA implementation executing at 100 MHz is nearly 20 times faster than an implementation of the traditional Aho-Corasick algorithm executing on a 2.67 GHz workstation.

  17. Analytic integrability for strings on η and λ deformed backgrounds

    Science.gov (United States)

    Roychowdhury, Dibakar

    2017-10-01

    In this paper, based on simple analytic techniques, we explore the integrability conditions for classical stringy configurations defined over η as well as λ-deformed backgrounds. We perform our analysis considering classical string motions within various subsectors of the full target space geometry. It turns out that classical string configurations defined over η-deformed backgrounds are non-integrable whereas on the other hand, the corresponding configurations are integrable over the λ-deformed background. Our analysis therefore imposes a strong constraint on the operator spectrum associated with the corresponding dual gauge theories at strong coupling.

  18. Static potential in a string model with extrinsic curvatures

    International Nuclear Information System (INIS)

    Olesen, P.; Yang, S.K.

    1987-01-01

    The static quark potential in a string model including extrinsix curvature effects is studied in the large d limit, where d is the dimensionality of euclidean space. At large distances it is explicitly shown that the physical string tension is dynamically generated. Examining the large-distance ''Coulomb'' term in the potential, we show that the non-perturbative effects in general generate non-gaussian efective theories in the infrared regime. At large distances the d → ∞ saddle point is stable for a large range of parameters. (orig.)

  19. A framework of DYNAMIC data structures for string processing

    DEFF Research Database (Denmark)

    Prezza, Nicola

    2017-01-01

    In this paper we present DYNAMIC, an open-source C++ library implementing dynamic compressed data structures for string manipulation. Our framework includes useful tools such as searchable partial sums, succinct/gap-encoded bitvectors, and entropy/run-length compressed strings and FM indexes. We...... implemented using DYNAMIC with those of stateof-the-art tools performing the same task. Our experiments show that algorithms making use of dynamic compressed data structures can be up to three orders of magnitude more space-efficient (albeit slower) than classical ones performing the same tasks....

  20. Thermal partition function of non-critical bosonic strings

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi.

    1989-06-01

    The thermal free energy of free non-critical bosonic strings in a D-dimensional space-time is examined. By integrating (or summing) over the Weyl freedom, the free energy and the one-loop vacuum amplitude are modular invariant for any D < 26. Thus the (background) Weyl invariance is realized. In the case of L → ∞, where L is the compactification radius of the Weyl mode, the physical spectrum circulating in the loop becomes continuous. A connection between this continuous spectrum and the unitarity of string perturbation theory is briefly mentioned. (author)

  1. Gravity from strings

    International Nuclear Information System (INIS)

    Deser, S.

    1987-01-01

    We obtain the Einstein action plus quadratic curvature corrections generated by closed bosonic, heterotic and supersymmetric strings by matching the four-graviton amplitude (to first order in the slope parameter and fourth power of momenta) with an effective local gravitational action. The resulting corrections are first shown to be of the Gauss-Bonnet form. It is then noted that, by the very nature of the slope expansion, the field-redefinition theorem applies. Consequently, only the curvature-squared term is determined, while squares of its contractions are explicitly seen not to contribute. This latter property has a generalization to all orders which implies that the effective gravitational action is unavoidably ghost-free. The properties of solutions to these corrected theories are then examined. First neglecting dilatons, we find the explicit 'Schwarzschild' metrics. Both asymptotically flat and de Sitter solutions are present. The latter are however shown to be unstable. The former have horizons and singularities which are respectively smaller and less violent than in Einstein gravity; the correct sign of the slope parameter also ensures absence of naked singularities. When dilatons are included, the cosmological vacua are gratifyingly excluded. (orig.)

  2. String dynamics, spontaneous breaking of supersymmetry, and dual scalar field theory

    International Nuclear Information System (INIS)

    Liu Luxin

    2009-01-01

    The dynamics of a vortex string, which describes the Nambu-Goldstone modes of the spontaneous breakdown of the target space D=4, N=1 supersymmetry and internal U(1) R symmetry to the world sheet ISO(1,1) symmetry, is constructed by using the approach of nonlinear realization. The resulting action describing the low energy oscillations of the string into the covolume (super)space is found to have an invariant synthesis form of the Akulov-Volkov and Nambu-Goto actions. Its dual scalar field action is obtained by means of introducing two vectorial Lagrangian multipliers into the action of the string.

  3. The effective action of a BPS Alice string

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Chandrasekhar; Nitta, Muneto [Keio University, Department of Physics, and Research and Education Center for Natural Sciences, Yokohama, Kanagawa (Japan)

    2017-11-15

    Recently a BPS Alice string has been found in a U(1) x SO(3) gauge theory coupled with three charged complex scalar fields in the triplet representation (in JHEP 1709:046 arXiv:1703.08971 [hep-th], 2017). It is a half BPS state preserving a half of the supercharges when embedded into a supersymmetric gauge theory. In this paper, we study zero modes of a BPS Alice string. After presenting U(1) and translational zero modes, we construct the effective action of these modes. In contrast to a previous analysis of the conventional Alice string for which only large distance behaviors are known, we can exactly perform a calculation in the full space thanks to the BPS properties. (orig.)

  4. Entanglement Entropy in Two-Dimensional String Theory.

    Science.gov (United States)

    Hartnoll, Sean A; Mazenc, Edward A

    2015-09-18

    To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space.

  5. A solution to the decompactification problem in chiral heterotic strings

    Directory of Open Access Journals (Sweden)

    Ioannis Florakis

    2017-08-01

    Full Text Available We present a solution to the decompactification problem of gauge thresholds in chiral heterotic string theories with two large extra dimensions, where supersymmetry is spontaneously broken by the Scherk–Schwarz mechanism. Whenever the Kaluza–Klein scale that controls supersymmetry breaking is much lower than the string scale, the infinite towers of heavy states contribute non-trivially to the renormalisation of gauge couplings, which typically grow linearly with the large volume of the internal space and invalidate perturbation theory. We trace the origin of the decompactification problem to properties of the six dimensional theory obtained in the infinite volume limit and show that thresholds may instead exhibit logarithmic volume dependence and we provide the conditions for this to occur. We illustrate this mechanism with explicit string constructions where the decompactification problem does not occur.

  6. Critical string from non-Abelian vortex in four dimensions

    Directory of Open Access Journals (Sweden)

    M. Shifman

    2015-11-01

    Full Text Available In a class of non-Abelian solitonic vortex strings supported in certain N=2 super-Yang–Mills theories we search for the vortex which can behave as a critical fundamental string. We use the Polchinski–Strominger criterion of the ultraviolet completeness. We identify an appropriate four-dimensional bulk theory: it has the U(2 gauge group, the Fayet–Iliopoulos term and four flavor hypermultiplets. It supports semilocal vortices with the world-sheet theory for orientational (size moduli described by the weighted CP(2,2 model. The latter is superconformal. Its target space is six-dimensional. The overall Virasoro central charge is critical. We show that the world-sheet theory on the vortex supported in this bulk model is the bona fide critical string.

  7. String Theory and Pre-big bang Cosmology

    CERN Document Server

    Gasperini, M.

    In string theory, the traditional picture of a Universe that emerges from the inflation of a very small and highly curved space-time patch is a possibility, not a necessity: quite different initial conditions are possible, and not necessarily unlikely. In particular, the duality symmetries of string theory suggest scenarios in which the Universe starts inflating from an initial state characterized by very small curvature and interactions. Such a state, being gravitationally unstable, will evolve towards higher curvature and coupling, until string-size effects and loop corrections make the Universe "bounce" into a standard, decreasing-curvature regime. In such a context, the hot big bang of conventional cosmology is replaced by a "hot big bounce" in which the bouncing and heating mechanisms originate from the quantum production of particles in the high-curvature, large-coupling pre-bounce phase. Here we briefly summarize the main features of this inflationary scenario, proposed a quarter century ago. In its si...

