WorldWideScience

Sample records for striated muscles commonly

  1. Striated Muscle Function, Regeneration, and Repair

    Science.gov (United States)

    Shadrin, I.Y.; Khodabukus, A.; Bursac, N.

    2016-01-01

    As the only striated muscle tissues in the body, skeletal and cardiac muscle share numerous structural and functional characteristics, while exhibiting vastly different size and regenerative potential. Healthy skeletal muscle harbors a robust regenerative response that becomes inadequate after large muscle loss or in degenerative pathologies and aging. In contrast, the mammalian heart loses its regenerative capacity shortly after birth, leaving it susceptible to permanent damage by acute injury or chronic disease. In this review, we compare and contrast the physiology and regenerative potential of native skeletal and cardiac muscles, mechanisms underlying striated muscle dysfunction, and bioengineering strategies to treat muscle disorders. We focus on different sources for cellular therapy, biomaterials to augment the endogenous regenerative response, and progress in engineering and application of mature striated muscle tissues in vitro and in vivo. Finally, we discuss the challenges and perspectives in translating muscle bioengineering strategies to clinical practice. PMID:27271751

  2. Dynamic Regulation of Sarcomeric Actin Filaments in Striated Muscle

    OpenAIRE

    Ono, Shoichiro

    2010-01-01

    In striated muscle, the actin cytoskeleton is differentiated into myofibrils. Actin and myosin filaments are organized in sarcomeres and specialized for producing contractile forces. Regular arrangement of actin filaments with uniform length and polarity is critical for the contractile function. However, the mechanisms of assembly and maintenance of sarcomeric actin filaments in striated muscle are not completely understood. Live imaging of actin in striated muscle has revealed that actin sub...

  3. Systems Biology Approaches to Discerning Striated Muscle Pathologies

    OpenAIRE

    Mukund, Kavitha

    2016-01-01

    The human muscular system represents nearly 75% of the body mass and encompasses two major muscle forms- striated and smooth. Striated muscle, composed broadly of myofibers, accompanying membrane systems, cytoskeletal networks together with the metabolic and regulatory machinery, have revealed complexities in composition, structure and function. A disruption to any component within this complex system of interactions lead to disorders of the muscle, typically characterized by muscle fiber los...

  4. Poorly Understood Aspects of Striated Muscle Contraction

    Directory of Open Access Journals (Sweden)

    Alf Månsson

    2015-01-01

    Full Text Available Muscle contraction results from cyclic interactions between the contractile proteins myosin and actin, driven by the turnover of adenosine triphosphate (ATP. Despite intense studies, several molecular events in the contraction process are poorly understood, including the relationship between force-generation and phosphate-release in the ATP-turnover. Different aspects of the force-generating transition are reflected in the changes in tension development by muscle cells, myofibrils and single molecules upon changes in temperature, altered phosphate concentration, or length perturbations. It has been notoriously difficult to explain all these events within a given theoretical framework and to unequivocally correlate observed events with the atomic structures of the myosin motor. Other incompletely understood issues include the role of the two heads of myosin II and structural changes in the actin filaments as well as the importance of the three-dimensional order. We here review these issues in relation to controversies regarding basic physiological properties of striated muscle. We also briefly consider actomyosin mutation effects in cardiac and skeletal muscle function and the possibility to treat these defects by drugs.

  5. Neurohypophyseal hormones: novel actors of striated muscle development and homeostasis

    Directory of Open Access Journals (Sweden)

    Alessandra Costa

    2014-09-01

    Full Text Available Since the 1980's, novel functional roles of the neurohypophyseal hormones vasopressin and oxytocin have emerged. Several studies have investigated the effects of these two neurohormones on striated muscle tissues, both in vitro and in vivo. The effects of vasopressin on skeletal myogenic cells, developing muscle and muscle homeostasis have been documented. Oxytocin appears to have a greater influence on cardiomyocite differentiation and heart homeostasis. This review summarizes the studies on these novel roles of the two neurohypophyseal hormones, and open the possibility of new therapeutic approaches for diseases affecting striated muscle.

  6. Autoradiographic analysis of protein regeneration in striated skeleton muscle

    International Nuclear Information System (INIS)

    Dadoune, J.P.

    1977-01-01

    An autoradiographic study was conducted of protein regeneration in striated muscles aimed at clarifying the contradictions in the literature: while some authors hold that the regeneration rate is identical for all types of myofibril proteins and the myofibril is thus regenerated as a whole, others claim that the regeneration rate differs depending on the type of the myofibril protein. Tritium-labelled leucine incorporation experiments showed the existence of at least 2 pools of newly formed proteins in striated muscles in both adult and young animals. One pool is regenerated in 1 to 2 weeks, the other roughly in a month. The regeneration of proteins is initially more significant in red fibres; thus the rate of myofibril protein regeneration is not uniform. In adult animals regeneration seems to be slower in filaments than in the sarcoplasm and in the mitochondria. (A.K.)

  7. Contracture of Slow Striated Muscle during Calcium Deprivation

    Science.gov (United States)

    Irwin, Richard L.; Hein, Manfred M.

    1963-01-01

    When deprived of calcium the slow striated muscle fibers of the frog develop reversible contractures in either hypertonic or isotonic solutions. While calcium deprivation continues because of a flowing calcium-free solution the muscles relax slowly and completely. Restoration of calcium during contracture relaxes the muscle promptly to initial tension. When relaxed during calcium lack the return of calcium does not change tension and the muscle stays relaxed. When contractures are induced by solutions containing small amounts of calcium relaxation does not occur or requires several hours. The rate of tension development depends upon the rate at which calcium moves outward since the contractures develop slower in low concentrations of calcium and are absent or greatly slowed in a stagnant calcium-free solution. Withdrawal of calcium prevents the contractile responses to ACh, KCl, or electrical stimulation through the nerve. Muscles return to their original excitability after calcium is restored. Origin of the contractures is unrelated to nerve activity since they are maximal during transmission failure from calcium lack, occur in denervated muscles, and are not blocked by high concentrations of d-tubocurarine, procaine, or atropine. The experiments also indicate that the contractures do not originate from repetitive activity of muscle membranes. The findings are most simply explained by relating the outward movement of calcium as a link for initiating contraction in slow type striated muscle. PMID:14065284

  8. Expression of various sarcomeric tropomyosin isoforms in equine striated muscles

    OpenAIRE

    Dube, Syamalima; Chionuma, Henry; Matoq, Amr; Alshiekh-Nasany, Ruham; Abbott, Lynn; Poiesz, Bernard J.; Dube, Dipak K.

    2017-01-01

    In order to better understand the training and athletic activity of horses, we must have complete understanding of the isoform diversity of various myofibrillar protein genes like tropomyosin. Tropomyosin (TPM), a coiled-coil dimeric protein, is a component of thin filament in striated muscles. In mammals, four TPM genes (TPM1, TPM2, TPM3, and TPM4) generate a multitude of TPM isoforms via alternate splicing and/or using different promoters. Unfortunately, our knowledge of TPM isoform diversi...

  9. Expression of various sarcomeric tropomyosin isoforms in equine striated muscles

    Directory of Open Access Journals (Sweden)

    Syamalima Dube

    2017-06-01

    Full Text Available In order to better understand the training and athletic activity of horses, we must have complete understanding of the isoform diversity of various myofibrillar protein genes like tropomyosin. Tropomyosin (TPM, a coiled-coil dimeric protein, is a component of thin filament in striated muscles. In mammals, four TPM genes (TPM1, TPM2, TPM3, and TPM4 generate a multitude of TPM isoforms via alternate splicing and/or using different promoters. Unfortunately, our knowledge of TPM isoform diversity in the horse is very limited. Hence, we undertook a comprehensive exploratory study of various TPM isoforms from horse heart and skeletal muscle. We have cloned and sequenced two sarcomeric isoforms of the TPM1 gene called TPM1α and TPM1κ, one sarcomeric isoform of the TPM2 and one of the TPM3 gene, TPM2α and TPM3α respectively. By qRT-PCR using both relative expression and copy number, we have shown that TPM1α expression compared to TPM1κ is very high in heart. On the other hand, the expression of TPM1α is higher in skeletal muscle compared to heart. Further, the expression of TPM2α and TPM3α are higher in skeletal muscle compared to heart. Using western blot analyses with CH1 monoclonal antibody we have shown the high expression levels of sarcomeric TPM proteins in cardiac and skeletal muscle. Due to the paucity of isoform specific antibodies we cannot specifically detect the expression of TPM1κ in horse striated muscle. To the best of our knowledge this is the very first report on the characterization of sarcmeric TPMs in horse striated muscle.

  10. Muscle lim protein isoform negatively regulates striated muscle actin dynamics and differentiation.

    Science.gov (United States)

    Vafiadaki, Elizabeth; Arvanitis, Demetrios A; Papalouka, Vasiliki; Terzis, Gerasimos; Roumeliotis, Theodoros I; Spengos, Konstantinos; Garbis, Spiros D; Manta, Panagiota; Kranias, Evangelia G; Sanoudou, Despina

    2014-07-01

    Muscle lim protein (MLP) has emerged as a critical regulator of striated muscle physiology and pathophysiology. Mutations in cysteine and glycine-rich protein 3 (CSRP3), the gene encoding MLP, have been directly associated with human cardiomyopathies, whereas aberrant expression patterns are reported in human cardiac and skeletal muscle diseases. Increasing evidence suggests that MLP has an important role in both myogenic differentiation and myocyte cytoarchitecture, although the full spectrum of its intracellular roles has not been delineated. We report the discovery of an alternative splice variant of MLP, designated as MLP-b, showing distinct expression in neuromuscular disease and direct roles in actin dynamics and muscle differentiation. This novel isoform originates by alternative splicing of exons 3 and 4. At the protein level, it contains the N-terminus first half LIM domain of MLP and a unique sequence of 22 amino acids. Physiologically, it is expressed during early differentiation, whereas its overexpression reduces C2C12 differentiation and myotube formation. This may be mediated through its inhibition of MLP/cofilin-2-mediated F-actin dynamics. In differentiated striated muscles, MLP-b localizes to the sarcomeres and binds directly to Z-disc components, including α-actinin, T-cap and MLP. The findings of the present study unveil a novel player in muscle physiology and pathophysiology that is implicated in myogenesis as a negative regulator of myotube formation, as well as in differentiated striated muscles as a contributor to sarcomeric integrity. © 2014 FEBS.

  11. Compositional studies of myofibrils from rabbit striated muscle

    Energy Technology Data Exchange (ETDEWEB)

    Etlinger, J.D.; Zak, R.; Fischman, D.A.

    1976-01-01

    The localization of high-molecular-weight (80,000-200,000-daltons) proteins in the sarcomere of striated muscle has been studied by coordinated electron-microscopic and sodium dodecyl sulfate (SDS) gel electrophoretic analysis of native myofilaments and extracted and digested myofibrils. Methods were developed for the isolation of thick and thin filaments and of uncontracted myofibrils which are devoid of endoproteases and membrane fragments. Treatment of crude myofibrils with 0.5% Triton X-100 results in the release of a 110,000-dalton component without affecting the myofibrillar structure. Extraction of uncontracted myofibrils with a relaxing solution of high ionic strength results in the complete disappearance of the A band and M line. In this extract, five other protein bands in addition to myosin are resolved on SDS gels: bands M 1 (190,000 daltons) and M 2 (170,000 daltons), which are suggested to be components of the M line; M 3 (150,000 daltons), a degradation product; and a doublet M 4, M 5 (140,000 daltons), thick-filament protein having the same mobility as C protein.

  12. Immunocytochemical electron microscopic study and Western blot analysis of caldesmon and calponin in striated muscle of the fruit fly Drosophila melanogaster and in several muscle cell types of the earthworm Eisenia foetida.

    Science.gov (United States)

    Royuela, M; Fraile, B; Picazo, M L; Paniagua, R

    1997-01-01

    Caldesmon and calponin are two proteins that are characteristic of vertebrate smooth muscle. In invertebrates, caldesmon has only been studied in some molluscan muscles, and no previous references to calponin have been found. The aim of this paper was to investigate the presence and distribution of caldesmon and calponin in several invertebrate muscle cell types, classified according to their ultrastructural pattern: transversely striated muscle (flight muscle from Drosophila melanogaster), obliquely striated muscle (muscular body wall and inner muscular layer of the pseudoheart from the earthworm Eisenia foetida), and a muscle of doubtful classification which seems to be intermediate between smooth muscle and obliquely striated muscle (outer muscular layer of the pseudoheart, from E. foetida), using electron microscopy immunocytochemistry and Western blot analysis. Immunoreactions to both caldesmon and calponin were observed in the outer muscular layer cells from the earthworm pseudoheart but neither in the transversely striated muscle of D. melanogaster nor in the obliquely striated muscle from the earthworm. Present findings suggest that caldesmon- and calponin-like proteins are also present in invertebrate muscle cells, but only in those that are ultrastructurally similar to the vertebrate smooth muscle cells. Since discrepancies in the classification of some invertebrate muscles are common in the literature, the use of distinctive markers, such as troponin, caldesmon and calponin may improve our understanding of the nature and properties of many invertebrate muscles showing an ultrastructural pattern that does not resemble any of the classic muscle types.

  13. Overexpression of TEAD-1 in transgenic mouse striated muscles produces a slower skeletal muscle contractile phenotype.

    Science.gov (United States)

    Tsika, Richard W; Schramm, Christine; Simmer, Gretchen; Fitzsimons, Daniel P; Moss, Richard L; Ji, Juan

    2008-12-26

    TEA domain (TEAD) transcription factors serve important functional roles during embryonic development and in striated muscle gene expression. Our previous work has implicated a role for TEAD-1 in the fast-to-slow fiber-type transition in response to mechanical overload. To investigate whether TEAD-1 is a modulator of slow muscle gene expression in vivo, we developed transgenic mice expressing hemagglutinin (HA)-tagged TEAD-1 under the control of the muscle creatine kinase promoter. We show that striated muscle-restricted HA-TEAD-1 expression induced a transition toward a slow muscle contractile protein phenotype, slower shortening velocity (Vmax), and longer contraction and relaxation times in adult fast twitch extensor digitalis longus muscle. Notably, HA-TEAD-1 overexpression resulted in an unexpected activation of GSK-3alpha/beta and decreased nuclear beta-catenin and NFATc1/c3 protein. These effects could be reversed in vivo by mechanical overload, which decreased muscle creatine kinase-driven TEAD-1 transgene expression, and in cultured satellite cells by TEAD-1-specific small interfering RNA. These novel in vivo data support a role for TEAD-1 in modulating slow muscle gene expression.

  14. In vivo functional and morphological characterization of bone and striated muscle microcirculation in NSG mice.

    Directory of Open Access Journals (Sweden)

    Haider Mussawy

    Full Text Available Organ-specific microcirculation plays a central role in tumor growth, tumor cell homing, tissue engineering, and wound healing. Mouse models are widely used to study these processes; however, these mouse strains often possess unique microhemodynamic parameters, making it difficult to directly compare experiments. The full functional characterization of bone and striated muscle microcirculatory parameters in non-obese diabetic-severe combined immunodeficiency/y-chain; NOD-Prkds IL2rg (NSG mice has not yet been reported. Here, we established either a dorsal skinfold chamber or femur window in NSG mice (n = 23, allowing direct analysis of microcirculatory parameters in vivo by intravital fluorescence microscopy at 7, 14, 21, and 28 days after chamber preparation. Organ-specific differences were observed. Bone had a significantly lower vessel density but a higher vessel diameter than striated muscle. Bone also showed higher effective vascular permeability than striated muscle. The centerline velocity values were similar in the femur window and dorsal skinfold chamber, with a higher volumetric blood flow in bone. Interestingly, bone and striated muscle showed similar tissue perfusion rates. Knowledge of physiological microhemodynamic values of bone and striated muscle in NSG mice makes it possible to analyze pathophysiological processes at these anatomic sites, such as tumor growth, tumor metastasis, and tumor microcirculation, as well as the response to therapeutic agents.

  15. Embracing change: striated-for-smooth muscle replacement in esophagus development.

    Science.gov (United States)

    Krauss, Robert S; Chihara, Daisuke; Romer, Anthony I

    2016-01-01

    The esophagus functions to transport food from the oropharyngeal region to the stomach via waves of peristalsis and transient relaxation of the lower esophageal sphincter. The gastrointestinal tract, including the esophagus, is ensheathed by the muscularis externa (ME). However, while the ME of the gastrointestinal tract distal to the esophagus is exclusively smooth muscle, the esophageal ME of many vertebrate species comprises a variable amount of striated muscle. The esophageal ME is initially composed only of smooth muscle, but its developmental maturation involves proximal-to-distal replacement of smooth muscle with striated muscle. This fascinating phenomenon raises two important questions: what is the developmental origin of the striated muscle precursor cells, and what are the cellular and morphogenetic mechanisms underlying the process? Studies addressing these questions have provided controversial answers. In this review, we discuss the development of ideas in this area and recent work that has shed light on these issues. A working model has emerged that should permit deeper understanding of the role of ME development and maturation in esophageal disorders and in the functional and evolutionary underpinnings of the variable degree of esophageal striated myogenesis in vertebrate species.

  16. Morphology of lesions in striated muscle fibres from the beige mouse

    DEFF Research Database (Denmark)

    Kirkeby, S

    1982-01-01

    Lesions in striated muscle fibres from the beige mouse are described at both the light- and electronmicroscopical levels. The muscles have two types of lesions, one is well defined cores in the fibres and the other is diffusely enlarged intermyofibrillar spaces (IMS). The cores can be filled...... with membrane-like structures or a fluffy unstructured material. In the areas with enlarged IMS comparatively few organelles are present and the muscle fibres seem to be fragmented....

  17. Embracing change: striated-for-smooth muscle replacement in esophagus development

    OpenAIRE

    Krauss, Robert S.; Chihara, Daisuke; Romer, Anthony I.

    2016-01-01

    The esophagus functions to transport food from the oropharyngeal region to the stomach via waves of peristalsis and transient relaxation of the lower esophageal sphincter. The gastrointestinal tract, including the esophagus, is ensheathed by the muscularis externa (ME). However, while the ME of the gastrointestinal tract distal to the esophagus is exclusively smooth muscle, the esophageal ME of many vertebrate species comprises a variable amount of striated muscle. The esophageal ME is initia...

  18. Increased hypoxia-inducible factor-1α in striated muscle of tumor-bearing mice.

    Science.gov (United States)

    Devine, Raymond D; Bicer, Sabahattin; Reiser, Peter J; Wold, Loren E

    2017-06-01

    Cancer cachexia is a progressive wasting disease resulting in significant effects on the quality of life and high mortality. Most studies on cancer cachexia have focused on skeletal muscle; however, the heart is now recognized as a major site of cachexia-related effects. To elucidate possible mechanisms, a proteomic study was performed on the left ventricles of colon-26 (C26) adenocarcinoma tumor-bearing mice. The results revealed several changes in proteins involved in metabolism. An integrated pathway analysis of the results revealed a common mediator in hypoxia-inducible factor-1α (HIF-1α). Work by other laboratories has shown that extensive metabolic restructuring in the C26 mouse model causes changes in gene expression that may be affected directly by HIF-1α, such as glucose metabolic genes. M-mode echocardiography showed progressive decline in heart function by day 19 , exhibited by significantly decreased ejection fraction and fractional shortening, along with posterior wall thickness. Using Western blot analysis, we confirmed that HIF-1α is significantly upregulated in the heart, whereas there were no changes in its regulatory proteins, prolyl hydroxylase domain-containing protein 2 (PHD2) and von Hippel-Lindau protein (VHL). PHD2 requires both oxygen and iron as cofactors for the hydroxylation of HIF-1α, marking it for ubiquination via VHL and subsequent destruction by the proteasome complex. We examined venous blood gas values in the tumor-bearing mice and found significantly lower oxygen concentration compared with control animals in the third week after tumor inoculation. We also examined select skeletal muscles to determine whether they are similarly affected. In the diaphragm, extensor digitorum longus, and soleus, we found significantly increased HIF-1α in tumor-bearing mice, indicating a hypoxic response, not only in the heart, but also in skeletal muscle. These results indicate that HIF-1α may contribute, in part, to the metabolic changes

  19. Kinetic isoforms of intramembrane charge in intact amphibian striated muscle.

    Science.gov (United States)

    Huang, C L

    1996-04-01

    The effects of the ryanodine receptor (RyR) antagonists ryanodine and daunorubicin on the kinetic and steady-state properties of intramembrane charge were investigated in intact voltage-clamped frog skeletal muscle fibers under conditions that minimized time-dependent ionic currents. A hypothesis that RyR gating is allosterically coupled to configurational changes in dihydropyridine receptors (DHPRs) would predict that such interactions are reciprocal and that RyR modification should influence intramembrane charge. Both agents indeed modified the time course of charging transients at 100-200-microM concentrations. They independently abolished the delayed charging phases shown by q gamma currents, even in fibers held at fully polarized, -90-mV holding potentials; such waveforms are especially prominent in extracellular solutions containing gluconate. Charge movements consistently became exponential decays to stable baselines in the absence of intervening inward or other time-dependent currents. The steady-state charge transfers nevertheless remained equal through the ON and the OFF parts of test voltage steps. The charge-voltage function, Q(VT), shifted by approximately +10 mV, particularly through those test potentials at which delayed q gamma currents normally took place but retained steepness factors (k approximately 8.0 to 10.6 mV) that indicated persistent, steeply voltage-dependent q gamma contributions. Furthermore, both RyR antagonists preserved the total charge, and its variation with holding potential, Qmax (VH), which also retained similarly high voltage sensitivities (k approximately 7.0 to 9.0 mV). RyR antagonists also preserved the separate identities of q gamma and q beta species, whether defined by their steady-state voltage dependence or inactivation or pharmacological properties. Thus, tetracaine (2 mM) reduced the available steady-state charge movement and gave shallow Q(VT) (k approximately 14 to 16 mV) and Qmax (VH) (k approximately 14 to 17 m

  20. Striated muscle fiber size, composition and capillary density in diabetes in relation to neuropathy and muscle strength

    DEFF Research Database (Denmark)

    Andreassen, Christer Swan; Jensen, Jacob Malte; Jakobsen, Johannes

    2014-01-01

    OBJECTIVE: Diabetic polyneuropathy (DPN) leads to progressive loss of muscle strength in the lower extremities due to muscular atrophy. Changes in vascularization occur in diabetic striated muscle; however, the relationship between these changes and DPN is as yet unexplored. The aim of the present...... study was to evaluate histologic properties and capillarization of diabetic skeletal muscle in relation to DPN and muscle strength. METHODS: Twenty type 1 and 20 type 2 diabetic (T1D and T2D, respectively) patients underwent biopsy of the gastrocnemic muscle, isokinetic dynamometry at the ankle......, electrophysiological studies, clinical examination, and quantitative sensory examinations. Muscle biopsies were stained immunohistochemically and muscle fiber diameter, fiber type distribution, and capillary density determined. Twenty control subjects were also included in the study. RESULTS: No relationship was found...

  1. The Popeye Domain Containing Genes and Their Function in Striated Muscle

    Science.gov (United States)

    Schindler, Roland F. R.; Scotton, Chiara; French, Vanessa; Ferlini, Alessandra; Brand, Thomas

    2016-01-01

    The Popeye domain containing (POPDC) genes encode a novel class of cAMP effector proteins, which are abundantly expressed in heart and skeletal muscle. Here, we will review their role in striated muscle as deduced from work in cell and animal models and the recent analysis of patients carrying a missense mutation in POPDC1. Evidence suggests that POPDC proteins control membrane trafficking of interacting proteins. Furthermore, we will discuss the current catalogue of established protein-protein interactions. In recent years, the number of POPDC-interacting proteins has been rising and currently includes ion channels (TREK-1), sarcolemma-associated proteins serving functions in mechanical stability (dystrophin), compartmentalization (caveolin 3), scaffolding (ZO-1), trafficking (NDRG4, VAMP2/3) and repair (dysferlin) or acting as a guanine nucleotide exchange factor for Rho-family GTPases (GEFT). Recent evidence suggests that POPDC proteins might also control the cellular level of the nuclear proto-oncoprotein c-Myc. These data suggest that this family of cAMP-binding proteins probably serves multiple roles in striated muscle. PMID:27347491

  2. Isoform composition, gene expression and sarcomeric protein phosphorylation in striated muscle of mice after space flight

    Science.gov (United States)

    Vikhlyantsev, Ivan; Ulanova, Anna; Salmov, Nikolay; Gritsyna, Yulia; Bobylev, Alexandr; Rogachevsky, Vadim; Shenkman, Boris; Podlubnaya, Zoya

    Using RT-PCR and SDS-PAGE, changes in isoform composition, gene expression, titin and nebulin phosphorylation, as well as changes in isoform composition of myosin heavy chains in striated muscles of mice were studied after 30-day-long space flight onboard the Russian spacecraft “BION-M” No. 1. The muscle fibre-type shift from slow-to-fast was observed in m. gastrocnemius and m. tibialis anterior of animals from “Flight” group. A decrease in the content of the NT and N2A titin isoforms and nebulin in the skeletal muscles of animals from “Flight” group was found. Meanwhile, significant differences in gene expression of these proteins in skeletal muscles of mice from “Flight” and “Control” groups were not observed. Using Pro-Q Diamond stain, an increase in titin phosphorylation in m. gastrocnemius of mice from “Flight” group was detected. The content of the NT, N2BA and N2B titin isoforms in cardiac muscle of mice from “Flight” and “Control” groups did not differ, nevertheless an increase in titin gene expression in the myocardium of the “Flight” group animals was found. The observed changes will be discussed in the context of theirs role in contractile activity of striated muscles of mice in conditions of weightlessness. This work was supported by the Russian Foundation for Basic Research (grants No. 14-04-32240, 14-04-00112). Acknowledgement. We express our gratitude to the teams of Institute of Biomedical Problems RAS and “PROGRESS” Corporation involved in the preparation of the “BION-M” mission.

  3. Immunocytochemical electron microscopic study and western blot analysis of myosin, paramyosin and miniparamyosin in the striated muscle of the fruit fly Drosophila melanogaster and in obliquely striated and smooth muscles of the earthworm Eisenia foetida.

    Science.gov (United States)

    Royuela, M; Fraile, B; Cervera, M; Paniagua, R

    1997-04-01

    Miniparamyosin is a paramyosin isoform (55-60 kDa) that has been isolated in insects (Drosophila) and immunolocalized in several species of arthropods, molluscs, annelids and nematodes. In this study, the presence and distribution of this protein, in comparison with that of paramyosin and myosin, has been examined in the striated muscle (tergal depressor of trochanter) of Drosophila melanogaster, and the obliquely striated muscle (body wall) and the smooth muscle (outer layer of the pseudoheart) of the earthworm Eisenia foetida by means of immunocytochemical electron microscopic study and Western blot analysis miniparamyosin paramyosin and myosin antibodies from Drosophila. In the striated muscle of D. melanogaster, the three proteins were immunolocalized along the length of the thick filaments (A-bands). The distribution of immunogold particles along these filaments was uniform. The relative proportions miniparamyosin/paramyosin/myosin (calculated by counting the number of immunogold particles) were: 1/10/68. In the obliquely striated muscle of E. foetida, immunoreactions to the three proteins were also found in the thick filaments, and the relative proportions miniparamyosin/paramyosin/myosin were 1/2.4/6.9. However, whereas the distribution of both myosin and miniparamyosin along the thick filament length was uniform, paramyosin immunolabelling was more abundant in the extremes of thick filaments (the outer zones of A-bands in the obliquely striated muscle), where the thick filaments become thinner than in the centre (the central zone of A-bands), where these filaments are thicker. The relative proportions of paramyosin in the outer and of paramyosin in the central zones of A-bands were 4/1. This irregular distribution of paramyosin along the thick filament length might be actual but it may also be explained by the fusiform shape of thick filaments in the earthworm: assuming that paramyosin is covered by myosin, paramyosin antigens would be more exposed in the

  4. Cannabinoid CB1 Receptors Are Localized in Striated Muscle Mitochondria and Regulate Mitochondrial Respiration

    Directory of Open Access Journals (Sweden)

    Juan Mendizabal-Zubiaga

    2016-10-01

    Full Text Available The cannabinoid type 1 (CB1 receptor is widely distributed in the brain and peripheral organs where it regulates cellular functions and metabolism. In the brain, CB1 is mainly localized on presynaptic axon terminals but is also found on mitochondria (mtCB1, where it regulates cellular respiration and energy production. Likewise, CB1 is localized on muscle mitochondria, but very little is known about it. The aim of this study was to further investigate in detail the distribution and functional role of mtCB1 in three different striated muscles. Immunoelectron microscopy for CB1 was used in skeletal muscles (gastrocnemius and rectus abdominis and myocardium from wild-type and CB1-KO mice. Functional assessments were performed in mitochondria purified from the heart of the mice and the mitochondrial oxygen consumption upon application of different acute delta-9-tetrahidrocannabinol (Δ9-THC concentrations (100 nM or 200 nM was monitored. About 26% of the mitochondrial profiles in gastrocnemius, 22% in the rectus abdominis and 17% in the myocardium expressed CB1. Furthermore, the proportion of mtCB1 versus total CB1 immunoparticles was about 60% in the gastrocnemius, 55% in the rectus abdominis and 78% in the myocardium. Importantly, the CB1 immunolabeling pattern disappeared in muscles of CB1-KO mice. Functionally, acute 100 nM or 200 nM THC treatment specifically decreased mitochondria coupled respiration between 12% and 15% in wild-type isolated mitochondria of myocardial muscles but no significant difference was noticed between THC treated and vehicle in mitochondria isolated from CB1-KO heart. Furthermore, gene expression of key enzymes involved in pyruvate synthesis, tricarboxylic acid (TCA cycle and mitochondrial respiratory chain was evaluated in the striated muscle of CB1-WT and CB1-KO. CB1-KO showed an increase in the gene expression of Eno3, Pkm2, and Pdha1, suggesting an increased production of pyruvate. In contrast, no significant

  5. Overexpression of Striated Muscle Activator of Rho Signaling (STARS) Increases C2C12 Skeletal Muscle Cell Differentiation.

    Science.gov (United States)

    Wallace, Marita A; Della Gatta, Paul A; Ahmad Mir, Bilal; Kowalski, Greg M; Kloehn, Joachim; McConville, Malcom J; Russell, Aaron P; Lamon, Séverine

    2016-01-01

    Skeletal muscle growth and regeneration depend on the activation of satellite cells, which leads to myocyte proliferation, differentiation and fusion with existing muscle fibers. Skeletal muscle cell proliferation and differentiation are tightly coordinated by a continuum of molecular signaling pathways. The striated muscle activator of Rho signaling (STARS) is an actin binding protein that regulates the transcription of genes involved in muscle cell growth, structure and function via the stimulation of actin polymerization and activation of serum-response factor (SRF) signaling. STARS mediates cell proliferation in smooth and cardiac muscle models; however, whether STARS overexpression enhances cell proliferation and differentiation has not been investigated in skeletal muscle cells. We demonstrate for the first time that STARS overexpression enhances differentiation but not proliferation in C2C12 mouse skeletal muscle cells. Increased differentiation was associated with an increase in the gene levels of the myogenic differentiation markers Ckm, Ckmt2 and Myh4, the differentiation factor Igf2 and the myogenic regulatory factors (MRFs) Myf5 and Myf6. Exposing C2C12 cells to CCG-1423, a pharmacological inhibitor of SRF preventing the nuclear translocation of its co-factor MRTF-A, had no effect on myotube differentiation rate, suggesting that STARS regulates differentiation via a MRTF-A independent mechanism. These findings position STARS as an important regulator of skeletal muscle growth and regeneration.

  6. Revealing t-tubules in striated muscle with new optical super-resolution microscopy techniques

    Directory of Open Access Journals (Sweden)

    Isuru D. Jayasinghe

    2014-12-01

    Full Text Available The t-tubular system plays a central role in the synchronisation of calcium signalling and excitation-contraction coupling in most striated muscle cells. Light microscopy has been used for imaging t-tubules for well over 100 years and together with electron microscopy (EM, has revealed the three-dimensional complexities of the t-system topology within cardiomyocytes and skeletal muscle fibres from a range of species. The emerging super-resolution single molecule localisation microscopy (SMLM techniques are offering a near 10-fold improvement over the resolution of conventional fluorescence light microscopy methods, with the ability to spectrally resolve nanometre scale distributions of multiple molecular targets. In conjunction with the next generation of electron microscopy, SMLM has allowed the visualisation and quantification of intricate t-tubule morphologies within large areas of muscle cells at an unprecedented level of detail. In this paper, we review recent advancements in the t-tubule structural biology with the utility of various microscopy techniques. We outline the technical considerations in adapting SMLM to study t-tubules and its potential to further our understanding of the molecular processes that underlie the sub-micron scale structural alterations observed in a range of muscle pathologies.

  7. Chaperones and the Proteasome System: Regulating the Construction and Demolition of Striated Muscle

    Directory of Open Access Journals (Sweden)

    Casey Carlisle

    2017-12-01

    Full Text Available Protein folding factors (chaperones are required for many diverse cellular functions. In striated muscle, chaperones are required for contractile protein function, as well as the larger scale assembly of the basic unit of muscle, the sarcomere. The sarcomere is complex and composed of hundreds of proteins and the number of proteins and processes recognized to be regulated by chaperones has increased dramatically over the past decade. Research in the past ten years has begun to discover and characterize the chaperones involved in the assembly of the sarcomere at a rapid rate. Because of the dynamic nature of muscle, wear and tear damage is inevitable. Several systems, including chaperones and the ubiquitin proteasome system (UPS, have evolved to regulate protein turnover. Much of our knowledge of muscle development focuses on the formation of the sarcomere but recent work has begun to elucidate the requirement and role of chaperones and the UPS in sarcomere maintenance and disease. This review will cover the roles of chaperones in sarcomere assembly, the importance of chaperone homeostasis and the cooperation of chaperones and the UPS in sarcomere integrity and disease.

  8. Detection of a troponin I-like protein in non-striated muscle of the tardigrades (water bears).

    Science.gov (United States)

    Obinata, Takashi; Ono, Kanako; Ono, Shoichiro

    2011-03-01

    Tardigrades, also known as water bears, have somatic muscle fibers that are responsible for movement of their body and legs. These muscle fibers contain thin and thick filaments in a non-striated pattern. However, the regulatory mechanism of muscle contraction in tardigrades is unknown. In the absence of extensive molecular and genomic information, we detected a protein of 31 kDa in whole lysates of tardigrades that cross-reacted with the antibody raised against nematode troponin I (TnI). TnI is a component of the troponin complex that regulates actin-myosin interaction in a Ca(2+)-dependent and actin-linked manner. This TnI-like protein was co-extracted with actin in a buffer containing ATP and EGTA, which is known to induce relaxation of a troponin-regulated contractile system. The TnI-like protein was specifically expressed in the somatic muscle fibers in adult animals and partially co-localized with actin filaments in a non-striated manner. Interestingly, the pharyngeal muscle did not express this protein. These observations suggest that the non-striated somatic muscle of tardigrades has an actin-linked and troponin-regulated system for muscle contraction.

  9. Large-scale Models Reveal the Two-component Mechanics of Striated Muscle

    Directory of Open Access Journals (Sweden)

    Robert Jarosch

    2008-12-01

    Full Text Available This paper provides a comprehensive explanation of striated muscle mechanics and contraction on the basis of filament rotations. Helical proteins, particularly the coiled-coils of tropomyosin, myosin and α-actinin, shorten their H-bonds cooperatively and produce torque and filament rotations when the Coulombic net-charge repulsion of their highly charged side-chains is diminished by interaction with ions. The classical “two-component model” of active muscle differentiated a “contractile component” which stretches the “series elastic component” during force production. The contractile components are the helically shaped thin filaments of muscle that shorten the sarcomeres by clockwise drilling into the myosin cross-bridges with torque decrease (= force-deficit. Muscle stretch means drawing out the thin filament helices off the cross-bridges under passive counterclockwise rotation with torque increase (= stretch activation. Since each thin filament is anchored by four elastic α-actinin Z-filaments (provided with forceregulating sites for Ca2+ binding, the thin filament rotations change the torsional twist of the four Z-filaments as the “series elastic components”. Large scale models simulate the changes of structure and force in the Z-band by the different Z-filament twisting stages A, B, C, D, E, F and G. Stage D corresponds to the isometric state. The basic phenomena of muscle physiology, i. e. latency relaxation, Fenn-effect, the force-velocity relation, the length-tension relation, unexplained energy, shortening heat, the Huxley-Simmons phases, etc. are explained and interpreted with the help of the model experiments.

  10. Splicing transitions of the anchoring protein ENH during striated muscle development.

    Science.gov (United States)

    Ito, Jumpei; Hashimoto, Taiki; Nakamura, Sho; Aita, Yusuke; Yamazaki, Tomoko; Schlegel, Werner; Takimoto, Koichi; Maturana, Andrés D

    2012-05-04

    The ENH (PDLIM5) protein acts as a scaffold to tether various functional proteins at subcellular sites via PDZ and three LIM domains. Splicing of the ENH primary transcript generates various products with different repertories of protein interaction modules. Three LIM-containing ENH predominates in neonatal cardiac tissue, whereas LIM-less ENHs are abundant in adult hearts, as well as skeletal muscles. Here we examine the timing of splicing transitions of ENH gene products during postnatal heart development and C2C12 myoblast differentiation. Real-time PCR analysis shows that LIM-containing ENH1 mRNA is gradually decreased during postnatal heart development, whereas transcripts with the short exon 5 appear in the late postnatal period and continues to increase until at least one month after birth. The splicing transition from LIM-containing ENH1 to LIM-less ENHs is also observed during the early period of C2C12 differentiation. This transition correlates with the emergence of ENH transcripts with the short exon 5, as well as the expression of myogenin mRNA. In contrast, the shift from the short exon 5 to the exon 7 occurs in the late differentiation period. The timing of this late event corresponds to the appearance of mRNA for the skeletal myosin heavy chain MYH4. Thus, coordinated and stepwise splicing transitions result in the production of specific ENH transcripts in mature striated muscles. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. The Intriguing Dual Lattices of the Myosin Filaments in Vertebrate Striated Muscles: Evolution and Advantage

    Directory of Open Access Journals (Sweden)

    Pradeep K. Luther

    2014-12-01

    Full Text Available Myosin filaments in vertebrate striated muscle have a long roughly cylindrical backbone with cross-bridge projections on the surfaces of both halves except for a short central bare zone. In the middle of this central region the filaments are cross-linked by the M-band which holds them in a well-defined hexagonal lattice in the muscle A-band. During muscular contraction the M-band-defined rotation of the myosin filaments around their long axes influences the interactions that the cross-bridges can make with the neighbouring actin filaments. We can visualise this filament rotation by electron microscopy of thin cross-sections in the bare-region immediately adjacent to the M-band where the filament profiles are distinctly triangular. In the muscles of teleost fishes, the thick filament triangular profiles have a single orientation giving what we call the simple lattice. In other vertebrates, for example all the tetrapods, the thick filaments have one of two orientations where the triangles point in opposite directions (they are rotated by 60° or 180° according to set rules. Such a distribution cannot be developed in an ordered fashion across a large 2D lattice, but there are small domains of superlattice such that the next-nearest neighbouring thick filaments often have the same orientation. We believe that this difference in the lattice forms can lead to different contractile behaviours. Here we provide a historical review, and when appropriate cite recent work related to the emergence of the simple and superlattice forms by examining the muscles of several species ranging back to primitive vertebrates and we discuss the functional differences that the two lattice forms may have.

  12. VAPB/ALS8 MSP ligands regulate striated muscle energy metabolism critical for adult survival in caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Sung Min Han

    Full Text Available Mutations in VAPB/ALS8 are associated with amyotrophic lateral sclerosis (ALS and spinal muscular atrophy (SMA, two motor neuron diseases that often include alterations in energy metabolism. We have shown that C. elegans and Drosophila neurons secrete a cleavage product of VAPB, the N-terminal major sperm protein domain (vMSP. Secreted vMSPs signal through Roundabout and Lar-like receptors expressed on striated muscle. The muscle signaling pathway localizes mitochondria to myofilaments, alters their fission/fusion balance, and promotes energy production. Here, we show that neuronal loss of the C. elegans VAPB homolog triggers metabolic alterations that appear to compensate for muscle mitochondrial dysfunction. When vMSP levels drop, cytoskeletal or mitochondrial abnormalities in muscle induce elevated DAF-16, the Forkhead Box O (FoxO homolog, transcription factor activity. DAF-16 promotes muscle triacylglycerol accumulation, increases ATP levels in adults, and extends lifespan, despite reduced muscle mitochondria electron transport chain activity. Finally, Vapb knock-out mice exhibit abnormal muscular triacylglycerol levels and FoxO target gene transcriptional responses to fasting and refeeding. Our data indicate that impaired vMSP signaling to striated muscle alters FoxO activity, which affects energy metabolism. Abnormalities in energy metabolism of ALS patients may thus constitute a compensatory mechanism counterbalancing skeletal muscle mitochondrial dysfunction.

  13. Distribution of Myosin Attachment Times Predicted from Viscoelastic Mechanics of Striated Muscle

    Directory of Open Access Journals (Sweden)

    Bradley M. Palmer

    2011-01-01

    Full Text Available We demonstrate that viscoelastic mechanics of striated muscle, measured as elastic and viscous moduli, emerge directly from the myosin crossbridge attachment time, tatt, also called time-on. The distribution of tatt was modeled using a gamma distribution with shape parameter, p, and scale parameter, β. At 5 mM MgATP, β was similar between mouse α-MyHC (16.0±3.7 ms and β-MyHC (17.9±2.0 ms, and p was higher (P<0.05 for β-MyHC (5.6±0.4 no units compared to α-MyHC (3.2±0.9. At 1 mM MgATP, p approached a value of 10 in both isoforms, but β rose only in the β-MyHC (34.8±5.8 ms. The estimated mean tatt (i.e., pβ product was longer in the β-MyHC compared to α-MyHC, and became prolonged in both isoforms as MgATP was reduced as expected. The application of our viscoelastic model to these isoforms and varying MgATP conditions suggest that tatt is better modeled as a gamma distribution due to its representing multiple temporal events occurring within tatt compared to a single exponential distribution which assumes only one temporal event within tatt.

  14. Testosterone enhances C-14 2-deoxyglucose uptake by striated muscle. [sex hormones and muscle

    Science.gov (United States)

    Toop, J.; Max, S. R.

    1982-01-01

    The effect of testosterone propionate (TP) on C-14 2-deoxyglucose (C-14 2DG) uptake was studied in the rat levator ani muscle in vivo using the autoradiographic technique. Following a delay of 1 to 3 h after injecting TP, the rate of C-14 2DG uptake in experimental animals began to increase and continued to increase for at least 20 h. The label, which corresponds to C-14 2-deoxyglucose 6-phosphate, as demonstrated by chromatographic analysis of muscle extracts, was uniformly distributed over the entire muscle and was predominantly in muscle fibers, although nonmuscular elements were also labeled. The 1 to 3 h time lag suggests that the TP effect may be genomic, acting via androgen receptors, rather than directly on muscle membranes. Acceleration of glucose uptake may be an important early event in the anabolic response of the rat levator ani muscle to androgens.

  15. Contracture Coupling of Slow Striated Muscle in Non-Ionic Solutions and Replacement of Calcium, Sodium, and Potassium

    Science.gov (United States)

    Irwin, Richard L.; Hein, Manfred M.

    1964-01-01

    The development of contracture related to changes of ionic environment (ionic contracture coupling) has been studied in the slowly responding fibers of frog skeletal muscle. When deprived of external ions for 30 minutes by use of solutions of sucrose, mannitol, or glucose, the slow skeletal muscle fibers, but not the fast, develop pronounced and easily reversible contractures. Partial replacement of the non-ionic substance with calcium or sodium reduces the development of the contractures but replacement by potassium does not. The concentration of calcium necessary to prevent contracture induced by a non-ionic solution is greater than that needed to maintain relaxation in ionic solutions. To suppress the non-ionic-induced contractures to the same extent as does calcium requires several fold higher concentrations of sodium. Two types of ionic contracture coupling occur in slow type striated muscle fibers: (a) a calcium deprivation type which develops maximally at full physiological concentration of external sodium, shows a flow rate dependency for the calcium-depriving fluid, and is lessened when the sodium concentration is decreased by replacement with sucrose; (b) a sodium deprivation type which occurs maximally without external sodium, is lessened by increasing the sodium concentration, and has no flow rate dependency for ion deprivation. Both types of contracture are largely prevented by the presence of sufficient calcium. There thus seem to be calcium- and sodium-linked processes at work in the ionic contracture coupling of slow striated muscle. PMID:14127603

  16. (−)-EPICATECHIN IMPROVES MITOCHONDRIAL RELATED PROTEIN LEVELS AND AMELIORATES OXIDATIVE STRESS IN DYSTROPHIC DELTA SARCOGLYCAN NULL MOUSE STRIATED MUSCLE

    Science.gov (United States)

    Ramirez-Sanchez, Israel; De los Santos, Sergio; Gonzalez-Basurto, Silvia; Canto, Patricia; Mendoza-Lorenzo, Patricia; Palma-Flores, Carlos; Ceballos-Reyes, Guillermo; Villarreal, Francisco; Zentella-Dehesa, Alejandro; Coral-Vazquez, Ramon

    2014-01-01

    Muscular dystrophies (MD) are a group of heterogeneous genetic disorders characterized by progressive striated muscle wasting and degeneration. Although the genetic basis for many of these disorders has been identified, the exact mechanism for disease pathogenesis remains unclear. The presence of oxidative stress (OS) is known to contribute to the pathophysiology and severity of the MD. Mitochondrial dysfunction is observed in MD and likely represents an important determinant of increased OS. Experimental antioxidant therapies have been implemented with the aim of protecting against disease progression, but results from clinical trials have been disappointing. In this study, we explored the capacity of the cacao flavonoid (−)-epicatechin (Epi) to mitigate OS by acting as a positive regulator of mitochondrial structure/function endpoints and redox balance control systems in skeletal and cardiac muscles of dystrophic, δ-sarcoglycan (δ-SG) null mice. Wild type or δ-SG null 2.5 month old male mice were treated via oral gavage with either water (control animals) or Epi (1 mg/kg, twice/day) for 2 weeks. Results evidence a significant normalization of total protein carbonylation, recovery of reduced/oxidized glutathione (GSH/GSSG ratio) and enhanced superoxide dismutase 2, catalase and citrate synthase activities with Epi treatment. These effects were accompanied by increases in protein levels for thiolredoxin, glutathione peroxidase, superoxide dismutase 2, catalase and mitochondrial endpoints. Furthermore, we evidence decreases in heart and skeletal muscle fibrosis, accompanied with an improvement in skeletal muscle function with treatment. These results warrant the further investigation of Epi as a potential therapeutic agent to mitigate MD associated muscle degeneration. PMID:25284161

  17. The ‘Goldilocks Zone’ from a redox perspective - Adaptive versus deleterious responses to oxidative stress in striated muscle

    Directory of Open Access Journals (Sweden)

    Rick J Alleman

    2014-09-01

    Full Text Available Consequences of oxidative stress may be beneficial or detrimental in physiological systems. An organ system’s position on the ‘hormetic curve’ is governed by the source and temporality of reactive oxygen species (ROS production, proximity of ROS to moieties most susceptible to damage, and the capacity of the endogenous cellular ROS scavenging mechanisms. Most importantly, the resilience of the tissue (the capacity to recover from damage is a decisive factor, and this is reflected in the disparate response to ROS in cardiac and skeletal muscle. In myocytes, a high oxidative capacity invariably results in a significant ROS burden which in homeostasis, is rapidly neutralized by the robust antioxidant network. The up-regulation of key pathways in the antioxidant network is a central component of the hormetic response to ROS. Despite such adaptations, persistent oxidative stress over an extended time-frame (e.g. months to years inevitably leads to cumulative damages, maladaptation and ultimately the pathogenesis of chronic diseases. Indeed, persistent oxidative stress in heart and skeletal muscle has been repeatedly demonstrated to have causal roles in the etiology of heart disease and insulin resistance, respectively. Deciphering the mechanisms that underlie the divergence between adaptive and maladaptive responses to oxidative stress remains an active area of research for basic scientists and clinicians alike, as this would undoubtedly lead to novel therapeutic approaches. Here, we provide an overview of major types of ROS in striated muscle and the divergent adaptations that occur in response to them. Emphasis is placed on highlighting newly uncovered areas of research on this topic, with particular focus on the mitochondria, and the diverging roles that ROS play in muscle health (e.g., exercise or preconditioning and disease (e.g., cardiomyopathy, ischemia, metabolic syndrome.

  18. Creatine kinase deficiency in striated mouse muscle : biochemical and physiological studies

    NARCIS (Netherlands)

    Veld, Frank ter

    2003-01-01

    The balance between ATP energy demand and supply is essential in muscle cells. The creatine kinase system fulfils both a transporting and buffering role in muscle cells, whereby fluctuations in ATP free-energy demand can be counterbalanced. Removal of the creatine kinase proteins with the aid of

  19. Histochemical studies on striated muscle fibres of the beige mutant mouse

    DEFF Research Database (Denmark)

    Kirkeby, S

    1982-01-01

    A histological study of cylindric structures in skeletal muscle fibres from beige mice with the Chediak-Higashi syndrome was carried out. The muscle tissue was investigated morphologically with a differential interference contrast microscope and stained for glycogen, lipid, and basophile elements...

  20. Esterases in striated muscle from mice with the Chediak-Higashi syndrome

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D

    1981-01-01

    In this paper a localized strong reaction for non-specific esterase forming cylindric structures is described within skeletal muscle fibres from the beige mouse. It seems from zymograms and protein electrophoresis that this esterase is membrane bound, highly reactive and present in rather small...... amounts within the muscle fibres....

  1. Development of Trichosomoides nasalis (Nematoda: Trichinelloidea) in the murid host: evidence for larval growth in striated muscle fibres

    Science.gov (United States)

    Fall, E.H.; Diagne, M.; Junker, K.; Duplantier, J.M.; Ba, K.; Vallée, I.; Bain, O.

    2012-01-01

    Trichosomoides nasalis (Trichinelloidea) is a parasite of Arvicanthis niloticus (Muridae) in Senegal. Female worms that harbour dwarf males in their uteri, occur in the epithelium of the nasal mucosa. Young laboratory-bred A. niloticus were either fed females containing larvated eggs or intraperitoneally injected with motile first-stage larvae recovered from female uteri. Both resulted in successful infection. Organs examined during rodent necropsy were blood and lymphatic circulatory systems (heart, large vessels, lymphnodes), lungs, liver, kidneys, thoracic and abdominal cavities, thoracic and abdominal muscular walls, diaphragm, tongue, and nasal mucosa. Development to adult nasal stages took three weeks. Recovery of newly hatched larvae from the peritoneal fluid at four-eight hours after oral infection suggests a direct passage from the stomach or intestinal wall to the musculature. However, dissemination through the blood, as observed with Trichinella spiralis, cannot be excluded even though newly hatched larvae of T. nasalis are twice as thick (15 μm). Developing larvae were found in histological sections of the striated muscle of the abdominal and thoracic walls, and larvae in fourth moult were dissected from these sites. Adult females were found in the deep nasal mucosa where mating occurred prior to worms settling in the nasal epithelium. The present study shows a remarkable similarity between T. nasalis and Trichinella species regarding muscle tropism, but the development of T. nasalis is not arrested at the late first-larval stage and does not induce transformation of infected fibres into nurse cells. T. nasalis seems a potential model to study molecular relations between trichinelloid larvae and infected muscle fibres. PMID:22314237

  2. Wheelchair marathon racing causes striated muscle distress in individuals with spinal cord injury.

    Science.gov (United States)

    Ide, M; Tajima, F; Furusawa, K; Mizushima, T; Ogata, H

    1999-03-01

    To assess the effects of wheelchair marathon racing in individuals with spinal cord injury (SCI) on circulating muscle enzymes and myoglobin. Thirty-one men with SCI, including 25 wheelchair marathon athletes and 6 sedentary men. Serum myoglobin (Mb), creatine kinase (CK) activity, and lactate dehydrogenase (LDH) were measured in participants of the 1995 Oita International Wheelchair Marathon Race (42.195 km). Blood samples were obtained 24 hours before, immediately after, 24 hours after, and 7 days after the race. Marathon racing resulted in significant increases in serum Mb, total CK activity, and LDH (pathletes with SCI. Completion of the marathon race did not cause cardiac muscle damage, however. Elevated muscle enzyme levels likely resulted from muscle distress rather than from dehydration.

  3. Impaired contractility of the circular striated urethral sphincter muscle may contribute to stress urinary incontinence in female zucker fatty rats.

    Science.gov (United States)

    Lee, Yung-Chin; Lin, Guiting; Wang, Guifang; Reed-Maldonado, Amanda; Lu, Zhihua; Wang, Lin; Banie, Lia; Lue, Tom F

    2017-08-01

    Obesity has been an independent risk factor for female stress urinary incontinence (SUI), the mechanism of this association remains unknown. The aim of this study is to validate the hypothesis that urethral dysfunction is a possible contributor to SUI in obese women. Ten Zucker Fatty (ZF) (ZUC-Lepr fa 185) and 10 Zucker Lean (ZL) (ZUC-Lepr fa 186) female rats at 12-week-old were used in this experiment. The urethral sphincter rings were harvested from the bladder neck through to the most proximal 2/3 regions. In the organ bath study, single pulses of electrical field stimulation (EFS) were applied. For the fatiguing stimulation, repeated multi-pulse EFS with 70 mA were applied at frequency of 5 Hz for 5 min. Caffeine-containing Krebs' solution was administrated to contract the urethra until the contraction began to reach a plateau for 10 min. We performed immunofluorescence staining of the urethra after the experiment was finished. Compared to ZL controls, ZF rats had significantly impaired muscle contractile activity (MCA) (P female rats had significantly impaired contractile properties of striated urethral sphincter, suggesting urethral dysfunction could be an important contributor to SUI in obesity. © 2016 Wiley Periodicals, Inc.

  4. Impact of a nickel-reduced stainless steel implant on striated muscle microcirculation: a comparative in vivo study.

    Science.gov (United States)

    Kraft, C N; Burian, B; Perlick, L; Wimmer, M A; Wallny, T; Schmitt, O; Diedrich, O

    2001-12-05

    The impairment of skeletal muscle microcirculation by a biomaterial may have profound consequences. With moderately good physical and corrosion characteristics, implant-quality stainless steel is particularly popular in orthopedic surgery. However, due to the presence of a considerable amount of nickel in the alloy, concern has been voiced in respect to local tissue responses. More recently a stainless steel alloy with a significant reduction of nickel has become commercially available. We, therefore, studied in vivo nutritive perfusion and leukocytic response of striated muscle to this nickel-reduced alloy, and compared these results with those of the materials conventional stainless steel and titanium. Using the hamster dorsal skinfold chamber preparation and intravital microscopy, we could demonstrate that reduction of the nickel quantity in a stainless steel implant has a positive effect on local microvascular parameters. Although the implantation of a conventional stainless steel sample led to a distinct and persistent activation of leukocytes combined with disruption of the microvascular endothelial integrity, marked leukocyte extravasation, and considerable venular dilation, animals with a nickel-reduced stainless steel implant showed only a moderate increase of these parameters, with a clear tendency of recuperation. Titanium implants merely caused a transient increase of leukocyte-endothelial cell interaction within the first 120 min, and no significant change in macromolecular leakage, leukocyte extravasation, or venular diameter. Pending biomechanical and corrosion testing, nickel-reduced stainless steel may be a viable alternative to conventional implant-quality stainless steel for biomedical applications. Concerning tolerance by the local vascular system, titanium currently remains unsurpassed. Copyright 2001 John Wiley & Sons, Inc. J Biomed Mater Res 57: 404-412, 2001

  5. Striated muscle activator of Rho signalling (STARS) is reduced in ageing human skeletal muscle and targeted by miR-628-5p.

    Science.gov (United States)

    Russell, A P; Wallace, M A; Kalanon, M; Zacharewicz, E; Della Gatta, P A; Garnham, A; Lamon, S

    2017-06-01

    The striated muscle activator of Rho signalling (STARS) is a muscle-specific actin-binding protein. The STARS signalling pathway is activated by resistance exercise and is anticipated to play a role in signal mechanotransduction. Animal studies have reported a negative regulation of STARS signalling with age, but such regulation has not been investigated in humans. Ten young (18-30 years) and 10 older (60-75 years) subjects completed an acute bout of resistance exercise. Gene and protein expression of members of the STARS signalling pathway and miRNA expression of a subset of miRNAs, predicted or known to target members of STARS signalling pathway, were measured in muscle biopsies collected pre-exercise and 2 h post-exercise. For the first time, we report a significant downregulation of the STARS protein in older subjects. However, there was no effect of age on the magnitude of STARS activation in response to an acute bout of exercise. Finally, we established that miR-628-5p, a miRNA regulated by age and exercise, binds to the STARS 3'UTR to directly downregulate its transcription. This study describes for the first time the resistance exercise-induced regulation of STARS signalling in skeletal muscle from older humans and identifies a new miRNA involved in the transcriptional control of STARS. © 2016 The Authors. Acta Physiologica published by John Wiley & Sons Ltd on behalf of Scandinavian Physiological Society.

  6. Role of mitochondria-cytoskeleton interactions in respiration regulation and mitochondrial organization in striated muscles.

    Science.gov (United States)

    Varikmaa, Minna; Bagur, Rafaela; Kaambre, Tuuli; Grichine, Alexei; Timohhina, Natalja; Tepp, Kersti; Shevchuk, Igor; Chekulayev, Vladimir; Metsis, Madis; Boucher, François; Saks, Valdur; Kuznetsov, Andrey V; Guzun, Rita

    2014-02-01

    The aim of this work was to study the regulation of respiration and energy fluxes in permeabilized oxidative and glycolytic skeletal muscle fibers, focusing also on the role of cytoskeletal protein tubulin βII isotype in mitochondrial metabolism and organization. By analyzing accessibility of mitochondrial ADP, using respirometry and pyruvate kinase-phosphoenolpyruvate trapping system for ADP, we show that the apparent affinity of respiration for ADP can be directly linked to the permeability of the mitochondrial outer membrane (MOM). Previous studies have shown that MOM permeability in cardiomyocytes can be regulated by VDAC interaction with cytoskeletal protein, βII tubulin. We found that in oxidative soleus skeletal muscle the high apparent Km for ADP is associated with low MOM permeability and high expression of non-polymerized βII tubulin. Very low expression of non-polymerized form of βII tubulin in glycolytic muscles is associated with high MOM permeability for adenine nucleotides (low apparent Km for ADP). © 2013.

  7. Protein Kinase CK2 Regulates Leukocyte-Endothelial Cell Interactions during Ischemia and Reperfusion in Striated Skin Muscle.

    Science.gov (United States)

    Ampofo, Emmanuel; Widmaier, Daniela; Montenarh, Mathias; Menger, Michael D; Laschke, Matthias W

    2016-01-01

    Ischemia and reperfusion (I/R) causes tissue injury by inflammatory processes. This involves the upregulation of endothelial surface proteins by phospho-regulated signaling pathways, resulting in enhanced interactions of leukocytes with endothelial cells. Recently, we found that protein kinase CK2 is a crucial regulator of leukocyte-mediated inflammation. Therefore, in this study we investigated the involvement of CK2 in leukocyte-endothelial cell interactions during I/R injury. We first analyzed the inhibitory action of (E)-3-(2,3,4,5-tetrabromophenyl)acrylic acid (TBCA) and CX-4945 on CK2 kinase activity and the viability of human dermal microvascular endothelial cells (HDMEC). To mimic I/R conditions in vitro, HDMEC were exposed to hypoxia and reoxygenation and the expression of adhesion molecules was analyzed by flow cytometry. Moreover, we analyzed in vivo the effect of CK2 inhibition on leukocyte-endothelial cell interactions in the dorsal skinfold chamber model of I/R injury by means of repetitive intravital fluorescence microscopy and immunohistochemistry. We found that TBCA and CX-4945 suppressed the activity of CK2 in HDMEC without affecting cell viability. This was associated with a significant downregulation of E-selectin and intercellular adhesion molecule (ICAM)-1 after in vitro hypoxia and reoxygenation. In vivo, CX-4945 treatment significantly decreased the numbers of adherent and transmigrated leukocytes in striated muscle tissue exposed to I/R. Our findings indicate that CK2 is involved in the regulation of leukocyte-endothelial cell interactions during I/R by mediating the expression of E-selectin and ICAM-1. © 2016 S. Karger AG, Basel.

  8. Structural studies of the waves in striated muscle fibres shortened passively below their slack length.

    Science.gov (United States)

    Brown, L M; González-Serratos, H; Huxley, A F

    1984-06-01

    Isolated skeletal muscle fibres of Rana pipiens were shortened below their slack length by longitudinal compression in a gelatine block, and examined by light and electron microscopy. Waves appeared sharply when the striation spacing (S) reached a critical value (about 2 microns) and increased in height with further compression down to S = 1.6 microns while the resting band pattern was maintained. The waves were plane, helical or irregular, with wave lengths of 5-15 striations. The Z lines usually ran perpendicular to the direction of the myofibrils to form wedge-shaped sarcomeres. The bending occurred mainly in the I band. The thin filaments ran stiffly for about 30 nm from the Z line and then bent toward the A band. The thick filaments bent very slightly, particularly at their tips. The edges of the A band were indistinct, and there were no dense lines at the A-I junction. The appearance of the individual sarcomeres resembled those in relaxed myofibrils at slack length, with no Cm bands. The H zone was only seen occasionally in the slack and wavy fibres examined. In very thin sections the individual thin filaments were seen to end in the pseudo-H zone, and not to cross the M line. There was a single array of not more than six thin filaments round each thick one in transverse sections of the M-line region. These observations suggest that the narrowing of the bands observed in fresh wavy fibres is due mainly to the obliquity of the myofibrils, and that the sarcomere length measured parallel to their axis is longer than the striation spacing. The relationship between sarcomere length and the length of the thin-filament complex is discussed.

  9. Isoform Composition and Gene Expression of Thick and Thin Filament Proteins in Striated Muscles of Mice after 30-Day Space Flight

    Directory of Open Access Journals (Sweden)

    Anna Ulanova

    2015-01-01

    Full Text Available Changes in isoform composition, gene expression of titin and nebulin, and isoform composition of myosin heavy chains as well as changes in titin phosphorylation level in skeletal (m. gastrocnemius, m. tibialis anterior, and m. psoas and cardiac muscles of mice were studied after a 30-day-long space flight onboard the Russian spacecraft “BION-M” number 1. A muscle fibre-type shift from slow-to-fast and a decrease in the content of titin and nebulin in the skeletal muscles of animals from “Flight” group was found. Using Pro-Q Diamond staining, an ~3-fold increase in the phosphorylation level of titin in m. gastrocnemius of mice from the “Flight” group was detected. The content of titin and its phosphorylation level in the cardiac muscle of mice from “Flight” and “Control” groups did not differ; nevertheless an increase (2.2 times in titin gene expression in the myocardium of flight animals was found. The observed changes are discussed in the context of their role in the contractile activity of striated muscles of mice under conditions of weightlessness.

  10. Tachykinins are involved in local reflex modulation of vagally mediated striated muscle contractions in the rat esophagus via tachykinin NK1 receptors.

    Science.gov (United States)

    Shiina, T; Shimizu, Y; Boudaka, A; Wörl, J; Takewaki, T

    2006-05-12

    The objective of the present study was to investigate the hypothesis of the presence of a local neural reflex modulating the vagally mediated contractions of striated muscle in the rat esophagus and to determine the possible involvement of tachykinins in such a local neural reflex. Electrical stimulation of the vagus nerve evoked twitch contractile responses that were abolished by d-tubocurarine (5 microM). Capsaicin (1-100 microM) inhibited the vagally mediated twitch contractions o f the normal rat esophageal preparations concentration-dependently but not those of the neonatally capsaicin-treated ones. NG-nitro-L-arginine methyl ester (100 microM), a nitric oxide synthase inhibitor, blocked the inhibitory effect of capsaicin and exogenous application of a nitric oxide donor (1 mM) inhibited the vagally mediated twitch contractions. Capsaicin suppressed acetylcholine release from the normal rat esophageal segments evoked by vagus nerve stimulation but not that from the neonatally capsaicin-treated ones. A selective tachykinin NK1 receptor antagonist (0.1 or 1 microM) attenuated the inhibitory effect of capsaicin. However, antagonists of tachykinin NK2, tachykinin NK3 and calcitonin gene-related peptide receptors (1 microM) did not have any effect. A tachykinin NK1 receptor agonist (1 or 5 microM) inhibited the vagally mediated twitch contractions, which was prevented by NG-nitro-L-arginine methyl ester (100 microM). These data suggest that the rat esophagus might have a local neural reflex inhibiting the vagally mediated striated muscle motility, which consists of capsaicin-sensitive sensory neurons and myenteric nitrergic neurons, and that tachykinins might be involved in the neural reflex through tachykinin NK1 receptors.

  11. Seasonal changes in isoform composition of giant proteins of thick and thin filaments and titin (connectin) phosphorylation level in striated muscles of bears (Ursidae, Mammalia).

    Science.gov (United States)

    Salmov, N N; Vikhlyantsev, I M; Ulanova, A D; Gritsyna, Yu V; Bobylev, A G; Saveljev, A P; Makariushchenko, V V; Maksudov, G Yu; Podlubnaya, Z A

    2015-03-01

    Seasonal changes in the isoform composition of thick and thin filament proteins (titin, myosin heavy chains (MyHCs), nebulin), as well as in the phosphorylation level of titin in striated muscles of brown bear (Ursus arctos) and hibernating Himalayan black bear (Ursus thibetanus ussuricus) were studied. We found that the changes that lead to skeletal muscle atrophy in bears during hibernation are not accompanied by a decrease in the content of nebulin and intact titin-1 (T1) isoforms. However, a decrease (2.1-3.4-fold) in the content of T2 fragments of titin was observed in bear skeletal muscles (m. gastrocnemius, m. longissimus dorsi, m. biceps) during hibernation. The content of the stiffer N2B titin isoform was observed to increase relative to the content of its more compliant N2BA isoform in the left ventricles of hibernating bears. At the same time, in spite of the absence of decrease in the total content of T1 in the myocardium of hibernating brown bear, the content of T2 fragments decreased ~1.6-fold. The level of titin phosphorylation only slightly increased in the cardiac muscle of hibernating brown bear. In the skeletal muscles of brown bear, the level of titin phosphorylation did not vary between seasons. However, changes in the composition of MyHCs aimed at increasing the content of slow (I) and decreasing the content of fast (IIa) isoforms of this protein during hibernation of brown bear were detected. Content of MyHCs I and IIa in the skeletal muscles of hibernating Himalayan black bear corresponded to that in the skeletal muscles of hibernating brown bear.

  12. Response of the JAK-STAT pathway to mammalian hibernation in 13-lined ground squirrel striated muscle.

    Science.gov (United States)

    Logan, Samantha M; Tessier, Shannon N; Tye, Joann; Storey, Kenneth B

    2016-03-01

    Over the course of the torpor-arousal cycle, hibernators must make behavioral, physiological, and molecular rearrangements in order to keep a very low metabolic rate and retain organ viability. 13-lined ground squirrels (Ictidomys tridecemlineatus) remain immobile during hibernation, and although the mechanisms of skeletal muscle survival are largely unknown, studies have shown minimal muscle loss in hibernating organisms. Additionally, the ground squirrel heart undergoes cold-stress, reversible cardiac hypertrophy, and ischemia-reperfusion without experiencing fatal impairment. This study examines the role of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway in the regulation of cell stress in cardiac and skeletal muscles, comparing euthermic and hibernating ground squirrels. Immunoblots showed a fivefold decrease in JAK3 expression during torpor in skeletal muscle, along with increases in STAT3 and 5 phosphorylation and suppressors of cytokine signaling-1 (SOCS1) protein levels. Immunoblots also showed coordinated increases in STAT1, 3 and 5 phosphorylation and STAT1 inhibitor protein expression in cardiac muscle during torpor. PCR analysis revealed that the activation of these pro-survival signaling cascades did not result in coordinate changes in downstream genes such as anti-apoptotic B-cell lymphoma-2 (Bcl-2) family gene expression. Overall, these results indicate activation of the JAK-STAT pathway in both cardiac and skeletal muscles, suggesting a response to cellular stress during hibernation.

  13. Standardization of metachromatic staining method of myofibrillar ATPase activity of myosin to skeletal striated muscle of mules and donkeys

    Directory of Open Access Journals (Sweden)

    Flora H.F. D'Angelis

    2014-09-01

    Full Text Available This study aims at standardizing the pre-incubation and incubation pH and temperature used in the metachromatic staining method of myofibrillar ATPase activity of myosin (mATPase used for asses and mules. Twenty four donkeys and 10 mules, seven females and three males, were used in the study. From each animal, fragments from the Gluteus medius muscle were collected and percutaneous muscle biopsy was performed using a 6.0-mm Bergström-type needle. In addition to the metachromatic staining method of mATPase, the technique of nicotinamide adenine dinucleotide tetrazolium reductase (NADH-TR was also performed to confirm the histochemical data. The histochemical result of mATPase for acidic pre-incubation (pH=4.50 and alkaline incubation (pH=10.50, at a temperature of 37ºC, yielded the best differentiation of fibers stained with toluidine blue. Muscle fibers were identified according to the following colors: type I (oxidative, light blue, type IIA (oxidative-glycolytic, intermediate blue and type IIX (glycolytic, dark blue. There are no reports in the literature regarding the characterization and distribution of different types of muscle fibers used by donkeys and mules when performing traction work, cargo transportation, endurance sports (horseback riding and marching competitions. Therefore, this study is the first report on the standardization of the mATPase technique for donkeys and mules.

  14. Multi-tasking role of the mechanosensing protein Ankrd2 in the signaling network of striated muscle.

    Directory of Open Access Journals (Sweden)

    Anna Belgrano

    Full Text Available Ankrd2 (also known as Arpp together with Ankrd1/CARP and DARP are members of the MARP mechanosensing proteins that form a complex with titin (N2A/calpain 3 protease/myopalladin. In muscle, Ankrd2 is located in the I-band of the sarcomere and moves to the nucleus of adjacent myofibers on muscle injury. In myoblasts it is predominantly in the nucleus and on differentiation shifts from the nucleus to the cytoplasm. In agreement with its role as a sensor it interacts both with sarcomeric proteins and transcription factors.Expression profiling of endogenous Ankrd2 silenced in human myotubes was undertaken to elucidate its role as an intermediary in cell signaling pathways. Silencing Ankrd2 expression altered the expression of genes involved in both intercellular communication (cytokine-cytokine receptor interaction, endocytosis, focal adhesion, tight junction, gap junction and regulation of the actin cytoskeleton and intracellular communication (calcium, insulin, MAPK, p53, TGF-β and Wnt signaling. The significance of Ankrd2 in cell signaling was strengthened by the fact that we were able to show for the first time that Nkx2.5 and p53 are upstream effectors of the Ankrd2 gene and that Ankrd1/CARP, another MARP member, can modulate the transcriptional ability of MyoD on the Ankrd2 promoter. Another novel finding was the interaction between Ankrd2 and proteins with PDZ and SH3 domains, further supporting its role in signaling. It is noteworthy that we demonstrated that transcription factors PAX6, LHX2, NFIL3 and MECP2, were able to bind both the Ankrd2 protein and its promoter indicating the presence of a regulatory feedback loop mechanism.In conclusion we demonstrate that Ankrd2 is a potent regulator in muscle cells affecting a multitude of pathways and processes.

