WorldWideScience

Sample records for stress-induced leakage current

  1. Radiation induced leakage current and stress induced leakage current in ultra-thin gate oxides

    International Nuclear Information System (INIS)

    Ceschia, M.; Paccagnella, A.; Cester, A.; Scarpa, A.

    1998-01-01

    Low-field leakage current has been measured in thin oxides after exposure to ionizing radiation. This Radiation Induced Leakage Current (RILC) can be described as an inelastic tunneling process mediated by neutral traps in the oxide, with an energy loss of about 1 eV. The neutral trap distribution is influenced by the oxide field applied during irradiation, thus indicating that the precursors of the neutral defects are charged, likely being defects associated to trapped holes. The maximum leakage current is found under zero-field condition during irradiation, and it rapidly decreases as the field is enhanced, due to a displacement of the defect distribution across the oxide towards the cathodic interface. The RILC kinetics are linear with the cumulative dose, in contrast with the power law found on electrically stressed devices

  2. Radiation-induced off-state leakage current in commercial power MOSFETs

    International Nuclear Information System (INIS)

    Dodd, Paul Emerson; Shaneyfelt, Marty Ray; Draper, Bruce Leroy; Felix, James Andrew; Schwank, James Ralph; Dalton, Scott Matthew

    2005-01-01

    The total dose hardness of several commercial power MOSFET technologies is examined. After exposure to 20 krad(SiO 2 ) most of the n- and p-channel devices examined in this work show substantial (2 to 6 orders of magnitude) increases in off-state leakage current. For the n-channel devices, the increase in radiation-induced leakage current follows standard behavior for moderately thick gate oxides, i.e., the increase in leakage current is dominated by large negative threshold voltage shifts, which cause the transistor to be partially on even when no bias is applied to the gate electrode. N-channel devices biased during irradiation show a significantly larger leakage current increase than grounded devices. The increase in leakage current for the p-channel devices, however, was unexpected. For the p-channel devices, it is shown using electrical characterization and simulation that the radiation-induced leakage current increase is related to an increase in the reverse bias leakage characteristics of the gated diode which is formed by the drain epitaxial layer and the body. This mechanism does not significantly contribute to radiation-induced leakage current in typical p-channel MOS transistors. The p-channel leakage current increase is nearly identical for both biased and grounded irradiations and therefore has serious implications for long duration missions since even devices which are usually powered off could show significant degradation and potentially fail.

  3. Low voltage stress-induced leakage current and traps in ultrathin oxide (1.2 2.5 nm) after constant voltage stresses

    Science.gov (United States)

    Petit, C.; Zander, D.

    2007-10-01

    It has been shown that the low voltage gate current in ultrathin oxide metal-oxide-semiconductor devices is very sensitive to electrical stresses. Therefore, it can be used as a reliability monitor when the oxide thickness becomes too small for traditional electrical measurements to be used. In this work, we present a study on n-MOSCAP devices at negative gate bias in the direct tunneling (DT) regime. If the low voltage stress-induced leakage current (LVSILC) depends strongly on the low sense voltages, it also depends strongly on the stress voltage magnitude. We show that two LVSILC peaks appear as a function of the sense voltage in the LVSILC region and that their magnitude, one compared to the other, depends strongly on the stress voltage magnitude. One is larger than the other at low stress voltage and smaller at high stress voltage. From our experimental results, different conduction mechanisms are analyzed. To explain LVSILC variations, we propose a model of the conduction through the ultrathin gate oxide based on two distinctly different trap-assisted tunneling mechanisms: inelastic of gate electron (INE) and trap-assisted electron (ETAT).

  4. Stress-induced leakage current characteristics of PMOS fabricated by a new multi-deposition multi-annealing technique with full gate last process

    International Nuclear Information System (INIS)

    Wang Yanrong; Yang Hong; Xu Hao; Luo Weichun; Qi Luwei; Zhang Shuxiang; Wang Wenwu; Zhu Huilong; Zhao Chao; Chen Dapeng; Ye Tianchun; Yan Jiang

    2017-01-01

    In the process of high- k films fabrication, a novel multi deposition multi annealing (MDMA) technique is introduced to replace simple post deposition annealing. The leakage current decreases with the increase of the post deposition annealing (PDA) times. The equivalent oxide thickness (EOT) decreases when the annealing time(s) change from 1 to 2. Furthermore, the characteristics of SILC (stress-induced leakage current) for an ultra-thin SiO 2 /HfO 2 gate dielectric stack are studied systematically. The increase of the PDA time(s) from 1 to 2 can decrease the defect and defect generation rate in the HK layer. However, increasing the PDA times to 4 and 7 may introduce too much oxygen, therefore the type of oxygen vacancy changes. (paper)

  5. Experimental investigation of localized stress-induced leakage current distribution in gate dielectrics using array test circuit

    Science.gov (United States)

    Park, Hyeonwoo; Teramoto, Akinobu; Kuroda, Rihito; Suwa, Tomoyuki; Sugawa, Shigetoshi

    2018-04-01

    Localized stress-induced leakage current (SILC) has become a major problem in the reliability of flash memories. To reduce it, clarifying the SILC mechanism is important, and statistical measurement and analysis have to be carried out. In this study, we applied an array test circuit that can measure the SILC distribution of more than 80,000 nMOSFETs with various gate areas at a high speed (within 80 s) and a high accuracy (on the 10-17 A current order). The results clarified that the distributions of localized SILC in different gate areas follow a universal distribution assuming the same SILC defect density distribution per unit area, and the current of localized SILC defects does not scale down with the gate area. Moreover, the distribution of SILC defect density and its dependence on the oxide field for measurement (E OX-Measure) were experimentally determined for fabricated devices.

  6. Defect generation and activation processes in HfO{sub 2} thin films: Contributions to stress-induced leakage currents

    Energy Technology Data Exchange (ETDEWEB)

    Oettking, Rolf; Leitsmann, Roman; Lazarevic, Florian; Plaenitz, Philipp [AQcomputare, Business Unit MATcalc, Chemnitz (Germany); Kupke, Steve; Roll, Guntrade; Slesazeck, Stefan [NaMLab gGmbH, Dresden (Germany); Nadimi, Ebrahim [AQcomputare, Business Unit MATcalc, Chemnitz (Germany); K.N. Toosi University of Technology, Faculty of Electrical Engineering, Tehran (Iran, Islamic Republic of); Trentzsch, Martin [Globalfoundries Dresden, Dresden (Germany); Mikolajick, Thomas [Technische Universitaet Dresden, Fakultaet Elektrotechnik und Informationstechnik, Institut fuer Halbleiter- und Mikrosystemtechnik, Dresden (Germany)

    2015-03-01

    An important source of degradation in thin dielectric material layers is the generation and migration of oxygen vacancies. We investigated the formation of Frenkel pairs (FPs) in HfO{sub 2} as the first structural step for the creation of new defects as well as the migration of preexisting and newly built oxygen vacancies by nudged elastic band (NEB) calculations and stress induced leakage current (SILC) experiments. The analysis indicates, that for neutral systems no stable intimate FPs are built, whereas for the charge states q = ± 2 FPs are formed at threefold and at fourfold coordinated oxygen lattice sites. Their generation and annihilation rate are in equilibrium according to the Boltzmann statistics. Distant FPs (stable defects) are unlikely to build due to high formation energies and therefore cannot be accounted for the measured gate leakage current increase of nMOSFETs under constant voltage stress. The negatively charged oxygen vacancies were found to be very immobile in contrast to positively charged V{sub 0}'s with a low migration barrier that coincides well with the experimentally obtained activation energy. We show that rather the activation of preexisting defects and migration towards the interface than the defect generation are the cause for the gate oxide degradation. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Minority Carrier Tunneling and Stress-Induced Leakage Current for p+ gate MOS Capacitors with Poly-Si and PolySi0.7Ge0.3 Gate Material

    NARCIS (Netherlands)

    Houtsma, V.E.; Holleman, J.; Salm, Cora; de Haan, I.R.; Schmitz, Jurriaan; Widdershoven, F.P.; Widdershoven, F.P.; Woerlee, P.H.

    1999-01-01

    In this paper the I-V conduction mechanism for gate injection (-V g), Stress-Induced Leakage Current (SILC) characteristics and time-to-breakdown (tbd) of PMOS capacitors with p+-poly-Si and poly-SiGe gate material on 5.6, 4.8 and 3.1 nm oxide thickness are studied. A model based on Minority Carrier

  8. Correlation between stress-induced leakage current and dielectric degradation in ultra-porous SiOCH low-k materials

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C., E-mail: Chen.Wu@imec.be; De Wolf, I. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Materials Engineering, KU Leuven, 3000 Leuven (Belgium); Li, Y.; Leśniewska, A.; Varela Pedreira, O.; Marneffe, J.-F. de; Ciofi, I.; Verdonck, P.; Baklanov, M. R.; Bömmels, J.; Tőkei, Zs.; Croes, K. [imec, Kapeldreef 75, 3001 Leuven (Belgium)

    2015-10-28

    Stress-Induced Leakage Current (SILC) behavior during the dielectric degradation of ultra-porous SiOCH low-k materials was investigated. Under high voltage stress, SILC increases to a critical value before final hard breakdown. This SILC increase rate is mainly driven by the injected charges and is negligibly influenced by temperature and voltage. SILC is found to be transient and shows a t{sup −1} relaxation behavior, where t is the storage time at low voltages. This t{sup −1} transient behavior, described by the tunneling front model, is caused by both electron charging of neutral defects in the dielectric close to the cathode interface and discharging of donor defects close to the anode interface. These defects have a uniform density distribution within the probed depth range, which is confirmed by the observed flat band voltage shift results collected during the low voltage storage. By applying an additional discharging step after the low voltage storage, the trap energies and spatial distributions are derived. In a highly degraded low-k dielectric, the majority of defects have a trap depth between 3.4 eV and 3.6 eV and a density level of 1 × 10{sup 18 }eV{sup −1 }cm{sup −3}. The relation between the defect density N and the total amount of the injected charges Q is measured to be sub-linear, N ∼ Q{sup 0.45±0.07}. The physical nature of these stress-induced defects is suggested to be caused by the degradation of the Si-O based skeleton in the low-k dielectric.

  9. Effect of incorporation of nitrogen atoms in Al2O3 gate dielectric of wide-bandgap-semiconductor MOSFET on gate leakage current and negative fixed charge

    Science.gov (United States)

    Kojima, Eiji; Chokawa, Kenta; Shirakawa, Hiroki; Araidai, Masaaki; Hosoi, Takuji; Watanabe, Heiji; Shiraishi, Kenji

    2018-06-01

    We performed first-principle calculations to investigate the effect of incorporation of N atoms into Al2O3 gate dielectrics. Our calculations show that the defect levels generated by VO in Al2O3 are the origin of the stress-induced gate leakage current and that VOVAl complexes in Al2O3 cause negative fixed charge. We revealed that the incorporation of N atoms into Al2O3 eliminates the VO defect levels, reducing the stress-induced gate leakage current. Moreover, this suppresses the formation of negatively charged VOVAl complexes. Therefore, AlON can reduce both stress-induced gate leakage current and negative fixed charge in wide-bandgap-semiconductor MOSFETs.

  10. Parametrization of the radiation induced leakage current increase of NMOS transistors

    International Nuclear Information System (INIS)

    Backhaus, M.

    2017-01-01

    The increase of the leakage current of NMOS transistors during exposure to ionizing radiation is known and well studied. Radiation hardness by design techniques have been developed to mitigate this effect and have been successfully used. More recent developments in smaller feature size technologies do not make use of these techniques due to their drawbacks in terms of logic density and requirement of dedicated libraries. During operation the resulting increase of the supply current is a serious challenge and needs to be considered during the system design. A simple parametrization of the leakage current of NMOS transistors as a function of total ionizing dose is presented. The parametrization uses a transistor transfer characteristics of the parasitic transistor along the shallow trench isolation to describe the leakage current of the nominal transistor. Together with a parametrization of the number of positive charges trapped in the silicon dioxide and number of activated interface traps in the silicon to silicon dioxide interface the leakage current results as a function of the exposure time to ionizing radiation. This function is fitted to data of the leakage current of single transistors as well as to data of the supply current of full ASICs.

  11. Macrophage migration inhibitory factor induces vascular leakage via autophagy

    Directory of Open Access Journals (Sweden)

    Hong-Ru Chen

    2015-01-01

    Full Text Available Vascular leakage is an important feature of acute inflammatory shock, which currently has no effective treatment. Macrophage migration inhibitory factor (MIF is a pro-inflammatory cytokine that can induce vascular leakage and plays an important role in the pathogenesis of shock. However, the mechanism of MIF-induced vascular leakage is still unclear. In this study, using recombinant MIF (rMIF, we demonstrated that MIF induced disorganization and degradation of junction proteins and increased the permeability of human endothelial cells in vitro. Western blotting analysis showed that rMIF treatment induced LC3 conversion and p62 degradation. Inhibition of autophagy with a PI3K inhibitor (3-MA, a ROS scavenger (NAC or autophagosomal-lysosomal fusion inhibitors (bafilomycin A1 and chloroquine rescued rMIF-induced vascular leakage, suggesting that autophagy mediates MIF-induced vascular leakage. The potential involvement of other signaling pathways was also studied using different inhibitors, and the results suggested that MIF-induced vascular leakage may occur through the ERK pathway. In conclusion, we showed that MIF triggered autophagic degradation of endothelial cells, resulting in vascular leakage. Inhibition of MIF-induced autophagy may provide therapeutic targets against vascular leakage in inflammatory shock.

  12. Parametrization of the radiation induced leakage current increase of NMOS transistors

    CERN Document Server

    Backhaus, Malte

    2017-01-13

    The increase of the leakage current of NMOS transistors during exposure to ionizing radiation is known and well studied. Radiation hardness by design techniques have been developed to mitigate this effect and have been successfully used. More recent developments in smaller feature size technologies do not make use of these techniques due to their drawbacks in terms of logic density and requirement of dedicated libraries. During operation the resulting increase of the supply current is a serious challenge and needs to be considered during the system design. A simple parametrization of the leakage current of NMOS transistors as a function of total ionizing dose is presented. The parametrization uses a transistor transfer characteristics of the parasitic transistor along the shallow trench isolation to describe the leakage current of the nominal transistor. Together with a parametrization of the number of positive charges trapped in the silicon dioxide and number of activated interface traps in the silicon to si...

  13. Leakage Currents in Low-Voltage PME and BME Ceramic Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2015-01-01

    Introduction of BME capacitors to high-reliability electronics as a replacement for PME capacitors requires better understanding of changes in performance and reliability of MLCCs to set justified screening and qualification requirements. In this work, absorption and leakage currents in various lots of commercial and military grade X7R MLCCs rated to 100V and less have been measured to reveal difference in behavior of PME and BME capacitors in a wide range of voltages and temperatures. Degradation of leakage currents and failures in virgin capacitors and capacitors with introduced cracks has been studied at different voltages and temperatures during step stress highly accelerated life testing. Mechanisms of charge absorption, conduction and degradation have been discussed and a failure model in capacitors with defects suggested.

  14. Failure analysis of leakage current in plastic encapsulated packages

    International Nuclear Information System (INIS)

    Hu, S.J.; Cheang, F.T.

    1989-12-01

    Plastic encapsulated packages exhibit high leakage current after a few hundred hours steam pressure pot test. The present study investigates two possible sources of leakage current, the mold compound and the lead frame tape used for taping the lead frame fingers. The results of the study indicate that the leakage current is independent of the frame and is not caused by the mold compound. The data further indicates that it is the ionic contents and acrylic-based adhesive layer of the lead frame tapes which cause the leakage current. To eliminate the leakage current, lead frame tape with low ionic contents and non acrylic-based adhesive should be used. (author). 1 fig., 2 tabs, 3 graphs

  15. Fluorine-plasma surface treatment for gate forward leakage current reduction in AlGaN/GaN HEMTs

    International Nuclear Information System (INIS)

    Chen Wanjun; Zhang Jing; Zhang Bo; Chen, Kevin Jing

    2013-01-01

    The gate forward leakage current in AlGaN/GaN high electron mobility transistors (HEMTs) is investigated. It is shown that the current which originated from the forward biased Schottky-gate contributed to the gate forward leakage current. Therefore, a fluorine-plasma surface treatment is presented to induce the negative ions into the AlGaN layer which results in a higher metal—semiconductor barrier. Consequently, the gate forward leakage current shrinks. Experimental results confirm that the gate forward leakage current is decreased by one order magnitude lower than that of HEMT device without plasma treatment. In addition, the DC characteristics of the HEMT device with plasma treatment have been studied. (semiconductor devices)

  16. Leakage current-induced effects in the silicon microstrip and gas electron multiplier readout chain and their compensation method

    Science.gov (United States)

    Zubrzycka, W.; Kasinski, K.

    2018-04-01

    Leakage current flowing into the charge sensitive amplifier (CSA) is a common issue in many radiation detection systems as it can increase overall system noise, shift a DC baseline or even lead a recording channel to instability. The commonly known leakage current contributor is a detector, however other system components like wires or an input protection circuit may become a serious problem. Compensation of the leakage current resulting from the electrostatic discharge (ESD) protection circuit by properly sizing its components is possible only for a narrow temperature range. Moreover, the leakage current from external sources can be significantly larger. Many applications, especially High Energy Physics (HEP) experiments, require a fast baseline restoration for high input hit rates by applying either a low-value feedback resistor or a high feedback resistance combined with a pulsed reset circuit. Leakage current flowing in the feedback in conjunction with a large feedback resistance supplied with a pulsed reset results in a significant voltage offset between the CSA input and output which can cause problems (e.g. fake hits or instability). This paper shows an issue referred to the leakage current of the ESD protection circuit flowing into the input amplifier. The following analysis and proposed solution is a result of the time and energy readout ASIC project realization for the Compressed Baryonic Matter (CBM) experiment at FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. This chip is purposed to work with microstrip and gaseous detectors, with high average input pulses frequencies (250 kHit/s per channel) and the possibility to process input charge of both polarities. We present measurements of the test structure fabricated in UMC 180 nm technology and propose a solution addressing leakage current related issues. This work combines the leakage current compensation capabilities at the CSA level with high, controllable value of the amplifier

  17. Study of radiation-induced leakage current between adjacent devices in a CMOS integrated circuit

    Institute of Scientific and Technical Information of China (English)

    Ding Lili; Guo Hongxia; Chen Wei; Fan Ruyu

    2012-01-01

    Radiation-induced inter-device leakage is studied using an analytical model and TCAD simulation.There were some different opinions in understanding the process of defect build-up in trench oxide and parasitic leakage path turning on from earlier studies.To reanalyze this problem and make it beyond argument,every possible variable is considered using theoretical analysis,not just the change of electric field or oxide thickness independently.Among all possible inter-device leakage paths,parasitic structures with N-well as both drain and source are comparatively more sensitive to the total dose effect when a voltage discrepancy exists between the drain and source region.Since N-well regions are commonly connected to the same power supply,these kinds of structures will not be a problem in a real CMOS integrated circuit.Generally speaking,conduction paths of inter-device leakage existing in a real integrated circuit and under real electrical circumstances are not very sensitive to the total ionizing dose effect.

  18. Insulator Contamination Forecasting Based on Fractal Analysis of Leakage Current

    Directory of Open Access Journals (Sweden)

    Bing Luo

    2012-07-01

    Full Text Available In this paper, an artificial pollution test is carried out to study the leakage current of porcelain insulators. Fractal theory is adopted to extract the characteristics hidden in leakage current waveforms. Fractal dimensions of the leakage current for the security, forecast and danger zones are analyzed under four types of degrees of contamination. The mean value and the standard deviation of the fractal dimension in the forecast zone are calculated to characterize the differences. The analysis reveals large differences in the fractal dimension of leakage current under different contamination discharge stages and degrees. The experimental and calculation results suggest that the fractal dimension of a leakage current waveform can be used as a new indicator of the discharge process and contamination degree of insulators. The results provide new methods and valid indicators for forecasting contamination flashovers.

  19. Image artifacts in concurrent transcranial magnetic stimulation (TMS) and fMRI caused by leakage currents: modeling and compensation.

    Science.gov (United States)

    Weiskopf, Nikolaus; Josephs, Oliver; Ruff, Christian C; Blankenburg, Felix; Featherstone, Eric; Thomas, Anthony; Bestmann, Sven; Driver, Jon; Deichmann, Ralf

    2009-05-01

    To characterize and eliminate a new type of image artifact in concurrent transcranial magnetic stimulation and functional MRI (TMS-fMRI) caused by small leakage currents originating from the high-voltage capacitors in the TMS stimulator system. The artifacts in echo-planar images (EPI) caused by leakage currents were characterized and quantified in numerical simulations and phantom studies with different phantom-coil geometries. A relay-diode combination was devised and inserted in the TMS circuit that shorts the leakage current. Its effectiveness for artifact reduction was assessed in a phantom scan resembling a realistic TMS-fMRI experiment. The leakage-current-induced signal changes exhibited a multipolar spatial pattern and the maxima exceeded 1% at realistic coil-cortex distances. The relay-diode combination effectively reduced the artifact to a negligible level. The leakage-current artifacts potentially obscure effects of interest or lead to false-positives. Since the artifact depends on the experimental setup and design (eg, amplitude of the leakage current, coil orientation, paradigm, EPI parameters), we recommend its assessment for each experiment. The relay-diode combination can eliminate the artifacts if necessary.

  20. Leakage current characteristics of the multiple metal alloy nanodot memory

    International Nuclear Information System (INIS)

    Lee, Gae Hun; Lee, Jung Min; Yang, Hyung Jun; Song, Yun Heub; Bea, Ji Chel; Tanaka, Tetsu

    2010-01-01

    The leakage current characteristics of a multiple metal alloy nanodot device for a nonvolatile random access memory using FePt materials are investigated. Several annealing conditions are evaluated and optimized to suppress the leakage current and to better the memory characterisctics. This work confirmed that the annealing condition of 700 .deg. C in a high vacuum ambience (under 1 x 10 -5 Pa) simultaneously provided good cell characteristics from a high dot density of over 1 x 10 13 /cm 2 and a low leakage current. In addition, a smaller nanodot diameter was found to give a lower leakage current for the multiple nanodot memory. Finally, for the proposed annealing condition, the quadruple FePt multiple nanodot memory with a 2-nm dot diameter provided good leakage current characteristics, showing a threshold voltage shift of under 5% at an initial retention stage of 1000 sec.

  1. Band to Band Tunneling (BBT) Induced Leakage Current Enhancement in Irradiated Fully Depleted SOI Devices

    Science.gov (United States)

    Adell, Phillipe C.; Barnaby, H. J.; Schrimpf, R. D.; Vermeire, B.

    2007-01-01

    We propose a model, validated with simulations, describing how band-to-band tunneling (BBT) affects the leakage current degradation in some irradiated fully-depleted SOI devices. The dependence of drain current on gate voltage, including the apparent transition to a high current regime is explained.

  2. Leakage current suppression with a combination of planarized gate and overlap/off-set structure in metal-induced laterally crystallized polycrystalline-silicon thin-film transistors

    Science.gov (United States)

    Chae, Hee Jae; Seok, Ki Hwan; Lee, Sol Kyu; Joo, Seung Ki

    2018-04-01

    A novel inverted staggered metal-induced laterally crystallized (MILC) polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) with a combination of a planarized gate and an overlap/off-set at the source-gate/drain-gate structure were fabricated and characterized. While the MILC process is advantageous for fabricating inverted staggered poly-Si TFTs, MILC TFTs reveal higher leakage current than TFTs crystallized by other processes due to their high trap density of Ni contamination. Due to this drawback, the planarized gate and overlap/off-set structure were applied to inverted staggered MILC TFTs. The proposed device shows drastic suppression of leakage current and pinning phenomenon by reducing the lateral electric field and the space-charge limited current from the gate to the drain.

  3. Microdose Induced Drain Leakage Effects in Power Trench MOSFETs: Experiment and Modeling

    Science.gov (United States)

    Zebrev, Gennady I.; Vatuev, Alexander S.; Useinov, Rustem G.; Emeliyanov, Vladimir V.; Anashin, Vasily S.; Gorbunov, Maxim S.; Turin, Valentin O.; Yesenkov, Kirill A.

    2014-08-01

    We study experimentally and theoretically the micro-dose induced drain-source leakage current in the trench power MOSFETs under irradiation with high-LET heavy ions. We found experimentally that cumulative increase of leakage current occurs by means of stochastic spikes corresponding to a strike of single heavy ion into the MOSFET gate oxide. We simulate this effect with the proposed analytic model allowing to describe (including Monte Carlo methods) both the deterministic (cumulative dose) and stochastic (single event) aspects of the problem. Based on this model the survival probability assessment in space heavy ion environment with high LETs was proposed.

  4. Image Artifacts in Concurrent Transcranial Magnetic Stimulation (TMS) and fMRI Caused by Leakage Currents: Modeling and Compensation

    Science.gov (United States)

    Weiskopf, Nikolaus; Josephs, Oliver; Ruff, Christian C; Blankenburg, Felix; Featherstone, Eric; Thomas, Anthony; Bestmann, Sven; Driver, Jon; Deichmann, Ralf

    2009-01-01

    Purpose To characterize and eliminate a new type of image artifact in concurrent transcranial magnetic stimulation and functional MRI (TMS-fMRI) caused by small leakage currents originating from the high-voltage capacitors in the TMS stimulator system. Materials and Methods The artifacts in echo-planar images (EPI) caused by leakage currents were characterized and quantified in numerical simulations and phantom studies with different phantom-coil geometries. A relay-diode combination was devised and inserted in the TMS circuit that shorts the leakage current. Its effectiveness for artifact reduction was assessed in a phantom scan resembling a realistic TMS-fMRI experiment. Results The leakage-current-induced signal changes exhibited a multipolar spatial pattern and the maxima exceeded 1% at realistic coil-cortex distances. The relay-diode combination effectively reduced the artifact to a negligible level. Conclusion The leakage-current artifacts potentially obscure effects of interest or lead to false-positives. Since the artifact depends on the experimental setup and design (eg, amplitude of the leakage current, coil orientation, paradigm, EPI parameters), we recommend its assessment for each experiment. The relay-diode combination can eliminate the artifacts if necessary. J. Magn. Reson. Imaging 2009;29:1211–1217. © 2009 Wiley-Liss, Inc. PMID:19388099

  5. Leakage current analysis of single-phase transformer-less grid-connected PV inverters

    DEFF Research Database (Denmark)

    Ma, Lin; Kerekes, Tamas; Teodorescu, Remus

    2016-01-01

    Transformer-less string PV inverter is getting more and more widely utilized due to its higher efficiency, smaller volume and weight. However, without the galvanic isolation, the leakage current limitation and operation safety became the key issues of transformer-less inverters. This paper...... simplifies the leakage current generation circuit model and presents a leakage current estimation method both in real time and frequency domain. It shows that the leakage current is related to the circuit stray parameters, output filter and common mode voltage. Furthermore, with the proposed analysis method......, the leakage current generation of H-bridge with different modulation methods and HERIC inverter are discussed individually. At last, the presented method has been verified via simulation....

  6. Transformerless photovoltaic inverters with leakage current and pulsating power elimination

    DEFF Research Database (Denmark)

    Tang, Yi; Yao, Wenli; Wang, H.

    2015-01-01

    This paper presents a transformerless inverter topology, which is capable of simultaneously solving leakage current and pulsating power issues in grid-connected photovoltaic (PV) systems. Without adding any additional components to the system, the leakage current caused by the PV......-to-ground parasitic capacitance can be bypassed by introducing a common mode (CM) conducting path to the inverter. The resulting ground leakage current is therefore well controlled to be below the regulation limit. Moreover, the proposed inverter can also eliminate the well-known double line frequency pulsating power....... The mechanism of leakage current suppression and the closed-loop control of pulsating power decoupling are discussed in the paper in details. A 500 W prototype was also built and tested in the laboratory, and both simulation and experimental results are finally presented to show the excellent performance...

  7. A new on-line leakage current monitoring system of ZnO surge arresters

    International Nuclear Information System (INIS)

    Lee, Bok-Hee; Kang, Sung-Man

    2005-01-01

    This paper presents a new on-line leakage current monitoring system of zinc oxide (ZnO) surge arresters. To effectively diagnose the deterioration of ZnO surge arresters, a new algorithm and on-line leakage current detection device, which uses the time-delay addition method, for discriminating the resistive and capacitive currents was developed to use in the aging test and durability evaluation for ZnO arrester blocks. A computer-based measurement system of the resistive leakage current, the on-line monitoring device can detect accurately the leakage currents flowing through ZnO surge arresters for power frequency ac applied voltages. The proposed on-line leakage current monitoring device of ZnO surge arresters is more highly sensitive and gives more linear response than the existing devices using the detection method of the third harmonic leakage currents. Therefore, the proposed leakage current monitoring device can be useful for predicting the defects and performance deterioration of ZnO surge arresters in power system applications

  8. Insulation Resistance and Leakage Currents in Low-Voltage Ceramic Capacitors with Cracks

    Science.gov (United States)

    Teverovsky, Alexander A.

    2016-01-01

    Measurement of insulation resistance (IR) in multilayer ceramic capacitors (MLCCs) is considered a screening technique that ensures the dielectric is defect-free. This work analyzes the effectiveness of this technique for revealing cracks in ceramic capacitors. It is shown that absorption currents prevail over the intrinsic leakage currents during standard IR measurements at room temperature. Absorption currents, and consequently IR, have a weak temperature dependence, increase linearly with voltage (before saturation), and are not sensitive to the presence of mechanical defects. In contrary, intrinsic leakage currents increase super-linearly with voltage and exponentially with temperature (activation energy is in the range from 0.6 eV to 1.1 eV). Leakage currents associated with the presence of cracks have a weaker dependence on temperature and voltage compared to the intrinsic leakage currents. For this reason, intrinsic leakage currents prevail at high temperatures and voltages, thus masking the presence of defects.

  9. Suppression of tunneling leakage current in junctionless nanowire transistors

    International Nuclear Information System (INIS)

    Lou, Haijun; Li, Dan; Dong, Yan; Lin, Xinnan; He, Jin; Yang, Shengqi; Chan, Mansun

    2013-01-01

    In this paper, the characteristics of tunneling leakage current for the dual-material gate junctionless nanowire transistor (DMG-JNT) are investigated by three-dimensional numerical simulations and compared with conventional junctionless nanowire transistor (JNT). The suppression of the tunneling leakage current on the JNT by introducing an energy band step with the DMG structure is verified and presented for the first time. The effects of channel length on the DMG-JNT and the JNT are also studied. Results showed that the tunneling leakage current of the DMG-JNT is two orders smaller than that of the JNT, and further, the DMG-JNT exhibits superior scaling capability. Two key design parameters of the DMG-JNT, control gate ratio (Ra) and work function difference (δW), have been optimized and the optimal ranges of Ra and δW are pointed out. (paper)

  10. Suppression of tunneling leakage current in junctionless nanowire transistors

    Science.gov (United States)

    Lou, Haijun; Li, Dan; Dong, Yan; Lin, Xinnan; He, Jin; Yang, Shengqi; Chan, Mansun

    2013-12-01

    In this paper, the characteristics of tunneling leakage current for the dual-material gate junctionless nanowire transistor (DMG-JNT) are investigated by three-dimensional numerical simulations and compared with conventional junctionless nanowire transistor (JNT). The suppression of the tunneling leakage current on the JNT by introducing an energy band step with the DMG structure is verified and presented for the first time. The effects of channel length on the DMG-JNT and the JNT are also studied. Results showed that the tunneling leakage current of the DMG-JNT is two orders smaller than that of the JNT, and further, the DMG-JNT exhibits superior scaling capability. Two key design parameters of the DMG-JNT, control gate ratio (Ra) and work function difference (δW), have been optimized and the optimal ranges of Ra and δW are pointed out.

  11. Influence of the gate edge on the reverse leakage current of AlGaN/GaN HEMTs

    Directory of Open Access Journals (Sweden)

    YongHe Chen

    2015-09-01

    Full Text Available By comparing the Schottky diodes of different area and perimeter, reverse gate leakage current of AlGaN/GaN high mobility transistors (HEMT at gate bias beyond threshold voltage is studied. It is revealed that reverse current consists of area-related and perimeter-related current. An analytical model of electric field calculation is proposed to obtain the average electric field around the gate edge at high revers bias and estimate the effective range of edge leakage current. When the reverse bias increases, the increment of electric field is around the gate edge of a distance of ΔL, and perimeter-related gate edge current keeps increasing. By using the calculated electric field and the temperature-dependent current-voltage measurements, the edge gate leakage current mechanism is found to be Fowler-Nordheim tunneling at gate bias bellows -15V caused by the lateral extended depletion region induced barrier thinning. Effective range of edge current of Schottky diodes is about hundred to several hundred nano-meters, and is different in different shapes of Schottky diodes.

  12. Simulation of leakage current measurement on medical devices using helmholtz coil configuration with different current flow

    Science.gov (United States)

    Sutanto, E.; Chandra, F.; Dinata, R.

    2017-05-01

    Leakage current measurement which can follow IEC standard for medical device is one of many challenges to be answered. The IEC 60601-1 has defined that the limit for a leakage current for Medical Device can be as low as 10 µA and as high as 500 µA, depending on which type of contact (applied part) connected to the patient. Most people are using ELCB (Earth-leakage circuit breaker) for safety purpose as this is the most common and available safety device in market. One type of ELCB devices is RCD (Residual Current Device) and this RCD type can measure the leakage current directly. This work will show the possibility on how Helmholtz Coil Configuration can be made to be like the RCD. The possibility is explored by comparing the magnetic field formula from each device, then it proceeds with a simulation using software EJS (Easy Java Simulation). The simulation will make sure the concept of magnetic field current cancellation follows the RCD concept. Finally, the possibility of increasing the measurement’s sensitivity is also analyzed. The sensitivity is needed to see the possibility on reaching the minimum leakage current limit defined by IEC, 0.01mA.

  13. Simulation of leakage current measurement on medical devices using helmholtz coil configuration with different current flow

    International Nuclear Information System (INIS)

    Sutanto, E; Chandra, F; Dinata, R

    2017-01-01

    Leakage current measurement which can follow IEC standard for medical device is one of many challenges to be answered. The IEC 60601-1 has defined that the limit for a leakage current for Medical Device can be as low as 10 µA and as high as 500 µA, depending on which type of contact (applied part) connected to the patient. Most people are using ELCB (Earth-leakage circuit breaker) for safety purpose as this is the most common and available safety device in market. One type of ELCB devices is RCD (Residual Current Device) and this RCD type can measure the leakage current directly. This work will show the possibility on how Helmholtz Coil Configuration can be made to be like the RCD. The possibility is explored by comparing the magnetic field formula from each device, then it proceeds with a simulation using software EJS (Easy Java Simulation). The simulation will make sure the concept of magnetic field current cancellation follows the RCD concept. Finally, the possibility of increasing the measurement’s sensitivity is also analyzed. The sensitivity is needed to see the possibility on reaching the minimum leakage current limit defined by IEC, 0.01mA. (paper)

  14. Leakage Current Elimination of Four-Leg Inverter for Transformerless Three-Phase PV Systems

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; He, Ran; Jian, Jiamin

    2016-01-01

    Eliminating the leakage current is one of the most important issues for transformerless three phase photovoltaic (PV) systems. In this paper, the leakage current elimination of a three-phase four-leg PV inverter is investigated. With the common mode loop model established, the generation mechanism...... of the leakage current is clearly identified. Different typical carrier-based modulation methods and their corresponding common mode voltages are discussed. A new modulation strategy with Boolean logic function is proposed to achieve the constant common mode voltage for the leakage current reduction. Finally...

  15. Highly Reliable Transformerless Photovoltaic Inverters With Leakage Current and Pulsating Power Elimination

    DEFF Research Database (Denmark)

    Tang, Yi; Yao, Wenli; Loh, Poh Chiang

    2016-01-01

    This paper presents a transformerless inverter topology, which is capable of simultaneously solving leakage current and pulsating power issues in grid-connected photovoltaic (PV) systems. Without adding any additional components to the system, the leakage current caused by the PV-to-ground parasi......This paper presents a transformerless inverter topology, which is capable of simultaneously solving leakage current and pulsating power issues in grid-connected photovoltaic (PV) systems. Without adding any additional components to the system, the leakage current caused by the PV......-to-ground parasitic capacitance can be bypassed by introducing a common-mode (CM) conducting path to the inverter. The resulting ground leakage current is therefore well controlled to be below the regulation limit. Furthermore, the proposed inverter can also eliminate the well-known double-line-frequency pulsating...... power that is inherent in single-phase PV systems. By properly injecting CM voltages to the output filter capacitors, the pulsating power can be decoupled from the dc-link. Therefore, it is possible to use long-lifetime film capacitors instead of electrolytic capacitors to improve the reliability...

  16. Low-leakage, high-current power crowbar transformer

    International Nuclear Information System (INIS)

    Buck, R.T.; Galbraith, J.D.; Nunnally, W.C.

    1979-01-01

    The design, fabrication, and testing of two sizes of power crowbar transformers for the ZT-40 Toroidal Z-Pinch experiment at the Los Alamos Scientific Laboratory are described. Low-leakage transformers in series with the poloidal and the toroidal field coils are used to sustain magnetic field currents initially produced by 50-kV capacitor banks. The transformer primaries are driven by cost-effective, ignitron-switched, 10-kV high-density capacitor banks. The transformer secondaries, in series with the field coils, provide from 1,000 to 1,500 V to cancel the resistive voltage drop in the coil circuits. Prototype transformers, with a total leakage inductance measured in the secondary of 5 nH, have been tested with peak secondary currents in excess of 600 kA resulting from a 10-kV primary charge voltage. The test procedures and results and the mechanical construction details are presented

  17. Modelling of Leakage Current Through Double Dielectric Gate Stack in Metal Oxide Semiconductor Capacitor

    International Nuclear Information System (INIS)

    Fatimah A Noor; Mikrajuddin Abdullah; Sukirno; Khairurrijal

    2008-01-01

    In this paper, we have derived analytical expression of leakage current through double barriers in Metal Oxide Semiconductor (MOS) capacitor. Initially, electron transmittance through the MOS capacitor was derived by including the coupling between the transverse and longitudinal energies. The transmittance was then employed to obtain leakage current through the double barrier. In this model, we observed the effect of electron velocity due to the coupling effect and the oxide thickness to the leakage current. The calculated results showed that the leakage current decreases as the electron velocity increases. (author)

  18. Carbon nanotube feedback-gate field-effect transistor: suppressing current leakage and increasing on/off ratio.

    Science.gov (United States)

    Qiu, Chenguang; Zhang, Zhiyong; Zhong, Donglai; Si, Jia; Yang, Yingjun; Peng, Lian-Mao

    2015-01-27

    Field-effect transistors (FETs) based on moderate or large diameter carbon nanotubes (CNTs) usually suffer from ambipolar behavior, large off-state current and small current on/off ratio, which are highly undesirable for digital electronics. To overcome these problems, a feedback-gate (FBG) FET structure is designed and tested. This FBG FET differs from normal top-gate FET by an extra feedback-gate, which is connected directly to the drain electrode of the FET. It is demonstrated that a FBG FET based on a semiconducting CNT with a diameter of 1.5 nm may exhibit low off-state current of about 1 × 10(-13) A, high current on/off ratio of larger than 1 × 10(8), negligible drain-induced off-state leakage current, and good subthreshold swing of 75 mV/DEC even at large source-drain bias and room temperature. The FBG structure is promising for CNT FETs to meet the standard for low-static-power logic electronics applications, and could also be utilized for building FETs using other small band gap semiconductors to suppress leakage current.

  19. Single phase cascaded H5 inverter with leakage current elimination for transformerless photovoltaic system

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Jia, X.; Lu, Z.

    2016-01-01

    Leakage current reduction is one of the important issues for the transformelress PV systems. In this paper, the transformerless single-phase cascaded H-bridge PV inverter is investigated. The common mode model for the cascaded H4 inverter is analyzed. And the reason why the conventional cascade H4...... inverter fails to reduce the leakage current is clarified. In order to solve the problem, a new cascaded H5 inverter is proposed to solve the leakage current issue. Finally, the experimental results are presented to verify the effectiveness of the proposed topology with the leakage current reduction...... for the single-phase transformerless PV systems....

  20. The influence of interband tunneling on leakage current in manganite/titanate heterojunction

    International Nuclear Information System (INIS)

    Han Peng; Jia Jinfeng

    2008-01-01

    The behavior of leakage current at reverse bias in p-La 0.9 Sr 0.1 MnO 3 /n-SrNb 0.01 Ti 0.99 O 3 heterojunction has been theoretically studied by calculating interband tunneling current with various doping densities and temperatures. Our results reveal that the reduction of leakage current with decrease of doping density and increase of temperature originates from properties of interband tunneling

  1. Ion induced intermixing and consequent effects on the leakage currents in HfO{sub 2}/SiO{sub 2}/Si systems

    Energy Technology Data Exchange (ETDEWEB)

    Manikanthababu, N.; Saikiran, V.; Pathak, A.P.; Rao, S.V.S.N. [University of Hyderabad, School of Physics, Hyderabad (India); Chan, T.K.; Vajandar, S.; Osipowicz, T. [National University of Singapore, Department of Physics, Centre for Ion Beam Applications (CIBA), Singapore (Singapore)

    2017-05-15

    Atomic layer deposited (ALD) samples with layer stacks of HfO{sub 2} (3 nm)/SiO{sub 2} (0.7 nm)/Si were subjected to 120 MeV Au ion irradiation at different fluences to study intermixing effects across the HfO{sub 2}/SiO{sub 2} interface. High-resolution Rutherford backscattering spectrometry (HRBS) and X-ray reflectivity (XRR) measurements confirm an increase in the interlayer thickness as a result of SHI induced intermixing effects. Current-voltage (I-V) measurements reveal an order of magnitude difference in the leakage current density between the pristine and irradiated samples. This can be explained by considering the increased physical thickness of interlayer (HfSiO). Furthermore, the samples were subjected to rapid thermal annealing (RTA) process to analyze annealing kinetics. (orig.)

  2. First-principles simulations of the leakage current in metal-oxide-semiconductor structures caused by oxygen vacancies in HfO2 high-K gate dielectric

    International Nuclear Information System (INIS)

    Mao, L.F.; Wang, Z.O.

    2008-01-01

    HfO 2 high-K gate dielectric has been used as a new gate dielectric in metal-oxide-semiconductor structures. First-principles simulations are used to study the effects of oxygen vacancies on the tunneling current through the oxide. A level which is nearly 1.25 eV from the bottom of the conduction band is introduced into the bandgap due to the oxygen vacancies. The tunneling current calculations show that the tunneling currents through the gate oxide with different defect density possess the typical characteristic of stress-induced leakage current. Further analysis shows that the location of oxygen vacancies will have a marked effect on the tunneling current. The largest increase in the tunneling current caused by oxygen vacancies comes about at the middle oxide field when defects are located at the middle of the oxide. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Effect of membrane and through-wall bending stresses on fatigue crack growth behavior and coolant leakage velocity

    International Nuclear Information System (INIS)

    Yoo, Yeon-Sik

    2003-11-01

    This study clarified the effect of a membrane and a through-wall bending stresses on fatigue crack growth behavior and coolant leakage velocity due to irregularity of crack surface. Each stress component relates to fatigue crack growth behavior directly in general and thus the wild-used K I solutions are anticipated to give good evaluation results on it. Meanwhile, it is necessary to notify that surface irregularity for coolant leakage assessment is made by stress history in nature. Surface irregularity is known to be largely classified into the following two aspects: surface roughness due to continuous crack opening and closure behavior and surface turnover due to cyclic bending stress dominance. Therefore, the deterministic parameters on resistance of coolant leakage by surface irregularity are considered to be not only stress history but crack opening behavior. (author)

  4. Leakage current reduction of vertical GaN junction barrier Schottky diodes using dual-anode process

    Science.gov (United States)

    Hayashida, Tetsuro; Nanjo, Takuma; Furukawa, Akihiko; Watahiki, Tatsuro; Yamamuka, Mikio

    2018-04-01

    The origin of the leakage current of a trench-type vertical GaN diode was discussed. We found that the edge of p-GaN is the main leakage spot. To reduce the reverse leakage current at the edge of p-GaN, a dual-anode process was proposed. As a result, the reverse blocking voltage defined at the leakage current density of 1 mA/cm2 of a vertical GaN junction barrier Schottky (JBS) diode was improved from 780 to 1,190 V, which is the highest value ever reported for vertical GaN Schottky barrier diodes (SBDs).

  5. Effects of vacuum ultraviolet irradiation on trapped charges and leakage currents of low-k organosilicate dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, H.; Guo, X.; Pei, D.; Shohet, J. L. [Plasma Processing and Technology Laboratory and Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Ryan, E. T. [GLOBALFOUNDRIES, Albany, New York 12203 (United States); Nishi, Y. [Stanford University, Stanford, California 94305 (United States)

    2015-05-11

    Vacuum ultraviolet (VUV) photoemission spectroscopy is utilized to investigate the distribution of trapped charges within the bandgap of low dielectric constant (low-k) organosilicate (SiCOH) materials. It was found that trapped charges are continuously distributed within the bandgap of porous SiCOH and the center of the trapped states is 1.3 eV above the valence band of the tested sample. By comparing photoemission spectroscopic results before and after VUV exposure, VUV irradiation with photon energies between 7.6 and 8.9 eV was found to deplete trapped charge while UV exposure with photon energies less than 6.0 eV induces more trapped charges in tested samples. Current-Voltage (IV) characteristics results show that the reliability of dielectrics is improved after VUV irradiation with photon energies between 7.6 and 8.9 eV, while UV exposure results in an increased level of leakage current and a decreased breakdown voltage, both of which are harmful to the reliability of the dielectric. This work shows that VUV irradiation holds the potential to substitute for UV curing in microelectronic processing to improve the reliability of low-k dielectrics by mitigating the leakage currents and trapped charges induced by UV irradiation.

  6. Compilation of current literature on seals, closures, and leakage for radioactive material packagings

    International Nuclear Information System (INIS)

    Warrant, M.M.; Ottinger, C.A.

    1989-01-01

    This report presents an overview of the features that affect the sealing capability of radioactive material packagings currently certified by the US Nuclear Regulatory Commission. The report is based on a review of current literature on seals, closures, and leakage for radioactive material packagings. Federal regulations that relate to the sealing capability of radioactive material packagings, as well as basic equations for leakage calculations and some of the available leakage test procedures are presented. The factors which affect the sealing capability of a closure, including the properties of the sealing surfaces, the gasket material, the closure method and the contents are discussed in qualitative terms. Information on the general properties of both elastomer and metal gasket materials and some specific designs are presented. A summary of the seal material, closure method, and leakage tests for currently certified packagings with large diameter seals is provided. 18 figs., 9 tabs

  7. Leakage current measurement in transformerless PV inverters

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Sera, Dezso; Mathe, Laszlo

    2012-01-01

    Photovoltaic (PV) installations have seen a huge increase during the last couple of years. Transformerless PV inverters are gaining more share of the total inverter market, due to their high conversion efficiency, small weight and size. Nevertheless safety should have an important role in case...... of these tranformerless systems, due to the missing galvanic isolation. Leakage and fault current measurement is a key issue for these inverter topologies to be able to comply with the required safety standards. This article presents the test results of two different current measurement sensors that were suggested...

  8. Degradation of ultra-thin gate oxide LDD NMOSFET under GIDL stress

    International Nuclear Information System (INIS)

    Hu Shigang; Hao Yue; Cao Yanrong; Ma Xiaohua; Wu Xiaofeng; Chen Chi; Zhou Qingjun

    2009-01-01

    The degradation of device under GIDL (gate-induced drain leakage current) stress has been studied using LDD NMOSFETs with 1.4 nm gate oxides. Experimental result shows that the degradation of device parameters depends more strongly on V d than on V g . The characteristics of the GIDL current are used to analyze the damage generated during the stress. It is clearly found that the change of GIDL current before and after stress can be divided into two stages. The trapping of holes in the oxide is dominant in the first stage, but that of electrons in the oxide is dominant in the second stage. It is due to the common effects of edge direct tunneling and band-to-band tunneling. SILC (stress induced leakage current) in the NMOSFET decreases with increasing stress time under GIDL stress. The degradation characteristic of SILC also shows saturating time dependence. SILC is strongly dependent on the measured gate voltage. The higher the measured gate voltage, the less serious the degradation of the gate current. A likely mechanism is presented to explain the origin of SILC during GIDL stress.

  9. Leakage current of amorphous silicon p-i-n diodes made by ion shower doping

    International Nuclear Information System (INIS)

    Kim, Hee Joon; Cho, Gyuseong; Choi, Joonhoo; Jung, Kwan-Wook

    2002-01-01

    In this letter, we report the leakage current of amorphous silicon (a-Si:H) p-i-n photodiodes, of which the p layer is formed by ion shower doping. The ion shower doping technique has an advantage over plasma-enhanced chemical vapor deposition (PECVD) in the fabrication of a large-area amorphous silicon flat-panel detector. The leakage current of the ion shower diodes shows a better uniformity within a 30 cmx40 cm substrate than that of the PECVD diodes. However, it shows a higher leakage current of 2-3 pA/mm 2 at -5 V. This high current originates from the high injection current at the p-i junction

  10. Effect of STI stress on leakage and Vccmin of a sub-65 nm node low-power SRAM

    International Nuclear Information System (INIS)

    Lee, T-H; Fang, Y-K; Chiang, Y-T; Chiu, H Y; Chen, M-S; Cheng, Osbert

    2008-01-01

    In the paper, for the first time, the effects of shallow trench isolation (STI) stress enhanced boron diffusion on band-to-band (BTBT) leakage and V ccmin of a 65 nm node low-power SRAM are investigated in detail. High temperature oxidation in the STI process induces an elastic stress to enhance the diffusion of boron dopants, thus leading to a significant increase in BTBT on the STI edge sidewall. The enhanced boron diffusion is more serious for a shorter and/or narrower device, thus worsening the mismatch of the threshold voltage and V ccmin of the devices in a 65 nm node SRAM cell significantly

  11. [Research on the spectral feature and identification of the surface vegetation stressed by stored CO2 underground leakage].

    Science.gov (United States)

    Chen, Yun-Hao; Jiang, Jin-Bao; Steven, Michael D; Gong, A-Du; Li, Yi-Fan

    2012-07-01

    With the global climate warming, reducing greenhouse gas emissions becomes a focused problem for the world. The carbon capture and storage (CCS) techniques could mitigate CO2 into atmosphere, but there is a risk in case that the CO2 leaks from underground. The objective of this paper is to study the chlorophyll contents (SPAD value), relative water contents (RWC) and leaf spectra changing features of beetroot under CO2 leakage stress through field experiment. The result shows that the chlorophyll contents and RWC of beetroot under CO2 leakage stress become lower than the control beetroot', and the leaf reflectance increases in the 550 nm region and decreases in the 680nm region. A new vegetation index (R550/R680) was designed for identifying beetroot under CO2 leakage stress, and the result indicates that the vegetation index R550/R680 could identify the beetroots after CO2 leakage for 7 days. The index has strong sensitivity, stability and identification for monitoring the beetroots under CO2 stress. The result of this paper has very important meaning and application values for selecting spots of CCS project, monitoring and evaluating land-surface ecology under CO2 stress and monitoring the leakage spots by using remote sensing.

  12. Correlation among ESDD, NSDD and leakage current in distribution insulators

    International Nuclear Information System (INIS)

    Montoya, G.; Ramirez, I.; Montoya, J.I.

    2004-01-01

    The maintenance of distribution networks is more effective if the insulation contamination levels are known. The selection of measuring methods of pollution levels is then crucial. The relationship between several evaluation methods of pollution levels and the operating behaviour of several insulator profiles in a polluted zone is described. Laboratory tests were carried out to reproduce pollution levels found in the field. The quantity of non-soluble materials deposited over the insulators' surface affect the magnitude of the leakage current generated over a contaminated insulator. The relationship that defines leakage current with respect to the equivalent salt deposit density (ESDD) level for a specific non-soluble material level is almost linear, from which it is possible to develop a relationship between them for each insulator. (author)

  13. Leakage current measurements on pixelated CdZnTe detectors

    International Nuclear Information System (INIS)

    Dirks, B.P.F.; Blondel, C.; Daly, F.; Gevin, O.; Limousin, O.; Lugiez, F.

    2006-01-01

    In the field of the R and D of a new generation hard X-ray cameras for space applications we focus on the use of pixelated CdTe or CdZnTe semiconductor detectors. They are covered with 64 (0.9x0.9 mm 2 ) or 256 (0.5x0.5 mm 2 ) pixels, surrounded by a guard ring and operate in the energy ranging from several keV to 1 MeV, at temperatures between -20 and +20 o C. A critical parameter in the characterisation of these detectors is the leakage current per pixel under polarisation (∼50-500 V/mm). In operation mode each pixel will be read-out by an integrated spectroscopy channel of the multi-channel IDeF-X ASIC currently developed in our lab. The design and functionality of the ASIC depends directly on the direction and value of the current. A dedicated and highly insulating electronics circuit is designed to automatically measure the current in each individual pixel, which is in the order of tens of pico-amperes. Leakage current maps of different CdZnTe detectors of 2 and 6 mm thick and at various temperatures are presented and discussed. Defect density diagnostics have been performed by calculation of the activation energy of the material

  14. Investigation of defect-induced abnormal body current in fin field-effect-transistors

    International Nuclear Information System (INIS)

    Liu, Kuan-Ju; Tsai, Jyun-Yu; Lu, Ying-Hsin; Liu, Xi-Wen; Chang, Ting-Chang; Chen, Ching-En; Yang, Ren-Ya; Cheng, Osbert; Huang, Cheng-Tung

    2015-01-01

    This letter investigates the mechanism of abnormal body current at the linear region in n-channel high-k/metal gate stack fin field effect transistors. Unlike body current, which is generated by impact ionization at high drain voltages, abnormal body current was found to increase with decreasing drain voltages. Notably, the unusual body leakage only occurs in three-dimensional structure devices. Based on measurements under different operation conditions, the abnormal body current can be attributed to fin surface defect-induced leakage current, and the mechanism is electron tunneling to the fin via the defects, resulting in holes left at the body terminal

  15. Role of Ga vacancies in enhancing the leakage current of GaN Schottky barrier ultraviolet photodetectors

    International Nuclear Information System (INIS)

    De-Gang, Zhao; Shuang, Zhang; Wen-Bao, Liu; De-Sheng, Jiang; Jian-Jun, Zhu; Zong-Shun, Liu; Hui, Wang; Shu-Ming, Zhang; Hui, Yang; Xiao-Peng, Hao; Long, Wei

    2010-01-01

    The leakage current of GaN Schottky barrier ultraviolet photodetectors is investigated. It is found that the photodetectors adopting undoped GaN instead of lightly Si-doped GaN as an active layer show a much lower leakage current even when they have a higher dislocation density. It is also found that the density of Ga vacancies in undoped GaN is much lower than in Si-doped GaN. The Ga vacancies may enhance tunneling and reduce effective Schottky barrier height, leading to an increase of leakage current. It suggests that when undoped GaN is used as the active layer, it is necessary to reduce the leakage current of GaN Schottky barrier ultraviolet photodetector. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  16. Antimicrobial Peptide Lactoferricin B-Induced Rapid Leakage of Internal Contents from Single Giant Unilamellar Vesicles.