  8. Duality invariant class of exact string backgrounds

    CERN Document Server

    Klimcík, C

    1994-01-01

    We consider a class of $2+D$ - dimensional string backgrounds with a target space metric having a covariantly constant null Killing vector and flat `transverse' part. The corresponding sigma models are invariant under $D$ abelian isometries and are transformed by $O(D,D)$ duality into models belonging to the same class. The leading-order solutions of the conformal invariance equations (metric, antisymmetric tensor and dilaton), as well as the action of $O(D,D)$ duality transformations on them, are exact, i.e. are not modified by $\\a'$-corrections. This makes a discussion of different space-time representations of the same string solution (related by $O(D,D|Z)$ duality subgroup) rather explicit. We show that the $O(D,D)$ duality may connect curved $2+D$-dimensional backgrounds with solutions having flat metric but, in general, non-trivial antisymmetric tensor and dilaton. We discuss several particular examples including the $2+D=4$ - dimensional background that was recently interpreted in terms of a WZW model.

  9. Topological String Theory and Enumerative Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y. S

    2003-05-19

    In this thesis we investigate several problems which have their roots in both topological string theory and enumerative geometry. In the former case, underlying theories are topological field theories, whereas the latter case is concerned with intersection theories on moduli spaces. A permeating theme in this thesis is to examine the close interplay between these two complementary fields of study. The main problems addressed are as follows: In considering the Hurwitz enumeration problem of branched covers of compact connected Riemann surfaces, we completely solve the problem in the case of simple Hurwitz numbers. In addition, utilizing the connection between Hurwitz numbers and Hodge integrals, we derive a generating function for the latter on the moduli space {bar M}{sub g,2} of 2-pointed, genus-g Deligne-Mumford stable curves. We also investigate Givental's recent conjecture regarding semisimple Frobenius structures and Gromov-Witten invariants, both of which are closely related to topological field theories; we consider the case of a complex projective line P{sup 1} as a specific example and verify his conjecture at low genera. In the last chapter, we demonstrate that certain topological open string amplitudes can be computed via relative stable morphisms in the algebraic category.

  10. Conformal supergravity in twistor-string theory

    Energy Technology Data Exchange (ETDEWEB)

    Berkovits, Nathan [Instituto de Fisica Teorica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900, Sao Paulo, SP (Brazil)]. E-mail: nberkovi@ift.unesp.br; Witten, Edward [School of Natural Sciences, Institute for Advanced Study, Princeton NJ 08540 (United States)

    2004-08-01

    Conformal supergravity arises in presently known formulations of twistor-string theory either via closed strings or via gauge-singlet open strings. We explore this sector of twistor-string theory, relating the relevant string modes to the particles and fields of conformal supergravity. We use the twistor-string theory to compute some tree level scattering amplitudes with supergravitons. Since the supergravitons interact with the same coupling constant as the Yang-Mills fields, conformal supergravity states will contribute to loop amplitudes of Yang-Mills gluons in these theories. Those loop amplitudes will therefore not coincide with the loop amplitudes of pure super Yang-Mills theory. (author)

  11. Gravitational Lensing Signatures of Long Cosmic Strings

    CERN Document Server

    De Laix, A A; Vachaspati, T; Laix, Andrew A. de; Krauss, Lawrence M.; Vachaspati, Tanmay

    1997-01-01

    The gravitational lensing by long, wiggly cosmic strings is shown to produce a large number of lensed images of a background source. In addition to pairs of images on either side of the string, a number of small images outline the string due to small-scale structure on the string. This image pattern could provide a highly distinctive signature of cosmic strings. Since the optical depth for multiple imaging of distant quasar sources by long strings may be comparable to that by galaxies, these image patterns should be clearly observable in the next generation of redshift surveys such as the Sloan Digital Sky Survey.

  12. String Theory for Pedestrians (1/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    This is a non-technical rapid course on string theory. Lecture 1 is an introduction to the basics of the subject: classical and quantum strings, D(irichlet) branes and string-string dualities. In lecture 2 I will discuss string unification of the fundamental forces, covering both its successes and failures. Finally in lecture 3 I will review string models of black hole microstates, the holographic gauge/gravity duality and, if time permits, potential applications to the physics of the strong interactions.

  13. String Theory for Pedestrians (2/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    This is a non-technical rapid course on string theory. Lecture 1 is an introduction to the basics of the subject: classical and quantum strings, D(irichlet) branes and string-string dualities. In lecture 2 I will discuss string unification of the fundamental forces, covering both its successes and failures. Finally in lecture 3 I will review string models of black hole microstates, the holographic gauge/gravity duality and, if time permits, potential applications to the physics of the strong interactions.

  14. String Theory for Pedestrians (3/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    This is a non-technical rapid course on string theory. Lecture 1 is an introduction to the basics of the subject: classical and quantum strings, D(irichlet) branes and string-string dualities. In lecture 2 I will discuss string unification of the fundamental forces, covering both its successes and failures. Finally in lecture 3 I will review string models of black hole microstates, the holographic gauge/gravity duality and, if time permits, potential applications to the physics of the strong interactions.

  15. Ureteric stent placement with extraction string: no strings attached?

    Science.gov (United States)

    Bockholt, Nathan A; Wild, Trevor T; Gupta, Amit; Tracy, Chad R

    2012-12-01

    Study Type--Therapy (case series) Level of Evidence 4 What's known on the subject? and What does the study add? Of patients treated with an indwelling ureteric stent 80-90% experience lower urinary tract symptoms that are a hindrance to health-related quality of life. The prevalence of the extraction/retrieval string after ureteroscopy for stone disease and stent placement varies significantly between surgeons and published series, but the benefits of eliminating the need for a secondary procedure such as cystoscopy and stent removal, as well as the decrease in cost to the patient are well established. Published reports have not addressed the prevalence of post-procedure related events (PREs) in patients who have received an indwelling ureteric stent with the extraction/retrieval string still intact after ureteroscopy for stone disease. By analysing PREs (Emergency Room visits, unscheduled clinic visits, and telephone calls) related to their stent or procedure for patients with and without an extraction/retrieval string, the feasibility of the extraction string can be validated and the misconceptions about their use can be alleviated. • To review a retrospective ureteric stent cohort with and without extraction string to compare post-procedure related events (PRE), as ureteric stent placement after endoscopic management of urolithiasis is common, but data regarding the potential benefits or disadvantages of ureteric stent placement with extraction string are sparse. • Between June 2009 and June 2010, 293 patients underwent ureteroscopy with or without lithotripsy for stone disease. • In all, 181 patients had a unilateral procedure and underwent stent placement postoperatively. • Records were retrospectively reviewed for operative data and PRE occurring within the first 6 weeks after surgery, defined as unscheduled clinic or Emergency Room visits, or adverse event telephone calls. • Of 181 patients who underwent ureteric stent placement, 43 (23

  16. String Theory in a Nutshell

    International Nuclear Information System (INIS)