  15. S100A1: A Regulator of Striated Muscle Sarcoplasmic Reticulum Ca2+ Handling, Sarcomeric, and Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Mirko Völkers

    2010-01-01

    S100A1 has further been detected at different sites within the cardiac sarcomere indicating potential roles in myofilament function. More recently, a study reported a mitochondrial location of S100A1 in cardiomyocytes. Additionally, normalizing the level of S100A1 protein by means of viral cardiac gene transfer in animal heart failure models resulted in a disrupted progression towards cardiac failure and enhanced survival. This brief review is confined to the physiological and pathophysiological relevance of S100A1 in cardiac and skeletal muscle Ca2+ handling with a particular focus on its potential as a molecular target for future therapeutic interventions.

  16. Microvascular response of striated muscle to metal debris. A comparative in vivo study with titanium and stainless steel.

    Science.gov (United States)

    Kraft, C N; Diedrich, O; Burian, B; Schmitt, O; Wimmer, M A

    2003-01-01

    Wear products of metal implants are known to induce biological events which may have profound consequences for the microcirculation of skeletal muscle. Using the skinfold chamber model and intravital microscopy we assessed microcirculatory parameters in skeletal muscle after confrontation with titanium and stainless-steel wear debris, comparing the results with those of bulk materials. Implantation of stainless-steel bulk and debris led to a distinct activation of leukocytes combined with a disruption of the microvascular endothelial integrity and massive leukocyte extravasation. While animals with bulk stainless steel showed a tendency to recuperation, stainless-steel wear debris induced such severe inflammation and massive oedema that the microcirculation broke down within 24 hours after implantation. Titanium bulk caused only a transient increase in leukocyte-endothelial cell interaction within the first 120 minutes and no significant change in macromolecular leakage, leukocyte extravasation or venular diameter. Titanium wear debris produced a markedly lower inflammatory reaction than stainless-steel bulk, indicating that a general benefit of bulk versus debris could not be claimed. Depending on its constituents, wear debris is capable of eliciting acute inflammation which may result in endothelial damage and subsequent failure of microperfusion. Our results indicate that not only the bulk properties of orthopaedic implants but also the microcirculatory implications of inevitable wear debris play a pivotal role in determining the biocompatibility of an implant.

  17. Quantitative comparison of striated toolmarks.

    Science.gov (United States)

    Baiker, Martin; Keereweer, Isaac; Pieterman, René; Vermeij, Erwin; van der Weerd, Jaap; Zoon, Peter

    2014-09-01

    A comparison of striated toolmarks by human examiners is dependent on the experience of the expert and includes a subjective judgment within the process. In this article an automated method is presented for objective comparison of striated marks of screwdrivers. The combination of multi-scale registration (alignment) of toolmarks, that accounts for shift and scaling, with global cross correlation as objective toolmark similarity metric renders the approach robust with respect to large differences in angle of attack and moderate toolmark compression. In addition, a strategy to distinguish between relevant and non-relevant spatial frequency ranges (geometric details) is presented. The performance of the method is evaluated using 3D topography scans of experimental toolmarks of 50 unused screwdrivers. Known match and known non-match similarity distributions are estimated including a large range of angles of attack (15, 30, 45, 60 and 75°) for the known matches. It is demonstrated that the system has high discriminatory power, even if the toolmarks are made at a difference in angle of attack of larger than 15°. The probability distributions are subsequently employed to determine likelihood ratios. A comparison of the results of the automated method with the outcome of a toolmark comparison experiment involving three experienced toolmark examiners reveals, that the automated system is more powerful in correctly supporting the hypothesis of common origin for toolmarks with a large difference in angle of attack (30°). In return, the rate of toolmark comparisons that yield incorrect support for the hypothesis of common origin is higher for the automated system. In addition, a comparison between estimating known match and known non-match distributions using 2D and 3D data is presented and it is shown that for toolmarks of unused screwdrivers, relying on 3D is slightly better than relying on 2D data. Finally, a comparison between estimating known match and known non

  18. Distinctive serum miRNA profile in mouse models of striated muscular pathologies.

    Directory of Open Access Journals (Sweden)

    Nicolas Vignier

    Full Text Available Biomarkers are critically important for disease diagnosis and monitoring. In particular, close monitoring of disease evolution is eminently required for the evaluation of therapeutic treatments. Classical monitoring methods in muscular dystrophies are largely based on histological and molecular analyses of muscle biopsies. Such biopsies are invasive and therefore difficult to obtain. The serum protein creatine kinase is a useful biomarker, which is however not specific for a given pathology and correlates poorly with the severity or course of the muscular pathology. The aim of the present study was the systematic evaluation of serum microRNAs (miRNAs as biomarkers in striated muscle pathologies. Mouse models for five striated muscle pathologies were investigated: Duchenne muscular dystrophy (DMD, limb-girdle muscular dystrophy type 2D (LGMD2D, limb-girdle muscular dystrophy type 2C (LGMD2C, Emery-Dreifuss muscular dystrophy (EDMD and hypertrophic cardiomyopathy (HCM. Two-step RT-qPCR methodology was elaborated, using two different RT-qPCR miRNA quantification technologies. We identified miRNA modulation in the serum of all the five mouse models. The most highly dysregulated serum miRNAs were found to be commonly upregulated in DMD, LGMD2D and LGMD2C mouse models, which all exhibit massive destruction of striated muscle tissues. Some of these miRNAs were down rather than upregulated in the EDMD mice, a model without massive myofiber destruction. The dysregulated miRNAs identified in the HCM model were different, with the exception of one dysregulated miRNA common to all pathologies. Importantly, a specific and distinctive circulating miRNA profile was identified for each studied pathological mouse model. The differential expression of a few dysregulated miRNAs in the DMD mice was further evaluated in DMD patients, providing new candidates of circulating miRNA biomarkers for DMD.

  19. Fiber types in the striated urethral and anal sphincters

    DEFF Research Database (Denmark)

    Schrøder, H D; Reske-Nielsen, E

    1983-01-01

    Seven normal human striated urethral and anal sphincters obtained by autopsy were examined using histochemical techniques. In both the urethral sphincter and the subcutaneous (s.c.) and superficial part of the anal sphincter a characteristic pattern with two populations of muscle fibers, abundant...

  20. Gluteal muscle activation during common therapeutic exercises.

    Science.gov (United States)

    Distefano, Lindsay J; Blackburn, J Troy; Marshall, Stephen W; Padua, Darin A

    2009-07-01

    Experimental laboratory study. To quantify and compare electromyographic signal amplitude of the gluteus maximus and gluteus medius muscles during exercises of varying difficulty to determine which exercise most effectively recruits these muscles. Gluteal muscle weakness has been proposed to be associated with lower extremity injury. Exercises to strengthen the gluteal muscles are frequently used in rehabilitation and injury prevention programs without scientific evidence regarding their ability to activate the targeted muscles. Surface electromyography was used to quantify the activity level of the gluteal muscles in 21 healthy, physically active subjects while performing 12 exercises. Repeated-measures analyses of variance were used to compare normalized mean signal amplitude levels, expressed as a percent of a maximum voluntary isometric contraction (MVIC), across exercises. Significant differences in signal amplitude among exercises were noted for the gluteus medius (F5,90 = 7.9, Pgluteus maximus (F5,95 = 8.1, PGluteus medius activity was significantly greater during side-lying hip abduction (mean +/- SD, 81% +/- 42% MVIC) compared to the 2 types of hip clam (40% +/- 38% MVIC, 38% +/- 29% MVIC), lunges (48% +/- 21% MVIC), and hop (48% +/- 25% MVIC) exercises. The single-limb squat and single-limb deadlift activated the gluteus medius (single-limb squat, 64% +/- 25% MVIC; single-limb deadlift, 59% +/- 25% MVIC) and maximus (single-limb squat, 59% +/- 27% MVIC; single-limb deadlift, 59% +/- 28% MVIC) similarly. The gluteus maximus activation during the single-limb squat and single-limb deadlift was significantly greater than during the lateral band walk (27% +/- 16% MVIC), hip clam (34% +/- 27% MVIC), and hop (forward, 35% +/- 22% MVIC; transverse, 35% +/- 16% MVIC) exercises. The best exercise for the gluteus medius was side-lying hip abduction, while the single-limb squat and single-limb deadlift exercises led to the greatest activation of the gluteus maximus

  1. Dose-dependent separation of the hypertrophic and myotoxic effects of the β2-adrenergic receptor agonist clenbuterol in rat striated muscles.

    Science.gov (United States)

    Burniston, Jatin G; WA, Clark; Tan, Lip-Bun; Goldspink, David F

    2007-01-01

    Muscle growth in response to large doses (i.e., mg.kg-1) of β2-adrenergic receptor agonists has been consistently reported. However, such doses may also induce myocyte death in the heart and skeletal muscles and hence may not be applicable safe doses for humans. Here, we report the hypertrophic and myotoxic effects of different doses of clenbuterol. Rats were infused with clenbuterol (range, 1 μg to 1 mg.kg-1) for 14 days. Muscle protein content, myofiber cross-sectional area and myocyte death were then investigated. Infusions of ≥10 μg.kg-1.d-1 of clenbuterol significantly (Pclenbuterol in the absence of myocyte death. PMID:16411205

  2. The evolutionary origin of bilaterian smooth and striated myocytes

    Science.gov (United States)

    Brunet, Thibaut; Fischer, Antje HL; Steinmetz, Patrick RH; Lauri, Antonella; Bertucci, Paola; Arendt, Detlev

    2016-01-01

    The dichotomy between smooth and striated myocytes is fundamental for bilaterian musculature, but its evolutionary origin is unsolved. In particular, interrelationships of visceral smooth muscles remain unclear. Absent in fly and nematode, they have not yet been characterized molecularly outside vertebrates. Here, we characterize expression profile, ultrastructure, contractility and innervation of the musculature in the marine annelid Platynereis dumerilii and identify smooth muscles around the midgut, hindgut and heart that resemble their vertebrate counterparts in molecular fingerprint, contraction speed and nervous control. Our data suggest that both visceral smooth and somatic striated myocytes were present in the protostome-deuterostome ancestor and that smooth myocytes later co-opted the striated contractile module repeatedly – for example, in vertebrate heart evolution. During these smooth-to-striated myocyte conversions, the core regulatory complex of transcription factors conveying myocyte identity remained unchanged, reflecting a general principle in cell type evolution. DOI: http://dx.doi.org/10.7554/eLife.19607.001 PMID:27906129

  3. Morphoquantitative effects on striated skeletal muscle of Wistar rats (Rattus norvegicus subjected to a diet utilized in young children from rural Mozambique

    Directory of Open Access Journals (Sweden)

    Catarina Tivane Nhamposse

    2016-12-01

    Full Text Available Mozambique is a country of sub-Saharan Africa where about 55% of the population lives below the absolute poverty line with less than one meal a day hardly surviving based on by donations. Food insecurity and precarious nutrition, especially in children, are factors that induce to levels of 44% of chronic malnutrition (CD in infants. The CD is responsible for one third of deaths in children under five years. The aim of this study was to evaluate the morphoquantitative effects in gastrocnemius muscle of Wistar rats fed with a diet utilized by people from rural areas of Mozambique. We used 75 Wistar rats weighing approximately 300 g divided in three groups: nourished or control (N, malnourished (D, and Mozambique or experimental group (M, measured at birth and at weaning. The animals were kept under the same housing conditions, temperature, humidity and light, but with different diets depending on the group: Group N with normal protein diet (20% casein, Group D with hypo-proteic diet (5% casein, and Group M with Mozambique diet. In all groups we evaluated the body mass at birth and weaning, and collected the right gastrocnemius muscle of male pups at weaning for analysis. Serial sections of 10 μm were performed in a cryostat prior to histology techniques of hematoxylin and eosin, picrosirius, NADH-tr and analysis in transmission electron microscope. Statistical evaluation was determined by analysis of variance (ANOVA and Tukey tests. Significant differences were found between groups N, D and M. In group M were observed a great variation of body mass that was approximately similar to group D; Group M also showed the same changes in muscle fiber which exhibited round-shaped contours, and predominance of type III collagen, similarly to malnourished group (D. Ultra-structurally, animals from Mozambique displayed a disorganization of the Z lines of sarcomeres, myofibrils disruption, decreased cross-sectional area and a smaller proportion of

  4. The Time Course of the Loss and Recovery of Contracture Ability in Frog Striated Muscle Following Exposure to Ca-Free Solutions

    Science.gov (United States)

    Milligan, J. V.

    1965-01-01

    Using area under the contracture curve to quantitate contractures, the diffusion coefficient of calcium ions within the frog toe muscle during washout in a calcium-free solution and subsequent recovery after reintroduction of calcium to the bathing solution was calculated to be about 2 x 10-6 cm2/sec. The diffusion coefficient measured during washout was found to be independent of temperature or initial calcium ion concentration. During recovery it was found to decrease if the temperature was lowered. This was likely due to the repolarization occurring after the depolarizing effect of the calcium-free solution. The relation between contracture area and [Ca]o was found to be useful over a wider range than that between maximum tension and [Ca]o. The normalized contracture areas were larger at lower calcium concentrations if the contractures were produced with cold potassium solutions or if NO3 replaced Cl in the bathing solutions. Decreasing the potassium concentration of the contracture solution to 50 mM from 115 mM did not change the relation between [Ca]o and the normalized area. If the K concentration of the bathing solution was increased, the areas were decreased at lower concentrations of Ca. PMID:14324991

  5. Interstitial cells of Cajal in the striated musculature of the mouse esophagus

    DEFF Research Database (Denmark)

    Rumessen, J J; de Kerchove d'Exaerde, A; Mignon, S

    2001-01-01

    Interstitial cells of Cajal (ICC) are important regulatory cells in the smooth muscle coats of the digestive tract. Expression of the Kit receptor tyrosine kinase was used in this study as a marker to study their distribution and development in the striated musculature of the mouse esophagus...... scarce in both muscle layers of the thoracic esophagus, while their number increased steeply toward the cardia in the striated portion of the intraabdominal esophagus. They did not form networks and had no relationship with intrinsic myenteric ganglia and motor end-plates. They were often close to nerve...... but absent in adult ICC-deficient KitW-lacZ/KitWv mice. Interstitial cells of Cajal were identified by electron microscopy by their ultrastructure in the striated muscle of the esophagus and exhibited Xgal labeling, while fibroblasts and muscle cells were unlabeled. Interstitial cells of Cajal are scattered...

  6. Muscle biopsies from human muscle diseases with myopathic pathology reveal common alterations in mitochondrial function.

    Science.gov (United States)

    Sunitha, Balaraju; Gayathri, Narayanappa; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Nalini, Atchayaram; Padmanabhan, Balasundaram; Srinivas Bharath, Muchukunte Mukunda

    2016-07-01

    Muscle diseases are clinically and genetically heterogeneous and manifest as dystrophic, inflammatory and myopathic pathologies, among others. Our previous study on the cardiotoxin mouse model of myodegeneration and inflammation linked muscle pathology with mitochondrial damage and oxidative stress. In this study, we investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies from muscle disease patients, represented by dysferlinopathy (dysfy) (dystrophic pathology; n = 43), polymyositis (PM) (inflammatory pathology; n = 24), and distal myopathy with rimmed vacuoles (DMRV) (distal myopathy; n = 31) were analyzed. Mitochondrial damage (ragged blue and COX-deficient fibers) was revealed in dysfy, PM, and DMRV cases by enzyme histochemistry (SDH and COX-SDH), electron microscopy (vacuolation and altered cristae) and biochemical assays (significantly increased ADP/ATP ratio). Proteomic analysis of muscle mitochondria from all three muscle diseases by isobaric tag for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis demonstrated down-regulation of electron transport chain (ETC) complex subunits, assembly factors and Krebs cycle enzymes. Interestingly, 80 of the under-expressed proteins were common among the three pathologies. Assay of ETC and Krebs cycle enzyme activities validated the MS data. Mitochondrial proteins from muscle pathologies also displayed higher tryptophan (Trp) oxidation and the same was corroborated in the cardiotoxin model. Molecular modeling predicted Trp oxidation to alter the local structure of mitochondrial proteins. Our data highlight mitochondrial alterations in muscle pathologies, represented by morphological changes, altered mitochondrial proteome and protein oxidation, thereby establishing the role of mitochondrial damage in human muscle diseases. We investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies

  7. Disposition of the striated urethral sphincter and its relation to the prostate in human fetuses

    Directory of Open Access Journals (Sweden)

    Luciano A. Favorito

    2007-06-01

    Full Text Available OBJECTIVE: To describe the arrangement of the muscle fibers of the striated urethral sphincter and its relationship with the prostate during the fetal period in humans. MATERIALS AND METHODS: We analyzed 17 prostates from well preserved fresh human fetuses ranging in age from 10 to 31 weeks postconception (WPC. Transversal sections were obtained and stained with Gomori's trichrome and immunolabeled with anti alpha-actin antibody. RESULTS: We found that the urethral striated sphincter (rabdosphincter is located on the periphery of the smooth muscle and there was no merge between striated and smooth muscle fibers in any fetal period. In the prostate apex, the striated sphincter shows a circular arrangement and covers completely the urethra externally, whereas adjacent to verumontanum, it looks like a "horseshoe" and covers only the anterior and lateral surfaces of the urethra. Near the bladder neck, in fetuses younger than 20 WPC, we have found striated muscle fibers only at the anterior surface of the prostate, while in fetuses older than 20 WPC, the striated muscle covers the anterior and lateral surfaces of the prostate. CONCLUSIONS: The urethral sphincter muscle covers the anterior and lateral surfaces of the urethra in all fetuses older than 20 WPC, close to the bladder neck and at the distal prostate. In the region of the prostate apex, the urethral sphincter covers completely the urethra circularly. The knowledge of the normal anatomy of the urethral sphincter in fetuses could be important to understand its alterations in congenital anomalies involving the base of the bladder, the bladder neck and the proximal urethra.

  8. Skeletal Muscle Channelopathies: Rare Disorders with Common Pediatric Symptoms.

    Science.gov (United States)

    Matthews, Emma; Silwal, Arpana; Sud, Richa; Hanna, Michael G; Manzur, Adnan Y; Muntoni, Francesco; Munot, Pinki

    2017-09-01

    To ascertain the presenting symptoms of children with skeletal muscle channelopathies to promote early diagnosis and treatment. Retrospective case review of 38 children with a skeletal muscle channelopathy attending the specialist pediatric neuromuscular service at Great Ormond Street Hospital over a 15-year period. Gait disorder and leg cramps are a frequent presentation of myotonic disorders (19 of 29). Strabismus or extraocular myotonia (9 of 19) and respiratory and/or bulbar symptoms (11 of 19) are common among those with sodium channelopathy. Neonatal hypotonia was observed in periodic paralysis. Scoliosis and/or contractures were demonstrated in 6 of 38 children. School attendance or ability to engage fully in all activities was often limited (25 of 38). Children with skeletal muscle channelopathies frequently display symptoms that are uncommon in adult disease. Any child presenting with abnormal gait, leg cramps, or strabismus, especially if intermittent, should prompt examination for myotonia. Those with sodium channel disease should be monitored for respiratory or bulbar complications. Neonatal hypotonia can herald periodic paralysis. Early diagnosis is essential for children to reach their full educational potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Common Laundry Detergent Ingredient May Help Preserve Muscle Tissue After Severe Injury

    Science.gov (United States)

    ... Spotlight on Research Spotlight on Research Common Laundry Detergent Ingredient May Help Preserve Muscle Tissue After Severe ... 2013 A compound commonly found in household laundry detergents may help preserve muscle tissue after a severe ...

  10. Interstitial cells of Cajal in the striated musculature of the mouse esophagus

    DEFF Research Database (Denmark)

    Rumessen, J J; de Kerchove d'Exaerde, A; Mignon, S

    2001-01-01

    Interstitial cells of Cajal (ICC) are important regulatory cells in the smooth muscle coats of the digestive tract. Expression of the Kit receptor tyrosine kinase was used in this study as a marker to study their distribution and development in the striated musculature of the mouse esophagus. Sec...

  11. Relative Activity of Abdominal Muscles during Commonly Prescribed Strengthening Exercises.

    Science.gov (United States)

    Willett, Gilbert M.; Hyde, Jennifer E.; Uhrlaub, Michael B.; Wendel, Cara L.; Karst, Gregory M.

    2001-01-01

    Examined the relative electromyographic (EMG) activity of upper and lower rectus abdominis (LRA) and external oblique (EOA) muscles during five abdominal strengthening exercises. Isometric and dynamic EMG data indicated that abdominal strengthening exercises activated various abdominal muscle groups. For the LRA and EOA muscle groups, there were…

  12. How common is pelvic floor muscle atrophy after vaginal childbirth?

    Science.gov (United States)

    Dixit, P; Shek, K L; Dietz, H P

    2014-01-01

    To determine if there is evidence of levator ani atrophy in primiparous women. This was a prospective observational cohort study of 202 primiparous women recruited between November 2006 and March 2008. Translabial ultrasound volumes were obtained at 36-38 weeks' gestation and at a mean of 4.5 months postpartum. Peripartum changes in bladder neck elevation and reduction of anteroposterior hiatal diameter on pelvic floor muscle contraction (PFMC) and changes in muscle thickness were analyzed. Of the 202 participants enrolled, 158 (78%) completed the study. There was a significant reduction in bladder neck elevation (P = 0.001) and change in anteroposterior hiatal diameter (P = 0.03) on PFMC when comparing antenatal and postnatal results, the latter being significantly associated with delivery mode (P = 0.013). No significant changes were detected in muscle thickness (P = 0.76). There is a reduction in sonographic measures of pelvic floor function after childbirth, but muscle atrophy is unlikely to be a significant factor. Copyright © 2013 ISUOG. Published by John Wiley & Sons Ltd.

  13. Shoulder muscle activity and function in common shoulder rehabilitation exercises.

    Science.gov (United States)

    Escamilla, Rafael F; Yamashiro, Kyle; Paulos, Lonnie; Andrews, James R

    2009-01-01

    The rotator cuff performs multiple functions during shoulder exercises, including glenohumeral abduction, external rotation (ER) and internal rotation (IR). The rotator cuff also stabilizes the glenohumeral joint and controls humeral head translations. The infraspinatus and subscapularis have significant roles in scapular plane abduction (scaption), generating forces that are two to three times greater than supraspinatus force. However, the supraspinatus still remains a more effective shoulder abductor because of its more effective moment arm. Both the deltoids and rotator cuff provide significant abduction torque, with an estimated contribution up to 35-65% by the middle deltoid, 30% by the subscapularis, 25% by the supraspinatus, 10% by the infraspinatus and 2% by the anterior deltoid. During abduction, middle deltoid force has been estimated to be 434 N, followed by 323 N from the anterior deltoid, 283 N from the subscapularis, 205 N from the infraspinatus, and 117 N from the supraspinatus. These forces are generated not only to abduct the shoulder but also to stabilize the joint and neutralize the antagonistic effects of undesirable actions. Relatively high force from the rotator cuff not only helps abduct the shoulder but also neutralizes the superior directed force generated by the deltoids at lower abduction angles. Even though anterior deltoid force is relatively high, its ability to abduct the shoulder is low due to a very small moment arm, especially at low abduction angles. The deltoids are more effective abductors at higher abduction angles while the rotator cuff muscles are more effective abductors at lower abduction angles. During maximum humeral elevation the scapula normally upwardly rotates 45-55 degrees, posterior tilts 20-40 degrees and externally rotates 15-35 degrees. The scapular muscles are important during humeral elevation because they cause these motions, especially the serratus anterior, which contributes to scapular upward rotation

  14. Bones, Muscles, and Joints: The Musculoskeletal System

    Science.gov (United States)

    ... Skeletal muscles are called striated (pronounced: STRY-ay-ted) because they are made up of fibers that ... blood through your body. When we smile and talk, muscles are helping us communicate, and when we ...

  15. Immune Response and Mitochondrial Metabolism Are Commonly Deregulated in DMD and Aging Skeletal Muscle

    Science.gov (United States)

    Ramstein, Gérard; Steenman, Marja; Fayet, Guillemette; Chevalier, Catherine; Jourdon, Philippe; Houlgatte, Rémi; Savagner, Frédérique; Pereon, Yann

    2011-01-01

    Duchenne Muscular Dystrophy (DMD) is a complex process involving multiple pathways downstream of the primary genetic insult leading to fatal muscle degeneration. Aging muscle is a multifactorial neuromuscular process characterized by impaired muscle regeneration leading to progressive atrophy. We hypothesized that these chronic atrophying situations may share specific myogenic adaptative responses at transcriptional level according to tissue remodeling. Muscle biopsies from four young DMD and four AGED subjects were referred to a group of seven muscle biopsies from young subjects without any neuromuscular disorder and explored through a dedicated expression microarray. We identified 528 differentially expressed genes (out of 2,745 analyzed), of which 328 could be validated by an exhaustive meta-analysis of public microarray datasets referring to DMD and Aging in skeletal muscle. Among the 328 validated co-expressed genes, 50% had the same expression profile in both groups and corresponded to immune/fibrosis responses and mitochondrial metabolism. Generalizing these observed meta-signatures with large compendia of public datasets reinforced our results as they could be also identified in other pathological processes and in diverse physiological conditions. Focusing on the common gene signatures in these two atrophying conditions, we observed enrichment in motifs for candidate transcription factors that may coordinate either the immune/fibrosis responses (ETS1, IRF1, NF1) or the mitochondrial metabolism (ESRRA). Deregulation in their expression could be responsible, at least in part, for the same transcriptome changes initiating the chronic muscle atrophy. This study suggests that distinct pathophysiological processes may share common gene responses and pathways related to specific transcription factors. PMID:22096509

  16. Electromyographical Comparison of Muscle Activation Patterns Across Three Commonly Performed Kettlebell Exercises.

    Science.gov (United States)

    Lyons, Brian C; Mayo, Jerry J; Tucker, W Steven; Wax, Ben; Hendrix, Russell C

    2017-09-01

    Lyons, BC, Mayo, JJ, Tucker, WS, Wax, B, and Hendrix, RC. Electromyographical comparison of muscle activation patterns across 3 commonly performed kettlebell exercises. J Strength Cond Res 31(9): 2363-2370, 2017-The purpose of this study was to compare the muscle activation patterns of 3 different kettlebell (KB) exercises using electromyography (EMG). Fourteen resistance-trained subjects completed a 1-arm swing (Swing), 1-arm swing style snatch (Snatch), and a 1-arm clean (Clean) using a self-selected 8 to 10 repetition maximum load for each exercise. Trial sessions consisted of subjects performing 5 repetitions of each KB exercise. Mean EMG was used to assess the muscle activation of the biceps brachii, anterior deltoid, posterior deltoid, erector spinae (ES), vastus lateralis (VL), biceps femoris, contralateral external oblique (EO), and gluteus maximus during each lift using surface electrodes. The mean EMG was normalized using maximal voluntary contractions obtained from manual muscle testing. Repeated-measures analysis of variance revealed a significant difference in the muscle activation patterns of the ES (Swing > Snatch), EO (Snatch, Clean > Swing), and VL (Swing > Clean) across the 3 KB exercises. We conclude that although the KB Swing, Snatch, and Clean are total body exercises, they place different demands on the ES, contralateral EO, and the VL. Therefore, KBs represent an authentic alternative for lifters, and the Swing, Snatch, and Clean are not redundant exercises.

  17. Origins of Common Neural Inputs to Different Compartments of the Extensor Digitorum Communis Muscle.

    Science.gov (United States)

    Dai, Chenyun; Shin, Henry; Davis, Bradley; Hu, Xiaogang

    2017-10-24

    The extensor digitorum communis (EDC) is a multi-compartment muscle that allows dexterous extension of the four digits. However, the level of common input shared across different compartments of this muscle is not well understood. We seek to systematically characterize the common and independent neural input, originated from different levels of the central nervous system, to the different compartments. A motor unit (MU) coherence analysis was used to capture the different sources of common and independent input, by quantifying the coherence of MU discharge between different compartments. The MU activities were obtained from decomposition of surface electromyogram recordings. Our results showed that the MU coherence across different muscle compartments accounted for only a small proportion (60%) in the delta (1-4 Hz) band. Additionally, cross-compartment coherence between the middle and ring-little fingers tended to be higher as compared with other finger combinations. Overall, the common input shared across different fingers are found to be at low to moderate levels, in comparison with the total input, which allows dexterous control of individual digits with some degree of coordinated control of multiple digits.

  18. A common cellular basis for muscle regeneration in arthropods and vertebrates.

    Science.gov (United States)

    Konstantinides, Nikolaos; Averof, Michalis

    2014-02-14

    Many animals are able to regenerate amputated or damaged body parts, but it is unclear whether different taxa rely on similar strategies. Planarians and vertebrates use different strategies, based on pluripotent versus committed progenitor cells, respectively, to replace missing tissues. In most animals, however, we lack the experimental tools needed to determine the origin of regenerated tissues. Here, we present a genetically tractable model for limb regeneration, the crustacean Parhyale hawaiensis. We demonstrate that regeneration in Parhyale involves lineage-committed progenitors, as in vertebrates. We discover Pax3/7-expressing muscle satellite cells, previously identified only in chordates, and show that these cells are a source of regenerating muscle in Parhyale. These similarities point to a common cellular basis of regeneration, dating back to the common ancestors of bilaterians.

  19. RYR1-related rhabdomyolysis: A common but probably underdiagnosed manifestation of skeletal muscle ryanodine receptor dysfunction.

    Science.gov (United States)

    Voermans, N C; Snoeck, M; Jungbluth, H

    2016-10-01

    Mutations in the skeletal muscle ryanodine receptor (RYR1) gene are associated with a wide spectrum of inherited myopathies presenting throughout life. Malignant hyperthermia susceptibility (MHS)-related RYR1 mutations have emerged as a common cause of exertional rhabdomyolysis, accounting for up to 30% of rhabdomyolysis episodes in otherwise healthy individuals. Common triggers are exercise and heat and, less frequently, viral infections, alcohol and drugs. Most subjects are normally strong and have no personal or family history of malignant hyperthermia. Heat intolerance and cold-induced muscle stiffness may be a feature. Recognition of this (probably not uncommon) rhabdomyolysis cause is vital for effective counselling, to identify potentially malignant hyperthermia-susceptible individuals and to adapt training regimes. Studies in various animal models provide insights regarding possible pathophysiological mechanisms and offer therapeutic perspectives. Copyright © 2016. Published by Elsevier Masson SAS.

  20. Increased central common drive to ankle plantar flexor and dorsiflexor muscles during visually guided gait

    DEFF Research Database (Denmark)

    Jensen, Peter; Jensen, Nicole Jacqueline; Terkildsen, Cecilie Ulbæk

    2018-01-01

    participated in the study. Electromyography (EMG) from the Soleus (Sol), medial Gastrocnemius (MG), and the distal and proximal ends of the Tibialis anterior (TA) muscles and electroencephalography (EEG) from Cz were recorded while subjects walked on a motorized treadmill. A visually guided walking task, where......When we walk in a challenging environment, we use visual information to modify our gait and place our feet carefully on the ground. Here, we explored how central common drive to ankle muscles changes in relation to visually guided foot placement. Sixteen healthy adults aged 23 ± 5 years...... and gamma frequencies during the visually guided walking compared to normal walking. EEG-TA EMG coherence also increased, but the group average did not reach statistical significance. The results indicate that the corticospinal tract is involved in modifying gait when visually guided placement of the foot...

  1. Glutamine Synthetase in Muscle Is Required for Glutamine Production during Fasting and Extrahepatic Ammonia Detoxification

    NARCIS (Netherlands)

    He, Youji; Hakvoort, Theodorus B. M.; Köhler, S. Eleonore; Vermeulen, Jacqueline L. M.; de Waart, D. Rudi; de Theije, Chiel; ten Have, Gabrie A. M.; van Eijk, Hans M. H.; Kunne, Cindy; Labruyere, Wilhelmina T.; Houten, Sander M.; Sokolovic, Milka; Ruijter, Jan M.; Deutz, Nicolaas E. P.; Lamers, Wouter H.

    2010-01-01

    The main endogenous source of glutamine is de novo synthesis in striated muscle via the enzyme glutamine synthetase (GS). The mice in which GS is selectively but completely eliminated from striated muscle with the Cre-loxP strategy (GS-KO/M mice) are, nevertheless, healthy and fertile. Compared with

  2. Insights from diploblasts; the evolution of mesoderm and muscle.

    Science.gov (United States)

    Burton, Patrick Michael

    2008-01-15

    The origin of both mesoderm and muscle are central questions in metazoan evolution. The majority of metazoan phyla are triploblasts, possessing three discrete germ layers. Attention has therefore been focused on two outgroups to triploblasts, Cnidaria and Ctenophora. Modern texts describe these taxa as diploblasts, lacking a mesodermal germ layer. However, some members of Medusozoa, one of two subphyla within Cnidaria, possess tissue independent of either the ectoderm or endoderm referred to as the entocodon. Furthermore, members of both Cnidaria and Ctenophora have been described as possessing striated muscle, a mesodermal derivative. While it is widely accepted that the ancestor of Eumetazoa was diploblastic, homology of the entocodon and mesoderm as well as striated muscle within Eumetazoa has been suggested. This implies a potential triploblastic ancestor of Eumetazoa possessing striated muscle. In the following review, I examine the evidence for homology of both muscle and mesoderm. Current data support a diploblastic ancestor of cnidarians, ctenophores, and triploblasts lacking striated muscle.

  3. The striated MR nephrogram, not a reflection of pathology

    Energy Technology Data Exchange (ETDEWEB)

    Trout, Andrew T.; Care, Marguerite M.; Towbin, Alexander J. [Cincinnati Children' s Hospital Medical Center, Department of Radiology - MLC 5031, Cincinnati, OH (United States); Zhang, Bin [Cincinnati Children' s Hospital Medical Center, Division of Biostatistics and Epidemiology, Cincinnati, OH (United States)

    2015-10-15

    We have intermittently observed low signal striations in the kidneys on delayed post-contrast MR exams of the spine. While we suspected these striations were due to concentrated gadolinium, the clinical importance of this finding was uncertain. To describe the striated MR nephrogram (low signal striations in the kidney) and assess its clinical relevance. Retrospective review of delayed post-contrast MRIs of the spine (mean: 45 min after contrast administration). The presence of the striated MR nephrogram was correlated with imaging parameters (field strength, time since contrast), and findings (gadolinium in the bladder, inferior vena cava and aorta diameters) and with clinical factors (history of renal disease, laboratory values). Seven hundred seventy-three exams performed on 229 patients, 8.3 ± 5.3 years of age, were reviewed. The striated MR nephrogram was observed in 102/773 examinations (13.2%) and was present on at least one study in 54/229 patients (23.6%). The presence of striations was associated with the specific magnet on which the exam was performed (P < 0.01) but not with magnet field strength. Serum creatinine was minimally lower in patients with striations (0.43 ± 0.12 vs. 0.49 ± 0.18 mg/dL, P = 0.002), but no other clinical or historical data, including time from contrast administration (P = 0.54), fluid status (P = 0.17) and clinical history of renal disease (P = 0.14), were predictive of the presence of striations. The striated MR nephrogram was observed in 13% of delayed post-contrast MR exams of the spine. Precipitating factors are unclear, but the striated nephrogram does not appear to be a marker of clinically apparent renal dysfunction. (orig.)

  4. Immunocytochemical electron microscopic study and western blot analysis of paramyosin in different invertebrate muscle cell types of the fruit fly Drosophila melanogaster, the earthworm Eisenia foetida, and the snail Helix aspersa.

    Science.gov (United States)

    Royuela, M; García-Anchuelo, R; Arenas, M I; Cervera, M; Fraile, B; Paniagua, R

    1996-04-01

    The presence and distribution pattern of paramyosin have been examined in different invertebrate muscle cell types by means of Western blot analysis and electron microscopy immunogold labelling. The muscles studied were: transversely striated muscle with continuous Z lines (flight muscle from Drosophila melanogaster), transversely striated muscle with discontinuous Z lines (heart muscle from the snail Helix aspersa), obliquely striated body wall muscle from the earthworm Eisenia foetida, and smooth muscles (retractor muscle from the snail and pseudoheart outer muscular layer from the earthworm). Paramyosin-like immunoreactivity was localized in thick filaments of all muscles studied. Immunogold particle density was similar along the whole thick filament length in insect flight muscle but it predominated in filament tips of fusiform thick filaments in both snail heart and earthworm body wall musculature when these filaments were observed in longitudinal sections. In obliquely sectioned thick filaments, immunolabelling was more abundant at the sites where filaments disappeared from the section. These results agree with the notion that paramyosin extended along the whole filament length, but that it can only be immunolabelled when it is not covered by myosin. In all muscles examined, immunolabelling density was lower in cross-sectioned myofilaments than in longitudinally sectioned myofilaments. This suggests that paramyosin does not form a continuous filament. The results of a semiquantitative analysis of paramyosin-like immunoreactivity indicated that it was more abundant in striated than in smooth muscles, and that, within striated muscles, transversely striated muscles contain more paramyosin than obliquely striated muscles.

  5. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    Directory of Open Access Journals (Sweden)

    Matthew Emerson Randolph

    2015-10-01

    Full Text Available The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies, such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some muscular dystrophies. The biology of muscle stem cells varies depending on their embryologic origins and the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease.

  6. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    Science.gov (United States)

    Randolph, Matthew E.; Pavlath, Grace K.

    2015-01-01

    The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease. PMID:26500547

  7. How to hatch from the Common Cuckoo (Cuculus canorus) egg: implications of strong eggshells for the hatching muscle (musculus complexus)

    Czech Academy of Sciences Publication Activity Database

    Honza, Marcel; Feikusová, Kateřina; Procházka, Petr; Picman, J.

    2015-01-01

    Roč. 156, č. 3 (2015), s. 679-685 ISSN 0021-8375 R&D Projects: GA ČR(CZ) GAP506/12/2404; GA AV ČR IAA6093203 Institutional support: RVO:68081766 Keywords : Brood parasitism * Common Cuckoo * Coevolution * Adaptations * Hatching muscle * Hatching Subject RIV: EG - Zoology Impact factor: 1.419, year: 2015

  8. Gluteus Minimus and Gluteus Medius Muscle Activity During Common Rehabilitation Exercises in Healthy Postmenopausal Women.

    Science.gov (United States)

    Ganderton, Charlotte; Pizzari, Tania; Cook, Jill; Semciw, Adam

    2017-12-01

    Study Design Controlled laboratory study, cross-sectional. Background The gluteus medius (GMed) and gluteus minimus (GMin) provide dynamic stability of the hip joint and pelvis. These muscles are susceptible to atrophy and injury in individuals during menopause, aging, and disease. Numerous studies have reported on the ability of exercises to elicit high levels of GMed activity; however, few studies have differentiated between the portions of the GMed, and none have examined the GMin. Objectives To quantify and rank the level of muscle activity of the 2 segments of the GMin (anterior and posterior fibers) and 3 segments of the GMed (anterior, middle, and posterior fibers) during 4 isometric and 3 dynamic exercises in a group of healthy, postmenopausal women. Methods Intramuscular electrodes were inserted into each segment of the GMed and GMin in 10 healthy, postmenopausal women. Participants completed 7 gluteal rehabilitation exercises, and average normalized muscle activity was used to rank the exercises from highest to lowest. Results The isometric standing hip hitch with contralateral hip swing was the highest-ranked exercise for all muscle segments except the anterior GMin, where it was ranked second. The highest-ranked dynamic exercise for all muscle segments was the dip test. Conclusion The hip hitch and its variations maximally activate the GMed and GMin muscle segments, and may be useful in hip muscle rehabilitation in postmenopausal women. J Orthop Sports Phys Ther 2017;47(12):914-922. Epub 15 Oct 2017. doi:10.2519/jospt.2017.7229.

  9. Virtual and simulated striated toolmarks for forensic applications.

    Science.gov (United States)

    Baiker, Martin; Petraco, Nicholas D K; Gambino, Carol; Pieterman, René; Shenkin, Peter; Zoon, Peter

    2016-04-01

    Large numbers of experimental toolmarks of screwdrivers are often required in casework of toolmark examiners and in research environments alike, to be able to recover the angle of attack of a crime scene mark and to determine statistically meaningful properties of toolmarks respectively. However, in practice the number of marks is limited by the time needed to create them. In this article, we present an approach to predict how a striated mark of a particular tool would look like, using 3D surface datasets of screwdrivers. We compare these virtual toolmarks qualitatively and quantitatively with real experimental marks in wax and show that they are very similar. In addition we study toolmark similarity, dependent on the angle of attack, with a very high angular resolution of 1°. The results show that for the tested type of screwdriver, our toolmark comparison framework yields known match similarity scores that are above the mean known non-match similarity scores, even for known match differences in angle of attack of up to 40°. In addition we demonstrate an approach to automatically recover the angle of attack of an experimental toolmark and experiments yield high accuracy and precision of 0.618 ± 4.179°. Furthermore, we present a strategy to study the structural elements of striated toolmarks using wavelet analysis, and show how to use the results to simulate realistic toolmarks. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Muscle Cramps

    Science.gov (United States)

    Muscle cramps are sudden, involuntary contractions or spasms in one or more of your muscles. They often occur after ... It is a very common muscle problem. Muscle cramps can be caused by nerves that malfunction. Sometimes ...

  11. Physical and Chemical Changes in Fresh Chilled Muscle Tissue of Common Carp (Cyprinus carpio L. Packed in a Modified Atmosphere

    Directory of Open Access Journals (Sweden)

    F. Ježek

    2007-01-01

    Full Text Available The aim of the study was to monitor the course of physical and chemical changes taking place in stored fresh chilled muscle tissue of carp packed in modified atmosphere (MAP, and to determine its shelf life. Samples of muscle tissue of common carp (Cyprinus carpio, L. were packed in MAP (80% O2, 20% CO2 and stored for 15 days at +2 ± 2 °C max. During the storage period, O2 level in packs decreased from 78.7 ± 0.39% (day 1 to 63.8 ± 1.30% (day 15. Decrease in O2 in packs between storage days 7 and 9 was highly significant (p -1 (day 15. Hydrolytic lipid decomposition (FFA was more intensive in carp muscle tissue (2.09 ± 1.07% total lipid as oleic acid than in carp skin (1.01 ± 0.31% total lipid as oleic acid (day 15. Lipid oxidation (PV in skin showed differences from lipid oxidation in muscle tissue. Oxidation processes in muscle correlated positively with the length of storage (r = 0.90. Over the storage period, peroxide levels increased from 2.58 ± 1.19 mekv O2 kg-1 (day 1 to 6.76 ± 1.78 mekv O2 kg-1 (day 15. Because of low TVBN levels in muscle tissue, shelf life was limited mainly by sensory changes (green discoloration, odour deviations, slime production, which were observed from storage day 9 onwards. It was found that the maximum shelf life of carp packed in MAP (80% O2, 20% CO2 was 7 days. The optimum parameter to determine the remaining shelf life of common carp muscle tissue stored at +2 ± 2 °C max is the TVBN level. As concerns shelf life, TVBN levels in carp muscle should not exceed 15 mg 100 g-1. This level of TVBN (max. 15 mg 100 g-1 for carp (MAP 80% O2, 20% CO2 is much more lower in comparison with levels TVBN (max 25 - 35 mg 100 g-1 which have been determined by Commission Regulation (EC No. 2074/2005 for sea fish. For that reason we suggest to amplify the study by other monitoring (higher number of samples, various breeds of carp in different weight categories for all the year. On the basis of these analyses the level

  12. Exposure to Radiofrequency Radiation Emitted from Common Mobile Phone Jammers Alters the Pattern of Muscle Contractions: an Animal Model Study.

    Science.gov (United States)

    Rafati, A; Rahimi, S; Talebi, A; Soleimani, A; Haghani, M; Mortazavi, S M J

    2015-09-01

    The rapid growth of wireless communication technologies has caused public concerns regarding the biological effects of electromagnetic radiations on human health. Some early reports indicated a wide variety of non-thermal effects of electromagnetic radiation on amphibians such as the alterations of the pattern of muscle extractions. This study is aimed at investigating the effects of exposure to radiofrequency (RF) radiation emitted from mobile phone jammers on the pulse height of contractions, the time interval between two subsequent contractions and the latency period of frog's isolated gastrocnemius muscle after stimulation with single square pulses of 1V (1 Hz). Frogs were kept in plastic containers in a room. Animals in the jammer group were exposed to radiofrequency (RF) radiation emitted from a common Jammer at a distance of 1m from the jammer's antenna for 2 hours while the control frogs were only sham exposed. Then animals were sacrificed and isolated gastrocnemius muscles were exposed to on/off jammer radiation for 3 subsequent 10 minute intervals. Isolated gastrocnemius muscles were attached to the force transducer with a string. Using a PowerLab device (26-T), the pattern of muscular contractions was monitored after applying single square pulses of 1V (1 Hz) as stimuli. The findings of this study showed that the pulse height of muscle contractions could not be affected by the exposure to electromagnetic fields. However, the latency period was effectively altered in RF-exposed samples. However, none of the experiments could show an alteration in the time interval between two subsequent contractions after exposure to electromagnetic fields. These findings support early reports which indicated a wide variety of non-thermal effects of electromagnetic radiation on amphibians including the effects on the pattern of muscle extractions.

  13. Exposure to Radiofrequency Radiation Emitted from Common Mobile Phone Jammers Alters the Pattern of Muscle Contractions: an Animal Model Study

    Directory of Open Access Journals (Sweden)

    Rafati A.

    2015-09-01

    Full Text Available Introduction: The rapid growth of wireless communication technologies has caused public concerns regarding the biological effects of electromagnetic radiations on human health. Some early reports indicated a wide variety of non-thermal effects of electromagnetic radiation on amphibians such as the alterations of the pattern of muscle extractions. This study is aimed at investigating the effects of exposure to radiofrequency (RF radiation emitted from mobile phone jammers on the pulse height of contractions, the time interval between two subsequent contractions and the latency period of frog’s isolated gastrocnemius muscle after stimulation with single square pulses of 1V (1 Hz. Materials and Methods: Frogs were kept in plastic containers in a room. Animals in the jammer group were exposed to radiofrequency (RF radiation emitted from a common Jammer at a distance of 1m from the jammer’s antenna for 2 hours while the control frogs were only sham exposed. Then animals were sacrificed and isolated gastrocnemius muscles were exposed to on/off jammer radiation for 3 subsequent 10 minute intervals. Isolated gastrocnemius muscles were attached to the force transducer with a string. Using a PowerLab device (26-T, the pattern of muscular contractions was monitored after applying single square pulses of 1V (1 Hz as stimuli. Results: The findings of this study showed that the pulse height of muscle contractions could not be affected by the exposure to electromagnetic fields. However, the latency period was effectively altered in RF-exposed samples. However, none of the experiments could show an alteration in the time interval between two subsequent contractions after exposure to electromagnetic fields. Conclusion: These findings support early reports which indicated a wide variety of non-thermal effects of electromagnetic radiation on amphibians including the effects on the pattern of muscle extractions.

  14. Study of the striated nature of a glow discharge

    International Nuclear Information System (INIS)

    Hernandez A, M.

    1995-01-01

    In an investigation in progress here, plasma diagnostics and detection of standing and moving striations is being made in a discharge in Argon at pressures of 2 x 10 -1 to 9 x 10 -1 mb and currents of 2 to 9 m-amp inside an discharge tube. Measurement of the temperature of the electrons, the concentration of electrons and the plasma potential are obtained in different places of the discharge by the double probe method, together with the computation system reported in [1]. In similar way an experimental work of the striated column in a discharge plasma to find the regimen of appearance of the standing and moving striations show some properties of moving striations (frequency and velocity) and standing striations. Two different oscilations are observed in motion in contrary directions along the discharge tube with a photomultiplier. (Author)

  15. Alpha-actinin in different invertebrate muscle cell types of Drosophila melanogaster, the earthworm Eisenia foetida, and the snail Helix aspersa.

    Science.gov (United States)

    Royuela, M; Astier, C; Fraile, B; Paniagua, R

    1999-01-01

    The presence and distribution of alpha-actinin has been studied in several invertebrate muscle cell types. These comprised transversely striated muscle (flight muscle) from the fruit fly Drosophila melanogaster, transversely striated muscle (heart muscle) from the snail Helix aspersa, obliquely striated muscle (body wall muscle) from the earthworm Eisenia foetida, smooth muscle (retractor muscle) from H. aspersa, and smooth muscle (outer muscular layer of the pseudoheart) from E. foetida. The study was carried by means of Western blot analysis, ELISA, and immunohistochemical electron microscopy, using anti alpha-actinin antibody. Immunoreaction for a protein with the same molecular weight as that of mammalian alpha-actinin was detected in all muscle types studied, although the amount and intensity of immunoreaction varied among them. In the insect muscle, immunolabelling was found along the whole Z-line. In both the transversely striated muscle from the snail and the obliquely striated muscle from the earthworm, immunolabelling did not occupy the whole Z-line but showed discontinuous, orderly arranged patches along the Z-line course. In the two smooth muscles studied (snail and earthworm), immunolabelling was limited to small patches which did not show an apparently ordered distribution. Since it is assumed that alpha-actinin is located at the anchorage sites for actin filaments, present observations suggest that, only in the Drosophila muscle, actin filaments are parallelly arranged in all their course, whereas in the other invertebrate muscles studied these filaments converge on discontinuously distributed anchorage sites.

  16. Lumbar muscle activity during common lifts: a preliminary study using magnetic resonance imaging.

    Science.gov (United States)

    Mayer, John M; Graves, James E; Manini, Todd M; Nuzzo, James L; Ploutz-Snyder, Lori L

    2013-04-01

    The purpose of this preliminary study was to assess lumbar multifidus, erector spinae, and quadratus lumborum muscle activity during lifts as measured by changes in transverse relaxation time (T2) from magnetic resonance imaging (MRI). Thirteen healthy adults performed dynamic squat, stoop, and asymmetric stoop lifts at a standard load, with each lift followed by MRI. Increase in T2 for the multifidus and erector spinae was greater for the stoop than squat. No difference in T2 increase was noted between the multifidus and erector spinae for the squat or stoop. Increase in T2 for the contralateral multifidus was less for the asymmetric stoop than stoop. Future research using MRI and other biomechanical techniques is needed to fully characterize lumbar muscle activity during lifts for various populations, settings, postures, and loads.

  17. Childhood development of common drive to a human leg muscle during ankle dorsiflexion and gait

    DEFF Research Database (Denmark)

    Hvass Petersen, Tue; Kliim-Due, Mette; Farmer, Simon F.

    2010-01-01

    Corticospinal drive has been shown to contribute significantly to the control of walking in adult human subjects. It is unknown to what an extent functional change in this drive is important for maturation of gait in children. In adults, populations of motor units within a muscle show synchronized...... discharges during walking with pronounced coherence in the 15-50 Hz frequency band. This coherence has been shown to depend on cortical drive. Here, we investigated how this coherence changes with development. 44 healthy children aged 4 - 15 yrs participated in the study. Electromyographic activity (EMG...

  18. Common errors and clinical guidelines for manual muscle testing: "the arm test" and other inaccurate procedures

    Directory of Open Access Journals (Sweden)

    Cuthbert Scott C

    2008-12-01

    Full Text Available Abstract Background The manual muscle test (MMT has been offered as a chiropractic assessment tool that may help diagnose neuromusculoskeletal dysfunction. We contend that due to the number of manipulative practitioners using this test as part of the assessment of patients, clinical guidelines for the MMT are required to heighten the accuracy in the use of this tool. Objective To present essential operational definitions of the MMT for chiropractors and other clinicians that should improve the reliability of the MMT as a diagnostic test. Controversy about the usefulness and reliability of the MMT for chiropractic diagnosis is ongoing, and clinical guidelines about the MMT are needed to resolve confusion regarding the MMT as used in clinical practice as well as the evaluation of experimental evidence concerning its use. Discussion We expect that the resistance to accept the MMT as a reliable and valid diagnostic tool will continue within some portions of the manipulative professions if clinical guidelines for the use of MMT methods are not established and accepted. Unreliable assessments of this method of diagnosis will continue when non-standard MMT research papers are considered representative of the methods used by properly trained clinicians. Conclusion Practitioners who employ the MMT should use these clinical guidelines for improving their use of the MMT in their assessments of muscle dysfunction in patients with musculoskeletal pain.

  19. A common MLP (muscle LIM protein) variant is associated with cardiomyopathy.

    Science.gov (United States)

    Knöll, Ralph; Kostin, Sawa; Klede, Stefanie; Savvatis, Kostas; Klinge, Lars; Stehle, Ina; Gunkel, Sylvia; Kötter, Sebastian; Babicz, Kamila; Sohns, Melanie; Miocic, Snjezana; Didié, Michael; Knöll, Gudrun; Zimmermann, Wolfram Hubertus; Thelen, Paul; Bickeböller, Heike; Maier, Lars S; Schaper, Wolfgang; Schaper, Jutta; Kraft, Theresia; Tschöpe, Carsten; Linke, Wolfgang A; Chien, Kenneth R

    2010-03-05

    We previously discovered the human 10T-->C (Trp4Arg) missense mutation in exon 2 of the muscle LIM protein (MLP, CSRP3) gene. We sought to study the effects of this single-nucleotide polymorphism in the in vivo situation. We now report the generation and detailed analysis of the corresponding Mlp(W4R/+) and Mlp(W4R/W4R) knock-in animals, which develop an age- and gene dosage-dependent hypertrophic cardiomyopathy and heart failure phenotype, characterized by almost complete loss of contractile reserve under catecholamine induced stress. In addition, evidence for skeletal muscle pathology, which might have implications for human mutation carriers, was observed. Importantly, we found significantly reduced MLP mRNA and MLP protein expression levels in hearts of heterozygous and homozygous W4R-MLP knock-in animals. We also detected a weaker in vitro interaction of telethonin with W4R-MLP than with wild-type MLP. These alterations may contribute to an increased nuclear localization of W4R-MLP, which was observed by immunohistochemistry. Given the well-known high frequency of this mutation in Caucasians of up to 1%, our data suggest that (W4R-MLP) might contribute significantly to human cardiovascular disease.

  20. Molecular crowding defines a common origin for the Warburg effect in proliferating cells and the lactate threshold in muscle physiology.

    Directory of Open Access Journals (Sweden)

    Alexei Vazquez

    2011-04-01

    Full Text Available Aerobic glycolysis is a seemingly wasteful mode of ATP production that is seen both in rapidly proliferating mammalian cells and highly active contracting muscles, but whether there is a common origin for its presence in these widely different systems is unknown. To study this issue, here we develop a model of human central metabolism that incorporates a solvent capacity constraint of metabolic enzymes and mitochondria, accounting for their occupied volume densities, while assuming glucose and/or fatty acid utilization. The model demonstrates that activation of aerobic glycolysis is favored above a threshold metabolic rate in both rapidly proliferating cells and heavily contracting muscles, because it provides higher ATP yield per volume density than mitochondrial oxidative phosphorylation. In the case of muscle physiology, the model also predicts that before the lactate switch, fatty acid oxidation increases, reaches a maximum, and then decreases to zero with concomitant increase in glucose utilization, in agreement with the empirical evidence. These results are further corroborated by a larger scale model, including biosynthesis of major cell biomass components. The larger scale model also predicts that in proliferating cells the lactate switch is accompanied by activation of glutaminolysis, another distinctive feature of the Warburg effect. In conclusion, intracellular molecular crowding is a fundamental constraint for cell metabolism in both rapidly proliferating- and non-proliferating cells with high metabolic demand. Addition of this constraint to metabolic flux balance models can explain several observations of mammalian cell metabolism under steady state conditions.

  1. A common neural element receiving rhythmic arm and leg activity as assessed by reflex modulation in arm muscles.

    Science.gov (United States)

    Sasada, Syusaku; Tazoe, Toshiki; Nakajima, Tsuyoshi; Futatsubashi, Genki; Ohtsuka, Hiroyuki; Suzuki, Shinya; Zehr, E Paul; Komiyama, Tomoyoshi

    2016-04-01

    Neural interactions between regulatory systems for rhythmic arm and leg movements are an intriguing issue in locomotor neuroscience. Amplitudes of early latency cutaneous reflexes (ELCRs) in stationary arm muscles are modulated during rhythmic leg or arm cycling but not during limb positioning or voluntary contraction. This suggests that interneurons mediating ELCRs to arm muscles integrate outputs from neural systems controlling rhythmic limb movements. Alternatively, outputs could be integrated at the motoneuron and/or supraspinal levels. We examined whether a separate effect on the ELCR pathways and cortico-motoneuronal excitability during arm and leg cycling is integrated by neural elements common to the lumbo-sacral and cervical spinal cord. The subjects performed bilateral leg cycling (LEG), contralateral arm cycling (ARM), and simultaneous contralateral arm and bilateral leg cycling (A&L), while ELCRs in the wrist flexor and shoulder flexor muscles were evoked by superficial radial (SR) nerve stimulation. ELCR amplitudes were facilitated by cycling tasks and were larger during A&L than during ARM and LEG. A low stimulus intensity during ARM or LEG generated a larger ELCR during A&L than the sum of ELCRs during ARM and LEG. We confirmed this nonlinear increase in single motor unit firing probability following SR nerve stimulation during A&L. Furthermore, motor-evoked potentials following transcranial magnetic and electrical stimulation did not show nonlinear potentiation during A&L. These findings suggest the existence of a common neural element of the ELCR reflex pathway that is active only during rhythmic arm and leg movement and receives convergent input from contralateral arms and legs. Copyright © 2016 the American Physiological Society.

  2. Role of skeletal muscle in lung development.

    Science.gov (United States)

    Baguma-Nibasheka, Mark; Gugic, Dijana; Saraga-Babic, Mirna; Kablar, Boris

    2012-07-01

    Skeletal (striated) muscle is one of the four basic tissue types, together with the epithelium, connective and nervous tissues. Lungs, on the other hand, develop from the foregut and among various cell types contain smooth, but not skeletal muscle. Therefore, during earlier stages of development, it is unlikely that skeletal muscle and lung depend on each other. However, during the later stages of development, respiratory muscle, primarily the diaphragm and the intercostal muscles, execute so called fetal breathing-like movements (FBMs), that are essential for lung growth and cell differentiation. In fact, the absence of FBMs results in pulmonary hypoplasia, the most common cause of death in the first week of human neonatal life. Most knowledge on this topic arises from in vivo experiments on larger animals and from various in vitro experiments. In the current era of mouse mutagenesis and functional genomics, it was our goal to develop a mouse model for pulmonary hypoplasia. We employed various genetically engineered mice lacking different groups of respiratory muscles or lacking all the skeletal muscle and established the criteria for pulmonary hypoplasia in mice, and therefore established a mouse model for this disease. We followed up this discovery with systematic subtractive microarray analysis approach and revealed novel functions in lung development and disease for several molecules. We believe that our approach combines elements of both in vivo and in vitro approaches and allows us to study the function of a series of molecules in the context of lung development and disease and, simultaneously, in the context of lung's dependence on skeletal muscle-executed FBMs.

  3. Degree of disability, pain levels, muscle strength, and electromyographic function in patients with Hansen's disease with common peroneal nerve damage.

    Science.gov (United States)

    Véras, Larissa Sales Téles; Vale, Rodrigo Gomesde Souza; Mello, Danielli Braga de; Castro, José Adail Fonseca de; Lima, Vicente; Silva, Kelson Nonato Gomes da; Trott, Alexis; Dantas, Estélio Henrique Martin

    2012-06-01

    This study evaluated the degree of disability, pain levels, muscle strength, and electromyographic function (RMS) in individuals with leprosy. We assessed 29 individuals with leprosy showing common peroneal nerve damage and grade 1 or 2 disability who were referred for physiotherapeutic treatment, as well as a control group of 19 healthy participants without leprosy. All subjects underwent analyses of degree of disability, electromyographic tests, voluntary muscle force, and the Visual Analog Pain Scale. McNemar's test found higher levels of grade 2 of disability (Δ = 75.9%; p = 0.0001) among individuals with leprosy. The Mann-Whitney test showed greater pain levels (Δ = 5.0; p = 0.0001) in patients with leprosy who had less extension strength in the right and left extensor hallucis longus muscles (Δ = 1.28, p = 0.0001; Δ = 1.55, p = 0.0001, respectively) and dorsiflexion of the right and left feet (Δ = 1.24, p = 0.0001; Δ = 1.45, p = 0.0001, respectively) than control subjects. The Kruskal-Wallis test showed that the RMS score for dorsiflexion of the right (Δ = 181.66 m·s-2, p = 0.001) and left (Δ = 102.57m·s-2, p = 0.002) feet was lower in patients with leprosy than in control subjects, but intragroup comparisons showed no difference. Leprosy had a negative influence on all of the study variables, indicating the need for immediate physiotherapeutic intervention in individuals with leprosy. This investigation opens perspectives for future studies that analyze leprosy treatment with physical therapeutic intervention.

  4. Degree of disability, pain levels, muscle strength, and electromyographic function in patients with Hansen's disease with common peroneal nerve damage

    Directory of Open Access Journals (Sweden)

    Larissa Sales Téles Véras

    2012-06-01

    Full Text Available INTRODUCTION: This study evaluated the degree of disability, pain levels, muscle strength, and electromyographic function (RMS in individuals with leprosy. METHODS: We assessed 29 individuals with leprosy showing common peroneal nerve damage and grade 1 or 2 disability who were referred for physiotherapeutic treatment, as well as a control group of 19 healthy participants without leprosy. All subjects underwent analyses of degree of disability, electromyographic tests, voluntary muscle force, and the Visual Analog Pain Scale. RESULTS: McNemar's test found higher levels of grade 2 of disability (Δ = 75.9%; p = 0.0001 among individuals with leprosy. The Mann-Whitney test showed greater pain levels (Δ = 5.0; p = 0.0001 in patients with leprosy who had less extension strength in the right and left extensor hallucis longus muscles (Δ = 1.28, p = 0.0001; Δ = 1.55, p = 0.0001, respectively and dorsiflexion of the right and left feet (Δ = 1.24, p = 0.0001; Δ = 1.45, p = 0.0001, respectively than control subjects. The Kruskal-Wallis test showed that the RMS score for dorsiflexion of the right (Δ = 181.66 m·s-2, p = 0.001 and left (Δ = 102.57m·s-2, p = 0.002 feet was lower in patients with leprosy than in control subjects, but intragroup comparisons showed no difference. CONCLUSIONS: Leprosy had a negative influence on all of the study variables, indicating the need for immediate physiotherapeutic intervention in individuals with leprosy. This investigation opens perspectives for future studies that analyze leprosy treatment with physical therapeutic intervention.

  5. Roles of the troponin isoforms during indirect flight muscle ...

    Indian Academy of Sciences (India)

    Troponin proteins in cooperative interaction with tropomyosin are responsible for controlling the contraction of the striated muscles in response to changes in the intracellular calcium concentration. Contractility of the muscle is determined by the constituent protein isoforms, and the isoforms can switch over from one form to ...

  6. Is muscle spasm as detected by FDG-PET a common cause of low back pain? probably not

    International Nuclear Information System (INIS)

    El-Haddad, G; Cheng, E; Kumar, R; Bhargava, A; Wintering, N; Zhuang, HM; Alavi, A; Xiu, Y

    2004-01-01

    common occurrence in this population. Thus, routine administration of muscle relaxants may not be scientifically justified. (authors)

  7. Muscle Deoxygenation Causes Muscle Fatigue

    Science.gov (United States)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  8. Skeletal muscle metastasis from the most common carcinomas orthopedic surgeons deal with. A systematic review of the literature.

    Science.gov (United States)

    Pretell-Mazzini, Juan; de Neyra, Jaime Zorrilla S; Luengo-Alonso, Gonzalo; Shemesh, Shai

    2017-11-01

    There is scarce information in the literature dealing with the clinical presentation, management and oncologic outcomes of skeletal muscle metastases (SMM). We sought to perform a systematic review of the literature to investigate: (1) tumor characteristics of SMM, (2) therapeutic approach, and (3) oncological outcomes. A systematic review of the literature was performed using PubMed and EMBASE search engines. A total of 3231 references were reviewed and 49 studies were included. Demographic data, presentation characteristics, and oncological outcomes were recorded. Statistical analysis was performed using SPSS 22.0 software (IBM; Armonk, New York) and Comprehensive Meta-Analysis software version 3 (Biostat, Inc.), with p < 0.05 as statistically significant. A total of 231 patients were included. These tumors presented more commonly on males 58.4% (135/231), with a mean age of 60.08 ± 10.6 years, and in the axial area 39.6% (88/222). The most common carcinoma type was lung 41.1% (95/231). Resection of a single metastases did not change survival significantly (p = 0.992). LRR was higher within the group of patients that underwent WLE compared with non-WLE [31.3% (23/74) vs. 8.7% (2/23), p ≤ 0.001]. Kaplan-Meier survival analysis for the entire cohort showed an estimate of 15.3 months [95% confidence interval (CI) 11.6-19; standard error (SE) 0.432], with lung carcinoma carrying the worst prognosis 6.7 months (95% CI 5.4-8.07; SE 0.68). Patients with a single SMM showed a worse estimate mean survival time compared to patients with multiple metastases limited to muscles [8.6 months (95% CI 4.7-12.5; SE 2.0) vs 25.4 months (95% CI 19.8-31.05; SE 2.8; p ≤ 0.001)]. Overall survival is poor and is driven mainly by the type of carcinoma. An Increased LRR might be present due to the systemic nature of the condition, and degree of control of the primary carcinoma.

  9. Comparative Statistical Mechanics of Muscle and Non-Muscle Contractile Systems: Stationary States of Near-Equilibrium Systems in A Linear Regime

    Directory of Open Access Journals (Sweden)

    Yves Lecarpentier

    2017-10-01

    Full Text Available A. Huxley’s equations were used to determine the mechanical properties of muscle myosin II (MII at the molecular level, as well as the probability of the occurrence of the different stages in the actin–myosin cycle. It was then possible to use the formalism of statistical mechanics with the grand canonical ensemble to calculate numerous thermodynamic parameters such as entropy, internal energy, affinity, thermodynamic flow, thermodynamic force, and entropy production rate. This allows us to compare the thermodynamic parameters of a non-muscle contractile system, such as the normal human placenta, with those of different striated skeletal muscles (soleus and extensor digitalis longus as well as the heart muscle and smooth muscles (trachea and uterus in the rat. In the human placental tissues, it was observed that the kinetics of the actin–myosin crossbridges were considerably slow compared with those of smooth and striated muscular systems. The entropy production rate was also particularly low in the human placental tissues, as compared with that observed in smooth and striated muscular systems. This is partly due to the low thermodynamic flow found in the human placental tissues. However, the unitary force of non-muscle myosin (NMII generated by each crossbridge cycle in the myofibroblasts of the human placental tissues was similar in magnitude to that of MII in the myocytes of both smooth and striated muscle cells. Statistical mechanics represents a powerful tool for studying the thermodynamics of all contractile muscle and non-muscle systems.

  10. Comparison of Electromyographic Activity of the Superior and Inferior Portions of the Gluteus Maximus Muscle During Common Therapeutic Exercises.

    Science.gov (United States)

    Selkowitz, David M; Beneck, George J; Powers, Christopher M

    2016-09-01

    Study Design Controlled laboratory study, repeated-measures design. Background Previous studies have reported that the superior and inferior portions of the gluteus maximus have different functional roles. Knowledge of how the different portions of the gluteus maximus are activated during therapeutic exercise may lead to more specific exercise prescription. Objective To compare muscle activation of the superior and inferior portions of the gluteus maximus during commonly used therapeutic exercises. Methods Twenty healthy persons participated. Electromyographic (EMG) signals were obtained from the superior and inferior portions of the gluteus maximus using fine-wire electrodes. Normalized EMG signal amplitudes were compared between the superior and inferior gluteus maximus across 11 exercises using a 2-way repeated-measures analysis of variance. Results The superior portion of the gluteus maximus had significantly greater relative EMG activity than the inferior portion of the gluteus maximus during exercises that incorporated elements of hip abduction and/or external rotation (5 of 11 exercises evaluated). There was no significant difference in activation between the superior and inferior portions of the gluteus maximus during the remaining 6 exercises. Conclusion The results of the present study demonstrate preferential activation of the superior portion of the gluteus maximus during exercises that incorporate elements of hip abduction and/or external rotation. In contrast, exercises that primarily involve hip extension target both portions of the gluteus maximus to a similar extent. J Orthop Sports Phys Ther 2016;46(9):794-799. Epub 5 Aug 2016. doi:10.2519/jospt.2016.6493.

  11. Polarization gating enables sarcomere length measurements by laser diffraction in fibrotic muscle

    Science.gov (United States)

    Young, Kevin W.; Dayanidhi, Sudarshan; Lieber, Richard L.

    2014-11-01

    Sarcomere length is a key parameter commonly measured in muscle physiology since it dictates striated muscle active force. Laser diffraction (LD)-based measurements of sarcomere length are time-efficient and sample a greater number of sarcomeres compared with traditional microscopy-based techniques. However, a limitation to LD techniques is that signal quality is severely degraded by scattering events as photons propagate through tissue. Consequently, sarcomere length measurements are unattainable when the number of scattering events is sufficiently large in muscle tissue with a high scattering probability. This occurs in fibrotic skeletal muscle seen in muscular dystrophies and secondary to tissue trauma, thus eliminating the use of LD to study these skeletal muscle ailments. Here, we utilize polarization gating to extract diffracted signals that are buried in noise created by scattering. Importantly, we demonstrate that polarization-gated laser diffraction (PGLD) enables sarcomere length measurements in muscles from chronically immobilized mice hind limbs; these muscles have a substantial increase of intramuscular connective tissue that scatter light and disable sarcomere length measurements by traditional LD. Further, we compare PGLD sarcomere lengths to those measured by bright field (BF) and confocal microscopy as positive controls and reveal a significant bias of BF but not of confocal microscopy.

  12. Isolation and individual electrical stimulation of single smooth-muscle cells from the urinary bladder of the pig

    NARCIS (Netherlands)

    J.J. Glerum (Jacobus); R. van Mastrigt (Ron); J.C. Romijn (Johannes); D.J. Griffiths (Derek)

    1987-01-01

    textabstractIn contrast to striated muscle, measurements on strips of smooth muscle cannot be uniquely interpreted in terms of an array of contractile units. Therefore scaling down to the single-cell level is necessary to gain detailed understanding of the contractile process in this type of muscle.