    Science.gov (United States)

    Moniruzzaman, Md; Alam, Jahangir Md; Dohra, Hideo; Yamazaki, Masahito

    2015-09-29

    Enzymatic digestion of bovine lactoferrin generates lactoferricin B (Lfcin B), a 25-mer peptide with strong antimicrobial activity of unknown mechanism. To elucidate the mechanistic basis of Lfcin B bactericidal activity, we investigated the interaction of Lfcin B with Escherichia coli and liposomes of lipid membranes. Lfcin B induced the influx of a membrane-impermeant fluorescent probe, SYTOX green, from the outside of E. coli into its cytoplasm. Lfcin B induced gradual leakage of calcein from large unilamellar vesicles (LUVs) of dioleoylphosphatidylglycerol (DOPG)/dioleoylphosphatidylcholine (DOPC) membranes. To clarify the cause of Lfcin B-induced leakage of calcein from the LUVs, we used the single giant unilamellar vesicle (GUV) method to investigate the interaction of Lfcin B with calcein-containing DOPG/DOPC-GUVs. We observed that a rapid leakage of calcein from a GUV started stochastically; statistical analysis provided a rate constant for Lfcin B-induced pore formation, kp. On the other hand, phase-contrast microscopic images revealed that Lfcin B induced a rapid leakage of sucrose from the single GUVs with concomitant appearance of a spherical GUV of smaller diameter. Because of the very fast leakage, and at the present time resolution of the experiments (33 ms), we could not follow the evolution of pore nor the process of the structural changes of the GUV. Here we used the term "local rupture" to express the rapid leakage of sucrose and determined the rate constant of local rupture, kL. On the basis of the comparison between kp and kL, we concluded that the leakage of calcein from single GUVs occurred as a result of a local rupture in the GUVs and that smaller pores inducing leakage of calcein were not formed before the local rupture. The results of the effect of the surface charge density of lipid membranes and that of salt concentration in buffer on kp clearly show that kp increases with an increase in the extent of electrostatic interactions due to

  17. Leakage Current Suppression with A Novel Six-Switch Photovoltaic Grid-Connected Inverter

    DEFF Research Database (Denmark)

    Wei, Baoze; Guo, Xiaoqiang; Guerrero, Josep M.

    2015-01-01

    In order to solve the problem of the leakage current in non-isolated photovoltaic (PV) systems, a novel six-switch topology and control strategy are proposed in this paper. The inductor-bypass strategy solves the common-mode voltage limitation of the conventional six-switch topology in case...... of unmatched inductances. And the stray capacitor voltage of the non-isolated photovoltaic system is free of high frequency ripples. Theoretical analysis and simulation are carried out to verify the proposed topology and its control strategy. Results indicate that the leakage current suppression can...

  18. Optimization of process parameter variations on leakage current in in silicon-oninsulator vertical double gate mosfet device

    Directory of Open Access Journals (Sweden)

    K.E. Kaharudin

    2015-12-01

    Full Text Available This paper presents a study of optimizing input process parameters on leakage current (IOFF in silicon-on-insulator (SOI Vertical Double-Gate,Metal Oxide Field-Effect-Transistor (MOSFET by using L36 Taguchi method. The performance of SOI Vertical DG-MOSFET device is evaluated in terms of its lowest leakage current (IOFF value. An orthogonal array, main effects, signal-to-noise ratio (SNR and analysis of variance (ANOVA are utilized in order to analyze the effect of input process parameter variation on leakage current (IOFF. Based on the results, the minimum leakage current ((IOFF of SOI Vertical DG-MOSFET is observed to be 0.009 nA/µm or 9 ρA/µm while keeping the drive current (ION value at 434 µA/µm. Both the drive current (ION and leakage current (IOFF values yield a higher ION/IOFF ratio (48.22 x 106 for low power consumption application. Meanwhile, polysilicon doping tilt angle and polysilicon doping energy are recognized as the most dominant factors with each of the contributing factor effects percentage of 59% and 25%.

  19. Reverse leakage current characteristics of InGaN/GaN multiple quantum well ultraviolet/blue/green light-emitting diodes

    Science.gov (United States)

    Zhou, Shengjun; Lv, Jiajiang; Wu, Yini; Zhang, Yuan; Zheng, Chenju; Liu, Sheng

    2018-05-01

    We investigated the reverse leakage current characteristics of InGaN/GaN multiple quantum well (MQW) near-ultraviolet (NUV)/blue/green light-emitting diodes (LEDs). Experimental results showed that the NUV LED has the smallest reverse leakage current whereas the green LED has the largest. The reason is that the number of defects increases with increasing nominal indium content in InGaN/GaN MQWs. The mechanism of the reverse leakage current was analyzed by temperature-dependent current–voltage measurement and capacitance–voltage measurement. The reverse leakage currents of NUV/blue/green LEDs show similar conduction mechanisms: at low temperatures, the reverse leakage current of these LEDs is attributed to variable-range hopping (VRH) conduction; at high temperatures, the reverse leakage current of these LEDs is attributed to nearest-neighbor hopping (NNH) conduction, which is enhanced by the Poole–Frenkel effect.

  20. Modeling of leakage currents in high-k dielectrics

    International Nuclear Information System (INIS)

    Jegert, Gunther Christian

    2012-01-01

    Leakage currents are one of the major bottlenecks impeding the downscaling efforts of the semiconductor industry. Two core devices of integrated circuits, the transistor and, especially, the DRAM storage capacitor, suffer from the increasing loss currents. In this perspective a fundamental understanding of the physical origin of these leakage currents is highly desirable. However, the complexity of the involved transport phenomena so far has prevented the development of microscopic models. Instead, the analysis of transport through the ultra-thin layers of high-permittivity (high-k) dielectrics, which are employed as insulating layers, was carried out at an empirical level using simple compact models. Unfortunately, these offer only limited insight into the physics involved on the microscale. In this context the present work was initialized in order to establish a framework of microscopic physical models that allow a fundamental description of the transport processes relevant in high-k thin films. A simulation tool that makes use of kinetic Monte Carlo techniques was developed for this purpose embedding the above models in an environment that allows qualitative and quantitative analyses of the electronic transport in such films. Existing continuum approaches, which tend to conceal the important physics behind phenomenological fitting parameters, were replaced by three-dimensional transport simulations at the level of single charge carriers. Spatially localized phenomena, such as percolation of charge carriers across pointlike defects, being subject to structural relaxation processes, or electrode roughness effects, could be investigated in this simulation scheme. Stepwise a self-consistent, closed transport model for the TiN/ZrO 2 material system, which is of outmost importance for the semiconductor industry, was developed. Based on this model viable strategies for the optimization of TiN/ZrO 2 /TiN capacitor structures were suggested and problem areas that may

  1. Modeling of leakage currents in high-k dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Jegert, Gunther Christian

    2012-03-15

    Leakage currents are one of the major bottlenecks impeding the downscaling efforts of the semiconductor industry. Two core devices of integrated circuits, the transistor and, especially, the DRAM storage capacitor, suffer from the increasing loss currents. In this perspective a fundamental understanding of the physical origin of these leakage currents is highly desirable. However, the complexity of the involved transport phenomena so far has prevented the development of microscopic models. Instead, the analysis of transport through the ultra-thin layers of high-permittivity (high-k) dielectrics, which are employed as insulating layers, was carried out at an empirical level using simple compact models. Unfortunately, these offer only limited insight into the physics involved on the microscale. In this context the present work was initialized in order to establish a framework of microscopic physical models that allow a fundamental description of the transport processes relevant in high-k thin films. A simulation tool that makes use of kinetic Monte Carlo techniques was developed for this purpose embedding the above models in an environment that allows qualitative and quantitative analyses of the electronic transport in such films. Existing continuum approaches, which tend to conceal the important physics behind phenomenological fitting parameters, were replaced by three-dimensional transport simulations at the level of single charge carriers. Spatially localized phenomena, such as percolation of charge carriers across pointlike defects, being subject to structural relaxation processes, or electrode roughness effects, could be investigated in this simulation scheme. Stepwise a self-consistent, closed transport model for the TiN/ZrO{sub 2} material system, which is of outmost importance for the semiconductor industry, was developed. Based on this model viable strategies for the optimization of TiN/ZrO{sub 2}/TiN capacitor structures were suggested and problem areas

  2. A 200 mV low leakage current subthreshold SRAM bitcell in a 130 nm CMOS process

    International Nuclear Information System (INIS)

    Bai Na; Lü Baitao

    2012-01-01

    A low leakage current subthreshold SRAM in 130 nm CMOS technology is proposed for ultra low voltage (200 mV) applications. Almost all of the previous subthreshold works ignore the leakage current in both active and standby modes. To minimize leakage, a self-adaptive leakage cut off scheme is adopted in the proposed design without any extra dynamic energy dissipation or performance penalty. Combined with buffering circuit and reconfigurable operation, the proposed design ensures both read and standby stability without deteriorating writability in the subthreshold region. Compared to the referenced subthreshold SRAM bitcell, the proposed bitcell shows: (1) a better critical state noise margin, and (2) smaller leakage current in both active and standby modes. Measurement results show that the proposed SRAM functions well at a 200 mV supply voltage with 0.13 μW power consumption at 138 kHz frequency. (semiconductor integrated circuits)

  3. Investigation of surface related leakage current in AlGaN/GaN High Electron Mobility Transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, J.K., E-mail: janeshkaushik@sspl.drdo.in [Solid State Physics Laboratory, Delhi 110054 (India); Balakrishnan, V.R.; Mongia, D.; Kumar, U.; Dayal, S. [Solid State Physics Laboratory, Delhi 110054 (India); Panwar, B.S. [Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Muralidharan, R. [Indian Institute of Science, Bengaluru, Karnataka 560012 (India)

    2016-08-01

    This paper reports the study of surface-related mechanisms to explain the high reverse leakage current observed in the in-house fabricated Si{sub 3}N{sub 4} passivated AlGaN/GaN High Electron Mobility Transistors. We propose that the Si{sub 3}N{sub 4}/AlGaN interface in the un-gated regions provides an additional leakage path between the gate and source/drain and may constitute a large component of reverse current. This surface related leakage component of current exhibits both temperature and electric field dependence and its Arrhenius behavior has been experimentally verified using Conductance Deep Level Transient Spectroscopy and temperature dependent reverse leakage current measurements. A thin interfacial amorphous semiconductor layer formed due to inter diffusion at Si{sub 3}N{sub 4}/AlGaN interface has been presumed as the source for this surface related leakage. We, therefore, conclude that optimum Si{sub 3}N{sub 4} deposition conditions and careful surface preparation prior to passivation can limit the extent of surface leakage and can thus vastly improve the device performance. - Highlights: • Enhanced leakage in AlGaN/GaN High Electron Mobility Transistors after passivation • Experimental evidence of the presence of extrinsic traps at Si{sub 3}N{sub 4}/AlGaN interface • Electron hopping in shallower extended defects and band tail traps at the interface. • Reduction in current collapse due to the virtual gate inhibition by this conduction • However, limitation on the operating voltages due to decrease in breakdown voltage.

  4. Determination of the Steady State Leakage Current in Structures with Ferroelectric Ceramic Films

    Science.gov (United States)

    Podgornyi, Yu. V.; Vorotilov, K. A.; Sigov, A. S.

    2018-03-01

    Steady state leakage currents have been investigated in capacitor structures with ferroelectric solgel films of lead zirconate titanate (PZT) formed on silicon substrates with a lower Pt electrode. It is established that Pt/PZT/Hg structures, regardless of the PZT film thickness, are characterized by the presence of a rectifying contact similar to p-n junction. The steady state leakage current in the forward direction increases with a decrease in the film thickness and is determined by the ferroelectric bulk conductivity.

  5. Effect of STI stress on leakage and V{sub ccmin} of a sub-65 nm node low-power SRAM

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T-H; Fang, Y-K; Chiang, Y-T; Chiu, H Y; Chen, M-S [VLSI technology Lab., Institute of Microelectronics, EE Department, National Cheng Kung University, No. 1 University Road, Tainan, Taiwan, 701 (China); Cheng, Osbert [Central R and D Division, United Microelectronics Corporation (UMC), No. 3, Li-Hsin Rd II, Hsin-Chu, Taiwan 300 (China)], E-mail: ykfang@eembox.ee.ncku.edu.tw

    2008-10-07

    In the paper, for the first time, the effects of shallow trench isolation (STI) stress enhanced boron diffusion on band-to-band (BTBT) leakage and V{sub ccmin} of a 65 nm node low-power SRAM are investigated in detail. High temperature oxidation in the STI process induces an elastic stress to enhance the diffusion of boron dopants, thus leading to a significant increase in BTBT on the STI edge sidewall. The enhanced boron diffusion is more serious for a shorter and/or narrower device, thus worsening the mismatch of the threshold voltage and V{sub ccmin} of the devices in a 65 nm node SRAM cell significantly.

  6. Analyses on the measurement of leakage currents in CdZnTe radiation detectors

    International Nuclear Information System (INIS)

    Mescher, M.J.; Hoburg, J.F.; Schlesinger, T.E.; James, R.B.

    1999-01-01

    Models that place design constraints on devices which are used to measure the leakage currents in high-resistivity semiconductor materials are presented. If these design constraints are met, these models can then be used to quantitatively predict the surface sheet resistance of devices which are dominated by surface leakage currents. As a result, a means is provided to directly compare passivation techniques which are developed to decrease surface leakage currents. Furthermore, these models illustrate the necessity for inclusion of relevant geometrical data on sample size and shape and electrode configuration when reporting results of surface passivation techniques. These models specifically examine the case where a dc potential is applied across two electrodes on the surface of a semiconductor substrate which has a surface layer with lower resistivity than the bulk material. The authors describe several of the more common configurations used in analyzing passivation techniques for compounds of Cd 1-x Zn x Te (CZT) used for room-temperature radiation detection

  7. Influence of heat shock on germination Na/sup +/ and K/sup +/ leakage and electrical conductivity of imbibed calligonum seeds

    International Nuclear Information System (INIS)

    Ren, J.; Tao, L.

    2016-01-01

    Relationships between mineral leakage and germination characteristics of five Calligonum seed in teat shock treatments were analyzed. The results suggested that heat shock stress for imbibing seeds significantly inhabited the germination and K+ leakage, and induced more seed transform death. The greater EC induced decreasing of germination of five Calligonum species, and seeds with more leakage of K+ performed greater germinability. Increasing of EC and Na+ leakage induced more seed dead. Na+ leakage and EC of germination medium always increased with temperature. K+ in seeds inhabited germination, Na+ in seeds determined the vigor of Calligonum seeds. Na+/K+ and EC both could be considered to be used for indications of seed vigor of Calligonum seeds. (author)

  8. On Leakage Current Measured at High Cell Voltages in Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Vadivel, Nicole R.; Ha, Seungbum; He, Meinan; Dees, Dennis; Trask, Steve; Polzin, Bryant; Gallagher, Kevin G.

    2017-01-01

    In this study, parasitic side reactions in lithium-ion batteries were examined experimentally using a potentiostatic hold at high cell voltage. The experimental leakage current measured during the potentiostatic hold was compared to the Tafel expression and showed poor agreement with the expected transfer coefficient values, indicating that a more complicated expression could be needed to accurately capture the physics of this side reaction. Here we show that cross-talk between the electrodes is the primary contribution to the observed leakage current after the relaxation of concentration gradients has ceased. This cross-talk was confirmed with experiments using a lithium-ion conducting glass ceramic (LICGC) separator, which has high conductance only for lithium cations. The cells with LICGC separators showed significantly less leakage current during the potentiostatic hold test compared to cells with standard microporous separators where cross-talk is present. In addition, direct-current pulse power tests show an impedance rise for cells held at high potentials and for cells held at high temperatures, which could be attributed to film formation from the parasitic side reaction. Based on the experimental findings, a phenomenological mechanism is proposed for the parasitic side reaction which accounts for cross-talk and mass transport of the decomposition products across the separator.

  9. Initial leakage current paths in the vertical-type GaN-on-GaN Schottky barrier diodes

    Science.gov (United States)

    Sang, Liwen; Ren, Bing; Sumiya, Masatomo; Liao, Meiyong; Koide, Yasuo; Tanaka, Atsushi; Cho, Yujin; Harada, Yoshitomo; Nabatame, Toshihide; Sekiguchi, Takashi; Usami, Shigeyoshi; Honda, Yoshio; Amano, Hiroshi

    2017-09-01

    Electrical characteristics of leakage current paths in vertical-type n-GaN Schottky barrier diodes (SBDs) on free-standing GaN substrates are investigated by using photon emission microscopy (PEM). The PEM mapping shows that the initial failure of the SBD devices at low voltages is due to the leakage current paths from polygonal pits in the GaN epilayers. It is observed that these polygonal pits originate from carbon impurity accumulation to the dislocations with a screw-type component by microstructure analysis. For the SBD without polygonal pits, no initial failure is observed and the first leakage appeals at the edge of electrodes as a result of electric field concentration. The mechanism of leakage at pits is explained in terms of trap assisted tunneling through fitting current-voltage characteristics.

  10. Three-dimensional wave-induced current model equations and radiation stresses

    Science.gov (United States)

    Xia, Hua-yong

    2017-08-01

    After the approach by Mellor (2003, 2008), the present paper reports on a repeated effort to derive the equations for three-dimensional wave-induced current. Via the vertical momentum equation and a proper coordinate transformation, the phase-averaged wave dynamic pressure is well treated, and a continuous and depth-dependent radiation stress tensor, rather than the controversial delta Dirac function at the surface shown in Mellor (2008), is provided. Besides, a phase-averaged vertical momentum flux over a sloping bottom is introduced. All the inconsistencies in Mellor (2003, 2008), pointed out by Ardhuin et al. (2008) and Bennis and Ardhuin (2011), are overcome in the presently revised equations. In a test case with a sloping sea bed, as shown in Ardhuin et al. (2008), the wave-driving forces derived in the present equations are in good balance, and no spurious vertical circulation occurs outside the surf zone, indicating that Airy's wave theory and the approach of Mellor (2003, 2008) are applicable for the derivation of the wave-induced current model.

  11. Accurate characterization of organic thin film transistors in the presence of gate leakage current

    Directory of Open Access Journals (Sweden)

    Vinay K. Singh

    2011-12-01

    Full Text Available The presence of gate leakage through polymer dielectric in organic thin film transistors (OTFT prevents accurate estimation of transistor characteristics especially in subthreshold regime. To mitigate the impact of gate leakage on transfer characteristics and allow accurate estimation of mobility, subthreshold slope and on/off current ratio, a measurement technique involving simultaneous sweep of both gate and drain voltages is proposed. Two dimensional numerical device simulation is used to illustrate the validity of the proposed technique. Experimental results obtained with Pentacene/PMMA OTFT with significant gate leakage show a low on/off current ratio of ∼ 102 and subthreshold is 10 V/decade obtained using conventional measurement technique. The proposed technique reveals that channel on/off current ratio is more than two orders of magnitude higher at ∼104 and subthreshold slope is 4.5 V/decade.

  12. Nanoscale leakage current measurements in metal organic chemical vapor deposition crystalline SrTiO3 films

    International Nuclear Information System (INIS)

    Rozier, Y.; Gautier, B.; Hyvert, G.; Descamps, A.; Plossu, C.; Dubourdieu, C.; Ducroquet, F.

    2009-01-01

    The properties of SrTiO 3 thin films, grown by liquid injection metal organic chemical vapor deposition on Si/SiO 2 , using a mixture of precursors, have been investigated at the nanoscale using an Atomic Force Microscope in the so-called Conductive Atomic Force Microscopy mode. Maps of the leakage currents with a nanometric resolution have been obtained on films elaborated at different temperatures and stoichiometries in order to discriminate the role of each parameter on the onset of leakage currents in the resulting layers. It appears that the higher the deposition temperature, the higher the leakage currents of the films. The mapping with a nanometric precision allows to show a heterogeneous behaviour of the surface with leaky grains and insulating boundaries. The study of films elaborated at the same temperature with different compositions supports the assumption that the leakage currents on Ti-rich layers are far higher than on Sr-rich layers

  13. A new circuit technique for reduced leakage current in Deep Submicron CMOS technologies

    Directory of Open Access Journals (Sweden)

    A. Schmitz

    2005-01-01

    Full Text Available Modern CMOS processes in the Deep Submicron regime are restricted to supply voltages below 2 volts and further to account for the transistors' field strength limitations and to reduce the power per logic gate. To maintain the high switching performance, the threshold voltage must be scaled according with the supply voltage. However, this leads to an increased subthreshold current of the transistors in standby mode (VGS=0. Another source of leakage is gate current, which becomes significant for gate oxides of 3nm and below. We propose a Self-Biasing Virtual Rails (SBVR - CMOS technique which acts like an adaptive local supply voltage in case of standby mode. Most important sources of leakage currents are reduced by this technique. Moreover, SBVR-CMOS is capable of conserving stored information in sleep mode, which is vital for memory circuits. Memories are exposed to radiation causing soft errors. This well-known problem becomes even worse in standby mode of typical SRAMs, that have low driving performance to withstand alpha particle hits. In this paper, a 16-transistor SRAM cell is proposed, which combines the advantage of extremely low leakage currents with a very high soft error stability.

  14. Space Vector Modulation Technique to Reduce Leakage Current of a Transformerless Three-Phase Four-Leg Photovoltaic System

    Directory of Open Access Journals (Sweden)

    F. Hasanzad

    2017-06-01

    Full Text Available Photovoltaic systems integrated to the grid have received considerable attention around the world. They can be connected to the electrical grid via galvanic isolation (transformer or without it (transformerless. Despite making galvanic isolation, low frequency transformer increases size, cost and losses. On the other hand, transformerless PV systems increase the leakage current (common-mode current, (CMC through the parasitic capacitors of the PV array. Inverter topology and switching technique are the most important parameters the leakage current depends on. As there is no need to extra hardware for switching scheme modification, it's an economical method for reducing leakage current. This paper evaluates the effect of different space vector modulation techniques on leakage current for a two-level three-phase four-leg inverter used in PV system. It proposes an efficient space vector modulation method which decreases the leakage current to below the quantity specified in VDE-0126-1-1 standard. furthermore, some other characteristics of the space vector modulation schemes that have not been significantly discussed for four-leg inverter, are considered, such as, modulation index, switching actions per period, common-mode voltage (CMV, and total harmonic distortion (THD. An extend software simulation using MATLAB/Simulink is performed to verify the effectiveness of the modulation technique.

  15. A study of thermo-mechanical stress and its impact on through-silicon vias

    International Nuclear Information System (INIS)

    Ranganathan, N; Balasubramanian, N; Prasad, K; Pey, K L

    2008-01-01

    The BOSCH etch process, which is commonly used in microelectromechanical system fabrication, has been extensively investigated in this work for implementation in through-silicon via (TSV) technology for 3D-microsystems packaging. The present work focuses on thermo-mechanical stresses caused by thermal loading due to post-TSV processes and their impact on the electrical performance of through-silicon copper interconnects. A test vehicle with deep silicon copper-plated comb structure was designed to study and evaluate different deep silicon via etch processes and its effect on the electrical leakage characteristics under various electrical and thermal stress conditions. It has been shown that the leakage current between the comb interconnect structures increases with an increase in sidewall roughness and that it can be significantly lowered by smoothening the sidewalls. It was also shown that by tailoring a non-BOSCH etch process with the normal BOSCH process, a similar leakage current reduction can be achieved. It was also shown through thermo-mechanical simulation studies that there is a clear correlation between high leakage current behavior due to non-uniform Ta barrier deposition over the rough sidewalls and the thermo-mechanical stress induced by post-TSV processes

  16. Detection of defect states responsible for leakage current in ultrathin tantalum pentoxide (Ta2O5) films by zero-bias thermally stimulated current spectroscopy

    International Nuclear Information System (INIS)

    Lau, W.S.; Zhong, L.; Lee, A.; See, C.H.; Han, T.; Sandler, N.P.; Chong, T.C.

    1997-01-01

    Defect states responsible for leakage current in ultrathin (physical thickness 2 O 5 ) films were measured with a novel zero-bias thermally stimulated current technique. It was found that defect states A, whose activation energy was estimated to be about 0.2 eV, can be more efficiently suppressed by using N 2 O rapid thermal annealing (RTA) instead of using O 2 RTA for postdeposition annealing. The leakage current was also smaller for samples with N 2 O RTA than those with O 2 RTA for postdeposition annealing. Hence, defect states A are quite likely to be important in causing leakage current. copyright 1997 American Institute of Physics

  17. Study of leakage current behaviour on artificially polluted surface of ceramic insulator

    International Nuclear Information System (INIS)

    Subba Reddy, B.; Nagabhushana, G.R.

    2003-01-01

    This paper presents the results of the study concerning to the leakage current behaviour on artificially polluted ceramic insulator surface. From the present study it was observed that there is a reasonably well-defined inception of current i.e. scintillations at a finite voltage. The corresponding voltages for extinction of the current are in the range of 0.8 kV to 2.1 kV. Obviously, the dry band formed in the immediate vicinity of the pin prevents smooth current flow as the voltage rises from zero. Only when the voltage is adequate it causes a flashover of the dray band and current starts flowing. As is common in similar current extinction phenomena, here also, the extinction voltages are significantly lower than the inception voltages. Further, the voltage-current curves invariably show hysteresis-the leakage currents are lower in the reducing portion of the voltage. This is obviously due to drying of the wet pollutant layer thereby increasing its resistance. It is believed that this is the first time that such a direct quantitative evidence of drying in individual half cycles is experimentally visualized

  18. Low field leakage current on ultra-thin gate oxides after ion or electron beam irradiations; Courant de fuite aux champs faibles d'oxydes ultra-minces apres irradiations avec des faisceaux d'ions et d'electrons

    Energy Technology Data Exchange (ETDEWEB)

    Ceschia, M.; Paccagnella, A.; Sandrin, S. [Universita di Padova, Dipt. di Elettronica e Informatica, Padova (Italy); Paccagnella, A. [Istituto Nazionale per la Fisica della Materia, INFM, Unita di Padova (Italy); Ghidini, G. [ST-Microelectronics, Agrate Brianza (Italy); Wyss, J. [Universita di Padova, Dipt. di Fisica, Padova (Italy)

    1999-07-01

    In contemporary CMOS 0.25-{mu}m technologies, the MOS gate oxide (thickness {approx_equal} 5 nm) shows a low-field leakage current after radiation stresses, i.e. the radiation induced leakage current (RILC). RILC is generally attributed to a trap assisted tunneling (TAT) of electrons through neutral oxide traps generated by radiation stress. RILC has been investigated on ultra-thin oxides irradiated with 158 MeV {sup 28}Si ions or 8 MeV electrons. 3 main results are worth being quoted: 1) ion or electron beam irradiation can produce RILC with similar characteristics. Even the dose dependence of RILC is similar in the 2 cases, despite the large LET difference (about a factor of 10{sup +4}), 2) RILC is not a constant as a function of time, it tends to decrease when an oxide field (few MV/cm) is applied for (tens of) thousands seconds. On the other hand, RILC stays constant in devices kept at low bias, and 3) if a pulsed gate voltage is applied during irradiation, RILC is reduced with respect to the zero-field case. (A.C.)

  19. A transformerless single-phase symmetrical Z-source HERIC inverter with reduced leakage currents for PV systems

    DEFF Research Database (Denmark)

    Li, Kerui; Shen, Yanfeng; Yang, Yongheng

    2018-01-01

    and thus low leakage currents in PV applications. The symmetric Z-source HERIC inverter requires two extra active switches. Nevertheless, the operation frequency of the two switches is the line frequency, leading to negligible losses. More importantly, the performance in terms of low leakage currents...... and harmonics is improved. Experimental tests are performed to validate the analysis and performance of the proposed system....

  20. Effect of the critical current density and the junction size on the leakage current of Nb/Al-AlOx/Nb superconducting tunnel junctions for radiation detection

    International Nuclear Information System (INIS)

    Joosse, K.; Nakagawa, Hiroshi; Akoh, Hiroshi; Takada, Susumu; Maehata, Keisuke; Ishibashi, Kenji.

    1996-01-01

    Nb/Al-AlO x /Nb superconducting tunnel junctions (STJ's) designed for X-ray detection have been fabricated. The behavior of the low-temperature subgap leakage current, which severely limits the energy resolution obtained in such devices, is investigated. From trends in the dependence of the leakage currents on the critical current density and the size of the STJ, as well as from the low-temperature current-voltage characteristics, and an analysis of the base electrode surface morphology, it is concluded that physical defects in the barrier region are the most probable cause of the leakage currents. Suggestions are given for optimization of the device processing. (author)

  1. Leakage current transport mechanisms of La 0.67 Sr 0.33 MnO 3 ...

    Indian Academy of Sciences (India)

    limited current mechanism under forward bias while thermionic emission model under reverse bias. Analysis indicates that a modulating Schottky barrier exists at the LSMO/BTO interface, which dominates the leakage current transport properties ...

  2. Suppression of photo-leakage current in amorphous silicon thin-film transistors by n-doped nanocrystalline silicon

    International Nuclear Information System (INIS)

    Lin, Hung-Chien; Ho, King-Yuan; Hsu, Chih-Chieh; Yan, Jing-Yi; Ho, Jia-Chong

    2011-01-01

    The reduction of photo-leakage current of amorphous silicon thin-film transistors (a-Si TFTs) is investigated and is found to be successfully suppressed by the use of an n-doped nanocrystalline silicon layer (n+ nc-Si) as an ohmic contact layer. The shallow-level defects of n+ nc-Si can become trapping centres of photo-induced electrons as the a-Si TFT is operated under light illumination. A lower oxygen concentration during n+ nc-Si deposition can increase the creation of shallow-level defects and improve the contrast ratio of active matrix organic light-emitting diode panels.

  3. Correlation between dislocations and leakage current of p-n diodes on a free-standing GaN substrate

    Science.gov (United States)

    Usami, Shigeyoshi; Ando, Yuto; Tanaka, Atsushi; Nagamatsu, Kentaro; Deki, Manato; Kushimoto, Maki; Nitta, Shugo; Honda, Yoshio; Amano, Hiroshi; Sugawara, Yoshihiro; Yao, Yong-Zhao; Ishikawa, Yukari

    2018-04-01

    Dislocations that cause a reverse leakage current in vertical p-n diodes on a GaN free-standing substrate were investigated. Under a high reverse bias, dot-like leakage spots were observed using an emission microscope. Subsequent cathodoluminescence (CL) observations revealed that the leakage spots coincided with part of the CL dark spots, indicating that some types of dislocation cause reverse leakage. When etch pits were formed on the dislocations by KOH etching, three sizes of etch pits were obtained (large, medium, and small). Among these etch pits, only the medium pits coincided with leakage spots. Additionally, transmission electron microscopy observations revealed that pure screw dislocations are present under the leakage spots. The results revealed that 1c pure screw dislocations are related to the reverse leakage in vertical p-n diodes.

  4. Power crowbar system coupled by a current transformer with very low leakage inductance

    International Nuclear Information System (INIS)

    Kitagawa, S.; Hirano, K.I.

    1976-01-01

    A reliable, efficient power crowbar system has been developed for fast pinch experiments. In order to reduce the effective impedance of series capacitor system, a current transformer with extremely low leakage inductance has been designed and used. Primary and secondary windings of the transformer are alternately arranged as closely as possible. As a result, the leakage inductance is reduced to 2 nH. It is demonstrated that a current of 390 kA, the rise time of which is 4.5 μsec, is sustained for 100 μsec. Much larger system is being built, which maintains a current of 1 MA over 1 msec. The life of crowbar gap switches is prolonged by the aid of a mechanically-driven metal-to-metal contact switch. Another crowbar switch system with a high coulomb rating is under consideration, in which a gap switch is used together with a saturable reactor and a current transformer

  5. Ultrathin silicon dioxide layers with a low leakage current density formed by chemical oxidation of Si

    Science.gov (United States)

    Asuha,; Kobayashi, Takuya; Maida, Osamu; Inoue, Morio; Takahashi, Masao; Todokoro, Yoshihiro; Kobayashi, Hikaru

    2002-10-01

    Chemical oxidation of Si by use of azeotrope of nitric acid and water can form 1.4-nm-thick silicon dioxide layers with a leakage current density as low as those of thermally grown SiO2 layers. The capacitance-voltage (C-V) curves for these ultrathin chemical SiO2 layers have been measured due to the low leakage current density. The leakage current density is further decreased to approx1/5 (cf. 0.4 A/cm2 at the forward gate bias of 1 V) by post-metallization annealing at 200 degC in hydrogen. Photoelectron spectroscopy and C-V measurements show that this decrease results from (i) increase in the energy discontinuity at the Si/SiO2 interface, and (ii) elimination of Si/SiO2 interface states and SiO2 gap states.

  6. Influence of residual stresses during eddy current testing of zircaloy bar material

    International Nuclear Information System (INIS)

    Saibaba, N.; Das, G.; Pratap, Y.; Acharya, S.; Chaube, R.K.; Jayaraj, R.N.

    2009-01-01

    Full text: Zirconium alloy bar is the input material for making end plugs required for encapsulating the fuel tubes after loading of uranium di-oxide pellets. These bars are manufactured through extrusion followed by multi-pass swaging and intermediate vacuum annealing. The bar is subjected to 100% Ultrasonic testing to ensure that defect free material is used for making the end plugs. The elements thus welded are subjected to helium leak testing for checking the weld integrity. However, stray cases of helium leakage from fuel elements were observed on few occasions. On investigation, it was found that the leakage was from small porosity present in the plugs. In order to isolate such an eventuality, stricter ultrasonic standards were adopted and additionally eddy current testing was introduced. It was observed that a number of eddy current signals equal to the defect standard were noticed and the reasons for these indications could not be identified. This led to a significant fall in the material recovery. An in-depth study with various heat treatment cycles and process steps was carried out. It was finally concluded that the indications observed in eddy current testing were due to the residual stresses on the periphery of the bar material caused due by improper straightening being carried out at the final stage of the bar manufacture. This paper presents the systematic studies carried out and correlation established between the eddy current signals and the residual stresses

  7. Effect of Reverse Bias Stress on Leakage Currents and Breakdown Voltages of Solid Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander A.

    2011-01-01

    The majority of solid tantalum capacitors are produced by high-temperature sintering of a fine tantalum powder around a tantalum wire followed by electrolytic anodization that forms a thin amorphous Ta2O5 dielectric layer and pyrolysis of manganese nitrite on the oxide to create a conductive manganese dioxide electrode. A contact to tantalum wire is used as anode terminal and to the manganese layer as a cathode terminal of the device. This process results in formation of an asymmetric Ta -- Ta2O5 -- MnO2 capacitor that has different characteristics at forward (positive bias applied to tantalum) and reverse (positive bias applied to manganese cathode) voltages. Reverse bias currents might be several orders of magnitude larger than forward leakage currents so I-V characteristics of tantalum capacitors resemble characteristics of semiconductor rectifiers. Asymmetric I-V characteristics of Ta -- anodic Ta2O5 systems have been observed at different top electrode materials including metals, electrolytes, conductive polymers, and manganese oxide thus indicating that this phenomenon is likely related to the specifics of the Ta -- Ta2O5 interface. There have been multiple attempts to explain rectifying characteristics of capacitors employing anodic tantalum pentoxide dielectrics. A brief review of works related to reverse bias (RB) behavior of tantalum capacitors shows that the mechanism of conduction in Ta -- Ta2O5 systems is still not clear and more testing and analysis is necessary to understand the processes involved. If tantalum capacitors behave just as rectifiers, then the assessment of the safe reverse bias operating conditions would be a relatively simple task. Unfortunately, these parts can degrade with time under reverse bias significantly, and this further complicates analysis of the I-V characteristics and establishing safe operating areas of the parts. On other hand, time dependence of reverse currents might provide additional information for investigation of

  8. The PACE-1450 experiment - Crack and leakage behavior of a pre-stressed concrete containment wall considering ageing

    International Nuclear Information System (INIS)

    Hermann, N.; Mueller, H.S.; Niklasch, C.; Michel-Ponnelle, S.; Bento, C.; Masson, B.

    2015-01-01

    As an intermediate sized experiment the PACE-1450 experiment aims to investigate the behavior of a curved specimen (length: 3.5 m, width: 1.8 m, height: 1.2 m) which is representative for a 1450 MWe nuclear power plant containment under accidental loading conditions. One focus of this experimental test campaign is the consideration of the ageing of the structure which among other effects leads to a pre-stressing loss. The crack behavior of the realistically reinforced specimen is of as much interest as it is the leakage behavior when an inner pressure occurs within the containment. The reinforcement layout of the specimen is very similar to the original geometry and consists mainly of reinforcement meshes of bars near the inner and outer surface and four pre-stressing cables in the circumferential direction. During the tests the specimen is loaded by pressure which simulates the internal accidental containment pressure of up to 6 bars (absolute pressure). The resulting ring tensile stress in the cylindrical part of the containment is externally applied by hydraulic jacks. An initial pre-stressing of the specimen of 12 MPa is realized in such a way that decreasing the pre-stressing force for the purpose of simulating the ageing of the structure is possible. The facility allows for the cracking of the pre-stressed specimen and for leakage measurements at different controlled crack widths. The specimen is equipped with embedded optical fiber strain and temperature sensors and a sound detection system to record the initiation of cracks. The paper explains the test set-up and presents results of the ongoing test series regarding the cracking and leakage behavior of the specimen

  9. Study of the effect of the stress on CdTe nuclear detectors

    International Nuclear Information System (INIS)

    Ayoub, M.; Radley, I.; Mullins, J. T.; Hage-Ali, M.

    2013-01-01

    CdTe detectors are commonly used for X and γ ray applications. The performance of these detectors is strongly affected by different types of mechanical stress; such as that caused by differential expansion between the semiconductor and its intimate metallic contacts and that caused by applied pressure during the bonding process. The aim of this work was to study the effects of stress on the performance of CdTe detectors. A difference in expansion coefficients induces transverse stress under the metallic contact, while contact pressure induces longitudinal stress. These stresses have been simulated by applying known static pressures. For the longitudinal case, the pressure was applied directly to the metallic contact; while in the transverse case, it was applied to the side. We have studied the effect of longitudinal and transverse stresses on the electrical characteristics including leakage current measurements and γ-ray detection performance. We have also investigated induced defects, their nature, activation energies, cross sections, and concentrations under the applied stress by using photo-induced current transient spectroscopy and thermoelectric effect spectroscopy techniques. The operational stress limit is also given

  10. Study of the effect of the stress on CdTe nuclear detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ayoub, M.; Radley, I.; Mullins, J. T. [Kromek, Thomas Wright way, TS21 3FD, Sedgefield, County Durham (United Kingdom); Hage-Ali, M. [CLEA, Airport road, Beirut (Lebanon)

    2013-09-14

    CdTe detectors are commonly used for X and γ ray applications. The performance of these detectors is strongly affected by different types of mechanical stress; such as that caused by differential expansion between the semiconductor and its intimate metallic contacts and that caused by applied pressure during the bonding process. The aim of this work was to study the effects of stress on the performance of CdTe detectors. A difference in expansion coefficients induces transverse stress under the metallic contact, while contact pressure induces longitudinal stress. These stresses have been simulated by applying known static pressures. For the longitudinal case, the pressure was applied directly to the metallic contact; while in the transverse case, it was applied to the side. We have studied the effect of longitudinal and transverse stresses on the electrical characteristics including leakage current measurements and γ-ray detection performance. We have also investigated induced defects, their nature, activation energies, cross sections, and concentrations under the applied stress by using photo-induced current transient spectroscopy and thermoelectric effect spectroscopy techniques. The operational stress limit is also given.

  11. Process effects on leakage current of Si-PIN neutron detectors with porous microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Baoning; Zhao, Kangkang; Yang, Taotao [Beijing University of Technology, Chaoyang District, Pingleyuan 100, 100124 Beijing (China); Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Ruoshui Road 398, 215123 Suzhou (China); Jiang, Yong; Fan, Xiaoqiang [Institute of Nuclear Physics and Chemistry, CAEP, Mianshan Road 64, 621900 Mianyang (China); Lu, Min [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Ruoshui Road 398, 215123 Suzhou (China); Han, Jun [Beijing University of Technology, Chaoyang District, Pingleyuan 100, 100124 Beijing (China)

    2017-06-15

    Using the technique of Microfabrication, such as deep silicon dry etching, lithography, etc. Si-PIN neutron detectors with porous microstructure have been successfully fabricated. In order to lower the leakage current, the key fabrication processes, including the Al windows opening, deep silicon etching and the porous side wall smoothing, have been optimized. The cross-section morphology and current-voltage characteristics have been measured to evaluate the microfabrication processes. With the optimized conditions presented by the measurements, a neutron detector with a leakage current density of 2.67 μA cm{sup -2} at a bias of -20 V is obtained. A preliminary neutron irradiation test with {sup 252}Cf neutron source has also been carried out. The neutron irradiation test shows that the neutron detection efficiency of the microstructured neutron detectors is almost 3.6 times higher than that of the planar ones. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Effect of Electroacupuncture on Urinary Leakage Among Women With Stress Urinary Incontinence

    Science.gov (United States)

    Liu, Zhishun; Liu, Yan; Xu, Huanfang; He, Liyun; Chen, Yuelai; Fu, Lixin; Li, Ning; Lu, Yonghui; Su, Tongsheng; Sun, Jianhua; Wang, Jie; Yue, Zenghui; Zhang, Wei; Zhao, Jiping; Zhou, Zhongyu; Wu, Jiani; Zhou, Kehua; Ai, Yanke; Zhou, Jing; Pang, Ran; Wang, Yang; Qin, Zongshi; Yan, Shiyan; Li, Hongjiao; Luo, Lin

    2017-01-01

    Importance Electroacupuncture involving the lumbosacral region may be effective for women with stress urinary incontinence (SUI), but evidence is limited. Objective To assess the effect of electroacupuncture vs sham electroacupuncture for women with SUI. Design, Setting, and Participants Multicenter, randomized clinical trial conducted at 12 hospitals in China and enrolling 504 women with SUI between October 2013 and May 2015, with data collection completed in December 2015. Interventions Participants were randomly assigned (1:1) to receive 18 sessions (over 6 weeks) of electroacupuncture involving the lumbosacral region (n = 252) or sham electroacupuncture (n = 252) with no skin penetration on sham acupoints. Main Outcomes and Measures The primary outcome was change from baseline to week 6 in the amount of urine leakage, measured by the 1-hour pad test. Secondary outcomes included mean 72-hour urinary incontinence episodes measured by a 72-hour bladder diary (72-hour incontinence episodes). Results Among the 504 randomized participants (mean [SD] age, 55.3 [8.4] years), 482 completed the study. Mean urine leakage at baseline was 18.4 g for the electroacupuncture group and 19.1 g for the sham electroacupuncture group. Mean 72-hour incontinence episodes were 7.9 for the electroacupuncture group and 7.7 for the sham electroacupuncture group. At week 6, the electroacupuncture group had greater decrease in mean urine leakage (−9.9 g) than the sham electroacupuncture group (−2.6 g) with a mean difference of 7.4 g (95% CI, 4.8 to 10.0; P electroacupuncture than sham electroacupuncture with between-group differences of 1.0 episode in weeks 1 to 6 (95% CI, 0.2-1.7; P = .01), 2.0 episodes in weeks 15 to 18 (95% CI, 1.3-2.7; P electroacupuncture group and 2.0% in the sham electroacupuncture group, and all events were classified as mild. Conclusions and Relevance Among women with stress urinary incontinence, treatment with electroacupuncture involving the

  13. The optimal design of 15 nm gate-length junctionless SOI FinFETs for reducing leakage current

    International Nuclear Information System (INIS)

    Liu, Xi; Wu, Meile; Jin, Xiaoshi; Chuai, Rongyan; Lee, Jung-Hee; Lee, Jong-Ho

    2013-01-01

    Junctionless (JL) transistors need to be heavily doped to have large drain current in the ON-state, which engenders the effect of band-to-band tunneling (BTBT) in the OFF-state simultaneously. It causes an obvious increase of the leakage current in the OFF-state. This paper presents an effective method of reducing the leakage current by changing the geometrical shape and dimension of the oxide layer under the edge of the gate. The optimal design of 15 nm gate-length JL silicon-on-insulator FinFETs with the triple-gate structure is performed for reducing the effect of BTBT through simulation and analysis by this means. (paper)

  14. Influence of process parameters on threshold voltage and leakage current in 18nm NMOS device

    Science.gov (United States)

    Atan, Norani Binti; Ahmad, Ibrahim Bin; Majlis, Burhanuddin Bin Yeop; Fauzi, Izzati Binti Ahmad

    2015-04-01

    The process parameters are very crucial factor in the development of transistors. There are many process parameters that influenced in the development of the transistors. In this research, we investigate the effects of the process parameters variation on response characteristics such as threshold voltage (VTH) and sub-threshold leakage current (IOFF) in 18nm NMOS device. The technique to identify semiconductor process parameters whose variability would impact most on the device characteristic is realized through the process by using Taguchi robust design method. This paper presents the process parameters that influenced in threshold voltage (VTH) and sub-threshold leakage current (IOFF) which includes the Halo Implantation, Compensation Implantation, Adjustment Threshold voltage Implantation and Source/Drain Implantation. The design, fabrication and characterization of 18nm HfO2/TiSi2 NMOS device is simulated and performed via a tool called Virtual Wafer Fabrication (VWF) Silvaco TCAD Tool known as ATHENA and ATLAS simulators. These two simulators were combined with Taguchi L9 Orthogonal method to aid in the design and the optimization of the process parameters to achieve the optimum average of threshold voltage (VTH) and sub-threshold leakage current, (IOFF) in 18nm device. Results from this research were obtained; where Halo Implantation dose was identified as one of the process parameter that has the strongest effect on the response characteristics. Whereby the Compensation Implantation dose was identified as an adjustment factor to get the nominal values of threshold voltage VTH, and sub-threshold leakage current, IOFF for 18nm NMOS devices equal to 0.302849 volts and 1.9123×10-16 A/μm respectively. The design values are referred to ITRS 2011 prediction.

  15. Decreased plasma levels of the endothelial protective sphingosine-1-phosphate are associated with dengue-induced plasma leakage

    NARCIS (Netherlands)

    Michels, M.; Japtok, L.; Alisjahbana, B.; Wisaksana, R.; Sumardi, U.; Puspita, M.; Kleuser, B.; Mast, Q. de; Ven, A.J.A.M. van der

    2015-01-01

    BACKGROUND: A transient endothelial hyperpermeability is a hallmark of severe dengue infections. Sphingosine-1-phosphate (S1P) maintains vascular integrity and protects against plasma leakage. We related plasma S1P levels to dengue-induced plasma leakage and studied mechanisms that may underlie the

  16. Comparison of the Standard of Air Leakage in Current Metal Duct Systems in the World

    Science.gov (United States)

    Di, Yuhui; Wang, Jiqian; Feng, Lu; Li, Xingwu; Hu, Chunlin; Shi, Junshe; Xu, Qingsong; Qiao, Leilei

    2018-01-01

    Based on the requirements of air leakage of metal ducts in Chinese design standards, technical measures and construction standards, this paper compares the development history, the classification of air pressure levels and the air tightness levels of air leakage standards of current Chinese and international metal ducts, sums up the differences, finds shortage by investigating the design and construction status and access to information, and makes recommendations, hoping to help the majority of engineering and technical personnel.

  17. The effect of gap width on viscous stresses within the leakage across a bileaflet valve pivot

    DEFF Research Database (Denmark)

    Travis, Brandon R; Andersen, Morten E; Fründ, Ernst Torben

    2008-01-01

    reported within the pivots in previous studies. Velocities measured experimentally were even larger than those estimated computationally. CONCLUSION: These experiments suggest that viscous stresses in leakage flow across a bileaflet mitral valve increase with gap width, and may contribute more to blood...

  18. Leakage characterization of top select transistor for program disturbance optimization in 3D NAND flash

    Science.gov (United States)

    Zhang, Yu; Jin, Lei; Jiang, Dandan; Zou, Xingqi; Zhao, Zhiguo; Gao, Jing; Zeng, Ming; Zhou, Wenbin; Tang, Zhaoyun; Huo, Zongliang

    2018-03-01

    In order to optimize program disturbance characteristics effectively, a characterization approach that measures top select transistor (TSG) leakage from bit-line is proposed to quantify TSG leakage under program inhibit condition in 3D NAND flash memory. Based on this approach, the effect of Vth modulation of two-cell TSG on leakage is evaluated. By checking the dependence of leakage and corresponding program disturbance on upper and lower TSG Vth, this approach is validated. The optimal Vth pattern with high upper TSG Vth and low lower TSG Vth has been suggested for low leakage current and high boosted channel potential. It is found that upper TSG plays dominant role in preventing drain induced barrier lowering (DIBL) leakage from boosted channel to bit-line, while lower TSG assists to further suppress TSG leakage by providing smooth potential drop from dummy WL to edge of TSG, consequently suppressing trap assisted band-to-band tunneling current (BTBT) between dummy WL and TSG.

  19. Leakage current analysis of a single-phase transformer-less PV inverter connected to the grid

    DEFF Research Database (Denmark)

    Ma, Lin; Tang, F.; Zhou, F.

    2009-01-01

    Due to the large surface of the PV generator, its stray capacity with respect to the ground reaches values that can be quite high. When no transformer is used in a grid-connected PV system, common-mode current, which caused by the common mode voltage, can flow through the stray capacitance between...... the PV array and the ground. It is quite harmful to the body safety and PV system. In order to avoid leakage current, different inverter topologies that generate no varying common-mode voltages, such as bipolar pulse-width modulation (PWM) full-bridge topology, NPC topology have been proposed. From...... the safety and energy saving viewpoint, it is necessary to develop a higher efficiency topology. In this paper, the generation mechanism of common mode current is discussed. Then different methods used to eliminate the leakage current are compared. Finally, the full-bridge which generates no varying common...

  20. Current leakage relaxation and charge trapping in ultra-porous low-k materials

    International Nuclear Information System (INIS)

    Borja, Juan; Plawsky, Joel L.; Gill, William N.; Lu, T.-M.; Bakhru, Hassaram

    2014-01-01

    Time dependent dielectric failure has become a pivotal aspect of interconnect design as industry pursues integration of sub-22 nm process-technology nodes. Literature has provided key information about the role played by individual species such as electrons, holes, ions, and neutral impurity atoms. However, no mechanism has been shown to describe how such species interact and influence failure. Current leakage relaxation in low-k dielectrics was studied using bipolar field experiments to gain insight into how charge carrier flow becomes impeded by defects within the dielectric matrix. Leakage current decay was correlated to injection and trapping of electrons. We show that current relaxation upon inversion of the applied field can be described by the stretched exponential function. The kinetics of charge trapping events are consistent with a time-dependent reaction rate constant, k=k 0 ⋅(t+1) β−1 , where 0 < β < 1. Such dynamics have previously been observed in studies of charge trapping reactions in amorphous solids by W. H. Hamill and K. Funabashi, Phys. Rev. B 16, 5523–5527 (1977). We explain the relaxation process in charge trapping events by introducing a nonlinear charge trapping model. This model provides a description on the manner in which the transport of mobile defects affects the long-tail current relaxation processes in low-k films

  1. Biologically Synthesized Gold Nanoparticles Ameliorate Cold and Heat Stress-Induced Oxidative Stress in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Xi-Feng Zhang

    2016-06-01

    Full Text Available Due to their unique physical, chemical, and optical properties, gold nanoparticles (AuNPs have recently attracted much interest in the field of nanomedicine, especially in the areas of cancer diagnosis and photothermal therapy. Because of the enormous potential of these nanoparticles, various physical, chemical, and biological methods have been adopted for their synthesis. Synthetic antioxidants are dangerous to human health. Thus, the search for effective, nontoxic natural compounds with effective antioxidative properties is essential. Although AuNPs have been studied for use in various biological applications, exploration of AuNPs as antioxidants capable of inhibiting oxidative stress induced by heat and cold stress is still warranted. Therefore, one goal of our study was to produce biocompatible AuNPs using biological methods that are simple, nontoxic, biocompatible, and environmentally friendly. Next, we aimed to assess the antioxidative effect of AuNPs against oxidative stress induced by cold and heat in Escherichia coli, which is a suitable model for stress responses involving AuNPs. The response of aerobically grown E. coli cells to cold and heat stress was found to be similar to the oxidative stress response. Upon exposure to cold and heat stress, the viability and metabolic activity of E. coli was significantly reduced compared to the control. In addition, levels of reactive oxygen species (ROS and malondialdehyde (MDA and leakage of proteins and sugars were significantly elevated, and the levels of lactate dehydrogenase activity (LDH and adenosine triphosphate (ATP significantly lowered compared to in the control. Concomitantly, AuNPs ameliorated cold and heat-induced oxidative stress responses by increasing the expression of antioxidants, including glutathione (GSH, glutathione S-transferase (GST, super oxide dismutase (SOD, and catalase (CAT. These consistent physiology and biochemical data suggest that AuNPs can ameliorate cold and

  2. The analysis of leakage current in MIS Au/SiO{sub 2}/n-GaAs at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Altuntas, H., E-mail: altunhalit@gmail.com [Cankiri Karatekin University, Department of Physics, Faculty of Science (Turkey); Ozcelik, S. [Gazi University, Department of Physics, Faculty of Science (Turkey)

    2013-10-15

    The aim of this study is to determine the reverse-bias leakage current conduction mechanisms in Au/SiO{sub 2}/n-GaAs metal-insulator-semiconductor type Schottky contacts. Reverse-bias current-voltage measurements (I-V) were performed at room temperature. The using of leakage current values in SiO{sub 2} at electric fields of 1.46-3.53 MV/cm, ln(J/E) vs. {radical}E graph showed good linearity. Rom this plot, dielectric constant of SiO{sub 2} was calculated as 3.7 and this value is perfect agreement with 3.9 which is value of SiO{sub 2} dielectric constant. This indicates, Poole-Frenkel type emission mechanism is dominant in this field region. On the other hand, electric fields between 0.06-0.73 and 0.79-1.45 MV/cm, dominant leakage current mechanisms were found as ohmic type conduction and space charge limited conduction, respectively.

  3. Investigation of leakage current and breakdown voltage in irradiated double-sided 3D silicon sensors

    International Nuclear Information System (INIS)

    Betta, G.-F. Dalla; Mendicino, R.; Povoli, M.; Sultan, D.M.S.; Ayllon, N.; Hoeferkamp, M.; McDuff, H.; Seidel, S.; Boscardin, M.; Zorzi, N.; Mattiazzo, S.

    2016-01-01

    We report on an experimental study aimed at gaining deeper insight into the leakage current and breakdown voltage of irradiated double-sided 3D silicon sensors from FBK, so as to improve both the design and the fabrication technology for use at future hadron colliders such as the High Luminosity LHC. Several 3D diode samples of different technologies and layout are considered, as well as several irradiations with different particle types. While the leakage current follows the expected linear trend with radiation fluence, the breakdown voltage is found to depend on both the bulk damage and the surface damage, and its values can vary significantly with sensor geometry and process details.

  4. A Labview Based Leakage Current Monitoring System For HV Insulators

    Directory of Open Access Journals (Sweden)

    N. Mavrikakis

    2015-10-01

    Full Text Available In this paper, a Labview based leakage current monitoring system for High Voltage insulators is described. The system uses a general purpose DAQ system with the addition of different current sensors. The DAQ system consists of a chassis and hot-swappable modules. Through the proper design of current sensors, low cost modules operating with a suitable input range can be employed. Fully customizable software can be developed using Labview, allowing on-demand changes and incorporation of upgrades. Such a system provides a low cost alternative to specially designed equipment with the added advantage of maximum flexibility. Further, it can be modified to satisfy the specifications (technical and economical set under different scenarios. In fact, the system described in this paper has already been installed in the HV Lab of the TEI of Crete whereas a variation of it is currently in use in TALOS High Voltage Test Station.

  5. Liquid helium boil-off measurements of heat leakage from sinter-forged BSCCO current leads under DC and AC conditions

    International Nuclear Information System (INIS)

    Cha, Y.S.; Niemann, R.C.; Hull, J.R.; Youngdahl, C.A.; Lanagan, M.T.; Nakade, M.; Hara, T.