    Skenderis, Kostas

    2007-01-01

    The book 'String Theory in a Nutshell' by Elias Kiritsis provides a comprehensive introduction to modern string theory. String theory is the leading candidate for a theory that successfully unifies all fundamental forces of nature, including gravity. The subject has been continuously developing since the early 1970s, with classic textbooks on the subject being those of Green, Schwarz and Witten (1987) and Polchinski (1998). Since the latter was published there have been substantial developments, in particular in understanding black holes and gravity/gauge theory dualities. A textbook treatment of this important material is clearly needed, both by students and researchers in string theory and by mathematicians and physicists working in related fields. This book has a good selection of material, starting from basics and moving into classic and modern topics. In particular, Kiritsis' presentation of the basic material is complementary to that of the earlier textbooks and he includes a number of topics which are not easily found or covered adequately elsewhere, for example, loop corrections to string effective couplings. Overall the book nicely covers the major advances of the last ten years, including (non-perturbative) string dualities, black hole physics, AdS/CFT and matrix models. It provides a concise but fairly complete introduction to these subjects which can be used both by students and by researchers. Moreover the emphasis is on results that are reasonably established, as is appropriate for a textbook; concise summaries are given for subjects which are still in flux, with references to relevant reviews and papers. A positive feature of the book is that the bibliography sections at the end of each chapter provide a comprehensive guide to the literature. The bibliographies point to reviews and pedagogical papers on subjects covered in this book as well as those that were omitted. It is rare for a textbook to contain such a self-contained and detailed guide to

  17. String Theory in a Nutshell

    Energy Technology Data Exchange (ETDEWEB)

    Skenderis, Kostas [Institute of Theoretical Physics, Universiteit van Amsterdam, Valckenierstraat 65, NL-1018 XE Amsterdam (Netherlands)

    2007-11-21

    The book 'String Theory in a Nutshell' by Elias Kiritsis provides a comprehensive introduction to modern string theory. String theory is the leading candidate for a theory that successfully unifies all fundamental forces of nature, including gravity. The subject has been continuously developing since the early 1970s, with classic textbooks on the subject being those of Green, Schwarz and Witten (1987) and Polchinski (1998). Since the latter was published there have been substantial developments, in particular in understanding black holes and gravity/gauge theory dualities. A textbook treatment of this important material is clearly needed, both by students and researchers in string theory and by mathematicians and physicists working in related fields. This book has a good selection of material, starting from basics and moving into classic and modern topics. In particular, Kiritsis' presentation of the basic material is complementary to that of the earlier textbooks and he includes a number of topics which are not easily found or covered adequately elsewhere, for example, loop corrections to string effective couplings. Overall the book nicely covers the major advances of the last ten years, including (non-perturbative) string dualities, black hole physics, AdS/CFT and matrix models. It provides a concise but fairly complete introduction to these subjects which can be used both by students and by researchers. Moreover the emphasis is on results that are reasonably established, as is appropriate for a textbook; concise summaries are given for subjects which are still in flux, with references to relevant reviews and papers. A positive feature of the book is that the bibliography sections at the end of each chapter provide a comprehensive guide to the literature. The bibliographies point to reviews and pedagogical papers on subjects covered in this book as well as those that were omitted. It is rare for a textbook to contain such a self-contained and

  18. An exact bosonization rule for c = 1 noncritical string theory

    International Nuclear Information System (INIS)

    Ishibashi, Nobuyuki; Yamaguchi, Atsushi

    2007-01-01

    We construct a string field theory for c = 1 noncritical strings using the loop variables as the string field. We show how one can express the nonrelativistic free fermions which describes the theory, in terms of these string fields

  19. Topological strings from quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Grassi, Alba; Marino, Marcos [Geneve Univ. (Switzerland). Dept. de Physique Theorique et Section de Mathematique; Hatsuda, Yasuyuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group

    2014-12-15

    We propose a general correspondence which associates a non-perturbative quantum-mechanical operator to a toric Calabi-Yau manifold, and we conjecture an explicit formula for its spectral determinant in terms of an M-theoretic version of the topological string free energy. As a consequence, we derive an exact quantization condition for the operator spectrum, in terms of the vanishing of a generalized θ function. The perturbative part of this quantization condition is given by the Nekrasov-Shatashvili limit of the refined topological string, but there are non-perturbative corrections determined by the conventional topological string. We analyze in detail the cases of local P{sup 2}, local P{sup 1} x P{sup 1} and local F{sub 1}. In all these cases, the predictions for the spectrum agree with the existing numerical results. We also show explicitly that our conjectured spectral determinant leads to the correct spectral traces of the corresponding operators, which are closely related to topological string theory at orbifold points. Physically, our results provide a Fermi gas picture of topological strings on toric Calabi-Yau manifolds, which is fully non-perturbative and background independent. They also suggest the existence of an underlying theory of M2 branes behind this formulation. Mathematically, our results lead to precise, surprising conjectures relating the spectral theory of functional difference operators to enumerative geometry.

  20. Differential geometry in string models

    International Nuclear Information System (INIS)

    Alvarez, O.

    1986-01-01

    In this article the author reviews the differential geometric approach to the quantization of strings. A seminal paper demonstrates the connection between the trace anomaly and the critical dimension. The role played by the Faddeev-Popov ghosts has been instrumental in much of the subsequent work on the quantization of strings. This paper discusses the differential geometry of two dimensional surfaces and its importance in the quantization of strings. The path integral quantization approach to strings will be carefully analyzed to determine the correct effective measure for string theories. The choice of measure for the path integral is determined by differential geometric considerations. Once the measure is determined, the manifest diffeomorphism invariance of the theory will have to be broken by using the Faddeev-Popov ansatz. The gauge fixed theory is studied in detail with emphasis on the role of conformal and gravitational anomalies. In the analysis, the path integral formulation of the gauge fixed theory requires summing over all the distinct complex structures on the manifold

  1. Topological strings from quantum mechanics

    International Nuclear Information System (INIS)

    Grassi, Alba; Marino, Marcos; Hatsuda, Yasuyuki

    2014-12-01

    We propose a general correspondence which associates a non-perturbative quantum-mechanical operator to a toric Calabi-Yau manifold, and we conjecture an explicit formula for its spectral determinant in terms of an M-theoretic version of the topological string free energy. As a consequence, we derive an exact quantization condition for the operator spectrum, in terms of the vanishing of a generalized θ function. The perturbative part of this quantization condition is given by the Nekrasov-Shatashvili limit of the refined topological string, but there are non-perturbative corrections determined by the conventional topological string. We analyze in detail the cases of local P 2 , local P 1 x P 1 and local F 1 . In all these cases, the predictions for the spectrum agree with the existing numerical results. We also show explicitly that our conjectured spectral determinant leads to the correct spectral traces of the corresponding operators, which are closely related to topological string theory at orbifold points. Physically, our results provide a Fermi gas picture of topological strings on toric Calabi-Yau manifolds, which is fully non-perturbative and background independent. They also suggest the existence of an underlying theory of M2 branes behind this formulation. Mathematically, our results lead to precise, surprising conjectures relating the spectral theory of functional difference operators to enumerative geometry.

  2. String theory or field theory?

    International Nuclear Information System (INIS)

    Marshakov, Andrei V

    2002-01-01

    The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of string theory in the modern picture of the physical world. Even though quantum field theory describes a wide range of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments which are our concern in this review. (reviews of topical problems)

  3. String Resonances at Hadron Colliders

    CERN Document Server

    Anchordoqui, Luis A; Dai, De-Chang; Feng, Wan-Zhe; Goldberg, Haim; Huang, Xing; Lust, Dieter; Stojkovic, Dejan; Taylor, Tomasz R

    2014-01-01

    [Abridged] We consider extensions of the standard model based on open strings ending on D-branes. Assuming that the fundamental string mass scale M_s is in the TeV range and that the theory is weakly coupled, we discuss possible signals of string physics at the upcoming HL-LHC run (3000 fb^{-1}) with \\sqrt{s} = 14 TeV, and at potential future pp colliders, HE-LHC and VLHC, operating at \\sqrt{s} = 33 and 100 TeV, respectively. In such D-brane constructions, the dominant contributions to full-fledged string amplitudes for all the common QCD parton subprocesses leading to dijets and \\gamma + jet are completely independent of the details of compactification, and can be evaluated in a parameter-free manner. We make use of these amplitudes evaluated near the first (n=1) and second (n=2) resonant poles to determine the discovery potential for Regge excitations of the quark, the gluon, and the color singlet living on the QCD stack. We show that for string scales as large as 7.1 TeV (6.1 TeV), lowest massive Regge exc...