  13. Sub-cellular localisation of fukutin related protein in different cell lines and in the muscle of patients with MDC1C and LGMD2I

    DEFF Research Database (Denmark)

    Torelli, Silvia; Brown, Susan C; Brockington, Martin

    2005-01-01

    MDC1C and LGMD2I are two allelic forms of muscular dystrophies caused by mutations in the gene encoding for fukutin related protein (FKRP). FKRP encodes for a putative glycosyltransferase, the precise function of which is unknown. However, the marked reduction of alpha-dystroglycan glycosylation...... and in transverse sections of normal skeletal and cardiac muscle, endogenous FKRP surrounded the myonuclei. This localisation was unaffected in the skeletal muscle of patients with MDC1C and LGMD2I carrying various FKRP mutations. These observations imply a specific role for FKRP during striated muscle, neuronal...... and glial development and suggest that protein mis-localisation is not a common mechanism of disease in FKRP-related dystrophies....

  14. Common phenotype of resting mouse extensor digitorum longus and soleus muscles: equal ATPase and glycolytic flux during transient anoxia.

    Science.gov (United States)

    Vinnakota, Kalyan C; Rusk, Joshua; Palmer, Lauren; Shankland, Eric; Kushmerick, Martin J

    2010-06-01

    Rates of ATPase and glycolysis are several times faster in actively contracting mouse extensor digitorum longus muscle (EDL) than soleus (SOL), but we find these rates are not distinguishable at rest. We used a transient anoxic perturbation of steady state energy balance to decrease phosphocreatine (PCr) reversibly and to measure the rates of ATPase and of lactate production without muscle activation or contraction. The rate of glycolytic ATP synthesis is less than the ATPase rate, accounting for the continual PCr decrease during anoxia in both muscles. We fitted a mathematical model validated with properties of enzymes and solutes measured in vitro and appropriate for the transient perturbation of these muscles to experimental data to test whether the model accounts for the results. Simulations showed equal rates of ATPase and lactate production in both muscles. ATPase controls glycolytic flux by feedback from its products. Adenylate kinase function is critical because a rise in [AMP] is necessary to activate glycogen phosphorylase. ATPase is the primary source of H+ production. The sum of contributions of the 13 reactions of the glycogenolytic and glycolytic network to total proton load is negligible. The stoichiometry of lactate and H+ production is near unity. These results identify a default state of energy metabolism for resting muscle in which there is no difference in the metabolic phenotype of EDL and SOL. Therefore, additional control mechanisms, involving higher ATPase flux and [Ca2+], must exist to explain the well-known difference in glycolytic rates in fast-twitch and slow-twitch muscles in actively contracting muscle.

  15. The striated muscles in pulmonary arterial hypertension: adaptations beyond the right ventricle

    NARCIS (Netherlands)

    Manders, E.; Rain, S.; Bogaard, H.J.; Handoko, M.L.; Stienen, G.J.M.; Vonk Noordegraaf, A.; Ottenheijm, C.A.C.; de Man, F.S.

    2015-01-01

    Pulmonary arterial hypertension (PAH) is a fatal lung disease characterised by progressive remodelling of the small pulmonary vessels. The daily-life activities of patients with PAH are severely limited by exertional fatigue and dyspnoea. Typically, these symptoms have been explained by right heart

  16. A striated muscle on the hard palate of rodents and rabbits

    Czech Academy of Sciences Publication Activity Database

    Pavlíková, H.; Witter, Kirsti; Míšek, Ivan

    2004-01-01

    Roč. 33, - (2004), s. 96-99 ISSN 0340-2096 R&D Projects: GA ČR GP304/01/P021; GA ČR GA304/02/0448; GA AV ČR KSK6005114 Institutional research plan: CEZ:AV0Z5045916 Keywords : hard palate * rabbits * rodents Subject RIV: EA - Cell Biology Impact factor: 0.625, year: 2004

  17. Comparison of Muscle Onset Activation Sequences between a Golf or Tennis Swing and Common Training Exercises Using Surface Electromyography: A Pilot Study

    Directory of Open Access Journals (Sweden)

    John M. Vasudevan

    2016-01-01

    Full Text Available Aim. The purpose of this pilot study is to use surface electromyography to determine an individual athlete’s typical muscle onset activation sequence when performing a golf or tennis forward swing and to use the method to assess to what degree the sequence is reproduced with common conditioning exercises and a machine designed for this purpose. Methods. Data for 18 healthy male subjects were collected for 15 muscles of the trunk and lower extremities. Data were filtered and processed to determine the average onset of muscle activation for each motion. A Spearman correlation estimated congruence of activation order between the swing and each exercise. Correlations of each group were pooled with 95% confidence intervals using a random effects meta-analytic strategy. Results. The averaged sequences differed among each athlete tested, but pooled correlations demonstrated a positive association between each exercise and the participants’ natural muscle onset activation sequence. Conclusion. The selected training exercises and Turning Point™ device all partially reproduced our athletes’ averaged muscle onset activation sequences for both sports. The results support consideration of a larger, adequately powered study using this method to quantify to what degree each of the selected exercises is appropriate for use in both golf and tennis.

  18. Single-cell sequencing analysis characterizes common and cell-lineage-specific mutations in a muscle-invasive bladder cancer

    DEFF Research Database (Denmark)

    Li, Yingrui; Xu, Xun; Song, Luting

    2012-01-01

    sequencing of 66 individual tumor cells from a muscle-invasive bladder transitional cell carcinoma (TCC). Analyses of the somatic mutant allele frequency spectrum and clonal structure revealed that the tumor cells were derived from a single ancestral cell, but that subsequent evolution occurred, leading...... to two distinct tumor cell subpopulations. By analyzing recurrently mutant genes in an additional cohort of 99 TCC tumors, we identified genes that might play roles in the maintenance of the ancestral clone and in the muscle-invasive capability of subclones of this bladder cancer, respectively...

  19. Comparative Biomechanics of Thick Filaments and Thin Filaments with Functional Consequences for Muscle Contraction

    Directory of Open Access Journals (Sweden)

    Mark S. Miller

    2010-01-01

    Full Text Available The scaffold of striated muscle is predominantly comprised of myosin and actin polymers known as thick filaments and thin filaments, respectively. The roles these filaments play in muscle contraction are well known, but the extent to which variations in filament mechanical properties influence muscle function is not fully understood. Here we review information on the material properties of thick filaments, thin filaments, and their primary constituents; we also discuss ways in which mechanical properties of filaments impact muscle performance.

  20. Magnetic resonance imaging at 7T reveals common events in age-related sarcopenia and in the homeostatic response to muscle sterile injury.

    Directory of Open Access Journals (Sweden)

    Antonio Esposito

    Full Text Available Skeletal muscle remodeling in response to various noxae physiologically includes structural changes and inflammatory events. The possibility to study those phenomena in-vivo has been hampered by the lack of validated imaging tools. In our study, we have relied on multiparametric magnetic resonance imaging for quantitative monitoring of muscle changes in mice experiencing age-related sarcopenia or active regeneration after sterile acute injury of tibialis anterior muscle induced by cardiotoxin (CTX injection. The extent of myofibrils' necrosis, leukocyte infiltration, and regeneration have been evaluated and compared with parameters from magnetic resonance imaging: T2-mapping (T2 relaxation time; T2-rt, diffusion-tensor imaging (fractional anisotropy, F.A. and diffusion weighted imaging (apparent diffusion coefficient, ADC. Inflammatory leukocytes within the perimysium and heterogeneous size of fibers characterized aged muscles. They displayed significantly increased T2-rt (P<0.05 and F.A. (P<0.05 compared with young muscles. After acute damage T2-rt increased in otherwise healthy young muscles with a peak at day 3, followed by a progressive decrease to basal values. F.A. dropped 24 hours after injury and afterward increased above the basal level in the regenerated muscle (from day 7 to day 15 returning to the basal value at the end of the follow up period. The ADC displayed opposite kinetics. T2-rt positively correlated with the number of infiltrating leucocytes retrieved by immunomagnetic bead sorting from the tissue (r = 0.92 and with the damage/infiltration score (r = 0.88 while F.A. correlated with the extent of tissue regeneration evaluated at various time points after injury (r = 0.88. Our results indicate that multiparametric MRI is a sensitive and informative tool for monitoring inflammatory and structural muscle changes in living experimental animals; particularly, it allows identifying the increase of T2-rt and F.A. as common events

  1. Reduced nuclear translocation of serum response factor is associated with skeletal muscle atrophy in a cigarette smoke-induced mouse model of COPD

    Directory of Open Access Journals (Sweden)

    Ma R

    2017-02-01

    Full Text Available Ran Ma, Xuefang Gong, Hua Jiang, Chunyi Lin, Yuqin Chen, Xiaoming Xu, Chenting Zhang, Jian Wang, Wenju Lu, Nanshan ZhongGuangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Diseases, The 1st Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of ChinaAbstract: Skeletal muscle atrophy and dysfunction are common complications in the chronic obstructive pulmonary disease (COPD. However, the underlying molecular mechanism remains elusive. Serum response factor (SRF is a transcription factor which is critical in myocyte differentiation and growth. In this study, we established a mouse COPD model induced by cigarette smoking (CS exposure for 24 weeks, with apparent pathophysiological changes, including increased airway resistance, enlarged alveoli, and skeletal muscle atrophy. Levels of upstream regulators of SRF, striated muscle activator of Rho signaling (STARS, and ras homolog gene family, member A (RhoA were decreased in quadriceps muscle of COPD mice. Meanwhile, the nucleic location of SRF was diminished along with its cytoplasmic accumulation. There was a downregulation of the target muscle-specific gene, Igf1. These results suggest that the CS is one of the major cause for COPD pathogenesis, which induces the COPD-associated skeletal muscle atrophy which is closely related to decreasing SRF nucleic translocation, consequently downregulating the SRF target genes involved in muscle growth and nutrition. The STARS/RhoA signaling pathway might contribute to this course by impacting SRF subcellular distribution. Keywords: SRF, chronic obstructive pulmonary disease, skeletal muscle atrophy, cigarette smoking

  2. The gaseous plasmonic response of a one-dimensional photonic crystal composed of striated plasma layers

    Science.gov (United States)

    Wang, B.; Righetti, F.; Cappelli, M. A.

    2018-03-01

    We present simulations of the response of a one-dimensional striated plasma slab to incident electromagnetic waves that span regions both above and below the plasma frequency, ωp. Photonic bandgap modes are present throughout these regions, and volume and surface plasmon modes facilitate the response below ωp, where the dielectric constant, ɛp application of these structures as ultra-narrow tunable microwave transmission filters.

  3. Neural correlates of visual motion processing without awareness in patients with striate cortex and pulvinar lesions.

    Science.gov (United States)

    Barleben, Maria; Stoppel, Christian M; Kaufmann, Jörn; Merkel, Christian; Wecke, Thoralf; Goertler, Michael; Heinze, Hans-Jochen; Hopf, Jens-Max; Schoenfeld, Mircea A

    2015-04-01

    Patients with striate cortex lesions experience visual perception loss in the contralateral visual field. In few patients, however, stimuli within the blind field can lead to unconscious (blindsight) or even conscious perception when the stimuli are moving (Riddoch syndrome). Using functional magnetic resonance imaging (fMRI), we investigated the neural responses elicited by motion stimulation in the sighted and blind visual fields of eight patients with lesions of the striate cortex. Importantly, repeated testing ensured that none of the patients exhibited blindsight or a Riddoch syndrome. Three patients had additional lesions in the ipsilesional pulvinar. For blind visual field stimulation, great care was given that the moving stimulus was precisely presented within the borders of the scotoma. In six of eight patients, the stimulation within the scotoma elicited hemodynamic activity in area human middle temporal (hMT) while no activity was observed within the ipsilateral lesioned area of the striate cortex. One of the two patients in whom no ipsilesional activity was observed had an extensive lesion including massive subcortical damage. The other patient had an additional focal lesion within the lateral inferior pulvinar. Fiber-tracking based on anatomical and functional markers (hMT and Pulvinar) on individual diffusion tensor imaging (DTI) data from each patient revealed the structural integrity of subcortical pathways in all but the patient with the extensive subcortical lesion. These results provide clear evidence for the robustness of direct subcortical pathways from the pulvinar to area hMT in patients with striate cortex lesions and demonstrate that ipsilesional activity in area hMT is completely independent of conscious perception. © 2014 Wiley Periodicals, Inc.

  4. Structure, function and evolution of insect flight muscle

    OpenAIRE

    Iwamoto, Hiroyuki

    2011-01-01

    Insects, the largest group of animals on the earth, owe their prosperity to their ability of flight and small body sizes. The ability of flight provided means for rapid translocation. The small body size allowed access to unutilized niches. By acquiring both features, however, insects faced a new problem: They were forced to beat their wings at enormous frequencies. Insects have overcome this problem by inventing asynchronous flight muscle, a highly specialized form of striated muscle capable...

  5. Oxygen dependence of respiration in rat spinotrapezius muscle in situ

    OpenAIRE

    Golub, Aleksander S.; Pittman, Roland N.

    2012-01-01

    The oxygen dependence of respiration in striated muscle in situ was studied by measuring the rate of decrease of interstitial Po2 [oxygen disappearance curve (ODC)] following rapid arrest of blood flow by pneumatic tissue compression, which ejected red blood cells from the muscle vessels and made the ODC independent from oxygen bound to hemoglobin. After the contribution of photo-consumption of oxygen by the method was evaluated and accounted for, the corrected ODCs were converted into the Po...

  6. Structural and molecular study of the supraspinatus muscle of modern humans (Homo sapiens) and common chimpanzees (Pan troglodytes).

    Science.gov (United States)

    Potau, J M; Casado, A; de Diego, M; Ciurana, N; Arias-Martorell, J; Bello-Hellegouarch, G; Barbosa, M; de Paz, F J; Pastor, J F; Pérez-Pérez, A

    2018-04-21

    To analyze the muscle architecture and the expression pattern of the myosin heavy chain (MyHC) isoforms in the supraspinatus of Pan troglodytes and Homo sapiens in order to identify differences related to their different types of locomotion. We have analyzed nine supraspinatus muscles of Pan troglodytes and ten of Homo sapiens. For each sample, we have recorded the muscle fascicle length (MFL), the pennation angle, and the physiological cross-sectional area (PCSA). In the same samples, by real-time quantitative polymerase chain reaction, we have assessed the percentages of expression of the MyHC-I, MyHC-IIa, and MyHC-IIx isoforms. The mean MFL of the supraspinatus was longer (p = 0.001) and the PCSA was lower (p < 0.001) in Homo sapiens than in Pan troglodytes. Although the percentage of expression of MyHC-IIa was lower in Homo sapiens than in Pan troglodytes (p = 0.035), the combination of MyHC-IIa and MyHC-IIx was expressed at a similar percentage in the two species. The longer MFL in the human supraspinatus is associated with a faster contractile velocity, which reflects the primary function of the upper limbs in Homo sapiens-the precise manipulation of objects-an adaptation to bipedal locomotion. In contrast, the larger PCSA in Pan troglodytes is related to the important role of the supraspinatus in stabilizing the glenohumeral joint during the support phase of knuckle-walking. These functional differences of the supraspinatus in the two species are not reflected in differences in the expression of the MyHC isoforms. © 2018 Wiley Periodicals, Inc.

  7. The effect of transient, moderate dietary phosphorus deprivation on phosphorus metabolism, muscle content of different phosphorus-containing compounds, and muscle function in dairy cows.

    Science.gov (United States)

    Grünberg, W; Scherpenisse, P; Dobbelaar, P; Idink, M J; Wijnberg, I D

    2015-08-01

    Hypophosphatemia is a common finding in periparturient and anorectic cattle. Although the clinical relevance of hypophosphatemia in cattle is uncertain, it has been empirically associated with persistent recumbency, specifically in periparturient dairy cows. The objective of the present study was to determine if transient dietary phosphorus (P) deprivation over a course of 5 wk, by feeding an approximately 40% P-deficient ration to lactating dairy cows, would result in altered muscle function or muscle P metabolism severe enough to present a risk for animal health and well-being. In addition, we wanted to determine the association between the plasma phosphate concentration ([Pi]) and muscle tissue P content to assess to what extent intracellular P deprivation of muscle cells could be extrapolated from subnormal plasma [Pi]. Ten healthy multiparous, mid-lactating dairy cows received a ration with a P content of 0.18% over a period of 5 wk. Following the P-deprivation phase, the same ration supplemented with P to obtain a dietary P content of 0.43% was fed for 2 wk. Blood and urine samples were collected regularly and muscle biopsies were obtained repeatedly to determine the P content in muscle tissue. Function of skeletal and heart muscles was evaluated by electrocardiography and electromyography conducted repeatedly throughout the study. Feeding the P-deficient ration resulted in the rapid development of marked hypophosphatemia. The lowest plasma [Pi] were measured after 9 d of P depletion and were, on average, 60% below predepletion values. Plasma [Pi] increased thereafter, despite ongoing dietary P depletion. None of the animals developed clinical signs commonly associated with hypophosphatemia or any other health issues. Urine analysis revealed increasing renal calcium, pyridinoline, and hydroxypyridinoline excretion with ongoing P deprivation. Biochemical muscle tissue analysis showed that dietary P depletion and hypophosphatemia were not associated with a

  8. Geologic continuous casting below continental and deep-sea detachment faults and at the striated extrusion of Sacsayhuaman, Peru

    Science.gov (United States)

    Spencer, J.E.

    1999-01-01

    In the common type of industrial continuous casting, partially molten metal is extruded from a vessel through a shaped orifice called a mold in which the metal assumes the cross-sectional form of the mold as it cools and solidifies. Continuous casting can be sustained as long as molten metal is supplied and thermal conditions are maintained. I propose that a similar process produced parallel sets of grooves in three geologic settings, as follows: (1) corrugated metamorphic core complexes where mylonized mid-crustal rocks were exhumed by movement along low-angle normal faults known as detachment faults; (2) corrugated submarine surfaces where ultramafic and mafic rocks were exhumed by normal faulting within oceanic spreading centers; and (3) striated magma extrusions exemplified by the famous grooved outcrops at the Inca fortress of Sacsayhuaman in Peru. In each case, rocks inferred to have overlain the corrugated surface during corrugation genesis molded and shaped a plastic to partially molten rock mass as it was extruded from a moderate- to high-temperature reservoir.

  9. The human cardiac and skeletal muscle proteomes defined by transcriptomics and antibody-based profiling

    DEFF Research Database (Denmark)

    Lindskog, Cecilia; Linne, Jerker; Fagerberg, Linn

    2015-01-01

    Background: To understand cardiac and skeletal muscle function, it is important to define and explore their molecular constituents and also to identify similarities and differences in the gene expression in these two different striated muscle tissues. Here, we have investigated the genes and prot......Background: To understand cardiac and skeletal muscle function, it is important to define and explore their molecular constituents and also to identify similarities and differences in the gene expression in these two different striated muscle tissues. Here, we have investigated the genes...... genes are well in line with the physiological functions of cardiac and skeletal muscle, such as contraction, ion transport, regulation of membrane potential and actomyosin structure organization. A large fraction of the transcripts in both cardiac and skeletal muscle correspond to mitochondrial proteins...

  10. Nutritional and Digestive Properties of Protein Isolates Extracted from the Muscle of the Common Carp Using pH-Shift Processing.

    Science.gov (United States)

    Tian, Yuanyong; Wang, Wei; Yuan, Chunhong; Zhang, Long; Liu, Jinyang; Liu, Junrong

    2017-02-01

    This study details the nutritional and digestive properties of protein isolates that are extracted from carp ( Cyprinus Carpio L.) muscle using pH shifting methods. Alkaline (ALPI) and acid (ACPI) protein isolates exhibit higher protein yields (87.6%, 76.3%, respectively). In addition to the high recovery of myofibrillar protein, a portion of the water-soluble proteins is also recovered. The moisture contents of ACPI and ALPI are 85.5% and 88.5%, respectively, and the crude protein contents of these two fractions are 83.20% and 83.0%, respectively, both contents of which are higher than those for fresh muscle. Most part of the ash and fat are removed in the separation process. The protein isolation is also found to be lighter and whiter than the fresh muscle and there is no difference between amino acid content of protein isolation and that of fresh muscle. The maximum solubility of water washed surimi is 73.21%, while solubility of ACPI-2 and ALPI-2 (pH 7.0) are 66.67% and 62.08%, respectively. The digestibility of ALPI and ACPI is improved after being treated with chymotrypsin, which is about 7-8 times as that of fresh muscle. The results indicate that the protein isolates have better nutritional and digestive properties than the fresh muscle does in food processing. Common carp is a lower additional value fish that exists in large amount in China. This study investigates nutritional and digestive properties of protein from carp extracted by pH shifting methods. According to the obtained data in this study, pH shifting method is a good protein recovery method that can effectively remove bone spurs, skin, fat and other impurities. In addition, sarcoplasmic proteins can also be recovered. The nutritional properties of protein isolates of carp were suitable for supplementing as an ingredient for human consumption. The pH-shift process greatly improves the protein digestibility. Therefore, there are broad application prospects of the protein isolation as protein

  11. The pelvic floor muscles: muscle thickness in healthy and urinary-incontinent women measured by perineal ultrasonography with reference to the effect of pelvic floor training. Estrogen receptor studies

    DEFF Research Database (Denmark)

    Bernstein, Inge Thomsen

    1997-01-01

    depends on the structural components in the urethral wall, the position of the bladder neck and proximal urethra, the periurethral striated muscles, and the pelvic floor muscles. By means of pudendal blockade and simultaneous recordings of pressure and cross-sectional area in the urethra, it has been...... demonstrated that the striated periurethral muscles and the pelvic floor muscles are of paramount importance for the closure function. This emphasizes the importance of well-functioning pelvic floor muscles to obtain continence, and probably explains the rationale for the effect of pelvic floor training...... in treating urinary incontinence. This study presents a review of the literature on female urinary incontinence, continence mechanisms, pelvic floor muscles, and pelvic floor training. Furthermore, a review of the literature on estrogen receptors in the pelvic floor muscles is given. Perineal ultrasonography...

  12. Effects of temperature on power output and contraction kinetics in the locomotor muscle of the regionally endothermic common thresher shark (Alopias vulpinus).

    Science.gov (United States)

    Donley, Jeanine M; Sepulveda, Chugey A; Aalbers, Scott A; McGillivray, David G; Syme, Douglas A; Bernal, Diego

    2012-10-01

    The common thresher shark (Alopias vulpinus) is a pelagic species with medially positioned red aerobic swimming musculature (RM) and regional RM endothermy. This study tested whether the contractile characteristics of the RM are functionally similar along the length of the body and assessed how the contractile properties of the common thresher shark compare with those of other sharks. Contractile properties of the RM were examined at 8, 16 and 24 °C from anterior and posterior axial positions (0.4 and 0.6 fork length, respectively) using the work loop technique. Experiments were performed to determine whether the contractile properties of the RM are similar along the body of the common thresher shark and to document the effects of temperature on muscle power. Axial differences in contractile properties of RM were found to be small or absent. Isometric twitch kinetics of RM were ~fivefold slower than those of white muscle, with RM twitch durations of about 1 s at 24 °C and exceeding 5 s at 8 °C, a Q(10) of nearly 2.5. Power increased approximately tenfold with the 16 °C increase in temperature, while the cycle frequency for maximal power only increased from about 0.5-1.0 Hz over this temperature range. These data support the hypothesis that the RM is functionally similar along the body of the common thresher shark and corroborate previous findings from shark species both with and without medial RM. While twitch kinetics suggest the endothermic RM is not unusually temperature sensitive, measures of power suggest that the RM is not well suited to function at cool temperatures. The cycle frequency at which power is maximized appeared relatively insensitive to temperature in RM, which may reflect the relatively cooler temperature of the thresher RM compared to that observed in lamnid sharks as well as the relatively slow RM phenotype in these large fish.

  13. Mitochondrial affinity for ADP is twofold lower in creatine kinase knock-out muscles - Possible role in rescuing cellular energy homeostasis

    NARCIS (Netherlands)

    ter Veld, F; Jeneson, JAL; Nicolay, K

    Adaptations of the kinetic properties of mitochondria in striated muscle lacking cytosolic (M) and/or mitochondrial (Mi) creatine kinase (CK) isoforms in comparison to wild-type (WT) were investigated in vitro. Intact mitochondria were isolated from heart and gastrocnemius muscle of WT and single-

  14. Entropic elasticity in the generation of muscle Force - A theoretical model

    DEFF Research Database (Denmark)

    Nielsen, Bjørn Gilbert

    2002-01-01

    A novel simplified structural model of sarcomeric force production in striate muscle is presented. Using some simple assumptions regarding the distribution of myosin spring lengths at different sliding velocities it is possible to derive a very simple expression showing the main components...

  15. Transgenic overexpression of LARGE induces α-dystroglycan hyperglycosylation in skeletal and cardiac muscle.

    Directory of Open Access Journals (Sweden)

    Martin Brockington

    2010-12-01

    Full Text Available LARGE is one of seven putative or demonstrated glycosyltransferase enzymes defective in a common group of muscular dystrophies with reduced glycosylation of α-dystroglycan. Overexpression of LARGE induces hyperglycosylation of α-dystroglycan in both wild type and in cells from dystroglycanopathy patients, irrespective of their primary gene defect, restoring functional glycosylation. Viral delivery of LARGE to skeletal muscle in animal models of dystroglycanopathy has identical effects in vivo, suggesting that the restoration of functional glycosylation could have therapeutic applications in these disorders. Pharmacological strategies to upregulate Large expression are also being explored.In order to asses the safety and efficacy of long term LARGE over-expression in vivo, we have generated four mouse lines expressing a human LARGE transgene. On observation, LARGE transgenic mice were indistinguishable from the wild type littermates. Tissue analysis from young mice of all four lines showed a variable pattern of transgene expression: highest in skeletal and cardiac muscles, and lower in brain, kidney and liver. Transgene expression in striated muscles correlated with α-dystroglycan hyperglycosylation, as determined by immunoreactivity to antibody IIH6 and increased laminin binding on an overlay assay. Other components of the dystroglycan complex and extracellular matrix ligands were normally expressed, and general muscle histology was indistinguishable from wild type controls. Further detailed muscle physiological analysis demonstrated a loss of force in response to eccentric exercise in the older, but not in the younger mice, suggesting this deficit developed over time. However this remained a subclinical feature as no pathology was observed in older mice in any muscles including the diaphragm, which is sensitive to mechanical load-induced damage.This work shows that potential therapies in the dystroglycanopathies based on LARGE upregulation

  16. Convergence of ipsi- and contralateral muscle afferents on common interneurons mediating reciprocal inhibition of ankle plantarflexors in humans

    DEFF Research Database (Denmark)

    Mrachacz-Kersting, Natalie; Geertsen, Svend Sparre; Stevenson, Andrew James Thomas

    2017-01-01

    PTN) stimulation were assessed on the reciprocal Ia inhibition of the contralateral soleus (cSOL) motoneuronal pool (n = 8). Across all participants, iPTN stimulation intensity was 1.69 ± 0.3 × Motor Threshold (MT) and contralateral common peroneal (cCPN) stimulation intensity was 0.86 ± 0.16 × MT. iPTN and c...... reciprocal Ia inhibition of the opposite limb. This study was designed to investigate whether this pathway is similar in humans to that described in animals. Thirteen healthy volunteers participated in one of two experiments. In experiment 1, the effects of ipsilateral posterior tibial nerve (i...... used during the H-reflex conditioning experiment were 1.79 ± 0.4 × MT for the iPTN stimulation and 0.88 ± 0.16 × MT for cCPN stimulation. Across all participants, the onset of the cSOL EMG suppression was 42 ± 4, 44 ± 3 and 44 ± 3 ms for iPTN, cCPN and iPTN + cCPN conditions, respectively...

  17. Effect of distribution of striated laser hardening tracks on dry sliding wear resistance of biomimetic surface

    Science.gov (United States)

    Su, Wei; Zhou, Ti; Zhang, Peng; Zhou, Hong; Li, Hui

    2018-01-01

    Some biological surfaces were proved to have excellent anti-wear performance. Being inspired, Nd:YAG pulsed laser was used to create striated biomimetic laser hardening tracks on medium carbon steel samples. Dry sliding wear tests biomimetic samples were performed to investigate specific influence of distribution of laser hardening tracks on sliding wear resistance of biomimetic samples. After comparing wear weight loss of biomimetic samples, quenched sample and untreated sample, it can be suggested that the sample covered with dense laser tracks (3.5 mm spacing) has lower wear weight loss than the one covered with sparse laser tracks (4.5 mm spacing); samples distributed with only dense laser tracks or sparse laser tracks (even distribution) were proved to have better wear resistance than samples distributed with both dense and sparse tracks (uneven distribution). Wear mechanisms indicate that laser track and exposed substrate of biomimetic sample can be regarded as hard zone and soft zone respectively. Inconsecutive striated hard regions, on the one hand, can disperse load into small branches, on the other hand, will hinder sliding abrasives during wear. Soft regions with small range are beneficial in consuming mechanical energy and storing lubricative oxides, however, soft zone with large width (>0.5 mm) will be harmful to abrasion resistance of biomimetic sample because damages and material loss are more obvious on surface of soft phase. As for the reason why samples with even distributed bionic laser tracks have better wear resistance, it can be explained by the fact that even distributed laser hardening tracks can inhibit severe worn of local regions, thus sliding process can be more stable and wear extent can be alleviated as well.

  18. Mesodermal origin of median fin mesenchyme and tail muscle in amphibian larvae.

    Science.gov (United States)

    Taniguchi, Yuka; Kurth, Thomas; Medeiros, Daniel Meulemans; Tazaki, Akira; Ramm, Robert; Epperlein, Hans-Henning

    2015-06-18

    Mesenchyme is an embryonic precursor tissue that generates a range of structures in vertebrates including cartilage, bone, muscle, kidney, and the erythropoietic system. Mesenchyme originates from both mesoderm and the neural crest, an ectodermal cell population, via an epithelial to mesenchymal transition (EMT). Because ectodermal and mesodermal mesenchyme can form in close proximity and give rise to similar derivatives, the embryonic origin of many mesenchyme-derived tissues is still unclear. Recent work using genetic lineage tracing methods have upended classical ideas about the contributions of mesodermal mesenchyme and neural crest to particular structures. Using similar strategies in the Mexican axolotl (Ambystoma mexicanum), and the South African clawed toad (Xenopus laevis), we traced the origins of fin mesenchyme and tail muscle in amphibians. Here we present evidence that fin mesenchyme and striated tail muscle in both animals are derived solely from mesoderm and not from neural crest. In the context of recent work in zebrafish, our experiments suggest that trunk neural crest cells in the last common ancestor of tetrapods and ray-finned fish lacked the ability to form ectomesenchyme and its derivatives.

  19. Muscle Cramp - A Common Pain

    Science.gov (United States)

    ... Contact Us A A A Advancing the distinctive philosophy and practice of osteopathic medicine Inside the AOA About the AOA AOA Member Value AOA Membership AOA Annual Statistics Leadership & Policy Employment Opportunities Related Organizations AOA Strategic Plan History ...

  20. YAP-mediated mechanotransduction in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Martina eFischer

    2016-02-01

    Full Text Available Skeletal muscle is not only translating chemical energy into mechanical work, it is also a highly adaptive and regenerative tissue whose architecture and functionality is determined by its mechanical and physical environment. Processing intra- and extracellular mechanical signaling cues contributes to the regulation of cell growth, survival, migration and differentiation. Yes-associated Protein (YAP, a transcriptional coactivator downstream of the Hippo pathway and its paralogue, the transcriptional co-activator with PDZ-binding motif (TAZ, were recently found to play a key role in mechanotransduction in various tissues including skeletal muscle. Furthermore, YAP/TAZ modulate myogenesis and muscle regeneration and abnormal YAP activity has been reported in muscular dystrophy and rhabdomyosarcoma. Here, we summarize the current knowledge of mechanosensing and -signaling in striated muscle. We highlight the role of YAP signaling and discuss the different routes and hypotheses of its regulation in the context of mechanotransduction.

  1. Muscle microanatomy and its changes during contraction: the legacy of William Bowman (1816-1892).

    Science.gov (United States)

    Frixione, Eugenio

    2006-01-01

    Striated muscle fine structure began to be really understood following a comprehensive survey of the matter carried out by William Bowman in the late 1830s. The publications resulting from such a study, the first of which earned for the author a precocious election as Fellow of the Royal Society, are herewith examined in the context of contemporary views on the subject as well as of their subsequent repercussion and current knowledge today. It is shown that not only Bowman succeeded in establishing the true architecture of striated muscle fibres to the extent possible with the most advanced technology available in his day--explaining and eradicating alternative erroneous concepts in the process--but also in correctly describing the basic microstructural changes associated with contraction. In addition, although unrecognized by him or others at the time, his experiments with muscle provided direct evidence for the existence of a selectively permeable cell membrane--in the present meaning of the word--over half a century before its officially accepted discovery. Yet, in spite of these remarkable advances, Bowman arrived at the conclusion that the structure of striated muscle fibres is essentially irrelevant for the mechanism of contraction. Possible reasons behind Bowman's breakthrough accomplishments as a pioneer of modern muscle research, and his failure to understand their significance for muscle physiology, are discussed.

  2. Common genetic variation in the human FNDC5 locus, encoding the novel muscle-derived 'browning' factor irisin, determines insulin sensitivity.

    Directory of Open Access Journals (Sweden)

    Harald Staiger

    Full Text Available AIMS/HYPOTHESIS: Recently, the novel myokine irisin was described to drive adipose tissue 'browning', to increase energy expenditure, and to improve obesity and insulin resistance in high fat-fed mice. Here, we assessed whether common single nucleotide polymorphisms (SNPs in the FNDC5 locus, encoding the irisin precursor, contribute to human prediabetic phenotypes (overweight, glucose intolerance, insulin resistance, impaired insulin release. METHODS: A population of 1,976 individuals was characterized by oral glucose tolerance tests and genotyped for FNDC5 tagging SNPs. Subgroups underwent hyperinsulinaemic-euglycaemic clamps, magnetic resonance imaging/spectroscopy, and intravenous glucose tolerance tests. From 37 young and 14 elderly participants recruited in two different centres, muscle biopsies were obtained for the preparation of human myotube cultures. RESULTS: After appropriate adjustment and Bonferroni correction for the number of tested variants, SNPs rs16835198 and rs726344 were associated with in vivo measures of insulin sensitivity. Via interrogation of publicly available data from the Meta-Analyses of Glucose and Insulin-related traits Consortium, rs726344's effect on insulin sensitivity was replicated. Moreover, novel data from human myotubes revealed a negative association between FNDC5 expression and appropriately adjusted in vivo measures of insulin sensitivity in young donors. This finding was replicated in myotubes from elderly men. CONCLUSIONS/INTERPRETATION: This study provides evidence that the FNDC5 gene, encoding the novel myokine irisin, determines insulin sensitivity in humans. Our gene expression data point to an unexpected insulin-desensitizing effect of irisin.

  3. Common genetic variation in the human FNDC5 locus, encoding the novel muscle-derived 'browning' factor irisin, determines insulin sensitivity.

    Science.gov (United States)

    Staiger, Harald; Böhm, Anja; Scheler, Mika; Berti, Lucia; Machann, Jürgen; Schick, Fritz; Machicao, Fausto; Fritsche, Andreas; Stefan, Norbert; Weigert, Cora; Krook, Anna; Häring, Hans-Ulrich; de Angelis, Martin Hrabě

    2013-01-01

    Recently, the novel myokine irisin was described to drive adipose tissue 'browning', to increase energy expenditure, and to improve obesity and insulin resistance in high fat-fed mice. Here, we assessed whether common single nucleotide polymorphisms (SNPs) in the FNDC5 locus, encoding the irisin precursor, contribute to human prediabetic phenotypes (overweight, glucose intolerance, insulin resistance, impaired insulin release). A population of 1,976 individuals was characterized by oral glucose tolerance tests and genotyped for FNDC5 tagging SNPs. Subgroups underwent hyperinsulinaemic-euglycaemic clamps, magnetic resonance imaging/spectroscopy, and intravenous glucose tolerance tests. From 37 young and 14 elderly participants recruited in two different centres, muscle biopsies were obtained for the preparation of human myotube cultures. After appropriate adjustment and Bonferroni correction for the number of tested variants, SNPs rs16835198 and rs726344 were associated with in vivo measures of insulin sensitivity. Via interrogation of publicly available data from the Meta-Analyses of Glucose and Insulin-related traits Consortium, rs726344's effect on insulin sensitivity was replicated. Moreover, novel data from human myotubes revealed a negative association between FNDC5 expression and appropriately adjusted in vivo measures of insulin sensitivity in young donors. This finding was replicated in myotubes from elderly men. This study provides evidence that the FNDC5 gene, encoding the novel myokine irisin, determines insulin sensitivity in humans. Our gene expression data point to an unexpected insulin-desensitizing effect of irisin.

  4. Effects of striated laser tracks on thermal fatigue resistance of cast iron samples with biomimetic non-smooth surface

    International Nuclear Information System (INIS)

    Tong, Xin; Zhou, Hong; Liu, Min; Dai, Ming-jiang

    2011-01-01

    In order to enhance the thermal fatigue resistance of cast iron materials, the samples with biomimetic non-smooth surface were processed by Neodymium:Yttrium Aluminum Garnet (Nd:YAG) laser. With self-controlled thermal fatigue test method, the thermal fatigue resistance of smooth and non-smooth samples was investigated. The effects of striated laser tracks on thermal fatigue resistance were also studied. The results indicated that biomimetic non-smooth surface was benefit for improving thermal fatigue resistance of cast iron sample. The striated non-smooth units formed by laser tracks which were vertical with thermal cracks had the best propagation resistance. The mechanisms behind these influences were discussed, and some schematic drawings were introduced to describe them.

  5. The regulation of catch in molluscan muscle.

    Science.gov (United States)

    Twarog, B M

    1967-07-01

    Molluscan catch muscles are smooth muscles. As with mammalian smooth muscles, there is no transverse ordering of filaments or dense bodies. In contrast to mammalian smooth muscles, two size ranges of filaments are present. The thick filaments are long as well as large in diameter and contain paramyosin. The thin filaments contain actin and appear to run into and join the dense bodies. Vesicles are present which may be part of a sarcoplasmic reticulum. Neural activation of contraction in Mytilus muscle is similar to that observed in mammalian smooth muscles, and in some respects to frog striated muscle. The relaxing nerves, which reduce catch, are unique to catch muscles. 5-Hydroxytryptamine, which appears to mediate relaxation, specifically blocks catch tension but increases the ability of the muscle to fire spikes. It is speculated that Mytilus muscle actomyosin is activated by a Ca(++)-releasing mechanism, and that 5-hydroxytryptamine may reduce catch and increase excitability by influencing the rate of removal of intracellular free Ca(++).

  6. Complete genome sequence of maize yellow striate virus, a new cytorhabdovirus infecting maize and wheat crops in Argentina.

    Science.gov (United States)

    Maurino, Fernanda; Dumón, Analía D; Llauger, Gabriela; Alemandri, Vanina; de Haro, Luis A; Mattio, M Fernanda; Del Vas, Mariana; Laguna, Irma Graciela; Giménez Pecci, María de la Paz

    2018-01-01

    A rhabdovirus infecting maize and wheat crops in Argentina was molecularly characterized. Through next-generation sequencing (NGS) of symptomatic leaf samples, the complete genome was obtained of two isolates of maize yellow striate virus (MYSV), a putative new rhabdovirus, differing by only 0.4% at the nucleotide level. The MYSV genome consists of 12,654 nucleotides for maize and wheat virus isolates, and shares 71% nucleotide sequence identity with the complete genome of barley yellow striate mosaic virus (BYSMV, NC028244). Ten open reading frames (ORFs) were predicted in the MYSV genome from the antigenomic strand and were compared with their BYSMV counterparts. The highest amino acid sequence identity of the MYSV and BYSMV proteins was 80% between the L proteins, and the lowest was 37% between the proteins 4. Phylogenetic analysis suggested that the MYSV isolates are new members of the genus Cytorhabdovirus, family Rhabdoviridae. Yellow striate, affecting maize and wheat crops in Argentina, is an emergent disease that presents a potential economic risk for these widely distributed crops.

  7. Diagnostic accuracy of common clinical tests for assessing abdominal muscle function after motor-complete spinal cord injury above T6.

    Science.gov (United States)

    Bjerkefors, A; Squair, J W; Malik, R; Lam, T; Chen, Z; Carpenter, M G

    2015-02-01

    Diagnostic study. The objective of this study was to compare patterns of electromyography (EMG) recordings of abdominal muscle function in persons with motor-complete spinal cord injury (SCI) above T6 and in able-bodied controls, and to determine whether manual examination or ultrasound measures of muscle activation can be accurate alternatives to EMG. Research center focused on SCI and University laboratory, Vancouver, Canada. Thirteen people with SCI (11 with American Spinal Injury Association Impairment Scale (AIS) A and 2 AIS B; C4-T5), and 13 matched able-bodied participants volunteered for the study. Participants completed trunk tasks during manual examination of the abdominal muscles and then performed maximal voluntary isometric contractions, while EMG activity and muscle thickness changes were recorded. The frequency of muscle responses detected by manual examination and ultrasound were compared with detection by EMG (sensitivity and specificity). All individuals with SCI were able to elicit EMG activity above resting levels in at least one abdominal muscle during one task. In general, the activation pattern was task specific, confirming voluntary control of the muscles. Ultrasound, when compared with EMG, showed low sensitivity but was highly specific in its ability to detect preserved abdominal muscle function in persons with SCI. Conversely, manual examination was more sensitive than ultrasound but showed lower specificity. The results from this study confirm preserved voluntary abdominal muscle function in individuals classified with motor-complete SCI above T6 and highlight the need for further research in developing more accurate clinical measures to diagnose the level of trunk muscle preservation in individuals with SCI.

  8. A functional magnetic resonance imaging investigation of visual hallucinations in the human striate cortex.

    Science.gov (United States)

    Abid, Hina; Ahmad, Fayyaz; Lee, Soo Y; Park, Hyun W; Im, Dongmi; Ahmad, Iftikhar; Chaudhary, Safee U

    2016-11-29

    Human beings frequently experience fear, phobia, migraine and hallucinations, however, the cerebral mechanisms underpinning these conditions remain poorly understood. Towards this goal, in this work, we aim to correlate the human ocular perceptions with visual hallucinations, and map them to their cerebral origins. An fMRI study was performed to examine the visual cortical areas including the striate, parastriate and peristriate cortex in the occipital lobe of the human brain. 24 healthy subjects were enrolled and four visual patterns including hallucination circle (HCC), hallucination fan (HCF), retinotopy circle (RTC) and retinotopy cross (RTX) were used towards registering their impact in the aforementioned visual related areas. One-way analysis of variance was used to evaluate the significance of difference between induced activations. Multinomial regression and and K-means were used to cluster activation patterns in visual areas of the brain. Significant activations were observed in the visual cortex as a result of stimulus presentation. The responses induced by visual stimuli were resolved to Brodmann areas 17, 18 and 19. Activation data clustered into independent and mutually exclusive clusters with HCC registering higher activations as compared to HCF, RTC and RTX. We conclude that small circular objects, in rotation, tend to leave greater hallucinating impressions in the visual region. The similarity between observed activation patterns and those reported in conditions such as epilepsy and visual hallucinations can help elucidate the cortical mechanisms underlying these conditions. Trial Registration 1121_GWJUNG.

  9. Imaging of muscle injuries

    Energy Technology Data Exchange (ETDEWEB)

    El-Khoury, G.Y. [Iowa Univ., Iowa City, IA (United States). Dept. of Radiology; Brandser, E.A. [Iowa Univ., Iowa City, IA (United States). Dept. of Radiology; Kathol, M.H. [Iowa Univ., Iowa City, IA (United States). Dept. of Radiology; Tearse, D.S. [Iowa Univ., Iowa City, IA (United States). Dept. of Orthopaedic Surgery; Callaghan, J.J. [Iowa Univ., Iowa City, IA (United States). Dept. of Orthopaedic Surgery

    1996-01-01

    Although skeletal muscle is the single largest tissue in the body, there is little written about it in the radiologic literature. Indirect muscle injuries, also called strains or tears, are common in athletics, and knowing the morphology and physiology of the muscle-tendon unit is the key to the understanding of these injuries. Eccentric muscle activation produces more tension within the muscle tan when it is activated concentrically, making it more susceptible to tearing. Injuries involving the muscle belly tend to occur near the myotendinous junction. In adolescents, the weakest link in the muscle-tendon-bone complex is the apophysis. Traditionally, plain radiography has been the main diagnostic modality for evaluation of these injuries; however, with the advent of MRI it has become much easier to diagnose injuries primarily affecting the soft tissues. This article reviews the anatomy and physiology of the muscle-tendon unit as they relate to indirect muscle injuries. Examples of common muscle injuries are illustrated. (orig.)

  10. Gene expression profiles of mouse aorta and cultured vascular smooth muscle cells differ widely, yet show common responses to dioxin exposure.

    Science.gov (United States)

    Puga, Alvaro; Sartor, Maureen A; Huang, Ming-Ya; Kerzee, J Kevin; Wei, Yu-Dan; Tomlinson, Craig R; Baxter, C Stuart; Medvedovic, Mario

    2004-01-01

    Exposure to environmental toxicants may play a role in the onset and progression of cardiovascular disease. Many environmental agents, such as dioxin, are risk factors for atherosclerosis because they may exacerbate an underlying disease by altering gene expression patterns. Expression profiling of vascular tissues allows the simultaneous analysis of thousands of genes and may provide predictive information particularly useful in early disease stages. Often, however, in vivo experiments are unfeasible for material or ethical reasons, and data from cultured cells must be used instead, even though it may not be known whether cultured cells and live tissues share common global responses to the same toxicant. In a search for genes responsive to dioxin exposure, we used oligonucleotide microarrays with DNA sequences from 13,433 genes to compare global gene expression profiles of C57BL/6 mice aortas with cultured vascular smooth muscle cells (vSMCs) of the same mice. Aorta segments and vSMCs differed in the expression of more than 4500 genes, many showing expression differences greater than 1000-fold. Integration of microarray data into Gene Ontology Project annotations showed that many of the genes differentially expressed belonged to the same biological process or metabolic pathway. Notwithstanding these results, a subset of 35 genes responded in the same fashion to dioxin exposure in both systems. Genes in this subset encoded phase I and phase II detoxification enzymes, signal transduction kinases and phosphatases, and proteins involved in DNA repair and the cell cycle. We conclude that vSMCS may be useful aorta surrogates to study early gene expression responses to dioxin exposure, provided that analyses focus on this subset of genes.

  11. Common Genetic Variation in the Human FNDC5 Locus, Encoding the Novel Muscle-Derived ‘Browning’ Factor Irisin, Determines Insulin Sensitivity

    Science.gov (United States)

    Staiger, Harald; Böhm, Anja; Scheler, Mika; Berti, Lucia; Machann, Jürgen; Schick, Fritz; Machicao, Fausto; Fritsche, Andreas; Stefan, Norbert; Weigert, Cora; Krook, Anna; Häring, Hans-Ulrich; de Angelis, Martin Hrabě

    2013-01-01

    Aims/hypothesis Recently, the novel myokine irisin was described to drive adipose tissue ‘browning’, to increase energy expenditure, and to improve obesity and insulin resistance in high fat-fed mice. Here, we assessed whether common single nucleotide polymorphisms (SNPs) in the FNDC5 locus, encoding the irisin precursor, contribute to human prediabetic phenotypes (overweight, glucose intolerance, insulin resistance, impaired insulin release). Methods A population of 1,976 individuals was characterized by oral glucose tolerance tests and genotyped for FNDC5 tagging SNPs. Subgroups underwent hyperinsulinaemic-euglycaemic clamps, magnetic resonance imaging/spectroscopy, and intravenous glucose tolerance tests. From 37 young and 14 elderly participants recruited in two different centres, muscle biopsies were obtained for the preparation of human myotube cultures. Results After appropriate adjustment and Bonferroni correction for the number of tested variants, SNPs rs16835198 and rs726344 were associated with in vivo measures of insulin sensitivity. Via interrogation of publicly available data from the Meta-Analyses of Glucose and Insulin-related traits Consortium, rs726344’s effect on insulin sensitivity was replicated. Moreover, novel data from human myotubes revealed a negative association between FNDC5 expression and appropriately adjusted in vivo measures of insulin sensitivity in young donors. This finding was replicated in myotubes from elderly men. Conclusions/interpretation This study provides evidence that the FNDC5 gene, encoding the novel myokine irisin, determines insulin sensitivity in humans. Our gene expression data point to an unexpected insulin-desensitizing effect of irisin. PMID:23637927

  12. Linear transmission of cortical oscillations to the neural drive to muscles is mediated by common projections to populations of motoneurons in humans.

    Science.gov (United States)

    Negro, Francesco; Farina, Dario

    2011-02-01

    Since the human central nervous system controls muscle contraction through inputs to spinal motoneurons, oscillations recorded on the primary motor cortex during voluntary movements are correlated with the electrical activity produced on the surface of the muscles. We show through theoretical derivations and experimental recordings that cortical input is transmitted partly in a linear way to the population of motoneurons. The results demonstrate the effective spread of the cortical projections to the motoneuron pool to allow an efficient control of the muscle force output.

  13. An Electron Microscopic Study of the Irradiation Effects on the Striated Duct Cells of the Submandibular Gland in Rats

    International Nuclear Information System (INIS)

    Lee, Kyu Chan; Lee, Sang Rae

    1990-01-01

    The purpose of this study was to investigate the effects of irradiation on the striated duct cells of the rat submandibular gland ductal tissues which control the characteristics of saliva. For this study, the experimental group was composed of 36 irradiated Sprague Dawley strain rats divided into 8 subgroups- 1 hour, 2 hours, 3 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours after irradiation. 4 non-irradiated rats were used as the control group. The experimental animals were singly irradiated with a dose of 18 Gy gamma ray to their head and neck region by the Co-6-teletherapy unit and sacrificed after each experimental duration. The specimens were examined with a light microscope with an H-E stain and with a transmission electron microscope. The results of this study were as follows. 1. In the light micrograph, a severe atrophic change occurred in the striated duct cells at 2 hours after irradiation and gradual recovery occurred from 6 hours after irradiation. 2. The nuclear chromosomes of the striated duct cells were changed granular at 2 hours after irradiation. Recovery was observed at 6 hours after irradiation. Nuclear bodies were also observed from 3 hours after irradiation. 3. The mitochondria of the striated duct cells had indistinct cristae at 2 hours after irradiation, and were degenerated or swollen at 3 hours after irradiation. They recovered, however, from 6 hours, with an increasing number at 48 hours a regular arrangement was observed at 72 hours after irradiation. 4. The microvilli showed atrophic changes at 2 hours after irradiation and were almost lost at 3 hours after irradiation. They were observed again from 48 hours after irradiation. 5. The rough endoplasmic reticulum and golgi body were not apparent at 1 hours after irradiation and were dilated with degeneration 2 hours after, but intact rough endoplasmic reticulum were observed from 3 hours after irradiation and developed well at 24 hours after irradiation. By the result of this

  14. Striated muscle microvascular response to silver implants: A comparative in vivo study with titanium and stainless steel.

    Science.gov (United States)

    Kraft, C N; Hansis, M; Arens, S; Menger, M D; Vollmar, B

    2000-02-01

    Local microvascular perfusion is the primary line of defense of tissue against microorganisms and plays a considerable role in reparative processes. The impairment of the microcirculation by a biomaterial may therefore have profound consequences. Silver is known to have excellent antimicrobial activity and, although regional and systemic toxic effects have been described, silver is regularly discussed as an implant material in bone surgery. Because little is known about the influence of silver implants on the adjacent host tissue microvasculature, we studied in vivo nutritive perfusion and leukocytic response, and compared these results with those of the conventionally used materials titanium and stainless steel. Using the hamster dorsal skinfold chamber preparation and intravital microscopy, the implantation of a commercially pure silver sample led to a distinct and persistent activation of leukocytes combined with a marked disruption of the microvascular endothelial integrity, massive leukocyte extravasation, and considerable venular dilation. Whereas animals with stainless-steel implants showed a moderate increase in these parameters with a tendency to recuperate, titanium implants caused only a transient increase of leukocyte-endothelial cell interaction within the first 120 min and no significant change in macromolecular leakage, leukocyte extravasation and venular diameter. After 3 days, five of six preparations with silver samples showed severe inflammation and massive edema. Thus, the use of silver as an implant material should be critically judged despite its bactericidal properties. The implant material titanium seems to be well tolerated by the local vascular system and currently represents the golden standard. Copyright 2000 John Wiley & Sons, Inc.

  15. Action of lovastatin, simvastatin, and pravastatin on sterol synthesis and their antiproliferative effect in cultured myoblasts from human striated muscle

    NARCIS (Netherlands)

    Vliet, A.K. van; Nègre-Arrariou, P.; Thiel, G.C.F. van; Bolhuis, P.A.; Cohen, L.H.

    1996-01-01

    Lovastatin, simvastatin, and pravastatin are fairly strong inhibitors of sterol synthesis in human myoblasts in culture. Lovastatin and simvastatin have IC50 values of 19 ± 6 nM and 4.0 ± 2.3 nM, respectively. Pravastatin is a weaker inhibitor of sterol synthesis (IC50 value of 110 ± 38 nM). Through

  16. Shared gene structures and clusters of mutually exclusive spliced exons within the metazoan muscle myosin heavy chain genes.

    Directory of Open Access Journals (Sweden)

    Martin Kollmar

    Full Text Available Multicellular animals possess two to three different types of muscle tissues. Striated muscles have considerable ultrastructural similarity and contain a core set of proteins including the muscle myosin heavy chain (Mhc protein. The ATPase activity of this myosin motor protein largely dictates muscle performance at the molecular level. Two different solutions to adjusting myosin properties to different muscle subtypes have been identified so far: Vertebrates and nematodes contain many independent differentially expressed Mhc genes while arthropods have single Mhc genes with clusters of mutually exclusive spliced exons (MXEs. The availability of hundreds of metazoan genomes now allowed us to study whether the ancient bilateria already contained MXEs, how MXE complexity subsequently evolved, and whether additional scenarios to control contractile properties in different muscles could be proposed, By reconstructing the Mhc genes from 116 metazoans we showed that all intron positions within the motor domain coding regions are conserved in all bilateria analysed. The last common ancestor of the bilateria already contained a cluster of MXEs coding for part of the loop-2 actin-binding sequence. Subsequently the protostomes and later the arthropods gained many further clusters while MXEs got completely lost independently in several branches (vertebrates and nematodes and species (for example the annelid Helobdella robusta and the salmon louse Lepeophtheirus salmonis. Several bilateria have been found to encode multiple Mhc genes that might all or in part contain clusters of MXEs. Notable examples are a cluster of six tandemly arrayed Mhc genes, of which two contain MXEs, in the owl limpet Lottia gigantea and four Mhc genes with three encoding MXEs in the predatory mite Metaseiulus occidentalis. Our analysis showed that similar solutions to provide different myosin isoforms (multiple genes or clusters of MXEs or both have independently been developed

  17. Progressive Structural Defects in Canine Centronuclear Myopathy Indicate a Role for HACD1 in Maintaining Skeletal Muscle Membrane Systems.

    Science.gov (United States)

    Walmsley, Gemma L; Blot, Stéphane; Venner, Kerrie; Sewry, Caroline; Laporte, Jocelyn; Blondelle, Jordan; Barthélémy, Inès; Maurer, Marie; Blanchard-Gutton, Nicolas; Pilot-Storck, Fanny; Tiret, Laurent; Piercy, Richard J

    2017-02-01

    Mutations in HACD1/PTPLA cause recessive congenital myopathies in humans and dogs. Hydroxyacyl-coA dehydratases are required for elongation of very long chain fatty acids, and HACD1 has a role in early myogenesis, but the functions of this striated muscle-specific enzyme in more differentiated skeletal muscle remain unknown. Canine HACD1 deficiency is histopathologically classified as a centronuclear myopathy (CNM). We investigated the hypothesis that muscle from HACD1-deficient dogs has membrane abnormalities in common with CNMs with different genetic causes. We found progressive changes in tubuloreticular and sarcolemmal membranes and mislocalized triads and mitochondria in skeletal muscle from animals deficient in HACD1. Furthermore, comparable membranous abnormalities in cultured HACD1-deficient myotubes provide additional evidence that these defects are a primary consequence of altered HACD1 expression. Our novel findings, including T-tubule dilatation and disorganization, associated with defects in this additional CNM-associated gene provide a definitive pathophysiologic link with these disorders, confirm that dogs deficient in HACD1 are relevant models, and strengthen the evidence for a unifying pathogenesis in CNMs via defective membrane trafficking and excitation-contraction coupling in muscle. These results build on previous work by determining further functional roles of HACD1 in muscle and provide new insight into the pathology and pathogenetic mechanisms of HACD1 CNM. Consequently, alterations in membrane properties associated with HACD1 mutations should be investigated in humans with related phenotypes. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  18. Identification and Characterization of Wheat Yellow Striate Virus, a Novel Leafhopper-Transmitted Nucleorhabdovirus Infecting Wheat

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2018-03-01

    Full Text Available A new wheat viral disease was found in China. Bullet-shaped viral particles within the nucleus of the infected wheat leave cells, which possessed 180–210 nm length and 35–40 nm width, were observed under transmission electron microscopy. A putative wheat-infecting rhabdovirus vectored by the leafhopper Psammotettix alienus was identified and tentatively named wheat yellow striate virus (WYSV. The full-length nucleotide sequence of WYSV was determined using transcriptome sequencing and RACE analysis of both wheat samples and leafhoppers P. alienus. The negative-sense RNA genome of WYSV contains 14,486 nucleotides (nt and seven open reading frames (ORFs encode deduced proteins in the order N-P-P3-M-P6-G-L on the antisense strand. In addition, WYSV genome has a 76-nt 3′ leader RNA and a 258-nt 5′ trailer, and the ORFs are separated by conserved intergenic sequences. The entire genome sequence shares 58.1 and 57.7% nucleotide sequence identity with two strains of rice yellow stunt virus (RYSV-A and RYSV-B genomes, respectively. The highest amino acid sequence identity was 63.8% between the L proteins of the WYSV and RYSV-B, but the lowest was 29.5% between the P6 proteins of these viruses. Phylogenetic analysis firmly established WYSV as a new member of the genus Nucleorhabdovirus. Collectively, this study provided evidence that WYSV is likely the first nucleorhabdovirus described infecting wheat via leafhopper P. alienus transmission.

  19. Mesodermal iPSC–derived progenitor cells functionally regenerate cardiac and skeletal muscle

    Science.gov (United States)

    Quattrocelli, Mattia; Swinnen, Melissa; Giacomazzi, Giorgia; Camps, Jordi; Barthélemy, Ines; Ceccarelli, Gabriele; Caluwé, Ellen; Grosemans, Hanne; Thorrez, Lieven; Pelizzo, Gloria; Muijtjens, Manja; Verfaillie, Catherine M.; Blot, Stephane; Janssens, Stefan; Sampaolesi, Maurilio

    2015-01-01

    Conditions such as muscular dystrophies (MDs) that affect both cardiac and skeletal muscles would benefit from therapeutic strategies that enable regeneration of both of these striated muscle types. Protocols have been developed to promote induced pluripotent stem cells (iPSCs) to differentiate toward cardiac or skeletal muscle; however, there are currently no strategies to simultaneously target both muscle types. Tissues exhibit specific epigenetic alterations; therefore, source-related lineage biases have the potential to improve iPSC-driven multilineage differentiation. Here, we determined that differential myogenic propensity influences the commitment of isogenic iPSCs and a specifically isolated pool of mesodermal iPSC-derived progenitors (MiPs) toward the striated muscle lineages. Differential myogenic propensity did not influence pluripotency, but did selectively enhance chimerism of MiP-derived tissue in both fetal and adult skeletal muscle. When injected into dystrophic mice, MiPs engrafted and repaired both skeletal and cardiac muscle, reducing functional defects. Similarly, engraftment into dystrophic mice of canine MiPs from dystrophic dogs that had undergone TALEN-mediated correction of the MD-associated mutation also resulted in functional striatal muscle regeneration. Moreover, human MiPs exhibited the same capacity for the dual differentiation observed in murine and canine MiPs. The findings of this study suggest that MiPs should be further explored for combined therapy of cardiac and skeletal muscles. PMID:26571398

  20. A role for muscle LIM protein (MLP) in vascular remodeling.

    Science.gov (United States)

    Wang, Xiaohong; Li, Qinglu; Adhikari, Neeta; Hall, Jennifer L

    2006-04-01

    Given the well-defined role of LIM-motif containing proteins in cytoskeletal organization, cell fate, and differentiation, we hypothesized that the regulation of LIM proteins played an integral role in vascular remodeling. We screened a compendium of cDNA microarray data from rat vascular smooth muscle cells (VSMC) for novel LIM-containing targets and identified muscle LIM protein (MLP), a gene previously thought to be only in striated muscle. Sequence analysis, RTQPCR and Western blotting reconfirmed expression of MLP in VSMC. MLP was elevated>10-fold 7 days following balloon injury in the rat carotid artery. Wire injury led to a significantly increased intima/media ratio in MLP -/- mice compared to wild-type controls (PMLP deficient VSMC (n=6, PMLP significantly restored apoptotic response (N=6, PMLP in vascular smooth muscle and demonstrate that it plays a critical role in vascular remodeling. This is consistent with earlier findings demonstrating a role for MLP in striated muscle remodeling in response to load and stretch.

  1. A comparative study of various electrodes in electromyography of the striated urethral and anal sphincter in children

    DEFF Research Database (Denmark)

    Nielsen, K K; Kristensen, E S; Qvist, N

    1985-01-01

    The series comprised 41 children aged 6 to 14 years consecutively referred with recurrent urinary tract infection and/or enuresis. Carbon dioxide cystometry was carried out in the supine and the erect position and combined with simultaneous electromyography (EMG). The external urethral sphincter...... was examined with a ring electrode mounted on a urethral catheter, while recordings from the striated anal sphincter were based on an anal plug electrode and perianal electrocardiographic (ECG) skin electrodes: 211 EMG and cystometric examinations were performed and all three methods gave satisfactory results...

  2. The structure of Mytilus smooth muscle and the electrical constants of the resting muscle.

    Science.gov (United States)

    Twarog, B M; Dewey, M M; Hidaka, T

    1973-02-01

    The individual muscle fibers of the anterior byssus retractor muscle (ABRM) of Mytilus edulis L. are uninucleate, 1.2-1.8 mm in length, 5 microm in diameter, and organized into bundles 100-200 microm in diameter, surrounded by connective tissue. Some bundles run the length of the whole muscle. Adjacent muscle cell membranes are interconnected by nexuses at frequent intervals. Specialized attachments exist between muscle fibers and connective tissue. Electrical constants of the resting muscle membrane were measured with intracellular recording electrodes and both extracellular and intracellular current-passing electrodes. With an intracellular current-passing electrode, the time constant tau, was 4.3 +/- 1.5 ms. With current delivered via an extracellular electrode tau was 68.3 +/- 15 ms. The space constant, lambda, was 1.8 mm +/- 0.4. The membrane input resistance, R(eff), ranged from 23 to 51 MOmega. The observations that values of tau depend on the method of passing current, and that the value of lambda is large relative to fiber length and diameter are considered evidence that the individual muscle fibers are electrically interconnected within bundles in a three-dimensional network. Estimations are made of the membrane resistance, R(m), to compare the values to fast and slow striated muscle fibers and mammalian smooth muscles. The implications of this study in reinterpreting previous mechanical and electrical studies are discussed.

  3. Independent specialisation of myosin II paralogues in muscle vs. non-muscle functions during early animal evolution: a ctenophore perspective.

    Science.gov (United States)

    Dayraud, Cyrielle; Alié, Alexandre; Jager, Muriel; Chang, Patrick; Le Guyader, Hervé; Manuel, Michaël; Quéinnec, Eric

    2012-07-02

    Myosin II (or Myosin Heavy Chain II, MHCII) is a family of molecular motors involved in the contractile activity of animal muscle cells but also in various other cellular processes in non-muscle cells. Previous phylogenetic analyses of bilaterian MHCII genes identified two main clades associated respectively with smooth/non-muscle cells (MHCIIa) and striated muscle cells (MHCIIb). Muscle cells are generally thought to have originated only once in ancient animal history, and decisive insights about their early evolution are expected to come from expression studies of Myosin II genes in the two non-bilaterian phyla that possess muscles, the Cnidaria and Ctenophora. We have uncovered three MHCII paralogues in the ctenophore species Pleurobrachia pileus. Phylogenetic analyses indicate that the MHCIIa / MHCIIb duplication is more ancient than the divergence between extant metazoan lineages. The ctenophore MHCIIa gene (PpiMHCIIa) has an expression pattern akin to that of "stem cell markers" (Piwi, Vasa…) and is expressed in proliferating cells. We identified two MHCIIb genes that originated from a ctenophore-specific duplication. PpiMHCIIb1 represents the exclusively muscular form of myosin II in ctenophore, while PpiMHCIIb2 is expressed in non-muscle cells of various types. In parallel, our phalloidin staining and TEM observations highlight the structural complexity of ctenophore musculature and emphasize the experimental interest of the ctenophore tentacle root, in which myogenesis is spatially ordered and strikingly similar to striated muscle formation in vertebrates. MHCIIa expression in putative stem cells/proliferating cells probably represents an ancestral trait, while specific involvement of some MHCIIa genes in smooth muscle fibres is a uniquely derived feature of the vertebrates. That one ctenophore MHCIIb paralogue (PpiMHCIIb2) has retained MHCIIa-like expression features furthermore suggests that muscular expression of the other paralogue, PpiMHCIIb1, was

  4. Independent specialisation of myosin II paralogues in muscle vs. non-muscle functions during early animal evolution: a ctenophore perspective

    Science.gov (United States)

    2012-01-01

    Background Myosin II (or Myosin Heavy Chain II, MHCII) is a family of molecular motors involved in the contractile activity of animal muscle cells but also in various other cellular processes in non-muscle cells. Previous phylogenetic analyses of bilaterian MHCII genes identified two main clades associated respectively with smooth/non-muscle cells (MHCIIa) and striated muscle cells (MHCIIb). Muscle cells are generally thought to have originated only once in ancient animal history, and decisive insights about their early evolution are expected to come from expression studies of Myosin II genes in the two non-bilaterian phyla that possess muscles, the Cnidaria and Ctenophora. Results We have uncovered three MHCII paralogues in the ctenophore species Pleurobrachia pileus. Phylogenetic analyses indicate that the MHCIIa / MHCIIb duplication is more ancient than the divergence between extant metazoan lineages. The ctenophore MHCIIa gene (PpiMHCIIa) has an expression pattern akin to that of "stem cell markers" (Piwi, Vasa…) and is expressed in proliferating cells. We identified two MHCIIb genes that originated from a ctenophore-specific duplication. PpiMHCIIb1 represents the exclusively muscular form of myosin II in ctenophore, while PpiMHCIIb2 is expressed in non-muscle cells of various types. In parallel, our phalloidin staining and TEM observations highlight the structural complexity of ctenophore musculature and emphasize the experimental interest of the ctenophore tentacle root, in which myogenesis is spatially ordered and strikingly similar to striated muscle formation in vertebrates. Conclusion MHCIIa expression in putative stem cells/proliferating cells probably represents an ancestral trait, while specific involvement of some MHCIIa genes in smooth muscle fibres is a uniquely derived feature of the vertebrates. That one ctenophore MHCIIb paralogue (PpiMHCIIb2) has retained MHCIIa-like expression features furthermore suggests that muscular expression of the

  5. Independent specialisation of myosin II paralogues in muscle vs. non-muscle functions during early animal evolution: a ctenophore perspective

    Directory of Open Access Journals (Sweden)

    Dayraud Cyrielle

    2012-07-01

    Full Text Available Abstract Background Myosin II (or Myosin Heavy Chain II, MHCII is a family of molecular motors involved in the contractile activity of animal muscle cells but also in various other cellular processes in non-muscle cells. Previous phylogenetic analyses of bilaterian MHCII genes identified two main clades associated respectively with smooth/non-muscle cells (MHCIIa and striated muscle cells (MHCIIb. Muscle cells are generally thought to have originated only once in ancient animal history, and decisive insights about their early evolution are expected to come from expression studies of Myosin II genes in the two non-bilaterian phyla that possess muscles, the Cnidaria and Ctenophora. Results We have uncovered three MHCII paralogues in the ctenophore species Pleurobrachia pileus. Phylogenetic analyses indicate that the MHCIIa / MHCIIb duplication is more ancient than the divergence between extant metazoan lineages. The ctenophore MHCIIa gene (PpiMHCIIa has an expression pattern akin to that of "stem cell markers" (Piwi, Vasa… and is expressed in proliferating cells. We identified two MHCIIb genes that originated from a ctenophore-specific duplication. PpiMHCIIb1 represents the exclusively muscular form of myosin II in ctenophore, while PpiMHCIIb2 is expressed in non-muscle cells of various types. In parallel, our phalloidin staining and TEM observations highlight the structural complexity of ctenophore musculature and emphasize the experimental interest of the ctenophore tentacle root, in which myogenesis is spatially ordered and strikingly similar to striated muscle formation in vertebrates. Conclusion MHCIIa expression in putative stem cells/proliferating cells probably represents an ancestral trait, while specific involvement of some MHCIIa genes in smooth muscle fibres is a uniquely derived feature of the vertebrates. That one ctenophore MHCIIb paralogue (PpiMHCIIb2 has retained MHCIIa-like expression features furthermore suggests that muscular

  6. The length-tension curve in muscle depends on lattice spacing

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C. D.; Salcedo, M. K.; Irving, T. C.; Regnier, M.; Daniel, T. L.

    2013-07-10

    Classic interpretations of the striated muscle length–tension curve focus on how force varies with overlap of thin (actin) and thick (myosin) filaments. New models of sarcomere geometry and experiments with skinned synchronous insect flight muscle suggest that changes in the radial distance between the actin and myosin filaments, the filament lattice spacing, are responsible for between 20% and 50% of the change in force seen between sarcomere lengths of 1.4 and 3.4 µm. Thus, lattice spacing is a significant force regulator, increasing the slope of muscle's force–length dependence.