    1995-06-01

    Liquid helium boil-off experiments are conducted to determine the heat leakage rate of a pair of BSCCO 2223 high-temperature superconductor current leads made by sinter forging. The experiments are carried out in both DC and AC conditions and with and without an intermediate heat intercept. Current ranges are from 0-500 A for DC tests and 0-1,000 A rms for AC tests. The leads are self-cooled. Results show that magnetic hysteresis (AC) losses for both the BSCCO leads and the low-temperature superconductor current jumper are small for the current range. It is shown that significant reduction in heat leakage rate (liquid helium boil-off rate) is realized by using the BSCCO superconductor leads. At 100 A, the heat leakage rate of the BSCCO/copper binary lead is approximately 29% of that of the conventional copper lead. Further reduction in liquid helium boil-off rate can be achieved by using an intermediate heat intercept. For example, at 500 K, the heat leakage rate of the BSCCO/copper binary lead is only 7% of that of the conventional copper lead when an intermediate heat intercept is used

  6. Conduction mechanism of leakage current due to the traps in ZrO2 thin film

    Science.gov (United States)

    Seo, Yohan; Lee, Sangyouk; An, Ilsin; Song, Chulgi; Jeong, Heejun

    2009-11-01

    In this work, a metal-oxide-semiconductor capacitor with zirconium oxide (ZrO2) gate dielectric was fabricated by an atomic layer deposition (ALD) technique and the leakage current characteristics under negative bias were studied. From the result of current-voltage curves there are two possible conduction mechanisms to explain the leakage current in the ZrO2 thin film. The dominant mechanism is the space charge limited conduction in the high-electric field region (1.5-5.0 MV cm-1) while the trap-assisted tunneling due to the existence of traps is prevailed in the low-electric field region (0.8-1.5 MV cm-1). Conduction caused by the trap-assisted tunneling is found from the experimental results of a weak temperature dependence of current, and the trap barrier height is obtained. The space charge limited conduction is evidenced, for different temperatures, by Child's law dependence of current density versus voltage. Child's law dependence can be explained by considering a single discrete trapping level and we can obtain the activation energy of 0.22 eV.

  7. Capacitor Property and Leakage Current Mechanism of ZrO2 Thin Dielectric Films Prepared by Anodic Oxidation

    Science.gov (United States)

    Kamijyo, Masahiro; Onozuka, Tomotake; Shinkai, Satoko; Sasaki, Katsutaka; Yamane, Misao; Abe, Yoshio

    2003-07-01

    Polycrystalline ZrO2 thin film capacitors were prepared by anodizing sputter-deposited Zr films. Electrical measurements are performed for the parallel-plate anodized capacitors with an Al-ZrO2-Zr (metal-insulator-metal) structure, and a high capacitance density (0.6 μF/cm2) and a low dielectric loss of nearly 1% are obtained for a very thin-oxide capacitor anodized at 10 V. In addition, the leakage current density of this capacitor is about 1.8 × 10-8 A/cm2 at an applied voltage of 5 V. However, the leakage current is somewhat larger than that of a low-loss HfO2 capacitor. The leakage current density (J) of ZrO2 capacitors as a function of applied electric field (E) was investigated for several capacitors with different oxide thicknesses, by plotting \\ln(J) vs E1/2 curves. As a result, it is revealed that the conduction mechanism is due to the Poole-Frenkel effect, irrespective of the oxide thickness.

  8. Remote Field Eddy Current Probes for the Detection of Stress Corrosion in Transmission Pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Plamen Alexandroz [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Magnetic flux leakage (MFL) is a technique used widely in non-destructive testing (NDT) of natural gas and petroleum transmission pipelines. This inspection method relies on magnetizing the pipe-wall in axial direction. The MFL inspection tool is equipped with an array of Hall sensors located around the circumference of the pipe, which registers the flux leakage caused by any defects present in the pipe-wall. Currently, the tool magnetizes the pipewall in axial direction making it largely insensitive to axially oriented defects. One type of defect, which is of a growing concern in the gas and petroleum industry is the stress corrosion crack (SCC). The SCCs are a result of aging, corrosion, fatigue and thermal stresses. SCCs are predominantly axially oriented and are extremely tight, which makes them impossible to be detected using current inspection technology. A possible solution to this problem is to utilize the remote field eddy current (RFEC) effect to detect axially oriented defects. The RFEC method has been widely used in industry in the inspection of tubular products. The method uses a pair of excitation and pick-up coils. The pick-up coil located in the remote field region, usually two, three pipe-diameters away from the excitation coil. With RFEC the presence of defects is detected by the disturbance in the phase of the signal measured by the pick-up coil relative to that of the excitation coil. Unlike conventional eddy current testing the RFEC method is sensitive to defects on the exterior of the inspected product, which makes it a good candidate for the development of in-line inspection technology. This work focuses on the development of non-destructive testing technique, which uses remote field eddy currents induced by rotating magnetic field (RMF). A major advantage of the RMF is that it makes possible to not only detect a defect but also localize its position in circumferential direction. Also, it could potentially allow detection of defects

  9. Analysis of Gas Leakage and Current Loss of Solid Oxide Fuel Cells by Screen Printing

    DEFF Research Database (Denmark)

    Jia, Chuan; Han, Minfang; Chen, Ming

    2017-01-01

    Two types of anode supported solid oxide fuel cell (SOFC) NiO-YSZ/YSZ/GDC/LSCF with the same structure and different manufacturing process were tested. Gas leakage was suspected for cells manufactured with screen printing technique. Effective leak current densities for both types of cells were...... calculated. Their performances of electrochemical impedance spectroscopy (EIS) were compared and distribution function of relaxation times (DRT) technique was also used to find the clue of gas leakage. Finally, thinning and penetrating holes were observed in electrolyte layer, which confirmed the occurrence...

  10. Impact of the Indonesian Throughflow on Agulhas leakage

    Directory of Open Access Journals (Sweden)

    D. Le Bars

    2013-09-01

    Full Text Available Using ocean models of different complexity we show that opening the Indonesian Passage between the Pacific and the Indian oceans increases the input of Indian Ocean water into the South Atlantic via the Agulhas leakage. In a strongly eddying global ocean model this response results from an increased Agulhas Current transport and a constant proportion of Agulhas retroflection south of Africa. The leakage increases through an increased frequency of ring shedding events. In an idealized two-layer and flat-bottom eddy resolving model, the proportion of the Agulhas Current transport that retroflects is (for a wide range of wind stress forcing not affected by an opening of the Indonesian Passage. Using a comparison with a linear model and previous work on the retroflection problem, the result is explained as a balance between two mechanisms: decrease retroflection due to large-scale momentum balance and increase due to local barotropic/baroclinic instabilities.

  11. The study of human bodies' impedance networks in testing leakage currents of electrical equipments

    Science.gov (United States)

    Zhang, Zhaohui; Wang, Xiaofei

    2006-11-01

    In the testing of electrical equipments' leakage currents, impedance networks of human bodies are used to simulate the current's effect on human bodies, and they are key to the preciseness of the testing result. This paper analyses and calculates three human bodies' impedance networks of measuring electric burn current, perception or reaction current, let-go current in IEC60990, by using Matlab, compares the research result of current effect thresholds' change with sine wave's frequency published in IEC479-2, and amends parameters of measuring networks. It also analyses the change of perception or reaction current with waveform by Multisim.

  12. Finite element calculation of stress induced heating of superconductors

    International Nuclear Information System (INIS)

    Akin, J.E.; Moazed, A.

    1976-01-01

    This research is concerned with the calculation of the amount of heat generated due to the development of mechanical stresses in superconducting composites. An emperical equation is used to define the amount of stress-induced heat generation per unit volume. The equation relates the maximum applied stress and the experimental measured hysteresis loop of the composite stress-strain diagram. It is utilized in a finite element program to calculate the total stress-induced heat generation for the superconductor. An example analysis of a solenoid indicates that the stress-induced heating can be of the same order of magnitude as eddy current effects

  13. Polarization retention loss in PbTiO3 ferroelectric films due to leakage currents

    NARCIS (Netherlands)

    Morelli, A.; Venkatesan, Sriram; Palasantzas, G.; Kooi, B. J.; De Hosson, J. Th. M.

    2007-01-01

    The relationship between retention loss in single crystal PbTiO3 ferroelectric thin films and leakage currents is demonstrated by piezoresponse and conductive atomic force microscopy measurements. It was found that the polarization reversal in the absence of an electric field followed a stretched

  14. Asymmetric magnetoimpedance in amorphous microwires due to bias current: Effect of torsional stress

    International Nuclear Information System (INIS)

    Buznikov, N.A.; Antonov, A.S.; Granovsky, A.B.

    2014-01-01

    The influence of torsional stress on the asymmetric magnetoimpedance in a glass-coated negative magnetostrictive amorphous microwire due to bias current is studied theoretically. The longitudinal and off-diagonal impedance components are found assuming a simplified spatial distribution of the magnetoelastic anisotropy induced by the torsional stress. The asymmetry in the field dependence of the impedance components is attributed to the combination of the circular magnetic field produced by the bias current and a helical anisotropy induced by the torsional stress. The asymmetry in the magnetoimpedance and the low-field hysteresis are analyzed as a function of the bias current and torsional stress. It is shown that the application of torsional stress significantly changes the value of the bias current required to suppress the hysteresis effect. The results obtained may be useful for applications in magnetic-field and stress sensors. - Highlights: • Effects of torsional stress on magnetoimpedance in amorphous microwire are studied. • Asymmetry in magnetoimpedance is analyzed as a function of bias current and stress. • Torsional stress changes the anisotropy and effects on the microwire impedance. • Field-dependence of impedance is anhysteretic when bias current exceeds threshold value. • Threshold bias current can be tuned by the application of torsional stress

  15. Asymmetric magnetoimpedance in amorphous microwires due to bias current: Effect of torsional stress

    Energy Technology Data Exchange (ETDEWEB)

    Buznikov, N.A., E-mail: n_buznikov@mail.ru [Scientific-Research Institute of Natural Gases and Gas Technologies – GAZPROM VNIIGAZ, Razvilka, Leninsky District, Moscow Region 142717 (Russian Federation); Antonov, A.S. [Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Granovsky, A.B. [Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation)

    2014-04-15

    The influence of torsional stress on the asymmetric magnetoimpedance in a glass-coated negative magnetostrictive amorphous microwire due to bias current is studied theoretically. The longitudinal and off-diagonal impedance components are found assuming a simplified spatial distribution of the magnetoelastic anisotropy induced by the torsional stress. The asymmetry in the field dependence of the impedance components is attributed to the combination of the circular magnetic field produced by the bias current and a helical anisotropy induced by the torsional stress. The asymmetry in the magnetoimpedance and the low-field hysteresis are analyzed as a function of the bias current and torsional stress. It is shown that the application of torsional stress significantly changes the value of the bias current required to suppress the hysteresis effect. The results obtained may be useful for applications in magnetic-field and stress sensors. - Highlights: • Effects of torsional stress on magnetoimpedance in amorphous microwire are studied. • Asymmetry in magnetoimpedance is analyzed as a function of bias current and stress. • Torsional stress changes the anisotropy and effects on the microwire impedance. • Field-dependence of impedance is anhysteretic when bias current exceeds threshold value. • Threshold bias current can be tuned by the application of torsional stress.

  16. Conduction mechanism of leakage current due to the traps in ZrO2 thin film

    International Nuclear Information System (INIS)

    Seo, Yohan; Lee, Sangyouk; An, Ilsin; Jeong, Heejun; Song, Chulgi

    2009-01-01

    In this work, a metal-oxide-semiconductor capacitor with zirconium oxide (ZrO 2 ) gate dielectric was fabricated by an atomic layer deposition (ALD) technique and the leakage current characteristics under negative bias were studied. From the result of current–voltage curves there are two possible conduction mechanisms to explain the leakage current in the ZrO 2 thin film. The dominant mechanism is the space charge limited conduction in the high-electric field region (1.5–5.0 MV cm −1 ) while the trap-assisted tunneling due to the existence of traps is prevailed in the low-electric field region (0.8–1.5 MV cm −1 ). Conduction caused by the trap-assisted tunneling is found from the experimental results of a weak temperature dependence of current, and the trap barrier height is obtained. The space charge limited conduction is evidenced, for different temperatures, by Child's law dependence of current density versus voltage. Child's law dependence can be explained by considering a single discrete trapping level and we can obtain the activation energy of 0.22 eV

  17. Degradation of Au–Ti contacts of SiGe HBTs during electromagnetic field stress

    International Nuclear Information System (INIS)

    Alaeddine, A; Genevois, C; Cuvilly, F; Daoud, K; Kadi, M

    2011-01-01

    This paper addresses electromagnetic field stress effects on SiGe heterojunction bipolar transistors (HBTs)' reliability issues, focusing on the relationship between the stress-induced current and device structure degradations. The origin of leakage currents and electrical parameter shifts in failed transistors has been studied by complementary failure analysis techniques. Characterization of the structure before and after ageing was performed by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). For the stressed samples, interface deformations of the titanium (Ti) thin film around all gold (Au) contacts have been clearly detected. These degradations include localized interface reaction between Au and Ti layers as well as their lateral atomic migration causing a significant reduction of Ti thickness. EDS analysis of the disordered region which is near the Si 3 N 4 interface has shown significant signals from Au. These observations could be attributed to the coupling between high current densities induced by stress and thermal effects due to local heating effects

  18. Stress-induced electric current fluctuations in rocks: a superstatistical model

    Science.gov (United States)

    Cartwright-Taylor, Alexis; Vallianatos, Filippos; Sammonds, Peter

    2017-04-01

    We recorded spontaneous electric current flow in non-piezoelectric Carrara marble samples during triaxial deformation. Mechanical data, ultrasonic velocities and acoustic emissions were acquired simultaneously with electric current to constrain the relationship between electric current flow, differential stress and damage. Under strain-controlled loading, spontaneous electric current signals (nA) were generated and sustained under all conditions tested. In dry samples, a detectable electric current arises only during dilatancy and the overall signal is correlated with the damage induced by microcracking. Our results show that fracture plays a key role in the generation of electric currents in deforming rocks (Cartwright-Taylor et al., in prep). We also analysed the high-frequency fluctuations of these electric current signals and found that they are not normally distributed - they exhibit power-law tails (Cartwright-Taylor et al., 2014). We modelled these distributions with q-Gaussian statistics, derived by maximising the Tsallis entropy. This definition of entropy is particularly applicable to systems which are strongly correlated and far from equilibrium. Good agreement, at all experimental conditions, between the distributions of electric current fluctuations and the q-Gaussian function with q-values far from one, illustrates the highly correlated, fractal nature of the electric source network within the samples and provides further evidence that the source of the electric signals is the developing fractal network of cracks. It has been shown (Beck, 2001) that q-Gaussian distributions can arise from the superposition of local relaxations in the presence of a slowly varying driving force, thus providing a dynamic reason for the appearance of Tsallis statistics in systems with a fluctuating energy dissipation rate. So, the probability distribution for a dynamic variable, u under some external slow forcing, β, can be obtained as a superposition of temporary local

  19. Prediction of leakage in the fixed mechanical seal

    Directory of Open Access Journals (Sweden)

    Asheichik Anatoly A.

    2017-01-01

    Full Text Available The questions of influence of the shape of contact surfaces on leakages through rubber seals in fixed connection of subassemblies are considered in the article. It is known from practice of operation of seals of various designs that the shape of contact surfaces and consequently also the shape of diagram of stresses in a contact zone considerably influences on value of leaks Linking leakage magnitude and distribution of contact stresses enables, firstly, more precisely calculate the amount of leakage for existing seals, and, secondly, to optimize the shape of the seals in their design in each case. As the result of experimental studies on the introduction of the rubber gasket ring fixed indenters different profiles found that by optimizing the shape of the indenter magnitude of leakage can be reduced by 10 times.

  20. Study of surface leakage current of AlGaN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Chen, YongHe; Zhang, Kai; Cao, MengYi; Zhao, ShengLei; Zhang, JinCheng; Hao, Yue; Ma, XiaoHua

    2014-01-01

    Temperature-dependent surface current measurements were performed to analyze the mechanism of surface conductance of AlGaN/GaN channel high-electron-mobility transistors by utilizing process-optimized double gate structures. Different temperatures and electric field dependence have been found in surface current measurements. At low electric field, the mechanism of surface conductance is considered to be two-dimensional variable range hopping. At elevated electric field, the Frenkel–Poole trap assisted emission governs the main surface electrons transportation. The extracted energy barrier height of electrons emitting from trapped state near Fermi energy level into a threading dislocations-related continuum state is 0.38 eV. SiN passivation reduces the surface leakage current by two order of magnitude and nearly 4 orders of magnitude at low and high electric fields, respectively. SiN also suppresses the Frenkel–Poole conductance at high temperature by improving the surface states of AlGaN/GaN. A surface treatment process has been introduced to further suppress the surface leakage current at high temperature and high field, which results in a decrease in surface current of almost 3 orders of magnitude at 476 K

  1. Leakage Current Degradation Due to Ion Drift and Diffusion in Tantalum and Niobium Oxide Capacitors

    Directory of Open Access Journals (Sweden)

    Kuparowitz Martin

    2017-06-01

    Full Text Available High temperature and high electric field applications in tantalum and niobium capacitors are limited by the mechanism of ion migration and field crystallization in a tantalum or niobium pentoxide insulating layer. The study of leakage current (DCL variation in time as a result of increasing temperature and electric field might provide information about the physical mechanism of degradation. The experiments were performed on tantalum and niobium oxide capacitors at temperatures of about 125°C and applied voltages ranging up to rated voltages of 35 V and 16 V for tantalum and niobium oxide capacitors, respectively. Homogeneous distribution of oxygen vacancies acting as positive ions within the pentoxide layer was assumed before the experiments. DCL vs. time characteristics at a fixed temperature have several phases. At the beginning of ageing the DCL increases exponentially with time. In this period ions in the insulating layer are being moved in the electric field by drift only. Due to that the concentration of ions near the cathode increases producing a positively charged region near the cathode. The electric field near the cathode increases and the potential barrier between the cathode and insulating layer decreases which results in increasing DCL. However, redistribution of positive ions in the insulator layer leads to creation of a ion concentration gradient which results in a gradual increase of the ion diffusion current in the direction opposite to the ion drift current component. The equilibrium between the two for a given temperature and electric field results in saturation of the leakage current value. DCL vs. time characteristics are described by the exponential stretched law. We found that during the initial part of ageing an exponent n = 1 applies. That corresponds to the ion drift motion only. After long-time application of the electric field at a high temperature the DCL vs. time characteristics are described by the exponential

  2. Leakage current phenomena in Mn-doped Bi(Na,K)TiO_3-based ferroelectric thin films

    International Nuclear Information System (INIS)

    Walenza-Slabe, J.; Gibbons, B. J.

    2016-01-01

    Mn-doped 80(Bi_0_._5Na_0_._5)TiO_3-20(Bi_0_._5K_0_._5)TiO_3 thin films were fabricated by chemical solution deposition on Pt/TiO_2/SiO_2/Si substrates. Steady state and time-dependent leakage current were investigated from room temperature to 180 °C. Undoped and low-doped films showed space-charge-limited current (SCLC) at high temperatures. The electric field marking the transition from Ohmic to trap-filling-limited current increased monotonically with Mn-doping. With 2 mol. % Mn, the current was Ohmic up to 430 kV/cm, even at 180 °C. Modeling of the SCLC showed that all films exhibited shallow trap levels and high trap concentrations. In the regime of steady state leakage, there were also observations of negative differential resistivity and positive temperature coefficient of resistivity near room temperature. Both of these phenomena were confined to relatively low temperatures (below ∼60 °C). Transient currents were observed in the time-dependent leakage data, which was measured out to several hundred seconds. In the undoped films, these were found to be a consequence of oxygen vacancy migration modulating the electronic conductivity. The mobility and thermal activation energy for oxygen vacancies was extracted as μ_i_o_n ≈ 1.7 × 10"−"1"2 cm"2 V"−"1 s"−"1 and E_A_,_i_o_n ≈ 0.92 eV, respectively. The transient current displayed different characteristics in the 1 mol. % Mn-doped films which were not readily explained by oxygen vacancy migration.

  3. Suppression of Lateral Diffusion and Surface Leakage Currents in nBn Photodetectors Using an Inverted Design

    Science.gov (United States)

    Du, X.; Savich, G. R.; Marozas, B. T.; Wicks, G. W.

    2018-02-01

    Surface leakage and lateral diffusion currents in InAs-based nBn photodetectors have been investigated. Devices fabricated using a shallow etch processing scheme that etches through the top contact and stops at the barrier exhibited large lateral diffusion current but undetectably low surface leakage. Such large lateral diffusion current significantly increased the dark current, especially in small devices, and causes pixel-to-pixel crosstalk in detector arrays. To eliminate the lateral diffusion current, two different approaches were examined. The conventional solution utilized a deep etch process, which etches through the top contact, barrier, and absorber. This deep etch processing scheme eliminated lateral diffusion, but introduced high surface current along the device mesa sidewalls, increasing the dark current. High device failure rate was also observed in deep-etched nBn structures. An alternative approach to limit lateral diffusion used an inverted nBn structure that has its absorber grown above the barrier. Like the shallow etch process on conventional nBn structures, the inverted nBn devices were fabricated with a processing scheme that only etches the top layer (the absorber, in this case) but avoids etching through the barrier. The results show that inverted nBn devices have the advantage of eliminating the lateral diffusion current without introducing elevated surface current.

  4. Negative charging effect of traps on the gate leakage current of an AlGaN/GaN HEMT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. J.; Lim, J. H.; Yang, J. W. [Chonbuk National University, Jeonju (Korea, Republic of); Stanchina, W. [University of Pittsburgh, Pittsburgh, PA (United States)

    2014-08-15

    The negative charging effect of surface traps on the gate leakage current of AlGaN/GaN high electron mobility transistors (HEMTs) was investigated. The gate leakage current could be decreased by two orders of magnitude by using a photo-electrochemical process to treat of the source and the drain region, but current flowed into the gate even at a negative voltage in a limited region when the measurement was executed with a gate voltage sweep from negative to positive voltage. Also the electrical characteristics of the HEMT were degraded by pulsed operation of the gate. Traps newly generated on the surface were regarded as sources for the current that flowed against the applied voltage, and the number of traps was estimated. Also, a slow transient in the drain current was confirmed based on the results of delayed sweep measurements.

  5. The Leakage Current Improvement of a Ni-Silicided SiGe/Si Junction Using a Si Cap Layer and the PAI Technique

    International Nuclear Information System (INIS)

    Chang Jian-Guang; Wu Chun-Bo; Ji Xiao-Li; Ma Hao-Wen; Yan Feng; Shi Yi; Zhang Rong

    2012-01-01

    We investigate the leakage current of ultra-shallow Ni-silicided SiGe/Si junctions for 45 nm CMOS technology using a Si cap layer and the pre-amorphization implantation (PAI) process. It is found that with the conventional Ni silicide method, the leakage current of a p + (SiGe)—n(Si) junction is large and attributed to band-to-band tunneling and the generation-recombination process. The two leakage contributors can be suppressed quite effectively when a Si cap layer is added in the Ni silicide method. The leakage reduction is about one order of magnitude and could be associated with the suppression of the agglomeration of the Ni germano-silicide film. In addition, the PAI process after the application of a Si cap layer has little effect on improving the junction leakage but reduces the sheet resistance of the silicide film. As a result, the novel Ni silicide method using a Si cap combined with PAI is a promising choice for SiGe junctions in advanced technology. (cross-disciplinary physics and related areas of science and technology)

  6. Leakage Current Suppression with A Novel Six-Switch Photovoltaic Grid-Connected Inverter

    OpenAIRE

    Wei, Baoze; Guo, Xiaoqiang; Guerrero, Josep M.; Savaghebi, Mehdi

    2015-01-01

    In order to solve the problem of the leakage current in non-isolated photovoltaic (PV) systems, a novel six-switch topology and control strategy are proposed in this paper. The inductor-bypass strategy solves the common-mode voltage limitation of the conventional six-switch topology in case of unmatched inductances. And the stray capacitor voltage of the non-isolated photovoltaic system is free of high frequency ripples. Theoretical analysis and simulation are carried out to verify the propos...

  7. Disruption of crystalline structure of Sn3.5Ag induced by electric current

    International Nuclear Information System (INIS)

    Huang, Han-Chie; Lin, Kwang-Lung; Wu, Albert T.

    2016-01-01

    This study presented the disruption of the Sn and Ag_3Sn lattice structures of Sn3.5Ag solder induced by electric current at 5–7 × 10"3 A/cm"2 with a high resolution transmission electron microscope investigation and electron diffraction analysis. The electric current stressing induced a high degree of strain on the alloy, as estimated from the X-ray diffraction (XRD) peak shift of the current stressed specimen. The XRD peak intensity of the Sn matrix and the Ag_3Sn intermetallic compound diminished to nearly undetectable after 2 h of current stressing. The electric current stressing gave rise to a high dislocation density of up to 10"1"7/m"2. The grain morphology of the Sn matrix became invisible after prolonged current stressing as a result of the coalescence of dislocations.

  8. Effect of Electroacupuncture on Urinary Leakage Among Women With Stress Urinary Incontinence: A Randomized Clinical Trial.

    Science.gov (United States)

    Liu, Zhishun; Liu, Yan; Xu, Huanfang; He, Liyun; Chen, Yuelai; Fu, Lixin; Li, Ning; Lu, Yonghui; Su, Tongsheng; Sun, Jianhua; Wang, Jie; Yue, Zenghui; Zhang, Wei; Zhao, Jiping; Zhou, Zhongyu; Wu, Jiani; Zhou, Kehua; Ai, Yanke; Zhou, Jing; Pang, Ran; Wang, Yang; Qin, Zongshi; Yan, Shiyan; Li, Hongjiao; Luo, Lin; Liu, Baoyan

    2017-06-27

    Electroacupuncture involving the lumbosacral region may be effective for women with stress urinary incontinence (SUI), but evidence is limited. To assess the effect of electroacupuncture vs sham electroacupuncture for women with SUI. Multicenter, randomized clinical trial conducted at 12 hospitals in China and enrolling 504 women with SUI between October 2013 and May 2015, with data collection completed in December 2015. Participants were randomly assigned (1:1) to receive 18 sessions (over 6 weeks) of electroacupuncture involving the lumbosacral region (n = 252) or sham electroacupuncture (n = 252) with no skin penetration on sham acupoints. The primary outcome was change from baseline to week 6 in the amount of urine leakage, measured by the 1-hour pad test. Secondary outcomes included mean 72-hour urinary incontinence episodes measured by a 72-hour bladder diary (72-hour incontinence episodes). Among the 504 randomized participants (mean [SD] age, 55.3 [8.4] years), 482 completed the study. Mean urine leakage at baseline was 18.4 g for the electroacupuncture group and 19.1 g for the sham electroacupuncture group. Mean 72-hour incontinence episodes were 7.9 for the electroacupuncture group and 7.7 for the sham electroacupuncture group. At week 6, the electroacupuncture group had greater decrease in mean urine leakage (-9.9 g) than the sham electroacupuncture group (-2.6 g) with a mean difference of 7.4 g (95% CI, 4.8 to 10.0; P electroacupuncture than sham electroacupuncture with between-group differences of 1.0 episode in weeks 1 to 6 (95% CI, 0.2-1.7; P = .01), 2.0 episodes in weeks 15 to 18 (95% CI, 1.3-2.7; P electroacupuncture group and 2.0% in the sham electroacupuncture group, and all events were classified as mild. Among women with stress urinary incontinence, treatment with electroacupuncture involving the lumbosacral region, compared with sham electroacupuncture, resulted in less urine leakage after 6 weeks. Further research is needed to

  9. Calculation of Leakage Inductance for High Frequency Transformers

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Jun, Zhang; Hurley, William Gerard

    2015-01-01

    Frequency dependent leakage inductance is often observed. High frequency eddy current effects cause a reduction in leakage inductance. The proximity effect between adjacent layers is responsible for the reduction of leakage inductance. This paper gives a detailed analysis of high frequency leakag...

  10. Review of leakage-flow-induced vibrations of reactor components

    International Nuclear Information System (INIS)

    Mulcahy, T.M.

    1983-05-01

    The primary-coolant flow paths of a reactor system are usually subject to close scrutiny in a design review to identify potential flow-induced vibration sources. However, secondary-flow paths through narrow gaps in component supports, which parallel the primary-flow path, occasionally are the excitation source for significant vibrations even though the secondary-flow rates are orders of magnitude smaller than the primary-flow rate. These so-called leakage flow problems are reviewed here to identify design features and excitation sources that should be avoided. Also, design rules of thumb are formulated that can be employed to guide a design, but quantitative prediction of component response is found to require scale-model testing

  11. Leakage Current Induced by Energetic Disorder in Organic Bulk Heterojunction Solar Cells: Comprehending the Ultrahigh Loss of Open-Circuit Voltage at Low Temperatures

    Science.gov (United States)

    Yang, Wenchao; Luo, Yongsong; Guo, Pengfei; Sun, Haibin; Yao, Yao

    2017-04-01

    The open-circuit voltage (Voc ) of organic solar cells generally approaches its maximum obtainable values as the temperature decreases. However, recent experiments have revealed that the Voc may suffer from an ultrahigh loss at low temperatures. In order to verify this explanation and investigate the impacts of energetic disorder on the temperature-dependent behaviors of the Voc in general, we calculate the Voc-T plots with the drift-diffusion method under various device working parameters. With the disorder being incorporated into the device model by considering the disorder-suppressed (temperature-dependent) charge-carrier mobilities, it is found that the ultrahigh Voc losses cannot be reproduced under the Onsager-Braun-type charge generation rate. With the charge generation rate being constant or weakly dependent on temperature, for nonselective contacts, the Voc reduces drastically at low temperatures, while for selective contacts, the Voc increases monotonically with decreasing temperature. With higher carrier mobilities or smaller device thicknesses, the ultrahigh loss occurs at lower temperatures. The mechanism is that, since the disorder-suppressed charge mobilities give rise to both low charge-extraction efficiency and small bimolecular recombination rate, plenty of charge carriers can be extracted from the wrong electrode and can form a large leakage current, which counteracts the majority-carrier current and reduces the Voc at low temperatures. Our results thus highlight the essential role of charge-carrier kinetics, except for the charge-filling effect, on dominating the disorder-induced Voc losses.

  12. Synergetic effects of radiation stress and hot-carrier stress on the current gain of npn bipolar junction transistors

    International Nuclear Information System (INIS)

    Witczak, S.C.; Kosier, S.L.; Schrimpf, R.D.; Galloway, K.F.

    1994-01-01

    The combined effects of ionizing radiation and hot-carrier stress on the current gain of npn bipolar junction transistors were investigated. The analysis was carried out experimentally by examining the consequences of interchanging the order in which the two stress types were applied to identical transistors which were stressed to various levels of damage. The results indicate that the hot-carrier response of the transistor is improved by radiation damage, whereas hot-carrier damage has little effect on subsequent radiation stress. Characterization of the temporal progression of hot-carrier effects revealed that hot-carrier stress acts initially to reduce excess base current and improve current gain in irradiated transistors. PISCES simulations show that the magnitude of the peak electric-field within the emitter-base depletion region is reduced significantly by net positive oxide charges induced by radiation. The interaction of the two stress types is explained in a qualitative model based on the probability of hot-carrier injection determined by radiation damage and on the neutralization and compensation of radiation-induced positive oxide charges by injected electrons. The result imply that a bound on damage due to the combined stress types is achieved when hot-carrier stress precedes any irradiation

  13. Degradation of Ultra-Thin Gate Oxide NMOSFETs under CVDT and SHE Stresses

    International Nuclear Information System (INIS)

    Shi-Gang, Hu; Yan-Rong, Cao; Yue, Hao; Xiao-Hua, Ma; Chi, Chen; Xiao-Feng, Wu; Qing-Jun, Zhou

    2008-01-01

    Degradation of device under substrate hot-electron (SHE) and constant voltage direct-tunnelling (CVDT) stresses are studied using NMOSFET with 1.4-nm gate oxides. The degradation of device parameters and the degradation of the stress induced leakage current (SILC) under these two stresses are reported. The emphasis of this paper is on SILC and breakdown of ultra-thin-gate-oxide under these two stresses. SILC increases with stress time and several soft breakdown events occur during direct-tunnelling (DT) stress. During SHE stress, SILC firstly decreases with stress time and suddenly jumps to a high level, and no soft breakdown event is observed. For DT injection, the positive hole trapped in the oxide and hole direct-tunnelling play important roles in the breakdown. For SHE injection, it is because injected hot electrons accelerate the formation of defects and these defects formed by hot electrons induce breakdown. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  14. Disruption of crystalline structure of Sn3.5Ag induced by electric current

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Han-Chie; Lin, Kwang-Lung, E-mail: matkllin@mail.ncku.edu.tw [Department of Material Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Wu, Albert T. [Department of Chemical and Material Engineering, National Central University, Jhongli 32001, Taiwan (China)

    2016-03-21

    This study presented the disruption of the Sn and Ag{sub 3}Sn lattice structures of Sn3.5Ag solder induced by electric current at 5–7 × 10{sup 3} A/cm{sup 2} with a high resolution transmission electron microscope investigation and electron diffraction analysis. The electric current stressing induced a high degree of strain on the alloy, as estimated from the X-ray diffraction (XRD) peak shift of the current stressed specimen. The XRD peak intensity of the Sn matrix and the Ag{sub 3}Sn intermetallic compound diminished to nearly undetectable after 2 h of current stressing. The electric current stressing gave rise to a high dislocation density of up to 10{sup 17}/m{sup 2}. The grain morphology of the Sn matrix became invisible after prolonged current stressing as a result of the coalescence of dislocations.

  15. Evaluation of Stress Loaded Steel Samples Using Selected Electromagnetic Methods

    International Nuclear Information System (INIS)

    Chady, T.

    2004-01-01

    In this paper the magnetic leakage flux and eddy current method were used to evaluate changes of materials' properties caused by stress. Seven samples made of ferromagnetic material with different level of applied stress were prepared. First, the leakage magnetic fields were measured by scanning the surface of the specimens with GMR gradiometer. Next, the same samples were evaluated using an eddy current sensor. A comparison between results obtained from both methods was carried out. Finally, selected parameters of the measured signal were calculated and utilized to evaluate level of the applied stress. A strong coincidence between amount of the applied stress and the maximum amplitude of the derivative was confirmed

  16. Satellite Observations of Imprint of Oceanic Current on Wind Stress by Air-Sea Coupling.

    Science.gov (United States)

    Renault, Lionel; McWilliams, James C; Masson, Sebastien

    2017-12-18

    Mesoscale eddies are present everywhere in the ocean and partly determine the mean state of the circulation and ecosystem. The current feedback on the surface wind stress modulates the air-sea transfer of momentum by providing a sink of mesoscale eddy energy as an atmospheric source. Using nine years of satellite measurements of surface stress and geostrophic currents over the global ocean, we confirm that the current-induced surface stress curl is linearly related to the current vorticity. The resulting coupling coefficient between current and surface stress (s τ [N s m -3 ]) is heterogeneous and can be roughly expressed as a linear function of the mean surface wind. s τ expresses the sink of eddy energy induced by the current feedback. This has important implications for air-sea interaction and implies that oceanic mean and mesoscale circulations and their effects on surface-layer ventilation and carbon uptake are better represented in oceanic models that include this feedback.

  17. Total dose effects on the shallow-trench isolation leakage current characteristics in a 0.35microm SiGe BiCMOS technology

    International Nuclear Information System (INIS)

    Niu, G.; Mathew, S.J.; Banerjee, G.; Cressler, J.D.; Clark, S.D.; Palmer, M.J.; Subbanna, S.

    1999-01-01

    The effects of gamma irradiation on the Shallow-Trench Isolation (STI) leakage currents in a SiGe BiCMOS technology are investigated for the first time, and shown to be strongly dependent on the irradiation gate bias and operating substrate bias. A positive irradiation gate bias significantly enhances the STI leakage, suggesting a strong field assisted nature of the charge buildup process in the STI. Numerical simulations also suggest the existence of fixed positive charges deep in the bulk along the STI/Si interface. A negative substrate bias, however, effectively suppresses the STI leakage, and can be used to eliminate the leakage produced by the charges deep in the bulk under irradiation

  18. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    Science.gov (United States)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  19. Enhanced ground bounce noise reduction in a low-leakage CMOS multiplier

    Science.gov (United States)

    Verma, Bipin Kumar; Akashe, Shyam; Sharma, Sanjay

    2015-09-01

    In this paper, various parameters are used to reduce leakage power, leakage current and noise margin of circuits to enhance their performance. A multiplier is proposed with low-leakage current and low ground bounce noise for the microprocessor, digital signal processors (DSP) and graphics engines. The ground bounce noise problem appears when a conventional power-gating circuit transits from sleep-to-active mode. This paper discusses a reduction in leakage current in the stacking power-gating technique by three modes - sleep, active and sleep-to-active. The simulation results are performed on a 4 × 4 carry-save multiplier for leakage current, active power, leakage power and ground bounce noise, and comparison made for different nanoscales. Ground bounce noise is limited to 90%. The leakage current of the circuit is decimated up to 80% and the active power is reduced to 31%. We performed simulations using cadence virtuoso 180 and 45 nm at room temperature at various supply voltages.

  20. Physics-based electromechanical model of IPMC considering various underlying currents

    Science.gov (United States)

    Pugal, D.; Kim, K. J.; Palmre, V.; Leang, K. K.; Aabloo, A.

    2012-04-01

    Experiments indicate that the electrodes affect the charge dynamics, and therefore actuation of ionic polymermetal composite (IPMC) via three different types of currents - electric potential induced ionic current, leakage current, and electrochemical current if approximately higher than 2 V voltage is applied to a typical 200 μm thick IPMC. The ionic current via charge accumulation near the electrodes is the direct cause of the osmotic and electrostatic stresses in the polymer and therefore carries the major role in the actuation of IPMC. However, the leakage and the electrochemical - electrolysis in case of water based IPMCs - currents do not affect the actuation dynamics as directly but cause potential gradients on the electrodes. These in turn affect the ionic current. A physics based finite element (FE) model was developed to incorporate the effect of the electrodes and three different types of currents in the actuation calculations. The Poisson-Nernst-Planck system of equations is used in the model to describe the ionic current and the Butler-Volmer relation is used to describe the electrolysis current for different applied voltages and IPMC thicknesses. To validate the model, calculated tip deflection, applied net current, and potential drop in case of various IPMC thicknesses and applied voltages are compared to experimental data.

  1. Ursodeoxycholic Acid Attenuates Endoplasmic Reticulum Stress-Related Retinal Pericyte Loss in Streptozotocin-Induced Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Yoo-Ri Chung

    2017-01-01

    Full Text Available Loss of pericytes, an early hallmark of diabetic retinopathy (DR, results in breakdown of the blood-retinal barrier. Endoplasmic reticulum (ER stress may be involved in this process. The purpose of this study was to examine the effects of ursodeoxycholic acid (UDCA, a known ameliorator of ER stress, on pericyte loss in DR of streptozotocin- (STZ- induced diabetic mice. To assess the extent of DR, the integrity of retinal vessels and density of retinal capillaries in STZ-induced diabetic mice were evaluated. Additionally, induction of ER stress and the unfolded protein response (UPR were assessed in diabetic mice and human retinal pericytes exposed to advanced glycation end products (AGE or modified low-density lipoprotein (mLDL. Fluorescein dye leakage during angiography and retinal capillary density were improved in UDCA-treated diabetic mice, compared to the nontreated diabetic group. Among the UPR markers, those involved in the protein kinase-like ER kinase (PERK pathway were increased, while UDCA attenuated UPR in STZ-induced diabetic mice as well as AGE- or mLDL-exposed retinal pericytes in culture. Consequently, vascular integrity was improved and pericyte loss reduced in the retina of STZ-induced diabetic mice. Our findings suggest that UDCA might be effective in protecting against DR.

  2. Diabetic Cardiovascular Disease Induced by Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yosuke Kayama

    2015-10-01

    Full Text Available Cardiovascular disease (CVD is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM. DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD, cardiac hypertrophy, and heart failure (HF. HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS. ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease.

  3. Motor current and leakage flux signature analysis technique for condition monitoring

    International Nuclear Information System (INIS)

    Pillai, M.V.; Moorthy, R.I.K.; Mahajan, S.C.

    1994-01-01

    Till recently analysis of vibration signals was the only means available to predict the state of health of plant equipment. Motor current and leakage magnetic flux signature analysis is acquiring importance as a technique for detection of incipient damages in the electrical machines and as a supplementary technique for diagnostics of driven equipment such as centrifugal and reciprocating pumps. The state of health of the driven equipment is assessed by analysing time signal, frequency spectrum and trend analysis. For example, the pump vane frequency, piston stroke frequency, gear frequency and bearing frequencies are indicated in the current and flux spectra. By maintaining a periodic record of the amplitudes of various frequency lines in the frequency spectra, it is possible to understand the trend of deterioration of parts and components of the pump. All problems arising out of inappropriate mechanical alignment of vertical pumps are easily identified by a combined analysis of current, flux and vibration signals. It is found that current signature analysis technique is a sufficient method in itself for the analysis of state of health of reciprocating pumps and compressors. (author). 10 refs., 4 figs

  4. New Leakage Current Particulate Matter Sensor for On-Board Diagnostics

    Directory of Open Access Journals (Sweden)

    Jiawei Wang

    2016-01-01

    Full Text Available Structure and principle of the new leakage current particulate matter (PM sensor are introduced and further study is performed on the PM sensor with the combination of numerical simulation and bench test. High voltage electrode, conductive shell, and heaters are all built-in. Based on the principle of Venturi tube and maze structure design, this sensor can detect transient PM concentrations. Internal flow field of the sensor and distribution condition of PM inside the sensor are analyzed through gas-solid two-phase flow numerical simulation. The experiment was also carried out on the whole sensor system (including mechanical and electronic circuit part and the output signals were analyzed. The results of simulation and experiment reveal the possibility of PM concentration (mass detection by the sensor.

  5. Permanent supervision of leakage currents in low voltage installations; Supervisao permanente de correntes de fuga em instalacoes BT

    Energy Technology Data Exchange (ETDEWEB)

    Muhm, Helmut [W. Bender GmbH (Germany)

    2010-09-15

    Electromagnetic compatibility (EMC) is a premise for the electrical installations operate free of disturbances and reliably. Therefor, It is important detect dispersed leakage currents. This article show the corrective measures of this problem.

  6. Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress

    Directory of Open Access Journals (Sweden)

    Jereme G. Spiers

    2015-01-01

    Full Text Available Glucocorticoids released from the adrenal gland in response to stress-induced activation of the hypothalamic-pituitary-adrenal (HPA axis induce activity in the cellular reduction-oxidation (redox system. The redox system is a ubiquitous chemical mechanism allowing the transfer of electrons between donor/acceptors and target molecules during oxidative phosphorylation while simultaneously maintaining the overall cellular environment in a reduced state. The objective of this review is to present an overview of the current literature discussing the link between HPA axis-derived glucocorticoids and increased oxidative stress, particularly focussing on the redox changes observed in the hippocampus following glucocorticoid exposure.

  7. Geochemical Implications of CO2 Leakage Associated with Geologic Storage: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Omar R.; Qafoku, Nikolla; Cantrell, Kirk J.; Brown, Christopher F.

    2012-07-09

    Leakage from deep storage reservoirs is a major risk factor associated with geologic sequestration of carbon dioxide (CO2). Different scientific theories exist concerning the potential implications of such leakage for near-surface environments. The authors of this report reviewed the current literature on how CO2 leakage (from storage reservoirs) would likely impact the geochemistry of near surface environments such as potable water aquifers and the vadose zone. Experimental and modeling studies highlighted the potential for both beneficial (e.g., CO2 re sequestration or contaminant immobilization) and deleterious (e.g., contaminant mobilization) consequences of CO2 intrusion in these systems. Current knowledge gaps, including the role of CO2-induced changes in redox conditions, the influence of CO2 influx rate, gas composition, organic matter content and microorganisms are discussed in terms of their potential influence on pertinent geochemical processes and the potential for beneficial or deleterious outcomes. Geochemical modeling was used to systematically highlight why closing these knowledge gaps are pivotal. A framework for studying and assessing consequences associated with each factor is also presented in Section 5.6.

  8. Psychological Stress, Cocaine and Natural Reward Each Induce Endoplasmic Reticulum Stress Genes in Rat Brain

    OpenAIRE

    Pavlovsky, Ashly A.; Boehning, Darren; Li, Dingge; Zhang, Yafang; Fan, Xiuzhen; Green, Thomas A.

    2013-01-01

    Our prior research has shown that the transcription of endoplasmic reticulum (ER) stress transcription factors Activating Transcription Factor 3 (ATF3) and ATF4 are induced by amphetamine and restraint stress in rat striatum. However, presently it is unknown the full extent of ER stress responses to psychological stress or cocaine, and which of the three ER stress pathways is activated. The current study examines transcriptional responses of key ER stress target genes subsequent to psychologi...

  9. Effect of Ear and Near-side Single Circular Pit Depth and Bulk Stress on Magnetic Flux Leakage at ferromagnetic Pipeline

    International Nuclear Information System (INIS)

    Ryu, Kwon Sang; Park, Young Tae; Atherton, D. L.; Clapham, L.

    2003-01-01

    Magnetic flux leakage (MFL) signals were used for corrosion inspection of buried oil and gas pipeline. 3D finite element analysis was used to examine the effects of far and near-side pit depth and tensile stress on MFL signals. Anisotropci materials were used, and the effects of simulated tensile stress on MFL were investigated. The axial and radial MFL signals depended on far and near-side single pit depth and on the bulk stress, but the circumferential MFL signal did not depend on them. The axial and radial MFL signals increased with increasing pit depth and the bulk stress, but the circumferential MFL signal was scarcely changed

  10. Temperature-dependent leakage current behavior of epitaxial Bi0.5Na0.5TiO3-based thin films made by pulsed laser deposition

    Science.gov (United States)

    Hejazi, M. M.; Safari, A.

    2011-11-01

    This paper discusses the electrical conduction mechanisms in a 0.88 Bi0.5Na0.5TiO3-0.08 Bi0.5K0.5TiO3-0.04 BaTiO3 thin film in the temperature range of 200-350 K. The film was deposited on a SrRuO3/SrTiO3 substrate by pulsed laser deposition technique. At all measurement temperatures, the leakage current behavior of the film matched well with the Lampert's triangle bounded by three straight lines of different slopes. The relative location of the triangle sides varied with temperature due to its effect on the density of charge carriers and un-filled traps. At low electric fields, the ohmic conduction governed the leakage mechanism. The calculated activation energy of the trap is 0.19 eV implying the presence of shallow traps in the film. With increasing the applied field, an abrupt increase in the leakage current was observed. This was attributed to a trap-filling process by the injected carriers. At sufficiently high electric fields, the leakage current obeyed the Child's trap-free square law suggesting the space charge limited current was the dominant mechanism.

  11. The NADPH oxidase inhibitor apocynin (acetovanillone) induces oxidative stress

    International Nuclear Information System (INIS)

    Riganti, Chiara; Costamagna, Costanzo; Bosia, Amalia; Ghigo, Dario

    2006-01-01

    Apocynin (acetovanillone) is often used as a specific inhibitor of NADPH oxidase. In N11 glial cells, apocynin induced, in a dose-dependent way, a significant increase of both malonyldialdehyde level (index of lipid peroxidation) and lactate dehydrogenase release (index of a cytotoxic effect). Apocynin evoked also, in a significant way, an increase of H 2 O 2 concentration and a decrease of the intracellular glutathione/glutathione disulfide ratio, accompanied by augmented efflux of glutathione and glutathione disulfide. Apocynin induced the activation of both pentose phosphate pathway and tricarboxylic acid cycle, which was blocked when the cells were incubated with glutathione together with apocynin. The cell incubation with glutathione prevented also the apocynin-induced increase of malonyldialdehyde generation and lactate dehydrogenase leakage. Apocynin exerted an oxidant effect also in a cell-free system: indeed, in aqueous solution, it evoked a faster oxidation of the thiols glutathione and dithiothreitol, and elicited the generation of reactive oxygen species, mainly superoxide anions. Our results suggest that apocynin per se can induce an oxidative stress and exert a cytotoxic effect in N11 cells and other cell types, and that some effects of apocynin in in vitro and in vivo experimental models should be interpreted with caution

  12. Comparison of thermally induced and naturally occurring water-borne leakages from hard rock depositories for radioactive waste

    International Nuclear Information System (INIS)

    Bourke, P.J.; Robinson, P.C.

    1981-01-01

    The relative importance of thermally induced and naturally occurring flows of water as causes of leakage from hard rock depositories for radioactive wastes is assessed. Separate analyses are presented for involatile, high level waste from reprocessing of fuel and for plutonium contaminated waste from fabrication of fuel. The effects of varying the quantities of wastes, pre-burial storage and the shapes and depths of depositories are considered. It is concluded that for representative values of these variables, thermal flow will remain the major cause of leakage for long times after the burial of both types of waste. (Auth.)

  13. IN-SITU TEST EXPERIMENTAL RESEARCH ON LEAKAGE OF LARGE DIAMETER PRE-STRESSED CONCRETE CYLINDER PIPE (PCCP

    Directory of Open Access Journals (Sweden)

    Jianjun Luo

    2016-10-01

    Full Text Available In recent years, a big number of large diameter pre-stressed concrete cylinder pipe (PCCP lines have been applied to the Mid-route of the South-to-North Water Transfer Project. However, the leakage problem of PCCP causes annually heavy economic losses to our country. In such a context of situation, how to detect leaks rapidly and precisely after pipes appear cracks in water supply system has great significance. Based on the study and analysis of the characteristic structure of large diameter PCCP, a new leak detection system using fiber Bragg grating sensors, which can capture signals of water pressure change, is proposed. The feasibility, reliability and practicability of the system could be acceptable according to data achieved from in–situ tests. Moreover, the leak detection system can monitor in real-time of dynamic change of water pressure. The equations of the leakage quantity and water pressure have been presented in this paper, which can provide technical guidelines for large diameter PCCP lines maintenance.

  14. Microvascular dysfunction with increased vascular leakage response in mice systemically exposed to arsenic.

    Science.gov (United States)

    Chen, Shih-Chieh; Huang, Shin-Yin; Lu, Chi-Yu; Hsu, Ya-Hung; Wang, Dean-Chuan

    2014-09-01

    The mechanisms underlying cardiovascular disease induced by arsenic exposure are not completely understood. The objectives of this study were to investigate whether arsenic-fed mice have an increased vascular leakage response to vasoactive agents and whether enhanced type-2 protein phosphatase (PP2A) activity is involved in mustard oil-induced leakage. ICR mice were fed water or sodium arsenite (20 mg/kg) for 4 or 8 weeks. The leakage response to vasoactive agents was quantified using the Evans blue (EB) technique or vascular labeling with carbon particles. Increased EB leakage and high density of carbon-labeled microvessels were detected in arsenic-fed mice treated with mustard oil. Histamine induced significantly higher vascular leakage in arsenic-fed mice than in water-fed mice. Pretreatment with the PP2A inhibitor okadaic acid or the neurokinin 1 receptor (NK1R) blocker RP67580 significantly reduced mustard oil-induced vascular leakage in arsenic-fed mice. The protein levels of PP2Ac and NK1R were similar in both groups. PP2A activity was significantly higher in the arsenic-fed mice compared with the control group. These findings indicate that microvessels generally respond to vasoactive agents, and that the increased PP2A activity is involved in mustard oil-induced vascular leakage in arsenic-fed mice. Arsenic may initiate endothelial dysfunction, resulting in vascular leakage in response to vasoactive agents.

  15. Junction leakage measurements with micro four-point probes

    DEFF Research Database (Denmark)

    Lin, Rong; Petersen, Dirch Hjorth; Wang, Fei

    2012-01-01

    We present a new, preparation-free method for measuring the leakage current density on ultra-shallow junctions. The junction leakage is found by making a series of four-point sheet resistance measurements on blanket wafers with variable electrode spacings. The leakage current density is calculated...... using a fit of the measured four-point resistances to an analytical two-sheet model. The validity of the approximation involved in the two-sheet model is verified by a comparison to finite element model calculations....

  16. Evaluation of isolation valve leakage in alternate charging piping

    International Nuclear Information System (INIS)

    Strauch, P.L.; Roarty, D.H.; Brice-Nash, R.L.

    1995-01-01

    The chemical and volume control system (CVCS) alternate charging flow path at an operating pressurized water reactor (PWR) plant was determined to be susceptible to adverse stresses from isolation valve leakage. Isolation valve leakage had resulted in pipe cracks at several nuclear units worldwide, as described in United States Nuclear Regulatory Commission Bulletin 88-08 and its supplements. To provide for continuing assurance that cracks would not initiate over the plant life, the operators considered performing fatigue evaluation to demonstrate structural integrity of the system. This evaluation included heat transfer, stress and fatigue analysis, using methods described in Electric Power Research Institute Report ''Thermal Stratification, Cycling, and Striping (TASCS),'' March 1994. The evaluation concluded that the fatigue usage would be less than 1.0 under worst case isolation valve leakage conditions, and therefore a significant investment in permanent temperature monitoring was avoided

  17. Earth current monitoring circuit for inductive loads

    CERN Document Server

    Montabonnet, V; Thurel, Y; Cussac, P

    2010-01-01

    The search for higher magnetic fields in particle accelerators increasingly demands the use of superconducting magnets. This magnet technology has a large amount of magnetic energy storage during operation at relatively high currents. As such, many monitoring and protection systems are required to safely operate the magnet, including the monitoring of any leakage of current to earth in the superconducting magnet that indicates a failure of the insulation to earth. At low amplitude, the earth leakage current affects the magnetic field precision. At a higher level, the earth leakage current can additionally generate local losses which may definitively damage the magnet or its instrumentation. This paper presents an active earth fault current monitoring circuit, widely deployed in the converters for the CERN Large Hadron Collider (LHC) superconducting magnets. The circuit allows the detection of earth faults before energising the circuit as well as limiting any eventual earth fault current. The electrical stress...

  18. Research and development of a high-temperature helium-leak detection system (joint research). Part 1 survey on leakage events and current leak detection technology

    Energy Technology Data Exchange (ETDEWEB)

    Sakaba, Nariaki; Nakazawa, Toshio; Kawasaki, Kozo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Urakami, Masao; Saisyu, Sadanori [Japan Atomic Power Co., Tokyo (Japan)

    2003-03-01

    In High Temperature Gas-cooled Reactors (HTGR), the detection of leakage of helium at an early stage is very important for the safety and stability of operations. Since helium is a colourless gas, it is generally difficult to identify the location and the amount of leakage when very little leakage has occurred. The purpose of this R and D is to develop a helium leak detection system for the high temperature environment appropriate to the HTGR. As the first step in the development, this paper describes the result of surveying leakage events at nuclear facilities inside and outside Japan and current gas leakage detection technology to adapt optical-fibre detection technology to HTGRs. (author)

  19. The ER stress inducer DMC enhances TRAIL-induced apoptosis in glioblastoma

    NARCIS (Netherlands)

    van Roosmalen, Ingrid A. M.; Dos Reis, Carlos R; Setroikromo, Rita; Yuvaraj, Saravanan; Joseph, Justin V.; Tepper, Pieter G.; Kruyt, Frank A. E.; Quax, Wim J.

