WorldWideScience

Sample records for stress-protective phenolic plant

  1. Phenolics and Plant Allelopathy

    Directory of Open Access Journals (Sweden)

    De-An Jiang

    2010-12-01

    Full Text Available Phenolic compounds arise from the shikimic and acetic acid (polyketide metabolic pathways in plants. They are but one category of the many secondary metabolites implicated in plant allelopathy. Phenolic allelochemicals have been observed in both natural and managed ecosystems, where they cause a number of ecological and economic problems, such as declines in crop yield due to soil sickness, regeneration failure of natural forests, and replanting problems in orchards. Phenolic allelochemical structures and modes of action are diverse and may offer potential lead compounds for the development of future herbicides or pesticides. This article reviews allelopathic effects, analysis methods, and allelopathic mechanisms underlying the activity of plant phenolic compounds. Additionally, the currently debated topic in plant allelopathy of whether catechin and 8-hydroxyquinoline play an important role in Centaurea maculata and Centaurea diffusa invasion success is discussed. Overall, the main purpose of this review is to highlight the allelopacthic potential of phenolic compounds to provide us with methods to solve various ecology problems, especially in regard to the sustainable development of agriculture, forestry, nature resources and environment conservation.

  2. Catch the Best: Novel Screening Strategy to Select Stress Protecting Agents for Crop Plants

    Directory of Open Access Journals (Sweden)

    Christin Zachow

    2013-11-01

    Full Text Available Climate change increases stress levels for crops and affects the economic and environmental aspects of agricultural management systems. The application of stress tolerance-mediating microorganisms is an auspicious strategy for improving crop protection, and as such, we developed a direct selection strategy to obtain cultivable microorganisms from promising bioresources using the bait plants, maize, oilseed rape, sorghum and sugar beet. Alpine mosses, lichens and primrose were selected as bioresources, as each is adapted to adverse environmental conditions. A 10% crop-specific selection was found for bait plant rhizosphere communities using cultivation-independent fingerprints, and their potential role as stress protecting agents (SPA was evaluated following the cultivation of captured bacteria. In addition to assays identifying phytopathogen antagonism and plant growth promotion capacities, our evaluation included those that test the ability to allocate nutrients. Moreover, we developed new assays to measure tolerance in diverse stress conditions. A score scheme was applied to select SPAs with desired properties, and three Pseudomonas species with pronounced antagonistic activity that showed elevated tolerance to desiccation and an improved seed germination rate were subsequently chosen. Screening for environmentally-conditioned and host-adapted microorganisms provides a novel tool for target-oriented exploitation of microbial bioresources for the management of ecofriendly crops facing biotic and abiotic stresses.

  3. Techniques for Analysis of Plant Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Thomas H. Roberts

    2013-02-01

    Full Text Available Phenolic compounds are well-known phytochemicals found in all plants. They consist of simple phenols, benzoic and cinnamic acid, coumarins, tannins, lignins, lignans and flavonoids. Substantial developments in research focused on the extraction, identification and quantification of phenolic compounds as medicinal and/or dietary molecules have occurred over the last 25 years. Organic solvent extraction is the main method used to extract phenolics. Chemical procedures are used to detect the presence of total phenolics, while spectrophotometric and chromatographic techniques are utilized to identify and quantify individual phenolic compounds. This review addresses the application of different methodologies utilized in the analysis of phenolic compounds in plant-based products, including recent technical developments in the quantification of phenolics.

  4. Antioxidative and antiradical properties of plant phenolics.

    Science.gov (United States)

    Sroka, Zbigniew

    2005-01-01

    The plant phenolic compounds such as flavonoids, tannins and phenolic acids appeared to be strong antiradical and antioxidant compounds. The number of hydroxy groups and the presence of a 2,3-double bond and orthodiphenolic structure enhance antiradical and antioxidative activity of flavonoids. The glycosylation, blocking the 3-OH group in C-ring, lack of a hydroxy group or the presence of only a methoxy group in B-ring have a decreasing effect on antiradical or antioxidative activity of these compounds. Tannins show strong antioxidative properties. Some tannins in red wine or gallate esters were proved to have antioxidative effect in vivo. The number of hydroxy groups connected with the aromatic ring, in ortho or para position relative to each other, enhance antioxidative and antiradical activity of phenolic acids. The substitution of a methoxy group in ortho position to the OH in monophenols seems to favour the antioxidative activity of the former.

  5. Total phenolics and total flavonoids in selected Indian medicinal plants.

    Science.gov (United States)

    Sulaiman, C T; Balachandran, Indira

    2012-05-01

    Plant phenolics and flavonoids have a powerful biological activity, which outlines the necessity of their determination. The phenolics and flavonoids content of 20 medicinal plants were determined in the present investigation. The phenolic content was determined by using Folin-Ciocalteu assay. The total flavonoids were measured spectrophotometrically by using the aluminium chloride colorimetric assay. The results showed that the family Mimosaceae is the richest source of phenolics, (Acacia nilotica: 80.63 mg gallic acid equivalents, Acacia catechu 78.12 mg gallic acid equivalents, Albizia lebbeck 66.23 mg gallic acid equivalents). The highest total flavonoid content was revealed in Senna tora which belongs to the family Caesalpiniaceae. The present study also shows the ratio of flavonoids to the phenolics in each sample for their specificity.

  6. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties

    Directory of Open Access Journals (Sweden)

    Jin Dai

    2010-10-01

    Full Text Available Phenolics are broadly distributed in the plant kingdom and are the most abundant secondary metabolites of plants. Plant polyphenols have drawn increasing attention due to their potent antioxidant properties and their marked effects in the prevention of various oxidative stress associated diseases such as cancer. In the last few years, the identification and development of phenolic compounds or extracts from different plants has become a major area of health- and medical-related research. This review provides an updated and comprehensive overview on phenolic extraction, purification, analysis and quantification as well as their antioxidant properties. Furthermore, the anticancer effects of phenolics in-vitro and in-vivo animal models are viewed, including recent human intervention studies. Finally, possible mechanisms of action involving antioxidant and pro-oxidant activity as well as interference with cellular functions are discussed.

  7. Strategies for vitamin B6 biofortification of plants: A dual role as a micronutrient and a stress protectant

    Directory of Open Access Journals (Sweden)

    Hervé eVanderschuren

    2013-05-01

    Full Text Available Vitamin B6 has an essential role in cells as a cofactor for several metabolic enzymes. It has also been shown to function as a potent antioxidant molecule. The recent elucidation of the vitamin B6 biosynthesis pathways in plants provides opportunities for characterizing their importance during developmental processes and exposure to stress. Humans and animals must acquire vitamin B6 with their diet, with plants being a major source, because they cannot biosynthesize it de novo. However, the abundance of the vitamin in the edible portions of the most commonly consumed plants is not sufficient to meet daily requirements. Genetic engineering has proven successful in increasing the vitamin B6 content in the model plant Arabidopsis. The added benefits associated with the enhanced vitamin B6 content, such as higher biomass and resistance to abiotic stress, suggest that increasing this essential micronutrient could be a valuable option to improve the nutritional quality and stress tolerance of crop plants. This review summarizes current achievements in biofortification of vitamin B6 and considers strategies for increasing vitamin B6 levels in crop plants for human health and nutrition.

  8. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection.

    Science.gov (United States)

    Bhattacharya, Amita; Sood, Priyanka; Citovsky, Vitaly

    2010-09-01

    Phenolics are aromatic benzene ring compounds with one or more hydroxyl groups produced by plants mainly for protection against stress. The functions of phenolic compounds in plant physiology and interactions with biotic and abiotic environments are difficult to overestimate. Phenolics play important roles in plant development, particularly in lignin and pigment biosynthesis. They also provide structural integrity and scaffolding support to plants. Importantly, phenolic phytoalexins, secreted by wounded or otherwise perturbed plants, repel or kill many microorganisms, and some pathogens can counteract or nullify these defences or even subvert them to their own advantage. In this review, we discuss the roles of phenolics in the interactions of plants with Agrobacterium and Rhizobium.

  9. Total phenolics and antioxidant activity of five medicinal plant

    International Nuclear Information System (INIS)

    Sousa, Cleyton Marcos de M.; Silva, Hilris Rocha e; Vieira-Junior, Gerardo Magela; Ayres, Mariane Cruz C.; Costa, Charllyton Luis S. da; Araajo, Delton Servulo; Cavalcante, Luis Carlos D.; Barros, Elcio Daniel S.; Araujo, Paulo Breitner de M.; Brandao, Marcela S.; Chaves, Mariana H.

    2007-01-01

    This paper describes total phenolics content and antioxidant activity in the ethanolic extract of leaves, bark and roots of five medicinal plants: Terminalia brasiliensis Camb., Terminalia fagifolia Mart. and Zucc., Copernicia cerifera (Miller) H.E. Moore, Cenostigma macrophyllum Tul. var. acuminata Teles Freire and Qualea grandiflora Mart. The total phenolics content of the plant extracts, determined by the Folin-Ciocalteu method, varied from 250.0 ±8,2 to 763,63 ±13.03 mg of gallic acid equivalent/g dry EtOH extract. The antioxidant activity of extracts was evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay system. Extract of bark from T. brasiliensis, the most active, with an EC 50 value of 27.59 ± 0.82 μg/mL, was comparable to rutin (EC 50 = 27.80 ± 1.38) and gallic acid (EC 50 = 24.27 ± 0.31), used as positive controls. The relationship between total phenolic content and antioxidant activity was positive and significant for T. brasiliensis, C. macrophyllum and C. cerifera. (author)

  10. A review of phenolic compounds in oil-bearing plants: Distribution, identification and occurrence of phenolic compounds.

    Science.gov (United States)

    Alu'datt, Muhammad H; Rababah, Taha; Alhamad, Mohammad N; Al-Mahasneh, Majdi A; Almajwal, Ali; Gammoh, Sana; Ereifej, Khalil; Johargy, Ayman; Alli, Inteaz

    2017-03-01

    Over the last two decades, separation, identification and measurement of the total and individual content of phenolic compounds has been widely investigated. Recently, the presence of a wide range of phenolic compounds in oil-bearing plants has been shown to contribute to their therapeutic properties, including anti-cancer, anti-viral, anti-oxidant, hypoglycemic, hypo-lipidemic, and anti-inflammatory activities. Phenolics in oil-bearing plants are now recognized as important minor food components due to several organoleptic and health properties, and they are used as food or sources of food ingredients. Variations in the content of phenolics in oil-bearing plants have largely been attributed to several factors, including the cultivation, time of harvest and soil types. A number of authors have suggested that the presence phenolics in extracted proteins, carbohydrates and oils may contribute to objectionable off flavors The objective of this study was to review the distribution, identification and occurrence of free and bound phenolic compounds in oil-bearing plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Antioxidant properties and principal phenolic phytochemicals of Indian medicinal plants from Asclepiadoideae and Periplocoideae.

    Science.gov (United States)

    Surveswaran, Siddharthan; Cai, Yi-Zhong; Xing, Jie; Corke, Harold; Sun, Mei

    2010-02-01

    The subfamily Asclepiadoideae (Apocynaceae) and the closely-related Periplocoideae are sources of many indigenous Indian medicinal plants. We surveyed antioxidant properties and total phenolic and flavonoid contents of 15 samples, representing 12 Indian medicinal plant species from these subfamilies. Total antioxidant assay was performed using the 2,2-azinobis-3-ethylbenzothiazoline-6-sulfonic acid and ferric-reducing antioxidant power methods. Total phenolic and flavonoid contents were measured using colourimetric methods. Principal phenolic compounds were detected by liquid chromatography-mass spectrometry (LC-MS). The highest antioxidant capacity and high levels of total phenolics and flavonoids were found in the leaves of Decalepis hamiltonii. The stems of Sarcostemma brevistigma exhibited the highest xanthine oxidase (XO) inhibitory activity. The roots of Hemidesmus indicus showed the highest OH(-) radical scavenging activity. In general, Periplocoideae members exhibited higher antioxidant activity than Asclepiadoideae members. The highly significant and positive correlations (R > 0.914) between total antioxidant capacity parameters and total phenolic content indicated that the phenolic compounds contributed significantly to the antioxidant activity of the tested plant samples. The principal phenolic phytochemicals from these plants were identified by LC-MS, including flavonoids, phenolic acids and phenolic terpenoids. Chlorogenic acid and rutin were detected in almost all of the plant samples. The LC-MS analysis provided full fingerprints of the principal phenolic compounds in the medicinal plants from these two subfamilies, which are useful for their authentication and quality evaluation.

  12. The content changes of selected phenolic compounds during processing of medicinal plants

    OpenAIRE

    GROŠAFTOVÁ, Blanka

    2007-01-01

    This work was aimed to the problem of change of the content of selected phenolic substances during treatment and storage of medical plants. Flavonoids represent small, but very important group of phenolic compounds. The biggest attention was paid to quercetin and rutine.Content of phenolic substances was determined by method of micellar electrokinetic capillary chromatography (MECC) in case of 6 medicinal plants usually used in traditional and modern medicine.

  13. Behavior of phenolic substances in the decaying process of plants. V. Elution of heavy metals with phenolic acids from soil

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, H; Kuwatsuka, S

    1977-01-01

    The relationship between the elution of heavy metals with phenolic substances and the chemical structure of phenolic substances, as well as the interaction between phenolic substances and metals were studied using batch and column methods. The elution of 3 metals (Fe, Al and Mn) with 4 phenolic acids (rho-hydroxybenzoic, salicylic, ..cap alpha..-resorcylic, and protocatechuic acids) and phthalic acid were investigated using 3 different soils. The results are as follows: (1) The elution of heavy metals was largely influenced by the chemical structures of the phenolic acids. Protocatechuic, salicylic, and phthalic acids which had different chelating sites easily extracted iron, aluminum, and manganese from the soils. Hydroxybenzoic and ..cap alpha..-resorcylic acids which had no chelating sites contributed little to the elution process. (2) In many cases protocatechuic acid showed a stronger affinity to iron than to aluminum, but salicylic acid showed the opposite trend. The affinity of phthalic acid to metals was much less than that of both phenolic acids. (3) The elution of heavy metals was also influenced by the soil pH. The amounts of heavy metals eluted with protocatechuic acid increased as the soil pH increased. The amounts eluted with salicylic and phthalic acids increased as the soil pH decreased. (4) The results suggested that chelating phenolics such as protocatechuic and salicylic acids, which were exuded from plant residues or produced during the decaying process of plant residues, eluted heavy metals such as iron, aluminum and manganese from soil particles and accelerated the downward movement of these metal ions.

  14. Phenolic Constituents of Medicinal Plants with Activity against Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Ya Nan Sun

    2016-04-01

    Full Text Available Neglected tropical diseases (NTDs affect over one billion people all over the world. These diseases are classified as neglected because they impact populations in areas with poor financial conditions and hence do not attract sufficient research investment. Human African Trypanosomiasis (HAT or sleeping sickness, caused by the parasite Trypanosoma brucei, is one of the NTDs. The current therapeutic interventions for T. brucei infections often have toxic side effects or require hospitalization so that they are not available in the rural environments where HAT occurs. Furthermore, parasite resistance is increasing, so that there is an urgent need to identify novel lead compounds against this infection. Recognizing the wide structural diversity of natural products, we desired to explore and identify novel antitrypanosomal chemotypes from a collection of natural products obtained from plants. In this study, 440 pure compounds from various medicinal plants were tested against T. brucei by in a screening using whole cell in vitro assays. As the result, twenty-two phenolic compounds exhibited potent activity against cultures of T. brucei. Among them, eight compounds—4, 7, 11, 14, 15, 18, 20, and 21—showed inhibitory activity against T. brucei, with IC50 values below 5 µM, ranging from 0.52 to 4.70 μM. Based on these results, we attempt to establish some general trends with respect to structure-activity relationships, which indicate that further investigation and optimization of these derivatives might enable the preparation of potentially useful compounds for treating HAT.

  15. RESPONSE OF PHENOLIC METABOLISM INDUCED BY ALUMINIUM TOXICITY IN FAGOPYRUM ESCULENTUM MOENCH. PLANTS.

    Science.gov (United States)

    Smirnov, O E; Kosyan, A M; Kosyk, O I; Taran, N Yu

    2015-01-01

    Buckwheat genus (Fagopyrum Mill.) is one of the aluminium tolerant taxonomic units of plants. The aim of the study was an evaluation of the aluminium (50 μM effect on phenolic accumulation in various parts of buckwheat plants (Fagopyrum esculentum Moench). Detection of increasing of total phenolic content, changes in flavonoid and anthocyanin content and phenylalanine ammonia-lyase activity (PAL) were revealed over a period of 10 days of exposure to aluminium. The most significant effects of aluminium treatment on phenolic compounds accumulation were total phenolic content increasing (by 27.2%) and PAL activity rising by 2.5 times observed in leaves tissues. Received data could be helpful to understand the aluminium tolerance principles and relationships of phenolic compounds to aluminium phytotoxicity.

  16. Managing Phenol Contents in Crop Plants by Phytochemical Farming and Breeding—Visions and Constraints

    Directory of Open Access Journals (Sweden)

    Dieter Treutter

    2010-03-01

    Full Text Available Two main fields of interest form the background of actual demand for optimized levels of phenolic compounds in crop plants. These are human health and plant resistance to pathogens and to biotic and abiotic stress factors. A survey of agricultural technologies influencing the biosynthesis and accumulation of phenolic compounds in crop plants is presented, including observations on the effects of light, temperature, mineral nutrition, water management, grafting, elevated atmospheric CO2, growth and differentiation of the plant and application of elicitors, stimulating agents and plant activators. The underlying mechanisms are discussed with respect to carbohydrate availability, trade-offs to competing demands as well as to regulatory elements. Outlines are given for genetic engineering and plant breeding. Constraints and possible physiological feedbacks are considered for successful and sustainable application of agricultural techniques with respect to management of plant phenol profiles and concentrations.

  17. Managing phenol contents in crop plants by phytochemical farming and breeding-visions and constraints.

    Science.gov (United States)

    Treutter, Dieter

    2010-03-02

    Two main fields of interest form the background of actual demand for optimized levels of phenolic compounds in crop plants. These are human health and plant resistance to pathogens and to biotic and abiotic stress factors. A survey of agricultural technologies influencing the biosynthesis and accumulation of phenolic compounds in crop plants is presented, including observations on the effects of light, temperature, mineral nutrition, water management, grafting, elevated atmospheric CO(2), growth and differentiation of the plant and application of elicitors, stimulating agents and plant activators. The underlying mechanisms are discussed with respect to carbohydrate availability, trade-offs to competing demands as well as to regulatory elements. Outlines are given for genetic engineering and plant breeding. Constraints and possible physiological feedbacks are considered for successful and sustainable application of agricultural techniques with respect to management of plant phenol profiles and concentrations.

  18. Phenolic metabolites in carnivorous plants: Inter-specific comparison and physiological studies.

    Science.gov (United States)

    Kováčik, Jozef; Klejdus, Bořivoj; Repčáková, Klára

    2012-03-01

    Despite intensive phytochemical research, data related to the accumulation of phenols in carnivorous plants include mainly qualitative reports. We have quantified phenolic metabolites in three species: Drosera capensis, Dionaea muscipula and Nepenthes anamensis in the "leaf" (assimilatory part) and the "trap" (digestive part). For comparison, commercial green tea was analysed. Phenylalanine ammonia-lyase (PAL) activities in Dionaea and Nepenthes were higher in the trap than in the leaf while the opposite was found in Drosera. Soluble phenols and majority of phenolic acids were mainly accumulated in the trap among species. Flavonoids were abundant in Drosera and Dionaea traps but not in Nepenthes. Phenolic acids were preferentially accumulated in a glycosidically-bound form and gallic acid was the main metabolite. Green tea contained more soluble phenols and phenolic acids but less quercetin. In vitro experiments with Drosera spathulata revealed that nitrogen deficiency enhances PAL activity, accumulation of phenols and sugars while PAL inhibitor (2-aminoindane-2-phosphonic acid) depleted phenols and some amino acids (but free phenylalanine and sugars were elevated). Possible explanations in physiological, biochemical and ecological context are discussed. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  19. Dereplication of plant phenolics using a mass-spectrometry database independent method.

    Science.gov (United States)

    Borges, Ricardo M; Taujale, Rahil; de Souza, Juliana Santana; de Andrade Bezerra, Thaís; Silva, Eder Lana E; Herzog, Ronny; Ponce, Francesca V; Wolfender, Jean-Luc; Edison, Arthur S

    2018-05-29

    Dereplication, an approach to sidestep the efforts involved in the isolation of known compounds, is generally accepted as being the first stage of novel discoveries in natural product research. It is based on metabolite profiling analysis of complex natural extracts. To present the application of LipidXplorer for automatic targeted dereplication of phenolics in plant crude extracts based on direct infusion high-resolution tandem mass spectrometry data. LipidXplorer uses a user-defined molecular fragmentation query language (MFQL) to search for specific characteristic fragmentation patterns in large data sets and highlight the corresponding metabolites. To this end, MFQL files were written to dereplicate common phenolics occurring in plant extracts. Complementary MFQL files were used for validation purposes. New MFQL files with molecular formula restrictions for common classes of phenolic natural products were generated for the metabolite profiling of different representative crude plant extracts. This method was evaluated against an open-source software for mass-spectrometry data processing (MZMine®) and against manual annotation based on published data. The targeted LipidXplorer method implemented using common phenolic fragmentation patterns, was found to be able to annotate more phenolics than MZMine® that is based on automated queries on the available databases. Additionally, screening for ascarosides, natural products with unrelated structures to plant phenolics collected from the nematode Caenorhabditis elegans, demonstrated the specificity of this method by cross-testing both groups of chemicals in both plants and nematodes. Copyright © 2018 John Wiley & Sons, Ltd.

  20. Carbon Fluxes between Primary Metabolism and Phenolic Pathway in Plant Tissues under Stress

    Directory of Open Access Journals (Sweden)

    Sofia Caretto

    2015-11-01

    Full Text Available Higher plants synthesize an amazing diversity of phenolic secondary metabolites. Phenolics are defined secondary metabolites or natural products because, originally, they were considered not essential for plant growth and development. Plant phenolics, like other natural compounds, provide the plant with specific adaptations to changing environmental conditions and, therefore, they are essential for plant defense mechanisms. Plant defensive traits are costly for plants due to the energy drain from growth toward defensive metabolite production. Being limited with environmental resources, plants have to decide how allocate these resources to various competing functions. This decision brings about trade-offs, i.e., promoting some functions by neglecting others as an inverse relationship. Many studies have been carried out in order to link an evaluation of plant performance (in terms of growth rate with levels of defense-related metabolites. Available results suggest that environmental stresses and stress-induced phenolics could be linked by a transduction pathway that involves: (i the proline redox cycle; (ii the stimulated oxidative pentose phosphate pathway; and, in turn, (iii the reduced growth of plant tissues.

  1. Effects of plant phenols of performance of southern armyworm larvae.

    Science.gov (United States)

    Lindroth, R L; Peterson, S S

    1988-03-01

    We evaluated the effects of two classes of phenols on performance of penultimate instar southern armyworms, Spodoptera eridania. One class consisted of phenols containing a catechol (ortho-dihydroxybenzene) moiety and included chlorogenic acid, quercetin, rutin, and rhamnetin. A second group consisted of the phenolic glycoside salicin and its derivatives salicortin and tremulacin. The compounds were painted onto lima bean (Phaseolus lunatus) leaves and fed to larvae for the duration of the fifth instar. Chlorogenic acid and rhamnetin had no deleterious effects; rutin and quercetin caused some mortality and rutin reduced growth rates by decreasing consumption and digestion efficiency. Results showed that ortho-dihydroxybenzene groups may be necessary, but are not sufficient for biological activity. Salicin did not affect larvae; salicortin and tremulacin reduced growth rates primarily by decreasing consumption. These two compounds also caused degenerative lesions in midgut tissues. The presence of a benzoyl ester group in tremulacin accentuates its toxicity, relative to that of salicortin.

  2. Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods.

    Science.gov (United States)

    Ribas-Agustí, Albert; Martín-Belloso, Olga; Soliva-Fortuny, Robert; Elez-Martínez, Pedro

    2017-06-13

    Phenolic compounds are important constituents of plant-based foods, as their presence is related to protective effects on health. To exert their biological activity, phenolic compounds must be released from the matrix during digestion in an absorbable form (bioaccessible) and finally absorbed and transferred to the bloodstream (bioavailable). Chemical structure and matrix interactions are some food-related factors that hamper phenolic compounds bioaccessibility and bioavailability, and that can be counteracted by food processing. It has been shown that food processing can induce chemical or physical modifications in food that enhance phenolic compounds bioaccessibility and bioavailability. These changes include: (i) chemical modifications into more bioaccessible and bioavailable forms; (ii) cleavage of covalent or hydrogen bonds or hydrophobic forces that attach phenolic compounds to matrix macromolecules; (iii) damaging microstructural barriers such as cell walls that impede the release from the matrix; and (iv) create microstructures that protect phenolic compounds until they are absorbed. Indeed, food processing can produce degradation of phenolic compounds, however, it is possible to counteract it by modulating the operating conditions in favor of increased bioaccessibility and bioavailability. This review compiles the current knowledge on the effects of processing on phenolic compounds bioaccessibility or bioavailability, while suggesting new guidelines in the search of optimal processing conditions as a step forward towards the design of healthier foods.

  3. Induction of phenolic metabolites and physiological changes in chamomile plants in relation to nitrogen nutrition.

    Science.gov (United States)

    Kováčik, Jozef; Klejdus, Bořivoj

    2014-01-01

    Alternative tools, such as the manipulation of mineral nutrition, may affect secondary metabolite production and thus the nutritional value of food/medicinal plants. We studied the impact of nitrogen (N) nutrition (nitrate/NO3(-) or ammonium/NH4(+) nitrogen) and subsequent nitrogen deficit on phenolic metabolites and physiology in Matricaria chamomilla plants. NH4(+)-fed plants revealed a strong induction of selected phenolic metabolites but, at the same time, growth, Fv/Fm, tissue water content and soluble protein depletion occurred in comparison with NO3(-)-fed ones. On the other hand, NO3(-)-deficient plants also revealed an increase in phenolic metabolites but growth depression was not observed after the given exposure period. Free amino acids were more accumulated in NH4(+)-fed shoots (strong increase in arginine and proline mainly), while the pattern of roots' accumulation was independent of N form. Among phenolic acids, NH4(+) strongly elevated mainly the accumulation of chlorogenic acid. Within flavonoids, flavonols decreased while flavones strongly increased in response to N deficiency. Coumarin-related metabolites revealed a similar increase in herniarin glucosidic precursor in response to N deficiency, while herniarin was more accumulated in NO3(-)- and umbelliferone in NH4(+)-cultured plants. These data indicate a negative impact of NH4(+) as the only source of N on physiology, but also a higher stimulation of some valuable phenols. Nitrogen-induced changes in comparison with other food/crop plants are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Advances in extraction and analysis of phenolic compounds from plant materials

    Institute of Scientific and Technical Information of China (English)

    XU Cong-Cong; WANG Bing; PU Yi-Qiong; TAO Jian-Sheng; ZHANG Tong

    2017-01-01

    Phenolic compounds,the most abundant secondary metabolites in plants,have received more and more attention in recent years because of their distinct bioactivities.This review summarizes different types of phenolic compounds and their extraction and analytical methods used in the recent reports,involving 59 phenolic compounds from 52 kinds of plants.The extraction methods include solid-liquid extraction,ultrasound-assisted extractions,microwave-assisted extractions,supercritical fluid extraction,and other methods.The analysis methods include spectrophotometry,gas chromatography,liquid chromatography,thin-layer chromatography,capillary electrophoresis,and near-infrared spectroscopy.After illustrating the specific conditions of the analytical methods,the advantages and disadvantages of each method are also summarized,pointing out their respective suitability.This review provides valuable reference for identification and/or quantification of phenolic compounds from natural products.

  5. Comparative analysis of bioactive phenolic compounds composition from 26 medicinal plants

    Directory of Open Access Journals (Sweden)

    Oksana Sytar

    2018-05-01

    Full Text Available Bioactive phenolic compounds are powerful antioxidants in traditionally used medicinal and industrial crop plants and have attracted increased interest in the last years in their application and role in non-destructive methodology for pre-screening analysis of some stress factors. In this study the qualitative target was linked with future possible applications of received data for improving non-destructive methodology as well as for improving existing knowledge regarding antioxidant content in some plant species. Comparative analysis of total phenolics, flavonoid contents, phenolic acid composition, and antioxidant activity in known east central Europe medicinal and industrial crop plants of 26 species of families Asteraceae, Rosaceae and Lamiaceae was done. Among the investigated leaf extracts the highest total phenolic, total flavonoid contents and antioxidant activity have been seen for Stachys byzantine L. (Lamiaceae, Calendula officinalis L. (Asteraceae and for Potentilla recta L. (Rosaceae. The highest syringic acid content has been found in the leaf extracts of plant family Asteraceae – in the range from 0.782 to 5.078 mg g−1 DW. The representative’s family Rosaceae has a higher content of p-anisic acid in the range 0.334–3.442 mg g−1DW compared to the leaf extracts of families Lamiaceae and Asteraceae. The comparative study showed significant differences of content of phenolic acids in the leaf extracts of different representative’s families Rosaceae, Asteraceae and Lamiaceae. We suggest that the presence of some phenolic acids can be used as a possible marker for family botanical specifications of representative families Asteraceae and Rosaceae. It was supposed that some pharmacological effects can be connected with the analyzed data. Keywords: Phenolic compounds, Flavonoids, Phenolic acids, Antioxidant activity, Asteraceae, Rosaceae, Lamiaceae

  6. Uptake of phenolic compounds from plant foods in human intestinal ...

    Indian Academy of Sciences (India)

    Gavirangappa Hithamani

    Open-pan boiling reduced the uptake of quercetin from the onion. Among pure phenolic ... vegetable, is a major source of flavonoid in the diet (Galdón et al. 2008). ..... inflammatory and anti-atherosclerotic properties of red wine polyphenolic ... quercetin and quercetin-rich red onion extract on skeletal muscle mitochondria ...

  7. Biological, ecological and agronomic significance of plant phenolic ...

    African Journals Online (AJOL)

    Our understanding of some phenolic compounds in the last few decades has greatly improved. However, their biological, ecological and agronomical significance in the rhizosphere of most symbiotic legumes is much less clear. Further understanding of these biomolecules will increase our knowledge of their contribution in ...

  8. Plant-derived phenolics inhibit the accrual of structurally characterised protein and lipid oxidative modifications.

    Directory of Open Access Journals (Sweden)

    Arantza Soler-Cantero

    Full Text Available Epidemiological data suggest that plant-derived phenolics beneficial effects include an inhibition of LDL oxidation. After applying a screening method based on 2,4-dinitrophenyl hydrazine-protein carbonyl reaction to 21 different plant-derived phenolic acids, we selected the most antioxidant ones. Their effect was assessed in 5 different oxidation systems, as well as in other model proteins. Mass-spectrometry was then used, evidencing a heterogeneous effect on the accumulation of the structurally characterized protein carbonyl glutamic and aminoadipic semialdehydes as well as for malondialdehyde-lysine in LDL apoprotein. After TOF based lipidomics, we identified the most abundant differential lipids in Cu(++-incubated LDL as 1-palmitoyllysophosphatidylcholine and 1-stearoyl-sn-glycero-3-phosphocholine. Most of selected phenolic compounds prevented the accumulation of those phospholipids and the cellular impairment induced by oxidized LDL. Finally, to validate these effects in vivo, we evaluated the effect of the intake of a phenolic-enriched extract in plasma protein and lipid modifications in a well-established model of atherosclerosis (diet-induced hypercholesterolemia in hamsters. This showed that a dietary supplement with a phenolic-enriched extract diminished plasma protein oxidative and lipid damage. Globally, these data show structural basis of antioxidant properties of plant-derived phenolic acids in protein oxidation that may be relevant for the health-promoting effects of its dietary intake.

  9. Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 μm

    Science.gov (United States)

    Kokaly, Raymond F.; Skidmore, Andrew K

    2015-01-01

    Past laboratory and field studies have quantified phenolic substances in vegetative matter from reflectance measurements for understanding plant response to herbivores and insect predation. Past remote sensing studies on phenolics have evaluated crop quality and vegetation patterns caused by bedrock geology and associated variations in soil geochemistry. We examined spectra of pure phenolic compounds, common plant biochemical constituents, dry leaves, fresh leaves, and plant canopies for direct evidence of absorption features attributable to plant phenolics. Using spectral feature analysis with continuum removal, we observed that a narrow feature at 1.66 μm is persistent in spectra of manzanita, sumac, red maple, sugar maple, tea, and other species. This feature was consistent with absorption caused by aromatic C-H bonds in the chemical structure of phenolic compounds and non-hydroxylated aromatics. Because of overlapping absorption by water, the feature was weaker in fresh leaf and canopy spectra compared to dry leaf measurements. Simple linear regressions of feature depth and feature area with polyphenol concentration in tea resulted in high correlations and low errors (% phenol by dry weight) at the dry leaf (r2 = 0.95, RMSE = 1.0%, n = 56), fresh leaf (r2 = 0.79, RMSE = 2.1%, n = 56), and canopy (r2 = 0.78, RMSE = 1.0%, n = 13) levels of measurement. Spectra of leaves, needles, and canopies of big sagebrush and evergreens exhibited a weak absorption feature centered near 1.63 μm, short ward of the phenolic compounds, possibly consistent with terpenes. This study demonstrates that subtle variation in vegetation spectra in the shortwave infrared can directly indicate biochemical constituents and be used to quantify them. Phenolics are of lesser abundance compared to the major plant constituents but, nonetheless, have important plant functions and ecological significance. Additional research is needed to advance our understanding of the

  10. The Potential of Plant Phenolics in Prevention and Therapy of Skin Disorders

    Directory of Open Access Journals (Sweden)

    Magdalena Działo

    2016-02-01

    Full Text Available Phenolic compounds constitute a group of secondary metabolites which have important functions in plants. Besides the beneficial effects on the plant host, phenolic metabolites (polyphenols exhibit a series of biological properties that influence the human in a health-promoting manner. Evidence suggests that people can benefit from plant phenolics obtained either by the diet or through skin application, because they can alleviate symptoms and inhibit the development of various skin disorders. Due to their natural origin and low toxicity, phenolic compounds are a promising tool in eliminating the causes and effects of skin aging, skin diseases, and skin damage, including wounds and burns. Polyphenols also act protectively and help prevent or attenuate the progression of certain skin disorders, both embarrassing minor problems (e.g., wrinkles, acne or serious, potentially life-threatening diseases such as cancer. This paper reviews the latest reports on the potential therapy of skin disorders through treatment with phenolic compounds, considering mostly a single specific compound or a combination of compounds in a plant extract.

  11. Methods for extraction and determination of phenolic acids in medicinal plants: a review.

    Science.gov (United States)

    Arceusz, Agnieszka; Wesolowski, Marek; Konieczynski, Pawel

    2013-12-01

    Phenolic acids constitute a group of potentially immunostimulating compounds. They occur in all medicinal plants and are widely used in phytotherapy and foods of plant origin. In recent years, phenolic acids have attracted much interest owing to their biological functions. This paper reviews the extraction and determination methods of phenolic acids in medicinal plants over the last 10 years. Although Soxhlet extraction and ultrasonic assisted extraction (UAE) are commonly used for the extraction of phenolic acids from plant materials, alternative techniques such as supercritical fluid extraction (SFE), and accelerated solvent extraction (ASE) can also be used. After extraction, phenolic acids are determined usually by liquid chromatography (LC) owing to the recent developments in this technique, especially when it is coupled with mass spectrometry (MS). Also detection systems are discussed, including UV-Vis, diode array, electrochemical and fluorimetric. Other popular techniques for the analysis of this group of secondary metabolites are gas chromatography coupled with mass spectrometry (GC-MS) and capillary electrophoresis (CE).

  12. Plant growth and phenolic compounds in the rhizosphere soil of wild oat (Avena fatua L.

    Directory of Open Access Journals (Sweden)

    Anna eIannucci

    2013-12-01

    Full Text Available The objectives of this study were to determine the pattern of dry matter (DM accumulation and the evolution of phenolic compounds in the rhizosphere soil from tillering to the ripe seed stages of wild oat (Avena fatua L., a widespread annual grassy weed. Plants were grown under controlled conditions and harvested 13 times during the growing season. At each harvest, shoot and root DM and phenolic compounds in the rhizosphere soil were determined. The maximum DM production (12.6 g/plant was recorded at 122 days after sowing (DAS; kernel hard stage. The increase in total aerial DM with age coincided with reductions in the leaf/stem and source/sink ratios, and an increase in the shoot/root ratio. HPLC analysis shows production of seven phenolic compounds in the rhizosphere soil of wild oat, in order of their decreasing levels: syringic acid, vanillin, 4-hydroxybenzoic acid, syringaldehyde, ferulic acid, p-cumaric acid and vanillic acid. The seasonal distribution for the total phenolic compounds showed two peaks of maximum concentrations, at the stem elongation stage (0.71 μg/kg; 82 DAS and at the heading stage (0.70 μg/kg; 98 DAS. Thus wild oat roots exude allelopathic compounds, and the levels of these phenolics in the rhizosphere soil vary according to plant maturity.

  13. Does overhead irrigation with salt affect growth, yield, and phenolic content of lentil plants?

    Directory of Open Access Journals (Sweden)

    Giannakoula Anastasia

    2012-01-01

    Full Text Available Overhead irrigation of lentil plants with salt (100 mM NaCl did not have any significant impact on plant growth, while chlorophyll content and chlorophyll fluorescence parameter Fv/Fm were affected. Under such poor irrigation water quality, the malondialdehyde content in leaves was increased due to the lipid peroxidation of membranes. In seeds, the total phenolic content (TPC was correlated to their total antioxidant capacity (TAC. High performance liquid chromatography-mass spectrometry (HPLC-MS detection showed that flavonoids (catechin, epicatechin, rutin, p-coumaric acid, quercetin, kaempferol, gallic acid and resveratrol appear to be the compounds with the greatest influence on the TAC values. Catechin is the most abundant phenolic compound in lentil seeds. Overhead irrigation with salt reduced the concentration of almost all phenolic compounds analyzed from lentil seed extracts.

  14. Total phenol content and antioxidant activity of water solutions of plant extracts

    Directory of Open Access Journals (Sweden)

    Mirela Kopjar

    2009-01-01

    Full Text Available Water solutions of extracts were investigated for total phenol content, flavonoid content and antioxidant activity. Susceptibility to degradation of water solutions of plant extracts, under light and in the dark, during storage at room temperature was investigated in order to determine their stability prior to their application for fortification of food products. Large dispersion of total phenol (TP content in the investigated model solutions of selected extracts (olive leaves, green tea, red grape, red wine, pine bark PE 5:1, pine bark PE 95 %, resveratrol, ranging from 11.10 mg GAE/100 mL to 92.19 mg GAE/100 mL was observed. Consequently, large dispersion of total flavonoids (TF content (8.89 mg to 61.75 mg CTE/100 mL was also observed. Since phenols have been mostly responsible for antioxidant activity of extracts, in most cases, antioxidant activity followed the TP content. That was proven by estimation of correlation coefficient between the total phenol content and antioxidant activity. Correlation coefficients between investigated parameters ranged from 0.5749 to 0.9604. During storage of 5 weeks at room temperature loss of phenols and flavonoids occurred. Antioxidant activity decreased with the decrease of TP and TF content. Degradations of phenols and flavonoids were more pronounced in samples stored at light.

  15. Comparative analysis of bioactive phenolic compounds composition from 26 medicinal plants.

    Science.gov (United States)

    Sytar, Oksana; Hemmerich, Irene; Zivcak, Marek; Rauh, Cornelia; Brestic, Marian

    2018-05-01

    Bioactive phenolic compounds are powerful antioxidants in traditionally used medicinal and industrial crop plants and have attracted increased interest in the last years in their application and role in non-destructive methodology for pre-screening analysis of some stress factors. In this study the qualitative target was linked with future possible applications of received data for improving non-destructive methodology as well as for improving existing knowledge regarding antioxidant content in some plant species. Comparative analysis of total phenolics, flavonoid contents, phenolic acid composition, and antioxidant activity in known east central Europe medicinal and industrial crop plants of 26 species of families Asteraceae , Rosaceae and Lamiaceae was done. Among the investigated leaf extracts the highest total phenolic, total flavonoid contents and antioxidant activity have been seen for Stachys byzantine L. ( Lamiaceae ), Calendula officinalis L. ( Asteraceae ) and for Potentilla recta L. ( Rosaceae ). The highest syringic acid content has been found in the leaf extracts of plant family Asteraceae - in the range from 0.782 to 5.078 mg g -1  DW. The representative's family Rosaceae has a higher content of p-anisic acid in the range 0.334-3.442 mg g -1 DW compared to the leaf extracts of families Lamiaceae and Asteraceae . The comparative study showed significant differences of content of phenolic acids in the leaf extracts of different representative's families Rosaceae , Asteraceae and Lamiaceae . We suggest that the presence of some phenolic acids can be used as a possible marker for family botanical specifications of representative families Asteraceae and Rosaceae . It was supposed that some pharmacological effects can be connected with the analyzed data.

  16. Ocean acidification and the loss of phenolic substances in marine plants.

    Directory of Open Access Journals (Sweden)

    Thomas Arnold

    Full Text Available Rising atmospheric CO(2 often triggers the production of plant phenolics, including many that serve as herbivore deterrents, digestion reducers, antimicrobials, or ultraviolet sunscreens. Such responses are predicted by popular models of plant defense, especially resource availability models which link carbon availability to phenolic biosynthesis. CO(2 availability is also increasing in the oceans, where anthropogenic emissions cause ocean acidification, decreasing seawater pH and shifting the carbonate system towards further CO(2 enrichment. Such conditions tend to increase seagrass productivity but may also increase rates of grazing on these marine plants. Here we show that high CO(2 / low pH conditions of OA decrease, rather than increase, concentrations of phenolic protective substances in seagrasses and eurysaline marine plants. We observed a loss of simple and polymeric phenolics in the seagrass Cymodocea nodosa near a volcanic CO(2 vent on the Island of Vulcano, Italy, where pH values decreased from 8.1 to 7.3 and pCO(2 concentrations increased ten-fold. We observed similar responses in two estuarine species, Ruppia maritima and Potamogeton perfoliatus, in in situ Free-Ocean-Carbon-Enrichment experiments conducted in tributaries of the Chesapeake Bay, USA. These responses are strikingly different than those exhibited by terrestrial plants. The loss of phenolic substances may explain the higher-than-usual rates of grazing observed near undersea CO(2 vents and suggests that ocean acidification may alter coastal carbon fluxes by affecting rates of decomposition, grazing, and disease. Our observations temper recent predictions that seagrasses would necessarily be "winners" in a high CO(2 world.

  17. An Alternative Use of Horticultural Crops: Stressed Plants as Biofactories of Bioactive Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Luis Cisneros-Zevallos

    2012-09-01

    Full Text Available Plants subjected to abiotic stresses synthesize secondary metabolites with potential application in the functional foods, dietary supplements, pharmaceutical, cosmetics and agrochemical markets. This approach can be extended to horticultural crops. This review describes previous reports regarding the effect of different postharvest abiotic stresses on the accumulation of phenolic compounds. Likewise, the physiological basis for the biosynthesis of phenolic compounds as an abiotic stress response is described. The information presented herein would be useful for growers and the fresh produce market which are interested in finding alternative uses for their crops, especially for those not meeting quality standards and thus are considered as waste.

  18. Phenolic compounds in cultures of tissues of tea plants and the effect of light on their synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Koretskaya, T.F.; Zaprometov, M.N.

    1975-01-01

    Stem and leaf calluses of tea plants (Camellia sinensis) retain the capacity for synthesis of phenolic compounds. The content of phenolic compounds comprises 2 to 5 percent of dry weight, the main share (80 to 95 percent) belonging to catechins and leucoanthocyans, including their polymeric forms. The following compounds were detected in callus tissue: (--)-epicatechin, (+)-catechin, two leucoanthocyans, and several unidentified phenolic compounds that fluoresce in UV. (--)-Epicatechin is predominant. In contrast to tissues of an intact plant, the callus does not contain gallocatechins or free gallic acid under the given cultivation conditions. The content of phenolic compounds changes in proportion to callus growth, their greatest amount being formed during the phase of intensive growth. Light stimulates synthesis of phenolic compounds, including the most reduced group of flavonoids, viz., leucoanthocyans and catechins.

  19. Consequences of plant phenolic compounds for productivity and health of ruminants.

    Science.gov (United States)

    Waghorn, Garry C; McNabb, Warren C

    2003-05-01

    Plant phenolic compounds are diverse in structure but are characterised by hydroxylated aromatic rings (e.g. flavan-3-ols). They are categorised as secondary metabolites, and their function in plants is often poorly understood. Many plant phenolic compounds are polymerised into larger molecules such as the proanthocyanidins (PA; condensed tannins) and lignins. Only the lignins, PA, oestrogenic compounds and hydrolysable tannins will be considered here. Lignins slow the physical and microbial degradation of ingested feed, because of resilient covalent bonding with hemicellulose and cellulose, rather than any direct effects on the rumen per se. The PA are prevalent in browse and are expressed in the foliage of some legumes (e.g. Lotus spp.), but rarely in grasses. They reduce the nutritive value of poor-quality diets, but can also have substantial benefits for ruminant productivity and health when improved temperate forages are fed. Beneficial effects are dependent on the chemical and physical structure, and concentration of the PA in the diet, but they have been shown to improve live-weight gain, milk yield and protein concentration, and ovulation rate. They prevent bloat in cattle, reduce gastrointestinal nematode numbers, flystrike and CH4 production. Some phenolic compounds (e.g. coumestans) cause temporary infertility, whilst those produced by Fusarium fungi found in pasture, silage or stored grains can cause permanent infertility. The HT may be toxic because products of their metabolism can cause liver damage and other metabolic disorders.

  20. Uptake and fate of phenol, aniline and quinoline in terrestrial plants

    International Nuclear Information System (INIS)

    Cataldo, D.A.; Bean, R.M.; Fellows, R.J.

    1987-06-01

    The bioavailability and chemical fate of xenobiotics in terrestrial plants can influence the impact of fossil fuel development on the human food chain. To determine the relative behavior of organic residues representing a range of chemical classes, we compared the rates of root absorption, tissue distribution and chemical fate of phenol, aniline and quinoline in soybean plants. Root absorption rates for these compounds were 180, 13 and 30 μg/g (fresh weight) root/day, respectively. Following uptake, aniline was concentrated in the root, while phenol and quinoline were evenly distributed in roots and leaves. After accumulation, phenol was readily decomposed, and its carbon was respired. While aniline was susceptible to oxidative decomposition, it persisted in leaves and roots; 25% of the soluble activity represented aniline, and a significant fraction was bound or conjugated to cell constitutents. Quinoline persisted both in the parent form and as metabolic products. However, in leaves, additional compounds were found that were chemically similar to quinoline; these were not found in unexposed plants. A substantial fraction of the quinoline accumulated by leaves was emitted to the atmosphere by volatilization. 12 refs., 5 tabs., 2 figs

  1. Abilities of some higher plants to hydrolyze the acetates of phenols and aromatic-aliphatic alcohols

    Directory of Open Access Journals (Sweden)

    Agnieszka Mironowicz

    2014-01-01

    Full Text Available In the biotransformations carried out under the same conditions, the whole intact plants of Spirodela punctata, Nephrolepis exaltata, Cyrtomium falcatum, Nephrolepis cordifolia and the suspension cultures of Helianthus tuberosus, Daucus carota and Petunia hybrida hydrolyze (partially or totally the ester bonds of the acetates of phenols and aromatic-aliphatic alcohols and also the menthyl acetate. Nevertheless, the methyl esters of aromatic acids, structurally similar to the former substrates, do not undergo hydrolysis. At the same time, the viability of first four plants was observed for different levels of acetate concentration. The method of continuous preparative hydrolysis of the same acetates was worked out in Cyrtomium falcatum culture.

  2. Heat stress protection in abnormally hot environments.

    CSIR Research Space (South Africa)

    Schutte, PC

    1994-11-01

    Full Text Available The present report presents the findings of SIMRAC project GAP 045 entitled ‘Heat stress protection in abnormally hot environments’. It is intended as a reference to develop guidelines which, in turn would assist mine management in establishing safe...

  3. Transpiration effect on the uptake and distribution of bromacil, nitrobenzene, and phenol in soybean plants

    International Nuclear Information System (INIS)

    McFarlane, J.C.; Pfleeger, T.; Fletcher, J.

    1987-01-01

    The influence of transpiration rate on the uptake and translocation of two industrial waste compounds, phenol and nitrobenzene, and one pesticide, 5-bromo-3-sec-butyl-6-methyluracil (bromacil), was examined. Carbon-14 moieties of each compound were provided separately in hydroponic solution to mature soybean plants maintained under three humidity conditions. The uptake of each compound was determined by monitoring the removal of 14 C from the hydroponic solution. The extent to which 14 C was adsorbed to roots and translocated to plant shoots and leaves was examined by assaying root and shoot parts for 14 C. Bromacil was taken up slower than the other chemicals, had the most 14 C translocated to the shoot, and the amount translocated to the shoot responded directly to the rate of transpiration. In contrast, both phenol and nitrobenzene were rapidly lost from solution and bound to the roots. Less than 1.5% of the 14 C from phenol or nitrobenzene was translocated to the plant shoots. Increased transpiration rates had little influence on root binding of 14 C; however, increasing transpiration rate from low to medium was associated with an increased uptake of nitrobenzene. The three chemicals studied have similar Log K/sub ow/ values, but their interactions with soybean were not the same. Thus, despite the usefulness of the octanol/water partitioning coefficient in predicting the fate of organic chemicals in animals and in correlating with root binding and plant uptake for many pesticides, log K/sub ow/ may not be equally useful in describing uptake and binding of nonpesticide chemicals in plants

  4. The Antioxidant Capacities and Total Phenolic Contents of Some Medicinal Plants in Iran

    Directory of Open Access Journals (Sweden)

    Ali Mirzaei

    2011-12-01

    Full Text Available Background & Objectives: Free radicals are highly reactive molecules may cause great damage to cell membranes and DNA and Result in inducing oxidation DNA mutations leading to cancer, degenerative, and other diseases. Plant antioxidant derived may be preventive of free radical damages. Methods & Materials: The Stems and flower sample of plants air-dried, finely ground and were extracted by ethanol: water (70:30 for 48 h. Extracts were filtered and dried under vacuum. The antioxidant activity of five ethanolic extract of medicinal plants (Descurainia Sophia, Plantago major, Trachyspermum copticum L, Coriandrum sativum and Trigonella foenum-graecum from Iran were analysed by five different methods [1,1-diphenyl-2-picrylhydrazyl (DPPH radical, 2,2,azinobis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS radical cation, Ferric-reducing antioxidant power assay (FRAP, phosphomolybdenum (PMB and reducing power (RP]. In addition, for determination of antioxidant components total phenolic content was also analyzed. Results: The total phenolic content of medicinal plant ranges from 74 to 154.3 mg Gallic acid/g extract as measured by the Folin–Ciocalteau method. Values of DPPH varied from 15.5 to 19.6 µmol trolex/g. FRAP ranged from 124.2 to 753 µmol of Fe(II/g extract. Antioxidant activity of the Plantago major was always higher compared to the other plants extracts values of total phenols content and antioxidant capacity by DPPH, ABTS, FRAP, (154.33 mg GAE/g, 1856 µmol trolox, 750 µmol trolox and 1169 µmol of Fe(II/g, extract respectively. The range of total antioxidant activity by phosphomolybdenum method was 513.3 to 870 µmol trolox/g. The reducing ability of the tested extracts was between 0.31-1.26. Plantago majorwas also highest activity in both tests. Conclusion: This study clearly demonstrated that Plantago major crude extract exhibit significant antioxidant activity.

  5. Antibacterial Activity of Different Plant Extracts and Phenolic Phytochemicals Tested on Paenibacillus Larvae Bacteria

    Directory of Open Access Journals (Sweden)

    Liviu Mărghitaş

    2011-10-01

    Full Text Available Paenibacillus larvae, a Gram-positive and spore-forming bacterium is responsible for American foulbrood disease inbees. The antimicrobial activity of different plant extracts and phenolic phytochemical was evaluated onPaenibacillus larvae bacteria. In addition possible correlation with antioxidant activity of the same plant extracts wasstudied. Extracts of the following plants were utilized: Achillea millefolium (yarrow, Ocimum basilicum (basil,Thymus vulgaris (thyme and Urtica dioica (nettle. The extracts that showed antimicrobial activity were later testedto determine the Minimal Inhibitory Concentration (MIC. Although nettle present the lowest polyphenolic contentcompared with the other plant extracts, exhibit the highest antimicrobial activity, measured as the inhibition zoneusing Mueller-Hinton agar plates. Basil presented both polyphenolic content and antimicrobial activity at higherlevels, while thyme had the lowest antimicrobial activity, even it present high amount of polyphenols.

  6. Antioxidant, Cytotoxic Activities and Total Phenolic Content of Four Indonesian Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Waras Nurcholis

    2017-03-01

    Full Text Available The crude ethanol extracts of four Indonesian medicinal plants namely Curcuma xanthorrhiza Roxb.,Phyllanthus niruri Linn., Andrographis paniculata Ness., and Curcuma aeruginosa Roxb. wereexamined for their antioxidant (radical scavenging activity using 2, 2-diphenyl-2-picrylhydrazyl(DPPH free radical and cytotoxicity using brine shrimp lethality test (BSLT. The total phenoliccontent was used the Folin-Ciocalteu method. IC50 values for DPPH radical scavenging activityranged from 14.5 to 178.5 μg/ml, with P. niruri having the lowest value and therefore the mostpotent, and C. aeruginosa having the highest value. LC50 values for BSLT ranged from 210.3 to593.2 μg/ml, with C. xanthorrhiza and A. paniculata having the lowest and highest values,respectively. The total phenolic content of the Indonesian plants ranged from 133.0 ±3.7 to863.3±54.7 mg tannic acid equivalent per 1 g extract, with C. aeruginosa and P. niruri having thelowest and highest values, respectively. A positive correlation between free radical scavengingactivity and the content of phenolic compounds was found in the four of Indonesian medicinal plants.

  7. Interaction of plant phenols with food macronutrients: characterisation and nutritional-physiological consequences.

    Science.gov (United States)

    Zhang, Hao; Yu, Dandan; Sun, Jing; Liu, Xianting; Jiang, Lu; Guo, Huiyuan; Ren, Fazheng

    2014-06-01

    Polyphenols are dietary constituents of plants associated with health-promoting effects. In the human diet, polyphenols are generally consumed in foods along with macronutrients. Because the health benefits of polyphenols are critically determined by their bioavailability, the effect of interactions between plant phenols and food macronutrients is a very important topic. In the present review, we summarise current knowledge, with a special focus on the in vitro and in vivo effects of food macronutrients on the bioavailability and bioactivity of polyphenols. The mechanisms of interactions between polyphenols and food macronutrients are also discussed. The evidence collected in the present review suggests that when plant phenols are consumed along with food macronutrients, the bioavailability and bioactivity of polyphenols can be significantly affected. The protein-polyphenol complexes can significantly change the plasma kinetics profile but do not affect the absorption of polyphenols. Carbohydrates can enhance the absorption and extend the time needed to reach a maximal plasma concentration of polyphenols, and fats can enhance the absorption and change the absorption kinetics of polyphenols. Moreover, as highlighted in the present review, not only a nutrient alone but also certain synergisms between food macronutrients have a significant effect on the bioavailability and biological activity of polyphenols. The review emphasises the need for formulations that optimise the bioavailability and in vivo activities of polyphenols.

  8. An Overview of Plant Phenolic Compounds and Their Importance in Human Nutrition and Management of Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Derong Lin

    2016-10-01

    Full Text Available In this paper, the biosynthesis process of phenolic compounds in plants is summarized, which includes the shikimate, pentose phosphate and phenylpropanoid pathways. Plant phenolic compounds can act as antioxidants, structural polymers (lignin, attractants (flavonoids and carotenoids, UV screens (flavonoids, signal compounds (salicylic acid and flavonoids and defense response chemicals (tannins and phytoalexins. From a human physiological standpoint, phenolic compounds are vital in defense responses, such as anti-aging, anti-inflammatory, antioxidant and anti-proliferative activities. Therefore, it is beneficial to eat such plant foods that have a high antioxidant compound content, which will cut down the incidence of certain chronic diseases, for instance diabetes, cancers and cardiovascular diseases, through the management of oxidative stress. Furthermore, berries and other fruits with low-amylase and high-glucosidase inhibitory activities could be regarded as candidate food items in the control of the early stages of hyperglycemia associated with type 2 diabetes.

  9. Phenolic profile and antimicrobial activities to selected microorganisms of some wild medical plant from Slovakia

    Directory of Open Access Journals (Sweden)

    Lukáš Hleba

    2014-08-01

    Full Text Available Objective: To investigate the chemical composition and antimicrobial activity of the methanol extracts of Tussilago farfara (T. farfara, Equisetum arvense, Sambucus nigra (S. nigra and Aesculus hippocastanum. Methods: The antimicrobial activities of the extracts against Enterococcus raffinosus, Escherichia coli, Lactobacillus rhamnosus, Pseudomonas aeruginosa, Serratia rubidaea, Saccharomyces cerevisiae and Staphylococcus epidermis were determined by the microbroth dilution method according to Clinical and Laboratory Standards Institute, while the concentrations of main phenolic acids and flavonoids in the form of trimethylsilyl ethers were analysed using gas chromatography-mass spectrometry. The probit analysis was used for statistical evaluation. Results: Of the 4 plant tested, all extracts showed a significant antimicrobial activity against one or more species of examined microorganisms. The most active antimicrobial plant extract was gathered from T. farfara, followed by Aesculus hippocastanum and Equisetum arvense. The extract from S. nigra showed no antimicrobial effects. The flavonoids quercetin and kaempferol, as well as several phenolic acids (p-hydroxybenzoic acid, gallic acid, ferulic acid and caffeic acid were identified in all extracts. The highest concentrations of bioactive compounds were detected in the extracts of T. farfara (9 587.6 µg/mg quercetin and 4 875.3 µg/mg caffeic acid as well as S. nigra (4788.8 µg/mg kaempferol. Conclusions: We can state that the methanolic plant extract of T. farfara showed the strongest antimicrobial activity against Saccharomyces cerevisiae as well as other tested microorganisms. At the same time, a good antimicrobial activity was found in the other medical plant extracts as well. No antimicrobial effect of the S. nigra extract was found with respect to the growth of Pseudomonas aeruginosa, Enterococcus raffinosus and Saccharomyces cerevisiae.

  10. Microbial degradation of plant leachate alters lignin phenols and trihalomethane precursors

    Science.gov (United States)

    Pellerin, Brian A.; Hernes, Peter J.; Saraceno, John Franco; Spencer, Robert G.M.; Bergamaschi, Brian A.

    2010-01-01

    Although the importance of vascular plant-derived dissolved organic carbon (DOC) in freshwater systems has been studied, the role of leached DOC as precursors of disinfection byproducts (DBPs) during drinking water treatment is not well known. Here we measured the propensity of leachates from four crops and four aquatic macrophytes to form trihalomethanes (THMs)—a regulated class of DBPs—before and after 21 d of microbial degradation. We also measured lignin phenol content and specific UV absorbance (SUVA254) to test the assumption that aromatic compounds from vascular plants are resistant to microbial degradation and readily form DBPs. Leaching solubilized 9 to 26% of total plant carbon, which formed 1.93 to 6.72 mmol THM mol C-1 However, leachate DOC concentrations decreased by 85 to 92% over the 21-d incubation, with a concomitant decrease of 67 to 92% in total THM formation potential. Carbon-normalized THM yields in the residual DOC pool increased by 2.5 times on average, consistent with the preferential uptake of nonprecursor material. Lignin phenol concentrations decreased by 64 to 96% over 21 d, but a lack of correlation between lignin content and THM yields or SUVA254 suggested that lignin-derived compounds are not the source of increased THM precursor yields in the residual DOC pool. Our results indicate that microbial carbon utilization alters THM precursors in ecosystems with direct plant leaching, but more work is needed to identify the specific dissolved organic matter components with a greater propensity to form DBPs and affect watershed management, drinking water quality, and human health.

  11. Lipid Oxidation Inhibitory Effects and Phenolic Composition of Aqueous Extracts from Medicinal Plants of Colombian Amazonia

    Directory of Open Access Journals (Sweden)

    José Ignacio Ruiz-Sanz

    2012-05-01

    Full Text Available Diverse plants of ethnobotanic interest in Amazonia are commonly used in traditional medicine. We determined the antioxidant potential against lipid peroxidation, the antimicrobial activity, and the polyphenol composition of several Amazonian plants (Brownea rosademonte, Piper glandulosissimum, Piper krukoffii, Piper putumayoense, Solanum grandiflorum, and Vismia baccifera. Extracts from the plant leaf, bark, and stem were prepared as aqueous infusions, as used in folk medicine, and added to rat liver microsomes exposed to iron. The polyphenolic composition was detected by reverse-phase HPLC coupled to diode-array detector and MS/MS analysis. The antimicrobial activity was tested by the spot-on-a-lawn method against several indicator microorganisms. All the extracts inhibited lipid oxidation, except the P. glandulosissimum stem. The plant extracts exhibiting high antioxidant potential (V. baccifera and B. rosademonte contained high levels of flavanols (particularly, catechin and epicatechin. By contrast, S. grandiflorum leaf, which exhibited very low antioxidant activity, was rich in hydroxycinnamic acids. None of the extracts showed antimicrobial activity. This study demonstrates for the first time the presence of bioactive polyphenolic compounds in several Amazonian plants, and highlights the importance of flavanols as major phenolic contributors to antioxidant activity.

  12. Saponins and phenolic content in plant dietary additives of a traditional subsistence community, the Batemi of Ngorongoro District, Tanzania.

    Science.gov (United States)

    Johns, T; Mahunnah, R L; Sanaya, P; Chapman, L; Ticktin, T

    1999-07-01

    Reports of plants added to milk and meat-based soups by the Maasai and Batemi in East Africa support a role for phenolic antioxidants and hypocholesterolemic agents in the diet, and provide explanation of the low incidence of cardiovascular disease of populations that traditionally consume high levels of dietary fat and cholesterol. Plant food additives used by the Batemi of Ngorongoro District, Tanzania, were tabulated, based on interviews with 22 informants, while 17 specimens were collected in the field and analyzed for saponin and phenolic content. A total of 81% of the Batemi additives and 82% of those known to be used by the Maasai contain potentially hypocholesterolemic saponins and/or phenolics.

  13. Anticancer Activity, Antioxidant Activity, and Phenolic and Flavonoids Content of Wild Tragopogon porrifolius Plant Extracts

    Directory of Open Access Journals (Sweden)

    Fuad Al-Rimawi

    2016-01-01

    Full Text Available Tragopogon porrifolius, commonly referred to as white salsify, is an edible herb used in folk medicine to treat cancer. Samples of Tragopogon porrifolius plant grown wild in Palestine were extracted with different solvents: water, 80% ethanol, and 100% ethanol. The extracts were analyzed for their total phenolic content (TPC, total flavonoid content (TFC, and antioxidant activity (AA. Four different antioxidant assays were used to evaluate AA of the extracts: two measures the reducing power of the extracts (ferric reducing antioxidant power (FRAP and cupric reducing antioxidant power (CUPRAC, while two other assays measure the scavenging ability of the extracts (2,2-azino-di-(3-ethylbenzothialozine-sulphonic acid (ABTS and 2,2-diphenyl-1-picrylhydrazyl (DPPH. Anticancer activity of the plant extracts were also tested on HOS and KHOS osteosarcoma cell lines. The results revealed that the polarity of the extraction solvent affects the TPC, TFC, and AA. It was found that both TPC and AA are highest for plant extracted with 80% ethanol, followed by water, and finally with 100% ethanol. TFC however was the highest in the following order: 80% ethanol > 100% ethanol > water. The plant extracts showed anticancer activities against KHOS cancer cell lines; they reduced total cell count and induced cell death in a drastic manner.

  14. HPLC-UV-ESI-MS analysis of phenolic compounds and antioxidant properties of Hypericum undulatum shoot cultures and wild-growing plants.

    Science.gov (United States)

    Rainha, Nuno; Koci, Kamila; Coelho, Ana Varela; Lima, Elisabete; Baptista, José; Fernandes-Ferreira, Manuel

    2013-02-01

    LC-UV and LC-MS analysis were used to study the phenolic composition of water extracts of Hypericum undulatum (HU) shoot cultures and wild-growing (WG) plants. Total phenolic content (TPC), determined using the Folin-Ciocalteu assay, and the antioxidant activity measured by two complementary methods were also performed for each sample. Mass spectrometry revealed several phenolics acids with quinic acid moieties, flavonols, mostly quercetin, luteolin and apigenin glycosides, flavan-3-ols (catechin and epicatechin) and the xanthonoid mangiferin. Differences in phenolic composition profile and TPC were found between the samples. The major phenolic in HU culture-growing (CG) samples is chlorogenic acid, followed by epicatechin, quercitrin and isoquercitrin. The WG plants presents hyperoside as the main phenolic, followed by isoquercitrin, chlorogenic acid and quercetin. The TPC and antioxidant activity were higher in samples from WG plants. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Study of the effect of plant growth regulators, size, and cultivar of the grape inflorescence explant on production of phenolic compounds in an in vitro condition

    Directory of Open Access Journals (Sweden)

    Sedighi Azam

    2014-01-01

    Full Text Available Introduction: Phenolic compounds are a large number of secondary metabolites that have useful and desirable effects in the field of agriculture, medicine, and food. This research was aimed to achieve methods of in vitro propagation of grapevine in order to apply biotechnologies for correction, growth, and optimization of products and compounds of the cultivated plant in relation to phenol ratio. Methods: In this interventional study, the effects of cultivar and size of the inflorescence explant and the gibberellin hormone in two levels, benzylaminopurine, and auxin hormones in three levels with three replicates per treatment were evaluated in relation to phenol ratio, in order to evaluate the effect of plant growth regulators, the type and size of the grape inflorescence explant on the phenol production. Results: The type of plant growth regulators affected phenolic substances production. The production of phenolic substances decreased in a medium with the highest concentration of growth regulators, 4 and 2.5 μM concentration of benzylaminopurine, and 4.9 μM of auxin. Production of phenolic substances increased in the free-plant hormone medium. In smaller samples tendency to turn brown was more regarding high amount of the sugar. Conclusion: The plant sample and the cultivar as important factors in producing phenol environment are induced by environmental stimuli like sugar, light, temperature, stress, ozone, and wound and can be actually applied to increase phenol production.

  16. Phenolic compound contents and antioxidant activity in plants with nutritional and/or medicinal properties form the Peruvian Andean region

    NARCIS (Netherlands)

    Chirinos, R.; Pedreschi Plasencia, R.P.; Rogez, H.

    2013-01-01

    Total phenolic compounds (TPC) and antioxidant activities using different assays (DPPH, ABTS and ORAC) in fruits, grains, leaves, seeds, roots and tubers from 27 different Peruvian Andean plants used in folk medicine or/and as food by the native population were evaluated in order to use these as

  17. Antioxidant activity, phenolic and flavonoid content of wild Alhagi maurorum root plant extracts

    Directory of Open Access Journals (Sweden)

    Fuad AL-RIMAWI

    2016-11-01

    Full Text Available Alhagi maurorum, belonging to family Leguminosae, is a highly branched spiny shrub. Roots may reach up to the depth of 15 meters. Alhagi maurorum is used in folk medicine, as a purgative, diaphoretic, expectorant and diuretic used to treat piles, migraine, warts and rheumatism. Samples of the root of Alhagi maurorum plant grown wild in Palestine were extracted with different solvents; water, 80% ethanol, and 100% ethanol. The extracts were analyzed for their total phenolic content (TPC, total flavonoid content (TFC, and antioxidant activity (AA. Four different antioxidant assays were used to evaluate AA of the extracts: two measures the reducing power of the extracts (ferric reducing antioxidant power (FRAP and Cupric reducing antioxidant power (CUPRAC, while two other assays measure the scavenging ability of the extracts (2,2-azino-di-(3-ethylbenzothialozine-sulphonic acid (ABTS, and 2,2-diphenyl-1-picrylhydrazyl (DPPH.The results revealed that the polarity of the extraction solvent affects the TPC, TFC, and AA. It was found that both TPC and AA are highest for plant extracted with 80% ethanol, followed by water, and finally with 100% ethanol. TFC however was highest in the following order: 80% ethanol >100% ethanol >water

  18. Evaluation of Phenolic Content Variability along with Antioxidant, Antimicrobial, and Cytotoxic Potential of Selected Traditional Medicinal Plants from India.

    Science.gov (United States)

    Singh, Garima; Passsari, Ajit K; Leo, Vincent V; Mishra, Vineet K; Subbarayan, Sarathbabu; Singh, Bhim P; Kumar, Brijesh; Kumar, Sunil; Gupta, Vijai K; Lalhlenmawia, Hauzel; Nachimuthu, Senthil K

    2016-01-01

    Plants have been used since ancient times as an important source of biologically active substances. The aim of the present study was to investigate the phytochemical constituents (flavonoids and phenolics), antioxidant potential, cytotoxicity against HepG2 (human hepato carcinoma) cancer cell lines, and the antimicrobial activity of the methanol extract of selected traditional medicinal plants collected from Mizoram, India. A number of phenolic compounds were detected using HPLC-DAD-ESI-TOF-MS, mainly Luteolin, Kaempferol, Myricetin, Gallic Acid, Quercetin and Rutin, some of which have been described for the first time in the selected plants. The total phenolic and flavonoid contents showed high variation ranging from 4.44 to 181.91 μg of Gallic Acid equivalent per milligram DW (GAE/mg DW) and 3.17 to 102.2 μg of Quercetin/mg, respectively. The antioxidant capacity was determined by DPPH (IC50 values ranges from 34.22 to 131.4 μg/mL), ABTS (IC50 values ranges from 24.08 to 513.4 μg/mL), and reducing power assays. Antimicrobial activity was assayed against gram positive (Staphylococcus aureus), gram negative (Escherichia coli, Pseudomonas aeruginosa), and yeast (Candida albicans) demonstrating that the methanol extracts of some plants were efficacious antimicrobial agents. Additionally, cytotoxicity was assessed on human hepato carcinoma (HepG2) cancer cell lines and found that the extracts of Albizia lebbeck, Dillenia indica, and Bombax ceiba significantly decreased the cell viability at low concentrations with IC50 values of 24.03, 25.09, and 29.66 μg/mL, respectively. This is the first report of detection of phenolic compounds along with antimicrobial, antioxidant and cytotoxic potential of selected medicinal plants from India, which indicates that these plants might be valuable source for human and animal health.

  19. Evaluation of phenolic content variability, antioxidant, antimicrobial and cytotoxic potential of selected traditional medicinal plants from India

    Directory of Open Access Journals (Sweden)

    Garima eSingh

    2016-03-01

    Full Text Available Plants have been used since ancient times as an important source of biologically active substances. The aim of the present study was to investigate the phytochemical constituents (flavonoids and phenolics, antioxidant potential, cytotoxicity against HepG2 (human hepato carcinoma cancer cell lines and the antimicrobial activity of the methanol extract of selected traditional medicinal plants collected from Mizoram, India. A number of phenolic compounds were detected using HPLC-DAD-ESI-TOF-MS, mainly Luteolin, Kaempferol, Myricetin, Gallic Acid, Quercetin and Rutin, some of which have been described for the first time in the selected plants. The total phenolic and flavonoid contents showed high variation ranging from 4.44 to 181.91 µg of Gallic Acid equivalent per milligram DW (GAE/mg DW and 3.17 to 102.2 µg of Quercetin/mg, respectively. The antioxidant capacity was determined by DPPH (IC50 values ranges from 34.22 to 131.4 µg/mL, ABTS (IC50 values ranges from 24.08 to 513.4 µg/mL and reducing power assays. Antimicrobial activity was assayed against gram positive (Staphylococcus aureus, gram negative (Escherichia coli, Pseudomonas aeruginosa and yeast (Candida albicans demonstrating that the methanol extracts of some plants were efficacious antimicrobial agents. Additionally, cytotoxicity was assessed on human hepato carcinoma (HepG2 cancer cell lines and found that the extracts of Albizia lebbeck, Dillenia indica and Bombax ceiba significantly decreased the cell viability at low concentrations with IC50 values of 24.03, 25.09 and 29.66 µg/mL, respectively. This is the first report of detection of phenolic compounds along with antimicrobial, antioxidant and cytotoxic potential of selected medicinal plants from India, which indicates that these plants might be valuable source for human and animal health.