  7. Striated nephrogram as an incidental finding in MRI examination of children; Streifiges Nephrogramm als Zufallsbefund nach Kontrastmittelgabe bei Kindern in der MRT

    Energy Technology Data Exchange (ETDEWEB)

    Strocka, S.; Sorge, I.; Ritter, L.; Hirsch, F.W. [Leipzig Univ. (Germany). Dept. of Pediatric Radiology

    2016-01-15

    A highly striated contrast pattern of the kidneys occasionally appears in abdominal MRI examinations of children following the administration of gadolinium. As this phenomenon is well known but has not yet been explicitly described in literature, we investigated how frequently and in which clinical context this occurred. 855 abdominal MRI examinations with contrast media of 362 children between 2006 and 2014 were analysed retrospectively. A striated renal parenchyma was found in a total of nine children and eleven examinations (1.3 % of examinations) and did only occur at a field strength of 3 Tesla. Of these children, seven had previously had tumors and chemotherapy. In two children there was no evidence of a previously serious condition with medications or a kidney disease. All of them had a normal renal function. A noticeably striated nephrogram in the later phase of an MRI examination following administration of gadolinium may appear as an incidental finding in examinations at 3 Tesla without pathological relevance.

  8. Central common drive to antagonistic ankle muscles in relation to short-term co-contraction training in non-dancers and professional ballet dancers

    DEFF Research Database (Denmark)

    Geertsen, Svend Sparre; Kjær, Majken; Pedersen, Kasper Karhu

    2013-01-01

    investigated whether short-term co-contraction training in ballet dancers and non-dancers leads to changes in the coupling between antagonistic ankle motor units. Eleven ballet dancers and ten non-dancers were recruited for the study. Prior to training, ballet dancers and non-dancers showed an equal amount...... of coherence in the 15-35 Hz frequency band and short-term synchronization between antagonistic tibialis anterior and soleus motor units. The ballet dancers tended to be better at maintaining a stable co-contraction of the antagonistic muscles, but this difference was not significant (P = 0.09). Following 27......Optimization of co-contraction of antagonistic muscles around the ankle joint has been shown to involve plastic changes in spinal and cortical neural circuitries. Such changes may explain the ability of elite ballet dancers to maintain a steady balance during various ballet postures. Here we...

  9. Central common drive to antagonistic ankle muscles in relation to short-term cocontraction training in nondancers and professional ballet dancers.

    Science.gov (United States)

    Geertsen, S S; Kjær, M; Pedersen, K K; Petersen, T H; Perez, M A; Nielsen, J B

    2013-10-01

    Optimization of cocontraction of antagonistic muscles around the ankle joint has been shown to involve plastic changes in spinal and cortical neural circuitries. Such changes may explain the ability of elite ballet dancers to maintain a steady balance during various ballet postures. Here we investigated whether short-term cocontraction training in ballet dancers and nondancers leads to changes in the coupling between antagonistic ankle motor units. Eleven ballet dancers and 10 nondancers were recruited for the study. Prior to training, ballet dancers and nondancers showed an equal amount of coherence in the 15- to 35-Hz frequency band and short-term synchronization between antagonistic tibialis anterior and soleus motor units. The ballet dancers tended to be better at maintaining a stable cocontraction of the antagonistic muscles, but this difference was not significant (P = 0.09). Following 27 min of cocontraction training, the nondancers improved their performance significantly, whereas no significant improvement was observed for the ballet dancers. The nondancers showed a significant increase in 15- to 35-Hz coherence following the training, whereas the ballet dancers did not show a significant change. A group of control subjects (n = 4), who performed cocontraction of the antagonistic muscles for an equal amount of time, but without any requirement to improve their performance, showed no change in coherence. We suggest that improved ability to maintain a stable cocontraction around the ankle joint is accompanied by short-term plastic changes in the neural drive to the involved muscles, but that such changes are not necessary for maintained high-level performance.

  10. Amelioration of cadmium-induced changes in biochemical parameters of the muscle of Common Carp (Cyprinus carpio by Vitamin C and Chitosan

    Directory of Open Access Journals (Sweden)

    Mahdi Banaee

    2015-12-01

    Full Text Available The aim of this study was to investigate the effects of administering antioxidants, including vitamin C and chitosan on oxidative stress markers in muscle as edible tissues of Cyprinus carpio exposed to cadmium chloride. In this experiment, by exposing to 0.2 mg/L cadmium chloride for 21 days, fish were fed a normal diet, diet containing chitosan (1000 mg/kg diet, vitamin C (1000 mg/kg diet or both vitamin C and chitosan. Oxidative stress markers, including the activity of catalase, total antioxidant and malondialdehyde (MDA as well as biochemical parameters, including the activity of aspartate aminotransferase (AST, alanine aminotransferase (ALT, creatine phosphokinase (CPK, lactate dehydrogenase (LDH, and acetylcholinesterase (AChE were measured. Fish exposure to cadmium chloride significantly increased AST, LDH, CPK, catalase, and MDA activity, while it significantly decreased AST and AChE activity, and levels of total antioxidant in muscle cells. Administration of chitosan or vitamin C alone or in combination with each other to fish exposed to cadmium chloride was effective in regulating ALT, CPK, and catalase activity. Although administration of vitamin C and chitosan caused a significant decrease in MDA, AST and LDH, these enzymes were still significantly higher than those in the control group. Administration of vitamin C and chitosan had no significant effects on the activity of AChE and levels of total antioxidant. Although, chitosan alone could not prevent oxidative stress damages in muscle tissues of cadmium-treated fish, administration of vitamin C combined with chitosan may increase the efficiency of antioxidant defense system and improve the detoxification system in the muscles of fish exposed to cadmium chloride.

  11. A common pathway for regulation of nutritive blood flow to the brain: arterial muscle membrane potential and cytochrome P450 metabolites.

    Science.gov (United States)

    Harder, D R; Roman, R J; Gebremedhin, D; Birks, E K; Lange, A R

    1998-12-01

    Perfusion pressure to the brain must remain relatively constant to provide rapid and efficient distribution of blood to metabolically active neurones. Both of these processes are regulated by the level of activation and tone of cerebral arterioles. The active state of cerebral arterial muscle is regulated, to a large extent, by the level of membrane potential. At physiological levels of arterial pressure, cerebral arterial muscle is maintained in an active state owing to membrane depolarization, compared with zero pressure load. As arterial pressure changes, so does membrane potential. The membrane is maintained in a relatively depolarized state because of, in part, inhibition of K+ channel activity. The activity of K+ channels, especially the large conductance Ca(2+)-activated K+ channel (KCa) is dependent upon the level of 20-HETE produced by arterial muscle. As arterial pressure increases, so does cytochrome P450 (P4504A) activity. P4504A enzymes catalyse omega-hydroxylation of arachidonic acid and formation of 20-hydroxyeicosatetraenoic acid (20-HETE). 20-HETE is a potent inhibitor of KCa which maintains membrane depolarization and muscle cell activation. Astrocytes also metabolize AA via P450 enzymes of the 2C11 gene family to produce epoxyeicosatrienoic acids (EETs). Epoxyeicosatrienoic acids are released from astrocytes by glutamate which 'spills over' during neuronal activity. These locally released EETs shunt blood to metabolically active neurones providing substrate to support neuronal function. This short paper will discuss the findings which support the above scenario, the purpose of which is to provide a basis for future studies on the molecular mechanisms through which cerebral blood flow matches metabolism.

  12. Isolated abscess in superior rectus muscle in a child

    Directory of Open Access Journals (Sweden)

    Sushank Ashok Bhalerao

    2015-01-01

    Full Text Available Pyomyositis is a primary bacterial infection of striated muscles nearly always caused by Staphylococcus aureus. Development of the intramuscular abscess involving the extra-ocular muscles (EOMs remains an extremely rare process. We herein present a case of isolated EOM pyomyositis involving superior rectus muscle in a 2-year male child who was referred with complaints of swelling in left eye (LE and inability to open LE since last 1-month. Orbital computed tomography (CT scan showed a well-defined, hypo-dense, peripheral rim-enhancing lesion in relation to left superior rectus muscle suggestive of left superior rectus abscess. The abscess was drained through skin approach. We concluded that pyomyositis of EOM should be considered in any patient presenting with acute onset of orbital inflammation and characteristic CT or magnetic resonance imaging features. Management consists of incision and drainage coupled with antibiotic therapy.

  13. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1

    Science.gov (United States)

    Baehr, Leslie M.

    2014-01-01

    Muscle RING finger 1 (MuRF1) and muscle atrophy F-box (MAFbx)/atrogin-1 were identified more than 10 years ago as two muscle-specific E3 ubiquitin ligases that are increased transcriptionally in skeletal muscle under atrophy-inducing conditions, making them excellent markers of muscle atrophy. In the past 10 years much has been published about MuRF1 and MAFbx with respect to their mRNA expression patterns under atrophy-inducing conditions, their transcriptional regulation, and their putative substrates. However, much remains to be learned about the physiological role of both genes in the regulation of mass and other cellular functions in striated muscle. Although both MuRF1 and MAFbx are enriched in skeletal, cardiac, and smooth muscle, this review will focus on the current understanding of MuRF1 and MAFbx in skeletal muscle, highlighting the critical questions that remain to be answered. PMID:25096180

  14. Prenatal Co 60-irradiation effects on visual acuity, maturation of the fovea in the retina, and the striate cortex of squirrel monkey offspring

    International Nuclear Information System (INIS)

    Ordy, J.M.; Brizzee, K.R.; Young, R.

    1982-01-01

    In the present study, foveal striate cortex depth increased significantly from 1400 μm to 1650 μm by 90 days, whereas prenatal 100 rad exposure resulted in a significant reduction of foveal striate cortex thickness at 90 days of age. From birth to 90 days, cell packing density decreased, whereas overall neuropil density increased in both control and 100 rad exposed offspring. Regarding the effects of prenatal radiation on Meynert cells, there was a significant difference in the time course of early postnatal spine frequency reduction on apical dendrites of Meynert cells, particularly in laminae V and IV. It seems possible that the significant differences in the time course of perinatal increases and subsequent decreases of spines and synapses on such pyramidal neurons as Meynert cells in the deep layers of the striate cortex may play an important role in the development of binocular acuity. Future follow-up studies will be essential from 90 days to 1 and 2 years to determine the extent of recovery from, and persistence of visual acuity impairments in relation to structural alterations in the foveal projection of the retino-geniculo-striate system of diurnal primates. (orig./MG)

  15. Expression of neurotrophic factors in diabetic muscle--relation to neuropathy and muscle strength.

    Science.gov (United States)

    Andreassen, C S; Jakobsen, J; Flyvbjerg, A; Andersen, H

    2009-10-01

    Diabetic polyneuropathy can lead to atrophy and weakness of distally located striated muscles due to denervation. Lack of neurotrophic support is believed to contribute to the development of diabetic neuropathy. In this study, we measured the expression of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), neurotrophin 4 (NT-4) and ciliary neurotrophic factor (CNTF) in muscle biopsies taken from the gastrocnemic and deltoid muscles in 42 diabetic patients and 20 healthy control subjects. To express the distal neuropathic gradient and to reduce interindividual variation, a distal/proximal ratio between expression levels in the gastrocnemic and deltoid muscles was calculated for all neurotrophic factors. Neuropathic status was determined by clinical examination, electrophysiological studies and quantitative sensory examination in diabetic patients, and muscle strength at both the shoulder and ankle was assessed by isokinetic dynamometry. Distal/proximal ratios for NT-3 were lower in diabetic patients [median (range) 110.7 (39.8-546.8)] than in controls [157.6 (63.3-385.4); (P < 0.05)], and in neuropathic diabetic patients [107.1 (39.8-326.0)] versus patients without neuropathy [134.5 (46.6-546.8); (P < 0.005)]. Further, ratios for NT-3 were related to muscle strength (r(s) = 0.41, P < 0.01) and showed a tendency towards a negative relationship to the combined score of all measures of neuropathy [Neuropathy rank-sum score (NRSS)] (r(s) = -0.27, P = 0.09). Similar trends were observed for ratios for NT-4. Ratios for NGF (r(s) = -0.32, P < 0.05) and BDNF (r(s) = -0.32, P < 0.05) were related to NRSS, but not to muscle strength. Ratios for CNTF were higher in diabetic patients [64.6 (23.7-258.7)] compared with controls [50.2 (27.2-186.4); (P < 0.05)], but showed no relationship to neither NRSS nor muscle strength. Our results show that the expression of NT-3 is reduced in striated muscles in diabetic patients and is related to

  16. Nuclear Positioning in Muscle Development and Disease

    OpenAIRE

    Eric eFolker; Mary eBaylies

    2013-01-01

    Muscle disease as a group is characterized by muscle weakness, muscle loss, and impaired muscle function. Although the phenotype is the same, the underlying cellular pathologies, and the molecular causes of these pathologies, are diverse. One common feature of many muscle disorders is the mispositioning of myonuclei. In unaffected individuals myonuclei are spaced throughout the periphery of the muscle fiber such that the distance between nuclei is maximized. However, in diseased muscles, th...

  17. Muscle differentiation in a colonial ascidian: organisation, gene expression and evolutionary considerations

    Directory of Open Access Journals (Sweden)

    Burighel Paolo

    2009-09-01

    Full Text Available Abstract Background Ascidians are tunicates, the taxon recently proposed as sister group to the vertebrates. They possess a chordate-like swimming larva, which metamorphoses into a sessile adult. Several ascidian species form colonies of clonal individuals by asexual reproduction. During their life cycle, ascidians present three muscle types: striated in larval tail, striated in the heart, and unstriated in the adult body-wall. Results In the colonial ascidian Botryllus schlosseri, we investigated organisation, differentiation and gene expression of muscle beginning from early buds to adults and during zooid regression. We characterised transcripts for troponin T (BsTnT-c, adult muscle-type (BsMA2 and cytoplasmic-type (BsCA1 actins, followed by in situ hybridisation (ISH on sections to establish the spatio-temporal expression of BsTnT-c and BsMA2 during asexual reproduction and in the larva. Moreover, we characterised actin genomic sequences, which by comparison with other metazoans revealed conserved intron patterns. Conclusion Integration of data from ISH, phalloidin staining and TEM allowed us to follow the phases of differentiation of the three muscle kinds, which differ in expression pattern of the two transcripts. Moreover, phylogenetic analyses provided evidence for the close relationship between tunicate and vertebrate muscle genes. The characteristics and plasticity of muscles in tunicates are discussed.

  18. Lack of Glycogenin Causes Glycogen Accumulation and Muscle Function Impairment.

    Science.gov (United States)

    Testoni, Giorgia; Duran, Jordi; García-Rocha, Mar; Vilaplana, Francisco; Serrano, Antonio L; Sebastián, David; López-Soldado, Iliana; Sullivan, Mitchell A; Slebe, Felipe; Vilaseca, Marta; Muñoz-Cánoves, Pura; Guinovart, Joan J

    2017-07-05

    Glycogenin is considered essential for glycogen synthesis, as it acts as a primer for the initiation of the polysaccharide chain. Against expectations, glycogenin-deficient mice (Gyg KO) accumulate high amounts of glycogen in striated muscle. Furthermore, this glycogen contains no covalently bound protein, thereby demonstrating that a protein primer is not strictly necessary for the synthesis of the polysaccharide in vivo. Strikingly, in spite of the higher glycogen content, Gyg KO mice showed lower resting energy expenditure and less resistance than control animals when subjected to endurance exercise. These observations can be attributed to a switch of oxidative myofibers toward glycolytic metabolism. Mice overexpressing glycogen synthase in the muscle showed similar alterations, thus indicating that this switch is caused by the excess of glycogen. These results may explain the muscular defects of GSD XV patients, who lack glycogenin-1 and show high glycogen accumulation in muscle. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Synergistic Activities of Abdominal Muscles Are Required for Efficient Micturition in Anesthetized Female Mice.

    Science.gov (United States)

    Zhang, Chuan; Zhang, Yingchun; Cruz, Yolanda; Boone, Timothy B; Munoz, Alvaro

    2018-03-01

    To characterize the electromyographic activity of abdominal striated muscles during micturition in urethane-anesthetized female mice, and to quantitatively evaluate the contribution of abdominal responses to efficient voiding. Cystometric and multichannel electromyographic recordings were integrated to enable a comprehensive evaluation during micturition in urethane-anesthetized female mice. Four major abdominal muscle domains were evaluated: the external oblique, internal oblique, and superior and inferior rectus abdominis. To further characterize the functionality of the abdominal muscles, pancuronium bromide (25 μg/mL or 50 μg/mL, abdominal surface) was applied as a blocking agent of neuromuscular junctions. We observed a robust activation of the abdominal muscles during voiding, with a consistent onset/offset concomitant with the bladder pressure threshold. Pancuronium was effective, in a dose-dependent fashion, for partial and complete blockage of abdominal activity. Electromyographic discharges during voiding were significantly inhibited by applying pancuronium. Decreased cystometric parameters were recorded, including the peak pressure, pressure threshold, intercontractile interval, and voiding duration, suggesting that the voiding efficiency was significantly compromised by abdominal muscle relaxation. The relevance of the abdominal striated musculature for micturition has remained a topic of debate in human physiology. Although the study was performed on anesthetized mice, these results support the existence of synergistic abdominal electromyographic activity facilitating voiding in anesthetized mice. Further, our study presents a rodent model that can be used for future investigations into micturition-related abdominal activity.

  20. Validity of Estimation of Pelvic Floor Muscle Activity from Transperineal Ultrasound Imaging in Men.

    Science.gov (United States)

    Stafford, Ryan E; Coughlin, Geoff; Lutton, Nicholas J; Hodges, Paul W

    2015-01-01

    To investigate the relationship between displacement of pelvic floor landmarks observed with transperineal ultrasound imaging and electromyography of the muscles hypothesised to cause the displacements. Three healthy men participated in this study, which included ultrasound imaging of the mid-urethra, urethra-vesical junction, ano-rectal junction and bulb of the penis. Fine-wire electromyography electrodes were inserted into the puborectalis and bulbocavernosus muscles and a transurethral catheter electrode recorded striated urethral sphincter electromyography. A nasogastric sensor recorded intra-abdominal pressure. Tasks included submaximal and maximal voluntary contractions, and Valsalva. The relationship between each of the parameters measured from ultrasound images and electromyography or intra-abdominal pressure amplitudes was described with nonlinear regression. Strong, non-linear relationships were calculated for each predicted landmark/muscle pair for submaximal contractions (R2-0.87-0.95). The relationships between mid-urethral displacement and striated urethral sphincter electromyography, and bulb of the penis displacement and bulbocavernosus electromyography were strong during maximal contractions (R2-0.74-0.88). Increased intra-abdominal pressure prevented shortening of puborectalis, which resulted in weak relationships between electromyography and anorectal and urethravesical junction displacement during all tasks. Displacement of landmarks in transperineal ultrasound imaging provides meaningful measures of activation of individual pelvic floor muscles in men during voluntary contractions. This method may aid assessment of muscle function or feedback for training.

  1. Validity of Estimation of Pelvic Floor Muscle Activity from Transperineal Ultrasound Imaging in Men.

    Directory of Open Access Journals (Sweden)

    Ryan E Stafford

    Full Text Available To investigate the relationship between displacement of pelvic floor landmarks observed with transperineal ultrasound imaging and electromyography of the muscles hypothesised to cause the displacements.Three healthy men participated in this study, which included ultrasound imaging of the mid-urethra, urethra-vesical junction, ano-rectal junction and bulb of the penis. Fine-wire electromyography electrodes were inserted into the puborectalis and bulbocavernosus muscles and a transurethral catheter electrode recorded striated urethral sphincter electromyography. A nasogastric sensor recorded intra-abdominal pressure. Tasks included submaximal and maximal voluntary contractions, and Valsalva. The relationship between each of the parameters measured from ultrasound images and electromyography or intra-abdominal pressure amplitudes was described with nonlinear regression.Strong, non-linear relationships were calculated for each predicted landmark/muscle pair for submaximal contractions (R2-0.87-0.95. The relationships between mid-urethral displacement and striated urethral sphincter electromyography, and bulb of the penis displacement and bulbocavernosus electromyography were strong during maximal contractions (R2-0.74-0.88. Increased intra-abdominal pressure prevented shortening of puborectalis, which resulted in weak relationships between electromyography and anorectal and urethravesical junction displacement during all tasks.Displacement of landmarks in transperineal ultrasound imaging provides meaningful measures of activation of individual pelvic floor muscles in men during voluntary contractions. This method may aid assessment of muscle function or feedback for training.

  2. A striated, far travelled clast of rhyolitic tuff from Thames river deposits at Ardleigh, Essex, England : evidence for early Middle Pleistocene glaciation in the Thames catchment

    OpenAIRE

    Rose, J.; Carney, J.N.; Silva, B.N.; Booth, S.J.

    2010-01-01

    This paper reports the discovery of an in-situ striated, far-travelled, oversized clast in the Ardleigh Gravels of the Kesgrave Sands and Gravels of the River Thames at Ardleigh, east of Colchester in Essex, eastern England. The morphology, petrography and geochemistry of the clast, and the sedimentology of the host deposit are described. The striations are interpreted, on the basis of their sub-parallelism and the shape and subroundedness of the clast, as glacial and the clast is pr...

  3. MUSCLE INJURIES IN ATHLETES.

    Science.gov (United States)

    Barroso, Guilherme Campos; Thiele, Edilson Schwansee

    2011-01-01

    This article had the aim of demonstrating the physiology, diagnosis and treatment of muscle injuries, focusing on athletes and their demands and expectations. Muscle injuries are among the most common complaints in orthopedic practice, occurring both among athletes and among non-athletes. These injuries present a challenge for specialists, due to the slow recovery, during which time athletes are unable to take part in training and competitions, and due to frequent sequelae and recurrences of the injuries. Most muscle injuries (between 10% and 55% of all injuries) occur during sports activities. The muscles most commonly affected are the ischiotibial, quadriceps and gastrocnemius. These muscles go across two joints and are more subject to acceleration and deceleration forces. The treatment for muscle injuries varies from conservative treatment to surgery. New procedures are being used, like the hyperbaric chamber and the use of growth factors. However, there is still a high rate of injury recurrence. Muscle injury continues to be a topic of much controversy. New treatments are being researched and developed, but prevention through muscle strengthening, stretching exercises and muscle balance continues to be the best "treatment".

  4. The Popeye domain containing 2 (popdc2) gene in zebrafish is required for heart and skeletal muscle development

    Science.gov (United States)

    Kirchmaier, Bettina C.; Poon, Kar Lai; Schwerte, Thorsten; Huisken, Jan; Winkler, Christoph; Jungblut, Benno; Stainier, Didier Y.; Brand, Thomas

    2013-01-01

    The Popeye domain containing (Popdc) genes encode a family of transmembrane proteins with an evolutionary conserved Popeye domain. These genes are abundantly expressed in striated muscle tissue, however their function is not well understood. In this study we have investigated the role of the popdc2 gene in zebrafish. Popdc2 transcripts were detected in the embryonic myocardium and transiently in the craniofacial and tail musculature. Morpholino oligonucleotide-mediated knockdown of popdc2 resulted in aberrant development of skeletal muscle and heart. Muscle segments in the trunk were irregularly shaped and craniofacial muscles were severely reduced or even missing. In the heart, pericardial edema was prevalent in the morphants and heart chambers were elongated and looping was abnormal. These pathologies in muscle and heart were alleviated after reducing the morpholino concentration. However the heart still was abnormal displaying cardiac arrhythmia at later stages of development. Optical recordings of cardiac contractility revealed irregular ventricular contractions with a 2:1, or 3:1 atrial/ventricular conduction ratio, which caused a significant reduction in heart frequency. Recordings of calcium transients with high spatiotemporal resolution using a transgenic calcium indicator line (Tg(cmlc2:gCaMP)s878) and SPIM microscopy confirmed the presence of a severe arrhythmia phenotype. Our results identify popdc2 as a gene important for striated muscle differentiation and cardiac morphogenesis. In addition it is required for the development of the cardiac conduction system. PMID:22290329

  5. Muscle pain

    African Journals Online (AJOL)

    Key Summary Points. • Muscle pain, known as myalgia, can be in one targeted area or across many muscles, occurring with overexertion or overuse of these muscles. • Pain can be classified as acute or chronic pain and further categorized as nociceptive or neuropathic. • Causes of muscle pain include stress, physical ...

  6. Muscle pain | Mogole | South African Family Practice

    African Journals Online (AJOL)

    Muscle pain, also known as myalgia, is most commonly associated with sprains or strains. It frequently presents as redness at the site of injury, tenderness, swelling and fever. Muscle pain may occur as a result of excitation of the muscle nociceptor due to overuse of the muscle, viral infections or trauma. The most important ...

  7. Cell division in Apicomplexan parasites is organized by a homolog of the striated rootlet fiber of algal flagella.

    Directory of Open Access Journals (Sweden)

    Maria E Francia

    Full Text Available Apicomplexa are intracellular parasites that cause important human diseases including malaria and toxoplasmosis. During host cell infection new parasites are formed through a budding process that parcels out nuclei and organelles into multiple daughters. Budding is remarkably flexible in output and can produce two to thousands of progeny cells. How genomes and daughters are counted and coordinated is unknown. Apicomplexa evolved from single celled flagellated algae, but with the exception of the gametes, lack flagella. Here we demonstrate that a structure that in the algal ancestor served as the rootlet of the flagellar basal bodies is required for parasite cell division. Parasite striated fiber assemblins (SFA polymerize into a dynamic fiber that emerges from the centrosomes immediately after their duplication. The fiber grows in a polarized fashion and daughter cells form at its distal tip. As the daughter cell is further elaborated it remains physically tethered at its apical end, the conoid and polar ring. Genetic experiments in Toxoplasma gondii demonstrate two essential components of the fiber, TgSFA2 and 3. In the absence of either of these proteins cytokinesis is blocked at its earliest point, the initiation of the daughter microtubule organizing center (MTOC. Mitosis remains unimpeded and mutant cells accumulate numerous nuclei but fail to form daughter cells. The SFA fiber provides a robust spatial and temporal organizer of parasite cell division, a process that appears hard-wired to the centrosome by multiple tethers. Our findings have broader evolutionary implications. We propose that Apicomplexa abandoned flagella for most stages yet retained the organizing principle of the flagellar MTOC. Instead of ensuring appropriate numbers of flagella, the system now positions the apical invasion complexes. This suggests that elements of the invasion apparatus may be derived from flagella or flagellum associated structures.

  8. Methylmercury intoxication and histochemical demonstration of NADPH-diaphorase activity in the striate cortex of adult cats

    Directory of Open Access Journals (Sweden)

    R.B. Oliveira

    1998-09-01

    Full Text Available The effects of methylmercury (MeHg on histochemical demonstration of the NADPH-diaphorase (NADPH-d activity in the striate cortex were studied in 4 adult cats. Two animals were used as control. The contaminated animals received 50 ml milk containing 0.42 µg MeHg and 100 g fish containing 0.03 µg MeHg daily for 2 months. The level of MeHg in area 17 of intoxicated animals was 3.2 µg/g wet weight brain tissue. Two cats were perfused 24 h after the last dose (group 1 and the other animals were perfused 6 months later (group 2. After microtomy, sections were processed for NADPHd histochemistry procedures using the malic enzyme method. Dendritic branch counts were performed from camera lucida drawings for control and intoxicated animals (N = 80. Average, standard deviation and Student t-test were calculated for each data group. The concentrations of mercury (Hg in milk, fish and brain tissue were measured by acid digestion of samples, followed by reduction of total Hg in the digested sample to metallic Hg using stannous chloride followed by atomic fluorescence analysis. Only group 2 revealed a reduction of the neuropil enzyme activity and morphometric analysis showed a reduction in dendritic field area and in the number of distal dendrite branches of the NADPHd neurons in the white matter (P<0.05. These results suggest that NADPHd neurons in the white matter are more vulnerable to the long-term effects of MeHg than NADPHd neurons in the gray matter.

  9. Altered cross-bridge properties in skeletal muscle dystrophies

    Directory of Open Access Journals (Sweden)

    Aziz eGuellich

    2014-10-01

    Full Text Available Force and motion generated by skeletal muscle ultimately depends on the cyclical interaction of actin with myosin. This mechanical process is regulated by intracellular Ca2+ through the thin filament-associated regulatory proteins i.e.; troponins and tropomyosin. Muscular dystrophies are a group of heterogeneous genetic affections characterized by progressive degeneration and weakness of the skeletal muscle as a consequence of loss of muscle tissue which directly reduces the number of potential myosin cross-bridges involved in force production. Mutations in genes responsible for skeletal muscle dystrophies have been shown to modify the function of contractile proteins and cross-bridge interactions. Altered gene expression or RNA splicing or post-translational modifications of contractile proteins such as those related to oxidative stress, may affect cross-bridge function by modifying key proteins of the excitation-contraction coupling. Micro-architectural change in myofilament is another mechanism of altered cross-bridge performance. In this review, we provide an overview about changes in cross-bridge performance in skeletal muscle dystrophies and discuss their ultimate impacts on striated muscle function.

  10. Electrostatic forces in muscle and cylindrical gel systems

    Energy Technology Data Exchange (ETDEWEB)

    Millman, B.M.; Nickel, B.G.

    1980-10-01

    Repulsive pressure has been measured as a function of lattice spacing in gels of tobacco mosaic virus (TMV) and in the filament lattice of vertebrate striated muscle. External pressures up to ten atm have been applied to these lattices by an osmotic stress method. Numerical solutions to the Poisson-Boltzmann equation in hexagonal lattices have been obtained and compared to the TMV and muscle data. The theoretical curves using values for kappa calculated from the ionic strength give a good fit to experimental data from TMV gels, and an approximate fit to that from the muscle lattice, provided that a charge radius for the muscle thick filaments of approx. 16 nm is assumed. Variations in ionic strength, sarcomere length and state of the muscle give results which agree qualitatively with the theory, though a good fit between experiment and theory in the muscle case will clearly require consideration of other types of forces. We conclude that Poisson-Boltzmann theory can provide a good first approximation to the long-range electrostatic forces operating in such biological gel systems.

  11. Muscle RING‐finger 2 and 3 maintain striated‐muscle structure and function

    Science.gov (United States)

    Lodka, Dörte; Pahuja, Aanchal; Geers‐Knörr, Cornelia; Scheibe, Renate J.; Nowak, Marcel; Hamati, Jida; Köhncke, Clemens; Purfürst, Bettina; Kanashova, Tamara; Schmidt, Sibylle; Glass, David J.; Morano, Ingo; Heuser, Arnd; Kraft, Theresia; Bassel‐Duby, Rhonda; Olson, Eric N.; Dittmar, Gunnar; Sommer, Thomas

    2015-01-01

    Abstract Background The Muscle‐specific RING‐finger (MuRF) protein family of E3 ubiquitin ligases is important for maintenance of muscular structure and function. MuRF proteins mediate adaptation of striated muscles to stress. MuRF2 and MuRF3 bind to microtubules and are implicated in sarcomere formation with noticeable functional redundancy. However, if this redundancy is important for muscle function in vivo is unknown. Our objective was to investigate cooperative function of MuRF2 and MuRF3 in the skeletal muscle and the heart in vivo. Methods MuRF2 and MuRF3 double knockout mice (DKO) were generated and phenotypically characterized. Skeletal muscle and the heart were investigated by morphological measurements, histological analyses, electron microscopy, immunoblotting, and real‐time PCR. Isolated muscles were subjected to in vitro force measurements. Cardiac function was determined by echocardiography and working heart preparations. Function of cardiomyocytes was measured in vitro. Cell culture experiments and mass‐spectrometry were used for mechanistic analyses. Results DKO mice showed a protein aggregate myopathy in skeletal muscle. Maximal force development was reduced in DKO soleus and extensor digitorum longus. Additionally, a fibre type shift towards slow/type I fibres occurred in DKO soleus and extensor digitorum longus. MuRF2 and MuRF3‐deficient hearts showed decreased systolic and diastolic function. Further analyses revealed an increased expression of the myosin heavy chain isoform beta/slow and disturbed calcium handling as potential causes for the phenotype in DKO hearts. Conclusions The redundant function of MuRF2 and MuRF3 is important for maintenance of skeletal muscle and cardiac structure and function in vivo. PMID:27493870

  12. Interaction Between Troponin and Myosin Enhances Contractile Activity of Myosin in Cardiac Muscle

    OpenAIRE

    Schoffstall, Brenda; LaBarbera, Vincent A.; Brunet, Nicolas M.; Gavino, Belinda J.; Herring, Lauren; Heshmati, Sara; Kraft, Brittany H.; Inchausti, Vanessa; Meyer, Nancy L.; Moonoo, Danamarie; Takeda, Aya K.; Chase, Prescott Bryant

    2011-01-01

    Ca2+ signaling in striated muscle cells is critically dependent upon thin filament proteins tropomyosin (Tm) and troponin (Tn) to regulate mechanical output. Using in vitro measurements of contractility, we demonstrate that even in the absence of actin and Tm, human cardiac Tn (cTn) enhances heavy meromyosin MgATPase activity by up to 2.5-fold in solution. In addition, cTn without Tm significantly increases, or superactivates sliding speed of filamentous actin (F-actin) in skeletal motility a...

  13. Stimulus rate dependence of regional cerebral blood flow in human striate cortex, demonstrated by positron emission tomography

    International Nuclear Information System (INIS)

    Fox, P.T.; Raichle, M.E.

    1984-01-01

    The purpose of this investigation was to determine the relationship between the repetition rate of a simple sensory stimulus and regional cerebral blood flow (rCBF) in the human brain. Positron emission tomography (PET), using intravenously administered H 2 ( 15 )O as the diffusible blood-flow tracer, was employed for all CBF measurements. The use of H 2 ( 15 )O with PET allowed eight CBF measurements to be made in rapid sequence under multiple stimulation conditions without removing the subject from the tomograph. Nine normal volunteers each underwent a series of eight H2( 15 )O PET measurements of CBF. Initial and final scans were made during visual deprivation. The six intervening scans were made during visual activation with patterned-flash stimuli given in random order at 1.0-, 3.9-, 7.8-, 15.5-, 33.1-, and 61-Hz repetition rates. The region of greatest rCBF increase was determined. Within this region the rCBF was determined for every test condition and then expressed as the percentage change from the value of the initial unstimulated scan (rCBF% delta). In every subject, striate cortex rCBF% delta varied systematically with stimulus rate. Between 0 and 7.8 Hz, rCBF% delta was a linear function of stimulus repetition rate. The rCBF response peaked at 7.8 Hz and then declined. The rCBF% delta during visual stimulation was significantly greater than that during visual deprivation for every stimulus rate except 1.0 Hz. The anatomical localization of the region of peak rCBF response was determined for every subject to be the mesial occipital lobes along the calcarine fissure, primary visual cortex. Stimulus rate is a significant determinant of rCBF response in the visual cortex. Investigators of brain responses to selective activation procedures should be aware of the potential effects of stimulus rate on rCBF and other measurements of cerebral metabolism

  14. Effects of BTS (N-benzyl-p-toluene sulphonamide), an inhibitor for myosin-actin interaction, on myofibrillogenesis in skeletal muscle cells in culture.

    Science.gov (United States)

    Kagawa, Maiko; Sato, Naruki; Obinata, Takashi

    2006-11-01

    Actin filaments align around myosin filaments in the correct polarity and in a hexagonal arrangement to form cross-striated structures. It has been postulated that this myosin-actin interaction is important in the initial phase of myofibrillogenesis. It was previously demonstrated that an inhibitor of actin-myosin interaction, BDM (2,3-butanedione monoxime), suppresses myofibril formation in muscle cells in culture. However, further study showed that BDM also exerts several additional effects on living cells. In this study, we further examined the role of actin-myosin interaction in myofibril assembly in primary cultures of chick embryonic skeletal muscle by applying a more specific inhibitor, BTS (N-benzyl-p-toluene sulphonamide), of myosin ATPase and actin-myosin interaction. The assembly of sarcomeric structures from myofibrillar proteins was examined by immunocytochemical methods with the application of BTS to myotubes just after fusion. Addition of BTS (10-50 microM) significantly suppressed the organization of actin and myosin into cross-striated structures. BTS also interfered in the organization of alpha-actinin, C-protein (or MyBP-C), and connectin (or titin) into ordered striated structures, though the sensitivity was less. Moreover, when myotubes cultured in the presence of BTS were transferred to a control medium, sarcomeric structures were formed in 2-3 days, indicating that the inhibitory effect of BTS on myotubes is reversible. These results show that actin-myosin interaction plays a critical role in the process of myofibrillogenesis.

  15. Muscle Lim Protein and myosin binding protein C form a complex regulating muscle differentiation.

    Science.gov (United States)

    Arvanitis, Demetrios A; Vafiadaki, Elizabeth; Papalouka, Vasiliki; Sanoudou, Despina

    2017-12-01

    Muscle Lim Protein (MLP) is a protein with multiple functional roles in striated muscle physiology and pathophysiology. Herein, we demonstrate that MLP directly binds to slow, fast, and cardiac myosin-binding protein C (MyBP-C) during myogenesis, as shown by yeast two-hybrid and a range of protein-protein interaction assays. The minimal interacting domains involve MLP inter-LIM and MyBP-C [C4]. The interaction is sensitive to cytosolic Ca 2+ concentrations changes and to MyBP-C phosphorylation by PKA or CaMKII. Confocal microscopy of differentiating myoblasts showed MLP and MyBP-C colocalization during myoblast differentiation. Suppression of the complex formation with recombinant MyBP-C [C4] peptide overexpression, inhibited myoblast differentiation by 65%. Suppression of both MLP and MyBP-C expression in myoblasts by siRNA revealed negative synergistic effects on differentiation. The MLP/MyBP-C complex modulates the actin activated myosin II ATPase activity in vitro, which could interfere with sarcomerogenesis and myofilaments assembly during differentiation. Our data demonstrate a critical role of the MLP/MyBP-C complex during early myoblast differentiation. Its absence in muscles with mutations or aberrant expression of MLP or MyBP-C could be directly implicated in the development of cardiac and skeletal myopathies. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The influence of temperature on the distribution and intensity of the reaction product in rat muscle fibers obtained with the histochemical method for myosin ATPase

    DEFF Research Database (Denmark)

    Kirkeby, S; Tuxen, A

    1989-01-01

    The influence of temperature in the incubation medium on the localization and intensity of myosin ATPase was investigated in striated muscles from the rat using a conventional histochemical technique. It was found that the enzyme reaction was temperature-dependent since the activity in some fibers...... was raised and in others was depressed by alteration of the incubation temperature. There was no obvious correlation between the temperature sensitivity of ATPase in the muscle fibers and their activity for succinic dehydrogenase. It is proposed that the histochemical method for myosin ATPase can be used...

  17. Immunology Guides Skeletal Muscle Regeneration

    OpenAIRE

    F. Andrea Sass; Michael Fuchs; Matthias Pumberger; Sven Geissler; Georg N. Duda; Carsten Perka; Katharina Schmidt-Bleek

    2018-01-01

    Soft tissue trauma of skeletal muscle is one of the most common side effects in surgery. Muscle injuries are not only caused by accident-related injuries but can also be of an iatrogenic nature as they occur during surgical interventions when the anatomical region of interest is exposed. If the extent of trauma surpasses the intrinsic regenerative capacities, signs of fatty degeneration and formation of fibrotic scar tissue can occur, and, consequentially, muscle function deteriorates or is d...

  18. Glacially striated, soft sediment surfaces on late Paleozoic tillite at São Luiz do Purunã, PR

    Directory of Open Access Journals (Sweden)

    Ivo Trosdtorf Jr.

    2005-06-01

    Full Text Available Striae and furrows found on the upper surfaces of three stratigraphically superposed decimetric beds of late Paleozoic lodgement tillite of the Itararé Subgroup in the northern Paraná Basin were engraved by ploughing of clasts and possibly also ice protuberances at the base of the glacier, on unconsolidated to partially consolidated sediment. Associated features indicate that the rheology of the bed varied from stiff during lodgement to soft and deformable during ploughing. Poor drainage of meltwater at the glacier-bed interface may have contributed to lower the strength of sediment to deformation. The deformed interval was probably generated during a single glacial phase or advance of a glacier grounding in a marine or lacustrine water body. Changes in the dynamics of the glacier involving slow and fast flow were correlated respectively with alternation of deposition and erosion. The proposed model is analogous to that of lodgement till complexes from the Pleistocene of the northern hemisphere. Retreat of the glacier was probably fast, followed by settling of muds on top of the upper striated and furrowed surface, and progradation of deltaic sands during post-glacial time.Estrias e sulcos encontrados sobre três camadas decimétricas, estratigraficamente superpostas, de tilito de alojamento neopaleozóico do Subgrupo Itararé, na porção norte da Bacia do Paraná, foram formados por aração de clastos e, possivelmente, por protuberâncias de gelo, na base da geleira. Feições associadas indicam que a reologia do sedimento variou de rígido, durante o alojamento, a inconsolidado e deformável durante a aração. A baixa drenagem da água de degelo na interface geleira-substrato pode ter contribuído para reduzir a resistência do sedimento à deformação. A sucessão acima foi gerada provavelmente durante uma única fase glacial ou avanço de geleira sobre corpo de água marinho ou lacustre. Mudanças na dinâmica da geleira envolvendo

  19. Histotopographical study of human periocular elastic fibers using aldehyde-fuchsin staining with special reference to the sleeve and pulley system for extraocular rectus muscles.

    Science.gov (United States)

    Osanai, Hajime; Murakami, Gen; Ohtsuka, Aiji; Suzuki, Daisuke; Nakagawa, Takashi; Tatsumi, Haruyuki

    2009-09-01

    The aim of this study was to investigate the detailed configuration of periocular elastic fibers. Semiserial paraffin sections were made using 40 whole orbital contents from 27 elderly cadavers and stained by the aldehyde-fuchsin method. Periocular tissues were classified into three types according to directions of the elastic fibers, i.e., tissues containing anteroposteriorly running elastic fibers, those with mediolateral fibers, and those with meshwork of fibers. Anteroposterior elastic fiber-dominant tissue was seen in the upper eyelid and newly defined pulley plate for the medial and lateral recti (MR, LR). Mediolateral fibers were predominant in the central part of the inferior rectus pulley. In the pulley plates for the MR and LR, anteroposteriorly running fibers encased the striated muscle. Tenon's capsule and the epimysium of the recti were mediolateral fiber-dominant. However, at the entrance of the muscle terminal where Tenon's capsule reflects and continues to the epimysium, composite elastic fibers provided a meshwork-like skeleton. The elastic mesh was also seen around the lacrimal canaliculi. The pulley for the recti seemed to be composed of two parts--a connective tissue plate encasing the recti and specialized Tenon's capsule at an entrance or porta of the muscle. For both parts, elastic fibers were major functional components. The anteroposterior elastic fibers in the MR and LR pulley plates, especially, seemed to receive anteroposteriorly directed stress and tension from these striated muscles. The elastic interfaces seemed to prevent any concentration of stress that would interfere with periocular striated muscle functions, including hypothetical active pulleys.

  20. Dense-body aggregates as plastic structures supporting tension in smooth muscle cells.

    Science.gov (United States)

    Zhang, Jie; Herrera, Ana M; Paré, Peter D; Seow, Chun Y

    2010-11-01

    The wall of hollow organs of vertebrates is a unique structure able to generate active tension and maintain a nearly constant passive stiffness over a large volume range. These properties are predominantly attributable to the smooth muscle cells that line the organ wall. Although smooth muscle is known to possess plasticity (i.e., the ability to adapt to large changes in cell length through structural remodeling of contractile apparatus and cytoskeleton), the detailed structural basis for the plasticity is largely unknown. Dense bodies, one of the most prominent structures in smooth muscle cells, have been regarded as the anchoring sites for actin filaments, similar to the Z-disks in striated muscle. Here, we show that the dense bodies and intermediate filaments formed cable-like structures inside airway smooth muscle cells and were able to adjust the cable length according to cell length and tension. Stretching the muscle cell bundle in the relaxed state caused the cables to straighten, indicating that these intracellular structures were connected to the extracellular matrix and could support passive tension. These plastic structures may be responsible for the ability of smooth muscle to maintain a nearly constant tensile stiffness over a large length range. The finding suggests that the structural plasticity of hollow organs may originate from the dense-body cables within the smooth muscle cells.

  1. Relationship between neck muscles functions and hand muscles strenght in musicians

    OpenAIRE

    Vaina, Mindaugas

    2016-01-01

    Relationship Between Neck Muscles Functions and Hand Muscles Strenght in Musicians The aim of research work: to determine the relationship between musicians hand muscle strength, fatigue and neck strength, endurance and movement amplitude. Tasks of work: 1. To evaluate and compare the musicians playing with string and wind instruments neck muscle strength, endurance, range of motion, hand muscle strength and fatigue between the groups as well as commonly used standards. 2. To determine the re...

  2. Evaluation of human muscle in vivo by potassium radiometric measuring

    International Nuclear Information System (INIS)

    Sousa, Wanderson de P.

    2000-01-01

    Potassium is an essential element to the human metabolism and is present in all living cells, mainly in the striated muscular fibers. K-40 is one of the natural potassium isotopes with mass percentage of 0,0118% . This isotope emits beta particle and gamma rays with 1460 keV. The energy of K-40 photon and its uniform distribution within the human body allows its in vivo measurement. The objective of this study is to optimize this technique and evaluate the possibility of its medical application in order to quantify muscle increase during recovering procedures. Subjects of both sexes measured until this moment were divided into two groups. Subjects of Group 1 do not exercise routinely and subjects of Group 2 does. In Group 1 the average potassium mass, muscle mass and potassium concentration were (101±16)g of K, (20±3)kg of muscle and (1,3±0,3)g of K/kg of body mass, respectively, while in Group 2 average values were (125±38)g of K, (25±8)kg of muscle and (1,7±0,2)g of K/kg of body mass. The comparison between average values shows a clear difference, which allows to correlate a higher K mass with routine body activity. The technique has shown enough sensitivity for this application. (author)

  3. Effects of yessotoxin (YTX) on the skeletal muscle: an update.

    Science.gov (United States)

    Tubaro, A; Bandi, E; Sosa, S; Soranzo, M R; Giangaspero, A; De Ninis, V; Yasumoto, T; Lorenzon, P

    2008-09-01

    Yessotoxins (YTXs) are algal toxins originally included in the diarrheic toxins. After oral intake, YTXs induce only ultra-structural changes (packages of swollen mitochondria) in cardiac cells. The aim of this study was to investigate the possible effects of YTX on the other contractile striated tissue, the skeletal muscle, in vitro and in vivo. In vitro, in skeletal mouse myotubes, YTX (0.01-1.0 microM) influenced cell excitability in a concentration- and time-dependent way. In the in vivo study, transmission electron microscopy analysis did not reveal any ultrastructural alteration of skeletal muscle after acute (1 mg kg(-1)) or repeated (1 and 2mg kg(-1) day(-1), for 7 days) oral administration of YTX to mice. The observation that effects were detected in vitro but not in vivo supports the hypothesis of a low YTX bioavailability to skeletal muscle after oral intake. Therefore, the results seem to exclude a toxic effect in skeletal muscle when YTX is consumed as a food contaminant.

  4. Power Grid Protection of the Muscle Mitochondrial Reticulum

    Directory of Open Access Journals (Sweden)

    Brian Glancy

    2017-04-01

    Full Text Available Summary: Mitochondrial network connectivity enables rapid communication and distribution of potential energy throughout the cell. However, this connectivity puts the energy conversion system at risk, because damaged elements could jeopardize the entire network. Here, we demonstrate the mechanisms for mitochondrial network protection in heart and skeletal muscle (SKM. We find that the cardiac mitochondrial reticulum is segmented into subnetworks comprising many mitochondria linked through abundant contact sites at highly specific intermitochondrial junctions (IMJs. In both cardiac and SKM subnetworks, a rapid electrical and physical separation of malfunctioning mitochondria occurs, consistent with detachment of IMJs and retraction of elongated mitochondria into condensed structures. Regional mitochondrial subnetworks limit the cellular impact of local dysfunction while the dynamic disconnection of damaged mitochondria allows the remaining mitochondria to resume normal function within seconds. Thus, mitochondrial network security is comprised of both proactive and reactive mechanisms in striated muscle cells. : Network connectivity allows information sharing and distribution but also enables propagation of localized dysfunction. Glancy et al. demonstrate the existence of both proactive and reactive network protection mechanisms designed to minimize the spread of dysfunction throughout the coupled mitochondrial networks in heart and skeletal muscle cells. Keywords: energy distribution, muscle energetics, oxidative phosphorylation, 3D electron microscopy, mitochondrial retraction, mitochondrial dynamics

  5. Basal body and striated rootlet changes in primate macular retinal pigmented epithelium after low level diffuse argon laser radiation. Final report 1981-1982

    Energy Technology Data Exchange (ETDEWEB)

    Schuschereba, S.T.; Zwick, H.; Stuck, B.E.; Beatrice, E.S.

    1982-09-01

    Basal bodies or centrioles (BB - microtubule organizing centers) and striated rootlets (SR - bundles of 60 A action-like filaments) have a close association in primate retinal pigmented epithelial (RPE) cells. The frequency of occurrence of these structures was evaluated in the macular RPE after repeated exposure to low level diffuse argon laser radiation (DALR). The awake chaired animal's head was restrained and positioned near the center of the 0.75 m hemisphere which was diffusely irradiated with 514.5 nm laser radiation. The right eye of each subject was occluded during the two-hour exposure session. The first subject received 24 cumulative hours of exposure, the second, 40 hours and the third, 42 hours.

  6. Expression of TPM1κ, a Novel Sarcomeric Isoform of the TPM1 Gene, in Mouse Heart and Skeletal Muscle

    OpenAIRE

    Dube, Syamalima; Panebianco, Lauren; Matoq, Amr A.; Chionuma, Henry N.; Denz, Christopher R.; Poiesz, Bernard J.; Dube, Dipak K.

    2014-01-01

    We have investigated the expression of TPM1 α and TPM1 κ in mouse striated muscles. TPM1 α and TMP1 κ were amplified from the cDNA of mouse heart by using conventional RT-PCR. We have cloned the PCR amplified DNA and determined the nucleotide sequences. Deduced amino acid sequences show that there are three amino acid changes in mouse exon 2a when compared with the human TPM1 κ . However, the deduced amino acid sequences of human TPM1 α and mouse TPM1 α are identical. Conventional RT-PCR data...

  7. Muscle biopsy.

    Science.gov (United States)

    Meola, G; Bugiardini, E; Cardani, R

    2012-04-01

    Muscle biopsy is required to provide a definitive diagnosis in many neuromuscular disorders. It can be performed through an open or needle technique under local anesthesia. The major limitations of the needle biopsy technique are the sample size, which is smaller than that obtained with open biopsy, and the impossibility of direct visualization of the sampling site. However, needle biopsy is a less invasive procedure than open biopsy and is particularly indicated for diagnosis of neuromuscular disease in infancy and childhood. The biopsied muscle should be one affected by the disease but not be too weak or too atrophic. Usually, in case of proximal muscle involvement, the quadriceps and the biceps are biopsied, while under suspicion of mitochondrial disorder, the deltoid is preferred. The samples must be immediately frozen or fixed after excision to prevent loss of enzymatic reactivity, DNA depletion or RNA degradation. A battery of stainings is performed on muscle sections from every frozen muscle biopsy arriving in the pathology laboratory. Histological, histochemical, and histoenzymatic stainings are performed to evaluate fiber atrophy, morphological, and structural changes and metabolic disorders. Moreover, immunohistochemistry and Western blotting analysis may be used for expression analysis of muscle proteins to obtain a specific diagnosis. There are myopathies that do not need muscle biopsy since a genetic test performed on a blood sample is enough for definitive diagnosis. Muscle biopsy is a useful technique which can make an enormous contribution in the field of neuromuscular disorders but should be considered and interpreted together with the patient's family and clinical history.

  8. Rupture of Plantaris Muscle - A Mimic: MRI Findings

    Directory of Open Access Journals (Sweden)

    T N Gopinath

    2012-01-01

    Full Text Available Calf muscle trauma commonly involves the gastrocnemius and soleus muscles. Plantaris muscle is a vestigial muscle coursing through the calf. Similar clinical features may be seen with injury to the plantaris muscle. It can also mimic other conditions like deep vein thrombosis, rupture of Baker′s cyst, and tumors. MRI is helpful in identifying and characterizing it. We report two cases of ruptured plantaris muscle seen on MRI.

  9. Common Warts

    Science.gov (United States)

    ... from spreading Common warts Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  10. Common Warts

    Science.gov (United States)

    ... with HIV/AIDS or people who've had organ transplants Prevention To reduce your risk of common warts: Avoid direct contact with warts. This includes your own warts. Don't pick at warts. Picking may spread the ...

  11. Common Courses for Common Purposes:

    DEFF Research Database (Denmark)

    Schaub Jr, Gary John

    2014-01-01

    (PME)? I suggest three alternative paths that increased cooperation in PME at the level of the command and staff course could take: a Nordic Defence College, standardized national command and staff courses, and a core curriculum of common courses for common purposes. I conclude with a discussion of how...

  12. The Commons

    OpenAIRE

    Moore, D.

    2004-01-01

    Over a three-year period, David Moore made repeated early morning visits to the chamber of the House of Commons, making photographs of unseen and overlooked areas and submitting this political environment to the scrutiny of the document. The Commons pursues archaeology of our most important debating chamber, exploring how an environment can act as a metaphor for wider societal issues. In doing so Moore creates an incisive survey of the epicentre of British politics.

  13. Muscle fatigue: general understanding and treatment

    Science.gov (United States)

    Wan, Jing-jing; Qin, Zhen; Wang, Peng-yuan; Sun, Yang; Liu, Xia

    2017-01-01

    Muscle fatigue is a common complaint in clinical practice. In humans, muscle fatigue can be defined as exercise-induced decrease in the ability to produce force. Here, to provide a general understanding and describe potential therapies for muscle fatigue, we summarize studies on muscle fatigue, including topics such as the sequence of events observed during force production, in vivo fatigue-site evaluation techniques, diagnostic markers and non-specific but effective treatments. PMID:28983090

  14. Muscle fatigue: general understanding and treatment

    OpenAIRE

    Wan, Jing-jing; Qin, Zhen; Wang, Peng-yuan; Sun, Yang; Liu, Xia

    2017-01-01

    Muscle fatigue is a common complaint in clinical practice. In humans, muscle fatigue can be defined as exercise-induced decrease in the ability to produce force. Here, to provide a general understanding and describe potential therapies for muscle fatigue, we summarize studies on muscle fatigue, including topics such as the sequence of events observed during force production, in vivo fatigue-site evaluation techniques, diagnostic markers and non-specific but effective treatments.

  15. Oxygen dependence of respiration in rat spinotrapezius muscle in situ.

    Science.gov (United States)

    Golub, Aleksander S; Pittman, Roland N

    2012-07-01

    The oxygen dependence of respiration in striated muscle in situ was studied by measuring the rate of decrease of interstitial Po(2) [oxygen disappearance curve (ODC)] following rapid arrest of blood flow by pneumatic tissue compression, which ejected red blood cells from the muscle vessels and made the ODC independent from oxygen bound to hemoglobin. After the contribution of photo-consumption of oxygen by the method was evaluated and accounted for, the corrected ODCs were converted into the Po(2) dependence of oxygen consumption, Vo(2), proportional to the rate of Po(2) decrease. Fitting equations obtained from a model of heterogeneous intracellular Po(2) were applied to recover the parameters describing respiration in muscle fibers, with a predicted sigmoidal shape for the dependence of Vo(2) on Po(2). This curve consists of two regions connected by the point for critical Po(2) of the cell (i.e., Po(2) at the sarcolemma when the center of the cell becomes anoxic). The critical Po(2) was below the Po(2) for half-maximal respiratory rate (P(50)) for the cells. In six muscles at rest, the rate of oxygen consumption was 139 ± 6 nl O(2)/cm(3)·s and mitochondrial P(50) was k = 10.5 ± 0.8 mmHg. The range of Po(2) values inside the muscle fibers was found to be 4-5 mmHg at the critical Po(2). The oxygen dependence of respiration can be studied in thin muscles under different experimental conditions. In resting muscle, the critical Po(2) was substantially lower than the interstitial Po(2) of 53 ± 2 mmHg, a finding that indicates that Vo(2) under this circumstance is independent of oxygen supply and is discordant with the conventional hypothesis of metabolic regulation of the oxygen supply to tissue.

  16. Oxygen dependence of respiration in rat spinotrapezius muscle in situ

    Science.gov (United States)

    Pittman, Roland N.

    2012-01-01

    The oxygen dependence of respiration in striated muscle in situ was studied by measuring the rate of decrease of interstitial Po2 [oxygen disappearance curve (ODC)] following rapid arrest of blood flow by pneumatic tissue compression, which ejected red blood cells from the muscle vessels and made the ODC independent from oxygen bound to hemoglobin. After the contribution of photo-consumption of oxygen by the method was evaluated and accounted for, the corrected ODCs were converted into the Po2 dependence of oxygen consumption, V̇o2, proportional to the rate of Po2 decrease. Fitting equations obtained from a model of heterogeneous intracellular Po2 were applied to recover the parameters describing respiration in muscle fibers, with a predicted sigmoidal shape for the dependence of V̇o2 on Po2. This curve consists of two regions connected by the point for critical Po2 of the cell (i.e., Po2 at the sarcolemma when the center of the cell becomes anoxic). The critical Po2 was below the Po2 for half-maximal respiratory rate (P50) for the cells. In six muscles at rest, the rate of oxygen consumption was 139 ± 6 nl O2/cm3·s and mitochondrial P50 was k = 10.5 ± 0.8 mmHg. The range of Po2 values inside the muscle fibers was found to be 4–5 mmHg at the critical Po2. The oxygen dependence of respiration can be studied in thin muscles under different experimental conditions. In resting muscle, the critical Po2 was substantially lower than the interstitial Po2 of 53 ± 2 mmHg, a finding that indicates that V̇o2 under this circumstance is independent of oxygen supply and is discordant with the conventional hypothesis of metabolic regulation of the oxygen supply to tissue. PMID:22523254

  17. A muscle model for hybrid muscle activation

    Directory of Open Access Journals (Sweden)

    Klauer Christian

    2015-09-01

    Full Text Available To develop model-based control strategies for Functional Electrical Stimulation (FES in order to support weak voluntary muscle contractions, a hybrid model for describing joint motions induced by concurrent voluntary-and FES induced muscle activation is proposed. It is based on a Hammerstein model – as commonly used in feedback controlled FES – and exemplarily applied to describe the shoulder abduction joint angle. Main component of a Hammerstein muscle model is usually a static input nonlinearity depending on the stimulation intensity. To additionally incorporate voluntary contributions, we extended the static non-linearity by a second input describing the intensity of the voluntary contribution that is estimated by electromyography (EMG measurements – even during active FES. An Artificial Neural Network (ANN is used to describe the static input non-linearity. The output of the ANN drives a second-order linear dynamical system that describes the combined muscle activation and joint angle dynamics. The tunable parameters are adapted to the individual subject by a system identification approach using previously recorded I/O-data. The model has been validated in two healthy subjects yielding RMS values for the joint angle error of 3.56° and 3.44°, respectively.

  18. Respiratory muscle dysfunction in animal models of hypoxic disease: antioxidant therapy goes from strength to strength

    Directory of Open Access Journals (Sweden)

    O'Halloran KD

    2017-07-01

    Full Text Available Ken D O’Halloran,1 Philip Lewis2 1Department of Physiology, School of Medicine, University College Cork, Cork, Ireland; 2Institute and Policlinic for Occupational Medicine, Environmental Medicine and Preventative Research, University Hospital of Cologne, Germany Abstract: The striated muscles of breathing play a critical role in respiratory homeostasis governing blood oxygenation and pH regulation. Upper airway dilator and thoracic pump muscles retain a remarkable capacity for plasticity throughout life, both in health and disease states. Hypoxia, whatever the cause, is a potent driver of respiratory muscle remodeling with evidence of adaptive and maladaptive outcomes for system performance. The pattern, duration, and intensity of hypoxia are key determinants of respiratory muscle structural-, metabolic-, and functional responses and adaptation. Age and sex also influence respiratory muscle tolerance of hypoxia. Redox stress emerges as the principal protagonist driving respiratory muscle malady in rodent models of hypoxic disease. There is a growing body of evidence demonstrating that antioxidant intervention alleviates hypoxia-induced respiratory muscle dysfunction, and that N-acetyl cysteine, approved for use in humans, is highly effective in preventing hypoxia-induced respiratory muscle weakness and fatigue. We posit that oxygen homeostasis is a key driver of respiratory muscle form and function. Hypoxic stress is likely a major contributor to respiratory muscle malaise in diseases of the lungs and respiratory control network. Animal studies provide an evidence base in strong support of the need to explore adjunctive antioxidant therapies for muscle dysfunction in human respiratory disease. Keywords: respiratory muscle, diaphragm, upper airway, hypoxia, antioxidants, N-acetyl-cysteine, OSA, COPD

  19. Expression of a dominant negative CELF protein in vivo leads to altered muscle organization, fiber size, and subtype.

    Directory of Open Access Journals (Sweden)

    Dara S Berger

    2011-04-01

    Full Text Available CUG-BP and ETR-3-like factor (CELF proteins regulate tissue- and developmental stage-specific alternative splicing in striated muscle. We previously demonstrated that heart muscle-specific expression of a nuclear dominant negative CELF protein in transgenic mice (MHC-CELFΔ effectively disrupts endogenous CELF activity in the heart in vivo, resulting in impaired cardiac function. In this study, transgenic mice that express the dominant negative protein under a skeletal muscle-specific promoter (Myo-CELFΔ were generated to investigate the role of CELF-mediated alternative splicing programs in normal skeletal muscle.Myo-CELFΔ mice exhibit modest changes in CELF-mediated alternative splicing in skeletal muscle, accompanied by a reduction of endomysial and perimysial spaces, an increase in fiber size variability, and an increase in slow twitch muscle fibers. Weight gain and mean body weight, total number of muscle fibers, and overall muscle strength were not affected.Although these findings demonstrate that CELF activity contributes to the normal alternative splicing of a subset of muscle transcripts in vivo, the mildness of the effects in Myo-CELFΔ muscles compared to those in MHC-CELFΔ hearts suggests CELF activity may be less determinative for alternative splicing in skeletal muscle than in heart muscle. Nonetheless, even these small changes in CELF-mediated splicing regulation were sufficient to alter muscle organization and muscle fiber properties affected in myotonic dystrophy. This lends further evidence to the hypothesis that dysregulation of CELF-mediated alternative splicing programs may be responsible for the disruption of these properties during muscle pathogenesis.

  20. Science commons

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    SCP: Creative Commons licensing for open access publishing, Open Access Law journal-author agreements for converting journals to open access, and the Scholar's Copyright Addendum Engine for retaining rights to self-archive in meaningful formats and locations for future re-use. More than 250 science and technology journals already publish under Creative Commons licensing while 35 law journals utilize the Open Access Law agreements. The Addendum Engine is a new tool created in partnership with SPARC and U.S. universities. View John Wilbanks's biography

  1. Creative Commons

    DEFF Research Database (Denmark)

    Jensen, Lone

    2006-01-01

    En Creative Commons licens giver en forfatter mulighed for at udbyde sit værk i en alternativ licensløsning, som befinder sig på forskellige trin på en skala mellem yderpunkterne "All rights reserved" og "No rights reserved". Derved opnås licensen "Some rights reserved"......En Creative Commons licens giver en forfatter mulighed for at udbyde sit værk i en alternativ licensløsning, som befinder sig på forskellige trin på en skala mellem yderpunkterne "All rights reserved" og "No rights reserved". Derved opnås licensen "Some rights reserved"...

  2. Defective muscle basement membrane and lack of M-laminin in the dystrophic dy/dy mouse

    DEFF Research Database (Denmark)

    Xu, H; Christmas, P; Wu, X R

    1994-01-01

    -linked Duchenne and Becker muscular dystrophies. We have examined M-laminin expression in mice with autosomal recessive muscular dystrophy caused by the mutation dy. The heavy chain of M-laminin was undetectable in skeletal muscle, heart muscle, and peripheral nerve by immunofluorescence and immunoblotting......M-laminin is a major member of the laminin family of basement membrane proteins. It is prominently expressed in striated muscle and peripheral nerve. M-laminin is deficient in patients with the autosomal recessive Fukuyama congenital muscular dystrophy but is normal in patients with the sex...... tissue from dy/dy mice, suggesting that M-laminin heavy-chain mRNA may be produced at very low levels or is unstable. Information about the chromosomal localization of the M heavy-chain in human and mouse suggests that a mutation in the M-chain gene causes the muscular dystrophy in dy/dy mice. The dy...

  3. Getting Muscles

    Science.gov (United States)

    ... re thinking about aren't possible for kids. Superheroes, of course, aren't real, and professional athletes ... can make you stronger. Why? Because you're using your muscles when you do it. Eat Strong ...

  4. Muscle cramps

    Science.gov (United States)

    ... the lower leg/calf Back of the thigh (hamstrings) Front of the thigh (quadriceps) Cramps in the ... Names Cramps - muscle Images Chest stretch Groin stretch Hamstring stretch Hip stretch Thigh stretch Triceps stretch References ...

  5. Common approach to common interests

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    In referring to issues confronting the energy field in this region and options to be exercised in the future, I would like to mention the fundamental condition of the utmost importance. That can be summed up as follows: any subject in energy area can never be solved by one country alone, given the geographical and geopolitical characteristics intrinsically possessed by energy. So, a regional approach is needed and it is especially necessary for the main players in the region to jointly address problems common to them. Though it may be a matter to be pursued in the distant future, I am personally dreaming a 'Common Energy Market for Northeast Asia,' in which member countries' interests are adjusted so that the market can be integrated and the region can become a most economically efficient market, thus formulating an effective power to encounter the outside. It should be noted that Europe needed forty years to integrate its market as the unified common market. It is necessary for us to follow a number of steps over the period to eventually materialize our common market concept, too. Now is the time for us to take a first step to lay the foundation for our descendants to enjoy prosperity from such a common market.

  6. Nuclear Positioning in Muscle Development and Disease

    Directory of Open Access Journals (Sweden)

    Eric eFolker

    2013-12-01

    Full Text Available Muscle disease as a group is characterized by muscle weakness, muscle loss, and impaired muscle function. Although the phenotype is the same, the underlying cellular pathologies, and the molecular causes of these pathologies, are diverse. One common feature of many muscle disorders is the mispositioning of myonuclei. In unaffected individuals myonuclei are spaced throughout the periphery of the muscle fiber such that the distance between nuclei is maximized. However, in diseased muscles, the nuclei are often clustered within the center of the muscle cell. Although this phenotype has been acknowledged for several decades, it is often ignored as a contributor to muscle weakness. Rather, these nuclei are taken only as a sign of muscle repair. Here we review the evidence that mispositioned myonuclei are not merely a symptom of muscle disease but also a cause. Additionally, we review the working models for how myonuclei move from two different perspectives, from that of the nucleus and from that of the cytoskeleton. We further compare and contrast these mechanisms with the mechanisms of nuclear movement in other cell types both to draw general themes for nuclear movement and to identify muscle-specific considerations. Finally, we focus on factors that can be linked to muscle disease and find that genes that regulate myonuclear movement and positioning have been linked to muscular dystrophy. Although the cause-effect relationship is largely speculative, recent data indicate that the position of nuclei should no longer be considered only a means to diagnose muscle disease.

  7. Immunohistochemistry of sarcolemmal membrane-associated proteins in formalin-fixed and paraffin-embedded skeletal muscle tissue: a promising tool for the diagnostic evaluation of common muscular dystrophies.

    Science.gov (United States)

    Suriyonplengsaeng, Chinnawut; Dejthevaporn, Charungthai; Khongkhatithum, Chaiyos; Sanpapant, Suda; Tubthong, Nattha; Pinpradap, Koset; Srinark, Nippa; Waisayarat, Jariya

    2017-02-20

    The analysis of fresh frozen muscle specimens is standard following routine muscle biopsy, but this service is not widely available in countries with limited medical facilities, such as Thailand. Nevertheless, immunohistochemistry (IHC) analysis is essential for the diagnosis of patients with a strong clinical suspicion of muscular dystrophy, in the absence of mutations detected by molecular genetics. As the successful labelling of sarcolemmal membrane-associated proteins in formalin-fixed and paraffin-embedded (FFPE) muscle sections using IHC staining has rarely been described, this study aimed to develop a reproducible IHC method for such an analysis. Thirteen cases were studied from the files of the Department of Pathology, Mahidol University. Diagnoses included three Duchenne muscular dystrophy (DMD), one Becker muscular dystrophy (BMD), one dysferlinopathy, and several not-specified muscular dystrophies. IHC was performed on FFPE sections at different thicknesses (3 μm, 5 μm, and 8 μm) using the heat-mediated antigen retrieval method with citrate/EDTA buffer, followed by an overnight incubation with primary antibodies at room temperature. Antibodies against spectrin, dystrophin (rod domain, C-terminus, and N-terminus), dysferlin, sarcoglycans (α, β, and γ), and β-dystroglycan were used. Frozen sections were tested in parallel for comparative analysis. Antibodies labelling spectrin, dystrophin (rod domain and C-terminus), dysferlin, sarcoglycans (α, β, and γ), and β-dystroglycan clearly exhibited sarcolemmal staining in FFPE sections. However, staining of FFPE sections using the antibody directed against the N-terminus of dystrophin was unsuccessful. The absence of labeling for dystrophins and dysferlin in FFPE sections was documented in all three DMD patients and the dysferlinopathy patient. The BMD diagnosis could not be made using IHC in FFPE sections alone because of a lack of staining for the dystrophin N-terminus, indicating a limitation of

  8. Molecular analysis of the muscle protein projectin in Lepidoptera.

    Science.gov (United States)

    Ayme-Southgate, A J; Turner, L; Southgate, R J

    2013-01-01

    Striated muscles of both vertebrates and insects contain a third filament composed of the giant proteins, namely kettin and projectin (insects) and titin (vertebrates). All three proteins have been shown to contain several domains implicated in conferring elasticity, in particular a PEVK segment. In this study, the characterization of the projectin protein in the silkmoth, Bombyx mori L. (Lepidoptera: Bombycidae), and the monarch butterfly, Danaus plexippus L. (Lepidoptera: Nymphalidae), as well as a partial characterization in the Carolina sphinx, Manduca sexta L. (Lepidoptera: Sphingidae), are presented. This study showed that, similar to other insects, projectin's overall modular organization was conserved, but in contrast, the PEVK region had a highly divergent sequence. The analysis of alternative splicing in the PEVK region revealed a small number of possible isoforms and the lack of a flight-muscle specific variant, both characteristics being in sharp contrast with findings from other insects. The possible correlation with difference in flight muscle stiffness and physiology between Lepidoptera and other insect orders is discussed.