    2014-01-01

    Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumour in humans and is highly resistant to current treatment modalities. We have explored the combined treatment of the endoplasmic reticulum (ER) stress-inducing agent 2,5-dimethyl-celecoxib (DMC) and TNF-related

  20. Protective effects of carnosol against oxidative stress induced brain damage by chronic stress in rats.

    Science.gov (United States)

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Borji, Abasalt; Samini, Mohammad; Farkhondeh, Tahereh

    2017-05-04

    Oxidative stress through chronic stress destroys the brain function. There are many documents have shown that carnosol may have a therapeutic effect versus free radical induced diseases. The current research focused the protective effect of carnosol against the brain injury induced by the restraint stress. The restraint stress induced by keeping animals in restrainers for 21 consecutive days. Thereafter, the rats were injected carnosol or vehicle for 21 consecutive days. At the end of experiment, all the rats were subjected to his open field test and forced swimming test. Afterwards, the rats were sacrificed for measuring their oxidative stress parameters. To measure the modifications in the biochemical aspects after the experiment, the activities of malondialdehyde (MDA), reduced glutathione (GSH), as well as superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were evaluated in the whole brain. Our data showed that the animals received chronic stress had a raised immobility time versus the non-stressed animals (p < 0.01). Furthermore, chronic stress diminished the number of crossing in the animals that were subjected to the chronic stress versus the non-stressed rats (p < 0.01). Carnosol ameliorated this alteration versus the non-treated rats (p < 0.05). In the vehicle treated rats that submitted to the stress, the level of MDA levels was significantly increased (P < 0.001), and the levels of GSH and antioxidant enzymes were significantly decreased versus the non-stressed animals (P < 0.001). Carnosol treatment reduced the modifications in the stressed animals as compared with the control groups (P < 0.001). All of these carnosol effects were nearly similar to those observed with fluoxetine. The current research shows that the protective effects of carnosol may be accompanied with enhanced antioxidant defenses and decreased oxidative injury.

  1. First principle leakage current reduction technique for CMOS devices

    CSIR Research Space (South Africa)

    Tsague, HD

    2015-12-01

    Full Text Available This paper presents a comprehensive study of leakage reduction techniques applicable to CMOS based devices. In the process, mathematical equations that model the power-performance trade-offs in CMOS logic circuits are presented. From those equations...

  2. The effect of cathode bias (field effect) on the surface leakage current of CdZnTe detectors

    DEFF Research Database (Denmark)

    Bolotnikov, A.E.; Chen, C.M.H.; Cook, W.R.

    2003-01-01

    Surface resistivity is an important parameter of multi-electrode CZT detectors such as coplanar-grid, strip, or pixel detectors. Low surface resistivity results in a high leakage current and affects the charge collection efficiency in the areas near contacts. Thus, it is always desirable to have ...

  3. Geomechanical effects on CO2 leakage through fault zones during large-scale underground injection

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldi, Antonio P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cappa, Frédéric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of Nice Sophia-Antipolis, Nice (France). Cote d' Azur Observatory. GeoAzur

    2013-12-01

    The importance of geomechanics—including the potential for faults to reactivate during large-scale geologic carbon sequestration operations—has recently become more widely recognized. However, notwithstanding the potential for triggering notable (felt) seismic events, the potential for buoyancy-driven CO2 to reach potable groundwater and the ground surface is actually more important from public safety and storage-efficiency perspectives. In this context, this paper extends the previous studies on the geomechanical modeling of fault responses during underground carbon dioxide injection, focusing on the short-term integrity of the sealing caprock, and hence on the potential for leakage of either brine or CO2 to reach the shallow groundwater aquifers during active injection. We consider stress/strain-dependent permeability and study the leakage through the fault zone as its permeability changes during a reactivation, also causing seismicity. We analyze several scenarios related to the volume of CO2 injected (and hence as a function of the overpressure), involving both minor and major faults, and analyze the profile risks of leakage for different stress/strain-permeability coupling functions. We conclude that whereas it is very difficult to predict how much fault permeability could change upon reactivation, this process can have a significant impact on the leakage rate. Moreover, our analysis shows that induced seismicity associated with fault reactivation may not necessarily open up a new flow path for leakage. Results show a poor correlation between magnitude and amount of fluid leakage, meaning that a single event is generally not enough to substantially change the permeability along the entire fault length. Finally, and consequently, even if some changes in permeability occur, this does not mean that the CO2 will migrate up along the entire fault, breaking through the caprock to enter the overlying aquifer.

  4. Effect of hall currents on thermal instability of dusty couple stress fluid

    Directory of Open Access Journals (Sweden)

    Aggarwal Amrish Kumar

    2016-09-01

    Full Text Available In this paper, effect of Hall currents on the thermal instability of couple-stress fluid permeated with dust particles has been considered. Following the linearized stability theory and normal mode analysis, the dispersion relation is obtained. For the case of stationary convection, dust particles and Hall currents are found to have destabilizing effect while couple stresses have stabilizing effect on the system. Magnetic field induced by Hall currents has stabilizing/destabilizing effect under certain conditions. It is found that due to the presence of Hall currents (hence magnetic field, oscillatory modes are produced which were non-existent in their absence.

  5. Radiation induced leakage due to stochastic charge trapping in isolation layers of nanoscale MOSFETs

    Science.gov (United States)

    Zebrev, G. I.; Gorbunov, M. S.; Pershenkov, V. S.

    2008-03-01

    The sensitivity of sub-100 nm devices to microdose effects, which can be considered as intermediate case between cumulative total dose and single event errors, is investigated. A detailed study of radiation-induced leakage due to stochastic charge trapping in irradiated planar and nonplanar devices is developed. The influence of High-K insulators on nanoscale ICs reliability is discussed. Low critical values of trapped charge demonstrate a high sensitivity to single event effect.

  6. Apparatus for detecting leakage of liquid sodium

    Science.gov (United States)

    Himeno, Yoshiaki

    1978-01-01

    An apparatus for detecting the leakage of liquid sodium includes a cable-like sensor adapted to be secured to a wall of piping or other equipment having sodium on the opposite side of the wall, and the sensor includes a core wire electrically connected to the wall through a leak current detector and a power source. An accidental leakage of the liquid sodium causes the corrosion of a metallic layer and an insulative layer of the sensor by products resulted from a reaction of sodium with water or oxygen in the atmospheric air so as to decrease the resistance between the core wire and the wall. Thus, the leakage is detected as an increase in the leaking electrical current. The apparatus is especially adapted for use in detecting the leakage of liquid sodium from sodium-conveying pipes or equipment in a fast breeder reactor.

  7. Analysis of Reverse-Bias Leakage Current Mechanisms in Metal/GaN Schottky Diodes

    Directory of Open Access Journals (Sweden)

    P. Pipinys

    2010-01-01

    Full Text Available Temperature-dependent reverse-bias current-voltage characteristics obtained by other researchers for Schottky diodes fabricated on GaN are reinterpreted in terms of phonon-assisted tunneling (PhAT model. Temperature dependence of reverse-bias leakage current is shown could be caused by the temperature dependence of electron tunneling rate from traps in the metal-semiconductor interface to the conduction band of semiconductor. A good fit of experimental data with the theory is received in a wide temperature range (from 80 K to 500 K using for calculation the effective mass of 0.222 me. and for the phonon energy the value of 70 meV. The temperature and bias voltages dependences of an apparent barrier height (activation energy are also explicable in the framework of the PhAT model.

  8. Araloside C Prevents Hypoxia/Reoxygenation-Induced Endoplasmic Reticulum Stress via Increasing Heat Shock Protein 90 in H9c2 Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Yuyang Du

    2018-04-01

    Full Text Available Araloside C (AsC is a cardioprotective triterpenoid compound that is mainly isolated from Aralia elata. This study aims to determine the effects of AsC on hypoxia-reoxygenation (H/R-induced apoptosis in H9c2 cardiomyocytes and its underlying mechanisms. Results demonstrated that pretreatment with AsC (12.5 μM for 12 h significantly suppressed the H/R injury in H9c2 cardiomyocytes, including improving cell viability, attenuating the LDH leakage and preventing cardiomyocyte apoptosis. AsC also inhibited H/R-induced ER stress by reducing the activation of ER stress pathways (PERK/eIF2α and ATF6, and decreasing the expression of ER stress-related apoptotic proteins (CHOP and caspase-12. Moreover, AsC greatly improved the expression level of HSP90 compared with that in the H/R group. The use of HSP90 inhibitor 17-AAG and HSP90 siRNA blocked the above suppression effect of AsC on ER stress-related apoptosis caused by H/R. Taken together, AsC could reduce H/R-induced apoptosis possibly because it attenuates ER stress-dependent apoptotic pathways by increasing HSP90 expression.

  9. Leakage flow-induced vibrations for variations of a tube-in-tube slip joint

    International Nuclear Information System (INIS)

    Mulcahy, T.M.

    1986-01-01

    Variations in the design of a specific slip joint separating two cantilevered, telescoping tubes conveying water were studied to determine their effect upon the leakage flow-induced vibration self-excitation mechanism known to exist for the original slip joint geometry. The important parameters controlling the self-excitation mechanism were identified, which, along with previous results, allowed the determination of a comprehensive set of design rules to avoid unstable vibrations. This was possible even though a new self-excitation mechanism was found when the engagement of the two tubes was small. 9 refs

  10. The Effect of Freezing Stress on Percentage of Electrolytes Leakage and Survival of Flixweed (Descurainia sophia L. Seedlings

    Directory of Open Access Journals (Sweden)

    E Izadi-Darbandi

    2016-10-01

    Full Text Available Introduction Flixweed (Descurainia sophia L. is a medicinal plant from Brassicaceae family which also known as a weed for winter cereals and oil seed rape. Low temperatures are one of the most important abiotic stresses that threat Flixweed growth and productivity. Therefore it is important to recognize the freeze tolerance of Flixweed for successful planting and utilization in cold regions such as Mashhad in Khorasan Razavi Province (Iran’s north. east. Among many laboratory methods which have been developed to estimate and to evaluate plants response or their tolerance to freez ing temperatures, electrolyte leakage (EL test is widely used. This test is based on this principle that damage to the cell membranes results in enhanced leakage of solutes into the apoplastic water, hence recording the amount of leakage after stress treatments provides an estimation of tissue injury. Indeed continuing integration of plasma membrane is one important factor for survival of plants under freezing stress and any disturbance in membrane structure can lead to damage and death. So determination of LT50 point or critical temperature for electrolytes leakage and survival of plant is the most reliable, quantitative and simple methods for evaluating the cold tolerance of plants. The aim of this trial was to determine the LT50 according to the EL and SU% for Flixweed ecotypes. Materials and Methods In order to evaluate freeze tolerance in Flixweed, a factorial experiment based on completely randomized design with three replications was carried out in college of agriculture, Ferdowsi University of Mashhad. Experimental factors included five ecotypes of Flixweed (Eghlid, Sabzewar, Hamedan, Torbat-e-Jam and Neyshabour and 10 freezing temperature levels (0, -2,-4, -6, -8,-10,-12,-14,-16 and -18°C. Flixweed seeds were cultivated in pots in autumn of 2008 and were grown until 5-7 leaf stage under natural weather conditions for acclimation. Then to apply freezing

  11. Direct observation of the leakage current in epitaxial diamond Schottky barrier devices by conductive-probe atomic force microscopy and Raman imaging

    Science.gov (United States)

    Alvarez, J.; Boutchich, M.; Kleider, J. P.; Teraji, T.; Koide, Y.

    2014-09-01

    The origin of the high leakage current measured in several vertical-type diamond Schottky devices is conjointly investigated by conducting probe atomic force microscopy and confocal micro-Raman/photoluminescence imaging analysis. Local areas characterized by a strong decrease of the local resistance (5-6 orders of magnitude drop) with respect to their close surrounding have been identified in several different regions of the sample surface. The same local areas, also referenced as electrical hot-spots, reveal a slightly constrained diamond lattice and three dominant Raman bands in the low-wavenumber region (590, 914 and 1040 cm-1). These latter bands are usually assigned to the vibrational modes involving boron impurities and its possible complexes that can electrically act as traps for charge carriers. Local current-voltage measurements performed at the hot-spots point out a trap-filled-limited current as the main conduction mechanism favouring the leakage current in the Schottky devices.

  12. Hydroxyurea-Induced Replication Stress

    Directory of Open Access Journals (Sweden)

    Kenza Lahkim Bennani-Belhaj

    2010-01-01

    Full Text Available Bloom's syndrome (BS displays one of the strongest known correlations between chromosomal instability and a high risk of cancer at an early age. BS cells combine a reduced average fork velocity with constitutive endogenous replication stress. However, the response of BS cells to replication stress induced by hydroxyurea (HU, which strongly slows the progression of replication forks, remains unclear due to publication of conflicting results. Using two different cellular models of BS, we showed that BLM deficiency is not associated with sensitivity to HU, in terms of clonogenic survival, DSB generation, and SCE induction. We suggest that surviving BLM-deficient cells are selected on the basis of their ability to deal with an endogenous replication stress induced by replication fork slowing, resulting in insensitivity to HU-induced replication stress.

  13. Hepatoprotective properties of kombucha tea against TBHP-induced oxidative stress via suppression of mitochondria dependent apoptosis.

    Science.gov (United States)

    Bhattacharya, Semantee; Gachhui, Ratan; Sil, Parames C

    2011-06-01

    Kombucha, a fermented tea (KT) is claimed to possess many beneficial properties. Recent studies have suggested that KT prevents paracetamol and carbon tetrachloride-induced hepatotoxicity. We investigated the beneficial role of KT was against tertiary butyl hydroperoxide (TBHP) induced cytotoxicity and cell death in murine hepatocytes. TBHP is a well known reactive oxygen species (ROS) inducer, and it induces oxidative stress in organ pathophysiology. In our experiments, TBHP caused a reduction in cell viability, enhanced the membrane leakage and disturbed the intra-cellular antioxidant machineries while simultaneous treatment of the cells with KT and this ROS inducer maintained membrane integrity and prevented the alterations in the cellular antioxidant status. These findings led us to explore the detailed molecular mechanisms involved in the protective effect of KT. TBHP introduced apoptosis as the primary phenomena of cell death as evidenced by flow cytometric analyses. In addition, ROS generation, changes in the mitochondrial membrane potential, cytochrome c release, activation of caspases (3 and 9) and Apaf-1 were detected confirming involvement of mitochondrial pathway in this pathophysiology. Simultaneous treatment of KT with TBHP, on the other hand, protected the cells against oxidative injury and maintained their normal physiology. In conclusion, KT was found to modulate the oxidative stress induced apoptosis in murine hepatocytes probably due to its antioxidant activity and functioning via mitochondria dependent pathways and could be beneficial against liver diseases, where oxidative stress is known to play a crucial role. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Inverse temperature dependence of reverse gate leakage current in AlGaN/GaN HEMT

    International Nuclear Information System (INIS)

    Kaushik, J K; Balakrishnan, V R; Muralidharan, R; Panwar, B S

    2013-01-01

    The experimentally observed inverse temperature dependence of the reverse gate leakage current in AlGaN/GaN HEMT is explained using a virtual gate trap-assisted tunneling model. The virtual gate is formed due to the capture of electrons by surface states in the vicinity of actual gate. The increase and decrease in the length of the virtual gate with temperature due to trap kinetics are used to explain this unusual effect. The simulation results have been validated experimentally. (paper)

  15. Impact of arachidonic versus eicosapentaenoic acid on exotonin-induced lung vascular leakage: relation to 4-series versus 5-series leukotriene generation.

    Science.gov (United States)

    Grimminger, F; Wahn, H; Mayer, K; Kiss, L; Walmrath, D; Seeger, W

    1997-02-01

    Escherichia coli hemolysin (HlyA) is a proteinaceous pore-forming exotoxin that is implicated as a significant pathogenicity factor in extraintestinal E. coli infections including sepsis. In perfused rabbit lungs, subcytolytic concentrations of the toxin evoke thromboxane-mediated vasoconstriction and prostanoid-independent protracted vascular permeability increase (11). In the present study, the influence of submicromolar concentrations of free arachidonic acid (AA) and eicosapentaenoic acid (EPA) on the HlyA-induced leakage response was investigated. HlyA at concentration from 0.02 to 0.06 hemolytic units/ml provoked a dose-dependent, severalfold increase in the capillary filtration coefficient (Kfc), accompanied by the release of leukotriene(LT)B4, LTC4, and LTE4 into the recirculating buffer fluid. Simultaneous application of 100 nmol/L AA markedly augmented the HlyA-elicited leakage response, concomitant with an amplification of LTB4 release and a change in the kinetics of cysteinyl-LT generation. In contrast, 50 to 200 nmol/L EPA suppressed in a dose-dependent manner the HlyA-induced increase in Kfc values. This was accompanied by a blockage of 4-series LT generation and a dose-dependent appearance of LTB5, LTC5, and LTE5. In addition, EPA fully antagonized the AA-induced amplification of the HlyA-provoked Kfc increase, again accompanied by a shift from 4-series to 5-series LT generation. We conclude that the vascular leakage provoked by HlyA in rabbit lungs is differentially influenced by free AA versus free EPA, related to the generation of 4- versus 5-series leukotrienes. The composition of lipid emulsions used for parenteral nutrition may thus influence inflammatory capillary leakage.

  16. Stress induced degradation of critical currents in filamentary Nb3Sn

    International Nuclear Information System (INIS)

    McDougall, I.L.

    1976-01-01

    An investigation of the critical stress and strain values of bronze, Nb 3 Sn composites at 4.2 K has been made with simultaneous determination of critical currents in a field of 2.5 Tesla. Evidence of grain boundary microcrack formation has been found associated with reversible degradation of critical current. At a critical strain characteristic of the composite geometry these cracks propagate to give a GB fracture network. A compound with a small grain size formed at low temperatures has the best mechanical properties with a critical strain to the onset of reversible degradation of about 0.5%. (author)

  17. Chemical Detection Based on Adsorption-Induced and Photo-Induced Stresses in MEMS Devices

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, P.G.

    1999-04-05

    Recently there has been an increasing demand to perform real-time in-situ chemical detection of hazardous materials, contraband chemicals, and explosive chemicals. Currently, real-time chemical detection requires rather large analytical instrumentation that are expensive and complicated to use. The advent of inexpensive mass produced MEMS (micro-electromechanical systems) devices opened-up new possibilities for chemical detection. For example, microcantilevers were found to respond to chemical stimuli by undergoing changes in their bending and resonance frequency even when a small number of molecules adsorb on their surface. In our present studies, we extended this concept by studying changes in both the adsorption-induced stress and photo-induced stress as target chemicals adsorb on the surface of microcantilevers. For example, microcantilevers that have adsorbed molecules will undergo photo-induced bending that depends on the number of absorbed molecules on the surface. However, microcantilevers that have undergone photo-induced bending will adsorb molecules on their surfaces in a distinctly different way. Depending on the photon wavelength and microcantilever material, the microcantilever can be made to bend by expanding or contracting the irradiated surface. This is important in cases where the photo-induced stresses can be used to counter any adsorption-induced stresses and increase the dynamic range. Coating the surface of the microstructure with a different material can provide chemical specificity for the target chemicals. However, by selecting appropriate photon wavelengths we can change the chemical selectivity due to the introduction of new surface states in the MEMS device. We will present and discuss our results on the use of adsorption-induced and photo-induced bending of microcantilevers for chemical detection.

  18. A PD-SOI based DTI-LOCOS combined cross isolation technique for minimizing TID radiation induced leakage in high density memory

    International Nuclear Information System (INIS)

    Qiao Fengying; Pan Liyang; Wu Dong; Liu Lifang; Xu Jun

    2014-01-01

    In order to minimize leakage current increase under total ionizing dose (TID) radiation in high density memory circuits, a new isolation technique, combining deep trench isolation (DTI) between the wells, local oxidation of silicon (LOCOS) isolation between the devices within the well, and a P-diffused area in order to limit leakage at the isolation edge is implemented in partly-depleted silicon-on-insulator (PD-SOI) technology. This radiation hardening technique can minimize the layout area by more than 60%, and allows flexible placement of the body contact. Radiation hardened transistors and 256 Kb flash memory chips are designed and fabricated in a 0.6 μm PD-SOI process. Experiments show that no obvious increase in leakage current is observed for single transistors under 1 Mrad(Si) radiation, and that the 256 Kb memory chip still functions well after a TID of 100 krad(Si), with only 50% increase of the active power consumption in read mode. (semiconductor devices)

  19. PERFORMANCE OF LEAKAGE POWER MINIMIZATION TECHNIQUE FOR CMOS VLSI TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    T. Tharaneeswaran

    2012-06-01

    Full Text Available Leakage power of CMOS VLSI Technology is a great concern. To reduce leakage power in CMOS circuits, a Leakage Power Minimiza-tion Technique (LPMT is implemented in this paper. Leakage cur-rents are monitored and compared. The Comparator kicks the charge pump to give body voltage (Vbody. Simulations of these circuits are done using TSMC 0.35µm technology with various operating temper-atures. Current steering Digital-to-Analog Converter (CSDAC is used as test core to validate the idea. The Test core (eg.8-bit CSDAC had power consumption of 347.63 mW. LPMT circuit alone consumes power of 6.3405 mW. This technique results in reduction of leakage power of 8-bit CSDAC by 5.51mW and increases the reliability of test core. Mentor Graphics ELDO and EZ-wave are used for simulations.

  20. Effects of tensile and compressive stresses on irradiation-induced swelling in AISI 316

    International Nuclear Information System (INIS)

    Lauritzen, T.; Bell, W.L.; Konze, G.M.; Rosa, J.M.; Vaidyanathan, S.; Garner, F.A.

    1985-05-01

    The results of two recent experiments indicate that the current perception of stress-affected swelling needs revision. It appears that compressive stresses do not delay swelling as previously modeled but actually accelerate swelling at a rate comparable to that induced by tensile stresses

  1. Effects of doping on ferroelectric properties and leakage current behavior of KNN-LT-LS thin films on SrTiO3 substrate

    Science.gov (United States)

    Abazari, M.; Safari, A.

    2009-05-01

    We report the effects of Ba, Ti, and Mn dopants on ferroelectric polarization and leakage current of (K0.44Na0.52Li0.04)(Nb0.84Ta0.1Sb0.06)O3 (KNN-LT-LS) thin films deposited by pulsed laser deposition. It is shown that donor dopants such as Ba2+, which increased the resistivity in bulk KNN-LT-LS, had an opposite effect in the thin film. Ti4+ as an acceptor B-site dopant reduces the leakage current by an order of magnitude, while the polarization values showed a slight degradation. Mn4+, however, was found to effectively suppress the leakage current by over two orders of magnitude while enhancing the polarization, with 15 and 23 μC/cm2 remanent and saturated polarization, whose values are ˜70% and 82% of the reported values for bulk composition. This phenomenon has been associated with the dual effect of Mn4+ in KNN-LT-LS thin film, by substituting both A- and B-site cations. A detailed description on how each dopant affects the concentrations of vacancies in the lattice is presented. Mn-doped KNN-LT-LS thin films are shown to be a promising candidate for lead-free thin films and applications.

  2. Stress-induced hyperthermia in translational stress research

    NARCIS (Netherlands)

    Vinkers, C.H.; Penning, R.; Ebbens, M.M.; Helhammer, J.; Verster, J.C.; Kalkman, C.J.; Olivier, B.

    2010-01-01

    The stress-induced hyperthermia (SIH) response is the transient change in body temperature in response to acute stress. This body temperature response is part of the autonomic stress response which also results in tachycardia and an increased blood pressure. So far, a SIH response has been found in

  3. Transcription regulator TRIP-Br2 mediates ER stress-induced brown adipocytes dysfunction.

    Science.gov (United States)

    Qiang, Guifen; Whang Kong, Hyerim; Gil, Victoria; Liew, Chong Wee

    2017-01-09

    In contrast to white adipose tissue, brown adipose tissue (BAT) is known to play critical roles for both basal and inducible energy expenditure. Obesity is associated with reduction of BAT function; however, it is not well understood how obesity promotes BAT dysfunction, especially at the molecular level. Here we show that the transcription regulator TRIP-Br2 mediates ER stress-induced inhibition of lipolysis and thermogenesis in BAT. Using in vitro, ex vivo, and in vivo approaches, we demonstrate that obesity-induced inflammation upregulates brown adipocytes TRIP-Br2 expression via the ER stress pathway and amelioration of ER stress in mice completely abolishes high fat diet-induced upregulation of TRIP-Br2 in BAT. We find that increased TRIP-Br2 significantly inhibits brown adipocytes thermogenesis. Finally, we show that ablation of TRIP-Br2 ameliorates ER stress-induced inhibition on lipolysis, fatty acid oxidation, oxidative metabolism, and thermogenesis in brown adipocytes. Taken together, our current study demonstrates a role for TRIP-Br2 in ER stress-induced BAT dysfunction, and inhibiting TRIP-Br2 could be a potential approach for counteracting obesity-induced BAT dysfunction.

  4. Inner volume leakage during integrated leakage rate testing

    International Nuclear Information System (INIS)

    Glover, J.P.

    1987-01-01

    During an integrated leak rate test (ILRT), the containment structure is maintained at test pressure with most penetrations isolated. Since penetrations typically employ dual isolation, the possibility exists for the inner isolation to leak while the outer holds. In this case, the ILRT instrumentation system would indicate containment out-leakage when, in fact, only the inner volume between closures is being pressurized. The problem is compounded because this false leakage is not readily observable outside of containment by standard leak inspection techniques. The inner volume leakage eventually subsides after the affected volumes reach test pressure. Depending on the magnitude of leakage and the size of the volumes, equalization could occur prior to the end of the pretest stabilization period, or significant false leakages may persist throughout the entire test. Two simple analyses were performed to quantify the effects of inside volume leakages. First, a lower bound for the equalization time was found. A second analysis was performed to find an approximate upper bound for the stabilization time. The results of both analyses are shown

  5. Psychological stress, cocaine and natural reward each induce endoplasmic reticulum stress genes in rat brain.

    Science.gov (United States)

    Pavlovsky, A A; Boehning, D; Li, D; Zhang, Y; Fan, X; Green, T A

    2013-08-29

    Our prior research has shown that the transcription of endoplasmic reticulum (ER) stress transcription factors activating transcription factor 3 (ATF3) and ATF4 are induced by amphetamine and restraint stress in rat striatum. However, presently the full extent of ER stress responses to psychological stress or cocaine, and which of the three ER stress pathways is activated is unknown. The current study examines transcriptional responses of key ER stress target genes subsequent to psychological stress or cocaine. Rats were subjected to acute or repeated restraint stress or cocaine treatment and mRNA was isolated from dorsal striatum, medial prefrontal cortex and nucleus accumbens brain tissue. ER stress gene mRNA expression was measured using quantitative polymerase chain reaction (PCR) and RNA sequencing. Restraint stress and cocaine-induced transcription of the classic ER stress-induced genes (BIP, CHOP, ATF3 and GADD34) and of two other ER stress components x-box binding protein 1 (XBP1) and ATF6. In addition, rats living in an enriched environment (large group cage with novel toys changed daily) exhibited rapid induction of GADD34 and ATF3 after 30 min of exploring novel toys, suggesting these genes are also involved in normal non-pathological signaling. However, environmental enrichment, a paradigm that produces protective addiction and depression phenotypes in rats, attenuated the rapid induction of ATF3 and GADD34 after restraint stress. These experiments provide a sensitive measure of ER stress and, more importantly, these results offer good evidence of the activation of ER stress mechanisms from psychological stress, cocaine and natural reward. Thus, ER stress genes may be targets for novel therapeutic targets for depression and addiction. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. On Probability Leakage

    OpenAIRE

    Briggs, William M.

    2012-01-01

    The probability leakage of model M with respect to evidence E is defined. Probability leakage is a kind of model error. It occurs when M implies that events $y$, which are impossible given E, have positive probability. Leakage does not imply model falsification. Models with probability leakage cannot be calibrated empirically. Regression models, which are ubiquitous in statistical practice, often evince probability leakage.

  7. Direct observation of the leakage current in epitaxial diamond Schottky barrier devices by conductive-probe atomic force microscopy and Raman imaging

    International Nuclear Information System (INIS)

    Alvarez, J; Boutchich, M; Kleider, J P; Teraji, T; Koide, Y

    2014-01-01

    The origin of the high leakage current measured in several vertical-type diamond Schottky devices is conjointly investigated by conducting probe atomic force microscopy and confocal micro-Raman/photoluminescence imaging analysis. Local areas characterized by a strong decrease of the local resistance (5–6 orders of magnitude drop) with respect to their close surrounding have been identified in several different regions of the sample surface. The same local areas, also referenced as electrical hot-spots, reveal a slightly constrained diamond lattice and three dominant Raman bands in the low-wavenumber region (590, 914 and 1040 cm −1 ). These latter bands are usually assigned to the vibrational modes involving boron impurities and its possible complexes that can electrically act as traps for charge carriers. Local current–voltage measurements performed at the hot-spots point out a trap-filled-limited current as the main conduction mechanism favouring the leakage current in the Schottky devices. (paper)

  8. The Yeast Environmental Stress Response Regulates Mutagenesis Induced by Proteotoxic Stress

    Science.gov (United States)

    Shor, Erika; Fox, Catherine A.; Broach, James R.

    2013-01-01

    Conditions of chronic stress are associated with genetic instability in many organisms, but the roles of stress responses in mutagenesis have so far been elucidated only in bacteria. Here, we present data demonstrating that the environmental stress response (ESR) in yeast functions in mutagenesis induced by proteotoxic stress. We show that the drug canavanine causes proteotoxic stress, activates the ESR, and induces mutagenesis at several loci in an ESR-dependent manner. Canavanine-induced mutagenesis also involves translesion DNA polymerases Rev1 and Polζ and non-homologous end joining factor Ku. Furthermore, under conditions of chronic sub-lethal canavanine stress, deletions of Rev1, Polζ, and Ku-encoding genes exhibit genetic interactions with ESR mutants indicative of ESR regulating these mutagenic DNA repair processes. Analyses of mutagenesis induced by several different stresses showed that the ESR specifically modulates mutagenesis induced by proteotoxic stress. Together, these results document the first known example of an involvement of a eukaryotic stress response pathway in mutagenesis and have important implications for mechanisms of evolution, carcinogenesis, and emergence of drug-resistant pathogens and chemotherapy-resistant tumors. PMID:23935537

  9. On the problem of internal optical loss and current leakage in laser heterostructures based on AlGaInAs/InP solid solutions

    International Nuclear Information System (INIS)

    Veselov, D. A.; Shashkin, I. S.; Bakhvalov, K. V.; Lyutetskiy, A. V.; Pikhtin, N. A.; Rastegaeva, M. G.; Slipchenko, S. O.; Bechvay, E. A.; Strelets, V. A.; Shamakhov, V. V.; Tarasov, I. S.

    2016-01-01

    Semiconductor lasers based on MOCVD-grown AlGaInAs/InP separate-confinement heterostructures are studied. It is shown that raising only the energy-gap width of AlGaInAs-waveguides without the introduction of additional barriers results in more pronounced current leakage into the cladding layers. It is found that the introduction of additional barrier layers at the waveguide–cladding-layer interface blocks current leakage into the cladding layers, but results in an increase in the internal optical loss with increasing pump current. It is experimentally demonstrated that the introduction of blocking layers makes it possible to obtain maximum values of the internal quantum efficiency of stimulated emission (92%) and continuouswave output optical power (3.2 W) in semiconductor lasers in the eye-safe wavelength range (1400–1600 nm).

  10. On the problem of internal optical loss and current leakage in laser heterostructures based on AlGaInAs/InP solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Veselov, D. A., E-mail: dmitriy90@list.ru; Shashkin, I. S.; Bakhvalov, K. V.; Lyutetskiy, A. V.; Pikhtin, N. A.; Rastegaeva, M. G.; Slipchenko, S. O.; Bechvay, E. A.; Strelets, V. A.; Shamakhov, V. V.; Tarasov, I. S. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2016-09-15

    Semiconductor lasers based on MOCVD-grown AlGaInAs/InP separate-confinement heterostructures are studied. It is shown that raising only the energy-gap width of AlGaInAs-waveguides without the introduction of additional barriers results in more pronounced current leakage into the cladding layers. It is found that the introduction of additional barrier layers at the waveguide–cladding-layer interface blocks current leakage into the cladding layers, but results in an increase in the internal optical loss with increasing pump current. It is experimentally demonstrated that the introduction of blocking layers makes it possible to obtain maximum values of the internal quantum efficiency of stimulated emission (92%) and continuouswave output optical power (3.2 W) in semiconductor lasers in the eye-safe wavelength range (1400–1600 nm).

  11. Anomalous degradation behaviors under illuminated gate bias stress in a-Si:H thin film transistor

    International Nuclear Information System (INIS)

    Tsai, Ming-Yen; Chang, Ting-Chang; Chu, Ann-Kuo; Hsieh, Tien-Yu; Lin, Kun-Yao; Wu, Yi-Chun; Huang, Shih-Feng; Chiang, Cheng-Lung; Chen, Po-Lin; Lai, Tzu-Chieh; Lo, Chang-Cheng; Lien, Alan

    2014-01-01

    This study investigates the impact of gate bias stress with and without light illumination in a-Si:H thin film transistors. It has been observed that the I–V curve shifts toward the positive direction after negative and positive gate bias stress due to interface state creation at the gate dielectric. However, this study found that threshold voltages shift negatively and that the transconductance curve maxima are anomalously degraded under illuminated positive gate bias stress. In addition, threshold voltages shift positively under illuminated negative gate bias stress. These degradation behaviors can be ascribed to charge trapping in the passivation layer dominating degradation instability and are verified by a double gate a-Si:H device. - Highlights: • There is abnormal V T shift induced by illuminated gate bias stress in a-Si:H thin film transistors. • Electron–hole pair is generated via trap-assisted photoexcitation. • Abnormal transconductance hump is induced by the leakage current from back channel. • Charge trapping in the passivation layer is likely due to the fact that a constant voltage has been applied to the top gate

  12. Carbon monoxide alleviates ethanol-induced oxidative damage and inflammatory stress through activating p38 MAPK pathway

    International Nuclear Information System (INIS)

    Li, Yanyan; Gao, Chao; Shi, Yanru; Tang, Yuhan; Liu, Liang; Xiong, Ting; Du, Min; Xing, Mingyou; Liu, Liegang; Yao, Ping

    2013-01-01

    Stress-inducible protein heme oxygenase-1(HO-1) is well-appreciative to counteract oxidative damage and inflammatory stress involving the pathogenesis of alcoholic liver diseases (ALD). The potential role and signaling pathways of HO-1 metabolite carbon monoxide (CO), however, still remained unclear. To explore the precise mechanisms, ethanol-dosed adult male Balb/c mice (5.0 g/kg.bw.) or ethanol-incubated primary rat hepatocytes (100 mmol/L) were pretreated by tricarbonyldichlororuthenium (II) dimmer (CORM-2, 8 mg/kg for mice or 20 μmol/L for hepatocytes), as well as other pharmacological reagents. Our data showed that CO released from HO-1 induction by quercetin prevented ethanol-derived oxidative injury, which was abolished by CO scavenger hemoglobin. The protection was mimicked by CORM-2 with the attenuation of GSH depletion, SOD inactivation, MDA overproduction, and the leakage of AST, ALT or LDH in serum and culture medium induced by ethanol. Moreover, CORM-2 injection or incubation stimulated p38 phosphorylation and suppressed abnormal Tnfa and IL-6, accompanying the alleviation of redox imbalance induced by ethanol and aggravated by inflammatory factors. The protective role of CORM-2 was abolished by SB203580 (p38 inhibitor) but not by PD98059 (ERK inhibitor) or SP600125 (JNK inhibitor). Thus, HO-1 released CO prevented ethanol-elicited hepatic oxidative damage and inflammatory stress through activating p38 MAPK pathway, suggesting a potential therapeutic role of gaseous signal molecule on ALD induced by naturally occurring phytochemicals. - Highlights: • CO alleviated ethanol-derived liver oxidative and inflammatory stress in mice. • CO eased ethanol and inflammatory factor-induced oxidative damage in hepatocytes. • The p38 MAPK is a key signaling mechanism for the protective function of CO in ALD

  13. Carbon monoxide alleviates ethanol-induced oxidative damage and inflammatory stress through activating p38 MAPK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yanyan; Gao, Chao; Shi, Yanru; Tang, Yuhan; Liu, Liang; Xiong, Ting; Du, Min [Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Ministry of Education Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Xing, Mingyou [Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Liu, Liegang [Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Ministry of Education Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Yao, Ping, E-mail: yaoping@mails.tjmu.edu.cn [Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Ministry of Education Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China)

    2013-11-15

    Stress-inducible protein heme oxygenase-1(HO-1) is well-appreciative to counteract oxidative damage and inflammatory stress involving the pathogenesis of alcoholic liver diseases (ALD). The potential role and signaling pathways of HO-1 metabolite carbon monoxide (CO), however, still remained unclear. To explore the precise mechanisms, ethanol-dosed adult male Balb/c mice (5.0 g/kg.bw.) or ethanol-incubated primary rat hepatocytes (100 mmol/L) were pretreated by tricarbonyldichlororuthenium (II) dimmer (CORM-2, 8 mg/kg for mice or 20 μmol/L for hepatocytes), as well as other pharmacological reagents. Our data showed that CO released from HO-1 induction by quercetin prevented ethanol-derived oxidative injury, which was abolished by CO scavenger hemoglobin. The protection was mimicked by CORM-2 with the attenuation of GSH depletion, SOD inactivation, MDA overproduction, and the leakage of AST, ALT or LDH in serum and culture medium induced by ethanol. Moreover, CORM-2 injection or incubation stimulated p38 phosphorylation and suppressed abnormal Tnfa and IL-6, accompanying the alleviation of redox imbalance induced by ethanol and aggravated by inflammatory factors. The protective role of CORM-2 was abolished by SB203580 (p38 inhibitor) but not by PD98059 (ERK inhibitor) or SP600125 (JNK inhibitor). Thus, HO-1 released CO prevented ethanol-elicited hepatic oxidative damage and inflammatory stress through activating p38 MAPK pathway, suggesting a potential therapeutic role of gaseous signal molecule on ALD induced by naturally occurring phytochemicals. - Highlights: • CO alleviated ethanol-derived liver oxidative and inflammatory stress in mice. • CO eased ethanol and inflammatory factor-induced oxidative damage in hepatocytes. • The p38 MAPK is a key signaling mechanism for the protective function of CO in ALD.

  14. Millennial-scale Agulhas Current variability and its implications for salt-leakage through the Indian–Atlantic Ocean Gateway

    NARCIS (Netherlands)

    Simon, M.H.; Arthur, K.L.; Hall, I.R.; Peeters, F.J.C.; Loveday, B.R.; Barker, S.; Zahn, R.

    2013-01-01

    The inter-ocean exchange of warm and salt-enriched waters around South Africa (Agulhas leakage), may have played an important role in the mechanism of deglaciations. Paleoceanographic reconstructions from the Agulhas leakage corridor show that leakage maxima occurred during glacial terminations.

  15. Thiamine deficiency induces endoplasmic reticulum stress and oxidative stress in human neurons derived from induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Xu, Mei; Frank, Jacqueline A. [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Ke, Zun-ji [Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, Shanghai, China 201203 (China); Luo, Jia, E-mail: jialuo888@uky.edu [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, Shanghai, China 201203 (China)

    2017-04-01

    Thiamine (vitamin B1) deficiency (TD) plays a major role in the etiology of Wernicke's encephalopathy (WE) which is a severe neurological disorder. TD induces selective neuronal cell death, neuroinflammation, endoplasmic reticulum (ER) stress and oxidative stress in the brain which are commonly observed in many aging-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and progressive supranuclear palsy (PSP). However, the underlying cellular and molecular mechanisms remain unclear. The progress in this line of research is hindered due to the lack of appropriate in vitro models. The neurons derived for the human induced pluripotent stem cells (hiPSCs) provide a relevant and powerful tool for the research in pharmaceutical and environmental neurotoxicity. In this study, we for the first time used human induced pluripotent stem cells (hiPSCs)-derived neurons (iCell neurons) to investigate the mechanisms of TD-induced neurodegeneration. We showed that TD caused a concentration- and duration-dependent death of iCell neurons. TD induced ER stress which was evident by the increase in ER stress markers, such as GRP78, XBP-1, CHOP, ATF-6, phosphorylated eIF2α, and cleaved caspase-12. TD also triggered oxidative stress which was shown by the increase in the expression 2,4-dinitrophenyl (DNP) and 4-hydroxynonenal (HNE). ER stress inhibitors (STF-083010 and salubrinal) and antioxidant N-acetyl cysteine (NAC) were effective in alleviating TD-induced death of iCell neurons, supporting the involvement of ER stress and oxidative stress. It establishes that the iCell neurons are a novel tool to investigate cellular and molecular mechanisms for TD-induced neurodegeneration. - Highlights: • Thiamine deficiency (TD) causes death of human neurons in culture. • TD induces both endoplasmic reticulum (ER) stress and oxidative stress. • Alleviating ER stress and oxidative stress reduces TD-induced

  16. Thiamine deficiency induces endoplasmic reticulum stress and oxidative stress in human neurons derived from induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Wang, Xin; Xu, Mei; Frank, Jacqueline A.; Ke, Zun-ji; Luo, Jia

    2017-01-01

    Thiamine (vitamin B1) deficiency (TD) plays a major role in the etiology of Wernicke's encephalopathy (WE) which is a severe neurological disorder. TD induces selective neuronal cell death, neuroinflammation, endoplasmic reticulum (ER) stress and oxidative stress in the brain which are commonly observed in many aging-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and progressive supranuclear palsy (PSP). However, the underlying cellular and molecular mechanisms remain unclear. The progress in this line of research is hindered due to the lack of appropriate in vitro models. The neurons derived for the human induced pluripotent stem cells (hiPSCs) provide a relevant and powerful tool for the research in pharmaceutical and environmental neurotoxicity. In this study, we for the first time used human induced pluripotent stem cells (hiPSCs)-derived neurons (iCell neurons) to investigate the mechanisms of TD-induced neurodegeneration. We showed that TD caused a concentration- and duration-dependent death of iCell neurons. TD induced ER stress which was evident by the increase in ER stress markers, such as GRP78, XBP-1, CHOP, ATF-6, phosphorylated eIF2α, and cleaved caspase-12. TD also triggered oxidative stress which was shown by the increase in the expression 2,4-dinitrophenyl (DNP) and 4-hydroxynonenal (HNE). ER stress inhibitors (STF-083010 and salubrinal) and antioxidant N-acetyl cysteine (NAC) were effective in alleviating TD-induced death of iCell neurons, supporting the involvement of ER stress and oxidative stress. It establishes that the iCell neurons are a novel tool to investigate cellular and molecular mechanisms for TD-induced neurodegeneration. - Highlights: • Thiamine deficiency (TD) causes death of human neurons in culture. • TD induces both endoplasmic reticulum (ER) stress and oxidative stress. • Alleviating ER stress and oxidative stress reduces TD-induced

  17. Stress induced reorientation of vanadium hydride

    International Nuclear Information System (INIS)

    Beardsley, M.B.

    1977-10-01

    The critical stress for the reorientation of vanadium hydride was determined for the temperature range 180 0 to 280 0 K using flat tensile samples containing 50 to 500 ppM hydrogen by weight. The critical stress was observed to vary from a half to a third of the macroscopic yield stress of pure vanadium over the temperature range. The vanadium hydride could not be stress induced to precipitate above its stress-free precipitation temperature by uniaxial tensile stresses or triaxial tensile stresses induced by a notch

  18. Stress-induced alterations in estradiol sensitivity increase risk for obesity in women.

    Science.gov (United States)

    Michopoulos, Vasiliki

    2016-11-01

    The prevalence of obesity in the United States continues to rise, increasing individual vulnerability to an array of adverse health outcomes. One factor that has been implicated causally in the increased accumulation of fat and excess food intake is the activity of the limbic-hypothalamic-pituitary-adrenal (LHPA) axis in the face of relentless stressor exposure. However, translational and clinical research continues to understudy the effects sex and gonadal hormones and LHPA axis dysfunction in the etiology of obesity even though women continue to be at greater risk than men for stress-induced disorders, including depression, emotional feeding and obesity. The current review will emphasize the need for sex-specific evaluation of the relationship between stress exposure and LHPA axis activity on individual risk for obesity by summarizing data generated by animal models currently being leveraged to determine the etiology of stress-induced alterations in feeding behavior and metabolism. There exists a clear lack of translational models that have been used to study female-specific risk. One translational model of psychosocial stress exposure that has proven fruitful in elucidating potential mechanisms by which females are at increased risk for stress-induced adverse health outcomes is that of social subordination in socially housed female macaque monkeys. Data from subordinate female monkeys suggest that increased risk for emotional eating and the development of obesity in females may be due to LHPA axis-induced changes in the behavioral and physiological sensitivity of estradiol. The lack in understanding of the mechanisms underlying these alterations necessitate the need to account for the effects of sex and gonadal hormones in the rationale, design, implementation, analysis and interpretation of results in our studies of stress axis function in obesity. Doing so may lead to the identification of novel therapeutic targets with which to combat stress-induced obesity

  19. Biochemical indicators of root damage in rice (Oryza sativa) genotypes under zinc deficiency stress.

    Science.gov (United States)

    Lee, Jae-Sung; Wissuwa, Matthias; Zamora, Oscar B; Ismail, Abdelbagi M

    2017-11-01

    Zn deficiency is one of the major soil constraints currently limiting rice production. Although recent studies demonstrated that higher antioxidant activity in leaf tissue effectively protects against Zn deficiency stress, little is known about whether similar tolerance mechanisms operate in root tissue. In this study we explored root-specific responses of different rice genotypes to Zn deficiency. Root solute leakage and biomass reduction, antioxidant activity, and metabolic changes were measured using plants grown in Zn-deficient soil and hydroponics. Solute leakage from roots was higher in sensitive genotypes and linked to membrane damage caused by Zn deficiency-induced oxidative stress. However, total root antioxidant activity was four-fold lower than in leaves and did not differ between sensitive and tolerant genotypes. Root metabolite analysis using gas chromatography-mass spectrometry and high performance liquid chromatography indicated that Zn deficiency triggered the accumulation of glycerol-3-phosphate and acetate in sensitive genotypes, while less or no accumulation was seen in tolerant genotypes. We suggest that these metabolites may serve as biochemical indicators of root damage under Zn deficiency.

  20. Sistem Proteksi Arus Bocor Menggunakan Earth Leakage Circuit Breaker Berbasis Arduino

    Directory of Open Access Journals (Sweden)

    Syukriyadin Syukriyadin

    2017-02-01

    Full Text Available Touching a live part of electrical equipment either intentionally or unintentionally can cause an electric shock. The touch can occur directly or indirectly and results in the flow of electric current through the human body to the ground. This electric current is known as the leakage current and can have fatal effects on the human body such as burns, cramps, faint and death. This paper aims to design a prototype protection model of the earth leakage circuit breaker device based on Arduino (ELCBA to protect the human body from the electrical hazards. The performance of the ELCBA is investigated by detecting the earth leakage current to the grounding system (TN.  The prototype is designed and simulated by using Proteus software. Based on the response test carried out on the prototype, it can be concluded that the ELCBA can operate properly to disconnect the electric circuit if the leakage current is detected greater than or equal to 30 mA with a time delay of 15 ms and to reclose the circuit again after 5 minutes.

  1. Stress-inducible expression of an F-box gene TaFBA1 from wheat enhanced the drought tolerance in transgenic tobacco plants without impacting growth and development

    Directory of Open Access Journals (Sweden)

    Xiangzhu Kong

    2016-09-01

    Full Text Available E3 ligase plays an important role in the response to many environment stresses in plants. In our previous study, constitutive overexpression of an F-box protein gene TaFBA1 driven by 35S promoter improved the drought tolerance in transgenic tobacco plants, but the growth and development in transgenic plants was altered in normal conditions. In this study, we used stress-inducible promoter RD29A instead of 35S promoter, as a results, the stress-inducible transgenic tobacco plants exhibit a similar phenotype with WT plants. However, the drought tolerance of the transgenic plants with stress-inducible expressed TaFBA1 was enhanced. The improved drought tolerance of transgenic plants was indicated by their higher seed germination rate and survival rate, greater biomass and photosynthesis than those of WT under water stress, which may be related to their greater water retention capability and osmotic adjustment. Moreover, the transgenic plants accumulated less reactive oxygen species (ROS, kept lower MDA content and membrane leakage under water stress, which may be related to their higher levels of antioxidant enzyme activity and upregulated gene expression of some antioxidant enzymes. These results suggest that stress induced expression of TaFBA1 confers drought tolerance via the improved water retention and antioxidative compete abilibty. Meanwhile, this stress-inducible expression strategy by RD29A promoter can minimize the unexpectable effects by 35S constitutive promoter on phenotypes of the transgenic plants.

  2. Stress-Inducible Expression of an F-box Gene TaFBA1 from Wheat Enhanced the Drought Tolerance in Transgenic Tobacco Plants without Impacting Growth and Development.

    Science.gov (United States)

    Kong, Xiangzhu; Zhou, Shumei; Yin, Suhong; Zhao, Zhongxian; Han, Yangyang; Wang, Wei

    2016-01-01

    E3 ligase plays an important role in the response to many environment stresses in plants. In our previous study, constitutive overexpression of an F-box protein gene TaFBA1 driven by 35S promoter improved the drought tolerance in transgenic tobacco plants, but the growth and development in transgenic plants was altered in normal conditions. In this study, we used stress-inducible promoter RD29A instead of 35S promoter, as a results, the stress-inducible transgenic tobacco plants exhibit a similar phenotype with wild type (WT) plants. However, the drought tolerance of the transgenic plants with stress-inducible expressed TaFBA1 was enhanced. The improved drought tolerance of transgenic plants was indicated by their higher seed germination rate and survival rate, greater biomass and photosynthesis than those of WT under water stress, which may be related to their greater water retention capability and osmotic adjustment. Moreover, the transgenic plants accumulated less reactive oxygen species, kept lower MDA content and membrane leakage under water stress, which may be related to their higher levels of antioxidant enzyme activity and upregulated gene expression of some antioxidant enzymes. These results suggest that stress induced expression of TaFBA1 confers drought tolerance via the improved water retention and antioxidative compete ability. Meanwhile, this stress-inducible expression strategy by RD29A promoter can minimize the unexpectable effects by 35S constitutive promoter on phenotypes of the transgenic plants.

  3. Effects of drought stress on growth, solute accumulation and membrane stability of leafy vegetable, huckleberry (Solanum scabrum Mill.).

    Science.gov (United States)

    Assaha, Dekoum Vincent Marius; Liu, Liyun; Ueda, Akihiro; Nagaoka, Toshinori; Saneoka, Hirofumi

    2016-01-01

    The present study sought to investigate the factors implicated in growth impairment of huckleberry (a leafy vegetable) under water stress conditions. To achieve this, seedlings of plant were subjected to control, mild stress and severe stress conditions for 30 days. Plant growth, plant water relation, gas exchange, oxidative stress damage, electrolyte leakage rate, mineral content and osmolyte accumulation were measured. Water deficit markedly decreased leaf, stem and root growth. Leaf photosynthetic rate was tremendously reduced by decrease in stomatal conductance under stress conditions. Malondialdehyde (MDA) content markedly increased under mild (82%) and severe (131%) stress conditions, while electrolyte leakage rate (ELR) increased by 59% under mild stress and 3-fold under severe stress. Mineral content in leafwas high in stressed plants, while proline content markedly increased under mild stress (12-fold) and severe stress (15-fold), with corresponding decrease in osmotic potential at full turgor and an increase in osmotic adjustment. These results suggest that maintenance of high mineral content and osmotic adjustment constitute important adaptations in huckleberry under water deficit conditions and that growth depression under drought stress would be mainly caused by increased electrolyte leakage resulting from membrane damage induced by oxidative stress.

  4. Spermidine sprays alleviate the water deficit-induced oxidative stress in finger millet (Eleusine coracana L. Gaertn.) plants.

    Science.gov (United States)

    Satish, Lakkakula; Rency, Arockiam Sagina; Ramesh, Manikandan

    2018-01-01

    Severe drought stress (water deficit) in finger millet ( Eleusine coracana L. Gaertn.) plants significantly reduced total leaf chlorophyll and relative water content in shoots and roots, whereas electrolyte leakage, concentrations of proline and hydrogen peroxide, as well as caspase-like activity were significantly increased. The role of spermidine in plant defence to water-stress was investigated after subjected to various drought treatments. Three weeks of daily spermidine sprays (0.2 mM) at early flowering stage significantly changed shoot and root growth, in both fresh and dry weights terms. At 75% of water deficit stress, leaves accumulated twice as much proline as unstressed plants, and roots accumulated thrice. Plants treated with spermidine under water stress showed lower electrolyte leakage, hydrogen peroxide and caspase-like activity than unstressed and untreated control.

  5. Invariable optical properties of phosphor-free white light-emitting diode under electrical stress

    International Nuclear Information System (INIS)

    Hao, Long; Hao, Fang; Sheng-Li, Qi; Li-Wen, Sang; Wen-Yu, Cao; Jian, Yan; Jun-Jing, Deng; Zhi-Jian, Yang; Guo-Yi, Zhang

    2010-01-01

    This paper reports that a dual-wavelength white light-emitting diode is fabricated by using a metal-organic chemical vapor deposition method. Through a 200-hours' current stress, the reverse leakage current of this light-emitting diode increases with the aging time, but the optical properties remained unchanged despite the enhanced reverse leakage current. Transmission electron microscopy and cathodeluminescence images show that indium atoms were assembled in and around V-shape pits with various compositions, which can be ascribed to the emitted white light. Evolution of cathodeluminescence intensities under electron irradiation is also performed. Combining cathodeluminescence intensities under electron irradiation and above results, the increase of leakage channels and crystalline quality degradation are realized. Although leakage channels increase with aging, potential fluctuation caused by indium aggregation can effectively avoid the impact of leakage channels. Indium aggregation can be attributed to the mechanism of preventing optical degradation in phosphor-free white light-emitting diode. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  6. Land-use Leakage

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Katherine V.; Edmonds, James A.; Clarke, Leon E.; Bond-Lamberty, Benjamin; Kim, Son H.; Wise, Marshall A.; Thomson, Allison M.; Kyle, G. Page

    2009-12-01

    Leakage occurs whenever actions to mitigate greenhouse gas emissions in one part of the world unleash countervailing forces elsewhere in the world so that reductions in global emissions are less than emissions mitigation in the mitigating region. While many researchers have examined the concept of industrial leakage, land-use policies can also result in leakage. We show that land-use leakage is potentially as large as or larger than industrial leakage. We identify two potential land-use leakage drivers, land-use policies and bioenergy. We distinguish between these two pathways and run numerical experiments for each. We also show that the land-use policy environment exerts a powerful influence on leakage and that under some policy designs leakage can be negative. International “offsets” are a potential mechanism to communicate emissions mitigation beyond the borders of emissions mitigating regions, but in a stabilization regime designed to limit radiative forcing to 3.7 2/m2, this also implies greater emissions mitigation commitments on the part of mitigating regions.

  7. Evaluation of Information Leakage from Cryptographic Hardware via Common-Mode Current

    Science.gov (United States)

    Hayashi, Yu-Ichi; Homma, Naofumi; Mizuki, Takaaki; Sugawara, Takeshi; Kayano, Yoshiki; Aoki, Takafumi; Minegishi, Shigeki; Satoh, Akashi; Sone, Hideaki; Inoue, Hiroshi

    This paper presents a possibility of Electromagnetic (EM) analysis against cryptographic modules outside their security boundaries. The mechanism behind the information leakage is explained from the view point of Electromagnetic Compatibility: electric fluctuation released from cryptographic modules can conduct to peripheral circuits based on ground bounce, resulting in radiation. We demonstrate the consequence of the mechanism through experiments where the ISO/IEC standard block cipher AES (Advanced Encryption Standard) is implemented on an FPGA board and EM radiations from power and communication cables are measured. Correlation Electromagnetic Analysis (CEMA) is conducted in order to evaluate the information leakage. The experimental results show that secret keys are revealed even though there are various disturbing factors such as voltage regulators and AC/DC converters between the target module and the measurement points. We also discuss information-suppression techniques as electrical-level countermeasures against such CEMAs.