  4. Planck 2013 results. XXV. Searches for cosmic strings and other topological defects

    DEFF Research Database (Denmark)

    Planck Collaboration,; Ade, P. A. R.; Aghanim, N.

    2013-01-01

    .3 x 10^{-7}$ and $f_{10} 7}$ and $f_{10} Omega_b h^2$ plane are also presented. We have also obtained......}$ at multipole $\\ell=10$. This parameter has been added to the standard six parameter fit using COSMOMC with flat priors. For the Nambu-Goto string model, we have obtained a constraint on the string tension of $G\\mu/c^2 7}$ and $f_{10} ...-recombination strings. We have obtained upper limits on the string tension at 95% confidence of $G\\mu/c^2 7}$ using modal bispectrum estimation and $G\\mu/c^2 7.8 x 10^{-7}$ for real space searches with Minkowski functionals. These are conservative upper bounds because only post-recombination string...

  5. STU black holes and string triality

    International Nuclear Information System (INIS)

    Behrndt, K.; Kallosh, R.; Rahmfeld, J.; Shmakova, M.; Wong, W.K.

    1996-01-01

    We find double-extreme black holes associated with the special geometry of the Calabi-Yau moduli space with the prepotential F=STU. The area formula is STU-moduli independent and has [SL(2,Z)] 3 symmetry in space of charges. The dual version of this theory without a prepotential treats the dilaton S asymmetric vs T,U moduli. We display the dual relation between new (STU) black holes and stringy (S|TU) black holes using a particular Sp(8,Z) transformation. The area formula of one theory equals that of the dual theory when expressed in terms of dual charges. We analyze the relation between (STU) black holes to string triality of black holes: (S|TU), (T|US), (U|ST) solutions. In the democratic STU-symmetric version we find that all three S, T, and U duality symmetries are nonperturbative and mix electric and magnetic charges. copyright 1996 The American Physical Society

  6. STU Black Holes and String Triality

    Energy Technology Data Exchange (ETDEWEB)

    Shmakova, Marina

    2003-05-23

    We found double-extreme black holes associated with the special geometry of the Calabi-Yau moduli space with the prepotential F = STU. The area formula is STU-moduli independent and has [SL(2, Z)]{sup 3} symmetry in space of charges. The dual version of this theory without prepotential treats the dilaton S asymmetric versus T,U-moduli. We display the dual relation between new (STU) black holes and stringy (S|TU) black holes using particular Sp(8,Z) transformation. The area formula of one theory equals the area formula of the dual theory when expressed in terms of dual charges. We analyze the relation between (STU) black holes to string triality of black holes: (S|TU), (T|US), (U|ST) solutions. In democratic STU-symmetric version we find that all three S and T and U duality symmetries are non-perturbative and mix electric and magnetic charges.

  7. Orientifolds of string theory Melvin backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Angelantonj, Carlo E-mail: carlo.angelantonj@cern.ch; Dudas, Emilian; Mourad, Jihad

    2002-08-19

    We study the dynamics of type I strings on Melvin backgrounds, with a single or multiple twisted two-planes. We construct two inequivalent types of orientifold models that correspond to (non-compact) irrational versions of Scherk-Schwarz type breaking of supersymmetry. In the first class of vacua, D-branes and O-planes are no longer localized in space-time but are smeared along the compact Melvin coordinate with a characteristic profile. On the other hand, the second class of orientifolds involves O-planes and D-branes that are both rotated by an angle proportional to the twist. In case of 'multiple Melvin spaces', some amount of supersymmetry is recovered if the planes are twisted appropriately and part of the original O-planes are transmuted into new ones. The corresponding boundary and crosscap states are determined.

  8. Quantum background independence in string theory

    International Nuclear Information System (INIS)

    Witten, E.

    1994-01-01

    Not only in physical string theories, but also in some highly simplified situations, background independence has been difficult to understand. It is argued that the ''holomorphic anomaly'' of Bershadsky, Cecotti, Ooguri and Vafa gives a fundamental explanation of some of the problems. Moreover, their anomaly equation can be interpreted in terms of a rather peculiar quantum version of background independence: in systems afflicted by the anomaly, background independence does not hold order by order in perturbation theory, but the exact partition function as a function of the coupling constants has a background independent interpretation as a state in an auxiliary quantum Hilbert space. The significance of this auxiliary space is otherwise unknown. (author). 23 refs

  9. String theory constructions and conformal invariance

    International Nuclear Information System (INIS)

    Govaerts, J.

    1990-01-01

    This paper reports that as is rather well known, string theories are regarded nowadays by theoretical physicists as a possible framework for the Theory of Everything, or more correctly, for a consistent unified quantum theory of all particles and all their interactions, including gravity. One of the many fascinating facets of these theories is that they could make a centuries old dream come true in a most unique way. Indeed, string theories could well provide the ultimate unification of Nature: the Universe and all that it contains being made of only one fundamental object, with dynamics so rich that it leads to this infinitely large variety of physical phenomena that we observe at all energy scales in our Universe. Moreover, the mathematical structures involved in these theories are so profound and beautiful that they bring together so far unrelated fields in pure mathematics, and have led to important developments in other fields of physics as well. All of physics and all of mathematics coming together in our understanding of the world: was that not the ultimate dream of the Ancient Greeks? But, what are string theories? In the first qualitative approach of this introduction, it may be useful to contrast these theories against the more familiar description of relativistic point-particles. When a single particle propagates freely in space-time, it describes a one- dimensional manifold: its world line. In a quantum description, we associate to this process a quantum amplitude: the Feynman propagator. It is also possible to describe interactions between such particles, by defining probability amplitudes for the splitting and joining of the corresponding world-lines (a priori, the number of particles involved in any such single interaction could be arbitrary but finite)

  10. Supersymmetric gauge theories from string theory

    International Nuclear Information System (INIS)

    Metzger, St.

    2005-12-01

    This thesis presents various ways to construct four-dimensional quantum field theories from string theory. In a first part we study the generation of a supersymmetric Yang-Mills theory, coupled to an adjoint chiral superfield, from type IIB string theory on non-compact Calabi-Yau manifolds, with D-branes wrapping certain sub-cycles. Properties of the gauge theory are then mapped to the geometric structure of the Calabi-Yau space. Even if the Calabi-Yau geometry is too complicated to evaluate the geometric integrals explicitly, one can then always use matrix model perturbation theory to calculate the effective superpotential. The second part of this work covers the generation of four-dimensional super-symmetric gauge theories, carrying several important characteristic features of the standard model, from compactifications of eleven-dimensional supergravity on G 2 -manifolds. If the latter contain conical singularities, chiral fermions are present in the four-dimensional gauge theory, which potentially lead to anomalies. We show that, locally at each singularity, these anomalies are cancelled by the non-invariance of the classical action through a mechanism called 'anomaly inflow'. Unfortunately, no explicit metric of a compact G 2 -manifold is known. Here we construct families of metrics on compact weak G 2 -manifolds, which contain two conical singularities. Weak G 2 -manifolds have properties that are similar to the ones of proper G 2 -manifolds, and hence the explicit examples might be useful to better understand the generic situation. Finally, we reconsider the relation between eleven-dimensional supergravity and the E 8 x E 8 -heterotic string. This is done by carefully studying the anomalies that appear if the supergravity theory is formulated on a ten-manifold times the interval. Again we find that the anomalies cancel locally at the boundaries of the interval through anomaly inflow, provided one suitably modifies the classical action. (author)

  11. Black strings ending on horizons

    Science.gov (United States)

    Haddad, Nidal

    2012-12-01

    We construct an approximate static gravitational solution of the Einstein equations, with negative cosmological constant, describing a test black string stretching from the boundary of the Schwarzschild-AdS5 black brane toward the horizon. The construction builds on a derivative expansion method, assuming that the black brane metric changes slowly along the black string direction. We provide a solution up to second order in derivatives, and it implies, in particular, that the black string must shrink to zero size at the horizon of the black brane. In the near-horizon region of the black brane, where the two horizons intersect, we provide an exact solution of a cone that describes two intersecting horizons at different temperatures. Moreover, we show that this solution equally describes a thin and long black droplet.