  9. Magnetic resonance imaging of facial muscles

    Energy Technology Data Exchange (ETDEWEB)

    Farrugia, M.E. [Department of Clinical Neurology, University of Oxford, Radcliffe Infirmary, Oxford (United Kingdom)], E-mail: m.e.farrugia@doctors.org.uk; Bydder, G.M. [Department of Radiology, University of California, San Diego, CA 92103-8226 (United States); Francis, J.M.; Robson, M.D. [OCMR, Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford (United Kingdom)

    2007-11-15

    Facial and tongue muscles are commonly involved in patients with neuromuscular disorders. However, these muscles are not as easily accessible for biopsy and pathological examination as limb muscles. We have previously investigated myasthenia gravis patients with MuSK antibodies for facial and tongue muscle atrophy using different magnetic resonance imaging sequences, including ultrashort echo time techniques and image analysis tools that allowed us to obtain quantitative assessments of facial muscles. This imaging study had shown that facial muscle measurement is possible and that useful information can be obtained using a quantitative approach. In this paper we aim to review in detail the methods that we applied to our study, to enable clinicians to study these muscles within the domain of neuromuscular disease, oncological or head and neck specialties. Quantitative assessment of the facial musculature may be of value in improving the understanding of pathological processes occurring within facial muscles in certain neuromuscular disorders.

  10. Magnetic resonance imaging of facial muscles

    International Nuclear Information System (INIS)

    Farrugia, M.E.; Bydder, G.M.; Francis, J.M.; Robson, M.D.

    2007-01-01

    Facial and tongue muscles are commonly involved in patients with neuromuscular disorders. However, these muscles are not as easily accessible for biopsy and pathological examination as limb muscles. We have previously investigated myasthenia gravis patients with MuSK antibodies for facial and tongue muscle atrophy using different magnetic resonance imaging sequences, including ultrashort echo time techniques and image analysis tools that allowed us to obtain quantitative assessments of facial muscles. This imaging study had shown that facial muscle measurement is possible and that useful information can be obtained using a quantitative approach. In this paper we aim to review in detail the methods that we applied to our study, to enable clinicians to study these muscles within the domain of neuromuscular disease, oncological or head and neck specialties. Quantitative assessment of the facial musculature may be of value in improving the understanding of pathological processes occurring within facial muscles in certain neuromuscular disorders

  11. Aspects of smooth muscle function in molluscan catch muscle.

    Science.gov (United States)

    Twarog, B M

    1976-10-01

    1) Catch in Mytilus ABRM may be a specialization of a mechanism common to all muscles that gives rise to stretch resistance in the resting state. Catch appears to be due to actin myosin interaction. Since this interaction is regulated by nerves, it provides a convenient model for studying resting stretch resistance. 2) Studies of the structure of Mytilus ABRM revela two types of intercellular connections: a) direct connections between muscle fibers [these nexal (gap) junctions interconnect the muscle cells electrically]; b) muscle fiber-collagen-muscle fiber connections [these provide mechanical connections between muscle cells via collagen fibers]. The structure of Mytilus ABRM supports speculation that smooth muscle filaments are organized into contractile units. 3) A rise in cAMP levels occurs in response to the relaxing transmitter, serotonin. It is not certain whether the cAMP system directly controls the ability of the contractile proteins to interact or whether it regulates intracellular levels of Ca2+. 4) Calcium ions in activation are derived from two sources: an internal source, probably the sarcoplasmic reticulum, and an external source, across the muscle membrane. 5) The nature of catch remains in question, although most evidence favors the linkage hypothesis.

  12. Bone marrow mesenchymal cells improve muscle function in a skeletal muscle re-injury model.

    Directory of Open Access Journals (Sweden)

    Bruno M Andrade

    Full Text Available Skeletal muscle injury is the most common problem in orthopedic and sports medicine, and severe injury leads to fibrosis and muscle dysfunction. Conventional treatment for successive muscle injury is currently controversial, although new therapies, like cell therapy, seem to be promise. We developed a model of successive injuries in rat to evaluate the therapeutic potential of bone marrow mesenchymal cells (BMMC injected directly into the injured muscle. Functional and histological assays were performed 14 and 28 days after the injury protocol by isometric tension recording and picrosirius/Hematoxilin & Eosin staining, respectively. We also evaluated the presence and the fate of BMMC on treated muscles; and muscle fiber regeneration. BMMC treatment increased maximal skeletal muscle contraction 14 and 28 days after muscle injury compared to non-treated group (4.5 ± 1.7 vs 2.5 ± 0.98 N/cm2, p<0.05 and 8.4 ± 2.3 vs. 5.7 ± 1.3 N/cm2, p<0.05 respectively. Furthermore, BMMC treatment increased muscle fiber cross-sectional area and the presence of mature muscle fiber 28 days after muscle injury. However, there was no difference in collagen deposition between groups. Immunoassays for cytoskeleton markers of skeletal and smooth muscle cells revealed an apparent integration of the BMMC within the muscle. These data suggest that BMMC transplantation accelerates and improves muscle function recovery in our extensive muscle re-injury model.

  13. Bigorexia: bodybuilding and muscle dysmorphia.

    Science.gov (United States)

    Mosley, Philip E

    2009-05-01

    Muscle dysmorphia is an emerging condition that primarily affects male bodybuilders. Such individuals obsess about being inadequately muscular. Compulsions include spending hours in the gym, squandering excessive amounts of money on ineffectual sports supplements, abnormal eating patterns or even substance abuse. In this essay, I illustrate the features of muscle dysmorphia by employing the first-person account of a male bodybuilder afflicted by this condition. I briefly outline the history of bodybuilding and examine whether the growth of this sport is linked to a growing concern with body image amongst males. I suggest that muscle dysmorphia may be a new expression of a common pathology shared with the eating disorders.

  14. Human skeletal muscle biochemical diversity.

    Science.gov (United States)

    Tirrell, Timothy F; Cook, Mark S; Carr, J Austin; Lin, Evie; Ward, Samuel R; Lieber, Richard L

    2012-08-01

    The molecular components largely responsible for muscle attributes such as passive tension development (titin and collagen), active tension development (myosin heavy chain, MHC) and mechanosensitive signaling (titin) have been well studied in animals but less is known about their roles in humans. The purpose of this study was to perform a comprehensive analysis of titin, collagen and MHC isoform distributions in a large number of human muscles, to search for common themes and trends in the muscular organization of the human body. In this study, 599 biopsies were obtained from six human cadaveric donors (mean age 83 years). Three assays were performed on each biopsy - titin molecular mass determination, hydroxyproline content (a surrogate for collagen content) and MHC isoform distribution. Titin molecular mass was increased in more distal muscles of the upper and lower limbs. This trend was also observed for collagen. Percentage MHC-1 data followed a pattern similar to collagen in muscles of the upper extremity but this trend was reversed in the lower extremity. Titin molecular mass was the best predictor of anatomical region and muscle functional group. On average, human muscles had more slow myosin than other mammals. Also, larger titins were generally associated with faster muscles. These trends suggest that distal muscles should have higher passive tension than proximal ones, and that titin size variability may potentially act to 'tune' the protein's mechanotransduction capability.

  15. Patterns of Age-Associated Degeneration Differ in Shoulder Muscles

    OpenAIRE

    Raz, Yotam; Henseler, Jan F.; Kolk, Arjen; Riaz, Muhammad; van der Zwaal, Peer; Nagels, Jochem; Nelissen, Rob G. H. H.; Raz, Vered

    2015-01-01

    Shoulder complaints are common in the elderly and hamper daily functioning. These complaints are often caused by tears in the muscle-tendon units of the rotator cuff (RC). The four RC muscles stabilize the shoulder joint. While some RC muscles are frequently torn in shoulder complaints others remain intact. The pathological changes in RC muscles are poorly understood. We investigated changes in RC muscle pathology combining radiological and histological procedures. We measured cross sectional...

  16. Patterns of age-associated degeneration differ in shoulder muscles

    OpenAIRE

    Yotam eRaz; Yotam eRaz; Jan Ferdinand eHenseler; Arjen eKolk; Muhammad eRiaz; Peer evan der Zwaal; Jochem eNagels; Rob G.H.H. Nelissen; Vered eRaz

    2015-01-01

    Shoulder complaints are common in the elderly and hamper daily functioning. These complaints are often caused by tears in the muscle-tendon units of the rotator cuff (RC). The four RC muscles stabilize the shoulder joint. While some RC muscles are frequently torn in shoulder complaints others remain intact. The pathological changes in RC muscles are poorly understood. We investigated changes in RC muscle pathology combining radiological and histological procedures. We measured cross sectional...

  17. Isolated unilateral temporalis muscle hypertrophy in a child: a case report with literature review

    OpenAIRE

    Ranasinghe, Jagath C.; Wickramasinghe, Chandani; Rodrigo, Ganganath

    2018-01-01

    Background Temporalis muscle hypertrophy is a rare entity of masticatory muscle hypertrophy. All types of masticatory muscle hypertrophies have been documented of which temporalis muscle hypertrophy is one. Temporalis muscle hypertrophy is most commonly bilateral and usually associated with other types of masticatory muscles hypertrophy such as masseter or pterygoid hypertrophy. However, isolated unilateral temporalis muscle hypertrophy is extremely rare and only 9 cases have been reported to...

  18. Diaphragm Muscle Adaptation to Sustained Hypoxia: Lessons from Animal Models with Relevance to High Altitude and Chronic Respiratory Diseases

    Directory of Open Access Journals (Sweden)

    Philip Lewis

    2016-12-01

    Full Text Available The diaphragm is the primary inspiratory pump muscle of breathing. Notwithstanding its critical role in pulmonary ventilation, the diaphragm like other striated muscles is malleable in response to physiological and pathophysiological stressors, with potential implications for the maintenance of respiratory homeostasis. This review considers hypoxic adaptation of the diaphragm muscle, with a focus on functional, structural, and metabolic remodeling relevant to conditions such as high altitude and chronic respiratory disease. On the basis of emerging data in animal models, we posit that hypoxia is a significant driver of respiratory muscle plasticity, with evidence suggestive of both compensatory and deleterious adaptations in conditions of sustained exposure to low oxygen. Cellular strategies driving diaphragm remodeling during exposure to sustained hypoxia appear to confer hypoxic tolerance at the expense of peak force-generating capacity, a key functional parameter that correlates with patient morbidity and mortality. Changes include, but are not limited to: redox-dependent activation of hypoxia-inducible factor (HIF and MAP kinases; time-dependent carbonylation of key metabolic and functional proteins; decreased mitochondrial respiration; activation of atrophic signaling and increased proteolysis; and, altered functional performance. Diaphragm muscle weakness may be a signature effect of sustained hypoxic exposure. We discuss the putative role of reactive oxygen species as mediators of both advantageous and disadvantageous adaptations of diaphragm muscle to sustained hypoxia, and the role of antioxidants in mitigating adverse effects of chronic hypoxic stress on respiratory muscle function.

  19. Reconstruction of the muscle system in Antygomonas sp. (Kinorhyncha, Cyclorhagida) by means of phalloidin labeling and cLSM.

    Science.gov (United States)

    Müller, Monika C M; Schmidt-Rhaesa, Andreas

    2003-05-01

    In the present investigation the entire muscle system of the cyclorhagid kinorhynch Antygomonas sp. was three-dimensionally reconstructed from whole mounts by means of FITC-phalloidin labeling and confocal scanning microscopy. With this technique, which proved to be especially useful for microscopically small species, we wanted to reinvestigate and supplement the findings obtained by histological and electron microscopical methods. The organization of the major muscle systems can be summarized as follows: 1) All muscle fibers, apart from the intestinal ones, the spine, and the mouth cone muscles, show a cross-striated pattern; 2) Dorsal longitudinal muscle fibers as well as segmentally arranged dorsoventral fibers occur from segment III to XIII; 3) Diagonal muscle fibers are located laterally in segments III to X; 4) Two rings of circular fibers are present in segment II, forming the closing apparatus in Cyclorhagida. Further circular muscles are present in segment I, forming the mouth cone and the eversible introvert, and in the pharyngeal bulb. Copyright 2003 Wiley-Liss, Inc.

  20. Characterization of muscle contraction with second harmonic generation microscopy

    Science.gov (United States)

    Prent, Nicole

    Muscle cells have the ability to change length and generate force due to orchestrated action of myosin nanomotors that cause sliding of actin filaments along myosin filaments in the sarcomeres, the fundamental contractile units, of myocytes. The correlated action of hundreds of sarcomeres is needed to produce the myocyte contractions. This study probes the molecular structure of the myofilaments and investigates the movement correlations between sarcomeres during contraction. In this study, second harmonic generation (SHG) microscopy is employed for imaging striated myocytes. Myosin filaments in striated myocytes inherently have a nonzero second-order susceptibility, [special characters omitted] and therefore generate efficient SHG. Employing polarization-in polarization-out (PIPO) SHG microscopy allows for the accurate determination of the characteristic ratio, [special characters omitted] in birefringent myocytes, which describes the structure of the myosin filament. Analysis shows that the b value at the centre of the myosin filament, where the nonlinear dipoles are better aligned, is slightly lower than the value at the edges of the filament, where there is more disorder in orientation of the nonlinear dipoles from the myosin heads. Forced stretching of myocytes resulted in an SHG intensity increase with the elongation of the sarcomere. SHG microscopy captured individual sarcomeres during contraction, allowing for the measurement of sarcomere length (SL) and SHG intensity (SI) fluctuations. The fluctuations also revealed higher SHG intensity in elongated sarcomeres. The sarcomere synchronization model (SSM) for contracting and quiescent myocytes was developed, and experimentally verified for three cases (isolated cardiomyocyte, embryonic chicken cardiomyocyte, and larva myocyte). During contraction, the action of SLs and SIs between neighbouring sarcomeres partially correlated, whereas in quiescent myocytes the SLs show an anti-correlation and the SIs have no

  1. Target-derived trophic effect on skeletal muscle innervation in senescent mice.

    Science.gov (United States)

    Messi, Maria Laura; Delbono, Osvaldo

    2003-02-15

    In the present work, we tested the hypothesis that target-derived insulin-like growth factor-1 (IGF-1) prevents alterations in neuromuscular innervation in aging mammals. To explore this hypothesis, we studied senescent wild-type mice as a model of deficient IGF-1 secretion and signaling and S1S2 transgenic mice as a tool to investigate the role of sustained overexpression of IGF-1 in striated muscle in neuromuscular innervation. The analysis of the nerve terminal in extensor digitorum longus muscles from senescent mice showed that the decrease in the percentage of cholinesterase-stained zones (CSZ) exhibiting nerve terminal branching, number of nerve branches at the CSZ, and nerve branch points was partially or completely reversed by sustained overexpression of IGF-1 in skeletal muscle. Target-derived IGF-1 also prevented age-related decreases in the postterminal alpha-bungarotoxin immunostained area, as well as the reduction in the number and length of postsynaptic folds, and area and density of postsynaptic folds studied with electron microscopy. Overexpression of IGF-1 in skeletal muscle may account for the lack of age-dependent switch in muscle fiber type composition recorded in senescent mice. In summary, the use of the S1S2 IGF-1 transgenic mouse model allowed us to provide morphological evidence for the role of target-derived IGF-1 in spinal cord motor neurons in senescent mice.

  2. Generation of a vascularized organoid using skeletal muscle as the inductive source.

    LENUS (Irish Health Repository)

    Messina, Aurora

    2005-09-01

    The technology required for creating an in vivo microenvironment and a neovasculature that can grow with and service new tissue is lacking, precluding the possibility of engineering complex three-dimensional organs. We have shown that when an arterio-venous (AV) loop is constructed in vivo in the rat groin, and placed inside a semisealed chamber, an extensive functional vasculature is generated. To test whether this unusually angiogenic environment supports the survival and growth of implanted tissue or cells, we inserted various preparations of rat and human skeletal muscle. We show that after 6 weeks incubation of muscle tissue, the chamber filled with predominantly well-vascularized recipient-derived adipose tissue, but some new donor-derived skeletal muscle and connective tissue were also evident. When primary cultured myoblasts were inserted into the chamber with the AV loop, they converted to mature striated muscle fibers. Furthermore, we identify novel adipogenesis-inducing properties of skeletal muscle. This represents the first report of a specific three-dimensional tissue grown on its own vascular supply.

  3. Physical activity counteracts tumor cell growth in colon carcinoma C26-injected muscles: an interim report

    Directory of Open Access Journals (Sweden)

    Charlotte Hiroux

    2016-06-01

    Full Text Available Skeletal muscle tissue is a rare site of tumor metastasis but is the main target of the degenerative processes occurring in cancer-associated cachexia syndrome. Beneficial effects of physical activity in counteracting cancer-related muscle wasting have been described in the last decades. Recently it has been shown that, in tumor xeno-transplanted mouse models, physical activity is able to directly affect tumor growth by modulating inflammatory responses in the tumor mass microenvironment. Here, we investigated the effect of physical activity on tumor cell growth in colon carcinoma C26 cells injected tibialis anterior muscles of BALB/c mice. Histological analyses revealed that 4 days of voluntary wheel running significantly counteracts tumor cell growth in C26-injected muscles compared to the non-injected sedentary controls. Since striated skeletal muscle tissue is the site of voluntary contraction, our results confirm that physical activity can also directly counteract tumor cell growth in a metabolically active tissue that is usually not a target for metastasis.

  4. Membrane-stabilizing copolymers confer marked protection to dystrophic skeletal muscle in vivo

    Directory of Open Access Journals (Sweden)

    Evelyne M Houang

    Full Text Available Duchenne muscular dystrophy (DMD is a fatal disease of striated muscle deterioration. A unique therapeutic approach for DMD is the use of synthetic membrane stabilizers to protect the fragile dystrophic sarcolemma against contraction-induced mechanical stress. Block copolymer-based membrane stabilizer poloxamer 188 (P188 has been shown to protect the dystrophic myocardium. In comparison, the ability of synthetic membrane stabilizers to protect fragile DMD skeletal muscles has been less clear. Because cardiac and skeletal muscles have distinct structural and functional features, including differences in the mechanism of activation, variance in sarcolemma phospholipid composition, and differences in the magnitude and types of forces generated, we speculated that optimized membrane stabilization could be inherently different. Our objective here is to use principles of pharmacodynamics to evaluate membrane stabilization therapy for DMD skeletal muscles. Results show a dramatic differential effect of membrane stabilization by optimization of pharmacodynamic-guided route of poloxamer delivery. Data show that subcutaneous P188 delivery, but not intravascular or intraperitoneal routes, conferred significant protection to dystrophic limb skeletal muscles undergoing mechanical stress in vivo. In addition, structure-function examination of synthetic membrane stabilizers further underscores the importance of copolymer composition, molecular weight, and dosage in optimization of poloxamer pharmacodynamics in vivo.

  5. Serotonin as an integrator of leech behavior and muscle mechanical performance.

    Science.gov (United States)

    Gerry, Shannon P; Daigle, Amanda J; Feilich, Kara L; Liao, Jessica; Oston, Azzara L; Ellerby, David J

    2012-08-01

    The obliquely striated muscle in the leech body wall has a broad functional repertoire; it provides power for both locomotion and suction feeding. It also operates over an unusually high strain range, undergoing up to threefold changes in length. Serotonin (5-HT) may support this functional flexibility, integrating behavior and biomechanics. It can act centrally, promoting motor outputs that drive body wall movements, and peripherally, modulating the mechanical properties of body wall muscle. During isometric contractions 5-HT enhances active force production and reduces resting muscle tone. We therefore hypothesized that 5-HT would increase net work output during the cyclical contractions associated with locomotion and feeding. Longitudinal strains measured during swimming, crawling and feeding were applied to body wall muscle in vitro with the timing and duration of stimulation selected to maximize net work output. The net work output during all simulated behaviors significantly increased in the presence of 100μM 5-HT relative to the 5-HT-free control condition. Without 5-HT the muscle strips could not achieve a net positive work output during simulated swimming. The decrease in passive tension associated with 5-HT may also be important in reducing muscle antagonist work during longitudinal muscle lengthening. The behavioral and mechanical effects of 5-HT during locomotion are clearly complementary, promoting particular behaviors and enhancing muscle performance during those behaviors. Although 5-HT can enhance muscle mechanical performance during simulated feeding, low in vivo activity in serotonergic neurons during feeding may mean that its mechanical role during this behavior is less important than during locomotion. Copyright © 2012 Elsevier GmbH. All rights reserved.

  6. A variation of the extensor hallucis longus muscle (accessory extensor digiti secundus muscle).

    Science.gov (United States)

    Tezer, Murat; Cicekcibasi, Aynur Emine

    2012-06-01

    An accessory muscle adjacent to the extensor hallucis longus muscle (EHL) was observed between the EHL and the extensor digitorum longus muscle (EDL) in the anterior side of both legs of the cadaver of a 72-year-old male, during educational dissection, and it was observed that the tendon of this muscle extended to the second toe. The tendon of this muscle united with the second toe tendon of the EDL. These common tendons appeared before reaching the toe media phalanxes and extended to the related media phalanxes of toe. However, an additional tendon separating from this accessory muscle tendon united with the EHL tendon at the left foot. This accessory muscle, unlike the variations identified to date, is considered to extend to the second toe, and the name "accessory extensor digiti secundus muscle" is offered.

  7. Immunology Guides Skeletal Muscle Regeneration

    Directory of Open Access Journals (Sweden)

    F. Andrea Sass

    2018-03-01

    Full Text Available Soft tissue trauma of skeletal muscle is one of the most common side effects in surgery. Muscle injuries are not only caused by accident-related injuries but can also be of an iatrogenic nature as they occur during surgical interventions when the anatomical region of interest is exposed. If the extent of trauma surpasses the intrinsic regenerative capacities, signs of fatty degeneration and formation of fibrotic scar tissue can occur, and, consequentially, muscle function deteriorates or is diminished. Despite research efforts to investigate the physiological healing cascade following trauma, our understanding of the early onset of healing and how it potentially determines success or failure is still only fragmentary. This review focuses on the initial physiological pathways following skeletal muscle trauma in comparison to bone and tendon trauma and what conclusions can be drawn from new scientific insights for the development of novel therapeutic strategies. Strategies to support regeneration of muscle tissue after injury are scarce, even though muscle trauma has a high incidence. Based on tissue specific differences, possible clinical treatment options such as local immune-modulatory and cell therapeutic approaches are suggested that aim to support the endogenous regenerative potential of injured muscle tissues.

  8. Immunology Guides Skeletal Muscle Regeneration.

    Science.gov (United States)

    Sass, F Andrea; Fuchs, Michael; Pumberger, Matthias; Geissler, Sven; Duda, Georg N; Perka, Carsten; Schmidt-Bleek, Katharina

    2018-03-13

    Soft tissue trauma of skeletal muscle is one of the most common side effects in surgery. Muscle injuries are not only caused by accident-related injuries but can also be of an iatrogenic nature as they occur during surgical interventions when the anatomical region of interest is exposed. If the extent of trauma surpasses the intrinsic regenerative capacities, signs of fatty degeneration and formation of fibrotic scar tissue can occur, and, consequentially, muscle function deteriorates or is diminished. Despite research efforts to investigate the physiological healing cascade following trauma, our understanding of the early onset of healing and how it potentially determines success or failure is still only fragmentary. This review focuses on the initial physiological pathways following skeletal muscle trauma in comparison to bone and tendon trauma and what conclusions can be drawn from new scientific insights for the development of novel therapeutic strategies. Strategies to support regeneration of muscle tissue after injury are scarce, even though muscle trauma has a high incidence. Based on tissue specific differences, possible clinical treatment options such as local immune-modulatory and cell therapeutic approaches are suggested that aim to support the endogenous regenerative potential of injured muscle tissues.

  9. Replication in cultured C2C12 muscle cells correlates with the neuroinvasiveness of California serogroup bunyaviruses.

    Science.gov (United States)

    Griot, C; Pekosz, A; Davidson, R; Stillmock, K; Hoek, M; Lukac, D; Schmeidler, D; Cobbinah, I; Gonzalez-Scarano, F; Nathanson, N

    1994-06-01

    The neuroinvasiveness of California serogroup bunyaviruses is determined by the ability of the virus to replicate in striated muscle after peripheral inoculation of mice. Neuroinvasiveness was mapped to the medium (M) RNA segment of the virus, which encodes the viral glycoproteins, when reassortants were made between La Crosse/original virus, a neuroinvasive isolate, and Tahyna-181/57 virus, a nonneuroinvasive clone. We have tested the murine muscle cell line C2C12 as a surrogate for myotropism and have found that there is a slight, but reproducible difference in the replication of virus clones bearing the M RNA segment of La Crosse/original virus compared to clones bearing the M RNA segment of Tahyna-181/57 virus, as determined by viral titer, antigen expression, and plaque formation.

  10. Comparative study of the effects of the Ga-As (904 nm, 150 mW) laser and the pulsed ultrasound of 1 MHz in inflammation of tibialis muscle of Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Marcus Vinicius de Mello; Rocha, Lamara Laguardia Valente; Santos, Helio Ricardo dos; Silva, Andre Luis dos Santos; Barbosa, Luis Guilherme; Reis, Joao Batista Alves dos [Centro Universitario de Caratinga, MG (Brazil)]. E-mail; orofacial_1@hotmail.com; Costa, Daniel Almeida da [Faculdade de Minas, Belo Horizonte, MG (Brazil); Bernardo-Filho, Mario [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Biologia Roberto Alcantara Gomes. Dept. de Biofisica e Biometria

    2008-12-15

    This paper aims to compare the therapeutic effect of the laser As-Ga of 904 nm and pulsed Ultrasound of 1 MHz applied in striated skeletal muscle of inflamed rats. The animals received an intramuscular injection of bupivacaine hydrochloride in tibialis muscle in order to induce the inflammatory process, and after 24 hours, the time was considered 0 for the initiation of therapy, using a laser and ultrasound. Samples collected the muscles of the animals were stained with Hematoxylin-Eosin and histological sections of the groups used for the analysis of the muscle tissue in relation to reducing the inflammatory process, comparing the results of the two therapies used. In this study it is suggested that both treatment with laser as with ultrasound can act as anti-inflammatory. However, the laser seems to have anti-inflammatory effect for all periods observed, while the ultrasound was only able to induce declining inflammatory response to seven days. (author)

  11. [Asymmetric hypertrophy of the masticatory muscles].

    Science.gov (United States)

    Arzul, L; Corre, P; Khonsari, R H; Mercier, J-M; Piot, B

    2012-06-01

    Hypertrophy of the masticatory muscles most commonly affects the masseter. Less common cases of isolated or associated temporalis hypertrophy are also reported. Parafunctional habits, and more precisely bruxism, can favor the onset of the hypertrophy. This condition is generally idiopathic and can require both medical and/or surgical management. A 29-year-old patient was referred to our department for an asymmetric swelling of the masticatory muscles. Physical examination revealed a bilateral hypertrophy of the masticatory muscles, predominantly affecting the right temporalis and the left masseter. Major bruxism was assessed by premature dental wearing. The additional examinations confirmed the isolated muscle hypertrophy. Benign asymmetric hypertrophy of the masticatory muscles promoted by bruxism was diagnosed. Treatment with injections of type A botulinum toxin was conducted in association with a splint and relaxation. Its effectiveness has been observed at six months. Few cases of unilateral or bilateral temporalis hypertrophy have been reported, added to the more common isolated masseter muscles hypertrophy. The diagnosis requires to rule out secondary hypertrophies and tumors using Magnetic Resonance Imaging. The condition is thought to be favoured by parafunctional habits such as bruxism. The conservative treatment consists in reducing the volume of the masticatory muscles using intramuscular injections of type A botulinum toxin. Other potential conservative treatments are wearing splints and muscle relaxant drugs. Surgical procedures aiming to reduce the muscle volume and/or the bone volume (mandibular gonioplasty) can be proposed. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  12. An elderly-onset limb girdle muscular dystrophy type 1B (LGMD1B) with pseudo-hypertrophy of paraspinal muscles.

    Science.gov (United States)

    Furuta, Mitsuru; Sumi-Akamaru, Hisae; Takahashi, Masanori P; Hayashi, Yukiko K; Nishino, Ichizo; Mochizuki, Hideki

    2016-09-01

    Mutations in LMNA, encoding A-type lamins, lead to diverse disorders, collectively called "laminopathies," which affect the striated muscle, cardiac muscle, adipose tissue, skin, peripheral nerve, and premature aging. We describe a patient with limb-girdle muscular dystrophy type 1B (LGMD1B) carrying a heterozygous p.Arg377His mutation in LMNA, in whom skeletal muscle symptom onset was at the age of 65 years. Her weakness started at the erector spinae muscles, which showed marked pseudo-hypertrophy even at the age of 72 years. Her first episode of syncope was at 44 years; however, aberrant cardiac conduction was not revealed until 60 years. The p.Arg377His mutation has been previously reported in several familial LMNA-associated myopathies, most of which showed muscle weakness before the 6th decade. This is the first report of pseudo-hypertrophy of paravertebral muscles in LMNA-associated myopathies. The pseudo-hypertrophy of paravertebral muscles and the elderly-onset of muscle weakness make this case unique and reportable. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Nebulin-like protein in the earthworm Eisenia foetida. Immunocytochemical electron microscopic study and western blot analysis of several muscle cell types.

    Science.gov (United States)

    Royuela, M; Fraile, B; Paniagua, R

    1997-07-01

    Nebulin is a giant protein (500-900 kDa), which has been reported only in the skeletal muscle (not in cardiac muscle) of vertebrates. The possible presence and distribution of nebulin-like proteins in obliquely striated muscles (body wall and inner muscular layer of the pseudoheart) and smooth muscle (outer muscular layer of the pseudoheart) from the earthworm Eisenia foetida have been examined by means of Western blotting analysis and immunoelectron microscopy, using antibodies against mouse nebulin. The results were compared with those obtained in skeletal, cardiac and smooth muscles of the mouse. In the mouse, immunoreaction to nebulin was observed only in the skeletal muscle and extended along the length of the thin filament. In the earthworm, immunoreaction to a nebulin-like protein was found in the muscle of the body wall and the inner muscular layer of the pseudoheart, but not in the outer muscular layer of the pseudoheart. By electron microscopy, immunolabeling to this protein was observed along the whole length of the thin filament. Western blotting analysis of this nebulin-like protein showed a single band at an estimated molecular mass between 350 and 450 kDa that is slightly lower than that of mouse skeletal muscle nebulin.

  14. A comparative study of aging of the elastic fiber system of the diaphragm and the rectus abdominis muscles in rats

    Directory of Open Access Journals (Sweden)

    Rodrigues C.J.

    2000-01-01

    Full Text Available In the present study the age-related changes of the striated muscle elastic fiber system were investigated in the diaphragm and rectus abdominis muscles of 1-, 4-, 8- and 18-month-old rats. The activation patterns of these muscles differ in that the diaphragm is regularly mobilized tens of times every minute during the entire life of the animal whereas the rectus abdominis, although mobilized in respiration, is much less and more irregularly activated. The elastic fibers were stained by the Verhoeff technique for mature elastic fibers. Weigert stain was used to stain mature and elaunin elastic fibers, and Weigert-oxone to stain mature, elaunin and oxytalan elastic fibers. The density of mature and elaunin elastic fibers showed a progressive increase with age, whereas the amount of oxytalan elastic fibers decreased in both diaphragm and rectus abdominis muscles and their muscular fascias. These age-related quantitative and structural changes of the elastic fiber system may reduce the viscoelastic properties of the diaphragm and rectus abdominis muscles, which may compromise the transmission of tensile muscle strength to the tendons and may affect maximum total strength.

  15. Muscle channelopathies.

    Science.gov (United States)

    Statland, Jeffrey; Phillips, Lauren; Trivedi, Jaya R

    2014-08-01

    Skeletal muscle channelopathies are rare heterogeneous diseases with marked genotypic and phenotypic variability. Despite advances in understanding of the molecular pathology of these disorders, the diverse phenotypic manifestations remain a challenge in diagnosis and therapeutics. These disorders can cause lifetime disability and affect quality of life. There is no treatment of these disorders approved by the US Food and Drug Administration at this time. Recognition and treatment of symptoms might reduce morbidity and improve quality of life. This article summarizes the clinical manifestations, diagnostic studies, pathophysiology, and treatment options in nondystrophic myotonia, congenital myasthenic syndrome, and periodic paralyses. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Acute Muscle Stretching and Shoulder Position Sense

    OpenAIRE

    Björklund, Martin; Djupsjöbacka, Mats; Crenshaw, Albert G

    2006-01-01

    Context: Stretching is common among athletes as a potential method for injury prevention. Stretching-induced changes in the muscle spindle properties are a suggested mechanism, which may imply reduced proprioception after stretching; however, little is known of this association.

  17. Muscle injury and pain : Effects of eccentric exercise, sprint running, forward lunge and sports massage

    OpenAIRE

    Jönhagen, Sven

    2005-01-01

    Muscle injuries are the most common injury in sports and both athletes and non-athletes are commonly seen in general practice and in the emergency department. Muscle pain is a common cause for absence from work and the cost to society is high. The present thesis was aimed to study biomechanical and biological causes of muscle injury and pain in order to better design prevention programs and treatment of muscle injury. Hamstring injuries in sprinters are common, and not cause...

  18. Dismorfia muscular Muscle dysmorphia

    Directory of Open Access Journals (Sweden)

    Sheila Seleri Marques Assunção

    2002-12-01

    Full Text Available Preocupações mórbidas com a imagem corporal eram tidas até recentemente como problemas eminentemente femininos. Atualmente estas preocupações também têm sido encontradas no sexo masculino. A dismorfia muscular é um subtipo do transtorno dismórfico corporal que ocorre principalmente em homens que, apesar da grande hipertrofia muscular, consideram-se pequenos e fracos. Além de estar associada a prejuízos sociais, ocupacionais, recreativos e em outras áreas do funcionamento do indivíduo, a dismorfia muscular é também um fator de risco para o abuso de esteróides anabolizantes. Este artigo aborda aspectos epidemiológicos, etiológicos e padrões clínicos da dismorfia muscular, além de tecer comentários sobre estratégias de tratamento para este transtorno.Morbid concern over body image was considered, until recently, a female issue. Nowadays, it has been viewed as a common male disorder. Muscle dysmorphia, a subtype of a body dysmorphic disorder, affects men who, despite having clear muscular hypertroph,y see themselves as frail and small. Besides being associated to major social, leisure and occupational dysfunction, muscle dysmorphia is also a risk factor for the abuse of steroids. This article describes epidemiological, etiological and clinical characteristics of muscle dysmorphia and comments on its treatment strategy.

  19. Congenital torticollis caused by unilateral absence of the sternocleidomastoid muscle

    Energy Technology Data Exchange (ETDEWEB)

    Raman, Subha; Takhtani, Deepak; Wallace, E.C. [UMass Memorial Medical Center, Department of Radiology, Worcester, MA (United States)

    2009-01-15

    Congenital torticollis is most commonly caused by benign fibrosis of the sternocleidomastoid muscle. Absence of the sternocleidomastoid muscle is a rare cause of congenital torticollis. There have been fewer than a dozen reported cases of agenesis of the sternocleidomastoid muscle. We describe a case of congenital absence of the sternocleidomastoid diagnosed by US and confirmed on MRI. (orig.)

  20. A Fleshy Palmaris Longus Muscle | Ramesh | Anatomy Journal of ...

    African Journals Online (AJOL)

    The most commonly reported variations of the Palmaris longus muscle are in its presence and the number of bellies. We however report a new variation, in which the muscle was entirely fleshy, instead of the predominantly tendinous muscle. This rare variant can pose a challenge to a surgeon in the exploration of the carpal ...

  1. Bruxism: Is There an Indication for Muscle-Stretching Exercises?

    NARCIS (Netherlands)

    Gouw, S.; Wijer, A. de; Creugers, N.H.J.; Kalaykova, S.I.

    2017-01-01

    Bruxism is a common phenomenon involving repetitive activation of the masticatory muscles. Muscle-stretching exercises are a recommended part of several international guidelines for musculoskeletal disorders and may be effective in management of the jaw muscle activity that gives rise to bruxism.

  2. Troponin T nuclear localization and its role in aging skeletal muscle.

    Science.gov (United States)

    Zhang, Tan; Birbrair, Alexander; Wang, Zhong-Min; Taylor, Jackson; Messi, María Laura; Delbono, Osvaldo

    2013-04-01

    Troponin T (TnT) is known to mediate the interaction between Tn complex and tropomyosin (Tm), which is essential for calcium-activated striated muscle contraction. This regulatory function takes place in the myoplasm, where TnT binds Tm. However, recent findings of troponin I and Tm nuclear translocation in Drosophila and mammalian cells imply other roles for the Tn-Tm complex. We hypothesized that TnT plays a nonclassical role through nuclear translocation. Immunoblotting with different antibodies targeting the NH2- or COOH-terminal region uncovered a pool of fast skeletal muscle TnT3 localized in the nuclear fraction of mouse skeletal muscle as either an intact or fragmented protein. Construction of TnT3-DsRed fusion proteins led to the further observation that TnT3 fragments are closely related to nucleolus and RNA polymerase activity, suggesting a role for TnT3 in regulating transcription. Functionally, overexpression of TnT3 fragments produced significant defects in nuclear shape and caused high levels of apoptosis. Interestingly, nuclear TnT3 and its fragments were highly regulated by aging, thus creating a possible link between the deleterious effects of TnT3 and sarcopenia. We propose that changes in nuclear TnT3 and its fragments cause the number of myonuclei to decrease with age, contributing to muscle damage and wasting.

  3. MyoScreen, a High-Throughput Phenotypic Screening Platform Enabling Muscle Drug Discovery.

    Science.gov (United States)

    Young, Joanne; Margaron, Yoran; Fernandes, Mathieu; Duchemin-Pelletier, Eve; Michaud, Joris; Flaender, Mélanie; Lorintiu, Oana; Degot, Sébastien; Poydenot, Pauline

    2018-03-01

    Despite the need for more effective drug treatments to address muscle atrophy and disease, physiologically accurate in vitro screening models and higher information content preclinical assays that aid in the discovery and development of novel therapies are lacking. To this end, MyoScreen was developed: a robust and versatile high-throughput high-content screening (HT/HCS) platform that integrates a physiologically and pharmacologically relevant micropatterned human primary skeletal muscle model with a panel of pertinent phenotypic and functional assays. MyoScreen myotubes form aligned, striated myofibers, and they show nerve-independent accumulation of acetylcholine receptors (AChRs), excitation-contraction coupling (ECC) properties characteristic of adult skeletal muscle and contraction in response to chemical stimulation. Reproducibility and sensitivity of the fully automated MyoScreen platform are highlighted in assays that quantitatively measure myogenesis, hypertrophy and atrophy, AChR clusterization, and intracellular calcium release dynamics, as well as integrating contractility data. A primary screen of 2560 compounds to identify stimulators of myofiber regeneration and repair, followed by further biological characterization of two hits, validates MyoScreen for the discovery and testing of novel therapeutics. MyoScreen is an improvement of current in vitro muscle models, enabling a more predictive screening strategy for preclinical selection of the most efficacious new chemical entities earlier in the discovery pipeline process.

  4. Alterations in Muscle Mass and Contractile Phenotype in Response to Unloading Models: Role of Transcriptional/Pretranslational Mechanisms

    Directory of Open Access Journals (Sweden)

    Kenneth M Baldwin

    2013-10-01

    Full Text Available Skeletal muscle is the largest organ system in mammalian organisms providing postural control and movement patterns of varying intensity. Through evolution, skeletal muscle fibers have evolved into three phenotype clusters defined as a muscle unit which consists of all muscle fibers innervated by a single motoneuron linking varying numbers of fibers of similar phenotype. This fundamental organization of the motor unit reflects the fact that there is a remarkable interdependence of gene regulation between the motoneurons and the muscle mainly via activity-dependent mechanisms. These fiber types can be classified via the primary type of myosin heavy chain (MHC gene expressed in the motor unit. Four MHC gene encoded proteins have been identified in striated muscle: slow type I MHC and three fast MHC types, IIa, IIx, and IIb. These MHCs dictate the intrinsic contraction speed of the myofiber with the type I generating the slowest and IIb the fastest contractile speed. Over the last ~35 years, a large body of knowledge suggests that altered loading state cause both fiber atrophy/wasting and a slow to fast shift in the contractile phenotype in the target muscle(s. Hence, this review will examine findings from three different animal models of unloading: 1 space flight (SF, i.e., microgravity; 2 hindlimb suspension (HS, a procedure that chronically eliminates weight bearing of the lower limbs; and 3 spinal cord isolation (SI, a surgical procedure that eliminates neural activation of the motoneurons and associated muscles while maintaining neurotrophic motoneuron-muscle connectivity. The collective findings demonstrate: 1 all three models show a similar pattern of fiber atrophy with differences mainly in the magnitude and kinetics of alteration; 2 transcriptional/pretranslational processes play a major role in both the atrophy process and phenotype shifts; and 3 signaling pathways impacting these alterations appear to be similar in each of the models

  5. Structural and molecular characterization of Kudoa quraishii n. sp. from the trunk muscle of the Indian mackerel Rastrelliger kanagurta (Perciforme, Scombridae) in Saudi Arabia coasts.

    Science.gov (United States)

    Mansour, Lamjed; Harrath, Abdel Halim; Abd-Elkader, Omar H; Alwasel, Saleh; Abdel-Baki, Abdel-Azeem S; Al Omar, Suliman Y

    2014-04-01

    A new Myxozoa, Kudoa quraishii n. sp., is reported in the striated muscle of the Indian mackerel Rastrelliger kanagurta from the Red Sea and the Arabian Gulf in Saudi Arabia. Mean prevalence of infection is about 20% and varies between localities. The parasite develops whitish and oval or rounded pseudocysts of 0.2-3 mm in the striated muscles of the body. Pseudocysts are filled with mature spores. Myxospores are quadrate in shape in apical view with rounded edges and ovoid in side view. Each spore is formed by four equal shell valves and four symmetrical polar capsules. Polar capsules are pyriform in apical view and drop-like in side view. Myxospore measurements in micrometers are 6.14 (5.9-6.34) in width, 5.48 (5.3-5.71) in thickness, and 4.27 (4.1-4.42) in length. Polar capsule measurements in apical view in micrometers are 2.08 (1.88-2.28) and 1.31 (1.10-1.52) length by width. Molecular analysis based on SSU rDNA gene shows closest association with K. amamiensis and K. kenti with respectively 98 and 97.2% of similarities.

  6. Experimental knee pain reduces muscle strength

    DEFF Research Database (Denmark)

    Henriksen, Marius; Mortensen, Sara Rosager; Aaboe, Jens

    2011-01-01

    Pain is the principal symptom in knee pathologies and reduced muscle strength is a common observation among knee patients. However, the relationship between knee joint pain and muscle strength remains to be clarified. This study aimed at investigating the changes in knee muscle strength following...... experimental knee pain in healthy volunteers, and if these changes were associated with the pain intensities. In a crossover study, 18 healthy subjects were tested on 2 different days. Using an isokinetic dynamometer, maximal muscle strength in knee extension and flexion was measured at angular velocities 0....... Knee pain reduced the muscle strength by 5 to 15% compared to the control conditions (P muscle strength was positively correlated to the pain intensity. Experimental knee pain significantly reduced knee extension...

  7. Geometrical Conditions Indispensable for Muscle Contraction

    Directory of Open Access Journals (Sweden)

    Ludmila Skubiszak

    2011-03-01

    Full Text Available Computer simulation has uncovered the geometrical conditions under which the vertebrate striated muscle sarcomere can contract. First, all thick filaments should have identical structure, namely: three myosin cross-bridges, building a crown, should be aligned at angles of 0°, 120°, 180°, and the successive crowns and the two filament halves should be turned around 120°. Second, all thick filaments should act simultaneously. Third, coordination in action of the myosin cross-bridges should exist, namely: the three cross-bridges of a crown should act simultaneously and the cross-bridge crowns axially 43 and 14.333 nm apart should act, respectively, simultaneously and with a phase shift. Fifth, six thin filaments surrounding the thick filament should be turned around 180° to each other in each sarcomere half. Sixth, thin filaments should be oppositely oriented in relation to the sarcomere middle. Finally, the structure of each of the thin filaments should change in consequence of strong interaction with myosin heads, namely: the axial distance and the angular alignment between neighboring actin monomers should be, respectively, 2.867 nm and 168° instead of 2.75 nm and 166.15°. These conditions ensure the stereo-specific interaction between actin and myosin and good agreement with the data gathered by electron microscopy and X-ray diffraction methods. The results suggest that the force is generated not only by the myosin cross-bridges but also by the thin filaments; the former acts by cyclical unwrapping and wrapping the thick filament backbone, and the latter byelongation.

  8. Catechins activate muscle stem cells by Myf5 induction and stimulate muscle regeneration.

    Science.gov (United States)

    Kim, A Rum; Kim, Kyung Min; Byun, Mi Ran; Hwang, Jun-Ha; Park, Jung Il; Oh, Ho Taek; Kim, Hyo Kyeong; Jeong, Mi Gyeong; Hwang, Eun Sook; Hong, Jeong-Ho

    2017-07-22

    Muscle weakness is one of the most common symptoms in aged individuals and increases risk of mortality. Thus, maintenance of muscle mass is important for inhibiting aging. In this study, we investigated the effect of catechins, polyphenol compounds in green tea, on muscle regeneration. We found that (-)-epicatechin gallate (ECG) and (-)-epigallocatechin-3-gallate (EGCG) activate satellite cells by induction of Myf5 transcription factors. For satellite cell activation, Akt kinase was significantly induced after ECG treatment and ECG-induced satellite cell activation was blocked in the presence of Akt inhibitor. ECG also promotes myogenic differentiation through the induction of myogenic markers, including Myogenin and Muscle creatine kinase (MCK), in satellite and C2C12 myoblast cells. Finally, EGCG administration to mice significantly increased muscle fiber size for regeneration. Taken together, the results suggest that catechins stimulate muscle stem cell activation and differentiation for muscle regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Bruxism: Is There an Indication for Muscle-Stretching Exercises?

    Science.gov (United States)

    Gouw, Simone; de Wijer, Anton; Creugers, Nico Hj; Kalaykova, Stanimira I

    Bruxism is a common phenomenon involving repetitive activation of the masticatory muscles. Muscle-stretching exercises are a recommended part of several international guidelines for musculoskeletal disorders and may be effective in management of the jaw muscle activity that gives rise to bruxism. However, most studies of muscle-stretching exercises have mainly focused on their influence on performance (eg, range of motion, coordination, and muscle strength) of the limb or trunk muscles of healthy individuals or individuals with sports-related injuries. Very few have investigated stretching of the human masticatory muscles and none muscle-stretching exercises in the management of (sleep) bruxism. This article reviews the literature on muscle-stretching exercises and their potential role in the management of sleep bruxism or its consequences in the musculoskeletal system.

  10. Nodular smooth muscle metaplasia in multiple peritoneal endometriosis

    OpenAIRE

    Kim, Hyun-Soo; Yoon, Gun; Ha, Sang Yun; Song, Sang Yong

    2015-01-01

    We report here an unusual presentation of peritoneal endometriosis with smooth muscle metaplasia as multiple protruding masses on the lateral pelvic wall. Smooth muscle metaplasia is a common finding in rectovaginal endometriosis, whereas in peritoneal endometriosis, smooth muscle metaplasia is uncommon and its nodular presentation on the pelvic wall is even rarer. To the best of our knowledge, this is the first case of nodular smooth muscle metaplasia occurring in peritoneal endometriosis. A...

  11. Abdominal muscle and quadriceps strength in chronic obstructive pulmonary disease

    OpenAIRE

    Man, W. D-C.; Hopkinson, N.S.; Harraf, F.; Nikoletou, D.; Polkey, M. I.; Moxham, J.

    2005-01-01

    Background: Quadriceps muscle weakness is common in chronic obstructive pulmonary disease (COPD) but is not observed in a small hand muscle (adductor pollicis). Although this could be explained by reduced activity in the quadriceps, the observation could also be explained by anatomical location of the muscle or fibre type composition. However, the abdominal muscles are of a similar anatomical and fibre type distribution to the quadriceps, although they remain active in COPD. Cough gastric pre...

  12. Muscle cramps in liver disease.

    Science.gov (United States)

    Mehta, Shivang S; Fallon, Michael B

    2013-11-01

    Muscle cramps are common in patients with liver disease and adversely influence quality of life. The exact mechanisms by which they occur remain unclear, although a number of pathophysiological events unique to liver disease may contribute. Clinical studies have identified alterations in 3 areas: nerve function, energy metabolism, and plasma volume/electrolytes. Treatments have focused on these particular areas with varied results. This review will focus on the clinical features of muscle cramps in patients with liver disease and review potential mechanisms and current therapies. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.

  13. Changes in predicted muscle coordination with subject-specific muscle parameters for individuals after stroke.

    Science.gov (United States)

    Knarr, Brian A; Reisman, Darcy S; Binder-Macleod, Stuart A; Higginson, Jill S

    2014-01-01

    Muscle weakness is commonly seen in individuals after stroke, characterized by lower forces during a maximal volitional contraction. Accurate quantification of muscle weakness is paramount when evaluating individual performance and response to after stroke rehabilitation. The objective of this study was to examine the effect of subject-specific muscle force and activation deficits on predicted muscle coordination when using musculoskeletal models for individuals after stroke. Maximum force generating ability and central activation ratio of the paretic plantar flexors, dorsiflexors, and quadriceps muscle groups were obtained using burst superimposition for four individuals after stroke with a range of walking speeds. Two models were created per subject: one with generic and one with subject-specific activation and maximum isometric force parameters. The inclusion of subject-specific muscle data resulted in changes in the model-predicted muscle forces and activations which agree with previously reported compensation patterns and match more closely the timing of electromyography for the plantar flexor and hamstring muscles. This was the first study to create musculoskeletal simulations of individuals after stroke with subject-specific muscle force and activation data. The results of this study suggest that subject-specific muscle force and activation data enhance the ability of musculoskeletal simulations to accurately predict muscle coordination in individuals after stroke.

  14. Human muscle spindle sensitivity reflects the balance of activity between antagonistic muscles.

    Science.gov (United States)

    Dimitriou, Michael

    2014-10-08

    Muscle spindles are commonly considered as stretch receptors encoding movement, but the functional consequence of their efferent control has remained unclear. The "α-γ coactivation" hypothesis states that activity in a muscle is positively related to the output of its spindle afferents. However, in addition to the above, possible reciprocal inhibition of spindle controllers entails a negative relationship between contractile activity in one muscle and spindle afferent output from its antagonist. By recording spindle afferent responses from alert humans using microneurography, I show that spindle output does reflect antagonistic muscle balance. Specifically, regardless of identical kinematic profiles across active finger movements, stretch of the loaded antagonist muscle (i.e., extensor) was accompanied by increased afferent firing rates from this muscle compared with the baseline case of no constant external load. In contrast, spindle firing rates from the stretching antagonist were lowest when the agonist muscle powering movement (i.e., flexor) acted against an additional resistive load. Stepwise regressions confirmed that instantaneous velocity, extensor, and flexor muscle activity had a significant effect on spindle afferent responses, with flexor activity having a negative effect. Therefore, the results indicate that, as consequence of their efferent control, spindle sensitivity (gain) to muscle stretch reflects the balance of activity between antagonistic muscles rather than only the activity of the spindle-bearing muscle. Copyright © 2014 the authors 0270-6474/14/3413644-12$15.00/0.

  15. Changes in Predicted Muscle Coordination with Subject-Specific Muscle Parameters for Individuals after Stroke

    Directory of Open Access Journals (Sweden)

    Brian A. Knarr

    2014-01-01

    Full Text Available Muscle weakness is commonly seen in individuals after stroke, characterized by lower forces during a maximal volitional contraction. Accurate quantification of muscle weakness is paramount when evaluating individual performance and response to after stroke rehabilitation. The objective of this study was to examine the effect of subject-specific muscle force and activation deficits on predicted muscle coordination when using musculoskeletal models for individuals after stroke. Maximum force generating ability and central activation ratio of the paretic plantar flexors, dorsiflexors, and quadriceps muscle groups were obtained using burst superimposition for four individuals after stroke with a range of walking speeds. Two models were created per subject: one with generic and one with subject-specific activation and maximum isometric force parameters. The inclusion of subject-specific muscle data resulted in changes in the model-predicted muscle forces and activations which agree with previously reported compensation patterns and match more closely the timing of electromyography for the plantar flexor and hamstring muscles. This was the first study to create musculoskeletal simulations of individuals after stroke with subject-specific muscle force and activation data. The results of this study suggest that subject-specific muscle force and activation data enhance the ability of musculoskeletal simulations to accurately predict muscle coordination in individuals after stroke.

  16. Composição de fibras musculares esqueléticas de eqüinos jovens da raça Brasileiro de Hipismo Composition of skeletal muscle fibers of young Brasileiro de Hipismo horse breed

    Directory of Open Access Journals (Sweden)

    F.H.F. D’Angelis

    2006-08-01

    Full Text Available The aim of this study was to typify the skeletal striated fibers of the gluteus medius muscle of young Brasileiro de Hipismo (BH horses by means of histochemical analysis with m-ATPase and NADH-TR according to the sex and the biopsy depth. It was observed that the frequency (F;% and the relative cross sectional area (RCSA;% of the fibers type IIX were greater than the fibers type IIA, which F and RCSA were greater than the fibers type I. The comparison between sex and muscles depht, showed no significant difference in F and RCSA in the three types of fibers. The results of morphometry showed that the gluteus medius muscle has greater glycolitic metabolism and anaerobic capacity because of the presence of large proportion of type IIX fibers. This may be justified by the genetic influence of Thoroughbred in the formation of Brasileiro de Hipismo breed.

  17. Muscle channelopathies and related diseases.

    Science.gov (United States)

    Fontaine, Bertrand

    2013-01-01

    Muscle channelopathies and related disorders are neuromuscular disorders predominantly of genetic origin which are caused by mutations in ion channels or genes that play a role in muscle excitability. They include different forms of periodic paralysis which are characterized by acute and reversible attacks of muscle weakness concomitant to changes in blood potassium levels. These disorders may also present as distinguishable myotonic syndromes (slowed muscle relaxation) which have in common lack of involvement of dystrophic changes of the muscle, in contrast to dystrophia myotonica. Recent advances have been made in the diagnosis of these different disorders, which require, in addition to a careful clinical evaluation, detailed EMG and molecular study. Although these diseases are rare, they deserve attention since patients may benefit from drugs which can dramatically improve their condition. Patients may have atypical presentations, sometimes life-threatening, which may delay a proper diagnosis, mostly in the first months of life. The creation of specialized reference centers in the Western world has greatly benefited the proper recognition of these neuromuscular diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Engineering Skeletal Muscle Repair

    OpenAIRE

    Juhas, Mark; Bursac, Nenad

    2013-01-01

    Healthy skeletal muscle has a remarkable capacity for regeneration. Even at a mature age, muscle tissue can undergo a robust rebuilding process that involves the formation of new muscle cells and extracellular matrix and the re-establishment of vascular and neural networks. Understanding and reverse-engineering components of this process is essential for our ability to restore loss of muscle mass and function in cases where the natural ability of muscle for self-repair is exhausted or impaire...

  19. Novel interactions of ankyrins-G at the costameres: The muscle-specific Obscurin/Titin-Binding-related Domain (OTBD) binds plectin and filamin C

    Energy Technology Data Exchange (ETDEWEB)

    Maiweilidan, Yimingjiang; Klauza, Izabela; Kordeli, Ekaterini, E-mail: ekaterini.kordeli@inserm.fr

    2011-04-01

    Ankyrins, the adapters of the spectrin skeleton, are involved in local accumulation and stabilization of integral proteins to the appropriate membrane domains. In striated muscle, tissue-dependent alternative splicing generates unique Ank3 gene products (ankyrins-G); they share the Obscurin/Titin-Binding-related Domain (OTBD), a muscle-specific insert of the C-terminal domain which is highly conserved among ankyrin genes, and binds obscurin and titin to Ank1 gene products. We previously proposed that OTBD sequences constitute a novel domain of protein-protein interactions which confers ankyrins with specific cellular functions in muscle. Here we searched for muscle proteins binding to ankyrin-G OTBD by yeast two hybrid assay, and we found plectin and filamin C, two organizing elements of the cytoskeleton with essential roles in myogenesis, muscle cell cytoarchitecture, and muscle disease. The three proteins coimmunoprecipitate from skeletal muscle extracts and colocalize at costameres in adult muscle fibers. During in vitro myogenesis, muscle ankyrins-G are first expressed in postmitotic myocytes undergoing fusion to myotubes. In western blots of subcellular fractions from C2C12 cells, the majority of muscle ankyrins-G appear associated with membrane compartments. Occasional but not extensive co-localization at nascent costameres suggested that ankyrin-G interactions with plectin and filamin C are not involved in costamere assembly; they would rather reinforce stability and/or modulate molecular interactions in sarcolemma microdomains by establishing novel links between muscle-specific ankyrins-G and the two costameric dystrophin-associated glycoprotein and integrin-based protein complexes. These results report the first protein-protein interactions involving the ankyrin-G OTBD domain and support the hypothesis that OTBD sequences confer ankyrins with a gain of function in vertebrates, bringing further consolidation and resilience of the linkage between sarcomeres

  20. Interplay between ROS and Antioxidants during Ischemia-Reperfusion Injuries in Cardiac and Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Tingyang Zhou

    2018-01-01

    Full Text Available Ischemia reperfusion (IR, present in myocardial infarction or extremity injuries, is a major clinical issue and leads to substantial tissue damage. Molecular mechanisms underlying IR injury in striated muscles involve the production of reactive oxygen species (ROS. Excessive ROS accumulation results in cellular oxidative stress, mitochondrial dysfunction, and initiation of cell death by activation of the mitochondrial permeability transition pore. Elevated ROS levels can also decrease myofibrillar Ca2+ sensitivity, thereby compromising muscle contractile function. Low levels of ROS can act as signaling molecules involved in the protective pathways of ischemic preconditioning (IPC. By scavenging ROS, antioxidant therapies aim to prevent IR injuries with positive treatment outcomes. Novel therapies such as postconditioning and pharmacological interventions that target IPC pathways hold great potential in attenuating IR injuries. Factors such as aging and diabetes could have a significant impact on the severity of IR injuries. The current paper aims to provide a comprehensive review on the multifaceted roles of ROS in IR injuries, with a focus on cardiac and skeletal muscle, as well as recent advancement in ROS-related therapies.

  1. Unilateral Variation in Extensor digitorum longus muscle.

    Science.gov (United States)

    Banerje, A; Singh, S; Raza, K; Rani, N; Kaler, S

    2016-01-01

    During a routine dissection of an adult embalmed male cadaver for educational purpose in the department of anatomy at AIIMS, New Delhi, India, a rare unilateral variation of extensor digitorum longus (EDL) was found which is a muscle of anterior compartment of the leg. There was a split tendon of EDL muscle in the anterior compartment of left leg which became a common tendon in front of the ankle joint. This common tendon of EDL muscle again divided into four slips and were inserted in to the lateral four toes. In the upper part of the leg, the anterior tibial vessel and deep fibular nerve lie between the EDL and tibialis anterior. Knowledge of this type of anomaly is useful in diagnosis and treatment of compartmental syndrome. One of the tendon from the split tendon of EDL muscle can be used as a graft in tendon replacement surgeries. The split tendon may also be capable for some precise movements of the toes.

  2. Impaired cell surface expression of HLA-B antigens on mesenchymal stem cells and muscle cell progenitors

    DEFF Research Database (Denmark)

    Isa, Adiba; Nehlin, Jan; Sabir, Hardee Jawad

    2010-01-01

    HLA class-I expression is weak in embryonic stem cells but increases rapidly during lineage progression. It is unknown whether all three classical HLA class-I antigens follow the same developmental program. In the present study, we investigated allele-specific expression of HLA-A, -B, and -C...... at the mRNA and protein levels on human mesenchymal stem cells from bone marrow and adipose tissue as well as striated muscle satellite cells and lymphocytes. Using multicolour flow cytometry, we found high cell surface expression of HLA-A on all stem cells and PBMC examined. Surprisingly, HLA-B was either...... undetectable or very weakly expressed on all stem cells protecting them from complement-dependent cytotoxicity (CDC) using relevant human anti-B and anti-Cw sera. IFNgamma stimulation for 48-72 h was required to induce full HLA-B protein expression. Quantitative real-time RT-PCR showed that IFNgamma induced...

  3. Physical principles demonstrate that the biceps femoris muscle relative to the other hamstring muscles exerts the most force: implications for hamstring muscle strain injuries.

    Science.gov (United States)

    Dolman, Bronwyn; Verrall, Geoffrey; Reid, Iain

    2014-07-01

    Of the hamstring muscle group the biceps femoris muscle is the most commonly injured muscle in sports requiring interval sprinting. The reason for this observation is unknown. The objective of this study was to calculate the forces of all three hamstring muscles, relative to each other, during a lengthening contraction to assess for any differences that may help explain the biceps femoris predilection for injury during interval sprinting. To calculate the displacement of each individual hamstring muscle previously performed studies on cadaveric anatomical data and hamstring kinematics during sprinting were used. From these displacement calculations for each individual hamstring muscle physical principles were then used to deduce the proportion of force exerted by each individual hamstring muscle during a lengthening muscle contraction. These deductions demonstrate that the biceps femoris muscle is required to exert proportionally more force in a lengthening muscle contraction relative to the semimembranosus and semitendinosus muscles primarily as a consequence of having to lengthen over a greater distance within the same time frame. It is hypothesized that this property maybe a factor in the known observation of the increased susceptibility of the biceps femoris muscle to injury during repeated sprints where recurrent higher force is required.

  4. Unusual intramuscular lipoma of deltoid muscle.

    Science.gov (United States)

    Kapetanakis, Stylianos; Papathanasiou, Jiannis; Dermon, Antonios; Dimitrakopoulou, Alexandra; Ververidis, Athanasios; Chloropoulou, Pelagia; Kazakos, Konstantinos

    2010-01-01

    Lipomas are common soft tissue tumors usually located under the skin. Nevertheless, intramuscular lipomas of deltoid muscle are unusual tumors. We present a case of 74-year-old woman with an intramuscular like clepsydra lipoma of deltoid muscle. The lesion was a palpable soft mass at the lateral side of the humerus. The patient had no previous history of trauma. The main symptom was pain only in abduction and extension. Imaging, pathological findings and surgical excision are discussed.

  5. Spermine oxidase maintains basal skeletal muscle gene expression and fiber size and is strongly repressed by conditions that cause skeletal muscle atrophy

    Science.gov (United States)

    Bongers, Kale S.; Fox, Daniel K.; Kunkel, Steven D.; Stebounova, Larissa V.; Murry, Daryl J.; Pufall, Miles A.; Ebert, Scott M.; Dyle, Michael C.; Bullard, Steven A.; Dierdorff, Jason M.

    2014-01-01

    Skeletal muscle atrophy is a common and debilitating condition that remains poorly understood at the molecular level. To better understand the mechanisms of muscle atrophy, we used mouse models to search for a skeletal muscle protein that helps to maintain muscle mass and is specifically lost during muscle atrophy. We discovered that diverse causes of muscle atrophy (limb immobilization, fasting, muscle denervation, and aging) strongly reduced expression of the enzyme spermine oxidase. Importantly, a reduction in spermine oxidase was sufficient to induce muscle fiber atrophy. Conversely, forced expression of spermine oxidase increased muscle fiber size in multiple models of muscle atrophy (immobilization, fasting, and denervation). Interestingly, the reduction of spermine oxidase during muscle atrophy was mediated by p21, a protein that is highly induced during muscle atrophy and actively promotes muscle atrophy. In addition, we found that spermine oxidase decreased skeletal muscle mRNAs that promote muscle atrophy (e.g., myogenin) and increased mRNAs that help to maintain muscle mass (e.g., mitofusin-2). Thus, in healthy skeletal muscle, a relatively low level of p21 permits expression of spermine oxidase, which helps to maintain basal muscle gene expression and fiber size; conversely, during conditions that cause muscle atrophy, p21 expression rises, leading to reduced spermine oxidase expression, disruption of basal muscle gene expression, and muscle fiber atrophy. Collectively, these results identify spermine oxidase as an important positive regulator of muscle gene expression and fiber size, and elucidate p21-mediated repression of spermine oxidase as a key step in the pathogenesis of skeletal muscle atrophy. PMID:25406264

  6. Patterns of Age-Associated Degeneration Differ in Shoulder Muscles

    Science.gov (United States)

    Raz, Yotam; Henseler, Jan F.; Kolk, Arjen; Riaz, Muhammad; van der Zwaal, Peer; Nagels, Jochem; Nelissen, Rob G. H. H.; Raz, Vered

    2015-01-01

    Shoulder complaints are common in the elderly and hamper daily functioning. These complaints are often caused by tears in the muscle-tendon units of the rotator cuff (RC). The four RC muscles stabilize the shoulder joint. While some RC muscles are frequently torn in shoulder complaints others remain intact. The pathological changes in RC muscles are poorly understood. We investigated changes in RC muscle pathology combining radiological and histological procedures. We measured cross sectional area (CSA) and fatty infiltration from Magnetic Resonance Imaging with Arthrography (MRA) in subjects without (N = 294) and with (N = 109) RC-tears. Normalized muscle CSA of the four RC muscles and the deltoid shoulder muscle were compared and age-associated patterns of muscle atrophy and fatty infiltration were constructed. We identified two distinct age-associated patterns: in the supraspinatus and subscapularis RC muscles CSAs continuously declined throughout adulthood, whereas in the infraspinatus and deltoid reduced CSA was prominent from midlife onwards. In the teres minor, CSA was unchanged with age. Most importantly, age-associated patterns were highly similar between subjects without RC tear and those with RC-tears. This suggests that extensive RC muscle atrophy during aging could contribute to RC pathology. We compared muscle pathology between torn infraspinatus and non-torn teres minor and the deltoid in two patients with a massive RC-tear. In the torn infraspinatus we found pronounced fatty droplets, an increase in extracellular collagen-1, a loss of myosin heavy chain-1 expression in myofibers and an increase in Pax7-positive cells. However, the adjacent intact teres minor and deltoid exhibited healthy muscle features. This suggests that satellite cells and the extracellular matrix may contribute to extensive muscle fibrosis in torn RC. We suggest that torn RC muscles display hallmarks of muscle aging whereas the teres minor could represent an aging

  7. Patterns of age-associated degeneration differ in shoulder muscles

    Directory of Open Access Journals (Sweden)

    Yotam eRaz

    2015-12-01

    Full Text Available Shoulder complaints are common in the elderly and hamper daily functioning. These complaints are often caused by tears in the muscle-tendon units of the rotator cuff (RC. The four RC muscles stabilize the shoulder joint. While some RC muscles are frequently torn in shoulder complaints others remain intact. The pathological changes in RC muscles are poorly understood. We investigated changes in RC muscle pathology combining radiological and histological procedures. We measured cross sectional area (CSA and fatty infiltration from Magnetic Resonance Imaging with Arthrography in subjects without (N=294 and with (N=109 RC-tears. Normalized muscle CSA of the four RC muscles and the deltoid shoulder muscle were compared and age-associated patterns of muscle atrophy and fatty infiltration were constructed. We identified two distinct age-associated patterns: in the supraspinatus and subscapularis RC muscles CSAs continuously declined throughout adulthood, whereas in the infraspinatus and deltoid reduced CSA was prominent from midlife onwards. In the teres minor, CSA was unchanged with age. Most importantly, age-associated patterns were highly similar between subjects without RC tear and those with RC-tears. This suggests that extensive RC muscle atrophy during aging could contribute to RC pathology. We compared muscle pathology between torn infraspinatus and non-torn teres minor and the deltoid in two patients with a massive RC-tear. In the torn infraspinatus we found pronounced fatty droplets, an increase in extracellular collagen-1, a loss of myosin heavy chain-1 expression in myofibers and an increase in Pax7-positive cells. However, the adjacent intact teres minor and deltoid exhibited healthy muscle features. This suggests that satellite cells and the extracellular matrix may contribute to extensive muscle fibrosis in torn RC. We suggest that torn RC muscles display hallmarks of muscle aging whereas the teres minor could represent an aging

  8. Patterns of Age-Associated Degeneration Differ in Shoulder Muscles.

    Science.gov (United States)

    Raz, Yotam; Henseler, Jan F; Kolk, Arjen; Riaz, Muhammad; van der Zwaal, Peer; Nagels, Jochem; Nelissen, Rob G H H; Raz, Vered

    2015-01-01

    Shoulder complaints are common in the elderly and hamper daily functioning. These complaints are often caused by tears in the muscle-tendon units of the rotator cuff (RC). The four RC muscles stabilize the shoulder joint. While some RC muscles are frequently torn in shoulder complaints others remain intact. The pathological changes in RC muscles are poorly understood. We investigated changes in RC muscle pathology combining radiological and histological procedures. We measured cross sectional area (CSA) and fatty infiltration from Magnetic Resonance Imaging with Arthrography (MRA) in subjects without (N = 294) and with (N = 109) RC-tears. Normalized muscle CSA of the four RC muscles and the deltoid shoulder muscle were compared and age-associated patterns of muscle atrophy and fatty infiltration were constructed. We identified two distinct age-associated patterns: in the supraspinatus and subscapularis RC muscles CSAs continuously declined throughout adulthood, whereas in the infraspinatus and deltoid reduced CSA was prominent from midlife onwards. In the teres minor, CSA was unchanged with age. Most importantly, age-associated patterns were highly similar between subjects without RC tear and those with RC-tears. This suggests that extensive RC muscle atrophy during aging could contribute to RC pathology. We compared muscle pathology between torn infraspinatus and non-torn teres minor and the deltoid in two patients with a massive RC-tear. In the torn infraspinatus we found pronounced fatty droplets, an increase in extracellular collagen-1, a loss of myosin heavy chain-1 expression in myofibers and an increase in Pax7-positive cells. However, the adjacent intact teres minor and deltoid exhibited healthy muscle features. This suggests that satellite cells and the extracellular matrix may contribute to extensive muscle fibrosis in torn RC. We suggest that torn RC muscles display hallmarks of muscle aging whereas the teres minor could represent an aging

  9. Sarcomere lattice geometry influences cooperative myosin binding in muscle.

    Directory of Open Access Journals (Sweden)

    Bertrand C W Tanner

    2007-07-01

    Full Text Available In muscle, force emerges from myosin binding with actin (forming a cross-bridge. This actomyosin binding depends upon myofilament geometry, kinetics of thin-filament Ca(2+ activation, and kinetics of cross-bridge cycling. Binding occurs within a compliant network of protein filaments where there is mechanical coupling between myosins along the thick-filament backbone and between actin monomers along the thin filament. Such mechanical coupling precludes using ordinary differential equation models when examining the effects of lattice geometry, kinetics, or compliance on force production. This study uses two stochastically driven, spatially explicit models to predict levels of cross-bridge binding, force, thin-filament Ca(2+ activation, and ATP utilization. One model incorporates the 2-to-1 ratio of thin to thick filaments of vertebrate striated muscle (multi-filament model, while the other comprises only one thick and one thin filament (two-filament model. Simulations comparing these models show that the multi-filament predictions of force, fractional cross-bridge binding, and cross-bridge turnover are more consistent with published experimental values. Furthermore, the values predicted by the multi-filament model are greater than those values predicted by the two-filament model. These increases are larger than the relative increase of potential inter-filament interactions in the multi-filament model versus the two-filament model. This amplification of coordinated cross-bridge binding and cycling indicates a mechanism of cooperativity that depends on sarcomere lattice geometry, specifically the ratio and arrangement of myofilaments.