  8. High dislocation density of tin induced by electric current

    International Nuclear Information System (INIS)

    Liao, Yi-Han; Liang, Chien-Lung; Lin, Kwang-Lung; Wu, Albert T.

    2015-01-01

    A dislocation density of as high as 10 17 /m 2 in a tin strip, as revealed by high resolution transmission electron microscope, was induced by current stressing at 6.5 x 10 3 A/ cm 2 . The dislocations exist in terms of dislocation line, dislocation loop, and dislocation aggregates. Electron Backscattered Diffraction images reflect that the high dislocation density induced the formation of low deflection angle subgrains, high deflection angle Widmanstätten grains, and recrystallization. The recrystallization gave rise to grain refining

  9. A Minimum Leakage Quasi-Static RAM Bitcell

    Directory of Open Access Journals (Sweden)

    Adam Teman

    2011-05-01

    Full Text Available As SRAMs continue to grow and comprise larger percentages of the area and power consumption in advanced systems, the need to minimize static currents becomes essential. This brief presents a novel 9T Quasi-Static RAM Bitcell that provides aggressive leakage reduction and high write margins. The quasi-static operation method of this cell, based on internal feedback and leakage ratios, minimizes static power while maintaining sufficient, albeit depleted, noise margins. This paper presents the concept of the novel cell, and discusses the stability of the cell under hold, read and write operations. The cell was implemented in a low-power 40 nm TSMC process, showing as much as a 12× reduction in leakage current at typical conditions, as compared to a standard 6T or 8T bitcell at the same supply voltage. The implemented cell showed full functionality under global and local process variations at nominal and low voltages, as low as 300 mV.

  10. Membrane damage and solute leakage from germinating pea seed under cadmium stress

    Energy Technology Data Exchange (ETDEWEB)

    Rahoui, Sondes, E-mail: rahoui.sondes@yahoo.fr [Bio-Physiologie Cellulaires, Departement des Sciences de la Vie, Faculte des Sciences de Bizerte, 7021 Zarzouna (Tunisia); Chaoui, Abdelilah, E-mail: cabdelilah1@yahoo.fr [Bio-Physiologie Cellulaires, Departement des Sciences de la Vie, Faculte des Sciences de Bizerte, 7021 Zarzouna (Tunisia); El Ferjani, Ezzeddine, E-mail: ezzferjani2002@yahoo.fr [Bio-Physiologie Cellulaires, Departement des Sciences de la Vie, Faculte des Sciences de Bizerte, 7021 Zarzouna (Tunisia)

    2010-06-15

    Seed germination represents a limiting stage of plant life cycle under heavy metal stress situation. Delay in germination can be associated with disorders in the event chain of germinative metabolism which is a highly complex multistage process, but one of underlying metabolic activities following imbibition of seed is the storage mobilization. The influence of cadmium on carbohydrates and aminoacids export from cotyledon to embryonic axis during germination of pea seed was investigated. Compared to the control, Cd caused a restriction in reserve mobilization as evidenced by the pronounced increase in cotyledon/embryo ratios of total soluble sugars, glucose, fructose and aminoacids. Moreover, the nutrient concentrations, as well as the electrical conductivity of germination medium were determined to quantify the extent of solute leakage. Such nutrients were lost into the imbibition medium at the expense of suitable mobilization to the growing embryonic axis. This was concomitant with an over-accumulation of lipid peroxidation products in Cd-poisoned embryonic tissues. However, the impairment of membrane integrity cannot be due to a stimulation in lipoxygenase activity, since the later was markedly inhibited after Cd exposure.

  11. Membrane damage and solute leakage from germinating pea seed under cadmium stress

    International Nuclear Information System (INIS)

    Rahoui, Sondes; Chaoui, Abdelilah; El Ferjani, Ezzeddine

    2010-01-01

    Seed germination represents a limiting stage of plant life cycle under heavy metal stress situation. Delay in germination can be associated with disorders in the event chain of germinative metabolism which is a highly complex multistage process, but one of underlying metabolic activities following imbibition of seed is the storage mobilization. The influence of cadmium on carbohydrates and aminoacids export from cotyledon to embryonic axis during germination of pea seed was investigated. Compared to the control, Cd caused a restriction in reserve mobilization as evidenced by the pronounced increase in cotyledon/embryo ratios of total soluble sugars, glucose, fructose and aminoacids. Moreover, the nutrient concentrations, as well as the electrical conductivity of germination medium were determined to quantify the extent of solute leakage. Such nutrients were lost into the imbibition medium at the expense of suitable mobilization to the growing embryonic axis. This was concomitant with an over-accumulation of lipid peroxidation products in Cd-poisoned embryonic tissues. However, the impairment of membrane integrity cannot be due to a stimulation in lipoxygenase activity, since the later was markedly inhibited after Cd exposure.

  12. Stress-inducible expression of AtDREB1A transcription factor greatly improves drought stress tolerance in transgenic indica rice.

    Science.gov (United States)

    Ravikumar, G; Manimaran, P; Voleti, S R; Subrahmanyam, D; Sundaram, R M; Bansal, K C; Viraktamath, B C; Balachandran, S M

    2014-06-01

    The cultivation of rice (Oryza sativa L.), a major food crop, requires ample water (30 % of the fresh water available worldwide), and its productivity is greatly affected by drought, the most significant environmental factor. Much research has focussed on identifying quantitative trait loci, stress-regulated genes and transcription factors that will contribute towards the development of climate-resilient/tolerant crop plants in general and rice in particular. The transcription factor DREB1A, identified from the model plant Arabidopsis thaliana, has been reported to enhance stress tolerance against drought stress. We developed transgenic rice plants with AtDREB1A in the background of indica rice cultivar Samba Mahsuri through Agrobacterium-mediated transformation. The AtDREB1A gene was stably inherited and expressed in T1 and T2 plants and in subsequent generations, as indicated by the results of PCR, Southern blot and RT-PCR analyses. Expression of AtDREB1A was induced by drought stress in transgenic rice lines, which were highly tolerant to severe water deficit stress in both the vegetative and reproductive stages without affecting their morphological or agronomic traits. The physiological studies revealed that the expression of AtDREB1A was associated with an increased accumulation of the osmotic substance proline, maintenance of chlorophyll, increased relative water content and decreased ion leakage under drought stress. Most of the homozygous lines were highly tolerant to drought stress and showed significantly a higher grain yield and spikelet fertility relative to the nontransgenic control plants under both stressed and unstressed conditions. The improvement in drought stress tolerance in combination with agronomic traits is very essential in high premium indica rice cultivars, such as Samba Mahsuri, so that farmers can benefit in times of seasonal droughts and water scarcity.

  13. Electromigration failures under bidirectional current stress

    Science.gov (United States)

    Tao, Jiang; Cheung, Nathan W.; Hu, Chenming

    1998-01-01

    Electromigration failure under DC stress has been studied for more than 30 years, and the methodologies for accelerated DC testing and design rules have been well established in the IC industry. However, the electromigration behavior and design rules under time-varying current stress are still unclear. In CMOS circuits, as many interconnects carry pulsed-DC (local VCC and VSS lines) and bidirectional AC current (clock and signal lines), it is essential to assess the reliability of metallization systems under these conditions. Failure mechanisms of different metallization systems (Al-Si, Al-Cu, Cu, TiN/Al-alloy/TiN, etc.) and different metallization structures (via, plug and interconnect) under AC current stress in a wide frequency range (from mHz to 500 MHz) has been study in this paper. Based on these experimental results, a damage healing model is developed, and electromigration design rules are proposed. It shows that in the circuit operating frequency range, the "design-rule current" is the time-average current. The pure AC component of the current only contributes to self-heating, while the average (DC component) current contributes to electromigration. To ensure longer thermal-migration lifetime under high frequency AC stress, an additional design rule is proposed to limit the temperature rise due to self-joule heating.

  14. Stress drops of induced and tectonic earthquakes in the central United States are indistinguishable.

    Science.gov (United States)

    Huang, Yihe; Ellsworth, William L; Beroza, Gregory C

    2017-08-01

    Induced earthquakes currently pose a significant hazard in the central United States, but there is considerable uncertainty about the severity of their ground motions. We measure stress drops of 39 moderate-magnitude induced and tectonic earthquakes in the central United States and eastern North America. Induced earthquakes, more than half of which are shallower than 5 km, show a comparable median stress drop to tectonic earthquakes in the central United States that are dominantly strike-slip but a lower median stress drop than that of tectonic earthquakes in the eastern North America that are dominantly reverse-faulting. This suggests that ground motion prediction equations developed for tectonic earthquakes can be applied to induced earthquakes if the effects of depth and faulting style are properly considered. Our observation leads to the notion that, similar to tectonic earthquakes, induced earthquakes are driven by tectonic stresses.

  15. Effects of constant voltage and constant current stress in PCBM:P3HT solar cells

    DEFF Research Database (Denmark)

    Cester, Andrea; Rizzo, Aldo; Bazzega, A.

    2015-01-01

    The aimof this work is the investigation of forward and reverse bias stress effects, cell self-heating and annealing in roll coated organic solar cells with PCBM:P3HT active layer. In reverse bias stress cells show a constant degradation over time. In forward current stress cells alternate...... mechanisms: the decrease of the net generation rate (due to formation of exciton quenching centres or the reduction of exciton separation rate); the formation of small leaky paths between anode and cathode, which reduces the total current extracted from the cell. The stress-induced damage can be recovered...... degradation and annealing phases, which are explained through the high power dissipation during the current stress, and the consequent self-heating. The high temperature is able to recover the cell performances at least until a critical temperature is reached. The degradation can be explained by the following...

  16. Early developmental and temporal characteristics of stress-induced secretion of pituitary-adrenal hormones in prenatally stressed rat pups.

    Science.gov (United States)

    Takahashi, L K; Kalin, N H

    1991-08-30

    Previous experiments revealed that 14-day-old prenatally stressed rats have significantly elevated concentrations of plasma adrenocorticotrophic hormone (ACTH) and corticosterone suggesting these animals have an overactive hypothalamic-pituitary-adrenal (HPA) system. In these studies, however, stress-induced hormone levels were determined only immediately after exposure to an acute stressor. Therefore, in the current study, we examined in postnatal days 7, 14 and 21 prenatally stressed rats the stress-induced time course of this pituitary-adrenal hormone elevation. Plasma ACTH and corticosterone were measured in the basal state and at 0.0, 0.5, 1.0, 2.0 and 4.0 h after a 10-min exposure period to foot shocks administered in the context of social isolation. Results indicated that at all 3 ages, plasma ACTH in prenatally stressed rats was significantly elevated. Corticosterone concentrations were also significantly higher in prenatally stressed than in control rats, especially in day 14 rats. Analysis of stress-induced hormone fluctuations over time indicated that by 14 days of age, both prenatally stressed than in control and control rats had significant increases in plasma ACTH and corticosterone after exposure to stress. Furthermore, although prenatally stressed rats had significantly higher pituitary-adrenal hormone concentrations than control animals, the post-stress temporal patterns of decline in ACTH and corticosterone levels were similar between groups. Results suggest that throughout the preweaning period, prenatal stress produces an HPA system that functions in a manner similar to that of controls but at an increased level.

  17. Forest Carbon Leakage Quantification Methods and Their Suitability for Assessing Leakage in REDD

    Directory of Open Access Journals (Sweden)

    Sabine Henders

    2012-01-01

    Full Text Available This paper assesses quantification methods for carbon leakage from forestry activities for their suitability in leakage accounting in a future Reducing Emissions from Deforestation and Forest Degradation (REDD mechanism. To that end, we first conducted a literature review to identify specific pre-requisites for leakage assessment in REDD. We then analyzed a total of 34 quantification methods for leakage emissions from the Clean Development Mechanism (CDM, the Verified Carbon Standard (VCS, the Climate Action Reserve (CAR, the CarbonFix Standard (CFS, and from scientific literature sources. We screened these methods for the leakage aspects they address in terms of leakage type, tools used for quantification and the geographical scale covered. Results show that leakage methods can be grouped into nine main methodological approaches, six of which could fulfill the recommended REDD leakage requirements if approaches for primary and secondary leakage are combined. The majority of methods assessed, address either primary or secondary leakage; the former mostly on a local or regional and the latter on national scale. The VCS is found to be the only carbon accounting standard at present to fulfill all leakage quantification requisites in REDD. However, a lack of accounting methods was identified for international leakage, which was addressed by only two methods, both from scientific literature.

  18. Pre-cold stress increases acid stress resistance and induces amino ...

    African Journals Online (AJOL)

    Pre-cold stress increases acid stress resistance and induces amino acid homeostasis in Lactococcus lactis NZ9000. ... Purpose: To investigate the effects of pre-cold stress treatments on subsequent acid stress resistance ... from 32 Countries:.

  19. Finite Element Analysis of Film Stack Architecture for Complementary Metal-Oxide-Semiconductor Image Sensors.

    Science.gov (United States)

    Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang

    2017-05-02

    Image sensors are the core components of computer, communication, and consumer electronic products. Complementary metal oxide semiconductor (CMOS) image sensors have become the mainstay of image-sensing developments, but are prone to leakage current. In this study, we simulate the CMOS image sensor (CIS) film stacking process by finite element analysis. To elucidate the relationship between the leakage current and stack architecture, we compare the simulated and measured leakage currents in the elements. Based on the analysis results, we further improve the performance by optimizing the architecture of the film stacks or changing the thin-film material. The material parameters are then corrected to improve the accuracy of the simulation results. The simulated and experimental results confirm a positive correlation between measured leakage current and stress. This trend is attributed to the structural defects induced by high stress, which generate leakage. Using this relationship, we can change the structure of the thin-film stack to reduce the leakage current and thereby improve the component life and reliability of the CIS components.

  20. Modeling valve leakage

    International Nuclear Information System (INIS)

    Bell, S.R.; Rohrscheib, R.

    1994-01-01

    The American Society of Mechanical Engineers (ASME) Code requires individual valve leakage testing for Category A valves. Although the U.S. Nuclear Regulatory Commission (USNRC) has recognized that it is more appropriate to test containment isolation valves in groups, as allowed by 10 CFR 50, Appendix J, a utility seeking relief from these Code requirements must provide technical justification for the relief and establish a conservative alternate acceptance criteria. In order to provide technical justification for group testing of containment isolation valves, Illinois Power developed a calculation (model) for determining the size of a leakage pathway in a valve disc or seat for a given leakage rate. The model was verified experimentally by machining leakage pathways of known size and then measuring the leakage and comparing this value to the calculated value. For the range of values typical of leakage rate testing, the correlation between the experimental values and calculated values was quote good. Based upon these results, Illinois Power established a conservative acceptance criteria for all valves in the inservice testing (IST) program and was granted relief by the USNRC from the individual leakage testing requirements of the ASME Code. This paper presents the results of Illinois Power's work in the area of valve leakage rate testing

  1. Induced surface stress at crystal surfaces

    International Nuclear Information System (INIS)

    Dahmen, K.

    2002-05-01

    Changes of the surfaces stress Δτ (s) can be studied by observing the bending of thin crystalline plates. With this cantilever method one can gain the induced change of surface stress Δτ (s) from the bending of plates with the help of elasticity theory. For elastic isotropic substrates the relevant relations are known. Here the relations are generalized to elastic anisotropic crystals with a C 2v - Symmetry. The equilibrium shapes of crystalline plates oriented along the (100)-, (110)-, or (111)-direction which are clamped along one edge are calculated with a numeric method under the load of a homogeneous but pure isotropic or anisotropic surface stress. The results can be displayed with the dimensionality, so that the effect of clamping can be described in a systematic way. With these tabulated values one can evaluate cantilever experiments exactly. These results are generalized to cantilever methods for determining magnetoelastic constants. It is shown which magnetoelastic constants are measured in domains of thin films with ordered structures. The eigenshape and the eigenfrequency of plates constraint through a clamping at one side are calculated. These results give a deeper understanding of the elastic anisotropy. The induced surface stress of oxygen on the (110)-surface of molybdenum is measured along the principle directions Δτ [001] and Δτ [ anti 110] . The anisotropy of the surface stress is found for the p(2 x 2)-reconstruction. Lithium induces a tensile surface stress on the Molybdenum (110)-surface up to a coverage of Θ = 0, 3 monolayer. For a higher coverage the induced stress drops and reaches a level of less than -1, 2 N/m at one monolayer. It is shown, that cobalt induces a linear increasing stress with respect to the coverage on the (100)-surface of copper with a value of 2, 4GPa. The copper (100)-surface is bombarded with accelerated ions in the range between 800-2200 eV. The resulting induced compressive stress (Δτ (s) < 0) of the order

  2. Quercetin prevents chronic unpredictable stress induced behavioral dysfunction in mice by alleviating hippocampal oxidative and inflammatory stress.

    Science.gov (United States)

    Mehta, Vineet; Parashar, Arun; Udayabanu, Malairaman

    2017-03-15

    It is now evident that chronic stress is associated with anxiety, depression and cognitive dysfunction and very few studies have focused on identifying possible methods to prevent these stress-induced disorders. Previously, we identified abundance of quercetin in Urtica dioica extract, which efficiently attenuated stress related complications. Therefore, current study was designed to investigate the effect of quercetin on chronic unpredicted stress (CUS) induced behavioral dysfunction, oxidative stress and neuroinflammation in the mouse hippocampus. Animals were subjected to unpredicted stress for 21days, during which 30mg/kg quercetin was orally administered to them. Effect of CUS and quercetin treatment on animal behavior was assessed between day 22-26. Afterward, the hippocampus was processed to evaluate neuronal damage, oxidative and inflammatory stress. Results revealed that stressed animals were highly anxious (Elevated Plus Maze and Open Field), showed depressive-like behavior (sucrose preference task), performed poorly in short-term and long-term associative memory task (passive avoidance step-through task) and displayed reduced locomotion (open field). Quercetin alleviated behavioral dysfunction in chronically stressed animals. Compared to CUS, quercetin treatment significantly reduced anxiety, attenuated depression, improved cognitive dysfunction and normalized locomotor activity. Further, CUS elevated the levels of oxidative stress markers (TBARS, nitric oxide), lowered antioxidants (total thiol, catalase), enhanced expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1β and COX-2) in the hippocampus and damaged hippocampal neurons. Quercetin treatment significantly lowered oxidative and inflammatory stress and prevented neural damage. In conclusion, quercetin can efficiently prevent stress induced neurological complications by rescuing brain from oxidative and inflammatory stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Role of Nrf2 in preventing oxidative stress induced chloride current alteration in human lung cells.

    Science.gov (United States)

    Canella, Rita; Benedusi, Mascia; Martini, Marta; Cervellati, Franco; Cavicchio, Carlotta; Valacchi, Giuseppe

    2018-08-01

    The lung tissue is one of the main targets of oxidative stress due to external sources and respiratory activity. In our previous work, we have demonstrated in that O 3 exposure alters the Cl - current-voltage relationship, with the appearance of a large outward rectifier component mainly sustained by outward rectifier chloride channels (ORCCs) in human lung epithelial cells (A549 line). In the present study, we have performed patch clamp experiments, in order to identify which one of the O 3 byproducts (4hydroxynonenal (HNE) and/or H 2 O 2 ) was responsible for chloride current change. While 4HNE exposition (up to 25 μM for 30' before electrophysiological analysis) did not reproduce O 3 effect, H 2 O 2 produced by glucose oxidase 10 mU for 24 hr before electrophysiological analysis mimicked O 3 response. This result was confirmed treating the cell with catalase (CAT) before O 3 exposure (1,000 U/ml for 2 hr): CAT was able to rescue Cl - current alteration. Since CAT is regulated by Nrf2 transcription factor, we pre-treated the cells with the Nrf2 activators, resveratrol and tBHQ. Immunochemical and immunocytochemical results showed Nrf2 activation with both substances that lead to prevent OS effect on Cl - current. These data bring new insights into the mechanisms involved in OS-induced lung tissue damage, pointing out the role of H 2 O 2 in chloride current alteration and the ability of Nfr2 activation in preventing this effect. © 2017 Wiley Periodicals, Inc.

  4. Transcranial Stimulation of the Dorsolateral Prefrontal Cortex Prevents Stress-Induced Working Memory Deficits.

    Science.gov (United States)

    Bogdanov, Mario; Schwabe, Lars

    2016-01-27

    Stress is known to impair working memory performance. This disruptive effect of stress on working memory has been linked to a decrease in the activity of the dorsolateral prefrontal cortex (dlPFC). In the present experiment, we tested whether transcranial direct current stimulation (tDCS) of the dlPFC can prevent stress-induced working memory impairments. We tested 120 healthy participants in a 2 d, sham-controlled, double-blind between-subjects design. Participants completed a test of their individual baseline working memory capacity on day 1. On day 2, participants were exposed to either a stressor or a control manipulation before they performed a visuospatial and a verbal working memory task. While participants completed the tasks, anodal, cathodal, or sham tDCS was applied over the right dlPFC. Stress impaired working memory performance in both tasks, albeit to a lesser extent in the verbal compared with the visuospatial working memory task. This stress-induced working memory impairment was prevented by anodal, but not sham or cathodal, stimulation of the dlPFC. Compared with sham or cathodal stimulation, anodal tDCS led to significantly better working memory performance in both tasks after stress. Our findings indicate a causal role of the dlPFC in working memory impairments after acute stress and point to anodal tDCS as a promising tool to reduce cognitive deficits related to working memory in stress-related mental disorders, such as depression, schizophrenia, or post-traumatic stress disorder. Working memory deficits are prominent in stress-related mental disorders, such as depression, schizophrenia, or post-traumatic stress disorder. Similar working memory impairments have been observed in healthy individuals exposed to acute stress. So far, attempts to prevent such stress-induced working memory deficits focused mainly on pharmacological interventions. Here, we tested the idea that transcranial direct current stimulation of the dorsolateral prefrontal

  5. Thiamine deficiency induces endoplasmic reticulum stress and oxidative stress in human neurons derived from induced pluripotent stem cells.

    Science.gov (United States)

    Wang, Xin; Xu, Mei; Frank, Jacqueline A; Ke, Zun-Ji; Luo, Jia

    2017-04-01

    Thiamine (vitamin B1) deficiency (TD) plays a major role in the etiology of Wernicke's encephalopathy (WE) which is a severe neurological disorder. TD induces selective neuronal cell death, neuroinflammation, endoplasmic reticulum (ER) stress and oxidative stress in the brain which are commonly observed in many aging-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and progressive supranuclear palsy (PSP). However, the underlying cellular and molecular mechanisms remain unclear. The progress in this line of research is hindered due to the lack of appropriate in vitro models. The neurons derived for the human induced pluripotent stem cells (hiPSCs) provide a relevant and powerful tool for the research in pharmaceutical and environmental neurotoxicity. In this study, we for the first time used human induced pluripotent stem cells (hiPSCs)-derived neurons (iCell neurons) to investigate the mechanisms of TD-induced neurodegeneration. We showed that TD caused a concentration- and duration-dependent death of iCell neurons. TD induced ER stress which was evident by the increase in ER stress markers, such as GRP78, XBP-1, CHOP, ATF-6, phosphorylated eIF2α, and cleaved caspase-12. TD also triggered oxidative stress which was shown by the increase in the expression 2,4-dinitrophenyl (DNP) and 4-hydroxynonenal (HNE). ER stress inhibitors (STF-083010 and salubrinal) and antioxidant N-acetyl cysteine (NAC) were effective in alleviating TD-induced death of iCell neurons, supporting the involvement of ER stress and oxidative stress. It establishes that the iCell neurons are a novel tool to investigate cellular and molecular mechanisms for TD-induced neurodegeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Effect of drought stress on water status, electrolyte leakage and enzymatic antioxidants of kochia (kochia scoparia) under saline condition

    International Nuclear Information System (INIS)

    Masoumi, A.; Kafi, M.; Khazaei, Z.; Davari, K.

    2010-01-01

    Drought stress is considered as the main factor of yield limitations in arid and semi-arid areas, where drought and salinity stresses are usually combined. Kochia species have recently attracted the attention of researchers as forage and fodder crop in marginal lands worldwide due to its drought and salt tolerant characters. This field experiment was performed at the Salinity Research Station (36 deg. 15'N, 59 deg. 28' E) of Ferdowsi University, ashhad, Iran in 2008, in a split plot based on randomized complete block design with three replications. Three levels of drought stress (control, no irrigation in vegetative stage (recovery treatment) and no irrigation at reproductive stage for one month (stress treatment)), and two Kochia ecotypes (Birjand and Borujerd) were allocated as main and sub-plots, respectively. Relative water content (RWC), membrane permeability and antioxidant enzymes were assayed at the beginning of anthesis. Stress treatment caused a significant decrease in the leaf RWC and increase in electrolyte leakage compared with control and recovered conditions. Furthermore, stress treatment caused a significant increase in antioxidant enzyme activities except of superoxide dismutase (SOD) and peroxidase (POX). The Birjand ecotype was significantly more tolerant to drought than Borujerd ecotype. According to the results, there were no difference between recovered plants and control treatment, therefore, Kochia can recover quickly after removing drought stress. Kochia showed high tolerance against drought and salinity stresses and different antioxidant enzymes had different behavior under stress conditions. (author)

  7. Sodium leakage experience at the prototype FBR Monju

    International Nuclear Information System (INIS)

    Miyakawa, A.; Maeda, H.; Kani, Y.; Ito, K.

    2000-01-01

    Monju is Japan's prototype fast breeder reactor: 280 MWe (714 MWt), fueled with mixed oxides of plutonium and uranium, cooled by liquid sodium. Construction was started in 1985 and initial criticality was attained in April 1994. On 8th December 1995, sodium leakage from a secondary circuit occurred in a piping room of the reactor auxiliary building. The secondary sodium leaked through a temperature sensor, due to the breakaway of the tip of the thermocouple well tube installed near the secondary circuit outlet of the intermediate heat exchanger (IHX). The reactor remained cooled and thus, from the viewpoint of radiological hazards, the safety of the reactor was secured. There was no release of radioactive material. There were no adverse effects for personnel and the surrounding environment. The thermocouple well tube failure resulted from high cycle fatigue due to flow induced vibration. It was found that this flow induced vibration was not caused by well-known Von Karman vortex shedding, but a symmetric vortex shedding. The design of the thermocouple well, which was subject to avoid this phenomenon, was reviewed. A new design guide against the flow-induced vibration was prepared by JNC (Japan Nuclear Cycle Development Institute). This is more comprehensive and definitive than the existing guide 'ASME N-1300' (Flow-induced vibration of tube and tube banks). New thermocouple well designs were proposed consistent with this design guide. To prevent a recurrence of the secondary sodium leakage incident, comprehensive design review activities were started for the purpose of checking the safety and reliability of the plant. As a result, several aspects to be improved were identified and improvements and countermeasures have been studied. The main improvements and countermeasures are as follows: To enable the operators to understand and react to incidents quickly, new sodium leakage detectors (TV monitors, smoke sensors) and a new surveillance system will be installed; To

  8. Effect of gamma irradiation on leakage current in CMOS read-out chips for the ATLAS upgrade silicon strip tracker at the HL-LHC

    CERN Document Server

    Stucci, Stefania Antonia; Lynn, Dave; Kierstead, James; Kuczewski, Philip; van Nieuwenhuizen, Gerrit J; Rosin, Guy; Tricoli, Alessandro

    2017-01-01

    The increase of the leakage current of NMOS transistors in detector readout chips in certain 130 nm CMOS technologies during exposure to ionising radiation needs special consideration in the design of detector systems, as this can result in a large increase of the supply current and power dissipation. As part of the R&D; program for the upgrade of the ATLAS inner detector tracker for the High Luminosity upgrade of the LHC at CERN, a dedicated set of irradiations have been carried out with the $^60$Co gamma-ray source at the Brookhaven National Laboratory. Measurements will be presented that characterise the increase in the digital leakage current in the 130 nm-technology ABC130 readout chips. The variation of the current as a function of time and total ionising dose has been studied under various conditions of dose rate, temperature and power applied to the chip. The range of variation of dose rates and temperatures has been set to be close to those expected at the High Luminosity LHC, i.e. in the range 0...

  9. Drain Current Stress-Induced Instability in Amorphous InGaZnO Thin-Film Transistors with Different Active Layer Thicknesses

    Directory of Open Access Journals (Sweden)

    Dapeng Wang

    2018-04-01

    Full Text Available In this study, the initial electrical properties, positive gate bias stress (PBS, and drain current stress (DCS-induced instabilities of amorphous indium gallium zinc oxide (a-IGZO thin-film transistors (TFTs with various active layer thicknesses (TIGZO are investigated. As the TIGZO increased, the turn-on voltage (Von decreased, while the subthreshold swing slightly increased. Furthermore, the mobility of over 13 cm2·V−1·s−1 and the negligible hysteresis of ~0.5 V are obtained in all of the a-IGZO TFTs, regardless of the TIGZO. The PBS results exhibit that the Von shift is aggravated as the TIGZO decreases. In addition, the DCS-induced instability in the a-IGZO TFTs with various TIGZO values is revealed using current–voltage and capacitance–voltage (C–V measurements. An anomalous hump phenomenon is only observed in the off state of the gate-to-source (Cgs curve for all of the a-IGZO TFTs. This is due to the impact ionization that occurs near the drain side of the channel and the generated holes that flow towards the source side along the back-channel interface under the lateral electric field, which cause a lowered potential barrier near the source side. As the TIGZO value increased, the hump in the off state of the Cgs curve was gradually weakened.

  10. Influence of fuel assembly loading pattern and fuel burnups upon leakage neutron flux spectra from light water reactor core (Joint research)

    International Nuclear Information System (INIS)

    Kojima, Kensuke; Okumura, Keisuke; Kosako, Kazuaki; Torii, Kazutaka

    2016-01-01

    At the decommissioning of light water reactors (LWRs), it is important to evaluate an amount of radioactivity in the ex-core structures such as a reactor containment vessel, radiation shieldings, and so on. It is thought that the leakage neutron spectra in these radioactivation regions, which strongly affect the induced radioactivity, would be changed by different reactor core configurations such as fuel assembly loading pattern and fuel burnups. This study was intended to evaluate these effects. For this purpose, firstly, partial neutron currents on the core surfaces were calculated for some core configurations. Then, the leakage neutron flux spectra in major radioactivation regions were calculated based on the provided currents. Finally, influence of the core configurations upon the neutron flux spectra was evaluated. As a result, it has been found that the influence is small on the spectrum shapes of neutron fluxes. However, it is necessary to pay attention to the facts that intensities of the leakage neutron fluxes are changed by the configurations and that intensities and spectrum shapes of the leakage neutron fluxes are changed depending on the angular direction around the core. (author)

  11. A study on the annular leakage-flow-induced vibrations. 1st report. Stability for translational and rotational single-degree-of-freedom systems

    International Nuclear Information System (INIS)

    Li, Dong-Wei; Kaneko, Shigehiko; Hayama, Shinji

    1999-01-01

    This study reports the stability of annular leakage-flow-induced vibrations. The pressure distribution of fluid between a fixed outer cylinder and a vibrating inner cylinder was obtained in the case of a translationally and rotationally coupled motion of the inner cylinder. The unsteady fluid force acting on the inner cylinder in the case of translational and rotational single-degree-of-freedom vibrations was then expressed in terms proportional to the acceleration, velocity, and displacement. Then the critical flow rate (at which stability was lost) was determined for an annular leakage-flow-induced vibration. Finally, the stability was investigated theoretically. It is known that instability will occur in the case of a divergent passage, but the critical flow rate depends on the passage increment in a limited range: the eccentricity of the passage and the pressure loss factor at the inlet of the passage lower the stability. (author)

  12. Mitigation of PID in commercial PV modules using current interruption method

    Science.gov (United States)

    Bora, Birinchi; Oh, Jaewon; Tatapudi, Sai; Sastry, Oruganty S.; Kumar, Rajesh; Prasad, Basudev; Tamizhmani, Govindasamy

    2017-08-01

    Potential-induced degradation (PID) is known to have a very severe effect on the reliability of PV modules. PID is caused due to the leakage of current from the cell circuit to the grounded frame under humid conditions of high voltage photovoltaic (PV) systems. There are multiple paths for the current leakage. The most dominant leakage path is from the cell to the frame through encapsulant, glass bulk and glass surface. This dominant path can be prevented by interrupting the electrical conductivity at the glass surface. In our previous works related to this topic, we demonstrated the effectiveness of glass surface conductivity interruption technique using one-cell PV coupons. In this work, we demonstrate the effectiveness of this technique using a full size commercial module susceptible to PID. The interruption of surface conductivity of the commercial module was achieved by attaching a narrow, thin flexible glass strips, from Corning, called Willow Glass on the glass surface along the inner edges of the frame. The flexible glass strip was attached to the module glass surface by heating the glass strip with an ionomer adhesive underneath using a handheld heat gun. The PID stress test was performed at 60°C and 85% RH for 96 hours at -600 V. Pre- and post-PID characterizations including I-V and electroluminescence were carried out to determine the performance loss and affected cell areas. This work demonstrates that the PID issue can be effectively addressed by using this current interruption technique. An important benefit of this approach is that this interruption technique can be applied after manufacturing the modules and after installing the modules in the field as well.

  13. Inducted circulation current in a conductor consisting of strands coated with a high resistive layer

    International Nuclear Information System (INIS)

    Koizumi, Norikiyo; Takahashi, Yoshikazu; Kato, Takashi; Tsuji, Hiroshi; Shimamoto, Susumu

    2000-01-01

    Nonuniform current distribution is generated in a conductor consisting of strands coated by a high resistive layer, such as chromium plating, as a result of superimposition of transport and induce circulation currents. The characteristics of the induced circulation current are analytically studied by using a distributed model circuit. The parameters mostly used in this calculation are those of US-DPC coil, which at first exhibited instability and so-called ramp rate limitation (RRL) because of current imbalance in the conductor consisting of chrome-plated strands. Thus the conductance along strands and the inductance of unit length loop and length of the conductor are mostly assumed to be 10 kS/m, 0.5 μH/m and 150 m, respectively. The analysis results indicate that the induced circulation current can be classified into the boundary and interstrand-induce circulation currents hereafter referred to as BICC an IICC. BICC is induced only across the joint at the ends of the conductor, resulting in a constant along the conductor axis, when the total leakage magnetic flux of the loop is not zero. Its decay time constant is quite long, more than a few hours. In contrast, when the leakage magnetic flux distributes along the conductor axis, IICC is induced among strands in the conductor to eliminate this flux. Since the leakage magnetic flux normally becomes largest where the magnetic field is highest, it becomes larger where the time variation of the magnetic field is larger. Its decay time contrast is much less than that of BICC. If the leakage magnetic flux linearly changes along the US-DPC conductor, it is evaluated to be about 10 s. This IICC therefore becomes dominate in a pulse charge, whose ramping tine is less than 10 s. Moreover, it is found that the variation of the leakage a magnetic flux with the relatively long cycle, such as more than a few 10-meter lengths, causes IICC with a decay-time constant of more than several hundred milliseconds. Such and IICC can

  14. [Stress-induced cellular adaptive mutagenesis].

    Science.gov (United States)

    Zhu, Linjiang; Li, Qi

    2014-04-01

    The adaptive mutations exist widely in the evolution of cells, such as antibiotic resistance mutations of pathogenic bacteria, adaptive evolution of industrial strains, and cancerization of human somatic cells. However, how these adaptive mutations are generated is still controversial. Based on the mutational analysis models under the nonlethal selection conditions, stress-induced cellular adaptive mutagenesis is proposed as a new evolutionary viewpoint. The hypothetic pathway of stress-induced mutagenesis involves several intracellular physiological responses, including DNA damages caused by accumulation of intracellular toxic chemicals, limitation of DNA MMR (mismatch repair) activity, upregulation of general stress response and activation of SOS response. These responses directly affect the accuracy of DNA replication from a high-fidelity manner to an error-prone one. The state changes of cell physiology significantly increase intracellular mutation rate and recombination activity. In addition, gene transcription under stress condition increases the instability of genome in response to DNA damage, resulting in transcription-associated DNA mutagenesis. In this review, we summarize these two molecular mechanisms of stress-induced mutagenesis and transcription-associated DNA mutagenesis to help better understand the mechanisms of adaptive mutagenesis.

  15. Leakage current analysis for dislocations in Na-flux GaN bulk single crystals by conductive atomic force microscopy

    Science.gov (United States)

    Hamachi, T.; Takeuchi, S.; Tohei, T.; Imanishi, M.; Imade, M.; Mori, Y.; Sakai, A.

    2018-04-01

    The mechanisms associated with electrical conduction through individual threading dislocations (TDs) in a Na-flux GaN crystal grown with a multipoint-seed-GaN technique were investigated by conductive atomic force microscopy (C-AFM). To focus on individual TDs, dislocation-related etch pits (DREPs) were formed on the Na-flux GaN surface by wet chemical etching, after which microscopic Pt electrodes were locally fabricated on the DREPs to form conformal contacts to the Na-flux GaN crystal, using electron beam assisted deposition. The C-AFM data clearly demonstrate that the leakage current flows through the individual TD sites. It is also evident that the leakage current and the electrical conduction mechanism vary significantly based on the area within the Na-flux GaN crystal where the TDs are formed. These regions include the c-growth sector (cGS) in which the GaN grows in the [0001 ] direction on top of the point-seed with a c-plane growth front, the facet-growth sector (FGS) in which the GaN grows with {10 1 ¯ 1 } facets on the side of the cGS, the boundary region between the cGS and FGS (BR), and the coalescence boundary region between FGSs (CBR). The local current-voltage (I-V) characteristics of the specimen demonstrate space charge limited current conduction and conduction related to band-like trap states associated with TDs in the FGS, BR, and CBR. A detailed analysis of the I-V data indicates that the electrical conduction through TDs in the cGS may proceed via the Poole-Frenkel emission mechanism.

  16. Pathogenesis of Chronic Hyperglycemia: From Reductive Stress to Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Liang-Jun Yan

    2014-01-01

    Full Text Available Chronic overnutrition creates chronic hyperglycemia that can gradually induce insulin resistance and insulin secretion impairment. These disorders, if not intervened, will eventually be followed by appearance of frank diabetes. The mechanisms of this chronic pathogenic process are complex but have been suggested to involve production of reactive oxygen species (ROS and oxidative stress. In this review, I highlight evidence that reductive stress imposed by overflux of NADH through the mitochondrial electron transport chain is the source of oxidative stress, which is based on establishments that more NADH recycling by mitochondrial complex I leads to more electron leakage and thus more ROS production. The elevated levels of both NADH and ROS can inhibit and inactivate glyceraldehyde 3-phosphate dehydrogenase (GAPDH, respectively, resulting in blockage of the glycolytic pathway and accumulation of glycerol 3-phospate and its prior metabolites along the pathway. This accumulation then initiates all those alternative glucose metabolic pathways such as the polyol pathway and the advanced glycation pathways that otherwise are minor and insignificant under euglycemic conditions. Importantly, all these alternative pathways lead to ROS production, thus aggravating cellular oxidative stress. Therefore, reductive stress followed by oxidative stress comprises a major mechanism of hyperglycemia-induced metabolic syndrome.

  17. Sistem Proteksi Arus Bocor Menggunakan Earth Leakage Circuit Breaker Berbasis Arduino

    OpenAIRE

    Syukriyadin, Syukriyadin

    2016-01-01

    Touching a live part of electrical equipment either intentionally or unintentionally can cause an electric shock. The touch can occur directly or indirectly and results in the flow of electric current through the human body to the ground. This electric current is known as the leakage current and can have fatal effects on the human body such as burns, cramps, faint and death. This paper aims to design a prototype protection model of the earth leakage circuit breaker device based on Arduino (EL...

  18. Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis.

    Science.gov (United States)

    López, Daniel; Fischbach, Michael A; Chu, Frances; Losick, Richard; Kolter, Roberto

    2009-01-06

    We report a previously undescribed quorum-sensing mechanism for triggering multicellularity in Bacillus subtilis. B. subtilis forms communities of cells known as biofilms in response to an unknown signal. We discovered that biofilm formation is stimulated by a variety of small molecules produced by bacteria--including the B. subtilis nonribosomal peptide surfactin--that share the ability to induce potassium leakage. Natural products that do not cause potassium leakage failed to induce multicellularity. Small-molecule-induced multicellularity was prevented by the addition of potassium, but not sodium or lithium. Evidence is presented that potassium leakage stimulates the activity of a membrane protein kinase, KinC, which governs the expression of genes involved in biofilm formation. We propose that KinC responds to lowered intracellular potassium concentration and that this is a quorum-sensing mechanism that enables B. subtilis to respond to related and unrelated bacteria.

  19. Artificial-Crack-Behavior Test Evaluation of the Water-Leakage Repair Materials Used for the Repair of Water-Leakage Cracks in Concrete Structures

    Directory of Open Access Journals (Sweden)

    Soo-Yeon Kim

    2016-09-01

    Full Text Available There are no existing standard test methods at home and abroad that can verify the performance of water leakage repair materials, and it is thus very difficult to perform quality control checks in the field of water leakage repair. This study determined that the key factors that have the greatest impact on the water leakage repair materials are the micro-behaviors of cracks, and proposed an artificial-crack-behavior test method for the performance verification of the repair materials. The performance of the 15 kinds of repair materials that are currently being used in the field of water leakage repair was evaluated by applying the proposed test method. The main aim of such a test method is to determine if there is water leakage by injecting water leakage repair materials into a crack behavior test specimen with an artificial 5-mm crack width, applying a 2.5 mm vertical behavior load at 100 cycles, and applying 0.3 N/mm2 constant water pressure. The test results showed that of the 15 kinds of repair materials, only two effectively sealed the crack and thus stopped the water leakage. The findings of this study confirmed the effectiveness of the proposed artificial-crack-behavior test method and suggest that it can be used as a performance verification method for checking the responsiveness of the repair materials being used in the field of water leakage repair to the repetitive water leakage behaviors that occur in concrete structures. The study findings further suggest that the use of the proposed test method makes it possible to quantify the water leakage repair quality control in the field.

  20. Foliar application of ascorbic acid mitigates sodium chloride induced stress in eggplant (solanum melongena l.)

    International Nuclear Information System (INIS)

    Jan, S.; Hamayun, M.

    2016-01-01

    The current work was designed to test the effect of sodium chloride on germination, seedling establishment, vegetative growth, yield, chemical contents and ionic composition of eggplant. The consequences of foliar application of ascorbic acid (AA) on mitigation of adverse effects of sodium chloride were also tested. The seeds of Solanum melongena were germinated using NaCl (60 mM, 100 mM) and ascorbic acid (100 and 200 mM). High levels of salinity significantly affected the seed germination and seedling fresh and dry weights. Plants grown under salinity stress with foliar application of ascorbic acid showed significant increase in germination percentage and seedlings growth as compare to control plants. Sodium chloride stress showed adverse effects on plant height, root length, number of leaves, leaf area, fresh and dry biomass, total chlorophyll, carbohydrates and proteins as compared to untreated plants. The relative water content, electrolyte leakage were increased and Na+ and K+ ions balance was disturbed in different plant parts. Ascorbic acid (100 and 200ppm) enhanced all the growth parameters affected adversely by sodium chloride stress. (author)

  1. Characterizing wave- and current- induced bottom shear stress: U.S. middle Atlantic continental shelf

    Science.gov (United States)

    Dalyander, P. Soupy; Butman, Bradford; Sherwood, Christopher R.; Signell, Richard P.; Wilkin, John L.

    2013-01-01

    Waves and currents create bottom shear stress, a force at the seabed that influences sediment texture distribution, micro-topography, habitat, and anthropogenic use. This paper presents a methodology for assessing the magnitude, variability, and driving mechanisms of bottom stress and resultant sediment mobility on regional scales using numerical model output. The analysis was applied to the Middle Atlantic Bight (MAB), off the U.S. East Coast, and identified a tidally-dominated shallow region with relatively high stress southeast of Massachusetts over Nantucket Shoals, where sediment mobility thresholds are exceeded over 50% of the time; a coastal band extending offshore to about 30 m water depth dominated by waves, where mobility occurs more than 20% of the time; and a quiescent low stress region southeast of Long Island, approximately coincident with an area of fine-grained sediments called the “Mud Patch”. The regional high in stress and mobility over Nantucket Shoals supports the hypothesis that fine grain sediment winnowed away in this region maintains the Mud Patch to the southwest. The analysis identified waves as the driving mechanism for stress throughout most of the MAB, excluding Nantucket Shoals and sheltered coastal bays where tides dominate; however, the relative dominance of low-frequency events varied regionally, and increased southward toward Cape Hatteras. The correlation between wave stress and local wind stress was lowest in the central MAB, indicating a relatively high contribution of swell to bottom stress in this area, rather than locally generated waves. Accurate prediction of the wave energy spectrum was critical to produce good estimates of bottom shear stress, which was sensitive to energy in the long period waves.

  2. Study on the low leakage current of an MIS structure fabricated by ICP-CVD

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, S-Y; Hon, M-H [Department of Materials Science and Engineering, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan, 701 Taiwan (China); Lu, Y-M, E-mail: ymlumit@yahoo.com.tw

    2008-03-15

    As the dimensions of electric devices continue to shrink, it is becoming increasingly important to understand how to obtain good quality gate oxide film materials wilth higher carrier mobility, lower leakage current and greater reliability. All of them have become major concerns in the fabrication of thin film oxide transistors. A novel film deposition method called Inductively Coupled Plasma-Chemical Vapor Deposition (ICP-CVD) has received attraction in the semiconductor industry, because it can be capable of generating high density plasmas at extremely low temperature, resulting in less ion bombardment of the material surface. In this work, we present the results of crystallized silicon dioxide films deposited by inductively coupled plasma chemical vapor deposition technique at an extremely low temperature of 90 deg. C. The value of the refractive index of the crystallized ICP-CVD SiO{sub 2} film depends on the r.f. power of the ICP system, and approximates to be 1.46. This value is comparable to that of SiO{sub 2} films prepared by thermal oxidation. As the r.f. power of ICP applied more than 1250 Watts, still only the (111) diffraction peak is observed by XRD, which implies a very strong preferred orientation or single crystal structure. Too low or too high r.f. power both produces amorphous SiO{sub 2} films. From the I-V curve, the MIS device with a SiO{sub 2} dielectric film has a lower leakage current density of 6.8x10{sup -8}A/cm{sup 2} at 1V as the film prepared at 1750 watts. The highest breakdown field in this study is 15.8 MV/cm. From the FTIR analysis, it was found that more hydrogen atoms incorporate into films and form Si-OH bonds as the r.f. power increases. The existence of Si-OH bonds leads to a poor reliability of the MIS device.

  3. Progressive failure site generation in AlGaN/GaN high electron mobility transistors under OFF-state stress: Weibull statistics and temperature dependence

    International Nuclear Information System (INIS)

    Sun, Huarui; Bajo, Miguel Montes; Uren, Michael J.; Kuball, Martin

    2015-01-01

    Gate leakage degradation of AlGaN/GaN high electron mobility transistors under OFF-state stress is investigated using a combination of electrical, optical, and surface morphology characterizations. The generation of leakage “hot spots” at the edge of the gate is found to be strongly temperature accelerated. The time for the formation of each failure site follows a Weibull distribution with a shape parameter in the range of 0.7–0.9 from room temperature up to 120 °C. The average leakage per failure site is only weakly temperature dependent. The stress-induced structural degradation at the leakage sites exhibits a temperature dependence in the surface morphology, which is consistent with a surface defect generation process involving temperature-associated changes in the breakdown sites

  4. TBHQ Alleviated Endoplasmic Reticulum Stress-Apoptosis and Oxidative Stress by PERK-Nrf2 Crosstalk in Methamphetamine-Induced Chronic Pulmonary Toxicity

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2017-01-01

    Full Text Available Methamphetamine (MA leads to cardiac and pulmonary toxicity expressed as increases in inflammatory responses and oxidative stress. However, some interactions may exist between oxidative stress and endoplasmic reticulum stress (ERS. The current study is designed to investigate if both oxidative stress and ERS are involved in MA-induced chronic pulmonary toxicity and if antioxidant tertiary butylhydroquinone (TBHQ alleviated ERS-apoptosis and oxidative stress by PERK-Nrf2 crosstalk. In this study, the rats were randomly divided into control group, MA-treated group (MA, and MA plus TBHQ-treated group (MA + TBHQ. Chronic exposure to MA resulted in slower growth of weight and pulmonary toxicity of the rats by increasing the pulmonary arterial pressure, promoting the hypertrophy of right ventricle and the remodeling of pulmonary arteries. MA inhibited the Nrf2-mediated antioxidative stress by downregulation of Nrf2, GCS, and HO-1 and upregulation of SOD2. MA increased GRP78 to induce ERS. Overexpression and phosphorylation of PERK rapidly phosphorylated eIF2α, increased ATF4, CHOP, bax, caspase 3, and caspase 12, and decreased bcl-2. These changes can be reversed by antioxidant TBHQ through upregulating expression of Nrf2. The above results indicated that TBHQ can alleviate MA-induced oxidative stress which can accelerate ERS to initiate PERK-dependent apoptosis and that PERK/Nrf2 is likely to be the key crosstalk between oxidative stress and ERS in MA-induced chronic pulmonary toxicity.

  5. Mechanical Stress Promotes Cisplatin-Induced Hepatocellular Carcinoma Cell Death

    Science.gov (United States)

    Riad, Sandra; Bougherara, Habiba

    2015-01-01

    Cisplatin (CisPt) is a commonly used platinum-based chemotherapeutic agent. Its efficacy is limited due to drug resistance and multiple side effects, thereby warranting a new approach to improving the pharmacological effect of CisPt. A newly developed mathematical hypothesis suggested that mechanical loading, when coupled with a chemotherapeutic drug such as CisPt and immune cells, would boost tumor cell death. The current study investigated the aforementioned mathematical hypothesis by exposing human hepatocellular liver carcinoma (HepG2) cells to CisPt, peripheral blood mononuclear cells, and mechanical stress individually and in combination. HepG2 cells were also treated with a mixture of CisPt and carnosine with and without mechanical stress to examine one possible mechanism employed by mechanical stress to enhance CisPt effects. Carnosine is a dipeptide that reportedly sequesters platinum-based drugs away from their pharmacological target-site. Mechanical stress was achieved using an orbital shaker that produced 300 rpm with a horizontal circular motion. Our results demonstrated that mechanical stress promoted CisPt-induced death of HepG2 cells (~35% more cell death). Moreover, results showed that CisPt-induced death was compromised when CisPt was left to mix with carnosine 24 hours preceding treatment. Mechanical stress, however, ameliorated cell death (20% more cell death). PMID:25685789

  6. Mechanical Stress Promotes Cisplatin-Induced Hepatocellular Carcinoma Cell Death

    Directory of Open Access Journals (Sweden)

    Laila Ziko

    2015-01-01

    Full Text Available Cisplatin (CisPt is a commonly used platinum-based chemotherapeutic agent. Its efficacy is limited due to drug resistance and multiple side effects, thereby warranting a new approach to improving the pharmacological effect of CisPt. A newly developed mathematical hypothesis suggested that mechanical loading, when coupled with a chemotherapeutic drug such as CisPt and immune cells, would boost tumor cell death. The current study investigated the aforementioned mathematical hypothesis by exposing human hepatocellular liver carcinoma (HepG2 cells to CisPt, peripheral blood mononuclear cells, and mechanical stress individually and in combination. HepG2 cells were also treated with a mixture of CisPt and carnosine with and without mechanical stress to examine one possible mechanism employed by mechanical stress to enhance CisPt effects. Carnosine is a dipeptide that reportedly sequesters platinum-based drugs away from their pharmacological target-site. Mechanical stress was achieved using an orbital shaker that produced 300 rpm with a horizontal circular motion. Our results demonstrated that mechanical stress promoted CisPt-induced death of HepG2 cells (~35% more cell death. Moreover, results showed that CisPt-induced death was compromised when CisPt was left to mix with carnosine 24 hours preceding treatment. Mechanical stress, however, ameliorated cell death (20% more cell death.

  7. Investigation of the impact of mechanical stress on the properties of silicon strip sensors

    CERN Document Server

    Affolder, Tony; The ATLAS collaboration

    2017-01-01

    The new ATLAS tracker for phase II will be composed of silicon pixel and strip sensor modules. The strip sensor module consists of silicon sensors, boards and readout chips. Adhesives are used to connect the modular components thermally and mechanically. It was shown that the silicon sensor is exposed to mechanical stress, due to temperature difference between construction and operation. Mechanical stress can damage the sensor and can change the electrical properties. The thermal induced tensile stress near to the surface of a silicon sensor in a module was simulated and the results are compared to a cooled module. A four point bending setup was used to measure the maximum tensile stress of silicon detectors and to verify the piezoresistive effects on two recent development sensor types used in ATLAS (ATLAS07 and ATLAS12). Changes in the interstrip, bulk and bias resistance and capacitance as well as the coupling capacitance and the implant resistance were measured. The Leakage current was observed to decreas...

  8. Impacts of the Mesoscale Ocean-Atmosphere Coupling on the Peru-Chile Ocean Dynamics: The Current-Induced Wind Stress Modulation

    Science.gov (United States)

    Oerder, V.; Colas, F.; Echevin, V.; Masson, S.; Lemarié, F.

    2018-02-01

    The ocean dynamical responses to the surface current-wind stress interaction at the oceanic mesoscale are investigated in the South-East Pacific using a high-resolution regional ocean-atmosphere coupled model. Two simulations are compared: one includes the surface current in the wind stress computation while the other does not. In the coastal region, absolute wind velocities are different between the two simulations but the wind stress remains very similar. As a consequence, the mean regional oceanic circulation is almost unchanged. On the contrary, the mesoscale activity is strongly reduced when taking into account the effect of the surface current on the wind stress. This is caused by a weakening of the eddy kinetic energy generation near the coast by the wind work and to intensified offshore eddy damping. We show that, above coherent eddies, the current-stress interaction generates eddy damping through Ekman pumping and eddy kinetic energy dissipation through wind work. This alters significantly the coherent eddy vertical structures compared with the control simulation, weakening the temperature and vorticity anomalies and increasing strongly the vertical velocity anomalies associated to eddies.

  9. Stress-induced self-cannibalism: on the regulation of autophagy by endoplasmic reticulum stress.

    Science.gov (United States)

    Deegan, Shane; Saveljeva, Svetlana; Gorman, Adrienne M; Samali, Afshin

    2013-07-01

    Macroautophagy (autophagy) is a cellular catabolic process which can be described as a self-cannibalism. It serves as an essential protective response during conditions of endoplasmic reticulum (ER) stress through the bulk removal and degradation of unfolded proteins and damaged organelles; in particular, mitochondria (mitophagy) and ER (reticulophagy). Autophagy is genetically regulated and the autophagic machinery facilitates removal of damaged cell components and proteins; however, if the cell stress is acute or irreversible, cell death ensues. Despite these advances in the field, very little is known about how autophagy is initiated and how the autophagy machinery is transcriptionally regulated in response to ER stress. Some three dozen autophagy genes have been shown to be required for the correct assembly and function of the autophagic machinery; however; very little is known about how these genes are regulated by cellular stress. Here, we will review current knowledge regarding how ER stress and the unfolded protein response (UPR) induce autophagy, including description of the different autophagy-related genes which are regulated by the UPR.