  20. Phenolic content, antioxidant potential and Aedes aegyptii ecological friend larvicidal activity of some selected Egyptian plants.

    Science.gov (United States)

    El-Hela, Atef A; Abdel-Hady, Nevein M; Dawoud, Gouda T M; Hamed, Abdo M; Morsy, Tosson A

    2013-04-01

    Polyphenols constitute a distinct group of natural compounds of medicinal importance exhibiting wide range of physiological activities as antioxidant, immunestimulant, antitumor and antiparasitic. Yellow fever and dengue fever are mosquito-borne infectious diseases transmitted by Aedes aegyptii, the presence of yellow fever in Sudan and dengue fever in Saudi Arabia are threats to Egypt with the reemerging of Ae. aegyptii in Southern Egypt, larvae control is feasible than flying adults. This work was conducted targeting estimation of the relative levels of total phenolic content, antioxidant potential and larvicidal activity of 110 selected Egyptian plants. The highest total phenolic contents were estimated in aqueous extracts of Coronilla scorpioides L., Forsskaolea tenacissima L., Crataegus sinaica Boiss., Pistacia khinjuk Boiss. and Loranthus acacia Benth.; they were 916.70 +/- 4.80, 813.70 +/- 4.16, 744.90 +/- 4.93, 549.00 +/- 3.93& 460.80 +/- 4.02 mg% while those of methanol extracts were estimated in Coronilla scorpioides, Forsskaolea tenacissima, Crataegus sinaica, Loranthus acacia and Pistacia khinjuk, they were 915.60-4.86, 664.60 +/- 4.16, 659.30 +/- 4.80, 590.80 +/- 4.49 & 588.00 +/- 3.85 mg% respectively. Investigation of the antioxidant potentials revealed that the most potent plants were Co-ronilla scorpioides, Forsskaolea tenacissima, Crataegus sinaica, Pistacia khinjuk and Loranthus acacia with calculated values of 454.80 +/- 4.83, 418.4 +/- 4.16, 399.10 +/- 4.90, 342.5 +/- 2.72 & 239.7 +/- 2.91% for aqueous extracts and 452.9 +/- 4.94, 389.6 +/- 4.6, 378.48 +/- 3.84, 352.3 +/- 3.06 & 346.5 +/- 2.98% for methanol extracts respectively while screening of larvicidal activity proved that Coronilla scorpioides, Forsskaolea tenacissima, Crataegus sinaica, Pistacia khinjuk and Loranthus acacia exhibited highest potency calculated as 22.53 +/- 2.01, 23.85 +/- 2.07, 28.17 +/- 2.06, 31.60 +/- 2.93 & 39.73 +/- 4.58 mg% aqueous extracts and 18.53 +/- 1.95, 18

  1. Evaluation of auxin and thiamine interaction effect on PAL activity and phenolic compounds content in vegetative growth stage of soybean plants

    Directory of Open Access Journals (Sweden)

    nazi nadernejad

    2017-08-01

    Full Text Available Soybean (Glycin max L. is one of the most important oily seeds in the world. This plant is rich in protein and unsaturated fats, and plays a significant role in human health with phenolic compounds and flavonoids. Indole Butyric Acid (IBA is a plant growth regulator that plays a key role in producing phenolic compounds and increasing the antioxidant capacity of the plant. Thiamine is one of the important vitamins in strengthening the immune system and increasing the resistance to environmental stresses in the plant's growth stages. Regarding the effect of hormone auxin and thiamine on the production of phenolic compounds as one of the antioxidant compounds in growth stages, the aim of this study was to investigate the effect of the two compounds in two stages of soybean growth and compare their effect on phenolic compounds changes in order to Detecting higher antioxidant capacity in environmental stress tolerance. For this purpose, the DPX cultivar of soybean seeds were prepared from Dezful Agriculture Research Center and planted in perlite containing flowers. The plants were planted under factorial design under IBA treatments with three concentrations of 0, 10 and 50 and thiamine with three concentrations of 0, 50 and 200. Extraction and evaluation of phenolic compounds, anthocyanins and pigments in leaves were performed. Data were analyzed using Duncan's test at a significant level of 5%. The results showed that the combined use of auxin and thiamine increased the carotenoid content in both phases and caused a significant increase in phenolic content. Application of auxin alone reduced auxin and thiamine the anthocyanin content significantly in both phases, but did not have a significant effect on phenolic content. The results showed that the PAL activity of the phenolic and anthocyanin content increased significantly in the 9-leaf stage compared to 3-leaf. Generally, the results showed that interaction effect between auxin and thiamine on

  2. Growth, hydrolases and ultrastructure of Fusarium oxysporum as affected by phenolic rich extracts from several xerophytic plants.

    Science.gov (United States)

    Mohamed, Mahmoud S M; Saleh, Ahmed M; Abdel-Farid, Ibrahim B; El-Naggar, Sabry A

    2017-09-01

    Fusarium oxysporum, the causal agent of rot and wilt diseases, is one of the most detrimental phytopathogens for the productivity of many economic crops. The present study was conducted to evaluate the potentiality of some xerophytic plants as eco-friendly approach for management of F. oxysporum. Phenolic rich extracts from five plants namely: Horwoodia dicksoniae, Citrullus colocynthis, Gypsophila capillaris, Pulicaria incisa and Rhanterium epapposum were examined in vitro. The different extracts showed high variability in their phenolic and flavonoid contents as well as total antioxidant capacity. A strong positive correlation existed between the antifungal activity of the tested extracts and their contents of both total phenolics and flavonoids (r values are 0.91 and 0.82, respectively). Extract of P. incisa was the most effective in reducing the mycelial growth (IC 50 =0.92mg/ml) and inhibiting the activities of CMCase, pectinase, amylase and protease by 36, 42, 58 and 55%, respectively. The high performance liquid chromatography analysis of P. incisa extract revealed the presence of eight phenolic acids along with five polyphenolic compounds. The flavonol, quercetin and its glycosides rutin and quercetrin were the most abundant followed by the phenolic acids, t-cinnamic, caffeic, ferulic and vanillic. P. incisa extract not only affects the growth and hydrolases of F. oxysporum but also induces ultrastructure changes in the mycelium, as revealed by transmission electron microscopy. To our knowledge, this is the first study to investigate the mechanisms underlying the antifungal activity of P. incisa. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Qualitative characterisation of cultivated and wild edible plants: Mineral elements, phenols content and antioxidant capacity

    Directory of Open Access Journals (Sweden)

    Grazia Disciglio

    2017-12-01

    Full Text Available This study investigated the qualitative characteristics of several edible wild herbaceous species, including those most consumed in Foggia Province (southern Italy. Analysis of qualitative characteristics was performed for the edible parts of 11 wild species (Beta vulgaris L., Foeniculum vulgare Miller, Centaurea solstitialis L., Cichorium intybus L., Scolymus hispanicus L., Sonchus oleraceus L., Borago officinalis L., Diplotaxis erucoides L., Diplotaxis tenuifolia (L. DC, Sinapis arvensis L., Portulaca oleracea L. and three cultivated species (C. intybus, B. officinalis, D. tenuifolia. The plants were collected from areas in the Foggia countryside, and the edible part of each species was analysed for dry matter, protein, cation and anion contents as well as total phenols and antioxidant activities. Among the cations, calcium was the most differentiated among species, ranging 784 mg kg–1 fresh weight (Fw for B. vulgaris to 5886 mg kg–1 Fw for S. hispanicus. The nitrate contents were also highly variable, from 75 mg kg–1 Fw for C. intybus to 3874 mg kg–1 Fw for D. tenuifolia. Total polyphenols ranged from 1054 mg gallic acid equivalents (GAE mg kg–1 Fw for C. solstitialis to 3664 mg GAE mg kg–1 Fw for S. arvensis. Antioxidant activities ranged from 839 mg Trolox equivalents (TE kg–1 Fw for B. vulgaris to 5658 mg TE kg–1 Fw for C. intybus. Significant differences were also noted between wild and cultivated plants in the qualitative parameters. Total polyphenols and antioxidant activity were higher in wild C. intybus and B. officinalis than in their cultivated counterparts. Multivariate analysis (cluster analysis and linear discriminant analysis allowed integration of the ANOVA data to determine the qualitative characteristics of the wild species that contribute most to group differences. The results of the present study aims to improve current knowledge about edible wild species as vegetable sources in the Mediterranean diet.

  4. Total phenolics and antioxidant activity of five medicinal plant; Fenois totais e atividade antioxidante de cinco plantas medicinais

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Cleyton Marcos de M.; Silva, Hilris Rocha e; Vieira-Junior, Gerardo Magela; Ayres, Mariane Cruz C.; Costa, Charllyton Luis S. da; Araajo, Delton Servulo; Cavalcante, Luis Carlos D.; Barros, Elcio Daniel S.; Araujo, Paulo Breitner de M.; Brandao, Marcela S.; Chaves, Mariana H. [Universidade Federal do Piaui, Teresina, PI (Brazil). Dept. de Quimica]. E-mail: mariana@ufpi.br

    2007-03-15

    This paper describes total phenolics content and antioxidant activity in the ethanolic extract of leaves, bark and roots of five medicinal plants: Terminalia brasiliensis Camb., Terminalia fagifolia Mart. and Zucc., Copernicia cerifera (Miller) H.E. Moore, Cenostigma macrophyllum Tul. var. acuminata Teles Freire and Qualea grandiflora Mart. The total phenolics content of the plant extracts, determined by the Folin-Ciocalteu method, varied from 250.0 {+-}8,2 to 763,63 {+-}13.03 mg of gallic acid equivalent/g dry EtOH extract. The antioxidant activity of extracts was evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay system. Extract of bark from T. brasiliensis, the most active, with an EC{sub 50} value of 27.59 {+-} 0.82 {mu}g/mL, was comparable to rutin (EC{sub 50} = 27.80 {+-} 1.38) and gallic acid (EC{sub 50} = 24.27 {+-} 0.31), used as positive controls. The relationship between total phenolic content and antioxidant activity was positive and significant for T. brasiliensis, C. macrophyllum and C. cerifera. (author)

  5. Analysis of Phenolic and Cyclic Compounds in Plants Using Derivatization Techniques in Combination with GC-MS-Based Metabolite Profiling

    Directory of Open Access Journals (Sweden)

    Jens Rohloff

    2015-02-01

    Full Text Available Metabolite profiling has been established as a modern technology platform for the description of complex chemical matrices and compound identification in biological samples. Gas chromatography coupled with mass spectrometry (GC-MS in particular is a fast and accurate method widely applied in diagnostics, functional genomics and for screening purposes. Following solvent extraction and derivatization, hundreds of metabolites from different chemical groups can be characterized in one analytical run. Besides sugars, acids, and polyols, diverse phenolic and other cyclic metabolites can be efficiently detected by metabolite profiling. The review describes own results from plant research to exemplify the applicability of GC-MS profiling and concurrent detection and identification of phenolics and other cyclic structures.

  6. Comparative study of herbal plants on the phenolic and flavonoid content, antioxidant activities and toxicity on cells and zebrafish embryo

    Directory of Open Access Journals (Sweden)

    Hassan Fahmi Ismail

    2017-10-01

    Full Text Available Natural antioxidants derived from plants have shown a tremendous inhibitory effect on free radicals in actively metabolizing cells. Overproduction of free radicals increases the risk factor of chronic diseases associated with diabetes, cancer, arthritis and cardiovascular disease. Andrographis paniculata, Cinnamon zeylanicum, Curcuma xanthorrhiza, Eugenia polyantha and Orthosiphon stamineus are ethnomedicinal plants used in the Asian region to treat various illnesses from a common fever to metabolic disease. In this study, we have quantified the total phenolic (TPC and flavonoid content (TFC in these plants and its inhibitory effect on 1,1-diphenyl-2-picrylhydrazyl radical (DPPH and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS free radicals as well as the cytotoxicity effect on cell lines proliferation and zebrafish embryogenesis. Results showed that Cinnamon zeylanicum and E. polyantha have the highest phenolic and flavonoid content. Furthermore, both herbs significantly inhibited the formation of DPPH and ABTS free radicals. Meanwhile, O. stamineus exhibited minimum cytotoxicity and embryotoxicity on tested models. Good correlation between IC50 of 3T3-L1 cells and LC50 embyrotoxicity was also found. This study revealed the potent activity of antioxidant against free radical and the toxicology levels of the tested herbal plants.

  7. Total Phenolic, Flavonoid, Tomatine, and Tomatidine Contents and Antioxidant and Antimicrobial Activities of Extracts of Tomato Plant

    Science.gov (United States)

    Silva-Beltrán, Norma Patricia; Ruiz-Cruz, Saul; Cira-Chávez, Luis Alberto; Estrada-Alvarado, María Isabel; Ornelas-Paz, José de Jesús; López-Mata, Marco Antonio; Del-Toro-Sánchez, Carmen Lizette; Ayala-Zavala, J. Fernando; Márquez-Ríos, Enrique

    2015-01-01

    The purpose of this study was to evaluate the antioxidant and antimicrobial properties of extracts of different fractions of two tomato plant cultivars. The stems, roots, leaves, and whole-plant fractions were evaluated. Tomatine and tomatidine were identified by HPLC-DAD. The leaf extracts from the two varieties showed the highest flavonoids, chlorophyll, carotenoids, and total phenolics contents and the highest antioxidant activity determined by DPPH, ABTS, and ORAC. A positive correlation was observed between the antioxidant capacities of the extracts and the total phenolic, flavonoid, and chlorophyll contents. The Pitenza variety extracts inhibited the growth of pathogens such as E. coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus, and Listeria ivanovii, yielding inhibition halos of 8.0 to 12.9 mm in diameter and MIC values of 12.5 to 3.125 mg/mL. These results suggest that tomato plant shows well potential as sources of various bioactive compounds, antioxidants, and antimicrobials. PMID:26609308

  8. Anticancer Properties and Phenolic Contents of Sequentially Prepared Extracts from Different Parts of Selected Medicinal Plants Indigenous to Malaysia

    Directory of Open Access Journals (Sweden)

    Hadiza Altine Adamu

    2012-05-01

    Full Text Available Different parts of four edible medicinal plants (Casearia capitellata, Baccaurea motleyana, Phyllanthus pulcher and Strobilanthus crispus, indigenous to Malaysia, were extracted in different solvents, sequentially. The obtained 28 extracts were evaluated for their in vitro anticancer properties, using the MTS assay, on four human cancer cell lines: colon (HT-29, breast (MCF-7, prostate (DU-145 and lung (H460 cancers. The best anticancer activity was observed for the ethyl acetate (EA extract of Casearia capitellata leaves on MCF-7 cell lines with IC50 2.0 μg/mL and its methanolic (MeOH extract showed an outstanding activity against lung cancer cell lines. Dichloromethane (DCM extract of Phyllanthus pulcher aerial parts showed the highest anticancer activity against DU-145 cell lines, while significant activity was exhibited by DCM extract of Phyllanthus pulcher roots on colon cancer cell lines with IC50 value of 8.1 μg/mL. Total phenolic content (TPC ranged over 1–40 mg gallic acid equivalents (GAE/g. For all the samples, highest yields of phenolics were obtained for MeOH extracts. Among all the extracts analyzed, the MeOH extracts of Strobilanthus crispus leaves exhibited the highest TPC than other samples (p < 0.05. This study shows that the nature of phenol determines its anticaner activity and not the number of phenols present.

  9. Potential anti-inflammatory phenolic glycosides from the medicinal plant Moringa oleifera fruits

    Science.gov (United States)

    Bioassay-guided isolation and purification of the ethyl acetate extract of Moringa oleifera fruits yielded three new phenolic glycosides; 4-[(2'-O-acetyl-a-L-rhamnosyloxy) benzyl]isothiocyanate (1), 4-[(3'-O-acetyl-a-L-rhamnosyloxy)benzyl]isothiocyanate (2), and S-methyl-N-{4-[(a-L-rhamnosyloxy)benz...

  10. Total Phenolic, Flavonoids and Antioxidant Capacity of Some Medicinal and Aromatic Plants

    Directory of Open Access Journals (Sweden)

    Melinda Nagy

    2014-11-01

    Full Text Available Abstract: Antioxidants are substances that protect cells from the induced oxidative stress damage caused by unstable molecules known as free radicals that. Antioxidants neutralize free radicals as a natural by-product of normal cell processes. In the present study,were evaluated  the phenolic and flavonoids contents as well as the antioxidant capacity of seeds from  the Lamiaceae and Apiaceae family: fennel  (Foeniculum vulgare, dill (Anethum graveolens and rosemary (Rosmarinus officinalis . (Sreemoyee Ch. et. al., 2012 The main objective of the study was the comparative assessment of the phenolic and flavonoid compounds from dill, rosemary and fennel methanolic extracts correlated with their  antioxidant activity. Both total phenolic content and flavonoids content of the seeds samples were measured spectrophotometrically using the Folin-Ciocalteu assay and a chromogenic system of NaNO2–Al(NO33–NaOH, respectively.. Antioxidant capacity was determined by 2,2-DPPH method. Results strongly showed that Rosmarinus officinalis extract has the most effective antioxidant capacity in scavenging DPPH radicals, while Foeniculum vulgare and Anethum graveolens were less active. The total phenolic content was within 773,14 and 3367,24mg GAE/ 100g while the concentration in flavonoids was between 231,84 and 1325,53 QEg/100g dry seeds.  

  11. Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plants

    Czech Academy of Sciences Publication Activity Database

    Kováčik, J.; Grúz, Jiří; Bačkor, M.; Strnad, Miroslav; Repčák, M.

    2009-01-01

    Roč. 28, č. 1 (2009), s. 135-143 ISSN 0721-7714 Institutional research plan: CEZ:AV0Z50380511 Keywords : Chamomile * Oxidative stress * Phenolic metabolism Subject RIV: CE - Biochemistry Impact factor: 2.301, year: 2009

  12. Screening plant derived dietary phenolic compounds for bioactivity related to cardiovascular disease.

    Science.gov (United States)

    Croft, Kevin D; Yamashita, Yoko; O'Donoghue, Helen; Shirasaya, Daishi; Ward, Natalie C; Ashida, Hitoshi

    2018-04-01

    The potential health benefits of phenolic acids found in food and beverages has been suggested from a number of large population studies. However, the mechanism of how these compounds may exert biological effects is less well established. It is also now recognised that many complex polyphenols in the diet are metabolised to simple phenolic acids which can be taken up in the circulation. In this paper a number of selected phenolic compounds have been tested for their bioactivity in two cell culture models. The expression and activity of endothelial nitric oxide synthase (eNOS) in human aortic endothelial cells and the uptake of glucose in muscle cells. Our data indicate that while none of the compounds tested had a significant effect on eNOS expression or activation in endothelial cells, several of the compounds increased glucose uptake in muscle cells. These compounds also enhanced the translocation of the glucose transporter GLUT4 to the plasma membrane, which may explain the observed increase in cellular glucose uptake. These results indicate that simple cell culture models may be useful to help understand the bioactivity of phenolic compounds in relation to cardiovascular protection. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effective Phytoextraction of Cadmium (Cd) with Increasing Concentration of Total Phenolics and Free Proline in Cannabis sativa (L) Plant Under Various Treatments of Fertilizers, Plant Growth Regulators and Sodium Salt.

    Science.gov (United States)

    Ahmad, Ayaz; Hadi, Fazal; Ali, Nasir

    2015-01-01

    The comparative effect of fertilizers (NPK), plant growth regulators (GA3, IAA, Zeatin) and sodium chloride (NaCl) on Cd phytoaccumulation, proline and phenolics production in Cannabis sativa was evaluated. Proline and phenolices were correlated with Cd contents in plant. Cd significantly reduced the plant growth. Fertilizers application (in combination) most significantly increased the growth (19 cm root and 47 cm shoot) on Cd contaminated soil. All treatments increased the Cd contents in plant tissues. This increase was highly significant in fertilizers treated plants (1101, 121 and 544 ppm in roots, stem and leaves respectively). Significantly positive correlation was found between Cd concentration and dry biomass of root (R2=0.7511) and leaves (R2=0.5524). All treatments significantly increased the proline and total phenolics and maximum was recorded in NaCl treated plants followed by fertilizers. Proline was higher in roots while phenolics in leaves. The correlation between proline and phenolics was positive in leaf (R2=0.8439) and root (R2=0.5191). Proline and phenolics showed positive correlation with Cd concentration in plant. Conclusively, fertilizers in combination seem to be the better option for Cd phytoextraction. Further investigation is suggested to study the role of phenolics and proline in Cd phytoextraction.

  14. Carbonic Anhydrase and Urease Inhibitory Potential of Various Plant Phenolics Using in vitro and in silico Methods.

    Science.gov (United States)

    Rauf, Abdur; Raza, Muslim; Saleem, Muhammad; Ozgen, Ufuk; Karaoglan, Esen Sezen; Renda, Gulin; Palaska, Erhan; Orhan, Ilkay Erdogan

    2017-06-01

    Plant phenolics are known to display many pharmacological activities. In the current study, eight phenolic compounds, e.g., luteolin 5-O-β-glucoside (1), methyl rosmarinate (2), apigenin (3), vicenin 2 (4), lithospermic acid (5), soyasaponin II (6), rubiadin 3-O-β-primeveroside (7), and 4-(β-d-glucopyranosyloxy)benzyl 3,4-dihydroxybenzoate (8), isolated from various plant species were tested at 0.2 mm against carbonic anhydrase-II (CA-II) and urease using microtiter assays. Urease inhibition rate for compounds 1 - 8 ranged between 5.0 - 41.7%, while only compounds 1, 2, and 4 showed a considerable inhibition over 50% against CA-II with the IC 50 values of 73.5 ± 1.05, 39.5 ± 1.14, and 104.5 ± 2.50 μm, respectively, where IC 50 of the reference (acetazolamide) was 21.0 ± 0.12 μm. In silico experiments were also performed through two docking softwares (Autodock Vina and i-GEMDOCK) in order to find out interactions between the compounds and CA-II. Actually, compounds 6 (30.0%) and 7 (42.0%) possessed a better binding capability toward the active site of CA-II. According to our results obtained in this study, among the phenolic compounds screened, particularly 1, 2, and 4 appear to be the promising inhibitors of CA-II and may be further investigated as possible leads for diuretic, anti-glaucoma, and antiepileptic agents. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  15. Plant hormone interaction and phenolic metabolism in the regulation of russet spotting in iceberg lettuce.

    Science.gov (United States)

    Ke, D; Saltveit, M E

    1988-12-01

    Russet spotting (RS) is a physiological disorder induced in iceberg lettuce (Lactuca sativa L.) by exposure to parts per million levels of ethylene at 5 +/- 2 degrees C. Ethylene induced phenylalanine ammonia-lyase and ionically bound peroxidase activities that correlated with development of RS symptoms. The ethylene-treated tissue had significantly higher lignin content than air control tissue with lignification localized in walls of RS-affected cells. Ethylene also caused the accumulation of the flavonoids (+)catechin and (-)epicatechin and the chlorogenic acid derivatives 3-caffeoyl-quinic acid, 3,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid. These soluble phenolic compounds were readily oxidized to brown substances by polyphenol oxidase isolated from RS tissue. Ethylene substantially increased ionically bound indole-3-acetic acid (IAA) oxidase activity, while IAA application greatly reduced ethylene-induced phenylalanine ammonia-lyase, peroxidase, and IAA oxidase activities, soluble phenolic content, and RS development.

  16. Growth and phenolic compounds of Lactuca sativa L. grown in a closed-type plant production system with UV-A, -B, or -C lamp.

    Science.gov (United States)

    Lee, Min-Jeong; Son, Jung Eek; Oh, Myung-Min

    2014-01-30

    The production of high-quality crops based on phytochemicals is a strategy for accelerating the practical use of plant factories. Previous studies have demonstrated that ultraviolet (UV) light is effective in improving phytochemical production. This study aimed to determine the effect of various UV wavelengths on growth and phenolic compound accumulation in lettuce (Lactuca sativa L.) grown in a closed-type plant production system. Seven days, 1 day and 0.25 day were determined as the upper limit of the irradiation periods for UV-A, -B, and -C, respectively, in the lettuce based on physiological disorders and the fluorescence parameter F(v)/F(m). Continuous UV-A treatment significantly induced the accumulation of phenolic compounds and antioxidants until 4 days of treatment without growth inhibition, consistent with an increase in phenylalanine ammonia lyase (PAL) gene expression and PAL activity. Repeated or gradual UV-B exposure yielded approximately 1.4-3.6 times more total phenolics and antioxidants, respectively, than the controls did 2 days after the treatments, although both treatments inhibited lettuce growth. Repeated UV-C exposure increased phenolics but severely inhibited the growth of lettuce plants. Our data suggest that UV irradiation can improve the accumulation of phenolic compounds with antioxidant properties in lettuce cultivated in plant factories. © 2013 Society of Chemical Industry.

  17. Phenolic compounds and flavonoids as plant growth regulators from fruit and leaf of Vitex rotundifolia.

    Science.gov (United States)

    Yoshioka, Takeo; Inokuchi, Tomohisa; Fujioka, Shozo; Kimura, Yasuo

    2004-01-01

    Five phenolic compounds, 4-hydroxybenzoic acid methyl ester (1), vanillic acid methyl ester (2), 4-hydroxy benzaldehyde (3), 4-hydroxybenzoic acid (4) and ferulic acid (5), and four flavonoids, 5,5'-dihydroxy-4',6,7-trimethoxyflavanone (6), luteolin (7), vitexicarpin (8) and artemetin (9), were isolated from fruits and leaves of Vitex rotundifolia L. The biological activities of these nine compounds have been examined using a bioassay with lettuce seedlings.

  18. Verification of presence of caprolactam in sprouted achenes of Fagopyrum esculentum Moench and its influence on plant phenolic compound content.

    Science.gov (United States)

    Kalinová, Jana P; Tříska, Jan; Vrchotová, Naděžda; Moos, Martin

    2014-08-15

    The presence of caprolactam, a precursor of Nylon-6, among those synthetic polymers which are widely-spread throughout the environment, could be the reason for its being found in plants. The aim of this work was to confirm the previously described presence of caprolactam in dry and sprouted achenes, as well as in achene exudates of common buckwheat (Fagopyrum esculentum Moench). When the lyophilized sprouted and dry buckwheat achenes, along with exudates from growth experiments, with caprolactam-free medium were analysed by HPLC, no caprolactam was found. After addition of caprolactam into the growth medium, we confirmed the uptake of caprolactam in the lyophilized sprouted buckwheat achenes. The uptake of caprolactam is also a function of light conditions during the growth experiments. Caprolactam also inhibits the content of phenolic compounds; especially rutin, vitexin, isovitexin, orientin, and homoorientin in buckwheat plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. ENHANCEMENT OF PHENOL REMOVAL EFFICIENCY IN DORA REFINERY WASTEWATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    Salah F. Sharif

    2013-05-01

    Full Text Available Because the sanctions imposed on Iraq by the United Nations, programmed maintenance and wearing parts replacement has not been performed according to schedules in DORA Refinery Wastewater Unit, which resulted in higher phenol content and BOD5 in effluents disposed to river. The investigations showed that two main reasons were behind this problem: Firstly, increased emissions of hydrocarbons in the complexity of refinery equipment and Secondly, the decreased efficiency of the aerators in the biological. During the last few months, phenol average concentration in the effluent, after biological treatment was found to be between 0.06-0.13 mg/L, while COD was exceeding 110 mg/L after treatment in the same period. Considerable enhancement, has been indicated recently, after the following performances: First: Recycling wastewater from some heat exchangers, and the segregation of low and high strength of wastewaters, Second: Minimizing emissions of hydrocarbons from fluid catalytic cracking and steam cracking, Third: Replacement of driving motors of the aerators in the biological treatment unit. After replacement of these units, a significant decrease in phenol concentration was obtained in purified water (0.03-0.05 mg/L and COD of 60 mg/L before the tertiary treatment. It is concluded that a better quality of effluents has been obtained after a series of emissions control and wastewater treatment unit equipment maintenance performances.

  20. Measurement of total phenolic content and antioxidant activity of aerial parts of medicinal plant Coronopus didymus.

    Science.gov (United States)

    Noreen, Hafiza; Semmar, Nabil; Farman, Muhammad; McCullagh, James S O

    2017-08-01

    To evaluate the total phenolic content and compare the antioxidant activity of various solvent extracts and fractions from the aerial parts of Coronopus didymus through various assays. Total phenolic content was determined using the Folin-Ciocalteu assay and the in vitro antioxidant activity of a number of different extracts was investigated in a dose-dependent manner with three different methods: the 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and ferric reducing antioxidant power (FRAP) assays. A flavone was isolated from the most active ethanolic extract with high antioxidant activity using size exclusion chromatography. IC 50 values were calculated for the DPPH and ABTS methods. The FRAP activity was assessed in terms of μM Fe (II) equivalent. The phenolic content was found to be highest in the ethanol extract (CDA Et; 47.8 mM GAE) and the lowest in the dichloromethane extract (CDA DCM; 3.13 mM GAE). The ethanol extract showed high radical scavenging activity towards DPPH and ABTS radicals with IC 50 values of (7.80 × 10 2 ) and (4.32 × 10 2 ) μg/mL, respectively. The most active ethanol extract had a FRAP value of 1921.7 μM Fe (II) equivalent. The isolated flavone F10C (5,7,4'-trihydroxy-3'-methoxy flavone) was far more effective for scavenging free radicals in the DPPH and ABTS assays with IC 50 of 43.8 and 0.08 μg/mL, than the standard trolox, with IC 50 values of 97.5 and 21.1 μg/mL, respectively. In addition, the flavone F10C and the standard ascorbic acid had FRAP values of 1621.7 and 16 038.0 μM Fe (II) equivalents, respectively. The total phenolic content of extracts in decreasing order is ethanol extract (CDA Et) > acetone extract (CDA ACE) > phenolic extract (CDA MW) > n-hexane extract (CDA nHX)> chloroform extract (CDA CHL) > dichloromethane extract (CDA DCM). The ordering of extracts in terms of antioxidant activity from highest to lowest is CDA Et

  1. Control of occupational exposure to phenol in industrial wastewater treatment plant of a petroleum refinery in Alexandria, Egypt: An intervention application case study.

    Science.gov (United States)

    Zaki, Gehan R; El-Marakby, Fadia A; Ramadan, Alaa El-Din K; Issa, Ahmed I; Nofal, Faten H

    2016-11-01

    Phenol exposure is one of the hazards in the industrial wastewater treatment basin of any refinery. It additively interacts with hydrogen sulfide emitted from the wastewater basin. Consequently, its concentration should be greatly lower than its threshold limit value. The present study aimed at controlling occupational exposure to phenol in the work environment of wastewater treatment plant in a refinery by reducing phenolic compounds in the industrial wastewater basin. This study was conducted on both laboratory and refinery scales. The first was completed by dividing each wastewater sample from the outlets of different refinery units into three portions; the first was analyzed for phenolic compounds. The second and third were for laboratory scale charcoal and bacterial treatments. The two methods were compared regarding their simplicities, design, and removal efficiencies. Accordingly, bacterial treatment by continuous flow of sewage water containing Pseudomonas Aeruginosa was used for refinery scale treatment. Laboratory scale treatment of phenolic compounds revealed higher removal efficiency of charcoal [100.0(0.0) %] than of bacteria [99.9(0.013) %]. The refinery scale bacterial treatment was [99.8(0.013) %] efficient. Consequently, level of phenol in the work environment after refinery-scale treatment [0.069(0.802) mg/m(3)] was much lower than that before [5.700(26.050) mg/m(3)], with removal efficiency of [99.125(2.335) %]. From the present study, we can conclude that bacterial treatment of phenolic compounds in industrial wastewater of the wastewater treatment plant using continuous flow of sewage water containing Pseudomonas Aeruginosa reduces the workers' exposure to phenol.

  2. Low-temperature conditioning of "seed" cloves enhances the expression of phenolic metabolism related genes and anthocyanin content in 'Coreano' garlic (Allium sativum) during plant development.

    Science.gov (United States)

    Dufoo-Hurtado, Miguel D; Zavala-Gutiérrez, Karla G; Cao, Cong-Mei; Cisneros-Zevallos, Luis; Guevara-González, Ramón G; Torres-Pacheco, Irineo; Vázquez-Barrios, M Estela; Rivera-Pastrana, Dulce M; Mercado-Silva, Edmundo M

    2013-11-06

    Low-temperature conditioning of garlic "seed" cloves accelerated the development of the crop cycle, decreased plant growth, and increased the synthesis of phenolic compounds and anthocyanins in the outer scale leaves of the bulbs at harvest time, leading to 3-fold content increase compared with those conditioned at room temperature. Cold conditioning of "seed" cloves also altered the anthocyanin profile during bulb development and at harvest. Two new anthocyanins are reported for the first time in garlic. The high phenolics and anthocyanin contents in bulbs of plants generated from "seed" cloves conditioned at 5 °C for 5 weeks were preceded by overexpression of some putative genes of the phenolic metabolism [6-fold for phenylalanine ammonia lyase (PAL)] and anthocyanin synthesis [1-fold for UDP-sugar:flavonoid 3-O-glycosyltransferase (UFGT)] compared with those conditioned at room temperature.

  3. Analysis of Naturally Occurring Phenolic Compounds in Aromatic Plants by RP-HPLC Coupled to Diode Array Detector (DAD and GC-MS after Silylation

    Directory of Open Access Journals (Sweden)

    Charalampos Proestos

    2013-03-01

    Full Text Available The following aromatic plants of Greek origin, Origanum dictamnus (dictamus, Eucalyptus globulus (eucalyptus, Origanum vulgare L. (oregano, Mellisa officinalis L. (balm mint and Sideritis cretica (mountain tea, were examined for the content of phenolic substances. Reversed phase HPLC coupled to diode array detector (DAD was used for the analysis of the plant extracts. The gas chromatography-mass spectrometry method (GC-MS was also used for identification of phenolic compounds after silylation. The most abundant phenolic acids were: gallic acid (1.5–2.6 mg/100 g dry sample, ferulic acid (0.34–6.9 mg/100 g dry sample and caffeic acid (1.0–13.8 mg/100 g dry sample. (+-Catechin and (−-epicatechin were the main flavonoids identified in oregano and mountain tea. Quercetin was detected only in eucalyptus and mountain tea.

  4. Antioxidant Capacity, Radical Scavenging Kinetics and Phenolic ...

    African Journals Online (AJOL)

    HP

    Phenolic Profile of Methanol Extracts of Wild Plants of. Southern Sonora ... plant extracts. Phenolic compounds determination was carried out by high ... Determination of antioxidant capacity ..... In vitro antioxidant and antiproliferative activities ...

  5. Antioxidant activity, phenolic content, and peroxide value of essential oil and extracts of some medicinal and aromatic plants used as condiments and herbal teas in Turkey.

    Science.gov (United States)

    Ozcan, Mehmet Musa; Erel, Ozcan; Herken, Emine Etöz

    2009-02-01

    The antioxidant activity, total peroxide values, and total phenol contents of several medicinal and aromatic plant essential oil and extracts from Turkey were examined. Total phenolic contents were determined using a spectrophotometric technique and calculated as gallic acid equivalents. Total antioxidant activity of essential oil and extracts varied from 0.6853 to 1.3113 and 0.3189 to 0.6119 micromol of Trolox equivalents/g, respectively. The total phenolic content of essential oil ranged from 0.0871 to 0.5919 mg of gallic acid/g dry weight. However, the total phenolic contents of extracts were found to be higher compared with those of essential oils. The amount of total peroxide values of oils varied from 7.31 (pickling herb) to 58.23 (bitter fennel flower) mumol of H(2)O(2)/g. As a result, it is shown that medicinal plant derivatives such as extract and essential oils can be useful as a potential source of total phenol, peroxide, and antioxidant capacity for protection of processed foods.

  6. Investigation on Antibacterial and Antioxidant Activities, Phenolic and Flavonoid Contents of Some Thai Edible Plants as an Alternative for Antibiotics

    Directory of Open Access Journals (Sweden)

    J. H. Lee

    2014-10-01

    Full Text Available This study was aimed to examine the antibacterial and antioxidative properties of seven edible plants from Thailand to develop alternative antibiotics as feed additives. The plants include Citrus aurantifolia Swingle (Lime fruits and its leaves, Sesbania grandiflora L. (Agati sesbania leaves, Piper sarmentosum Roxb (Wild betal leaves, Curcuma domestica Valeton (Turmeric roots, Morinda citrifolia L. (Beach mulberry leaves, Cassia siamea britt (Siamea cassia leaves, and Cocos nucifera L. (Coconut peels. The plants were extracted by methanol, n-hexane, chloroform, ethyl acetate, butanol and water. Antibacterial activities with minimum inhibitory concentration (MIC were determined by agar diffusion assay against Escherichia coli, Burkholderia sp., Haemopilus somnus, Haemopilus parasuis, and Clostridium perfringens that were considered pathogenic strains in livestock infection. Methanol extracts of C. aurantifolia Swingle fruits and leaves showed the broadest spectrum of antibacterial activities except for C. perfringens. Butanol extract of S. grandiflora L. leaves showed the strongest activity against Burkholderia sp. with MIC, 135 μg/mL. P. sarmentosum Roxb leaves showed antibacterial activities against E. coli, Burkholderia sp. and H. parasuis. Ethyl acetate and water extracts from C. domesitca Valeton roots showed MIC of 306 μg/mL and 183 μg/mL, respectively against only C. perfringens. Antioxidative activity was determined by 2-diphenyl-2-picryl hydrazyl photometric assay. The methanol extracts of C. aurantifolia Swingle fruits and P. sarmentosum Roxb leaves showed the highest antioxidant activity among all the extracts with 3.46 mg/mL and 2.70 mg/mL effective concentration 50% (EC50 values, respectively. Total contents of phenolics and flavonoids were measured from the plant extracts. Methanol extracts of S. grandiflora L. and chloroform extracts of C. domestica Valeton were found to have the highest amount of total phenolics, 41.7 and 47

  7. Total Content of Phenolics and Antioxidant Activity in Crispbreads with Plant By-product addition

    Directory of Open Access Journals (Sweden)

    Konrade Daiga

    2017-11-01

    Full Text Available Vegetable processing in food industry results in significant amount of by-products – peel, mark, bark, seeds still rich in bioactive compounds. Apple, carrot and pumpkin peel and mark may be used for production of crispbreads as functional ingredients. The objective of this study is to investigate the stability of total phenolic content (TPC and antioxidant activity after high temperature and short time (HTST extrusion cooking of a wheat and rice-based crispbreads with addition of apple, carrot and pumpkin by-products obtained after juice extraxtion and dried. Raw materials for crispbread production were wheat flour, rice flour, wheat bran (72%, 24% and 4% respectively with addition of microwave–vacuum dried by-product powder in different amount (5%, 10%, 15%, 20%. Extrusion process was performed by using a laboratory singlescrew extruder GÖTTFERT 1 screw Extrusiometer L series (Germany. Total phenolic content (TPC was determined using the Folin Ciocalteu method. Antioxidant activity was evaluated by free radical 2, 2-diphenyl-1-picrylhydrazyl (DPPH antioxidant scavenging activity using a modified colorimetric method. Comparing different raw formulations, it was observed that the TPC of the apple by-product flour was significantly higher (p < 0.05 than in carrot and pumpkin flour. TPC in cereal-based crispbread was 36.06±1.15 before extrusion and 13.90±1.01 mg GAEg-1 DW (milligram Gallic acid equivalent per 100 g of dry weight (mg GAE 100 g−1 DW after extrusion. Addition of apple BPF increased TPC in crispbreads to 106.25±2.08, carrot BPF 84.73±3.45 and pumpkin BPF to 108.82±1.04 mg GAEg−1 DW. Antioxidant activity of control sample was 1.07±0.01mg TE (Trolox equivalents g−1 DW but in samples with addition of 20% apple by-products, it reached 3.77±0.02 TE g−1 DW for samples wih 20% carrot by-products reached 2.52±0.03TE g−1 DW and for samples wih 20% pumpkin by-products reached 3.77±0.02 TE g−1 DW.

  8. Phenolic Compounds in Brassica Vegetables

    Directory of Open Access Journals (Sweden)

    Pablo Velasco

    2010-12-01

    Full Text Available Phenolic compounds are a large group of phytochemicals widespread in the plant kingdom. Depending on their structure they can be classified into simple phenols, phenolic acids, hydroxycinnamic acid derivatives and flavonoids. Phenolic compounds have received considerable attention for being potentially protective factors against cancer and heart diseases, in part because of their potent antioxidative properties and their ubiquity in a wide range of commonly consumed foods of plant origin. The Brassicaceae family includes a wide range of horticultural crops, some of them with economic significance and extensively used in the diet throughout the world. The phenolic composition of Brassica vegetables has been recently investigated and, nowadays, the profile of different Brassica species is well established. Here, we review the significance of phenolic compounds as a source of beneficial compounds for human health and the influence of environmental conditions and processing mechanisms on the phenolic composition of Brassica vegetables.

  9. Novel determination of the total phenolic content in crude plant extracts by the use of 1H NMR of the -OH spectral region

    International Nuclear Information System (INIS)

    Nerantzaki, A.A.; Tsiafoulis, C.G.; Charisiadis, P.; Kontogianni, V.G.; Gerothanassis, I.P.

    2011-01-01

    A novel method for the determination of the total phenolic content using 1 H NMR spectroscopy in the -OH spectral region is presented. The use of DMSO-d 6 , which is an aprotic and strongly hydrogen bonding solvent, allows the 'appearance' of the relative sharp resonances of phenolic hydroxyl protons in the region of 8-14 ppm. The determination of the total phenolic -OH content requires three steps: (i) a 1D 1 H NMR spectrum is obtained in DMSO-d 6 ; (ii) a subsequent 1D 1 H NMR spectrum is recorded with irradiation of the residual water signal which results in the elimination or reduction of the phenolic -OH groups, due to proton exchange; and (iii) 1D 1 H NMR spectra are recorded with the addition of a progressively increased amount of salt, NaHCO 3 , which results in extensive linebroadening of the COOH resonances thus allowing the discrimination of the phenolic from the carboxylic acid signals. Integration, with respect to the internal standard TSP-d 4 , of the signal resonances between 14 and 8 ppm in spectrum (i) which are either eliminated or reduced in intensity in steps (ii) and (iii) allows the quantitation of the total phenolic content. The method was applied to model compounds, a mixture of them and several extracts of natural products. The results of the proposed 1 H NMR method were compared to the Folin-Ciocalteu (FC) reagent method. Additionally, since 1 H NMR refers to the total phenolic hydroxyl protons, a reaction factor, A e , is proposed that corresponds to the hydroxyl reactivity. The 1 H NMR method is rapid and accurate bearing the inherent advantages of the NMR spectroscopy and can be applied directly in complex extracts. Furthermore, it can be applied in a wide range of matrixes from crude plant extracts and food products to biological samples.

  10. Evaluation of Plant Phenolic Metabolites as a Source of Alzheimer's Drug Leads

    Directory of Open Access Journals (Sweden)

    Yara Hassaan

    2014-01-01

    Full Text Available Epidemiological studies have proven an association between consumption of polyphenols and prevention of Alzheimer’s disease, the most common form of dementia characterized by extracellular deposition of amyloid beta plaques. The aim of this study is pharmacological screening of the aqueous alcohol extract of Markhamia platycalyx leaves, Schotia brachypetala leaves and stalks, and piceatannol compared to aqueous alcohol extract of Camellia sinensis leaves as potential Alzheimer’s disease drugs. LC-HRESI(-ve-MSn was performed to identify phenolics’ profile of Schotia brachypetala stalks aqueous alcohol extract and revealed ten phenolic compounds as first report: daidzein, naringin, procyanidin isomers, procyanidin dimer gallate, quercetin 3-O-rhamnoside, quercetin 3-O-glucuronide, quercetin hexose gallic acid, quercetin hexose protocatechuic acid, and ellagic acid. Alzheimer’s disease was induced by a single intraperitoneal injection of LPS. Adult male Swiss albino mice were divided into groups of 8–10 mice each receiving treatment for six days. In vivo behavioral tests (Y maze and object recognition and in vitro estimation of amyloid beta 42 by ELISA showed significant differences between results of treated and nontreated animals.

  11. Antioxidant activity and total phenolic and flavonoid content of ...

    African Journals Online (AJOL)

    ajl yemi

    2011-12-19

    Dec 19, 2011 ... Key words: Astragalus squarrosus, antioxidant, phenolics, flavonoids. INTRODUCTION ... Phenolic and flavonoid compounds are widely distri- buted plant constituents. ..... Antioxidant effects of some ginger constituents.

  12. Phenolic composition, antioxidant and anti-proliferative activities of edible and medicinal plants from the Peruvian Amazon

    Directory of Open Access Journals (Sweden)

    Jan Tauchen

    Full Text Available ABSTRACT Among 23 extracts of medicinal and edible plants tested, Mauritia flexuosa L.f., Arecaceae, showed significant antioxidant ability (DPPH and ORAC = 1062.9 and 645.9 ± 51.4 µg TE/mg extract, respectively, while Annona montana Macfad., Annonaceae, demonstrated the most promising anti-proliferative effect (IC50 for Hep-G2 and HT-29 = 2.7 and 9.0 µg/ml, respectively. However, combinatory antioxidant/anti-proliferative effect was only detected in Oenocarpus bataua Mart., Arecaceae (DPPH = 903.8 and ORAC = 1024 µg TE/mg extract; IC50 for Hep-G2 and HT-29 at 102.6 and 38.8 µg/ml, respectively and Inga edulis Mart., Fabaceae (DPPH = 337.0 and ORAC = 795.7 µg TE/mg extract; IC50 for Hep-G2 and HT-29 at 36.3 and 57.9 µg/ml, respectively. Phenolic content was positively correlated with antioxidant potential, however not with anti-proliferative effect. None of these extracts possessed toxicity towards normal foetal lung cells, suggesting their possible use in development of novel plant-based agents with preventive and/or therapeutic action against oxidative stress-related diseases.

  13. Study of ion suppression for phenolic compounds in medicinal plant extracts using liquid chromatography-electrospray tandem mass spectrometry.

    Science.gov (United States)

    Faccin, H; Viana, C; do Nascimento, P C; Bohrer, D; de Carvalho, L M

    2016-01-04

    A systematic study on the various sources of ion suppression in UHPLC-MS-MS analysis was carried out for 24 phenolic antioxidants in 6 different extracts of medicinal plants from Amazonia. The contributions of matrix effects, mobile-phase additives, analyte co-elution and electric charge competition during ionization to the global ion suppression were evaluated. Herein, the influence of mobile-phase additives on the ionization efficiency was found to be very pronounced, where ion suppression of approximately 90% and ion enhancement effects greater than 400% could be observed. The negative effect caused by the wrong choice of internal standard (IS) on quantitative studies was also evaluated and discussed from the perspective of ion suppression. This work also shows the importance of performing studies with this approach even for very similar matrices, such as varieties of medicinal plants from the same species, because different effects were observed for the same analyte. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Quantitative determination of plant phenolics in Urtica dioica extracts by high-performance liquid chromatography coupled with tandem mass spectrometric detection.

    Science.gov (United States)

    Orčić, Dejan; Francišković, Marina; Bekvalac, Kristina; Svirčev, Emilija; Beara, Ivana; Lesjak, Marija; Mimica-Dukić, Neda

    2014-01-15

    A method for quantification of 45 plant phenolics (including benzoic acids, cinnamic acids, flavonoid aglycones, C- and O-glycosides, coumarins, and lignans) in plant extracts was developed, based on reversed phase HPLC separation of extract components, followed by tandem mass spectrometric detection. The phenolic profile of 80% MeOH extracts of the stinging nettle (Urtica dioica L.) herb, root, stem, leaf and inflorescence was obtained by using this method. Twenty-one of the investigated compounds were present at levels above the reliable quantification limit, with 5-O-caffeoylquinic acid, rutin and isoquercitrin as the most abundant. The inflorescence extracts were by far the richest in phenolics, with the investigated compounds amounting 2.5-5.1% by weight. As opposed to this, the root extracts were poor in phenolics, with only several acids and derivatives being present in significant amounts. The results obtained by the developed method represent the most detailed U. dioica chemical profile so far. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Effects of plant sterols and olive oil phenols on serum lipoproteins in humans

    NARCIS (Netherlands)

    Vissers, M.N.

    2001-01-01

    The studies described in this thesis investigated whether minor components from vegetable oils can improve health by decreasing cholesterol concentrations or oxidative modification of low-density-lipoprotein (LDL) particles.

    The plant sterolsβ-sitosterol and sitostanol are

  16. Dimethylglycine provides salt and temperature stress protection to Bacillus subtilis.

    Science.gov (United States)

    Bashir, Abdallah; Hoffmann, Tamara; Smits, Sander H J; Bremer, Erhard

    2014-05-01

    Glycine betaine is a potent osmotic and thermal stress protectant of many microorganisms. Its synthesis from glycine results in the formation of the intermediates monomethylglycine (sarcosine) and dimethylglycine (DMG), and these compounds are also produced when it is catabolized. Bacillus subtilis does not produce sarcosine or DMG, and it cannot metabolize these compounds. Here we have studied the potential of sarcosine and DMG to protect B. subtilis against osmotic, heat, and cold stress. Sarcosine, a compatible solute that possesses considerable protein-stabilizing properties, did not serve as a stress protectant of B. subtilis. DMG, on the other hand, proved to be only moderately effective as an osmotic stress protectant, but it exhibited good heat stress-relieving and excellent cold stress-relieving properties. DMG is imported into B. subtilis cells primarily under osmotic and temperature stress conditions via OpuA, a member of the ABC family of transporters. Ligand-binding studies with the extracellular solute receptor (OpuAC) of the OpuA system showed that OpuAC possesses a moderate affinity for DMG, with a Kd value of approximate 172 μM; its Kd for glycine betaine is about 26 μM. Docking studies using the crystal structures of the OpuAC protein with the sulfur analog of DMG, dimethylsulfonioacetate, as a template suggest a model of how the DMG molecule can be stably accommodated within the aromatic cage of the OpuAC ligand-binding pocket. Collectively, our data show that the ability to acquire DMG from exogenous sources under stressful environmental conditions helps the B. subtilis cell to cope with growth-restricting osmotic and temperature challenges.

  17. Assessment of the content of phenolics and antioxidant actions of the Rubiaceae, Ebenaceae, Celastraceae, Erythroxylaceae and Sterculaceae families of Mauritian endemic plants.

    Science.gov (United States)

    Soobrattee, Muhammad A; Bahorun, Theeshan; Neergheen, Vidushi S; Googoolye, Kreshna; Aruoma, Okezie I

    2008-02-01

    There is continued interest in the assessment of the bioefficacy of the active principles in extracts from a variety of traditional medicine and food plants in order to determine their impact on the management of a variety of clinical conditions and maintenance of health. The polyphenolic composition and antioxidant potential of Mauritian endemic plants of the Rubiaceae, Ebenaceae, Celastraceae, Erythroxylaceae and Sterculaceae family were determined. The phenolics level of the plant extracts varied from 1 to 75 mg/g FW, the maximum level measured in Diospyros neraudii (Ebenaceae). Coffea macrocarpa showed the highest flavonoids content with 18+/-0.7 mg/g FW. The antioxidant capacity based on the TEAC and FRAP values were strongly related to total phenolics and proanthocyanidins content, while a weaker correlation was observed with (-) gallic acid. Erythroxylum sideroxyloides showed the highest protective effect in the lipid peroxidation systems with IC(50) of 0.0435+/-0.001 mg FW/ml in the Fe(3+)/ascorbate system and 0.05+/-0.002 mg FW/ml in the AAPH system. Cassine orientalis, E. sideroxyloides, Diospyros mellanida and Chassalia coriancea var. johnstonii were weakly prooxidant only at higher concentration greater of 10 g FW/L indicating potential safety. Mauritian endemic plants, particularly the genus Diospyros, are good sources of phenolic antioxidants and potential candidates for the development of prophylactic agents.

  18. Molybdenum (Mo) increases endogenous phenolics, proline and photosynthetic pigments and the phytoremediation potential of the industrially important plant Ricinus communis L. for removal of cadmium from contaminated soil.

    Science.gov (United States)

    Hadi, Fazal; Ali, Nasir; Fuller, Michael Paul

    2016-10-01

    Cadmium (Cd) in agricultural soil negatively affects crops yield and compromises food safety. Remediation of polluted soil is necessary for the re-establishment of sustainable agriculture and to prevent hazards to human health and environmental pollution. Phytoremediation is a promising technology for decontamination of polluted soil. The present study investigated the effect of molybdenum (Mo) (0.5, 1.0 and 2.0 ppm) on endogenous production of total phenolics and free proline, plant biomass and photosynthetic pigments in Ricinus communis plants grown in Cd (25, 50 and 100 ppm) contaminated soils and the potential for Cd phytoextraction. Mo was applied via seed soaking, soil addition and foliar spray. Foliar sprays significantly increased plant biomass, Cd accumulation and bioconcentration. Phenolic concentrations showed significantly positive correlations with Cd accumulation in roots (R 2  = 0.793, 0.807 and 0.739) and leaves (R 2  = 0.707, 721 and 0.866). Similarly, proline was significantly positively correlated with Cd accumulation in roots (R 2  = 0.668, 0.694 and 0.673) and leaves (R 2  = 0.831, 0.964 and 0.930). Foliar application was found to be the most effective way to deliver Mo in terms of increase in plant growth, Cd accumulation and production of phenolics and proline.

  19. Plant Phenolics Extraction from Flos Chrysanthemi: Response Surface Methodology Based Optimization and the Correlation Between Extracts and Free Radical Scavenging Activity.

    Science.gov (United States)

    Wu, Yanfang; Wang, Xinsheng; Xue, Jintao; Fan, Enguo

    2017-11-01

    Huaiju is one of the most famous and widely used Flos Chrysanthemi (FC) for medicinal purposes in China. Although various investigations aimed at phenolics extraction from other FC have been reported, a thorough optimization of the phenolics extraction conditions from Huaiju has not been achieved. This work applied the widely used response surface methodology (RSM) to investigate the effects of 3 independent variables including ethanol concentration (%), extraction time (min), and solvent-to-material ratio (mL/g) on the ultrasound-assisted extraction (UAE) of phenolics from FC. The data suggested the optimal UAE condition was an ethanol concentration of 75.3% and extraction time of 43.5 min, whereas the ratio of solvent to material has no significant effect. When the free radical scavenging ability was used as an indicator for a successful extraction, a similar optimal extraction was achieved with an ethanol concentration of 72.8%, extraction time of 44.3 min, and the ratio of solvent to material was 29.5 mL/g. Furthermore, a moderate correlation between the antioxidant activity of TP extract and the content of extracted phenolic compounds was observed. Moreover, a well consistent of the experimental values under optimal conditions with those predicted values suggests RSM successfully optimized the UAE conditions for phenolics extraction from FC. The work of the research investigated the plant phenolics in Flos Chrysanthemi and antioxidant capacities. These results of this study can support the development of antioxidant additive and relative food. © 2017 The Authors. Journal of Food Science published by Wiley Periodicals, Inc. on behalf of Institute of Food Technologists.

  20. In vitro total phenolics, flavonoids contents and antioxidant activity of essential oil, various organic extracts from the leaves of tropical medicinal plant Tetrastigma from Sabah.

    Science.gov (United States)

    Hossain, M Amzad; Shah, Muhammad Dawood; Gnanaraj, Charles; Iqbal, Muhammad

    2011-09-01

    To detect the in vitro total phenolics, flavonoids contents and antioxidant activity of essential oil, various organic extracts from the leaves of tropical medicinal plant Tetrastigma from Sabah. The dry powder leaves of Tetrastigma were extracted with different organic solvent such as hexane, ethyl acetate, chloroform, butanol and aqueous methanol. The total phenolic and total flavonoids contents of the essential oil and various organic extracts such as hexane, ethyl acetate, chloroform, butanol and aqueous ethanol were determined by Folin - Ciocalteu method and the assayed antioxidant activity was determined in vitro models such as antioxidant capacity by radical scavenging activity using α, α-diphenyl- β-picrylhydrazyl (DPPH) method. The total phenolic contents of the essential oil and different extracts as gallic acid equivalents were found to be highest in methanol extract (386.22 mg/g) followed by ethyl acetate (190.89 mg/g), chloroform (175.89 mg/g), hexane (173.44 mg/g), and butanol extract (131.72 mg/g) and the phenolic contents not detected in essential oil. The antioxidant capacity of the essential oil and different extracts as ascorbic acid standard was in the order of methanol extract > ethyl acetate extract >chloroform> butanol > hexane extract also the antioxidant activity was not detected in essential oil. The findings show that the extent of antioxidant activity of the essential oil and all extracts are in accordance with the amount of phenolics present in that extract. Leaves of Tetrastigma being rich in phenolics may provide a good source of antioxidant. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  1. Antifungal activity of secondary plant metabolites from potatoes (Solanum tuberosum L.): Glycoalkaloids and phenolic acids show synergistic effects.

    Science.gov (United States)

    Sánchez-Maldonado, A F; Schieber, A; Gänzle, M G

    2016-04-01

    To study the antifungal effects of the potato secondary metabolites α-solanine, α-chaconine, solanidine and caffeic acid, alone or combined. Resistance to glycoalkaloids varied among the fungal species tested, as derived from minimum inhibitory concentrations assays. Synergistic antifungal activity between glycoalkaloids and phenolic compounds was found. Changes in the fluidity of fungal membranes caused by potato secondary plant metabolites were determined by calculation of the generalized polarization values. The results partially explained the synergistic effect between caffeic acid and α-chaconine and supported findings on membrane disruption mechanisms from previous studies on artificial membranes. LC/MS analysis was used to determine variability and relative amounts of sterols in the different fungal species. Results suggested that the sterol pattern of fungi is related to their resistance to potato glycoalkaloids and to their taxonomy. Fungal resistance to α-chaconine and possibly other glycoalkaloids is species dependent. α-Chaconine and caffeic acid show synergistic antifungal activity. The taxonomic classification and the sterol pattern play a role in fungal resistance to glycoalkaloids. Results improve the understanding of the antifungal mode of action of potato secondary metabolites, which is essential for their potential utilization as antifungal agents in nonfood systems. © 2016 The Society for Applied Microbiology.

  2. New Sample Preparation Method for Quantification of Phenolic Compounds of Tea (Camellia sinensis L. Kuntze: A Polyphenol Rich Plant

    Directory of Open Access Journals (Sweden)

    P. A. Nimal Punyasiri

    2015-01-01

    Full Text Available Chemical analysis of the Sri Lankan tea (Camellia sinensis, L. germplasm would immensely contribute to the success of the tea breeding programme. However, the polyphenols, particularly catechins (flavan-3-ols, are readily prone to oxidation in the conventional method of sample preparation. Therefore, optimization of the present sample preparation methodology for the profiling of metabolites is much important. Two sample preparation methodologies were compared, fresh leaves (as in the conventional procedures and freeze-dried leaves (a new procedure, for quantification of major metabolites by employing two cultivars, one is known to be high quality black tea and the other low quality black tea. The amounts of major metabolites such as catechins, caffeine, gallic acid, and theobromine, recorded in the new sampling procedure via freeze-dried leaves, were significantly higher than those recorded in the conventional sample preparation procedure. Additionally new method required less amount of leaf sample for analysis of major metabolites and facilitates storage of samples until analysis. The freeze-dried method would be useful for high throughput analysis of large number of samples in shorter period without chemical deterioration starting from the point of harvest until usage. Hence, this method is more suitable for metabolite profiling of tea as well as other phenol rich plants.

  3. Phenolic compounds from the flowers of Nepalese medicinal plant Aconogonon molle and their DPPH free radical-scavenging activities.

    Science.gov (United States)

    Joshi, Khem Raj; Devkota, Hari Prasad; Watanabe, Takashi; Yahara, Shoji

    2014-01-01

    Eleven phenolic compounds, quercetin (1), quercetin 3-O-β-d-galactopyranoside (2), quercetin 3-O-(6″-O-galloyl)-β-d-galactopyranoside (3), quercetin 3-O-(6″-O-caffeoyl)-β-d-galactopyranoside (4), quercetin 3-O-β-d-glucopyranoside (5), rutin (6) quercetin 3-O-α-l-arabinopyranoside (7), quercetin 3-O-α-l-arabinofuranoside (8), protocatechulic acid (9), gallic acid (10) and chlorogenic acid (11), were isolated from the flowers of Aconogonon molle, a Nepalese medicinal plant. Structures of these compounds were elucidated on the basis of spectroscopic methods. All these compounds were isolated for the first time from flowers, and five compounds (4, 5, 8, 9 and 11) were isolated for the first time from A. molle. All of these isolated compounds were evaluated for their in vitro antioxidant activity by using the 1,1-diphenyl-2-picrylhydrazyl radical-scavenging method. Quercetin (1), quercetin glycosides (2-8) and gallic acid (10) exhibited potent antioxidant activity.

  4. Interactive effects of UV radiation and reduced precipitation on the seasonal leaf phenolic content/composition and the antioxidant activity of naturally growing Arbutus unedo plants.

    Science.gov (United States)

    Nenadis, Nikolaos; Llorens, Laura; Koufogianni, Agathi; Díaz, Laura; Font, Joan; Gonzalez, Josep Abel; Verdaguer, Dolors

    2015-12-01

    The effects of UV radiation and rainfall reduction on the seasonal leaf phenolic content/composition and antioxidant activity of the Mediterranean shrub Arbutus unedo were studied. Naturally growing plants of A. unedo were submitted to 97% UV-B reduction (UVA), 95% UV-A+UV-B reduction (UV0) or near-ambient UV levels (UVBA) under two precipitation regimes (natural rainfall or 10-30% rainfall reduction). Total phenol, flavonol and flavanol contents, levels of eight phenols and antioxidant activity [DPPH(●) radical scavenging and Cu (II) reducing capacity] were measured in sun-exposed leaves at the end of four consecutive seasons. Results showed a significant seasonal variation in the leaf content of phenols of A. unedo, with the lowest values found in spring and the highest in autumn and/or winter. Leaf ontogenetic development and/or a possible effect of low temperatures in autumn/winter may account for such findings. Regardless of the watering regime and the sampling date, plant exposure to UV-B radiation decreased the total flavanol content of leaves, while it increased the leaf content in quercitrin (the most abundant quercetin derivative identified). By contrast, UV-A radiation increased the leaf content of theogallin, a gallic acid derivative. Other phenolic compounds (two quercetin derivatives, one of them being avicularin, and one kaempferol derivative, juglanin), as well as the antioxidant activity of the leaves, showed different responses to UV radiation depending on the precipitation regime. Surprisingly, reduced rainfall significantly decreased the total amount of quantified quercetin derivatives as well as the DPPH scavenging activity in A. unedo leaves. To conclude, present findings indicate that leaves of A. unedo can be a good source of antioxidants throughout the year, but especially in autumn and winter. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Biological effects and bioaccumulation of steroidal and phenolic endocrine disrupting chemicals in high-back crucian carp exposed to wastewater treatment plant effluents

    International Nuclear Information System (INIS)

    Liu Jingliang; Wang Renmin; Huang Bin; Lin Chan; Zhou Jiali; Pan Xuejun

    2012-01-01

    Endocrine disrupting chemicals (EDCs) found in wastewater treatment plant (WWTP) effluents have been shown to cause adverse effects, but the uptake of EDCs from effluents (measured in fish muscle) are not known. In this study, the biological effects and bioaccumulation of steroidal and phenolic EDCs were assessed in high-back crucian carp (Carassius auratus) exposed to WWTP effluents for 141 days. Compared with fish controls caged in Dianchi Lake, a significant reduction in gonadosomatic index (GSI) and increase in hepatosomatic index (HSI) and plasma vitellogenin (VTG) levels were observed in effluent-exposed fish. The concentrations of steroids and phenols in effluent-exposed fish showed time-dependent increase during the exposure. In addition, bioconcentration factors (BCFs) for steroids and phenols were between 17 and 59 on day 141. The results confirm that steroids and phenols bioconcentrate in fish muscle and this accumulation may account for the biological effects associated with exposures to WWTP effluents. - Highlights: ► We assess the potential risk of WWTP effluents to fish. ► We investigate the biological responses of EDCs in fish exposed to effluents. ► We estimate the uptake of EDCs originating from WWTP effluents in fish. ► The bioaccumulation of EDCs may account for the biological effects of effluents. - Bioaccumulation of endocrine disrupting chemicals in WWTP effluent-exposed fish.

  6. Hydrogen bond dynamics governs the effective photoprotection mechanism of plant phenolic sunscreens.

    Science.gov (United States)

    Liu, Fang; Du, Likai; Lan, Zhenggang; Gao, Jun

    2017-02-15

    Sinapic acid derivatives are important sunscreen species in natural plants, which could provide protection from solar UV radiation. Using a combination of ultrafast excited state dynamics, together with classical molecular dynamics studies, we demonstrate that there is direct coupling of hydrogen bond motion with excited state photoprotection dynamics as part of the basic mechanism in solution. Beyond the intra-molecular degree of freedom, the inter-molecular motions on all timescales are potentially important for the photochemical or photophysical events, ranging from the ultrafast hydrogen bond motion to solvent rearrangements. This provides not only an enhanced understanding of the anomalous experimental spectroscopic results, but also the key idea in the development of sunscreen agents with improved photo-chemical properties. We suggest that the hydrogen bond dynamics coupled excited state photoprotection mechanism may also be possible in a broad range of bio-related molecules in the condensed phase.

  7. Herbicidal and Plant-growth Stimulating Effects of Phenolic Compounds Isolated from Lichens

    Directory of Open Access Journals (Sweden)

    Marize Terezinha Lopes Pereira Peres

    2015-09-01

    Full Text Available The depsides atranorin (7 and diffractaic acid (1, the depsidones hypostictic (2 protocetraric (3, salazinic (4 acids, the xanthone secalonic acid (5, and usnic acid (6 were evaluated for their phytotoxic potentials against the target species Allium cepa cv. Baia periforme (onion, Monocotyledoneae. The bioassays, carried out under laboratory conditions, revealed that diffractaic (1 and hypostictic (2 acids stimulated plant growth; secalonic acid (5 stimulated seed germination and radicle growth, while reducing coleoptile length. Usnic acid (6 promoted seed germination and stronger inhibition of radicle and coleoptile growth. Protocetraric (3 and salazinic (4 acids and atranorin (7 exhibited a herbicidal effect, inhibiting seed germination and reducing radicle and coleoptile growth—features that suggest their utility as natural herbicides. These results invite further investigation to elucidate the mode of action of these compounds and to synthesize them for field experiments. DOI: http://dx.doi.org/10.17807/orbital.v7i3.756 

  8. Anthocyanins from purple sweet potato (Ipomoea batatas (L.) Lam.) and their color modulation by the addition of phenolic acids and food-grade phenolic plant extracts.

    Science.gov (United States)

    Gras, Claudia C; Nemetz, Nicole; Carle, Reinhold; Schweiggert, Ralf M

    2017-11-15

    Anthocyanin profiles and contents of three purple sweet potato provenances were investigated by HPLC-DAD-MS n . In contrast to widely uniform profiles, the contents of total (558-2477mg/100gDM) and individual anthocyanins varied widely. Furthermore, quantitative and qualitative effects of intermolecular co-pigmentation were studied by adding chlorogenic and rosmarinic acids, and food-grade phenolic apple and rosemary extracts at various dosages to a diluted purple sweet potato concentrate at pH 0.9, 2.6, 3.6, and 4.6. Addition of co-pigments generally increased pK H estimate -values of anthocyanins from 3.28 (without co-pigments) to up to 4.71, thus substantially broadening the pH range wherein colored forms prevail. The most pronounced hyperchromic shift by up to +50.5% at the absorption maximum was observed at pH 4.6. Simply by blending the co-pigments with purple sweet potato anthocyanins at pH-values ranging from 2.6 to 4.6, purplish-blue, light pink, magenta, brick-red, and intense red hues were accessible as expressed by CIE-L ∗ a ∗ b ∗ color values. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A study on the total phenols content and antioxidant activity of essential oil and different solvent extracts of endemic plant Merremia borneensis

    Directory of Open Access Journals (Sweden)

    M. Amzad Hossain

    2015-01-01

    Full Text Available This study is planned to determine the antioxidant activity and total phenols content of the essential oil and different solvent extracts of the endemic plant Merremia borneensis. The antioxidant activities of the extracts were examined by three different methods, DPPH, β-carotene and reducing power assays. In all methods, aqueous ethanol extract exhibited a higher activity potential than that of other extracts (hexane, chloroform, ethyl acetate and butanol and the essential oil. As assumed, the amount of total phenolics was very high in this extract. Chloroform extract has been found to be rich in flavonoids. A positive result was observed between the antioxidant activity potential and total flavonoid levels of the extracts.

  10. Wine phenolics.

    Science.gov (United States)

    Waterhouse, Andrew L

    2002-05-01

    Wine contains many phenolic substances, most of which originate in the grape berry. The phenolics have a number of important functions in wine, affecting the tastes of bitterness and astringency, especially in red wine. Second, the color of red wine is caused by phenolics. Third, the phenolics are the key wine preservative and the basis of long aging. Lastly, since phenolics oxidize readily, they are the component that suffers owing to oxidation and the substance that turns brown in wine (and other foods) when exposed to air. Wine phenolics include the non-flavonoids: hydroxycinnamates, hydroxybenzoates and the stilbenes; plus the flavonoids: flavan-3-ols, the flavonols, and the anthocyanins. While polymeric condensed tannins and pigmented tannins constitute the majority of wine phenolics, their large size precludes absorption and thus they are not likely to have many health effects (except, perhaps, in the gut). The total amount of phenols found in a glass of red wine is on the order of 200 mg versus about 40 mg in a glass of white wine.

  11. Efficiency of Acacia Tortillis Plant Pod Shell as a Low Cost and Available Adsorbent for the Removal of Phenol

    Directory of Open Access Journals (Sweden)

    Hossien JafariMansoorian

    2015-05-01

    Full Text Available The presence of nondegradable toxic compounds such as phenol in the environment has nowadays led to many health and environmental problems. The present empirical study was conducted on the lab scale to evaluate the efficiency of Acacia tortillis pod shell as a new alternative and low cost adsorbent for removing phenol from aqueous solutions. The experiment was performed in a batch system and the effects of important operation variables including initial phenol concentrations of 0.5, 1, 2, 4, 8, 16, 32, and 64 mg/l, absorbent doses of 0.1, 0.2, 0.4, 0.8, and 1.6g/l in predetermined mesh sizes (ranging over 30-60 and 60-100, pH levels of 2, 4, 6, 8, 10, and 12, and contact times of 10, 20, 30, 40, 50, and 60 min were evaluated. Finally, the Freundlich and Langmuir adsorption isotherms were determined in order to describe the relationship between the colored solution and the absorbent. Results showed that the highest phenol absorption efficiency achieved was above 95% which was obtained with an optimum pH level of 2, an optimum absorbent dose of 0.2 g/l, and a mesh size of 60-100 for a contact time of 10 minutes and at a low pollutant concentration. Increasing phenol concentration increased its removal efficiency but this removal rate was lower at extreme concentrations. Also, the adsorption process was found to be more compatible with the Freundlich model. Based on the results obtained, the pod shells of Acacia tortillis pod shell may be claimed to be an effective, efficient, and cheap absorbent for the removal of phenol from aqueous solutions.

  12. Verification of presence of caprolactam in sprouted achenes of Fagopyrum esculentum Moench and its influence on plant phenolic compound content

    Czech Academy of Sciences Publication Activity Database

    Kalinová, J.; Tříska, Jan; Vrchotová, Naděžda; Moos, Martin

    2014-01-01

    Roč. 157, 15 Aug (2014), s. 380-384 ISSN 0308-8146 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk(CZ) LD11016 Institutional support: RVO:67179843 Keywords : Common buckwheat * Exudates * Seeds * Germination * Phenolic compounds inhibition * Rutin Subject RIV: GM - Food Processing Impact factor: 3.391, year: 2014

  13. Accumulation of phenolic compounds in in vitro cultures and wild plants of Lavandula viridis L'Hér and their antioxidant and anti-cholinesterase potential.