  10. Healthy Muscles Matter

    Science.gov (United States)

    ... do. Exercising, getting enough rest, and eating a balanced diet will help to keep your muscles healthy for ... keep your muscles in good health. Eating a balanced diet will help manage your weight and provide a ...

  11. The length-force behavior and operating length range of squid muscle vary as a function of position in the mantle wall.

    Science.gov (United States)

    Thompson, Joseph T; Shelton, Ryan M; Kier, William M

    2014-06-15

    Hollow cylindrical muscular organs are widespread in animals and are effective in providing support for locomotion and movement, yet are subject to significant non-uniformities in circumferential muscle strain. During contraction of the mantle of squid, the circular muscle fibers along the inner (lumen) surface of the mantle experience circumferential strains 1.3 to 1.6 times greater than fibers along the outer surface of the mantle. This transmural gradient of strain may require the circular muscle fibers near the inner and outer surfaces of the mantle to operate in different regions of the length-tension curve during a given mantle contraction cycle. We tested the hypothesis that circular muscle contractile properties vary transmurally in the mantle of the Atlantic longfin squid, Doryteuthis pealeii. We found that both the length-twitch force and length-tetanic force relationships of the obliquely striated, central mitochondria-poor (CMP) circular muscle fibers varied with radial position in the mantle wall. CMP circular fibers near the inner surface of the mantle produced higher force relative to maximum isometric tetanic force, P0, at all points along the ascending limb of the length-tension curve than CMP circular fibers near the outer surface of the mantle. The mean ± s.d. maximum isometric tetanic stresses at L₀ (the preparation length that produced the maximum isometric tetanic force) of 212 ± 105 and 290 ± 166 kN m(-2) for the fibers from the outer and inner surfaces of the mantle, respectively, did not differ significantly (P=0.29). The mean twitch:tetanus ratios for the outer and inner preparations, 0.60 ± 0.085 and 0.58 ± 0.10, respectively, did not differ significantly (P=0.67). The circular fibers did not exhibit length-dependent changes in contraction kinetics when given a twitch stimulus. As the stimulation frequency increased, L₀ was approximately 1.06 times longer than LTW, the mean preparation length that yielded maximum isometric twitch

  12. Disassociation of insulin action and Akt/FOXO signaling in skeletal muscle of older Akt-deficient mice

    Science.gov (United States)

    Merrell, Erin; Cinquino, Nicholas; Gaugler, Megan; Ng, Lily

    2012-01-01

    The purpose of the present study was to determine the effect of Akt gene ablation on Akt/Forkhead Box O (FOXO) signaling and atrogene expression. This was accomplished by studying wild-type (WT) and isoform-specific Akt knockout (Akt1−/− and Akt2−/−) mice. The ability of insulin to promote Akt phosphorylation on Ser473 was significantly lower in extensor digitorum longus (EDL) and soleus muscles from Akt1−/− and Akt2−/− mice compared with WT mice. Total Akt1 protein levels were significantly lower in EDL muscles of Akt2−/− mice compared with WT mice, a process that appears to be posttranscriptionally regulated as Akt1 mRNA levels were unchanged. The loss of Akt1 protein in EDL muscles of Akt2−/− mice does not appear to be due to insulin resistance because 4 mo of a high-fat diet failed to reduce Akt1 protein levels in muscles of WT mice. Although FOXO3a phosphorylation and atrogin-1 expression were unaltered in muscles of Akt1−/− and Akt2−/− mice, the expression of the atrogenes Bnip3 and gabarapl were significantly elevated in muscles of both Akt1 and Akt2 knockout mice. Finally, the expression of striated activator of Rho signaling was significantly increased in muscles of Akt2−/− mice compared with Akt1−/− and WT mice. Our results demonstrate that the ablation of Akt isoforms disassociates insulin action and Akt/FOXO signaling to atrogenes. PMID:23100026

  13. Obturator internus muscle strains

    Directory of Open Access Journals (Sweden)

    Caoimhe Byrne, MB BCh, BAO

    2017-03-01

    Full Text Available We report 2 cases of obturator internus muscle strains. The injuries occurred in young male athletes involved in kicking sports. Case 1 details an acute obturator internus muscle strain with associated adductor longus strain. Case 2 details an overuse injury of the bilateral obturator internus muscles. In each case, magnetic resonance imaging played a crucial role in accurate diagnosis.

  14. the sternalis muscle

    African Journals Online (AJOL)

    2009-08-17

    Aug 17, 2009 ... scan of the chest wall was performed to gain clarity of the mam- mographic findings (Figs 1a, 1b and 2). The CT scan demonstrated a flattened band of muscle density lying anterior to the medial margin of the pectoralis muscle. This structure was separated from the underlying pectoralis muscle by a thin ...

  15. Ultrasonographic analysis of dorsal neck muscles thickness changes induced by isometric contraction of shoulder muscles: A comparison between patients with chronic neck pain and healthy controls.

    Science.gov (United States)

    Karimi, Noureddin; Rezasoltani, Asghar; Rahnama, Leila; Noori-Kochi, Farhang; Jaberzadeh, Shapour

    2016-04-01

    Altered pattern of muscle activity is commonly seen with chronic neck pain (CNP). However, limited investigations have been done on dorsal neck muscles' activity pattern while performing upper limb tasks in patients with CNP. To investigate dorsal neck muscles' thickness changes during isometric contraction of shoulder muscles. Case-control study. This study investigated dorsal neck muscles' thickness changes during isometric contraction of shoulder muscles in 20 healthy participants (mean age 27 ± 4.37) and 17 patients with CNP (mean age 29 ± 5.50). Effects of isometric force of shoulder muscles on dorsal neck muscles' thickness changes were also evaluated. Significant muscle × group interaction was observed for the dorsal neck muscles thickness changes (p = 0.008) indicating different pattern of muscle activity in terms of changes in muscle thickness of two groups. Significant main effects of direction was observed (P = 0.003), with the abduction had the greatest impact on changing the dorsal neck muscles thickness. patients with CNP showed altered pattern of muscle thickness changes in comparison to healthy participants. Isometric abduction of shoulder muscles induced the greatest changes of dorsal neck muscles thickness among other force directions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Comparative larval myogenesis and adult myoanatomy of the rhynchonelliform (articulate) brachiopods Argyrotheca cordata, A. cistellula, and Terebratalia transversa

    DEFF Research Database (Denmark)

    Altenburger, Andreas; Wanninger, Andreas

    2009-01-01

    , diductors, dorsal and ventral pedicle adjustors, mantle margin muscles, a distinct musculature of the intestine, and striated muscle fibres in the tentacles for all three species. CONCLUSION: Our data indicate that larvae of rhynchonelliform brachiopods share a common muscular bodyplan and are thus derived...

  17. Quantitative estimation of muscle fatigue using surface electromyography during static muscle contraction.

    Science.gov (United States)

    Soo, Yewguan; Sugi, Masao; Nishino, Masataka; Yokoi, Hiroshi; Arai, Tamio; Kato, Ryu; Nakamura, Tatsuhiro; Ota, Jun

    2009-01-01

    Muscle fatigue is commonly associated with the musculoskeletal disorder problem. Previously, various techniques were proposed to index the muscle fatigue from electromyography signal. However, quantitative measurement is still difficult to achieve. This study aimed at proposing a method to estimate the degree of muscle fatigue quantitatively. A fatigue model was first constructed using handgrip dynamometer by conducting a series of static contraction tasks. Then the degree muscle fatigue can be estimated from electromyography signal with reasonable accuracy. The error of the estimated muscle fatigue was less than 10% MVC and no significant difference was found between the estimated value and the one measured using force sensor. Although the results were promising, there were still some limitations that need to be overcome in future study.

  18. Morphology of muscle attachment sites in the modern human hand does not reflect muscle architecture.

    Science.gov (United States)

    Williams-Hatala, E M; Hatala, K G; Hiles, S; Rabey, K N

    2016-06-23

    Muscle attachment sites (entheses) on dry bones are regularly used by paleontologists to infer soft tissue anatomy and to reconstruct behaviors of extinct organisms. This method is commonly applied to fossil hominin hand bones to assess their abilities to participate in Paleolithic stone tool behaviors. Little is known, however, about how or even whether muscle anatomy and activity regimes influence the morphologies of their entheses, especially in the hand. Using the opponens muscles from a sample of modern humans, we tested the hypothesis that aspects of hand muscle architecture that are known to be influenced by behavior correlate with the size and shape of their associated entheses. Results show no consistent relationships between these behaviorally-influenced aspects of muscle architecture and entheseal morphology. Consequently, it is likely premature to infer patterns of behavior, such as stone tool making in fossil hominins, from these same entheses.

  19. Lipolysis in Skeletal Muscle

    DEFF Research Database (Denmark)

    Serup, Annette Karen Lundbeck

    of AMPK in regulation of lipid handling and lipolysis in the basal non-contracting state and during muscle contractions in skeletal muscle. To evaluate the role of AMPK, we measured protein expression and phosphorylation as well as gene expression of proteins important for regulation of lipid handling...... and lipolysis in skeletal muscle from wildtype mice and mice overexpressing a kinase dead AMPKα2 construct (AMPKα2 KD) in the basal non-contracting state and during in situ stimulated muscle contractions. We found, that IMTG levels were ~50% lower in AMPKα2 KD in the basal resting state, explained by a lower....... IMTG was in wildtype mice reduced with ~50% after muscle contractions with no effect of contractions in AMPKα2 KD mice. Concomitantly, ATGL was phosphorylated at ser406 and HSL on ser565 with muscle contractions in an AMPK dependent manner, suggesting that these sites actives lipolysis during muscle...

  20. High skeletal muscle adenylate cyclase in malignant hyperthermia.

    OpenAIRE

    Willner, J H; Cerri, C G; Wood, D S

    1981-01-01

    Malignant hyperthermia occurs in humans with several congenital myopathies, usually in response to general anesthesia. Commonly, individuals who develop this syndrome lack symptoms of muscle disease, and their muscle lacks specific pathological changes. A biochemical marker for this myopathy has not previously been available; we found activity of adenylate cyclase and content of cyclic AMP to be abnormally high in skeletal muscle. Secondary modification of protein phosphorylation could explai...

  1. Effect of abdominal muscle training on respiratory muscle strength and forced expiratory flows in sedentary, healthy adolescents.

    Science.gov (United States)

    Rodríguez-Núñez, Iván; Navarro, Ximena; Gatica, Darwin; Manterola, Carlos

    2016-10-01

    Respiratory muscle training is the most commonly used method to revert respiratory muscle weakness; however, the effect of protocols based on non-respiratory maneuvers has not been adequately studied in the pediatric population. The objective of this study was to establish the effect of abdominal muscle training on respiratory muscle strength and forced expiratory flows in healthy adolescents. This was a quasi-experiment. The sample was made up of healthy adolescents divided into two groups: an experimental group who completed eight weeks of active abdominal muscle training, and an equivalent control group. The following indicators were measured: abdominal muscle strength, maximal inspiratory pressure, maximal expiratory pressure (MEP), peak expiratory flow, and peak cough flow, before and after protocol completion. A value of p abdominal muscle training, MEP and peak expiratory flow increased in healthy (sedentary) adolescents. Such effects were associated with intervention-induced increases in cough peak flow. Sociedad Argentina de Pediatría.

  2. Tissue Engineered Strategies for Skeletal Muscle Injury

    Directory of Open Access Journals (Sweden)

    Umile Giuseppe Longo

    2012-01-01

    Full Text Available Skeletal muscle injuries are common in athletes, occurring with direct and indirect mechanisms and marked residual effects, such as severe long-term pain and physical disability. Current therapy consists of conservative management including RICE protocol (rest, ice, compression, and elevation, nonsteroidal anti-inflammatory drugs, and intramuscular corticosteroids. However, current management of muscle injuries often does not provide optimal restoration to preinjury status. New biological therapies, such as injection of platelet-rich plasma and stem-cell-based therapy, are appealing. Although some studies support PRP application in muscle-injury management, reasons for concern persist, and further research is required for a standardized and safe use of PRP in clinical practice. The role of stem cells needs to be confirmed, as studies are still limited and inconsistent. Further research is needed to identify mechanisms involved in muscle regeneration and in survival, proliferation, and differentiation of stem cells.

  3. Effect of Pulsatile Electric Field on Cultured Muscle Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2012-02-01

    Full Text Available An effect of an electric field on proliferation and on differentiation of cultured muscle cells has been studied in vitro. C2C12 (the mouse myoblast cell line originated with the cross-striated muscle of C3H mouse was exposed to electric stimuli. In the first experiment, the adhered cells were exposed to the electric field between two electrodes made of platinum wire of 0.2 mm diameter dipped in the medium at 37 degrees Celsius for 72 hours. The electric pulses at a period of one second with a pulse width of 0.1 second were generated with a function generator. Variation was made on the pulse amplitude < 12 V. The number of adhered cells was counted after exposure to electric stimulation. In the second experiment, the cells were cultivated for 96 hours without electric stimulation in an incubator, after electric stimulation of 0.1 V for 72 hours. After incubation, the movement of myotubes was observed with electric stimulation at a period of one second with a pulse width of one millisecond of 30 V. The experimental results show that cells adhere and proliferate under electric pulses lower than 8 V, and that differentiation accelerates with the electric pulses of 0.1 V.

  4. The Dystrophin-Glycoprotein Complex in the Prevention of Muscle Damage

    Directory of Open Access Journals (Sweden)

    Jessica D. Gumerson

    2011-01-01

    Full Text Available Muscular dystrophies are genetically diverse but share common phenotypic features of muscle weakness, degeneration, and progressive decline in muscle function. Previous work has focused on understanding how disruptions in the dystrophin-glycoprotein complex result in muscular dystrophy, supporting a hypothesis that the muscle sarcolemma is fragile and susceptible to contraction-induced injury in multiple forms of dystrophy. Although benign in healthy muscle, contractions in dystrophic muscle may contribute to a higher degree of muscle damage which eventually overwhelms muscle regeneration capacity. While increased susceptibility of muscle to mechanical injury is thought to be an important contributor to disease pathology, it is becoming clear that not all DGC-associated diseases share this supposed hallmark feature. This paper outlines experimental support for a function of the DGC in preventing muscle damage and examines the evidence that supports novel functions for this complex in muscle that when impaired, may contribute to the pathogenesis of muscular dystrophy.

  5. Resolving Shifting Patterns of Muscle Energy Use in Swimming Fish

    Science.gov (United States)

    Gerry, Shannon P.; Ellerby, David J.

    2014-01-01

    Muscle metabolism dominates the energy costs of locomotion. Although in vivo measures of muscle strain, activity and force can indicate mechanical function, similar muscle-level measures of energy use are challenging to obtain. Without this information locomotor systems are essentially a black box in terms of the distribution of metabolic energy. Although in situ measurements of muscle metabolism are not practical in multiple muscles, the rate of blood flow to skeletal muscle tissue can be used as a proxy for aerobic metabolism, allowing the cost of particular muscle functions to be estimated. Axial, undulatory swimming is one of the most common modes of vertebrate locomotion. In fish, segmented myotomal muscles are the primary power source, driving undulations of the body axis that transfer momentum to the water. Multiple fins and the associated fin muscles also contribute to thrust production, and stabilization and control of the swimming trajectory. We have used blood flow tracers in swimming rainbow trout (Oncorhynchus mykiss) to estimate the regional distribution of energy use across the myotomal and fin muscle groups to reveal the functional distribution of metabolic energy use within a swimming animal for the first time. Energy use by the myotomal muscle increased with speed to meet thrust requirements, particularly in posterior myotomes where muscle power outputs are greatest. At low speeds, there was high fin muscle energy use, consistent with active stability control. As speed increased, and fins were adducted, overall fin muscle energy use declined, except in the caudal fin muscles where active fin stiffening is required to maintain power transfer to the wake. The present data were obtained under steady-state conditions which rarely apply in natural, physical environments. This approach also has potential to reveal the mechanical factors that underlie changes in locomotor cost associated with movement through unsteady flow regimes. PMID:25165858

  6. Resolving shifting patterns of muscle energy use in swimming fish.

    Directory of Open Access Journals (Sweden)

    Shannon P Gerry

    Full Text Available Muscle metabolism dominates the energy costs of locomotion. Although in vivo measures of muscle strain, activity and force can indicate mechanical function, similar muscle-level measures of energy use are challenging to obtain. Without this information locomotor systems are essentially a black box in terms of the distribution of metabolic energy. Although in situ measurements of muscle metabolism are not practical in multiple muscles, the rate of blood flow to skeletal muscle tissue can be used as a proxy for aerobic metabolism, allowing the cost of particular muscle functions to be estimated. Axial, undulatory swimming is one of the most common modes of vertebrate locomotion. In fish, segmented myotomal muscles are the primary power source, driving undulations of the body axis that transfer momentum to the water. Multiple fins and the associated fin muscles also contribute to thrust production, and stabilization and control of the swimming trajectory. We have used blood flow tracers in swimming rainbow trout (Oncorhynchus mykiss to estimate the regional distribution of energy use across the myotomal and fin muscle groups to reveal the functional distribution of metabolic energy use within a swimming animal for the first time. Energy use by the myotomal muscle increased with speed to meet thrust requirements, particularly in posterior myotomes where muscle power outputs are greatest. At low speeds, there was high fin muscle energy use, consistent with active stability control. As speed increased, and fins were adducted, overall fin muscle energy use declined, except in the caudal fin muscles where active fin stiffening is required to maintain power transfer to the wake. The present data were obtained under steady-state conditions which rarely apply in natural, physical environments. This approach also has potential to reveal the mechanical factors that underlie changes in locomotor cost associated with movement through unsteady flow regimes.

  7. Smoking-induced Skeletal Muscle Dysfunction. From Evidence to Mechanisms

    NARCIS (Netherlands)

    Degens, H.; Gayan-Ramirez, G.; Hees, H.W.H. van

    2015-01-01

    Smoking is the most important risk factor for the development of chronic obstructive pulmonary disease (COPD). Patients with COPD commonly suffer from skeletal muscle dysfunction, and it has been suggested that cigarette smoke exposure contributes to the development of skeletal muscle dysfunction

  8. Acetylcholine : a novel regulator of airway smooth muscle remodelling?

    NARCIS (Netherlands)

    Gosens, R; Zaagsma, J; Bromhaar, MG; Nelemans, A; Meurs, H

    2004-01-01

    Increased airway smooth muscle mass is a pathological feature that asthma and chronic obstructive pulmonary disease (COPD) have in common. This increase has gained renewed interest in view of recent developments showing that airway smooth muscle, instead of solely being a contractile partner, is

  9. DRY NEEDLING INCREASES MUSCLE THICKNESS IN A SUBJECT WITH PERSISTENT MUSCLE DYSFUNCTION: A CASE REPORT.

    Science.gov (United States)

    Cross, Kevin M; McMurray, Michael

    2017-06-01

    Muscle dysfunction is very common following musculoskeletal injury. There is very little evidence to suggest that muscle function may be positively impacted by soft tissue interventions, such as dry needling. The purpose of this case report is to describe the immediate effect of dry needling on muscle thickness in a subject after shoulder surgery. A 22 year-old competitive gymnast presented seven months post shoulder surgery with significant impairments and functional limitations. Previous physical therapy focused on restoration of range of motion and strength using general exercise interventions, but the subject had persistent tightness and weakness of musculature of the shoulder complex. A subject-specific physical therapy program including manual physical therapy resulted in significant initial improvement, but lack of flexibility and weakness of the rotator cuff limited progress. Dry needling was used to address persistent myofascial trigger points. Immediately after dry needling the infraspinatus, the muscle's thickness was significantly improved as measured by rehabilitative ultrasound imaging. There was a corresponding increase in force production of external rotation at 90 degrees of abduction. Minimal research exists that validates the potential of dry needling on muscle function, as assessed by muscle thickness measured using rehabilitative ultrasound imaging. The results of this case report suggest that dry needling contributed to improvement in muscle thickness and strength in a subject with muscle dysfunction following an injury. 4.

  10. Evaluation of the hamstring muscles after injury

    International Nuclear Information System (INIS)

    Koulouris, G.; Connell, D.; Burke, F.; Young, D.

    2002-01-01

    Full text: The aim of this study was to describe the imaging findings following acute hamstring injury. We retrospectively reviewed the imaging findings of 224 examinations in 208 patients (192 male, 16 female, mean age 28.2 years). MR imaging was performed in 102 cases and sonography in 156 cases (both modalities were performed in 34 examinations). The mean duration of symptoms was 4.7 days (range 1-10 days). Attention was directed to the frequency of muscle movement, the location of the injury within the musculotendinous unit, the extent of the injury and discriminating avulsion from musculotendinous injury. Sixteen patients underwent surgery. The biceps femoris was the most common muscle injured (150/224). Sixteen patients with surgical confirmation of a hamstring avulsion from the ischial tuberosity (14 conjoint, 2 biceps alone) were reliably diagnosed with MR imaging (16/16), but less so with ultrasound (7/12). Eighty-six patients (86/150) had injuries of the musculotendinous junction of biceps, 51/150 myofascial injuries and 13/150 muscle belly alone. Proximal injuries of the biceps were more common that the distal. Sixty-eight patients had injuries of semitendinosus and eight patients semimebranosus.The semitendinosus muscle was more often injured in the distal half of the muscle (42/68) as was semimebranosus (7/8). Three patients had a distal rupture of semitendinosus muscle with retraction. Haematoma was a common finding (170/224) and often tracked around the myofascial layer.This was felt to be a reliable sign for hamstring injury. Discriminating a hamstring tendon avulsion from myotendinous strain is important as these patients necessitate surgical management as opposed to conservative treatment. MR imaging is the preferred modality in the investigation of hamstring muscle and tendon injury. Ultrasound has a complimentary role and may be used to monitor hamstring tendon injuries prior to return to competitive sport. Copyright (2002) Blackwell Science Pty

  11. Tissue Triage and Freezing for Models of Skeletal Muscle Disease

    Science.gov (United States)

    Meng, Hui; Janssen, Paul M.L.; Grange, Robert W.; Yang, Lin; Beggs, Alan H.; Swanson, Lindsay C.; Cossette, Stacy A.; Frase, Alison; Childers, Martin K.; Granzier, Henk; Gussoni, Emanuela; Lawlor, Michael W.

    2014-01-01

    Skeletal muscle is a unique tissue because of its structure and function, which requires specific protocols for tissue collection to obtain optimal results from functional, cellular, molecular, and pathological evaluations. Due to the subtlety of some pathological abnormalities seen in congenital muscle disorders and the potential for fixation to interfere with the recognition of these features, pathological evaluation of frozen muscle is preferable to fixed muscle when evaluating skeletal muscle for congenital muscle disease. Additionally, the potential to produce severe freezing artifacts in muscle requires specific precautions when freezing skeletal muscle for histological examination that are not commonly used when freezing other tissues. This manuscript describes a protocol for rapid freezing of skeletal muscle using isopentane (2-methylbutane) cooled with liquid nitrogen to preserve optimal skeletal muscle morphology. This procedure is also effective for freezing tissue intended for genetic or protein expression studies. Furthermore, we have integrated our freezing protocol into a broader procedure that also describes preferred methods for the short term triage of tissue for (1) single fiber functional studies and (2) myoblast cell culture, with a focus on the minimum effort necessary to collect tissue and transport it to specialized research or reference labs to complete these studies. Overall, this manuscript provides an outline of how fresh tissue can be effectively distributed for a variety of phenotypic studies and thereby provides standard operating procedures (SOPs) for pathological studies related to congenital muscle disease. PMID:25078247

  12. The impact of prolonged hyperinsulinaemia on glucose transport in equine skeletal muscle and digital lamellae.

    Science.gov (United States)

    de Laat, M A; Clement, C K; Sillence, M N; McGowan, C M; Pollitt, C C; Lacombe, V A

    2015-07-01

    An increased incidence of metabolic disease in horses has led to heightened recognition of the pathological consequences of insulin resistance. Laminitis, failure of the weightbearing digital lamellae, is an important consequence. Altered trafficking of specialised glucose transporters (GLUTs), responsible for glucose uptake, is central to the dysregulation of glucose metabolism and may play a role in the pathophysiology of laminitis. We hypothesised that prolonged hyperinsulinaemia alters the regulation of glucose transport in insulin-sensitive tissue and digital lamellae. Our objectives were to compare the relative protein expression of major GLUT isoforms in striated muscle and digital lamellae in healthy horses and during marked and moderate hyperinsulinaemia. Randomised, controlled study. Prolonged hyperinsulinaemia and lamellar damage were induced by a prolonged euglycaemic-hyperinsulinaemic clamp or a prolonged glucose infusion, and results were compared with those of electrolyte-treated control animals. Protein expression of GLUTs was examined with immunoblotting. Lamellar tissue contained more GLUT1 protein than skeletal muscle (P = 0.002) and less GLUT4 than the heart (P = 0.037). During marked hyperinsulinaemia and acute laminitis (induced by the prolonged euglycaemic-hyperinsulinaemic clamp), GLUT1 protein expression was decreased in skeletal muscle (P = 0.029) but unchanged in the lamellae, while novel GLUTs (8 and 12) were increased in the lamellae (P = 0.03) but not in skeletal muscle. However, moderate hyperinsulinaemia and subclinical laminitis (induced by the prolonged glucose infusion) did not cause differential GLUT protein expression in the lamellae compared with control horses. The results suggest that lamellar tissue functions independently of insulin and that insulin resistance may not be an essential component of the aetiology of laminitis. Marked differences in GLUT expression exist between insulin-sensitive and insulin-independent tissues

  13. Bion 11 Spaceflight Project: Effect of Weightlessness on Single Muscle Fiber Function in Rhesus Monkeys

    Science.gov (United States)

    Fitts, Robert H.; Romatowski, Janell G.; Widrick, Jeffrey J.; DeLaCruz, Lourdes

    1999-01-01

    Although it is well known that microgravity induces considerable limb muscle atrophy, little is known about how weightlessness alters cell function. In this study, we investigated how weightlessness altered the functional properties of single fast and slow striated muscle fibers. Physiological studies were carried out to test the hypothesis that microgravity causes fiber atrophy, a decreased peak force (Newtons), tension (Newtons/cross-sectional area) and power, an elevated peak rate of tension development (dp/dt), and an increased maximal shortening velocity (V(sub o)) in the slow type I fiber, while changes in the fast-twitch fiber are restricted to atrophy and a reduced peak force. For each fiber, we determined the peak force (P(sub o)), V(sub o), dp/dt, the force-velocity relationship, peak power, the power-force relationship, the force-pCa relationship, and fiber stiffness. Biochemical studies were carried out to assess the effects of weightlessness on the enzyme and substrate profile of the fast- and slow-twitch fibers. We predicted that microgravity would increase resting muscle glycogen and glycolytic metabolism in the slow fiber type, while the fast-twitch fiber enzyme profile would be unaltered. The increased muscle glycogen would in part result from an elevated hexokinase and glycogen synthase. The enzymes selected for study represent markers for mitochondrial function (citrate synthase and 0-hydroxyacyl-CoA dehydrogenase), glycolysis (Phosphofructokinase and lactate dehydrogenase), and fatty acid transport (Carnitine acetyl transferase). The substrates analyzed will include glycogen, lactate, adenosine triphosphate, and phosphocreatine.

  14. The hamstring muscle complex.

    Science.gov (United States)

    van der Made, A D; Wieldraaijer, T; Kerkhoffs, G M; Kleipool, R P; Engebretsen, L; van Dijk, C N; Golanó, P

    2015-07-01

    The anatomical appearance of the hamstring muscle complex was studied to provide hypotheses for the hamstring injury pattern and to provide reference values of origin dimensions, muscle length, tendon length, musculotendinous junction (MTJ) length as well as width and length of a tendinous inscription in the semitendinosus muscle known as the raphe. Fifty-six hamstring muscle groups were dissected in prone position from 29 human cadaveric specimens with a median age of 71.5 (range 45-98). Data pertaining to origin dimensions, muscle length, tendon length, MTJ length and length as well as width of the raphe were collected. Besides these data, we also encountered interesting findings that might lead to a better understanding of the hamstring injury pattern. These include overlapping proximal and distal tendons of both the long head of the biceps femoris muscle and the semimembranosus muscle (SM), a twist in the proximal SM tendon and a tendinous inscription (raphe) in the semitendinosus muscle present in 96 % of specimens. No obvious hypothesis can be provided purely based on either muscle length, tendon length or MTJ length. However, it is possible that overlapping proximal and distal tendons as well as muscle architecture leading to a resultant force not in line with the tendon predispose to muscle injury, whereas the presence of a raphe might plays a role in protecting the muscle against gross injury. Apart from these architectural characteristics that may contribute to a better understanding of the hamstring injury pattern, the provided reference values complement current knowledge on surgically relevant hamstring anatomy. IV.

  15. GRAF1 deficiency blunts sarcolemmal injury repair and exacerbates cardiac and skeletal muscle pathology in dystrophin-deficient mice.

    Science.gov (United States)

    Lenhart, Kaitlin C; O'Neill, Thomas J; Cheng, Zhaokang; Dee, Rachel; Demonbreun, Alexis R; Li, Jianbin; Xiao, Xiao; McNally, Elizabeth M; Mack, Christopher P; Taylor, Joan M

    2015-01-01

    The plasma membranes of striated muscle cells are particularly susceptible to rupture as they endure significant mechanical stress and strain during muscle contraction, and studies have shown that defects in membrane repair can contribute to the progression of muscular dystrophy. The synaptotagmin-related protein, dysferlin, has been implicated in mediating rapid membrane repair through its ability to direct intracellular vesicles to sites of membrane injury. However, further work is required to identify the precise molecular mechanisms that govern dysferlin targeting and membrane repair. We previously showed that the bin-amphiphysin-Rvs (BAR)-pleckstrin homology (PH) domain containing Rho-GAP GTPase regulator associated with focal adhesion kinase-1 (GRAF1) was dynamically recruited to the tips of fusing myoblasts wherein it promoted membrane merging by facilitating ferlin-dependent capturing of intracellular vesicles. Because acute membrane repair responses involve similar vesicle trafficking complexes/events and because our prior studies in GRAF1-deficient tadpoles revealed a putative role for GRAF1 in maintaining muscle membrane integrity, we postulated that GRAF1 might also play an important role in facilitating dysferlin-dependent plasma membrane repair. We used an in vitro laser-injury model to test whether GRAF1 was necessary for efficient muscle membrane repair. We also generated dystrophin/GRAF1 doubledeficient mice by breeding mdx mice with GRAF1 hypomorphic mice. Evans blue dye uptake and extensive morphometric analyses were used to assess sarcolemmal integrity and related pathologies in cardiac and skeletal muscles isolated from these mice. Herein, we show that GRAF1 is dynamically recruited to damaged skeletal and cardiac muscle plasma membranes and that GRAF1-depleted muscle cells have reduced membrane healing abilities. Moreover, we show that dystrophin depletion exacerbated muscle damage in GRAF1-deficient mice and that mice with dystrophin/GRAF1

  16. An artificial muscle computer

    Science.gov (United States)

    Marc O'Brien, Benjamin; Alexander Anderson, Iain

    2013-03-01

    We have built an artificial muscle computer based on Wolfram's "2, 3" Turing machine architecture, the simplest known universal Turing machine. Our computer uses artificial muscles for its instruction set, output buffers, and memory write and addressing mechanisms. The computer is very slow and large (0.15 Hz, ˜1 m3); however by using only 13 artificial muscle relays, it is capable of solving any computable problem given sufficient memory, time, and reliability. The development of this computer shows that artificial muscles can think—paving the way for soft robots with reflexes like those seen in nature.

  17. Accessory piriformis muscle

    Directory of Open Access Journals (Sweden)

    Sedat Develi

    2017-03-01

    Full Text Available Piriformis muscle originates from facies pelvica of sacrum and inserts on the trochanter major. It is one of the lateral rotator muscles of the hip and a landmark point in the gluteal region since n. ischiadicus descends to the thigh by passing close to the muscle. This contiguity may be associated with the irritation of the nerve which is known as piriformis syndrome. A rare anatomic variation of the muscle which observed on 74 years old male cadaver is discussed in this case report. [Cukurova Med J 2017; 42(1.000: 182-183

  18. Common Misconceptions about Cholesterol

    Science.gov (United States)

    ... Venous Thromboembolism Aortic Aneurysm More Common Misconceptions about Cholesterol Updated:Jan 29,2018 How much do you ... are some common misconceptions — and the truth. High cholesterol isn’t a concern for children. High cholesterol ...

  19. Some Common Abbreviations

    Science.gov (United States)

    ... medlineplus.gov/appendixb.html Appendix B: Some Common Abbreviations To use the sharing features on this page, ... JavaScript. This is a list of some common abbreviations and acronyms. Abbreviation Stands for More information ABG ...

  20. Common Childhood Orthopedic Conditions

    Science.gov (United States)

    ... Videos for Educators Search English Español Common Childhood Orthopedic Conditions KidsHealth / For Parents / Common Childhood Orthopedic Conditions What's in this article? Flatfeet Toe Walking ...

  1. Common Variable Immunodeficiency (CVID)

    Science.gov (United States)

    ... facebook share with twitter share with linkedin Common Variable Immunodeficiency (CVID) Primary Immune Deficiency Diseases (PIDDs) Primary ... PIDDs Genetics & Inheritance Talking to Your Doctor Common variable immunodeficiency (CVID) is characterized by low levels of ...

  2. Management of common sleep disorders.

    Science.gov (United States)

    Ramar, Kannan; Olson, Eric J

    2013-08-15

    Sleep disorders are common and affect sleep quality and quantity, leading to increased morbidity. Patients with sleep disorders can be categorized as those who cannot sleep, those who will not sleep, those with excessive daytime sleepiness, and those with increased movements during sleep. Insomnia, defined as difficulty initiating or maintaining sleep that results in daytime impairment, is diagnosed using history findings and treated with cognitive behavior therapy, with or without sleep hypnotics. Restless legs syndrome is characterized by an urge to move the legs that worsens with rest, is relieved by movement, and often occurs in the evening or at night. Restless legs syndrome is treated based on the frequency of symptoms. Narcolepsy is characterized by excessive sleepiness, cataplexy, hypnagogic or hypnopompic hallucinations, and sleep paralysis. It is diagnosed using a sleep log or actigraphy, followed by overnight polysomnography and a multiple sleep latency test. Narcolepsy is treated with stimulants, such as modafinil; selective serotonin reuptake inhibitors; or gamma hydroxybutyric acid (sodium oxybate). Patients with snoring and witnessed apneas may have obstructive sleep apnea, which is diagnosed using overnight polysomnography. Continuous positive airway pressure is the most common and effective treatment for obstructive sleep apnea. Rapid eye movement sleep behavior disorder is characterized by increased muscle tone during rapid eye movement sleep, resulting in the patient acting out dreams with possible harmful consequences. It is diagnosed based on history and polysomnography findings, and treated with environmental safety measures and melatonin or clonazepam.

  3. Muscle power during intravenous sedation

    Directory of Open Access Journals (Sweden)

    Nobuyuki Matsuura

    2017-11-01

    Full Text Available Intravenous sedation is effective to reduce fear and anxiety in dental treatment. It also has been used for behavior modification technique in dental patients with special needs. Midazolam and propofol are commonly used for intravenous sedation. Although there have been many researches on the effects of midazolam and propofol on vital function and the recovery profile, little is known about muscle power. This review discusses the effects of intravenous sedation using midazolam and propofol on both grip strength and bite force. During light propofol sedation, grip strength increases slightly and bite force increases in a dose-dependent manner. Grip strength decreases while bite force increases during light midazolam sedation, and also during light sedation using a combination of midazolam and propofol. Flumazenil did not antagonise the increase in bite force by midazolam. These results may suggest following possibilities; (1 Activation of peripheral benzodiazepine receptors located within the temporomandibular joint region and masticatory muscles may be the cause of increasing bite force. (2 Propofol limited the long-latency exteroceptive suppression (ES2 period during jaw-opening reflex. Thus, control of masticatory muscle contraction, which is thought to have a negative feedback effect on excessive bite force, may be depressed by propofol.

  4. Quinine for muscle cramps.

    Science.gov (United States)

    El-Tawil, Sherif; Al Musa, Tarique; Valli, Haseeb; Lunn, Michael P T; Brassington, Ruth; El-Tawil, Tariq; Weber, Markus

    2015-04-05

    Muscle cramps can occur anywhere and for many reasons. Quinine has been used to treat cramps of all causes. However, controversy continues about its efficacy and safety. This review was first published in 2010 and searches were updated in 2014. To assess the efficacy and safety of quinine-based agents in treating muscle cramps. On 27 October 2014 we searched the Cochrane Neuromuscular Disease Group Specialized Register, CENTRAL, MEDLINE and EMBASE. We searched reference lists of articles up to 2014. We also searched for ongoing trials in November 2014. Randomised controlled trials of people of all ages with muscle cramps in any location and of any cause, treated with quinine or its derivatives. Three review authors independently selected trials for inclusion, assessed risk of bias and extracted data. We contacted study authors for additional information. For comparisons including more than one trial, we assessed the quality of the evidence using Grading of Recommendations Assessment, Development and Evaluation (GRADE). We identified 23 trials with a total of 1586 participants. Fifty-eight per cent of these participants were from five unpublished studies. Quinine was compared to placebo (20 trials, n = 1140), vitamin E (four trials, n = 543), a quinine-vitamin E combination (three trials, n = 510), a quinine-theophylline combination (one trial, n = 77), and xylocaine injections into the gastrocnemius muscle (one trial, n = 24). The most commonly used quinine dosage was 300 mg/day (range 200 to 500 mg). We found no new trials for inclusion when searches were updated in 2014.The risk of bias in the trials varied considerably. All 23 trials claimed to be randomised, but only a minority described randomisation and allocation concealment adequately.Compared to placebo, quinine significantly reduced cramp number over two weeks by 28%, cramp intensity by 10%, and cramp days by 20%. Cramp duration was not significantly affected.A significantly greater number of people

  5. How much muscle strength is required to walk in a crouch gait?

    NARCIS (Netherlands)

    Steele, K.M.; van der Krogt, M.M.; Schwartz, M.H.; Delp, S.L.

    2012-01-01

    Muscle weakness is commonly cited as a cause of crouch gait in individuals with cerebral palsy; however, outcomes after strength training are variable and mechanisms by which muscle weakness may contribute to crouch gait are unclear. Understanding how much muscle strength is required to walk in a

  6. Fatigue-related changes in motor-unit synchronization of quadriceps muscles within and across legs

    NARCIS (Netherlands)

    Boonstra, T.W.; Daffertshofer, A.; van Ditshuizen, J.C.; van den Heuvel, M.R.C.; Hofman, C.; Willigenburg, N.W.; Beek, P.J.

    2008-01-01

    Two experiments were conducted to examine effects of muscle fatigue on motor-unit synchronization of quadriceps muscles (rectus femoris, vastus medialis, vastus lateralis) within and between legs. We expected muscle fatigue to result in an increased common drive to different motor units of

  7. Elevated interstitial fluid volume in rat soleus muscles by hindlimb unweighting

    DEFF Research Database (Denmark)

    Kandarian, S C; Boushel, Robert Christopher; Schulte, Lars

    1991-01-01

    Hindlimb unweighting is a commonly used model to study skeletal muscle atrophy associated with disuse and exposure to microgravity. However, a discrepancy in findings between single fibers and whole muscle has been observed. In unweighted solei, specific tension deficits are greater in whole muscle...

  8. Ischemia causes muscle fatigue

    Science.gov (United States)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D. M.

    2001-01-01

    The purpose of this investigation was to determine whether ischemia, which reduces oxygenation in the extensor carpi radialis (ECR) muscle, causes a reduction in muscle force production. In eight subjects, muscle oxygenation (TO2) of the right ECR was measured noninvasively and continuously using near infrared spectroscopy (NIRS) while muscle twitch force was elicited by transcutaneous electrical stimulation (1 Hz, 0.1 ms). Baseline measurements of blood volume, muscle oxygenation and twitch force were recorded continuously, then a tourniquet on the upper arm was inflated to one of five different pressure levels: 20, 40, 60 mm Hg (randomized order) and diastolic (69 +/- 9.8 mm Hg) and systolic (106 +/- 12.8 mm Hg) blood pressures. Each pressure level was maintained for 3-5 min, and was followed by a recovery period sufficient to allow measurements to return to baseline. For each respective tourniquet pressure level, mean TO2 decreased from resting baseline (100% TO2) to 99 +/- 1.2% (SEM), 96 +/- 1.9%, 93 +/- 2.8%, 90 +/- 2.5%, and 86 +/- 2.7%, and mean twitch force decreased from resting baseline (100% force) to 99 +/- 0.7% (SEM), 96 +/- 2.7%, 93 +/- 3.1%, 88 +/- 3.2%, and 86 +/- 2.6%. Muscle oxygenation and twitch force at 60 mm Hg tourniquet compression and above were significantly lower (P muscle oxygenation (r = 0.78, P muscle oxygenation causes decreased muscle force production in the forearm extensor muscle. Thus, ischemia associated with a modest decline in TO2 causes muscle fatigue.

  9. Diagnostic methods to assess inspiratory and expiratory muscle strength

    OpenAIRE

    Caruso, Pedro; Albuquerque, André Luis Pereira de; Santana, Pauliane Vieira; Cardenas, Leticia Zumpano; Ferreira, Jeferson George; Prina, Elena; Trevizan, Patrícia Fernandes; Pereira, Mayra Caleffi; Iamonti, Vinicius; Pletsch, Renata; Macchione, Marcelo Ceneviva; Carvalho, Carlos Roberto Ribeiro

    2015-01-01

    Impairment of (inspiratory and expiratory) respiratory muscles is a common clinical finding, not only in patients with neuromuscular disease but also in patients with primary disease of the lung parenchyma or airways. Although such impairment is common, its recognition is usually delayed because its signs and symptoms are nonspecific and late. This delayed recognition, or even the lack thereof, occurs because the diagnostic tests used in the assessment of respiratory muscle strength are not w...

  10. Physical Rehabilitation Improves Muscle Function Following Volumetric Muscle Loss Injury

    Science.gov (United States)

    2014-12-19

    muscle , but it did so without significant morphological adaptations (e.g., no hypertrophy and hyperplasia). Wheel running up-regulated metabolic genes...been shown to foster regeneration of injured muscle [5,32,33] and promote hypertrophy (i.e., increased protein synthesis or muscle weight) in muscle ...remaining muscle tissue. Strengthening of synergist muscles can partially compensate for the loss of function due to VML injury. Compensatory hypertrophy

  11. Localized bioimpedance to assess muscle injury

    International Nuclear Information System (INIS)

    Nescolarde, L; Rosell-Ferrer, J; Yanguas, J; Lukaski, H; Alomar, X; Rodas, G

    2013-01-01

    Injuries to lower limb muscles are common among football players. Localized bioimpedance analysis (BIA) utilizes electrical measurements to assess soft tissue hydration and cell membrane integrity non-invasively. This study reports the effects of the severity of muscle injury and recovery on BIA variables. We made serial tetra-polar, phase-sensitive 50 kHz localized BIA measurements of quadriceps, hamstring and calf muscles of three male football players before and after injury and during recovery until return-to-play, to determine changes in BIA variables (resistance (R), reactance (Xc) and phase angle (PA)) in different degrees of muscle injury. Compared to non-injury values, R, Xc and PA decreased with increasing muscle injury severity: grade III (23.1%, 45.1% and 27.6%), grade II (20.6%, 31.6% and 13.3%) and grade I (11.9%, 23.5% and 12.1%). These findings indicate that decreases in R reflect localized fluid accumulation, and reductions in Xc and PA highlight disruption of cellular membrane integrity and injury. Localized BIA measurements of muscle groups enable the practical detection of soft tissue injury and its severity. (paper)

  12. Altered pharyngeal muscles in Parkinson disease.

    Science.gov (United States)

    Mu, Liancai; Sobotka, Stanislaw; Chen, Jingming; Su, Hungxi; Sanders, Ira; Adler, Charles H; Shill, Holly A; Caviness, John N; Samanta, Johan E; Beach, Thomas G

    2012-06-01

    Dysphagia (impaired swallowing) is common in patients with Parkinson disease (PD) and is related to aspiration pneumonia, the primary cause of death in PD. Therapies that ameliorate the limb motor symptoms of PD are ineffective for dysphagia. This suggests that the pathophysiology of PD dysphagia may differ from that affecting limb muscles, but little is known about potential neuromuscular abnormalities in the swallowing muscles in PD. This study examined the fiber histochemistry of pharyngeal constrictor and cricopharyngeal sphincter muscles in postmortem specimens from 8 subjects with PD and 4 age-matched control subjects. Pharyngeal muscles in subjects with PD exhibited many atrophic fibers, fiber type grouping, and fast-to-slow myosin heavy chain transformation. These alterations indicate that the pharyngeal muscles experienced neural degeneration and regeneration over the course of PD. Notably, subjects with PD with dysphagia had a higher percentage of atrophic myofibers versus with those without dysphagia and controls. The fast-to-slow fiber-type transition is consistent with abnormalities in swallowing, slow movement of food, and increased tone in the cricopharyngeal sphincter in subjects with PD. The alterations in the pharyngeal muscles may play a pathogenic role in the development of dysphagia in subjects with PD.

  13. Muscle Protein Turnover and the Molecular Regulation of Muscle Mass during Hypoxia.

    Science.gov (United States)

    Pasiakos, Stefan M; Berryman, Claire E; Carrigan, Christopher T; Young, Andrew J; Carbone, John W

    2017-07-01

    : Effects of environmental hypoxia on fat-free mass are well studied. Negative energy balance, increased nitrogen excretion, and fat-free mass loss are commonly observed in lowlanders sojourning at high altitude. Reductions in fat-free mass can be minimized if energy consumption matches energy expenditure. However, in nonresearch settings, achieving energy balance during high-altitude sojourns is unlikely, and myofibrillar protein mass is usually lost, but the mechanisms accounting for the loss of muscle mass are not clear. At sea level, negative energy balance reduces basal and blunts postprandial muscle protein synthesis, with no relevant change in muscle protein breakdown. Downregulations in muscle protein synthesis and loss of fat-free mass during energy deficit at sea level are largely overcome by consuming at least twice the recommended dietary allowance for protein. Hypoxia may increase or not affect resting muscle protein synthesis, blunt postexercise muscle protein synthesis, and markedly increase proteolysis independent of energy status. Hypoxia-induced mTORC1 dysregulation and an upregulation in calpain- and ubiquitin proteasome-mediated proteolysis may drive catabolism in lowlanders sojourning at high altitude. However, the combined effects of energy deficit, exercise, and dietary protein manipulations on the regulation of muscle protein turnover have never been studied at high altitude. This article reviews the available literature related to the effects of high altitude on fat-free mass, highlighting contemporary studies that assessed the influence of altitude exposure (or hypoxia) on muscle protein turnover and intramuscular regulation of muscle mass. Knowledge gaps are addressed, and studies to identify effective and feasible countermeasures to hypoxia-induced muscle loss are discussed.

  14. Selenium concentrations in the razorback sucker (Xyrauchen texanus): Substitution of non-lethal muscle plugs for muscle tissue in contaminant assessment

    Science.gov (United States)

    Waddell, B.; May, T.

    1995-01-01

    A single muscle plug was collected from each of 25 live razorback suckers inhabiting the Colorado River basin and analyzed for selenium by instrumental neutron activation. Eight fish from Ashley Creek and three from Razorback Bar exhibited selenium concentrations exceeding 8 μg/g, a level associated with reproductive failure in fish. Concentrations of selenium in eggs and milt were significantly correlated with selenium concentrations in muscle plugs and together indicate a possible explanation for the decline of this species in the Colorado River basin. Muscle plugs (<50mg) and muscle tissue (20 g) were collected from dorsal, anterior, and posterior areas of common carp, flannelmouth sucker, and an archived razorback sucker and analyzed for selenium. Concentrations of selenium in muscle plugs were significantly correlated with selenium concentrations in muscle tissue from the same location and fish (r=0.97). Coefficients of variation for selenium concentrations in each fish were <6.5% for muscle tissue, but ranged from 1.5 to 32.4% for muscle plugs. Increased variation in muscle plugs was attributed to lower selenium concentrations found in the anterior muscle plugs of flannelmouth suckers. Mean selenium concentrations in muscle plugs and tissue from dorsal and posterior areas and muscle tissue from the anterior area were not significantly different. The non-lethal collection of a muscle plug from dorsal and posterior areas of the razorback sucker and other fish species may provide an accurate assessment of selenium concentrations that exist in adjacent muscle tissue.

  15. Muscles, exercise and obesity

    DEFF Research Database (Denmark)

    Pedersen, Bente K; Febbraio, Mark A

    2012-01-01

    of yet unidentified factors, secreted from muscle cells, which may influence cancer cell growth and pancreas function. Many proteins produced by skeletal muscle are dependent upon contraction; therefore, physical inactivity probably leads to an altered myokine response, which could provide a potential...

  16. Proteomics of Skeletal Muscle

    DEFF Research Database (Denmark)

    Deshmukh, Atul

    2016-01-01

    Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability of m...

  17. The hamstring muscle complex

    NARCIS (Netherlands)

    van der Made, A. D.; Wieldraaijer, T.; Kerkhoffs, G. M.; Kleipool, R. P.; Engebretsen, L.; van Dijk, C. N.; Golanó, P.

    2015-01-01

    The anatomical appearance of the hamstring muscle complex was studied to provide hypotheses for the hamstring injury pattern and to provide reference values of origin dimensions, muscle length, tendon length, musculotendinous junction (MTJ) length as well as width and length of a tendinous

  18. Muscle phosphorylase kinase deficiency

    DEFF Research Database (Denmark)

    Preisler, N; Orngreen, M C; Echaniz-Laguna, A

    2012-01-01

    To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD).......To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD)....

  19. Fluid-driven origami-inspired artificial muscles

    Science.gov (United States)

    Li, Shuguang; Vogt, Daniel M.; Rus, Daniela; Wood, Robert J.

    2017-12-01

    Artificial muscles hold promise for safe and powerful actuation for myriad common machines and robots. However, the design, fabrication, and implementation of artificial muscles are often limited by their material costs, operating principle, scalability, and single-degree-of-freedom contractile actuation motions. Here we propose an architecture for fluid-driven origami-inspired artificial muscles. This concept requires only a compressible skeleton, a flexible skin, and a fluid medium. A mechanical model is developed to explain the interaction of the three components. A fabrication method is introduced to rapidly manufacture low-cost artificial muscles using various materials and at multiple scales. The artificial muscles can be programed to achieve multiaxial motions including contraction, bending, and torsion. These motions can be aggregated into systems with multiple degrees of freedom, which are able to produce controllable motions at different rates. Our artificial muscles can be driven by fluids at negative pressures (relative to ambient). This feature makes actuation safer than most other fluidic artificial muscles that operate with positive pressures. Experiments reveal that these muscles can contract over 90% of their initial lengths, generate stresses of ˜600 kPa, and produce peak power densities over 2 kW/kg—all equal to, or in excess of, natural muscle. This architecture for artificial muscles opens the door to rapid design and low-cost fabrication of actuation systems for numerous applications at multiple scales, ranging from miniature medical devices to wearable robotic exoskeletons to large deployable structures for space exploration.

  20. [Diabetic muscle infarction].

    Science.gov (United States)

    ter Bals, Edske; van der Woude, Henk-Jan; Smets, Yves F C

    2013-01-01

    Diabetic muscle infarction is a rare complication of diabetes mellitus that typically presents in the thigh; microvascular abnormalities may play a role. A 32-year-old female presented at the outpatient clinic with a painful, swollen thigh. She had suffered from type 1 diabetes for 22 years. The patient was admitted to the nephrology ward for further evaluation. Deep-venous thrombosis and abscess were excluded with echography. After additional investigations - MRI and a biopsy of skin, muscle and fascia - the diagnosis diabetic muscle infarction was made. The patient was treated with bed rest and analgesics. With hindsight, the muscle biopsy was not actually required in reaching a diagnosis. The diagnosis 'diabetic muscle infarction' is made on the basis of clinical presentation in combination with MRI findings. The treatment consists of bed rest and analgesics.

  1. Truncated dystrophins reduce muscle stiffness in the extensor digitorum longus muscle of mdx mice.

    Science.gov (United States)

    Hakim, Chady H; Duan, Dongsheng

    2013-02-15

    Muscle stiffness is a major clinical feature in Duchenne muscular dystrophy (DMD). DMD is the most common lethal inherited muscle-wasting disease in boys, and it is caused by the lack of the dystrophin protein. We recently showed that the extensor digitorum longus (EDL) muscle of mdx mice (a DMD mouse model) exhibits disease-associated muscle stiffness. Truncated micro- and mini-dystrophins are the leading candidates for DMD gene therapy. Unfortunately, it has never been clear whether these truncated genes can mitigate muscle stiffness. To address this question, we examined the passive properties of the EDL muscle in transgenic mdx mice that expressed a representative mini- or micro-gene (ΔH2-R15, ΔR2-15/ΔR18-23/ΔC, or ΔR4-23/ΔC). The passive properties were measured at the ages of 6 and 20 mo and compared with those of age-matched wild-type and mdx mice. Despite significant truncation of the gene, surprisingly, the elastic and viscous properties were completely restored to the wild-type level in every transgenic strain we examined. Our results demonstrated for the first time that truncated dystrophin genes may effectively treat muscle stiffness in DMD.

  2. Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle.

    Directory of Open Access Journals (Sweden)

    Sergio Arrabal

    Full Text Available Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD, a flavoprotein component (E3 of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg(-1, 14 days on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle--regulated by both diet and CB1 receptor activity--through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI, triosephosphate isomerase (TPI, enolase (Eno3, lactate dehydrogenase (LDHa, glyoxalase-1 (Glo1 and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD.

  3. Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle.

    Science.gov (United States)

    Arrabal, Sergio; Lucena, Miguel Angel; Canduela, Miren Josune; Ramos-Uriarte, Almudena; Rivera, Patricia; Serrano, Antonia; Pavón, Francisco Javier; Decara, Juan; Vargas, Antonio; Baixeras, Elena; Martín-Rufián, Mercedes; Márquez, Javier; Fernández-Llébrez, Pedro; De Roos, Baukje; Grandes, Pedro; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA) metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD), a flavoprotein component (E3) of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg(-1), 14 days) on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle--regulated by both diet and CB1 receptor activity--through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI), triosephosphate isomerase (TPI), enolase (Eno3), lactate dehydrogenase (LDHa), glyoxalase-1 (Glo1) and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD)-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD.

  4. Exercise-Associated Muscle Cramps

    Science.gov (United States)

    Miller, Kevin C.; Stone, Marcus S.; Huxel, Kellie C.; Edwards, Jeffrey E.

    2010-01-01

    Context: Exercise-associated muscle cramps (EAMC) are a common condition experienced by recreational and competitive athletes. Despite their commonality and prevalence, their cause remains unknown. Theories for the cause of EAMC are primarily based on anecdotal and observational studies rather than sound experimental evidence. Without a clear cause, treatments and prevention strategies for EAMC are often unsuccessful. Evidence Acquisition: A search of Medline (EBSCO), SPORTDiscus, and Silverplatter (CINHAL) was undertaken for journal articles written in English between the years 1955 and 2008. Additional references were collected by a careful analysis of the citations of others’ research and textbooks. Results: Dehydration/electrolyte and neuromuscular causes are the most widely discussed theories for the cause of EAMC; however, strong experimental evidence for either theory is lacking. Conclusions: EAMC are likely due to several factors coalescing to cause EAMC. The variety of treatments and prevention strategies for EAMC are evidence of the uncertainty in their cause. Acute EAMC treatment should focus on moderate static stretching of the affected muscle followed by a proper medical history to determine any predisposing conditions that may have triggered the onset of EAMC. Based on physical findings, prevention programs should be implemented to include fluid and electrolyte balance strategies and/or neuromuscular training. PMID:23015948

  5. Fatigue-enhanced hyperalgesia in response to muscle insult: induction and development occur in a sex-dependent manner

    Science.gov (United States)

    Gregory, N. S.; Gibson-Corley, K.; Frey-Law, L.; Sluka, K. A.

    2014-01-01

    Chronic muscle pain affects 20–50% of the population, is more common in women than men, and is associated with increased pain during physical activity and exercise. Muscle fatigue is common in people with chronic muscle pain, occurs in response to exercise and is associated with release of fatigue metabolites. Fatigue metabolites can sensitize muscle nociceptors which could enhance pain with exercise. Using a mouse model we tested whether fatigue of a single muscle, induced by electrical stimulation, resulted in enhanced muscle hyperalgesia and if the enhanced hyperalgesia was more pronounced in female mice. Muscle fatigue was induced in combination with a sub-threshold muscle insult (2 injections of pH 5.0 saline) in male and female mice. We show that male and female mice, fatigued immediately prior to muscle insult in the same muscle, develop similar muscle hyperalgesia 24h later. However, female mice also develop hyperalgesia when muscle fatigue and muscle insult occur in different muscles, and when muscle insult is administered 24 hours after fatigue in the same muscle. Further, hyperalgesia lasts significantly longer in females. Finally, muscle insult with or without muscle fatigue results in minimal inflammatory changes in the muscle itself, and sex differences are not related to estradiol (ovariectomy) or changes in brainstem activity (pNR1). Thus, the current model mimics muscle fatigue-induced enhancement of pain observed in chronic muscle pain conditions in the human population. Interactions between fatigue and muscle insult may underlie the development of chronic widespread pain with an associated female predominance observed in human subjects. PMID:23906552

  6. Aberrant muscle syndrome: hypertrophy of the hand and arm due to aberrant muscles with or without hypertrophy of the muscles.

    Science.gov (United States)

    Ogino, Toshihiko; Satake, Hiroshi; Takahara, Masatoshi; Kikuchi, Noriaki; Watanabe, Tadayosi; Iba, Kousuke; Ishii, Seiichi

    2010-06-01

    Five patients were reported in our congenital anomaly registry who had six hands in total with muscular hyperplasia, aberrant muscles, ulnar drift of the fingers in the metacarpophalangeal (MP) joints, flexion contractures of the MP joints, and enlargement of the metacarpal spaces. Thirty patients with unilateral involvement of this condition have been reported previously. We reviewed these cases and found that the condition varied in severity and that it was reported using different names. However, this condition seems different from true macrodactyly and multiple camptodactyly, including windblown hand, and seems to be an isolated entity of congenital upper limb anomaly. The authors recommend 'aberrant muscle syndrome' or 'accessory muscle syndrome' as a diagnostic name, because this seems to be the most common pathological finding in this condition.

  7. Respiratory Muscle Plasticity

    Science.gov (United States)

    Gransee, Heather M.; Mantilla, Carlos B.; Sieck, Gary C.

    2014-01-01

    Muscle plasticity is defined as the ability of a given muscle to alter its structural and functional properties in accordance with the environmental conditions imposed on it. As such, respiratory muscle is in a constant state of remodeling, and the basis of muscle’s plasticity is its ability to change protein expression and resultant protein balance in response to varying environmental conditions. Here, we will describe the changes of respiratory muscle imposed by extrinsic changes in mechanical load, activity, and innervation. Although there is a large body of literature on the structural and functional plasticity of respiratory muscles, we are only beginning to understand the molecular-scale protein changes that contribute to protein balance. We will give an overview of key mechanisms regulating protein synthesis and protein degradation, as well as the complex interactions between them. We suggest future application of a systems biology approach that would develop a mathematical model of protein balance and greatly improve treatments in a variety of clinical settings related to maintaining both muscle mass and optimal contractile function of respiratory muscles. PMID:23798306

  8. Efektivitas Instagram Common Grounds

    OpenAIRE

    Wifalin, Michelle

    2016-01-01

    Efektivitas Instagram Common Grounds merupakan rumusan masalah yang diambil dalam penelitian ini. Efektivitas Instagram diukur menggunakan Customer Response Index (CRI), dimana responden diukur dalam berbagai tingkatan, mulai dari awareness, comprehend, interest, intentions dan action. Tingkatan respons inilah yang digunakan untuk mengukur efektivitas Instagram Common Grounds. Teori-teori yang digunakan untuk mendukung penelitian ini yaitu teori marketing Public Relations, teori iklan, efekti...

  9. Long-term insulin-like growth factor-I expression in skeletal muscles attenuates the enhanced in vitro proliferation ability of the resident satellite cells in transgenic mice

    Science.gov (United States)

    Chakravarthy, M. V.; Fiorotto, M. L.; Schwartz, R. J.; Booth, F. W.

    2001-01-01

    Insulin-like growth factor-I (IGF-I) overexpression for 1-month in mouse skeletal muscle increases satellite cell proliferation potential. However, it is unknown whether this beneficial enhancement by IGF-I expression would persist over a longer-term duration in aged mice. This is an important issue to address if a prolonged course of IGF-I is to be used clinically in muscle-wasting conditions where satellite cells may become limiting. Using the IGF-I transgenic (IGF-I Tg) mouse that selectively expresses the IGF-I transgene in striated muscles, we found that 18-months of continuous IGF-I overexpression led to a loss in the enhanced in vitro proliferative capacity of satellite cells from Tg skeletal muscles. Also 18-month-old IGF-I Tg satellite cells lost the enhanced BrdU incorporation, greater pRb and Akt phosphorylations, and decreased p27(Kip1) levels initially observed in cells from 1-month-old IGF-I Tg mice. The levels of those biochemical markers reverted to similar values seen in the 18-months WT littermates. These findings, therefore, suggest that there is no further beneficial effect on enhancing satellite cell proliferation ability with persistent long-term expression of IGF-I in skeletal muscles of these transgenic mice.

  10. Infection of the muscle tissue of the filter-feeding cichlid, Chaetobranchopsis orbicularis Steindachner, 1875, by Kudoa orbicularis (Myxozoa: Multivalvulidae on Marajó Island in the Brazilian Amazon region

    Directory of Open Access Journals (Sweden)

    J.L. Sindeaux-Neto

    Full Text Available ABSTRACT This study describes aspects of infections caused by the myxosporidian Kudoa orbicularis in filter-feeding cichlids, Chaetobranchopsis orbicularis, caught in the Arari River in the municipality of Cachoeira do Arari, on Marajó Island, Pará, Brazil. The parasite forms pseudocysts scattered throughout the striated epaxial and hypaxial muscles. Samples embedded in paraffin were analyzed histologically using hematoxylin-eosin, Gömöri, Ziehl-Neelsen, and Giemsa staining. Necropsy of the C. orbicularis specimens revealed that 100% (50/50 were infected with K. orbicularis. The specimens presented grossly abnormal muscle texture, resulting in extensive inconsistencies and weakness. Progressive softening of the muscles was observed during necropsy, indicating the rapid enzymatic autolysis of the tissue. The parasite found in the muscle tissue of C. orbicularis was identified as K. orbicularis, with clinical signs of disease being observed in the fish. The necropsy revealed extensive damage to the host organism, with well-established fibrocystic infections in the muscle fibers, associated with post mortem myoliquefaction.

  11. Muscle Bioenergetic Considerations for Intrinsic Laryngeal Skeletal Muscle Physiology

    Science.gov (United States)

    Sandage, Mary J.; Smith, Audrey G.

    2017-01-01

    Purpose: Intrinsic laryngeal skeletal muscle bioenergetics, the means by which muscles produce fuel for muscle metabolism, is an understudied aspect of laryngeal physiology with direct implications for voice habilitation and rehabilitation. The purpose of this review is to describe bioenergetic pathways identified in limb skeletal muscle and…

  12. The posterior cricoarytenoid muscle is spared from MuRF1-mediated muscle atrophy in mice with acute lung injury.

    Directory of Open Access Journals (Sweden)

    D Clark Files

    Full Text Available Skeletal muscle wasting in acute lung injury (ALI patients increases the morbidity and mortality associated with this critical illness. The contribution of laryngeal muscle wasting to these outcomes is unknown, though voice impairments and aspiration are common in intensive care unit (ICU survivors. We evaluated the intrinsic laryngeal abductor (PCA, posterior cricoarytenoid, adductor (CT, cricothyroid and limb (EDL, extensor digitorum longus muscles in a mouse model of ALI.Escherichia coli lipopolysaccharides were instilled into the lungs of adult male C57Bl6J mice (ALI mice. Limb and intrinsic laryngeal muscles were analyzed for fiber size, type, protein expression and myosin heavy chain (MyHC composition by SDS-PAGE and mass spectroscopy.Marked muscle atrophy occurred in the CT and EDL muscles, while the PCA was spared. The E3 ubiquitin ligase muscle ring finger-1 protein (MuRF1, a known mediator of limb muscle atrophy in this model, was upregulated in the CT and EDL, but not in the PCA. Genetic inhibition of MuRF1 protected the CT and EDL from ALI-induced muscle atrophy. MyHC-Extraocular (MyHC-EO comprised 27% of the total MyHC in the PCA, distributed as hybrid fibers throughout 72% of PCA muscle fibers.The vocal cord abductor (PCA contains a large proportion of fibers expressing MyHC-EO and is spared from muscle atrophy in ALI mice. The lack of MuRF1 expression in the PCA suggests a previously unrecognized mechanism whereby this muscle is spared from atrophy. Atrophy of the vocal cord adductor (CT may contribute to the impaired voice and increased aspiration observed in ICU survivors. Further evaluation of the sparing of muscles involved in systemic wasting diseases may lead to potential therapeutic targets for these illnesses.

  13. Is Abdominal Muscle Activity Different from Lumbar Muscle Activity during Four-Point Kneeling?

    Directory of Open Access Journals (Sweden)

    Soraya Pirouzi

    2013-12-01

    Full Text Available Background: Stabilization exercises can improve the performance of trunk and back muscles, which are effective in the prevention and treatment of low back pain. The four-point kneeling exercise is one of the most common types of stabilization exercises. This quasi-experimental study aimed to evaluate and compare the level of activation between abdominal and lumbar muscles in the different stages of the four-point kneeling exercise. Methods: The present study was conducted on 30 healthy women between 20 and 30 years old. Muscle activity was recorded bilaterally from transversus abdominis, internal oblique, and multifidus muscles with an electromyography (EMG device during the different stages of the four-point kneeling exercise. All the collected EMG data were normalized to the percentage of maximum voluntary isometric contraction. The repeated measures ANOVA and paired t-test were used for the statistical analysis of the data. Results: A comparison between mean muscle activation in right arm extension and left leg extension showed that left internal oblique and left transverse abdominis muscles produced greater activation during left leg extension (P<0.05. The comparison of mean muscle activation between right arm extension and the bird-dog position showed that, except for the right internal oblique, all the muscles produced higher activation in the bird-dog stage (P<0.05. In comparison to the bird-dog stage, the left multifidus showed high activation during left leg extension (P<0.05. Conclusion: The results of this study showed that the activity of all the above-mentioned muscles during quadruped exercise can provide stability, coordination, and smoothness of movements.

  14. Reliability of Ultrasonographic Measurement of Cervical Multifidus Muscle Dimensions during Isometric Contraction of Neck Muscles

    Directory of Open Access Journals (Sweden)

    Somayeh Amiri Arimi

    2012-07-01

    Full Text Available Background and Aim: Cervical multifidus is considered as one of the most important neck stabilizers. Weakness and muscular atrophy of this muscle were seen in patients with chronic neck pain. Ultrasonographic imaging is a non-invasive and feasible technique that commonly used to record such changes and measure muscle dimensions. Therefore, the aim of this study was to evaluate the reliability of ultrasonographic measurement of cervical multifidus muscle’s dimensions during isometric contraction of neck muscles. Materials and Method: Ten subjects (5 patients with chronic neck pain and 5 healthy subjects were recruited in this study. Cervical multifidus muscle’s dimensions were measured at the level of forth cervical vertebrae. Ultrasonographic measurement of cervical multifidus muscle at rest, 50% and 100% of maximal voluntary contraction (MVC were performed by one examiner within 1 week interval. The dimensions of cervical multifidus muscle including cross-sectional area (CSA, anterior posterior dimension (APD, and lateral dimension (LD were measured. Intraclass correlation coefficients (ICC, standard error of measurement (SEM and minimal detectable change (MDC were computed for data analysis.Results: The between days reliability of maximum strength of neck muscles and multifidus muscle dimensions at rest, 50% and 100% of MVC of neck muscles were good to excellent (ICC=0.75-0.99.Conclusion: The results of this study showed that ultrasonographic measuring of cervical multifidus muscle’s dimensions during isometric contraction of neck muscles at the level of C4 in females with chronic neck pain and healthy subjects is a reliable and repeatable method.

  15. Painful unilateral temporalis muscle enlargement: reactive masticatory muscle hypertrophy.

    Science.gov (United States)

    Katsetos, Christos D; Bianchi, Michael A; Jaffery, Fizza; Koutzaki, Sirma; Zarella, Mark; Slater, Robert

    2014-06-01

    An instance of isolated unilateral temporalis muscle hypertrophy (reactive masticatory muscle hypertrophy with fiber type 1 predominance) confirmed by muscle biopsy with histochemical fiber typing and image analysis in a 62 year-old man is reported. The patient presented with bruxism and a painful swelling of the temple. Absence of asymmetry or other abnormalities of the craniofacial skeleton was confirmed by magnetic resonance imaging and cephalometric analyses. The patient achieved symptomatic improvement only after undergoing botulinum toxin injections. Muscle biopsy is key in the diagnosis of reactive masticatory muscle hypertrophy and its distinction from masticatory muscle myopathy (hypertrophic branchial myopathy) and other non-reactive causes of painful asymmetric temporalis muscle enlargement.

  16. [Muscle cramps--differential diagnosis and therapy].

    Science.gov (United States)

    Reichel, Gerhard

    2009-03-01

    Calf cramps are sudden, involuntary, painful contractions of part of or the entire calf muscle that are visible, persist for seconds to minutes and then spontaneously resolve. They can occur with no identifiable cause, and are then referred to as common calf cramps. They may also be symptoms associated with diseases of the peripheral and central nervous system and muscle diseases. They also occur in association with metabolic disorders. In such cases the cramps are more extensive, intense and persist for longer. Cramp-fasciculation-myalgia syndrome additionally involves paresthesias and other signs of hyperexcitability of peripheral nerves. The recommended treatment for patients with frequent calf cramps causing significant impairment of well-being is oral administration of quinidine and/or botulinum toxin treatment of the calf muscles. During pregnancy both products are contraindicated, while probatory administration of magnesium is indicated.

  17. Imaging of muscle disorders in children

    International Nuclear Information System (INIS)

    Johnson, Karl; Foster, J.K.; Davis, Penny J.C.; McDonagh, Janet E.; Ryder, Clive A.J.; Southwood, Taunton R.