  10. Effects of current stressing on the p-Bi2Te3/Sn interfacial reactions

    International Nuclear Information System (INIS)

    Chan, Hsing-Ting; Lin, Chih-Fan; Yen, Yee-Wen; Chen, Chih-Ming

    2016-01-01

    The Sn/p-Bi 2 Te 3 /Sn sandwich-type sample was current stressed with a density of 150 A/cm 2 to investigate the effects of current stressing on the p-Bi 2 Te 3 /Sn interfacial reactions. Asymmetrical heating phenomenon was observed at the anodic Sn/p-Bi 2 Te 3 (50 °C) and cathodic p-Bi 2 Te 3 /Sn (120 °C) interfaces due to the Peltier effect. Besides the Peltier effect, the electromigration effect also influenced the growth of the SnTe phase and therefore polarity growth behavior was observed at the two interfaces. The growth of the SnTe phase at the cathodic p-Bi 2 Te 3 /Sn interface was accelerated because Peltier and electromigration effects drove more Sn atoms (dominant diffusion species) for the phase growth. By measuring the electromigration-induced atomic flux of Sn, the product of diffusivity and effective charge number (D × z*) was calculated to be 6.3 × 10 −9 cm 2 s −1 at 120 °C. - Highlights: • Sn/p-Bi 2 Te 3 /Sn sandwich-type sample is current stressed with a density of 150 A/cm 2 . • Passage of an electric current induces Peltier and electromigration effects. • Peltier effect causes asymmetrical heating at the anode and cathode interfaces. • Both effects accelerate the SnTe growth at the cathode interface. • Sn is the dominant diffusion species identified by a marker experiment.

  11. Carrier Transport of Silver Nanowire Contact to p-GaN and its Influence on Leakage Current of LEDs

    Science.gov (United States)

    Oh, Munsik; Kang, Jae-Wook; Kim, Hyunsoo

    2018-03-01

    The authors investigated the silver nanowires (AgNWs) contact formed on p-GaN. Transmission line model applied to the AgNWs contact to p-GaN produced near ohmic contact with a specific contact resistance (ρ sc) of 10-1˜10-4 Ω·cm2. Noticeably, the contact resistance had a strong bias-voltage (or current-density) dependence associated with a local joule heating effect. Current-voltage-temperature (I-V-T) measurement revealed a strong temperature dependence with respect to ρ sc, indicating that the temperature played a key role of an enhanced carrier transport. The local joule heating at AgNW/GaN interface, however, resulted in a generation of leakage current of light-emitting diodes (LEDs) caused by degradation of AgNW contact.

  12. Drain Current Stress-Induced Instability in Amorphous InGaZnO Thin-Film Transistors with Different Active Layer Thicknesses.

    Science.gov (United States)

    Wang, Dapeng; Zhao, Wenjing; Li, Hua; Furuta, Mamoru

    2018-04-05

    In this study, the initial electrical properties, positive gate bias stress (PBS), and drain current stress (DCS)-induced instabilities of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) with various active layer thicknesses ( T IGZO ) are investigated. As the T IGZO increased, the turn-on voltage ( V on ) decreased, while the subthreshold swing slightly increased. Furthermore, the mobility of over 13 cm²·V −1 ·s −1 and the negligible hysteresis of ~0.5 V are obtained in all of the a-IGZO TFTs, regardless of the T IGZO . The PBS results exhibit that the V on shift is aggravated as the T IGZO decreases. In addition, the DCS-induced instability in the a-IGZO TFTs with various T IGZO values is revealed using current–voltage and capacitance–voltage ( C – V ) measurements. An anomalous hump phenomenon is only observed in the off state of the gate-to-source ( C gs ) curve for all of the a-IGZO TFTs. This is due to the impact ionization that occurs near the drain side of the channel and the generated holes that flow towards the source side along the back-channel interface under the lateral electric field, which cause a lowered potential barrier near the source side. As the T IGZO value increased, the hump in the off state of the C gs curve was gradually weakened.

  13. Acute restraint stress induces endothelial dysfunction: role of vasoconstrictor prostanoids and oxidative stress.

    Science.gov (United States)

    Carda, Ana P P; Marchi, Katia C; Rizzi, Elen; Mecawi, André S; Antunes-Rodrigues, José; Padovan, Claudia M; Tirapelli, Carlos R

    2015-01-01

    We hypothesized that acute stress would induce endothelial dysfunction. Male Wistar rats were restrained for 2 h within wire mesh. Functional and biochemical analyses were conducted 24 h after the 2-h period of restraint. Stressed rats showed decreased exploration on the open arms of an elevated-plus maze (EPM) and increased plasma corticosterone concentration. Acute restraint stress did not alter systolic blood pressure, whereas it increased the in vitro contractile response to phenylephrine and serotonin in endothelium-intact rat aortas. NG-nitro-l-arginine methyl ester (l-NAME; nitric oxide synthase, NOS, inhibitor) did not alter the contraction induced by phenylephrine in aortic rings from stressed rats. Tiron, indomethacin and SQ29548 reversed the increase in the contractile response to phenylephrine induced by restraint stress. Increased systemic and vascular oxidative stress was evident in stressed rats. Restraint stress decreased plasma and vascular nitrate/nitrite (NOx) concentration and increased aortic expression of inducible (i) NOS, but not endothelial (e) NOS. Reduced expression of cyclooxygenase (COX)-1, but not COX-2, was observed in aortas from stressed rats. Restraint stress increased thromboxane (TX)B(2) (stable TXA(2) metabolite) concentration but did not affect prostaglandin (PG)F2α concentration in the aorta. Restraint reduced superoxide dismutase (SOD) activity, whereas concentrations of hydrogen peroxide (H(2)O(2)) and reduced glutathione (GSH) were not affected. The major new finding of our study is that restraint stress increases vascular contraction by an endothelium-dependent mechanism that involves increased oxidative stress and the generation of COX-derived vasoconstrictor prostanoids. Such stress-induced endothelial dysfunction could predispose to the development of cardiovascular diseases.

  14. Estimation of leakage power and delay in CMOS circuits using parametric variation

    Directory of Open Access Journals (Sweden)

    Preeti Verma

    2016-09-01

    Full Text Available With the advent of deep-submicron technologies, leakage power dissipation is a major concern for scaling down portable devices that have burst-mode type integrated circuits. In this paper leakage reduction technique HTLCT (High Threshold Leakage Control Transistor is discussed. Using high threshold transistors at the place of low threshold leakage control transistors, result in more leakage power reduction as compared to LCT (leakage control transistor technique but at the scarifies of area and delay. Further, analysis of effect of parametric variation on leakage current and propagation delay in CMOS circuits is performed. It is found that the leakage power dissipation increases with increasing temperature, supply voltage and aspect ratio. However, opposite pattern is noticed for the propagation delay. Leakage power dissipation for LCT NAND gate increases up to 14.32%, 6.43% and 36.21% and delay decreases by 22.5%, 42% and 9% for variation of temperature, supply voltage and aspect ratio. Maximum peak of equivalent output noise is obtained as 127.531 nV/Sqrt(Hz at 400 mHz.

  15. Experimental evaluation of clinical colon anastomotic leakage.

    Science.gov (United States)

    Pommergaard, Hans-Christian

    2014-03-01

    Colorectal anastomotic leakage remains a frequent and serious complication in gastrointestinal surgery. Patient and procedure related risk factors for anastomotic leakage have been identified. However, the responsible pathophysiological mechanisms are still unknown. Among these, ischemia and insufficient surgical technique have been suggested to play a central role. Animal models are valuable means to evaluate pathophysiological mechanisms and may be used to test preventive measures aiming at reducing the risk of anastomotic leakage, such as external anastomotic coating. The aim of this thesis was to: Clarify the best suited animal to model clinical anastomotic leakage in humans; Create animal models mimicking anastomotic leakage in humans induced by insufficient surgical technique and tissue ischemia; Determine the best suited coating materials to prevent anastomotic leakage. This study is a systematic review using the databases MEDLINE and Rex. MEDLINE was searched up to October 2010 to identify studies on experimental animal models of clinical colon anastomotic leakage. From the Rex database, textbooks on surgical aspects as well as gastrointestinal physiology and anatomy of experimental animals were identified. The results indicated that the mouse and the pig are the best suited animals to evaluate clinical anastomotic leakage. However, the pig model is less validated and more costly to use compared with the mouse. Most frequently, rats are used as models. However, extreme interventions are needed to create clinical leakage in these animals. The knowledge from this study formed the basis for selecting the animal species most suited for the models in the next studies. STUDY 2: In this experimental study, technically insufficient colonic anastomoses were performed in 110 C57BL/6 mice. The number of sutures in the intervention group was reduced to produce a suitable leakage rate. Moreover, the analgesia and suture material were changed in order to optimize the

  16. FNR demonstration experiments Part I: Beam port leakage currents and spectra

    International Nuclear Information System (INIS)

    Wehe, D.K.; King, J.S.

    1983-01-01

    The goal of the NR-LEU experimental program has been to measure the changes in numerous reactor characteristics when the conventional HEU core is replaced by a complete LEU fueled core or by a single LEU element in the normal HEU core. We have observed comparisons in a) thermal flux intensity, spatial distribution and cadmium ratios, both in the core and in the light and heavy water reflectors, b) fast flux intensity and spectral shape at a special element within the core, c) the thermal leakage flux intensity at the exit positions of several beam ports and its spectral shape at one beam port, d) shim and control rod worths, e) temperature coefficient of reactivity, and f) xenon poison worth. The NR is a 2 MW light water pool reactor, reflected on three faces by light water and on one face by D 2 O, composed of MTR plate fuel elements. Figure shows a plan view of the core grid, D 2 O reflector tank, and beam ports. The conventional HEU fuel element contains eighteen MTR Al plates 30 in x 24 in x 0.06 in. The center 0.02 in of each plate is 93% U-235 enriched UAl x . A normal equilibrium HEU core loading is outlined. Each new HEU element contains ∼ 140 grams of U-235. The LEU low enrichment fuel retains the same plate and element geometry but the fuel is contained in a central 0.03 in thick UA l x matrix with 19.5% U-235 enrichment. Each new LEU element contains ov 167.3 grams U-235. In-core neutron fluxes were routinely mapped by a rhodium SPND and by many wire and foil activations. The same data, but in more restricted positions, were obtained through the light water reflector (south) and D 2 O reflector tank (north). Beam port leakage currents were measured during all power cycles, by transmission fission chambers at the exits of ports GI, and J, by a B3 detector at A-port, and by a prompt detector at the F-port exit. Thermal neutron spectra for both HEU and LEU cores were measured at I port using a single crystal silicon diffractometer. These measurements

  17. Lung protein leakage in feline septic shock.

    Science.gov (United States)

    Schützer, K M; Larsson, A; Risberg, B; Falk, A

    1993-06-01

    The aim of the present study was to explore lung microvascular leakage of protein and water in a feline model of septic shock, using a double isotope technique with external gamma camera detection and gravimetric lung water measurements. The experiments were performed on artificially ventilated cats. One group of cats (n = 8) was given an infusion of live Escherichia coli bacteria, and another group (n = 5) served as a control group receiving saline. Plasma transferrin was radiolabeled in vivo with indium-113m-chloride, and erythrocytes were labeled with technetium-99m. The distribution of these isotopes in the lungs was continuously measured with a gamma camera. A normalized slope index (NSI) was calculated, indicative of the transferrin accumulation corrected for changes in local blood volume that reflect protein leakage. In the septic group there was a protein leakage after bacterial infusion, with a NSI of 39 x 10(-4) +/- 5 x 10(-4) min-1 (mean +/- SEM), and the PaO2 diminished from 21 +/- 1 to 9.5 +/- 1 kPa. In control cats a slight protein leakage with a NSI of 9 +/- 10(-4) +/- 2 x 10(-4) min-1 was detected, probably caused by the operative procedure, but PaO2 did not change. Wet-to-dry-weight ratios of postmortem lungs were not significantly different between the groups. It was concluded that an intravenous infusion of live E. coli bacteria induces a lung capillary protein leakage without increased lung water and a concomitantly disturbed gas exchange.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. N-acetylcysteine prevents stress-induced anxiety behavior in zebrafish.

    Science.gov (United States)

    Mocelin, Ricieri; Herrmann, Ana P; Marcon, Matheus; Rambo, Cassiano L; Rohden, Aline; Bevilaqua, Fernanda; de Abreu, Murilo Sander; Zanatta, Leila; Elisabetsky, Elaine; Barcellos, Leonardo J G; Lara, Diogo R; Piato, Angelo L

    2015-12-01

    Despite the recent advances in understanding the pathophysiology of anxiety disorders, the pharmacological treatments currently available are limited in efficacy and induce serious side effects. A possible strategy to achieve clinical benefits is drug repurposing, i.e., discovery of novel applications for old drugs, bringing new treatment options to the market and to the patients who need them. N-acetylcysteine (NAC), a commonly used mucolytic and paracetamol antidote, has emerged as a promising molecule for the treatment of several neuropsychiatric disorders. The mechanism of action of this drug is complex, and involves modulation of antioxidant, inflammatory, neurotrophic and glutamate pathways. Here we evaluated the effects of NAC on behavioral parameters relevant to anxiety in zebrafish. NAC did not alter behavioral parameters in the novel tank test, prevented the anxiety-like behaviors induced by an acute stressor (net chasing), and increased the time zebrafish spent in the lit side in the light/dark test. These data may indicate that NAC presents an anti-stress effect, with the potential to prevent stress-induced psychiatric disorders such as anxiety and depression. The considerable homology between mammalian and zebrafish genomes invests the current data with translational validity for the further clinical trials needed to substantiate the use of NAC in anxiety disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Serotonergic involvement in stress-induced vasopressin and oxytocin secretion

    DEFF Research Database (Denmark)

    Jørgensen, Henrik; Knigge, Ulrich; Kjaer, Andreas

    2002-01-01

    OBJECTIVE: To investigate the involvement of serotonin (5-hydroxytryptamine - 5-HT) receptors in mediation of stress-induced arginine vasopressin (AVP) and oxytocin (OT) secretion in male rats. DESIGN: Experiments on laboratory rats with control groups. METHODS: Different stress paradigms were...... the swim stress-induced OT response. CONCLUSION: 5-HT(2A), 5-HT(2C) and possibly 5-HT(3) and 5-HT(4) receptors, but not 5-HT(1A) receptors, are involved in the restraint stress-induced AVP secretion. 5-HT does not seem to be involved in the dehydration- or hemorrhage-induced AVP response. The restraint...... stress-induced OT response seems to be mediated via 5-HT(1A), 5-HT(2A) and 5-HT(2C) receptors. The dehydration and hemorrhage-induced OT responses are at least mediated by the 5-HT(2A) and 5-HT(2C) receptors. The 5-HT(3) and 5-HT(4) receptors are not involved in stress-induced OT secretion....

  20. Interindividual differences in stress sensitivity: basal and stress-induced cortisol levels differentially predict neural vigilance processing under stress.

    Science.gov (United States)

    Henckens, Marloes J A G; Klumpers, Floris; Everaerd, Daphne; Kooijman, Sabine C; van Wingen, Guido A; Fernández, Guillén

    2016-04-01

    Stress exposure is known to precipitate psychological disorders. However, large differences exist in how individuals respond to stressful situations. A major marker for stress sensitivity is hypothalamus-pituitary-adrenal (HPA)-axis function. Here, we studied how interindividual variance in both basal cortisol levels and stress-induced cortisol responses predicts differences in neural vigilance processing during stress exposure. Implementing a randomized, counterbalanced, crossover design, 120 healthy male participants were exposed to a stress-induction and control procedure, followed by an emotional perception task (viewing fearful and happy faces) during fMRI scanning. Stress sensitivity was assessed using physiological (salivary cortisol levels) and psychological measures (trait questionnaires). High stress-induced cortisol responses were associated with increased stress sensitivity as assessed by psychological questionnaires, a stronger stress-induced increase in medial temporal activity and greater differential amygdala responses to fearful as opposed to happy faces under control conditions. In contrast, high basal cortisol levels were related to relative stress resilience as reflected by higher extraversion scores, a lower stress-induced increase in amygdala activity and enhanced differential processing of fearful compared with happy faces under stress. These findings seem to reflect a critical role for HPA-axis signaling in stress coping; higher basal levels indicate stress resilience, whereas higher cortisol responsivity to stress might facilitate recovery in those individuals prone to react sensitively to stress. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  1. Non-fistulous urinary leakage among women attending a Nigerian family planning clinic

    Directory of Open Access Journals (Sweden)

    Ijaiya MA

    2011-12-01

    Full Text Available Munir'deen A Ijaiya1, Hadijat O Raji1, Abiodun P Aboyeji1, Kike T Adesina1, Idowu O Adebara2, Grace G Ezeoke11Department of Obstetrics and Gynaecology, University of Ilorin Teaching Hospital, Ilorin, Nigeria; 2Department of Obstetrics and Gynaecology, Federal Medical Centre, Ido-Ekiti, NigeriaAbstract: Urinary leakage is an important gynecological challenge, which has a substantial impact on quality of life. The aim of this study was to determine the prevalence and types of non-fistulous urinary leakage among women attending the family planning clinic of the University of Ilorin teaching hospital, Ilorin, Nigeria. The study was a cross-sectional study carried out between January 3 and April 25 2009. One hundred and two women experienced urinary leakage out of 333 women interviewed, giving a prevalence rate of 30.6%. Stress incontinence was the most common urinary leakage (prevalence rate 12.0%. This is followed by urge incontinence (10.8%, urinary incontinence (4.8%, and overflow incontinence (3.0%. None of the women afflicted sought medical help. Conclusively, this study has demonstrated that non-fistulous urinary leakage is a common problem among women of reproductive age in this environment.Keywords: non-fistulous urinary leakage, family planning, women, prevalence, types

  2. Practical Leakage-Resilient Symmetric Cryptography

    DEFF Research Database (Denmark)

    Faust, Sebastian; Pietrzak, Krzysztof; Schipper, Joachim

    2012-01-01

    Leakage resilient cryptography attempts to incorporate side-channel leakage into the black-box security model and designs cryptographic schemes that are provably secure within it. Informally, a scheme is leakage-resilient if it remains secure even if an adversary learns a bounded amount of arbitr......Leakage resilient cryptography attempts to incorporate side-channel leakage into the black-box security model and designs cryptographic schemes that are provably secure within it. Informally, a scheme is leakage-resilient if it remains secure even if an adversary learns a bounded amount...

  3. Model for Electromagnetic Information Leakage

    OpenAIRE

    Mao Jian; Li Yongmei; Zhang Jiemin; Liu Jinming

    2013-01-01

    Electromagnetic leakage will happen in working information equipments; it could lead to information leakage. In order to discover the nature of information in electromagnetic leakage, this paper combined electromagnetic theory with information theory as an innovative research method. It outlines a systematic model of electromagnetic information leakage, which theoretically describes the process of information leakage, intercept and reproduction based on electromagnetic radiation, and ana...

  4. Stress-induced magnetic anisotropy in nanocrystalline alloys

    International Nuclear Information System (INIS)

    Varga, L.K.; Gercsi, Zs.; Kovacs, Gy.; Kakay, A.; Mazaleyrat, F.

    2003-01-01

    Stress-annealing experiments were extended to both nanocrystalline alloy families, Finemet and Nanoperm (Hitperm), and, for comparison, to amorphous Fe 62 Nb 8 B 30 alloy. For both Finemet and bulk amorphous, stress-annealing results in a strong induced transversal anisotropy (flattening of hysteresis loop) but yields longitudinal induced anisotropy (square hysteresis loop) in Nanoperm and Hitperm. These results are interpreted in terms of back-stress theory

  5. A Grid Connected Transformerless Inverter and its Model Predictive Control Strategy with Leakage Current Elimination Capability

    Directory of Open Access Journals (Sweden)

    J. Fallah Ardashir

    2017-06-01

    Full Text Available This paper proposes a new single phase transformerless Photovoltaic (PV inverter for grid connected systems. It consists of six power switches, two diodes, one capacitor and filter at the output stage. The neutral of the grid is directly connected to the negative terminal of the source. This results in constant common mode voltage and zero leakage current. Model Predictive Controller (MPC technique is used to modulate the converter to reduce the output current ripple and filter requirements. The main advantages of this inverter are compact size, low cost, flexible grounding configuration. Due to brevity, the operating principle and analysis of the proposed circuit are presented in brief. Simulation and experimental results of 200W prototype are shown at the end to validate the proposed topology and concept. The results obtained clearly verifies the performance of the proposed inverter and its practical application for grid connected PV systems.

  6. Age-related effects of chronic restraint stress on ethanol drinking, ethanol-induced sedation, and on basal and stress-induced anxiety response.

    Science.gov (United States)

    Fernández, Macarena Soledad; Fabio, María Carolina; Miranda-Morales, Roberto Sebastián; Virgolini, Miriam B; De Giovanni, Laura N; Hansen, Cristian; Wille-Bille, Aranza; Nizhnikov, Michael E; Spear, Linda P; Pautassi, Ricardo Marcos

    2016-03-01

    Adolescents are sensitive to the anxiolytic effect of ethanol, and evidence suggests that they may be more sensitive to stress than adults. Relatively little is known, however, about age-related differences in stress modulation of ethanol drinking or stress modulation of ethanol-induced sedation and hypnosis. We observed that chronic restraint stress transiently exacerbated free-choice ethanol drinking in adolescent, but not in adult, rats. Restraint stress altered exploration patterns of a light-dark box apparatus in adolescents and adults. Stressed animals spent significantly more time in the white area of the maze and made significantly more transfers between compartments than their non-stressed peers. Behavioral response to acute stress, on the other hand, was modulated by prior restraint stress only in adults. Adolescents, unlike adults, exhibited ethanol-induced motor stimulation in an open field. Stress increased the duration of loss of the righting reflex after a high ethanol dose, yet this effect was similar at both ages. Ethanol-induced sleep time was much higher in adult than in adolescent rats, yet stress diminished ethanol-induced sleep time only in adults. The study indicates age-related differences that may increase the risk for initiation and escalation in alcohol drinking. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. ATR confinement leakage determination

    International Nuclear Information System (INIS)

    Kuan, P.; Buescher, B.J.

    1998-01-01

    The air leakage rate from the Advanced Test Reactor (ATR) confinement is an important parameter in estimating hypothesized accidental releases of radiation to the environment. The leakage rate must be determined periodically to assure that the confinement has not degraded with time and such determination is one of the technical safety requirements of ATR operation. This paper reviews the methods of confinement leakage determination and presents an analysis of leakage determination under windy conditions, which can complicate the interpretation of the determined leakage rates. The paper also presents results of analyses of building air exchange under windy conditions. High wind can enhance air exchange and this could increase the release rates of radioisotopes following an accident

  8. Structural and leakage integrity assessment of WWER steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Splichal, K.; Otruba, J. [Nuclear Research Inst., Rez (Switzerland)

    1997-12-31

    The integrity of heat exchange tubes may influence the life-time of WWER steam generators and appears to be an important criterion for the evaluation of their safety and operational reliability. The basic requirement is to assure a very low probability of radioactive water leakage, preventing unstable crack growth and sudden tube rupture. These requirements led to development of permissible limits for primary to secondary leak evolution and heat exchange tubes plugging based on eddy current test inspection. The stress corrosion cracking and pitting are the main corrosion damage of WWER heat exchange tubes and are initiated from the outer surface. They are influenced by water chemistry, temperature and tube wall stress level. They take place under crevice corrosion condition and are indicated especially (1) under the tube support plates, where up to 90-95 % of defects detected by the ECT method occur, and (2) on free spans under tube deposit layers. Both the initiation and crack growth cause thinning of the tube wall and lead to part thickness cracks and through-wall cracks, oriented above all in the axial direction. 10 refs.

  9. Structural and leakage integrity assessment of WWER steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Splichal, K; Otruba, J [Nuclear Research Inst., Rez (Switzerland)

    1998-12-31

    The integrity of heat exchange tubes may influence the life-time of WWER steam generators and appears to be an important criterion for the evaluation of their safety and operational reliability. The basic requirement is to assure a very low probability of radioactive water leakage, preventing unstable crack growth and sudden tube rupture. These requirements led to development of permissible limits for primary to secondary leak evolution and heat exchange tubes plugging based on eddy current test inspection. The stress corrosion cracking and pitting are the main corrosion damage of WWER heat exchange tubes and are initiated from the outer surface. They are influenced by water chemistry, temperature and tube wall stress level. They take place under crevice corrosion condition and are indicated especially (1) under the tube support plates, where up to 90-95 % of defects detected by the ECT method occur, and (2) on free spans under tube deposit layers. Both the initiation and crack growth cause thinning of the tube wall and lead to part thickness cracks and through-wall cracks, oriented above all in the axial direction. 10 refs.

  10. Structural and leakage integrity assessment of WWER steam generator tubes

    International Nuclear Information System (INIS)

    Splichal, K.; Otruba, J.

    1997-01-01

    The integrity of heat exchange tubes may influence the life-time of WWER steam generators and appears to be an important criterion for the evaluation of their safety and operational reliability. The basic requirement is to assure a very low probability of radioactive water leakage, preventing unstable crack growth and sudden tube rupture. These requirements led to development of permissible limits for primary to secondary leak evolution and heat exchange tubes plugging based on eddy current test inspection. The stress corrosion cracking and pitting are the main corrosion damage of WWER heat exchange tubes and are initiated from the outer surface. They are influenced by water chemistry, temperature and tube wall stress level. They take place under crevice corrosion condition and are indicated especially (1) under the tube support plates, where up to 90-95 % of defects detected by the ECT method occur, and (2) on free spans under tube deposit layers. Both the initiation and crack growth cause thinning of the tube wall and lead to part thickness cracks and through-wall cracks, oriented above all in the axial direction

  11. Study of scratch-induced stress corrosion cracking for steam generator tubes and scratch control

    International Nuclear Information System (INIS)

    Meng, F.; Xu, X.; Liu, X.; Wang, J.

    2014-01-01

    This paper introduces field cases for scratch-induced stress corrosion cracking (SISCC) of steam generator tubes in PWR and current studies in laboratories. According to analysis result of broke tubes, scratches caused intergranular stress corrosion cracking (IGSCC) with outburst. The effect of microstructure for nickel-base alloys, residual stresses caused by scratching process and water chemistry on SISCC and possible mechanism of SISCC are discussed. The result shows that scratch-induced microstructure evolution contributes to SISCC significantly. The causes of scratches during steam generator tubing manufacturing and installation process are stated and improved reliability with scratch control is highlighted for steam generator tubes in newly built nuclear power plants. (author)

  12. Study of scratch-induced stress corrosion cracking for steam generator tubes and scratch control

    Energy Technology Data Exchange (ETDEWEB)

    Meng, F.; Xu, X.; Liu, X. [Shanghai Nuclear Engineering Research and Design Institute, Shanghai (China); Wang, J. [Chinese Academy of Sciences, Institute of Metal Research, Shenyang (China)

    2014-07-01

    This paper introduces field cases for scratch-induced stress corrosion cracking (SISCC) of steam generator tubes in PWR and current studies in laboratories. According to analysis result of broke tubes, scratches caused intergranular stress corrosion cracking (IGSCC) with outburst. The effect of microstructure for nickel-base alloys, residual stresses caused by scratching process and water chemistry on SISCC and possible mechanism of SISCC are discussed. The result shows that scratch-induced microstructure evolution contributes to SISCC significantly. The causes of scratches during steam generator tubing manufacturing and installation process are stated and improved reliability with scratch control is highlighted for steam generator tubes in newly built nuclear power plants. (author)

  13. Severe, multimodal stress exposure induces PTSD-like characteristics in a mouse model of single prolonged stress.

    Science.gov (United States)

    Perrine, Shane A; Eagle, Andrew L; George, Sophie A; Mulo, Kostika; Kohler, Robert J; Gerard, Justin; Harutyunyan, Arman; Hool, Steven M; Susick, Laura L; Schneider, Brandy L; Ghoddoussi, Farhad; Galloway, Matthew P; Liberzon, Israel; Conti, Alana C

    2016-04-15

    Appropriate animal models of posttraumatic stress disorder (PTSD) are needed because human studies remain limited in their ability to probe the underlying neurobiology of PTSD. Although the single prolonged stress (SPS) model is an established rat model of PTSD, the development of a similarly-validated mouse model emphasizes the benefits and cross-species utility of rodent PTSD models and offers unique methodological advantages to that of the rat. Therefore, the aims of this study were to develop and describe a SPS model for mice and to provide data that support current mechanisms relevant to PTSD. The mouse single prolonged stress (mSPS) paradigm, involves exposing C57Bl/6 mice to a series of severe, multimodal stressors, including 2h restraint, 10 min group forced swim, exposure to soiled rat bedding scent, and exposure to ether until unconsciousness. Following a 7-day undisturbed period, mice were tested for cue-induced fear behavior, effects of paroxetine on cue-induced fear behavior, extinction retention of a previously extinguished fear memory, dexamethasone suppression of corticosterone (CORT) response, dorsal hippocampal glucocorticoid receptor protein and mRNA expression, and prefrontal cortex glutamate levels. Exposure to mSPS enhanced cue-induced fear, which was attenuated by oral paroxetine treatment. mSPS also disrupted extinction retention, enhanced suppression of stress-induced CORT response, increased mRNA expression of dorsal hippocampal glucocorticoid receptors and decreased prefrontal cortex glutamate levels. These data suggest that the mSPS model is a translationally-relevant model for future PTSD research with strong face, construct, and predictive validity. In summary, mSPS models characteristics relevant to PTSD and this severe, multimodal stress modifies fear learning in mice that coincides with changes in the hypothalamo-pituitary-adrenal (HPA) axis, brain glucocorticoid systems, and glutamatergic signaling in the prefrontal cortex

  14. Leakage pattern of linear accelerator treatment heads from multiple vendors

    International Nuclear Information System (INIS)

    Lonski, P.R.; Taylor, M.L.; Franich, R.D.; Harty, P.; Clements, N.; Kron, T.

    2011-01-01

    Full text: Patient life expectancy post-radiotherapy is becoming longer. Therefore, secondary cancers caused by radiotherapy treatment have more time to develop. Increasing attention is being given to out-of-field dose resulting from scatter and accelerator head leakage. Dose leakage from equivalent positions on Varian600C, Varian21-X, Siemens Primus and Elekta Synergy-II linacs were measured with TLD 1 00 H dosimeter chips and compared. Treatment parameters such as field size and beam energy were altered. Leakage doses are presented as a percentage of the dose to isocentre (5 Gy). Results illustrate significant variations in leakage dose between linac models where no model emits consistently lower amounts of radiation leakage for all treatment parameters. Results are shown below. Leakage through the collimator assembly in different units is varying as a function of location and unit design by more than a factor of 10. Differences are more pronounced in comparing Varian or Elekta models, which are fitted with an additional collimator separate from the MLC leaves, to the Siemens model, which uses MLC leaves as its only secondary collimator. Further measurements are currently being taken at the patient plane with a directional detector system to determine the spatial distribution of high leakage sources.

  15. Differential antioxidative responses to dehydration-induced oxidative stress in core set of foxtail millet cultivars [Setaria italica (L.)].

    Science.gov (United States)

    Lata, Charu; Jha, Sarita; Dixit, Vivek; Sreenivasulu, Nese; Prasad, Manoj

    2011-10-01

    Foxtail millet (Setaria italica L.) known as a relatively drought-tolerant crop across the world is grown in arid and semi-arid regions. To the best of our knowledge, no systematic study on drought tolerance screening of foxtail millet germplasm being a drought-tolerant crop has been reported so far. To explore genetic diversity of drought-induced oxidative stress tolerance in foxtail millet, we employed lipid peroxidation measure to assess membrane integrity under stress as biochemical marker to screen 107 cultivars and classified the genotypes as highly tolerant, tolerant, sensitive, and highly sensitive. From this comprehensive screening, four cultivars showing differential response to dehydration tolerance were selected to understand the physiological and biochemical basis of tolerance mechanisms. The dehydration-tolerant cultivars (IC-403579 and Prasad) showed considerably lower levels of lipid peroxidation and electrolyte leakage as compared with dehydration-sensitive cultivars (IC-480117 and Lepakshi), indicating better cell membrane integrity in tolerant cultivars. Correspondingly, tolerant genotypes maintained higher activity of catalase (EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11), and glutathione reductase (GR; EC 1.6.4.2) across different time-course period of polyethylene glycol (PEG) treatments in comparison to sensitive ones. The above biochemical results were further validated through quantitative real-time PCR analysis of APX and GR, whose transcripts were substantially induced by PEG treatments in tolerant cultivars. These results suggest that tolerant cultivars possess wider array of antioxidant machinery with efficient ascorbate-glutathione pathway to cope with drought-induced oxidative stress.

  16. A study on anti-stress property of Nardostachys jatamamsi on stress induced Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Shilpashree R.

    2011-09-01

    Full Text Available Stress is a feeling that’s created when we react to particular events. It s the body’s way of rising to a challenge and preparing to meet a tough situation with focus, strength, stamina, and heightened alertness. As a result of the stress immune system can be suppressed by chronic stress opening to increased infections and increasing the risk of autoimmune diseases. So one has to learn away to overcome stress. Here is an attempt made to overcome the stress induced in Drosophila melanogaster a model organism, in this study. Methotrexate is used to induce the stress at different concentration taking different group of flies and a Nardostachys jatamamsi plant extract having antistress property is used to relieve the stress induced. This stress relieve measured by the various stress related enzymes like catalase and Superoxide dismutase by this antistress property of the plant Nardostachys jatamamsi was shown.

  17. Universal leakage elimination

    International Nuclear Information System (INIS)

    Byrd, Mark S.; Lidar, Daniel A.; Wu, L.-A.; Zanardi, Paolo

    2005-01-01

    'Leakage' errors are particularly serious errors which couple states within a code subspace to states outside of that subspace, thus destroying the error protection benefit afforded by an encoded state. We generalize an earlier method for producing leakage elimination decoupling operations and examine the effects of the leakage eliminating operations on decoherence-free or noiseless subsystems which encode one logical, or protected qubit into three or four qubits. We find that by eliminating a large class of leakage errors, under some circumstances, we can create the conditions for a decoherence-free evolution. In other cases we identify a combined decoherence-free and quantum error correcting code which could eliminate errors in solid-state qubits with anisotropic exchange interaction Hamiltonians and enable universal quantum computing with only these interactions

  18. Differential effects of stress-induced cortisol responses on recollection and familiarity-based recognition memory.

    Science.gov (United States)

    McCullough, Andrew M; Ritchey, Maureen; Ranganath, Charan; Yonelinas, Andrew

    2015-09-01

    Stress-induced changes in cortisol can impact memory in various ways. However, the precise relationship between cortisol and recognition memory is still poorly understood. For instance, there is reason to believe that stress could differentially affect recollection-based memory, which depends on the hippocampus, and familiarity-based recognition, which can be supported by neocortical areas alone. Accordingly, in the current study we examined the effects of stress-related changes in cortisol on the processes underlying recognition memory. Stress was induced with a cold-pressor test after incidental encoding of emotional and neutral pictures, and recollection and familiarity-based recognition memory were measured one day later. The relationship between stress-induced cortisol responses and recollection was non-monotonic, such that subjects with moderate stress-related increases in cortisol had the highest levels of recollection. In contrast, stress-related cortisol responses were linearly related to increases in familiarity. In addition, measures of cortisol taken at the onset of the experiment showed that individuals with higher levels of pre-learning cortisol had lower levels of both recollection and familiarity. The results are consistent with the proposition that hippocampal-dependent memory processes such as recollection function optimally under moderate levels of stress, whereas more cortically-based processes such as familiarity are enhanced even with higher levels of stress. These results indicate that whether post-encoding stress improves or disrupts recognition memory depends on the specific memory process examined as well as the magnitude of the stress-induced cortisol response. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Stress memory induced rearrangements of HSP transcription, photosystem II photochemistry and metabolism of tall fescue (Festuca arundinacea Schreb. in response to high-temperature stress

    Directory of Open Access Journals (Sweden)

    Tao eHu

    2015-06-01

    Full Text Available When plants are pre-exposed to stress, they can produce some stable signals and physiological reactions that may be carried forward as ‘stress memory’. However, there is insufficient information about is known about plants’ stress memory responses mechanisms. Here, two tall fescue genotypes, heat-tolerant PI 574522 and heat-sensitive PI 512315, were subjected to recurring high-temperature pre-acclimation treatment. Two heat shock protein (HSP genes, LMW-HSP and HMW-HSP, exhibited transcriptional memory for their higher transcript abundance during one or more subsequent stresses (S2, S3, S4 relative to the first stress (S1, and basal transcript levels during the recovery states (R1, R2 and R3. Activated transcriptional memory from two trainable genes could persist up to 4 days, and induce higher thermotolerance in tall fescue. This was confirmed by greater turf quality and lower electrolyte leakage. Pre-acclimation treatment inhibited the decline at steps of O-J-I-P and energy transport fluxes in active Photosystem II reaction center (PSII RC for both tall fescue genotypes. The heat stress memory was associated with major shifts in leaf metabolite profiles. Furthermore, there was an exclusive increase in leaf organic acids (citric acid, malic acid, tris phosphoric acid, threonic acid, sugars (sucrose, glucose, idose, allose, talose, glucoheptose, tagatose, psicose, amino acids (serine, proline, pyroglutamic acid, glycine, alanine and one fatty acid (butanoic acid in pre-acclimated plants. These discoveries involved in transcriptional memory, PSII RC energy transport and metabolite profiles could provide new insights into the plant high–temperature response process.

  20. Super high voltage Schottky diode with low leakage current for x- and γ-ray detector application

    International Nuclear Information System (INIS)

    Kosyachenko, L. A.; Sklyarchuk, V. M.; Sklyarchuk, O. F.; Maslyanchuk, O. L.; Gnatyuk, V. A.; Aoki, T.

    2009-01-01

    A significant improvement in x-/γ-ray detector performance has been achieved by forming both rectifying and near-Ohmic contacts by the deposition of Ni on opposite surfaces of semi-insulating CdTe crystals pretreated by special chemical etching and Ar-ion bombardment with different parameters. The reduced injection of the minority carriers from the near-Ohmic contact in the neutral part of the diode provides low leakage current even at high bias ( 2 at 2000 V and 293 K). The electrical properties of the detectors are well described quantitatively by the generation-recombination Sah-Noyce-Shockley theory excepting the high reverse voltage range where some injection of minority carriers takes place

  1. Ion beam induced stress formation and relaxation in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, T., E-mail: Tobias.Steinbach@uni-jena.de [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany); Reupert, A.; Schmidt, E.; Wesch, W. [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany)

    2013-07-15

    Ion irradiation of crystalline solids leads not only to defect formation and amorphization but also to mechanical stress. In the past, many investigations in various materials were performed focusing on the ion beam induced damage formation but only several experiments were done to investigate the ion beam induced stress evolution. Especially in microelectronic devices, mechanical stress leads to several unwanted effects like cracking and peeling of surface layers as well as changing physical properties and anomalous diffusion of dopants. To study the stress formation and relaxation process in semiconductors, crystalline and amorphous germanium samples were irradiated with 3 MeV iodine ions at different ion fluence rates. The irradiation induced stress evolution was measured in situ with a laser reflection technique as a function of ion fluence, whereas the damage formation was investigated by means of Rutherford backscattering spectrometry. The investigations show that mechanical stress builds up at low ion fluences as a direct consequence of ion beam induced point defect formation. However, further ion irradiation causes a stress relaxation which is attributed to the accumulation of point defects and therefore the creation of amorphous regions. A constant stress state is reached at high ion fluences if a homogeneous amorphous surface layer was formed and no further ion beam induced phase transition took place. Based on the results, we can conclude that the ion beam induced stress evolution seems to be mainly dominated by the creation and accumulation of irradiation induced structural modification.

  2. Laser-induced stresses versus mechanical stress power measurements during laser ablation of solids

    International Nuclear Information System (INIS)

    Shannon, M.A.; Russo, R.E.

    1995-01-01

    Laser-induced stresses resulting from high-power laser-material interactions have been studied extensively. However, the rate of change in mechanical energy, or stress power, due to laser-induced stresses has only recently been investigated. An unanswered question for monitoring laser-material interactions in the far-field is whether stress power differs from stresses measured, particularly with respect to laser-energy coupling to a solid target. This letter shows experimental acoustic data which demonstrate that stress power measured in the far field of the target shows changes in laser-energy coupling, whereas the stresses measured do not. For the ambient medium above the target, stress power and stress together reflect changes in laser-energy coupling. copyright 1995 American Institute of Physics

  3. Uranium induces oxidative stress in lung epithelial cells

    International Nuclear Information System (INIS)

    Periyakaruppan, Adaikkappan; Kumar, Felix; Sarkar, Shubhashish; Sharma, Chidananda S.; Ramesh, Govindarajan T.

    2007-01-01

    Uranium compounds are widely used in the nuclear fuel cycle, antitank weapons, tank armor, and also as a pigment to color ceramics and glass. Effective management of waste uranium compounds is necessary to prevent exposure to avoid adverse health effects on the population. Health risks associated with uranium exposure includes kidney disease and respiratory disorders. In addition, several published results have shown uranium or depleted uranium causes DNA damage, mutagenicity, cancer and neurological defects. In the current study, uranium toxicity was evaluated in rat lung epithelial cells. The study shows uranium induces significant oxidative stress in rat lung epithelial cells followed by concomitant decrease in the antioxidant potential of the cells. Treatment with uranium to rat lung epithelial cells also decreased cell proliferation after 72 h in culture. The decrease in cell proliferation was attributed to loss of total glutathione and superoxide dismutase in the presence of uranium. Thus the results indicate the ineffectiveness of antioxidant system's response to the oxidative stress induced by uranium in the cells. (orig.)

  4. Effects of Chemistry Parameters of Primary Water affecting Leakage of Steam Generator Tube Cracks

    Energy Technology Data Exchange (ETDEWEB)

    Shin, D. M.; Cho, N. C.; Kang, Y. S.; Lee, K. H. [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    Degradation of steam generator (SG) tubes can affect pressure boundary tightness. As a defense-in-depth measure, primary to secondary leak monitoring program for steam generators is implemented, and operation is allowed under leakage limits in nuclear power plants. Chemistry parameters that affect steam generator tube leakage due to primary water stress corrosion cracking (PWSCC) are investigated in this study. Tube sleeves were installed to inhibit leakage and improve tube integrity as a part of maintenance methods. Steam generators occurred small leak during operation have been replaced with new steam generators according to plant maintenance strategies. The correlations between steam generator leakage and chemistry parameters are presented. Effects of primary water chemistry parameters on leakage from tube cracks were investigated for the steam generators experiencing small leak. Unit A experienced small leakage from steam generator tubes in the end of operation cycle. It was concluded that increased solubility of oxides due to high pHT could make leakage paths, and low boron concentration lead to less blockage in cracks. Increased dissolved hydrogen may retard crack propagations, but it did not reduce leak rate of the leaking steam generator. In order to inhibit and reduce leakage, pH{sub T} was controlled by servicing cation bed operation. The test results of decreasing pHT indicate low pHT can reduce leak rate of PWSCC cracks in the end of cycle.

  5. Effects of Chemistry Parameters of Primary Water affecting Leakage of Steam Generator Tube Cracks

    International Nuclear Information System (INIS)

    Shin, D. M.; Cho, N. C.; Kang, Y. S.; Lee, K. H.

    2016-01-01

    Degradation of steam generator (SG) tubes can affect pressure boundary tightness. As a defense-in-depth measure, primary to secondary leak monitoring program for steam generators is implemented, and operation is allowed under leakage limits in nuclear power plants. Chemistry parameters that affect steam generator tube leakage due to primary water stress corrosion cracking (PWSCC) are investigated in this study. Tube sleeves were installed to inhibit leakage and improve tube integrity as a part of maintenance methods. Steam generators occurred small leak during operation have been replaced with new steam generators according to plant maintenance strategies. The correlations between steam generator leakage and chemistry parameters are presented. Effects of primary water chemistry parameters on leakage from tube cracks were investigated for the steam generators experiencing small leak. Unit A experienced small leakage from steam generator tubes in the end of operation cycle. It was concluded that increased solubility of oxides due to high pHT could make leakage paths, and low boron concentration lead to less blockage in cracks. Increased dissolved hydrogen may retard crack propagations, but it did not reduce leak rate of the leaking steam generator. In order to inhibit and reduce leakage, pH_T was controlled by servicing cation bed operation. The test results of decreasing pHT indicate low pHT can reduce leak rate of PWSCC cracks in the end of cycle

  6. Low-leakage-current AlGaN/GaN HEMTs on Si substrates with partially Mg-doped GaN buffer layer by metal organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Li Ming; Wang Yong; Wong Kai-Ming; Lau Kei-May

    2014-01-01

    High-performance low-leakage-current AlGaN/GaN high electron mobility transistors (HEMTs) on silicon (111) substrates grown by metal organic chemical vapor deposition (MOCVD) with a novel partially Magnesium (Mg)-doped GaN buffer scheme have been fabricated successfully. The growth and DC results were compared between Mg-doped GaN buffer layer and a unintentionally one. A 1-μm gate-length transistor with Mg-doped buffer layer exhibited an OFF-state drain leakage current of 8.3 × 10 −8 A/mm, to our best knowledge, which is the lowest value reported for MOCVD-grown AlGaN/GaN HEMTs on Si featuring the same dimension and structure. The RF characteristics of 0.25-μm gate length T-shaped gate HEMTs were also investigated

  7. Comparison between the effects of positive noncatastrophic HMB ESD stress in n-channel and p-channel power MOSFET's

    Science.gov (United States)

    Zupac, Dragan; Kosier, Steven L.; Schrimpf, Ronald D.; Galloway, Kenneth F.; Baum, Keith W.

    1991-10-01

    The effect of noncatastrophic positive human body model (HBM) electrostatic discharge (ESD) stress on n-channel power MOSFETs is radically different from that on p-channel MOSFETs. In n-channel transistors, the stress causes negative shifts of the current-voltage characteristics indicative of positive charge trapping in the gate oxide. In p-channel transistors, the stress increases the drain-to-source leakage current, probably due to localized avalanche electron injection from the p-doped drain.

  8. Current stress and poor oral health.

    Science.gov (United States)

    Vasiliou, A; Shankardass, K; Nisenbaum, R; Quiñonez, C

    2016-09-02

    Psychological stress appears to contribute to poor oral health systemically in combination with other chronic diseases. Few studies directly examine this relationship. Data from a cross-sectional study of 2,412 participants between the ages of 25-64 years old living in the City of Toronto between 2009 and 2012 were used to examine the relationship between current stress and two self-rated oral health outcomes (general oral health and oral pain). Dental care utilization and access to dental insurance were examined as effect modifiers. A positive relationship between current stress and poor oral health was observed for both outcomes (oral pain coefficient 0.32, 95 % CI 0.26-0.38; general oral health coefficient 0.28, 95 % CI 0.19-0.36). Effects on oral pain were stronger for the uninsured, while effects on general oral health were stronger with decreasing socioeconomic position. Our findings suggest that individuals with greater perceived stress also report poorer oral health, and that this relationship is modified by dental insurance and socioeconomic position. These findings warrant a greater focus on the role of psychological stress in the development of oral disease, including how perceived stress contributes to health inequities in self-reported oral health status. Patients experiencing stressful lives may differentially require closer monitoring and more vigilant maintenance of their oral health, above and beyond that which is needed to achieve a state of health in the oral environment of less stressed individuals. There may be health promoting effects of addressing psychosocial concerns related to dental care - particularly for the poor and uninsured.

  9. CO2 leakage-induced vegetation decline is primarily driven by decreased soil O2.

    Science.gov (United States)

    Zhang, Xueyan; Ma, Xin; Zhao, Zhi; Wu, Yang; Li, Yue

    2016-04-15

    To assess the potential risks of carbon capture and storage (CCS), studies have focused on vegetation decline caused by leaking CO2. Excess soil CO2 caused by leakage can affect soil O2 concentrations and soil pH, but how these two factors affect plant development remains poorly understood. This hinders the selection of appropriate species to mitigate potential negative consequences of CCS. Through pot experiments, we simulated CO2 leakage to examine its effects on soil pH and soil O2 concentrations. We subsequently assessed how maize growth responded to these changes in soil pH and O2. Decreased soil O2 concentrations significantly reduced maize biomass, and explained 69% of the biomass variation under CO2 leakage conditions. In contrast, although leaked CO2 changed soil pH significantly (from 7.32 to 6.75), it remained within the optimum soil pH range for maize growth. This suggests that soil O2 concentration, not soil pH, influences plant growth in these conditions. Therefore, in case of potential CO2 leakage risks, hypoxia-tolerant species should be chosen to improve plant survival, growth, and yield. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Stress-induced eating in women with binge-eating disorder and obesity.

    Science.gov (United States)

    Klatzkin, Rebecca R; Gaffney, Sierra; Cyrus, Kathryn; Bigus, Elizabeth; Brownley, Kimberly A

    2018-01-01

    The purpose of the current study was to investigate stress-induced eating in women with binge-eating disorder (BED) and obesity. Three groups of women [obese with BED (n=9); obese non-BED (n=11); and normal weight (NW) non-BED (n=12)], rated their levels of hunger and psychological distress before and after completing the Trier Social Stress Test, followed by food anticipation and then consumption of their preferred snack food. We differentiated between the motivational and hedonic components of eating by measuring the amount of food participants poured into a serving bowl compared to the amount consumed. Stress did not affect poured and consumed calories differently between groups. Across all subjects, calories poured and consumed were positively correlated with post-stress hunger, but calories poured was positively correlated with post-stress anxiety and negative affect. These results indicate that stress-related psychological factors may be more strongly associated with the motivational drive to eat (i.e. amount poured) rather than the hedonic aspects of eating (i.e. amount consumed) for women in general. Exploratory correlation analyses per subgroup suggest that post-stress hunger was positively associated with calories poured and consumed in both non-BED groups. In the obese BED group, calories consumed was negatively associated with dietary restraint and, although not significantly, positively associated with stress-induced changes in anxiety.These findings suggest that stress-induced snacking in obese BED women may be influenced by psychological factors more so than homeostatic hunger mechanisms. After controlling for dietary restraint and negative affect, the NW non-BED women ate a greater percentage of the food they poured than both obese groups, suggesting that obesity may be associated with a heightened motivational drive to eat coupled with a reduction in hedonic pleasure from eating post-stress. Further studies that incorporate novel approaches to

  11. Stress- and glucocorticoid-induced priming of neuroinflammatory responses: potential mechanisms of stress-induced vulnerability to drugs of abuse.

    Science.gov (United States)

    Frank, Matthew G; Watkins, Linda R; Maier, Steven F

    2011-06-01

    Stress and stress-induced glucocorticoids (GCs) sensitize drug abuse behavior as well as the neuroinflammatory response to a subsequent pro-inflammatory challenge. Stress also predisposes or sensitizes individuals to develop substance abuse. There is an emerging evidence that glia and glia-derived neuroinflammatory mediators play key roles in the development of drug abuse. Drugs of abuse such as opioids, psychostimulants, and alcohol induce neuroinflammatory mediators such as pro-inflammatory cytokines (e.g. interleukin (IL)-1β), which modulate drug reward, dependence, and tolerance as well as analgesic properties. Drugs of abuse may directly activate microglial and astroglial cells via ligation of Toll-like receptors (TLRs), which mediate the innate immune response to pathogens as well as xenobiotic agents (e.g. drugs of abuse). The present review focuses on understanding the immunologic mechanism(s) whereby stress primes or sensitizes the neuroinflammatory response to drugs of abuse and explores whether stress- and GC-induced sensitization of neuroimmune processes predisposes individuals to drug abuse liability and the role of neuroinflammatory mediators in the development of drug addiction. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. [Bile leakage after liver resection: A retrospective cohort study].

    Science.gov (United States)

    Menclová, K; Bělina, F; Pudil, J; Langer, D; Ryska, M

    2015-12-01

    Many previous reports have focused on bile leakage after liver resection. Despite the improvements in surgical techniques and perioperative care the incidence of this complication rather keeps increasing. A number of predictive factors have been analyzed. There is still no consensus regarding their influence on the formation of bile leakage. The objective of our analysis was to evaluate the incidence of bile leakage, its impact on mortality and duration of hospitalization at our department. At the same time, we conducted an analysis of known predictive factors. The authors present a retrospective review of the set of 146 patients who underwent liver resection at the Department of Surgery of the 2nd Faculty of Medicine of the Charles University and Central Military Hospital Prague, performed between 20102013. We used the current ISGLS (International Study Group of Liver Surgery) classification to evaluate the bile leakage. The severity of this complication was determined according to the Clavien-Dindo classification system. Statistical significance of the predictive factors was determined using Fishers exact test and Students t-test. The incidence of bile leakage was 21%. According to ISGLS classification the A, B, and C rates were 6.5%, 61.2%, and 32.3%, respectively. The severity of bile leakage according to the Clavien-Dindo classification system - I-II, IIIa, IIIb, IV and V rates were 19.3%, 42%, 9.7%, 9.7%, and 19.3%, respectively. We determined the following predictive factors as statistically significant: surgery for malignancy (pBile leakage significantly prolonged hospitalization time (pbile leakage the perioperative mortality was 23 times higher (pBile leakage is one of the most serious complications of liver surgery. Most of the risk factors are not easily controllable and there is no clear consensus on their influence. Intraoperative leak tests could probably reduce the incidence of bile leakage. In the future, further studies will be required to improve

  13. STRESS INDUCED OBESITY: LESSONS FROM RODENT MODELS OF STRESS

    Directory of Open Access Journals (Sweden)

    Zachary Robert Patterson

    2013-07-01

    Full Text Available Stress is defined as the behavioral and physiological responses generated in the face of, or in anticipation of, a perceived threat. The stress response involves activation of the sympathetic nervous system and recruitment of the hypothalamic-pituitary-adrenal (HPA axis. When an organism encounters a stressor (social, physical, etc., these endogenous stress systems are stimulated in order to generate a fight-or-flight response, and manage the stressful situation. As such, an organism is forced to liberate energy resources in attempt to meet the energetic demands posed by the stressor. A change in the energy homeostatic balance is thus required to exploit an appropriate resource and deliver useable energy to the target muscles and tissues involved in the stress response. Acutely, this change in energy homeostasis and the liberation of energy is considered advantageous, as it is required for the survival of the organism. However, when an organism is subjected to a prolonged stressor, as is the case during chronic stress, a continuous irregularity in energy homeostasis is considered detrimental and may lead to the development of metabolic disturbances such as cardiovascular disease, type II diabetes mellitus and obesity. This concept has been studied extensively using animal models, and the neurobiological underpinnings of stress induced metabolic disorders are beginning to surface. However, different animal models of stress continue to produce divergent metabolic phenotypes wherein some animals become anorexic and loose body mass while others increase food intake and body mass and become vulnerable to the development of metabolic disturbances. It remains unclear exactly what factors associated with stress models can be used to predict the metabolic outcome of the organism. This review will explore a variety of rodent stress models and discuss the elements that influence the metabolic outcome in order to further our understanding of stress-induced

  14. Condensate-polisher resin-leakage quantification and resin-transport studies

    International Nuclear Information System (INIS)

    Stauffer, C.C.; Doss, P.L.

    1983-04-01

    The objectives of this program were to: (1) determine the extent of resin leakage from current generation condensate polisher systems, both deep bed and powdered resin design, during cut-in, steady-state and flow transient operation, (2) analyze moisture separator drains and other secondary system samples for resin fragments and (3) document the level of organics in the secondary system. Resin leakage samples were obtained from nine-power stations that have either recirculating steam generators or once through steam generators. Secondary system samples were obtained from steam generator feedwater, recirculating steam generator blowdown and moisture separator drains. Analysis included ultraviolet light examination, SEM/EDX, resin quantification and infrared analysis. Data obtained from the various plants were compared and factors affecting resin leakage were summarized

  15. Biological effects of laser-induced stress waves

    International Nuclear Information System (INIS)

    Doukas, A.; Lee, S.; McAuliffe, D.