    Science.gov (United States)

    Costa, Patrícia; Gonçalves, Sandra; Valentão, Patrícia; Andrade, Paula B; Romano, Anabela

    2013-07-01

    In this study, we evaluated the phenolic profile, antioxidant and anti-cholinesterase potential of different extracts from wild plants and in vitro cultures of Lavandula viridis L'Hér. The HPLC-DAD analysis allowed the identification and quantification of 3-O-caffeoylquinic, 4-O-caffeoylquinic, 5-O-caffeoylquinic and rosmarinic acids, and luteolin and pinocembrin. Water/ethanol extract from in vitro cultures contained the highest amount of the identified phenolic compounds (51652.92 mg/kg). To investigate the antioxidant activity we used Trolox equivalent antioxidant capacity, oxygen radical absorbance capacity, Fe(2+) chelation activity and the inhibition of Fe(2+)-induced lipid peroxidation in mouse brain homogenates (in vitro). Overall, all the extracts from both wild plants and in vitro cultures exhibited ability to scavenge free radicals, to chelate Fe(2+) and to protect against lipid peroxidation. In addition, the extracts from L. viridis were active in inhibiting both acetylcholinesterase and butyrylcholinesterase (Ellman's method). Our findings suggest that L. viridis in vitro cultures represent a promising alternative for the production of active metabolites with antioxidant and anti-cholinesterase activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Bioavailability of dietary phenolic compounds: Review

    Directory of Open Access Journals (Sweden)

    Erick Gutiérrez-Grijalva Paul Gutiérrez-Grijalva

    2015-12-01

    Full Text Available Phenolic compounds are ubiquitous in plant-based foods. High dietary intake of fruits, vegetables and cereals is related to a decreased rate in chronic diseases. Phenolic compounds are thought to be responsible, at least in part, for those health effects. Nonetheless, phenolic compounds bioaccessibility and biotransformation is often not considered in these studies; thus, a precise mechanism of action of phenolic compounds is not known. In this review we aim to present a comprehensive knowledge of the metabolic processes through which phenolic compounds go after intake.

  15. Inhibition of Cytosolic Phospholipase A2α (cPLA2α by Medicinal Plants in Relation to Their Phenolic Content

    Directory of Open Access Journals (Sweden)

    Eva Arnold

    2015-08-01

    Full Text Available The cytosolic phospholipase A2α(cPLA2α is one of the potential targets for anti-inflammatory drugs, since this enzyme plays a key role in the inflammation processes seen in health disorders, like asthma, allergic reactions, arthritis and neuronal diseases. In this study, cPLA2α inhibition by 43 methanol extracts from medicinal plants rich in polyphenols was determined. The eight most active extracts were derived from Ribes nigrum (IC50 of 27.7 μg/mL, Ononis spinosa (IC50 of 39.4 μg/mL, Urtica dioica (IC50 of 44.32 μg/mL, Betula sp. (IC50 of 58.02 μg/mL, Sanguisorba officinalis (IC50 of 76.25 μg/mL, Orthosiphon stamineus (IC50 of 78.83 μg/mL, Petasites hybridus (IC50 of 81.02 μg/mL and Tussilago farfara (IC50 of 123.28 μg/mL. Additionally, the antioxidant activities of these extracts were determined with the 2,2-diphenyl-1-picrylhydrazyl (DPPH assay and their phenolic content with the Folin–Ciocalteu reagent. Antioxidant activity showed a non-linear, positive correlation to the phenolic content, but no correlation of PLA2 inhibition with phenolic content could be established. This study provides evidence that cPLA2α may be a relevant target for anti-inflammatory agents.

  16. Sorption of phenol and phenol derivatives in hydrotalcite

    International Nuclear Information System (INIS)

    Avina G, E.I.

    2002-01-01

    One of the main problems in Mexico and in the World is the waste water pollution of a great variety of industrial processes by organic compounds. Among those ones the phenol compounds which are highly toxic, refractories (to the chemical degradation) and poorly biodegradable. This is due in a large extent to the problem created by the accelerated increase in the environmental pollution in the cities and industrial centers. The phenol compounds are used in a great variety of industries such as the production of resins, plasticizers, antioxidants, pesticides, colourings, disinfectants, etc. These phenol compounds are specially harmful, since they have repercussions on the flora of plants of biological treatment of water affecting its operation. The main objective of this work is to evaluate the capacities of phenol detention and its derivatives in an hydrotalcite type compound and diminishing with it the presence in water, in this case, of solutions prepared in the laboratory. In order to analyse this elimination process was used a methodology based in the carrying out in batch experiments and in the elaboration of a sorption isotherm. It is worth pointing out that this work was realized at laboratory scale, at relatively high phenol concentration ratio. With the obtained results when the sorption properties are evaluated the calcined hydrotalcite (HTC) for detaining phenol and p-chloro phenol it was observed that it is detained greater quantity of p-chloro phenol than phenol in the HTC. The detention of these phenol compounds in the HTC is due to the memory effect by the hydrotalcite regeneration starting from the oxides which are formed by the burning material. (Author)

  17. Highly invasive alien plant Reynoutria japonica Houtt. represents a novel source for pharmaceutical industry - evidence from phenolic profile and biological activity

    Directory of Open Access Journals (Sweden)

    Božin Biljana

    2017-01-01

    Full Text Available Reynoutria japonica is on the IUCN list of the Worlds’100 worst invasive species, but it is also, especially its rhizome, an integral part of traditional chinese medicine. The objective of this study was to determine the amount of selected phenolic compounds in rhizome, stems, leaves and inflorescence methanol extracts of this plant, their antioxidant and anticholinesterase activity. The chemical profile of the examined extracts was obtained by a high-performance liquid chromatography. In vitro assays on DPPH, OH and NO radicals were used to estimate antioxidant potential and Ellman’s method was applied for the determination of anticholinesterase activity. Leaves and rhizome extracts were found to be rich in rosmarinic and chlorogenic acid, and selected flavonoids. Resveratrol was exclusively present in rhizome and stems extracts. All the investigated extracts expressed certain antioxidant activity, where leaves extract was the most active. However, rhizome extract was the strongest inhibitor of acetylcholinesterase. These findings indicate that there is a possibility of R. japonica exploitation for the isolation of biologically active phenolic compounds used in pharmaceutical and food industry.

  18. Discovery of plant phenolic compounds that act as type III secretion system inhibitors or inducers of the fire blight pathogen, Erwinia amylovora.

    Science.gov (United States)

    Khokhani, Devanshi; Zhang, Chengfang; Li, Yan; Wang, Qi; Zeng, Quan; Yamazaki, Akihiro; Hutchins, William; Zhou, Shan-Shan; Chen, Xin; Yang, Ching-Hong

    2013-09-01

    Erwinia amylovora causes a devastating disease called fire blight in rosaceous plants. The type III secretion system (T3SS) is one of the important virulence factors utilized by E. amylovora in order to successfully infect its hosts. By using a green fluorescent protein (GFP) reporter construct combined with a high-throughput flow cytometry assay, a library of phenolic compounds and their derivatives was studied for their ability to alter the expression of the T3SS. Based on the effectiveness of the compounds on the expression of the T3SS pilus, the T3SS inhibitors 4-methoxy-cinnamic acid (TMCA) and benzoic acid (BA) and one T3SS inducer, trans-2-(4-hydroxyphenyl)-ethenylsulfonate (EHPES), were chosen for further study. Both the T3SS inhibitors (TMCA and BA) and the T3SS inducer (EHPES) were found to alter the expression of T3SS through the HrpS-HrpL pathway. Additionally, TMCA altered T3SS expression through the rsmBEa-RsmAEa system. Finally, we found that TMCA and BA weakened the hypersensitive response (HR) in tobacco by suppressing the T3SS of E. amylovora. In our study, we identified phenolic compounds that specifically targeted the T3SS. The T3SS inhibitor may offer an alternative approach to antimicrobial therapy by targeting virulence factors of bacterial pathogens.

  19. Screening of Indian medicinal plants for cytotoxic activity by Brine Shrimp Lethality (BSL assay and evaluation of their total phenolic content

    Directory of Open Access Journals (Sweden)

    Mahesh Biradi

    2014-01-01

    Full Text Available Objective: Plant-derived cytotoxic constituents and polyphenolic compounds have played an important role in the development of clinically useful anticancer agents. In this context, we have selected six Indian medicinal plants based on the literature claims and an attempt was made to evaluate the cytotoxic potential and total phenolic content (TPC of their methanol extracts and fractions. Materials and Methods: Six plants have been selected for the study, namely, Artemisia absinthium Linn. (Asteraceae, Oroxylum indicum (Linn. Vent. (Bignoniaceae, Heliotropium indicum Linn. (Boraginaceae, Amorphophallus sylvaticus (Roxb. Kunth. (Araceae, Mimosa pudica Linn. (Mimosaceae, and Premna serratifolia Linn. (Verbenaceae. Authenticated plant materials were subjected to extraction with methanol by cold maceration and hot percolation methods. The extracts were fractionated into four fractions (F1, F2, F3, and F4. Preliminary phytochemical investigation was carried out for all extracts and fractions. All extracts and their fractions were subjected to cytotoxicity screening by brine shrimp lethality (BSL bioassay. The plants with significant cytotoxicity were evaluated for TPC by using Folin-Ciocalteu reagent. Results: F1, F2, and F3 fractions of A. absinthium and P. serratifolia and F1 fraction of M. pudica have shown significant cytotoxicity (lethal concentration (LC 50 < 100 ppm compared with other fractions. F1, F2, and F3 fractions of A. absinthium show the LC 50 values 32.52, 14.27, and 24.02, respectively; F1, F2, and F3 of P. serratifolia show LC 50 values 7.61, 4.01, and 10.91 and same for F1 fraction of M. pudica was 34.82 μg/ml, respectively. TPC was found to be significantly higher (39.11 mg gallic acid equivalent (GAE/g in P. serratifolia compared with other two plants. Conclusion: The cytotoxicity screening system confirmed the proposed anticancer plants used by traditional healers and literature claims.

  20. Polyphasic bacterial community analysis of an aerobic activated sludge removing phenols and thiocyanate from coke plant effluent

    Energy Technology Data Exchange (ETDEWEB)

    Felfoldi, T.; Szekely, A.J.; Goral, R.; Barkacs, K.; Scheirich, G.; Andras, J.; Racz, A.; Marialigeti, K. [Eotvos Lorand University, Budapest (Hungary). Dept. of Microbiology

    2010-05-15

    Biological purification processes are effective tools in the treatment of hazardous wastes such as toxic compounds produced in coal coking. In this study, the microbial community of a lab-scale activated sludge system treating coking effluent was assessed by cultivation-based (strain isolation and identification, biodegradation tests) and culture-independent techniques (sequence-aided T-RFLP, taxon-specific PCR). The results of the applied polyphasic approach showed a simple microbial community dominated by easily culturable heterotrophic bacteria. Comamonas badia was identified as the key microbe of the system, since it was the predominant member of the bacterial community, and its phenol degradation capacity was also proved. Metabolism of phenol, even at elevated concentrations (up to 1500 mg/L), was also presented for many other dominant (Pseudomonas, Rhodanobacter, Oligella) and minor (Alcaligenes, Castellaniella, Microbacterium) groups, while some activated sludge bacteria (Sphingomonas, Rhodopseudomonas) did not tolerate it even in lower concentrations (250 mg/L). In some cases, closely related strains showed different tolerance and degradation properties. Members of the genus Thiobacillus were detected in the activated sludge, and were supposedly responsible for the intensive thiocyanate biodegradation observed in the system. Additionally, some identified bacteria (e.g. C. badia and the Ottowia-related strains) might also have had a significant impact on the structure of the activated sludge due to their floc-forming abilities.

  1. How to Plant Apple Trees to Reduce Replant Disease in Apple Orchard: A Study on the Phenolic Acid of the Replanted Apple Orchard

    OpenAIRE

    Yin, Chengmiao; Xiang, Li; Wang, Gongshuai; Wang, Yanfang; Shen, Xiang; Chen, Xuesen; Mao, Zhiquan

    2016-01-01

    Apple replant disease (ARD) is an important problem in the production of apple. The phenolic acid is one of the causes of ARD. How phenolic acid affects the ARD was not well known. In this study, we analyzed the type, concentration and annual dynamic variation of phenolic acid in soil from three replanted apple orchards using an accelerated solvent extraction system with high performance liquid chromatography (ASE-HPLC). We found that the type and concentration of phenolic acid were significa...

  2. Analytical procedure for the in-vial derivatization-extraction of phenolic acids and flavonoids in methanolic and aqueous plant extracts followed by gas chromatography with mass selective detection.

    NARCIS (Netherlands)

    Fiamegos, Y.C.; Nanos, C.G.; Vervoort, J.J.M.; Stalikas, C.D.

    2004-01-01

    An in-vial simple method for the combined derivatization and extraction of phenolic acids and flavonoids from plant extracts and their direct determination with GC-MS, is described. The method is taking advantage of the beneficial potentials of phase transfer catalysis (PTC). Catalysts in soluble

  3. HPLC-UV Analysis Coupled with Chemometry to Identify Phenolic Biomarkers from Medicinal Plants, used as Ingredients in Two Food Supplement Formulas

    Directory of Open Access Journals (Sweden)

    Raluca Maria Pop

    2013-11-01

    Full Text Available . High performance liquid chromatography (HPLC with UV detection is nowadays the reference method to identify and quantify the biomarkers of quality and authenticity of plants and food supplements. Seven medicinal plants were collected from wild flora: Taraxacum officinalis (1, Cynara scolimus (2, Silybum marianum (3, Hypericum perforatum (4,  Chelidonium majus (5, Lycopodium clavatum (6 and  Hippophae rhamnoides (7  leaves and fruits.  Two products (A and B were obtained by mixing individual plant powders. Therefore product A was obtained by mixing dandelion, artichoke and milk thistle, 1:1:1 while product B by mixing St John’s wort, Celandine and Wolf’s claw, 1:1:1. The methanolic extracts of individual plants as well as three different extracts of products A and B (using acidulated water, neutral water and acidulated methanol were analyzed using HPLC-UV for their phenolics’ fingerprint and composition. The qualitative (untargeted analysis and quantitative (targeted analysis results were further compared using Principal Component Analysis (PCA in order to identify their specific biomarkers. Thus, quantitative evaluation of individual phenolics in case of individual plants and products A and B extracts, showed specific and significant differences of composition. Both products A and B contained elagic acid as major compound. For product A, good biomarkers were trans-cinnamic, chlorogenic, caffeic and p-coumaric acids, as well silymarin and silibine originating from milk thistle. For product B, good biomarkers were quercetin and kaempherol, gallic and protocatecuic acids, this product being rich in flavonoids. In conclusion, HPLC-UV coupled with PCA analysis proved to be a rapid and useful way to identify the main biomarkers of plants’ authentication, as well of final products’ quality and safety.

  4. Conservation strategy for Pelargonium sidoides DC: Phenolic profile and pharmacological activity of acclimatized plants derived from tissue culture

    Czech Academy of Sciences Publication Activity Database

    Moyo, M.; Aremu, A.O.; Grúz, Jiří; Šubrtová, Michaela; Szüčová, Lucie; Doležal, Karel; van Staden, J.

    2013-01-01

    Roč. 149, č. 2 (2013), s. 557-561 ISSN 0378-8741 Institutional research plan: CEZ:AV0Z50380511 Keywords : Antimicrobial * Antioxidant * Medicinal plants Subject RIV: EF - Botanics Impact factor: 2.939, year: 2013

  5. Sensory and nutritional effects of amino acids and phenolic plant compounds on the caterpillars of two Pieris species

    NARCIS (Netherlands)

    Loon, van J.J.A.

    1988-01-01

    The relationships between caterpillars of Pierisbrassicae L. and Pierisrapae L. (Lepidoptera: Pieridae) and a common host plant Brassicaoleracea L. were studied using

  6. How to Plant Apple Trees to Reduce Replant Disease in Apple Orchard: A Study on the Phenolic Acid of the Replanted Apple Orchard.

    Directory of Open Access Journals (Sweden)

    Chengmiao Yin

    Full Text Available Apple replant disease (ARD is an important problem in the production of apple. The phenolic acid is one of the causes of ARD. How phenolic acid affects the ARD was not well known. In this study, we analyzed the type, concentration and annual dynamic variation of phenolic acid in soil from three replanted apple orchards using an accelerated solvent extraction system with high performance liquid chromatography (ASE-HPLC. We found that the type and concentration of phenolic acid were significantly differed among different seasons, different sampling positions and different soil layers. Major types of phenolic acid in three replanted apple orchards were phlorizin, benzoic acid and vanillic aldehyde. The concentration of phenolic acid was highest in the soil of the previous tree holes and it was increased from the spring to autumn. Moreover, phenolic acid was primarily distributed in 30-60 cm soil layer in the autumn, while it was most abundant in 0-30 cm soil layer in the spring. Our results suggest that phlorizin, benzoic acid and vanillic aldehyde may be the key phenolic acid that brought about ARD in the replanted apple orchard.

  7. Antibacterial Activity of Phenolic Compounds Against the Phytopathogen Xylella fastidiosa

    OpenAIRE

    Maddox, Christina E.; Laur, Lisa M.; Tian, Li

    2010-01-01

    Xylella fastidiosa is a pathogenic bacterium that causes diseases in many crop species, which leads to considerable economic loss. Phenolic compounds (a group of secondary metabolites) are widely distributed in plants and have shown to possess antimicrobial properties. The anti-Xylella activity of 12 phenolic compounds, representing phenolic acid, coumarin, stilbene and flavonoid, was evaluated using an in vitro agar dilution assay. Overall, these phenolic compounds were effective in inhibiti...

  8. Fennel (Foeniculum vulgare Mill. subsp. piperitum) florets, a traditional culinary spice in Italy: evaluation of phenolics and volatiles in local populations, and comparison with the composition of other plant parts.

    Science.gov (United States)

    Ferioli, Federico; Giambanelli, Elisa; D'Antuono, L Filippo

    2017-12-01

    Wild fennel (Foeniculum vulgare Mill. subsp. piperitum) florets are used as a typical spice in central and southern Italy. Although fennel (Foeniculum vulgare Mill.), belonging to the Apiaceae (syn. Umbelliferae) family, is a well-known vegetable and aromatic plant, whose main phytochemical compounds have been extensively analysed and investigated as flavouring agents and for their putative health promoting functions, its florets have not been specifically considered up to now. Therefore, the volatile and phenolic composition of florets from an Italian wild fennel crop was determined at different developmental stages, and compared to that of leaves and fruits. Moreover, florets of nine Italian wild fennel populations of different geographical origin from northern-central Italy were also analysed. The total phenolic amount increased from leaves to florets, reaching its highest value in early florets, at 58 012 mg kg -1 of dry matter (DM), then constantly decreased in fruits. In florets of wild populations, phenolics ranged from 6666 to 43 368 mg kg -1 DM. The total amount of volatile compounds was more than twice higher in florets (21 449 mg kg -1 DM) than in leaves (10 470 mg kg -1 DM), reaching its highest value in fruits (50 533 mg kg -1 DM). Estragole and trans-anethole were the main compounds of the volatile fraction. Total volatiles ranged from 24 367 to 60 468 mg kg -1 DM in florets of local populations. Significant changes in the total amount and profile of both phenolic and volatile compounds occurred during plant development. The consistent increase of estragole at later developmental stages supported the claim of different sensory properties of florets and fruits. Geographical origin significantly affected phenolic and volatile composition of wild fennel florets. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. COMPARATION OF SEVERAL PLANTS EXTRACT AND VITAMIN C INHIBITION ACTIVITY TO TYROSINE PHOTODEGRADATION INDUCED BY KETOPROFEN AND ITS TOTAL PHENOLIC COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Tatang Irianti

    2016-12-01

    Full Text Available Antioxidant is known to inhibit free radical reaction. Tyrosine photodegradation can be caused by radical reaction. Nowadays, plant with antioxidants are widely used to inhibit free radical reaction. Study of inhibition of photodegradation used four groups. Those groups are: P1 consisted of 2mL tyrosine 0,05 %; P2 consisted of 2 mL tyrosine 0,05 %, and 600 μL Rhetoflam (topical ketoprofen 1 %; P3 consisted of 2 mL tyrosine 0,05 %, 60μL Rhetoflam 1 %, and 100 μL tea leaf water ekstract 0,15 %; P4 consisted of 2 mL tyrosine 0,05 %, 600 μL Rhetoflam 1 %, and 100 μL mahkota dewa fruit water ekstract 0,15 %; P5 consisted of 2 mL tyrosine 0,05 %, 600 μL Rhetoflam 1 %, and 100 μL finger root etanolic ekstract 0,15 %; P6 consisted of 2 mL tyrosine 0,05 %, 600 μL Rhetoflam 1 %, and 100 μL vitamin C 0,15 %; each group is added with aquadest up to 5,0 mL and illuminated with mercuric lamp for four hours. Level of remaining tyrosine was measured with visible spectrophotometric method. We used ANOVA to analyse the data with convidence level of 0,95 and then continued by Tukey (HSD. Follin-Ciocalteu method with galic acid calibration curve was used to determine total phenolic level. The level of total phenolic of tea leaf aquoeus extract, mahkota dewa fruit aquoeus extract, fingerroot ethanolic extract were 29.64±0.86 %; 8.29 % 0.27 %; and 7.11 %, 0.15 %, respectively. Our investigation also found gallic acid equivalent (GAE with the inhibition activity of 4.03; 1.58; and 2.09 and they were bigger than Vitamin C with the same concentration of 0.15 %.

  10. Light Emission from the Fe2+-EGTA-H2O2 System: Possible Application for the Determination of Antioxidant Activity of Plant Phenolics

    Directory of Open Access Journals (Sweden)

    Michal Nowak

    2018-04-01

    Full Text Available Oxidative reactions can result in the formation of electronically excited species that undergo radiative decay depending on electronic transition from the excited state to the ground state with subsequent ultra-weak photon emission (UPE. We investigated the UPE from the Fe2+-EGTA (ethylene glycol-bis(β-aminoethyl ether-N,N,N′,N′-tetraacetic acid–H2O2 system with a multitube luminometer (Peltier-cooled photon counter, spectral range 380 to 630 nm. The UPE of 92.6 µmol/L Fe2+—185.2 µmol/L EGTA—2.6 mmol/L H2O2 reached 4319 ± 755 relative light units during 2 min measurement and was about seven times higher (p < 0.001 than the UPE of incomplete systems (Fe2+-H2O2, EGTA-H2O2 and medium alone. Substitution of Fe2+ with Cr2+, Co2+, Mn2+ or Cu2+ as well as of EGTA with EDTA (ethylenediaminetetraacetic acid or citrate completely abolished UPE. Experiments with ROS scavengers revealed the dependence of UPE on hydroxyl radicals suggesting occurrence of oxidative attack and cleavage of the ether bond in EGTA backbone structure and formation of triplet excited carbonyl groups with subsequent light emission. Plant phenolics (ferulic, chlorogenic and caffec acids at concentration 87 µmol/L and ascorbate at 0.46 mmol/L inhibited UPE by 90 ± 4%, 90 ± 5%, 97 ± 2% and 92 ± 1%, respectively. Quenching of UPE from Fe2+-EGTA-H2O2 system can be used for evaluation of antioxidant activity of phytochemicals.

  11. Phenolic acid changes during Orobanche parasitism on faba bean ...

    African Journals Online (AJOL)

    The present work is intended to provide further information on broomrape parasitism based on phenolic acid changes in either the host plant(s) or in each of the host and the parasite in the host-parasite system. Detection of phenolic acids was carried out using high performance liquid chromatography (HPLC) in the host ...

  12. Phytochemical phenolics in organically grown vegetables.

    Science.gov (United States)

    Young, Janice E; Zhao, Xin; Carey, Edward E; Welti, Ruth; Yang, Shie-Shien; Wang, Weiqun

    2005-12-01

    Fruit and vegetable intake is inversely correlated with risks for several chronic diseases in humans. Phytochemicals, and in particular, phenolic compounds, present in plant foods may be partly responsible for these health benefits through a variety of mechanisms. Since environmental factors play a role in a plant's production of secondary metabolites, it was hypothesized that an organic agricultural production system would increase phenolic levels. Cultivars of leaf lettuce, collards, and pac choi were grown either on organically certified plots or on adjacent conventional plots. Nine prominent phenolic agents were quantified by HPLC, including phenolic acids (e. g. caffeic acid and gallic acid) and aglycone or glycoside flavonoids (e. g. apigenin, kaempferol, luteolin, and quercetin). Statistically, we did not find significant higher levels of phenolic agents in lettuce and collard samples grown organically. The total phenolic content of organic pac choi samples as measured by the Folin-Ciocalteu assay, however, was significantly higher than conventional samples (p lettuce and collards, the organic system provided an increased opportunity for insect attack, resulting in a higher level of total phenolic agents in pac choi.

  13. Recycling of phenolic compounds in Borneo's tropical peat swamp forests.

    Science.gov (United States)

    Yule, Catherine M; Lim, Yau Yan; Lim, Tse Yuen

    2018-02-07

    Tropical peat swamp forests (TPSF) are globally significant carbon stores, sequestering carbon mainly as phenolic polymers and phenolic compounds (particularly as lignin and its derivatives) in peat layers, in plants, and in the acidic blackwaters. Previous studies show that TPSF plants have particularly high levels of phenolic compounds which inhibit the decomposition of organic matter and thus promote peat accumulation. The studies of phenolic compounds are thus crucial to further understand how TPSF function with respect to carbon sequestration. Here we present a study of cycling of phenolic compounds in five forests in Borneo differing in flooding and acidity, leaching of phenolic compounds from senescent Macaranga pruinosa leaves, and absorption of phenolics by M. pruinosa seedlings. The results of the study show that total phenolic content (TPC) in soil and leaves of three species of Macaranga were highest in TPSF followed by freshwater swamp forest and flooded limestone forest, then dry land sites. Highest TPC values were associated with acidity (in TPSF) and waterlogging (in flooded forests). Moreover, phenolic compounds are rapidly leached from fallen senescent leaves, and could be reabsorbed by tree roots and converted into more complex phenolics within the leaves. Extreme conditions-waterlogging and acidity-may facilitate uptake and synthesis of protective phenolic compounds which are essential for impeded decomposition of organic matter in TPSF. Conversely, the ongoing drainage and degradation of TPSF, particularly for conversion to oil palm plantations, reverses the conditions necessary for peat accretion and carbon sequestration.

  14. Changes in antioxidant activity, total phenolic and abscisic acid constituents in the aquatic plants Myriophyllum spicatum L. and Myriophyllum triphyllum Orchard exposed to cadmium.

    Science.gov (United States)

    Sivaci, Aysel; Sivaci, E Ridvan; Sökmen, Münevver

    2007-07-01

    Changes in antioxidant activity, total phenolic and abscisic acid (ABA) constituents of Myriophyllum spicatum L. and Myriophyllum triphyllum Orchard, cadmium (Cd) aqueous macrophytes, were investigated exposed to 0, 2, 4, 6, 8, 16 mg l(-1) Cd concentrations. M. triphyllum exhibited strong antioxidant activity but not M. spicatum before and after exposure. Free radical scavenging activity of M. triphyllum was significantly affected from the Cd concentrations and a significant increase was observed at 6 mgl(-1) Cd concentration. Total phenolic constituent and ABA concentration of M. triphyllum is higher than that of M. spicatum with or without heavy metal exposure (P macrophytes that grown in polluted aqueous ecosystem.

  15. Oxidative stress protection and glutathione metabolism in response to hydrogen peroxide and menadione in riboflavinogenic fungus Ashbya gossypii.

    Science.gov (United States)

    Kavitha, S; Chandra, T S

    2014-11-01

    Ashbya gossypii is a plant pathogen and a natural overproducer of riboflavin and is used for industrial riboflavin production. A few literature reports depict a link between riboflavin overproduction and stress in this fungus. However, the stress protection mechanisms and glutathione metabolism are not much explored in A. gossypii. In the present study, an increase in the activity of catalase and superoxide dismutase was observed in response to hydrogen peroxide and menadione. The lipid peroxide and membrane lipid peroxide levels were increased by H2O2 and menadione, indicating oxidative damage. The glutathione metabolism was altered with a significant increase in oxidized glutathione (GSSG), glutathione peroxidase (GPX), glutathione S transferase (GST), and glutathione reductase (GR) and a decrease in reduced glutathione (GSH) levels in the presence of H2O2 and menadione. Expression of the genes involved in stress mechanism was analyzed in response to the stressors by semiquantitative RT-PCR. The messenger RNA (mRNA) levels of CTT1, SOD1, GSH1, YAP1, and RIB3 were increased by H2O2 and menadione, indicating the effect of stress at the transcriptional level. A preliminary bioinformatics study for the presence of stress response elements (STRE)/Yap response elements (YRE) depicted that the glutathione metabolic genes, stress genes, and the RIB genes hosted either STRE/YRE, which may enable induction of these genes during stress.

  16. Phenolic acids as bioindicators of fly ash deposit revegetation

    Energy Technology Data Exchange (ETDEWEB)

    L. Djurdjevic; M. Mitrovic; P. Pavlovic; G. Gajic; O. Kostic [Institute for Biological Research ' Sinisa Stankovic,' Belgrade (Serbia and Montenegro). Department of Ecology

    2006-05-15

    The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the 'Nikola Tesla-A' thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central part of the deposit towards its edges. Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.

  17. Glucosinolate profiles by HPLC-DAD, phenolic compositions and antioxidant activity of Eruca vesicaria longirostris: Impact of plant part and origin

    Directory of Open Access Journals (Sweden)

    Saoussen Bouacida

    2016-06-01

    Full Text Available The glucosinolate profiles, phenol and flavonoid contents and the antioxidant activity of Eruca vesicaria longirostris were studied for different organs and origins. Eleven desulpho-glucosinolates (DS-GLSs were isolated and quantified by lipid chromatography- DAD. Similarity between profiles was obtained. Total DS-GLS content, expressed as sinigrin equivalents (SE revealed a certain variabilily ranging between (76.07-45.61, (27.01-13.53, (4.52 -18.01, (9.39-3.37 and (1.16-13.99 µmol /g DW for seeds, flowers, leaves, roots and stems, respectively. Results showed that seeds are rich in phenolics as they contain highest amounts of phenolics ranging from 27.6±0.5 to 33.47±0.5 mg GAE/g extract as compared to all other parts. Leaves and flowers had a significantly higher total phenolic content than stems and roots in all samples (p < 0.05. According to statistical analysis, the investigated seed extracts with values between (16.20±0.10-18.50±0.10 mg QE/g exhibited the highest total flavonoids content, followed by leaves (13.00±0.40-15.80±0.30mg QE/g, flowers (10.40±0.40-12.90±0.90 mg QE/g and stems (7.80±0.20- 9.80±0.70 mg QE/g. Antioxidant activity tested by DPPH, ABTS and FRAP assays, was higher for seeds, leaves and flowers than the other studied organs. These organs were characterized by a significantly high content in glucoerucin, nasturtin and epiprogroitrin, respectively.

  18. Plants as Biofactories: Postharvest Stress-Induced Accumulation of Phenolic Compounds and Glucosinolates in Broccoli Subjected to Wounding Stress and Exogenous Phytohormones

    Science.gov (United States)

    Villarreal-García, Daniel; Nair, Vimal; Cisneros-Zevallos, Luis; Jacobo-Velázquez, Daniel A.

    2016-01-01

    Broccoli contains high levels of bioactive molecules and is considered a functional food. In this study, postharvest treatments to enhance the concentration of glucosinolates and phenolic compounds were evaluated. Broccoli whole heads were wounded to obtain florets and wounded florets (florets cut into four even pieces) and stored for 24 h at 20 °C with or without exogenous ethylene (ET, 1000 ppm) or methyl jasmonate (MeJA, 250 ppm). Whole heads were used as a control for wounding treatments. Regarding glucosinolate accumulation, ET selectively induced the 4-hydroxylation of glucobrassicin in whole heads, resulting in ∼223% higher 4-hydroxyglucobrassicin than time 0 h samples. Additionally, glucoraphanin was increased by ∼53% in whole heads treated with ET, while neoglucobrassicin was greatly accumulated in wounded florets treated with ET or MeJA, showing increases of ∼193 and ∼286%, respectively. On the other hand, although only whole heads stored without phytohormones showed higher concentrations of phenolic compounds, which was reflected in ∼33, ∼30, and ∼46% higher levels of 1,2,2-trisinapoylgentiobose, 1,2-diferulolylgentiobiose, and 1,2-disinapoyl-2-ferulolylgentiobiose, respectively; broccoli florets stored under air control conditions showed enhanced concentrations of 3-O-caffeoylquinic acid, 1,2-disinapoylgentiobiose, and 1,2-disinapoyl-2-ferulolylgentiobiose (∼22, ∼185, and ∼65% more, respectively). Furthermore, exogenous ET and MeJA impeded individual phenolics accumulation. Results allowed the elucidation of simple and effective postharvest treatment to enhance the content of individual glucosinolates and phenolic compounds in broccoli. The stressed-broccoli tissue could be subjected to downstream processing in order to extract and purify bioactive molecules with applications in the dietary supplements, agrochemical and cosmetics markets. PMID:26904036

  19. Plants as biofactories: Postharvest Stress-Induced Accumulation of Phenolic Compounds and Glucosinolates in Broccoli Subjected to Wounding Stress and Exogenous Phytohormones

    Directory of Open Access Journals (Sweden)

    Daniel eVillarreal-García

    2016-02-01

    Full Text Available Broccoli contains high levels of bioactive molecules and is considered a functional food. In this study, postharvest treatments to enhance the concentration of glucosinolates and phenolic compounds were evaluated. Broccoli whole heads were wounded to obtain florets and wounded florets (florets cut into four even pieces and stored for 24 h at 20 ºC with or without exogenous ethylene (ET, 1000 ppm or methyl jasmonate (MeJA, 250 ppm. Whole heads were used as a control for wounding treatments. Regarding glucosinolate accumulation, ET selectively induced the 4-hydroxylation of glucobrassicin in whole heads, resulting in ~223% higher 4-hydroxyglucobrassicin than time 0 h samples. Additionally, glucoraphanin was increased by ~53% in whole heads treated with ET, while neoglucobrassicin was greatly accumulated in wounded florets treated with ET or MeJA, showing increases of ~193% and ~286%, respectively. On the other hand, although only whole heads stored without phytohormones showed higher concentrations of phenolic compounds, which was reflected in ~33%, ~30%, and 46% higher levels of 1,2,2-trisinapoylgentiobose, 1,2-diferulolylgentiobiose, and 1,2-disinapoyl-2-ferulolylgentiobiose, respectively; broccoli florets stored under air control conditions showed enhanced concentrations of 3-O-caffeoylquinic acid, 1,2-disinapoylgentiobiose, and 1,2-disinapoyl-2-ferulolylgentiobiose (~22%, ~185%, and ~65% more, respectively. However, exogenous ET and MeJA impeded individual phenolics accumulation. Results allowed the elucidation of simple and effective postharvest treatment to enhance the content of individual glucosinolates and phenolic compounds in broccoli. The stressed-broccoli tissue could be subjected to downstream processing in order to extract and purify bioactive molecules with applications in the dietary supplements, agrochemical and cosmetics markets.

  20. Quality characteristics and phenolic compounds of European pear ...

    African Journals Online (AJOL)

    Background: Pear fruits are an important source of plant secondary metabolites and one of the major sources of dietary phenolic compounds. Materials and Methods: The aim of this study was to determine the individual phenolic compounds and some quality characteristics of the flesh and peel of the fruit in four pear ...

  1. Total Phenol amd Flavonoid contents of Crude Extract and Fractions ...

    African Journals Online (AJOL)

    Phenolic compounds are numerous in plants and are essential part of human diet. Picralima nitida has been extensively used in African folk medicine especially in West Africa. The present study evaluated the total phenolic and flavonoid contents of the extract and fractions of Picralima nitida. The methanol extracts of P.

  2. Bromination of Phenol

    Science.gov (United States)

    Talbot, Christopher

    2013-01-01

    This "Science note" examines the bromination of phenol, a reaction that is commonly taught at A-level and IB (International Baccalaureate) as an example of electrophilic substitution. Phenol undergoes bromination with bromine or bromine water at room temperature. A white precipitate of 2,4,6-tribromophenol is rapidly formed. This…

  3. Phenolic Molding Compounds

    Science.gov (United States)

    Koizumi, Koji; Charles, Ted; de Keyser, Hendrik

    Phenolic Molding Compounds continue to exhibit well balanced properties such as heat resistance, chemical resistance, dimensional stability, and creep resistance. They are widely applied in electrical, appliance, small engine, commutator, and automotive applications. As the focus of the automotive industry is weight reduction for greater fuel efficiency, phenolic molding compounds become appealing alternatives to metals. Current market volumes and trends, formulation components and its impact on properties, and a review of common manufacturing methods are presented. Molding processes as well as unique advanced techniques such as high temperature molding, live sprue, and injection/compression technique provide additional benefits in improving the performance characterisitics of phenolic molding compounds. Of special interest are descriptions of some of the latest innovations in automotive components, such as the phenolic intake manifold and valve block for dual clutch transmissions. The chapter also characterizes the most recent developments in new materials, including long glass phenolic molding compounds and carbon fiber reinforced phenolic molding compounds exhibiting a 10-20-fold increase in Charpy impact strength when compared to short fiber filled materials. The role of fatigue testing and fatigue fracture behavior presents some insight into long-term reliability and durability of glass-filled phenolic molding compounds. A section on new technology outlines the important factors to consider in modeling phenolic parts by finite element analysis and flow simulation.

  4. Berry Phenolics of Grapevine under Challenging Environments

    Directory of Open Access Journals (Sweden)

    Hernâni Gerós

    2013-09-01

    Full Text Available Plant phenolics have been for many years a theme of major scientific and applied interest. Grape berry phenolics contribute to organoleptic properties, color and protection against environmental challenges. Climate change has already caused significant warming in most grape-growing areas of the world, and the climatic conditions determine, to a large degree, the grape varieties that can be cultivated as well as wine quality. In particular, heat, drought and light/UV intensity severely affect phenolic metabolism and, thus, grape composition and development. In the variety Chardonnay, water stress increases the content of flavonols and decreases the expression of genes involved in biosynthesis of stilbene precursors. Also, polyphenolic profile is greatly dependent on genotype and environmental interactions. This review deals with the diversity and biosynthesis of phenolic compounds in the grape berry, from a general overview to a more detailed level, where the influence of environmental challenges on key phenolic metabolism pathways is approached. The full understanding of how and when specific phenolic compounds accumulate in the berry, and how the varietal grape berry metabolism responds to the environment is of utmost importance to adjust agricultural practices and thus, modify wine profile.

  5. Phenolation of vegetable oils

    Directory of Open Access Journals (Sweden)

    ZORAN S. PETROVIĆ

    2011-04-01

    Full Text Available Novel bio-based compounds containing phenols suitable for the syn­thesis of polyurethanes were prepared. The direct alkylation of phenols with different vegetable oils in the presence of superacids (HBF4, triflic acid as ca­talysts was studied. The reaction kinetics was followed by monitoring the de­crease of the double bond content (iodine value with time. In order to under­stand the mechanism of the reaction, phenol was alkylated with model com­pounds. The model compounds containing one internal double bond were 9-oc­tadecene and methyl oleate and those with three double bonds were triolein and high oleic safflower oil (82 % oleic acid. It was shown that the best structures for phenol alkylation are fatty acids with only one double bond (oleic acid. Fatty acids with two double bonds (linoleic acid and three double bonds (lino­lenic acid lead to polymerized oils by a Diels–Alder reaction, and to a lesser extent to phenol alkylated products. The reaction product of direct alkylation of phenol with vegetable oils is a complex mixture of phenol alkylated with poly­merized oil (30–60 %, phenyl esters formed by transesterification of phenol with triglyceride ester bonds (<10 % and unreacted oil (30 %. The phenolated vegetable oils are new aromatic–aliphatic bio-based raw materials suitable for the preparation of polyols (by propoxylation, ethoxylation, Mannich reactions for the preparation of polyurethanes, as intermediates for phenolic resins or as bio-based antioxidants.

  6. Phenolic acids as bioindicators of fly ash deposit revegetation.

    Science.gov (United States)

    Djurdjević, L; Mitrović, M; Pavlović, P; Gajić, G; Kostić, O

    2006-05-01

    The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the "Nikola Tesla-A" thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central part of the deposit towards its edges (ranging from 1-80%). Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids (38.07-185.16 microg/g of total phenolics and 4.12-27.28 microg/g of phenolic acids) in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. Ash samples contained high amounts of ferulic, vanillic, and p-coumaric acid, while the content of both p-hydroxybenzoic and syringic acid was relatively low. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.

  7. Glucosinolate profiles by HPLC-DAD, phenolic compositions and antioxidant activity of Eruca vesicaria longirostris: Impact of plant part and origin

    OpenAIRE

    Bouacida, Saoussen; Koubaier, Hayet Ben Haj; Snoussi, Ahmed; Fauconnier, Marie-Laure; Bouzouita, Nabiha

    2016-01-01

    The glucosinolate profiles, phenol and flavonoid contents and the antioxidant activity of Eruca vesicaria longirostris were studied for different organs and origins. Eleven desulpho-glucosinolates (DS-GLSs) were isolated and quantified by lipid chromatography- DAD. Similarity between profiles was obtained. Total DS-GLS content, expressed as sinigrin equivalents (SE) revealed a certain variabilily ranging between (76.07-45.61), (27.01-13.53), (4.52 -18.01), (9.39-3.37) and (1.16-13.99) µmol /g...

  8. Influence of Phytophthora capsici L. inoculation on disease severity, necrosis length, peroxidase and catalase activity, and phenolic content of resistant and susceptible pepper (Capsicum annuum L.) plants

    OpenAIRE

    KOÇ, Esra; ÜSTÜN, Ayşen Sülün

    2014-01-01

    This study explored the level of infection caused by different inoculum concentrations (102, 103, and 104 zoospores mL-1) of Phytophthora capsici in 3 pepper cultivars at days 2, 4, and 6. The effect that the infection induced on the peroxidase (POX), catalase (CAT), and phenolics of resistant and sensitive seedlings, as well as the defense mechanism against the pathogen, were also investigated. The resistance of PM-702 against the isolate used was high, whereas KM-Hot and DEM-8 displayed sen...

  9. Searching for new sources of innovative products for the food industry within halophyte aromatic plants: In vitro antioxidant activity and phenolic and mineral contents of infusions and decoctions of Crithmum maritimum L.

    Science.gov (United States)

    Pereira, Catarina Guerreiro; Barreira, Luísa; da Rosa Neng, Nuno; Nogueira, José Manuel Florêncio; Marques, Cátia; Santos, Tamára F; Varela, João; Custódio, Luísa

    2017-09-01

    Aromatic halophyte plants are an outstanding source of bioactive compounds and natural products with potential use in the food industry. This work reports the in vitro antioxidant activity, toxicity, polyphenolic profile and mineral contents of infusions and decoctions from stems, leaves and flowers of Crithmum maritimum L., an aromatic and edible maritime halophyte (sea fennel). Aspalathus linearis (Burm.f.) Dahlg. (rooibos) herbal tea was used as a reference. Sea fennel's tisanes, particularly from leaves, were rich in phenolic compounds and five of them (p-hydroxybenzoic and ferulic acids, epicatechin, pyrocatechol and 4-hydroxybenzaldehyde) were here described in C. maritimum for the first time. Chlorogenic acid was the dominant phenolic determined. Na was the most abundant mineral in all tisanes followed by Ca and Mg in leaves' tisanes and K in flowers. Sea fennel's samples had a similar antioxidant activity than those from A. linearis, and had no significant toxicity towards four different mammalian cell lines. Altogether, our results suggest that sea fennel can be a source of products and/or molecules for the food industry with antioxidant properties and minerals in the form, for example, of innovative health-promoting herbal beverages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Separation and characterization of phenolic compounds from ...

    African Journals Online (AJOL)

    (Combretaceae) is an Ivorian medicinal plant. There is little ethnobotanical and almost no chemical information available for this species. The aim of this study was to isolate phenolic compounds from T. ivoriensis. In this way, its ethyl acetate extract (Ea) was fractionated by silica gel column chromatography followed by ...

  11. Antiplasmodial activity of some phenolic compounds from ...

    African Journals Online (AJOL)

    Background: Plasmodium falciparum, one of the causative agents of malaria, has high adaptability through mutation and is resistant to many types of anti-malarial drugs. This study presents an in vitro assessment of the antiplasmodial activity of some phenolic compounds isolated from plants of the genus Allanblackia.

  12. Antioxidant Capacity, Radical Scavenging Kinetics and Phenolic ...

    African Journals Online (AJOL)

    Antioxidant Capacity, Radical Scavenging Kinetics and Phenolic Profile of Methanol Extracts of Wild Plants of Southern Sonora, Mexico. EF Moran-Palacio, LA Zamora-Álvarez, NA Stephens-Camacho, GA Yáñez- Farías, A Virgen-Ortiz, O Martínez-Cruz, JA Rosas-Rodríguez ...

  13. Effective remediation of phenol,2,4-bis(1,1-dimethylethyl) and bis(2-ethylhexyl) phthalate in farm effluent using Guar gum--A plant based biopolymer.

    Science.gov (United States)

    Kee, Yang Ling; Mukherjee, Sumona; Pariatamby, Agamuthu

    2015-10-01

    This study was carried out to evaluate the efficiency of Guar gum in removing Persistent Organic Pollutants (POPs), viz. phenol,2,4-bis(1,1-dimethylethyl) and bis(2-ethylhexyl) phthalate (DEHP), from farm effluent. The removal efficiency was compared with alum. The results indicated that 4.0 mg L(-1) of Guar gum at pH 7 could remove 99.70% and 99.99% of phenol,2,4-bis(1,1-dimethylethyl) and DEHP, respectively. Box Behnken design was used for optimization of the operating parameters for optimal POPs removal. Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy studies were conducted on the flocs. SEM micrographs showed numerous void spaces in the flocs produced by Guar gum as opposed to those produced by alum. This indicated why Guar gum was more effective in capturing and removal of suspended particles and POPs as compared to alum. FTIR spectra indicated a shift in the bonding of functional groups in the flocs produced by Guar gum as compared to raw Guar gum powder signifying chemical attachment of the organics present in the effluent to the coagulant resulting in their removal. Guar gum is highly recommended as a substitute to chemical coagulant in treating POPs due to its non-toxic and biodegradable characteristics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Application of Activated Sludge Process at Phenol Water Treatment Station in Yanzhou Coal Mine Distract Coking Plant%活性污泥法在兖州矿区焦化厂酚水处理站的应用

    Institute of Scientific and Technical Information of China (English)

    许寒冰; 牟增越

    2001-01-01

    论述活性污泥法处理焦化酚水的若干问题,包括活性污泥的培养、驯化、运行工艺指标、参数,管理中应把握的几个工艺点,运行中常出现的问题及对策,几点探索和体会。%Some of the technical problems of phenol water treatment in coking plant by using the activated sludge process are discussed. These technical problems are including culture, domestication, operation process index of activated sludge; a few of process point control in management; often happened technical problems and countermeasures in operation.

  15. Intestinal release and uptake of phenolic antioxidant diferulic acids

    DEFF Research Database (Denmark)

    Andreasen, Mette Findal; Kroon, P A; Williamson, G

    2001-01-01

    Diferulic acids are potent antioxidants and are abundant structural components of plant cell walls, especially in cereal brans. As such, they are part of many human and animal diets and may contribute to the beneficial effect of cereal brans on health. However, these phenolics are ester-linked to......Diferulic acids are potent antioxidants and are abundant structural components of plant cell walls, especially in cereal brans. As such, they are part of many human and animal diets and may contribute to the beneficial effect of cereal brans on health. However, these phenolics are ester...... system. Our results suggest that the phenolic antioxidant diferulic acids are bioavailable. Udgivelsesdato: 2001-Aug-1...

  16. Bienzymatic sensor based on the use of redox enzymes and chitosan-MWCNT nanocomposite. Evaluation of total phenolic content in plant extracts

    International Nuclear Information System (INIS)

    Diaconu, M.; Litescu, S.C.; Radu, G.L.

    2011-01-01

    We are presenting a bienzymatic sensor for the determination of polyphenols. An ITO electrode was modified with multiwalled carbon nanotubes, and the enzymes laccase and tyrosinase were co-entrapped into a chitosan matrix. The resulting biosensor was calibrated at -50 mV (vs. the Ag/AgCl reference electrode) using rosmarinic acid, caffeic acid and gallic acid as the substrates. The new biosensor resulted in a 10.7-fold increase in response sensitivity and a considerable improvement of the detection limit (42 nM for rosmarinic acid). Fouling of the surface of the biosensor was prevented by applying the surfactant Tween 20. The data recorded in surfactant medium revealed a significant improvement of the operational stability and an enlarged linear concentration ranges (up to 12 μM for rosmarinic acid). The sensor was used to evaluate the total phenolic content from extracts of Salvia officinalis and cultures of Basilicum callus. (author)

  17. CO2 enrichment and carbon partitioning to phenolics: do plant responses accord better with the protein competition or the growth-differentiation balance models?

    Science.gov (United States)

    W.J. Mattson; R. Julkunen-Tiitto; D.A. Herms

    2005-01-01

    Rising levels of atmospheric CO2 can alter plant growth and partitioning to secondary metabolites. The protein competition model (PCM) and the extended growth/differentiation balance model (GDBe) are similar but alternative models that address ontogenetic and environmental effects on whole-plant carbon partitioning to the...

  18. Factors controlling phenol content on Theobroma cacao callus culture

    International Nuclear Information System (INIS)

    Quiñones-Galvez, Janet; HernándezTorre, Martha de la; Quirós Molina, Yemeys; Capdesuñer Ruiz, Yanelis; Trujillo Sánchez, Reinaldo

    2016-01-01

    Theobroma cacao L. is known in folk medicine as an antiseptic, diuretic and antiparasitic. Foods derived from this plant are rich in natural products of high added value, including phenolic compounds. As in vitro cultivation handle is an alternative source for the production of these metabolites. The present study was conducted to obtain phenolic compounds from callus culture with embryogenic structures. Culture conditions (agitation, light and glucose) were established to increase the concentration of phenols in calluses and elicitors to achieve the increase in callus and excretion into the culture area. The accumulation of phenolic compounds was favored with the additional supplement of glucose, growth in agitation and darkness. The addition of random hydroxylated cyclodextrins allowed the increase in the specific yield of phenols and biomass. (author)

  19. Every plant for himself; the effect of a phenolic monoterpene on germination and biomass of Thymus pulegioides and T. serpyllum.

    DEFF Research Database (Denmark)

    Jensen, Catrine Grønberg; Ehlers, Bodil

    2009-01-01

    Thyme plants are known for their production of aromatic oils, whose main component is terpenes. The plants leach terpenes to their surroundings and thereby affect the seed germination and biomass of associated plants, but also potentially themselves. A variation in the dominant terpenes produced...... by thyme plants is found both within and among species. In Denmark two thyme species (Thymus pulegioides and T. serpyllum) are naturally occurring. The essential oil of T. pulegioides in Denmark is mainly dominated by one monoterpene; 'carvacrol'. In contrast, the essential oil of T. serpyllum constitutes...... and growth of both T. pulegioides and T. serpyllum. We compared the performance of seeds and seedlings of both thyme species on soil treated with carvacrol versus control soil. We found no effect of treatment on germination, but we detected a highly significant effect of treatment on seedling biomass...

  20. Alteration of Transcripts of Stress-Protective Genes and Transcriptional Factors by γ-Aminobutyric Acid (GABA Associated with Improved Heat and Drought Tolerance in Creeping Bentgrass (Agrostis stolonifera

    Directory of Open Access Journals (Sweden)

    Zhou Li

    2018-05-01

    Full Text Available Gamma-aminobutyric acid (GABA may play a positive role in regulating plant tolerance to drought or heat stress. The objectives of this study were to investigate the physiological effects of GABA on tolerance of creeping bentgrass (Agrostis stolonifera to heat and drought stress and to determine whether enhanced heat and drought tolerance due to GABA treatment was associated with the up-regulation of selected genes and transcriptional factors involved in stress protection. Creeping bentgrass (cultivar “Penncross” plants were treated with 0.5 mM GABA or water (untreated control as a foliar spray and were subsequently exposed to heat stress (35/30 °C, day/night, drought stress by withholding irrigation, or non-stress conditions in controlled-environment growth chambers. Exogenous application of GABA significantly improved plant tolerance to heat and drought stress, as reflected by increased leaf water content, cell membrane stability, and chlorophyll content. The analysis of gene transcript level revealed that exogenous GABA up-regulated the expression of ABF3, POD, APX, HSP90, DHN3, and MT1 during heat stress and the expression of CDPK26, MAPK1, ABF3, WRKY75, MYB13, HSP70, MT1, 14-3-3, and genes (SOD, CAT, POD, APX, MDHAR, DHAR, and GR encoding antioxidant enzymes during drought stress. The up-regulation of the aforementioned stress-protective genes and transcriptional factors could contribute to improved heat and drought tolerance in creeping bentgrass.

  1. Alteration of Transcripts of Stress-Protective Genes and Transcriptional Factors by γ-Aminobutyric Acid (GABA) Associated with Improved Heat and Drought Tolerance in Creeping Bentgrass (Agrostis stolonifera).

    Science.gov (United States)

    Li, Zhou; Peng, Yan; Huang, Bingru

    2018-05-31

    Gamma-aminobutyric acid (GABA) may play a positive role in regulating plant tolerance to drought or heat stress. The objectives of this study were to investigate the physiological effects of GABA on tolerance of creeping bentgrass ( Agrostis stolonifera ) to heat and drought stress and to determine whether enhanced heat and drought tolerance due to GABA treatment was associated with the up-regulation of selected genes and transcriptional factors involved in stress protection. Creeping bentgrass (cultivar "Penncross") plants were treated with 0.5 mM GABA or water (untreated control) as a foliar spray and were subsequently exposed to heat stress (35/30 °C, day/night), drought stress by withholding irrigation, or non-stress conditions in controlled-environment growth chambers. Exogenous application of GABA significantly improved plant tolerance to heat and drought stress, as reflected by increased leaf water content, cell membrane stability, and chlorophyll content. The analysis of gene transcript level revealed that exogenous GABA up-regulated the expression of ABF3 , POD , APX , HSP90 , DHN3 , and MT1 during heat stress and the expression of CDPK26 , MAPK1 , ABF3 , WRKY75 , MYB13 , HSP70 , MT1 , 14-3-3 , and genes ( SOD , CAT , POD , APX , MDHAR , DHAR , and GR ) encoding antioxidant enzymes during drought stress. The up-regulation of the aforementioned stress-protective genes and transcriptional factors could contribute to improved heat and drought tolerance in creeping bentgrass.

  2. Phenolic contents of myrtle (Myrtus communis L. fruits

    Directory of Open Access Journals (Sweden)

    Arzu BAYIR YEĞİN

    2015-06-01

    Full Text Available Myrtle is one of the important natural plant of the Mediterranean region. Fruits are in black and white colour. The earlier studies are mostly focused on the essential oil content of leaves in myrtle plant, whereas the latest studies are dealing with the phenolic compounds of leaves and fruits with their effects on human health. The aim of the study was to determine the phenolic content of the myrtle fruit and to investigate the differences between the genotypes. Myrtle fruits were collected from Antalya district. Phenolic content was determined by HPLC. Gallic acid (GA, catechin (CT, epicatechin (ECT, epicatechin-3-0-gallate (ECG, procyanidin B1 (B1, procyanidin B2 (B2, quercetin (Q, kamferol (K and myricetin (M were calculated as phenolic compounds. Epicatechin-3-0-gallate (in flavan-3-ol group and myricetin (in flavonol group were detected in large amounts.

  3. Screening of Six Medicinal Plant Extracts Obtained by Two Conventional Methods and Supercritical CO₂ Extraction Targeted on Coumarin Content, 2,2-Diphenyl-1-picrylhydrazyl Radical Scavenging Capacity and Total Phenols Content.

    Science.gov (United States)

    Molnar, Maja; Jerković, Igor; Suknović, Dragica; Bilić Rajs, Blanka; Aladić, Krunoslav; Šubarić, Drago; Jokić, Stela

    2017-02-24

    Six medicinal plants Helichrysum italicum (Roth) G. Don, Angelica archangelica L., Lavandula officinalis L., Salvia officinalis L., Melilotus officinalis L., and Ruta graveolens L. were used. The aim of the study was to compare their extracts obtained by Soxhlet (hexane) extraction, maceration with ethanol (EtOH), and supercritical CO₂ extraction (SC-CO₂) targeted on coumarin content (by high performance liquid chromatography with ultraviolet detection, HPLC-UV), 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging capacity, and total phenols (TPs) content (by Folin-Ciocalteu assay). The highest extraction yields were obtained by EtOH, followed by hexane and SC-CO₂. The highest coumarin content (316.37 mg/100 g) was found in M. officinalis EtOH extracts, but its SC-CO₂ extraction yield was very low for further investigation. Coumarin was also found in SC-CO₂ extracts of S. officinalis , R. graveolens , A. archangelica , and L. officinalis . EtOH extracts of all plants exhibited the highest DPPH scavenging capacity. SC-CO₂ extracts exhibited antiradical capacity similar to hexane extracts, while S. officinalis SC-CO₂ extracts were the most potent (95.7%). EtOH extracts contained the most TPs (up to 132.1 mg gallic acid equivalents (GAE)/g from H. italicum ) in comparison to hexane or SC-CO₂ extracts. TPs content was highly correlated to the DPPH scavenging capacity of the extracts. The results indicate that for comprehensive screening of different medicinal plants, various extraction techniques should be used in order to get a better insight into their components content or antiradical capacity.

  4. Screening of Six Medicinal Plant Extracts Obtained by Two Conventional Methods and Supercritical CO2 Extraction Targeted on Coumarin Content, 2,2-Diphenyl-1-picrylhydrazyl Radical Scavenging Capacity and Total Phenols Content

    Directory of Open Access Journals (Sweden)

    Maja Molnar

    2017-02-01

    Full Text Available Six medicinal plants Helichrysum italicum (Roth G. Don, Angelica archangelica L., Lavandula officinalis L., Salvia officinalis L., Melilotus officinalis L., and Ruta graveolens L. were used. The aim of the study was to compare their extracts obtained by Soxhlet (hexane extraction, maceration with ethanol (EtOH, and supercritical CO2 extraction (SC-CO2 targeted on coumarin content (by high performance liquid chromatography with ultraviolet detection, HPLC-UV, 2,2-diphenyl-1-picrylhydrazyl radical (DPPH scavenging capacity, and total phenols (TPs content (by Folin–Ciocalteu assay. The highest extraction yields were obtained by EtOH, followed by hexane and SC-CO2. The highest coumarin content (316.37 mg/100 g was found in M. officinalis EtOH extracts, but its SC-CO2 extraction yield was very low for further investigation. Coumarin was also found in SC-CO2 extracts of S. officinalis, R. graveolens, A. archangelica, and L. officinalis. EtOH extracts of all plants exhibited the highest DPPH scavenging capacity. SC-CO2 extracts exhibited antiradical capacity similar to hexane extracts, while S. officinalis SC-CO2 extracts were the most potent (95.7%. EtOH extracts contained the most TPs (up to 132.1 mg gallic acid equivalents (GAE/g from H. italicum in comparison to hexane or SC-CO2 extracts. TPs content was highly correlated to the DPPH scavenging capacity of the extracts. The results indicate that for comprehensive screening of different medicinal plants, various extraction techniques should be used in order to get a better insight into their components content or antiradical capacity.

  5. Exercise and Prebiotics Produce Stress Resistance: Converging Impacts on Stress-Protective and Butyrate-Producing Gut Bacteria.

    Science.gov (United States)

    Mika, A; Rumian, N; Loughridge, A B; Fleshner, M

    2016-01-01

    The gut microbial ecosystem can mediate the negative health impacts of stress on the host. Stressor-induced disruptions in microbial ecology (dysbiosis) can lead to maladaptive health effects, while certain probiotic organisms and their metabolites can protect against these negative impacts. Prebiotic diets and exercise are feasible and cost-effective strategies that can increase stress-protective bacteria and produce resistance against the detrimental behavioral and neurobiological impacts of stress. The goal of this review is to describe research demonstrating that both prebiotic diets and exercise produce adaptations in gut ecology and the brain that arm the organism against inescapable stress-induced learned helplessness. The results of this research support the novel hypothesis that some of the stress-protective effects of prebiotics and exercise are due to increases in stress-protective gut microbial species and their metabolites. In addition, new evidence also suggests that prebiotic diet or exercise interventions are most effective if given early in life (juvenile-adolescence) when both the gut microbial ecosystem and the brain are plastic. Based on our new understanding of the mechanistic convergence of these interventions, it is feasible to propose that in adults, both interventions delivered in combination may elevate their efficacy to promote a stress-resistant phenotype. © 2016 Elsevier Inc. All rights reserved.

  6. Production of novel antioxidative phenolic amides through heterologous expression of the plant’s chlorogenic acid biosynthesis genes in yeast

    NARCIS (Netherlands)

    Moglia, A.; Comino, C.; Lanteri, S.; Vos, de C.H.; Waard, de P.; Beek, van T.A.; Goitre, L.; Retta, S.F.; Beekwilder, M.J.

    2010-01-01

    Phenolic esters like chlorogenic acid play an important role in therapeutic properties of many plant extracts. We aimed to produce phenolic esters in baker’s yeast, by expressing tobacco 4CL and globe artichoke HCT. Indeed yeast produced phenolic esters. However, the primary product was identified

  7. METHODS OF REDUCTION OF FREE PHENOL CONTENT IN PHENOLIC FOAM

    Directory of Open Access Journals (Sweden)

    Bruyako Mikhail Gerasimovich

    2012-12-01

    method aimed at reduction of toxicity of phenolic foams consists in the introduction of a composite mixture of chelate compounds. Raw materials applied in the production of phenolic foams include polymers FRB-1A and VAG-3. The aforementioned materials are used to produce foams FRP-1. Introduction of 1% aluminum fluoride leads to the 40% reduction of the free phenol content in the foam. Introduction of crystalline zinc chloride accelerates the foaming and curing of phenolic foams. The technology that contemplates the introduction of zeolites into the mixture includes pre-mixing with FRB -1A and subsequent mixing with VAG-3; thereafter, the composition is poured into the form, in which the process of foaming is initiated. The content of free phenol was identified using the method of UV spectroscopy. The objective of the research was to develop methods of reduction of the free phenol content in the phenolic foam.

  8. Isolation and Identification of Phenol Degrader Bacteria from Sirjan Golgohar Mine Effluent

    Directory of Open Access Journals (Sweden)

    Mehdi Hassanshhian

    2016-03-01

    Full Text Available Phenol and phenolic compounds are highly toxic substances that are found as monoaromatic compounds in various industrial effluents from oil refineries, petrochemical plants, (coal mines, and phenol resin plants. Their discharge into the environment, especially in water resources, causes serious toxicity. Traditionally, physicochemical methods have been used for the removal of phenol and phenolic compounds. Nowadays, bioremediation is known to be the best method for phenol removal from wastewater. The objective of the present study was twofold: isolation and identification of phenol degrading bacteria in the effluent from Golgohar Mine in Sirjan. For this purpose, samples were collected from different sections at Golgohar Mine and its effluent. Phenol degrading bacteria were isolated via enrichment of the samples in the Bushnell Hass medium with phenol used as the only source of carbon and energy. The predominant phenol degrader bacteria were selected by measuring turbidity at 600 nm. The bacteria were subsequently identified by amplification of 16S rRNA with specific primers and PCR sequencing. In this study, 17 strains of phenol degrader bacteria were isolated in soil and wastewater samples collected from different zones of the mine. Screening methods confirmed that 4 strains exhibit a better capability for phenol degradation as evidenced by their capability to degrade 0.4 g/l of phenol. Molecular identification showed that these bacteria belong to the species Pesudomonas sp, Nitrratireductor sp., and Salegentibacter sp. The results also show that the effluent from Golgohar Mine in Sirjan contains many phenol degrading bacteria. The use of these bacteria in the treatment process may lead to a significant reduction in phenol pollution in the mineral effluent.

  9. The impact of Cu treatment on phenolic and polyamine levels in plant material regenerated from embryos obtained in anther culture of carrot

    Czech Academy of Sciences Publication Activity Database

    Górecka, K.; Cvikrová, Milena; Kowalska, U.; Eder, Josef; Szafrańska, K.; Górecki, R.; Janas, K. M.

    2007-01-01

    Roč. 45, č. 1 (2007), s. 54-61 ISSN 0981-9428 R&D Projects: GA MŠk 1P05OC052 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje Keywords : carrot culture * copper ions * embryo regeneration Subject RIV: GE - Plant Breeding Impact factor: 1.669, year: 2007

  10. Biological degradation of the phenol for activated sludge. Answer of the system to the load increment

    International Nuclear Information System (INIS)

    Gil V, Luis Hernando

    1998-01-01

    Initially, a literature review about the general behaviour of the biological decomposition of phenol by the activated-sludge system is presented, where discrepancies seem to appear among researchers due to different operation conditions Worked by them. The degradation velocity depends on phenol concentration in a high level and on the charge used because its potential toxicity. Experiments were carryon in a pilot plant, using a mixture of low molecular weight alcohols, highly biodegradable, with a solution of pure phenol, increasing the phenol concentration from 33 % to 60 % in relation to DQO. Charges of phenol between 0,2 and 0,8 g of phenol /day/litter were applied, the initial concentration of phenol was changed between 200- 2000 mg/L and hydraulic retention times between 0,9 and 1,5 days were handled. The results have shown that the phenol concentration in the downstream has an exponential behaviour with the charge of phenol applied. In general, high efficiency in phenol removability is presented, reaching phenol concentration below 0,2 mg/1 downstream, with an average of 1,5 days in THR and average charges between 0,5-0,6 g phenol/day/ litter and a micro organism relation feed (arm) of 0,4- 0,5 g DBO 5 /day/g. SS

  11. Electrochemical catalytic treatment of phenol wastewater

    International Nuclear Information System (INIS)

    Ma Hongzhu; Zhang Xinhai; Ma Qingliang; Wang Bo

    2009-01-01

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  12. Electrochemical catalytic treatment of phenol wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Ma Hongzhu, E-mail: hzmachem@snnu.edu.cn [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Zhang Xinhai [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Ma Qingliang [Department of Applied Physics, College of Sciences, Taiyuan University of Technology, 030024 Taiyuan (China); Wang Bo [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China)

    2009-06-15

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  13. Sorption of phenol and phenol derivatives in hydrotalcite; Sorcion de fenol y derivados de fenol en hidrotalcita

    Energy Technology Data Exchange (ETDEWEB)

    Avina G, E I

    2002-07-01

    One of the main problems in Mexico and in the World is the waste water pollution of a great variety of industrial processes by organic compounds. Among those ones the phenol compounds which are highly toxic, refractories (to the chemical degradation) and poorly biodegradable. This is due in a large extent to the problem created by the accelerated increase in the environmental pollution in the cities and industrial centers. The phenol compounds are used in a great variety of industries such as the production of resins, plasticizers, antioxidants, pesticides, colourings, disinfectants, etc. These phenol compounds are specially harmful, since they have repercussions on the flora of plants of biological treatment of water affecting its operation. The main objective of this work is to evaluate the capacities of phenol detention and its derivatives in an hydrotalcite type compound and diminishing with it the presence in water, in this case, of solutions prepared in the laboratory. In order to analyse this elimination process was used a methodology based in the carrying out in batch experiments and in the elaboration of a sorption isotherm. It is worth pointing out that this work was realized at laboratory scale, at relatively high phenol concentration ratio. With the obtained results when the sorption properties are evaluated the calcined hydrotalcite (HTC) for detaining phenol and p-chloro phenol it was observed that it is detained greater quantity of p-chloro phenol than phenol in the HTC. The detention of these phenol compounds in the HTC is due to the memory effect by the hydrotalcite regeneration starting from the oxides which are formed by the burning material. (Author)

  14. Iodination of phenol

    International Nuclear Information System (INIS)

    Christiansen, J.V.; Feldthus, A.; Carlsen, L.

    1990-01-01

    Phenol is iodinated in aqueous solution at pH 5 (acetate buffer) by elemental iodine or, if the iodine is present as iodide, enzymatically controlled by peroxidases. Generally mono-, di- and triiodophenols are obtained, the overall product composition being virtually identical for the two iodination modes. However, there is a tendency to a higher para to ortho ratio for the enzymatically controlled reaction. The mutual ratios of the single iodophenols depends on the initial concentration ratio between phenol and the iodinating species. The first step in the iodination leads preferentially to substitution in the ortho position rather than in the para position in contract to e.g. the corresponding bromination. The relative rates of the competive reactions in the combined iodination scheme has been derived. (author) 2 tabs., 3 ills., 15 refs

  15. Biosynthesis of phenolic compounds in hypocotyl callus cultures of fenugreek (Trigonella foenum graecum L. )

    Energy Technology Data Exchange (ETDEWEB)

    Dhandapani, M; Antony, A; Subba Rao, P V [Indian Inst. of Science, Bangalore. Dept. of Biochemistry

    1977-03-01

    Hypocotyl callus cultures of fenugreek were studied to determine their potential for synthesizing phenolics, particularly those which are intermediates in lignin and flavonoid biosynthesis. The cultures were found to be capable of synthesizing an array of phenolic compounds characteristic of higher plants. Both phenylalanine-U-/sup 14/C and cinnamic acid-U-/sup 14/C were found to be efficient precursors of these phenolics.

  16. Efficient Enzyme-Free Biomimetic Sensors for Natural Phenol Detection

    Directory of Open Access Journals (Sweden)

    Luane Ferreira Garcia

    2016-08-01

    Full Text Available The development of sensors and biosensors based on copper enzymes and/or copper oxides for phenol sensing is disclosed in this work. The electrochemical properties were studied by cyclic and differential pulse voltammetry using standard solutions of potassium ferrocyanide, phosphate/acetate buffers and representative natural phenols in a wide pH range (3.0 to 9.0. Among the natural phenols herein investigated, the highest sensitivity was observed for rutin, a powerful antioxidant widespread in functional foods and ubiquitous in the plant kingdom. The calibration curve for rutin performed at optimum pH (7.0 was linear in a broad concentration range, 1 to 120 µM (r = 0.99, showing detection limits of 0.4 µM. The optimized biomimetic sensor was also applied in total phenol determination in natural samples, exhibiting higher stability and sensitivity as well as distinct selectivity for antioxidant compounds.

  17. Efficient Enzyme-Free Biomimetic Sensors for Natural Phenol Detection.

    Science.gov (United States)

    Ferreira Garcia, Luane; Ribeiro Souza, Aparecido; Sanz Lobón, Germán; Dos Santos, Wallans Torres Pio; Alecrim, Morgana Fernandes; Fontes Santiago, Mariângela; de Sotomayor, Rafael Luque Álvarez; de Souza Gil, Eric

    2016-08-13

    The development of sensors and biosensors based on copper enzymes and/or copper oxides for phenol sensing is disclosed in this work. The electrochemical properties were studied by cyclic and differential pulse voltammetry using standard solutions of potassium ferrocyanide, phosphate/acetate buffers and representative natural phenols in a wide pH range (3.0 to 9.0). Among the natural phenols herein investigated, the highest sensitivity was observed for rutin, a powerful antioxidant widespread in functional foods and ubiquitous in the plant kingdom. The calibration curve for rutin performed at optimum pH (7.0) was linear in a broad concentration range, 1 to 120 µM (r = 0.99), showing detection limits of 0.4 µM. The optimized biomimetic sensor was also applied in total phenol determination in natural samples, exhibiting higher stability and sensitivity as well as distinct selectivity for antioxidant compounds.

  18. ANTIOXIDANT ACTIVITIES AND PHENOLIC PROFILE OF SIX MOROCCAN SELECTED HERBS

    Directory of Open Access Journals (Sweden)

    Madiha Bichra

    2013-02-01

    Full Text Available The present work evaluated the antioxidant capacity of six plants commonly used in traditional Moroccan medicine. The antioxidant capacity was estimated by DPPH test, ferrous ion chelating activity and ABTS test. As results, the highest antioxidant activities were found in Mentha suaveolens, Salvia officinalis and Mentha viridis. Different species showed significant differences in their total phenolic content (TPC. The highest level of phenolics was found in Salvia officinalis and the lowest in Pelargonium roseum. Linear correlation was found between TPC, especially the non-flavonoid content (NFC and the antioxidant activity. Qualitative and quantitative analyzes of major phenolics by reverse-phase high-performance liquid chromatography (RP-HPLC were also performed. On the basis of the obtained results, these studied medicinal herbs were found to serve as a potential source of natural antioxidants due to their richness in phenolic compounds and marked antioxidant activity.