  12. Cooperative strings and glassy interfaces.

    Science.gov (United States)

    Salez, Thomas; Salez, Justin; Dalnoki-Veress, Kari; Raphaël, Elie; Forrest, James A

    2015-07-07

    We introduce a minimal theory of glass formation based on the ideas of molecular crowding and resultant string-like cooperative rearrangement, and address the effects of free interfaces. In the bulk case, we obtain a scaling expression for the number of particles taking part in cooperative strings, and we recover the Adam-Gibbs description of glassy dynamics. Then, by including thermal dilatation, the Vogel-Fulcher-Tammann relation is derived. Moreover, the random and string-like characters of the cooperative rearrangement allow us to predict a temperature-dependent expression for the cooperative length ξ of bulk relaxation. Finally, we explore the influence of sample boundaries when the system size becomes comparable to ξ. The theory is in agreement with measurements of the glass-transition temperature of thin polymer films, and allows quantification of the temperature-dependent thickness hm of the interfacial mobile layer.

  13. Quantum Inhomogeneities in String Cosmology

    CERN Document Server

    Buonanno, A; Ungarelli, C; Veneziano, Gabriele

    1998-01-01

    Within two specific string cosmology scenarios --differing in the way the pre- and post-big bang phases are joined-- we compute the size and spectral slope of various types of cosmologically amplified quantum fluctuations that arise in generic compactifications of heterotic string theory. By further imposing that these perturbations become the dominant source of energy at the onset of the radiation era, we obtain physical bounds on the background's moduli, and discuss the conditions under which both a (quasi-) scale-invariant spectrum of axionic perturbations and sufficiently large seeds for the galactic magnetic fields are generated. We also point out a potential problem with achieving the exit to the radiation era when the string coupling is near its present value.

  14. Vector superconductivity in cosmic strings

    International Nuclear Information System (INIS)

    Dvali, G.R.; Mahajan, S.M.

    1992-03-01

    We argue that in most realistic cases, the usual Witten-type bosonic superconductivity of the cosmic string is automatically (independent of the existence of superconducting currents) accompanied by the condensation of charged gauge vector bosons in the core giving rise to a new vector type superconductivity. The value of the charged vector condensate is related with the charged scalar expectation value, and vanishes only if the latter goes to zero. The mechanism for the proposed vector superconductivity, differing fundamentally from those in the literature, is delineated using the simplest realistic example of the two Higgs doublet standard model interacting with the extra cosmic string. It is shown that for a wide range of parameters, for which the string becomes scalarly superconducting, W boson condensates (the sources of vector superconductivity) are necessarily excited. (author). 14 refs

  15. General relativity, strings, and mathematical physics

    CERN Document Server

    Porrati, Massimo

    1999-01-01

    We give a historical review of some aspects of string theory relevant to our present understanding of general relativity, and connected with Einstein's unification program. We also point out to various mathematical fallouts of $9 string theory. (31 refs).

  16. On the string equation at c=1

    International Nuclear Information System (INIS)

    Nakatsu, Toshio.

    1994-07-01

    The analogue of the string equation which specifies the partition function of c=1 string with a compactification radius β is an element of Z ≥1 is described in the framework of Toda lattice hierarchy. (author)

  17. [Mathematics and string theory

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, A.; Yau, Shing-Tung.

    1993-01-01

    Work on this grant was centered on connections between non- commutative geometry and physics. Topics covered included: cyclic cohomology, non-commutative manifolds, index theory, reflection positivity, space quantization, quantum groups, number theory, etc.

  18. Introduction to field theory of strings

    International Nuclear Information System (INIS)

    Kikkawa, K.

    1987-01-01

    The field theory of bosonic string is reviewed. First, theory is treated in a light-cone gauge. After a brief survey of the first quantized theory of free string, the second quantization is discussed. All possible interactions of strings are introduced based on a smoothness condition of work sheets swept out by strings. Perturbation theory is developed. Finally a possible way to the manifest covariant formalism is discussed

  19. The STRING database in 2017

    DEFF Research Database (Denmark)

    Szklarczyk, Damian; Morris, John H; Cook, Helen

    2017-01-01

    A system-wide understanding of cellular function requires knowledge of all functional interactions between the expressed proteins. The STRING database aims to collect and integrate this information, by consolidating known and predicted protein-protein association data for a large number of organi......A system-wide understanding of cellular function requires knowledge of all functional interactions between the expressed proteins. The STRING database aims to collect and integrate this information, by consolidating known and predicted protein-protein association data for a large number...

  20. Semiclassical strings in supergravity PFT

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Aritra; Biswas, Sagar; Panigrahi, Kamal L. [Indian Institute of Technology Kharagpur, Department of Physics, Kharagpur (India)

    2014-10-15

    Puff field theory (PFT) is an example of a non-local field theory which arises from a novel embedding of D-branes in a Melvin universe. We study several rotating and pulsating string solutions of the F-string equations of motion in the supergravity dual of the PFT. Further, we find a PP-wave geometry from this non-local spacetime by applying a Penrose limit and comment on its similarity with the maximally supersymmetric PP-wave background. (orig.)

  1. Cosmic string in gravity's rainbow

    Science.gov (United States)

    Momeni, Davood; Upadhyay, Sudhaker; Myrzakulov, Yerlan; Myrzakulov, Ratbay

    2017-09-01

    In this paper, we study the various cylindrical solutions (cosmic strings) in gravity's rainbow scenario. In particular, we calculate the gravitational field equations corresponding to energy-dependent background. Further, we discuss the possible Kasner, quasi-Kasner and non-Kasner exact solutions of the field equations. In this framework, we find that quasi-Kasner solutions cannot be realized in gravity's rainbow. Assuming only time-dependent metric functions, we also analyse the time-dependent vacuum cosmic strings in gravity's rainbow, which are completely different than the other GR solutions.

  2. The Physics of "String Passing through Ice"

    Science.gov (United States)

    Mohazzabi, Pirooz

    2011-01-01

    One of the oldest yet interesting experiments related to heat and thermodynamics is placing a string on a block of ice and hanging two masses from the ends of the string. Sometime later, it is discovered that the string has passed through the ice without cutting it in half. A simple explanation of this effect is that the pressure caused by the…

  3. The Illusive Sound of a Bundengan String

    Science.gov (United States)

    Parikesit, Gea O. F.; Kusumaningtyas, Indraswari

    2017-01-01

    The acoustics of a vibrating string is frequently used as a simple example of how physics can be applied in the field of art. In this paper we describe a simple experiment and analysis using a clipped string. This experiment can generate scientific curiosity among students because the sound generated by the string seem surprising to our senses.…

  4. How Do String Majors Become Teachers?

    Science.gov (United States)

    Ha, Joy

    2015-01-01

    This study was motivated by the desire to understand how to support the development of competent and confident string instrument teachers. This research investigates early-career string instrument teachers' experiences of pre-service tertiary education and induction, and how these experiences impacted early-career string teachers' competence to…

  5. The Picture Brightens (Slightly) for String Programs

    Science.gov (United States)

    Olson, Cathy Applefeld

    2010-01-01

    It may not be the best of times for the school's string and orchestra programs, but things certainly are looking up. This article focuses on a recent report which cites the numerous positives, including an increase in the number of districts offering strings classes, a greater variety in the racial mix of strings students, and a less drastic…

  6. String solitons and T-duality

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Riccioni, Fabio

    We construct for arbitrary dimensions a universal T-duality covariant expression for the Wess-Zumino terms of supersymmetric String Solitons in toroidally compactified string theories with 32 supercharges. The worldvolume fields occurring in the effective action of these String Solitons form either

  7. Symmetries and Interactions in Matrix String Theory

    NARCIS (Netherlands)

    Hacquebord, F.H.