    1995-01-01

    Laser-induced stress waves can be generated by one of the following mechanisms: Optical breakdown, ablation or rapid heating of an absorbing medium. These three modes of laser interaction with matter allow the investigation of cellular and tissue responses to stress waves with different characteristics and under different conditions. The most widely studied phenomena are those of the collateral damage seen in photodisruption in the eye and in 193 run ablation of cornea and skin. On the other hand, the therapeutic application of laser-induced stress waves has been limited to the disruption of noncellular material such as renal stones, atheromatous plaque and vitreous strands. The effects of stress waves to cells and tissues can be quite disparate. Stress waves can fracture tissue, damage cells, and increase the permeability of the plasma membrane. The viability of cell cultures exposed to stress waves increases with the peak stress and the number of pulses applied. The rise time of the stress wave also influences the degree of cell injury. In fact, cell viability, as measured by thymidine incorporation, correlates better with the stress gradient than peak stress. Recent studies have also established that stress waves induce a transient increase of the permeability of the plasma membrane in vitro. In addition, if the stress gradient is below the damage threshhold, the cells remain viable. Thus, stress waves can be useful as a means of drug delivery, increasing the intracellular drug concentration and allowing the use of drugs which are impermeable to the cell membrane. The present studies show that it is important to create controllable stress waves. The wavelength tunability and the micropulse structure of the free electron laser is ideal for generating stress waves with independently adjustable parameters, such as rise time, duration and peak stress

  16. Functional role of CCCTC binding factor (CTCF) in stress-induced apoptosis

    International Nuclear Information System (INIS)

    Li Tie; Lu Luo

    2007-01-01

    CTCF, a nuclear transcriptional factor, is a multifunctional protein and involves regulation of growth factor- and cytokine-induced cell proliferation/differentiation. In the present study, we investigated the role of CTCF in protecting stress-induced apoptosis in various human cell types. We found that UV irradiation and hyper-osmotic stress induced human corneal epithelial (HCE) and hematopoietic myeloid cell apoptosis detected by significantly increased caspase 3 activity and decreased cell viability. The stress-induced apoptotic response in these cells requires down-regulation of CTCF at both mRNA and protein levels, suggesting that CTCF may play an important role in downstream events of stress-induced signaling pathways. Inhibition of NFκB activity prevented stress-induced down-regulation of CTCF and increased cell viability against stress-induced apoptosis. The anti-apoptotic effect of CTCF was further studied by manipulating CTCF activities in HCE and hematopoietic cells. Transient transfection of cDNAs encoding full-length human CTCF markedly suppressed stress-induced apoptosis in these cells. In contrast, knocking down of CTCF mRNA using siRNA specific to CTCF significantly promoted stress-induced apoptosis. Thus, our results reveal that CTCF is a down stream target of stress-induced signaling cascades and it plays a significant anti-apoptotic role in regulation of stress-induced cellular responses in HCE and hematopoietic myeloid cells

  17. HCV-Induced Oxidative Stress: Battlefield-Winning Strategy

    Directory of Open Access Journals (Sweden)

    Khadija Rebbani

    2016-01-01

    Full Text Available About 150 million people worldwide are chronically infected with hepatitis C virus (HCV. The persistence of the infection is controlled by several mechanisms including the induction of oxidative stress. HCV relies on this strategy to redirect lipid metabolism machinery and escape immune response. The 3β-hydroxysterol Δ24-reductase (DHCR24 is one of the newly discovered host markers of oxidative stress. This protein, as HCV-induced oxidative stress responsive protein, may play a critical role in the pathogenesis of HCV chronic infection and associated liver diseases, when aberrantly expressed. The sustained expression of DHCR24 in response to HCV-induced oxidative stress results in suppression of nuclear p53 activity by blocking its acetylation and increasing its interaction with MDM2 in the cytoplasm leading to its degradation, which may induce hepatocarcinogenesis.

  18. Effects of induced stress on seismic forward modelling and inversion

    Science.gov (United States)

    Tromp, Jeroen; Trampert, Jeannot

    2018-05-01

    We demonstrate how effects of induced stress may be incorporated in seismic modelling and inversion. Our approach is motivated by the accommodation of pre-stress in global seismology. Induced stress modifies both the equation of motion and the constitutive relationship. The theory predicts that induced pressure linearly affects the unstressed isotropic moduli with a slope determined by their adiabatic pressure derivatives. The induced deviatoric stress produces anisotropic compressional and shear wave speeds; the latter result in shear wave splitting. For forward modelling purposes, we determine the weak form of the equation of motion under induced stress. In the context of the inverse problem, we determine induced stress sensitivity kernels, which may be used for adjoint tomography. The theory is illustrated by considering 2-D propagation of SH waves and related Fréchet derivatives based on a spectral-element method.

  19. Pre-cold stress increases acid stress resistance and induces amino ...

    African Journals Online (AJOL)

    pre-adapted to cold stress revealed induction of amino acid homeostasis and energy ... substrate, thereby reducing yeast and mould ..... spontaneous mutation of llmg_1816 (gdpp) induced by .... species to UV-B-induced damage in bacteria. J.

  20. Stress induced enhanced polarization in multilayer BiFeO3/BaTiO3 structure with improved energy storage properties

    Directory of Open Access Journals (Sweden)

    Savita Sharma

    2015-10-01

    Full Text Available Present work reports the fabrication of a multilayer (5-layer structure of BiFeO3(BFO/BaTiO3(BTO using spin-coating technique. The crystallographic structure, surface morphology and ferroelectric behavior of multilayer structure in metal-ferroelectric-metal capacitor have been studied. Le-Bail refinement of X-ray diffraction data revealed the formation of polycrystalline pure perovskite phase with induced stress. The values of remnant (Pr and saturation polarization (Ps for BFO/BTO multilayer structure are found to be 38.14 μC/cm2 and 71.54 μC/cm2 respectively, which are much higher than the corresponding values reported for bare BFO thin film. A large value of dielectric constant of 187 has been obtained for multilayer structure with a low leakage current density of 1.09 × 10−7 A/cm2 at applied bias of 10 V. The BFO/BTO multilayer structure favors the enhanced energy storage capacity as compared to bare BFO thin film with improved values of energy-density and charge-discharge efficiency as 121 mJ/cm3 and 59% respectively, suggesting futuristic energy storage applications.

  1. Effect of the induced magnetic field on peristaltic flow of a couple stress fluid

    International Nuclear Information System (INIS)

    Mekheimer, Kh.S.

    2008-01-01

    We have analyzed the MHD flow of a conducting couple stress fluid in a slit channel with rhythmically contracting walls. In this analysis we are taking into account the induced magnetic field. Analytical expressions for the stream function, the magnetic force function, the axial pressure gradient, the axial induced magnetic field and the distribution of the current density across the channel are obtained using long wavelength approximation. The results for the pressure rise, the frictional force per wave length, the axial induced magnetic field and distribution of the current density across the channel have been computed numerically and the results were studied for various values of the physical parameters of interest, such as the couple stress parameter γ, the Hartmann number M, the magnetic Reynolds number R m and the time averaged mean flow rate θ. Contour plots for the stream and magnetic force functions are obtained and the trapping phenomena for the flow field is discussed

  2. Central mechanisms of stress-induced headache.

    Science.gov (United States)

    Cathcart, S; Petkov, J; Winefield, A H; Lushington, K; Rolan, P

    2010-03-01

    Stress is the most commonly reported trigger of an episode of chronic tension-type headache (CTTH); however, the causal significance has not been experimentally demonstrated to date. Stress may trigger CTTH through hyperalgesic effects on already sensitized pain pathways in CTTH sufferers. This hypothesis could be partially tested by examining pain sensitivity in an experimental model of stress-induced headache in CTTH sufferers. Such examinations have not been reported to date. We measured pericranial muscle tenderness and pain thresholds at the finger, head and shoulder in 23 CTTH sufferers (CTH-S) and 25 healthy control subjects (CNT) exposed to an hour-long stressful mental task, and in 23 CTTH sufferers exposed to an hour-long neutral condition (CTH-N). Headache developed in 91% of CTH-S, 4% of CNT, and 17% of CTH-N subjects. Headache sufferers had increased muscle tenderness and reduced pain thresholds compared with healthy controls. During the task, muscle tenderness increased and pain thresholds decreased in the CTH-S group compared with CTH-N and CNT groups. Pre-task muscle tenderness and reduction in pain threshold during task were predictive of the development and intensity of headache following task. The main findings are that stress induced a headache in CTTH sufferers, and this was associated with pre-task muscle tenderness and stress-induced reduction in pain thresholds. The results support the hypothesis that stress triggers CTTH through hyperalgesic effects on already increased pain sensitivity in CTTH sufferers, reducing the threshold to noxious input from pericranial structures.

  3. Coolant leakage detecting device

    International Nuclear Information System (INIS)

    Yamauchi, Kiyoshi; Kawai, Katsunori; Ishihara, Yoshinao.

    1995-01-01

    The device of the present invention judges an amount of leakage of primary coolants of a PWR power plant at high speed. Namely, a mass of coolants contained in a pressurizer, a volume controlling tank and loop regions is obtained based on a preset relational formula and signals of each of process amount, summed up to determine the total mass of coolants for every period of time. The amount of leakage for every period of time is calculated by a formula of Karman's filter based on the total mass of the primary coolants for every predetermined period of time, and displays it on CRT. The Karman's filter is formed on every formula for several kinds of states formed based on the preset amount of the leakage, to calculate forecasting values for every mass of coolants. An adaptable probability for every preset leakage amount is determined based on the difference between the forecast value and the observed value and the scattering thereof. The adaptable probability is compared with a predetermined threshold value, which is displayed on the CRT. This device enables earlier detection of leakage and identification of minute leakage amount as compared with the prior device. (I.S.)

  4. Leakage current behavior in lead-free ferroelectric (K,Na)NbO3-LiTaO3-LiSbO3 thin films

    Science.gov (United States)

    Abazari, M.; Safari, A.

    2010-12-01

    Conduction mechanisms in epitaxial (001)-oriented pure and 1 mol % Mn-doped (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.1,Sb0.06)O3 (KNN-LT-LS) thin films on SrTiO3 substrate were investigated. Temperature dependence of leakage current density was measured as a function of applied electric field in the range of 200-380 K. It was shown that the different transport mechanisms dominate in pure and Mn-doped thin films. In pure (KNN-LT-LS) thin films, Poole-Frenkel emission was found to be responsible for the leakage, while Schottky emission was the dominant mechanism in Mn-doped thin films at higher electric fields. This is a remarkable yet clear indication of effect of 1 mol % Mn on the resistive behavior of such thin films.

  5. Data leakage quantification

    NARCIS (Netherlands)

    Vavilis, S.; Petkovic, M.; Zannone, N.; Atluri, V.; Pernul, G.

    2014-01-01

    The detection and handling of data leakages is becoming a critical issue for organizations. To this end, data leakage solutions are usually employed by organizations to monitor network traffic and the use of portable storage devices. These solutions often produce a large number of alerts, whose

  6. Ghrelin mediates stress-induced food-reward behavior in mice.

    Science.gov (United States)

    Chuang, Jen-Chieh; Perello, Mario; Sakata, Ichiro; Osborne-Lawrence, Sherri; Savitt, Joseph M; Lutter, Michael; Zigman, Jeffrey M

    2011-07-01

    The popular media and personal anecdotes are rich with examples of stress-induced eating of calorically dense "comfort foods." Such behavioral reactions likely contribute to the increased prevalence of obesity in humans experiencing chronic stress or atypical depression. However, the molecular substrates and neurocircuits controlling the complex behaviors responsible for stress-based eating remain mostly unknown, and few animal models have been described for probing the mechanisms orchestrating this response. Here, we describe a system in which food-reward behavior, assessed using a conditioned place preference (CPP) task, is monitored in mice after exposure to chronic social defeat stress (CSDS), a model of prolonged psychosocial stress, featuring aspects of major depression and posttraumatic stress disorder. Under this regime, CSDS increased both CPP for and intake of high-fat diet, and stress-induced food-reward behavior was dependent on signaling by the peptide hormone ghrelin. Also, signaling specifically in catecholaminergic neurons mediated not only ghrelin's orexigenic, antidepressant-like, and food-reward behavioral effects, but also was sufficient to mediate stress-induced food-reward behavior. Thus, this mouse model has allowed us to ascribe a role for ghrelin-engaged catecholaminergic neurons in stress-induced eating.

  7. Impact of mechanical stress induced in silica vacuum windows on laser-induced damage.

    Science.gov (United States)

    Gingreau, Clémence; Lanternier, Thomas; Lamaignère, Laurent; Donval, Thierry; Courchinoux, Roger; Leymarie, Christophe; Néauport, Jérôme

    2018-04-15

    At the interface between vacuum and air, optical windows must keep their optical properties, despite being subjected to mechanical stress. In this Letter, we investigate the impact of such stress on the laser-induced damage of fused silica windows at the wavelength of 351 nm in the nanosecond regime. Different stress values, from 1 to 30 MPa, both tensile and compressive, were applied. No effect of the stress on the laser-induced damage was evidenced.

  8. Poloidal field leakage optimization in ETE

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Carlos Shinya; Montes, Antonio

    1996-12-01

    A very simple but efficient numerical algorithm is used to minimize the Ohmic coil field leakage into the plasma region of the tokamak ETE. After few interactions the code provides the positions and the current required for two pairs of compensation coils. Resulting optimum field intensity distribution is presented and commented. (author). 5 refs., 4 figs., 2 tabs.

  9. Poloidal field leakage optimization in ETE

    International Nuclear Information System (INIS)

    Shibata, Carlos Shinya; Montes, Antonio.

    1996-01-01

    A very simple but efficient numerical algorithm is used to minimize the Ohmic coil field leakage into the plasma region of the tokamak ETE. After few interactions the code provides the positions and the current required for two pairs of compensation coils. Resulting optimum field intensity distribution is presented and commented. (author). 5 refs., 4 figs., 2 tabs

  10. Radioactivity leakage monitoring system

    International Nuclear Information System (INIS)

    Nakajima, Takuichiro; Noguchi, Noboru.

    1982-01-01

    Purpose: To obtain a device for detecting the leakage ratio of a primary coolant by utilizing the variation in the radioactivity concentration in a reactor container when the coolant is leaked. Constitution: A measurement signal is produced from a radioactivity measuring instrument, and is continuously input to a malfunction discriminator. The discriminator inputs a measurement signal to a concentration variation discriminator when the malfunction is recognized and simultaneously inputs a measurement starting time from the inputting time to a concentration measuring instrument. On the other hand, reactor water radioactivity concentration data obtained by sampling the primary coolant is input to a concentration variation computing device. A comparator obtains the ratio of the measurement signal from the measuring instrument and the computed data signal from the computing device at the same time and hence the leakage rate, indicates the average leakage rate by averaging the leakage rate signals and also indicates the total leakage amount. (Yoshihara, H.)

  11. Stress-Induced Chronic Visceral Pain of Gastrointestinal Origin

    Directory of Open Access Journals (Sweden)

    Beverley Greenwood-Van Meerveld

    2017-11-01

    Full Text Available Visceral pain is generally poorly localized and characterized by hypersensitivity to a stimulus such as organ distension. In concert with chronic visceral pain, there is a high comorbidity with stress-related psychiatric disorders including anxiety and depression. The mechanisms linking visceral pain with these overlapping comorbidities remain to be elucidated. Evidence suggests that long term stress facilitates pain perception and sensitizes pain pathways, leading to a feed-forward cycle promoting chronic visceral pain disorders such as irritable bowel syndrome (IBS. Early life stress (ELS is a risk-factor for the development of IBS, however the mechanisms responsible for the persistent effects of ELS on visceral perception in adulthood remain incompletely understood. In rodent models, stress in adult animals induced by restraint and water avoidance has been employed to investigate the mechanisms of stress-induce pain. ELS models such as maternal separation, limited nesting, or odor-shock conditioning, which attempt to model early childhood experiences such as neglect, poverty, or an abusive caregiver, can produce chronic, sexually dimorphic increases in visceral sensitivity in adulthood. Chronic visceral pain is a classic example of gene × environment interaction which results from maladaptive changes in neuronal circuitry leading to neuroplasticity and aberrant neuronal activity-induced signaling. One potential mechanism underlying the persistent effects of stress on visceral sensitivity could be epigenetic modulation of gene expression. While there are relatively few studies examining epigenetically mediated mechanisms involved in visceral nociception, stress-induced visceral pain has been linked to alterations in DNA methylation and histone acetylation patterns within the brain, leading to increased expression of pro-nociceptive neurotransmitters. This review will discuss the potential neuronal pathways and mechanisms responsible for

  12. Stress-Induced Chronic Visceral Pain of Gastrointestinal Origin

    Science.gov (United States)

    Greenwood-Van Meerveld, Beverley; Johnson, Anthony C.

    2017-01-01

    Visceral pain is generally poorly localized and characterized by hypersensitivity to a stimulus such as organ distension. In concert with chronic visceral pain, there is a high comorbidity with stress-related psychiatric disorders including anxiety and depression. The mechanisms linking visceral pain with these overlapping comorbidities remain to be elucidated. Evidence suggests that long term stress facilitates pain perception and sensitizes pain pathways, leading to a feed-forward cycle promoting chronic visceral pain disorders such as irritable bowel syndrome (IBS). Early life stress (ELS) is a risk-factor for the development of IBS, however the mechanisms responsible for the persistent effects of ELS on visceral perception in adulthood remain incompletely understood. In rodent models, stress in adult animals induced by restraint and water avoidance has been employed to investigate the mechanisms of stress-induce pain. ELS models such as maternal separation, limited nesting, or odor-shock conditioning, which attempt to model early childhood experiences such as neglect, poverty, or an abusive caregiver, can produce chronic, sexually dimorphic increases in visceral sensitivity in adulthood. Chronic visceral pain is a classic example of gene × environment interaction which results from maladaptive changes in neuronal circuitry leading to neuroplasticity and aberrant neuronal activity-induced signaling. One potential mechanism underlying the persistent effects of stress on visceral sensitivity could be epigenetic modulation of gene expression. While there are relatively few studies examining epigenetically mediated mechanisms involved in visceral nociception, stress-induced visceral pain has been linked to alterations in DNA methylation and histone acetylation patterns within the brain, leading to increased expression of pro-nociceptive neurotransmitters. This review will discuss the potential neuronal pathways and mechanisms responsible for stress-induced

  13. Direct observation of the leakage current in epitaxial diamond Schottky barrier devices by conductive-probe atomic force microscopy and Raman imaging

    OpenAIRE

    Alvarez, Jose; Boutchich, M.; Kleider, J. P.; Teraji, T.; Koide, Y.

    2014-01-01

    The origin of the high leakage current measured in several vertical-type diamond Schottky devices is conjointly investigated by conducting probe atomic force microscopy (CP-AFM) and confocal micro-Raman/Photoluminescence (PL) imaging analysis. Local areas characterized by a strong decrease of the local resistance (5-6 orders of magnitude drop) with respect to their close surrounding have been identified in several different regions of the sample surface. The same local areas, also referenced ...

  14. Structure-dependent behavior of stress-induced voiding in Cu interconnects

    International Nuclear Information System (INIS)

    Wu Zhenyu; Yang Yintang; Chai Changchun; Li Yuejin; Wang Jiayou; Li Bin; Liu Jing

    2010-01-01

    Stress modeling and cross-section failure analysis by focused-ion-beam have been used to investigate stress-induced voiding phenomena in Cu interconnects. The voiding mechanism and the effect of the interconnect structure on the stress migration have been studied. The results show that the most concentrated tensile stress appears and voids form at corners of vias on top surfaces of Cu M1 lines. A simple model of stress induced voiding in which vacancies arise due to the increase of the chemical potential under tensile stress and diffuse under the force of stress gradient along the main diffusing path indicates that stress gradient rather than stress itself determines the voiding rate. Cu interconnects with larger vias show less resistance to stress-induced voiding due to larger stress gradient at corners of vias.

  15. Use of Saliva Biomarkers to Monitor Efficacy of Vitamin C in Exercise-Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Levi W. Evans

    2017-01-01

    Full Text Available Saliva is easily obtainable for medical research and requires little effort or training for collection. Because saliva contains a variety of biological compounds, including vitamin C, malondialdehyde, amylase, and proteomes, it has been successfully used as a biospecimen for the reflection of health status. A popular topic of discussion in medical research is the potential association between oxidative stress and negative outcomes. Systemic biomarkers that represent oxidative stress can be found in saliva. It is unclear, however, if saliva is an accurate biospecimen as is blood and/or plasma. Exercise can induce oxidative stress, resulting in a trend of antioxidant supplementation to combat its assumed detriments. Vitamin C is a popular antioxidant supplement in the realm of sports and exercise. One potential avenue for evaluating exercise induced oxidative stress is through assessment of biomarkers like vitamin C and malondialdehyde in saliva. At present, limited research has been done in this area. The current state of research involving exercise-induced oxidative stress, salivary biomarkers, and vitamin C supplementation is reviewed in this article.

  16. Stress-induced variation in evolution: from behavioural plasticity to genetic assimilation.

    Science.gov (United States)

    Badyaev, Alexander V

    2005-05-07

    Extreme environments are closely associated with phenotypic evolution, yet the mechanisms behind this relationship are poorly understood. Several themes and approaches in recent studies significantly further our understanding of the importance that stress-induced variation plays in evolution. First, stressful environments modify (and often reduce) the integration of neuroendocrinological, morphological and behavioural regulatory systems. Second, such reduced integration and subsequent accommodation of stress-induced variation by developmental systems enables organismal 'memory' of a stressful event as well as phenotypic and genetic assimilation of the response to a stressor. Third, in complex functional systems, a stress-induced increase in phenotypic and genetic variance is often directional, channelled by existing ontogenetic pathways. This accounts for similarity among individuals in stress-induced changes and thus significantly facilitates the rate of adaptive evolution. Fourth, accumulation of phenotypically neutral genetic variation might be a common property of locally adapted and complex organismal systems, and extreme environments facilitate the phenotypic expression of this variance. Finally, stress-induced effects and stress-resistance strategies often persist for several generations through maternal, ecological and cultural inheritance. These transgenerational effects, along with both the complexity of developmental systems and stressor recurrence, might facilitate genetic assimilation of stress-induced effects. Accumulation of phenotypically neutral genetic variance by developmental systems and phenotypic accommodation of stress-induced effects, together with the inheritance of stress-induced modifications, ensure the evolutionary persistence of stress-response strategies and provide a link between individual adaptability and evolutionary adaptation.

  17. Irradiation-induced stress relaxation of Eurofer97 steel

    International Nuclear Information System (INIS)

    Luzginova, N.V.; Jong, M.; Rensman, J.W.; Hegeman, J.B.J.; Laan, J.G. van der

    2011-01-01

    The irradiation-induced stress relaxation behavior of Eurofer97 at 300 deg. C up to 3.4 dpa and under pre-stress loads typical for the ITER applications is investigated. The bolt specimens are pre-loaded from 30% to 90% of the yield strength. To verify the results obtained with the pre-stressed bolts, bent strips were investigated as well. The strips are bent into a pre-defined radius in order to achieve similar pre-stress levels. The irradiation-induced stress relaxation is found to be independent of the pre-stress level. 10-12% of the stress relaxation in Eurofer97 may be reached after a dose of 0.1 dpa, and after an irradiation dose of 2.7 dpa 42-47% of the original pre-stress is retained.

  18. Oxidative stress and nerve damage: Role in chemotherapy induced peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Aparna Areti

    2014-01-01

    Full Text Available Peripheral neuropathy is a severe dose limiting toxicity associated with cancer chemotherapy. Ever since it was identified, the clear pathological mechanisms underlying chemotherapy induced peripheral neuropathy (CIPN remain sparse and considerable involvement of oxidative stress and neuroinflammation has been realized recently. Despite the empirical use of antioxidants in the therapy of CIPN, the oxidative stress mediated neuronal damage in peripheral neuropathy is still debatable. The current review focuses on nerve damage due to oxidative stress and mitochondrial dysfunction as key pathogenic mechanisms involved in CIPN. Oxidative stress as a central mediator of apoptosis, neuroinflammation, metabolic disturbances and bioenergetic failure in neurons has been highlighted in this review along with a summary of research on dietary antioxidants and other nutraceuticals which have undergone prospective controlled clinical trials in patients undergoing chemotherapy.

  19. Fail-safe first wall for preclusion of little leakage

    International Nuclear Information System (INIS)

    Shibui, Masanao; Nakahira, Masataka; Tada, Eisuke; Takatsu, Hideyuki

    1994-05-01

    Leakages although excluded by design measures would occur most probably in highly stressed areas, weldments and locations without possibility to classify the state by in-service inspection. In a water-cooled first wall, allowable leak rate of water is generally very small, and therefore, locating of the leak portion under highly activated environment will be very difficult and be time-consuming. The double-wall concept is promising for the ITER first wall, because it can be made fail-safe by the application of the leak-before-break and the multiple load path concepts, and because it has a potential capability to solve the little leak problem. When the fail safe strength is well defined, subcritical crack growth in the damaged wall can be permitted. This will enable to detect stable leakage of coolant without deteriorating plasma operation. The paper deals with the little leak problem and presents method for evaluating small leak rate of a liquid coolant from crack-like defects. The fail-safe first wall with the double-wall concept is also proposed for preclusion of little leakage and its fail-safety is discussed. (author)

  20. The stress shadow induced by the 1975-1984 Krafla rifting episode

    KAUST Repository

    Maccaferri, F.

    2013-03-01

    It has been posited that the 1975–1984 Krafla rifting episode in northern Iceland was responsible for a significant drop in the rate of earthquakes along the Húsavík-Flatey Fault (HFF), a transform fault that had previously been the source of several magnitude 6–7 earthquakes. This compelling case of the existence of a stress shadow has never been studied in detail, and the implications of such a stress shadow remain an open question. According to rate-state models, intense stress shadows cause tens of years of low seismicity rate followed by a faster recovery phase of rate increase. Here, we compare the long-term predictions from a Coulomb stress model of the rifting episode with seismological observations from the SIL catalog (1995–2011) in northern Iceland. In the analyzed time frame, we find that the rift-induced stress shadow coincides with the eastern half of the fault where the observed seismicity rates are found to be significantly lower than expected, given the historical earthquake activity there. We also find that the seismicity rates on the central part of the HFF increased significantly in the last 17 years, with the seismicity progressively recovering from west to east. Our observations confirm that rate-state theory successfully describes the long-term seismic rate variation during the reloading phase of a fault invested by a negative Coulomb stress. Coincident with this recovery, we find that the b-value of the frequency-magnitude distribution changed significantly over time. We conclude that the rift-induced stress shadow not only decreased the seismic rate on the eastern part of the HFF but also temporarily modified how the system releases seismic energy, with more large magnitude events in proportion to small ones. This behavior is currently being overturned, as rift-induced locking is now being compensated by tectonic forcing.

  1. The stress shadow induced by the 1975-1984 Krafla rifting episode

    Science.gov (United States)

    Maccaferri, F.; Rivalta, E.; Passarelli, L.; Jónsson, S.

    2013-03-01

    It has been posited that the 1975-1984 Krafla rifting episode in northern Iceland was responsible for a significant drop in the rate of earthquakes along the Húsavík-Flatey Fault (HFF), a transform fault that had previously been the source of several magnitude 6-7 earthquakes. This compelling case of the existence of a stress shadow has never been studied in detail, and the implications of such a stress shadow remain an open question. According to rate-state models, intense stress shadows cause tens of years of low seismicity rate followed by a faster recovery phase of rate increase. Here, we compare the long-term predictions from a Coulomb stress model of the rifting episode with seismological observations from the SIL catalog (1995-2011) in northern Iceland. In the analyzed time frame, we find that the rift-induced stress shadow coincides with the eastern half of the fault where the observed seismicity rates are found to be significantly lower than expected, given the historical earthquake activity there. We also find that the seismicity rates on the central part of the HFF increased significantly in the last 17 years, with the seismicity progressively recovering from west to east. Our observations confirm that rate-state theory successfully describes the long-term seismic rate variation during the reloading phase of a fault invested by a negative Coulomb stress. Coincident with this recovery, we find that the b-value of the frequency-magnitude distribution changed significantly over time. We conclude that the rift-induced stress shadow not only decreased the seismic rate on the eastern part of the HFF but also temporarily modified how the system releases seismic energy, with more large magnitude events in proportion to small ones. This behavior is currently being overturned, as rift-induced locking is now being compensated by tectonic forcing.

  2. Prediction of leakage current of non-ceramic insulators in early aging period

    Energy Technology Data Exchange (ETDEWEB)

    El-Hag, Ayman H. [Electrical Engineering Department, American University of Sharjah, Sharjah (United Arab Emirates); Jahromi, Ali Naderian [Kinectrics Inc., Transmission and Distribution Technologies, Toronto (Canada); Sanaye-Pasand, Majid [Electrical and Computer Engineering Department, University of Tehran (Iran)

    2008-10-15

    The paper presents a neural network based prediction technique for the leakage current (LC) of non-ceramic insulators during salt-fog test. Nearly 50 distribution class silicone rubber (SIR) insulators with three different voltage classes have been tested in a salt-fog chamber, where the LC has been continuously recorded for at least 100 h. A boundary for early aging period is defined by the rate of change of the LC instead of a fixed threshold value. Consequently, the Gaussian radial basis network has been adopted to predict the level of LC at the early stage of aging of the SIR insulators and is compared with a classical network. The initial values of LC and its rate of change at 10 min intervals for the first 5 h are selected as the input to the network, and the final value of LC of the early aging period is considered as the output of the network. It is found that Gaussian radial basis function network with a random optimizing training method is an appropriate network to predict the LC with a 3.5-5.3% accuracy, if the training data and the testing data are selected from the same type of SIR insulators. (author)

  3. Neuroprotective effects of Arctium lappa L. roots against glutamate-induced oxidative stress by inhibiting phosphorylation of p38, JNK and ERK 1/2 MAPKs in PC12 cells.

    Science.gov (United States)

    Tian, Xing; Sui, Shuang; Huang, Jin; Bai, Jun-Peng; Ren, Tian-Shu; Zhao, Qing-Chun

    2014-07-01

    Many studies have shown that glutamate-induced oxidative stress can lead to neuronal cell death involved in the development of neurodegenerative diseases. In this work, protective effects of ethyl acetate extract (EAE) of Arctium lappa L. roots against glutamate-induced oxidative stress in PC12 cells were evaluated. Also, the effects of EAE on antioxidant system, mitochondrial pathway, and signal transduction pathway were explored. Pretreatment with EAE significantly increased cell viability, activities of GSH-Px and SOD, mitochondrial membrane potential and reduced LDH leakage, ROS formation, and nuclear condensation in a dose-dependent manner. Furthermore, western blot results revealed that EAE increased the Bcl-2/Bax ratio, and inhibited the up-regulation of caspase-3, release of cytochrome c, phosphorylation of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase 1/2 (ERK 1/2). Therefore, our results indicate that EAE may be a promising neuroprotective agent for the prevention and treatment of neurodegenerative diseases implicated with oxidative stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. FMRFamide signaling promotes stress-induced sleep in Drosophila.

    Science.gov (United States)

    Lenz, Olivia; Xiong, Jianmei; Nelson, Matthew D; Raizen, David M; Williams, Julie A

    2015-07-01

    Enhanced sleep in response to cellular stress is a conserved adaptive behavior across multiple species, but the mechanism of this process is poorly understood. Drosophila melanogaster increases sleep following exposure to septic or aseptic injury, and Caenorhabditis elegans displays sleep-like quiescence following exposure to high temperatures that stress cells. We show here that, similar to C. elegans, Drosophila responds to heat stress with an increase in sleep. In contrast to Drosophila infection-induced sleep, heat-induced sleep is not sensitive to the time-of-day of the heat pulse. Moreover, the sleep response to heat stress does not require Relish, the NFκB transcription factor that is necessary for infection-induced sleep, indicating that sleep is induced by multiple mechanisms from different stress modalities. We identify a sleep-regulating role for a signaling pathway involving FMRFamide neuropeptides and their receptor FR. Animals mutant for either FMRFamide or for the FMRFamide receptor (FR) have a reduced recovery sleep in response to heat stress. FR mutants, in addition, show reduced sleep responses following infection with Serratia marcescens, and succumb to infection at a faster rate than wild-type controls. Together, these findings support the hypothesis that FMRFamide and its receptor promote an adaptive increase in sleep following stress. Because an FMRFamide-like neuropeptide plays a similar role in C. elegans, we propose that FRMFamide neuropeptide signaling is an ancient regulator of recovery sleep which occurs in response to cellular stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Preventive testing and leakage detection in pipe-lines of steam condensers and generators of a PWR type reactor

    International Nuclear Information System (INIS)

    Canalini, A.; Carvalho, N.C. de

    1985-01-01

    The non-destructive methods: Spum, Helium and Hydrostatic used in leakage detection in condenser pipelines for PWR type reactors are presented. The time, costs, sensitivity, resources necessary and personnel development factors are considered to choose adequated method, in function of nuclear power plant conditions. The leakage tests are applied in pressurized systems or vacuum. Eddy Current testing is used in condensers and steam generators aiming to avoid leakage in these equipments. The spume testing for leakage detection in condenser pipelines - which operation - and hydrostatic testing for leakage detection through reaming with shutdown - were most efficients. The Helium testing applied in pressurized systems or submitted to vacuum systems presented satisfactory results. The Eddy Current testing in condenser and steam generator pipelines reached desired objective, reducing leakage in the first and preserving the integrity in the second. (M.C.K.) [pt

  6. Nondestructive Induced Residual Stress Assessment in Superalloy Turbine Engine Components Using Induced Positron Annihilation (IPA)

    International Nuclear Information System (INIS)

    Rideout, C. A.; Ritchie, S. J.; Denison, A.

    2007-01-01

    Induced Positron Analysis (IPA) has demonstrated the ability to nondestructively quantify shot peening/surface treatments and relaxation effects in single crystal superalloys, steels, titanium and aluminum with a single measurement as part of a National Science Foundation SBIR program and in projects with commercial companies. IPA measurement of surface treatment effects provides a demonstrated ability to quantitatively measure initial treatment effectiveness along with the effect of operationally induced changes over the life of the treated component. Use of IPA to nondestructively quantify surface and subsurface residual stresses in turbine engine materials and components will lead to improvements in current engineering designs and maintenance procedures

  7. An Empirical Assessment of the Risk of Carbon Leakage in Poland - Working Paper No. 08/13,

    International Nuclear Information System (INIS)

    Sartor, Oliver; Spencer, Thomas

    2013-01-01

    Poland is a particularly carbon intensive economy. This has created concern that it may be particularly exposed to carbon leakage. However, there is an absence of robust and transparent empirical research on carbon leakage risks in Poland. This study aims at filling this gap by assessing the impact of EU climate policy, in particular the EU Emissions Trading Scheme, on Polish industry. With no mitigating measures, a small number of Polish industrial sectors would face significant carbon costs. However, with free allocation, banked surplus allowances and a carbon price of euros 30/ton, only one sector would face direct carbon costs in excess of 5% of operating profits. Three sectors face direct carbon costs in the order of 1-3% of operating profits; three face no direct carbon costs. With direct compensation for indirect carbon costs (electricity price increases), the two most affected sectors would face indirect costs of 3.5 to 5.5% of gross value added with a carbon price of euros 30/ ton. The vast majority of Poland's trade in energy intensive sectors occurs within the EU. It is important to maintain a harmonized climate policy to avoid internal market distortions. There is thus a negligible risk of carbon leakage in Poland under current policy. The mitigating measures in the EU Directive remove the vast majority of direct and indirect carbon costs for Polish industry. EU climate policy can be made more stringent without inducing risks of significant carbon leakage. The current benchmarking system appears to be reasonably effective at not structurally disadvantaging less carbon efficient Member States like Poland. And it is vital to maintaining a harmonized climate policy. Finding a harmonized way to address indirect carbon costs may unlock Polish support for future policy. (authors)

  8. Salubrious effects of oxytocin on social stress-induced deficits

    Science.gov (United States)

    Smith, Adam S.; Wang, Zuoxin

    2012-01-01

    Social relationships are a fundamental aspect of life, affecting social, psychological, physiological, and behavioral functions. While social interactions can attenuate stress and promote health, disruption, confrontations, isolation, or neglect in the social environment can each be major stressors. Social stress can impair the basal function and stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis, impairing function of multiple biological systems and posing a risk to mental and physical health. In contrast, social support can ameliorate stress-induced physiological and immunological deficits, reducing the risk of subsequent psychological distress and improving an individual's overall well-being. For better clinical treatment of these physiological and mental pathologies, it is necessary to understand the regulatory mechanisms of stress-induced pathologies as well as determine the underlying biological mechanisms that regulate social buffering of the stress system. A number of ethologically relevant animal models of social stress and species that form strong adult social bonds have been utilized to study the etiology, treatment, and prevention of stress-related disorders. While undoubtedly a number of biological pathways contribute to the social buffering of the stress response, the convergence of evidence denotes the regulatory effects of oxytocin in facilitating social bond-promoting behaviors and their effect on the stress response. Thus, oxytocin may be perceived as a common regulatory element of the social environment, stress response, and stress-induced risks on mental and physical health. PMID:22178036

  9. Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Price, P.N.; Shehabi, A.; Chan, R.W.; Gadgil, A.J.

    2006-06-01

    We compiled and analyzed available data concerning indoor-outdoor air leakage rates and building leakiness parameters for commercial buildings and apartments. We analyzed the data, and reviewed the related literature, to determine the current state of knowledge of the statistical distribution of air exchange rates and related parameters for California buildings, and to identify significant gaps in the current knowledge and data. Very few data were found from California buildings, so we compiled data from other states and some other countries. Even when data from other developed countries were included, data were sparse and few conclusive statements were possible. Little systematic variation in building leakage with construction type, building activity type, height, size, or location within the u.s. was observed. Commercial buildings and apartments seem to be about twice as leaky as single-family houses, per unit of building envelope area. Although further work collecting and analyzing leakage data might be useful, we suggest that a more important issue may be the transport of pollutants between units in apartments and mixed-use buildings, an under-studied phenomenon that may expose occupants to high levels of pollutants such as tobacco smoke or dry cleaning fumes.

  10. Effects of babassu nut oil on ischemia/reperfusion-induced leukocyte adhesion and macromolecular leakage in the microcirculation: Observation in the hamster cheek pouch

    Directory of Open Access Journals (Sweden)

    Barbosa Maria do

    2012-11-01

    Full Text Available Abstract Background The babassu palm tree is native to Brazil and is most densely distributed in the Cocais region of the state of Maranhão, in northeastern Brazil. In addition to the industrial use of refined babassu oil, the milk, the unrefined oil and the nuts in natura are used by families from several communities of African descendants as one of the principal sources of food energy. The objective of this study was to evaluate the effects of babassu oil on microvascular permeability and leukocyte-endothelial interactions induced by ischemia/reperfusion using the hamster cheek pouch microcirculation as experimental model. Methods Twice a day for 14 days, male hamsters received unrefined babassu oil (0.02 ml/dose [BO-2 group], 0.06 ml/dose [BO-6 group], 0.18 ml/dose [BO-18 group] or mineral oil (0.18 ml/dose [MO group]. Observations were made in the cheek pouch and macromolecular permeability increase induced by ischemia/reperfusion (I/R or topical application of histamine, as well as leukocyte-endothelial interaction after I/R were evaluated. Results The mean value of I/R-induced microvascular leakage, determined during reperfusion, was significantly lower in the BO-6 and BO-18 groups than in the MO one (P Conclusions Our findings suggest that unrefined babassu oil reduced microvascular leakage and protected against histamine-induced effects in postcapillary venules and highlights that these almost unexploited nut and its oil might be secure sources of food energy.

  11. Quantitative single-vesicle analysis of antimicrobial peptide-induced leakage

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Ehrlich, Nicky; Henriksen, Jonas Rosager

    2013-01-01

    Although the research field of antimicrobial peptides has attracted considerable scientific attention in the past decades, the microbicidal mechanisms of antimicrobial peptides still remain elusive. One of the keys to a more profound comprehension of the function of these peptides is a deeper...... was combined with fluorescence correlation spectroscopy to quantify leakage from a bulk collection of lipid vesicles in aqueous solution. Quantitative correlation between the two techniques was achieved through a detailed experimental protocol. The potential of combining the two techniques was tested using...

  12. Degradation of (InAlGa)N-based UV-B light emitting diodes stressed by current and temperature

    International Nuclear Information System (INIS)

    Glaab, Johannes; Ploch, Christian; Kelz, Rico; Stölmacker, Christoph; Lapeyrade, Mickael; Ploch, Neysha Lobo; Rass, Jens; Kolbe, Tim; Einfeldt, Sven; Weyers, Markus; Mehnke, Frank; Kuhn, Christian; Wernicke, Tim; Kneissl, Michael

    2015-01-01

    The degradation of the electrical and optical properties of (InAlGa)N-based multiple quantum well light emitting diodes (LEDs) emitting near 308 nm under different stress conditions has been studied. LEDs with different emission areas were operated at room temperature and at constant current densities of 75 A/cm 2 , 150 A/cm 2 , and 225 A/cm 2 . In addition, the heat sink temperature was varied between 15 °C and 80 °C. Two main modes for the reduction of the optical power were found, which dominate at different times of operation: (1) Within the first 100 h, a fast drop of the optical power is observed scaling exponentially with the temperature and having an activation energy of about 0.13 eV. The drop in optical power is accompanied by changes of the current-voltage (I-V) characteristic. (2) For operation times beyond 100 h, the optical power decreases slowly which can be reasonably described by a square root time dependence. Here, the degradation rate depends on the current density, rather than the current. Again, the rate of optical power reduction of the second mode depends exponentially on the temperature with an activation energy of about 0.21 eV. The drop in the optical power is accompanied by an increased reverse-bias leakage current

  13. Initial assessment of the thermal stresses around a radioactive waste depository in hard rock

    International Nuclear Information System (INIS)

    Hodgkinson, D.P.; Bourke, P.J.

    1980-01-01

    The disposal of heat emitting radioactive waste into hard rock should result in temperature rises and thermal gradients over distances of several hundred metres for several centuries. The consequent constrained thermal expansion of the rock would induce stresses which have important implications for possible water-borne leakage of radionuclides and for depository design. These problems are assessed by considering a simplified mathematical model for which analytic solutions to the temperature and stress fields are derived. (author)

  14. Impact of work-induced stress on perceived workers' productivity in ...

    African Journals Online (AJOL)

    Impact of work-induced stress on perceived workers' productivity in banking ... The study investigated the relationship among work-induced stress, job performance, ... tend to reduce effects of work-related stress on workers' health and welfare.

  15. Systematic review of methods to predict and detect anastomotic leakage in colorectal surgery.

    Science.gov (United States)

    Hirst, N A; Tiernan, J P; Millner, P A; Jayne, D G

    2014-02-01

    Anastomotic leakage is a serious complication of gastrointestinal surgery resulting in increased morbidity and mortality, poor function and predisposing to cancer recurrence. Earlier diagnosis and intervention can minimize systemic complications but is hindered by current diagnostic methods that are non-specific and often uninformative. The purpose of this paper is to review current developments in the field and to identify strategies for early detection and treatment of anastomotic leakage. A systematic literature search was performed using the MEDLINE, Embase, PubMed and Cochrane Library databases. Search terms included 'anastomosis' and 'leak' and 'diagnosis' or 'detection' and 'gastrointestinal' or 'colorectal'. Papers concentrating on the diagnosis of gastrointestinal anastomotic leak were identified and further searches were performed by cross-referencing. Computerized tomography CT scanning and water-soluble contrast studies are the current preferred techniques for diagnosing anastomotic leakage but suffer from variable sensitivity and specificity, have logistical constraints and may delay timely intervention. Intra-operative endoscopy and imaging may offer certain advantages, but the ability to predict anastomotic leakage is unproven. Newer techniques involve measurement of biomarkers for anastomotic leakage and have the potential advantage of providing cheap real-time monitoring for postoperative complications. Current diagnostic tests often fail to diagnose anastomotic leak at an early stage that enables timely intervention and minimizes serious morbidity and mortality. Emerging technologies, based on detection of local biomarkers, have achieved proof of concept status but require further evaluation to determine whether they translate into improved patient outcomes. Further research is needed to address this important, yet relatively unrecognized, area of unmet clinical need. Colorectal Disease © 2013 The Association of Coloproctology of Great Britain

  16. Effect of Applied Stress and Temperature on Residual Stresses Induced by Peening Surface Treatments in Alloy 600

    Science.gov (United States)

    Telang, A.; Gnäupel-Herold, T.; Gill, A.; Vasudevan, V. K.

    2018-04-01

    In this study, the effects of applied tensile stress and temperature on laser shock peening (LSP) and cavitation shotless peening (CSP)-induced compressive residual stresses were investigated using neutron and x-ray diffraction. Residual stresses on the surface, measured in situ, were lower than the applied stress in LSP- and CSP-treated Alloy 600 samples (2 mm thick). The residual stress averaged over the volume was similar to the applied stress. Compressive residual stresses on the surface and balancing tensile stresses in the interior relax differently due to hardening induced by LSP. Ex situ residual stress measurements, using XRD, show that residual stresses relaxed as the applied stress exceeded the yield strength of the LSP- and CSP-treated Alloy 600. Compressive residual stresses induced by CSP and LSP decreased by 15-25% in magnitude, respectively, on exposure to 250-450 °C for more than 500 h with 10-11% of relaxation occurring in the first few hours. Further, 80% of the compressive residual stresses induced by LSP and CSP treatments in Alloy 600 were retained even after long-term aging at 350 °C for 2400 h.

  17. Social factors modulate restraint stress induced hyperthermia in mice.

    Science.gov (United States)

    Watanabe, Shigeru

    2015-10-22

    Stress-induced hyperthermia (SIH) was examined in three different social conditions in mice by thermographic measurement of the body surface temperature. Placing animals in cylindrical holders induced restraint stress. I examined the effect of the social factors in SIH using the thermograph (body surface temperature). Mice restrained in the holders alone showed SIH. Mice restrained in the holders at the same time as other similarly restrained cage mates (social equality condition) showed less hyperthermia. Interestingly, restrained mice with free moving cage mates (social inequality condition) showed the highest hyperthermia. These results are consistent with a previous experiment measuring the memory-enhancing effects of stress and the stress-induced elevation of corticosterone, and suggest that social inequality enhances stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Climate-Induced Boreal Forest Change: Predictions versus Current Observations

    Science.gov (United States)

    Soja, Amber J.; Tchebakova, Nadezda M.; French, Nancy H. F.; Flannigan, Michael D.; Shugart, Herman H.; Stocks, Brian J.; Sukhinin, Anatoly I.; Parfenova, E. I.; Chapin, F. Stuart, III; Stackhouse, Paul W., Jr.

    2007-01-01

    For about three decades, there have been many predictions of the potential ecological response in boreal regions to the currently warmer conditions. In essence, a widespread, naturally occurring experiment has been conducted over time. In this paper, we describe previously modeled predictions of ecological change in boreal Alaska, Canada and Russia, and then we investigate potential evidence of current climate-induced change. For instance, ecological models have suggested that warming will induce the northern and upslope migration of the treeline and an alteration in the current mosaic structure of boreal forests. We present evidence of the migration of keystone ecosystems in the upland and lowland treeline of mountainous regions across southern Siberia. Ecological models have also predicted a moisture-stress-related dieback in white spruce trees in Alaska, and current investigations show that as temperatures increase, white spruce tree growth is declining. Additionally, it was suggested that increases in infestation and wildfire disturbance would be catalysts that precipitate the alteration of the current mosaic forest composition. In Siberia, five of the last seven years have resulted in extreme fire seasons, and extreme fire years have also been more frequent in both Alaska and Canada. In addition, Alaska has experienced extreme and geographically expansive multi-year outbreaks of the spruce beetle, which had been previously limited by the cold, moist environment. We suggest that there is substantial evidence throughout the circumboreal region to conclude that the biosphere within the boreal terrestrial environment has already responded to the transient effects of climate change. Additionally, temperature increases and warming-induced change are progressing faster than had been predicted in some regions, suggesting a potential non-linear rapid response to changes in climate, as opposed to the predicted slow linear response to climate change.

  19. Carbon leakage revisited. Unilateral climate policy under directed technical change

    International Nuclear Information System (INIS)

    Maria, Corrado Di; Van derWerf, E.

    2005-01-01

    This paper analyzes the consequences of unilateral climate policy in the presence of directed technical change. We develop a dynamic two-country model in which two otherwise identical countries differ in their environmental policy: one of the countries enforces a (binding) cap on emissions while the other does not. Focusing on carbon leakage, we show how, compared with a 'traditional' endogenous growth model, directed technical change will always lead to lower emissions in the unconstrained country. When clean and dirty goods are good substitutes, it may even be induced to reduce its emissions below the optimum level when both countries are unconstrained, so leakage is negative

  20. Development of monitoring system using acoustic emission for detection of helium gas leakage for primary cooling system and flow-induced vibration for heat transfer tube of heat exchangers for the High Temperature Engineering Test Reactor (HTTR)

    International Nuclear Information System (INIS)

    Tachibana, Yukio; Kunitomi, Kazuhiko; Furusawa, Takayuki; Shinozaki, Masayuki; Satoh, Yoshiyuki; Yanagibashi, Minoru

    1998-10-01

    The High Temperature Engineering Test Reactor (HTTR) uses helium gas for its primary coolant, whose leakage inside reactor containment vessel is considered in design of the HTTR. It is necessary to detect leakage of helium gas at an early stage so that total amount of the leakage should be as small as possible. On the other hand, heat transfer tubes of heat exchangers of the HTTR are designed not to vibrate at normal operation, but the flow-induced vibration is to be monitored to provide against an emergency. Thus monitoring system of acoustic emission for detection of primary coolant leakage and vibration of heat transfer tubes was developed and applied to the HTTR. Before the application to the HTTR, leakage detection test was performed using 1/4 scaled model of outer tube of primary concentric hot gas duct. Result of the test covers detectable minimum leakage rate and effect of difference in gas, pressure, shape of leakage path and distance from the leaking point. Detectable minimum leakage rate was about 5 Ncc/sec. The monitoring system is promising in leakage detection, though countermeasure to noise is to be needed after the HTTR starts operating. (author)

  1. Simulations of hydraulic fracturing and leakage in sedimentary basins

    Energy Technology Data Exchange (ETDEWEB)

    Lothe, Ane Elisabeth

    2004-01-01

    Hydraulic fracturing and leakage of water through the caprock is described from sedimentary basin over geological time scale. Abnormal pressure accumulations reduce the effective stresses in the underground and trigger the initiation of hydraulic fractures. The major faults in the basin define these pressure compartments. In this Thesis, basin simulations of hydraulic fracturing and leakage have been carried out. A simulator (Pressim) is used to calculate pressure generation and dissipitation between the compartments. The flux between the compartments and not the flow within the compartments is modelled. The Griffith-Coulomb failure criterion determines initial failure at the top structures of overpressured compartments, whereas the frictional sliding criterion is used for reactivation along the same fractures. The minimum horizontal stress is determined from different formulas, and an empirical one seems to give good results compared to measured pressures and minimum horizontal stresses. Simulations have been carried out on two datasets; one covering the Halten Terrace area and one the Tune Field area in the northern North Sea. The timing of hydraulic fracturing and amount of leakage has been quantified in the studies from the Halten Terrace area. This is mainly controlled by the lateral fluid flow and the permeability of the major faults in the basin. Low fault permeability gives early failure, while high fault permeabilities results in no or late hydraulic fracturing and leakage from overpressured parts of the basin. In addition to varying the transmissibility of all faults in a basin, the transmissibility across individual faults can be varied. Increasing the transmissibility across faults is of major importance in overpressured to intermediately pressured areas. However, to obtain change in the flow, a certain pressure difference has to be the situation between the different compartments. The coefficient of internal friction and the coefficient of frictional

  2. Leakage current conduction mechanisms and electrical properties of atomic-layer-deposited HfO2/Ga2O3 MOS capacitors

    Science.gov (United States)

    Zhang, Hongpeng; Jia, Renxu; Lei, Yuan; Tang, Xiaoyan; Zhang, Yimen; Zhang, Yuming

    2018-02-01

    In this paper, current conduction mechanisms in HfO2/β-Ga2O3 metal-oxide-semiconductor (MOS) capacitors under positive and negative biases are investigated using the current-voltage (I-V) measurements conducted at temperatures from 298 K to 378 K. The Schottky emission is dominant under positively biased electric fields of 0.37-2.19 MV cm-1, and the extracted Schottky barrier height ranged from 0.88 eV to 0.91 eV at various temperatures. The Poole-Frenkel emission dominates under negatively biased fields of 1.92-4.83 MV cm-1, and the trap energy levels are from 0.71 eV to 0.77 eV at various temperatures. The conduction band offset (ΔE c) of HfO2/β-Ga2O3 is extracted to be 1.31  ±  0.05 eV via x-ray photoelectron spectroscopy, while a large negative sheet charge density of 1.04  ×  1013 cm-2 is induced at the oxide layer and/or HfO2/β-Ga2O3 interface. A low C-V hysteresis of 0.76 V, low interface state density (D it) close to 1  ×  1012 eV-1 cm-2, and low leakage current density of 2.38  ×  10-5 A cm-2 at a gate voltage of 7 V has been obtained, suggesting the great electrical properties of HfO2/β-Ga2O3 MOSCAP. According to the above analysis, ALD-HfO2 is an attractive candidate for high voltage β-Ga2O3 power devices.

  3. Effects of current stressing on the p-Bi{sub 2}Te{sub 3}/Sn interfacial reactions

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Hsing-Ting; Lin, Chih-Fan [Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Yen, Yee-Wen [Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan (China); Chen, Chih-Ming, E-mail: chencm@nchu.edu.tw [Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan (China)

    2016-05-25

    The Sn/p-Bi{sub 2}Te{sub 3}/Sn sandwich-type sample was current stressed with a density of 150 A/cm{sup 2} to investigate the effects of current stressing on the p-Bi{sub 2}Te{sub 3}/Sn interfacial reactions. Asymmetrical heating phenomenon was observed at the anodic Sn/p-Bi{sub 2}Te{sub 3} (50 °C) and cathodic p-Bi{sub 2}Te{sub 3}/Sn (120 °C) interfaces due to the Peltier effect. Besides the Peltier effect, the electromigration effect also influenced the growth of the SnTe phase and therefore polarity growth behavior was observed at the two interfaces. The growth of the SnTe phase at the cathodic p-Bi{sub 2}Te{sub 3}/Sn interface was accelerated because Peltier and electromigration effects drove more Sn atoms (dominant diffusion species) for the phase growth. By measuring the electromigration-induced atomic flux of Sn, the product of diffusivity and effective charge number (D × z*) was calculated to be 6.3 × 10{sup −9} cm{sup 2} s{sup −1} at 120 °C. - Highlights: • Sn/p-Bi{sub 2}Te{sub 3}/Sn sandwich-type sample is current stressed with a density of 150 A/cm{sup 2}. • Passage of an electric current induces Peltier and electromigration effects. • Peltier effect causes asymmetrical heating at the anode and cathode interfaces. • Both effects accelerate the SnTe growth at the cathode interface. • Sn is the dominant diffusion species identified by a marker experiment.

  4. Correlation between passive film-induced stress and stress corrosion cracking of α-Ti in a methanol solution at various potentials

    International Nuclear Information System (INIS)

    Guo, X.Z.; Gao, K.W.; Chu, W.Y.; Qiao, L.J.