    2006-01-01

    Muscle inflammation is a relatively common pathological process in childhood. The diagnosis of the underlying cause relies on an appreciation of the pattern of clinical features, as well as the results of biochemical, histological and radiological investigations. Often the clinical and biochemical features are non-specific and insensitive. Consequently, the radiological abnormalities are very important in establishing a diagnosis and an understanding of the imaging features of muscle inflammatory disorders in childhood is needed. Some of the imaging protocols needed to investigate a variety of muscle and soft-tissue inflammatory conditions in childhood are reviewed in this article. Those features that are helpful in narrowing the differential diagnosis are indicated and a logical approach to the investigation of affected children is provided. The value of MR imaging is highlighted. (orig.)

  18. Common Ground and Delegation

    DEFF Research Database (Denmark)

    Dobrajska, Magdalena; Foss, Nicolai Juul; Lyngsie, Jacob

    preconditions of increasing delegation. We argue that key HR practices?namely, hiring, training and job-rotation?are associated with delegation of decision-making authority. These practices assist in the creation of shared knowledge conditions between managers and employees. In turn, such a ?common ground......-scale questionnaire survey with unique population-wide employer-employee data. We find evidence of a direct and positive influence of hiring decisions (proxied by common educational background), and the training and job rotation of employees on delegation. Moreover, we find a positive interaction between common...... educational background and job rotation....

  19. Muscle Disorders - Multiple Languages

    Science.gov (United States)

    ... Health Information Translations Spanish (español) Expand Section Muscle Disorders: MedlinePlus Health Topic - English ... Health Information Translations Characters not displaying correctly on this page? See language display issues . Return to the MedlinePlus Health Information ...

  20. Neurogenic muscle cramps.

    Science.gov (United States)

    Katzberg, Hans D

    2015-08-01

    Muscle cramps are sustained, painful contractions of muscle and are prevalent in patients with and without medical conditions. The objective of this review is to present updates on the mechanism, investigation and treatment of neurogenic muscle cramps. PubMed and Embase databases were queried between January 1980 and July 2014 for English-language human studies. The American Academy of Neurology classification of studies (classes I-IV) was used to assess levels of evidence. Mechanical disruption, ephaptic transmission, disruption of sensory afferents and persistent inward currents have been implicated in the pathogenesis of neurogenic cramps. Investigations are directed toward identifying physiological triggers or medical conditions predisposing to cramps. Although cramps can be self-limiting, disabling or sustained muscle cramps should prompt investigation for underlying medical conditions. Lifestyle modifications, treatment of underlying conditions, stretching, B-complex vitamins, diltiezam, mexiletine, carbamazepine, tetrahydrocannabinoid, leveteracitam and quinine sulfate have shown evidence for treatment.

  1. Human airway smooth muscle

    NARCIS (Netherlands)

    J.C. de Jongste (Johan)

    1987-01-01

    textabstractThe function of airway smooth muscle in normal subjects is not evident. Possible physiological roles include maintenance of optimal regional ventilation/perfusion ratios, reduction of anatomic dead space, stabilisation of cartilaginous bronchi, defense against impurities and, less

  2. Water and Muscle Contraction

    Directory of Open Access Journals (Sweden)

    Enrico Grazi

    2008-08-01

    Full Text Available The interaction between water and the protein of the contractile machinery as well as the tendency of these proteins to form geometrically ordered structures provide a link between water and muscle contraction. Protein osmotic pressure is strictly related to the chemical potential of the contractile proteins, to the stiffness of muscle structures and to the viscosity of the sliding of the thin over the thick filaments. Muscle power output and the steady rate of contraction are linked by modulating a single parameter, a viscosity coefficient. Muscle operation is characterized by working strokes of much shorter length and much quicker than in the classical model. As a consequence the force delivered and the stiffness attained by attached cross-bridges is much larger than usually believed.

  3. Muscle glycogenolysis during exercise

    DEFF Research Database (Denmark)

    Richter, Erik; Ruderman, N B; Gavras, H

    1982-01-01

    glycogenolysis during exercise: contractions principally stimulate glycogenolysis early in exercise, and a direct effect of epinephrine on muscle is needed for continued glycogenolysis. In addition, epinephrine increased oxygen consumption and glucose uptake in both resting and electrically stimulated...

  4. Pneumatic Muscle Actuator Control

    National Research Council Canada - National Science Library

    Lilly, John

    2000-01-01

    This research is relevant to the Air Fore mission because pneumatic muscle actuation devices arc advantageous for certain types of robotics as well as for strength and/or mobility assistance for humans...

  5. Genetic control of muscle development: learning from Drosophila.

    Science.gov (United States)

    Maqbool, Tariq; Jagla, Krzysztof

    2007-01-01

    Muscle development involves a complex sequence of time and spatially regulated cellular events leading to the formation of highly specialised syncytial muscle cells displaying a common feature, the capacity of contraction. Analyses of mechanisms controlling muscle development reveals that the main steps of muscle formation including myogenic determination, diversification of muscle precursors, myoblast fusion and terminal differentiation involve the actions of evolutionarily conserved genes. Thus dissecting the genetic control of muscle development in simple model organisms appears to be an attractive way to get insights into core genetic cascade that orchestrate myogenesis. In this respect, particularly insightful have been data generated using Drosophila as a model system. Notably, the interplay between intrinsic and extrinsic cues that determine the early myogenic decisions leading to the specification of muscle progenitors and those controlling myoblasts fusion are much better characterised in Drosophila than in vertebrate species. Also, adult Drosophila myogenesis, which leads to the formation of vertebrate-like multi-fibre muscles, emerges as a particularly well-adapted system to study normal and aberrant muscle development.

  6. Inferior oblique muscle injury from local anesthesia for cataract surgery.

    Science.gov (United States)

    Hunter, D G; Lam, G C; Guyton, D L

    1995-03-01

    Vertical rectus muscle injury is commonly cited as a cause of strabismus after cataract surgery. Injury to the inferior oblique muscle or nerve as a complication of cataract surgery has not been described previously. Four patients without pre-existing strabismus who had diplopia after cataract surgery were studied. Analysis included prism and cover testing, Lancaster red-green testing, and fundus torsion assessment. Three patients had a delayed-onset hypertropia with fundus extorsion in the eye that underwent surgery, which is consistent with inferior oblique muscle overaction secondary to presumed contracture. The fourth patient had an immediate-onset hypotropia with fundus intorsion in the eye that underwent surgery, which is consistent with inferior oblique muscle paresis. Damage to a vertical rectus muscle or "unmasking" of a pre-existing superior oblique muscle paresis could not explain the history and findings in this group of four patients. The inferior oblique muscle contracture observed in three patients may have been caused by local anesthetic myotoxicity, whereas the paresis observed in one patient may have been due to mechanical trauma or anesthetic toxicity directly to the nerve innervating the muscle. Inferior oblique muscle or nerve injury should be considered as another possible cause of postoperative strabismus, especially when significant fundus torsion accompanies a vertical deviation.

  7. Common Mental Health Issues

    Science.gov (United States)

    Stock, Susan R.; Levine, Heidi

    2016-01-01

    This chapter provides an overview of common student mental health issues and approaches for student affairs practitioners who are working with students with mental illness, and ways to support the overall mental health of students on campus.

  8. Common Elements of Risk

    National Research Council Canada - National Science Library

    Alberts, Christopher J

    2006-01-01

    .... It is now common for multiple organizations to work collaboratively in pursuit of a single mission, which creates a degree of programmatic and process complexity that can be difficult to manage effectively...

  9. The Common Good

    DEFF Research Database (Denmark)

    Feldt, Liv Egholm

    At present voluntary and philanthropic organisations are experiencing significant public attention and academic discussions about their role in society. Central to the debate is on one side the question of how they contribute to “the common good”, and on the other the question of how they can avoid...... being "polluted" by the state and market logic and maintain their distinctness rooted in civil society´s values and logics. Through a historical case analysis of the Egmont Foundation from Denmark (a corporate philanthropic foundation from 1920), the paper shows how concrete gift-giving practices...... and concepts continuously over time have blurred the different sectors and “polluted” contemporary definitions of the “common good”. The analysis shows that “the common good” is not an autonomous concept owned or developed by specific spheres of society. The analysis stresses that historically, “the common...

  10. Commonly Consumed Food Commodities

    Science.gov (United States)

    Commonly consumed foods are those ingested for their nutrient properties. Food commodities can be either raw agricultural commodities or processed commodities, provided that they are the forms that are sold or distributed for human consumption. Learn more.

  11. Human airway smooth muscle

    OpenAIRE

    Jongste, Johan

    1987-01-01

    textabstractThe function of airway smooth muscle in normal subjects is not evident. Possible physiological roles include maintenance of optimal regional ventilation/perfusion ratios, reduction of anatomic dead space, stabilisation of cartilaginous bronchi, defense against impurities and, less likely, squeezing mucus out of mucous glands and pulling open the alveoli next to the airways1 . Any role of airway smooth muscle is necessarily limited, because an important degree of contraction will l...

  12. Muscle Strength and Poststroke Hemiplegia

    DEFF Research Database (Denmark)

    Kristensen, Otto H; Stenager, Egon; Dalgas, Ulrik

    2017-01-01

    OBJECTIVES: To systematically review (1) psychometric properties of criterion isokinetic dynamometry testing of muscle strength in persons with poststroke hemiplegia (PPSH); and (2) literature that compares muscle strength in patients poststroke with that in healthy controls assessed by criterion...... test in persons with stroke, generally showing marked reductions in muscle strength of paretic and, to a lesser degree, nonparetic muscles when compared with healthy controls, independent of muscle group, contraction mode, and contraction velocity....

  13. Preparation of developing Xenopus muscle for sarcomeric protein localization by high-resolution imaging.

    Science.gov (United States)

    Nworu, Chinedu U; Krieg, Paul A; Gregorio, Carol C

    2014-04-01

    Mutations in several sarcomeric proteins have been linked to various human myopathies. Therefore, having an in vivo developmental model available that develops quickly and efficiently is key for investigators to elucidate the critical steps, components and signaling pathways involved in building a myofibril; this is the pivotal foundation for deciphering disease mechanisms as well as the development of myopathy-related therapeutics. Although striated muscle cell culture studies have been extremely informative in providing clues to both the distribution and functions of sarcomeric proteins, myocytes in vivo develop in an irreproducible 3D environment. Xenopus laevis (frog) embryos are cost effective, compliant to protein level manipulations and develop relatively quickly (⩽ a week) in a petri dish, thus providing a powerful system for de novo myofibrillogenesis studies. Although fluorophore-conjugated phalloidin labeling is the gold standard approach for investigating actin-thin filament architecture, it is well documented that phalloidin-labeling can be challenging and inconsistent within Xenopus embryos. Therefore we highlight several techniques that can be utilized to preserve both antibody and fluorophore-conjugated phalloidin labeling within Xenopus embryos for high-resolution fluorescence microscopy. Copyright © 2013. Published by Elsevier Inc.

  14. Accuracy of measurement by laser diffraction method of length of contracting muscle sarcomeres

    Energy Technology Data Exchange (ETDEWEB)

    Klimov, A.A.; Andreyev, O.A.

    The method of laser beam diffraction was used on striate muscle fibers to study changes in sarcomere length during contraction, as determined by the angular distance between (+1)-(left) and (-1)-(right) diffraction maximums. The course of force development was recorded simultaneously. The absolute margin of error in determining the mean length of sarcomeres did not exceed 0.05 ..mu..m in the range of 1.8 to 2.8 ..mu..m lengths, and 0.1 ..mu..m in the range of 2.8 to 3.3. Changes in mean length of sarcomeres were recorded with accuracy to 0.003 ..mu..m with concurrent monitoring of positions (+1) and (-1) maximums. It was demonstrated that during fiber contraction there is shifting not only of (+1) and (-1) maximums, but (0) maximum also, which is attributable to the effects of light refraction with change in shape of illuminated segment of fiber. This change can be caused by redistribution of sarcomere lengths along the axis of the fiber during contraction and, accordingly, local changes in fiber diameter.

  15. Differential control of muscle mass in type 1 and type 2 diabetes mellitus.

    Science.gov (United States)

    Sala, David; Zorzano, Antonio

    2015-10-01

    Diabetes mellitus--whether driven by insulin deficiency or insulin resistance--causes major alterations in muscle metabolism. These alterations have an impact on nutrient handling, including the metabolism of glucose, lipids, and amino acids, and also on muscle mass and strength. However, the ways in which the distinct forms of diabetes affect muscle mass differ greatly. The most common forms of diabetes mellitus are type 1 and type 2. Thus, whereas type 1 diabetic subjects without insulin treatment display a dramatic loss of muscle, most type 2 diabetic subjects show no changes or even an increase in muscle mass. However, the most commonly used rodent models of type 2 diabetes are characterized by muscle atrophy and do not mimic the features of the disease in humans in terms of muscle mass. In this review, we analyze the processes that are differentially regulated under these forms of diabetes and propose regulatory mechanisms to explain them.

  16. Systems-based Discovery of Tomatidine as a Natural Small Molecule Inhibitor of Skeletal Muscle Atrophy*

    Science.gov (United States)

    Dyle, Michael C.; Ebert, Scott M.; Cook, Daniel P.; Kunkel, Steven D.; Fox, Daniel K.; Bongers, Kale S.; Bullard, Steven A.; Dierdorff, Jason M.; Adams, Christopher M.

    2014-01-01

    Skeletal muscle atrophy is a common and debilitating condition that lacks an effective therapy. To address this problem, we used a systems-based discovery strategy to search for a small molecule whose mRNA expression signature negatively correlates to mRNA expression signatures of human skeletal muscle atrophy. This strategy identified a natural small molecule from tomato plants, tomatidine. Using cultured skeletal myotubes from both humans and mice, we found that tomatidine stimulated mTORC1 signaling and anabolism, leading to accumulation of protein and mitochondria, and ultimately, cell growth. Furthermore, in mice, tomatidine increased skeletal muscle mTORC1 signaling, reduced skeletal muscle atrophy, enhanced recovery from skeletal muscle atrophy, stimulated skeletal muscle hypertrophy, and increased strength and exercise capacity. Collectively, these results identify tomatidine as a novel small molecule inhibitor of muscle atrophy. Tomatidine may have utility as a therapeutic agent or lead compound for skeletal muscle atrophy. PMID:24719321

  17. Supernumerary heads of biceps brachii muscle in South Indian ...

    African Journals Online (AJOL)

    Biceps brachii is a muscle of the anterior compartment of the arm having a long head and a short head. Distally both heads unite to form a common tendon inserting into the radial tuberosity and the bicipital aponeurosis. Most commonly it may have an additional head but presence of four heads and more is relatively very ...

  18. COMMON FISCAL POLICY

    Directory of Open Access Journals (Sweden)

    Gabriel Mursa

    2014-08-01

    Full Text Available The purpose of this article is to demonstrate that a common fiscal policy, designed to support the euro currency, has some significant drawbacks. The greatest danger is the possibility of leveling the tax burden in all countries. This leveling of the tax is to the disadvantage of countries in Eastern Europe, in principle, countries poorly endowed with capital, that use a lax fiscal policy (Romania, Bulgaria, etc. to attract foreign investment from rich countries of the European Union. In addition, common fiscal policy can lead to a higher degree of centralization of budgetary expenditures in the European Union.

  19. Total mercury concentration in common fish species of Lake Victoria ...

    African Journals Online (AJOL)

    Total mercury (THg) concentration was analysed in muscles of common fish species of Lake Victoria in the eastern and southern parts of the lake using cold vapour Atomic Absorption Spectrophotometric technique. Mercury concentration in all fish species was generally lower than the WHO maximum allowable ...

  20. Advances in treatment of muscle cramp in liver cirrhosis

    Directory of Open Access Journals (Sweden)

    ZHAO Wenshan

    2017-10-01

    Full Text Available Muscle cramp is one of the common symptoms of patients with liver cirrhosis and significantly affects patients′ quality of life. In general, the research on liver cirrhosis mainly focuses on the management and prevention of causes or common complications, and there are relatively few studies on the treatment of muscle cramp. Therefore, it is very important to find safe and effective therapeutic regimens. This article describes the pathogenesis and manifestations of muscle cramp in patients with liver cirrhosis, summarizes the therapeutic regimens with clinical value, including new drugs such as baclofen, L-carnitine, and taurine, and further elaborates on the protective effect of taurine against liver fibrosis via its activation of extracellular matrix and hepatic stellate cells, in order to provide new evidence for the treatment of muscle cramp in liver cirrhosis.

  1. Muscle as a secretory organ

    DEFF Research Database (Denmark)

    Pedersen, Bente K

    2013-01-01

    Skeletal muscle is the largest organ in the body. Skeletal muscles are primarily characterized by their mechanical activity required for posture, movement, and breathing, which depends on muscle fiber contractions. However, skeletal muscle is not just a component in our locomotor system. Recent...... evidence has identified skeletal muscle as a secretory organ. We have suggested that cytokines and other peptides that are produced, expressed, and released by muscle fibers and exert either autocrine, paracrine, or endocrine effects should be classified as "myokines." The muscle secretome consists...... of several hundred secreted peptides. This finding provides a conceptual basis and a whole new paradigm for understanding how muscles communicate with other organs such as adipose tissue, liver, pancreas, bones, and brain. In addition, several myokines exert their effects within the muscle itself. Many...

  2. Mechanisms of cisplatin-induced muscle atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Hiroyasu, E-mail: sakai@hoshi.ac.jp [Department of Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501 (Japan); Division of Pharmacy Professional Development and Research, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501 (Japan); Sagara, Atsunobu; Arakawa, Kazuhiko; Sugiyama, Ryoto; Hirosaki, Akiko; Takase, Kazuhide; Jo, Ara [Department of Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501 (Japan); Sato, Ken [Department of Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501 (Japan); Division of Pharmacy Professional Development and Research, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501 (Japan); Chiba, Yoshihiko [Department of Biology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501 (Japan); Yamazaki, Mitsuaki [Department of Anesthesiology, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 9300194 (Japan); Matoba, Motohiro [Department of Palliative Medicine and Psychooncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 1040045 (Japan); Narita, Minoru, E-mail: narita@hoshi.ac.jp [Department of Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501 (Japan)

    2014-07-15

    Fatigue is the most common side effect of chemotherapy. However, the mechanisms of “muscle fatigue” induced by anti-cancer drugs are not fully understood. We therefore investigated the muscle-atrophic effect of cisplatin, a platinum-based anti-cancer drug, in mice. C57BL/6J mice were treated with cisplatin (3 mg/kg, i.p.) or saline for 4 consecutive days. On Day 5, hindlimb and quadriceps muscles were isolated from mice. The loss of body weight and food intake under the administration of cisplatin was the same as those in a dietary restriction (DR) group. Under the present conditions, the administration of cisplatin significantly decreased not only the muscle mass of the hindlimb and quadriceps but also the myofiber diameter, compared to those in the DR group. The mRNA expression levels of muscle atrophy F-box (MAFbx), muscle RING finger-1 (MuRF1) and forkhead box O3 (FOXO3) were significantly and further increased by cisplatin treated group, compared to DR. Furthermore, the mRNA levels of myostatin and p21 were significantly upregulated by the administration of cisplatin, compared to DR. On the other hand, the phosphorylation of Akt and FOXO3a, which leads to the blockade of the upregulation of MuRF1 and MAFbx, was significantly and dramatically decreased by cisplatin. These findings suggest that the administration of cisplatin increases atrophic gene expression, and may lead to an imbalance between protein synthesis and protein degradation pathways, which would lead to muscle atrophy. This phenomenon could, at least in part, explain the mechanism of cisplatin-induced muscle fatigue. - Highlights: • Cisplatin decreased mass and myofiber diameter in quadriceps muscle. • The mRNA of MAFbx, MuRF1 and FOXO3 were increased by the cisplatin. • The mRNA of myostatin and p21 were upregulated by cisplatin. • The phosphorylation of Akt and FOXO3a was decreased by cisplatin.

  3. Mechanisms of cisplatin-induced muscle atrophy

    International Nuclear Information System (INIS)

    Sakai, Hiroyasu; Sagara, Atsunobu; Arakawa, Kazuhiko; Sugiyama, Ryoto; Hirosaki, Akiko; Takase, Kazuhide; Jo, Ara; Sato, Ken; Chiba, Yoshihiko; Yamazaki, Mitsuaki; Matoba, Motohiro; Narita, Minoru

    2014-01-01

    Fatigue is the most common side effect of chemotherapy. However, the mechanisms of “muscle fatigue” induced by anti-cancer drugs are not fully understood. We therefore investigated the muscle-atrophic effect of cisplatin, a platinum-based anti-cancer drug, in mice. C57BL/6J mice were treated with cisplatin (3 mg/kg, i.p.) or saline for 4 consecutive days. On Day 5, hindlimb and quadriceps muscles were isolated from mice. The loss of body weight and food intake under the administration of cisplatin was the same as those in a dietary restriction (DR) group. Under the present conditions, the administration of cisplatin significantly decreased not only the muscle mass of the hindlimb and quadriceps but also the myofiber diameter, compared to those in the DR group. The mRNA expression levels of muscle atrophy F-box (MAFbx), muscle RING finger-1 (MuRF1) and forkhead box O3 (FOXO3) were significantly and further increased by cisplatin treated group, compared to DR. Furthermore, the mRNA levels of myostatin and p21 were significantly upregulated by the administration of cisplatin, compared to DR. On the other hand, the phosphorylation of Akt and FOXO3a, which leads to the blockade of the upregulation of MuRF1 and MAFbx, was significantly and dramatically decreased by cisplatin. These findings suggest that the administration of cisplatin increases atrophic gene expression, and may lead to an imbalance between protein synthesis and protein degradation pathways, which would lead to muscle atrophy. This phenomenon could, at least in part, explain the mechanism of cisplatin-induced muscle fatigue. - Highlights: • Cisplatin decreased mass and myofiber diameter in quadriceps muscle. • The mRNA of MAFbx, MuRF1 and FOXO3 were increased by the cisplatin. • The mRNA of myostatin and p21 were upregulated by cisplatin. • The phosphorylation of Akt and FOXO3a was decreased by cisplatin

  4. A Language in Common.

    Science.gov (United States)

    1963

    This collection of articles reprinted from the "London Times Literary Supplement" indicates the flexibility of English as a common literary language in its widespread use outside the United States and England. Major articles present the thesis that English provides an artistic medium which is enriched through colloquial idioms in the West Indies…

  5. Common conjunctival lesions

    African Journals Online (AJOL)

    Conjunctival naevus (Fig. 11). Conjunctival naevi are common and are located in the interpalpebral bulbar conjunctiva close to the limbus or at the caruncle. The naevus is a discrete, flat or slightly elevated sessile lesion. The colour can be from pale to brown to a dark black. If present from birth to 6 months it is considered a ...

  6. Common eye emergencies

    African Journals Online (AJOL)

    2007-10-11

    Oct 11, 2007 ... episcleritis, scleritis, uveitis and acute-angle closure glaucoma. Acute conjunctivitis. Acute conjunctivitis may be bacterial, viral or allergy related. Bacterial conjunctivitis. Acute bacterial conjunctivitis begins unilaterally with hyperaemia, irritation, tearing, and a mucopurulent discharge. Common pathogens ...

  7. Common envelope evolution

    NARCIS (Netherlands)

    Taam, Ronald E.; Ricker, Paul M.

    2010-01-01

    The common envelope phase of binary star evolution plays a central role in many evolutionary pathways leading to the formation of compact objects in short period systems. Using three dimensional hydrodynamical computations, we review the major features of this evolutionary phase, focusing on the

  8. Common Influence Join

    DEFF Research Database (Denmark)

    Yiu, Man Lung; Mamoulis, Nikos; Karras, Panagiotis

    2008-01-01

    We identify and formalize a novel join operator for two spatial pointsets P and Q. The common influence join (CIJ) returns the pairs of points (p,q),p isin P,q isin Q, such that there exists a location in space, being closer to p than to any other point in P and at the same time closer to q than...

  9. Common Ground and Delegation

    DEFF Research Database (Denmark)

    Dobrajska, Magdalena; Foss, Nicolai Juul; Lyngsie, Jacob

    preconditions of increasing delegation. We argue that key HR practices?namely, hiring, training and job-rotation?are associated with delegation of decision-making authority. These practices assist in the creation of shared knowledge conditions between managers and employees. In turn, such a ?common ground...

  10. Is Context Common Ground?

    DEFF Research Database (Denmark)

    Østergaard, Jens Sand

    2012-01-01

    This article will explore the relation between the how’s and why’s of humour, by gradually moving from the contextual compositionality of conversational implication to a broadened perspective on the open- ended nature of conversation and the purpose humour serves in developing ‘common ground’....

  11. Common mistakes of investors

    Directory of Open Access Journals (Sweden)

    Yuen Wai Pong Raymond

    2012-09-01

    Full Text Available Behavioral finance is an actively discussed topic in the academic and investment circle. The main reason is because behavioral finance challenges the validity of a cornerstone of the modern financial theory: rationality of investors. In this paper, the common irrational behaviors of investors are discussed

  12. ACE2 is augmented in dystrophic skeletal muscle and plays a role in decreasing associated fibrosis.

    Directory of Open Access Journals (Sweden)

    Cecilia Riquelme

    Full Text Available Duchenne muscular dystrophy (DMD is the most common inherited neuromuscular disease and is characterized by absence of the cytoskeletal protein dystrophin, muscle wasting, and fibrosis. We previously demonstrated that systemic infusion or oral administration of angiotensin-(1-7 (Ang-(1-7, a peptide with opposing effects to angiotensin II, normalized skeletal muscle architecture, decreased local fibrosis, and improved muscle function in mdx mice, a dystrophic model for DMD. In this study, we investigated the presence, activity, and localization of ACE2, the enzyme responsible for Ang-(1-7 production, in wild type (wt and mdx skeletal muscle and in a model of induced chronic damage in wt mice. All dystrophic muscles studied showed higher ACE2 activity than wt muscle. Immunolocalization studies indicated that ACE2 was localized mainly at the sarcolemma and, to a lesser extent, associated with interstitial cells. Similar results were observed in the model of chronic damage in the tibialis anterior (TA muscle. Furthermore, we evaluated the effect of ACE2 overexpression in mdx TA muscle using an adenovirus containing human ACE2 sequence and showed that expression of ACE2 reduced the fibrosis associated with TA dystrophic muscles. Moreover, we observed fewer inflammatory cells infiltrating the mdx muscle. Finally, mdx gastrocnemius muscles from mice infused with Ang-(1-7, which decreases fibrosis, contain less ACE2 associated with the muscle. This is the first evidence supporting ACE2 as an important therapeutic target to improve the dystrophic skeletal muscle phenotype.

  13. Estimation of the forces generated by the thigh muscles for transtibial amputee gait.

    Science.gov (United States)

    Voinescu, M; Soares, D P; Natal Jorge, R M; Davidescu, A; Machado, L J

    2012-04-05

    The forces generated by the muscles with origin on the human femur play a major role in transtibial amputee gait, as they are the most effective of the means that the body can use for propulsion. By estimating the forces generated by the thigh muscles of transtibial amputees, and comparing them to the forces generated by the thigh muscles of normal subjects, it is possible to better estimate the energy output needed from prosthetic devices. The purpose of this paper is to obtain the forces generated by the thigh muscles of transtibial amputees and compare these with forces obtained from the same muscles in the case of normal subjects. Two transtibial amputees and four normal subjects similar in size to the amputees were investigated. Level ground walking was chosen as the movement to be studied, since it is a common activity that most amputees engage in. Inverse dynamics and a muscle recruitment algorithm (developed by AnyBody Technology(®)) were used for generating the muscle activation patterns and for computing the muscle forces. The muscle forces were estimated as two sums: one for all posterior muscles and one for the anterior muscles, based on the position of the muscles of the thigh relative to the frontal plane of the human body. The results showed that a significantly higher force is generated by the posterior muscles of the amputees during walking, leading to a general increase of the metabolic cost necessary for one step. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Free function muscle transfers for upper extremity reconstruction: a review of indications, techniques, and outcomes.

    Science.gov (United States)

    Fischer, John P; Elliott, River M; Kozin, Scott H; Levin, L Scott

    2013-12-01

    Free functional muscle transfer (FFMT) replaces destroyed, denervated, or resected skeletal muscle units in the upper extremity with functioning skeletal muscle from other locations in the body. Common indications for FFMT include brachial plexus injuries, ischemic contracture, tumor resection, and extensive direct muscle trauma. Recent studies have focused on improving patient outcomes through refinements in muscle flap harvest and inset, donor nerve selection, and postoperative management. In this review, we assess and summarize the current literature on FFMT, with emphasis on etiopathogenesis, diagnosis, treatment, postoperative management, and clinical outcomes. Copyright © 2013 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  15. Diastasis of the rectus abdominis muscle prevalence in postpartum

    OpenAIRE

    Demartini, Elaine; Deon, Keila Cristiane; Fonseca, Eliane Gonçalves de Jesus; Portela, Bruno Sérgio

    2016-01-01

    Abstract Introduction: Diastasis of the rectus abdominis muscle (DRAM) is characterized by the separation of the rectus abdominis muscles beams, caused by enlargement of the linea alba, a common condition during pregnancy. Physical therapy has been shown necessary in women health, to help them adjust the physical changes throughout the pregnancy and puerperium. Objectives: To verify the DRAM prevalence in the immediate puerperium in a sample of women attended by the Unified Health System i...

  16. Muscle ultrasound imaging in the diagnosis of amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Yu. N. Rushkevich

    2014-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is the most common form of motor neuron disease. This pathology is characterized by the involvement of central and peripheral motor neurons in the pathological process. One  f the specific symptoms of ALS is fasciculations - involuntary muscle contractions that may occasionally precede the development of muscle weakness and atrophies. This paper summarizes the accumulated practical experience in using muscle ultrasound study in the diagnosis of fasciculations and their prevalence as an early sign of anterior corneal lesion in ALS.

  17. Muscle conserving free gracilis transfer (mini-gracilis free flap

    Directory of Open Access Journals (Sweden)

    Bibhuti Bhusan Nayak

    2012-01-01

    Full Text Available Gracilis is a commonly used muscle for free tissue transfer. It is also split into two based on its pedicles and used as two units. Use of distal part as a free flap in isolation has never been described in literature. We describe a technique of harvesting a small unit of gracilis based on its minor pedicle and maintaining the continuity and conserving the major bulk of muscle. Thus, the function of the muscle is preserved and the same is also available for transfer on its major pedicle later, if required.

  18. Anatomy of the Platysma Muscle.

    Science.gov (United States)

    Hwang, Kun; Kim, Ji Yeon; Lim, Jae Hyun

    2017-03-01

    The aim of this paper was to review the anatomy the platysma systematically.The term "platysma AND anatomy" was used to search PubMed and Scopus, producing 394 and 214 papers, respectively. After excluding 95 duplicate titles, 513 abstracts and 98 full papers were reviewed. Among these 98 papers, 83 were excluded and 5 were added. Ultimately, 20 papers were analyzed.The most common aging-related change of the platysma was shortening (70.7%), followed by thinning (25.2%). The platysma most commonly originated from the upper portion of thorax anterior to clavicle (67.7%), followed by the subcutaneous tissue of the subclavicular and acromial regions (22.6%) and pectoralis (9.7%). The platysma ascended upward and medially (68.5%) or ascended from the clavicle to the face (31.5%). The platysma most commonly inserted on the cheek skin (57.5%), followed by the cutaneous muscles around the mouth (18.6%), the mandibulocutaneous ligament or zygoma (18.6%), and the parotid fascia or periosteum of the mandible (5.3%). The platysma was most commonly innervated by the cervical branch of the facial nerve (38.2%) or the cervical branch and mandibular branch of the facial nerve (60.5%), followed by the cervical plexus (0.6%), the cervical motor nucleus (0.6%), and the glossopharyngeal nerve (0.1%). The most common action of the platysma was drawing the lips inferiorly (83.3%) or posteriorly (12.9%). Four papers classified the platysma into subtypes; however, these classification strategies used arbitrary standards.Further studies will be necessary to establish the thickness of the platysma and to characterize age-related changes of the platysma.

  19. Magnesium for skeletal muscle cramps.

    Science.gov (United States)

    Garrison, Scott R; Allan, G Michael; Sekhon, Ravneet K; Musini, Vijaya M; Khan, Karim M

    2012-09-12

    Skeletal muscle cramps are common and often presented to physicians in association with pregnancy, advanced age, exercise or disorders of the motor neuron (such as amyotrophic lateral sclerosis). Magnesium supplements are marketed for the prophylaxis of cramps but the efficacy of magnesium for this indication has never been evaluated by systematic review. To assess the effects of magnesium supplementation compared to no treatment, placebo control or other cramp therapies in people with skeletal muscle cramps.   We searched the Cochrane Neuromuscular Disease Group Specialized Register (11 October 2011), the Cochrane Central Register of Controlled Trials (CENTRAL) (2011, Issue 3), MEDLINE (January 1966 to September 2011), EMBASE (January 1980 to September 2011), LILACS (January 1982 to September 2011), CINAHL Plus (January 1937 to September 2011), AMED (January 1985 to October 2011) and SPORTDiscus (January 1975 to September 2011). Randomized controlled trials (RCTs) of magnesium supplementation (in any form) to prevent skeletal muscle cramps in any patient group (i.e. all clinical presentations of cramp). We considered comparisons of magnesium with no treatment, placebo control, or other therapy. Two authors independently selected trials for inclusion and extracted data. Two authors assessed risk of bias. We attempted to contact all study authors and obtained patient level data for three of the included trials, one of which was unpublished. All data on adverse effects were collected from the included RCTs. We identified seven trials (five parallel, two cross-over) enrolling a total of 406 individuals amongst whom 118 cross-over participants additionally served as their own controls. Three trials enrolled women with pregnancy-associated leg cramps (N = 202) and four trials enrolled idiopathic cramp sufferers (N = 322 including cross-over controls). Magnesium was compared to placebo in six trials and to no treatment in one trial.For idiopathic cramps (largely older

  20. Tadalafil alleviates muscle ischemia in patients with Becker muscular dystrophy

    Science.gov (United States)

    Martin, Elizabeth A.; Barresi, Rita; Byrne, Barry J.; Tsimerinov, Evgeny I.; Scott, Bryan L.; Walker, Ashley E.; Gurudevan, Swaminatha V.; Anene, Francine; Elashoff, Robert M.; Thomas, Gail D.; Victor, Ronald G.

    2013-01-01

    Becker muscular dystrophy (BMD) is a progressive X-linked muscle wasting disease for which there is no treatment. Like Duchenne muscular dystrophy (DMD), BMD is caused by mutations in the gene encoding dystrophin, a structural cytoskeletal protein that also targets other proteins to the muscle sarcolemma. Among these is neuronal nitric oxide synthase (nNOSμ), which requires certain spectrin-like repeats in dystrophin’s rod domain and the adaptor protein α-syntrophin to be targeted to the sarcolemma. When healthy skeletal muscle is subjected to exercise, sarcolemmal nNOSμ-derived nitric oxide (NO) attenuates local α-adrenergic vasoconstriction thereby optimizing perfusion of muscle. We found previously that this protective mechanism is defective—causing functional muscle ischemia—in dystrophin-deficient muscles of the mdx mouse (a model of DMD) and of children with DMD, in whom nNOSμ is mislocalized to the cytosol instead of the sarcolemma. Here, we report that this protective mechanism also is defective in men with BMD in whom the most common dystrophin mutations disrupt sarcolemmal targeting of nNOSμ. In these men, the vasoconstrictor response, measured as a decrease in muscle oxygenation, to reflex sympathetic activation is not appropriately attenuated during exercise of the dystrophic muscles. In a randomized placebo-controlled cross-over trial, we show that functional muscle ischemia is alleviated and normal blood flow regulation fully restored in the muscles of men with BMD by boosting NO-cGMP signaling with a single dose of the drug tadalafil, a phosphodiesterase (PDE5A) inhibitor. These results further support an essential role for sarcolemmal nNOSμ in the normal modulation of sympathetic vasoconstriction in exercising human skeletal muscle and implicate the NO-cGMP pathway as a putative new target for treating BMD. PMID:23197572

  1. Ultrasound Findings of Delayed-Onset Muscle Soreness.

    Science.gov (United States)

    Longo, Victor; Jacobson, Jon A; Fessell, David P; Mautner, Kenneth

    2016-11-01

    The purpose of this series was to retrospectively characterize the ultrasound findings of delayed-onset muscle soreness (DOMS). The Institutional Review Board approved our study, and informed consent was waived. A retrospective search of radiology reports using the key phrase "delayed-onset muscle soreness" and key word "DOMS" from 2001 to 2015 and teaching files was completed to identify cases. The sonograms were reviewed by 3 fellowship-trained musculoskeletal radiologists by consensus. Sonograms were retrospectively characterized with respect to echogenicity (hypoechoic, isoechoic, or hyperechoic), distribution of muscle involvement, and intramuscular pattern (focal versus diffuse and well defined versus poorly defined). Images were also reviewed for muscle enlargement, fluid collection, muscle fiber disruption, and increased flow on color or power Doppler imaging. There were a total of 6 patients identified (5 male and 1 female). The average age was 22 years (range, 7-44 years). Of the 6 patients, there were a total of 11 affected muscles in 7 extremities (1 bilateral case). The involved muscles were in the upper extremity: triceps brachii in 27% (3 of 11), biceps brachii in 18% (2 of 11), brachialis in 18% (2 of 11), brachioradialis in 18% (2 of 11), infraspinatus in 9% (1 of 11), and deltoid in 9% (1 of 11). On ultrasound imaging, the abnormal muscle was hyperechoic in 100% (11 of 11), well defined in 73% (8 of 11), poorly defined in 27% (3 of 11), diffuse in 73% (8 of 11), and focal in 27% (3 of 11). Increased muscle size was found in 82% (9 of 11) and minimal hyperemia in 87.5% (7 of 8). The ultrasound findings of DOMS include hyperechoic involvement of an upper extremity muscle, most commonly appearing well defined and diffuse with increased muscle size and minimal hyperemia. © 2016 by the American Institute of Ultrasound in Medicine.

  2. Bilateral adrenal EBV-associated smooth muscle tumors in a child with a natural killer cell deficiency

    OpenAIRE

    Shaw, Rachel K.; Issekutz, Andrew C.; Fraser, Robert; Schmit, Pierre; Morash, Barb; Monaco-Shawver, Linda; Orange, Jordan S.; Fernandez, Conrad V.

    2012-01-01

    EBV-associated smooth muscle tumors are found in immunocompromised patients, most commonly HIV/AIDS. We present a 12-year-old girl with the first documented case of EBV-related smooth muscle tumors in the presence of a rare classic NK cell deficiency. This sheds light on the role of NK cells in controlling EBV-related smooth muscle tumors.

  3. Hydraulically actuated artificial muscles

    Science.gov (United States)

    Meller, M. A.; Tiwari, R.; Wajcs, K. B.; Moses, C.; Reveles, I.; Garcia, E.

    2012-04-01

    Hydraulic Artificial Muscles (HAMs) consisting of a polymer tube constrained by a nylon mesh are presented in this paper. Despite the actuation mechanism being similar to its popular counterpart, which are pneumatically actuated (PAM), HAMs have not been studied in depth. HAMs offer the advantage of compliance, large force to weight ratio, low maintenance, and low cost over traditional hydraulic cylinders. Muscle characterization for isometric and isobaric tests are discussed and compared to PAMs. A model incorporating the effect of mesh angle and friction have also been developed. In addition, differential swelling of the muscle on actuation has also been included in the model. An application of lab fabricated HAMs for a meso-scale robotic system is also presented.

  4. Foot muscles strengthener

    Directory of Open Access Journals (Sweden)

    Boris T. Glavač

    2012-04-01

    Full Text Available Previous experience in the correction of flat feet consisted of the use of insoles for shoes and exercises with toys, balls, rollers, inclined planes, etc. A device for strengthening foot muscles is designed for the correction of flat feet in children and, as its name suggests, for strengthening foot muscles in adults. The device is made of wood and metal, with a mechanism and technical solutions, enabling the implementation of specific exercises to activate muscles responsible for the formation of the foot arch. It is suitable for home use with controlled load quantities since it has calibrated springs. The device is patented with the Intellectual Property Office, Republic of Serbia, as a petty patent.

  5. Differential scanning calorimetry study of glycerinated rabbit psoas muscle fibres in intermediate state of ATP hydrolysis

    Directory of Open Access Journals (Sweden)

    Farkas Nelli

    2007-06-01

    Full Text Available Abstract Background Thermal denaturation experiments were extended to study the thermal behaviour of the main motor proteins (actin and myosin in their native environment in striated muscle fibres. The interaction of actin with myosin in the highly organized muscle structure is affected by internal forces; therefore their altered conformation and interaction may differ from those obtained in solution. The energetics of long functioning intermediate states of ATP hydrolysis cycle was studied in muscle fibres by differential scanning calorimetry (DSC. Results SETARAM Micro DSC-II was used to monitor the thermal denaturation of the fibre system in rigor and in the presence of nucleotide and nucleotide analogues. The AM.ADP.Pi state of the ATP hydrolysis cycle has a very short lifetime therefore, we mimicked the different intermediate states with AMP.PNP and/or inorganic phosphate analogues Vi and AlF4 or BeFx. Studying glycerol-extracted muscle fibres from the rabbit psoas muscle by DSC, three characteristic thermal transitions were detected in rigor. The thermal transitions can be assigned to myosin heads, myosin rods and actin with transition temperatures (Tm of 52.9 ± 0.7°C, 57.9 ± 0.7°C, 63.7 ± 1.0°C. In different intermediate states of the ATP hydrolysis mimicked by nucleotide analogues a fourth thermal transition was also detected which is very likely connected with nucleotide binding domain of myosin and/or actin filaments. This transition temperature Tm4 depended on the mimicked intermediate states, and varied in the range of 66°C – 77°C. Conclusion According to DSC measurements, strongly and weakly binding states of myosin to actin were significantly different. In the presence of ADP only a moderate change of the DSC pattern was detected in comparison with rigor, whereas in ADP.Pi state trapped by Vi, AlF4 or BeFx a remarkable stabilization was detected on the myosin head and actin filament which is reflected in a 3.0 – 10.0

  6. CREB is activated by muscle injury and promotes muscle regeneration.

    Science.gov (United States)

    Stewart, Randi; Flechner, Lawrence; Montminy, Marc; Berdeaux, Rebecca

    2011-01-01

    The cAMP response element binding protein (CREB) plays key roles in differentiation of embryonic skeletal muscle progenitors and survival of adult skeletal muscle. However, little is known about the physiologic signals that activate CREB in normal muscle. Here we show that CREB phosphorylation and target genes are induced after acute muscle injury and during regeneration due to genetic mutation. Activated CREB localizes to both myogenic precursor cells and newly regenerating myofibers within regenerating areas. Moreover, we found that signals from damaged skeletal muscle tissue induce CREB phosphorylation and target gene expression in primary mouse myoblasts. An activated CREB mutant (CREBY134F) potentiates myoblast proliferation as well as expression of early myogenic transcription factors in cultured primary myocytes. Consistently, activated CREB-YF promotes myoblast proliferation after acute muscle injury in vivo and enhances muscle regeneration in dystrophic mdx mice. Our findings reveal a new physiologic function for CREB in contributing to skeletal muscle regeneration.

  7. Rectus abdominis muscle endometriosis

    International Nuclear Information System (INIS)

    Goker, A.

    2014-01-01

    Endometriosis is characterized by an abnormal existence of functional endometrial tissue outside the uterine cavity, typically occuring within the pelvis of women in reproductive age. We report two cases with endometriosis of the abdominal wall; the first one in the rectus abdominis muscle and the second one in the surgical scar of previous caesarean incision along with the rectus abdominis muscle. Pre-operative evaluation included magnetic resonance imaging. The masses were dissected free from the surrounding tissue and excised with clear margins. Diagnosis of the excised lesions were verified by histopathology. (author)

  8. Common tester platform concept.

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, Michael James

    2008-05-01

    This report summarizes the results of a case study on the doctrine of a common tester platform, a concept of a standardized platform that can be applicable across the broad spectrum of testing requirements throughout the various stages of a weapons program, as well as across the various weapons programs. The common tester concept strives to define an affordable, next-generation design that will meet testing requirements with the flexibility to grow and expand; supporting the initial development stages of a weapons program through to the final production and surveillance stages. This report discusses a concept investing key leveraging technologies and operational concepts combined with prototype tester-development experiences and practical lessons learned gleaned from past weapons programs.

  9. Spectrum of Nondystrophic Skeletal Muscle Channelopathies in Children.

    Science.gov (United States)

    Al-Ghamdi, Fouad; Darras, Basil T; Ghosh, Partha S

    2017-05-01

    The nondystrophic skeletal muscle channelopathies are a group of disorders caused by mutations of various voltage-gated ion channel genes, including nondystrophic myotonia and periodic paralysis. We identified patients with a diagnosis of muscle channelopathy from our neuromuscular database in a tertiary care pediatric center from 2005 to 2015. We then performed a retrospective review of their medical records for demographic characteristics, clinical features, investigations, treatment, and follow-up. Thirty-three patients were identified. Seventeen had nondystrophic myotonia. Seven of them had chloride channelopathy (four Becker disease and three Thomsen disease). Warm-up phenomenon and muscle hypertrophy were common clinical manifestations in this subgroup. Ten patients had sodium channelopathy (four paramyotonia congenita and six other sodium channel myotonia). Stiffness of the facial muscles was an important presenting symptom, and eyelid myotonia was a common clinical finding in this subgroup. The majority of these patients had electrical myotonia. Mexiletine was effective in controlling the symptoms in patients who had received treatment. Sixteen children had periodic paralysis (four hyperkalemic periodic paralysis, eight hypokalemic periodic paralysis, and four Andersen-Tawil syndrome). Acetazolamide was commonly used to prevent paralytic attacks and was found to be effective. Nondystrophic muscle channelopathies present with diverse clinical manifestations (myotonia, muscle hypertrophy, proximal weakness, swallowing difficulties, and periodic paralysis). Cardiac arrhythmias are potentially life threatening in Andersen-Tawil syndrome. Timely identification of these disorders is helpful for effective symptomatic management and genetic counseling. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. 'Historicising common sense'.

    Science.gov (United States)

    Millstone, Noah

    2012-12-01

    This essay is an expanded set of comments on the social psychology papers written for the special issue on History and Social Psychology. It considers what social psychology, and particularly the theory of social representations, might offer historians working on similar problems, and what historical methods might offer social psychology. The social history of thinking has been a major theme in twentieth and twenty-first century historical writing, represented most recently by the genre of 'cultural history'. Cultural history and the theory of social representations have common ancestors in early twentieth-century social science. Nevertheless, the two lines of research have developed in different ways and are better seen as complementary than similar. The theory of social representations usefully foregrounds issues, like social division and change over time, that cultural history relegates to the background. But for historians, the theory of social representations seems oddly fixated on comparing the thought styles associated with positivist science and 'common sense'. Using historical analysis, this essay tries to dissect the core opposition 'science : common sense' and argues for a more flexible approach to comparing modes of thought.

  11. Common sense codified

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    At CERN, people of more than a hundred different nationalities and hundreds of different professions work together towards a common goal. The new Code of Conduct is a tool that has been designed to help us keep our workplace pleasant and productive through common standards of behaviour. Its basic principle is mutual respect and common sense. This is only natural, but not trivial…  The Director-General announced it in his speech at the beginning of the year, and the Bulletin wrote about it immediately afterwards. "It" is the new Code of Conduct, the document that lists our Organization's values and describes the basic standards of behaviour that we should both adopt and expect from others. "The Code of Conduct is not going to establish new rights or new obligations," explains Anne-Sylvie Catherin, Head of the Human Resources Department (HR). But what it will do is provide a framework for our existing rights and obligations." The aim of a co...

  12. Glycoconjugate with terminal alpha galactose. A property common to basal cells and a subpopulation of columnar cells of numerous epithelia in mouse and rat.

    Science.gov (United States)

    Flint, F F; Schulte, B A; Spicer, S S

    1986-01-01

    Glycoconjugates associated with the basal cell layer of various types of epithelia in the mouse and rat were examined histochemically with a battery of lectin-horseradish peroxidase (HRP) conjugates of differing sugar binding specificities. Basal cells in paraffin sections of composite tissue blocks stained with an isolectin from Griffonia simplicifolia (GSA I-B4) specific for terminal alpha-galactose residues but failed to react with the other lectins. Basal cells in epithelium lining striated and excretory ducts of salivary and lacrimal glands, tongue, esophagus, trachea, renal calyx, ureter, urinary bladder, urethra, epididymis and vas deferens stained selectively and intensely for content of a glycoconjugate with terminal alpha-galactose. This galacto-conjugate appeared associated with the plasmalemma of basal cells. Basal cells with a galactocalyx formed an intermittent to continuous layer generally increasing in prevalence distally in glandular duct systems. A minor population of pyramido-columnar cells with cytosolic GSA I-B4 reactivity occurred in striated ducts and appeared less numerous in intralobular excretory ducts and more prevalent in extraglandular ducts. In trachea and renal pelvis, the GSA I-B4 positive cell profiles ranged from low cuboidal to tall pyramidal in contour, but the latter appeared not to reach the lumen. In contrast, no GSA I-B4 positive basal cells were seen in any segment of the pancreatic or bile ducts or in the epithelium of the gastrointestinal tract. These findings suggest that the basal cells found in similar sites in different epithelia and possessing in common a unique alpha-galactoconjugate may function in a manner common to all and not simply in providing progenitor cells for epithelial renewal.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Re-examination of the possible role of Golgi tendon organ and muscle spindle reflexes in proprioceptive neuromuscular facilitation muscle stretching.

    Science.gov (United States)

    Chalmers, Gordon

    2004-01-01

    Literature concerning the theoretical role of spinal reflex circuits and their sensorimotor signals in proprioceptive neuromuscular facilitation (PNF) muscle stretching techniques was examined. Reviewed data do not support the assertion commonly made in PNF literature that contraction of a stretched muscle prior to further stretch, or contraction of opposing muscles during muscle stretch, produces relaxation of the stretched muscle. Further, following contraction of a stretched muscle, inhibition of the stretch reflex response lasts only 1 s. Studies examined suggested that decreases in the response amplitude of the Hoffmann and muscle stretch reflexes following a contraction of a stretched muscle are not due to the activation of Golgi tendon organs, as commonly purported, but instead may be due to presynaptic inhibition of the muscle spindle sensory signal. The current view on the complex manner by which the spinal cord processes proprioceptive signals was discussed. The ability of acute PNF stretching procedures to often produce a joint range of motion greater than that observed with static stretching must be explained by mechanisms other than the spinal processing of proprioceptive information. Studies reviewed indicate that changes in the ability to tolerate stretch and/or the viscoelastic properties of the stretched muscle, induced by PNF procedures, are possible mechanisms.

  14. Effects of oblique muscle surgery on the rectus muscle pulley

    International Nuclear Information System (INIS)

    Okanobu, Hirotaka; Kono, Reika; Ohtsuki, Hiroshi

    2011-01-01

    The purpose of this study was to determine the position of rectus muscle pulleys in Japanese eyes and to evaluate the effect of oblique muscle surgery on rectus muscle pulleys. Quasi-coronal plane MRI was used to determine area centroids of the 4 rectus muscles. The area centroids of the rectus muscles were transformed to 2-dimensional coordinates to represent pulley positions. The effects of oblique muscle surgery on the rectus muscle pulley positions in the coronal plane were evaluated in 10 subjects with cyclovertical strabismus and, as a control, pulley locations in 7 normal Japanese subjects were calculated. The mean positions of the rectus muscle pulleys in the coronal plane did not significantly differ from previous reports on normal populations, including Caucasians. There were significant positional shifts of the individual horizontal and vertical rectus muscle pulleys in 3 (100%) patients with inferior oblique advancement, but not in eyes with inferior oblique recession and superior oblique tendon advancement surgery. The surgical cyclorotatory effect was significantly correlated with the change in the angle of inclination formed by the line connecting the vertical rectus muscles (p=0.0234), but weakly correlated with that of the horizontal rectus muscles. The most important factor that affects the pulley position is the amount of ocular torsion, not the difference in surgical procedure induced by oblique muscle surgery. (author)

  15. Composition of Muscle Fiber Types in Rat Rotator Cuff Muscles.

    Science.gov (United States)

    Rui, Yongjun; Pan, Feng; Mi, Jingyi

    2016-10-01

    The rat is a suitable model to study human rotator cuff pathology owing to the similarities in morphological anatomy structure. However, few studies have reported the composition muscle fiber types of rotator cuff muscles in the rat. In this study, the myosin heavy chain (MyHC) isoforms were stained by immunofluorescence to show the muscle fiber types composition and distribution in rotator cuff muscles of the rat. It was found that rotator cuff muscles in the rat were of mixed fiber type composition. The majority of rotator cuff fibers labeled positively for MyHCII. Moreover, the rat rotator cuff muscles contained hybrid fibers. So, compared with human rotator cuff muscles composed partly of slow-twitch fibers, the majority of fast-twitch fibers in rat rotator cuff muscles should be considered when the rat model study focus on the pathological process of rotator cuff muscles after injury. Gaining greater insight into muscle fiber types in rotator cuff muscles of the rat may contribute to elucidate the mechanism of pathological change in rotator cuff muscles-related diseases. Anat Rec, 299:1397-1401, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Force encoding in muscle spindles during stretch of passive muscle.

    Science.gov (United States)

    Blum, Kyle P; Lamotte D'Incamps, Boris; Zytnicki, Daniel; Ting, Lena H

    2017-09-01

    Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions

  17. Force encoding in muscle spindles during stretch of passive muscle.

    Directory of Open Access Journals (Sweden)

    Kyle P Blum

    2017-09-01

    Full Text Available Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle

  18. Pelvic floor muscle training exercises

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003975.htm Pelvic floor muscle training exercises To use the sharing features on this page, please enable JavaScript. Pelvic floor muscle training exercises are a series of exercises ...

  19. MRI appearance of muscle denervation

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, S. [University Hospital of Wales, Department of Radiology, Cardiff (United Kingdom); Venkatanarasimha, N.; Walsh, M.A.; Hughes, P.M. [Derriford Hospital, Department of Radiology, Plymouth (United Kingdom)

    2008-05-15

    Muscle denervation results from a variety of causes including trauma, neoplasia, neuropathies, infections, autoimmune processes and vasculitis. Traditionally, the diagnosis of muscle denervation was based on clinical examination and electromyography. Magnetic resonance imaging (MRI) offers a distinct advantage over electromyography, not only in diagnosing muscle denervation, but also in determining its aetiology. MRI demonstrates characteristic signal intensity patterns depending on the stage of muscle denervation. The acute and subacutely denervated muscle shows a high signal intensity pattern on fluid sensitive sequences and normal signal intensity on T1-weighted MRI images. In chronic denervation, muscle atrophy and fatty infiltration demonstrate high signal changes on T1-weighted sequences in association with volume loss. The purpose of this review is to summarise the MRI appearance of denervated muscle, with special emphasis on the signal intensity patterns in acute and subacute muscle denervation. (orig.)

  20. Muscle contraction and force

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline; Risbo, Jens; Pierzynowski, Stefan G.

    2008-01-01

    of nutrient delivery and waste product removal, but are also tethered to surrounding fibres by collagen "wires". This paper therefore addresses aspects of the ancillary network of skeletal muscle at both a microscopic and functional level in order to better understand its role holistically as a considerable...

  1. Making more heart muscle

    NARCIS (Netherlands)

    van den Hoff, Maurice J. B.; Kruithof, Boudewijn P. T.; Moorman, Antoon F. M.

    2004-01-01

    Postnatally, heart muscle cells almost completely lose their ability to divide, which makes their loss after trauma irreversible. Potential repair by cell grafting or mobilizing endogenous cells is of particular interest for possible treatments for heart disease, where the poor capacity for

  2. Common Vestibular Disorders

    Directory of Open Access Journals (Sweden)

    Dimitrios G. Balatsouras

    2017-01-01

    Full Text Available The three most common vestibular diseases, benign paroxysmal positional vertigo (BPPV, Meniere's disease (MD and vestibular neuritis (VN, are presented in this paper. BPPV, which is the most common peripheral vestibular disorder, can be defined as transient vertigo induced by a rapid head position change, associated with a characteristic paroxysmal positional nystagmus. Canalolithiasis of the posterior semicircular canal is considered the most convincing theory of its pathogenesis and the development of appropriate therapeutic maneuvers resulted in its effective treatment. However, involvement of the horizontal or the anterior canal has been found in a significant rate and the recognition and treatment of these variants completed the clinical picture of the disease. MD is a chronic condition characterized by episodic attacks of vertigo, fluctuating hearing loss, tinnitus, aural pressure and a progressive loss of audiovestibular functions. Presence of endolymphatic hydrops on postmortem examination is its pathologic correlate. MD continues to be a diagnostic and therapeutic challenge. Patients with the disease range from minimally symptomatic, highly functional individuals to severely affected, disabled patients. Current management strategies are designed to control the acute and recurrent vestibulopathy but offer minimal remedy for the progressive cochlear dysfunction. VN is the most common cause of acute spontaneous vertigo, attributed to acute unilateral loss of vestibular function. Key signs and symptoms are an acute onset of spinning vertigo, postural imbalance and nausea as well as a horizontal rotatory nystagmus beating towards the non-affected side, a pathological headimpulse test and no evidence for central vestibular or ocular motor dysfunction. Vestibular neuritis preferentially involves the superior vestibular labyrinth and its afferents. Symptomatic medication is indicated only during the acute phase to relieve the vertigo and nausea

  3. Electrical Muscle Strengthening and Electromyographical Analysis

    Directory of Open Access Journals (Sweden)

    Noureddin Karimi

    2001-01-01

    Full Text Available Objective: A common form of therapy in physical therapy is the strengthening of muscles. As regards the probability of increasing muscular strength by electrical stimulation, we have tested the effect of that on muscle strength and endurance. Materials & Methods: 34 healthy male students of rehabilitation Sciences College (29-31 old were subjected to two weeks of interferential current stimulation program, consisting of 7 sessions per week, each of 15 minutes duration. The stimulation was a 40-60 Hz beat with 25 seconds on and 35 seconds rest time. We were tested all of subjects before and after the program. Assessment parameters were: 1 Maximum circumference of right arm at rest (cm 2 Maximum circumference at maximum isometric contraction 3 Maximum time (sec. that he can hold a constant weight. 4 Integral of interference pattern at Max. contraction (µv.s 5 Amplitude of the M. response (mAmp 6 Duration of the M. response (ms.. Results: T-Pair test employed to data processing, confirm significant changes on l rest arm circumference 2 contracted arm circumference 3 Muscle Endurance 4 IEMG 5 M. response Dur. Conclusion: In conclusion we can develop muscle strength and endurance by specific program mentioned above.

  4. [Efficacy of levocarnitine for tyrosine kinase inhibitor-induced painful muscle cramps in patients with chronic myelogenous leukemia].

    Science.gov (United States)

    Yamada, Michiko; Kuroda, Hiroyuki; Shimoyama, Saori; Ito, Ryo; Sugama, Yusuke; Sato, Ken; Yamauchi, Natsumi; Horiguchi, Hiroto; Nakamura, Hajime; Hamaguchi, Kota; Abe, Tomoyuki; Fujii, Shigeyuki; Maeda, Masahiro; Kato, Junji

    2016-04-01

    Muscle cramps are side effects commonly associated with tyrosine kinase inhibitor (TKI) treatment. Patients suffering from muscle cramps are treated with various medications such as calcium, magnesium and vitamin supplements, but these therapies are often ineffective. We report two patients with chronic myelogenous leukemia who developed muscle cramps caused by TKI. These patients were treated successfully with levocarnitine. Both of our cases revealed the beneficial effects of levocarnitine treatment on TKI-induced muscle cramps.

  5. Of urban commons

    OpenAIRE

    Berge, Erling

    2016-01-01

    The paper is part of a joint presentation with Marius Grønning at the 5th International and Interdisciplinary Symposium of the European Academy of Land Use and Development (EALD) held in Oslo 3-5 September 2015. Last summer visitors to the Oslo opera house were met with the following announcement: “Here comes the “Opera Commons” explaining: “Operaallmenningen”, the Opera Commons, “will be a multi-functional meeting place for cultural events, recreational activities and people passing throu...

  6. English for common entrance

    CERN Document Server

    Kossuth, Kornel

    2013-01-01

    Succeed in the exam with this revision guide, designed specifically for the brand new Common Entrance English syllabus. It breaks down the content into manageable and straightforward chunks with easy-to-use, step-by-step instructions that should take away the fear of CE and guide you through all aspects of the exam. - Gives you step-by-step guidance on how to recognise various types of comprehension questions and answer them. - Shows you how to write creatively as well as for a purpose for the section B questions. - Reinforces and consolidates learning with tips, guidance and exercises through

  7. Quantitative assessment of muscle in dogs using a vertebral epaxial muscle score.

    Science.gov (United States)

    Freeman, Lisa M; Sutherland-Smith, James; Prantil, Lori R; Sato, Amy F; Rush, John E; Barton, Bruce A

    2017-10-01

    Muscle loss associated with disease (cachexia) or with aging (sarcopenia) is common in dogs, but clinically relevant methods for quantifying muscle loss are needed. We previously validated an ultrasound method of quantifying muscle size in dogs in a single breed. The goal of this study was to assess the variability and reproducibility of the Vertebral Epaxial Muscle Score (VEMS) in other dog breeds. Static ultrasound images were obtained from 38 healthy, neutered dogs of 5 different breeds between 1- and 5-years-old. The maximal transverse right epaxial muscle height and area at the level of the 13th thoracic vertebra (T13) were measured. Length of the 4th thoracic vertebra (T4) was measured from thoracic radiography. Ratios of the muscle height and area to vertebral length (height/T4 and area/T4, respectively) were calculated to account for differences in body size among breeds. Reproducibility testing was performed on 2 dogs of each breed (26% of the total) to determine intra- and inter-investigator reproducibility, as well as intra-class correlation. Mean height/T4 = 1.02 ± 0.18 and mean area/T4 = 3.32 ± 1.68. There was no significant difference for height/T4 ( P = 0.10) among breeds, but breeds were significantly different in area/T4 ( P dogs of different sizes and body conformations. Studies assessing this technique in dogs with congestive heart failure and other diseases associated with muscle loss are warranted.

  8. True and common balsams

    Directory of Open Access Journals (Sweden)

    Dayana L. Custódio

    2012-12-01

    Full Text Available Balsams have been used since ancient times, due to their therapeutic and healing properties; in the perfume industry, they are used as fixatives, and in the cosmetics industry and in cookery, they are used as preservatives and aromatizers. They are generally defined as vegetable material with highly aromatic properties that supposedly have the ability to heal diseases, not only of the body, but also of the soul. When viewed according to this concept, many substances can be considered balsams. A more modern concept is based on its chemical composition and origin: a secretion or exudate of plants that contain cinnamic and benzoic acids, and their derivatives, in their composition. The most common naturally-occurring balsams (i.e. true balsams are the Benzoins, Liquid Storaque and the Balsams of Tolu and Peru. Many other aromatic exudates, such as Copaiba Oil and Canada Balsam, are wrongly called balsam. These usually belong to other classes of natural products, such as essential oils, resins and oleoresins. Despite the understanding of some plants, many plants are still called balsams. This article presents a chemical and pharmacological review of the most common balsams.

  9. True and common balsams

    Directory of Open Access Journals (Sweden)

    Dayana L. Custódio

    2012-08-01

    Full Text Available Balsams have been used since ancient times, due to their therapeutic and healing properties; in the perfume industry, they are used as fixatives, and in the cosmetics industry and in cookery, they are used as preservatives and aromatizers. They are generally defined as vegetable material with highly aromatic properties that supposedly have the ability to heal diseases, not only of the body, but also of the soul. When viewed according to this concept, many substances can be considered balsams. A more modern concept is based on its chemical composition and origin: a secretion or exudate of plants that contain cinnamic and benzoic acids, and their derivatives, in their composition. The most common naturally-occurring balsams (i.e. true balsams are the Benzoins, Liquid Storaque and the Balsams of Tolu and Peru. Many other aromatic exudates, such as Copaiba Oil and Canada Balsam, are wrongly called balsam. These usually belong to other classes of natural products, such as essential oils, resins and oleoresins. Despite the understanding of some plants, many plants are still called balsams. This article presents a chemical and pharmacological review of the most common balsams.

  10. Common Sense Biblical Hermeneutics

    Directory of Open Access Journals (Sweden)

    Michael B. Mangini

    2014-12-01

    Full Text Available Since the noetics of moderate realism provide a firm foundation upon which to build a hermeneutic of common sense, in the first part of his paper the author adopts Thomas Howe’s argument that the noetical aspect of moderate realism is a necessary condition for correct, universally valid biblical interpretation, but he adds, “insofar as it gives us hope in discovering the true meaning of a given passage.” In the second part, the author relies on John Deely’s work to show how semiotics may help interpreters go beyond meaning and seek the significance of the persons, places, events, ideas, etc., of which the meaning of the text has presented as objects to be interpreted. It is in significance that the unity of Scripture is found. The chief aim is what every passage of the Bible signifies. Considered as a genus, Scripture is composed of many parts/species that are ordered to a chief aim. This is the structure of common sense hermeneutics; therefore in the third part the author restates Peter Redpath’s exposition of Aristotle and St. Thomas’s ontology of the one and the many and analogously applies it to the question of how an exegete can discern the proper significance and faithfully interpret the word of God.

  11. Evaluation and Management of Polymyositis

    OpenAIRE

    Hunter, Kathy; Lyon, Michael G

    2012-01-01

    Polymyositis (PM) is one of the inflammatory myopathies, disorders characterized pathologically by the presence of inflammatory infiltrates in striated muscle. The principal clinical manifestation of PM is proximal muscle weakness. The cause of PM is unknown, but current evidence suggests that it is an autoimmune disorder. PM can affect people of any age, but most commonly presents between the ages of 50 to 70. PM is rarely seen in people younger than 18 years of age, and is twice as common a...

  12. Retained Myogenic Potency of Human Satellite Cells from Torn Rotator Cuff Muscles Despite Fatty Infiltration.

    Science.gov (United States)

    Koide, Masashi; Hagiwara, Yoshihiro; Tsuchiya, Masahiro; Kanzaki, Makoto; Hatakeyama, Hiroyasu; Tanaka, Yukinori; Minowa, Takashi; Takemura, Taro; Ando, Akira; Sekiguchi, Takuya; Yabe, Yutaka; Itoi, Eiji

    2018-01-01

    Rotator cuff tears (RCTs) are a common shoulder problem in the elderly that can lead to both muscle atrophy and fatty infiltration due to less physical load. Satellite cells, quiescent cells under the basal lamina of skeletal muscle fibers, play a major role in muscle regeneration. However, the myogenic potency of human satellite cells in muscles with fatty infiltration is unclear due to the difficulty in isolating from small samples, and the mechanism of the progression of fatty infiltration has not been elucidated. The purpose of this study was to analyze the population of myogenic and adipogenic cells in disused supraspinatus (SSP) and intact subscapularis (SSC) muscles of the RCTs from the same patients using fluorescence-activated cell sorting. The microstructure of the muscle with fatty infiltration was observed as a whole mount condition under multi-photon microscopy. Myogenic differentiation potential and gene expression were evaluated in satellite cells. The results showed that the SSP muscle with greater fatty infiltration surrounded by collagen fibers compared with the SSC muscle under multi-photon microscopy. A positive correlation was observed between the ratio of muscle volume to fat volume and the ratio of myogenic precursor to adipogenic precursor. Although no difference was observed in the myogenic potential between the two groups in cell culture, satellite cells in the disused SSP muscle showed higher intrinsic myogenic gene expression than those in the intact SSC muscle. Our results indicate that satellite cells from the disused SSP retain sufficient potential of muscle growth despite the fatty infiltration.

  13. Atrophy of muscles surrounding the shoulder in hemiplegia. Analysis with MRI

    International Nuclear Information System (INIS)

    Fukuda, Fumio; Kobayashi, Tsunesaburo; Matsumoto, Shinichi

    1996-01-01

    Decrease of range of motion and subluxation of shoulders are common secondary dysfunctions after the stroke. The purpose of this study is to evaluate the atrophy of muscles surrounding shoulders in hemiplegic patients and to delineate the correlations between those atrophies and shoulder functions. MRI studies were done on bilateral shoulders in 13 hemiplegic patients with shoulder pain. The cross sectional areas of muscles surrounding shoulder, i.e., subscapularis, supraspinatus, infraspinatus, teres minor and deltoid muscle were measured on those images obtained. The degree of atrophies were evaluated by dividing cross-sectional area of the muscle on affected shoulder by that of non-affected shoulder, that is muscle atrophy ratio [MAR], for each muscle in every case. Also, the range of movements [ROM], the degree of subluxation and muscle strength of shoulder flexion were evaluated. All muscle cross-sectional areas on the affected side were significantly smaller than those of muscles on the unaffected side (p<0.01). The means of MARs were 0.68, 0.69, 0.86, 0.72 and 0.69 for subscapularis, supraspinatus, infraspinatus, teres minor and deltoid muscle. The pattern of muscle atrophies, however, varies from case to case. Both correlations of ROM versus supraspinatus MAR and degree of shoulder subluxation versus deltoid MAR were statistically significant (p<0.05). These results indicate the contribution of muscle atrophy to the shoulder dysfunction in hemiplegic patients. (author)

  14. Atrophy of muscles surrounding the shoulder in hemiplegia. Analysis with MRI

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Fumio; Kobayashi, Tsunesaburo; Matsumoto, Shinichi [Fukushima Rosai Hospital, Iwaki (Japan)

    1996-01-01

    Decrease of range of motion and subluxation of shoulders are common secondary dysfunctions after the stroke. The purpose of this study is to evaluate the atrophy of muscles surrounding shoulders in hemiplegic patients and to delineate the correlations between those atrophies and shoulder functions. MRI studies were done on bilateral shoulders in 13 hemiplegic patients with shoulder pain. The cross sectional areas of muscles surrounding shoulder, i.e., subscapularis, supraspinatus, infraspinatus, teres minor and deltoid muscle were measured on those images obtained. The degree of atrophies were evaluated by dividing cross-sectional area of the muscle on affected shoulder by that of non-affected shoulder, that is muscle atrophy ratio [MAR], for each muscle in every case. Also, the range of movements [ROM], the degree of subluxation and muscle strength of shoulder flexion were evaluated. All muscle cross-sectional areas on the affected side were significantly smaller than those of muscles on the unaffected side (p<0.01). The means of MARs were 0.68, 0.69, 0.86, 0.72 and 0.69 for subscapularis, supraspinatus, infraspinatus, teres minor and deltoid muscle. The pattern of muscle atrophies, however, varies from case to case. Both correlations of ROM versus supraspinatus MAR and degree of shoulder subluxation versus deltoid MAR were statistically significant (p<0.05). These results indicate the contribution of muscle atrophy to the shoulder dysfunction in hemiplegic patients. (author).