    1999-01-01

    This PhD-thesis reviews matrix string theory and recent developments therein. The emphasis is put on symmetries, interactions and scattering processes in the matrix model. We start with an introduction to matrix string theory and a review of the orbifold model that flows out of matrix string theory

  8. Glueballs as rotating folded closed strings

    Science.gov (United States)

    Sonnenschein, Jacob; Weissman, Dorin

    2015-12-01

    In previous papers [1, 2] we argued that mesons and baryons can be described as rotating open strings in holographic backgrounds. Now we turn to closed strings, which should be the duals of glueballs. We look at the rotating folded closed string in both flat and curved backgrounds.

  9. Are Stopped Strings Preferred in Sad Music?

    Directory of Open Access Journals (Sweden)

    David Huron

    2017-01-01

    Full Text Available String instruments may be played either with open strings (where the string vibrates between the bridge and a hard wooden nut or with stopped strings (where the string vibrates between the bridge and a performer's finger pressed against the fingerboard. Compared with open strings, stopped strings permit the use of vibrato and exhibit a darker timbre. Inspired by research on the timbre of sad speech, we test whether there is a tendency to use stopped strings in nominally sad music. Specifically, we compare the proportion of potentially open-to-stopped strings in a sample of slow, minor-mode movements with matched major-mode movements. By way of illustration, a preliminary analysis of Samuel Barber's famous Adagio from his Opus 11 string quartet shows that the selected key (B-flat minor provides the optimum key for minimizing open string tones. However, examination of a broader controlled sample of quartet movements by Haydn, Mozart and Beethoven failed to exhibit the conjectured relationship. Instead, major-mode movements were found to avoid possible open strings more than slow minor-mode movements.

  10. String duality and novel theories without gravity

    International Nuclear Information System (INIS)

    Kachru, Shamit

    1998-01-01

    We describe some of the novel 6d quantum field theories which have been discovered in studies of string duality. The role these theories (and their 4d descendants) may play in alleviating the vacuum degeneracy problem in string theory is reviewed. The DLCQ of these field theories is presented as one concrete way of formulating them, independent of string theory

  11. Architectures and representations for string transduction

    NARCIS (Netherlands)

    Chrupala, Grzegorz

    2015-01-01

    String transduction problems are ubiquitous in natural language processing: they include transliteration, grapheme-to-phoneme conversion, text normalization and translation. String transduction can be reduced to the simpler problems of sequence labeling by expressing the target string as a sequence

  12. The issue of supersymmetry breaking in strings

    International Nuclear Information System (INIS)

    Binetruy, P.

    1989-12-01

    We discuss the central role that supersymmetry plays in string models, both in spacetime and at the level of the string world-sheet. The problems associated with supersymmetry-breaking are reviewed together with some of the attempts to solve them, in the string as well as the field theory approach

  13. General relativity invariance and string field theory

    International Nuclear Information System (INIS)

    Aref'eva, I.Ya.; Volovich, I.V.

    1987-04-01

    The general covariance principle in the string field theory is considered. The algebraic properties of the string Lie derivative are discussed. The string vielbein and spin connection are introduced and an action invariant under general co-ordinate transformation is proposed. (author). 18 refs

  14. String loop divergences and effective lagrangians

    International Nuclear Information System (INIS)

    Fischler, W.; Klebanov, I.; Susskind, L.

    1988-01-01

    We isolate logarithmic divergences from bosonic string amplitudes on a disc. These divergences are compared with 'tadpole' divergences in the effective field theory, with a covariant cosmological term implied by the counting of string coupling constants. We find an inconsistency between the two. This might be a problem in eliminating divergences from the bosonic string. (orig.)

  15. Test particle trajectories near cosmic strings

    Indian Academy of Sciences (India)

    Gauge strings have their energy concentrated in a very thin tube, the radius of which is of the order of the symmetry- breaking scale whereas the global strings are such that their energy extends to regions far beyond the central core. Strings have an important astrophysical consequence, namely, the double quasar problem ...

  16. Introduction to the theory of strings

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1985-10-01

    These lectures present, from an introductory perspective, some basic aspects of the quantum theory of strings. They treat (1) the kinematics, spectrum, and scattering amplitude of the bosonic string, (2) the spectrum and supersymmetry of Green-Schwarz superstring, and (3) the identification of the underlying gauge invariances of the string theory. 43 refs

  17. Introductory lectures on conformal field theory and strings

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.; Strathdee, J.

    1990-01-01

    The aim of these lectures is to provide an introduction to a first quantized formulation of string theory. This amounts to developing a consistent set of prescriptions for the perturbative computation of on-shell string amplitudes. The principal tool in this development is 2-dimensional conformal field theory on oriented manifolds of finite genus without boundaries (we treat only closed strings). This class of theory is much simpler than 4-dimensional quantum gravity with which it has many similarities. The geometry is not dynamical in this case, and the matter fields are not sensitive to local features of the geometry but only to global properties which can be characterized by a finite set of parameters (moduli). This can be formulated as field theory on a Riemann surface. We specialize mainly to free field theories for which the quantization problem can be completely solved by elementary means. An introduction to the general case will be given in Lectures II and III where the algebraic approach is discussed. The mathematics of Riemann surfaces is a well developed subject whose formalism is reviewed along with some of the principal theorems in Lecture IV. Physical string states are realized in the Hilbert space of a conformal field theory by the action of so-called ''vertex operators'' on the field theory vacuum state. Correlation functions of these vertex operators serve as ingredients for the computation of string amplitudes. They are to be integrated so as to include the contributions of all conformally inequivalent geometries, and a further manipulation (the GSO projection) is to be performed. These steps are to be regarded as part of the string prescription. The are introduced ad hoc to meet invariance and unitarity requirements. However, in these introductory lectures we give a description only of the integration over geometries (Lecture VII). The GSO projection, and related questions of modular invariance and unitarity are beyond the scope of these lectures

  18. Monitoring and Fault Detection in Photovoltaic Systems Based On Inverter Measured String I-V Curves

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Kerekes, Tamas

    2015-01-01

    Most photovoltaic (PV) string inverters have the hardware capability to measure at least part of the current-voltage (I-V) characteristic curve of the PV strings connected at the input. However, this intrinsic capability of the inverters is not used, since I-V curve measurement and monitoring...... functions are not implemented in the inverter control software. In this paper, we aim to show how such a functionality can be useful for PV system monitoring purposes, to detect the presence and cause of power-loss in the PV strings, be it due to shading, degradation of the PV modules or balance-of-system...... components through increased series resistance losses, or shunting of the PV modules. To achieve this, we propose and experimentally demonstrate three complementary PV system monitoring methods that make use of the I-V curve measurement capability of a commercial string inverter. The first method is suitable...