  19. Daily intake estimation of phenolic compounds in the Spanish population

    Directory of Open Access Journals (Sweden)

    Inma Navarro González

    2017-12-01

    Full Text Available Introduction: Phenolic compounds are a large group of molecules present in plants with a diversity of chemical structures and biological activity. The objective of this study was to quantify the intake of phenolic compounds of the Spanish population. Material and Methods: The most consumed foods from vegetal origin in Spain were selected. These were picked up in the National Survey of Spanish Dietary Intake (ENIDE of 2011, edited by AESAN (Spanish Agency for Food Safety and Nutrition as a basis for quantifying the intake of phenolic compounds of Spaniards using the Phenol-Explorer database. Results: This database has allowed to estimate the average intake of polyphenols per day of Spaniards, which is 1365.1mg. Conclusions: The average intake of total polyphenols of Spaniards could have a protective effect against the mortality rate and exercise a preventive function on some chronic diseases along with other healthy lifestyle habits.

  20. Phenolic composition and antioxidant properties of Eryngium maritimum (sea holly

    Directory of Open Access Journals (Sweden)

    Ilhem Rjeibi

    2017-05-01

    Full Text Available Objective: To examine the antioxidant potential of Tunisian Eryngium maritimum (E. maritimum leaf, root and stems extracts, as well as their phenolic compositions. Methods: The antioxidant activity of different extracts was assessed using DPPH free radical and hydrogen peroxide scavenging assays. Phenolic profiles were determined by means of liquid chromatography (HPLC-DAD. Results: All plant parts were a rich source of phenolics. Polyphenols and flavonoids were present in leaf extracts. E. maritimum leaf extracts displayed the strongest H2O2 scavenging activity (IC50 = 76.83 µg/mL and the highest DPPH scavenging activity value (IC50 = 47.87 µg/mL compared to other extracts. Good relationships were observed between antioxidant activities and the total phenolic and flavonoid contents. Nine bioactive compounds were detected in E. maritimum extracts. Conclusions: Our results provided evidence that E. maritimum could be an interesting source of natural antioxidant that can be used to treat divers diseases.

  1. Phenolics from Kalanchoe marmorata Baker, Family Crassulaceae

    Directory of Open Access Journals (Sweden)

    Abdel Nasser Badawy Singab

    2011-06-01

    Full Text Available In search of plants rich in phenolics in Egypt, Kalanchoe marmorata Baker was subjected to phytochemical study. The preliminary phytochemical screening revealed its richness in phenolics. Fractionation of the lyophilized aqueous extract of the leaves of K. marmorata by different organic solvents successively resulted in the isolation and purification of five compounds from the ethyl acetate soluble fraction. These compounds namely; E1 isorhamnetin-3-O-α-l-1C4-rhamnopyranoside; E2 quercitin; E3 4′-methoxy-myricetin-3-O-α-l-1C4-rhamnopyranoside; E4 Quercitin-3-O-β-d-4C1-glucopyranoside and E5 protocatechuic-4′-O-β-d-4C1-glucopyranoside, were identified by analysis of their spectral data including 1H NMR and 13C NMR.

  2. Phenol oxidation with hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Ramiez Cortina, R.C.; Hernadez Perez, I. [Univ. Autonoma Metropolitana - Azcapotzalco, Div. de CBI, Dept. de Energia, Azcapotzalco (Mexico); Ortiz Lozoya, C.E. [Univ. Autonoma Metropolitana - Azcapotzalco, Div. de CBI, Dept. de Energia, Azcapotzalco (Mexico)]|[Inst. Mexicano del Petroleo (Mexico); Alonso Gutierrez, M.S. [Inst. National Polytechnique, ENSCT, Lab. of Chimie Agro-Industrielle, Toulouse (France)

    2003-07-01

    In this work the process application of advanced oxidation is investigated with hydrogen peroxide, for the phenol destruction. The experiments were carried out in a glass reactor of 750 mL. Three phenol concentrations were studied (2000, 1000 and 500 ppm) being oxidized with H{sub 2}O{sub 2} (1, 2 and 3 M). The tests of oxidation had a reaction time of 48 h at ambient temperature and pressure. The phenol degradation was determined as COD at different reaction times and intermediate oxidation products were analyzed by chromatography. The results of this study show that it is possible to degrade phenol (1000 ppm) until 90% with H{sub 2}O{sub 2} 2M. Being achieved the best efficiency with a good molar relationship of H{sub 2}O{sub 2}/phenol. Intends a reaction outline in the degradation of the phenol. (orig.)

  3. The reactivity of natural phenols

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Evgenii T; Denisova, Taisa G [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation)

    2009-11-30

    This review surveys physicochemical data of natural phenols published in recent years. The structures of some compounds of this class are given. A complete set of the dissociation energies of the O-H bonds for 71 natural phenols is presented. Kinetic characteristics of the reactions of peroxyl, alkyl and thiyl radicals with natural phenols, exchange reactions of phenoxyl radicals with phenols and reactions of phenoxyl radicals with lipids, hydroperoxides, cysteine and ascorbic acid are compiled and described systematically. The reactivity of phenols in radical reactions and the factors that determine the reactivity (the enthalpy of reaction, triplet repulsion, the electronegativities of atoms at the reaction centre, the presence of pi-electrons adjacent to the reaction centre, the radii of atoms at the reaction centre, steric hindrance, the force constants of the reacting bonds) are discussed. An important role of hydrogen bonding between surrounding molecules and the OH groups of natural phenols in decreasing their reactivities is noted.

  4. Oxidative stress protection by newly synthesized nitrogen compounds with pharmacological potential.

    Science.gov (United States)

    Silva, João P; Areias, Filipe M; Proença, Fernanda M; Coutinho, Olga P

    2006-02-09

    In this study we used new nitrogen compounds obtained by organic synthesis whose structure predicted an antioxidant potential and then an eventual development as molecules of pharmacological interest in diseases involving oxidative stress. The compounds, identified as FMA4, FMA5, FMA7 and FMA8 differ in the presence of hydroxyl groups located in the C-3 and/or C-4 position of a phenolic unit, which is possibly responsible for their free radicals' buffering capacity. Data from the DPPH discoloration method confirm the high antiradical efficiency of the compounds. The results obtained with cellular models (L929 and PC12) show that they are not toxic and really protect from membrane lipid peroxidation induced by the ascorbate-iron oxidant pair. The level of protection correlates with the drug's lipophilic profile and is sometimes superior to trolox and equivalent to that observed for alpha-tocopherol. The compounds FMA4 and FMA7 present also a high protection from cell death evaluated in the presence of a staurosporine apoptotic stimulus. That protection results in a significant reduction of caspase-3 activity induced by staurosporine which by its turn seems to result from a protection observed in the membrane receptor pathway (caspase-8) together with a protection observed in the mitochondrial pathway (caspase-9). Taken together the results obtained with the new compounds, with linear chains, open up perspectives for their use as therapeutical agents, namely as antioxidants and protectors of apoptotic pathways. On the other hand the slight pro-oxidant profile obtained with the cyclic structures suggests a different therapeutic potential that is under current investigation.

  5. Evaluation of Phenolic Content of Turmeric hydroalcoholic Extract in Iran by Singleton Method

    OpenAIRE

    M Bahrami; Z Afshari; F Ahmadi; MJ Mohiti; BA Jalali-Khanabadi; A Moradi

    2013-01-01

    Introduction: Phenolic compounds have an important role as essential metabolites for plants growth and reproduction, as well as protecting agents against pathogens. These compounds are important sources of antioxidants which act as reducing agents and hydrogen donors. Consumption of fruits, vegetables and plants rich in poly phenols is associated with the reduced risk of certain cancer, cardiovascular, diabetes and Alzheimer’s diseases. Curcuma langa or Turmeric is a tropical plant that nativ...

  6. Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa).

    Science.gov (United States)

    Shabala, Lana; Mackay, Alex; Tian, Yu; Jacobsen, Sven-Erik; Zhou, Daowei; Shabala, Sergey

    2012-09-01

    Two components of salinity stress are a reduction in water availability to plants and the formation of reactive oxygen species. In this work, we have used quinoa (Chenopodium quinoa), a dicotyledonous C3 halophyte species displaying optimal growth at approximately 150 mM NaCl, to study mechanisms by which halophytes cope with the afore-mentioned components of salt stress. The relative contribution of organic and inorganic osmolytes in leaves of different physiological ages (e.g. positions on the stem) was quantified and linked with the osmoprotective function of organic osmolytes. We show that the extent of the oxidative stress (UV-B irradiation) damage to photosynthetic machinery in young leaves is much less when compared with old leaves, and attribute this difference to the difference in the size of the organic osmolyte pool (1.5-fold difference under control conditions; sixfold difference in plants grown at 400 mM NaCl). Consistent with this, salt-grown plants showed higher Fv/Fm values compared with control plants after UV-B exposure. Exogenous application of physiologically relevant concentrations of glycine betaine substantially mitigated oxidative stress damage to PSII, in a dose-dependent manner. We also show that salt-grown plants showed a significant (approximately 30%) reduction in stomatal density observed in all leaves. It is concluded that accumulation of organic osmolytes plays a dual role providing, in addition to osmotic adjustment, protection of photosynthetic machinery against oxidative stress in developing leaves. It is also suggested that salinity-induced reduction in stomatal density represents a fundamental mechanism by which plants optimize water use efficiency under saline conditions. Copyright © Physiologia Plantarum 2012.

  7. Short-term psychosocial stress protects photoreceptors from damage via corticosterone-mediated activation of the AKT pathway.

    Science.gov (United States)

    Forkwa, Tembei K; Neumann, Inga D; Tamm, Ernst R; Ohlmann, Andreas; Reber, Stefan O

    2014-02-01

    Apoptotic death of photoreceptors in hereditary retinal degenerations can be prevented by neuroprotective molecules. Here, we report that adrenal glucocorticoids (GC) released during psychosocial stress protect photoreceptors from apoptosis after light damage. Psychosocial stress is known to be the main type of stressor humans are exposed to and was induced here in mice by 10h of chronic subordinate colony housing (CSC). Photoreceptor damage was generated by subsequent exposure to white light. Short-term psychosocial stress prior to illumination significantly reduced the number of apoptotic photoreceptors, an effect that was absent in adrenalectomized (ADX) mice. The neuroprotective effect was completely restored in ADX mice substituted with GC. Moreover, phosphorylation of retinal AKT increased following CSC or exogenous GC treatment, an effect that was again absent in ADX mice exposed to CSC. Finally, inhibition of AKT signaling with triciribine blocked the stress- and GC-mediated neuroprotective effects on photoreceptors. In summary, we provide evidence that 1) short-term psychosocial stress protects photoreceptors from light-induced damage and 2) the protective effect is most likely mediated by GC-induced activation of the AKT signaling pathway. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Effect of different concentrations of phenol on growth of some fungi ...

    African Journals Online (AJOL)

    user

    2011-02-21

    Feb 21, 2011 ... refinery and petrochemical plants and other industries that produce ... Phenolic compounds degradation may be carried out by eukaryotic and prokaryotic organisms. Aerobic biode- gradation of many classes of aromatic compounds is ... Phenol concentration was assayed in the wastewater collected from.

  9. Phenolic Compounds in the Potato and Its Byproducts: An Overview

    Science.gov (United States)

    Akyol, Hazal; Riciputi, Ylenia; Capanoglu, Esra; Caboni, Maria Fiorenza; Verardo, Vito

    2016-01-01

    The potato (Solanum tuberosum L.) is a tuber that is largely used for food and is a source of different bioactive compounds such as starch, dietary fiber, amino acids, minerals, vitamins, and phenolic compounds. Phenolic compounds are synthetized by the potato plant as a protection response from bacteria, fungi, viruses, and insects. Several works showed that these potato compounds exhibited health-promoting effects in humans. However, the use of the potato in the food industry submits this vegetable to different processes that can alter the phenolic content. Moreover, many of these compounds with high bioactivity are located in the potato’s skin, and so are eliminated as waste. In this review the most recent articles dealing with phenolic compounds in the potato and potato byproducts, along with the effects of harvesting, post-harvest, and technological processes, have been reviewed. Briefly, the phenolic composition, main extraction, and determination methods have been described. In addition, the “alternative” food uses and healthy properties of potato phenolic compounds have been addressed. PMID:27240356

  10. The regulation by phenolic compounds of soil organic matter dynamics under a changing environment.

    Science.gov (United States)

    Min, Kyungjin; Freeman, Chris; Kang, Hojeong; Choi, Sung-Uk

    2015-01-01

    Phenolics are the most abundant plant metabolites and are believed to decompose slowly in soils compared to other soil organic matter (SOM). Thus, they have often been considered as a slow carbon (C) pool in soil dynamics models. Here, however, we review changes in our concept about the turnover rate of phenolics and quantification of different types of phenolics in soils. Also, we synthesize current research on the degradation of phenolics and their regulatory effects on decomposition. Environmental changes, such as elevated CO2, warming, nitrogen (N) deposition, and drought, could influence the production and form of phenolics, leading to a change in SOM dynamics, and thus we also review the fate of phenolics under environmental disturbances. Finally, we propose the use of phenolics as a tool to control rates of SOM decomposition to stabilize organic carbon in ecosystems. Further studies to clarify the role of phenolics in SOM dynamics should include improving quantification methods, elucidating the relationship between phenolics and soil microorganisms, and determining the interactive effects of combinations of environmental changes on the phenolics production and degradation and subsequent impact on SOM processing.

  11. Removal of hard COD, nitrogenous compounds and phenols from a ...

    African Journals Online (AJOL)

    The objective of this study was to identify the factors affecting the suspended and fixed biomass in the removal of hard COD, nitrogenous compounds and phenols from a coal gasification wastewater (CGWW) stream using a hybrid fixed-film bioreactor (H-FFBR) process under real-time plant operational conditions and ...

  12. Antioxidant, Phytotoxic and Antiurease Activities, and Total Phenolic ...

    African Journals Online (AJOL)

    Purpose: To evaluate the antioxidant, phytotoxic and anti-urease properties of dichloromethane and methanol extracts of Conocarpus lancifolius in correlation with total phenolic and flavonoid contents. Methods: The whole plant (dried aerial parts and root) of Conocarpus lancifolius was extracted successively with ...

  13. Biological transformation of phenols in a sandstone aquifer

    DEFF Research Database (Denmark)

    Broholm, M.; Arvin, E.

    1997-01-01

    Ammonia liquor with very high concentrations of phenols is known to have leaked into the subsurface at a former coal carbonization plant in the UK. High concentrations of ammonium has been encountered in the groundwater reservoir at the site. In spite of this no significant concentrations of phen...

  14. Characterization of phenolic constituents and evaluation of antioxidant properties of leaves and stems of Eriocephalus africanus

    Directory of Open Access Journals (Sweden)

    Marcelo D. Catarino

    2018-01-01

    Overall, these results are an important contribution for the elucidation of the phenolic composition of E. africanus, as well as for the understanding of the biological properties of this medicinal plant species.

  15. TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets.

    Science.gov (United States)

    Xue, Gang-Ping; Drenth, Janneke; McIntyre, C Lynne

    2015-02-01

    Heat stress is a significant environmental factor adversely affecting crop yield. Crop adaptation to high-temperature environments requires transcriptional reprogramming of a suite of genes involved in heat stress protection. This study investigated the role of TaHsfA6f, a member of the A6 subclass of heat shock transcription factors, in the regulation of heat stress protection genes in Triticum aestivum (bread wheat), a poorly understood phenomenon in this crop species. Expression analysis showed that TaHsfA6f was expressed constitutively in green organs but was markedly up-regulated during heat stress. Overexpression of TaHsfA6f in transgenic wheat using a drought-inducible promoter resulted in up-regulation of heat shock proteins (HSPs) and a number of other heat stress protection genes that included some previously unknown Hsf target genes such as Golgi anti-apoptotic protein (GAAP) and the large isoform of Rubisco activase. Transgenic wheat plants overexpressing TaHsfA6f showed improved thermotolerance. Transactivation assays showed that TaHsfA6f activated the expression of reporter genes driven by the promoters of several HSP genes (TaHSP16.8, TaHSP17, TaHSP17.3, and TaHSP90.1-A1) as well as TaGAAP and TaRof1 (a co-chaperone) under non-stress conditions. DNA binding analysis revealed the presence of high-affinity TaHsfA6f-binding heat shock element-like motifs in the promoters of these six genes. Promoter truncation and mutagenesis analyses identified TaHsfA6f-binding elements that were responsible for transactivation of TaHSP90.1-A1 and TaGAAP by TaHsfA6f. These data suggest that TaHsfA6f is a transcriptional activator that directly regulates TaHSP, TaGAAP, and TaRof1 genes in wheat and its gene regulatory network has a positive impact on thermotolerance. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Health promoting and sensory properties of phenolic compounds in food

    Directory of Open Access Journals (Sweden)

    Lívia de Lacerda de Oliveira

    2014-12-01

    Full Text Available Phenolic compounds have been extensively studied in recent years. The presence of these compounds in various foods has been associated with sensory and health promoting properties. These products from the secondary metabolism of plants act as defense mechanisms against environmental stress and attack by other organisms. They are divided into different classes according to their chemical structures. The objective of this study was to describe the different classes of phenolic compounds, the main food sources and factors of variation, besides methods for the identification and quantification commonly used to analyze these compounds. Moreover, the role of phenolic compounds in scavenging oxidative stress and the techniques of in vitro antioxidant evaluation are discussed. In vivo studies to evaluate the biological effects of these compounds and their impact on chronic disease prevention are presented as well. Finally, it was discussed the role of these compounds on the sensory quality of foods.

  17. Phenolic Profiles and Antioxidant Activity of Germinated Legumes

    Directory of Open Access Journals (Sweden)

    Do Tan Khang

    2016-04-01

    Full Text Available Bioactive compounds, which are naturally produced in plants, have been concerned with the food and pharmaceutical industries because of the pharmacological effects on humans. In this study, the individual phenolics of six legumes during germination and antioxidant capacity from sprout extracts were determined. It was found that the phenolic content significantly increased during germination in all legumes. Peanuts showed the strongest antioxidant capacity in both the DPPH• (1,1-diphenyl-2-picrylhydrazyl method and the reducing power assay (32.51% and 84.48%, respectively. A total of 13 phenolic acids were detected and quantified. There were 11 phenolic constituents identified in adzuki beans; 10 in soybeans; 9 in black beans, mung beans, and white cowpeas; and 7 compounds in peanuts. Sinapic acid and cinnamic acid were detected in all six legume sprouts, and their quantities in germinated peanuts were the highest (247.9 µg·g−1 and 62.9 µg·g−1, respectively. The study reveals that, among the investigated legumes, germinated peanuts and soybeans obtained maximum phenolics and antioxidant capacity.

  18. Mini Review - Phenolics for skin photo-aging.

    Science.gov (United States)

    Ali, Atif

    2017-07-01

    Photo-aging is one of the foremost problems caused by generation of reactive oxygen species when skin is exposed on UV irradiation. In view of that, generation of reactive oxygen species intermingle with proteins, DNA, saccharides and fatty acids triggering oxidative mutilation and effects are in the appearance of distressed cell metabolism, morphological and ultra-structural changes, mistreat on the routes and revisions in the demarcation, propagation and skin apoptosis living cells which leads to photo-aging. Plant phenolics are universally found in both edible and inedible plants and have extended substantial interest as photo-protective for human skin due to their antioxidant activities. The objective of this review is to highlight the use of plant phenolics for their antioxidant activities against photo-aging.

  19. Sulfomethylated phenolic material useful in post primary oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Stapp, P.R.; Pardue, J.E.

    1986-12-30

    This patent describes a sulfomethylated alkyl phenol compound chosen from among the group consisting of sulfomethylated alkyl phenol, sulfomethylated alkylated bis-phenol, and sulfomethylated alkylated naphthol.

  20. Prior exposure to repeated immobilization or chronic unpredictable stress protects from some negative sequels of an acute immobilization.

    Science.gov (United States)

    Pastor-Ciurana, Jordi; Rabasa, Cristina; Ortega-Sánchez, Juan A; Sanchís-Ollè, Maria; Gabriel-Salazar, Marina; Ginesta, Marta; Belda, Xavier; Daviu, Núria; Nadal, Roser; Armario, Antonio

    2014-05-15

    Exposure to chronic unpredictable stress (CUS) is gaining acceptance as a putative animal model of depression. However, there is evidence that chronic exposure to stress can offer non-specific stress protection from some effects of acute superimposed stressors. We then compared in adult male rats the protection afforded by prior exposure to CUS with the one offered by repeated immobilization on boards (IMO) regarding some of the negative consequences of an acute exposure to IMO. Repeated exposure to IMO protected from the negative consequences of an acute IMO on activity in an open-field, saccharin intake and body weight gain. Active coping during IMO (struggling) was markedly reduced by repeated exposure to the same stressor, but it was not affected by a prior history of CUS, suggesting that our CUS protocol does not appear to impair active coping responses. CUS exposure itself caused a strong reduction of activity in the open-field but appeared to protect from the hypo-activity induced by acute IMO. Moreover, prior CUS offered partial protection from acute IMO-induced reduction of saccharin intake and body weight gain. It can be concluded that a prior history of CUS protects from some of the negative consequences of exposure to a novel severe stressor, suggesting the development of partial cross-adaptation whose precise mechanisms remain to be studied. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Chromatographic analysis of phenol compounds in six natural populations of Anthyllis vulneraria (L.

    Directory of Open Access Journals (Sweden)

    Andzrej Kalinowski

    2015-01-01

    Full Text Available Thin-layer chromatography was used to study the phenol composition in individual plants from six natural populations of Anthyllis collected from three distinct geographic regions of Poland. The results showed a variability of the phenols in the examined populations. The populations from Wielkopolska region proved to be most variable, showing the greatest number of phenols. The lowest number of the phenols studies was found in the Tatry populations. Each population showed its own particular spectrum of phenolic compounds. It was found that the populations originating from similar habitats showed more common spots than those from different regions. Populations from the Tatra region were found to differ most from the rest.

  2. Stress in plants cultured in vitro

    NARCIS (Netherlands)

    Klerk, de G.J.M.

    2007-01-01

    Plants subjected to stress display various defense mechanisms. On base of these mechanisms, stress-protective measures can be developed. This paper deals with protection brought about by putrescine. An in vitro system to impose drought stress was developed and the protective effect of putrescine on

  3. Determination of phenol in tar

    Energy Technology Data Exchange (ETDEWEB)

    Dierichs, A; Heinichen, G

    1955-01-01

    During low-temperature carbonization of lignite, the phenols and other oxygenated compounds appear both in the aqueous-process liquor and in the tar. Measurements of these oxygenated components resulting from low-temperature carbonization may serve as a parameter for the classification of lignites. However, such measurements are complicated by the instability of the tar and the complex nature of some of the acidic substances. Difficulties with the previous methods of analysis are reviewed. The present method outlines separation of aqueous-process liquor from lignite tar in a Fischer retort, followed by determination of phenols and fatty acids in the tar phase. The jacketed tar receiver is washed with 300 milliliter xylol and treated with aqueous caustic washes. Neutral oils are separated from the aqueous alkali solution. It is then extracted with ether and finally acidified with HCl. Solids are filtered off, and phenols and fatty acids are separated by Na/sub 2/CO/sub 3/ solution.

  4. Optimization of extraction conditions of total phenolics, antioxidant activities, and anthocyanin of oregano, thyme, terebinth, and pomegranate.

    Science.gov (United States)

    Rababah, Taha M; Banat, Fawzi; Rababah, Anfal; Ereifej, Khalil; Yang, Wade

    2010-09-01

    The purpose of this study was to evaluate the total phenolic extracts and antioxidant activity and anthocyanins of varieties of the investigated plants. These plants include oregano, thyme, terebinth, and pomegranate. The optimum extraction conditions including temperature and solvent of the extraction process itself were investigated. Total phenolic and anthocyanin extracts were examined according to Folin-Ciocalteu assay and Rabino and Mancinelli method, respectively. The effect of different extracting solvents and temperatures on extracts of phenolic compounds and anthocyanins were studied. Plant samples were evaluated for their antioxidant chemical activity by 2, 2-diphenyl-1-picrylhydrazl assay, to determine their potential as a source of natural antioxidant. Results showed that all tested plants exhibited appreciable amounts of phenolic compounds. The methanolic extract (60 °C) of sour pomegranate peel contained the highest phenolic extract (4952.4 mg/100 g of dry weight). Terebinth green seed had the lowest phenolic extract (599.4 mg/100 g of dry weight). Anthocyanins ranged between 3.5 (terebinth red seed) and 0.2 mg/100 g of dry material (thyme). Significant effect of different extracting solvents and temperatures on total phenolics and anthocyanin extracts were found. The methanol and 60 °C of extraction conditions found to be the best for extracting phenolic compounds. The distilled water and 60 °C extraction conditions found to be the best for extracting anthocyanin.

  5. Assessing wines based on total phenols, phenolic acids and ...

    African Journals Online (AJOL)

    The aim of this study was to investigate the phenolic profile of some red wines produced from native Turkish grape varieties (Vitis vinifera Öküzgözü, V. vinifera Boğazkere and V. vinifera Shiraz) and some red fruit wines produced from pomegranate (Punica granatum L.), myrtle (Myrtus communis L.) and black mulberry ...

  6. Quantitative and Qualitative Analysis of Phenolic and Flavonoid Content in Moringa oleifera Lam and Ocimum tenuiflorum L.

    Science.gov (United States)

    Sankhalkar, Sangeeta; Vernekar, Vrunda

    2016-01-01

    Number of secondary compounds is produced by plants as natural antioxidants. Moringa oleifera Lam. and Ocimum tenuiflorum L. are known for their wide applications in food and pharmaceutical industry. To compare phenolic and flavonoid content in M. oleifera Lam and O. tenuiflorum L. by quantitative and qualitative analysis. Phenolic and flavonoid content were studied spectrophotometrically and by paper chromatography in M. oleifera Lam. and O. tenuiflorum L. Higher phenolic and flavonoid content were observed in Moringa leaf and flower. Ocimum flower showed higher phenolic content and low flavonoid in comparison to Moringa. Flavonoids such as biflavonyl, flavones, glycosylflavones, and kaempferol were identified by paper chromatography. Phytochemical analysis for flavonoid, tannins, saponins, alkaloids, reducing sugars, and anthraquinones were tested positive for Moringa and Ocimum leaf as well as flower. In the present study higher phenolic and flavonoid content, indicated the natural antioxidant nature of Moringa and Ocimum signifying their medicinal importance. Moringa oleifera Lam. and Ocimum tenuiflorum L. are widly grown in India and are known for their medicinal properties. Number of secondary metabolites like phenolics and flavonoids are known to be present in both the plants. The present study was conducted with an objective to qualitatively and quantitatively compare the phenolics and flavanoids in these two medicinally important plants.Quantitation of total phenolics and flavanoids was done by spectrophotometrically while qualitative analysis was perfomed by paper chromatography and by phytochemical tests. Our results have shown higher phenolics and flavanoid content in Moringa leaf and flower. However, higher phenolic content was absent in Ocimum flower compared to that of Moringa. Phytochemical analysis of various metabolites such as flavonoids, tanins, sapponins, alkaloids, anthraquinones revealed that both the plant extracts were rich sources of

  7. Phytoremediation of polyaromatic hydrocarbons, anilines and phenols.

    Science.gov (United States)

    Harvey, Patricia J; Campanella, Bruno F; Castro, Paula M L; Harms, Hans; Lichtfouse, Eric; Schäffner, Anton R; Smrcek, Stanislav; Werck-Reichhart, Daniele

    2002-01-01

    Phytoremediation technologies based on the combined action of plants and the microbial communities that they support within the rhizosphere hold promise in the remediation of land and waterways contaminated with hydrocarbons but they have not yet been adopted in large-scale remediation strategies. In this review plant and microbial degradative capacities, viewed as a continuum, have been dissected in order to identify where bottle-necks and limitations exist. Phenols, anilines and polyaromatic hydrocarbons (PAHs) were selected as the target classes of molecule for consideration, in part because of their common patterns of distribution, but also because of the urgent need to develop techniques to overcome their toxicity to human health. Depending on the chemical and physical properties of the pollutant, the emerging picture suggests that plants will draw pollutants including PAHs into the plant rhizosphere to varying extents via the transpiration stream. Mycorrhizosphere-bacteria and -fungi may play a crucial role in establishing plants in degraded ecosystems. Within the rhizosphere, microbial degradative activities prevail in order to extract energy and carbon skeletons from the pollutants for microbial cell growth. There has been little systematic analysis of the changing dynamics of pollutant degradation within the rhizosphere; however, the importance of plants in supplying oxygen and nutrients to the rhizosphere via fine roots, and of the beneficial effect of microorganisms on plant root growth is stressed. In addition to their role in supporting rhizospheric degradative activities, plants may possess a limited capacity to transport some of the more mobile pollutants into roots and shoots via fine roots. In those situations where uptake does occur (i.e. only limited microbial activity in the rhizosphere) there is good evidence that the pollutant may be metabolised. However, plant uptake is frequently associated with the inhibition of plant growth and an

  8. Evaluation of Phenolic Content of Turmeric hydroalcoholic Extract in Iran by Singleton Method

    Directory of Open Access Journals (Sweden)

    M Bahrami

    2013-08-01

    Full Text Available Introduction: Phenolic compounds have an important role as essential metabolites for plants growth and reproduction, as well as protecting agents against pathogens. These compounds are important sources of antioxidants which act as reducing agents and hydrogen donors. Consumption of fruits, vegetables and plants rich in poly phenols is associated with the reduced risk of certain cancer, cardiovascular, diabetes and Alzheimer’s diseases. Curcuma langa or Turmeric is a tropical plant that natively grows in South and Southeast Asia. This plant has been used as a spice as well as a herbal drug in traditional medicine in India. Recently, many studies have been conducted on the medical effects of this plant and still some researches are ongoing. Turmeric possesses a wide range of biological and pharmacological activities including antioxidant, anti-inflammatory and anti-carcinogenic effects. It seems that pharmacological activities of turmeric is related to poly phenolic compounds existing in this plant. Methods: This study was performed on the hydroalcoholic extract of the turmeric rhizome experimentally with a repetition of several times. Results of this study were presented via means±SD. In the present research poly phenolic contents of turmeric extract was evaluated using tannic acid standard. Results: The study findings demonstrated that 1µg hydroalcoholic extract contains 0.59±0.051µmoleTAE of poly phenolic compounds. Conclusion: This study revealed that phenolic contents of turmeric hydroalcoholic extraction is noticeable and it seems that phenolic contents are caused by curcuminoids compounds that exist in this plant.

  9. Complex Enzyme-Assisted Extraction Releases Antioxidative Phenolic Compositions from Guava Leaves.

    Science.gov (United States)

    Wang, Lu; Wu, Yanan; Liu, Yan; Wu, Zhenqiang

    2017-09-30

    Phenolics in food and fruit tree leaves exist in free, soluble-conjugate, and insoluble-bound forms. In this study, in order to enhance the bioavailability of insoluble-bound phenolics from guava leaves (GL), the ability of enzyme-assisted extraction in improving the release of insoluble-bound phenolics was investigated. Compared to untreated GL, single xylanase-assisted extraction did not change the composition and yield of soluble phenolics, whereas single cellulase or β -glucosidase-assisted extraction significantly enhanced the soluble phenolics content of PGL. However, complex enzyme-assisted extraction (CEAE) greatly improved the soluble phenolics content, flavonoids content, ABTS, DPPH, and FRAP by 103.2%, 81.6%, 104.4%, 126.5%, and 90.3%, respectively. Interestingly, after CEAE, a major proportion of phenolics existed in the soluble form, and rarely in the insoluble-bound form. Especially, the contents of quercetin and kaempferol with higher bio-activity were enhanced by 3.5- and 2.2-fold, respectively. More importantly, total soluble phenolics extracts of GL following CEAE exhibited the highest antioxidant activity and protective effect against supercoiled DNA damage. This enzyme-assisted extraction technology can be useful for extracting biochemical components from plant matrix, and has good potential for use in the food and pharmaceutical industries.

  10. Complex Enzyme-Assisted Extraction Releases Antioxidative Phenolic Compositions from Guava Leaves

    Directory of Open Access Journals (Sweden)

    Lu Wang

    2017-09-01

    Full Text Available Phenolics in food and fruit tree leaves exist in free, soluble-conjugate, and insoluble-bound forms. In this study, in order to enhance the bioavailability of insoluble-bound phenolics from guava leaves (GL, the ability of enzyme-assisted extraction in improving the release of insoluble-bound phenolics was investigated. Compared to untreated GL, single xylanase-assisted extraction did not change the composition and yield of soluble phenolics, whereas single cellulase or β-glucosidase-assisted extraction significantly enhanced the soluble phenolics content of PGL. However, complex enzyme-assisted extraction (CEAE greatly improved the soluble phenolics content, flavonoids content, ABTS, DPPH, and FRAP by 103.2%, 81.6%, 104.4%, 126.5%, and 90.3%, respectively. Interestingly, after CEAE, a major proportion of phenolics existed in the soluble form, and rarely in the insoluble-bound form. Especially, the contents of quercetin and kaempferol with higher bio-activity were enhanced by 3.5- and 2.2-fold, respectively. More importantly, total soluble phenolics extracts of GL following CEAE exhibited the highest antioxidant activity and protective effect against supercoiled DNA damage. This enzyme-assisted extraction technology can be useful for extracting biochemical components from plant matrix, and has good potential for use in the food and pharmaceutical industries.

  11. Isolation and characterization of phenol degrading yeast.

    Science.gov (United States)

    Patel, Riddhi; Rajkumar, Shalini

    2009-04-01

    A phenol degrading yeast isolate was identified and characterized from the soil sample collected from a landfill site, in Ahmedabad, India, by plating the soil dilutions on Sabouraud's Dextrose Agar. The microscopic studies and biochemical tests indicated the isolate to be Saccharomyces cerevisiae. The phenol degrading potential of the isolate was measured by inoculation of pure culture in the mineral medium containing various phenol concentrations ranging from 100 to 800 mg l(-1 )and monitoring phenol disappearance rate at regular intervals of time. Growth of the isolate in mineral medium with various phenol concentrations was monitored by measuring the turbidity (OD(600) nm). The results showed that the isolated yeast was tolerant to phenol up to 800 mg(-1). The phenol degradation ranged from 8.57 to 100% for the concentration of phenol from 800 mg l(-1 )to 200 mg l(-1), respectively. ((c) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

  12. Phenol toxicity to the aquatic macrophyte Lemna paucicostata

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji-Sook [Division of Life Science, University of Incheon, Incheon 406-840 (Korea, Republic of); Brown, Murray T. [School of Marine Science and Engineering, University of Plymouth, Plymouth, Devon PL4 8AA (United Kingdom); Han, Taejun, E-mail: hanalgae@hanmail.net [Division of Life Science, University of Incheon, Incheon 406-840 (Korea, Republic of); Institute of Green Environmental Research, University of Incheon, Incheon 406-840 (Korea, Republic of)

    2012-01-15

    Phenol is a ubiquitous environmental pollutant and a widely used reference toxicant for many bioassays. However, little information is available regarding the toxic effects of phenol on aquatic macrophytes. Seventy-two hour bioassays, with different end-points, were carried out to assess phenol toxicity in Lemna paucicostata. A concentration-dependent decline in frond multiplication and colony disintegration was observed, with 11.38 and 22.76 {mu}M phenol resulting in browning of fronds and colony disintegration, respectively. Growth of fronds, as measured by changes in surface area, was significantly inhibited with EC{sub 50} value of 2.70 {mu}M. When pulse amplitude modulated chlorophyll a (Chl a) fluorescence imaging (i-PAM) was employed, the maximum quantum yield of PS II (F{sub v}/F{sub m}) significantly declined with increasing phenol concentrations with resultant EC{sub 50} of 1.91 {mu}M and coefficients of variation (CVs) generated for the EC{sub 50} values of less than 4.7%. A gradual increase in fluorescence emissions from chlorophylls a and b and pheophytin up to a concentration of 2.85 {mu}M was found but declined markedly at higher concentrations. The significant correlation between the F{sub v}/F{sub m} and surface growth rate data implies that the former is an appropriate biomarker of whole plant toxicity. Using imaging Chl a fluorescence on L. paucicostata provides a rapid, sensitive and reliable method for assessing the toxic risks posed by phenol to aquatic ecosystems and has practical applications for municipal and industrial waste water management.

  13. Phenol toxicity to the aquatic macrophyte Lemna paucicostata

    International Nuclear Information System (INIS)

    Park, Ji-Sook; Brown, Murray T.; Han, Taejun

    2012-01-01

    Phenol is a ubiquitous environmental pollutant and a widely used reference toxicant for many bioassays. However, little information is available regarding the toxic effects of phenol on aquatic macrophytes. Seventy-two hour bioassays, with different end-points, were carried out to assess phenol toxicity in Lemna paucicostata. A concentration-dependent decline in frond multiplication and colony disintegration was observed, with 11.38 and 22.76 μM phenol resulting in browning of fronds and colony disintegration, respectively. Growth of fronds, as measured by changes in surface area, was significantly inhibited with EC 50 value of 2.70 μM. When pulse amplitude modulated chlorophyll a (Chl a) fluorescence imaging (i-PAM) was employed, the maximum quantum yield of PS II (F v /F m ) significantly declined with increasing phenol concentrations with resultant EC 50 of 1.91 μM and coefficients of variation (CVs) generated for the EC 50 values of less than 4.7%. A gradual increase in fluorescence emissions from chlorophylls a and b and pheophytin up to a concentration of 2.85 μM was found but declined markedly at higher concentrations. The significant correlation between the F v /F m and surface growth rate data implies that the former is an appropriate biomarker of whole plant toxicity. Using imaging Chl a fluorescence on L. paucicostata provides a rapid, sensitive and reliable method for assessing the toxic risks posed by phenol to aquatic ecosystems and has practical applications for municipal and industrial waste water management.

  14. Octyl Phenol Synthesis Using Natural Clays

    Directory of Open Access Journals (Sweden)

    S. Casuscelli

    2000-03-01

    Full Text Available A series of clay minerals, HB, NB and Al-PILC have been studied in the alkylation reactions of 2-octanol with phenol at 180°C, under conditions of alcohol/phenol = 1 (mole ratio and W/FAo °= 64,27 ghmol-1. The selectivity of Al-PILC was 77,12% for octyl phenol and 16,5% for dioctyl phenol.

  15. Evidence-based efficacy of adaptogens in fatigue, and molecular mechanisms related to their stress-protective activity.

    Science.gov (United States)

    Panossian, Alexander; Wikman, Georg

    2009-09-01

    The aim of this review article is to assess the level of scientific evidence presented by clinical trials of adaptogens in fatigue, and to provide a rationale at the molecular level for verified effects. Strong scientific evidence is available for Rhodiola rosea SHR-5 extract, which improved attention, cognitive function and mental performance in fatigue and in chronic fatigue syndrome. Good scientific evidence has been documented in trails in which Schisandra chinensis and Eleutherococcus senticosus increased endurance and mental performance in patients with mild fatigue and weakness. Based on their efficacy in clinical studies, adaptogens can be defined as a pharmacological group of herbal preparations that increase tolerance to mental exhaustion and enhance attention and mental endurance in situations of decreased performance. The beneficial stress-protective effect of adaptogens is related to regulation of homeostasis via several mechanisms of action associated with the hypothalamic-pituitary-adrenal axis and the control of key mediators of stress response such as molecular chaperons (e.g. Hsp70), stress-activated c-Jun N-terminal protein kinase (JNK1), Forkhead Box O transcription factor DAF-16, cortisol and nitric oxide (NO). The key point of action of phytoadaptogens appears to be their up-regulating and stress-mimetic effects on the "stress-sensor" protein Hsp70, which plays an important role in cell survival and apoptosis. Hsp70 inhibits the expression of NO synthase II gene and interacts with glucocorticoid receptors directly and via the JNK pathway, thus affecting the levels of circulating cortisol and NO. Prevention of stress-induced increase in NO, and the associated decrease in ATP production, results in increased performance and endurance. Adaptogen-induced up-regulation of Hsp70 triggers stress-induced JNK-1 and DAF-16-mediated pathways regulating the resistance to stress and resulting in enhanced mental and physical performance and, possibly

  16. Bioactive phenolic acids from Scorzonera radiata Fisch.

    Directory of Open Access Journals (Sweden)

    N Tsevegsuren

    2014-09-01

    Full Text Available Chromatographic separation of the crude extract obtained from the aerial parts of the Mongolian medicinal plant Scorzonera radiata yielded five new dihydrostilbenes [4], two new flavonoids, one new quinic acid derivative, as well as twenty known compounds including eight quinic acid derivatives, four flavonoids, two coumarins, five simple benzoic acids, and one monoterpene glycoside. We present here results on isolation and structural identification some active phenolic compounds from the Scorzonera radiata - eight quinic acid derivatives (quinic acid, 4,5-dicaffeoylquinic acid, 4,5-dicaffeoyl-epi-quinic acid, 3,5-dicaffeoylquinic acid, 3,5-dicaffeoyl-epi-quinic acid, chlorogenic acid, 5-p-coumaroylquinic acid (trans, 5-p-coumaroylquinic acid (cis. Quinic acid derivatives exhibited antioxidative activity.DOI: http://dx.doi.org/10.5564/mjc.v12i0.177 Mongolian Journal of Chemistry Vol.12 2011: 78-84

  17. [Phenolic compounds in branches of Tamarix rasissima].

    Science.gov (United States)

    Li, Juan; Li, Wei-Qi; Zheng, Ping; Wang, Rui; Yu, Jian-Qiang; Yang, Jian-Hong; Yao, Yao

    2014-06-01

    To study the chemical constituents of the branches of Tamarix rasissima, repeated silica gel column chromatography, Sephadex LH-20 chromatography and recrystallization were applied for chemical constituents isolation and purification. Ten phenolic compounds were isolated from the n-BuOH fraction and their structures were elucidated by physical properties and spectra analysis such as UV, ESI-MS and NMR as monodecarboxyellagic acid (1), ellagic acid (2), 3, 3'-di-O-methylellagic acid (3), 3, 3'-di-O-methylellagic acid-4-O-beta-D-glucopyranoside (4), 3, 3'-di-O-methylellagic acid-4'-O-alpha-D-arabinfuranoside (5), ferulic acid (6), isoferulic acid (7), caffeic acid (8), 4-O-acetyl-caffeic acid (9), and 4-methyl-1, 2-benzenediol (10). All compounds except for isoferulic acid were isolated firstly from this plant except for isoferulic acid, and compounds 5, 9 and 10 were obtained from Tamarix genus for the first time.

  18. Profiling and Quantification of Phenolics in Stevia rebaudiana Leaves.

    Science.gov (United States)

    Karaköse, Hande; Müller, Anja; Kuhnert, Nikolai

    2015-10-21

    Stevia rebaudiana (Bertoni) is a plant from the Asteraceae family with significant economic value because of the steviol glycoside sweeteners in its leaves. Chlorogenic acids and flavonoid glycosides of S. rebaudiana from seven different botanical varieties cultivated over two years and harvested three times a year in eight European locations were profiled and quantified in a total of 166 samples. Compounds quantified include chlorogenic acids as well as flavonoid glycosides and aglycons. All phenolic concentration profiles show a perfect Gaussian distribution. Principal component analyses allow distinction between varieties of different geographical origin and distinction between different plant varieties. Although concentrations of all chlorogenic acids showed a positive correlation, no correlation was observed for flavonoid glycosides. Conclusions from these findings with respect to the biosynthesis and functional role of phenolics in S. rebaudiana are discussed.

  19. Compositional differences in the phenolics compounds of ...

    African Journals Online (AJOL)

    This study evaluates phenolic composition of commercial and experimental wines derived from bunch (Vitis vinifera) and muscadine (Vitis rotundifolia) grapes to determine compositional differences in phenolics. HPLC analysis of wines showed that majority of phenolic compounds eluted during the first 30 min. Of the red ...

  20. Identification and genetic characterization of phenol- degrading ...

    African Journals Online (AJOL)

    SAURABH

    2013-02-20

    Feb 20, 2013 ... this paper, we reported about the new strain of Acinetobacter sp. ... characteristics of an efficient phenol-degrading microorganism. ... compounds are widespread in the environment. The problem is compounded by the fact that phenol is toxic, ... The phenol biodegradation ability of this bacterium was.

  1. Carbohydrates and phenols as quantitative molecular vegetation proxies in peats

    Science.gov (United States)

    Kaiser, K.; Benner, R. H.

    2012-12-01

    Vegetation in peatlands is intricately linked to local environmental conditions and climate. Here we use chemical analyses of carbohydrates and phenols to reconstruct paleovegetation in peat cores collected from 56.8°N (SIB04), 58.4°N (SIB06), 63.8°N (G137) and 66.5°N (E113) in the Western Siberian Lowland. Lignin phenols (vanillyl and syringyl phenols) were sensitive biomarkers for vascular plant contributions and provided additional information on the relative contributions of angiosperm and gymnosperm plants. Specific neutral sugar compositions allowed identification of sphagnum mosses, sedges (Cyperaceae) and lichens. Hydroxyphenols released by CuO oxidation were useful tracers of sphagnum moss contributions. The three independent molecular proxies were calibrated with a diverse group of peat-forming plants to yield quantitative estimates (%C) of vascular plant, sphagnum moss and lichen contributions in peat core samples. Correlation analysis indicated the three molecular proxies produced fairly similar results for paleovegetation compositions, generally within the error interval of each approach (≤26%). The lignin-based method generally lead to higher estimates of vascular plant vegetation. Several significant deviations were also observed due to different reactivities of carbohydrate and phenolic polymers during peat decomposition. Rapid vegetation changes on timescales of 50-200 years were observed in the southern cores SIB04 and SIB06 over the last 2000 years. Vanillyl and syringyl phenol ratios indicated these vegetation changes were largely due to varying inputs of angiosperm and gymnosperm plants. The northern permafrost cores G137 and E113 showed a more stable development. Lichens briefly replaced sphagnum mosses and vascular plants in both of these cores. Shifts in vegetation did not correlate well with Northern hemisphere climate variability over the last 2000 years. This suggested that direct climate forcing of peatland dynamics was overridden

  2. Impact of Temporary Nitrogen Deprivation on Tomato Leaf Phenolics

    Directory of Open Access Journals (Sweden)

    Hélène Gautier

    2011-11-01

    Full Text Available Reducing the use of pesticides represents a major challenge of modern agriculture. Plants synthesize secondary metabolites such as polyphenols that participate in the resistance to parasites. The aim of this study was to test: (1 the impact of nitrogen deficiency on tomato (Solanum lycopersicum leaf composition and more particularly on two phenolic molecules (chlorogenic acid and rutin as well as on the general plant biomass; and (2 whether this effect continued after a return to normal nitrogen nutrition. Our results showed that plants deprived of nitrogen for 10 or 19 days contained higher levels of chlorogenic acid and rutin than control plants. In addition, this difference persisted when the plants were once again cultivated on a nitrogen-rich medium. These findings offer interesting perspectives on the use of a short period of deprivation to modulate the levels of compounds of interest in a plant.

  3. Sesquiterpenoids and phenolics from roots of Taraxacum udum.

    Science.gov (United States)

    Michalska, Klaudia; Marciniuk, Jolanta; Kisiel, Wanda

    2010-07-01

    From roots of Taraxacum udum, two new and four known sesquiterpene lactones were isolated, together with five known phenolic compounds. The new compounds were characterized as 11beta, 13-dihydrotaraxinic acid and taraxinic acid 6-O-acetyl-beta-glucopyranosyl ester by spectroscopic methods, especially 1D and 2D NMR, and by comparison with structurally related compounds. The plant material was shown to be a good source of taraxinic acid derivatives. Copyright 2009 Elsevier B.V. All rights reserved.

  4. The content of phenolics and tannins in native and invasive Solidago species

    Directory of Open Access Journals (Sweden)

    Oksana Omelchuk

    2013-04-01

    Full Text Available This paper deals with plant invasions in the Transcarpathian region of the Ukraine. Within Solidagogenus, one native (S. virgaurea and one invasive (S. canadensis species were studied by measuring contents of phenolics and tannins. The results support the enemy release hypothesis. Because the invasive species can save its energy by aborting the phenolics production, and use this energy for other processes like growth or reproduction.

  5. In Vitro Cultivars of Vaccinium corymbosum L. (Ericaceae) are a Source of Antioxidant Phenolics

    OpenAIRE

    Contreras, Rodrigo; Köhler, Hans; Pizarro, Marisol; Zúiga, Gustavo

    2015-01-01

    The antioxidant activity and phenolic composition of six in vitro cultured blueberry seedlings were determined. Extracts were prepared in 85% ethanol from 30 days old in vitro cultured plants and used to evaluate the antioxidant capacities that included Ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picrylhydrazin (DPPH?) scavenging ability, total polyphenols (TP) and the partial phenolic composition performed by high performance liquid chromatography with diode array detector (H...

  6. Determination of the activity signature of key carbohydrate metabolism enzymes in phenolic-rich grapevine tissues

    DEFF Research Database (Denmark)

    Covington, Elizabeth Dunn; Roitsch, Thomas Georg; Dermastia, Marina

    2016-01-01

    Physiological studies in plants often require enzyme extraction from tissues containing high concentrations of phenols and polyphenols. Unless removed or neutralized, such compounds may hinder extraction, inactivate enzymes, and interfere with enzyme detection. The following protocol for activity...... assays for enzymes of primary carbohydrate metabolism, while based on our recently published one for quantitative measurement of activities using coupled spectrophotometric assays in a 96-well format, is tailored to the complexities of phenolic- and anthocyanin-rich extracts from grapevine leaf...

  7. Phenolic acids and antioxidant activity of wheat species: a review

    Directory of Open Access Journals (Sweden)

    Leváková Ľudmila

    2017-10-01

    Full Text Available Wheat (genus Triticum is considered to be an important source of polyphenols, plant secondary metabolites with numerous health-promoting effects. Many phytochemicals are responsible for the high antioxidant activity of whole grain products. However, there is a lack of information about composition of phenolic acids and their concentrations in different Triticum species. Despite the fact that the increased consumption of whole grain cereals and whole grain-based products has been closely related to reduced risk of chronic diseases, bioactive compounds found in whole grain cereals have not achieved as much attention as the bioactive compounds in vegetables and fruits. Recent studies have revealed that the content of bioactive compounds and antioxidant capacity of whole grain cereals have been regularly undervalued in the literature, because they contain more polyphenols and other phytochemicals than was reported in the past. Phenolic acids represent a large group of bioactive compounds in cereals. These compounds play a significant role in the possible positive effects of the human diet rich in whole grain cereals, especially in wheat and provide health benefits associated with demonstrably diminished risk of chronic disease development. Ferulic acid, the primary and the most abundant phenolic acid contained in wheat grain, is mainly responsible for the antioxidant activity of wheat, particularly bran fraction. In this paper, selected phenolic compounds in wheat, their antioxidant activity and health benefits related to consumption of whole grain cereals are reviewed.

  8. Helichrysum monizii Lowe: phenolic composition and antioxidant potential.

    Science.gov (United States)

    Gouveia, Sandra; Castilho, Paula C

    2012-01-01

    In Madeira Archipelago there are four endemic Helichyrsum species and three of them are used in the traditional medicine. Helichrysum monizii is a rare endemism with very scarce information available concerning its uses in the local traditional medicine. The aim of this work was to study for the first time Helichrysum monizii in terms of its antioxidant capacity and the identification of the phenolic compounds to which that activity is due. Three different methods of extraction were performed and total phenolic and flavonoid contents of extracts were correlated to radical scavenging and antioxidant capacity by DPPH, ABTS, FRAP and β-carotene assays. An HPLC-DAD-ESI/MS(n) method was employed for the separation and identification of the phenolic and flavonoid components. The results revealed a high antioxidant potential mainly related to the phenolic profile of the plant. Polar components of methanol extracts of Helichrsyum monizii were detected by a high-performance liquid chromatography/electrospray ionisation tandem mass spectrometry (HPLC-DAD-ESI/MS(n) ) method. Thirty-three compounds were identified and 19 of them were identified as quinic acid derivatives. The high antioxidant potential Helichrysum monizii was for the first time established. Dicaffeoylquinic acids are the main responsible for that activity. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Cytotoxic and Antimigratory Activities of Phenolic Compounds from Dendrobium brymerianum

    Directory of Open Access Journals (Sweden)

    Pornprom Klongkumnuankarn

    2015-01-01

    Full Text Available Chromatographic separation of a methanol extract prepared from the whole plant of Dendrobium brymerianum led to the isolation of eight phenolic compounds. Among the isolated compounds (1–8, moscatilin (1, gigantol (3, lusianthridin (4, and dendroflorin (6 showed appreciable cytotoxicity against human lung cancer cell lines with IC50 values of 196.7, 23.4, 65.0, and 125.8 μg/mL, respectively, and exhibited antimigratory property at nontoxic concentrations. This study is the first report on the biological activities of this plant.

  10. Effect of phenol on germination capacity and polyphenol oxidase, peroxidase and catalase activities in lettuce

    Directory of Open Access Journals (Sweden)

    Tadić Vojin

    2014-01-01

    Full Text Available In this study we examined the activities of polyphenol oxidase (PPO and antioxidant enzymes, peroxidase (POX and catalase (CAT during lettuce seed germination at different concentrations of phenol. Out of eleven varieties of lettuce, four were chosen according to their germination tolerance to phenol as follows: plants exhibiting high (Ljubljanska ledenka - LJL and Nansen - N and low toleranace (Little Gem - LG and Majska kraljica - MK. A decrease in germination efficiency after exposure to LD50 of phenol was determined for these four varieties. The effects of phenol treatment on POX, CAT and PPO activities were determined after 4, 5, 6, 7 and 8 days of growth at LD50 concentrations. A trend of increased peroxidase activity was observed in seeds grown on LD50 of phenol compared to control seeds. A significant increase in CAT activity was observed at the beginning of treatment for MK, LG and N in seeds grown on phenol as well as in control seeds. A trend of increased PPO activity was observed in all control seeds. We also investigated the affinity of PPO for two different substrates that were used for the determination of enzyme activity. Our results show that LJL and N are the varieties most tolerant to growth on phenol. Here we report on the activities of their antioxidant enzymes and PPO during seed germination. [Projekat Ministarstva nauke Republike Srbije, br. ON173017

  11. Phenolic Amides Are Potent Inhibitors of De Novo Nucleotide Biosynthesis.

    Science.gov (United States)

    Pisithkul, Tippapha; Jacobson, Tyler B; O'Brien, Thomas J; Stevenson, David M; Amador-Noguez, Daniel

    2015-09-01

    An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposure leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using (13)C-labeled sugars and [(15)N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. The results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals. Copyright © 2015, Pisithkul et al.

  12. Phenolic Amides Are Potent Inhibitors of De Novo Nucleotide Biosynthesis

    Science.gov (United States)

    Pisithkul, Tippapha; Jacobson, Tyler B.; O'Brien, Thomas J.; Stevenson, David M.

    2015-01-01

    An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposure leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using 13C-labeled sugars and [15N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. The results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals. PMID:26070680

  13. Content of Phenolic Compounds in the Genus Carduus L. from Bulgaria

    Directory of Open Access Journals (Sweden)

    Iliya Zhelev

    2013-12-01

    Full Text Available Phytochemical screening of the content of total polyphenols, flavonoids, phenolic acids and anthocyanins in Bulgarian Carduus L. species was carried out. The plant materials (inflorescences from all of the 14 species found in Bulgaria has been collected from natural habitats from different floristic regions, during the period 2011-2013. Chemical analysis of the specimens was carried out in accordance with 11 Russian and 7 European Pharmacopoeia. For some of the plant species the obtained results are the first published data about content of phenolic compounds. The content of flavonoids (1,8-3,2% and total phenols(1,7-2,3% was higher in comparison with this of phenolic acids (0,6-2,4% and anthocyanins (0,5-1,5%. The highest content of total phenols and antocyanins was determined in the Carduus thracicus. The three species Carduus thoermeri, Carduus nutans and Carduus candicans ssp. globifer were characterized with the highest content of flavonoids. The highest content of phenolic acids was determined in the Carduus armatus.

  14. A comparison of the phenolic profile and antioxidant activity of different Cichorium spinosum L. ecotypes.

    Science.gov (United States)

    Petropoulos, Spyridon A; Fernandes, Ângela; Barros, Lillian; Ferreira, Isabel Cfr

    2018-01-01

    Wild greens are considered a rich source of phenolic compounds and antioxidants and an essential part of the so-called Mediterranean diet. In the present study, Cichorium spinosum L. ecotypes, cultivated or collected in situ from wild plants from the eastern Mediterranean, were evaluated regarding their phenolic composition and antioxidant activity. Significant differences were observed among the various studied ecotypes regarding their phenolic compound content and profile, especially between wild and cultivated ecotypes, as well as the phenolic acid content between commercial products and cultivated plants. The antioxidant activity also varied among the various studied ecotypes and growing conditions, with commercial products having the highest antioxidant activity, whereas wild ecotypes showed lower antioxidant activity. Cichorium spinosum leaves are a rich source of chicoric and 5-O-caffeoylquinic acid, while significant differences in total phenolic acids, flavonoids and phenolic compound content and in antioxidant activity were observed among the studied ecotypes, as well as between the tested growing conditions. According to the results of the present study, further valorization of C. spinosum species has great potential, since it could be used as a new alternative species in the food industry. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Phenolic acids, hydrolyzable tannins, and antioxidant activity of geopropolis from the stingless bee Melipona fasciculata Smith.

    Science.gov (United States)

    Dutra, Richard Pereira; Abreu, Bruno Vinicius de Barros; Cunha, Mayara Soares; Batista, Marisa Cristina Aranha; Torres, Luce Maria Brandão; Nascimento, Flavia Raquel Fernandes; Ribeiro, Maria Nilce Sousa; Guerra, Rosane Nassar Meireles

    2014-03-26

    Geopropolis is a mixture of plant resins, waxes, and soil produced by the stingless bee Melipona fasciculata Smith. This paper describes the antioxidant activity and chemical composition of geopropolis produced by M. fasciculata. The total phenolic content determined with the Folin-Ciocalteu reagent was highest in the ethyl acetate fraction and hydroalcoholic extract. Antioxidant activity was assayed by the in vitro DPPH, ABTS, and FRAP assays. The hydroalcoholic extract and fractions of geopropolis, except for the hexane fraction, exhibited antioxidant activity against DPPH, ABTS, and FRAP. The phenolic compounds were identified by HPLC-DAD-MS on the basis of the evaluation of their UV-vis absorption maxima (λmax) and mass spectral analysis. Eleven compounds belonging to the classes of phenolic acids and hydrolyzable tannins (gallotannins and ellagitannins) were tentatively identified. These compounds are responsible for the antioxidant activity and high phenolic content of geopropolis produced by M. fasciculata.

  16. Phenols biodegradation in waste waters from petroleum industry

    International Nuclear Information System (INIS)

    Grosso V, J.L.; Diaz M, M.P.; Leon, G.

    1995-01-01

    Practical methods to isolate, adapt and propagate phenol biodegradation microorganisms were established. Fifteen different microorganism group were obtained, capable of eliminating phenol contained in production water, sour water and waste water from Barrancabermeja's Refinery (Colombia), and dehydration water from heavy oil-in-water emulsions. Elimination efficiencies higher than 95% in periods of time shorter than 24 hour were achieved at laboratory and pilot plant scales. A continuos system using this technology was successfully implemented in April 1994, for the treatment of waste water from Colombia's biggest refinery. Existing stabilizing pools were converted into bioreactors capable of handling water flow rates between 16.000 to 32.000 m3/d. Efficiencies close to 95% have obtained under controlled acidity, aeration and flow rate conditions. This technology is being implemented in other Ecopetrol refineries and production fields

  17. Antimicrobial phenolics and unusual glycerides from Helichrysum italicum subsp. microphyllum.

    Science.gov (United States)

    Taglialatela-Scafati, Orazio; Pollastro, Federica; Chianese, Giuseppina; Minassi, Alberto; Gibbons, Simon; Arunotayanun, Warunya; Mabebie, Blessing; Ballero, Mauro; Appendino, Giovanni

    2013-03-22

    During a large-scale isolation campaign for the heterodimeric phloroglucinyl pyrone arzanol (1a) from Helichrysum italicum subsp. microphyllum, several new phenolics as well as an unusual class of lipids named santinols (5a-c, 6-8) have been characterized. Santinols are angeloylated glycerides characterized by the presence of branched acyl- or keto-acyl chains and represent a hitherto unreported class of plant lipids. The antibacterial activity of arzanol and of a selection of Helichrysum phenolics that includes coumarates, benzofurans, pyrones, and heterodimeric phloroglucinols was evaluated, showing that only the heterodimers showed potent antibacterial action against multidrug-resistant Staphylococcus aureus isolates. These observations validate the topical use of Helichrysum extracts to prevent wound infections, a practice firmly established in the traditional medicine of the Mediterranean area.

  18. Biochemical and physiological effects of phenols on human health

    Directory of Open Access Journals (Sweden)

    Danuta Wojcieszyńska

    2011-03-01

    Full Text Available Introduction of phenol compounds into environment results from human activities.. Moreover plants produce polyphenols as by products of metabolism Their influence on human health is very important. It is observed, that polyphenols found in groceries are the most abundant dietary antioxidants, anti-inflammatory, anti allergic, antiarteriosclerotic and antitumour factors. Alkylphenols, chlorophenols, nitrophenols or biphenyls can be toxic for body systems and because of their similarity to ligands of steroid receptors they can influence the activity of endocrine system. Their appearance in organisms enhances the risk of developing type 2 diabetes mellitus, hypertension, dyslipidemia, cancer, problems with fertility. Moreover strong genotoxic activities of these compounds is observed. Because they influence human health in many different ways continuous monitoring of phenols content in environment seems to be very important.

  19. Feeding-induced phenol production in Capsicum annuum L. influences Spodoptera litura F. larval growth and physiology.

    Science.gov (United States)

    Movva, Vijaya; Pathipati, Usha Rani

    2017-05-01

    We studied the role of induced plant phenols as a defense response to insect herbivory. Phenolic compounds were induced in Capsicum annuum L., the source of many culinary peppers, after feeding by different stages of the insect pest, Spodoptera litura F. The phenols were identified and quantified using high performance liquid chromatography (HPLC) and effects produced by these phenols on larval development were studied. Vanillic acid was identified in plants challenged by second, fourth, and fifth instar larvae, but not in plants challenged by third instar nor unchallenged plants. Syringic acid production was induced in chili plants infested with second (0.429 ± 0.003 μg/g fresh weight, fourth (0.396 ± 0.01 μg/g fresh weight), and fifth instar (5.5 ± 0.06 μg/g fresh weight) larvae, compared to untreated plants (0.303 ± 0.01 μg/g fresh weight) plants. Leaves surface treated with the rutin deterred oviposition. Dietary exposure to chlorogenic acid, vanillic acid, syringic acid, sinapic acid, and rutin led to enhanced activities of detoxifying enzymes, β-glucosidase, carboxyl esterase, glutathione S-transferase, and glutathione reductase in the midgut tissues of all the larval instars, indicating the toxic nature of these compounds. Protein carbonyl content and acetylcholinesterase activity was analyzed to appreciate the role of induced plant phenols in insect protein oxidation and terminating nerve impulses. © 2017 Wiley Periodicals, Inc.

  20. Chemistry and health of olive oil phenolics.

    Science.gov (United States)

    Cicerale, Sara; Conlan, Xavier A; Sinclair, Andrew J; Keast, Russell S J

    2009-03-01

    The Mediterranean diet is associated with a lower incidence of atherosclerosis, cardiovascular disease, and certain types of cancer. The apparent health benefits have been partially attributed to the dietary consumption of virgin olive oil by Mediterranean populations. Most recent interest has focused on the biologically active phenolic compounds naturally present in virgin olive oils. Studies (human, animal, in vivo and in vitro) have shown that olive oil phenolics have positive effects on certain physiological parameters, such as plasma lipoproteins, oxidative damage, inflammatory markers, platelet and cellular function, and antimicrobial activity. Presumably, regular dietary consumption of virgin olive oil containing phenolic compounds manifests in health benefits associated with a Mediterranean diet. This paper summarizes current knowledge on the physiological effects of olive oil phenolics. Moreover, a number of factors have the ability to affect phenolic concentrations in virgin olive oil, so it is of great importance to understand these factors in order to preserve the essential health promoting benefits of olive oil phenolic compounds.

  1. Wine phenolics: looking for a smooth mouthfeel

    OpenAIRE

    Alice, Vilela; António, M. Jordão; Fernanda, Cosme

    2016-01-01

    Each grape variety has its own phenolic profile. However, the concentration of the phenolic compounds present in wine mainly dependson winemaking processes. Phenolic compounds influence wine sensorial characteristics namely taste or mouthfeel, bitterness, astringency and color. Humans can perceive six basic tastes: sweet, salty; sour; umami; fat-taste and bitter taste. This last basic taste is considered as a defense mechanism against the ingestion of potential poisons. Some of the genes,enco...

  2. Shade and Drought Stress-Induced Changes in Phenolic Content of Wild Oat (Avena fatua L. Seeds

    Directory of Open Access Journals (Sweden)

    Gallagher Robert S.

    2010-11-01

    Full Text Available Plants develop under a wide range of maternal environments, depending on the time of emergence, prevailing competition from other plants, and presence or absence of other biotic or abiotic stress factors. Stress factors, such as light limitation and drought, during plant development typically reduces the reproductive allocation to seeds, resulting in fewer and often smaller seeds. Such stress factors may also influence seed quality traits associated with persistence in the soil, such as seed dormancy and chemical defense. For this research, we hypothesized that light limitation and drought during wild oat (Avena fatua L. seed development would result in reduced allocation to seed phenolics and other aliphatic organic acids previously identified in the seeds of this species. Wild oat isolines (M73 and SH430 were grown in the greenhouse under cyclic drought conditions (2005 only or two levels of shade (50 and 70%; 2005 and 2006 achieved with standard black shade cloth. The soluble and cellular bound chemical constituents were identified and quantified using gas chromatography - mass spectrometry. The shade and drought stress treatments often significantly affected the mass of the caryopsis and hull seed fractions, as well as the phenolic content of these seed fractions, depending upon isoline, seed fraction, phenolic fraction, and specific phenolics analyzed. Phenolic content of the hull was reduced by the stress environments by up to 48%, whereas there was some evidence of an increase in the soluble phenolic content of the caryopsis in response to the stress environments. Ferulic and p-coumaric acids were the most abundant phenolic acids in both soluble and bound fractions, and bound phenolics comprised generally 95% or more of total phenolics. There was no discernable evidence that the aliphatic organic content was affected by the stress environments. Our results indicate that plant stress during seed development can reduce both the physical and

  3. Effect of the molecular structure of phenolic novolac precursor resins on the properties of phenolic fibers

    International Nuclear Information System (INIS)

    Ying, Yong-Gang; Pan, Yan-Ping; Ren, Rui; Dang, Jiang-Min; Liu, Chun-Ling

    2013-01-01

    A series of phenolic resins with different weight-average molecular weights (M w ) and ortho/para (O/P) ratios were prepared. The effect of the phenolic precursor resin structure on the structure and properties of the resulting phenolic fibers was investigated. The structures of the resins and fibers were characterized by nuclear magnetic resonance spectroscopy, gel permeation chromatography, melt rheometry, dynamic mechanical analysis, and thermogravimetric analysis. The results show that the O/P ratio, unsubstituted ortho and para carbon ratio (O u /P u ), and M w of the phenolic resins play an important role in determining the properties of the phenolic fibers. The tensile strength of the phenolic fibers increases with increasing novolac precursor O u /P u ratios, corresponding to low O/P ratios, at comparable resin M w values. Also, the tensile strength of the phenolic fibers increases with increasing novolac M w values at comparable O/P ratios. Phenolic fibers with high tensile strength and good flame resistance characteristics were generated from a phenolic precursor resin, possessing a high weight-average molecular weight and a low O/P value. - Highlights: • Phenolic resins with different weight-average molecular weights and ortho/para ratios have been prepared. • The tensile strength of the phenolic fibers increases with reducing novolac O/P ratio. • The tensile strength of the phenolic fibers increases with increasing novolac M w

  4. Infestation of froghopper nymphs changes the amounts of total phenolics in sugarcane

    Directory of Open Access Journals (Sweden)

    Silva Rafael José Navas da

    2005-01-01

    Full Text Available The increased rate of sugarcane harvest without previous burn has provided a very favorable environment to the froghopper Mahanarva fimbriolata (Stal, 1854, with high moisture and low temperature variation. Few works have studied the response of sugarcane to this pest, so little is known about resistant cultivars. Plant phenolics are widely studied compounds because of their known antiherbivore effect. This research aims to determine if the attack of M. fimbriolata nymphs stimulates the accumulation of total phenolics in sugarcane. The experiment was carried out in greenhouse and arranged in completely randomized design, in a 3 X 2 X 4 factorial with three replications. Second instar nymphs of M. fimbriolata were infested at the following rates: control, 2-4 and 4-8 nymphs per pot (first-second infestations, respectively. Pots were covered with nylon net and monitored daily to isolate the effect of leaf sucking adults. Leaf and root samples were collected and kept frozen in liquid nitrogen until analyses. Infested plants showed higher levels of phenolics in both root and leaf tissues. In roots, the cultivar SP80-1816 accumulated more phenolic compounds in response to the infestation of M. fimbriolata. On the other hand, higher levels were found in leaves and roots of control plants of SP86-42, which might be an indication of a non-preference mechanism. The increase of total phenolics in sugarcane infested with root-sucking froghopper nymphs does not seem to be useful to detect the resistance to this pest.

  5. Phenolics, Antiradical Assay and Cytotoxicity of Processed Mango ...

    African Journals Online (AJOL)

    Phenolics, Antiradical Assay and Cytotoxicity of Processed Mango ( Mangifera indica ) and Bush Mango ( Irvingia gabonensis ) Kernels. ... Nigerian Food Journal ... Phenolic constituents (total phenols, flavonoids, tannins, and anthocyanins), comparative antiradical potency and cytotoxicity of processed mango (Mangifera ...

  6. Gold-catalyzed oxidation of substituted phenols by hydrogen peroxide

    KAUST Repository

    Cheneviere, Yohan; Caps, Valerie; Tuel, Alain

    2010-01-01

    Gold nanoparticles deposited on inorganic supports are efficient catalysts for the oxidation of various substituted phenols (2,6-di-tert-butyl phenol and 2,3,6-trimethyl phenol) with aqueous hydrogen peroxide. By contrast to more conventional

  7. Bacterial removal of toxic phenols from an industrial effluent

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-04

    Jul 4, 2008 ... Chlorinated phenols, widely used in industries, are of growing concern owing to their high toxicity, .... phenol-degradation ability of bacterial isolate at the high phenol .... ed virtually no decrease in the respiratory response over.

  8. Biodegradation of phenol by a newly isolated marine bacterial strain ...

    African Journals Online (AJOL)

    ajl yemi

    2011-12-26

    Dec 26, 2011 ... Full Length Research Paper. Biodegradation of phenol ... screen bacteria with potential for phenol degradation from sea water, mud and sand. .... poisonous compound media, such as phenol (Santos et al., 2001). For instance ...

  9. Identification and quantification of a major anti-oxidant and anti-inflammatory phenolic compound found in basil, lemon, thyme, mint, oregano, rosemary, sage, and thyme

    Science.gov (United States)

    Basil, lemon thyme, mint, oregano, rosemary, sage, and thyme are in the mint family of plants that are used as culinary herbs world-wide. These herbs contain phenolic compounds that are believed to have strong antioxidant and anti-inflammatory activities. Therefore, the major phenolic compounds fr...

  10. Olive oil phenols are absorbed in humans

    NARCIS (Netherlands)

    Vissers, M.N.; Zock, P.L.; Roodenburg, A.J.C.; Leenen, R.; Katan, M.B.

    2002-01-01

    Animal and in vitro studies suggest that olive oil phenols are effective antioxidants. The most abundant phenols in olive oil are the nonpolar oleuropein- and ligstroside-aglycones and the polar hydroxytyrosol and tyrosol. The aim of this study was to gain more insight into the metabolism of those

  11. CORRELATION AMONG PHENOLIC, TOXIC METALS AND ...

    African Journals Online (AJOL)

    Preferred Customer

    in food and related products is essential for understanding their nutritive importance. .... (prepared solution), with 0.1 M nitric acid in order to check the linearity. ..... Shahidi, F.; Naczk, M. Food Phenolics: An overview in Food Phenolics: Sources ...