  15. The muscle regulatory and structural protein MLP is a cytoskeletal binding partner of betaI-spectrin.

    Science.gov (United States)

    Flick, M J; Konieczny, S F

    2000-05-01

    Muscle LIM protein (MLP) is a striated muscle-specific factor that enhances myogenic differentiation and is critical to maintaining the structural integrity of the contractile apparatus. The ability of MLP to regulate myogenesis is particularly interesting since it exhibits multiple subcellular localizations, being found in both nuclear and cytoplasmic compartments. Despite extensive biochemical analyses on MLP, the mechanism(s) by which it influences the myogenic program remains largely undefined. To further examine the role of MLP as a positive myogenic regulator, a yeast two-hybrid screen was employed to identify cytoplasmic-associated MLP binding partners. From this screen, the cytoskeletal protein betaI-spectrin was isolated. Protein interaction assays demonstrate that MLP and betaI-spectrin associate with one another in vivo as well as when tested under several in vitro binding conditions. betaI-spectrin binds specifically to MLP but not to the MLP related proteins CRP1 and CRP2 or to other LIM domain containing proteins. The MLP:beta-spectrin interaction is mediated by the second LIM motif of MLP and by repeat 7 of beta-spectrin. Confocal microscopy studies also reveal that MLP co-localizes with beta-spectrin at the sarcolemma overlying the Z- and M-lines of myofibrils in both cardiac and skeletal muscle tissue. Given that beta-spectrin is a known costamere protein, we propose that sarcolemma-associated MLP also serves as a key costamere protein, stabilizing the association of the contractile apparatus with the sarcolemma by linking the beta-spectrin network to the alpha-actinin crosslinked actin filaments of the myofibril.

  16. Analysis of Muscle Contraction on Pottery Manufacturing Process Using Electromyography (EMG)

    Science.gov (United States)

    Soewardi, Hartomo; Azka Rahmayani, Amalia

    2016-01-01

    One of the most common problems in pottery manufacturing process is musculoskeletal disorders on workers. This disorder was caused by uncomfortable posture where the workers sit on the floor with one leg was folded and another was twisted for long duration. Back, waist, buttock, and right knee frequently experience the disorders. The objective of this research is to investigate the muscle contraction at such body part of workers in manufacturing process of pottery. Electromyography is used to investigate the muscle contraction based on the median frequency signal. Focus measurements is conducted on four muscles types. They are lower interscapular muscle on the right and left side, dorsal lumbar muscle, and lateral hamstring muscle. Statistical analysis is conducted to test differences of muscle contraction between female and male. The result of this research showed that the muscle which reached the highest contraction is dorsal lumbar muscle with the average of median frequency is 51,84 Hz. Then followed by lower interscapular muscle on the left side with the average of median frequency is 31,30 hz, lower interscapular muscle on the right side average of median frequency is 31,24 Hz, and lateral hamstring muscle average of median frequency is 21,77 Hz. Based on the statistic analysis result, there were no differences between male and female on left and right lower interscapular muscle and dorsal lumbar muscle but there were differences on lateral hamstring muscle with the significance level is 5%. Besides that, there were differences for all combination muscle types with the level of significance is 5%.

  17. CPL: Common Pipeline Library

    Science.gov (United States)

    ESO CPL Development Team

    2014-02-01

    The Common Pipeline Library (CPL) is a set of ISO-C libraries that provide a comprehensive, efficient and robust software toolkit to create automated astronomical data reduction pipelines. Though initially developed as a standardized way to build VLT instrument pipelines, the CPL may be more generally applied to any similar application. The code also provides a variety of general purpose image- and signal-processing functions, making it an excellent framework for the creation of more generic data handling packages. The CPL handles low-level data types (images, tables, matrices, strings, property lists, etc.) and medium-level data access methods (a simple data abstraction layer for FITS files). It also provides table organization and manipulation, keyword/value handling and management, and support for dynamic loading of recipe modules using programs such as EsoRex (ascl:1504.003).

  18. Common Superficial Bursitis.

    Science.gov (United States)

    Khodaee, Morteza

    2017-02-15

    Superficial bursitis most often occurs in the olecranon and prepatellar bursae. Less common locations are the superficial infrapatellar and subcutaneous (superficial) calcaneal bursae. Chronic microtrauma (e.g., kneeling on the prepatellar bursa) is the most common cause of superficial bursitis. Other causes include acute trauma/hemorrhage, inflammatory disorders such as gout or rheumatoid arthritis, and infection (septic bursitis). Diagnosis is usually based on clinical presentation, with a particular focus on signs of septic bursitis. Ultrasonography can help distinguish bursitis from cellulitis. Blood testing (white blood cell count, inflammatory markers) and magnetic resonance imaging can help distinguish infectious from noninfectious causes. If infection is suspected, bursal aspiration should be performed and fluid examined using Gram stain, crystal analysis, glucose measurement, blood cell count, and culture. Management depends on the type of bursitis. Acute traumatic/hemorrhagic bursitis is treated conservatively with ice, elevation, rest, and analgesics; aspiration may shorten the duration of symptoms. Chronic microtraumatic bursitis should be treated conservatively, and the underlying cause addressed. Bursal aspiration of microtraumatic bursitis is generally not recommended because of the risk of iatrogenic septic bursitis. Although intrabursal corticosteroid injections are sometimes used to treat microtraumatic bursitis, high-quality evidence demonstrating any benefit is unavailable. Chronic inflammatory bursitis (e.g., gout, rheumatoid arthritis) is treated by addressing the underlying condition, and intrabursal corticosteroid injections are often used. For septic bursitis, antibiotics effective against Staphylococcus aureus are generally the initial treatment, with surgery reserved for bursitis not responsive to antibiotics or for recurrent cases. Outpatient antibiotics may be considered in those who are not acutely ill; patients who are acutely ill

  19. The effects of muscle-tendon surgery on dynamic electromyographic patterns and muscle tone in children with cerebral palsy.

    Science.gov (United States)

    Dreher, T; Brunner, R; Vegvari, D; Heitzmann, D; Gantz, S; Maier, M W; Braatz, F; Wolf, S I

    2013-06-01

    During multilevel surgery, muscle-tendon lengthening (MTL) is commonly carried out in children with cerebral palsy. However, it is unclear if MTL also modifies increased muscle tone and if pathologic activation patterns are changed as an indirect effect of the biomechanical changes. Since investigations addressing this issue are limited, this study aimed at evaluating the effects of MTL on muscle tone and activation pattern. Forty-two children with spastic diplegia who were treated by MTL underwent standardized muscle tone testing (modified Ashworth and Tardieu test), dynamic EMG and three-dimensional gait analysis before, one and three years after MTL. For the evaluation of muscle activation patterns the norm-distance of dynamic EMG data was analyzed. Range of motion and joint alignment in clinical examination were found to be significantly improved one year after MTL. However, deterioration of these parameters was noted after three years. Muscle tone was significantly reduced one year postoperatively but showed an increase after three years. Joint kinematics were found significantly closer to reference data of age matched controls initially after surgery, but deteriorated until three years postoperatively. However, the EMG patterns of the muscles which were surgically addressed were found to be unchanged in either follow-up. These findings suggest that despite the influence of MTS on biomechanics and physiology (muscle tone reduction and improvements of joint mobility and gait pattern) MTS does not change abnormal patterns of muscle activation. Recurrence of increased muscle tone and deterioration of kinematic parameters three years after surgery may be attributed to these persistent pathologic activation patterns. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Delayed onset muscle soreness: Involvement of neurotrophic factors.

    Science.gov (United States)

    Mizumura, Kazue; Taguchi, Toru

    2016-01-01

    Delayed-onset muscle soreness (DOMS) is quite a common consequence of unaccustomed strenuous exercise, especially exercise containing eccentric contraction (lengthening contraction, LC). Its typical sign is mechanical hyperalgesia (tenderness and movement related pain). Its cause has been commonly believed to be micro-damage of the muscle and subsequent inflammation. Here we present a brief historical overview of the damage-inflammation theory followed by a discussion of our new findings. Different from previous observations, we have observed mechanical hyperalgesia in rats 1-3 days after LC without any apparent microscopic damage of the muscle or signs of inflammation. With our model we have found that two pathways are involved in inducing mechanical hyperalgesia after LC: activation of the B2 bradykinin receptor-nerve growth factor (NGF) pathway and activation of the COX-2-glial cell line-derived neurotrophic factor (GDNF) pathway. These neurotrophic factors were produced by muscle fibers and/or satellite cells. This means that muscle fiber damage is not essential, although it is sufficient, for induction of DOMS, instead, NGF and GDNF produced by muscle fibers/satellite cells play crucial roles in DOMS.

  1. Are MRI-defined fat infiltrations in the multifidus muscles associated with low back pain?

    DEFF Research Database (Denmark)

    Kjær, Per; Bendix, Tom; Sorensen, Joan Solgaard

    2007-01-01

    Because training of the lumbar muscles is a commonly recommended intervention in low back pain (LBP), it is important to clarify whether lumbar muscle atrophy is related to LBP. Fat infiltration seems to be a late stage of muscular degeneration, and can be measured in a non-invasive manner using...... magnetic resonance imaging. The purpose of this study was to investigate if fat infiltration in the lumbar multifidus muscles (LMM) is associated with LBP in adults and adolescents....

  2. Shock wave therapy for spastic plantar flexor muscles in hemiplegic cerebral palsy children

    OpenAIRE

    Hala A. Abdel Gawad; Amel E. Abdel Karim; Amira H. Mohammed

    2015-01-01

    Background: The spastic motor type is the most common form of cerebral palsy (CP). Spastic equines foot is the most frequent deformity in ambulated children with CP. Shock wave therapy on spastic muscles of the upper limb in stroke patients provided a significant reduction in muscle tone. Aim: The present study aimed to investigate the efficiency of shock wave therapy on spastic planter flexor muscles and its relation to the gait in spastic hemiplegic cerebral palsy children. Methods: T...

  3. The Influence of Neck Posture and Helmet Configuration on Neck Muscle Demands

    Science.gov (United States)

    2014-06-22

    Electromyography ( EMG ) of 10 neck muscles were assessed while performing 7 distinct movements wearing 6 different helmet configurations. With respect to posture...configuration on muscular responses of the neck. In general, the muscular demands were modest, with mean EMG values for all muscles and tasks ranging...CF) pilots and flight engineers, neck pain and muscle fatigue are common with over 80% of CH146 Griffon helicopter pilots and flight engineers

  4. Nodular smooth muscle metaplasia in multiple peritoneal endometriosis.

    Science.gov (United States)

    Kim, Hyun-Soo; Yoon, Gun; Ha, Sang Yun; Song, Sang Yong

    2015-01-01

    We report here an unusual presentation of peritoneal endometriosis with smooth muscle metaplasia as multiple protruding masses on the lateral pelvic wall. Smooth muscle metaplasia is a common finding in rectovaginal endometriosis, whereas in peritoneal endometriosis, smooth muscle metaplasia is uncommon and its nodular presentation on the pelvic wall is even rarer. To the best of our knowledge, this is the first case of nodular smooth muscle metaplasia occurring in peritoneal endometriosis. As observed in this case, when performing laparoscopic surgery in order to excise malignant tumors of intra-abdominal or pelvic organs, it can be difficult for surgeons to distinguish the metastatic tumors from benign nodular pelvic wall lesions, including endometriosis, based on the gross findings only. Therefore, an intraoperative frozen section biopsy of the pelvic wall nodules should be performed to evaluate the peritoneal involvement by malignant tumors. Moreover, this report implies that peritoneal endometriosis, as well as rectovaginal endometriosis, can clinically present as nodular lesions if obvious smooth muscle metaplasia is present. The pathological investigation of smooth muscle cells in peritoneal lesions can contribute not only to the precise diagnosis but also to the structure and function of smooth muscle cells and related cells involved in the histogenesis of peritoneal endometriosis.

  5. Acylated and unacylated ghrelin impair skeletal muscle atrophy in mice.

    Science.gov (United States)

    Porporato, Paolo E; Filigheddu, Nicoletta; Reano, Simone; Ferrara, Michele; Angelino, Elia; Gnocchi, Viola F; Prodam, Flavia; Ronchi, Giulia; Fagoonee, Sharmila; Fornaro, Michele; Chianale, Federica; Baldanzi, Gianluca; Surico, Nicola; Sinigaglia, Fabiola; Perroteau, Isabelle; Smith, Roy G; Sun, Yuxiang; Geuna, Stefano; Graziani, Andrea

    2013-02-01

    Cachexia is a wasting syndrome associated with cancer, AIDS, multiple sclerosis, and several other disease states. It is characterized by weight loss, fatigue, loss of appetite, and skeletal muscle atrophy and is associated with poor patient prognosis, making it an important treatment target. Ghrelin is a peptide hormone that stimulates growth hormone (GH) release and positive energy balance through binding to the receptor GHSR-1a. Only acylated ghrelin (AG), but not the unacylated form (UnAG), can bind GHSR-1a; however, UnAG and AG share several GHSR-1a-independent biological activities. Here we investigated whether UnAG and AG could protect against skeletal muscle atrophy in a GHSR-1a-independent manner. We found that both AG and UnAG inhibited dexamethasone-induced skeletal muscle atrophy and atrogene expression through PI3Kβ-, mTORC2-, and p38-mediated pathways in myotubes. Upregulation of circulating UnAG in mice impaired skeletal muscle atrophy induced by either fasting or denervation without stimulating muscle hypertrophy and GHSR-1a-mediated activation of the GH/IGF-1 axis. In Ghsr-deficient mice, both AG and UnAG induced phosphorylation of Akt in skeletal muscle and impaired fasting-induced atrophy. These results demonstrate that AG and UnAG act on a common, unidentified receptor to block skeletal muscle atrophy in a GH-independent manner.

  6. A single dose of histamine-receptor antagonists before downhill running alters markers of muscle damage and delayed-onset muscle soreness.

    Science.gov (United States)

    Ely, Matthew R; Romero, Steven A; Sieck, Dylan C; Mangum, Joshua E; Luttrell, Meredith J; Halliwill, John R

    2017-03-01

    Histamine contributes to elevations in skeletal muscle blood flow following exercise, which raises the possibility that histamine is an important mediator of the inflammatory response to exercise. We examined the influence of antihistamines on postexercise blood flow, inflammation, muscle damage, and delayed-onset muscle soreness (DOMS) in a model of moderate exercise-induced muscle damage. Subjects consumed either a combination of fexofenadine and ranitidine (blockade, n = 12) or nothing (control, n = 12) before 45 min of downhill running (-10% grade). Blood flow to the leg was measured before and throughout 120 min of exercise recovery. Markers of inflammation, muscle damage, and DOMS were obtained before and at 0, 6, 12, 24, 48, and 72 h postexercise. At 60 min postexercise, blood flow was reduced ~29% with blockade compared with control ( P histamine-receptor blockade reduced postexercise blood flow, had no effect on the pattern of inflammatory markers, increased serum creatine kinase concentrations, attenuated muscle strength loss, and reduced pain perception following muscle-damaging exercise. NEW & NOTEWORTHY Histamine appears to be intimately involved with skeletal muscle during and following exercise. Blocking histamine's actions during muscle-damaging exercise, via common over-the-counter antihistamines, resulted in increased serum creatine kinase, an indirect marker of muscle damage. Paradoxically, blocking histamine's actions attenuated muscle strength loss and reduced perceptions of muscle pain for 72 h following muscle-damaging exercise. These results indicate that exercise-induced histamine release may have a broad impact on protecting muscle from exercise-induced damage. Copyright © 2017 the American Physiological Society.

  7. Muscles and their myokines

    DEFF Research Database (Denmark)

    Pedersen, Bente Klarlund

    2011-01-01

    that a physically active life plays an independent role in the protection against type 2 diabetes, cardiovascular diseases, cancer, dementia and even depression. For most of the last century, researchers sought a link between muscle contraction and humoral changes in the form of an 'exercise factor', which could......In the past, the role of physical activity as a life-style modulating factor has been considered as that of a tool to balance energy intake. Although it is important to avoid obesity, physical inactivity should be discussed in a much broader context. There is accumulating epidemiological evidence......-like fashion, exerting specific endocrine effects on other organs. Other myokines work via paracrine mechanisms, exerting local effects on signalling pathways involved in muscle metabolism. It has been suggested that myokines may contribute to exercise-induced protection against several chronic diseases....

  8. [Primary muscle cramps].

    Science.gov (United States)

    Serratrice, G

    2008-05-01

    Primary muscle cramps, without known cause, are very frequent especially in the elderly and during the night. They are different from secondary cramps. Likewise they are to be separated from several syndromes erroneously quoted as cramps. The pathophysiological mechanism seems due to result from an initial dysfunction in the distal part of the motoneuron. When the cramps are severe, differential diagnosis with amyotrophic lateral sclerosis may be difficult. Quinine is the best empiric treatment largely used in spite of moderate side effects.

  9. Reformulating the commons

    Directory of Open Access Journals (Sweden)

    Ostrom Elinor

    2002-01-01

    Full Text Available The western hemisphere is richly endowed with a diversity of natural resource systems that are governed by complex local and national institutional arrangements that have not, until recently, been well understood. While many local communities that possess a high degree of autonomy to govern local resources have been highly successful over long periods of time, others fail to take action to prevent overuse and degradation of forests, inshore fisheries, and other natural resources. The conventional theory used to predict and explain how local users will relate to resources that they share makes a uniform prediction that users themselves will be unable to extricate themselves from the tragedy of the commons. Using this theoretical view of the world, there is no variance in the performance of self-organized groups. In theory, there are no self-organized groups. Empirical evidence tells us, however, that considerable variance in performance exists and many more local users self-organize and are more successful than it is consistent with the conventional theory . Parts of a new theory are presented here.

  10. Comparative Analysis of Muscle Hypertrophy Models Reveals Divergent Gene Transcription Profiles and Points to Translational Regulation of Muscle Growth through Increased mTOR Signaling

    Directory of Open Access Journals (Sweden)

    Marcelo G. Pereira

    2017-12-01

    Full Text Available Skeletal muscle mass is a result of the balance between protein breakdown and protein synthesis. It has been shown that multiple conditions of muscle atrophy are characterized by the common regulation of a specific set of genes, termed atrogenes. It is not known whether various models of muscle hypertrophy are similarly regulated by a common transcriptional program. Here, we characterized gene expression changes in three different conditions of muscle growth, examining each condition during acute and chronic phases. Specifically, we compared the transcriptome of Extensor Digitorum Longus (EDL muscles collected (1 during the rapid phase of postnatal growth at 2 and 4 weeks of age, (2 24 h or 3 weeks after constitutive activation of AKT, and (3 24 h or 3 weeks after overload hypertrophy caused by tenotomy of the Tibialis Anterior muscle. We observed an important overlap between significantly regulated genes when comparing each single condition at the two different timepoints. Furthermore, examining the transcriptional changes occurring 24 h after a hypertrophic stimulus, we identify an important role for genes linked to a stress response, despite the absence of muscle damage in the AKT model. However, when we compared all different growth conditions, we did not find a common transcriptional fingerprint. On the other hand, all conditions showed a marked increase in mTORC1 signaling and increased ribosome biogenesis, suggesting that muscle growth is characterized more by translational, than transcriptional regulation.

  11. Muscle-specific integrins in masseter muscle fibers of chimpanzees: an immunohistochemical study.

    Directory of Open Access Journals (Sweden)

    Gianluigi Vaccarino

    2010-05-01

    differentiation, and cell-extracellular matrix interactions. Our results demonstrated a different quantitative composition of integrins, in alpha male in respect to human and non-alpha male, hypothesizing that the MYH16 gene could modify the expression of integrins, influencing, in turn, the phenotype of muscle. In this way, alpha 7A-and beta 1A-integrin could determine the presence of type II fibers and then they could play a key role in the determination of contraction force. Then, MYH16 gene could be a common interactor of signalling between sarcoglycans and integrins in chimpanzee muscles.

  12. MUSCLE TENSION DYSPHONIA

    Directory of Open Access Journals (Sweden)

    Irena Hočevar Boltežar

    2004-07-01

    Full Text Available Background. Muscle tension dysphonia (MTD is the cause of hoarseness in almost one half of the patients with voice disorders. The otorhinolaryngologic examination discovers no evident organic lesions in the larynx at least in the beginning of the voice problems. The reason for the hoarse voice is a disordered and maladjusted activity of the muscles taking part in phonation and/or articulation. In some patients, the irregular function of the larynx results in mucosal lesions on vocal folds. The factors participating in the development of MTD, directly or indirectly influence the quality of laryngeal mucosa, the activity of the phonatory muscles and/or increase of the vocal load. In the diagnostics and treatment of the MTD a phoniatrician, a speech and language therapist and a psychologist closely cooperate with the patient who must take an active role. The treatment is a long-lasting one but resulted in a high percentage of clinical success.Conclusions. Most likely, MTD is not a special disease but only a reflection of any disorder in the complicated system of regulation and realization of phonation. The prognosis of treatment is good when all unfavourable factors participating in development of MTD are eliminated and a proper professional voice- and psychotherapy started.

  13. Neuromuscular and muscle-tendon system adaptations to isotonic and isokinetic eccentric exercise.

    Science.gov (United States)

    Guilhem, G; Cornu, C; Guével, A

    2010-06-01

    To present the properties of an eccentric contraction and compare neuromuscular and muscle-tendon system adaptations induced by isotonic and isokinetic eccentric trainings. An eccentric muscle contraction is characterized by the production of muscle force associated to a lengthening of the muscle-tendon system. This muscle solicitation can cause micro lesions followed by a regeneration process of the muscle-tendon system. Eccentric exercise is commonly used in functional rehabilitation for its positive effect on collagen synthesis but also for resistance training to increase muscle strength and muscle mass in athletes. Indeed, eccentric training stimulates muscle hypertrophy, increases the fascicle pennation angle, fascicles length and neural activation, thus inducing greater strength gains than concentric or isometric training programs. Eccentric exercise is commonly performed either against a constant external load (isotonic) or at constant velocity (isokinetic), inducing different mechanical constraints. These different mechanical constraints could induce structural and neural adaptive strategies specific to each type of exercise. The literature tends to show that isotonic mode leads to a greater strength gain than isokinetic mode. This observation could be explained by a greater neuromuscular activation after IT training. However, the specific muscle adaptations induced by each mode remain difficult to determine due to the lack of standardized, comparative studies. 2010 Elsevier Masson SAS. All rights reserved.

  14. Aging augments the impact of influenza respiratory tract infection on mobility impairments, muscle-localized inflammation, and muscle atrophy.

    Science.gov (United States)

    Bartley, Jenna M; Pan, Sarah J; Keilich, Spencer R; Hopkins, Jacob W; Al-Naggar, Iman M; Kuchel, George A; Haynes, Laura

    2016-04-01

    Although the influenza virus only infects the respiratory system, myalgias are commonly experienced during infection. In addition to a greater risk of hospitalization and death, older adults are more likely to develop disability following influenza infection; however, this relationship is understudied. We hypothesized that upon challenge with influenza, aging would be associated with functional impairments, as well as upregulation of skeletal muscle inflammatory and atrophy genes. Infected young and aged mice demonstrated decreased mobility and altered gait kinetics. These declines were more prominent in hind limbs and in aged mice. Skeletal muscle expression of genes involved in inflammation, as well as muscle atrophy and proteolysis, increased during influenza infection with an elevated and prolonged peak in aged mice. Infection also decreased expression of positive regulators of muscle mass and myogenesis components to a greater degree in aged mice. Gene expression correlated to influenza-induced body mass loss, although evidence did not support direct muscle infection. Overall, influenza leads to mobility impairments with induction of inflammatory and muscle degradation genes and downregulation of positive regulators of muscle. These effects are augmented and prolonged with aging, providing a molecular link between influenza infection, decreased resilience and increased risk of disability in the elderly.

  15. Diagnostic methods to assess inspiratory and expiratory muscle strength

    Directory of Open Access Journals (Sweden)

    Pedro Caruso

    2015-04-01

    Full Text Available Impairment of (inspiratory and expiratory respiratory muscles is a common clinical finding, not only in patients with neuromuscular disease but also in patients with primary disease of the lung parenchyma or airways. Although such impairment is common, its recognition is usually delayed because its signs and symptoms are nonspecific and late. This delayed recognition, or even the lack thereof, occurs because the diagnostic tests used in the assessment of respiratory muscle strength are not widely known and available. There are various methods of assessing respiratory muscle strength during the inspiratory and expiratory phases. These methods are divided into two categories: volitional tests (which require patient understanding and cooperation; and non-volitional tests. Volitional tests, such as those that measure maximal inspiratory and expiratory pressures, are the most commonly used because they are readily available. Non-volitional tests depend on magnetic stimulation of the phrenic nerve accompanied by the measurement of inspiratory mouth pressure, inspiratory esophageal pressure, or inspiratory transdiaphragmatic pressure. Another method that has come to be widely used is ultrasound imaging of the diaphragm. We believe that pulmonologists involved in the care of patients with respiratory diseases should be familiar with the tests used in order to assess respiratory muscle function.Therefore, the aim of the present article is to describe the advantages, disadvantages, procedures, and clinical applicability of the main tests used in the assessment of respiratory muscle strength.

  16. Urban green commons: Insights on urban common property systems

    NARCIS (Netherlands)

    Colding, J.; Barthel, S.; Bendt, P.; Snep, R.P.H.; Knaap, van der W.G.M.; Ernstson, H.

    2013-01-01

    The aim of this paper is to shed new light on urban common property systems. We deal with urban commons in relation to urban green-space management, referring to them as urban green commons. Applying a property-rights analytic perspective, we synthesize information on urban green commons from three

  17. Threads of common knowledge.

    Science.gov (United States)

    Icamina, P

    1993-04-01

    Indigenous knowledge is examined as it is affected by development and scientific exploration. The indigenous culture of shamanism, which originated in northern and southeast Asia, is a "political and religious technique for managing societies through rituals, myths, and world views." There is respect for the natural environment and community life as a social common good. This world view is still practiced by many in Latin America and in Colombia specifically. Colombian shamanism has an environmental accounting system, but the Brazilian government has established its own system of land tenure and political representation which does not adequately represent shamanism. In 1992 a conference was held in the Philippines by the International Institute for Rural Reconstruction and IDRC on sustainable development and indigenous knowledge. The link between the two is necessary. Unfortunately, there are already examples in the Philippines of loss of traditional crop diversity after the introduction of modern farming techniques and new crop varieties. An attempt was made to collect species, but without proper identification. Opposition was expressed to the preservation of wilderness preserves; the desire was to allow indigenous people to maintain their homeland and use their time-tested sustainable resource management strategies. Property rights were also discussed during the conference. Of particular concern was the protection of knowledge rights about biological diversity or pharmaceutical properties of indigenous plant species. The original owners and keepers of the knowledge must retain access and control. The research gaps were identified and found to be expansive. Reference was made to a study of Mexican Indian children who knew 138 plant species while non-Indian children knew only 37. Sometimes there is conflict of interest where foresters prefer timber forests and farmers desire fuelwood supplies and fodder and grazing land, which is provided by shrubland. Information

  18. Muscle wasting in myotonic dystrophies: a model of premature aging.

    Directory of Open Access Journals (Sweden)

    Alba Judith eMateos-Aierdi

    2015-07-01

    Full Text Available Myotonic dystrophy type I (DM1 or Steinert’s disease and type II (DM2 are multisystem disorders of genetic origin. Progressive muscular weakness, atrophy and myotonia are the most prominent neuromuscular features of these diseases, and other clinical manifestations such as cardiomyopathy, insulin-resistance and cataracts are also common. From a clinical perspective, most DM symptoms are interpreted as a result of an accelerated aging (cataracts, muscular weakness and atrophy, cognitive decline, metabolic dysfunction, etc., including an increased risk of developing tumors. From this point of view, DM1 could be described as a progeroid syndrome since a notable age-dependent dysfunction of all systems occurs. The underlying molecular disorder in DM1 consists of the existence of a pathological (CTGn triplet expansion in the 3’ untranslated region of the DMPK gene, whereas (CCTGn repeats in the first intron of the CNBP/ZNF9 gene cause DM2. The expansions are transcribed into (CUGn and (CCUGn-containing RNA, respectively, which form secondary structures and sequester RNA-binding proteins, such as the splicing factor muscleblind-like protein (MBNL, forming nuclear aggregates known as foci. Other splicing factors, such as CUGBP, are also disrupted, leading to a spliceopathy of a large number of downstream genes linked to the clinical features of these diseases. Skeletal muscle regeneration relies on muscle progenitor cells, known as satellite cells, which are activated after muscle damage, and which proliferate and differentiate to muscle cells, thus regenerating the damaged tissue. Satellite cell dysfunction seems to be a common feature of both age-dependent muscle degeneration (sarcopenia and muscle wasting in DM and other muscle degenerative diseases. This review aims to describe the cellular, molecular and macrostructural processes involved in the muscular degeneration seen in DM patients, highlighting the similarities found with muscle aging.

  19. Activation of respiratory muscles during respiratory muscle training.

    Science.gov (United States)

    Walterspacher, Stephan; Pietsch, Fabian; Walker, David Johannes; Röcker, Kai; Kabitz, Hans-Joachim

    2018-01-01

    It is unknown which respiratory muscles are mainly activated by respiratory muscle training. This study evaluated Inspiratory Pressure Threshold Loading (IPTL), Inspiratory Flow Resistive Loading (IFRL) and Voluntary Isocapnic Hyperpnea (VIH) with regard to electromyographic (EMG) activation of the sternocleidomastoid muscle (SCM), parasternal muscles (PARA) and the diaphragm (DIA) in randomized order. Surface EMG were analyzed at the end of each training session and normalized using the peak EMG recorded during maximum inspiratory maneuvers (Sniff nasal pressure: SnPna, maximal inspiratory mouth occlusion pressure: PImax). 41 healthy participants were included. Maximal activation was achieved for SCM by SnPna; the PImax activated predominantly PARA and DIA. Activations of SCM and PARA were higher in IPTL and VIH than for IFRL (pVIH (pVIH differ in activation of inspiratory respiratory muscles. Whereas all methods mainly stimulate accessory respiratory muscles, diaphragm activation was predominant in IPTL. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A Trap Motion in Validating Muscle Activity Prediction from Musculoskeletal Model using EMG

    NARCIS (Netherlands)

    Wibawa, A. D.; Verdonschot, N.; Halbertsma, J.P.K.; Burgerhof, J.G.M.; Diercks, R.L.; Verkerke, G. J.

    2016-01-01

    Musculoskeletal modeling nowadays is becoming the most common tool for studying and analyzing human motion. Besides its potential in predicting muscle activity and muscle force during active motion, musculoskeletal modeling can also calculate many important kinetic data that are difficult to measure

  1. Blue-light cystoscopy in the evaluation of non-muscle-invasive bladder cancer

    NARCIS (Netherlands)

    Oude Elferink, P.; Witjes, J.A.

    2014-01-01

    Bladder carcinoma is the most common malignancy of the urinary tract. Two distinct groups can be identified: non-muscle-invasive bladder carcinoma (NMIBC) and muscle-invasive bladder carcinoma. At initial resection about 75-85% of the patients will be diagnosed with NMIBC. This subgroup has a

  2. Exercise induced effects on muscle function and range of motion in patients with hip osteoarthritis

    DEFF Research Database (Denmark)

    Bieler, Theresa; Siersma, Volkert; Magnusson, S Peter

    2018-01-01

    BACKGROUND AND PURPOSE: Patients with hip osteoarthritis have impairments in muscle function (muscle strength and power) and hip range of motion (ROM), and it is commonly believed that effective clinical management of osteoarthritis should address these impairments to reduce pain and disability. ...

  3. Effect of whole-body vibration on muscle strength, spasticity, and ...

    African Journals Online (AJOL)

    Marwa M. Ibrahim

    Abstract Background and purpose: Spastic diplegia is a common form of cerebral palsy (CP) and is characterized by spasticity and muscle weakness of both lower limbs resulting in decreased walk- ing ability. The purpose of this study was to evaluate the effect of whole body vibration (WBV) training on muscle strength, ...

  4. Responses of mouse skeletal muscle to endurance exercise. Functional, metabolic, and genomic adaptations

    NARCIS (Netherlands)

    de Snoo, M.W.

    2009-01-01

    Endurance exercise is commonly known to improve skeletal muscle performance with respect to fatigue resistance. The exact mechanisms, however, as to how skeletal muscle adapts to increased physical demand are still largely unknown, despite extensive research. These processes were originally studied

  5. Structural adaptation to ischemia in skeletal muscle: effects of blockers of the renin-angiotensin system

    NARCIS (Netherlands)

    Scheidegger, K. J.; Nelissen-Vrancken, M. H.; Leenders, P. J.; Daemen, M. J.; Smits, J. F.; Wood, J. M.

    1997-01-01

    To investigate the effects of long-term treatment with blockers of the renin-angiotensin system on capillarization and growth of fibers in ischemic hind-limb muscles and in muscles under normal growth conditions. Ischemia was induced by partial ligation of the left common iliac artery. Ischemia

  6. Reinnervation of Paralyzed Muscle by Nerve Muscle Endplate Band Grafting

    Science.gov (United States)

    2016-10-01

    x 3 mm), a nerve branch, intramuscular nerve terminals, and a motor endplate (MEP) band with numerous neuromuscular junctions. The superficial ...when muscle was stretched at optimal tension of 0.8 N. Maximal muscle force was calculated as average muscle contraction to 5 stimulation currents...force during the 200-millisecond contraction was identified, as well as initial passive tension before stimulation. The difference between themaximal

  7. Impaired Muscle Regeneration in Ob/ob and Db/db Mice

    Directory of Open Access Journals (Sweden)

    Mai-Huong Nguyen

    2011-01-01

    Full Text Available In obesity and type 2 diabetes, efficient skeletal muscle repair following injury may be required, not only for restoring muscle structure and function, but also for maintaining exercise capacity and insulin sensitivity. The hypothesis of this study was that muscle regeneration would be impaired in ob/ob and db/db mice, which are common mouse models of obesity and type 2 diabetes. Muscle injury was produced by cardiotoxin injection, and regeneration was assessed by morphological and immunostaining techniques. Muscle regeneration was delayed in ob/ob and db/db mice, but not in a less severe model of insulin resistance – feeding a high-fat diet to wild-type mice. Angiogenesis, cell proliferation, and myoblast accumulation were also impaired in ob/ob and db/db mice, but not the high-fat diet mice. The impairments in muscle regeneration were associated with impaired macrophage accumulation; macrophages have been shown previously to be required for efficient muscle regeneration. Impaired regeneration in ob/ob and db/db mice could be due partly to the lack of leptin signaling, since leptin is expressed both in damaged muscle and in cultured muscle cells. In summary, impaired muscle regeneration in ob/ob and db/db mice was associated with reduced macrophage accumulation, angiogenesis, and myoblast activity, and could have implications for insulin sensitivity in the skeletal muscle of obese and type 2 diabetic patients.

  8. The mechanisms of muscle wasting in COPD and heart failure

    Directory of Open Access Journals (Sweden)

    Giorgio Vescovo

    2012-10-01

    Full Text Available Many of the mechanisms leading to skeletal muscle wasting in COPD and heart failure are common to both conditions. These encompass neurohormonal activation and systemic inflammation. The mechanisms leading to muscle dysfunction are both qualitative and quantitative. Qualitative changes comprise the transition from aerobic metabolism and prevalent slow fibers composition toward anaerobic metabolism and fast fibers synthesis. Quantitative changes are mainly linked to muscle loss. These changes occur not only in the major muscles bulks of the body but also in respiratory muscles. The mechanisms leading to muscle wastage include cytokine-triggered skeletal muscle apoptosis and ubiquitin-proteasomeand non-ubiquitin-dependent pathways. The regulation of fiber type involves the growth hormone/insulin-like growth factor 1/calcineurin/transcriptional coactivator PGC1 cascade. The imbalance between protein synthesis and degradation plays an important role. Protein degradation can occur through ubiquitin-dependent and non-ubiquitin-dependent pathways. Very recently, two systems controlling ubiquitin-proteasome activation have been described: FOXO-ubiquitin ligase and NFkB ubiquitin ligase. These are triggered by TNFα and growth hormone/insulin-like growth factor 1. Moreover, apoptosis, which is triggered by tumor necrosis factor α, plays an important role. Another mechanism acting on muscle wastage is malnutrition, with an imbalance between catabolic and anabolic factors toward the catabolic component. Catabolism is also worsened by the activation of the adrenergic system and alteration of the cortisol/DEHA ratio toward cortisol production. Sarcomeric protein oxidation and its consequent contractile impairment can be another cause of skeletal muscle dysfunction in CHF.

  9. A murine model of muscle training by neuromuscular electrical stimulation.

    Science.gov (United States)

    Ambrosio, Fabrisia; Fitzgerald, G Kelley; Ferrari, Ricardo; Distefano, Giovanna; Carvell, George

    2012-05-09

    Neuromuscular electrical stimulation (NMES) is a common clinical modality that is widely used to restore (1), maintain (2) or enhance (3-5) muscle functional capacity. Transcutaneous surface stimulation of skeletal muscle involves a current flow between a cathode and an anode, thereby inducing excitement of the motor unit and the surrounding muscle fibers. NMES is an attractive modality to evaluate skeletal muscle adaptive responses for several reasons. First, it provides a reproducible experimental model in which physiological adaptations, such as myofiber hypertophy and muscle strengthening (6), angiogenesis (7-9), growth factor secretion (9-11), and muscle precursor cell activation (12) are well documented. Such physiological responses may be carefully titrated using different parameters of stimulation (for Cochrane review, see (13)). In addition, NMES recruits motor units non-selectively, and in a spatially fixed and temporally synchronous manner (14), offering the advantage of exerting a treatment effect on all fibers, regardless of fiber type. Although there are specified contraindications to NMES in clinical populations, including peripheral venous disorders or malignancy, for example, NMES is safe and feasible, even for those who are ill and/or bedridden and for populations in which rigorous exercise may be challenging. Here, we demonstrate the protocol for adapting commercially available electrodes and performing a NMES protocol using a murine model. This animal model has the advantage of utilizing a clinically available device and providing instant feedback regarding positioning of the electrode to elicit the desired muscle contractile effect. For the purpose of this manuscript, we will describe the protocol for muscle stimulation of the anterior compartment muscles of a mouse hindlimb.

  10. Skeletal muscle regeneration in Xenopus tadpoles and zebrafish larvae

    Directory of Open Access Journals (Sweden)

    Rodrigues Alexandre

    2012-02-01

    Full Text Available Abstract Background Mammals are not able to restore lost appendages, while many amphibians are. One important question about epimorphic regeneration is related to the origin of the new tissues and whether they come from mature cells via dedifferentiation and/or from stem cells. Several studies in urodele amphibians (salamanders indicate that, after limb or tail amputation, the multinucleated muscle fibres do dedifferentiate by fragmentation and proliferation, thereby contributing to the regenerate. In Xenopus laevis tadpoles, however, it was shown that muscle fibres do not contribute directly to the tail regenerate. We set out to study whether dedifferentiation was present during muscle regeneration of the tadpole limb and zebrafish larval tail, mainly by cell tracing and histological observations. Results Cell tracing and histological observations indicate that zebrafish tail muscle do not dedifferentiate during regeneration. Technical limitations did not allow us to trace tadpole limb cells, nevertheless we observed no signs of dedifferentiation histologically. However, ultrastructural and gene expression analysis of regenerating muscle in tadpole tail revealed an unexpected dedifferentiation phenotype. Further histological studies showed that dedifferentiating tail fibres did not enter the cell cycle and in vivo cell tracing revealed no evidences of muscle fibre fragmentation. In addition, our results indicate that this incomplete dedifferentiation was initiated by the retraction of muscle fibres. Conclusions Our results show that complete skeletal muscle dedifferentiation is less common than expected in lower vertebrates. In addition, the discovery of incomplete dedifferentiation in muscle fibres of the tadpole tail stresses the importance of coupling histological studies with in vivo cell tracing experiments to better understand the regenerative mechanisms.

  11. Skeletal muscle regeneration in Xenopus tadpoles and zebrafish larvae.

    Science.gov (United States)

    Rodrigues, Alexandre Miguel Cavaco; Christen, Bea; Martí, Mercé; Izpisúa Belmonte, Juan Carlos

    2012-02-27

    Mammals are not able to restore lost appendages, while many amphibians are. One important question about epimorphic regeneration is related to the origin of the new tissues and whether they come from mature cells via dedifferentiation and/or from stem cells. Several studies in urodele amphibians (salamanders) indicate that, after limb or tail amputation, the multinucleated muscle fibres do dedifferentiate by fragmentation and proliferation, thereby contributing to the regenerate. In Xenopus laevis tadpoles, however, it was shown that muscle fibres do not contribute directly to the tail regenerate. We set out to study whether dedifferentiation was present during muscle regeneration of the tadpole limb and zebrafish larval tail, mainly by cell tracing and histological observations. Cell tracing and histological observations indicate that zebrafish tail muscle do not dedifferentiate during regeneration. Technical limitations did not allow us to trace tadpole limb cells, nevertheless we observed no signs of dedifferentiation histologically. However, ultrastructural and gene expression analysis of regenerating muscle in tadpole tail revealed an unexpected dedifferentiation phenotype. Further histological studies showed that dedifferentiating tail fibres did not enter the cell cycle and in vivo cell tracing revealed no evidences of muscle fibre fragmentation. In addition, our results indicate that this incomplete dedifferentiation was initiated by the retraction of muscle fibres. Our results show that complete skeletal muscle dedifferentiation is less common than expected in lower vertebrates. In addition, the discovery of incomplete dedifferentiation in muscle fibres of the tadpole tail stresses the importance of coupling histological studies with in vivo cell tracing experiments to better understand the regenerative mechanisms.

  12. Skeletal muscle regeneration in Xenopus tadpoles and zebrafish larvae

    Science.gov (United States)

    2012-01-01

    Background Mammals are not able to restore lost appendages, while many amphibians are. One important question about epimorphic regeneration is related to the origin of the new tissues and whether they come from mature cells via dedifferentiation and/or from stem cells. Several studies in urodele amphibians (salamanders) indicate that, after limb or tail amputation, the multinucleated muscle fibres do dedifferentiate by fragmentation and proliferation, thereby contributing to the regenerate. In Xenopus laevis tadpoles, however, it was shown that muscle fibres do not contribute directly to the tail regenerate. We set out to study whether dedifferentiation was present during muscle regeneration of the tadpole limb and zebrafish larval tail, mainly by cell tracing and histological observations. Results Cell tracing and histological observations indicate that zebrafish tail muscle do not dedifferentiate during regeneration. Technical limitations did not allow us to trace tadpole limb cells, nevertheless we observed no signs of dedifferentiation histologically. However, ultrastructural and gene expression analysis of regenerating muscle in tadpole tail revealed an unexpected dedifferentiation phenotype. Further histological studies showed that dedifferentiating tail fibres did not enter the cell cycle and in vivo cell tracing revealed no evidences of muscle fibre fragmentation. In addition, our results indicate that this incomplete dedifferentiation was initiated by the retraction of muscle fibres. Conclusions Our results show that complete skeletal muscle dedifferentiation is less common than expected in lower vertebrates. In addition, the discovery of incomplete dedifferentiation in muscle fibres of the tadpole tail stresses the importance of coupling histological studies with in vivo cell tracing experiments to better understand the regenerative mechanisms. PMID:22369050

  13. Pneumatic Artificial Muscles Based on Biomechanical Characteristics of Human Muscles

    Directory of Open Access Journals (Sweden)

    N. Saga

    2006-01-01

    Full Text Available This article reports the pneumatic artificial muscles based on biomechanical characteristics of human muscles. A wearable device and a rehabilitation robot that assist a human muscle should have characteristics similar to those of human muscle. In addition, since the wearable device and the rehabilitation robot should be light, an actuator with a high power to weight ratio is needed. At present, the McKibben type is widely used as an artificial muscle, but in fact its physical model is highly nonlinear. Therefore, an artificial muscle actuator has been developed in which high-strength carbon fibres have been built into the silicone tube. However, its contraction rate is smaller than the actual biological muscles. On the other hand, if an artificial muscle that contracts axially is installed in a robot as compactly as the robot hand, big installing space is required. Therefore, an artificial muscle with a high contraction rate and a tendon-driven system as a compact actuator were developed, respectively. In this study, we report on the basic structure and basic characteristics of two types of actuators.

  14. [WEAK COMBINED MAGNETIC FIELDS ADJUSTED TO THE PARAMETRIC RESONANCE FOR Ca2+ INTENSIFY DYSTROPHIN SYNTHESIS IN MDX MICE SKELETAL MUSCLES AFTER CELL THERAPY].

    Science.gov (United States)

    Sokolova, A V; Sokolov, G V; Mikhailov, V M

    2016-01-01

    The mdx mice are an X-linked myopathic mutants, an animal model for human Duchenne muscular dystrophy (DMD). Mdx mice muscles are characterized by high level of striated muscle fibers (SMF) death followed by regeneration. As a result most SMFs of mdx mice have centrally located nuclei. The possibility of using stem cells therapy for the correction of DMD is actively being studied. One of the approaches to the usage of bone marrow stem cells for cellular therapy of DMD is the replacement of bone marrow after irradiation by X-rays. This method however does not give significant increase of dystrophin synthesis in mdx mice muscles fibers. We have tried to affect the mice after bone marrow transplantation by weak combined magnetic fields adjusted to the parametric resonance for Ca2+(Ca(2+)-MF) based on the data that the weak combined magnetic fields influence on tissues regeneration. We observed a significant increase in the proportion of dystrophin-positive SMFs in group of mdx mice radiation chimera 5 Gy and 3 Gy which was additionally exposed in Ca(2+)-MF in comparison with the control mdx mice and the group of mdx mice radiation chimera 5 Gy and 3 Gy which was kept in terrestrial magnetic field 2 months after chimera preparation--up to 15.8 and 18.3%, respectively. Also, there was an accumulation of SMFs without central nuclei. These data indicate a significanly increased efficacy of cell therapy in the case of additional exposition in Ca(2+)-MF. Thus, the efficiency of bone marrow transplantation mdx mice after both in doses 3 and 5 Gy was considerably enhanced by additional exposition to Ca(2+)-MF. Apparently, such magnetic field can intensify functioning of donor's nuclei which had been incorporated into muscle fibers.

  15. Responses of muscle spindles in feline dorsal neck muscles to electrical stimulation of the cervical sympathetic nerve.

    Science.gov (United States)

    Hellström, F; Roatta, S; Thunberg, J; Passatore, M; Djupsjöbacka, M

    2005-09-01

    Previous studies performed in jaw muscles of rabbits and rats have demonstrated that sympathetic outflow may affect the activity of muscle spindle afferents (MSAs). The resulting impairment of MSA information has been suggested to be involved in the genesis and spread of chronic muscle pain. The present study was designed to investigate sympathetic influences on muscle spindles in feline trapezius and splenius muscles (TrSp), as these muscles are commonly affected by chronic pain in humans. Experiments were carried out in cats anesthetized with alpha-chloralose. The effect of electrical stimulation (10 Hz for 90 s or 3 Hz for 5 min) of the peripheral stump of the cervical sympathetic nerve (CSN) was investigated on the discharge of TrSp MSAs (units classified as Ia-like and II-like) and on their responses to sinusoidal stretching of these muscles. In some of the experiments, the local microcirculation of the muscles was monitored by laser Doppler flowmetry. In total, 46 MSAs were recorded. Stimulation of the CSN at 10 Hz powerfully depressed the mean discharge rate of the majority of the tested MSAs (73%) and also affected the sensitivity of MSAs to sinusoidal changes of muscle length, which were evaluated in terms of amplitude and phase of the sinusoidal fitting of unitary activity. The amplitude was significantly reduced in Ia-like units and variably affected in II-like units, while in general the phase was affected little and not changed significantly in either group. The discharge of a smaller percentage of tested units was also modulated by 3-Hz CSN stimulation. Blockade of the neuromuscular junctions by pancuronium did not induce any changes in MSA responses to CSN stimulation, showing that these responses were not secondary to changes in extrafusal or fusimotor activity. Further data showed that the sympathetically induced modulation of MSA discharge was not secondary to the concomitant reduction of muscle blood flow induced by the stimulation. Hence

  16. Transplantation of Devitalized Muscle Scaffolds is Insufficient for Appreciable De Novo Muscle Fiber Regeneration After Volumetric Muscle Loss Injury

    Science.gov (United States)

    2014-10-10

    minced muscle grafts were shown to support de novo skeletal muscle regeneration. For instance, devitalized whole extensor digitorum longus (EDL) muscle...antero- lateral aspect of the ankle, and the distal EDL muscle tendon and extensor hallicus longus (EHL) muscle was isolated and severed above the

  17. Exercising with blocked muscle glycogenolysis

    DEFF Research Database (Denmark)

    Nielsen, Tue L; Pinós, Tomàs; Brull, Astrid

    2018-01-01

    of expression and activation of proteins involved in glycolytic flux revealed that in glycolytic, but not oxidative muscle from exercised McArdle mice, the glycolytic flux had changed compared to that in wild-type mice. Specifically, exercise triggered in glycolytic muscle a differentiated activation of insulin......BACKGROUND: McArdle disease (glycogen storage disease type V) is an inborn error of skeletal muscle metabolism, which affects glycogen phosphorylase (myophosphorylase) activity leading to an inability to break down glycogen. Patients with McArdle disease are exercise intolerant, as muscle glycogen......-derived glucose is unavailable during exercise. Metabolic adaptation to blocked muscle glycogenolysis occurs at rest in the McArdle mouse model, but only in highly glycolytic muscle. However, it is unknown what compensatory metabolic adaptations occur during exercise in McArdle disease. METHODS: In this study, 8...

  18. Muscle strength in myasthenia gravis

    DEFF Research Database (Denmark)

    Cejvanovic, S; Vissing, J

    2014-01-01

    is related to disease duration or gender. The aim of this study was to quantify the strength of patients with MG and investigate whether it is related to disease duration. METHODS: Eight muscle groups were tested by manual muscle testing and with a hand-held dynamometer in 38 patients with generalized MG...... and 37 healthy age- and gender-matched controls. The disease duration was recorded and compared with strength measures. RESULTS: On average, muscle strength was decreased by 28% compared with controls (Pstrength measures in individual patients did not differ, suggesting that the muscle...... force reported was not subject to fatigue, but reflected fixed weakness. The male patients showed a greater reduction in muscle force in all eight muscle groups than women with MG (60% vs 77% of normal, Pstrength in shoulder abductors was most affected (51% vs 62...

  19. PDH regulation in skeletal muscle

    DEFF Research Database (Denmark)

    Kiilerich, Kristian

    is determined by the overall content / activity of the regulatory proteins PDH kinase (PDK), of which there are 4 isoforms, and PDH phosphatase (PDP), of which there are 2 isoforms. The overall aim of the PhD project was to elucidate 4 issues. 1: Role of muscle type in resting and exercise-induced PDH...... in arm than leg muscles during exercise in humans may be the result of lower PDH-E1? content and not a muscle type dependent difference in PDH regulation. Both low muscle glycogen and increased plasma FFA are associated with upregulation of PDK4 protein and less exercise-induced increase in PDHa activity...... in human skeletal muscle. It may be noted that the increased PDK4 protein associated with elevated plasma FFA occurs already 2 hours after different dietary intake. A week of physical inactivity (bed rest), leading to whole body glucose intolerance, does not affect muscle PDH-E1? content, or the exercise...

  20. Common injuries in volleyball. Mechanisms of injury, prevention and rehabilitation.

    Science.gov (United States)

    Briner, W W; Kacmar, L

    1997-07-01

    Volleyball has become an extremely popular participation sport worldwide. Fortunately, the incidence of serious injury is relatively low. The sport-specific activity most commonly associated with injury is blocking. Ankle sprains are the most common acute injury. Recurrent sprains may be less likely to occur if an ankle orthosis is worn. Patellar tendinitis represents the most common overuse injury, although shoulder tendinitis secondary to the overhead activities of spiking and serving is also commonly seen. An unusual shoulder injury involving the distal branch of the suprascapular nerve which innervates the infraspinatus muscle has been increasingly described in volleyball players in recent years. Hand injuries, usually occurring while blocking, are the next most common group of injuries. Fortunately, severe knee ligament injuries are rare in volleyball. However, anterior crutiate ligament injury is more likely to occur in female players. Many of these injuries may be preventable with close attention to technique in sport-specific skills and some fairly simple preventive interventions.

  1. Simulating the effect of muscle weakness and contracture on neuromuscular control of normal gait in children.

    Science.gov (United States)

    Fox, Aaron S; Carty, Christopher P; Modenese, Luca; Barber, Lee A; Lichtwark, Glen A

    2018-03-01

    Altered neural control of movement and musculoskeletal deficiencies are common in children with spastic cerebral palsy (SCP), with muscle weakness and contracture commonly experienced. Both neural and musculoskeletal deficiencies are likely to contribute to abnormal gait, such as equinus gait (toe-walking), in children with SCP. However, it is not known whether the musculoskeletal deficiencies prevent normal gait or if neural control could be altered to achieve normal gait. This study examined the effect of simulated muscle weakness and contracture of the major plantarflexor/dorsiflexor muscles on the neuromuscular requirements for achieving normal walking gait in children. Initial muscle-driven simulations of walking with normal musculoskeletal properties by typically developing children were undertaken. Additional simulations with altered musculoskeletal properties were then undertaken; with muscle weakness and contracture simulated by reducing the maximum isometric force and tendon slack length, respectively, of selected muscles. Muscle activations and forces required across all simulations were then compared via waveform analysis. Maintenance of normal gait appeared robust to muscle weakness in isolation, with increased activation of weakened muscles the major compensatory strategy. With muscle contracture, reduced activation of the plantarflexors was required across the mid-portion of stance suggesting a greater contribution from passive forces. Increased activation and force during swing was also required from the tibialis anterior to counteract the increased passive forces from the simulated dorsiflexor muscle contracture. Improvements in plantarflexor and dorsiflexor motor function and muscle strength, concomitant with reductions in plantarflexor muscle stiffness may target the deficits associated with SCP that limit normal gait. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Unorthodox angiogenesis in skeletal muscle.

    Science.gov (United States)

    Egginton, S; Zhou, A L; Brown, M D; Hudlická, O

    2001-02-16

    The morphological pattern of angiogenesis occurring in mature, differentiated skeletal muscle in response to chronically increased muscle blood flow, muscle stretch or repetitious muscle contractions was examined to determine (a) whether capillary neoformation follows the generally accepted temporal paradigm, and (b) how the growth pattern is influenced by mechanical stimuli. Adult rats were treated for a maximum of 14 days either with the vasodilator prazosin, to elevate skeletal muscle blood flow, or underwent surgical removal of one ankle flexor, to induce compensatory overload in the remaining muscles, or had muscles chronically stimulated by implanted electrodes. Extensor digitorum longus and/or extensor hallucis proprius muscles were removed at intervals and processed for electron microscopy. A systematic examination of capillaries and their ultrastructure characterised the sequence of morphological changes indicative of angiogenesis, i.e., basement membrane disruption, endothelial cell (EC) sprouting and proliferation [immunogold labelling after bromodeoxyuridine (BrdU) incorporation]. Capillary growth in response to increased blood flow occurred by luminal division without sprouting or basement membrane (BM) breakage. In stretched muscles, EC proliferation and abluminal sprouting gave rise to new capillaries, with BM loss only at sprout tips. These distinct mechanisms appear to be additive as in chronically stimulated muscles (increased blood flow with repetitive stretch and shortening during muscle contractions) both forms of capillary growth occurred. Endothelial cell numbers per capillary profile, mitotic EC nuclei, and BrdU labelling confirmed cell proliferation prior to overt angiogenesis. Physiological angiogenesis within adult skeletal muscle progresses by mechanisms that do not readily conform to the consensus view of capillary growth, derived mainly from observations made during development, pathological vessel growth, or from in vitro systems. The

  3. Muscle necrosis - computer tomography aspects

    International Nuclear Information System (INIS)

    Franze, I.; Goebel, N.; Stuckmann, G.

    1985-01-01

    In four patients muscle necroses were observed. In two patients these were caused by intraoperative positioning, in one by having worked with a pneumatic hammer and in one possibly by alcohol. CT showed hypodense areas in the affected muscles which were - in the state of subacute necroses - surrounded by hyperaemic borders. The diagnosis was confirmed by puncture or biopsy. After six months hypodense areas were still perceptible in the atrophic muscles of two patients. (orig.) [de

  4. Muscle dysmorphia: current insights

    Directory of Open Access Journals (Sweden)

    Tod D

    2016-08-01

    Full Text Available David Tod1 Christian Edwards2 Ieuan Cranswick1 1School of Sport and Exercise Science, Faculty of Science, Liverpool John Moores University, Liverpool, Merseyside, 2Institute of Sport and Exercise Science, University of Worcester, Worcester, Worcestershire, UK Abstract: Since 1997, there has been increasing research focusing on muscle dysmorphia, a condition underpinned by people’s beliefs that they have insufficient muscularity, in both the Western and non-Western medical and scientific communities. Much of this empirical interest has surveyed nonclinical samples, and there is limited understanding of people with the condition beyond knowledge about their characteristics. Much of the existing knowledge about people with the condition is unsurprising and inherent in the definition of the disorder, such as dissatisfaction with muscularity and adherence to muscle-building activities. Only recently have investigators started to explore questions beyond these limited tautological findings that may give rise to substantial knowledge advances, such as the examination of masculine and feminine norms. There is limited understanding of additional topics such as etiology, prevalence, nosology, prognosis, and treatment. Further, the evidence is largely based on a small number of unstandardized case reports and descriptive studies (involving small samples, which are largely confined to Western (North American, British, and Australian males. Although much research has been undertaken since the term “muscle dysmorphia” entered the psychiatric lexicon in 1997, there remains tremendous scope for knowledge advancement. A primary task in the short term is for investigators to examine the extent to which the condition exists among well-defined populations to help determine the justification for research funding relative to other public health issues. A greater variety of research questions and designs may contribute to a broader and more robust knowledge base

  5. Muscle damage and muscle remodeling: no pain, no gain?

    Science.gov (United States)

    Flann, Kyle L; LaStayo, Paul C; McClain, Donald A; Hazel, Mark; Lindstedt, Stan L

    2011-02-15

    Skeletal muscle is a dynamic tissue that responds adaptively to both the nature and intensity of muscle use. This phenotypic plasticity ensures that muscle structure is linked to patterns of muscle use throughout the lifetime of an animal. The cascade of events that result in muscle restructuring - for example, in response to resistance exercise training - is often thought to be initiated by muscle damage. We designed this study to test the hypothesis that symptomatic (i.e. detectable) damage is a necessary precursor for muscle remodeling. Subjects were divided into two experimental populations: pre-trained (PT) and naive (NA). Demonstrable muscle damage was avoided in the PT group by a three-week gradual 'ramp-up' protocol. By contrast, the NA group was subjected to an initial damaging bout of exercise. Both groups participated in an eight-week high-force eccentric-cycle ergometry program (20 min, three times per week) designed to equate the total work done during training between the groups. The NA group experienced signs of damage, absent in the PT group, as indicated by greater than five times higher levels of plasma creatine kinase (CK) and self-reporting of initial perceived soreness and exertion, yet muscle size and strength gains were not different for the two groups. RT-PCR analysis revealed similar increases in levels of the growth factor IGF-1Ea mRNA in both groups. Likewise, the significant (Pmuscle volume) were equal in both groups. Finally, strength increases were identical for both groups (PT=25% and NA=26% improvement). The results of this study suggest that muscle rebuilding - for example, hypertrophy - can be initiated independent of any discernible damage to the muscle.

  6. Skeletal Muscle Ultrasonography in Nutrition and Functional Outcome Assessment of Critically Ill Children: Experience and Insights From Pediatric Disease and Adult Critical Care Studies [Formula: see text].

    Science.gov (United States)

    Ong, Chengsi; Lee, Jan Hau; Leow, Melvin K S; Puthucheary, Zudin A

    2017-09-01

    Evidence suggests that critically ill children develop muscle wasting, which could affect outcomes. Muscle ultrasound has been used to track muscle wasting and association with outcomes in critically ill adults but not children. This review aims to summarize methodological considerations of muscle ultrasound, structural findings, and possibilities for its application in the assessment of nutrition and functional outcomes in critically ill children. Medline, Embase, and CINAHL databases were searched up until April 2016. Articles describing skeletal muscle ultrasound in children and critically ill adults were analyzed qualitatively for details on techniques and findings. Thickness and cross-sectional area of various upper and lower body muscles have been studied to quantify muscle mass and detect muscle changes. The quadriceps femoris muscle is one of the most commonly measured muscles due to its relation to mobility and is sensitive to changes over time. However, the margin of error for quadriceps thickness is too wide to reliably detect muscle changes in critically ill children. Muscle size and its correlation with strength and function also have not yet been studied in critically ill children. Echogenicity, used to detect compromised muscle structure in neuromuscular disease, may be another property worth studying in critically ill children. Muscle ultrasound may be useful in detecting muscle wasting in critically ill children but has not been shown to be sufficiently reliable in this population. Further study of the reliability and correlation with functional outcomes and nutrition intake is required before muscle ultrasound is routinely employed in critically ill children.

  7. Turning scar into muscle.

    Science.gov (United States)

    de Carvalho, Antonio Carlos Campos; Carvalho, Adriana Bastos

    2012-09-26

    After the demonstration that somatic cells could be reprogrammed to a pluripotent state, exciting new prospects were opened for the cardiac regeneration field. It did not take long for the development of strategies to convert somatic cells directly into cardiomyocytes. Despite the intrinsic difficulties of cell reprogramming, such as low efficiency, the therapeutic possibilities created by the ability to turn scar into muscle are enormous. Here, we discuss some of the major advances and strategies used in direct cardiac reprogramming and examine discrepancies and concerns that still need to be resolved in the field.

  8. Contractures and muscle disease.

    Science.gov (United States)

    Walters, R Jon

    2016-08-01

    Contractures are one of a handful of signs in muscle disease, besides weakness and its distribution, whose presence can help guide us diagnostically, a welcome star on the horizon. Contractures are associated with several myopathies, some with important cardiac manifestations, and consequently are important to recognise; their presence may also provide us with a potential satisfying 'penny dropping' diagnostic moment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  9. Lipoxygenase in chicken muscle

    International Nuclear Information System (INIS)

    Grossman, S.; Bergman, M.; Sklan, D.

    1988-01-01

    The presence of lipoxygenase-type enzymes was demonstrated in chick muscles. Examination of the oxidation products of [ 14 C]arachidonic acid revealed the presence of 15-lipoxygenase. The enzyme was partially purified by affinity chromatography on linoleoyl-aminoethyl-Sepharose. The enzyme was stable on frozen storage, and activity was almost completely preserved after 12-month storage at -20 degree C. During this period the content of cis,cis-1,4-pentadiene fatty acids decreased slightly. It is suggested that lipoxygenase may be responsible for some of the oxidative changes occurring in fatty acids on frozen storage of chicken meat

  10. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration

    DEFF Research Database (Denmark)

    Mackey, Abigail L.; Magnan, Mélanie; Chazaud, Bénédicte

    2017-01-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence...

  11. Management of Senile Ptosis with Levator Muscle Resection Using the Putterman Clamp

    Science.gov (United States)

    2016-01-01

    Summary: Putterman clamp, a muscle clamp, is commonly used in conjunctival müllerectomies. We report 3 cases of senile ptosis repaired with levator muscle resection using the Putterman clamp. The redundant levator aponeurosis was removed with electrocautery after clamping with the Putterman clamp. The levator muscle was refixed to the tarsus with three 4-0 Vicryl stitches after adjusting the height of the eyelid fissure. No intraoperative difficulties were encountered. Ecchymosis and edema were limited in the immediate postoperative period. No complications were noted during the follow-up. The benefits of using the Putterman clamp in levator muscle resection are illustrated in these cases. PMID:27482474

  12. Psoas muscle abscess simulating acute appendicits: A case report

    Directory of Open Access Journals (Sweden)

    Eugenio L.C. Miller

    2016-01-01

    Conclusion: The psoas muscle abscess is uncommon and poorly characterized in its etiology, clinical associations, and its therapeutic approach. On the other hand, acute appendicitis is the most common abdominal emergency, with a 7% death rate, and surgery is its main treatment.

  13. An overview of the management of muscle pain and injuries ...

    African Journals Online (AJOL)

    Sport injuries and muscle pain can occur as a result of engagement in exercise and or organized sporting activities. These injuries affect all age groups and gender. The most common types of sporting activities known to cause these injuries include jogging, cycling, volleyball, swimming and heavy weight lifting. Lack of ...

  14. Effects of Petrol Exposure on Glucose, Liver and Muscle glycogen ...

    African Journals Online (AJOL)

    This study investigated the effects of exposure to petrol on blood glucose, liver and muscle glycogen levels in the common African toad Bufo regularis. A total of 126 adult toads of either sex weighing between 70-100g were used for this study. The experiment was divided into three phases. The phase 1 experiment the acute ...

  15. A Tricuspid Valve Mass Attached to Papillary Muscle | Sabzi ...

    African Journals Online (AJOL)

    BACKGROUND: Cardiac myxoma is the most common benign heart tumor which can arise in any of the cardiac chambers, valves or related great veins. Diagnosis of a myxoma arising from the tricuspid valve apparatus is exceptional. We present a rare case of myxoma in a tricuspid valve attached to papillary muscle.

  16. Free-energy carriers in human cultured muscle cells

    NARCIS (Netherlands)

    Bolhuis, P. A.; de Zwart, H. J.; Ponne, N. J.; de Jong, J. M.

    1985-01-01

    Creatine phosphate (CrP), adenosine triphosphate (ATP), creatine kinase (CK), adenylate kinase (AK), protein, and DNA were quantified in human muscle cell cultures undergoing transition from dividing myoblasts to multinucleate myotubes. CrP is negligible in cultures grown in commonly applied media

  17. Nutritional interventions to preserve skeletal muscle mass

    NARCIS (Netherlands)

    Backx, Evelien M.P.

    2016-01-01

    Muscle mass is the main predictor for muscle strength and physical function. The amount of muscle mass can decline rapidly during periods of reduced physical activity or during periods of energy intake restriction. For athletes, it is important to maintain muscle mass, since the loss of muscle is

  18. Functional impact of sarcopenia in respiratory muscles.

    Science.gov (United States)

    Elliott, Jonathan E; Greising, Sarah M; Mantilla, Carlos B; Sieck, Gary C

    2016-06-01

    The risk for respiratory complications and infections is substantially increased in old age, which may be due, in part, to sarcopenia (aging-related weakness and atrophy) of the diaphragm muscle (DIAm), reducing its force generating capacity and impairing the ability to perform expulsive non-ventilatory motor behaviors critical for airway clearance. The aging-related reduction in DIAm force generating capacity is due to selective atrophy of higher force generating type IIx and/or IIb muscle fibers, whereas lower force generating type I and IIa muscle fiber sizes are preserved. Fiber type specific DIAm atrophy is also seen following unilateral phrenic nerve denervation and in other neurodegenerative disorders. Accordingly, the effect of aging on DIAm function resembles that of neurodegeneration and suggests possible common mechanisms, such as the involvement of several neurotrophic factors in mediating DIAm sarcopenia. This review will focus on changes in two neurotrophic signaling pathways that represent potential mechanisms underlying the aging-related fiber type specific DIAm atrophy. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The pharmacological management of post-stroke muscle spasticity.

    Science.gov (United States)

    Bakheit, Abdel Magid O

    2012-12-01

    Muscle hypertonia following upper motor neurone lesions (referred to here as 'spasticity') is a common problem in patients with neurological disease, and its management is one of the major challenges in clinical practice. Understanding the pathogenesis and clinical course of spasticity is essential for the effective management of this condition. The hypertonia initially results from increased excitability of the alpha motor neurones due to an imbalance between the excitatory and inhibitory influences of the vestibulospinal and reticulospinal tracts. This is the 'neural component' of muscle hypertonia. However, usually within 3-4 weeks, changes in the structure and mechanical properties of the paralysed muscles and the effect of thixotropy also contribute to the hypertonia. The selection of the optimal treatment option is often influenced by whether the neural or the non-neural component is more pronounced. Muscle spasticity often interferes with motor function or causes distressing symptoms, such as painful muscle spasms. If untreated, spasticity may also lead to soft tissue shortening (fixed contractures). However, spasticity can also be beneficial to patients. For example, despite severe leg muscle weakness, most hemiplegic patients are able to walk because the spasticity of the extensor muscles braces the lower limb in a rigid pillar. Other reported benefits of spasticity include the maintenance of muscle bulk and bone mineral density and possibly a reduced risk of lower limb deep vein thrombosis. Several factors, such as skin pressure sores, faecal impaction, urinary tract infections and stones in the urinary bladder, can aggravate muscle spasticity. These factors should always be looked for as their adequate treatment is often sufficient to reduce muscle tone without the need for specific antispasticity medication. Therefore, a careful evaluation of the patient's symptoms and their impact on function, and the setting of clear and realistic therapy goals are

  20. Substrate kinetics in patients with disorders of skeletal muscle metabolism.

    Science.gov (United States)

    Ørngreen, Mette Cathrine

    2016-07-01

    The main purpose of the following studies was to investigate pathophysiological mechanisms in fat and carbohydrate metabolism and effect of nutritional interventions in patients with metabolic myopathies and in patients with severe muscle wasting. Yet there is no cure for patients with skeletal muscle disorders. The group of patients is heterozygous and this thesis is focused on patients with metabolic myopathies and low muscle mass due to severe muscle wasting. Disorders of fatty acid oxidation (FAO) are, along with myophosphorylase deficiency (McArdle disease), the most common inborn errors of metabolism leading to recurrent episodes of rhabdomyolysis in adults. Prolonged exercise, fasting, and fever are the main triggering factors for rhabdomyolysis in these conditions, and can be complicated by acute renal failure. Patients with low muscle mass are in risk of loosing their functional skills and depend on a wheel chair and respiratory support. We used nutritional interventions and metabolic studies with stable isotope technique and indirect calorimetry in patients with metabolic myopathies and patients with low muscle mass to get information of the metabolism of the investigated diseases, and to gain knowledge of the biochemical pathways of intermediary metabolism in human skeletal muscle. We have shown that patients with fat metabolism disorders in skeletal muscle affecting the transporting enzyme of fat into the mitochondria (carnitine palmitoyltransferase II deficiency) and affecting the enzyme responsible for breakdown of the long-chain fatty acids (very long chain acyl-CoA dehydrogenase deficiency) have a normal fatty acid oxidation at rest, but enzyme activity is too low to increase fatty acid oxidation during exercise. Furthermore, these patients benefit from a carbohydrate rich diet. Oppositely is exercise capacity worsened by a fat-rich diet in these patients. The patients also benefit from IV glucose, however, when glucose is given orally just before