  19. Defect branes as Alice strings

    International Nuclear Information System (INIS)

    Okada, Takashi; Sakatani, Yuho

    2015-01-01

    There exist various defect-brane backgrounds in supergravity theories which arise as the low energy limit of string theories. These backgrounds typically have non-trivial monodromies, and if we move a charged probe around the center of a defect, its charge will be changed by the action of the monodromy. During the process, the charge conservation law seems to be violated. In this paper, to resolve this puzzle, we examine a dynamics of the charge changing process and show that the missing charge of the probe is transferred to the background. We then explicitly construct the resultant background after the charge transfer process by utilizing dualities. This background has the same monodromy as the original defect brane, but has an additional charge which does not have any localized source. In the literature, such a charge without localized source is known to appear in the presence of Alice strings. We argue that defect branes can in fact be regarded as a realization of Alice strings in string theory and examine the charge transfer process from that perspective.

  20. String formation beyond leading colour

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, Jesper R. [Department of Astronomy and Theoretical Physics, Lund University,Sölvegatan 14, Lund (Sweden); Theoretical Physics, CERN,CH-1211, Geneva 23 (Switzerland); Skands, Peter Z. [Theoretical Physics, CERN,CH-1211, Geneva 23 (Switzerland); School of Physics and Astronomy, Monash University,VIC-3800 (Australia)

    2015-08-03

    We present a new model for the hadronisation of multi-parton systems, in which colour correlations beyond leading N{sub C} are allowed to influence the formation of confining potentials (strings). The multiplet structure of SU(3) is combined with a minimisation of the string potential energy, to decide between which partons strings should form, allowing also for “baryonic” configurations (e.g., two colours can combine coherently to form an anticolour). In e{sup +}e{sup −}collisions, modifications to the leading-colour picture are small, suppressed by both colour and kinematics factors. But in pp collisions, multi-parton interactions increase the number of possible subleading connections, counteracting their naive 1/N{sub C}{sup 2} suppression. Moreover, those that reduce the overall string lengths are kinematically favoured. The model, which we have implemented in the PYTHIA 8 generator, is capable of reaching agreement not only with the important 〈p{sub ⊥}〉(n{sub charged}) distribution but also with measured rates (and ratios) of kaons and hyperons, in both ee and pp collisions. Nonetheless, the shape of their p{sub ⊥} spectra remains challenging to explain.

  1. Topological strings and quantum curves

    NARCIS (Netherlands)

    Hollands, L.

    2009-01-01

    This thesis presents several new insights on the interface between mathematics and theoretical physics, with a central role for Riemann surfaces. First of all, the duality between Vafa-Witten theory and WZW models is embedded in string theory. Secondly, this model is generalized to a web of

  2. String theory and cosmological singularities

    Indian Academy of Sciences (India)

    Well-known examples are singularities inside black holes and initial or final singularities in expanding or contracting universes. In recent times, string theory is providing new perspectives of such singularities which may lead to an understanding of these in the standard framework of time evolution in quantum mechanics.

  3. Probing the string winding sector

    Energy Technology Data Exchange (ETDEWEB)

    Aldazabal, Gerardo; Mayo, Martín [G. Física CAB-CNEA and CONICET, Centro Atómico Bariloche,Av. Bustillo 9500, Bariloche (Argentina); Instituto Balseiro, Centro Atómico Bariloche,Av. Bustillo 9500, Bariloche (Argentina); Nuñez, Carmen [Instituto de Astronomía y Física del Espacio (CONICET-UBA),C.C. 67 - Suc. 28, 1428 Buenos Aires (Argentina); Departamento de Física, FCEN, Universidad de Buenos Aires,C.C. 67 - Suc. 28, 1428 Buenos Aires (Argentina)

    2017-03-17

    We probe a slice of the massive winding sector of bosonic string theory from toroidal compactifications of Double Field Theory (DFT). This string subsector corresponds to states containing one left and one right moving oscillators. We perform a generalized Kaluza Klein compactification of DFT on generic 2n-dimensional toroidal constant backgrounds and show that, up to third order in fluctuations, the theory coincides with the corresponding effective theory of the bosonic string compactified on n-dimensional toroidal constant backgrounds, obtained from three-point amplitudes. The comparison between both theories is facilitated by noticing that generalized diffeomorphisms in DFT allow to fix generalized harmonic gauge conditions that help in identifying the physical degrees of freedom. These conditions manifest as conformal anomaly cancellation requirements on the string theory side. The explicit expression for the gauge invariant effective action containing the physical massless sector (gravity+antisymmetric+gauge+ scalar fields) coupled to towers of generalized Kaluza Klein massive states (corresponding to compact momentum and winding modes) is found. The action acquires a very compact form when written in terms of fields carrying O(n,n) indices, and is explicitly T-duality invariant. The global algebra associated to the generalized Kaluza Klein compactification is discussed.

  4. Genus g temperature string theory

    International Nuclear Information System (INIS)

    Murphy, P.; Sen, S.

    1989-01-01

    The geometric approach to bosonic temperature string theory for genus g is formulated in the operator approach of Vafa. It is shown that the Hagedorn temperature exists for all genus g and a conjectured genus g expression for superstring theories with temperature is constructed. (orig.)

  5. The Science of String Instruments

    CERN Document Server

    Rossing, Thomas D

    2010-01-01

    Many performing musicians, as well as instrument builders, are coming to realize the importance of understanding the science of musical instruments. This book explains how string instruments produce sound. It presents basic ideas in simple language, and it also translates some more sophisticated ideas in non-technical language. It should be of interest to performers, researchers, and instrument makers alike.

  6. Strings, fields and critical phenomena

    International Nuclear Information System (INIS)

    Ambjoern, J.

    1987-07-01

    The connection between field theory and critical phenomena is reviewed. Emphasis is put on the use of Monte Carlo methods in the study of non-perturbative aspects of field theory. String theory is then described as a statistical theory of random surfaces and the critical behaviour is analyzed both by analytical and numerical methods. (orig.)

  7. Modified Steiner functional string action

    International Nuclear Information System (INIS)

    Baillie, C.F.; Johnston, D.A.

    1992-01-01

    It has recently been suggested by Ambartzumian et al. that the modified Steiner functional has desirable properties as an action for random surfaces and hence string world sheets. We perform a simulation of this action on a dynamically triangulated random surface to investigate this claim and find that the surfaces are in a flat phase

  8. Bianchi type I string cosmologies

    Indian Academy of Sciences (India)

    if a proper initial condition, viz., inflation is imposed on the very early universe. Various types of inflationary cosmologies are being considered and the string cosmology is one. It is generally believed that the very early universe underwent phase transitions, which gave rise to topologically stable structures; of particular ...

  9. Topological Strings and Integrable Hierarchies

    CERN Document Server

    Aganagic, M; Klemm, A D; Marino, M; Vafa, C; Aganagic, Mina; Dijkgraaf, Robbert; Klemm, Albrecht; Marino, Marcos; Vafa, Cumrun

    2006-01-01

    We consider the topological B-model on local Calabi-Yau geometries. We show how one can solve for the amplitudes by using W-algebra symmetries which encodes the symmetries of holomorphic diffeomorphisms of the Calabi-Yau. In the highly effective fermionic/brane formulation this leads to a free fermion description of the amplitudes. Furthermore we argue that topological strings on Calabi-Yau geometries provide a unifying picture connecting non-critical (super)strings, integrable hierarchies, and various matrix models. In particular we show how the ordinary matrix model, the double scaling limit of matrix models, and Kontsevich-like matrix model are all related and arise from studying branes in specific local Calabi-Yau three-folds. We also show how A-model topological string on P^1 and local toric threefolds (and in particular the topological vertex) can be realized and solved as B-model topological string amplitudes on a Calabi-Yau manifold.