  12. Process of converting phenols into hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Seelig, S

    1929-02-02

    A process is disclosed for the conversion of phenols into hydrocarbons, characterized by preheating a mixture of phenols and hydrogen or hydrogen-producing gases to approximately the reaction temperature under pressure, heating by passage percussion-like through a bath of metal to the reaction temperature, and rapidly cooling.

  13. Phenolic Compounds and Antioxidant Activity of Phalaenopsis Orchid Hybrids

    Directory of Open Access Journals (Sweden)

    Truong Ngoc Minh

    2016-09-01

    Full Text Available Phalaenopsis spp. is the most commercially and economically important orchid, but their plant parts are often left unused, which has caused environmental problems. To date, reports on phytochemical analyses were most available on endangered and medicinal orchids. The present study was conducted to determine the total phenolics, total flavonoids, and antioxidant activity of ethanol extracts prepared from leaves and roots of six commercial hybrid Phalaenopsis spp. Leaf extracts of “Chian Xen Queen” contained the highest total phenolics with a value of 11.52 ± 0.43 mg gallic acid equivalent per g dry weight and the highest total flavonoids (4.98 ± 0.27 mg rutin equivalent per g dry weight. The antioxidant activity of root extracts evaluated by DPPH (2,2-diphenyl-1-picrylhydrazyl free radical scavenging assay and β-carotene bleaching method was higher than those of the leaf extracts. Eleven phenolic compounds were identified, namely, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, syringic acid, vanillin, ferulic acid, sinapic acid, p-coumaric acid, benzoic acid, and ellagic acid. Ferulic, p-coumaric and sinapic acids were concentrated largely in the roots. The results suggested that the root extracts from hybrid Phalaenopsis spp. could be a potential source of natural antioxidants. This study also helps to reduce the amount of this orchid waste in industrial production, as its roots can be exploited for pharmaceutical purposes.

  14. Application of insoluble fibers in the fining of wine phenolics.

    Science.gov (United States)

    Guerrero, Raúl F; Smith, Paul; Bindon, Keren A

    2013-05-08

    The application of animal-derived proteins as wine fining agents has been subject to increased regulation in recent years. As an alternative to protein-based fining agents, insoluble plant-derived fibers have the capacity to adsorb red wine tannins. Changes in red wine tannin were analyzed following application of fibers derived from apple and grape and protein-based fining agents. Other changes in wine composition, namely, color, monomeric phenolics, metals, and turbidity, were also determined. Wine tannin was maximally reduced by application of an apple pomace fiber and a grape pomace fiber (G4), removing 42 and 38%, respectively. Potassium caseinate maximally removed 19% of wine tannin, although applied at a lower dose. Fibers reduced anthocyanins, total phenolics, and wine color density, but changes in wine hue were minor. Proteins and apple fiber selectively removed high molecular mass phenolics, whereas grape fibers removed those of both high and low molecular mass. The results show that insoluble fibers may be considered as alternative fining agents for red wines.

  15. Determination of Phenolic Compounds in Wines

    Directory of Open Access Journals (Sweden)

    Charalampos Proestos

    2012-04-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 Wine contains natural antioxidants such as phenolic compounds also known as bioactive compounds. Samples of commercially available Greek wines were analyzed in order to determine this phenolic content. For the analysis, Reversed Phase-High Performance Liquid Chromatography (RP-HPLC coupled with a multiwavelength Ultraviolet/visible (UV/vis detector was used. The most abundant phenolic substances detected were (+-catechin (13.5-72.4 mg L-1 , gallic acid (0.40-99.47 mg L-1 and caffeic acid (0.87-33.48 mg L-1. The principal component analysis (PCA technique was used to study differentiation among wines according to their production area. Red wines contained more phenolic substances than white ones. Differences of the phenolic composition in wines of the same cultivar were investigated too.

  16. Effect of fungal infection on phenolic compounds during the storage of coffee beans

    Directory of Open Access Journals (Sweden)

    Amal, A. A.

    2013-12-01

    Full Text Available Aims: This work was undertaken to study the effect of Aspergillus infection on phenolic compounds in beans from four cultivars of the coffee plant (Coffea arabica L.. The effects of storage conditions of the coffee beans were also examined. Methodology and results: Beans from four varieties of coffee were artificially infected with three species of Aspergillus: A. niger, A. melleus and A. alliacus, and stored at 0, 8 and 25 ± 2 °C. After 3, 6 and 9 months, the contents of phenolic compounds in the beans were determined using high performance liquid chromatography (HPLC. Conclusion, significance and impact study: The results of this study showed that phenolic compounds were qualitatively and quantitatively higher in the inoculated beans as compared with the uninfected control beans, reflecting a possible induced defense mechanism in the infected beans. Increased storage periods resulted in higher levels of phenols, but the average total, bound and free phenols did not differ between the cultivars tested. Effective control of Apergillus infection in coffee beans can prevent such changes in phenolics that may affect their commercial value.

  17. Evaluation of the Efficiency of a Biofilter System’s Phenol Removal From Wastewater

    Directory of Open Access Journals (Sweden)

    Reza Shokoohi

    2016-06-01

    Full Text Available Phenol is a toxic hydrocarbon that has been found in the wastewater of several industries, including the petroleum and petrochemical industries. The discharge of untreated wastewater from these industries causes environmental pollution, especially in water. The aim of this study was to evaluate the efficiency of phenol removal from wastewater using a biofiltration system. In this experimental study, a cylindrical plexiglass biofilter reactor with an effective volume of 12 liters was used. A total of 30 pcs of plastic grid discs were placed inside the reactor by plastic pipes to maintain the biofilm media in the reactor. The microorganisms used in this study were obtained from the biological sludge of a municipal wastewater treatment plant. The reproduction and adaptation of the microorganisms to 500 mg/L of phenol lasted three months. The effects of pH, phenol, nitrogen, phosphorus, glucose concentration, and hydraulic retention time on the biofilter system’s performance was evaluated. The results of this study showed that in optimal conditions, this system can reduce the phenol concentration from 500 mg/L to zero within about 4 hr. Maximum efficiency occurred in pH = 7, and the proper COD/N/P ratio was 100/10/2, respectively. In general, this biofilter system is capable of removing 500 mg/L of phenol concentrations and an organic load of 4 - 4.5 kg COD/m3.d within 4 - 5 hr. with high efficiency.

  18. Phenol remediation by peroxidase from an invasive mesquite: Turning an environmental wound into wisdom.

    Science.gov (United States)

    Singh, Savita; Mishra, Ruchi; Sharma, Radhey Shyam; Mishra, Vandana

    2017-07-15

    The present study examines mesquite (Prosopis juliflora), an invasive species, to yield peroxidase that may reduce hazards of phenolics to living organisms. As low as 0.3U of low-purity mesquite peroxidase (MPx) efficiently remove phenol and chlorophenols (90-92%) compared with Horseradish peroxidase (HRP) (40-60%). MPx shows a very high removal efficiency (40-50%) at a wide range of pH (2-9) and temperature (20-80°C), as opposed to HRP (15-20%). At a high-level of the substrate (2.4mM) and without the addition of PEG, MPx maintains a significant phenolic removal (60-≥92%) and residual activity (∼25%). It proves the superiority of MPx over HRP, which showed insignificant removal (10-12%) under similar conditions, and no residual activity even with PEG addition. The root elongation and plant growth bioassays confirm phenolic detoxification by MPx. Readily availability of mesquite across the countries and easy preparation of MPx from leaves make this tree as a sustainable source for a low-technological solution for phenol remediation. This study is the first step towards converting a biological wound of invasive species into wisdom and strength for protecting the environment from phenol pollution. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Toxicity of Phenol and Salt on the Phenol-Degrading Pseudomonas aeruginosa Bacterium

    Directory of Open Access Journals (Sweden)

    Samaei

    2016-08-01

    Full Text Available Background Phenolic compounds, phenol and phenol derivatives are environmental contaminants in some industrial effluents. Entrance of such substances into the environment causes severe environmental pollution, especially pollution of water resources. Biological treatment is a method that uses the potential of microorganisms to clean up contaminated environments. Among microorganisms, bacteria play an important role in treating wastewater contaminated with phenol. Objectives This study aimed to examine the effects of Pseudomonas aeruginosa on degradation of phenol in wastewater contaminated with this pollutant. Methods In this method, the growth rate of P. aeruginosa bacteria was investigated using different concentrations of salt and phenol. This is an experimental study conducted as a pilot in a batch reactor with different concentrations of phenol (25, 50, 100, 150, 300 and 600 mg L-1 and salt (0%, 0.5%, 1%, 2.5% and 5% during 9, 12 and 15 hours. During three days, from 5 experimental and 3 control samples, 18 samples were taken a day forming a sample size of 54 samples for each phenol concentration. Given the number of phenol concentrations (n = 6, a total of 324 samples were analyzed using a spectrophotometer at a wavelength of 600 nm. Results The phenol concentration of 600 mg L-1 was toxic for P. aeruginosa. However, at a certain concentration, it acts as a carbon source for P. aeruginosa. During investigations, it was found that increasing the concentration of phenol increases the rate of bacteria growth. The highest bacteria growth rate occurred was at the salt concentration of zero and phenol concentration of 600 mg L-1. Conclusions The findings of the current study indicate that at high concentrations of salt, the growth of bacteria reduces so that it stops at a concentration of 50 mg L-1 (5%. Thus, the bacterium is halotolerant or halophilic. With an increase in phenol concentration, the growth rate increased. Phenol toxicity appears

  20. Effect of Phosphorus Fertilizer and Water Stress on Protein and Phenolic Contents in Cotton (Gossypium Hirsutum L.)

    International Nuclear Information System (INIS)

    Abbas, Z.; Muhammad, S.; Murtaza, G.; Ahmad, I.; Shakeel, A.; Islam, M.; Ahmad, M.; Abdullah, M.

    2015-01-01

    Crop quality and production are affected by various fertilizers and water stress. In present research, the response of cotton variety CIM-496 to water stress and phosphorus fertilizer was investigated. Samples were collected after 90 days of planting. Kjeldahl method and thin layer chromatography (TLC) were used for the quantitative and qualitative analysis of total protein and phenolic compounds, respectively. Proteins were greatly affected by fertilizer treatment and water stress, but phenolic compounds remained unchanged upon fertilizer treatment. However, they were greatly affected by irrigation and water stress. Crop treated with 100 kg ha/sup -1/ P/sub 2/O/sub 5/ under water stress maintained high protein content as compared to unfertilized and no water stress treatments. However, phenolic compounds were found higher in fully irrigated plants as compared to water stress ones. Fertilizer treatments had no considerable effect on phenolic compounds. (author)

  1. Phenolic content and antioxidant property of the bark extracts of Ziziphus mucronata Willd. subsp. mucronata Willd

    Directory of Open Access Journals (Sweden)

    Olajuyigbe Olufunmiso O

    2011-12-01

    Full Text Available Abstract Background Several plants traditionally used in treatment of a variety of infections in South Africa are reported in ethnobotanical surveys. Many of these plants including Ziziphus mucronata subsp. mucronata lack scientific reports to support their medicinal importance. Methods The antioxidant activities and phenolic contents of the acetone, ethanol and aqueous extracts of the stems of Z. mucronata subsp. mucronata were evaluated using in vitro standard methods. The total phenol, total flavonoids and proanthocyanidin content were determined spectrophotometrically. Quercetin, Tannic acid and catechin equivalents were used for these parameters. The antioxidant activities of the stem bark extracts of this plant were determined by ABTS, DPPH, and ferrous reducing antioxidant property (FRAP methods. Results The quantity of the phenolic compounds, flavonoids and proanthocyanidins detected differ significantly in the various extracts. The phenolics were significantly higher than the flavonoids and proanthocyanidin contents in all the extracts investigated. The ferric reducing ability and the radical scavenging activities of the extracts were very high and dose-dependent. The ethanol extract had the highest antioxidant activity, followed by the acetone extract while the aqueous extract was the least active. Reacting with ABTS, the 50% inhibitory concentrations (IC50 were (0.0429 ± 0.04 mg/ml for aqueous, (0.0317 ± 0.04 mg/ml for acetone and (0.0306 ± 0.04 mg/ml for ethanol extracts while they inhibited DPPH radical with 50% inhibitory concentration (IC50 values of 0.0646 ± 0.02 mg/ml (aqueous, 0.0482 ± 0.02 mg/ml (acetone and 0.0422 ± 0.03 mg/ml (ethanol. Conclusions A correlation between the antioxidant activity and the total phenolic contents of the extracts indicated that phenolic compounds were the dominant contributors to the antioxidant activity of the plant. This study, therefore, demonstrated that Z. mucronata subsp. mucronata has

  2. EFFECTS OF SEED IRRADIATION ON 14C FIXATION AND ANTIOXIDANT ACTIVITY OF VITAMIN C AND TOTAL PHENOLS OF CANOLA LEAVES

    International Nuclear Information System (INIS)

    KAMEL, H.A.

    2008-01-01

    Seeds of canola were gamma irradiated with doses of 10, 25, 50, 100 and 200 Gy then cultivated in 30 cm plastic pots containing 7 kg clay soil. After 45 days of cultivation, plants were used to measure 14 C fixation capacity, vitamin C, total phenol, free proline and peroxidase activity in addition to the antioxidant activity. The results showed decrease in the chlorophyll content and 14 C fixation at all gamma doses. Irradiation of canola seeds caused significant reduction in vitamin C and phenol content, while significant increase was occurred in free proline and peroxidase activity. Antioxidant activity of vitamin C was higher than that of phenols at all doses used

  3. Radiation decomposition of alcohols and chloro phenols in micellar systems

    International Nuclear Information System (INIS)

    Moreno A, J.

    1998-01-01

    The effect of surfactants on the radiation decomposition yield of alcohols and chloro phenols has been studied with gamma doses of 2, 3, and 5 KGy. These compounds were used as typical pollutants in waste water, and the effect of the water solubility, chemical structure, and the nature of the surfactant, anionic or cationic, was studied. The results show that anionic surfactant like sodium dodecylsulfate (SDS), improve the radiation decomposition yield of ortho-chloro phenol, while cationic surfactant like cetyl trimethylammonium chloride (CTAC), improve the radiation decomposition yield of butyl alcohol. A similar behavior is expected for those alcohols with water solubility close to the studied ones. Surfactant concentrations below critical micellar concentration (CMC), inhibited radiation decomposition for both types of alcohols. However radiation decomposition yield increased when surfactant concentrations were bigger than the CMC. Aromatic alcohols decomposition was more marked than for linear alcohols decomposition. On a mixture of alcohols and chloro phenols in aqueous solution the radiation decomposition yield decreased with increasing surfactant concentration. Nevertheless, there were competitive reactions between the alcohols, surfactants dimers, hydroxyl radical and other reactive species formed on water radiolysis, producing a catalytic positive effect in the decomposition of alcohols. Chemical structure and the number of carbons were not important factors in the radiation decomposition. When an alcohol like ortho-chloro phenol contained an additional chlorine atom, the decomposition of this compound was almost constant. In conclusion the micellar effect depend on both, the nature of the surfactant (anionic or cationic) and the chemical structure of the alcohols. The results of this study are useful for wastewater treatment plants based on the oxidant effect of the hydroxyl radical, like in advanced oxidation processes, or in combined treatment such as

  4. [Studies on phenolic constituents from leaves of pineapple (Ananas comosus)].

    Science.gov (United States)

    Wang, Wei; Ding, Yi; Xing, Dong-ming; Wang, Jin-ping; Du, Li-jun

    2006-08-01

    To study the phenolic constituents of the leaves of pineapple. Chromatographic methods were used to isolate compounds from the leaves of pineapple and spectroscopic methods were used to identify the structures of the isolated compounds. 7 compounds, ananasate (1), 1-O-caffeoylglycerol (2), 1-O-p-coumaroylglycerol (3), caffeic acid (4), p-coumaric acid (5), beta-sitosterol (6) and daucosterol (7), were isolated from the leaves of pineapple. 1 was a new compound, and others were obtained from this plant for the first time.

  5. The Conjugates of Phenolic Acids in Lichens of the Order Lecanorales

    Directory of Open Access Journals (Sweden)

    T. N. NIKOLAEVA

    2014-06-01

    Full Text Available Lichens are symbiotic associations of a fungus (usually an ascomycete and a photobiont, which may be an alga and/or a cyanobacterium. Lichens dominate on about 6–8% of land surface, mainly in the habitats with severe climatic conditions. Lichenized fungi are among the pioneer vegetation on bare rock or soil. Mat-forming species contribute substantially to the soil cover in tundras and high mountain elevations. Lichens are rich in water-soluble compounds which can be leached-out the lichen thalli with atmospheric depositions. We have recently described the occurrence of water-soluble phenolics in lichens (Zagoskina et al 2013. These compounds can play important role in the ecosystem functioning and primary soil formation (weathering, humification. The aim of this work was to study qualitative composition of water-soluble phenolics in the lichen species widespread in the soil cover of tundra zone. The air-dried thalli of Alectoria ochroleuca, Cetraria islandica, C.nigricans, C.nivalis, Cladonia arbuscula and C.stellaris were homogenized to powder and used for the study. Lichens were collected in Khibiny mountains, Kola Peninsula in August 2013. Phenolic compounds were extracted by distilled water (1h, 30C and analyzed by TLC before and after the acid hydrolysis. It was found that all the lichens under the study contained the conjugates of phenol carboxylic acids. We have identified that non-phenolic part in some of these conjugates was represented by sugars and amino acids. The TLC of the hydrolizates of water extracts revealed occurrence of p-oxybenzoic acid in all of the species studied. The lichens Cetraria islandica, С.nigricans and Cladonia stellaris contained also vanillic acid. These phenolic acids are widespread in plant kingdom and are known as products of lignin decomposition in higher plants. The physiological role of water-soluble phenolics in lichens as well as their environmental role are need to be understood in future studies.

  6. Identification and Phytotoxicity Assessment of Phenolic Compounds in Chrysanthemoides monilifera subsp. monilifera (Boneseed.

    Directory of Open Access Journals (Sweden)

    Md Abdullah Yousuf Al Harun

    Full Text Available Chrysanthemoides monilifera subsp. monilifera (boneseed, a weed of national significance in Australia, threatens indigenous species and crop production through allelopathy. We aimed to identify phenolic compounds produced by boneseed and to assess their phytotoxicity on native species. Phenolic compounds in water and methanol extracts, and in decomposed litter-mediated soil leachate were identified using HPLC, and phytotoxicity of identified phenolics was assessed (repeatedly through a standard germination bioassay on native Isotoma axillaris. The impact of boneseed litter on native Xerochrysum bracteatum was evaluated using field soil in a greenhouse. Collectively, we found the highest quantity of phenolic compounds in boneseed litter followed by leaf, root and stem. Quantity varied with extraction media. The rank of phenolics concentration in boneseed was in the order of ferulic acid > phloridzin > catechin > p-coumaric acid and they inhibited germination of I. axillaris with the rank of ferulic acid > catechin > phloridzin > p-coumaric acid. Synergistic effects were more severe compared to individual phenolics. The litter-mediated soil leachate (collected after15 days exhibited strong phytotoxicity to I. axillaris despite the level of phenolic compounds in the decomposed leachate being decreased significantly compared with their initial level. This suggests the presence of other unidentified allelochemicals that individually or synergistically contributed to the phytotoxicity. Further, the dose response phytotoxic impacts exhibited by the boneseed litter-mediated soil to native X. bracteatum in a more naturalistic greenhouse experiment might ensure the potential allelopathy of other chemical compounds in the boneseed invasion. The reduction of leaf relative water content and chlorophyll level in X. bracteatum suggest possible mechanisms underpinning plant growth inhibition caused by boneseed litter allelopathy. The presence of a substantial

  7. Identification and Phytotoxicity Assessment of Phenolic Compounds in Chrysanthemoides monilifera subsp. monilifera (Boneseed).

    Science.gov (United States)

    Al Harun, Md Abdullah Yousuf; Johnson, Joshua; Uddin, Md Nazim; Robinson, Randall W

    2015-01-01

    Chrysanthemoides monilifera subsp. monilifera (boneseed), a weed of national significance in Australia, threatens indigenous species and crop production through allelopathy. We aimed to identify phenolic compounds produced by boneseed and to assess their phytotoxicity on native species. Phenolic compounds in water and methanol extracts, and in decomposed litter-mediated soil leachate were identified using HPLC, and phytotoxicity of identified phenolics was assessed (repeatedly) through a standard germination bioassay on native Isotoma axillaris. The impact of boneseed litter on native Xerochrysum bracteatum was evaluated using field soil in a greenhouse. Collectively, we found the highest quantity of phenolic compounds in boneseed litter followed by leaf, root and stem. Quantity varied with extraction media. The rank of phenolics concentration in boneseed was in the order of ferulic acid > phloridzin > catechin > p-coumaric acid and they inhibited germination of I. axillaris with the rank of ferulic acid > catechin > phloridzin > p-coumaric acid. Synergistic effects were more severe compared to individual phenolics. The litter-mediated soil leachate (collected after15 days) exhibited strong phytotoxicity to I. axillaris despite the level of phenolic compounds in the decomposed leachate being decreased significantly compared with their initial level. This suggests the presence of other unidentified allelochemicals that individually or synergistically contributed to the phytotoxicity. Further, the dose response phytotoxic impacts exhibited by the boneseed litter-mediated soil to native X. bracteatum in a more naturalistic greenhouse experiment might ensure the potential allelopathy of other chemical compounds in the boneseed invasion. The reduction of leaf relative water content and chlorophyll level in X. bracteatum suggest possible mechanisms underpinning plant growth inhibition caused by boneseed litter allelopathy. The presence of a substantial quantity of free

  8. Evaluation of pal activity, phenolic and flavonoid contents in three pistachio ( Pistacia vera L. ) cultivars grafted onto three different rootstocks

    OpenAIRE

    Nadernejad, N.; Ahmadimoghadam, A.; Hossyinifard, J.; Poorseyedi, S.

    2013-01-01

    Phenylalanine ammonia lyase (PAL) is a biochemical marker of the environmental stress and plays a pivotal role in phenolic synthesis. The lower ROS level and oxidative damage was observed in grafted plants and the rootstocks have a profound influence on the biochemical composition, especially phenolic compounds. Regarding the importance of the effect rootstocks have on scion in pistachio trees, this study was carried out to assess and compare three pistachio cultivars ("Ahmadaghaii", "Ohadi" ...

  9. Effects of Drying Methods in Gaining of Extractive, Phenolic Content and Antioxidant Activity in Gynura Pseudochina (Lour.)

    OpenAIRE

    Rivai, Harrizul; Nurdin, Hazli; Suyani, Hamzar; Bakhtiar, Amri

    2010-01-01

    Effects of drying methods in gaining of extractive, phenolic content and antioxidant activity in Gynura pseudochina (Lour.) DC leaves have been investigated. The drying methods tested were air-drying at ± 25 oC, oven-drying at 40 OC, oven-drying at 60 OC, microwave oven-drying and fresh samples as control. Results revealed that drying of the fresh plant caused the decrease of extractive obtainability, phenolic content and antioxidant activity. There were significant differences among drying ...

  10. Phenolic profiling of Portuguese propolis by LC-MS spectrometry: uncommon propolis rich in flavonoid glycosides.

    Science.gov (United States)

    Falcão, Soraia I; Vale, Nuno; Gomes, Paula; Domingues, Maria R M; Freire, Cristina; Cardoso, Susana M; Vilas-Boas, Miguel

    2013-01-01

    Propolis is a chemically complex resinous substance collected by honeybees (Apis mellifera) from tree buds, comprising plant exudates, secreted substances from bee metabolism, pollen and waxes. Its chemical composition depends strongly on the plant sources available around the beehive, which have a direct impact in the quality and bioactivity of the propolis. Being as Portugal is a country of botanical diversity, the phenolic characterisation of propolis from the different regions is a priority. Extensive characterisation of the phenolic composition of Portuguese propolis from different continental regions and islands. Forty propolis ethanolic extracts were analysed extensively by liquid chromatography with diode-array detection coupled to electrospray ionisation tandem mass spectrometry (LC-DAD-ESI-MS(n) ). Seventy-six polyphenols were detected in the samples and two groups of propolis were established: the common temperate propolis, which contained the typical poplar phenolic compounds such as flavonoids and their methylated/esterified forms, phenylpropanoid acids and their esters, and an uncommon propolis type with an unusual composition in quercetin and kaempferol glycosides - some of them never described in propolis. The method allowed the establishment of the phenolic profile of Portuguese propolis from different geographical locations, and the possibility to use some phenolic compounds, such as kaempferol-dimethylether, as geographical markers. Data suggest that other botanical species in addition to poplar trees can be important sources of resins for Portuguese propolis. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Identification of Phenolic Compounds and Evaluation of Antioxidant and Antimicrobial Properties of Euphorbia Tirucalli L.

    Directory of Open Access Journals (Sweden)

    Keline Medeiros de Araújo

    2014-03-01

    Full Text Available Bioactive compounds extracted from natural sources can benefit human health. The aim of this work was to determine total phenolic content and antioxidant activity in extracts of Euphorbia tirucalli L. followed by identification and quantification of the phenolic compounds, as well as their antibacterial activities. Antioxidant activities were determined by DPPH and ABTS•+ assay. Identification of phenolic compounds was performed using high-performance liquid chromatography (HPLC, and antimicrobial activities were verified by agar dilution methods and MIC values. Total phenolic content ranged from 7.73 to 30.54 mg/100 g gallic acid equivalent. Extracts from dry plants showed higher antioxidant activities than those from fresh ones. The DPPH EC50 values were approximately 12.15 μg/mL and 16.59 μg/mL, respectively. Antioxidant activity measured by the ABTS method yielded values higher than 718.99 μM trolox/g for dry plants, while by the Rancimat® system yielded protection factors exceeding 1 for all extracts, comparable to synthetic BHT. Ferulic acid was the principal phenolic compound identified and quantified through HPLC-UV in all extracts. The extracts proved effective inhibitory potential for Staphylococcus epidermidis and Staphylococcus aureus. These results showed that extracts of Euphorbia tirucalli L. have excellent antioxidant capacity and moderate antimicrobial activity. These can be attributed to the high concentration of ferulic acid.

  12. Phenolic compounds of Triplaris gardneriana can protect cells against oxidative stress and restore oxidative balance

    NARCIS (Netherlands)

    Almeida, de Thiago Silva; Neto, José Joaquim Lopes; Sousa, de Nathanna Mateus; Pessoa, Igor Parra; Vieira, Leonardo Rogério; Medeiros, De Jackeline Lima; Boligon, Aline Augusti; Hamers, Astrid R.M.; Farias, Davi Felipe; Peijnenburg, Ad; Carvalho, Ana Fontenele Urano

    2017-01-01

    This work aimed to add value to an underexploited plant species from Brazil, Triplaris gardneriana. To that, the phenolic compounds profile of its seed ethanolic extract and fractions was examined by HPLC and the antioxidant capacity assessed using chemical assays as well as in vitro cell imaging.

  13. Phytochemical screening, total phenolic, total flavonoids contents and antioxidant activity of cinchona ledgeriana leaves ethanol extract

    Science.gov (United States)

    Sundowo, Andini; Artanti, Nina; Hanafi, M.; Minarti, Primahana, Gian

    2017-11-01

    C ledgeriana is a medicinal plant that contains alkaloids, especially on the barks for commercial production of quinine as antimalarial. The main alkaloids in this plant are cinchonine, cinchonidine, quinine and quinidine. Besides for antiamalarial this plant is also commonly used to treat whooping cough, influenza and dysentery. Compare to other medicinal plants, nowadays only very few studies were conducted in Cinchona species. Our current study aims to determine the content of phytochemical, total phenol and total flavonoids from C. ledgeriana leaves 70% ethanol extract. The extraction was performed by maceration method using 70% ethanol solvent and then fractionated into hexane, ethylacetate and butanol. Phytochemical screening was performed to determine the content of alkaloids, flavonoids, terpenoids, tannins and saponins. Total phenol and flavonoid contents of the extract were determined by Folin-Ciocalteu and alumunium chloride colorimetric methods using gallic acid and quercetin as standards. The antioxidant activity was determined by using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. The results of phytochemical screening showed that the 70% ethanol extract of C. ledgeriana leaves contained alkaloids, flavonoids, terpenoids, tannins and saponins. The total phenol and total flavonoids analysis showed that ethyl acetate fraction had the highest total phenol (40.23%) and total flavonoids (65.34%).

  14. Phenolic profile of Centaurea aegyptiaca L. growing in Egypt and its ...

    African Journals Online (AJOL)

    Background: Centaurea aegyptiaca L (Asteraceae), is one of the most attractive plants growing wildly in Sinai, and is not well investigated for its phytochemical constituents. This study represents the first in-depth characterization of the phenolic profile of the aerial parts of C. aegyptiaca methanolic extract utilizing liquid ...

  15. Modeling electrokinetic transport in phenol contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Zorn, R.; Haus, R.; Czurda, K. [Dept. of Applied Geology, Univ. Karlsruhe (Germany)

    2001-07-01

    Numerical simulations are compared to laboratory experiments of electroremediation in soils contaminated by phenolic pollutants. The developing pH affects the electrokinetic transport behaviour of phenol. It is found that a water chemistry model must be included in an electrokinetic mass transport model to describe the process of electroremediation more accurately, if no buffering system is used at the electrodes. In the case of controlling the pH at the electrode compartments only a simplified chemical reaction model must be included in the numerical code to match the experimental phenolic transport. (orig.)

  16. Understanding of human metabolic pathways of different sub-classes of phenols from Arbutus unedo fruit after an acute intake.

    Science.gov (United States)

    Mosele, Juana I; Macià, Alba; Motilva, María-José

    2016-03-01

    Arbutus unedo is a small Mediterranean fruit, commonly named strawberry tree, which is a rich source of different sub-classes of phenolic compounds, the more representative being the gallic acid derivatives, including its mono and oligomeric forms esterified with quinic and shikimic acids. In addition, galloyl derivatives, particularly gallotannins, described in A. unedo, are part of a very selective phenolic group, present in a reduced number of plant-products. The aim of the present study is to provide a better understanding of human metabolic pathways of different sub-classes of phenols from the A. unedo fruit after an acute intake by healthy adults. Therefore, the A. unedo phenolic metabolites were studied in whole blood samples (0 to 24 h), urine (24 h) and feces (12 and 24 h). Special focus was placed on the application of dried blood spot (DBS) cards for the sample collection and for the analysis of phenolic metabolites in whole blood samples. The results of the blood analysis revealed two peaks for the maximum concentrations of the main phenolic metabolites. Furthermore, it is appropriate to highlight the application of DBS cards as an efficient and accurate way to collect blood samples in post-prandial bioavailability studies. The analysis of urine (24 h) gave a wide range of phenolic metabolites showing the extensive metabolism that A. unedo phenolic compounds underwent in the human body. The results of the study provide a relevant contribution to the understanding of the in vivo human bioavailability of phenolic compounds, especially galloyl derivatives, a singular phenolic sub-group present in the A. unedo fruit.

  17. Efficiency of phenol biodegradation by planktonic Pseudomonas pseudoalcaligenes (a constructed wetland isolate) vs. root and gravel biofilm.

    Science.gov (United States)

    Kurzbaum, Eyal; Kirzhner, Felix; Sela, Shlomo; Zimmels, Yoram; Armon, Robert

    2010-09-01

    In the last two decades, constructed wetland systems gained increasing interest in wastewater treatment and as such have been intensively studied around the world. While most of the studies showed excellent removal of various pollutants, the exact contribution, in kinetic terms, of its particular components (such as: root, gravel and water) combined with bacteria is almost nonexistent. In the present study, a phenol degrader bacterium identified as Pseudomonas pseudoalcaligenes was isolated from a constructed wetland, and used in an experimental set-up containing: plants and gravel. Phenol removal rate by planktonic and biofilm bacteria (on sterile Zea mays roots and gravel surfaces) was studied. Specific phenol removal rates revealed significant advantage of planktonic cells (1.04 × 10(-9) mg phenol/CFU/h) compared to root and gravel biofilms: 4.59 × 10(-11)-2.04 × 10(-10) and 8.04 × 10(-11)-4.39 × 10(-10) (mg phenol/CFU/h), respectively. In batch cultures, phenol biodegradation kinetic parameters were determined by biomass growth rates and phenol removal as a function of time. Based on Haldane equation, kinetic constants such as μ(max) = 1.15/h, K(s) = 35.4 mg/L and K(i) = 198.6 mg/L fit well phenol removal by P. pseudoalcaligenes. Although P. pseudoalcaligenes planktonic cells showed the highest phenol removal rate, in constructed wetland systems and especially in those with sub-surface flow, it is expected that surface associated microorganisms (biofilms) will provide a much higher contribution in phenol and other organics removal, due to greater bacterial biomass. Factors affecting the performance of planktonic vs. biofilm bacteria in sub-surface flow constructed wetlands are further discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Dual Effect of Phenolic Nectar on Three Floral Visitors of Elsholtzia rugulosa (Lamiaceae) in SW China.

    Science.gov (United States)

    Zhang, Feng-Ping; Yang, Qiu-Yun; Zhang, Shi-Bao

    2016-01-01

    Some plants secrete toxic nectar to appeal to most effective pollinators and deter non-pollinators or nectar thieves; however available information about ecological function of toxic nectar remains scarce. Elsholtzia rugulosa stands out as a plant with toxic nectar recorded in SW China. We focused on the functional significance of the phenolic compound that imparts toxic to the nectar of E. rugulosa. The effects of phenolic nectar were studied in three visitors of the flowers of the winter-blooming E. rugulosa Hemsl. (Lamiaceae) in SW China. The pollinating species Apis cerana Fabricius (Apidae; Asian honey bee) and two occasional visitors, Vespa velutina Lepeletier (Vespidae; yellow-legged Asian hornet) and Bombus eximius Smith (Apidae; a bumble bee) were tested for their preferences for low and high concentrations of 4-hydroxybenzoic acid in hexose and sucrose solutions. The pollinator is important for the plant, which is dependent on pollinator visits to attain a higher seed production and it is most likely that the combination of phenolic toxic nectar and the adaptation to phenolic nectar by A. cerana delivers an evolutionary advantage to both actors. The low and high concentrations of the phenolic acid were nearly totally refused by both occasional visitors V. velutina and B. eximius and were preferred by the pollinator A. cerana. E. rugulosa gains by having a much higher seed production and the pollinating honey bee by having an exclusive and reliable food source during the winter season at high altitudes in SW China. We found that the function of the toxic phenolic compound has dual roles by appealing to legitimate pollinators and deterring non-pollinators of E. rugulosa.

  19. Dual Effect of Phenolic Nectar on Three Floral Visitors of Elsholtzia rugulosa (Lamiaceae in SW China.

    Directory of Open Access Journals (Sweden)

    Feng-Ping Zhang

    Full Text Available Some plants secrete toxic nectar to appeal to most effective pollinators and deter non-pollinators or nectar thieves; however available information about ecological function of toxic nectar remains scarce. Elsholtzia rugulosa stands out as a plant with toxic nectar recorded in SW China. We focused on the functional significance of the phenolic compound that imparts toxic to the nectar of E. rugulosa. The effects of phenolic nectar were studied in three visitors of the flowers of the winter-blooming E. rugulosa Hemsl. (Lamiaceae in SW China. The pollinating species Apis cerana Fabricius (Apidae; Asian honey bee and two occasional visitors, Vespa velutina Lepeletier (Vespidae; yellow-legged Asian hornet and Bombus eximius Smith (Apidae; a bumble bee were tested for their preferences for low and high concentrations of 4-hydroxybenzoic acid in hexose and sucrose solutions. The pollinator is important for the plant, which is dependent on pollinator visits to attain a higher seed production and it is most likely that the combination of phenolic toxic nectar and the adaptation to phenolic nectar by A. cerana delivers an evolutionary advantage to both actors. The low and high concentrations of the phenolic acid were nearly totally refused by both occasional visitors V. velutina and B. eximius and were preferred by the pollinator A. cerana. E. rugulosa gains by having a much higher seed production and the pollinating honey bee by having an exclusive and reliable food source during the winter season at high altitudes in SW China. We found that the function of the toxic phenolic compound has dual roles by appealing to legitimate pollinators and deterring non-pollinators of E. rugulosa.

  20. Efficient Enzymatic Synthesis of Phenolic Ester by Increasing Solubility of Phenolic Acids in Ionic Liquids

    DEFF Research Database (Denmark)

    Yang, Zhiyong; Guo, Zheng; Xu, Xuebing

    Compounds from phenolic acid family are well known natural antioxidants, but the application of phenolic acids as antioxidants in industry is limited due to the relatively low solubility in oil-based media. The properties of phenolic acids can be modified through enzymatic lipophilization...... and modified phenolic acids will have amphiphilic property, therefore they can be localized at oil-water or water-oil phase where oxidation is considered to occur frequently. It had been reported that immobilized Candida Antarctica lipase B was the most effective biocatalyst for the various esterification...... reactions, and it had been widely used for esterification of various phenolic acids with fatty alcohol or triglycerides. However, the conversion of phenolic acids is low due to low solubility in hydrophobic solvents and hindrance effect of unsaturated side chain towards the enzyme. Our studies show...

  1. Alterações morfológicas e acúmulo de compostos fenólicos em plantas de sorgo sob estresse de alumínio Changes in morfology and phenolics accumulation in sorghum (Sorghum bicolor (L. Moench plants under aluminum stress

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Pereira Peixoto

    2007-01-01

    Full Text Available Os efeitos do alumínio (Al+3 sobre a morfologia e o acúmulo de compostos fenólicos foram avaliados em duas cultivares de sorgo (Sorghum bicolor (L. Moench com tolerância diferencial ao Al+3. As plantas foram mantidas em solução nutritiva durante dez dias, na presença (185 mM ou na ausência de Al+3. Os ápices radiculares foram coloridos com hematoxilina férrica, sendo a intensidade da coloração observada na presença do Al+3 muito próxima entre as cultivares, o que inviabiliza a aplicação desse teste, isoladamente, para discriminação entre o genótipo sensível e o tolerante ao Al+3. As análises da morfologia externa e interna dos ápices radiculares de plantas tratadas com Al+3 também foram muito similares entre as duas cultivares, não permitindo a utilização dessas características para seleção entre a cultivar sensível e a tolerante. O maior acúmulo de lignina e, principalmente, a menor produção de compostos fenólicos, observados na presença do Al+3 nas raízes das plantas da cultivar tolerante (BR006R, são parâmetros que possibilitam a discriminação das cultivares quanto à tolerância ao Al+3.The Al+3 effects on the morphology and on the phenolics accumulation were evaluated in two sorghum cultivars exhibiting differential tolerance to Al+3. The plants were kept in nutrient solution, for ten days, in the presence (185 mM or Al+3 absence. The root apexes were colored with ferric hematoxylin, and because the intensity of color development is very similar among evaluated cultivars, the use of this method as a selection parameter for Al+3-tolerance is not indicated. Analyses of superficial and internal morphology from tissues treated with Al+3 also expressed very similar alterations among the two cultivars, not allowing its use for selection between sensitive and Al+3-tolerant genotype. The higher lignin accumulation and, mainly, the lower phenolics production in roots of the BR006R cultivar in Al+3's presence

  2. Comparison of total phenolic content and composition of individual ...

    African Journals Online (AJOL)

    A successful peanut breeding to obtain genotypes with greater phenolic content requires information on type and content of phenolic compounds in parental peanut genotypes. The aim of this study was to investigate the total phenolic contents and phenolic acid profiles of 15 Valencia-type peanut genotypes both in peanut ...

  3. Phenolic content and antioxidant activities of burr parsley (Caucalis platycarpos L.).

    Science.gov (United States)

    Plazonić, Ana; Mornar, Ana; Maleš, Željan; Kujundžić, Nikola

    2013-07-22

    Since C. platycarpos contains a wide variety of antioxidants, in the present study total flavonoid and phenolic acid content as well as antioxidative activity of various C. platycarpos extracts were investigated. The results obtained show a significant polyphenol content and antioxidant activity of the investigated plant. Moreover, a positive correlation between antioxidant activity and content of flavonoids and phenolic acids was found, indicating the responsibility of these compounds for the antioxidant effectiveness of C. platycarpos extracts and making C. platycarpos a good potential source of natural antioxidants.

  4. Phenolic Content and Antioxidant Activities of Burr Parsley (Caucalis platycarpos L.

    Directory of Open Access Journals (Sweden)

    Željan Maleš

    2013-07-01

    Full Text Available Since C. platycarpos contains a wide variety of antioxidants, in the present study total flavonoid and phenolic acid content as well as antioxidative activity of various C. platycarpos extracts were investigated. The results obtained show a significant polyphenol content and antioxidant activity of the investigated plant. Moreover, a positive correlation between antioxidant activity and content of flavonoids and phenolic acids was found, indicating the responsibility of these compounds for the antioxidant effectiveness of C. platycarpos extracts and making C. platycarpos a good potential source of natural antioxidants.

  5. Sesquiterpenoids and phenolics from Taraxacum hondoense.

    Science.gov (United States)

    Kisiel, Wanda; Michalska, Klaudia

    2005-09-01

    Eleven sesquiterpene lactones, including the new guaianolide 11beta-hydroxydeacetylmatricarin-8-O-beta-glucopyranoside, along with four known phenolic glucosides were isolated from Taraxacum hondoense. The compounds were characterized by spectral methods.

  6. Biological removal of phenol from wastewaters: a mini review

    Science.gov (United States)

    Pradeep, N. V.; Anupama, S.; Navya, K.; Shalini, H. N.; Idris, M.; Hampannavar, U. S.

    2015-06-01

    Phenol and its derivatives are common water pollutants and include wide variety of organic chemicals. Phenol poisoning can occur by skin absorption, inhalation, ingestion and various other methods which can result in health effects. High exposures to phenol may be fatal to human beings. Accumulation of phenol creates toxicity both for flora and fauna. Therefore, removal of phenol is crucial to perpetuate the environment and individual. Among various treatment methods available for removal of phenols, biodegradation is environmental friendly. Biological methods are gaining importance as they convert the wastes into harmless end products. The present work focuses on assessment of biological removal (biodegradation) of phenol. Various factors influence the efficiency of biodegradation of phenol such as ability of the microorganism, enzymes involved, the mechanism of degradation and influencing factors. This study describes about the sources of phenol, adverse effects on the environment, microorganisms involved in the biodegradation (aerobic and anaerobic) and enzymes that polymerize phenol.

  7. Intestinal release and uptake of phenolic antioxidant diferulic acids

    DEFF Research Database (Denmark)

    Andreasen, Mette Findal; Kroon, P A; Williamson, G

    2001-01-01

    Diferulic acids are potent antioxidants and are abundant structural components of plant cell walls, especially in cereal brans. As such, they are part of many human and animal diets and may contribute to the beneficial effect of cereal brans on health. However, these phenolics are ester-linked to......Diferulic acids are potent antioxidants and are abundant structural components of plant cell walls, especially in cereal brans. As such, they are part of many human and animal diets and may contribute to the beneficial effect of cereal brans on health. However, these phenolics are ester...... in oil. Our study also reveals that human and rat colonic microflora contain esterase activity able to release 5-5-, 8-O-4-, and 8-5-diferulic acids from model compounds and dietary cereal brans, hence providing a mechanism for release of dietary diferulates prior to absorption of the free acids....... In addition, cell-free extracts from human and rat small intestine mucosa exhibited esterase activity towards diferulate esters. Hence, we have shown that esterified diferulates can be released from cereal brans by intestinal enzymes, and that free diferulic acids can be absorbed and enter the circulatory...

  8. Phenolic Compounds as Nutraceuticals or Functional Food Ingredients.

    Science.gov (United States)

    Caleja, Cristina; Ribeiro, Andreia; Barreiro, Maria Filomena; Ferreira, Isabel C F R

    2017-01-01

    Nowadays, the functional foods represent one the most promising, interesting and innovative areas in the food industry. Various components are being added to foods in order to render them functional. One example of these components are plant naturally occurring phenolic compounds, which are associated with a high antioxidant capacity and thus with benefits in relation to human health. However, despite the huge number of scientific studies and patents on this topic and their natural presence in foods, namely in the ones from plant origin, there are still few marketable products enriched with these compounds. The commercialization of this type of functional products needs to go through various regulations, proving that they are safe and present the ascribed health benefits, conquering the target audience. In this review the growing interest of industry and consumers' appetence for functional foods and nutraceuticals is highlighted, focusing especially on phenolic compounds. Although several published works show the multitude of bioactive properties of these compounds, ensuring their use as bioactive ingredients in food, they present inherent stability issues needing to be solved. However, considerable research is presently ongoing to overcome this problem, making viable the development of new products to be launched in the market. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Preparation of pure phenols from tars

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, J

    1933-02-07

    A process is disclosed for the preparation of pure phenols from brown coal tar, shale tar, or primary tar, characterized in that the raw oil obtained from the tar is carefully fractionated, in a suitable way without or with a slight pressure decrease, or before the fractionation the raw oil is heated to free the prepared phenolate solution from impurities after successful oxidation by passing in steam at a temperature between 100 and 120/sup 0/C.

  10. Enzymes of Candida tropicalis yeast biodegrading phenol

    OpenAIRE

    Koubková, Zuzana

    2011-01-01

    Effluents of industrial wastewaters from oil refineries, paper mills, dyes, ceramic factories, resins, textiles and plastic contain high concentrations of aromatic compounds, which are toxic to organisms. Degradation of these compounds to tolerant limits before releasing them into the environment is an urgent requirement. Candida tropicalis yeast is an important representative of eucaryotic microorganisms that are able to utilize phenol. During the first phase of phenol biodegradation, cytopl...

  11. Free and Bound Phenolic Compound Content and Antioxidant Activity of Different Cultivated Blue Highland Barley Varieties from the Qinghai-Tibet Plateau.

    Science.gov (United States)

    Yang, Xi-Juan; Dang, Bin; Fan, Ming-Tao

    2018-04-11

    In this study, the polyphenols composition and antioxidant properties of 12 blue highland barley varieties planted on the Qinghai-Tibet Plateau area were measured. The contents of the free, bound and total phenolic acids varied between 166.20-237.60, 170.10-240.75 and 336.29-453.94 mg of gallic acid equivalents per 100 g of dry weight (DW) blue highland barley grains, while the free and bound phenolic acids accounted for 50.09% and 49.91% of the total phenolic acids, respectively. The contents of the free, bound and total flavones varied among 20.61-25.59, 14.91-22.38 and 37.91-47.98 mg of catechin equivalents per 100 g of dry weight (DW) of blue highland barley grains, while the free and bound flavones accounted for 55.90% and 44.10% of the total flavones, respectively. The prominent phenolic compounds in the blue hulless barley grains were gallic acid, benzoic acid, syringic acid, 4-coumaric acid, naringenin, hesperidin, rutin, (+)-catechin and quercetin. Among these, protocatechuic acid, chlorogenic acid and (+)-catechin were the major phenolic compounds in the free phenolics extract. The most abundant bound phenolics were gallic acid, benzoic acid, syringic acid, 4-coumaric acid, benzoic acid, dimethoxybenzoic acid, naringenin, hesperidin, quercetin and rutin. The average contribution of the bound phenolic extract to the DPPH • free radical scavenging capacity was higher than 86%, that of free phenolic extract to the ABTS •+ free radical scavenging capacity was higher than 79%, and that of free phenolic (53%) to the FRAP antioxidant activity was equivalent to that of the bound phenol extract (47%). In addition, the planting environment exerts a very important influence on the polyphenol composition, content and antioxidant activity of blue highland barley. The correlation analysis showed that 2,4-hydroxybenzoic acid and protocatechuic acid were the main contributors to the DPPH • and ABTS •+ free radical scavenging capacity in the free phenolic extract

  12. Biotechnology to harness the benefits of dietary phenolics; focus on Lamiaceae.

    Science.gov (United States)

    Shetty, K

    1997-09-01

    Phytochemicals from herbs and fermented legumes are excellent dietary sources of phenolic metabolites. These phenolics have importance not only as food preservatives but increasingly have therapeutic and pharmaceutical applications. The long-term research objecitves of the food biotechnology program at the University of Massachusetts are to elucidate the molecular and physiological mechanisms associated with synthesis of important health-related, therapeutic phenolic metabolites in food-related plants and fermented plant foods. Current efforts focus on elucidation of the role of the proline-linked pentose phosphate pathway in regulating the synthesis of anti-inflammatory compound, rosmarinic acid (RA). Specific aims of the current research efforts are: (i) To develop novel tissue culture-based selection techniques to isolate high RA-producing, shoot-based clonal lines from genetically heterogeneous, cross-pollinating species in the family Lamiaceae; (ii) To target genetically uniform, regenerated shoot-based clonal lines for: (a) preliminary characterization of key enzymes associated with the pentose phosphate pathway and linked to RA synthesis; (b) development of genetic transformation techniques for subsequent engineering of metabolic pathways associated with RA synthesis. These research objectives have substantial implications for harnessing the genetic and biochemical potential of genetically heterogeneous, food-related medicinal plant species. The success of this research also provides novel methods and strategies to gain access to metabolic pathways of pharmaceutically important metabolites from ginger, curcuma, chili peppers, melon or other food-related species with novel phenolics.

  13. Determination of chemical composition, total phenolic content and antioxidant activity of xylanthemum macropodum

    International Nuclear Information System (INIS)

    Samiullah, A.; Tareen, R.B.; Khan, N.; Akber, A.; Ali, I.; Khan, A.K.

    2017-01-01

    Evaluation of the phytochemistry, total phenolic content and antioxidant activity of the endemic plant of northern Balochistan Xylanthemum Macropodum of the Asteraceae family, is reported for the first time in this document. Chemical composition of Xylanthemum Macropodum was determined using well-established chemical tests and modern spectroscopic techniques. Extracts were taken from the whole plant using methanol and the extracts were tested for phytochemicals (secondary metabolites), total phenolic content (TPC) and antioxidant activity. The phytochemical (biochemical) examination of Xylanthemum Macropodum exposed the presence of alkaloids, phenols, steroids, flavonoids, tannins, terpenoids, saponins, coumarins, carbohydrates, cardiac glycosides, reducing sugars, and quinines. TPC of crude methanolic extract (CME) of plant was determined using Folin-Ciocalteu's reagent. The TPC determined was 256mg of tannic acid Eq/g of extract. Antioxidant activities were determined spectrophotometrically using the DPPH assay and Ferric ion (Fe/sup +3/) reducing antioxidant power assay. The potency of the DPPH assay of Xylanthemum Macropodum extract was 68% for the 0.10 mg/ml concentration and the FRAP value of the extract was 3.368 mmol Fe/sup +2//g of extract. Xylanthemum Macropodum has proved to be very rich in secondary metabolites, natural phenolics and has a very potent antioxidant activity. (author)

  14. Evaluation of effects of phenol recovery on biooxidation and tertiary treatment of SRC-I wastewater. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, J.W.; Watt, J.C.; Cowan, W.F.; Schuyler, S.E.

    1983-09-01

    Addition of phenol recovery to the wastewater treatment scheme in the Baseline Design for the SRC-I Demonstration Plant was evaluated as a major post-Baseline effort. Phenol recovery affects many downstream processes, but this study was designed to assess primarily its effects on biooxidation and subsequent tertiary treatment. Two parallel treatment schemes were set up, one to treat dephenolated wastewaters and the other for processed nondephenolated wastewaters, a simulation of the Baseline Design. The study focused on comparisons of five areas: effluent quality; system stability; the need for continuous, high-dose powdered activated carbon (PAC) augmentation to the bioreactor; minimum bioreactor hydraulic residence time (HRT); and tertiary treatment requirements. The results show that phenol recovery improves the quality of the bioreactor effluent in terms of residual organics and color. With phenol recovery, PAC augmentation is not required; without phenol recovery, PAC is needed to produce a comparable effluent. Dephenolization also enhances the stability of biooxidation, and reduces the minimum HRT required. With tertiary treatment, both schemes can meet the effluent concentrations published in the SRC-I Final Envivornmental Impact Statement, as well as the anticipated effluent limits. However, phenol recovery does provide a wider safety margin and could eliminate the need for some of the tertiary treatment steps. Based solely on the technical merits observed in this study, phenol recovery is recommended. The final selection should, however, also consider economic tradeoffs and results of other studies such as toxicology testing of the effluents. 34 references, 30 figures and 26 tables.

  15. Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L.).

    Science.gov (United States)

    Wang, Mingfu; Simon, James E; Aviles, Irma Fabiola; He, Kan; Zheng, Qun-Yi; Tadmor, Yaakov

    2003-01-29

    Artichoke leaf is an herbal medicine known for a long time. A systematic antioxidant activity-directed fractionation procedure was used to purify antioxidative components from the aqueous methanol extractions of artichoke heads and leaves in this study. Seven active polyphenolic compounds were purified from artichoke, and structural elucidation of each was achieved using MS and NMR. Two of these compounds, apigenin-7-rutinoside and narirutin, were found to be unique to artichoke heads, this represents the first report of these compounds in the edible portion of this plant. The contents of these antioxidants and total phenols in dried artichoke samples from leaves and immature and mature heads of three varieties, Imperial Star, Green Globe, and Violet, were then analyzed and compared by colorimetric and validated HPLC methods. Significant differences by variety and plant organ were observed.

  16. Phenolic Profiling of Duchesnea indica Combining Macroporous Resin Chromatography (MRC with HPLC-ESI-MS/MS and ESI-IT-MS

    Directory of Open Access Journals (Sweden)

    Mingzhi Zhu

    2015-12-01

    Full Text Available Duchesnea indica (D. indica is an important traditional Chinese medicine, and has long been clinically used to treat cancer in Asian countries. It has been described previously as a rich source of phenolic compounds with a broad array of diversified structures, which are the major active ingredients. However, an accurate and complete phenolic profiling has not been determined yet. In the present work, the total phenolic compounds in crude extracts from D. indica were enriched and fractionated over a macroporous resin column, then identified by HPLC-ESI-MS/MS and ESI-IT-MS (ion trap MS. A total of 27 phenolic compounds were identified in D. indica, of which 21 compounds were identified for the first time. These 27 phenolic compounds encompassing four phenolic groups, including ellagitannins, ellagic acid and ellagic acid glycosides, hydroxybenzoic acid and hydroxycinnamic acid derivatives, and flavonols, were then successfully quantified using peak areas against those of the corresponding standards with good linearity (R2 > 0.998 in the range of the tested concentrations. As a result, the contents of individual phenolic compounds varied from 6.69 mg per 100 g dry weight (DW for ellagic acid to 71.36 mg per 100 g DW for brevifolin carboxylate. Not only did this study provide the first phenolic profiling of D. indica, but both the qualitative identification and the subsequent quantitative analysis of 27 phenolic compounds from D. indica should provide a good basis for future exploration of this valuable medicinal plant.

  17. The Comparative Analysis of Phenolic Compounds Accumulation in Leaves of Various Kinds of Kalanchoe

    Directory of Open Access Journals (Sweden)

    N. N. SAZHINA

    2014-06-01

    Full Text Available One of actual problems of modern pharmacology is creation of new medicines on the basis of vegetable raw materials. In this plan some succulents present a great interest in particular some kinds of the genus Kalanchoe, such as Kalanchoe pinnata (K.pinnata and Kalanchoe Daigremontiana (K.daigremontiana. Their leaves contain useful mineral salts, organic acids and the numerous phenolic compounds (PC. Education and accumulation of these PC depends on genetic features of a plant and numerous factors of environment. Besides, these representatives of a secondary metabolism cause biological, including antioxidant activity (AOA of this or that species of a plant, that is ability its component to inhibit oxidizing free radical processes. Use of modern methods of antioxidant properties research for plant extracts or juice of this or that plant allow to study and reveal their medicinal value at higher level.In the present work the comparative analysis of measurement results of the total phenols content and their activity in leave juice of various kinds of Kalanchoe (Kalanchoe L. is carried out by ammetric and chemiluminescence methods for the purpose of identification among them the most active producers of phenol metabolites. Objects of research were juice samples of 34 kinds of the genus Kalanchoe, grown up in a succulent collection in Timiryazev Institute of plant physiology RAS (Moscow, Russia. Among the studied samples two most active from the point of view of their antioxidant properties Kalanchoe kinds: K.scapigera and K.rhombopilosa are revealed. Both methods show considerably higher values of the phenol metabolite content in leave juice of these plants and their AOA in comparison with K.pinnata and K.daigremontiana. For possible expansion for use of specified types of Kalanchoe as sources of biologically active compounds, additional researches of biochemical structure, antibacterial, antimicrobic and other properties of these plant components is

  18. Development and UFLC-MS/MS Characterization of a Product-Specific Standard for Phenolic Quantification of Maple-Derived Foods.

    Science.gov (United States)

    Liu, Yongqiang; Ma, Hang; Seeram, Navindra P

    2016-05-04

    The phenolic contents of plant foods are commonly quantified by the Folin-Ciocalteu assay based on gallic acid equivalents (GAEs). However, this may lead to inaccuracies because gallic acid is not always representative of the structural heterogeneity of plant phenolics. Therefore, product-specific standards have been developed for the phenolic quantification of several foods. Currently, maple-derived foods (syrup, sugar, sap/water, and extracts) are quantified for phenolic contents based on GAEs. Because lignans are the predominant phenolics present in maple, herein, a maple phenolic lignan-enriched standard (MaPLES) was purified (by chromatography) and characterized (by UFLC-MS/MS with lignans previously isolated from maple syrup). Using MaPLES and secoisolariciresinol (a commercially available lignan), the phenolic contents of the maple-derived foods increased 3-fold compared to GAEs. Therefore, lignan-based standards are more appropriate for phenolic quantification of maple-derived foods versus GAEs. Also, MaPLES can be utilized for the authentication and detection of fake label claims on maple products.

  19. UVA, UVB and UVC Light Enhances the Biosynthesis of Phenolic Antioxidants in Fresh-Cut Carrot through a Synergistic Effect with Wounding

    Directory of Open Access Journals (Sweden)

    Bernadeth B. Surjadinata

    2017-04-01

    Full Text Available Previously, we found that phenolic content and antioxidant capacity (AOX in carrots increased with wounding intensity. It was also reported that UV radiation may trigger the phenylpropanoid metabolism in plant tissues. Here, we determined the combined effect of wounding intensity and UV radiation on phenolic compounds, AOX, and the phenylalanine ammonia-lyase (PAL activity of carrots. Accordingly, phenolic content, AOX, and PAL activity increased in cut carrots with the duration of UVC radiation, whereas whole carrots showed no increase. Carrot pies showed a higher increase compared to slices and shreds. Phenolics, AOX, and PAL activity also increased in cut carrots exposed to UVA or UVB. The major phenolics were chlorogenic acid and its isomers, ferulic acid, and isocoumarin. The type of UV radiation affected phenolic profiles. Chlorogenic acid was induced by all UV radiations but mostly by UVB and UVC, ferulic acid was induced by all UV lights to comparable levels, while isocoumarin and 4,5-diCQA was induced mainly by UVB and UVC compared to UVA. In general, total phenolics correlated linearly with AOX for all treatments. A reactive oxygen species (ROS mediated hypothetical mechanism explaining the synergistic effect of wounding and different UV radiation stresses on phenolics accumulation in plants is herein proposed.

  20. Enzyme-assisted extraction of antioxidative phenols from black current juice press residues (Ribes nigrum)

    DEFF Research Database (Denmark)

    Landbo, Anne-Katrine Regel; Meyer, Anne Boye Strunge

    2001-01-01

    Enzymatic release of phenolic compounds from pomace remaining from black currant (Ribes nigrum) juice production was examined. Treatment with each of the commercial pectinolytic enzyme preparations Grindamyl pectinase, Macer8 FJ, Macer8 R, and Pectinex BE, as well as treatment with Novozym 89 pro...... pomace extracts all exerted a pronounced antioxidant activity against human LDL oxidation in vitro when tested at equimolar phenol concentrations of 7.5-10 muM....... protease, significantly increased plant cell wall breakdown of the pomace. Each of the tested enzyme preparations except Grindamyl pectinase also significantly enhanced the amount of phenols extracted from the pomace. Macer8 FJ and Macer8 R decreased the extraction yields of anthocyanins, whereas Pectinex...

  1. Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in salvia miltiorrhiza bunge hairy roots.

    Science.gov (United States)

    Liang, Zongsuo; Ma, Yini; Xu, Tao; Cui, Beimi; Liu, Yan; Guo, Zhixin; Yang, Dongfeng

    2013-01-01

    Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA), gibberellin (GA) and ethylene are three important phytohormones. In this study, effects of the three phytohormones and their interactions on phenolic production in S. miltiorrhiza hairy roots were investigated. The results showed that ABA, GA and ethylene were all effective to induce production of phenolic acids and increase activities of PAL and TAT in S. miltiorrhiza hairy roots. Effects of phytohormones were reversed by their biosynthetic inhibitors. Antagonistic actions between the three phytohormones played important roles in the biosynthesis of phenolic acids. GA signaling is necessary for ABA and ethylene-induced phenolic production. Yet, ABA and ethylene signaling is probably not necessary for GA3-induced phenolic production. The complex interactions of phytohormones help us reveal regulation mechanism of secondary metabolism and scale-up production of active ingredients in plants.

  2. The phenolic compounds: a commercial argument in the economic war to come on the quality of olive oil?

    Directory of Open Access Journals (Sweden)

    Servili Maurizio

    2014-09-01

    Full Text Available The quality of extra virgin olive oil (EVOO is deeply related to the amount of its minor compounds, chiefly volatile and phenolic compounds, which confer the sensory note and the remarkable nutritional and biological properties of this traditional Mediterranean fruit juice. Several agronomic aspects and technological factors affect the qualitative and quantitative composition of these compounds in EVOO. The most abundant natural antioxidants of EVOO are tocopherols, carotenoids and hydrophilic phenols. The EVOO phenols represent a group of secondary plant metabolites not often present in other oils and fats. The class of the hydrophilic phenols includes phenolic alcohols and acids, flavonoids, lignans and secoiridoids. The latter group is exclusively found in the Oleacease family plants of which the olive is the only edible fruit and it is considered as the most important fraction from a biological point of view. In particular, the secoiridoids are the most relevant phenols associated to health and biological proprieties and, at the same time, they are responsible for the bitter and pungency sensory notes of EVOO. The new approach to the EVOO extraction technologies is oriented towards the improvement of the virgin olive oil healthy and sensory properties by optimizing the oil mechanical extraction process conditions.

  3. Secondary effects of glyphosate on plants

    Science.gov (United States)

    Glyphosate is a unique herbicide with interesting secondary effects. Unfortunately, some have assumed that the secondary effects that occur in glyphosate-susceptible plants treated with glyphosate, such as altered mineral nutrition, reduced phenolic compound production and pathogen resistance, also ...

  4. An investigation of the olive phenols activity as a natural medicine

    Directory of Open Access Journals (Sweden)

    Faik Gökalp

    2018-04-01

    Full Text Available The natural antioxidants of olive oil have phenolic structure and their activities are related to the formation of stable derivatives. In this study, the single components of the phenolic fraction of olive oil (1,4-hydroquinone, Semiquinone and 1,4-benzoquinone have been studied as theoretical by using DFT (Density functional Theory. The behaviors of phenolic compounds of olive against to the alkyl peroxy radicals were investigated. Our data show that 1,4-benzoquinone is the best electron transfer agent in primary metabolic processes to human life. The frontier orbital gap, namely HOMO (highest occupied molecular orbital–LUMO (lowest unoccupied molecular orbital gap is the smallest for 1,4-benzoquinone. Hence, it is more stable than the others in blood. The natural phenolic compound's mechanism of many plants can be explained by using DFT method without consuming time and money. In this study, we have indicated the behaviors of natural antioxidants of olive oil's single components phenolic structure in blood phase. Keywords: 1,4-Hydroquinone, Semiquinone, 1,4-Benzoquinone, Blood, DFT

  5. High Phenolics Rutgers Scarlet Lettuce Improves Glucose Metabolism in High Fat Diet-Induced Obese Mice

    Science.gov (United States)

    Cheng, Diana M.; Roopchand, Diana E.; Poulev, Alexander; Kuhn, Peter; Armas, Isabel; Johnson, William D.; Oren, Andrew; Ribnicky, David; Zelzion, Ehud; Bhattacharya, Debashish; Raskin, Ilya

    2016-01-01

    Scope The ability of high phenolic Rutgers Scarlet Lettuce (RSL) to attenuate metabolic syndrome and gut dysbiosis was studied in very high fat diet (VHFD)-fed mice. Phenolic absorption was assessed in vivo and in a gastrointestinal tract model. Methods and results Mice were fed VHFD, VHFD supplemented with RSL (RSL-VHFD) or store-purchased green lettuce (GL-VHFD), or low-fat diet (LFD) for 13 weeks. Compared to VHFD or GL-VHFD-fed groups, RSL-VHFD group showed significantly improved oral glucose tolerance (p<0.05). Comparison of VHFD, RSL-VHFD, and GL-VHFD groups revealed no significant differences with respect to insulin tolerance, hepatic lipids, body weight gain, fat mass, plasma glucose, triglycerides, free fatty acid, and lipopolysaccharide levels, as well as relative abundances of major bacterial phyla from 16S rDNA amplicon data sequences (from fecal and cecal samples). However, RSL and GL-supplementation increased abundance of several taxa involved in plant polysaccharide degradation/fermentation. RSL phenolics chlorogenic acid, quercetin-3-glucoside, and quercetin-malonyl-glucoside were bioaccessible in the TIM-1 digestion model, but had relatively low recovery. Conclusions RSL phenolics contributed to attenuation of postprandial hyperglycemia. Changes in gut microbiota were likely due to microbiota accessible carbohydrates in RSL and GL rather than RSL phenolics, which may be metabolized, absorbed, or degraded before reaching the colon. PMID:27529448

  6. Column operation studies for the removal of dyes and phenols using a low cost adsorbent

    International Nuclear Information System (INIS)

    Gupta, V. K.; Suhas; Tyagi, I.

    2016-01-01

    Fertilizer plant waste carbon slurry has been investigated after some processing used as efficient adsorbent for the fast removal and rapid adsorption of dyes and phenols using columns. The results reveals that the adsorbent developed from carbon slurry is carbonaceous in nature and having appreciable surface area (380 m2/g) can remove dyes both cationic (meldola blue, methylene blue, chrysoidine G, crystal violet) as well as anionic (ethyl orange, metanil yellow, acid blue 113), and phenols (phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol) fruitfully from water. The column type continuous flow operations were used to obtain the breakthrough curves. The breakthrough capacity, exhaustion capacity and degree of column utilization were optimized and evaluated from the plots. The results obtained revealed that the degree of column utilization for dyes falls in range from 60 to 76% while for phenols was in the range 53-58%. The exhaustion capacities were quite high as compared to the breakthrough capacities and were found to be 217, 211, 104, 126, 233, 248, 267 mg/g for meldola blue, crystal violet, chrysoidine G, methylene blue, ethyl orange, metanil yellow, acid blue 113, respectively and 25.6, 72.2, 82.2 and 197.3 mg/g for phenol, 2-chlorophenol, 4- chlorophenol and 2,4-dichlorophenol, respectively.

  7. Infusions of artichoke and milk thistle represent a good source of phenolic acids and flavonoids.

    Science.gov (United States)

    Pereira, Carla; Barros, Lillian; Carvalho, Ana Maria; Santos-Buelga, Celestino; Ferreira, Isabel C F R

    2015-01-01

    Cynara scolymus L. (artichoke) and Silybum marianum (L.) Gaertn (milk thistle) are two herbs well-known for their efficiency in the prevention/treatment of liver injuries, among other chronic diseases. Therefore, the aim of this work was to characterize specific bioactive components, phenolic compounds, in hydromethanolic extracts but also in infusions (the most commonly used preparations) obtained from the whole plant of milk thistle and artichoke. The phenolic profiles were accessed using HPLC-DAD-MS/ESI. Infusions of both species presented higher phenolic contents than the hydromethanolic extracts. Milk thistle presented a similar phenolic composition between the two preparations, revealing only differences in the quantities obtained. Nevertheless, artichoke revealed a slightly different profile considering infusion and hydromethanolic extracts. Apigenin-7-O-glucuronide was the major flavonoid found in milk thistle, while luteolin-7-O-glucuronide was the most abundant in artichoke. Therefore, infusions of both artichoke and milk thistle represent a good source of bioactive compounds, especially phenolic acids and flavonoids.

  8. Alkylperoxyl radical scavenging activity of red leaf lettuce (Lactuca sativa L.) phenolics.

    Science.gov (United States)

    Caldwell, Charles R

    2003-07-30

    Although lettuce may provide relatively low levels of antioxidative phytochemicals which may contribute to human health, lettuce leaf extracts in fact contained compounds with high specific peroxyl radical scavenging activities. After determining the extraction conditions that minimized phenolic oxidation and produced the highest oxygen radical absorbance capacity (ORAC) values, the phenolic compounds from red leaf lettuce were separated by reverse-phase high-performance liquid chromatography (HPLC). The primary phenolic compounds in the leaf tissue extracts were mono- and dicaffeoyltartaric acid (CTA and DCTA), mono- and dicaffeoylquinic acid (CQA and DCQA), quercetin 3-malonylglucoside (QMG), quercetin 3-glucoside (QG), cyanidin 3-malonylglucoside (CMG), and an unknown phenolic ester (UPE). Significant levels of DCQA were only found after wounding. Using the new fluorescein-based ORAC assay procedures, fractions from the HPLC analyses were assayed for peroxyl radical absorbance capacity. Using absorbance to estimate concentration, the decreasing order of contribution to the total ORAC value of an extract from wounded tissue was QMG > DCQA > CMG > DCTA > UPE > QG > CTA. The decreasing order of the specific peroxyl radical scavenging activities was CMG > QG > DCTA > DCQA > QMG > UPE > CQA > CTA. Since the concentrations of plant flavonoid and phenolic acid esters are sensitive to environmental factors, this information may be used to develop pre- and postharvest conditions which increase the dietary benefits of leaf lettuce.

  9. Phenolic Compounds Present Schinus terebinthifolius Raddi Influence the Lowering of Blood Pressure in Rats.

    Science.gov (United States)

    de Lima Glória, Lorena; Barreto de Souza Arantes, Mariana; Menezes de Faria Pereira, Silvia; de Souza Vieira, Guilherme; Xavier Martins, Camilla; Ribeiro de Carvalho Junior, Almir; Antunes, Fernanda; Braz-Filho, Raimundo; José Curcino Vieira, Ivo; Leandro da Cruz, Larissa; Siqueira de Almeida Chaves, Douglas; de Paiva Freitas, Silvério; Barros de Oliveira, Daniela

    2017-10-23

    This study identified two phenolic compounds in Schinus terebinthifolius Raddi fruits: naringenin (first report in this species) and gallic acid. Their structures were elucidated by nuclear magnetic resonance (NMR) data (¹H-, 13 C-NMR) and a high-performance liquid chromatography (HPLC) technique. A high content of phenolics (659.21 mg of gallic acid equivalents/g of sample-Folin-Ciocalteau method) and total flavonoids (140.69 mg of rutin equivalents/g of sample-aluminum chloride method) were quantified in S. terebinthifolius , as well as high antioxidant activity (77.47%-2,2-diphenyl-1-picrylhydrazyl, DPPH method). The antihypertensive activity related to its phenolic content was investigated. After intravenous infusion in Wistar rats, these phenolics significantly reduced ( p < 0.05) the systolic, median, and diastolic arterial pressures of individuals. The rotarod test was performed to determine the mechanism of action of the sample vasorelaxant effect. It was found that its action exceeded that of the positive control used (diazepam). This confirmed the vasodilatory activity exerted by S. terebinthifolius fruits is related to the phenolic compounds present in the plant, which are potent antioxidants and inhibit oxidative stress, mainly in the central nervous system.

  10. Bioactivities, biosynthesis and biotechnological production of phenolic acids in Salvia miltiorrhiza.

    Science.gov (United States)

    Shi, Min; Huang, Fenfen; Deng, Changping; Wang, Yao; Kai, Guoyin

    2018-05-10

    Salvia miltiorrhiza (Danshen in Chinese), is a well-known traditional Chinese medicinal plant, which is used as not only human medicine but also health-promotion food. Danshen has been extensively used for the treatment of various cardiovascular and cerebrovascular diseases. As a major group of bioactive constituents from S. miltiorrhiza, water-soluble phenolic acids such as salvianolic acid B possessed good bioactivities including antioxidant, anti-inflammatory, anti-cancer and other health-promoting activities. It is of significance to improve the production of phenolic acids by modern biotechnology approaches to meet the increasing market demand. Significant progresses have been made in understanding the biosynthetic pathway and regulation mechanism of phenolic acids in S.miltiorrhiza, which will facilitate the process of targeted metabolic engineering or synthetic biology. Furthermore, multiple biotechnology methods such as in vitro culture, elicitation, hairy roots, endophytic fungi and bioreactors have been also used to obtain pharmaceutically active phenolic acids from S. miltiorrhiza. In this review, recent advances in bioactivities, biosynthetic pathway and biotechnological production of phenolic acid ingredients were summarized and future prospective was also discussed.

  11. Identification and characterization of phenol hydroxylase from phenol-degrading Candida tropicalis strain JH8.

    Science.gov (United States)

    Long, Yan; Yang, Sheng; Xie, Zhixiong; Cheng, Li

    2014-09-01

    The gene phhY encoding phenol hydroxylase from Candida tropicalis JH8 was cloned, sequenced, and expressed in Escherichia coli. The gene phhY contained an open reading frame of 2130 bp encoding a polypeptide of 709 amino acid residues. From its sequence analysis, it is a member of a family of flavin-containing aromatic hydroxylases and shares 41% amino acid identity with phenol hydroxylase from Trichosporon cutaneum. The recombinant phenol hydroxylase exists as a homotetramer structure with a native molecular mass of 320 kDa. Recombinant phenol hydroxylase was insensitive to pH treatment; its optimum pH was at 7.6. The optimum temperature for the enzyme was 30 °C, and its activity was rapidly lost at temperatures above 60 °C. Under the optimal conditions with phenol as substrate, the K(m) and V(max) of recombinant phenol hydroxylase were 0.21 mmol·L(-1) and 0.077 μmol·L(-1)·min(-1), respectively. This is the first paper presenting the cloning and expression in E. coli of the phenol hydroxylase gene from C. tropicalis and the characterization of the recombinant phenol hydroxylase.

  12. Selective defunctionalization by TiO2 of monomeric phenolics from lignin pyrolysis into simple phenols.

    Science.gov (United States)

    Mante, Ofei D; Rodriguez, Jose A; Babu, Suresh P

    2013-11-01

    This study is focused on defunctionalizing monomeric phenolics from lignin into simple phenols for applications such as phenol/formaldehyde resins, epoxidized novolacs, adhesives and binders. Towards this goal, Titanium dioxide (TiO2) was used to selectively remove hydroxyl, methoxy, carbonyl and carboxyl functionalities from the monomeric phenolic compounds from lignin to produce mainly phenol, cresols and xylenols. The results showed that anatase TiO2 was more selective and active compared to rutile TiO2. Catechols were found to be the most reactive phenolics and 4-ethylguaiacol the least reactive with anatase TiO2. An overall conversion of about 87% of the phenolics was achieved at 550°C with a catalyst-to-feed ratio of 5 w/w. Over 97% conversion of phenolics is achievable at moderate temperatures (550°C or ≤ 600°C) and a moderate catalyst-to-feed ratio of 6.5:1. The reactivity of catechols on TiO2 suggests that titania is a promising catalyst in the removal of hydroxyl moiety. Published by Elsevier Ltd.

  13. Solar Ultraviolet-B Radiation Increases Phenolic Content and Ferric Reducing Antioxidant Power in Avena sativa

    Directory of Open Access Journals (Sweden)

    Christopher T. Ruhland

    2007-06-01

    Full Text Available We examined the influence of solar ultraviolet-B radiation (UV-B; 280-320 nm on the maximum photochemical efficiency of photosystem II (Fv/Fm, bulk-soluble phenolic concentrations, ferric-reducing antioxidant power (FRAP and growth of Avena sativa. Treatments involved placing filters on frames over potted plants that reduced levels of biologically effective UV-B by either 71% (reduced UV-B or by 19% (near-ambient UV-B over the 52 day experiment (04 July - 25 August 2002. Plants growing under near-ambient UV-B had 38% less total biomass than those under reduced UV-B. The reduction in biomass was mainly the result of a 24% lower leaf elongation rate, resulting in shorter leaves and less total leaf area than plants under reduced UV-B. In addition, plants growing under near-ambient UV-B had up to 17% lower Fv/Fm values early in the experiment, and this effect declined with plant age. Concentrations of bulk-soluble phenolics and FRAP values were 17 and 24% higher under near-ambient UV-B than under reduced UV-B, respectively. There was a positive relationship between bulk-soluble phenolic concentrations and FRAP values. There were no UV-B effects on concentrations of carotenoids (carotenes + xanthophylls.

  14. In vitro cytotoxic and antioxidant activities of phenolic components of Algerian Achillea odorata leaves

    Directory of Open Access Journals (Sweden)

    Hanane Boutennoun

    2017-03-01

    Full Text Available In this study, methanol extract from Achillea odorata was evaluated for its phenolic contents using Folin–Ciocalteu reagent, and antioxidant activity using: 1,1-diphenyl-2-picrylhidrazyl (DPPH radical scavenging activity, reducing activity of H2O2 and ferric reducing power assay. The total phenolic content was determined as gallic acid (GAE equivalent. Flavonoids and flavonols contents were determined as quercetin (QE equivalents. The cytotoxicity of the plant extract was tested against three tumor cell lines: MCF-7, Hep2 and WEHI using 3-(4,5-dimethyl thiazol-2-yl-2,5-diphynyl tetrazolium bromide (MTT assay. Preliminary screening was concluded in the presence of substances with large therapeutic values. The total phenolic content confirmed the presence of total phenolics in the extract and showed strong association with antioxidant activity. An important content of flavonoids and flavonols was also detected. The results of the antioxidant activities obtained indicate that A. odorata recorded a good capacity. For the cytotoxic activity, the results showed the plant extract significantly inhibited tumor cell growth and colony formation at various concentrations.

  15. IN VITRO ANTIOXIDANT, TOTAL PHENOLIC AND FLAVONOID CONTENTS OF SIX ALLIUM SPECIES GROWING IN EGYPT

    Directory of Open Access Journals (Sweden)

    Mahfouz Abdel-Gawad

    2014-02-01

    Full Text Available This study was designated to determine the total phenolic and flavonoid contents as well as evaluation the in vitro antioxidant activity of the defatted methanolic extracts of six Allium species growing in Egypt. Three of them are subspecies of Allium cepa L. (ssp. red onion, ssp. white onion and ssp. green onion, the other three species are Allium sativum L. (garlic, Allium porrum L. (leek and Allium kurrat L. (kurrat baladi. The results exhibited that A. cepa (ssp. red onion and A. porrum have the highest phenolic contents. On the other hand, in vitro antioxidant activity using three methods, 1, 1-diphenyl-2-picrylhydrazyl (DPPH radical, phosphomolybdate and reducing power assays revealed that A. cepa (ssp. red onion and A. porrum have high antioxidant activities. Moreover, there was positive correlation between the antioxidant activity and total phenolic contents of the tested Allium species. Therefore, the two plant species A. cepa (ssp. red onion and A. porrum were submitted to fractionation process using chloroform, ethyl acetate and n-butanol. The results showed that the ethyl acetate fractions of the two plants have high phenolic and flavonoid contents as well as have high antioxidant activities. Also, the preliminary phytochemical screening of the tested Allium species showed that A. cepa (ssp. red onion and A. porrum have high quantities of flavonoids, steroids, terpenoids and saponins.

  16. Ultraviolet-B radiation effects on phenolic profile and flavonoid content of Kalanchoe pinnata.

    Science.gov (United States)

    Nascimento, Luana Beatriz Dos Santos; Leal-Costa, Marcos Vinicius; Menezes, Eloá Aragão; Lopes, Virgínia Rodrigues; Muzitano, Michelle Frazão; Costa, Sônia Soares; Tavares, Eliana Schwartz

    2015-07-01

    Ultraviolet-B radiation is an important abiotic factor that can stimulate the production of secondary metabolites, including polyphenolic compounds. Kalanchoe pinnata (Crassulaceae) is a medicinal plant popularly used in Brazil for treating wounds and inflammation. This species is rich in phenolic compounds, which could account for some of its biological activities, including antileishmanial, antihypertensive and antibacterial properties. We investigated the effects of supplemental UV-B radiation on the phenolic profile, antioxidant activity and total flavonoid content of leaves of K. pinnata. Plants were grown under white light (W - control) and supplemental UV-B radiation (W+UVB). Supplemental UV-B radiation enhanced the total flavonoid content of the leaf extracts, without affecting the antioxidant activity or yield of extracts. Analysis by TLC and HPLC of W and W+UVB leaf extracts revealed quantitative and qualitative differences in their phenolic profiles. W+UVB extracts contained a higher diversity of phenolic compounds and a larger amount of quercitrin, an important bioactive flavonoid of this species. This is the first report of the use of ImageJ® program to analyze a TLC visualized by spraying with NP-PEG reagent. UV-B radiation is proposed as a supplemental light source in K. pinnata cultivation in order to improve its flavonoid composition. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Myosin-cross-reactive antigen (MCRA protein from Bifidobacterium breve is a FAD-dependent fatty acid hydratase which has a function in stress protection

    Directory of Open Access Journals (Sweden)

    Ross R

    2011-02-01

    Full Text Available Abstract Background The aim of this study was to determine the catalytic activity and physiological role of myosin-cross-reactive antigen (MCRA from Bifidobacterium breve NCIMB 702258. MCRA from B. breve NCIMB 702258 was cloned, sequenced and expressed in heterologous hosts (Lactococcus and Corynebacterium and the recombinant proteins assessed for enzymatic activity against fatty acid substrates. Results MCRA catalysed the conversion of palmitoleic, oleic and linoleic acids to the corresponding 10-hydroxy fatty acids, but shorter chain fatty acids were not used as substrates, while the presence of trans-double bonds and double bonds beyond the position C12 abolished hydratase activity. The hydroxy fatty acids produced were not metabolised further. We also found that heterologous Lactococcus and Corynebacterium expressing MCRA accumulated increasing amounts of 10-HOA and 10-HOE in the culture medium. Furthermore, the heterologous cultures exhibited less sensitivity to heat and solvent stresses compared to corresponding controls. Conclusions MCRA protein in B. breve can be classified as a FAD-containing double bond hydratase, within the carbon-oxygen lyase family, which may be catalysing the first step in conjugated linoleic acid (CLA production, and this protein has an additional function in bacterial stress protection.

  18. Myosin-cross-reactive antigen (MCRA) protein from Bifidobacterium breve is a FAD-dependent fatty acid hydratase which has a function in stress protection.

    Science.gov (United States)

    Rosberg-Cody, Eva; Liavonchanka, Alena; Göbel, Cornelia; Ross, R Paul; O'Sullivan, Orla; Fitzgerald, Gerald F; Feussner, Ivo; Stanton, Catherine

    2011-02-17

    The aim of this study was to determine the catalytic activity and physiological role of myosin-cross-reactive antigen (MCRA) from Bifidobacterium breve NCIMB 702258. MCRA from B. breve NCIMB 702258 was cloned, sequenced and expressed in heterologous hosts (Lactococcus and Corynebacterium) and the recombinant proteins assessed for enzymatic activity against fatty acid substrates. MCRA catalysed the conversion of palmitoleic, oleic and linoleic acids to the corresponding 10-hydroxy fatty acids, but shorter chain fatty acids were not used as substrates, while the presence of trans-double bonds and double bonds beyond the position C12 abolished hydratase activity. The hydroxy fatty acids produced were not metabolised further. We also found that heterologous Lactococcus and Corynebacterium expressing MCRA accumulated increasing amounts of 10-HOA and 10-HOE in the culture medium. Furthermore, the heterologous cultures exhibited less sensitivity to heat and solvent stresses compared to corresponding controls. MCRA protein in B. breve can be classified as a FAD-containing double bond hydratase, within the carbon-oxygen lyase family, which may be catalysing the first step in conjugated linoleic acid (CLA) production, and this protein has an additional function in bacterial stress protection.

  19. Myosin-cross-reactive antigen (MCRA) protein from Bifidobacterium breve is a FAD-dependent fatty acid hydratase which has a function in stress protection

    LENUS (Irish Health Repository)

    Rosberg-Cody, Eva

    2011-02-17

    Abstract Background The aim of this study was to determine the catalytic activity and physiological role of myosin-cross-reactive antigen (MCRA) from Bifidobacterium breve NCIMB 702258. MCRA from B. breve NCIMB 702258 was cloned, sequenced and expressed in heterologous hosts (Lactococcus and Corynebacterium) and the recombinant proteins assessed for enzymatic activity against fatty acid substrates. Results MCRA catalysed the conversion of palmitoleic, oleic and linoleic acids to the corresponding 10-hydroxy fatty acids, but shorter chain fatty acids were not used as substrates, while the presence of trans-double bonds and double bonds beyond the position C12 abolished hydratase activity. The hydroxy fatty acids produced were not metabolised further. We also found that heterologous Lactococcus and Corynebacterium expressing MCRA accumulated increasing amounts of 10-HOA and 10-HOE in the culture medium. Furthermore, the heterologous cultures exhibited less sensitivity to heat and solvent stresses compared to corresponding controls. Conclusions MCRA protein in B. breve can be classified as a FAD-containing double bond hydratase, within the carbon-oxygen lyase family, which may be catalysing the first step in conjugated linoleic acid (CLA) production, and this protein has an additional function in bacterial stress protection.

  20. Fatal Phenol Toxicity Following Attempted Tattoo Removal.

    Science.gov (United States)

    Li, Zhen; Zhang, Huang; Li, Shu-Hua; Byard, Roger W

    2016-07-01

    Tattoo removal is increasingly required as the number of, particularly young, people acquiring tattoos is increasing. A 21-year-old man is reported who underwent attempted removal of large dragon tattoo utilizing a tattoo machine that injected a phenol-containing solution. At the end of the 3-h procedure, he collapsed and died. At autopsy, large areas of white skin discoloration with focal necrosis and sloughing were present overlying areas of previous tattooing. Histological examination showed collections of eosinophilic fluid with a minimal chronic inflammatory infiltrate in better preserved areas, with focal areas of dermal necrosis. Toxicology was positive for phenol in cardiac blood and liver tissue. There were no underlying organic disease or injuries present which could have caused or contributed to death. This idiosyncratic method of tattoo removal involving subcutaneous injection of phenol had resulted in death most likely from cardiotoxicity. © 2016 American Academy of Forensic Sciences.

  1. High-Temperature Graphite/Phenolic Composite

    Science.gov (United States)

    Seal, Ellis C.; Bodepudi, Venu P.; Biggs, Robert W., Jr.; Cranston, John A.

    1995-01-01

    Graphite-fiber/phenolic-resin composite material retains relatively high strength and modulus of elasticity at temperatures as high as 1,000 degrees F. Costs only 5 to 20 percent as much as refractory materials. Fabrication composite includes curing process in which application of full autoclave pressure delayed until after phenolic resin gels. Curing process allows moisture to escape, so when composite subsequently heated in service, much less expansion of absorbed moisture and much less tendency toward delamination. Developed for nose cone of external fuel tank of Space Shuttle. Other potential aerospace applications for material include leading edges, parts of nozzles, parts of aircraft engines, and heat shields. Terrestrial and aerospace applications include structural firewalls and secondary structures in aircraft, spacecraft, and ships. Modified curing process adapted to composites of phenolic with other fiber reinforcements like glass or quartz. Useful as high-temperature circuit boards and electrical insulators.

  2. Grandstand view of phenolic foam insulation

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    Stadium Insulation Ltd, manufacture pipe sections, tank and vessel insulation products in Lowphen, polyisocyanurate, polyurethane foams and expanded polystyrene, though for certain specialist applications, cork is still employed in small quantities. Currently the emphasis is very much on Lowphen, the company's range of pipe sections based on phenolic foam. The company's manufacturing and marketing effort reflects the increasing market trend towards the use of insulating material capable of withstanding higher temperatures, and phenolic foam neatly satisfies the demand since it is capable of use at temperatures up to 140/sup 0/C. Moreover, phenolic foam has the lowest K value at 0.02W/m/sup 0/C of any of the currently available range of insulating materials, and while the product is slightly more expensive than alternatives such as polyisocyanurate and polyurethane, its high performance offsets that premium.

  3. Full scale treatment of phenolic coke coking waste water under unsteady conditions

    Energy Technology Data Exchange (ETDEWEB)

    Suschka, Jan [Institute for Ecology of Industrial Areas, Katowice (Poland); Morel, Jacek; Mierzwinski, Stanislaw; Januszek, Ryszard [Coke Plant Przyjazn, Dabrowa Gornicza (Poland)

    1993-12-31

    Phenolic waste water from the largest coke coking plant in Poland is treated at a full technical scale. From the very beginning it became evident that very high qualitative variations in short and long periods were to be expected. For this purpose, the biological treatment plant based on activated sludge is protected through preliminary physical-chemical treatment and the results are secured by a final chemical stage of treatment. Nevertheless, improvements in the performance of the treatment plant have been found necessary to introduce. In this work, the experience gained over the last five years is described and developed improvements were presented. 3 refs., 9 figs., 1 tab.

  4. Full scale treatment of phenolic coke coking waste water under unsteady conditions

    Energy Technology Data Exchange (ETDEWEB)

    Suschka, Jan [Institute for Ecology of Industrial Areas, Katowice (Poland); Morel, Jacek; Mierzwinski, Stanislaw; Januszek, Ryszard [Coke Plant Przyjazn, Dabrowa Gornicza (Poland)

    1994-12-31

    Phenolic waste water from the largest coke coking plant in Poland is treated at a full technical scale. From the very beginning it became evident that very high qualitative variations in short and long periods were to be expected. For this purpose, the biological treatment plant based on activated sludge is protected through preliminary physical-chemical treatment and the results are secured by a final chemical stage of treatment. Nevertheless, improvements in the performance of the treatment plant have been found necessary to introduce. In this work, the experience gained over the last five years is described and developed improvements were presented. 3 refs., 9 figs., 1 tab.

  5. Variation of Phenolic Content in Globe Artichoke in Relation to Biological, Technical and Environmental Factors

    Directory of Open Access Journals (Sweden)

    Sara Lombardo

    2009-12-01

    Full Text Available In Italy, globe artichoke production is prevailingly concentrated in the South and islands, where it provides an important contribution to the agricultural economy. In recent years, there has been a renewed interest in this crop as a promising source of polyphenols, a heterogeneous class of secondary metabolites characterized by various healthy properties well-documented in literature. The phenolic fraction, present in the different artichoke plant parts, varies widely in relation to biotic and abiotic factors. Therefore, the present study aimed at evaluating the variation of phenolic content in globe artichoke in relation to biological, technical and environmental factors. Two field-experiments were carried out in Sicily (South Italy in two representative cultivation areas, in order to examine the effects of genotype, head fraction, season conditions, planting density and arrangement on the globe artichoke phenolic concentration. Both the total polyphenols and the individual phenolic compounds detected were notably genotype- dependent. Particularly, the high level of caffeoylquinic acids (chlorogenic acid, among others and apigenin 7- O-glucuronide, reported respectively by “Violetto di Sicilia” and “Romanesco clone C3”, could be used to encourage globe artichoke fresh consumption. Total polyphenols content also resulted more abundant in specific accumulation sites within the inflorescence, such as the floral stem and receptacle, and for most of genotypes it decreased during the second year in response to the different meteorological conditions. Additionally, total polyphenols content significantly and linearly increased as plant density increased from 1.0 to 1.8 plant m-2 and it significantly increased by 13% passing from single to twin rows plant arrangement.

  6. Variation of Phenolic Content in Globe Artichoke in Relation to Biological, Technical and Environmental Factors

    Directory of Open Access Journals (Sweden)

    Giovanni Mauromicale

    2011-02-01

    Full Text Available In Italy, globe artichoke production is prevailingly concentrated in the South and islands, where it provides an important contribution to the agricultural economy. In recent years, there has been a renewed interest in this crop as a promising source of polyphenols, a heterogeneous class of secondary metabolites characterized by various healthy properties well-documented in literature. The phenolic fraction, present in the different artichoke plant parts, varies widely in relation to biotic and abiotic factors. Therefore, the present study aimed at evaluating the variation of phenolic content in globe artichoke in relation to biological, technical and environmental factors. Two field-experiments were carried out in Sicily (South Italy in two representative cultivation areas, in order to examine the effects of genotype, head fraction, season conditions, planting density and arrangement on the globe artichoke phenolic concentration. Both the total polyphenols and the individual phenolic compounds detected were notably genotype- dependent. Particularly, the high level of caffeoylquinic acids (chlorogenic acid, among others and apigenin 7- O-glucuronide, reported respectively by “Violetto di Sicilia” and “Romanesco clone C3”, could be used to encourage globe artichoke fresh consumption. Total polyphenols content also resulted more abundant in specific accumulation sites within the inflorescence, such as the floral stem and receptacle, and for most of genotypes it decreased during the second year in response to the different meteorological conditions. Additionally, total polyphenols content significantly and linearly increased as plant density increased from 1.0 to 1.8 plant m-2 and it significantly increased by 13% passing from single to twin rows plant arrangement.

  7. Preharvest Application of Methyl Jasmonate as an Elicitor Improves the Yield and Phenolic Content of Artichoke.

    Science.gov (United States)

    Martínez-Esplá, Alejandra; Valero, Daniel; Martínez-Romero, Domingo; Castillo, Salvador; Giménez, María José; García-Pastor, Maria Emma; Serrano, María; Zapata, Pedro Javier

    2017-10-25

    The effects of methyl jasmonate (MeJa) treatment as an elicitor of artichoke plants [Cynara cardunculus var. scolymus (L.) Fiori] on the yield and quality attributes of artichokes, especially those related to individual phenolic content and antioxidant activity, at two harvest dates and along storage were analyzed in this research. Plants treated gave a higher yield of artichokes in comparison to control plants, with 0.55 kg more per plant. MeJa treatment also increased artichoke quality and phenolic content in the edible fraction at harvest and during storage at 2 °C for 28 days as a result of the accumulation of hydroxycinnamic acids and luteolin derivatives. In addition, antioxidant activity was enhanced by MeJa treatment and correlated with the total phenolic content. Results suggest that MeJa foliar application could be a simple and practical tool to improve the yield and phytochemical content on artichokes, with elicitation being a cheap and environmentally friendly procedure to improve the health-beneficial effects of artichoke consumption.

  8. Increased antioxidant activity and changes in phenolic profile of Kalanchoe pinnata (Lamarck) Persoon (Crassulaceae) specimens grown under supplemental blue light.

    Science.gov (United States)

    Nascimento, Luana B S; Leal-Costa, Marcos V; Coutinho, Marcela A S; Moreira, Nattacha dos S; Lage, Celso L S; Barbi, Nancy dos S; Costa, Sônia S; Tavares, Eliana S

    2013-01-01

    Antioxidant compounds protect plants against oxidative stress caused by environmental conditions. Different light qualities, such as UV-A radiation and blue light, have shown positive effects on the production of phenols in plants. Kalanchoe pinnata (Lamarck) Persoon (Crassulaceae) is used for treating wounds and inflammations. Some of these beneficial effects are attributed to the antioxidant activity of plant components. We investigated the effects of blue light and UV-A radiation supplementation on the total phenol content, antioxidant activity and chromatographic profile of aqueous extracts from leaves of K. pinnata. Monoclonal plants were grown under white light, white plus blue light and white plus UV-A radiation. Supplemental blue light improved the antioxidant activity and changed the phenolic profile of the extracts. Analysis by HPLC of supplemental blue-light plant extracts revealed a higher proportion of the major flavonoid quercetin 3-O-α-L-arabinopyranosyl (1→2) α-L-rhamnopyranoside, as well as the presence of a wide variety of other phenolic substances. These findings may explain the higher antioxidant activity observed for this extract. Blue light is proposed as a supplemental light source in the cultivation of K. pinnata, to improve its antioxidant activity. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  9. High chemoselectivity in the phenol synthesis

    Directory of Open Access Journals (Sweden)

    A. Stephen K. Hashmi

    2011-06-01

    Full Text Available Efforts to trap early intermediates of the gold-catalyzed phenol synthesis failed. Neither inter- nor intramolecularly offered vinyl groups, ketones or alcohols were able to intercept the gold carbenoid species. This indicates that the competing steps of the gold-catalyzed phenol synthesis are much faster than the steps of the interception reaction. In the latter the barrier of activation is higher. At the same time this explains the high tolerance of this very efficient and general reaction towards functional groups.

  10. Determination of biological activities and total phenolic contents of flowers of jasminum humile and roots of dorema aucheri

    International Nuclear Information System (INIS)

    Khan, A.; Farooq, U.; Ullah, F.; Iqbal, J.

    2014-01-01

    The present study was designed to investigate in vitro antioxidant, NO scavenging, and antibacterial activities as well as total phenolic contents of different extracts of flowers of Jasminum humile and roots of Dorema aucheri. The plant extracts showed significant antioxidant activity, having IC50 values comparable to those of references used in each assay and also inhibited accumulation of nitrite in vitro. The plant extracts yielded phenolic contents and showed significant antibacterial activity. The observed antioxidant potential and phenolic contents of the extracts showed that flowers of J. humile and roots of D. aucheri are potential source of natural antioxidants that may help to retard oxidative degradation and microbial growth in food industry. (author)

  11. The effects of oxidative stress on phenolic composition and ...

    African Journals Online (AJOL)

    Twenty phenolic compounds (apigenin, caffeic acid, p-coumaric acid, gallic acid, ... quercetin, rutin hydrate, vanillic acid, ferulic acid, salicylic acid, sinapic acid, ... phenolic molecules biosynthesis and activation of antioxidant metabolism on ...

  12. Antifungal activity of extracts and phenolic compounds from ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-17

    Jun 17, 2009 ... Key words: Barringtonia racemosa, antifungal, HPLC, phenolic acids, flavonoids. ... Among them, phenolic acids and flavonoids have been the object of .... on the previous method as described by Crozier et al. ... Quantification.

  13. Yttrium Nitrate mediated Nitration of Phenols at room temperature in ...

    Indian Academy of Sciences (India)

    The described method is selective for phenols. ... the significant cause of post translational modification that can ... decades, significant attention was paid on nitration of phenols to .... Progress of the reaction can be noted visually. Yttrium.

  14. Promising Potential of Dietary (Poly)Phenolic Compounds in the Prevention and Treatment of Diabetes Mellitus.

    Science.gov (United States)

    Dias, Tania R; Alves, Marco G; Casal, Susana; Oliveira, Pedro F; Silva, Branca M

    2017-01-01

    The incidence of diabetes mellitus (DM) is reaching alarming proportions worldwide, particularly because it is increasingly affecting younger people. This reflects the sedentary lifestyle and inappropriate dietary habits, especially due to the advent of processed foods in modern societies. Thus, unsurprisingly, the first medical recommendation to patients with clinically evident DM is the alteration in their eating behaviour, particularly regarding carbohydrates and total energy intake. Despite individual and cultural preferences, human diet makes available a large amount of phytochemicals with therapeutic potential. Phenolic compounds are the most abundant class of phytochemicals in edible plants, fruits and beverages. These compounds have strong antioxidant and anti-inflammatory activities that have been associated with specific features of their chemical structure. Among others, such properties make them promising antidiabetic agents and several mechanisms of action have already been proposed. Herein, we discuss the recent findings on the potential of dietary phenolic compounds for the prevention and/or treatment of (pre)diabetes, and associated complications. A broad range of studies supports the innate potential of phenolic compounds to protect against DM-associated deleterious effects. Their antidiabetic activity has been demonstrated by: i) regulation of carbohydrate metabolism; ii) improvement of glucose uptake; iii) protection of pancreatic β-cells; iv) enhancement of insulin action and v) regulation of crucial signalling pathways to cell homeostasis. Dietary phenolic compounds constitute an easy, safe and cost-effective way to combat the worrying scenario of DM. The interesting particularities of phenolic compounds reinforce the implementation of a (poly)phenolic-rich nutritional regime, not only for (pre)diabetic patients, but also for non-diabetic people. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Standardization of Tragopogon graminifolius DC. Extract Based on Phenolic Compounds and Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Farzaei

    2014-01-01

    Full Text Available Tragopogon graminifolius DC. (TG, Compositae family, is traditionally used for the treatment of various diseases like gastrointestinal and hepatic disorders. The aim of the present study is to standardize extracts from TG used for preparation of different dosage forms in traditional Iranian medicine (TIM based on phenolic compounds. For this purpose, total phenolic content and some phenolic compounds were determined in ethanolic extracts from aerial part and root of TG by HPLC method. Furthermore, antioxidant activity was evaluated using DPPH-HPLC methods. Caffeic acid, gallic acid, ρ-coumaric acid, ferulic acid, and catechin were detected in root and aerial part of TG. ρ-Coumaric acid (6.357 ± 0.014 mg·g−1 was dominant phenolic compound in aerial part followed by ferulic acid (1.24 ± 0.018 mg·g−1. Also, ρ-coumaric acid (2.685 ± 0.031 mg·g−1 was highly abundant in root, followed by catechin (2.067 ± 0.021 mg·g−1. Antioxidant activity of root extract (460.45 ± 0.78 µg Vit.E.E·mL−1 was better than that of aerial part. Generally, phenolic compounds are one of the major constituents of TG and could be used as markers for standardization of dosage forms prepared from this plant. Also, TG demonstrated significant antioxidant activity using DPPH-HPLC method. Phenolic compounds of TG may be responsible for its marked antioxidant properties.

  16. Phenolic compounds as indicators of drought resistance in shrubs from Patagonian shrublands (Argentina).

    Science.gov (United States)

    Varela, M Celeste; Arslan, Idris; Reginato, Mariana A; Cenzano, Ana M; Luna, M Virginia

    2016-07-01

    Plants exposed to drought stress, as usually occurs in Patagonian shrublands, have developed different strategies to avoid or tolerate the lack of water during their development. Production of phenolic compounds (or polyphenols) is one of the strategies used by some native species of adverse environments to avoid the oxidative damage caused by drought. In the present study the relationship between phenolic compounds content, water availability and oxidative damage were evaluated in two native shrubs: Larrea divaricata (evergreen) and Lycium chilense (deciduous) of Patagonian shrublands by their means and/or by multivariate analysis. Samples of both species were collected during the 4 seasons for the term of 1 year. Soil water content, relative water content, total phenols, flavonoids, flavonols, tartaric acid esters, flavan-3-ols, proanthocyanidins, antioxidant capacity and lipid peroxidation were measured. According to statistical univariate analysis, L. divaricata showed high production of polyphenols along the year, with a phenolic compound synthesis enhanced during autumn (season of greatest drought), while L. chilense has lower production of these compounds without variation between seasons. The variation in total phenols along the seasons is proportional to the antioxidant capacity and inversely proportional to lipid peroxidation. Multivariate analysis showed that, regardless their mechanism to face drought (avoidance or tolerance), both shrubs are well adapted to semi-arid regions and the phenolic compounds production is a strategy used by these species living in extreme environments. The identification of polyphenol compounds showed that L. divaricata produces different types of flavonoids, particularly bond with sugars, while L. chilense produces high amount of non-flavonoids compounds. These results suggest that flavonoid production and accumulation could be a useful indicator of drought tolerance in native species. Copyright © 2016 Elsevier Masson

  17. Partition behavior of virgin olive oil phenolic compounds in oil-brine mixtures during thermal processing for fish canning.

    Science.gov (United States)

    Sacchi, Raffaele; Paduano, Antonello; Fiore, Francesca; Della Medaglia, Dorotea; Ambrosino, Maria Luisa; Medina, Isabel

    2002-05-08

    The chemical modifications and partitioning toward the brine phase (5% salt) of major phenol compounds of extra virgin olive oil (EVOO) were studied in a model system formed by sealed cans filled with oil-brine mixtures (5:1, v/v) simulating canned-in-oil food systems. Filled cans were processed in an industrial plant using two sterilization conditions commonly used during fish canning. The partitioning of phenolic compounds toward brine induced by thermal processing was studied by reversed-phase high-performance liquid chromatographic analysis of the phenol fraction extracted from oils and brine. Hydroxytyrosol (1), tyrosol (2), and the complex phenolic compounds containing 1 and 2 (i.e., the dialdehydic form of decarboxymethyl oleuropein aglycon 3, the dialdehydic form of decarboxymethyl ligstroside aglycon 4, and the oleuropein aglycon 6) decreased in the oily phase after sterilization with a marked partitioning toward the brine phase. The increase of the total amount of 1 and 2 after processing, as well as the presence of elenolic acid 7 released in brine, revealed the hydrolysis of the ester bond of hydrolyzable phenolic compounds 3, 4, and 6 during thermal processing. Both phenomena (partitioning toward the water phase and hydrolysis) contribute to explain the loss of phenolic compounds exhibited by EVOO used as filling medium in canned foods, as well as the protection of n-3 polyunsaturated fatty acids in canned-in-EVOO fish products.

  18. Phylogenetic and functional diversity of metagenomic libraries of phenol degrading sludge from petroleum refinery wastewater treatment system.

    Science.gov (United States)

    Silva, Cynthia C; Hayden, Helen; Sawbridge, Tim; Mele, Pauline; Kruger, Ricardo H; Rodrigues, Marili Vn; Costa, Gustavo Gl; Vidal, Ramon O; Sousa, Maíra P; Torres, Ana Paula R; Santiago, Vânia Mj; Oliveira, Valéria M

    2012-03-27

    In petrochemical refinery wastewater treatment plants (WWTP), different concentrations of pollutant compounds are received daily in the influent stream, including significant amounts of phenolic compounds, creating propitious conditions for the development of particular microorganisms that can rapidly adapt to such environment. In the present work, the microbial sludge from a refinery WWTP was enriched for phenol, cloned into fosmid vectors and pyrosequenced. The fosmid libraries yielded 13,200 clones and a comprehensive bioinformatic analysis of the sequence data set revealed a complex and diverse bacterial community in the phenol degrading sludge. The phylogenetic analyses using MEGAN in combination with RDP classifier showed a massive predominance of Proteobacteria, represented mostly by the genera Diaphorobacter, Pseudomonas, Thauera and Comamonas. The functional classification of phenol degrading sludge sequence data set generated by MG-RAST showed the wide metabolic diversity of the microbial sludge, with a high percentage of genes involved in the aerobic and anaerobic degradation of phenol and derivatives. In addition, genes related to the metabolism of many other organic and xenobiotic compounds, such as toluene, biphenyl, naphthalene and benzoate, were found. Results gathered herein demonstrated that the phenol degrading sludge has complex phylogenetic and functional diversities, showing the potential of such community to degrade several pollutant compounds. This microbiota is likely to represent a rich resource of versatile and unknown enzymes which may be exploited for biotechnological processes such as bioremediation.

  19. Evaluation of PAL activity, Phenolic and Flavonoid Contents in Three Pistachio (Pistacia vera L. Cultivars Grafted onto Three Different Rootstocks

    Directory of Open Access Journals (Sweden)

    N. Nadernejad

    2013-08-01

    Full Text Available Phenylalanine ammonia lyase (PAL is a biochemical marker of the environmental stress and plays a pivotal role in phenolic synthesis. The lower ROS level and oxidative damage was observed in grafted plants and the rootstocks have a profound influence on the biochemical composition, especially phenolic compounds. Regarding the importance of the effect rootstocks have on scion in pistachio trees, this study was carried out to assess and compare three pistachio cultivars ("Ahmadaghaii", "Ohadi" and "Kallehghuchi" on three rootstocks (Mutica, Ahli, Sarakhs. PAL activity, phenolic compounds, flavonoid and anthocyanin contents in leaves, flowers and fruits were measured toward the selection of the most suitable and compatible rootstock/scion resistant to environmental stresses. The results showed that PAL activity was different among the cultivars and organs. A positive correlation was observed between PAL activity and phenolic compounds in the leaves and flowers of Mutica- Ahmadaghaii, suggesting that it is more resistant than the others to environmental stresses. PAL activity and total phenolics in fruits of pistachio suffered a decrease when the maturation processes began. The hulls of the pistachio fruits contained high levels of phenolic compounds especially in Mutica-Ahmadaghaii suggesting its function as a protective layer and a defense chemical against ultraviolet radiation and pathogen. Our results indicated the presence of a number of bioactive compounds in kernels with the highest amount belonging to Mutica- Ahmadaghaii, and therefore it is concluded that pistachio rootstocks may affect the antioxidant compounds in kernels.

  20. Composition of phenols in the primary tar of bituminous brown coal of the Ukrainian S. S. R

    Energy Technology Data Exchange (ETDEWEB)

    Karavaev, N M; Fadeicheva, A G; Kuznetsov, V I

    1957-01-01

    The phenol content in the low-temperature carbonizatin tar of brown coal is higher than in high-temperature coking tar, and the tar obtained in the carbonization of briquets in the Pintsch ovens was investigated after its separation at the carbonization plant. The phenol-containing fraction was extracted with 13 percent NaOH. The phenols were fractionated into narrow fractions at 8- to 9-millimeter pressure, and the fractions were identified by their melting point, n, OH content, analysis, and the melting point of their arylglycolic acids. Lower phenols (44 percent) wre found in the crude-phenol fraction, including 6 percent of crystalline PhOH, melting point 34/sup 0/; o-C/sub 6/H/sub 4/(Me)OH, melting point 27/sup 0/; 9.25 percent m- and o-cresols, with 32 percent m-cresol in the mixture EtC/sub 6/H/sub 4/OH formed 4.5 percent of the crude phenols, and consisted of o-, m-, and p-ethylphenols, 1,4,2-, 1,3,4-, 1,3,5-, and 1,2,4-xylenols.

  1. THE ROLE OF PHENOLICS IN AGARWOOD FORMATION OF Aquilaria crassna Pierre ex Lecomte AND Aquilaria microcarpa Baill TREES

    Directory of Open Access Journals (Sweden)

    Eka Novriyanti

    2011-12-01

    Full Text Available Phenolic is well known as a secondary metabolite that plays an important role in plant defense system. Information about the fungi-impeded role of secondary metabolite is important in achieving success of artificial agarwood production, in that fungi induction imparted to the selected potential trees will be more effective and efficient. This research was aimed to investigate the correlation of agarwood tree phenolics in relation with the susceptibility of corresponding trees to Fusarium solani attack in the formation of agarwood and observing total phenolics content of Aquilaria crassna and Aquilaria microcarpa trees prior to inoculation. Twenty trees of A. microcarpa at Carita, a Forest Area for Special Function (FASF and ten of A. crassna at Dramaga Research Forest were inoculated with isolate of F. solani in spiral pattern around their stem from ground level to about 1.5 m in height. Prior to inoculation, wood strips were taken off from the stem for total phenolics content. The result revealed that total phenolics content and infection area tended to have a negative correlation. Since the quantity of agarwood is highly related with the infection area, then trees with lower phenolics content should be selected for the more effective and efficient artificial agarwood production.

  2. The removal of phenols from oily wastewater by chlorine dioxide

    OpenAIRE

    Hsu, Chung-Jung

    1988-01-01

    Treatability studies were performed on oily wastewaters produced by petroleum and canning industries. Chlorine dioxide was used for the removal of phenolic compounds from these oily wastewaters. Most of phenolic compounds can be destroyed by chlorine dioxide within 15 minutes if CI02-to-phenol ratios of higher than 5.0 are provided. Factors such as pH, temperature, and COD have little effect on phenol removal. The effectiveness of chlorine dioxide treatment depends critic...

  3. Is guava phenolic metabolism influenced by elevated atmospheric CO2?

    Science.gov (United States)

    Mendes de Rezende, Fernanda; Pereira de Souza, Amanda; Silveira Buckeridge, Marcos; Maria Furlan, Cláudia

    2015-01-01

    Seedlings of Psidium guajava cv. Pedro Sato were distributed into four open-top chambers: two with ambient CO(2) (∼390 ppm) and two with elevated CO(2) (∼780 ppm). Monthly, five individuals of each chamber were collected, separated into root, stem and leaves and immediately frozen in liquid nitrogen. Chemical parameters were analyzed to investigate how guava invests the surplus carbon. For all classes of phenolic compounds analyzed only tannins showed significant increase in plants at elevated CO(2) after 90 days. There was no significant difference in dry biomass, but the leaves showed high accumulation of starch under elevated CO(2). Results suggest that elevated CO(2) seems to be favorable to seedlings of P. guajava, due to accumulation of starch and tannins, the latter being an important anti-herbivore substance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Potential hypoglycaemic activity phenolic glycosides from Moringa oleifera seeds.

    Science.gov (United States)

    Wang, Fang; Zhong, Huan-Huan; Chen, Wei-Ke; Liu, Qing-Pu; Li, Cun-Yu; Zheng, Yun-Feng; Peng, Guo-Ping

    2017-08-01

    Moringa oleifera seed has remarkable curative effects on reducing blood pressure, blood sugar and enhancing human immunity. In this study, one novel phenolic glycoside (1) together with four known compounds 2-5 were isolated from the macroporous resin adsorption extract of M. oleifera seeds, and the compound 3 was reported for the first time from this plant. The structure of the new crystalline compound was determined on the basis of spectroscopic analyses including mass spectrometry, 1D and 2D NMR experiments. The hypoglycaemic activity of isolated compounds was investigated with HepG2 cell and STZ-induced mice. It was found that compound 1, 4 and 5 could promote the glucose consumption of insulin resistance cells and reduce blood glucose levels of STZ-induced mice. This study concludes that compound 1, 4 and 5 may be developed as new and safe hypoglycaemic drugs.

  5. Determination of phytochemicals, antioxidant activity and total phenolic content in Andrographis paniculata using chromatographic methods.

    Science.gov (United States)

    Kurzawa, Marzanna; Filipiak-Szok, Anna; Kłodzińska, Ewa; Szłyk, Edward

    2015-07-15

    Antioxidant activity, total phenolics content and selected phytochemicals (alkaloids and andrographolides) were determined in Andrographis paniculata and in dietary supplements containing this plant. Antioxidant activity was measured by FRAP, CUPRAC and DPPH procedures and ranged from 503.36 to 6164.09μmol TE/100g d.m. depending on methods, part of plant and kind of dietary supplement. The total phenolics (175.13-1723.79mg GAE/100g) and andrographolides content (19.44-85.13mg/g) in the studied samples were correlated with antioxidant activities determined by CUPRAC, FRAP and DPPH (r>0.95, ppaniculata leaves, whereas the lowest in dietary supplement Pn. Moreover principal component analysis, cluster analysis and one-way ANOVA follow by Duncan's tests were also performed. Copyright © 2015. Published by Elsevier B.V.

  6. Peroxidase, phenolics, and antioxidative capacity of common mullein (Verbascum thapsus L. grown in a zinc excess

    Directory of Open Access Journals (Sweden)

    Morina Filis

    2008-01-01

    Full Text Available Common mullein (Verbascum thapsus L. is the dominant plant species at a disposal site polluted with metal from the hydrometallurgical jarosite zinc production process. Seeds collected at the site were germinated and plants were grown hydroponically under controlled conditions in a excess of Zn. Induction of total soluble POD activity in the root occurred at 1, 5, and 10 mM Zn, indicating Zn accumulation within the root. Accumulation of Zn in leaves was not accompanied by changes in POD activity, but resulted in gradual increase of total antioxidative capacity, which could be partly attributed to accumulation of soluble phenolics. The role of the phenolics/POD system in defense of V. thapsus against zinc is discussed.

  7. FTIR Analysis of Phenolic Compound as Pancreatic Lipase Inhibitor from Inoculated Aquilaria Malaccensis

    International Nuclear Information System (INIS)

    Nur Fahana Jamahseri; Miradatul Najwa Mohd Rodhi; Nur Hidayah Zulkarnain; Nursyuhada Che Husain; Ahmad Fakhri Syahmi Masruddin

    2014-01-01

    This research aimed to discover the potential of inoculated Aquilaria malaccensis extract as a new and safe lipase inhibitor. The phenolic compounds in this plant are expected to promote inhibitory activity towards pancreatic lipase enzyme. Inoculated Aquilaria malaccensis was selected for this research, wherein the parts of this species (bark and leaves) were extracted via hydro distillation process. The extracts of this plant which are hydrosol, oil, and leaves were analyzed for phyto chemical compound via Fourier Transform Infrared Spectroscopy (FTIR). FTIR analysis of the extracts of inoculated Aquilaria malccensis revealed the presence of hydroxyl functional group in both leaves and hydrosol extracts but absence in oil. This validate the presence of phenolic compound in hydrosol and leaves extract. Therefore, the leaves and hydrosol extracts have potential as an anti-obesity agent by inhibiting pancreatic lipase. (author)

  8. Fusarium Infection Causes Phenolic Accumulations and Hormonal Disorders in Orobanche spp.

    Science.gov (United States)

    Aybeke, Mehmet

    2017-12-01

    The physiological effects of Fusarium oxysporum on in-root parasitic weed, Orobanche spp. (broomrape) with references to change in plant hormones and secondary plant constituents were investigated. The levels of IAA, GA, ABA and JA in the experimental group were significantly lower than those in the control group, while the level of SA was higher in the experimental group. In secondary metabolic studies, the quantities of various phenols were measured in the two groups and catechin, syringic acid and p-coumaric acid amounts were significantly higher in the experimental group than in the control group, unlike gallic acid which have a lower amount. Consequently, in the light of all data, it was concluded that Fusarium oxysporum (1) causes heavy hormonal disorder, (2) triggered only SA-mediated defense and (3) induced intensively accumulation of phenolic substances in orobanche. Fusarium oxysporum causes lethal physiological damage on Orobanche spp.

  9. 40 CFR 721.5762 - Aromatic aldehyde phenolic resin (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aromatic aldehyde phenolic resin... Specific Chemical Substances § 721.5762 Aromatic aldehyde phenolic resin (generic). (a) Chemical substance... aromatic aldehyde phenolic resin (PMN P-01-573) is subject to reporting under this section for the...

  10. 21 CFR 177.2410 - Phenolic resins in molded articles.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Phenolic resins in molded articles. 177.2410... as Components of Articles Intended for Repeated Use § 177.2410 Phenolic resins in molded articles. Phenolic resins identified in this section may be safely used as the food-contact surface of molded...

  11. Reaction of formaldehyde with phenols: a computational chemistry study.

    Science.gov (United States)

    Tohru Mitsunaga; Anthony H. Conner; Charles G. Hill

    2001-01-01

    Phenolic resins are important adhesives used by the forest products industry. The phenolic compounds in these resins are derived primarily from petrochemical sources. Alternate sources of phenolic compounds include tannins, lignins, biomass pyrolysis products, and coal gasification products. Because of variations in their chemical structures, the reactivities of these...

  12. Kinetics of biological treatment of phenolic wastewater in a three ...

    African Journals Online (AJOL)

    Phenolic wastewater was treated in a three-phase draft tube fluidized bed reactor containing biofilm. Phenol removal rate with biofilm was evaluated both theoretically and experimentally. The results indicate that biodegradation of phenolic wastewater by biofilm process could be treated as a zero order reaction.

  13. [Production, absorption and excretion of phenols in intestinal obstruction].

    Science.gov (United States)

    Kawamoto, M

    1986-11-01

    In intestinal obstruction, phenols were produced in the distended loop proximal to obstruction by enteric bacteria. Clinically, in 17 cases of non-strangulated intestinal obstruction, phenols were detected in 15 cases and mean concentration of phenols was 4.2 +/- 9.7 micro g/ml(mean +/- 1 SD). In the fraction of phenols, p-cresol was detected in 15 cases and mean concentration was 3.8 +/- 7.7 and phenol was detected in 4 cases and mean concentration was 0.5 +/- 2.6. Phenols were decreased as clinical improvement of intestinal obstruction. Enteric bacteria in enteric juice ranged from 10(4) to 10(10)/ml and its change paralleled to phenols concentration. Mean urinary concentration of phenols in intestinal obstruction was increased to 297 +/- 415 mg/day compared to control (less than 50 mg/day). Its change also paralleled to phenols concentration in enteric juice. Closed ileal loop was made in dogs and phenols were infused in the loop. Phenols were increased in the portal vein 5 min after the infusion and in the femoral vein 60 min after the infusion. Phenols, which was thought to be toxic to the host, were proved to be produced in the distended intestine and excreted from the kidney.

  14. Alkaloids and phenolics biosynthesis increases mango resistance to infection by Ceratocystis fimbriata

    Directory of Open Access Journals (Sweden)

    Leonardo Araujo

    2016-01-01

    Full Text Available ABSTRACT Mango wilt, caused by Ceratocystis fimbriata, is one of the most important diseases affecting mango yields in Brazil. Information regarding the biochemical mechanisms involved in mango resistance against C. fimbriata is absent in the literature. Thus, the present study determined and quantified alkaloids and phenolics in the stem tissue of mango plants from Palmer (susceptible and Ubá (resistant cultivars. Furthermore, it was examined the effect of these secondary metabolites against C. fimbriata growth in vitro. The high-performance liquid chromatography revealed that the concentration of two alkaloids (theobromine and 7-methylxanthine and six phenolic compounds (caffeic acid, p-coumaric acid, gallic acid, protocatechuic acid, catechin and epicatechin in the inoculated plants from cv. Ubá was higher in comparison with inoculated plants from cv. Palmer. The concentration of the secondary metabolites was higher in the non-inoculated plants from cv. Palmer than in the inoculated ones, while the opposite was observed for plants of cv. Ubá. Peaks in the concentrations of secondary metabolites in the inoculated plants from both cultivars occurred at 7 and 14 days after inoculation. The different concentrations (10 to 30 mg∙mL−1 of secondary metabolites added to the Petri dishes greatly inhibited C. fimbriata growth over time. These results suggest that secondary metabolites played an important role in the resistance of mango plants against C. fimbriata infection.

  15. DEGRADATION AND TOXICITY REDUCTION OF PHENOL BY ...

    African Journals Online (AJOL)

    a

    Ultrasonic energy dissipated in the reactor was set at 2.5 W cm-2 through the calorimetric method. ... temperature-controlled condition of 22 ± 2 ºC and a 12/12 light-dark cycle. Culture ... Plot of Ln C/Co vs. time for sonodegradation of phenol.

  16. Interaction of phenolic antioxidants and hydroxyl radicals

    International Nuclear Information System (INIS)

    Wang Wenfeng; Luo Jian; Yao Side; Lian Zhirui; Zhang Jiashan; Lin Nianyun

    1992-01-01

    Based on pulse radiolysis of aqueous solutions of four phenolic antioxidants including green tea polyphenols, quercetin, caffeic acid and sinapic acid the rate constants for reactions of OH and the antioxidants were determined. And green tea polyphenols and quercetin are the strongest antioxidants

  17. Continuous phenol removal using Nocardia hydrocarbonoxydans in ...

    African Journals Online (AJOL)

    Shock load studies are essential to investigate the suitability of biocontactors in degradation of pollutants. In the present work, the degradation of phenol by immobilized Nocardia hydrocarbonoxydans in a spouted bed contactor was conducted. Granular activated carbon (GAC) and polymer beads were tested for the ...

  18. Continuous phenol removal using Nocardia hydrocarbonoxydans in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-02-18

    Feb 18, 2009 ... be removed from waste stream before discharge. Biodegradation of phenol is a widely used method as it is economical and easy to operate as compared to chemi- cal, physical, electrochemical or advanced oxidation process. Attached growth processes have advantage of retain- ing more biomass in the ...

  19. Exposure to phenols, parabens and UV filters

    DEFF Research Database (Denmark)

    Joensen, Ulla N.; Jørgensen, Niels; Thyssen, Jacob P.

    2017-01-01

    Concentrations of eight simple phenols, six parabens and nine UV filters were analysed in urine from 65 FLG loss-of-function mutation carriers and 130 non-carriers (controls). Regression analyses, controlling for urinary dilution and confounders, were performed to estimate associations between FLG mutation...

  20. Phenolic compounds in Ross Sea water

    Science.gov (United States)

    Zangrando, Roberta; Barbaro, Elena; Gambaro, Andrea; Barbante, Carlo; Corami, Fabiana; Kehrwald, Natalie; Capodaglio, Gabriele

    2016-04-01

    Phenolic compounds are semi-volatile organic compounds produced during biomass burning and lignin degradation in water. In atmospheric and paleoclimatic ice cores studies, these compounds are used as biomarkers of wood combustion and supply information on the type of combusted biomass. Phenolic compounds are therefore indicators of paleoclimatic interest. Recent studies of Antarctic aerosols highlighted that phenolic compounds in Antarctica are not exclusively attributable to biomass burning but also derive from marine sources. In order to study the marine contribution to aerosols we developed an analytical method to determine the concentration of vanillic acid, vanillin, p-coumaric acid, syringic acid, isovanillic acid, homovanillic acid, syringaldehyde, acetosyringone and acetovanillone present in dissolved and particle phases in Sea Ross waters using HPLC-MS/MS. The analytical method was validated and used to quantify phenolic compounds in 28 sea water samples collected during a 2012 Ross Sea R/V cruise. The observed compounds were vanillic acid, vanillin, acetovanillone and p-coumaric acid with concentrations in the ng/L range. Higher concentrations of analytes were present in the dissolved phase than in the particle phase. Sample concentrations were greatest in the coastal, surficial and less saline Ross Sea waters near Victoria Land.

  1. Preparation of pure phenols from tars

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, J

    1929-06-18

    A process is disclosed for preparing pure phenols from brown coal and shale tar, characterized in that the alkaline extract obtained from the tar is oxidized and concurrently the alkaline solution is separated from the existing impurities by heating with steam at high temperature, which finally reaches at least 150/sup 0/C.

  2. Production of phenolic compounds from Spirulina maxima ...

    African Journals Online (AJOL)

    The purpose of this study was to illustrate the enhancing process of phenolics synthesis in Spirulina maxima grown in Zarrouk's medium supplemented with different concentration of NaNO3 and/or combined with phenylalanine (L-PA). Also, the protective efficacy of Spirulina polyphenolic (SPP) extracts against ...

  3. Interaction of phenolic antioxidants and hydroxyl radicals

    International Nuclear Information System (INIS)

    Wang, W.F.; Luo, J.; Yao, S.D.; Lian, Z.R.; Zhang, J.S.; Lin, N.Y.

    1993-01-01

    Based on pulse radiolysis of aqueous solutions of four phenolic antioxidants including green tea polyphenols, quercetin, caffeic acid and sinapic acid the rate constants for reactions of OH and the antioxidants were determined. Green tea polyphenols and quercetin are the strongest antioxidants. (author)

  4. Flavonoid, hesperidine, total phenolic contents and antioxidant ...

    African Journals Online (AJOL)

    Additionally, the antioxidant activities were also determined by ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activity. C. hystrix had the highest flavonoid and total phenolic contents while C. aurantifolia had the highest hesperidine content. The antioxidant activity of ...

  5. Separation and characterization of phenolic compounds from ...

    African Journals Online (AJOL)

    Attioua

    2013-07-03

    Jul 3, 2013 ... (Theobroma cacao). J. Mass Spectrom. 38:35-42. Sanchez R, Jauregui LR, Viladomat B, Codina (2004). Qualitative analysis of phenolic compounds in apple Pomace using liquid chromatography coupled to mass spectrometry in tandem mode. Rapid Communun Mass Spectrom. 18:553-563. Saulo LDS ...

  6. Characterization of Phenolic Compounds in Wine Lees

    Directory of Open Access Journals (Sweden)

    Ye Zhijing

    2018-03-01

    Full Text Available The effect of vinification techniques on phenolic compounds and antioxidant activity of wine lees are poorly understood. The present study investigated the antioxidant activity of white and red wine lees generated at early fermentation and during aging. In this study, the total phenol content (TPC, total tannin content (TTC, mean degree of polymerization (mDP, and antioxidant activities of five white and eight red wine lees samples from different vinification backgrounds were determined. The results showed that vinification techniques had a significant (p < 0.05 impact on total phenol and tannin content of the samples. White wine lees had high mDP content compared with red ones. Catechin (50–62% and epicatechin contents were the predominant terminal units of polymeric proanthocyanidin extracted from examined samples. Epigallocatechin was the predominant extension unit of white wine lees, whereas epicatechin was the predominant compound in red wine marc. The ORAC (oxygen radical absorbance capacity assay was strongly correlated with the DPPH (α, α-diphenyl-β-picrylhydrazyl assay, and the results showed the strong antioxidant activities associated with red wine lees (PN > 35 mg Trolox/g FDM (PN: Pinot noir lees; FDM: Freeze-dried Material. This study indicates that tannin is one of the major phenolic compounds available in wine lees that can be useful in human and animal health applications.

  7. Uptake of phenolic compounds from plant foods in human intestinal ...

    Indian Academy of Sciences (India)

    Author Affiliations. GAVIRANGAPPA HITHAMANI1 DHANYA KIZHAKAYIL1 KRISHNAPURA SRINIVASAN1. Department of Biochemistry and Nutrition, CSIR – Central Food Technological Research Institute, Mysore 570 020, India ...

  8. Biological activity of phenolic compounds present in buckwheat plants

    Czech Academy of Sciences Publication Activity Database

    Kalinová, J.; Tříska, Jan; Vrchotová, Naděžda

    2005-01-01

    Roč. 16, č. 1 (2005), s. 123-129 ISSN 0971-4693 Institutional research plan: CEZ:AV0Z60870520 Keywords : biological activity, extract, Fagopyrum esculenthum Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.686, year: 2005

  9. Relationship between red wine grades and phenolics. 1. Tannin and total phenolics concentrations.

    Science.gov (United States)

    Mercurio, Meagan D; Dambergs, Robert G; Cozzolino, Daniel; Herderich, Markus J; Smith, Paul A

    2010-12-08

    Measuring chemical composition is a common approach to support decisions about allocating foods and beverages to grades related to market value. Red wine is a particularly complex beverage, and multiple compositional attributes are needed to account for its sensory properties, including measurement of key phenolic components such as anthocyanins, total phenolics, and tannin, which are related to color and astringency. Color has been shown to relate positively to red wine grade; however, little research has been presented that explores the relationship between astringency-related components such as total phenolic or tannin concentration and wine grade. The aim of this research has been to investigate the relationship between the wine grade allocations of commercial wineries and total phenolic and tannin concentrations, respectively, in Australian Shiraz and Cabernet Sauvignon wines. Total phenolic and tannin concentrations were determined using the methyl cellulose precipitable (MCP) tannin assay and then compared to wine grade allocations made by winemaker panels during the companies' postvintage allocation process. Data were collected from wines produced by one Australian wine company over the 2005, 2006, and 2007 vintages and by a further two companies in 2007 (total wines = 1643). Statistical analysis revealed a positive trend toward higher wine grade allocation and wines that had higher concentrations of both total phenolics and tannin, respectively. This research demonstrates that for these companies, in general, Cabernet Sauvignon and Shiraz wines allocated to higher market value grades have higher total phenolics and higher tannin concentrations and suggests that these compositional parameters should be considered in the development of future multiparameter decision support systems for relevant commercial red wine grading processes. In addition, both tannin and total phenolics would ideally be included because although, in general, a positive relationship

  10. Wine phenolic compounds influence the production of volatile phenols by wine-related lactic acid bacteria.

    Science.gov (United States)

    Silva, I; Campos, F M; Hogg, T; Couto, J A

    2011-08-01

    To evaluate the effect of wine phenolic compounds on the production of volatile phenols (4-vinylphenol [4VP] and 4-ethylphenol [4EP]) from the metabolism of p-coumaric acid by lactic acid bacteria (LAB). Lactobacillus plantarum, Lactobacillus collinoides and Pediococcus pentosaceus were grown in MRS medium supplemented with p-coumaric acid, in the presence of different phenolic compounds: nonflavonoids (hydroxycinnamic and benzoic acids) and flavonoids (flavonols and flavanols). The inducibility of the enzymes involved in the p-coumaric acid metabolism was studied in resting cells. The hydroxycinnamic acids tested stimulated the capacity of LAB to synthesize volatile phenols. Growth in the presence of hydroxycinnamic acids, especially caffeic acid, induced the production of 4VP by resting cells. The hydroxybenzoic acids did not significantly affect the behaviour of the studied strains. Some of the flavonoids showed an effect on the production of volatile phenols, although strongly dependent on the bacterial species. Relatively high concentrations (1 g l(-1) ) of tannins inhibited the synthesis of 4VP by Lact. plantarum. Hydroxycinnamic acids were the main compounds stimulating the production of volatile phenols by LAB. The results suggest that caffeic and ferulic acids induce the synthesis of the cinnamate decarboxylase involved in the metabolism of p-coumaric acid. On the other hand, tannins exert an inhibitory effect. This study highlights the capacity of LAB to produce volatile phenols and that this activity is markedly influenced by the phenolic composition of the medium. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  11. Phenolic Acids, Phenolic Aldehydes and Furanic Derivatives in Oak Chips: American vs. French Oaks

    OpenAIRE

    Cabrita, M.J.; Barrocas Dias, C.; Costa Freitas, A.M.

    2011-01-01

    Phenolic acids (gallic, vanillic, syringic and ellagic acids), phenolic aldehydes (vanillin, syringaldehyde, coniferaldehyde and sinapaldehyde) and furanic derivatives (furfural, 5-methylfurfural and 5-hydroxymethylfurfural) were quantified in commercial American and French oak chips. Chips with different sizes and toast degrees were used. Compounds were extracted directly from the wood samples in order to determine possible differences among woods as well as toast degree. Likewise, the compo...

  12. Solvent Effect on Antioxidant Activity and Total Phenolic Content of Betula alba and Convolvulus arvensi

    OpenAIRE

    Mohd Azman A. Nurul; Husni Shafik; Almajano P. Maria; Gallego G. Maria

    2013-01-01

    The potential of using herbal Betula alba (BA) and Convolvulus arvensis (CA) as a natural antioxidant for food applications were investigated. Each plant extract was prepared by using pure ethanol, different concentration of ethanol aqueous solutions, including 50% and 75%, 50% methanol aqueous and water. Total phenolic content (TPC) was determined using Folin–Ciocalteau method and antioxidant activity were analyzed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals, trolox equivalent antioxida...

  13. Stability of phenolic compounds of the propolis processed by ionizing radiation

    International Nuclear Information System (INIS)

    Matsuda, Andrea H.; Mastro, Nelida L. del

    2002-01-01

    Propolis is the generic term of a resin of different colors and consistency collected by bees, Apis mellifera, from diverse parts of plants, buds and resinous exudates. It possesses antibacterial , antifungal and antiviral properties and many other biological activities such as antiinflammatory, antiulcer, local anaesthetic, antitumor, etc. The aim of this work is to study the effect of 60 Co ionizing radiation on the stability of phenolic compounds of propolis. (author)

  14. Food Ingredient Extracts of Cyclopia subternata (Honeybush): Variation in Phenolic Composition and Antioxidant Capacity

    OpenAIRE

    Beer, Dalene de; Schulze, Alexandra; Joubert, Elizabeth; Villiers, André de; Malherbe, Christiaan; Stander, Maria

    2012-01-01

    Cyclopia subternata plants are traditionally used for the production of the South African herbal tea, honeybush, and recently as aqueous extracts for the food industry. A C. subternata aqueous extract and mangiferin (a major constituent) are known to have anti-diabetic properties. Variation in phenolic composition and antioxidant capacity is expected due to cultivation largely from seedlings, having implications for extract standardization and quality control. Aqueous extracts from 64 seedlin...

  15. Paraplegia after intercostal neurolysis with phenol

    Directory of Open Access Journals (Sweden)

    Gollapalli L

    2014-11-01

    Full Text Available Lakshman Gollapalli, Rudramanaidu Muppuri Department of Anesthesiology and Pain Medicine, Wayne State University/Detroit Medical Center, Detroit, MI, USA Abstract: In patients with advanced stages of cancer, severe pain is commonly encountered and is very difficult to treat. It affects the quality of life of the patient and the families involved. Pain can be managed using analgesics and adjuvant therapy. However, studies have shown that at least 10%–15% of patients fail to control pain adequately and will experience severe pain. We discuss the case of a 66-year-old female with metastatic adenoid cystic carcinoma of the left submandibular gland and developed paraplegia following intercostal neurolysis with phenol. After a successful diagnostic T6 to T12 intercostal nerve block, the patient was scheduled for an intercostal neurolytic block. We injected 2 mL of 10% aqueous phenol at each level on the left from the T6 to T12 ribs. One hour after the procedure, the patient developed bilateral lower extremity weakness with difficulty moving. A physical examination showed the absence of sensation to pinpricks and vibration from T10 to S5 and an absence of anal sphincter tone and sensation. Magnetic resonance images of the thoracic and lumbar spine showed leptomeningeal metastatic disease and myelitis. We postulate that the paraplegia could be from phenol diffusing along either the spinal nerves or the paravertebral venous plexus into the subarachnoid space. This case report points to the risks involved with phenol neurolysis close to the spine, and we propose alternative methods to minimize neurological complications. Keywords: intercostal neurolysis, pain, phenol, paraplegia 

  16. Extraction and antioxidant activities of two species Origanum plant ...

    African Journals Online (AJOL)

    The antioxidant of ethanolic extract of two species of Origanum and essential oil of plant Origanum vulgare were investigated and also the total phenolic and flavonoid content measured. The radical scavenging activity was measured using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. Total phenolic and flavonoid ...

  17. Phenolic compounds and antioxidant capacity in different-colored and non-pigmented berries of bilberry (Vaccinium myrtillus L.)

    Czech Academy of Sciences Publication Activity Database

    Colak, N.; Primetta, A. K.; Riihinen, K. R.; Jaakola, L.; Grúz, Jiří; Strnad, Miroslav; Torun, H.; Ayaz, F. A.

    2017-01-01

    Roč. 20, DEC (2017), s. 67-78 ISSN 2212-4292 Institutional support: RVO:61389030 Keywords : Anthocyanin * Antioxidant * Bilberry * Phenolic acid * Vaccinium myrtillus Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 1.964, year: 2016

  18. Absorption Profile of (Poly)Phenolic Compounds after Consumption of Three Food Supplements Containing 36 Different Fruits, Vegetables, and Berries.

    Science.gov (United States)

    Bresciani, Letizia; Martini, Daniela; Mena, Pedro; Tassotti, Michele; Calani, Luca; Brigati, Giacomo; Brighenti, Furio; Holasek, Sandra; Malliga, Daniela-Eugenia; Lamprecht, Manfred; Del Rio, Daniele

    2017-02-26

    The market of plant-based nutraceuticals and food supplements is continuously growing due to the increased consumer demand. The introduction of new products with relevant nutritional characteristics represents a new way of providing bioactive compounds and (poly)phenols to consumers, becoming a strategy to ideally guarantee the health benefits attributed to plant foodstuffs and allowing the increase of daily bioactive compound intake. A paramount step in the study of nutraceuticals is the evaluation of the bioavailability and metabolism of their putatively active components. Therefore, the aim of the present study was to investigate the absorption profile of the (poly)phenolic compounds contained in three different plant-based food supplements, made of 36 different plant matrices, which were consumed by 20 subjects in an open one-arm study design. Blood samples were collected at baseline and 1, 2, 5, and 10 h after capsule intake. Twenty quantifiable metabolites deriving from different (poly)phenolic compounds were identified. Results showed that the consumption of the three capsules allowed the effective absorption of several (poly)phenolic compounds and metabolites appearing at different times in plasma, thereby indicating different absorption profiles. The capsules thus ensured potential health-promoting molecules to be potentially available to target tissues and organs.

  19. Directional liquefaction of biomass for phenolic compounds and in situ hydrodeoxygenation upgrading of phenolics using bifunctional catalysts

    Science.gov (United States)

    Junfeng Feng; Chung-yun Hse; Kui Wang; Zhongzhi Yang; Jianchun Jiang; Junming Xu

    2017-01-01

    Phenolic compounds derived from biomass are important feedstocks for the sustainable production of hydrocarbon biofuels. Hydrodeoxygenation is an effective process to remove oxygen-containing functionalities in phenolic compounds. This paper reported a simple method for producing hydrocarbons by liquefying biomass and upgrading liquefied products. Three phenolic...

  20. Effects of Organic and Conventional Growth Systems on the Content of Flavonoids in Onions and Phenolic Acids in Carrots and Potatoes

    DEFF Research Database (Denmark)

    Soltoft, M.; Nielsen, J.; Lauren, K.H.

    2010-01-01

    The demand for organic food products is steadily increasing partly due to the expected health benefits of organic food consumption. Polyphenols, such as flavonoids and phenolic acids, are a group of secondary plant metabolites with presumably beneficial health effects, and contents in plants....... The contents of flavonoids and phenolic acids in plants were analyzed by pressurized liquid extraction and high-performance liquid chromatography ultraviolet quantification. In onions and carrots, no statistically significant differences between growth systems were found for any of the analyzed polyphenols...

  1. Electrochemical remediation of the phenol contaminated clay soils

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, V.A.; Babakina, O.A.; Lazareva, E.V. [Moscow State Univ. (Russian Federation)

    2001-07-01

    The study phenol migration induced by electric current is multiple analyze, because determine the governing factor of electrokinetic remediation is one more problem. The governing factor of phenol removal can be electroosmotic water transport, ionic migration or phenol destruction caused by electrolysis or oxidizing agents. Therefore research objective was study mechanism of removal phenol from soils with different mineral composition. To answer on set issue should be studied the effectiveness of electrochemcial remediation for contaminated soil and determination electrokinetic characteristics of interaction clay's particles with phenol solution. (orig.)

  2. Removal of Phenol in Aqueous Solution Using Kaolin Mineral Clay

    International Nuclear Information System (INIS)

    Sayed, M.S.

    2008-01-01

    Kaolin clay were tested for phenol removal as toxic liquid waste from aqueous waste water. Several experimental conditions such as weight and particle size of clay were investigated to study batch kinetic techniques, also the ph and concentration of the phenol solution were carried out. The stability of the Langmuir adsorption model of the equilibrium data were studied for phenol sorbent clay system. Infrared spectra, thermogravimetric and differential thermal analysis techniques were used to characterize the behavior of kaolin clay and kaolin clay saturated with phenol. The results obtained showed that kaolin clay could be used successfully as an efficient sorbent material to remove phenol from aqueous solution

  3. Application of HPLC and ESI-MS techniques in the analysis of phenolic acids and flavonoids from green leafy vegetables (GLVs).

    Science.gov (United States)

    Kumar, B Ramesh

    2017-12-01

    Diets containing high proportions of fruits and vegetables reduce the risk of onset of chronic diseases. The role of herbal medicines in improving human health is gaining popularity over the years, which also increases the need for safety and efficiency of these products. Green leafy vegetables (GLVs) are the richest source of phenolic compounds with excellent antioxidant properties. Increased consumption of diets containing phenolic compounds may give positive and better results to human health and significantly improves the immune system. Highly selective, susceptible and versatile analytical techniques are necessary for extraction, identification, and quantification of phenolic compounds from plant extracts, which helps to utilize their important biological properties. Recent advances in the pre-treatment procedures, separation techniques and spectrometry methods are used for qualitative and quantitative analysis of phenolic compounds. The online coupling of liquid chromatography with mass spectrometry (LC-MS) has become a useful tool in the metabolic profiling of plant samples. In this review, the separation and identification of phenolic acids and flavonoids from GLVs by LC-MS have been discussed along with the general extraction procedures and other sources of mass spectrometer used. The review is devoted to the understanding of the structural configuration, nature and accumulation pattern of phenolic acids and flavonoids in plants and to highlighting the recent developments in the chemical investigation of these compounds by chromatographic and spectroscopic techniques. It concludes with the advantages of the combination of these two methods and prospects.