  10. String interactions in a plane-fronted parallel-wave spacetime

    International Nuclear Information System (INIS)

    Gopakumar, Rajesh

    2002-01-01

    We argue that string interactions in a plane-fronted parallel-wave spacetime are governed by an effective coupling g eff =g s (μp + α ' )f(μp + α ' ) where f(μp + α ' ) is proportional to the light-cone energy of the string states involved in the interaction. This simply follows from generalities of a matrix string description of this background. g eff nicely interpolates between the expected result (g s ) for flat space (small μp + α ' ) and a recently conjectured expression from the perturbative gauge theory side (large μp + α ' )

  11. Ultrasensitive string-based temperature sensors

    DEFF Research Database (Denmark)

    Larsen, Tom; Schmid, Silvan; Gronberg, L.

    2011-01-01

    microstrings was measured. The relative change in resonant frequency per temperature change of -1.74 +/- 0.04%/ degrees C of the aluminum strings is more than one order of magnitude higher than of the silicon nitride strings and of comparable state-of-the-art AuPd strings.......Resonant strings are a promising concept for ultra sensitive temperature detection. We present an analytical model for the sensitivity with which we optimize the temperature response of resonant strings by varying geometry and material. The temperature sensitivity of silicon nitride and aluminum...

  12. On the covariant quantization of tensionless bosonic strings in AdS spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Bonelli, Giulio [Physique Theorique et Mathematique - Universite Libre de Bruxelles (Belgium)]. E-mail: gbonelli@ulb.ac.be

    2003-11-01

    The covariant quantization of the tensionless free bosonic (open and closed) strings in AdS spaces is obtained. This is done by representing the AdS space as an hyper- boloid in a flat auxiliary space and by studying the resulting string constrained hamiltonian system in the tensionless limit. It turns out that the constraint algebra simplifies in the tensionless case in such a way that the closed BRST quantization can be formulated and the theory admits then an explicit covariant quantization scheme. This holds for any value of the dimension of the AdS space. (author)

  13. Dynamical AdS strings across horizons

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Takaaki [University of Colorado,390 UCB, Boulder, CO 80309 (United States); Murata, Keiju [Keio University,4-1-1 Hiyoshi, Yokohama 223-8521 (Japan)

    2016-03-07

    We examine the nonlinear classical dynamics of a fundamental string in anti-de Sitter spacetime. The string is dual to the flux tube between an external quark-antiquark pair in N=4 super Yang-Mills theory. We perturb the string by shaking the endpoints and compute its time evolution numerically. We find that with sufficiently strong perturbations the string continues extending and plunges into the Poincaré horizon. In the evolution, effective horizons are also dynamically created on the string worldsheet. The quark and antiquark are thus causally disconnected, and the string transitions to two straight strings. The forces acting on the endpoints vanish with a power law whose slope depends on the perturbations. The condition for this transition to occur is that energy injection exceeds the static energy between the quark-antiquark pair.

  14. Higher Spins & Strings

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The conjectured relation between higher spin theories on anti de-Sitter (AdS) spaces and weakly coupled conformal field theories is reviewed. I shall then outline the evidence in favour of a concrete duality of this kind, relating a specific higher spin theory on AdS3 to a family of 2d minimal model CFTs. Finally, I shall explain how this relation fits into the framework of the familiar stringy AdS/CFT correspondence.

  15. Analytical anomaly and heterotic string in the formalism on continual integration

    International Nuclear Information System (INIS)

    Morozov, A.

    1986-01-01

    It is shown that P-loop statistical sums for superstring and for heterotic string may be represented as integrals over the space of moduli of Riemann surfaces. There is a similar relation between the sum of analytical functions and statistical sum, arising from continual integral, based on the supersymmetrized action of bosonic string. This relation may provide an argument against compactification on 6-dimensional tori

  16. String motion in five-brane geometry

    Science.gov (United States)

    Khuri, Ramzi R.; La, Hoseong

    1993-01-01

    The classical motion of a test string in the transverse space of two types of heterotic five-brane sources is fully analyzed, for arbitrary instanton scale size. The singular case is treated as a special case and does not arise in the continuous limit of zero instanton size. We find that the orbits are either circular or open, which is a solitonic analogy with the motion of an electron around a magnetic monopole, although the system we consider is quantitatively different. We emphasize that at long distance this geometry does not satisfy the inverse square law, but satisfies the inverse cubic law. If the five-brane exists in nature and this structure survives after any proper compactification, this last result can be used to test classical ``stringy'' effects.

  17. Linear Sigma Models for Open Strings

    Energy Technology Data Exchange (ETDEWEB)

    Kachru, Shamit

    2001-09-28

    We formulate and study a class of massive N = 2 supersymmetric gauge field theories coupled to boundary degrees of freedom on the strip. For some values of the parameters, the infrared limits of these theories can be interpreted as open string sigma models describing D-branes in large-radius Calabi-Yau compactifications. For other values of the parameters, these theories flow to CFTs describing branes in more exotic, non-geometric phases of the Calabi-Yau moduli space such as the Landau-Ginzburg orbifold phase. Some simple properties of the branes (like large radius monodromies and spectra of world-volume excitations) can be computed in our model. We also provide simple worldsheet models of the transitions which occur at loci of marginal stability, and of Higgs-Coulomb transitions.

  18. Glass melting and its innovation potentials: the impact of the input and output geometries on the utilization of the melting space

    Czech Academy of Sciences Publication Activity Database

    Polák, M.; Němec, Lubomír

    2010-01-01

    Roč. 54, č. 3 (2010), s. 212-218 ISSN 0862-5468 R&D Projects: GA MPO 2A-1TP1/063 Institutional research plan: CEZ:AV0Z40320502 Keywords : space utilization, * sand dissolution * bubble removal * space geometry Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.297, year: 2010

  19. Exact supersymmetric string solutions in curved gravitational backgrounds

    CERN Document Server

    Antoniadis, Ignatios; Kounnas, Costas

    1994-01-01

    We construct a new class of exact and stable superstring solutions based on $N=4$ superconformal world-sheet symmetry. In a subclass of these, the full spectrum of string excitations is derived in a modular-invariant way. In the weak curvature limit, our solutions describe a target space with non-trivial metric and topology, and generalize the previously known (semi) wormhole. The effective field theory limit is identified in certain cases, with solutions of the $N=4$ and $N=8$ extended gauged supergravities, in which the number of space-time supersymmetries is reduced by a factor of 2 because of the presence of non-trivial dilaton, gravitational and/or gauge backgrounds. In the context of string theory, our solutions correspond to stable non-critical superstrings in the strong coupling region; the super-Liouville field couples to a unitary matter system with central charge $5\\le{\\hat c}_M\\le 9$.

  20. N = 1 dual string pairs and their modular superpotentials

    International Nuclear Information System (INIS)

    Luest, D.

    1998-01-01

    We review the duality between heterotic and F-theory string vacua with N=1 space-time supersymmetry in eight, six and four dimensions. In particular, we discuss two chains of four-dimensional F-theory/heterotic dual string pairs, where F-theory is compactified on certain elliptic Calabi-Yau fourfolds, and the dual heterotic vacua are given by compactifications on elliptic Calabi-Yau threefolds plus the specification of the E 8 x E 8 gauge bundles. We show that the massless spectra of the dual pairs agree by using, for one chain of models, an index formula to count the heterotic bundle moduli and determine the dual F-theory spectra from the Hodge numbers of the fourfolds and of the type IIB base spaces. Moreover as a further check, we demonstrate that for one particular heterotic/F-theory dual pair the N=1 superpotentials are the same. (orig.)