  4. Environmental process for elimination of phenolic water present in refinery gasoline tanks; Processo ambiental para eliminacao de agua fenolica presente em tanques de gasolina de refinarias de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Correa Junior, Bentaci; Pedroso, Osmar V.; Furlan, Luis T. [PETROBRAS, SP (Brazil). Refinaria de Paulinia

    2004-07-01

    Gasoline production in petroleum refineries usually implies carrying high phenol contents in water after treatment systems. Phenols are powerful bactericides and, therefore, harmful to microorganisms present in wastewater treatment plants and in rivers. Due to this reason, usually controlled phenolic water drainage is performed, enabling gasoline quality improvement, without jeopardizing the biological treatment. Increase of phenolic contents in the effluent, due to operational disarray during the drainage of gasoline tanks may cause inhibition or even mortality of the existing microorganisms in the wastewater treatment plants. Aiming at changing the traditional treatment logic of environmental demands at the 'end of pipe', sending the phenolic water to the sour water treatment systems was proposed and implemented, which in turn, is reutilized by the latter in the crude desalination of the Distillation Units, where the phenols are reincorporated to the crude oil, preventing negative consequences to the wastewater treatment plant. The implemented process has demonstrated that premises were correct, enabling to implement process flows quite higher than drainage flows, what has meant productivity gains and environmental improvement. (author)

  5. Differences in bioactivity of three endemic Nepeta species arising from main terpenoid and phenolic constituents

    Directory of Open Access Journals (Sweden)

    Nestorović-Živković Jasmina

    2018-01-01

    Full Text Available Methanol extracts of three endemic Nepeta species were analyzed for their main secondary metabolites, terpenes and phenolics, and further investigated for antioxidant capacity and embryonic toxicity in zebrafish. UHPLC/DAD/(± HESI-MS/MS analysis showed that the dominant compound in N. rtanjensis was trans,cis-nepetalactone, the cis,trans isomer of this monoterpene lactone was dominant in N. sibirica, while nepetalactone was detected only in traces in N. nervosa. In all investigated species, rosmarinic acid was the dominant phenolic compound, while other identified phenolic acids (chlorogenic, neochlorogenic and caffeic were present in considerably lower amounts. ABTS and DPPH assays showed that the methanol extracts of N. rtanjensis, N. sibirica and especially N. nervosa possessed strong antioxidant activities, with the FRAP assay revealing high ferric-reducing abilities for all three tested species. Such a strong antioxidant potential, especially as manifested in the DPPH and FRAP assays, can be attributed to phenolic acids, and in the first place to rosmarinic acid. Increased lethality of zebrafish embryos in any of the treatments was not observed, but several toxic effects on embryonic development were recorded, such as pericardial and yolk sac edema. As in other Nepeta species, the three studied endemic species possessed a great potential for food conservation or as medicinal supplements if applied in optimized concentrations; however, alternative sources of plant material (e.g. field cultivation should be established bearing in mind their vulnerability in nature.

  6. TOTAL PHENOLIC CONTENT, ANTIOXIDANT AND ANTIBACTERIAL ACTIVITIES OF THE EXTRACT OF EPHEDRA PROCERA FISCH. ET MEY.

    Science.gov (United States)

    Dehkordi, Naser Vahed; Kachouie, Mehrdad Ataie; Pirbalouti, Abdollah Ghasemi; Malekpoor, Fatemeh; Rabei, Mohammad

    2015-01-01

    Ephedra prcera belonging to the family Ephedraceae is a poison and medicinal plant. The main aim of present study was to determine total phenolic content and antioxidant and antibacterial activities of ethanolic extract from the aerial parts of E. procera collected from a natural habitat in Chaharmahal va Bakhtiari province, Southwestern Iran. The total phenolic content of the extract by Folin-Ciocalteu method and the antioxidant activity using DPPH assay were determined. The antibacterial activity, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) of the extract were evaluated against five bacteria, including Proteus vulgaris, Pseudomonas aeruginosa, Enteobacter aeogenes, Bacillus ceirus and Staphylococcus aureus. Total phenolic content in the extract of E. procera was 0.718 mg tannic acid/g dry weight extract. The results indicated that the ethanolic extract of E. piocera exhibited radical scavenging activity. In addition, the results of this study confirmed that the ethanolic extract of E. procera exhibited antibacterial activity. In conclusion, the extract of E. piocera could be an important source of phenolic components with antioxidant capacity and antibacterial activity.

  7. Phylogenetic trends in phenolic metabolism of milkweeds (Asclepias): evidence for escalation.

    Science.gov (United States)

    Agrawal, Anurag A; Salminen, Juha-Pekka; Fishbein, Mark

    2009-03-01

    Although plant-defense theory has long predicted patterns of chemical defense across taxa, we know remarkably little about the evolution of defense, especially in the context of directional phylogenetic trends. Here we contrast the production of phenolics and cardenolides in 35 species of milkweeds (Asclepias and Gomphocarpus). Maximum-likelihood analyses of character evolution revealed three major patterns. First, consistent with the defense-escalation hypothesis, the diversification of the milkweeds was associated with a trend for increasing phenolic production; this pattern was reversed (a declining evolutionary trend) for cardenolides, toxins sequestered by specialist herbivores. Second, phylogenetically independent correlations existed among phenolic classes across species. For example, coumaric acid derivatives showed negatively correlated evolution with caffeic acid derivatives, and this was likely driven by the fact that the former are used as precursors for the latter. In contrast, coumaric acid derivatives were positively correlated with flavonoids, consistent with competition for the precursor p-coumaric acid. Finally, of the phenolic classes, only flavonoids showed correlated evolution (positive) with cardenolides, consistent with a physiological and evolutionary link between the two via malonate. Thus, this study presents a rigorous test of the defense-escalation hypothesis and a novel phylogenetic approach to understanding the long-term persistence of physiological constraints on secondary metabolism.

  8. Phenolic composition and antioxidant capacity of pomaces from four grape varieties (Vitis vinifera L.).

    Science.gov (United States)

    de la Cerda-Carrasco, Aarón; López-Solís, Remigio; Nuñez-Kalasic, Hugo; Peña-Neira, Álvaro; Obreque-Slier, Elías

    2015-05-01

    Phenolic compounds are widely distributed secondary metabolites in plants usually conferring them with unique taste, flavour and health-promoting properties. In fruits of Vitis vinifera L., phenolic composition is highly dependent on grape variety. Differential extraction of these compounds from grapes during winemaking is critically associated with wine quality. By-products of winemaking, such as grape pomace, can contain significant amounts of polyphenols. However, information concerning the varietal effect on wine grape pomace is scarce. In this study, pomaces from Sauvignon Blanc (SB), Chardonnay (CH), Cabernet Sauvignon (CS) and Carménère (CA) grape varieties were characterized spectroscopically and by HPLC-DAD analysis. White grape pomaces (SB and CH) presented higher antioxidant capacities and higher contents of total phenols and total proanthocyanidins compared with red grape pomaces (CS and CA), whereas the latter showed much higher anthocyanin levels and colour intensities. Concentrations of monomeric proanthocyanidins and low-molecular-weight phenols in the four grape pomace varieties were significantly different. Grape pomaces from four varieties showed high but diverse contents of polyphenols and antioxidant capacities. Thus grape pomaces represent an important potential source of polyphenols, which could be useful for nutritional and/or pharmacological purposes. © 2014 Society of Chemical Industry.

  9. Arylsulfotransferase from Clostridium innocuum-A new enzyme catalyst for sulfation of phenol-containing compounds.

    Science.gov (United States)

    Mozhaev, Vadim V; Khmelnitsky, Yuri L; Sanchez-Riera, Fernando; Maurina-Brunker, Julie; Rosson, Reinhardt A; Grund, Alan D

    2002-06-05

    Arylsulfotransferase (AST, EC 2.8.2.22), an enzyme capable of sulfating a wide range of phenol-containing compounds was purified from a Clostridium innocuum isolate (strain 554). The enzyme has a molecular weight of 320 kDa and is composed of four subunits. Unlike many mammalian and plant arylsulfotransferases, AST from Clostridium utilizes arylsulfates, including p-nitrophenyl sulfate, as sulfate donors, and is not reactive with 3-phosphoadenosine-5'-phosphosulfate (PAPS). The enzyme possesses broad substrate specificity and is active with a variety of phenols, quinones and flavonoids, but does not utilize primary and secondary alcohols and sugars as substrates. Arylsulfotransferase tolerates the presence of 10 vol% of polar cosolvents (dimethyl formamide, acetonitrile, methanol), but loses significant activity at higher solvent concentrations of 30-40 vol%. The enzyme retains high arylsulfotransferase activity in biphasic systems composed of water and nonpolar solvents, such as cyclohexane, toluene and chloroform, while in biphasic systems with more polar solvents (ethyl acetate, 2-pentanone, methyl tert-butyl ether, and butyl acetate) the enzyme activity is completely lost. High yields of AST-catalyzed sulfation were achieved in reactions with several phenols and tyrosine-containing peptides. Overall, AST studied in this work is a promising biocatalyst in organic synthesis to afford efficient sulfation of phenolic compounds under mild reaction conditions. Copyright 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 78: 567-575, 2002.

  10. Enhancing Phenolic Contents and Antioxidant Potentials of Antidesma thwaitesianum by Supercritical Carbon Dioxide Extraction

    Directory of Open Access Journals (Sweden)

    Warut Poontawee

    2015-01-01

    Full Text Available Supercritical fluid extraction (SFE has increasingly gained attention as an alternative technique for extraction of natural products without leaving toxic residues in extracts. Antidesma thwaitesianum Muell. Arg. (Phyllanthaceae, or ma mao, has been reported to exhibit antioxidant health benefits due to its phenolic constituents. To determine whether SFE technique could impact on phenolic contents and associated antioxidant potentials, ripe fruits of Antidesma thwaitesianum (Phyllanthaceae were extracted using supercritical carbon dioxide (SC-CO2 and conventional solvents (ethanol, water. The results showed that the SC-CO2 extract contained significantly higher yield, total phenolic, flavonoid, and proanthocyanidin contents than those obtained from ethanol and water. It also demonstrated the greatest antioxidant activities as assessed by ABTS radical cation decolorization, DPPH radical scavenging, and ferric reducing antioxidant power (FRAP assays. Further analysis using high-performance liquid chromatography with diode array and mass spectrometry detectors (HPLC-DAD/MSD revealed the presence of catechin as a major phenolic compound of Antidesma thwaitesianum (Phyllanthaceae, with the maximum amount detected in the SC-CO2 extract. These data indicate that SFE technology improves both quantity and quality of Antidesma thwaitesianum fruit extract. The findings added more reliability of using this technique to produce high added value products from this medicinal plant.

  11. Effects of Increasing Doses of UV-B on Main Phenolic Acids Content, Antioxidant Activity and Estimated Biomass in Lavandin (Lavandula x intermedia).

    Science.gov (United States)

    Usano-Alemany, Jaime; Panjai, Lachinee

    2015-07-01

    Lavandin is a well-known aromatic plant cultivated mainly for its valuable essential oil. Nonetheless, little attention has been paid so far to the quantification of other natural products such as polyphenols. Accordingly, we examined the effect of increasing doses of UV-B radiation on the main phenolic content, antioxidant activity and estimated biomass of one year old lavandin pots compared with pots grown outdoors. Significantly higher total phenolic content and concentration of main polyphenols have been found in outdoor plants. Rosmarinic acid has been described as the major phenolic compound in methanolic extracts (max. 25.9 ± 9.7 mg/g(-1) DW). Furthermore, we found that increasing doses of UV-B promote the plant growth of this species as well as the accumulation of phenolic compounds although with less antioxidant capacity in scavenging DPPH radicals. On the other hand, our results showed a remarkable variability among individual plants regarding the content of major phenolic acids. The application of UV-B doses during plant growth could be a method to promote biomass in this species along with the promotion of higher content of valuable secondary metabolites.

  12. PHYTOCHEMICAL STUDY AND EVALUATION OF THE ANTIMICROBIAL AND ANTIOXIDANT ACTIVITY OF ESSENTIAL OILS AND PHENOLIC COMPOUNDS OF PISTACIA LENTISCUS L

    Directory of Open Access Journals (Sweden)

    K. Arab

    2014-06-01

    Full Text Available This work aims for the phytochemical study and evaluation of the antioxidant activity of phenolic compounds and essential oils of medicinal plant Pistacia lentiscus L. quantitatively and qualitatively. Through the results obtained, it appears that the leaves and fruits are rich in substances with a high antioxidant power. The yield of the phenolic compounds obtained from 10g to powder of plant is for leaves 116.49 % and 61.34 % for fruit . For essential oils, it is 0.253 ± 0.131 % for 100 g of plant material. The chromatographic profile of the essential oil of Pistacia lentiscus L. shows that monoterpenes are the major compound (9.675 % of identified molecules. The strong antioxidant activity of extracts obtained only confirms the traditional use of this plant by the local population.

  13. Electrochemical removal of phenol from oil refinery wastewater.

    Science.gov (United States)

    Abdelwahab, O; Amin, N K; El-Ashtoukhy, E-S Z

    2009-04-30

    This study explores the possibility of using electrocoagulation to remove phenol from oil refinery waste effluent using a cell with horizontally oriented aluminum cathode and a horizontal aluminum screen anode. The removal of phenol was investigated in terms of various parameters namely: pH, operating time, current density, initial phenol concentration and addition of NaCl. Removal of phenol during electrocoagulation was due to combined effect of sweep coagulation and adsorption. The results showed that, at high current density and solution pH 7, remarkable removal of 97% of phenol after 2h can be achieved. The rate of electrocoagulation was observed to increase as the phenol concentration decreases; the maximum removal rate was attained at 30 mg L(-1) phenol concentration. For a given current density using an array of closely packed Al screens as anode was found to be more effective than single screen anode, the percentage phenol removal was found to increase with increasing the number of screens per array. After 2h of electrocoagulation, 94.5% of initial phenol concentration was removed from the petroleum refinery wastewater. Energy consumption and aluminum Electrode consumption were calculated per gram of phenol removed. The present study shows that, electrocoagulation of phenol using aluminum electrodes is a promising process.

  14. Phenolic Molecules in Virgin Olive Oils: a Survey of Their Sensory Properties, Health Effects, Antioxidant Activity and Analytical Methods. An Overview of the Last Decade Alessandra

    Directory of Open Access Journals (Sweden)

    Giovanni Lercker

    2007-08-01

    Full Text Available Among vegetable oils, virgin olive oil (VOO has nutritional and sensory characteristics that to make it unique and a basic component of the Mediterranean diet. The importance of VOO is mainly attributed both to its high content of oleic acid a balanced contribution quantity of polyunsaturated fatty acids and its richness in phenolic compounds, which act as natural antioxidants and may contribute to the prevention of several human diseases. The polar phenolic compounds of VOO belong to different classes: phenolic acids, phenyl ethyl alcohols, hydroxy-isochromans, flavonoids, lignans and secoiridoids. This latter family of compounds is characteristic of Oleaceae plants and secoiridoids are the main compounds of the phenolic fraction. Many agronomical and technological factors can affect the presence of phenols in VOO. Its shelf life is higher than other vegetable oils, mainly due to the presence of phenolic molecules having a catechol group, such as hydroxytyrosol and its secoiridoid derivatives. Several assays have been used to establish the antioxidant activity of these isolated phenolic compounds. Typical sensory gustative properties of VOO, such as bitterness and pungency, have been attributed to secoiridoid molecules. Considering the importance of the phenolic fraction of VOO, high performance analytical methods have been developed to characterize its complex phenolic pattern. The aim of this review is to realize a survey on phenolic compounds of virgin olive oils bearing in mind their chemical-analytical, healthy and sensory aspects. In particular, starting from the basic studies, the results of researches developed in the last ten years will be focused.

  15. The arms race between heliconiine butterflies and Passiflora plants - new insights on an ancient subject

    DEFF Research Database (Denmark)

    Pinheiro de Castro, Érika Cristina; Zagrobelny, Mika; Cardoso, Márcio Z.

    2018-01-01

    , are morphological defences reported in this plant genus. Moreover, Passiflora plants are well protected chemically, not only by cyanogenic glucosides, but also by other compounds such as alkaloids, flavonoids, saponins, tannins and phenolics. Heliconiines can synthesize cyanogenic glucosides themselves...

  16. Evaluation of antioxidant capacity and synergistic associations of quinonemethide triterpenes and phenolic substances from Maytenus ilicifolia (Celastraceae).

    Science.gov (United States)

    Dos Santos, Vânia Aparecida de Freitas Formenton Macedo; Dos Santos, Daniela Pereira; Castro-Gamboa, Ian; Zanoni, Maria Valnice Boldrin; Furlan, Maysa

    2010-10-11

    This work describes the isolation of the secondary metabolites identified as the quinonemethides maytenin (1) and pristimerin (2) from Maytenus ilicifolia extracts obtained from root barks of adult plants and roots of seedlings and their quantification by high performance liquid chromatography coupled to a diode array detector. The electrochemical profiles obtained from cyclic voltammetry and a coulometric detector coupled to high-performance liquid chromatography contributed to the evaluation of their antioxidant capacity. The antioxidant properties of individual components and the crude extracts of the root barks of Maytenus ilicifolia were compared and the possible synergistic associations of quinonemethide triterpenes and phenolic substances were investigated by using rutin as a model phenolic compound.

  17. INVESTIGATION OF PHENOLIC COMPOUNDS IN EXTRACTS FROM THE LEAVES OF LAURUS NOBILIS L.

    Directory of Open Access Journals (Sweden)

    N. M. Nasuhova

    2017-01-01

    Full Text Available Laurus nobilis L. is an evergreen dioecious, rarely monecious plant up to 15 m high. Its natural area includes Mediterranean countries. For a long time this plant has been actively cultivated as a decorative plant in (Europe, Russia, USA and others as well as in Turkey, Algeria, Morocco, Spain, France, Italy, Portugal, Mexico and Russia. Chemical composition of the Laurus leaves include essential oil components, sesquiterpenic lactones and phenolic compounds as the principal active groups of compounds.The aim of the study was the identification of phenolic compounds in water and water alcohol extracts from leaves of Laurus nobilis.Materials and methods. Examinations of qualitative composition of phenolic complex in extracts from Laurus samples under study were carried out using «Hitachi Chromaster» high-performance liquid chromatographer with «Column Oven 5310», «Pump 5110» and «UV-detector 5410».Results and discussion. The samples of Laurus nobilis leaves gathered in outskirts of Alushta (Republic of Crimea in July 2016 were the objects if the study. We identified caffeic, gallic, and chicoric acids, epigallocatechin gallate, luteolin-7-glycoside in the extracts obtained using ethanol 70%. And caffeic, gallic, isoferulic acids, dicoumarin, epicatechin, kaempferol, and isoquercitrin in ethanol 40% extracts. In water extracts we found the presence of ascorbic, gallic, and vanillic acids, epicatechin, quercetin-3-glycoside and kaempferol-3-galactoside.Conclusion. As the result of the Laurus nobilis leaves samples study, gathered in Alushta outskirts, ascorbic acid and 13 phenolic compounds were identified in water and water-alcohol (40% and 70% extracts using high performance liquid chromatography. Isoferulic and chicoric acids, epigallocatechin gallate, dicoumarin, kaempferol, isoquercitrin, kaempferol-3-galactoside and luteolin-7-glycoside were identified in Laurus nobilis leaves for the first time. 

  18. Bioactivity of Olive Oil Phenols in Neuroprotection

    Directory of Open Access Journals (Sweden)

    Cristina Angeloni

    2017-10-01

    Full Text Available Neurological disorders such as stroke, Alzheimer’s and Parkinson’s diseases are associated with high morbidity and mortality, and few or no effective options are available for their treatment. These disorders share common pathological characteristics like the induction of oxidative stress, abnormal protein aggregation, perturbed Ca2+ homeostasis, excitotoxicity, inflammation and apoptosis. A large body of evidence supports the beneficial effects of the Mediterranean diet in preventing neurodegeneration. As the Mediterranean diet is characterized by a high consumption of extra-virgin olive oil it has been hypothesized that olive oil, and in particular its phenols, could be responsible for the beneficial effect of the Mediterranean diet. This review provides an updated vision of the beneficial properties of olive oil and olive oil phenols in preventing/counteracting both acute and chronic neurodegenerative diseases.

  19. Bioactivity of Olive Oil Phenols in Neuroprotection

    Science.gov (United States)

    Angeloni, Cristina; Barbalace, Maria Cristina

    2017-01-01

    Neurological disorders such as stroke, Alzheimer’s and Parkinson’s diseases are associated with high morbidity and mortality, and few or no effective options are available for their treatment. These disorders share common pathological characteristics like the induction of oxidative stress, abnormal protein aggregation, perturbed Ca2+ homeostasis, excitotoxicity, inflammation and apoptosis. A large body of evidence supports the beneficial effects of the Mediterranean diet in preventing neurodegeneration. As the Mediterranean diet is characterized by a high consumption of extra-virgin olive oil it has been hypothesized that olive oil, and in particular its phenols, could be responsible for the beneficial effect of the Mediterranean diet. This review provides an updated vision of the beneficial properties of olive oil and olive oil phenols in preventing/counteracting both acute and chronic neurodegenerative diseases. PMID:29068387

  20. Selenite modulates the level of phenolics and nutrient element to alleviate the toxicity of arsenite in rice (Oryza sativa L.).

    Science.gov (United States)

    Chauhan, Reshu; Awasthi, Surabhi; Tripathi, Preeti; Mishra, Seema; Dwivedi, Sanjay; Niranjan, Abhishek; Mallick, Shekhar; Tripathi, Pratibha; Pande, Veena; Tripathi, Rudra Deo

    2017-04-01

    Arsenic (As) contamination of paddy rice is a serious threat all over the world particularly in South East Asia. Selenium (Se) plays important role in protection of plants against various abiotic stresses including heavy metals. Moreover, arsenite (AsIII) and selenite (SeIV) can be biologically antagonistic due to similar electronic configuration and sharing the common transporter for their uptake in plant. In the present study, the response of oxidative stress, phenolic compounds and nutrient elements was analyzed to investigate Se mediated As tolerance in rice seedlings during AsIII and SeIV exposure in hydroponics. Selenite (25µM) significantly decreased As accumulation in plant than As (25µM) alone treated plants. Level of oxidative stress related parameters viz., reactive oxygen species (ROS), lipid peroxidation, electrical conductivity, nitric oxide and pro-oxidant enzyme (NADPH oxidase), were in the order of As>As+Se>control>Se. Selenium ameliorated As phytotoxicity by increased level of phenolic compounds particularly gallic acid, protocatechuic acid, ferulic acid and rutin and thiol metabolism related enzymes viz., serine acetyl transferase (SAT) and cysteine synthase (CS). Selenium supplementation enhanced the uptake of nutrient elements viz., Fe, Mn, Co, Cu, Zn, Mo, and improved plant growth. The results concluded that Se addition in As contaminated environment might be an important strategy to reduce As uptake and associated phytotoxicity in rice plant by modulation of phenolic compounds and increased uptake of nutrient elements. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Spice phenolics inhibit human PMNL 5-lipoxygenase.

    Science.gov (United States)

    Prasad, N Satya; Raghavendra, R; Lokesh, B R; Naidu, K Akhilender

    2004-06-01

    A wide variety of phenolic compounds and flavonoids present in spices possess potent antioxidant, antimutagenic and anticarcinogenic activities. We examined whether 5-lipoxygenase (5-LO), the key enzyme involved in biosynthesis of leukotrienes is a possible target for the spices. Effect of aqueous extracts of turmeric, cloves, pepper, chili, cinnamon, onion and also their respective active principles viz., curcumin, eugenol, piperine, capsaicin, cinnamaldehyde, quercetin, and allyl sulfide were tested on human PMNL 5-LO activity by spectrophotomeric and HPLC methods. The formation of 5-LO product 5-HETE was significantly inhibited in a concentration-dependent manner with IC(50) values of 0.122-1.44 mg for aqueous extracts of spices and 25-83 microM for active principles, respectively. The order of inhibitory activity was of quercetin>eugenol>curcumin>cinnamaldehyde>piperine>capsaicin>allyl sulfide. Quercetin, eugenol and curcumin with one or more phenolic ring and methoxy groups in their structure showed high inhibitory effect, while the non-phenolic spice principle allyl sulfide showed least inhibitory effect on 5-LO. The inhibitory effect of quercetin, curcumin and eugenol was similar to that of synthetic 5-LO inhibitors-phenidone and NDGA. Moreover, the inhibitory potency of aqueous extracts of spice correlated with the active principles of their respective spices. The synergistic or antagonistic effect of mixtures of spice active principles and spice extracts were investigated and all the combinations of spice active principles/extracts exerted synergistic effect in inhibiting 5-LO activity. These findings clearly suggest that phenolic compounds present in spices might have physiological role in modulating 5-LO pathway.

  2. Electronic Energy Levels and Band Alignment for Aqueous Phenol and Phenolate from First Principles.

    Science.gov (United States)

    Opalka, Daniel; Pham, Tuan Anh; Sprik, Michiel; Galli, Giulia

    2015-07-30

    Electronic energy levels in phenol and phenolate solutions have been computed using density functional theory and many-body perturbation theory. The valence and conduction bands of the solvent and the ionization energies of the solutes have been aligned with respect to the vacuum level based on the concept of a computational standard hydrogen electrode. We have found significant quantitative differences between the generalized-gradient approximation, calculations with the HSE hybrid functional, and many-body perturbation theory in the G0W0 approximation. For phenol, two ionization energies below the photoionization threshold of bulk water have been assigned in the spectrum of Kohn-Sham eigenvalues of the solution. Deprotonation to phenolate was found to lift a third occupied energy level above the valence band maximum of the solvent which is characterized by an electronic lone pair at the hydroxyl group. The second and third ionization energies of phenolate were found to be very similar and explain the intensity pattern observed in recent experiments using liquid-microjet photoemission spectroscopy.

  3. Characterization of Phenolic Compounds in Wine Lees.

    Science.gov (United States)

    Zhijing, Ye; Shavandi, Amin; Harrison, Roland; Bekhit, Alaa El-Din A

    2018-03-25

    The effect of vinification techniques on phenolic compounds and antioxidant activity of wine lees are poorly understood. The present study investigated the antioxidant activity of white and red wine lees generated at early fermentation and during aging. In this study, the total phenol content (TPC), total tannin content (TTC), mean degree of polymerization (mDP), and antioxidant activities of five white and eight red wine lees samples from different vinification backgrounds were determined. The results showed that vinification techniques had a significant ( p tannin content of the samples. White wine lees had high mDP content compared with red ones. Catechin (50-62%) and epicatechin contents were the predominant terminal units of polymeric proanthocyanidin extracted from examined samples. Epigallocatechin was the predominant extension unit of white wine lees, whereas epicatechin was the predominant compound in red wine marc. The ORAC (oxygen radical absorbance capacity) assay was strongly correlated with the DPPH (α, α-diphenyl-β-picrylhydrazyl) assay, and the results showed the strong antioxidant activities associated with red wine lees (PN > 35 mg Trolox/g FDM) (PN: Pinot noir lees; FDM: Freeze-dried Material). This study indicates that tannin is one of the major phenolic compounds available in wine lees that can be useful in human and animal health applications.

  4. Characterization of Phenolic Compounds in Wine Lees

    Science.gov (United States)

    Zhijing, Ye; Shavandi, Amin; Harrison, Roland; Bekhit, Alaa El-Din A.

    2018-01-01

    The effect of vinification techniques on phenolic compounds and antioxidant activity of wine lees are poorly understood. The present study investigated the antioxidant activity of white and red wine lees generated at early fermentation and during aging. In this study, the total phenol content (TPC), total tannin content (TTC), mean degree of polymerization (mDP), and antioxidant activities of five white and eight red wine lees samples from different vinification backgrounds were determined. The results showed that vinification techniques had a significant (p wine lees had high mDP content compared with red ones. Catechin (50–62%) and epicatechin contents were the predominant terminal units of polymeric proanthocyanidin extracted from examined samples. Epigallocatechin was the predominant extension unit of white wine lees, whereas epicatechin was the predominant compound in red wine marc. The ORAC (oxygen radical absorbance capacity) assay was strongly correlated with the DPPH (α,α-diphenyl-β-picrylhydrazyl) assay, and the results showed the strong antioxidant activities associated with red wine lees (PN > 35 mg Trolox/g FDM) (PN: Pinot noir lees; FDM: Freeze-dried Material). This study indicates that tannin is one of the major phenolic compounds available in wine lees that can be useful in human and animal health applications. PMID:29587406

  5. Phenol Removal from Industrial Wastewater by HRP Enzyme

    Directory of Open Access Journals (Sweden)

    Iran Alemzadeh

    2009-01-01

    Full Text Available In this research, horseradish peroxidase for phenol removal was utilized. First, the process was studied at the laboratory scale using a synthetic phenol solution (1-10 mM. Results showed that horseradish peroxidase (HRP could effectively remove phenolic compounds from wastewater and that the catalytic capability of the enzyme was maintained for a wide range of pH, temperature, and aromatic concentration levels. The performance conditions were optimized for at lease 95% and 100% removal of phenolic compounds for both actual and synthetic wastewaters under high and low phenol concentrations (1 and 10 mM. The phenolic wastewater used was an olive mill effluent with a phenol concentration of 1221 mg/L (13 mM and a pH value of 3.5. At the end of the reaction, the phenolic compounds changed to insoluble polymers and precipitated. Each enzyme/wastewater system was optimized for the following chemical dosages: hydrogen peroxide, enzyme, polyethylene glycol (PEG, and buffer. Furthermore, the reaction time to achieve at least 95% phenol removal was determined. According to the results, COD and BOD reduced to 58% and 78%, respectively. Experimental results showed an increase in H2O2 concentration beyond the optimum dose resulting from enzyme inactivation, thus reducing the phenol removal efficiency. On the other hand, increasing the enzyme, PEG, and/or reaction time beyond the optimum values resulted in only a marginal increase in removal efficiency.

  6. Phenolic content variability and its chromosome location in tritordeum

    Science.gov (United States)

    Navas-Lopez, José F.; Ostos-Garrido, Francisco J.; Castillo, Almudena; Martín, Antonio; Gimenez, Maria J.; Pistón, Fernando

    2014-01-01

    For humans, wheat is the most important source of calories, but it is also a source of antioxidant compounds that are involved in the prevention of chronic disease. Among the antioxidant compounds, phenolic acids have great potential to improve human health. In this paper we evaluate the effect of environmental and genetic factors on the phenolics content in the grain of a collection of tritordeums with different cytoplasm and chromosome substitutions. To this purpose, tritordeum flour was used for extraction of the free, conjugates and bound phenolic compounds. These phenolic compounds were identified and quantified by RP-HPLC and the results were analyzed by univariate and multivariate methods. This is the first study that describes the composition of phenolic acids of the amphiploid tritordeum. As in wheat, the predominant phenolic compound is ferulic acid. In tritordeum there is great variability for the content of phenolic compounds and the main factor which determines its content is the genotype followed by the environment, in this case included in the year factor. Phenolic acid content is associated with the substitution of chromosome DS1D(1Hch) and DS2D(2Hch), and the translocation 1RS/1BL in tritordeum. The results show that there is high potential for further improving the quality and quantity of phenolics in tritordeum because this amphiploid shows high variability for the content of phenolic compounds. PMID:24523725

  7. Thermomechanical analyses of phenolic foam reinforced with glass fiber mat

    International Nuclear Information System (INIS)

    Zhou, Jintang; Yao, Zhengjun; Chen, Yongxin; Wei, Dongbo; Wu, Yibing

    2013-01-01

    Highlights: • Over 10% glass fiber was used to reinforce phenolic foam in the shape of glass fiber mat. • Nucleating agents were used together with glass fiber mat and improved tensile strength of phenolic foam by 215.6%. • Nucleating agents lead to a smaller bubble size of phenolic foam. • The glass transition temperature of phenolic foam remained unchanged during the reinforcement. - Abstract: In this paper, thermomechanical analysis (TMA) and dynamic mechanical analysis were employed to study the properties of phenolic foam reinforced with glass fiber mat. Unreinforced phenolic foam was taken as the control sample. Mechanical tests and scanning electron microscopy were performed to confirm the results of TMA. The results show that glass fiber mat reinforcement improves the mechanical performance of phenolic foam, and nucleating agents improve it further. Phenolic foam reinforced with glass fiber mat has a smaller thermal expansion coefficient compared with unreinforced foam. The storage modulus of the reinforced phenolic foam is also higher than that in unreinforced foam, whereas the loss modulus of the former is lower than that of the latter. The glass transition temperature of the phenolic foam matrix remains unchanged during the reinforcement

  8. Estimate of consumption of phenolic compounds by Brazilian population

    Directory of Open Access Journals (Sweden)

    Vanesa Gesser Corrêa

    2015-04-01

    Full Text Available OBJECTIVE: Estimate the intake of phenolic compounds by the Brazilian population. METHODS: To estimate the average per capita food consumption, micro data from the National Dietary Survey and from the Household Budget Survey from 2008 to 2009 was analyzed. The phenolic content in food was estimated from the base of Phenol-Explorer. It was chosen according to compatibility and variety of food items and usual method of preparation. RESULTS: The Brazilian population consumed, on average, 460.15 mg/day of total phenolic compounds, derived mainly from beverages (48.9%, especially coffee and legumes (19.5%. Since this analysis of classes of phenolics it was possible to observe an intake of 314 mg/day of phenolic acids, 138.92 mg/day of flavonoids and 7.16 mg/ day of other kinds of phenolics. Regarding the variables studied this present study shows that those men who live in the countryside and in the northeastern region of the country had a higher consumption of phenolic compounds. Besides, consumption was higher by adults and the elderly, the medium income classes, the population with incomplete and complete primary education and those with adequate nutrition and also overweight status. CONCLUSION: The intake of phenolic compounds can be considered low, especially where consumption of fruit and vegetables is insufficient. We can conclude that coffee and black beans were the best contributors to phenolic intake.

  9. Mechanism of microsomal metabolism of benzene to phenol

    Energy Technology Data Exchange (ETDEWEB)

    Hinson, J.A.; Freeman, J.P.; Potter, D.W.; Mitchum, R.K.; Evans, F.E.

    1985-05-01

    The mechanism of microsomal hydroxylation of benzene to phenol has been studied by examining the microsomal metabolism of the specifically deuterated derivative 1,3,5-(/sub 2/H/sup 3/)benzene. Evidence for the formation of the following four products was obtained: 2,3,5-(/sub 2/H/sup 3/)phenol, 3,5-(/sub 2/H/sup 2/)phenol, 2,4,6-(/sub 2/H/sup 3/)phenol, and 2,4-(/sub 2/H/sup 2/)phenol. The presence of 2,3,5-(2H3)phenol and 2,4-(/sub 2/H/sup 2/)phenol shows that, in the microsomal metabolism of benzene to phenol, a NIH shift had occurred. A deuterium isotope effect (kH/kD) of approximately 4 was detected in both the meta- and para-deuterated phenols. This finding indicates that cyclohexadienone, formed either by isomerization of the epoxide or directly from the enzyme-substrate complex, is a major intermediate in the metabolism of benzene to phenol.

  10. Antioxidant activities of the selected plants from the family ...

    African Journals Online (AJOL)

    USER

    2010-02-15

    Feb 15, 2010 ... Extraction of nine plants selected from the family Euphorbiaceae, Lauraceae, Malvaceae and. Balsaminaceae ... Total phenolic contents were determined with Folin- ... levels of antioxidant activity in vitro may be of value in the.

  11. Activities of selected medicinal plants against multi-drug resistant ...

    African Journals Online (AJOL)

    106 CFU/mL) prepared in MHB was then added. The turbidity .... seeds of this plant contain reducing sugars, phenols, alkaloids and .... Regional Soil Conservation ... Some Bio- chemical studies on the leaves and fruits of Persea ameri- cana.

  12. Mixture-amount design and response surface modeling to assess the effects of flavonoids and phenolic acids on developmental performance of Anastrepha ludens.

    Science.gov (United States)

    Pascacio-Villafán, Carlos; Lapointe, Stephen; Williams, Trevor; Sivinski, John; Niedz, Randall; Aluja, Martín

    2014-03-01

    Host plant resistance to insect attack and expansion of insect pests to novel hosts may to be modulated by phenolic compounds in host plants. Many studies have evaluated the role of phenolics in host plant resistance and the effect of phenolics on herbivore performance, but few studies have tested the joint effect of several compounds. Here, we used mixture-amount experimental design and response surface modeling to study the effects of a variety of phenolic compounds on the development and survival of Mexican fruit fly (Anastrepha ludens [Loew]), a notorious polyphagous pest of fruit crops that is likely to expand its distribution range under climate change scenarios. (+)- Catechin, phloridzin, rutin, chlorogenic acid, and p-coumaric acid were added individually or in mixtures at different concentrations to a laboratory diet used to rear individuals of A. ludens. No effect was observed with any mixture or concentration on percent pupation, pupal weight, adult emergence, or survival from neonate larvae to adults. Larval weight, larval and pupal developmental time, and the prevalence of adult deformities were affected by particular mixtures and concentrations of the compounds tested. We suggest that some combinations/concentrations of phenolic compounds could contribute to the management of A. ludens. We also highlight the importance of testing mixtures of plant secondary compounds when exploring their effects upon insect herbivore performance, and we show that mixture-amount design is a useful tool for this type of experiments.

  13. Changes in element accumulation, phenolic metabolism, and antioxidative enzyme activities in the red-skin roots of Panax ginseng.

    Science.gov (United States)

    Zhou, Ying; Yang, Zhenming; Gao, Lingling; Liu, Wen; Liu, Rongkun; Zhao, Junting; You, Jiangfeng

    2017-07-01

    Red-skin root disease has seriously decreased the quality and production of Panax ginseng (ginseng). To explore the disease's origin, comparative analysis was performed in different parts of the plant, particularly the epidermis, cortex, and/or fibrous roots of 5-yr-old healthy and diseased red-skin ginseng. The inorganic element composition, phenolic compound concentration, reactive oxidation system, antioxidant concentrations such as ascorbate and glutathione, activities of enzymes related to phenolic metabolism and oxidation, and antioxidative system particularly the ascorbate-glutathione cycle were examined using conventional methods. Aluminum (Al), iron (Fe), magnesium, and phosphorus were increased, whereas manganese was unchanged and calcium was decreased in the epidermis and fibrous root of red-skin ginseng, which also contained higher levels of phenolic compounds, higher activities of the phenolic compound-synthesizing enzyme phenylalanine ammonia-lyase and the phenolic compound oxidation-related enzymes guaiacol peroxidase and polyphenoloxidase. As the substrate of guaiacol peroxidase, higher levels of H 2 O 2 and correspondingly higher activities of superoxide dismutase and catalase were found in red-skin ginseng. Increased levels of ascorbate and glutathione; increased activities of l-galactose 1-dehydrogenase, ascorbate peroxidase, ascorbic acid oxidase, and glutathione reductase; and lower activities of dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione peroxidase were found in red-skin ginseng. Glutathione- S -transferase activity remained constant. Hence, higher element accumulation, particularly Al and Fe, activated multiple enzymes related to accumulation of phenolic compounds and their oxidation. This might contribute to red-skin symptoms in ginseng. It is proposed that antioxidant and antioxidative enzymes, especially those involved in ascorbate-glutathione cycles, are activated to protect against phenolic compound

  14. Compare the amount of phenols, flavonoids and antioxidant activity of five varieties of Iranian olive leaf hydroalcholic extract

    Directory of Open Access Journals (Sweden)

    B mohammadi

    2016-01-01

    Full Text Available Background & aim: Olive leaf extract can be used as a rich source of the polyphenolic antioxidant. The present study aimed to compare the amount of phenols, flavonoids and antioxidant activity of five varieties of Iranian olive leaf hydro alcholic extract . Methods: In the present experimental study, leaves of five Iranian olives  which are raised in five different regions in Iran (Dezfooli variety in gachsaran, Dehghan variety in the region Nurabad mamasani, Shenge variety in kazeron, Shirazi variety in Shiraz, Feshomi vareity in Roodbar in Gilan region was collected. All samples were prepared in spring, then dried in the shade at 28-26 °C . Hydroalcholic extract was obtained with 70% ethanol with maceration method for 24 hours at a temperature of 40-37 °C.Total phenol contents ( Folin-Ciocalteu  and, Flavonoids ( zishen was determined.  Antioxidant activity of the olive leaves extract was evaluated by radical scavenging DPPH method and vitamin C applied as standard .Data were analyzed by the SPSS software (version 21 and significant level (P˂0.05 and 95% confidence intervals were considered. Results: The total phenol and flavonoid content were different in five varieties of olive leaf extract. The highest level of total phenol and flavonoids were reported (212.54 ± 3 in Dezfooli olive variety (900.13±3.28 Shirazi olive variety.  Respectively. The antioxidant activity was different in all vareity. Dezfooli olive variety have the highest antioxidant activity (%71.27 and Shirazi olive variety (%37.29 had the least antioxidant activity with DPPH method. The high relationship was found between the total phenol and antioxidant activity in extracts. Conclusion:  Antioxidant activity, total phenol and flavonoid content were different in each plant extract and a high correlation was found between total phenol and Antioxidant activity

  15. Accumulation of cell wall-bound phenolic metabolites and their upliftment in hairy root cultures of tomato (Lycopersicon esculentum Mill.).

    Science.gov (United States)

    Mandal, Sudhamoy; Mitra, Adinpunya

    2008-07-01

    Alkaline hydrolysis of cell wall material of tomato hairy roots yielded ferulic acid as the major phenolic compound. Other phenolics were 4-hydroxybenzoic acid, vanillic acid, 4-hydroxybenzaldehyde, vanillin and 4-coumaric acid. The content of phenolics was much higher at the early stage of hairy root growth. The ferulic acid content decreased up to 30 days and then sharply increased to 360 microg/g at 60 days of growth. Elicitation of hairy root cultures with Fusarium mat extract (FME) increased ferulic acid content 4-fold after 24 h. As the pathogen-derived elicitors have specific receptors in plants, FME may thus be used for inducing resistance against Fusarium oxysporum f. sp. lycopersici.

  16. Factors affecting levels of some phenolic compounds, digestibility, and nitrogen content of the mature leaves ofBarteria fistulosa (Passifloraceae).

    Science.gov (United States)

    Waterman, P G; Ross, J A; McKey, D B

    1984-03-01

    Levels of total phenolics, condensed tannins, acid detergent fiber, pepsin/cellulase digestibility, and nitrogen in mature leaves of 26 individuals of the ant-plant,Barteria fistulosa, have been determined. Analysis of the results in terms of the presence or absence of ants and the position of the branch from which the leaves were collected showed no relationship with concentrations of phenolics or fiber and only a weak relationship with digestibility and nitrogen. By contrast, light intensity strongly influenced levels of phenolics, notably condensed tannins, so that mature leaves of individuals growing in direct sunlight were less digestible and appeared to be of lower quality as food for herbivores than did mature leaves of individuals in shaded positions. Possible reasons for the variation in condensed tannin levels are discussed.

  17. A Lactobacillus plantarum Esterase Active on a Broad Range of Phenolic Esters

    Science.gov (United States)

    Esteban-Torres, María; Landete, José María; Reverón, Inés; Santamaría, Laura; de las Rivas, Blanca

    2015-01-01

    Lactobacillus plantarum is the lactic acid bacterial species most frequently found in the fermentation of food products of plant origin on which phenolic compounds are abundant. L. plantarum strains showed great flexibility in their ability to adapt to different environments and growth substrates. Of 28 L. plantarum strains analyzed, only cultures from 7 strains were able to hydrolyze hydroxycinnamic esters, such as methyl ferulate or methyl caffeate. As revealed by PCR, only these seven strains possessed the est_1092 gene. When the est_1092 gene was introduced into L. plantarum WCFS1 or L. lactis MG1363, their cultures acquired the ability to degrade hydroxycinnamic esters. These results support the suggestion that Est_1092 is the enzyme responsible for the degradation of hydroxycinnamic esters on the L. plantarum strains analyzed. The Est_1092 protein was recombinantly produced and biochemically characterized. Surprisingly, Est_1092 was able to hydrolyze not only hydroxycinnamic esters, since all the phenolic esters assayed were hydrolyzed. Quantitative PCR experiments revealed that the expression of est_1092 was induced in the presence of methyl ferulate, an hydroxycinnamic ester, but was inhibited on methyl gallate, an hydroxybenzoic ester. As Est_1092 is an enzyme active on a broad range of phenolic esters, simultaneously possessing feruloyl esterase and tannase activities, its presence on some L. plantarum strains provides them with additional advantages to survive and grow on plant environments. PMID:25746986

  18. A Lactobacillus plantarum esterase active on a broad range of phenolic esters.

    Science.gov (United States)

    Esteban-Torres, María; Landete, José María; Reverón, Inés; Santamaría, Laura; de las Rivas, Blanca; Muñoz, Rosario

    2015-05-01

    Lactobacillus plantarum is the lactic acid bacterial species most frequently found in the fermentation of food products of plant origin on which phenolic compounds are abundant. L. plantarum strains showed great flexibility in their ability to adapt to different environments and growth substrates. Of 28 L. plantarum strains analyzed, only cultures from 7 strains were able to hydrolyze hydroxycinnamic esters, such as methyl ferulate or methyl caffeate. As revealed by PCR, only these seven strains possessed the est_1092 gene. When the est_1092 gene was introduced into L. plantarum WCFS1 or L. lactis MG1363, their cultures acquired the ability to degrade hydroxycinnamic esters. These results support the suggestion that Est_1092 is the enzyme responsible for the degradation of hydroxycinnamic esters on the L. plantarum strains analyzed. The Est_1092 protein was recombinantly produced and biochemically characterized. Surprisingly, Est_1092 was able to hydrolyze not only hydroxycinnamic esters, since all the phenolic esters assayed were hydrolyzed. Quantitative PCR experiments revealed that the expression of est_1092 was induced in the presence of methyl ferulate, an hydroxycinnamic ester, but was inhibited on methyl gallate, an hydroxybenzoic ester. As Est_1092 is an enzyme active on a broad range of phenolic esters, simultaneously possessing feruloyl esterase and tannase activities, its presence on some L. plantarum strains provides them with additional advantages to survive and grow on plant environments. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Effect of solar radiation (UV and visible) at high altitude on CAM-cycling and phenolic compound biosynthesis in Sedum album

    International Nuclear Information System (INIS)

    Bachereau, F.; Marigo, G.; Asta, J.

    1998-01-01

    The field experiment was carried out in order to compare the response of a CAM plant, Sedum album L., to solar radiation at a high altitude (2 100 m) with that at a low altitude location with respect to CAM and phenolic content. Treatment sites included (1) sun-exposed, low altitude, (2) sun-exposed, high altitude with different light treatments, including UV-B and UV-B + A screening, and (3) shade at high altitude. After a 70-day treatment period, CAM-cycling and phenolic compound content were analysed, and high altitude treatments were compared to the low altitude control. The sun-exposed low altitude control was characterized by CAM-cycling and a low phenolic compound content during the experiment. In plants transplanted to the high altitude, only the shaded group maintained a CAM-cycling and a phenolic compound content similar to those of the sun-exposed low altitude control. Samples under UV-B and UV-B + A filters showed similar responses, suggesting the absence of a specific UV-A radiation effect. The screening of UV-B or UV-B + A radiation allowed plants to partially maintain a CAM-cycling and induced a decrease in phenolic compound content. These responses under UV filters were, however, intermediate between those observed in sun-exposed and shaded groups. These results demonstrate a specific effect of radiation from both visible (400–800 nm) and UV-B (280–320 nm) bands on both CAM-cycling and phenolic biosynthesis in S. album L. plants. These light-dependent effects are discussed on a physiological basis and a possible interaction between CAM-cycling and phenolic metabolism is suggested. (author)

  20. Phenolic Profiling and Evaluation of Contraceptive Effect of the Ethanolic Extract of Salsola imbricata Forssk. in Male Albino Rats

    Directory of Open Access Journals (Sweden)

    Naglaa Gamil Shehab

    2014-01-01

    Full Text Available Reported researches dealing with either composition or bioactivity of Salsola imbricata are limited. This study was conducted aiming to investigate the phenolic composition of the plant and evaluate its efficacy as male contraceptive. Polyphenols, namely, phenolic acids and flavonoids, were qualitatively and quantitatively analysed by RP-HPLC in the hydrolysed methanol extract using two different wavelengths, 280 and 330 nm. The efficiency of different solvents in extracting the plant phenolics was assessed via spectrophotometric determination of the total phenolic and flavonoid contents. Acute toxicity study was carried out on the ethanolic extract to ascertain its safety prior to biological evaluation. The contraceptive effect was assessed, in male rats, by oral administration of the extract at two doses (250 and 500 mg/kg b. wt., over a period of 65 days. HPLC analyses allowed the identification and quantification of a total of 13 and 8 components in the hydrolysed-methanol extract; the overall phenolic composition was dominated by quercitrin (12.692% followed by coumaric acid (4.251%. Prolonged oral administration of the ethanolic extract caused slight reduction in the testis weight only. A significant decrease in the sperm count was observed (P<0.01 in the two treated groups while significant decrease in the epididymal sperm motility was only observed in the high dose group. Morphological abnormalities were observed in sperms of treated animals. No distinct change in serum FSH, LH, and testosterone concentration was recorded. The histopathological findings supported to a high extent these results. The male contraceptive activity of Salsola imbricata could be ascribed to its phenolic components, especially quercitrin.

  1. In vitro bioaccessibility, transepithelial transport and antioxidant activity of Urtica dioica L. phenolic compounds in nettle based food products.

    Science.gov (United States)

    Bonetti, Gianpiero; Tedeschi, Paola; Meca, Giuseppe; Bertelli, Davide; Mañes, Jordi; Brandolini, Vincenzo; Maietti, Annalisa

    2016-10-12

    Nettle (Urtica dioica L.) is a well-known plant with a wide historical background use of stems, roots and leaves. Nettle leaves are an excellent source of phenolic compounds, principally 3-caffeoylquinic acid (3-CQA), caffeoylmalic acid (CMA) and rutin. The aim of this work was to evaluate the bioaccessibility (BAC), the bioavailability (BAV) and the antioxidant activity of nettle phenolic compounds present in foods and supplements. The BAC of nettle phenolics was evaluated with an in vitro dynamic digestion of real food matrices: the type of food matrix and chemical characteristic affected the kinetics of release and solubilization, with the highest BAC after duodenal digestion. A study of duodenal trans epithelial transport evidenced low bioavailability of native forms of 3-CQA, CMA and rutin. Simulation of colonic metabolism confirmed that phenolic compounds are fermented by gut microflora, confirming the need for further investigations on the impact of phenolic compounds at the large intestine level. Photochemiluminescence assay of the simulated digestion fluids demonstrated that ingestion of Urtica based foods contributes to create an antioxidant environment against superoxide anion radicals in the entire gastrointestinal tract (GIT).

  2. Phenols and tannins contents of Anacardium occidentale Linn and Anadenanthera colubrina (Vell.) Brenan exposed to gamma radiation

    International Nuclear Information System (INIS)

    Santos, Gustavo Henrique Farias dos; Silva, Edvane Borges da; Amorim, Elba Lucia Cavalcanti de; Peixoto Sobrinho, Tadeu; Lima, Claudia Sampaio de Andrade

    2011-01-01

    Anacardium occidentale Linn (cajueiro) and Anadenanthera colubrina (Vell.) Brenan (angico) are very know as a source of phenolic compounds, mainly tannins. The aim of this study was to evaluate the difference of phenols and tannins contents of crude extracts were measured after irradiation of barks and leaves of each plant source, using a source of 60 Co. The crude extracts were divided into control group and three groups which were separately after exposition to gamma radiation, in doses of 5; 7.5 and 10 kGy. From each group, the total phenols were quantified by the Folin-Ciocalteau method, while the contents of tannins were assessed using precipitation of the casein technique. For all doses, the total phenol and tannin percentages from 'cajueiro' barks presented no significant statistical alteration. However, for the leaves of 'cajueiro', their chemical composite levels significantly changed with the radiation absorbed dose. On the other hand, the gamma irradiation did not cause alterations in total phenols and tannins content of extracts from 'angico'. (author)

  3. Nutritional Composition and Antioxidant Capacity in Edible Flowers: Characterisation of Phenolic Compounds by HPLC-DAD-ESI/MSn

    Directory of Open Access Journals (Sweden)

    Inmaculada Navarro-González

    2014-12-01

    Full Text Available Edible flowers are commonly used in human nutrition and their consumption has increased in recent years. The aim of this study was to ascertain the nutritional composition and the content and profile of phenolic compounds of three edible flowers, monks cress (Tropaeolum majus, marigold (Tagetes erecta and paracress (Spilanthes oleracea, and to determine the relationship between the presence of phenolic compounds and the antioxidant capacity. Proximate composition, total dietary fibre (TDF and minerals were analysed according to official methods: total phenolic compounds (TPC were determined with Folin-Ciocalteu’s reagent, whereas antioxidant capacity was evaluated using Trolox Equivalent Antioxidant Capacity (TEAC and Oxygen Radical Absorbance Capacity (ORAC assays. In addition, phenolic compounds were characterised by HPLC-DAD-MSn. In relation to the nutritional value, the edible flowers had a composition similar to that of other plant foods, with a high water and TDF content, low protein content and very low proportion of total fat—showing significant differences among samples. The levels of TPC compounds and the antioxidant capacity were significantly higher in T. erecta, followed by S. oleracea and T. majus. Thirty-nine different phenolic compounds were tentatively identified, with flavonols being the major compounds detected in all samples, followed by anthocyanins and hydroxycynnamic acid derivatives. In T. erecta small proportions of gallotannin and ellagic acid were also identified.

  4. Nutritional Characterization and Phenolic Profiling of Moringa oleifera Leaves Grown in Chad, Sahrawi Refugee Camps, and Haiti.

    Science.gov (United States)

    Leone, Alessandro; Fiorillo, Giovanni; Criscuoli, Franca; Ravasenghi, Stefano; Santagostini, Laura; Fico, Gelsomina; Spadafranca, Angela; Battezzati, Alberto; Schiraldi, Alberto; Pozzi, Federica; di Lello, Sara; Filippini, Sandro; Bertoli, Simona

    2015-08-12

    Moringa oleifera is a plant that grows in tropical and subtropical areas of the world. Its leaves are rich of nutrients and bioactive compounds. However, several differences are reported in the literature. In this article we performed a nutritional characterization and a phenolic profiling of M. oleifera leaves grown in Chad, Sahrawi refugee camps, and Haiti. In addition, we investigated the presence of salicylic and ferulic acids, two phenolic acids with pharmacological activity, whose presence in M. oleifera leaves has been scarcely investigated so far. Several differences were observed among the samples. Nevertheless, the leaves were rich in protein, minerals, and β-carotene. Quercetin and kaempferol glycosides were the main phenolic compounds identified in the methanolic extracts. Finally, salicylic and ferulic acids were found in a concentration range of 0.14-0.33 and 6.61-9.69 mg/100 g, respectively. In conclusion, we observed some differences in terms of nutrients and phenolic compounds in M. oleifera leaves grown in different countries. Nevertheless, these leaves are a good and economical source of nutrients for tropical and sub-tropical countries. Furthermore, M. oleifera leaves are a source of flavonoids and phenolic acids, among which salicylic and ferulic acids, and therefore they could be used as nutraceutical and functional ingredients.

  5. Phenols and tannins contents of Anacardium occidentale Linn and Anadenanthera colubrina (Vell.) Brenan exposed to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Gustavo Henrique Farias dos [Universidade Federal de Pernambuco (GERAR/UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear. Grupo de Estudos em Radioprotecao e Radioecologia; Silva, Edvane Borges da [Universidade Federal de Pernambuco (UFPE), Vitoria de Santo Antao, PE (Brazil). Centro Academico de Vitoria; Amorim, Elba Lucia Cavalcanti de; Peixoto Sobrinho, Tadeu, E-mail: elba@ufpe.b [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Ciencias Farmaceuticas; Lima, Claudia Sampaio de Andrade [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Biofisica e Radiobiologia

    2011-07-01

    Anacardium occidentale Linn (cajueiro) and Anadenanthera colubrina (Vell.) Brenan (angico) are very know as a source of phenolic compounds, mainly tannins. The aim of this study was to evaluate the difference of phenols and tannins contents of crude extracts were measured after irradiation of barks and leaves of each plant source, using a source of {sup 60}Co. The crude extracts were divided into control group and three groups which were separately after exposition to gamma radiation, in doses of 5; 7.5 and 10 kGy. From each group, the total phenols were quantified by the Folin-Ciocalteau method, while the contents of tannins were assessed using precipitation of the casein technique. For all doses, the total phenol and tannin percentages from 'cajueiro' barks presented no significant statistical alteration. However, for the leaves of 'cajueiro', their chemical composite levels significantly changed with the radiation absorbed dose. On the other hand, the gamma irradiation did not cause alterations in total phenols and tannins content of extracts from 'angico'. (author)

  6. Effect of sweet pepper cultivation on the content of phytotoxic phenolic compounds in substrates

    Directory of Open Access Journals (Sweden)

    Barbara Politycka

    2013-12-01

    Full Text Available The aim of the conducted study was to determine to what extent the cultivation of sweet pepper lowers the phytotoxicity of a substrate. The examined material was a highly phytotoxic substrate due to repeated cucumber growing on it. This substrate was a mixture of pine and beech bark, low peat and sawdust. Five sweet pepper cultivars: Amador, Bell Boy, Culinar, Poznańska Słodka and WSE 2/82 were planted. During vegetation of the sweet pepper phytotoxicity and phenolics levels were determined in the substrate. It was found that cultivation of sweet pepper had a significant effect on lowering phytotoxicity and phenolics content in the substrate. Among the five tested cultivars, the highest detoxicating ability was exhibited by Amador, Culinar and WSE 2/82 while the Poznańska Słodka did not show such abilities.

  7. Milk whey protein modification by coffee-specific phenolics: effect on structural and functional properties.

    Science.gov (United States)

    Ali, Mostafa; Homann, Thomas; Khalil, Mahmoud; Kruse, Hans-Peter; Rawel, Harshadrai

    2013-07-17

    A suitable vehicle for integration of bioactive plant constituents is proposed. It involves modification of proteins using phenolics and applying these for protection of labile constituents. It dissects the noncovalent and covalent interactions of β-lactoglobulin with coffee-specific phenolics. Alkaline and polyphenol oxidase modulated covalent reactions were compared. Tryptic digestion combined with MALDI-TOF-MS provided tentative allocation of the modification type and site in the protein, and an in silico modeling of modified β-lactoglobulin is proposed. The modification delivers proteins with enhanced antioxidative properties. Changed structural properties and differences in solubility, surface hydrophobicity, and emulsification were observed. The polyphenol oxidase modulated reaction provides a modified β-lactoglobulin with a high antioxidative power, is thermally more stable, requires less energy to unfold, and, when emulsified with lutein esters, exhibits their higher stability against UV light. Thus, adaptation of this modification provides an innovative approach for functionalizing proteins and their uses in the food industry.

  8. Characterization of phenolic compounds in Brazilian pepper (Schinus terebinthifolius Raddi) exocarp.

    Science.gov (United States)

    Feuereisen, Michelle M; Hoppe, Julia; Zimmermann, Benno F; Weber, Fabian; Schulze-Kaysers, Nadine; Schieber, Andreas

    2014-07-02

    The objective of this study was to characterize the phenolic composition of Brazilian pepper (Schinus terebinthifolius Raddi) exocarp extract. Using UHPLC-DAD-MS/MS analysis, four anthocyanins, three biflavonoids, gallic acid, and two types of hydrolyzable tannins (galloyl glucoses, galloyl shikimic acids) were tentatively identified. The structure of the so far unknown 7-O-methylpelargonidin 3-O-β-D-galactopyranoside was elucidated by 2D NMR. Within the group of gallotannins, galloyl shikimic acids with uncommon degrees of galloylation (tetra- to hexagalloyl shikimic acids) were detected. Among the biflavonoids, I3',II8-biapigenin (amentoflavone), I6,II8-biapigenin (agathisflavone), and II-2,3-dihydro-I3',II8-biapigenin were identified, which have already been described for Anacardiaceae. From the results of the present study together with previous findings on the phenolic profile of other Anacardiaceae plants, it is concluded that 7-methoxylated flavonoids are a chemotaxonomic trait frequently found in this family.

  9. Determination of phenolic compounds and evaluation of antioxidant capacity of Campomanesia adamantium leaves

    Energy Technology Data Exchange (ETDEWEB)

    Coutinho, I.D.; Coelho, R.G.; Honda, N.K.; Silva, J.R.M.; Cardoso, C.A.L. [Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil). Dept. de Quimica]. E-mail: claudia@uems.br; Kataoka, V.M.F. [Universidade Estadual de Mato Grosso do Sul, Dourados, MS (Brazil). Curso de Quimica; Vilegas, W. [UNESP, Araraquara, SP (Brazil). Dept. de Quimica Organica

    2008-10-15

    Five flavanones and three chalcones were isolated from Campomanesia adamantium Berg. (Myrtaceae) leaves. The contents of these compounds were determined by HPLC. The phenolic contents were also determined. The monitoring of the antioxidant activity was carried out by inhibition of peroxidation using the linoleic acid system and radical-scavenging (DPPH). The plants were collected from 4 distinct cities of the Mato Grosso do Sul State, Brazil. The different samples exhibited a range of 4.67-232.35 mg/g chalcones and 15.62-50.71 mg/g flavanones and phenolic contents of the 7.24-21.19 mg/g gallic acid. All extracts showed high antioxidant activity with a wide range of the radical-scavenging (DPPH) from 52.0 to 92.2 % and inhibition oxidation of linoleic acid from 14.6 to 94.2%. (author)

  10. Determination of phenolic compounds and evaluation of antioxidant capacity of Campomanesia adamantium leaves

    International Nuclear Information System (INIS)

    Coutinho, I.D.; Coelho, R.G.; Honda, N.K.; Silva, J.R.M.; Cardoso, C.A.L.; Kataoka, V.M.F.; Vilegas, W.

    2008-01-01

    Five flavanones and three chalcones were isolated from Campomanesia adamantium Berg. (Myrtaceae) leaves. The contents of these compounds were determined by HPLC. The phenolic contents were also determined. The monitoring of the antioxidant activity was carried out by inhibition of peroxidation using the linoleic acid system and radical-scavenging (DPPH). The plants were collected from 4 distinct cities of the Mato Grosso do Sul State, Brazil. The different samples exhibited a range of 4.67-232.35 mg/g chalcones and 15.62-50.71 mg/g flavanones and phenolic contents of the 7.24-21.19 mg/g gallic acid. All extracts showed high antioxidant activity with a wide range of the radical-scavenging (DPPH) from 52.0 to 92.2 % and inhibition oxidation of linoleic acid from 14.6 to 94.2%. (author)

  11. Phenolic Compounds Analysis of Root, Stalk, and Leaves of Nettle

    Directory of Open Access Journals (Sweden)

    Semih Otles

    2012-01-01

    Full Text Available Types of nettles (Urtica dioica were collected from different regions to analyze phenolic compounds in this research. Nettles are specially grown in the coastal part. According to this kind of properties, nettle samples were collected from coastal part of (Mediterranean, Aegean, Black sea, and Marmara Turkey. Phenolic profile, total phenol compounds, and antioxidant activities of nettle samples were analyzed. Nettles were separated to the part of root, stalk, and leaves. Then, these parts of nettle were analyzed to understand the difference of phenolic compounds and amount of them. Nettle (root, stalk and leaves samples were analyzed by using High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD to qualitative and quantitative determination of the phenolic compounds. Total phenolic components were measured by using Folin-Ciocalteu method. The antioxidant activity was measured by using DPPH (2,2-diphenyl-1-picrylhydrazyl which is generally used for herbal samples and based on single electron transfer (SET.

  12. Phenolic compounds analysis of root, stalk, and leaves of nettle.

    Science.gov (United States)

    Otles, Semih; Yalcin, Buket

    2012-01-01

    Types of nettles (Urtica dioica) were collected from different regions to analyze phenolic compounds in this research. Nettles are specially grown in the coastal part. According to this kind of properties, nettle samples were collected from coastal part of (Mediterranean, Aegean, Black sea, and Marmara) Turkey. Phenolic profile, total phenol compounds, and antioxidant activities of nettle samples were analyzed. Nettles were separated to the part of root, stalk, and leaves. Then, these parts of nettle were analyzed to understand the difference of phenolic compounds and amount of them. Nettle (root, stalk and leaves) samples were analyzed by using High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD) to qualitative and quantitative determination of the phenolic compounds. Total phenolic components were measured by using Folin-Ciocalteu method. The antioxidant activity was measured by using DPPH (2,2-diphenyl-1-picrylhydrazyl) which is generally used for herbal samples and based on single electron transfer (SET).

  13. Interspecific variation in total phenolic content in temperate brown algae

    Directory of Open Access Journals (Sweden)

    Anna Maria Mannino

    2017-09-01

    Full Text Available Marine algae synthesize secondary metabolites such as polyphenols that function as defense and protection mechanisms. Among brown algae, Fucales and Dictyotales (Phaeophyceae contain the highest levels of phenolic compounds, mainly phlorotannins, that play multiple roles. Four temperate brown algae (Cystoseira amentacea, Cystoseira compressa, Dictyopteris polypodioides and Padina pavonica were studied for total phenolic contents. Total phenolic content was determined colorimetrically with the Folin-Ciocalteu reagent. Significant differences in total phenolic content were observed between leathery and sheetlike algae and also within each morphological group. Among the four species, the sheet-like alga D. polypodioides, living in the upper infralittoral zone, showed the highest concentration of phenolic compounds. These results are in agreement with the hypothesis that total phenolic content in temperate brown algae is influenced by a combination of several factors, such as growth form, depth, and exposition to solar radiation.

  14. Phenolic Compounds Analysis of Root, Stalk, and Leaves of Nettle

    Science.gov (United States)

    Otles, Semih; Yalcin, Buket

    2012-01-01

    Types of nettles (Urtica dioica) were collected from different regions to analyze phenolic compounds in this research. Nettles are specially grown in the coastal part. According to this kind of properties, nettle samples were collected from coastal part of (Mediterranean, Aegean, Black sea, and Marmara) Turkey. Phenolic profile, total phenol compounds, and antioxidant activities of nettle samples were analyzed. Nettles were separated to the part of root, stalk, and leaves. Then, these parts of nettle were analyzed to understand the difference of phenolic compounds and amount of them. Nettle (root, stalk and leaves) samples were analyzed by using High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD) to qualitative and quantitative determination of the phenolic compounds. Total phenolic components were measured by using Folin-Ciocalteu method. The antioxidant activity was measured by using DPPH (2,2-diphenyl-1-picrylhydrazyl) which is generally used for herbal samples and based on single electron transfer (SET). PMID:22593694

  15. Phenolic Compounds Analysis of Root, Stalk, and Leaves of Nettle

    OpenAIRE

    Otles, Semih; Yalcin, Buket

    2012-01-01

    Types of nettles (Urtica dioica) were collected from different regions to analyze phenolic compounds in this research. Nettles are specially grown in the coastal part. According to this kind of properties, nettle samples were collected from coastal part of (Mediterranean, Aegean, Black sea, and Marmara) Turkey. Phenolic profile, total phenol compounds, and antioxidant activities of nettle samples were analyzed. Nettles were separated to the part of root, stalk, and leaves. Then, these parts ...

  16. Analysis of Phenolic Acids of Jerusalem Artichoke (Helianthus tuberosus L. Responding to Salt-Stress by Liquid Chromatography/Tandem Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Fujia Chen

    2014-01-01

    Full Text Available Plant phenolics can have applications in pharmaceutical and other industries. To identify and quantify the phenolic compounds in Helianthus tuberosus leaves, qualitative analysis was performed by a reversed phase high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS and quantitative analysis by HPLC. Ten chlorogenic acids (CGAs were identified (3-o-caffeoylquinic acid, two isomers of caffeoylquinic acid, caffeic acid, p-coumaroyl-quinic acid, feruloylquinic acid, 3,4-dicaffeoyquinic acid, 3,5-dicaffeoylquinic acid, 1,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid by comparing their retention times, UV-Vis absorption spectra, and MS/MS spectra with standards. In addition, four other phenolic compounds, including caffeoyl glucopyranose, isorhamnetin glucoside, kaempferol glucuronide, and kaempferol-3-o-glucoside, were tentatively identified in Helianthus tuberosus leaves for the first time. The 3-o-caffeoylquinic acid (7.752 mg/g DW, 4,5-dicaffeoylquinic acid (5.633 mg/g DW, and 3,5-dicaffeoylquinic acid (4.900 mg/g DW were the major phenolic compounds in leaves of Helianthus tuberosus cultivar NanYu in maturity. The variations in phenolic concentrations and proportions in Helianthus tuberosus leaves were influenced by genotype and plant growth stage. Cultivar NanYu had the highest concentration of phenolic compounds, in particular 3-o-caffeoylquinic acid and 4,5-dicaffeoylquinic acid compared with the other genotypes (wild accession and QingYu. Considering various growth stages, the concentration of total phenolics in cultivar NanYu was higher at flowering stage (5.270 mg/g DW than at budding and tuber swelling stages. Cultivar NanYu of Helianthus tuberosus is a potential source of natural phenolics that may play an important role in the development of pharmaceuticals.

  17. Cytotoxicity of Phenol Red in Toxicity Assays for Carbon Nanoparticles

    Directory of Open Access Journals (Sweden)

    Chunhai Fan

    2012-09-01

    Full Text Available To explore the novel properties of carbon nanoparticles (CNPs in nanotoxicity assays, the adsorption of phenol red (a pH indicator for culture medium by multi-walled carbon nanotubes (MWNTs and three kinds of carbon blacks (CBs with nanosize, and its effects on cytotoxicity were studied. Results indicated that the phenol red adsorbed and delivered into cells by CBs was responsible for the toxicity to Hela cells in the medium without serum. The cellular uptake of phenol red was verified using 125I-labeling techniques. The size-dependent cytotoxicity of CBs was found to closely correlate to adsorption of phenol red, cellular uptake of phenol red-CB complexes and the amount of phenol red delivered into the cells by CBs. Although the CBs were either nontoxic or slightly toxic, as vehicles of phenol red, they played an essential role in the cytotoxicity induced by phenol red. However, MWNTs showed an intrinsic cytotoxicity independent of phenol red. The implications associated with these findings are discussed.

  18. Rapid determination of phenol content in extra virgin olive oil

    Directory of Open Access Journals (Sweden)

    Favati, F.

    1994-04-01

    Full Text Available A quick extraction methodology was developed to reduce the time usually required to determine the phenol content in olive oil. The validity of this method, based on SPE technique, was tested against two other phenol extraction techniques.
    The statistical analysis of the analytical data showed that over a phenol content range of 110-550 μg/g oil, the proposed method can be a reliable alternative for a rapid extraction of the phenols from olive oil.

    No disponible.

  19. Chlorine dioxide as phenol and H2S scavenger - formation of halogenated phenols and subsequent environmental risk

    Energy Technology Data Exchange (ETDEWEB)

    Melbye, Alf G.; Faksness, Liv-Guri; Knudsen, Boerre Leif

    2006-03-15

    Formation of halogenated phenols as side products from treatment of produced water with aqueous chlorine dioxide has been investigated. The literature describes formation of halogenated hydrocarbons in effluent treatment using chlorine, hypochlorite and chlorine dioxide. A new chlorine dioxide product, originally intended as a H2S scavenger in the oil and gas industry, has been tested both as a phenol scavenger and H2S-scavenger for produced water applications. The concern about the possible formation of halogenated by-products initiated laboratory testing of chlorine dioxide as phenol and H2S scavenger for produced water applications. The tests also included synthetic matrixes containing phenols, and the tests show that halogenated phenols, mainly brominated species, are found in produced water after treatment with chlorine dioxide. Due to potential environmental risk from halogenated organic contaminants, the use of chlorine dioxide as phenol and H2S scavenger is not recommended. (Author)

  20. First operational experiences with the new biological waste water treatment plant at HKM; Erste Betriebserfahrungen mit der neuen biologischen Abwasserbehandlungsanlage der HKM

    Energy Technology Data Exchange (ETDEWEB)

    R. Wendt; L. Nelles

    2002-07-01

    The common process of coke oven gas purification in by-product plant produces process water that is namely composed of excess flushing water from the crude tar decantation and waste water from NH{sub 3} and H{sub 2}S scrubbers. In 1959, the coke plant at HKM (formerly Mannesmann Huettenwerken Huckingen AG) was commissioned. This plant made use of the phenol removal process. Utilizing the phenolsolvan method the phenols toxic to microbes were removed from ammonia waste water and crude phenol recovered. The process water was subsequently steam stripped in strippers and deacidifiers. After more than 40 years of operation the need for modernization of the phenol removal plant arose. As a consequence of more stringent limits on coke plant effluents that have already been in place for several years the HKM came to a resolution to construct a new biological waste water treatment plant instead of renewing the phenol removal plant.

  1. Temporary reduction of radiation does not permanently reduce flavonoid glycosides and phenolic acids in red lettuce.

    Science.gov (United States)

    Becker, Christine; Kläring, Hans-Peter; Kroh, Lothar W; Krumbein, Angelika

    2013-11-01

    Applying transparent daytime screens in greenhouses in cool seasons reduces the amount of energy needed for heating, but also the solar radiation available for crops. This can reduce yield and product quality of leafy vegetables because of constrained photosynthesis and altered biosynthesis. To study this, we cultivated five-week old red leaf lettuce (Lactuca sativa L.) for four weeks in growth chambers under a photosynthetic photon flux density (PPFD) of 225 and 410 μmol m(-2) s(-1), respectively. Some plants were exchanged between radiation intensities after two weeks. We investigated the concentration of five flavonoid glycosides, three caffeic acid derivatives, reducing sugars as well as plant growth. Remarkably, no significant influence of radiation intensity on the concentration of phenolic acids or anthocyanin glycosides was observed. In contrast, quercetin and luteolin glycoside concentration was between 14 and 34% lower in plants growing under lower compared to higher PPFD. Already after two weeks of cultivation, plants grown under lower PPFD contained less quercetin and luteolin glycosides but they completely compensated if subsequently transferred to higher PPFD until harvest. Hence, marketable lettuce heads which experienced temporary shading followed by an unshaded phase did not contain lower concentrations of flavonoid glycosides or phenolic acids. Also, there was no reduction of head mass in this variant. Our results suggest that saving energy in early growth stages is feasible without losses in yield or health promoting phenolic substances. In addition, there was a close correlation between the concentration of reducing sugars and some flavonoid glycosides, indicating a close metabolic connection between their biosynthesis and the availability of carbohydrates. Copyright © 2013 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  2. HPLC-ED Analysis of Phenolic Compounds in Three Bosnian Crataegus Species

    Directory of Open Access Journals (Sweden)

    Dušan Čulum

    2018-04-01

    Full Text Available The aim of this work was the qualitative and quantitative determination of selected phenolic compounds in three Crataegus species grown in Bosnia. Crataegus plants are consumed for medicinal purposes and as foodstuff in the form of canned fruit, jam, jelly, tea, and wine. Two samples of plant material, dry leaves with flowers, and berries of three Crataegus species—Crataegus rhipidophylla Gand., Crataegus x subsphaericea Gand., and Crataegus x macrocarpa Hegetschw.—were analyzed. Twelve ethanolic extracts were isolated from the selected plant material using Soxhlet and ultrasound extraction, respectively. Soxhlet extraction proved to be more effective than ultrasound extraction. A simple and sensitive method, high-performance liquid chromatography with electrochemical detection, HPLC-ED, was used for the simultaneous determination of phenolic acids and flavonoids in Crataegus species. The content of gallic acid in the extracts ranged from 0.001 to 0.082 mg/g dry weight (DW, chlorogenic acid from 0.19 to 8.70 mg/g DW, and rutin from 0.03 to 13.49 mg/g DW. Two flavonoids, vitexin and hyperoside, commonly found in chemotaxonomic investigations of Crataegus species, were not detected in the examined extracts. In general, leaves with flowers samples are richer in gallic acid and rutin, whereas the berries samples are richer in chlorogenic acid. Distinct similarities were found in the relative distribution of gallic acid among the three species. Extracts of C. x macrocarpa had the highest content of all detected compounds, while significant differences were found in rutin content, depending on the plant organ. To the best of our knowledge, this is the first study reporting content of phenolic compounds in Crataegus rhipidophylla Gand., Crataegus x subsphaericea, and Crataegus x macrocarpa from Bosnia.

  3. Comparison of total phenolic content, scavenging activity and HPLC-ESI-MS/MS profiles of both young and mature leaves and stems of Andrographis paniculata.

    Science.gov (United States)

    Chua, Lee Suan; Yap, Ken Choy; Jaganath, Indu Bala

    2013-12-01

    The total phenolic content and radical scavenging activity of Andrographis paniculata has been investigated to estimate the amount of phenolic compounds and diterpene lactones, respectively in the plant extracts. The stem extracts exhibited higher total phenolic content and scavenging activity than those of the leaf extracts from both young and mature plants. A range of 19.6-47.8 mg extract of A. paniculata from different parts of the plant is equivalent to the scavenging activity exhibited by one mg of standard Trolox. HPLC-ESI-MS/MS was also used to identify simultaneously the phytochemicals from the leaves and stems of both young and mature plant samples. Of the identified compounds, seven of the sixteen diterpene lactones, three of the six flavonoids, five of the six phenolic acids and two cyclic acids are reported here for the first time for this species. Multivariate statistical approaches such as Hierarchiral Component Analysis (HCA) and Principle Component Analysis (PCA) have clustered the plant extracts into the leaf and stem groups, regardless of plant age. Further classification based on the phytochemical profiles revealed that mostly phenolic acids and flavonoids were from the young leaf extracts, and diterpenoids and their glycosides from the mature leaf extracts. However, the phytochemical profiles for the stems of both young and mature plants were not significantly different as presented in the dendrogram of HCA and the score plot of PCA. The marker for mature plants might be the m/z 557 ion (dihydroxyl dimethyl 19-[(beta-D-glucopyranosyl)oxy]-19-oxo-ent-labda-8(17),13-dien-16,15-olide), whereas the m/z 521 ion (propyl neoandrographolide) could be the marker for leaf extracts.

  4. Evaluation of Antioxidant Activity and Phenolic Content in Different Salvia officinalis L. Extracts

    Directory of Open Access Journals (Sweden)

    Ana Viorica Pop (Cuceu

    2015-11-01

    Full Text Available The use of medicinal plants to improve health is an ancient practice and in recent years it has been observed an increasing interest of scientific researchers for the study of plants with biological properties and active principles responsible for their therapeutic effects. Salvia officinalis L. is considered the queen of herbs and belongs to the Lamiaceae (Labiatae family. Due to the increasing interest in plants health benefits, the aim of the present study was to characterize various extracts of Romanian sage regarding their content in compounds with antioxidant activity. Three different techniques and five solvents were used for extraction of bioactive compounds from Salvia officinalis L. The total phenolic content and the antioxidant activity of plant extract were determined by Folin-Ciocalteu method and respectively by the 2,2-diphenyl-1-picrylhydrazyl (DPPH free radical scavenging assay. Methanolic extract exhibited the highest content in phenolic compound (1974.89 mg GAE/100g dw as well ass the strongest antioxidant capacity (85.12%.

  5. Determination of phenolic acids in seeds of black cumin, flax, pomegranate and pumpkin and their by-products

    Directory of Open Access Journals (Sweden)

    Krimer-Malešević Vera M.

    2016-01-01

    Full Text Available Ten phenolic acids, contained in the seeds of black cumin (Nigella sativa L., flax (Linum usitatissimum L., pomegranate (Punica granatum L. and pumpkin (Cucurbita pepo L. and their oil industry by-products, separated into the free, esterified, and insoluble-bound forms, were quantitatively analysed by reverse phase high performance liquid chromatography with photodiode array detector. The chromatographic data were interpreted using Principal Component Analysis (PCA. The PCA model with three principal components (PC1-PC2-PC3 fitted well with 12 examined plant samples, allowing their division into groups according to their origin. The total phenolic variables could be represented by two PCs and for the pattern recognition of the analysed samples, 13 phenolic variables are sufficient, including: free, esterified and insoluble-bound forms of gallic and syringic acids, free vanillic, insoluble bound p-coumaric, esterified p-hydroxybenzaldehide, and free and insoluble-bound forms of p-hydroxybenzoic and trans-synapic acids. This might have potential application in simplified screening of phenolic compounds in seeds and their oil industry by-products or in food component analysis or authenticity detection in such plant materials.[Projekat Ministarstva nauke Republike Srbije, br. III 46010

  6. In vitro callus culture of Heliotropium indicum Linn. for assessment of total phenolic and flavonoid content and antioxidant activity.

    Science.gov (United States)

    Kumar, Muthusamy Senthil; Chaudhury, Shibani; Balachandran, Srinivasan

    2014-12-01

    The total phenolic and flavonoid content and percentage of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of callus and in vivo plant parts of Heliotropium indicum Linn. were estimated. Murashige and Skoog (MS) basal medium supplemented with α-naphthaleneacetic acid (NAA) 2.0 mg/l with benzyladenine (BA) 0.5 mg/l showed the highest amount of callus biomass (1.87 g/tube). The morphology of callus was significantly different according to the plant growth regulators and their concentrations used in the medium. The highest amount of total phenolic (21.70 mg gallic acid equivalent per gram (GAE/g)) and flavonoid (4.90 mg quercetin equivalent per gram (QE/g)) content and the maximum percentage (77.78 %) of radical scavenging activity were estimated in the extract of inflorescence. The synergistic effect of NAA (2.0 mg/l) and BA (0.5 mg/l) enhances the synthesis of total phenolic (9.20 mg GAE/g) and flavonoid (1.25 mg QE/g) content in the callus tissue. The callus produced by the same concentration shows 45.24 % of free radical scavenging activity. While comparing the various concentrations of NAA with 2,4-dichlorophenoxyacetic acid (2,4-D) for the production of callus biomass, total phenolic and flavonoid content and free radical scavenging activity, all the concentrations of NAA were found to be superior than those of 2,4-D.

  7. Influence of Laccase and Tyrosinase on the Antioxidant Capacity of Selected Phenolic Compounds on Human Cell Lines

    Directory of Open Access Journals (Sweden)

    Matthias Riebel

    2015-09-01

    Full Text Available Polyphenolic compounds affect the color, odor and taste of numerous food products of plant origin. In addition to the visual and gustatory properties, they serve as radical scavengers and have antioxidant effects. Polyphenols, especially resveratrol in red wine, have gained increasing scientific and public interest due to their presumptive beneficial impact on human health. Enzymatic oxidation of phenolic compounds takes place under the influence of polyphenol oxidases (PPO, including tyrosinase and laccase. Several studies have demonstrated the radical scavenger effect of plants, food products and individual polyphenols in vitro, but, apart from resveratrol, such impact has not been proved in physiological test systems. Furthermore, only a few data exist on the antioxidant capacities of the enzymatic oxidation products of phenolic compounds generated by PPO. We report here first results about the antioxidant effects of phenolic substances, before and after oxidation by fungal model tyrosinase and laccase. In general, the common chemical 2,2-diphenyl-1-picrylhydrazyl assay and the biological tests using two different types of cell cultures (monocytes and endothelial cells delivered similar results. The phenols tested showed significant differences with respect to their antioxidant activity in all test systems. Their antioxidant capacities after enzymatic conversion decreased or increased depending on the individual PPO used.

  8. QSARs for phenols and phenolates: oxidation potential as a predictor of reaction rate constants with photochemically produced oxidants.

    Science.gov (United States)

    Arnold, William A; Oueis, Yan; O'Connor, Meghan; Rinaman, Johanna E; Taggart, Miranda G; McCarthy, Rachel E; Foster, Kimberley A; Latch, Douglas E

    2017-03-22

    Quantitative structure-activity relationships (QSARs) for prediction of the reaction rate constants of phenols and phenolates with three photochemically produced oxidants, singlet oxygen, carbonate radical, and triplet excited state sensitizers/organic matter, are developed. The predictive variable is the one-electron oxidation potential (E 1 ), which is calculated for each species using density functional theory. The reaction rate constants are obtained from the literature, and for singlet oxygen, are augmented with new experimental data. Calculated E 1 values have a mean unsigned error compared to literature values of 0.04-0.06 V. For singlet oxygen, a single linear QSAR that includes both phenols and phenolates is developed that predicts experimental rate constants, on average, to within a factor of three. Predictions for only 6 out of 87 compounds are off by more than a factor of 10. A more limited data set for carbonate radical reactions with phenols and phenolates also gives a single linear QSAR with prediction of rate constant being accurate to within a factor of three. The data for the reactions of phenols with triplet state sensitizers demonstrate that two sensitizers, 2-acetonaphthone and methylene blue, most closely predict the reactivity trend of triplet excited state organic matter with phenols. Using sensitizers with stronger reduction potentials could lead to overestimation of rate constants and thus underestimation of phenolic pollutant persistence.

  9. Phenolic characterization and variability in leaves, stems and roots of Micro-Tom and patio tomatoes, in response to nitrogen limitation.

    Science.gov (United States)

    Larbat, Romain; Paris, Cédric; Le Bot, Jacques; Adamowicz, Stéphane

    2014-07-01

    Phenolics are implicated in the defence strategies of many plant species rendering their concentration increase of putative practical interest in the field of crop protection. Little attention has been given to the nature, concentration and distribution of phenolics within vegetative organs of tomato (Solanum lycopersicum. L) as compared to fruits. In this study, we extensively characterized the phenolics in leaves, stems and roots of nine tomato cultivars using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (LC-MS(n)) and assessed the impact of low nitrogen (LN) availability on their accumulation. Thirty-one phenolics from the four sub-classes, hydroxycinnamoyl esters, flavonoids, anthocyanins and phenolamides were identified, five of which had not previously been reported in these tomato organs. A higher diversity and concentration of phenolics was found in leaves than in stems and roots. The qualitative distribution of these compounds between plant organs was similar for the nine cultivars with the exception of Micro-Tom because of its significantly higher phenolic concentrations in leaves and stems as compared to roots. With few exceptions, the influence of the LN treatment on the three organs of all cultivars was to increase the concentrations of hydroxycinnamoyl esters, flavonoids and anthocyanins and to decrease those of phenolamides. This impact of LN was greater in roots than in leaves and stems. Nitrogen nutrition thus appears as a means of modulating the concentration and composition of organ phenolics and their distribution within the whole plant. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Application of HPLC and ESI-MS techniques in the analysis of phenolic acids and flavonoids from green leafy vegetables (GLVs

    Directory of Open Access Journals (Sweden)

    B. Ramesh Kumar

    2017-12-01

    Full Text Available Diets containing high proportions of fruits and vegetables reduce the risk of onset of chronic diseases. The role of herbal medicines in improving human health is gaining popularity over the years, which also increases the need for safety and efficiency of these products. Green leafy vegetables (GLVs are the richest source of phenolic compounds with excellent antioxidant properties. Increased consumption of diets containing phenolic compounds may give positive and better results to human health and significantly improves the immune system. Highly selective, susceptible and versatile analytical techniques are necessary for extraction, identification, and quantification of phenolic compounds from plant extracts, which helps to utilize their important biological properties. Recent advances in the pre-treatment procedures, separation techniques and spectrometry methods are used for qualitative and quantitative analysis of phenolic compounds. The online coupling of liquid chromatography with mass spectrometry (LC–MS has become a useful tool in the metabolic profiling of plant samples. In this review, the separation and identification of phenolic acids and flavonoids from GLVs by LC–MS have been discussed along with the general extraction procedures and other sources of mass spectrometer used. The review is devoted to the understanding of the structural configuration, nature and accumulation pattern of phenolic acids and flavonoids in plants and to highlighting the recent developments in the chemical investigation of these compounds by chromatographic and spectroscopic techniques. It concludes with the advantages of the combination of these two methods and prospects. Keywords: Green leafy vegetables, Phenolic acids, Flavonoids, HPLC, ESI-MS

  11. Assessment of phenol infiltration resilience in soil media by HYDRUS-1D transport model for a waste discharge site.

    Science.gov (United States)

    Adhikari, K; Pal, S; Chakraborty, B; Mukherjee, S N; Gangopadhyay, A

    2014-10-01

    The movement of contaminants through soil imparts a variety of geo-environmental problem inclusive of lithospheric pollution. Near-surface aquifers are often vulnerable to contamination from surface source if overlying soil possesses poor resilience or contaminant attenuation capacity. The prediction of contaminant transport through soil is urged to protect groundwater from sources of pollutants. Using field simulation through column experiments and mathematical modeling like HYDRUS-1D, assessment of soil resilience and movement of contaminants through the subsurface to reach aquifers can be predicted. An outfall site of effluents of a coke oven plant comprising of alarming concentration of phenol (4-12.2 mg/L) have been considered for studying groundwater condition and quality, in situ soil characterization, and effluent characterization. Hydrogeological feature suggests the presence of near-surface aquifers at the effluent discharge site. Analysis of groundwater of nearby locality reveals the phenol concentration (0.11-0.75 mg/L) exceeded the prescribed limit of WHO specification (0.002 mg/L). The in situ soil, used in column experiment, possess higher saturated hydraulic conductivity (KS  = 5.25 × 10(-4) cm/s). The soil containing 47 % silt, 11 % clay, and 1.54% organic carbon content was found to be a poor absorber of phenol (24 mg/kg). The linear phenol adsorption isotherm model showed the best fit (R(2) = 0.977, RMSE = 1.057) to the test results. Column experiments revealed that the phenol removal percent and the length of the mass transfer zone increased with increasing bed heights. The overall phenol adsorption efficiency was found to be 42-49%. Breakthrough curves (BTCs) predicted by HYDRUS-1D model appears to be close fitting with the BTCs derived from the column experiments. The phenol BTC predicted by the HYDRUS-1D model for 1.2 m depth subsurface soil, i.e., up to the depth of groundwater in the study area, showed that the exhaustion

  12. Inhibition of lignin-derived phenolic compounds to cellulase.

    Science.gov (United States)

    Qin, Lei; Li, Wen-Chao; Liu, Li; Zhu, Jia-Qing; Li, Xia; Li, Bing-Zhi; Yuan, Ying-Jin

    2016-01-01

    Lignin-derived phenolic compounds are universal in the hydrolysate of pretreated lignocellulosic biomass. The phenolics reduce the efficiency of enzymatic hydrolysis and increase the cost of ethanol production. We investigated inhibition of phenolics on cellulase during enzymatic hydrolysis using vanillin as one of the typical lignin-derived phenolics and Avicel as cellulose substrate. As vanillin concentration increased from 0 to 10 mg/mL, cellulose conversion after 72-h enzymatic hydrolysis decreased from 53 to 26 %. Enzyme deactivation and precipitation were detected with the vanillin addition. The enzyme concentration and activity consecutively decreased during hydrolysis, but the inhibition degree, expressed as the ratio of the cellulose conversion without vanillin to the conversion with vanillin (A 0 /A), was almost independent on hydrolysis time. Inhibition can be mitigated by increasing cellulose loading or cellulase concentration. The inhibition degree showed linear relationship with the vanillin concentration and exponential relationship with the cellulose loading and the cellulase concentration. The addition of calcium chloride, BSA, and Tween 80 did not release the inhibition of vanillin significantly. pH and temperature for hydrolysis also showed no significant impact on inhibition degree. The presence of hydroxyl group, carbonyl group, and methoxy group in phenolics affected the inhibition degree. Besides phenolics concentration, other factors such as cellulose loading, enzyme concentration, and phenolic structure also affect the inhibition of cellulose conversion. Lignin-blocking agents have little effect on the inhibition effect of soluble phenolics, indicating that the inhibition mechanism of phenolics to enzyme is likely different from insoluble lignin. The inhibition of soluble phenolics can hardly be entirely removed by increasing enzyme concentration or adding blocking proteins due to the dispersity and multiple binding sites of phenolics

  13. Phenolic compounds and related enzymes as determinants of sorghum for food use

    NARCIS (Netherlands)

    Dicko, M.H.; Gruppen, H.; Traore, A.S.; Voragen, A.G.J.; Berkel, van W.J.H.

    2006-01-01

    Phenolic compounds and related enzymes such as phenol biosynthesizing enzymes (phenylalanine ammonia lyase) and phenol catabolizing enzymes (polyphenol oxidase and peroxidase) are determinants for sorghum utilization as human food because they influence product properties during and after sorghum

  14. Fracture in Phenolic Impregnated Carbon Ablator

    Science.gov (United States)

    Agrawal, Parul; Chavez-Garcia, Jose; Pham, John

    2013-01-01

    This paper describes the development of a novel technique to understand the failure mechanisms inside thermal protection materials. The focus of this research is on the class of materials known as phenolic impregnated carbon ablators. It has successfully flown on the Stardust spacecraft and is the thermal protection system material chosen for the Mars Science Laboratory and SpaceX Dragon spacecraft. Although it has good thermal properties, structurally, it is a weak material. To understand failure mechanisms in carbon ablators, fracture tests were performed on FiberForm(Registered TradeMark) (precursor), virgin, and charred ablator materials. Several samples of these materials were tested to investigate failure mechanisms at a microstructural scale. Stress-strain data were obtained simultaneously to estimate the tensile strength and toughness. It was observed that cracks initiated and grew in the FiberForm when a critical stress limit was reached such that the carbon fibers separated from the binder. However, both for virgin and charred carbon ablators, crack initiation and growth occurred in the matrix (phenolic) phase. Both virgin and charred carbon ablators showed greater strength values compared with FiberForm samples, confirming that the presence of the porous matrix helps in absorbing the fracture energy.

  15. Phenolic antioxidants attenuate hippocampal neuronal cell damage ...

    Indian Academy of Sciences (India)

    Unknown

    CP had lower Fe3+ reducing activity in comparison to WS and AV. Plant extracts given singly ... modulators of nervous system damage. In epilepsy, ex- ..... D 1978 Antimicrobial agents from higher plants, Glycy- rrhiza glabra L. I. Some ...

  16. Bioassay of Phenol and its Intermediate Products Using Daphnia magna

    Directory of Open Access Journals (Sweden)

    Afshin Maleki

    2008-06-01

    Full Text Available Phenol is one of the most common compounds found in many industrial effluents such as petroleum refining and petrochemicals, pharmaceuticals, pesticides, paint and dye industries, organic chemicals manufacturing, etc. The contamination of bodies of water with phenol is a serious problem in terms of environmental considerations due to its high toxicity. In this study, toxicity of phenol and its degradation mixtures by sonochemical, photochemical, and photosonochemical processes were investigated. Toxicity assay tests were carried out using Daphnia magna as a bio-indicator. The sonochemical and photochemical experiments were carried out using a bath sonicator (500 W working at 35 and 130 kHz frequencies and with a 400 W medium pressure mercury lamp, respectively. Experiments were performed at initial concentrations of 100 mg L-1. Bioassay tests showed that phenol was toxic to D.magna and so resulted in quite low LC50 values. Comparison of toxicity units (TU between phenol and effluent toxicity showed that TU value for photosonochemical effluent was lower than that obtained for phenol, photochemical effluent, and sonochemical effluent. It was found that the toxicity unit of photochemical effluent was lower than that obtained for sonochemical effluent. According to the D.magna acute toxicity test, it is concluded that photosonolysis and photolysis are capable of decreasing the toxicity of by-products formed during the degradation of phenol aqueous solutions. Photosonic and photolytic processes can, therefore, be recommended as a potential approach to the treatment of phenolic wastewater.

  17. Influence of nanometric silicon carbide on phenolic resin composites ...

    Indian Academy of Sciences (India)

    Abstract. This paper presents a preliminary study on obtaining and characterization of phenolic resin-based com- posites modified with nanometric silicon carbide. The nanocomposites were prepared by incorporating nanometric silicon carbide (nSiC) into phenolic resin at 0.5, 1 and 2 wt% contents using ultrasonication to ...

  18. Radiation shielding phenolic fibers and method of producing same

    International Nuclear Information System (INIS)

    Ohtomo, K.

    1976-01-01

    A radiation shielding phenolic fiber is described comprising a filamentary phenolic polymer consisting predominantly of a sulfonic acid group-containing cured novolak resin and a metallic atom having a great radiation shielding capacity, the metallic atom being incorporated in the polymer by being chemically bound in the ionic state in the novolak resin. A method for the production of the fiber is discussed

  19. Validated RP-HPLC Method for Quantification of Phenolic ...

    African Journals Online (AJOL)

    Purpose: To evaluate the total phenolic content and antioxidant potential of the methanol extracts of aerial parts and roots of Thymus sipyleus Boiss and also to determine some phenolic compounds using a newly developed and validated reversed phase high performance liquid chromatography (RP-HPLC) method.

  20. Anti-cancer and antioxidant properties of phenolics isolated from ...

    African Journals Online (AJOL)

    Purpose: To investigate the antioxidant and anticancer activities of phenolics from the leaf extract of Toona sinensis (TS). Methods: Acetone leaf extract of TS was screened for total phenolic and flavanoid contents, and the flanonoids were subjected to high performance liquid chromatographic (HPLC) analysis. Antioxidant ...

  1. Catalytic Ozonation of Phenolic Wastewater: Identification and Toxicity of Intermediates

    Directory of Open Access Journals (Sweden)

    Mahdi Farzadkia

    2014-01-01

    Full Text Available A new strategy in catalytic ozonation removal method for degradation and detoxification of phenol from industrial wastewater was investigated. Magnetic carbon nanocomposite, as a novel catalyst, was synthesized and then used in the catalytic ozonation process (COP and the effects of operational conditions such as initial pH, reaction time, and initial concentration of phenol on the degradation efficiency and the toxicity assay have been investigated. The results showed that the highest catalytic potential was achieved at optimal neutral pH and the removal efficiency of phenol and COD is 98.5% and 69.8%, respectively. First-order modeling demonstrated that the reactions were dependent on the initial concentration of phenol, with kinetic constants varying from 0.038 min−1  ([phenol]o = 1500 mg/L to 1.273 min−1 ([phenol]o = 50 mg/L. Bioassay analysis showed that phenol was highly toxic to Daphnia magna (LC50 96 h=5.6 mg/L. Comparison of toxicity units (TU of row wastewater (36.01 and the treated effluent showed that TU value, after slightly increasing in the first steps of ozonation for construction of more toxic intermediates, severely reduced at the end of reaction (2.23. Thus, COP was able to effectively remove the toxicity of intermediates which were formed during the chemical oxidation of phenolic wastewaters.

  2. Pyrolysis kinetics of phenols from lignite semicoking tar

    Energy Technology Data Exchange (ETDEWEB)

    Platonov, V.V.; Polovetskaya, O.S.; Proskuryakov, V.A.; Shavyrina, O.A. [Leo Tolstoy Tula State Pedag University, Tula (Russian Federation)

    2002-11-01

    The features of pyrolysis of phenols from lignite semicoking tar were studied. The activation energy and order of the reactions of accumulation of methane, hydrogen, carbon monoxide and dioxide, naphthalene and its methyl homologs, phenols, and isomeric cresols and dimethylphenols were determined.

  3. Phenolic Content, and Antioxidant and Antimicrobial Activities of ...

    African Journals Online (AJOL)

    Erah

    Methods: The content of total phenols, flavonoids and anthocyanins of the alcohol, hydroalcohol and aqueous extracts of ... Keywords: Crataegus oxyacantha L.; Natural phenolic compounds; Antioxidant and antimicrobial activity, Southeast Serbia. ..... Antioxidant activities of Sechium edule (Jacq.) Swart extracts, Food ...

  4. Response of total phenolic content and antioxidant activities of bush ...

    African Journals Online (AJOL)

    The positive health benefits associated with tea are made possible by the antioxidant activity of phenolic compounds present in tea. The total phenolic content and antioxidant activity of bush tea (Athrixia phylicoides DC.) and special tea (Monsonia burkeana) were studied. The extractions were done in triplicate using cold ...

  5. Biodegradation of phenol using an anaerobic EGSB reactors

    International Nuclear Information System (INIS)

    Eguia, A.; Olvera, M. E.; Cerezo, R.; Kuppusamy, I.

    2009-01-01

    Phenol is a compound found naturally in domestic and industrial waste waters and should be removed since in high concentrations it proves to be fatal. The present investigation was undertaken to evaluate the anaerobic biodegradability of the phenol in the wastewaters supplementing sulphates in the form of CaSO 4 2 , to increment the COD t otal removal value. (Author)

  6. Determination of Phenols in Water Samples using a Supported ...

    African Journals Online (AJOL)

    The sample preparation method was tested for the determination of phenols in river water samples and landfill leachate. Concentrations of phenols in river water were found to be in the range 4.2 μg L–1 for 2-chlorophenol to 50 μg L–1 for 4-chlorophenol. In landfill leachate, 4-chlorophenol was detected at a concentration ...

  7. Extraction and antioxidant activity of phenolic compounds from ...

    African Journals Online (AJOL)

    35:1, temperature: 70 oC, the experimental total phenolic yield was 30.464 ± 0.025, which agreed with ... The phenolic compounds showed strong antioxidant activities. At extract ..... under steam explosion is a suitable approach for obtaining a ...

  8. Total contents of phenolics, flavonoids, tannins and antioxidant capacity of selected traditional Ethiopian alcoholic beverages

    Directory of Open Access Journals (Sweden)

    A. Debebe

    2016-02-01

    Full Text Available The aim of this study was to determine the total contents of phenolics, tannins and flavonoids and antioxidant capacity and their relationships in traditional Ethiopian alcoholic beverages. They have been determined utilizing Folin–Ciocalteu assay, aluminum chloride precipitating agent and 2,2-diphenyl-1-picrylhydrazyl (DPPH assay, respectively. The most widely consumed beverages and which have many varieties were selected for this study. These are gesho fermented and non-gesho beverages tella, tej, borde, keribo, birz, korefe and areke. The total phenolic content obtained in gallic acid equivalent (GAE μg mL-1 was: areke (0.2–0.62, tella (10.1–19.1, tej (5.8–9.5, keribo (10.4–14.9, birz (10.5–12.2, korefe (9.2–10.7 and borde (8.4–10.6. The majority of phenolic compounds in the alcoholic beverages are non-tannic and non-flavonoid compounds. The antioxidant capacity obtained in ascorbic acid equivalent (AAE μg mL-1 was: areke (-0.28–284, tella (31.6–201, tej (1.73–73.7, keribo (39.21–90.11, birz (41.95–63.08, korefe (58.25–96.45 and borde (180–217. The variation in the antioxidant activity among the beverages is due to the types and amount of ingredients used, disparity in the preparation process and the types of phenolic compounds found. The relationship between total phenolics and antioxidant activities was investigated using Pearson correlation at 95% confidence level. The results obtained indicate that the non-gesho fermented beverages such as keribo (-0.714, birz (-0.686 and borde (-0.212 have negative antioxidant correlation with the total phenolic, whereas, fermented beverages with gesho such as tella (0.539, tej (0.385 and korefe (0.557 have positive correlations. Areke has an overall positive correlation (0.609, but, the cereal areke which does not have medicinal plants has negative correlation. DOI: http://dx.doi.org/10.4314/bcse.v30i1.3

  9. Immobilized TiO2 for Phenol Degradation in a Pilot-Scale Photocatalytic Reactor

    Directory of Open Access Journals (Sweden)

    Sylwia Mozia

    2012-01-01

    Full Text Available Phenol degradation was carried out in a photocatalytic pilot plant reactor equipped with a UV/vis mercury lamp. The total volume of treated water was equal to 1.35 m3. TiO2 P25 was used as a photocatalyst and it was immobilized on two different supports: (i a steel mesh and (ii a fiberglass cloth. Moreover, the performance of commercially available Photospheres-40 was examined. In addition, an experiment in the absence of a photocatalyst was conducted. The commercially available Photospheres-40 were found to be inadequate for the presented application due to their fragility, which in connection with vigorous mixing and pumping led to their mechanical destruction and loss of floating abilities. The highest effectiveness of phenol decomposition and mineralization was observed in the presence of TiO2 supported on the fiberglass cloth. After 15 h of the process, phenol and total organic carbon concentrations decreased by ca. 80% and 50%, respectively.

  10. In Vitro Cultivars of Vaccinium corymbosum L. (Ericaceae) are a Source of Antioxidant Phenolics.

    Science.gov (United States)

    Contreras, Rodrigo A; Köhler, Hans; Pizarro, Marisol; Zúiga, Gustavo E

    2015-04-09

    The antioxidant activity and phenolic composition of six in vitro cultured blueberry seedlings were determined. Extracts were prepared in 85% ethanol from 30 days old in vitro cultured plants and used to evaluate the antioxidant capacities that included Ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picrylhydrazin (DPPH•) scavenging ability, total polyphenols (TP) and the partial phenolic composition performed by high performance liquid chromatography with diode array detector (HPLC-DAD), liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS (ESI-QqQ)). All ethanolic extracts from in vitro blueberry cultivars displayed antioxidant activity, with Legacy, Elliott and Bluegold cultivars being the most active. In addition, we observed a positive correlation between phenolic content and antioxidant activity. Our results suggest that the antioxidant activity of the extracts is related to the content of chlorogenic acid myricetin, syringic acid and rutin, and tissue culture of blueberry seedlings is a good tool to obtain antioxidant extracts with reproducible profile of compounds.

  11. In Vitro Cultivars of Vaccinium corymbosum L. (Ericaceae are a Source of Antioxidant Phenolics

    Directory of Open Access Journals (Sweden)

    Rodrigo A. Contreras

    2015-04-01

    Full Text Available The antioxidant activity and phenolic composition of six in vitro cultured blueberry seedlings were determined. Extracts were prepared in 85% ethanol from 30 days old in vitro cultured plants and used to evaluate the antioxidant capacities that included Ferric reducing antioxidant power (FRAP and 1,1-diphenyl-2-picrylhydrazin (DPPH• scavenging ability, total polyphenols (TP and the partial phenolic composition performed by high performance liquid chromatography with diode array detector (HPLC-DAD, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS (ESI-QqQ. All ethanolic extracts from in vitro blueberry cultivars displayed antioxidant activity, with Legacy, Elliott and Bluegold cultivars being the most active. In addition, we observed a positive correlation between phenolic content and antioxidant activity. Our results suggest that the antioxidant activity of the extracts is related to the content of chlorogenic acid myricetin, syringic acid and rutin, and tissue culture of blueberry seedlings is a good tool to obtain antioxidant extracts with reproducible profile of compounds.

  12. Methyl jasmonate affects phenolic metabolism and gene expression in blueberry (Vaccinium corymbosum).

    Science.gov (United States)

    Cocetta, Giacomo; Rossoni, Mara; Gardana, Claudio; Mignani, Ilaria; Ferrante, Antonio; Spinardi, Anna

    2015-02-01

    Blueberry (Vaccinium corymbosum) is a fruit very much appreciated by consumers for its antioxidant potential and health-promoting traits. Its beneficial potential properties are mainly due to a high content of anthocyanins and their amount can change after elicitation with methyl jasmonate. The aim of this work is to evaluate the changes in expression of several genes, accumulation of phenolic compounds and alterations in antioxidant potential in two different blueberry cultivars ('Duke' and 'Blueray') in response to methyl jasmonate (0.1 mM). Results showed that 9 h after treatment, the expression of phenylalanine ammonium lyase, chalcone synthase and anthocyanidin synthase genes was stimulated more in the 'Blueray' variety. Among the phenols measured an increase was recorded also for epicatechin and anthocyanin concentrations. 'Duke' is a richer sourche of anthocyanins compared to 'Blueray', treatment with methyl jasmonate promoted in 'Blueray' an increase in pigments as well as in the antioxidant potential, especially in fully ripe berries, but treated 'Duke' berries had greater levels, which were not induced by methyl jasmonate treatment. In conclusion, methyl jasmonate was, in some cases, an effective elicitor of phenolic metabolism and gene expression in blueberry, though with different intensity between cultivars. © 2014 Scandinavian Plant Physiology Society.

  13. Isolation, chemical characterization, and free radical scavenging activity of phenolics from Triticum aestivum L. aerial parts.

    Science.gov (United States)

    Kowalska, Iwona; Pecio, Lukasz; Ciesla, Lukasz; Oleszek, Wieslaw; Stochmal, Anna

    2014-11-19

    Fourteen phenolic compounds (flavonoids and phenolic acids) were isolated and 19 were identified in the aerial parts of Triticum aestivum L. The structures of these compounds were established on the basis of the data obtained by electrospray ionization-mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) techniques. T. aestivum L. was found to be rich in flavones, especially in luteolin derivatives. Three of the isolated compounds, including luteolin 6-C-[6Glc″-O-E-caffeoyl-β-D-glucopyranosyl(1″→2)-β-glucopyranoside], luteolin 6-C-[5Rib″-O-E-feruoyl-β-D-ribofuranosyl(1″→2)-β-glucopyranoside], and 3',4',5'-O-trimethyltricetin 7-O-[β-D-glucuropyranosyl(1″→2)-β-D-glucopyranoside], have been reported for the first time in the plant kingdom. The amount of individual phenolics, in winter wheat, was also determined. Additionally, the free radical scavenging potential of the isolated compounds was tested in a simple and rapid thin-layer chromatography-2,2-diphenyl-1-picrylhydrazyl radical test (TLC-DPPH•) with image processing.

  14. Yeast α-Glucosidase Inhibitory Phenolic Compounds Isolated from Gynura medica Leaf

    Directory of Open Access Journals (Sweden)

    Chao Tan

    2013-01-01

    Full Text Available Gynura medica leaf extract contains significant amounts of flavonols and phenolic acids and exhibits powerful hypoglycemic activity against diabetic rats in vivo. However, the hypoglycemic active constituents that exist in the plant have not been fully elaborated. The purpose of this study is to isolate and elaborate the hypoglycemic activity compounds against inhibition the yeast α-glucosidase in vitro. Seven phenolic compounds including five flavonols and two phenolic acids were isolated from the leaf of G. medica. Their structures were identified by the extensive NMR and mass spectral analyses as: kaempferol (1, quercetin (2, kaempferol-3-O-β-D-glucopyranoside (3, kaempferol-3-O-rutinoside (4, rutin (5, chlorogenic acid (6 and 3,5-dicaffeoylquinic acid methyl ester (7. All of the compounds except 1 and 3 were isolated for the first time from G. medica. Compounds 1–7 were also assayed for their hypoglycemic activity against yeast α-glucosidase in vitro. All of the compounds except 1 and 6 showed good yeast α-glucosidase inhibitory activity with the IC50 values of 1.67 mg/mL, 1.46 mg/mL, 0.38 mg/mL, 0.10 mg/mL and 0.53 mg/mL, respectively.

  15. Phenolic compounds of Hibiscus sabdariffa and influence of organic residues on its antioxidant and antitumoral properties

    Directory of Open Access Journals (Sweden)

    ASN. Formagio

    Full Text Available The aim of this study was to evaluate the phenolic and flavonoids contents and the antioxidant and antitumoral activity of leaf and calyx methanolic extracts from Hibiscus sabdariffa (roselle cultivated with poultry litter and organosuper® under three modes of application. The total phenolic content in the each extract was determined using the Folin-Ciocalteu reagent and for aluminium chloride flavonoids. The antioxidant parameters were analyzed using a 2, 2-diphenyl-1-picrylhydrazyl (DPPH. free radical scavenging assay. An antitumor colorimetric assay using sulforhodamine B. The highest contents of phenolic and flavonoids were observed in leaf extracts (389.98 and 104.52 mg g–1, respectively and calyx extracts (474.09 and 148.35 mg g–1, respectively from plants cultivated with organosuper®, although these values did not differ significantly from those observed for the other treatments. The average IC50 of leaves (43.48 μg mL–1 and calyces (37.15 μg mL–1 demonstrated that both have substances that may contribute to free radical scavenging action. The methanol extract from calyces showed significant selective activity against a leukemia line (K-562, with IC50 values of 0.12 mg mL–1 (organosuper® and 1.16 mg mL–1 (poultry litter, with concentration-dependent, cytotoxic and cytocidal effects.

  16. Solid lipid nanoparticles as oral delivery systems of phenolic compounds: Overcoming pharmacokinetic limitations for nutraceutical applications.

    Science.gov (United States)

    Nunes, Sara; Madureira, Ana Raquel; Campos, Débora; Sarmento, Bruno; Gomes, Ana Maria; Pintado, Manuela; Reis, Flávio

    2017-06-13

    Drug delivery systems, accompanied by nanoparticle technology, have recently emerged as prominent solutions to improve the pharmacokinetic properties, namely bioavailability, of therapeutic and nutraceutical agents. Solid lipid nanoparticles (SLNs) have received much attention from researchers due to their potential to protect or improve drug properties. SLNs have been reported to be an alternative system to traditional carriers, such as emulsions, liposomes, and polymeric nanoparticles. Phenolic compounds are widespread in plant-derived foodstuffs and therefore abundant in our diet. Over the last decades, phenolic compounds have received considerable attention due to several health promoting properties, mostly related to their antioxidant activity, which can have important implications for health. However, most of these compounds have been associated with poor bioavailability being poorly absorbed, rapidly metabolized and eliminated, which compromises its biological and pharmacological benefits. This paper provides a systematic review of the use of SLNs as oral delivery systems of phenolic compounds, in order to overcome pharmacokinetic limitations of these compounds and improved nutraceutical potential. In vitro studies, as well as works describing topical and oral treatments will be revisited and discussed. The classification, synthesis, and clinical application of these nanomaterials will be also considered in this review article.

  17. Phenolic compounds of Hibiscus sabdariffa and influence of organic residues on its antioxidant and antitumoral properties.

    Science.gov (United States)

    Formagio, A S N; Ramos, D D; Vieira, M C; Ramalho, S R; Silva, M M; Zárate, N A H; Foglio, M A; Carvalho, J E

    2015-01-01

    The aim of this study was to evaluate the phenolic and flavonoids contents and the antioxidant and antitumoral activity of leaf and calyx methanolic extracts from Hibiscus sabdariffa (roselle) cultivated with poultry litter and organosuper® under three modes of application. The total phenolic content in the each extract was determined using the Folin-Ciocalteu reagent and for aluminium chloride flavonoids. The antioxidant parameters were analyzed using a 2, 2-diphenyl-1-picrylhydrazyl (DPPH.) free radical scavenging assay. An antitumor colorimetric assay using sulforhodamine B. The highest contents of phenolic and flavonoids were observed in leaf extracts (389.98 and 104.52 mg g-1, respectively) and calyx extracts (474.09 and 148.35 mg g-1, respectively) from plants cultivated with organosuper®, although these values did not differ significantly from those observed for the other treatments. The average IC50 of leaves (43.48 μg mL-1) and calyces (37.15 μg mL-1) demonstrated that both have substances that may contribute to free radical scavenging action. The methanol extract from calyces showed significant selective activity against a leukemia line (K-562), with IC50 values of 0.12 mg mL-1 (organosuper®) and 1.16 mg mL-1 (poultry litter), with concentration-dependent, cytotoxic and cytocidal effects.

  18. Antioxidant activity and phenolic content of leaf infusions of Myrtaceae species from Cerrado (Brazilian Savanna

    Directory of Open Access Journals (Sweden)

    L. K. Takao

    Full Text Available Abstract There is considerable interest in identifying new antioxidants from plant materials. Several studies have emphasized the antioxidant activity of species belonging to the Myrtaceae family. However, there are few reports on these species from the Cerrado (Brazilian savanna. In this study, the antioxidant activity and phenolic content of 12 native Myrtaceae species from the Cerrado were evaluated (Blepharocalyx salicifolius, Eugenia bimarginata, Eugenia dysenterica, Eugenia klotzschiana, Hexachlamys edulis, Myrcia bella, Myrcia lingua, Myrcia splendens, Myrcia tomentosa, Psidium australe, Psidium cinereum, and Psidium laruotteanum. Antioxidant potential was assessed using the antioxidant activity index (AAI by the DPPH method and total phenolic content (TPC by the Folin–Ciocalteu assay. There was a high correlation between TPC and AAI values. Psidium laruotteanum showed the highest TPC (576.56 mg GAE/g extract and was the most potent antioxidant (AAI = 7.97, IC50 = 3.86 µg·mL−1, with activity close to that of pure quercetin (IC50 = 2.99 µg·mL−1. The extracts of nine species showed IC50 of 6.24–8.75 µg·mL−1. Most species showed TPC and AAI values similar to or higher than those for Camellia sinensis, a commonly consumed tea with strong antioxidant properties. The results reveal that the analyzed Myrtaceae species from the Cerrado possess high phenolic contents and antioxidant activities. Thus, they are a potential source of new natural antioxidants.

  19. Antioxidative, Antiproliferative and Antimicrobial Activities of Phenolic Compounds from Three Myrcia Species

    Directory of Open Access Journals (Sweden)

    Catarina dos Santos

    2018-04-01

    Full Text Available Myrcia bella Cambess., Myrcia fallax (Rich. DC. and Myrcia guianensis (Aubl. DC. (Myrtaceae are trees found in Brazilian Cerrado. They have been widely used in folk medicine for the treatment of gastrointestinal disorders, hemorrhagic and infectious diseases. Few reports have been found in the literature connecting their phenolic composition and biological activities. In this regard, we have profiled the main phenolic constituents of Myrcia spp. leaves extracts by ESI(−Q-TOF-MS. The main constituents found were ellagic acid (M. bella, galloyl glucose isomers (M. guianensis and hexahydroxydiphenic (HHDP acid derivatives (M. fallax. In addition, quercetin and myricetin derivatives were also found in all Myrcia spp. extracts. The most promising antioxidant activity, measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH scavenging activity, was found for M. fallax extracts (EC50 8.61 ± 0.22 µg·mL−1, being slightly less active than quercetin and gallic acid (EC50 2.96 ± 0.17 and 2.03 ± 0.02 µg·mL−1, respectively. For in vitro antiproliferative activity, M. guianensis showed good activity against leukemia (K562 TGI = 7.45 µg·mL−1. The best antimicrobial activity was observed for M. bella and M. fallax to Escherichia coli (300 and 250 µg·mL−1, respectively. In conclusion, the activities found are closely related to the phenolic composition of these plants.

  20. Impact of agrochemicals on Peronospora sparsa and phenolic profiles in three Rubus arcticus cultivars.

    Science.gov (United States)

    Hukkanen, Anne; Kostamo, Katri; Kärenlampi, Sirpa; Kokko, Harri

    2008-02-13

    The main arctic bramble ( Rubus arcticus) cultivars are susceptible to downy mildew ( Peronospora sparsa), which seriously threatens the cultivation. The efficiency of Aliette, Euparen M, phosphite-containing Phosfik, Phostrol, Farm-Fos-44, and Kaliumfosfiet, as well as Bion was evaluated in the greenhouse. Fewer symptoms and less Peronospora DNA were found in plants treated with Euparen M and Bion, whereas Aliette, Phosfik, and Phostrol gave moderate protection. Three arctic bramble cultivars showed varying susceptibility to P. sparsa. An inexpensive and fast in vitro plate test gave results parallel with those obtained in the greenhouse. Quantitative differences were found in the phenolic profiles of the leaves of different cultivars and in different treatments. Several phenolic compounds were tentatively identified in arctic bramble for the first time, for example, monomeric and oligomeric ellagitannins and galloylglucoses. Negative correlation was found between the amount of P. sparsa DNA and flavonol glycosides and some ellagitannins in the leaves 8 days after inoculation, suggesting a possible role for these phenolics in the defense.

  1. Phenolics in Primula veris L. and P. elatior (L. Hill Raw Materials

    Directory of Open Access Journals (Sweden)

    Katarzyna Bączek

    2017-01-01

    Full Text Available Primula veris L. and Primula elatior (L. Hill represent medicinal plants used for the production of herbal teas and preparations with antioxidant and expectorant activity. Flowers and roots of both species possess the same biological activity. In the presented study, raw materials of wild growing P. veris and P. elatior were compared in terms of the content and composition of phenolic compounds using a fast and simple HPLC-DAD method. The study showed that flowers of both species were rich in flavonoids. However, P. veris flowers were characterized with a distinctly higher content of isorhamnetin-3-O-glucoside, astragalin, and (+-catechin, whereas P. elatior occurred to be a richer source of rutoside and isorhamnetin-3-O-rutinoside. Hyperoside was found exclusively in P. elatior flowers. Phenolic glycosides (primverin and primulaverin were identified only in the roots. Their content was about ten times higher in P. veris in comparison with P. elatior underground organs. The obtained results clearly show that both Primula species differ distinctly in terms of the content and composition of phenolic compounds. The compounds differentiating both species to the highest degree (hyperoside, in flowers, as well as primverin and primulaverin, in the roots may be useful chemical markers in the identification and evaluation of both species.

  2. Protein Folding and Aggregation into Amyloid: The Interference by Natural Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Massimo Stefani

    2013-06-01

    Full Text Available Amyloid aggregation is a hallmark of several degenerative diseases affecting the brain or peripheral tissues, whose intermediates (oligomers, protofibrils and final mature fibrils display different toxicity. Consequently, compounds counteracting amyloid aggregation have been investigated for their ability (i to stabilize toxic amyloid precursors; (ii to prevent the growth of toxic oligomers or speed that of fibrils; (iii to inhibit fibril growth and deposition; (iv to disassemble preformed fibrils; and (v to favor amyloid clearance. Natural phenols, a wide panel of plant molecules, are one of the most actively investigated categories of potential amyloid inhibitors. They are considered responsible for the beneficial effects of several traditional diets being present in green tea, extra virgin olive oil, red wine, spices, berries and aromatic herbs. Accordingly, it has been proposed that some natural phenols could be exploited to prevent and to treat amyloid diseases, and recent studies have provided significant information on their ability to inhibit peptide/protein aggregation in various ways and to stimulate cell defenses, leading to identify shared or specific mechanisms. In the first part of this review, we will overview the significance and mechanisms of amyloid aggregation and aggregate toxicity; then, we will summarize the recent achievements on protection against amyloid diseases by many natural phenols.

  3. Phenolic Acid Content and Antioxidant Properties of Extruded Corn Snacks Enriched with Kale

    Science.gov (United States)

    Kasprzak, Kamila; Oniszczuk, Tomasz; Waksmundzka-Hajnos, Monika; Nowak, Renata; Polak, Renata

    2018-01-01

    Prohealth food contains specific components which have positive influence on the health and well-being of the consumer. An important position among bioactive compounds occurs for polyphenols. Many results have indicated that an increased intake of phenolic compounds may reduce the risk of cardiovascular diseases and type 2 diabetes. The objective of the study was production of extruded corn snacks with addition (0, 2, 4, 6, and 8%) of kale (Brassica oleracea L. var. sabellica)—a polyphenol-rich plant. Afterwards, high-performance liquid chromatography-mass spectrometry (LC-ESI-MS/MS) and antioxidant activity analyses of snack extracts were performed. In the corn snacks enriched with kale, fifteen phenolic acids were indicated. These were protocatechuic, 4-OH-benzoic, vanillic, trans-caffeic, cis-caffeic, trans-p-coumaric, cis-p-coumaric, trans-ferulic, cis-ferulic, salicylic, gentisic, syringic, 3-OH-cinnamic, trans-sinapic, and cis-sinapic acids. Both the qualitative and quantitative content of polyphenols increased with the addition of B. oleracea. Data from spectrophotometric analyses of the samples showed high DPPH radical scavenging potential of snacks enriched with 4, 6, and 8% of kale. Snacks enriched with kale contain high level of phenolic acids and, therefore, have great potential to make a valuable source of natural antioxidants. High-temperature short-time extrusion-cooking process had no negative impact on polyphenol's activity. PMID:29507816

  4. Evaluation of Antibacterial Activity and Total Phenol Compounds of Punica granatum Hydro-Alcoholic Extract

    Directory of Open Access Journals (Sweden)

    Elahe Ahmadi

    2016-12-01

    Full Text Available Background & Objectives: Punica granatum is a non-productive form of a plant and is used for the treatment of diseases in traditional medicine. In this study, we evaluate the antibacterial activity and the total phenol compounds of Punica granatum. Materials & Methods: Disk and well diffusion methods and MIC were used to evaluate the antibacterial activity of hydro-alcoholic extract on S. aureus and E. coli compared to standard commercial antibiotic disks. Measurement of phenol compounds were performed by Seevers and Daly colorimetric methods (Folin-ciocalteu indicator. Results: 35 and 29 mm inhibition zones in S. aureus and 22 and 17 mm inhibition zones in E. coli were shown by disk and well diffusion method, respectively. Also, 7.8 mg/ml concentration of extract showed the MIC points for two bacteria. Phenol compound of extract was 233.15±5.1 mg/g of extraction. Conclusion: Antibacterial effect of Punica granatum compared to antibiotics indicates the strong activity against examined bacteria. Extensive antibacterial study of Punica granatum is suggested.

  5. Phenolic compounds of Triplaris gardneriana can protect cells against oxidative stress and restore oxidative balance.

    Science.gov (United States)

    de Almeida, Thiago Silva; Neto, José Joaquim Lopes; de Sousa, Nathanna Mateus; Pessoa, Igor Parra; Vieira, Leonardo Rogério; de Medeiros, Jackeline Lima; Boligon, Aline Augusti; Hamers, Astrid R M; Farias, Davi Felipe; Peijnenburg, Ad; Carvalho, Ana Fontenele Urano

    2017-09-01

    This work aimed to add value to an underexploited plant species from Brazil, Triplaris gardneriana. To that, the phenolic compounds profile of its seed ethanolic extract and fractions was examined by HPLC and the antioxidant capacity assessed using chemical assays as well as in vitro cell imaging. Twelve compounds were quantified and classified as either phenolic acids or flavonoids. The fractionation process did not generate fractions with different compositions except for chloroformic fraction, which showed only 6 out of 12 standard compounds used. DPPH assay revealed samples with a concentration-dependent radical scavenging activity, being methanolic fraction the one with the largest activity (SC 50 11.45±0.02μg/mL). Lipid peroxidation assessment, in the presence and absence of stress inducer, showed that particularly the ethanol extract (IC 50 26.75±0.08μg/mL) and the ethyl acetate fraction (IC 50 6.14±0.03μg/mL) could inhibit lipid peroxidation. The ethyl acetate fraction performed best in chelating iron (48% complexation at 1000μg/mL). Cell imaging experiments showed that the ethanolic extract could protect cells against oxidative stress as well as restore the oxidative balance upon stress induction. In conclusion, T. gardneriana seeds showed a promising phenolic compounds profile and antioxidant activity that may be further exploited. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Total antioxidant capacity, total phenolic content and mineral elements in the fruit peel of Myrciaria cauliflora

    Directory of Open Access Journals (Sweden)

    Clináscia Rodrigues Rocha Araújo

    2013-12-01

    Full Text Available The in vitro antioxidant capacity, total phenolic content and mineral elements of the fruit peel of Myrciaria cauliflora were investigated. The antioxidant capacity was analyzed by the diphenylpicrylhydrazyl (DPPH, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS, ferric reducing antioxidant power (FRAP and β-carotene methods. The assays based on the DPPH (EC50 = 3.18 g sample/g DPPH, ABTS•+ (1017 μmol Trolox/g sample, FRAP (1676 µM Fe2SO4/g sample and β-carotene/linoleic acid (70% of oxidation inhibition methods indicated a high antioxidant capacity of the fruit peel extract of the plant. The Folin-Denis method was more efficient in determining the total phenolic compound contents in the different solvents than the Folin-Ciocalteu one. Extractions made with 4:1 methanol-water, 4:1 ethanol-water, 3:2 ethanol-water and 3:2 acetone-water solutions using the Folin-Denis method exhibited high contents of phenolic compounds (18.95, 14.06, 12.93 and 11.99 mg GAE/g, respectively. Potassium was the major element found in the fruit peel, followed by phosphorus, calcium, magnesium and iron, in that order. As a result, the fruit peel of M. cauliflora can be considered as an important source of natural antioxidants and essential elements of easy access for the population and for application in the food industry.

  7. Food Ingredient Extracts of Cyclopia subternata (Honeybush: Variation in Phenolic Composition and Antioxidant Capacity

    Directory of Open Access Journals (Sweden)

    Maria A. Stander

    2012-12-01

    Full Text Available Cyclopia subternata plants are traditionally used for the production of the South African herbal tea, honeybush, and recently as aqueous extracts for the food industry. A C. subternata aqueous extract and mangiferin (a major constituent are known to have anti-diabetic properties. Variation in phenolic composition and antioxidant capacity is expected due to cultivation largely from seedlings, having implications for extract standardization and quality control. Aqueous extracts from 64 seedlings of the same age, cultivated under the same environmental conditions, were analyzed for individual compound content, total polyphenol (TP content and total antioxidant capacity (TAC in a number of assays. An HPLC method was developed and validated to allow quantification of xanthones (mangiferin, isomangiferin, flavanones (hesperidin, eriocitrin, a flavone (scolymoside, a benzophenone (iriflophenone-3-C-β-glucoside and dihydrochalcones (phloretin-3',5'-di-C-β-glucoside, 3-hydroxyphloretin-3',5'-di-C-hexoside. Additional compounds were tentatively identified using mass spectrometric detection, with the presence of the 3-hydroxyphloretin-glycoside, an iriflophenone-di-O,C-hexoside, an eriodictyol-di-C-hexoside and vicenin-2 being demonstrated for the first time. Variability of the individual phenolic compound contents was generally higher than that of the TP content and TAC values. Among the phenolic compounds, scolymoside, hesperidin and iriflophenone-3-C-β-glucoside contents were the most variable. A combination of the measured parameters could be useful in product standardization by providing a basis for specifying minimum levels.

  8. Food ingredient extracts of Cyclopia subternata (Honeybush): variation in phenolic composition and antioxidant capacity.

    Science.gov (United States)

    de Beer, Dalene; Schulze, Alexandra E; Joubert, Elizabeth; de Villiers, André; Malherbe, Christiaan J; Stander, Maria A

    2012-12-07

    Cyclopia subternata plants are traditionally used for the production of the South African herbal tea, honeybush, and recently as aqueous extracts for the food industry. A C. subternata aqueous extract and mangiferin (a major constituent) are known to have anti-diabetic properties. Variation in phenolic composition and antioxidant capacity is expected due to cultivation largely from seedlings, having implications for extract standardization and quality control. Aqueous extracts from 64 seedlings of the same age, cultivated under the same environmental conditions, were analyzed for individual compound content, total polyphenol (TP) content and total antioxidant capacity (TAC) in a number of assays. An HPLC method was developed and validated to allow quantification of xanthones (mangiferin, isomangiferin), flavanones (hesperidin, eriocitrin), a flavone (scolymoside), a benzophenone (iriflophenone-3-C-β-glucoside) and dihydrochalcones (phloretin-3',5'-di-C-β-glucoside, 3-hydroxyphloretin-3',5'-di-C-hexoside). Additional compounds were tentatively identified using mass spectrometric detection, with the presence of the 3-hydroxyphloretin-glycoside, an iriflophenone-di-O,C-hexoside, an eriodictyol-di-C-hexoside and vicenin-2 being demonstrated for the first time. Variability of the individual phenolic compound contents was generally higher than that of the TP content and TAC values. Among the phenolic compounds, scolymoside, hesperidin and iriflophenone-3-C-β-glucoside contents were the most variable. A combination of the measured parameters could be useful in product standardization by providing a basis for specifying minimum levels.

  9. Phenolic Acid Content and Antioxidant Properties of Extruded Corn Snacks Enriched with Kale

    Directory of Open Access Journals (Sweden)

    Kamila Kasprzak

    2018-01-01

    Full Text Available Prohealth food contains specific components which have positive influence on the health and well-being of the consumer. An important position among bioactive compounds occurs for polyphenols. Many results have indicated that an increased intake of phenolic compounds may reduce the risk of cardiovascular diseases and type 2 diabetes. The objective of the study was production of extruded corn snacks with addition (0, 2, 4, 6, and 8% of kale (Brassica oleracea L. var. sabellica—a polyphenol-rich plant. Afterwards, high-performance liquid chromatography-mass spectrometry (LC-ESI-MS/MS and antioxidant activity analyses of snack extracts were performed. In the corn snacks enriched with kale, fifteen phenolic acids were indicated. These were protocatechuic, 4-OH-benzoic, vanillic, trans-caffeic, cis-caffeic, trans-p-coumaric, cis-p-coumaric, trans-ferulic, cis-ferulic, salicylic, gentisic, syringic, 3-OH-cinnamic, trans-sinapic, and cis-sinapic acids. Both the qualitative and quantitative content of polyphenols increased with the addition of B. oleracea. Data from spectrophotometric analyses of the samples showed high DPPH radical scavenging potential of snacks enriched with 4, 6, and 8% of kale. Snacks enriched with kale contain high level of phenolic acids and, therefore, have great potential to make a valuable source of natural antioxidants. High-temperature short-time extrusion-cooking process had no negative impact on polyphenol’s activity.

  10. Phenolic Acid Content and Antioxidant Properties of Extruded Corn Snacks Enriched with Kale.

    Science.gov (United States)

    Kasprzak, Kamila; Oniszczuk, Tomasz; Wójtowicz, Agnieszka; Waksmundzka-Hajnos, Monika; Olech, Marta; Nowak, Renata; Polak, Renata; Oniszczuk, Anna

    2018-01-01

    Prohealth food contains specific components which have positive influence on the health and well-being of the consumer. An important position among bioactive compounds occurs for polyphenols. Many results have indicated that an increased intake of phenolic compounds may reduce the risk of cardiovascular diseases and type 2 diabetes. The objective of the study was production of extruded corn snacks with addition (0, 2, 4, 6, and 8%) of kale ( Brassica oleracea L. var. sabellica )-a polyphenol-rich plant. Afterwards, high-performance liquid chromatography-mass spectrometry (LC-ESI-MS/MS) and antioxidant activity analyses of snack extracts were performed. In the corn snacks enriched with kale, fifteen phenolic acids were indicated. These were protocatechuic, 4-OH-benzoic, vanillic, trans -caffeic, cis -caffeic, trans -p-coumaric, cis -p-coumaric, trans -ferulic, cis -ferulic, salicylic, gentisic, syringic, 3-OH-cinnamic, trans -sinapic, and cis -sinapic acids. Both the qualitative and quantitative content of polyphenols increased with the addition of B. oleracea . Data from spectrophotometric analyses of the samples showed high DPPH radical scavenging potential of snacks enriched with 4, 6, and 8% of kale. Snacks enriched with kale contain high level of phenolic acids and, therefore, have great potential to make a valuable source of natural antioxidants. High-temperature short-time extrusion-cooking process had no negative impact on polyphenol's activity.

  11. Solidification and performance of cement doped with phenol

    International Nuclear Information System (INIS)

    Vipulanandan, C.; Krishnan, S.

    1991-01-01

    Treating mixed hazardous wastes using the solidification/stabilization technology is becoming a critical element in waste management planning. The effect of phenol, a primary constituent in many hazardous wastes, on the setting and solidification process of Type I Portland cement was evaluated. The leachability of phenol from solidified cement matrix (TCLP test) and changes in mechanical properties were studied after curing times up to 28 days. The changes in cement hydration products due to phenol were studied using the X-ray diffraction (XRD) powder technique. Results show that phenol interferes with initial cement hydration by reducing the formation of calcium hydroxide and also reduces the compressive strength of cement. A simple model has been proposed to quantify the phenol leached from the cement matrix during the leachate test

  12. Gold-catalyzed oxidation of substituted phenols by hydrogen peroxide

    KAUST Repository

    Cheneviere, Yohan

    2010-10-20

    Gold nanoparticles deposited on inorganic supports are efficient catalysts for the oxidation of various substituted phenols (2,6-di-tert-butyl phenol and 2,3,6-trimethyl phenol) with aqueous hydrogen peroxide. By contrast to more conventional catalysts such as Ti-containing mesoporous silicas, which convert phenols to the corresponding benzoquinones, gold nanoparticles are very selective to biaryl compounds (3,3′,5,5′-tetra-tert-butyl diphenoquinone and 2,2′,3,3′,5,5′-hexamethyl-4,4′- biphenol, respectively). Products yields and selectivities depend on the solvent used, the best results being obtained in methanol with yields >98%. Au offers the possibility to completely change the selectivity in the oxidation of substituted phenols and opens interesting perspectives in the clean synthesis of biaryl compounds for pharmaceutical applications. © 2010 Elsevier B.V. All rights reserved.

  13. Phenolic Content and Antioxidant Capacity in Algal Food Products

    Directory of Open Access Journals (Sweden)

    Ludmila Machu

    2015-01-01

    Full Text Available The study objective was to investigate total phenolic content using Folin-Ciocalteu’s method, to assess nine phenols by HPLC, to determine antioxidant capacity of the water soluble compounds (ACW by a photochemiluminescence method, and to calculate the correlation coefficients in commercial algal food products from brown (Laminaria japonica, Eisenia bicyclis, Hizikia fusiformis, Undaria pinnatifida and red (Porphyra tenera, Palmaria palmata seaweed, green freshwater algae (Chlorella pyrenoidosa, and cyanobacteria (Spirulina platensis. HPLC analysis showed that the most abundant phenolic compound was epicatechin. From spectrophotometry and ACW determination it was evident that brown seaweed Eisenia bicyclis was the sample with the highest phenolic and ACW values (193 mg·g−1 GAE; 7.53 µmol AA·g−1, respectively. A linear relationship existed between ACW and phenolic contents (r = 0.99. Some algal products seem to be promising functional foods rich in polyphenols.

  14. Comparing phenolics composition and antioxidant activities of different pomegranate products

    International Nuclear Information System (INIS)

    Wasila, H.; Li, X.; Liu, L.; Ahmad, I.

    2014-01-01

    The phenolics and antioxidant abilities of pomegranate juices (aril juice (aj) and aril-mesocarp-epicarp mixture juice (amej), by-product extracts (extract of aril-mesocarp-epicarp (eame) and rind extract (er) were determined and compared. The results showed no significant difference in phenolic compositions however ratio of phenolic constituent were found different. The total phenolics, total flavonoids and total tannins contents followed the order of er>eame>amej>aj, and total anthocyanins followed the trend eame>amej>aj>er. The total antioxidant, total reduction, abts o+ radical scavenging and dppho radical scavenging capacities followed the sequence r>aj>eame>amej, amej>er>eame>aj, er>amej>eame>aj and amej>er>aj>eame respectively. With the exception of abtso+ scavenging capacities, strongest antioxidant activity found in juices compared to their corresponding purified products. These data suggest that phenolics play a vital role in the composition and antioxidant activity of pomegranate products. (author)

  15. Phenolic compounds of Pinus laricio needles: a bioindicator of the effects of prescribed burning in function of season.

    Science.gov (United States)

    Cannac, Magali; Pasqualini, Vanina; Barboni, Toussaint; Morandini, Frederic; Ferrat, Lila

    2009-07-15

    Fire is a dominant ecological factor in Mediterranean-type ecosystems. Forest management includes many preventive tools, in particular for fire prevention, such as mechanical treatments and prescribed burning. Prescribed burning is a commonly used method for treating fuel loads, but fuel reduction targets for reducing wildfire hazards must be balanced against fuel retention targets in order to maintain habitat and other forest functions. This approach was used on Pinus nigra ssp laricio var. Corsicana, a pine endemic to Corsica of great ecological and economic importance. Many studies of plant phenolic compounds have been carried out concerning responses to various stresses. The aim of this study was to understand i) the effects of prescribed burning 1 to 16 months later and ii) the effects of the seasonality of burning, spring or fall, on the production of phenolic compounds in Pinus laricio. After prescribed burning conducted in spring, Pinus laricio increases the synthesis of total phenolic compounds for a period of 7 months. The increase is greater after spring-burning than fall-burning. With regard to simple phenols, only dihydroferulic acid responds about 1 year after both types of prescribed burning. The causes of these increases are discussed in this paper. Total phenolic compounds could be used as a bioindicator for the short-term response of Pinus laricio needles to prescribed burning. Simple phenols may be useful for revealing the medium-term effects of prescribed burning. The results of this study include recommending forest managers to use prescribed burning in the fall rather than spring to reduce fuel loads and have less impact on the trees.

  16. Sulfonated phenolic material and its use in post primary oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pardue, J. E.; Stapp, P. R.

    1984-09-04

    Sulfonated phenolic compounds as well as sulfomethylated phenolic compounds, surfactant systems containing such compound and the use of such surfactant systems in post primary oil recovery are disclosed.

  17. [Phenolic acid derivatives from Bauhinia glauca subsp. pernervosa].

    Science.gov (United States)

    Zhao, Qiao-Li; Wu, Zeng-Bao; Zheng, Zhi-Hui; Lu, Xin-Hua; Liang, Hong; Cheng, Wei; Zhang, Qing-Ying; Zhao, Yu-Ying

    2011-08-01

    To study the chemical constituents of Bauhinia glauca subsp. pernervosa, eleven phenolic acids were isolated from a 95% ethanol extract by using a combination of various chromatographic techniques including column chromatography over silica gel, ODS, MCI, Sephadex LH-20, and semi-preparative HPLC. By spectroscopic techniques including 1H NMR, 13C NMR, 2D NMR, and HR-ESI-MS, these compounds were identified as isopropyl O-beta-(6'-O-galloyl)-glucopyranoside (1), ethyl O-beta-(6'-O-galloyl)-glucopyranoside (2), 3, 4, 5-trimethoxyphenyl-(6'-O-galloyl)-O-beta-D-glucopyranoside (3), 3, 4, 5-trimethoxyphenyl-beta-D-glucopyranoside (4), gallic acid (5), methyl gallate (6), ethyl gallate (7), protocatechuic acid (8), 3, 5-dimethoxy-4-hydroxybenzoic acid (9), erigeside C (10) and glucosyringic acid (11). Among them, compound 1 is a new polyhydroxyl compound; compounds 2, 10, and 11 were isolated from the genus Bauhinia for the first time, and the other compounds were isolated from the plant for the first time. Compounds 6 and 8 showed significant protein tyrosine phosphatase1B (PTP1B) inhibitory activity in vitro with the IC50 values of 72.3 and 54.1 micromol x L(-1), respectively.

  18. Cocoa Phenolic Extract Protects Pancreatic Beta Cells against Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Laura Bravo

    2013-07-01

    Full Text Available Diabetes mellitus is associated with reductions in glutathione, supporting the critical role of oxidative stress in its pathogenesis. Antioxidant food components such as flavonoids have a protective role against oxidative stress-induced degenerative and age-related diseases. Flavonoids constitute an important part of the human diet; they can be found in most plant foods, including green tea, grapes or cocoa and possess multiple biological activities. This study investigates the chemo-protective effect of a cocoa phenolic extract (CPE containing mainly flavonoids against oxidative stress induced by tert-butylhydroperoxide (t-BOOH on Ins-1E pancreatic beta cells. Cell viability and oxidative status were evaluated. Ins-1E cells treatment with 5–20 μg/mL CPE for 20 h evoked no cell damage and did not alter ROS production. Addition of 50 μM t-BOOH for 2 h increased ROS and carbonyl groups content and decreased reduced glutathione level. Pre-treatment of cells with CPE significantly prevented the t-BOOH-induced ROS and carbonyl groups and returned antioxidant defences to adequate levels. Thus, Ins-1E cells treated with CPE showed a remarkable recovery of cell viability damaged by t-BOOH, indicating that integrity of surviving machineries in the CPE-treated cells was notably protected against the oxidative insult.

  19. Comparison of phenolic compounds and the effects of invasive and native species in East Asia: Support for the novel weapons hypothesis

    Science.gov (United States)

    Kim, Y.-O.; Lee, E.J.

    2011-01-01

    One prediction of the novel weapons hypothesis (NWH) for the dominance of exotic invasive plant species is that the allelopathic effects of successful invaders will, in general, be more biochemically inhibitory to native species and microbes in invaded regions than the native plants themselves. However, no study has compared biochemical concentrations, compositions, or effects of large numbers of native species to those of large numbers of invasive species. In this context we tested the allelopathic and antimicrobial potentials of nine native plant species and nine invasive species in East Asia by comparing their broad phenolic contents and the effects of extracts made from each of the species on target plants and soil fungi. Three of the invasive species, including Eupatorium rugosum, had higher concentrations of total phenolic compounds than any of the native species, and the mean concentration of total phenolics for invasive species was 2.6 times greater than the mean for native species. Only scopoletin was novel to the invasive species, being found in all of nine invasive species, but not in the native species. More importantly, the effects of the total suites of phenolic compounds produced by invasive species differed from the effects of phenolics produced by natives. Extracts of invasive species reduced radicle growth of the three test plant species by 60-80%, but extracts of native species reduced radicle growth by only 30-50%. Extracts of invasive species reduced shoot growth of the three test species by 20-40%, but the overall effect of native species' extract was to stimulate shoot growth. The antimicrobial activity of invasive species was also significantly higher than that of native species. It should be noted that phenolics are just one component of a plant's potential allelopathic arsenal and non-phenolic compounds are likely to play a role in the total extract effect. For example, extracts of P. americana contained the lowest levels of phenolic

  20. Effect of cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets grown in vitro.

    Science.gov (United States)

    Manquián-Cerda, K; Escudey, M; Zúñiga, G; Arancibia-Miranda, N; Molina, M; Cruces, E

    2016-11-01

    Cadmium (Cd(2+)) can affect plant growth due to its mobility and toxicity. We evaluated the effects of Cd(2+) on the production of phenolic compounds and antioxidant response of Vaccinium corymbosum L. Plantlets were exposed to Cd(2+) at 50 and 100µM for 7, 14 and 21 days. Accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2) and the antioxidant enzyme SOD was determined. The profile of phenolic compounds was evaluated using LC-MS. The antioxidant activity was measured using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and the ferric reducing antioxidant power test (FRAP). Cd(2+) increased the content of MDA, with the highest increase at 14 days. The presence of Cd(2+) resulted in changes in phenolic compounds. The main phenolic compound found in blueberry plantlets was chlorogenic acid, whose abundance increased with the addition of Cd(2+) to the medium. The changes in the composition of phenolic compounds showed a positive correlation with the antioxidant activity measured using FRAP. Our results suggest that blueberry plantlets produced phenolic compounds with reducing capacity as a selective mechanism triggered by the highest activity of Cd(2+). Copyright © 2016 Elsevier Inc. All rights reserved.