    2003-01-01

    The flow stress of a specimen of α-Ti before unloading is different with the yield stress of the same specimen after unloading and forming a passive film through immersing in a methanol solution at various constant potentials. The difference is the passive film-induced stress. The film-induced stress and susceptibility to stress corrosion cracking (SCC) in the methanol solution at various potentials were measured. At the stable open-circuit potential and under anodic polarization, both film-induced tensile stress σ p and susceptibility to SCC had a maximum value. The film-induced stress and SCC susceptibility, however, decreased steeply with a decrease in potential under cathodic polarization. When the potential V≤-280 mV SCE , the film-induced stress became compressive; correspondingly, susceptibility to SCC was zero. Therefore, the variation of film-induced stress with potential was consistent with that of susceptibility to SCC. A large film-induced tensile stress is the necessary condition for SCC of α-Ti in the methanol solution. The symbol and amount of the film-induced stress were related to the compositions of the passive film, which have been analyzed using the X-ray photoelectron spectrum (XPS)

  5. Clonidine blocks stress-induced craving in cocaine users.

    Science.gov (United States)

    Jobes, Michelle L; Ghitza, Udi E; Epstein, David H; Phillips, Karran A; Heishman, Stephen J; Preston, Kenzie L

    2011-11-01

    Reactivity to stressors and environmental cues, a putative cause of relapse in addiction, may be a useful target for relapse-prevention medication. In rodents, alpha-2 adrenergic agonists such as clonidine block stress-induced reinstatement of drug seeking, but not drug cue-induced reinstatement. The objective of this study is to test the effect of clonidine on stress- and cue-induced craving in human cocaine users. Healthy, non-treatment-seeking cocaine users (n = 59) were randomly assigned to three groups receiving clonidine 0, 0.1, or 0.2 mg orally under double-blind conditions. In a single test session, each participant received clonidine or placebo followed 3 h later by exposure to two pairs of standardized auditory-imagery scripts (neutral/stress and neutral/drug). Subjective measures of craving were collected. Subjective responsivity ("crave cocaine" Visual Analog Scale) to stress scripts was significantly attenuated in the 0.1- and 0.2-mg clonidine groups; for drug-cue scripts, this attenuation occurred only in the 0.2-mg group. Other subjective measures of craving showed similar patterns of effects but Dose × Script interactions were not significant. Clonidine was effective in reducing stress-induced (and, at a higher dose, cue-induced) craving in a pattern consistent with preclinical findings, although this was significant on only one of several measures. Our results, though modest and preliminary, converge with other evidence to suggest that alpha-2 adrenergic agonists may help prevent relapse in drug abusers experiencing stress or situations that remind them of drug use.

  6. Stress induced enhanced polarization in multilayer BiFeO{sub 3}/BaTiO{sub 3} structure with improved energy storage properties

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Savita [Department of Physics and Astrophysics, University of Delhi, Delhi (India); Department of Applied Physics, Delhi Technological University, Delhi (India); Tomar, Monika [Physics Department, Miranda House, University of Delhi, Delhi (India); Kumar, Ashok [CSIR-National Physical Laboratory, Dr. K.S .Krishnan Marg, Delhi (India); Puri, Nitin K. [Department of Applied Physics, Delhi Technological University, Delhi (India); Gupta, Vinay, E-mail: vgupta@physics.du.ac.in, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi (India)

    2015-10-15

    Present work reports the fabrication of a multilayer (5-layer) structure of BiFeO{sub 3}(BFO)/BaTiO{sub 3}(BTO) using spin-coating technique. The crystallographic structure, surface morphology and ferroelectric behavior of multilayer structure in metal-ferroelectric-metal capacitor have been studied. Le-Bail refinement of X-ray diffraction data revealed the formation of polycrystalline pure perovskite phase with induced stress. The values of remnant (P{sub r}) and saturation polarization (P{sub s}) for BFO/BTO multilayer structure are found to be 38.14 μC/cm{sup 2} and 71.54 μC/cm{sup 2} respectively, which are much higher than the corresponding values reported for bare BFO thin film. A large value of dielectric constant of 187 has been obtained for multilayer structure with a low leakage current density of 1.09 × 10{sup −7} A/cm{sup 2} at applied bias of 10 V. The BFO/BTO multilayer structure favors the enhanced energy storage capacity as compared to bare BFO thin film with improved values of energy-density and charge-discharge efficiency as 121 mJ/cm{sup 3} and 59% respectively, suggesting futuristic energy storage applications.

  7. Geranylgeranylacetone prevents stress-induced decline of leptin secretion in mice.

    Science.gov (United States)

    Itai, Miki; Kuwano, Yuki; Nishikawa, Tatsuya; Rokutan, Kazuhito; Kensei, Nishida

    2018-01-01

    Geranylgeranylacetone (GGA) is a chaperon inducer that protects various types of cell and tissue against stress. We examined whether GGA modulated energy intake and expenditure under stressful conditions. After mice were untreated or treated orally with GGA (0.16 g per kg body weight per day) for 10 days, they were subjected to 2-h restraint stress once or once a day for 5 consecutive days. GGA administration did not affect corticosterone response to the stress. Restraint stress rapidly decreased plasma leptin levels in control mice. GGA significantly increased circulating leptin levels without changing food intake and prevented the stress-induced decline of circulating leptin. However GGA-treated mice significantly reduced food intake during the repeated stress, compared with control mice. GGA prevented the stress-induced decline of leptin mRNA and its protein levels in epidydimal adipose tissues. We also found that GGA decreased ghrelin mRNA expression in gastric mucosa before the stress, whereas GGA-treated mice recovered the ghrelin mRNA expression to the baseline level after the repeated stress. Leptin and ghrelin are now recognized as regulators of anxiety and depressive mood. Our results suggest that GGA may regulate food intake and relief stress-induced mood disturbance through regulating leptin and ghrelin secretions. J. Med. Invest. 65:103-109, February, 2018.

  8. Effects of Active Mastication on Chronic Stress-Induced Bone Loss in Mice.

    Science.gov (United States)

    Azuma, Kagaku; Furuzawa, Manabu; Fujiwara, Shu; Yamada, Kumiko; Kubo, Kin-ya

    2015-01-01

    Chronic psychologic stress increases corticosterone levels, which decreases bone density. Active mastication or chewing attenuates stress-induced increases in corticosterone. We evaluated whether active mastication attenuates chronic stress-induced bone loss in mice. Male C57BL/6 (B6) mice were randomly divided into control, stress, and stress/chewing groups. Stress was induced by placing mice in a ventilated restraint tube (60 min, 2x/day, 4 weeks). The stress/chewing group was given a wooden stick to chew during the experimental period. Quantitative micro-computed tomography, histologic analysis, and biochemical markers were used to evaluate the bone response. The stress/chewing group exhibited significantly attenuated stress-induced increases in serum corticosterone levels, suppressed bone formation, enhanced bone resorption, and decreased trabecular bone mass in the vertebrae and distal femurs, compared with mice in the stress group. Active mastication during exposure to chronic stress alleviated chronic stress-induced bone density loss in B6 mice. Active mastication during chronic psychologic stress may thus be an effective strategy to prevent and/or treat chronic stress-related osteopenia.

  9. Overexpressed cyclophilin B suppresses apoptosis associated with ROS and Ca2+ homeostasis after ER stress.

    Science.gov (United States)

    Kim, Jinhwan; Choi, Tae Gyu; Ding, Yan; Kim, Yeonghwan; Ha, Kwon Soo; Lee, Kyung Ho; Kang, Insug; Ha, Joohun; Kaufman, Randal J; Lee, Jinhwa; Choe, Wonchae; Kim, Sung Soo

    2008-11-01

    Prolonged accumulation of misfolded proteins in the endoplasmic reticulum (ER) results in ER stress-mediated apoptosis. Cyclophilins are protein chaperones that accelerate the rate of protein folding through their peptidyl-prolyl cis-trans isomerase (PPIase) activity. In this study, we demonstrated that ER stress activates the expression of the ER-localized cyclophilin B (CypB) gene through a novel ER stress response element. Overexpression of wild-type CypB attenuated ER stress-induced cell death, whereas overexpression of an isomerase activity-defective mutant, CypB/R62A, not only increased Ca(2+) leakage from the ER and ROS generation, but also decreased mitochondrial membrane potential, resulting in cell death following exposure to ER stress-inducing agents. siRNA-mediated inhibition of CypB expression rendered cells more vulnerable to ER stress. Finally, CypB interacted with the ER stress-related chaperones, Bip and Grp94. Taken together, we concluded that CypB performs a crucial function in protecting cells against ER stress via its PPIase activity.

  10. A cold-induced myo-inositol transporter-like gene confers tolerance to multiple abiotic stresses in transgenic tobacco plants.

    Science.gov (United States)

    Sambe, Mame Abdou Nahr; He, Xueying; Tu, Qinghua; Guo, Zhenfei

    2015-03-01

    A full length cDNA encoding a myo-inositol transporter-like protein, named as MfINT-like, was cloned from Medicago sativa subsp. falcata (herein falcata), a species with greater cold tolerance than alfalfa (M. sativa subsp. sativa). MfINT-like is located on plasma membranes. MfINT-like transcript was induced 2-4 h after exogenous myo-inositol treatment, 24-96 h with cold, and 96 h by salinity. Given that myo-inositol accumulates higher in falcata after 24 h of cold treatment, myo-inositol is proposed to be involved in cold-induced expression of MfINT-like. Higher levels of myo-inositol was observed in leaves of transgenic tobacco plants overexpressing MfINT-like than the wild-type but not in the roots of plants grown on myo-inositol containing medium, suggesting that transgenic plants had higher myo-inositol transport activity than the wild-type. Transgenic plants survived better to freezing temperature, and had lower ion leakage and higher maximal photochemical efficiency of photosystem II (Fv /Fm ) after chilling treatment. In addition, greater plant fresh weight was observed in transgenic plants as compared with the wild-type when plants were grown under drought or salinity stress. The results suggest that MfINT-like mediated transport of myo-inositol is associated with plant tolerance to abiotic stresses. © 2014 Scandinavian Plant Physiology Society.

  11. Improving off-state leakage characteristics for high voltage AlGaN/GaN-HFETs on Si substrates

    Science.gov (United States)

    Moon, Sung-Woon; Twynam, John; Lee, Jongsub; Seo, Deokwon; Jung, Sungdal; Choi, Hong Goo; Shim, Heejae; Yim, Jeong Soon; Roh, Sungwon D.

    2014-06-01

    We present a reliable process and design technique for realizing high voltage AlGaN/GaN hetero-junction field effect transistors (HFETs) on Si substrates with very low and stable off-state leakage current characteristics. In this work, we have investigated the effects of the surface passivation layer, prepared by low pressure chemical vapor deposition (LPCVD) of silicon nitride (SiNx), and gate bus isolation design on the off-state leakage characteristics of metal-oxide-semiconductor (MOS) gate structure-based GaN HFETs. The surface passivated devices with gate bus isolation fully surrounding the source and drain regions showed extremely low off-state leakage currents of less than 20 nA/mm at 600 V, with very small variation. These techniques were successfully applied to high-current devices with 80-mm gate width, yielding excellent off-state leakage characteristics within a drain voltage range 0-700 V.

  12. Analysis of reverse gate leakage mechanism of AlGaN/GaN HEMTs with N2 plasma surface treatment

    Science.gov (United States)

    Liu, Hui; Zhang, Zongjing; Luo, Weijun

    2018-06-01

    The mechanism of reverse gate leakage current of AlGaN/GaN HEMTs with two different surface treatment methods are studied by using C-V, temperature dependent I-V and theoretical analysis. At the lower reverse bias region (VR >- 3.5 V), the dominant leakage current mechanism of the device with N2 plasma surface treatment is the Poole-Frenkel emission current (PF), and Trap-Assisted Tunneling current (TAT) is the principal leakage current of the device which treated by HCl:H2O solution. At the higher reverse bias region (VR current of the device with N2 plasma surface treatment is one order of magnitude smaller than the device which treated by HCl:H2O solution. This is due to the recovery of Ga-N bond in N2 plasma surface treatment together with the reduction of the shallow traps in post-gate annealing (PGA) process. The measured results agree well with the theoretical calculations and demonstrate N2 plasma surface treatment can reduce the reverse leakage current of the AlGaN/GaN HEMTs.

  13. Current stress and poor oral health

    OpenAIRE

    Vasiliou, A.; Shankardass, K.; Nisenbaum, R.; Qui?onez, C.

    2016-01-01

    Background Psychological stress appears to contribute to poor oral health systemically in combination with other chronic diseases. Few studies directly examine this relationship. Methods Data from a cross-sectional study of 2,412 participants between the ages of 25?64 years old living in the City of Toronto between 2009 and 2012 were used to examine the relationship between current stress and two self-rated oral health outcomes (general oral health and oral pain). Dental care utilization and ...

  14. Heavy Ion Induced Degradation in SiC Schottky Diodes: Bias and Energy Deposition Dependence

    Science.gov (United States)

    Javanainen, Arto; Galloway, Kenneth F.; Nicklaw, Christopher; Bosser, Alexandre L.; Ferlet-Cavrois, Veronique; Lauenstein, Jean-Marie; Pintacuda, Francesco; Reed, Robert A.; Schrimpf, Ronald D.; Weller, Robert A.; hide

    2016-01-01

    Experimental results on ion-induced leakage current increase in 4H-SiC Schottky power diodes are presented. Monte Carlo and TCAD simulations show that degradation is due to the synergy between applied bias and ion energy deposition. This degradation is possibly related to thermal spot annealing at the metal semiconductor interface. This thermal annealing leads to an inhomogeneity of the Schottky barrier that could be responsible for the increase leakage current as a function of fluence.

  15. Hydrogen-peroxide-induced oxidative stress responses in Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, A.; He, Z.; Redding-Johanson, A.M.; Mukhopadhyay, A.; Hemme, C.L.; Joachimiak, M.P.; Bender, K.S.; Keasling, J.D.; Stahl, D.A.; Fields, M.W.; Hazen, T.C.; Arkin, A.P.; Wall, J.D.; Zhou, J.; Luo, F.; Deng, Y.; He, Q.

    2010-07-01

    To understand how sulphate-reducing bacteria respond to oxidative stresses, the responses of Desulfovibrio vulgaris Hildenborough to H{sub 2}O{sub 2}-induced stresses were investigated with transcriptomic, proteomic and genetic approaches. H{sub 2}O{sub 2} and induced chemical species (e.g. polysulfide, ROS) and redox potential shift increased the expressions of the genes involved in detoxification, thioredoxin-dependent reduction system, protein and DNA repair, and decreased those involved in sulfate reduction, lactate oxidation and protein synthesis. A gene coexpression network analysis revealed complicated network interactions among differentially expressed genes, and suggested possible importance of several hypothetical genes in H{sub 2}O{sub 2} stress. Also, most of the genes in PerR and Fur regulons were highly induced, and the abundance of a Fur regulon protein increased. Mutant analysis suggested that PerR and Fur are functionally overlapped in response to stresses induced by H{sub 2}O{sub 2} and reaction products, and the upregulation of thioredoxin-dependent reduction genes was independent of PerR or Fur. It appears that induction of those stress response genes could contribute to the increased resistance of deletion mutants to H{sub 2}O{sub 2}-induced stresses. In addition, a conceptual cellular model of D. vulgaris responses to H{sub 2}O{sub 2} stress was constructed to illustrate that this bacterium may employ a complicated molecular mechanism to defend against the H{sub 2}O{sub 2}-induced stresses.

  16. Recurrent Direct Current Cardioversion Induced Takotsubo Cardiomyopathy. A Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Athanasios Smyrlis

    2015-01-01

    Full Text Available Stress cardiomyopathy (SCM, also called broken heart syndrome and Takotsubo cardiomyopathy is an increasingly reported syndrome generally characterized by transient systolic dysfunction of the apical and or mid segments of the left ventricle that mimics myocardial infarction, in the absence of obstructive coronary artery disease. Typically patients present within a few hours of exposure to physical or emotional stress. However, the mechanism by which these stressors result in myocardial dysfunction is unclear. Proposed factors include catecholamine excess and coronary vasospasm1. We present the case of a 61-year-old female who experienced acute pulmonary edema secondary to stress cardiomyopathy, on two occasions immediately after undergoing elective direct current cardioversion (DCCV for atrial fibrillation (Afib. After an urgent hospitalization for management of acute left ventricular failure, she made a complete clinical and echocardiographic recovery. The incidence, clinical implications and prognosis of DCCV induced SCM is unknown. Given DCCV for Afib is a common outpatient procedure and DCCV induced SCM can lead to acute clinical deterioration it is important that physicians are vigilant about this newly recognized DCCV complication.

  17. Increased oxidative stress in asymptomatic current chronic smokers and GOLD stage 0 COPD

    OpenAIRE

    Rytilä, Paula; Rehn, Tiina; Ilumets, Helen; Rouhos, Annamari; Sovijärvi, Anssi; Myllärniemi, Marjukka; Kinnula, Vuokko L

    2006-01-01

    Abstract Background Chronic obstructive pulmonary disease (COPD) is associated with increased oxidative and nitrosative stress. The aim of our study was to assess the importance of these factors in the airways of healthy smokers and symptomatic smokers without airway obstruction, i.e. individuals with GOLD stage 0 COPD. Methods Exhaled NO (FENO) and induced sputum samples were collected from 22 current smokers (13 healthy smokers without any respiratory symptoms and 9 with symptoms i.e. stage...

  18. A numerical study of wave-current interaction through surface and bottom stresses: Coastal ocean response to Hurricane Fran of 1996

    Science.gov (United States)

    Xie, L.; Pietrafesa, L. J.; Wu, K.

    2003-02-01

    A three-dimensional wave-current coupled modeling system is used to examine the influence of waves on coastal currents and sea level. This coupled modeling system consists of the wave model-WAM (Cycle 4) and the Princeton Ocean Model (POM). The results from this study show that it is important to incorporate surface wave effects into coastal storm surge and circulation models. Specifically, we find that (1) storm surge models without coupled surface waves generally under estimate not only the peak surge but also the coastal water level drop which can also cause substantial impact on the coastal environment, (2) introducing wave-induced surface stress effect into storm surge models can significantly improve storm surge prediction, (3) incorporating wave-induced bottom stress into the coupled wave-current model further improves storm surge prediction, and (4) calibration of the wave module according to minimum error in significant wave height does not necessarily result in an optimum wave module in a wave-current coupled system for current and storm surge prediction.

  19. Predicting Envelope Leakage in Attached Dwellings

    Energy Technology Data Exchange (ETDEWEB)

    Faakye, O. [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Arena, L. [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Griffiths, D. [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2013-07-01

    The most common method for measuring air leakage is to use a single blower door to pressurize and/or depressurize the test unit. In detached housing, the test unit is the entire home and the single blower door measures air leakage to the outside. In attached housing, this 'single unit', 'total', or 'solo' test method measures both the air leakage between adjacent units through common surfaces as well air leakage to the outside. Measuring and minimizing this total leakage is recommended to avoid indoor air quality issues between units, reduce energy losses to the outside, reduce pressure differentials between units, and control stack effect. However, two significant limitations of the total leakage measurement in attached housing are: for retrofit work, if total leakage is assumed to be all to the outside, the energy benefits of air sealing can be significantly over predicted; for new construction, the total leakage values may result in failing to meet an energy-based house tightness program criterion. The scope of this research is to investigate an approach for developing a viable simplified algorithm that can be used by contractors to assess energy efficiency program qualification and/or compliance based upon solo test results.

  20. Heat Stress-Induced PI3K/mTORC2-Dependent AKT Signaling Is a Central Mediator of Hepatocellular Carcinoma Survival to Thermal Ablation Induced Heat Stress.

    Directory of Open Access Journals (Sweden)

    Scott M Thompson

    Full Text Available Thermal ablative therapies are important treatment options in the multidisciplinary care of patients with hepatocellular carcinoma (HCC, but lesions larger than 2-3 cm are plagued with high local recurrence rates and overall survival of these patients remains poor. Currently no adjuvant therapies exist to prevent local HCC recurrence in patients undergoing thermal ablation. The molecular mechanisms mediating HCC resistance to thermal ablation induced heat stress and local recurrence remain unclear. Here we demonstrate that the HCC cells with a poor prognostic hepatic stem cell subtype (Subtype HS are more resistant to heat stress than HCC cells with a better prognostic hepatocyte subtype (Subtype HC. Moreover, sublethal heat stress rapidly induces phosphoinositide 3-kinase (PI3K/mammalian target of rapamycin (mTOR dependent-protein kinase B (AKT survival signaling in HCC cells in vitro and at the tumor ablation margin in vivo. Conversely, inhibition of PI3K/mTOR complex 2 (mTORC2-dependent AKT phosphorylation or direct inhibition of AKT function both enhance HCC cell killing and decrease HCC cell survival to sublethal heat stress in both poor and better prognostic HCC subtypes while mTOR complex 1 (mTORC1-inhibition has no impact. Finally, we showed that AKT isoforms 1, 2 and 3 are differentially upregulated in primary human HCCs and that overexpression of AKT correlates with worse tumor biology and pathologic features (AKT3 and prognosis (AKT1. Together these findings define a novel molecular mechanism whereby heat stress induces PI3K/mTORC2-dependent AKT survival signaling in HCC cells and provide a mechanistic rationale for adjuvant AKT inhibition in combination with thermal ablation as a strategy to enhance HCC cell killing and prevent local recurrence, particularly at the ablation margin.

  1. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Christen, Verena [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Capelle, Martinus [Crucell, P.O. Box 2048, NL-2301 Leiden (Netherlands); Fent, Karl, E-mail: karl.fent@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology Zürich, Department of Environmental Systems Science, CH-8092 Zürich (Switzerland)

    2013-10-15

    Silver nanoparticles (AgNPs) find increasing applications, and therefore humans and the environment are increasingly exposed to them. However, potential toxicological implications are not sufficiently known. Here we investigate effects of AgNPs (average size 120 nm) on zebrafish in vitro and in vivo, and compare them to human hepatoma cells (Huh7). AgNPs are incorporated in zebrafish liver cells (ZFL) and Huh7, and in zebrafish embryos. In ZFL cells AgNPs lead to induction of reactive oxygen species (ROS), endoplasmatic reticulum (ER) stress response, and TNF-α. Transcriptional alterations also occur in pro-apoptotic genes p53 and Bax. The transcriptional profile differed in ZFL and Huh7 cells. In ZFL cells, the ER stress marker BiP is induced, concomitant with the ER stress marker ATF-6 and spliced XBP-1 after 6 h and 24 h exposure to 0.5 g/L and 0.05 g/L AgNPs, respectively. This indicates the induction of different pathways of the ER stress response. Moreover, AgNPs induce TNF-α. In zebrafish embryos exposed to 0.01, 0.1, 1 and 5 mg/L AgNPs hatching was affected and morphological defects occurred at high concentrations. ER stress related gene transcripts BiP and Synv are significantly up-regulated after 24 h at 0.1 and 5 mg/L AgNPs. Furthermore, transcriptional alterations occurred in the pro-apoptotic genes Noxa and p21. The ER stress response was strong in ZFL cells and occurred in zebrafish embryos as well. Our data demonstrate for the first time that AgNPs lead to induction of ER stress in zebrafish. The induction of ER stress can have several consequences including the activation of apoptotic and inflammatory pathways. - Highlights: • Effects of silver nanoparticles (120 nm AgNPs) are investigated in zebrafish. • AgNPs induce all ER stress reponses in vitro in zebrafish liver cells. • AgNPs induce weak ER stress in zebrafish embryos. • AgNPs induce oxidative stress and transcripts of pro-apoptosis genes.

  2. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish

    International Nuclear Information System (INIS)

    Christen, Verena; Capelle, Martinus; Fent, Karl

    2013-01-01

    Silver nanoparticles (AgNPs) find increasing applications, and therefore humans and the environment are increasingly exposed to them. However, potential toxicological implications are not sufficiently known. Here we investigate effects of AgNPs (average size 120 nm) on zebrafish in vitro and in vivo, and compare them to human hepatoma cells (Huh7). AgNPs are incorporated in zebrafish liver cells (ZFL) and Huh7, and in zebrafish embryos. In ZFL cells AgNPs lead to induction of reactive oxygen species (ROS), endoplasmatic reticulum (ER) stress response, and TNF-α. Transcriptional alterations also occur in pro-apoptotic genes p53 and Bax. The transcriptional profile differed in ZFL and Huh7 cells. In ZFL cells, the ER stress marker BiP is induced, concomitant with the ER stress marker ATF-6 and spliced XBP-1 after 6 h and 24 h exposure to 0.5 g/L and 0.05 g/L AgNPs, respectively. This indicates the induction of different pathways of the ER stress response. Moreover, AgNPs induce TNF-α. In zebrafish embryos exposed to 0.01, 0.1, 1 and 5 mg/L AgNPs hatching was affected and morphological defects occurred at high concentrations. ER stress related gene transcripts BiP and Synv are significantly up-regulated after 24 h at 0.1 and 5 mg/L AgNPs. Furthermore, transcriptional alterations occurred in the pro-apoptotic genes Noxa and p21. The ER stress response was strong in ZFL cells and occurred in zebrafish embryos as well. Our data demonstrate for the first time that AgNPs lead to induction of ER stress in zebrafish. The induction of ER stress can have several consequences including the activation of apoptotic and inflammatory pathways. - Highlights: • Effects of silver nanoparticles (120 nm AgNPs) are investigated in zebrafish. • AgNPs induce all ER stress reponses in vitro in zebrafish liver cells. • AgNPs induce weak ER stress in zebrafish embryos. • AgNPs induce oxidative stress and transcripts of pro-apoptosis genes

  3. Phosphodiesterase-4 inhibition as a therapeutic approach to treat capillary leakage in systemic inflammation.

    Science.gov (United States)

    Schick, Martin Alexander; Wunder, Christian; Wollborn, Jakob; Roewer, Norbert; Waschke, Jens; Germer, Christoph-Thomas; Schlegel, Nicolas

    2012-06-01

    In sepsis and systemic inflammation, increased microvascular permeability and consecutive breakdown of microcirculatory flow significantly contribute to organ failure and death. Evidence points to a critical role of cAMP levels in endothelial cells to maintain capillary endothelial barrier properties in acute inflammation. However, approaches to verify this observation in systemic models are rare. Therefore we tested here whether systemic application of the phosphodiesterase-4-inhibitors (PD-4-Is) rolipram or roflumilast to increase endothelial cAMP was effective to attenuate capillary leakage and breakdown of microcirculatory flow in severe lipopolysaccharide (LPS)-induced systemic inflammation in rats. Measurements of cAMP in mesenteric microvessels demonstrated significant LPS-induced loss of cAMP levels which was blocked by application of rolipram. Increased endothelial cAMP by application of either PD-4-I rolipram or roflumilast led to stabilization of endothelial barrier properties as revealed by measurements of extravasated FITC-albumin in postcapillary mesenteric venules. Accordingly, microcirculatory flow in mesenteric venules was significantly increased following PD-4-I treatment and blood gas analyses indicated improved metabolism. Furthermore application of PD-4-I after manifestation of LPS-induced systemic inflammation and capillary leakage therapeutically stabilized endothelial barrier properties as revealed by significantly reduced volume resuscitation for haemodynamic stabilization. Accordingly microcirculation was significantly improved following treatment with PD-4-Is. Our results demonstrate that inflammation-derived loss of endothelial cAMP contributes to capillary leakage which was blocked by systemic PD-4-I treatment. Therefore these data suggest a highly clinically relevant and applicable approach to stabilize capillary leakage in sepsis and systemic inflammation.

  4. Sex differences in stress-induced visceral hypersensitivity following early life adversity: a two hit model.

    Science.gov (United States)

    Prusator, D K; Greenwood-Van Meerveld, B

    2016-12-01

    Early life adversity (ELA) has been indicated as a risk factor for the development of stress axis dysfunction in adulthood, specifically in females. We previously showed that unpredictable ELA induces visceral hyperalgesia in adult female rats. It remains to be determined whether ELA alters visceral nociceptive responses to stress in adulthood. The current study tested the hypothesis that following ELA, exposure to an adulthood stressor, or second hit, serves as a risk factor for exaggerated stress-induced visceral hypersensitivity that is sex-specific. Following ELA, adult stress was induced via a single exposure (acute) or repetitive daily exposure, 1 h/day for 7 days (chronic), to water avoidance stress (WAS). Acute WAS increased pain behaviors in all adult female rats, however, females that experienced unpredictable ELA exhibited significantly more pain behaviors compared to those exposed to predictable ELA or controls. Following chronic WAS, all adult females exhibited increased pain responses, however, an exaggerated response was observed in rats exposed to unpredictable or predictable ELA compared to controls. Similarly, in adult male rats exposure to acute or chronic WAS increased pain behaviors, however, there were no differences in pain behaviors between ELA groups. This study highlights a novel consequence of ELA on stress-induced visceral nociception in adulthood that is sex-specific. More importantly, our study suggests that ELA not only serves as a risk factor for development of chronic pain in adulthood, but also serves as a predisposition for worsening of visceral pain following adult stress in female rats. © 2016 John Wiley & Sons Ltd.

  5. Subsea Hydraulic Leakage Detection and Diagnosis

    OpenAIRE

    Stavenes, Thomas

    2010-01-01

    The motivation for this thesis is reduction of hydraulic emissions, minimizing of process emergency shutdowns, exploitation of intervention capacity, and reduction of costs. Today, monitoring of hydraulic leakages is scarce and the main way to detect leakage is the constant need for filling of hydraulic fluid to the Hydraulic Power Unit (HPU). Leakage detection and diagnosis has potential, which would be adressed in this thesis. A strategy towards leakage detection and diagnosis is given....

  6. Hydrogeochemical Impact of CO2 Leakage from Geological Sequestration on Shallow Potable Aquifers

    DEFF Research Database (Denmark)

    Cahill, Aaron Graham

    . Although considered highly unlikely following appropriate site selection, leakage of CO2 from CCGS forms a major concern for both scientists and the public. Leakage would potentially occur through faults or abandoned boreholes and ultimately result in upward migration and discharge to the atmosphere....... During migration CO2 would dissolve into groundwater forming carbonic acid, induce water-rock reactions and thus change groundwater chemistry. Therefore prior to implementation of this potentially necessary technology, environmental risks associated with leakage must be understood. Over the past 10 years...... it be detected geochemically? Some common hydrochemical development is apparent from the literature however many aspects of hydrogeological and hydrogeochemical impact of leakage into shallow aquifers used in water supply remain unclear. In this Ph.D. study an integrated approach was employed in order to answer...

  7. Electrical current leakage and open-core threading dislocations in AlGaN-based deep ultraviolet light-emitting diodes

    International Nuclear Information System (INIS)

    Moseley, Michael; Allerman, Andrew; Crawford, Mary; Wierer, Jonathan J.; Smith, Michael; Biedermann, Laura

    2014-01-01

    Electrical current transport through leakage paths in AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) and their effect on LED performance are investigated. Open-core threading dislocations, or nanopipes, are found to conduct current through nominally insulating Al 0.7 Ga 0.3 N layers and limit the performance of DUV-LEDs. A defect-sensitive phosphoric acid etch reveals these open-core threading dislocations in the form of large, micron-scale hexagonal etch pits visible with optical microscopy, while closed-core screw-, edge-, and mixed-type threading dislocations are represented by smaller and more numerous nanometer-scale pits visible by atomic-force microscopy. The electrical and optical performances of DUV-LEDs fabricated on similar Si-doped Al 0.7 Ga 0.3 N templates are found to have a strong correlation to the density of these nanopipes, despite their small fraction (<0.1% in this study) of the total density of threading dislocations

  8. Evaluation of changes in serum chemistry in association with feed withdrawal or high dose oral gavage with Dextran Sodium Sulfate (DSS) induced gut leakage in broiler chickens

    Science.gov (United States)

    Dextran sodium sulfate (DSS) has been shown to be effective at inducing enteric inflammation in broiler chickens, resulting in increased leakage of orally administered fluorescein isothiocyanate dextran to circulation. In a previous study, two doses of DSS (0.45g/dose) administered as oral gavage re...

  9. Reducing leakage current in semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Bin; Matioli, Elison de Nazareth; Palacios, Tomas Apostol

    2018-03-06

    A semiconductor device includes a first region having a first semiconductor material and a second region having a second semiconductor material. The second region is formed over the first region. The semiconductor device also includes a current blocking structure formed in the first region between first and second terminals of the semiconductor device. The current blocking structure is configured to reduce current flow in the first region between the first and second terminals.

  10. Degradation of (InAlGa)N-based UV-B light emitting diodes stressed by current and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Glaab, Johannes, E-mail: johannes.glaab@fbh-berlin.de; Ploch, Christian; Kelz, Rico; Stölmacker, Christoph; Lapeyrade, Mickael; Ploch, Neysha Lobo; Rass, Jens; Kolbe, Tim; Einfeldt, Sven; Weyers, Markus [Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany); Mehnke, Frank; Kuhn, Christian; Wernicke, Tim [Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstr. 36, EW 6-1, 10623 Berlin (Germany); Kneissl, Michael [Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany); Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstr. 36, EW 6-1, 10623 Berlin (Germany)

    2015-09-07

    The degradation of the electrical and optical properties of (InAlGa)N-based multiple quantum well light emitting diodes (LEDs) emitting near 308 nm under different stress conditions has been studied. LEDs with different emission areas were operated at room temperature and at constant current densities of 75 A/cm{sup 2}, 150 A/cm{sup 2}, and 225 A/cm{sup 2}. In addition, the heat sink temperature was varied between 15 °C and 80 °C. Two main modes for the reduction of the optical power were found, which dominate at different times of operation: (1) Within the first 100 h, a fast drop of the optical power is observed scaling exponentially with the temperature and having an activation energy of about 0.13 eV. The drop in optical power is accompanied by changes of the current-voltage (I-V) characteristic. (2) For operation times beyond 100 h, the optical power decreases slowly which can be reasonably described by a square root time dependence. Here, the degradation rate depends on the current density, rather than the current. Again, the rate of optical power reduction of the second mode depends exponentially on the temperature with an activation energy of about 0.21 eV. The drop in the optical power is accompanied by an increased reverse-bias leakage current.

  11. Issues behind Competitiveness and Carbon Leakage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This report explores the vulnerability of heavy industry to carbon leakage and competitiveness loss. It reviews the existing literature on competitiveness and carbon leakage under uneven climate policies. It also suggests a statistical method to track carbon leakage, and applies this methodology to Phase I of the EU emissions trading scheme, for various industrial activities: iron and steel, cement, aluminium and refineries. Finally, it reviews measures to mitigate carbon leakage, as discussed in Australia, Canada, Europe, New Zealand and the US.

  12. Leakage monitoring device and method

    International Nuclear Information System (INIS)

    Yamada, Izumi; Matsui, Yuji; Fujimori, Haruo.

    1995-01-01

    In a water leakage monitor for a steam generator, output signals from an acoustic sensor disposed in the vicinity of a region to be monitored is subjected to phasing calculation (beam forming calculation) to determine the distribution of a sound source intensity distribution. A peak is retrieved based on the distribution of the sound source intensity distribution. A correction coefficient depending on the position of the peak is multiplied to the sound source intensity. The presence or absence of leakage is determined based on the degree of the sound source intensity after the completion of correction. Namely, a relative value of sound source intensity for each of the portions in the region to be monitored is determined, and the point of the greatest sound source intensity is assumed as a leaking point, to determine the position of the leakage. An absolute value of the sound source intensity at the leaking point is determined by such a constitution that a correction coefficient depending on the position is multiplied to the intensity of the position of the peak in the distribution of the sound intensity. A threshold value for the determination of the presence or absence of the leakage can be set if a relation between an amount of the leakage previously determined experimentally and the intensity of the sound source. Then, a countermeasure can easily be taken after the detection of the leakage and a restoring operation can be carried out rapidly after the occurrence of leakage while avoiding unnecessary shutdown. (N.H.)

  13. Mother's Childrearing History and Current Parenting: Patterns of Association and the Moderating Role of Current Life Stress

    Science.gov (United States)

    Hill, Carri; Stein, Jennifer; Keenan, Kate; Wakschlag, Lauren S.

    2006-01-01

    This study examined the association between positive and negative aspects of childrearing history and current parenting and the moderating effect of current stress. Seventy mother-child dyads participated in this study. Mothers provided retrospective reports of childrearing histories and current reports of life stress. Parenting was assessed via…

  14. Implication of snail in metabolic stress-induced necrosis.

    Directory of Open Access Journals (Sweden)

    Cho Hee Kim

    2011-03-01

    Full Text Available Necrosis, a type of cell death accompanied by the rupture of the plasma membrane, promotes tumor progression and aggressiveness by releasing the pro-inflammatory and angiogenic cytokine high mobility group box 1. It is commonly found in the core region of solid tumors due to hypoxia and glucose depletion (GD resulting from insufficient vascularization. Thus, metabolic stress-induced necrosis has important clinical implications for tumor development; however, its regulatory mechanisms have been poorly investigated.Here, we show that the transcription factor Snail, a key regulator of epithelial-mesenchymal transition, is induced in a reactive oxygen species (ROS-dependent manner in both two-dimensional culture of cancer cells, including A549, HepG2, and MDA-MB-231, in response to GD and the inner regions of a multicellular tumor spheroid system, an in vitro model of solid tumors and of human tumors. Snail short hairpin (sh RNA inhibited metabolic stress-induced necrosis in two-dimensional cell culture and in multicellular tumor spheroid system. Snail shRNA-mediated necrosis inhibition appeared to be linked to its ability to suppress metabolic stress-induced mitochondrial ROS production, loss of mitochondrial membrane potential, and mitochondrial permeability transition, which are the primary events that trigger necrosis.Taken together, our findings demonstrate that Snail is implicated in metabolic stress-induced necrosis, providing a new function for Snail in tumor progression.

  15. Stress corrosion on austenitic stainless steels components after sodium draining

    International Nuclear Information System (INIS)

    Champeix, L.; Baque, P.; Chairat, C.

    1980-04-01

    The damage study performed on 316 pipes of a loop after two leakages allows to conclude that a stress corrosion process in sodium hydroxide environment has induced trans-crystaline cracks. The research of conditions inducing such a phenomenon is developed, including parametric tests under uniaxial load and some tests on pipe with welded joints. In aqueous sodium hydroxide, two corrosion processes have been revealed: a general oxidization increasing with environment aeration and a transcrystalline cracking appearing for stresses of the order of yield strength. Other conditions such a temperature (upper than 100 0 C) and time exposures (some tens of hours) are necessary. Cautions in order to limit introduction of wet air into drained loop and a choice of appropriate preheating conditions when restarting the installation must permit to avoid such a type of incident

  16. Modelling of illuminated current–voltage characteristics to evaluate leakage currents in long wavelength infrared mercury cadmium telluride photovoltaic detectors

    International Nuclear Information System (INIS)

    Gopal, Vishnu; Qiu, WeiCheng; Hu, Weida

    2014-01-01

    The current–voltage characteristics of long wavelength mercury cadmium telluride infrared detectors have been studied using a recently suggested method for modelling of illuminated photovoltaic detectors. Diodes fabricated on in-house grown arsenic and vacancy doped epitaxial layers were evaluated for their leakage currents. The thermal diffusion, generation–recombination (g-r), and ohmic currents were found as principal components of diode current besides a component of photocurrent due to illumination. In addition, both types of diodes exhibited an excess current component whose growth with the applied bias voltage did not match the expected growth of trap-assisted-tunnelling current. Instead, it was found to be the best described by an exponential function of the type, I excess  = I r0  + K 1 exp (K 2 V), where I r0 , K 1 , and K 2 are fitting parameters and V is the applied bias voltage. A study of the temperature dependence of the diode current components and the excess current provided the useful clues about the source of origin of excess current. It was found that the excess current in diodes fabricated on arsenic doped epitaxial layers has its origin in the source of ohmic shunt currents. Whereas, the source of excess current in diodes fabricated on vacancy doped epitaxial layers appeared to be the avalanche multiplication of photocurrent. The difference in the behaviour of two types of diodes has been attributed to the difference in the quality of epitaxial layers

  17. Pancreatic anastomosis leakage management following pancreaticoduodenectomy how could be manage the anastomosis leakage after pancreaticoduodenectomy?

    Directory of Open Access Journals (Sweden)

    Seyed Abbas Tabatabei

    2015-01-01

    Full Text Available Background: Pancreatic anastomosis leakage and fistula formation following pancreaticoduodenectomy (Whipple′s procedure is a common complication. Delay in timely diagnosis and proper management is associated with high morbidity and mortality. To report our experience with management of pancreatic fistula following Whipple′s procedure. Materials and Methods: In this retrospective study, medical records of 90 patients who underwent Whipple′s procedure from 2009 to 2013 at our medical center were reviewed for documents about pancreatic anastomosis leakage and fistula formation. Results: There were 15 patients who developed pancreatico-jejunal anastomosis leakage. In 6 patients (3 males and 3 females the leakage was mild (conservative therapy was administered, but in 9 patients (6 males and 3 females, there was severe leakage. For the latter group, surgical intervention was done (2 cases underwent re-anastomosis and for 7 cases pancreatico-jejunal stump ligation was done along with drainage of the location. Conclusion: In severe pancreatic anastomotic leakage, it is better to intervene surgically as soon as possible by debridement of the distal part of the pancreas and ligation of the stump with nonabsorbable suture. Furthermore, debridement of the jejunum should be done, and the stump should be ligated thoroughly along with drainage.

  18. Flux-pinning-induced stress and magnetostriction in bulk superconductors

    International Nuclear Information System (INIS)

    Johansen, Tom H.

    2000-01-01

    The development of bulk high-temperature superconductors (HTSs) and their applications has today come to a point where the mechanical response to high magnetic fields may be more important than their critical-current density and large-grain property. Reviewed in this article are the recent studies of the magneto-elastic effects which are caused by flux pinning in the superconductors. This includes the work on the giant irreversible magnetostriction and internal stress, which often cause fatal cracking of the HTS bulks as they become magnetized. The cracking is a problem that today accompanies the quest for the highest trapped field values, and the latest development in this area is also presented. While the first part is an overview of experimental efforts, the second summarizes the work done to model the pinning-induced stress and strain under various magnetic and geometrical conditions. (author)

  19. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    International Nuclear Information System (INIS)

    Malaviya, Rama; Laskin, Jeffrey D.; Laskin, Debra L.

    2014-01-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic

  20. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2014-03-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic.

  1. Colorectal Anastomotic Leakage: New perspectives

    NARCIS (Netherlands)

    F. Daams (Freek)

    2014-01-01

    markdownabstract__Abstract__ This thesis provides new perspectives on colorectal anastomotic leakages. In both experimental and clinical studies, aspects of prevention, early identification, treatment and consequences of anastomotic leakage are discussed.

  2. Acute stress may induce ovulation in women

    Directory of Open Access Journals (Sweden)

    Cano Antonio

    2010-05-01

    Full Text Available Abstract Background This study aims to gather information either supporting or rejecting the hypothesis that acute stress may induce ovulation in women. The formulation of this hypothesis is based on 2 facts: 1 estrogen-primed postmenopausal or ovariectomized women display an adrenal-progesterone-induced ovulatory-like luteinizing hormone (LH surge in response to exogenous adrenocorticotropic hormone (ACTH administration; and 2 women display multiple follicular waves during an interovulatory interval, and likely during pregnancy and lactation. Thus, acute stress may induce ovulation in women displaying appropriate serum levels of estradiol and one or more follicles large enough to respond to a non-midcycle LH surge. Methods A literature search using the PubMed database was performed to identify articles up to January 2010 focusing mainly on women as well as on rats and rhesus monkeys as animal models of interaction between the hypothalamic-pituitary-adrenal (HPA and hypothalamic-pituitary-gonadal (HPG axes. Results Whereas the HPA axis exhibits positive responses in practically all phases of the ovarian cycle, acute-stress-induced release of LH is found under relatively high plasma levels of estradiol. However, there are studies suggesting that several types of acute stress may exert different effects on pituitary LH release and the steroid environment may modulate in a different way (inhibiting or stimulating the pattern of response of the HPG axis elicited by acute stressors. Conclusion Women may be induced to ovulate at any point of the menstrual cycle or even during periods of amenorrhea associated with pregnancy and lactation if exposed to an appropriate acute stressor under a right estradiol environment.

  3. Current trends and future development in pharmacologic stress testing

    International Nuclear Information System (INIS)

    Bae, Jin Ho; Lee, Jae Tae

    2005-01-01

    Pharmacologic stress testing for myocardial perfusion imaging is a widely used noninvasive method for the evaluation of known or suspected coronary artery disease. The use of exercise for cardiac stress has been practiced for over 60 years and clinicians are familiar with its using. However, there are inevitable situations in which exercise stress is inappropriate. A large number of patients with cardiac problems are unable to exercise to their full potential due to comorbidity such as osteoarthritis, vascular disease and pulmonary disease and a standard exercise stress test for myocardial perfusion imaging is suboptimal means for assessment of coronary artery disease. This problem has led to the development of the pharmacologic stress test and to a great increase in its popularity. All of the currently used pharmacologic agents have well-documented diagnostic value. This review deals the physiological actions, clinical protocols, safety, nuclear imaging applications of currently available stress agents and future development of new vasodilating agents

  4. Novel oxindole derivatives prevent oxidative stress-induced cell death in mouse hippocampal HT22 cells.

    Science.gov (United States)

    Hirata, Yoko; Yamada, Chika; Ito, Yuki; Yamamoto, Shotaro; Nagase, Haruna; Oh-Hashi, Kentaro; Kiuchi, Kazutoshi; Suzuki, Hiromi; Sawada, Makoto; Furuta, Kyoji

    2018-03-15

    The current medical and surgical therapies for neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease offer symptomatic relief but do not provide a cure. Thus, small synthetic compounds that protect neuronal cells from degeneration are critically needed to prevent and treat these. Oxidative stress has been implicated in various pathophysiological conditions, including neurodegenerative diseases. In a search for neuroprotective agents against oxidative stress using the murine hippocampal HT22 cell line, we found a novel oxindole compound, GIF-0726-r, which prevented oxidative stress-induced cell death, including glutamate-induced oxytosis and erastin-induced ferroptosis. This compound also exerted a protective effect on tunicamycin-induced ER stress to a lesser extent but had no effect on campthothecin-, etoposide- or staurosporine-induced apoptosis. In addition, GIF-0726-r was also found to be effective after the occurrence of oxidative stress. GIF-0726-r was capable of inhibiting reactive oxygen species accumulation and Ca 2+ influx, a presumed executor in cell death, and was capable of activating the antioxidant response element, which is a cis-acting regulatory element in promoter regions of several genes encoding phase II detoxification enzymes and antioxidant proteins. These results suggest that GIF-0726-r is a low-molecular-weight compound that prevents neuronal cell death through attenuation of oxidative stress. Among the more than 200 derivatives of the GIF-0726-r synthesized, we identified the 11 most potent activators of the antioxidant response element and characterized their neuroprotective activity in HT22 cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Sophie [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); ED515 UPMC, 4 place Jussieu 75005 Paris (France); Sliwa, Dominika [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Rustin, Pierre [Inserm, U676, Physiopathology and Therapy of Mitochondrial Disease Laboratory, 75019 Paris (France); Universite Paris-Diderot, Faculte de Medecine Denis Diderot, IFR02 Paris (France); Camadro, Jean-Michel [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Santos, Renata, E-mail: santos.renata@ijm.univ-paris-diderot.fr [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Yeast frataxin-deficiency leads to increased proportion of fragmented mitochondria. Black-Right-Pointing-Pointer Oxidative stress induces complete mitochondrial fragmentation in {Delta}yfh1 cells. Black-Right-Pointing-Pointer Oxidative stress increases mitochondrial fragmentation in patient fibroblasts. Black-Right-Pointing-Pointer Inhibition of mitochondrial fission in {Delta}yfh1 induces oxidative stress resistance. -- Abstract: Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron-sulfur cluster assembly. Yeast cells lacking frataxin ({Delta}yfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in {Delta}yfh1 cells. Genetically controlled inhibition of mitochondrial fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.

  6. Environmental stress induces trinucleotide repeat mutagenesis in human cells.

    Science.gov (United States)

    Chatterjee, Nimrat; Lin, Yunfu; Santillan, Beatriz A; Yotnda, Patricia; Wilson, John H

    2015-03-24

    The dynamic mutability of microsatellite repeats is implicated in the modification of gene function and disease phenotype. Studies of the enhanced instability of long trinucleotide repeats (TNRs)-the cause of multiple human diseases-have revealed a remarkable complexity of mutagenic mechanisms. Here, we show that cold, heat, hypoxic, and oxidative stresses induce mutagenesis of a long CAG repeat tract in human cells. We show that stress-response factors mediate the stress-induced mutagenesis (SIM) of CAG repeats. We show further that SIM of CAG repeats does not involve mismatch repair, nucleotide excision repair, or transcription, processes that are known to promote TNR mutagenesis in other pathways of instability. Instead, we find that these stresses stimulate DNA rereplication, increasing the proportion of cells with >4 C-value (C) DNA content. Knockdown of the replication origin-licensing factor CDT1 eliminates both stress-induced rereplication and CAG repeat mutagenesis. In addition, direct induction of rereplication in the absence of stress also increases the proportion of cells with >4C DNA content and promotes repeat mutagenesis. Thus, environmental stress triggers a unique pathway for TNR mutagenesis that likely is mediated by DNA rereplication. This pathway may impact normal cells as they encounter stresses in their environment or during development or abnormal cells as they evolve metastatic potential.

  7. Cocaine induces astrocytosis through ER stress-mediated activation of autophagy

    Science.gov (United States)

    Periyasamy, Palsamy; Guo, Ming-Lei; Buch, Shilpa

    2016-01-01

    ABSTRACT Cocaine is known to induce inflammation, thereby contributing in part, to the pathogenesis of neurodegeneration. A recent study from our lab has revealed a link between macroautophagy/autophagy and microglial activation. The current study was aimed at investigating whether cocaine could also mediate activation of astrocytes and, whether this process involved induction of autophagy. Our findings demonstrated that cocaine mediated the activation of astrocytes by altering the levels of autophagy markers, such as BECN1, ATG5, MAP1LC3B-II, and SQSTM1 in both human A172 astrocytoma cells and primary human astrocytes. Furthermore, cocaine treatment resulted in increased formation of endogenous MAP1LC3B puncta in human astrocytes. Additionally, astrocytes transfected with the GFP-MAP1LC3B plasmid also demonstrated cocaine-mediated upregulation of the green fluorescent MAP1LC3B puncta. Cocaine-mediated induction of autophagy involved upstream activation of ER stress proteins such as EIF2AK3, ERN1, ATF6 since blockage of autophagy using either pharmacological or gene-silencing approaches, had no effect on cocaine-mediated induction of ER stress. Using both pharmacological and gene-silencing approaches to block either ER stress or autophagy, our findings demonstrated that cocaine-induced activation of astrocytes (measured by increased levels of GFAP) involved sequential activation of ER stress and autophagy. Cocaine-mediated-increased upregulation of GFAP correlated with increased expression of proinflammatory mediators such as TNF, IL1B, and IL6. In conclusion, these findings reveal an association between ER stress-mediated autophagy and astrogliosis in cocaine-treated astrocytes. Intervention of ER stress and/or autophagy signaling would thus be promising therapeutic targets for abrogating cocaine-mediated neuroinflammation. PMID:27337297

  8. Identification of Proteins Using iTRAQ and Virus-Induced Gene Silencing Reveals Three Bread Wheat Proteins Involved in the Response to Combined Osmotic-Cold Stress.

    Science.gov (United States)

    Zhang, Ning; Zhang, Lingran; Shi, Chaonan; Zhao, Lei; Cui, Dangqun; Chen, Feng

    2018-05-25

    Crops are often subjected to a combination of stresses in the field. To date, studies on the physiological and molecular responses of common wheat to a combination of osmotic and cold stresses, however, remain unknown. In this study, wheat seedlings exposed to osmotic-cold stress for 24 h showed inhibited growth, as well as increased lipid peroxidation, relative electrolyte leakage, and soluble sugar contents. iTRAQ-based quantitative proteome method was employed to determine the proteomic profiles of the roots and leaves of wheat seedlings exposed to osmotic-cold stress conditions. A total of 250 and 258 proteins with significantly altered abundance in the roots and leaves were identified, respectively, and the majority of these proteins displayed differential abundance, thereby revealing organ-specific differences in adaptation to osmotic-cold stress. Yeast two hybrid assay examined five pairs of stress/defense-related protein-protein interactions in the predicted protein interaction network. Furthermore, quantitative real-time PCR analysis indicated that abiotic stresses increased the expression of three candidate protein genes, i.e., TaGRP2, CDCP, and Wcor410c in wheat leaves. Virus-induced gene silencing indicated that three genes TaGRP2, CDCP, and Wcor410c were involved in modulating osmotic-cold stress in common wheat. Our study provides useful information for the elucidation of molecular and genetics bases of osmotic-cold combined stress in bread wheat.

  9. Radiofrequency radiation leakage from microwave ovens

    International Nuclear Information System (INIS)

    Lahham, A.; Sharabati, A.

    2013-01-01

    This work presents data on the amount of radiation leakage from 117 microwave ovens in domestic and restaurant use in the West Bank, Palestine. The study of leakage is based on the measurements of radiation emissions from the oven in real-life conditions by using a frequency selective field strength measuring system. The power density from individual ovens was measured at a distance of 1 m and at the height of centre of door screen. The tested ovens were of different types, models with operating powers between 1000 and 1600 W and ages ranging from 1 month to >20 y, including 16 ovens with unknown ages. The amount of radiation leakage at a distance of 1 m was found to vary from 0.43 to 16.4 μW cm -1 with an average value equalling 3.64 μW cm -2 . Leakages from all tested microwave ovens except for seven ovens (∼6 % of the total) were below 10 μW cm -2 . The highest radiation leakage from any tested oven was ∼16.4 μW cm -2 , and found in two cases only. In no case did the leakage exceed the limit of 1 μWcm -1 recommended by the ICNIRP for 2.45-GHz radiofrequency. This study confirms a linear correlation between the amount of leakage and both oven age and operating power, with a stronger dependence of leakage on age. (authors)

  10. Strain induced irreversible critical current degradation in highly dense Bi-2212 round wire

    CERN Document Server

    Bjoerstad, R; Rikel, M.O.; Ballarino, A; Bottura, L; Jiang, J; Matras, M; Sugano, M; Hudspeth, J; Di Michiel, M

    2015-01-01

    The strain induced critical current degradation of overpressure processed straight Bi 2212/Ag wires has been studied at 77 K in self-field. For the first time superconducting properties, lattice distortions, composite wire stress and strain have been measured simultaneously in a high energy synchrotron beamline. A permanent Ic degradation of 5% occurs when the wire strain exceeds 0.60%. At a wire strain of about 0.65% a drastic n value and Ic reduction occur, and the composite stress and the Bi-2212 lattice parameter reach a plateau, indicating Bi-2212 filament fracturing. The XRD measurements show that Bi-2212 exhibits linear elastic behaviour up to the irreversible strain limit.

  11. Histone deacetylase inhibition abolishes stress-induced spatial memory impairment.

    Science.gov (United States)

    Vargas-López, Viviana; Lamprea, Marisol R; Múnera, Alejandro

    2016-10-01

    Acute stress induced before spatial training impairs memory consolidation. Although non-epigenetic underpinning of such effect has been described, the epigenetic mechanisms involved have not yet been studied. Since spatial training and intense stress have opposite effects on histone acetylation balance, it is conceivable that disruption of such balance may underlie acute stress-induced spatial memory consolidation impairment and that inhibiting histone deacetylases prevents such effect. Trichostatin-A (TSA, a histone deacetylase inhibitor) was used to test its effectiveness in preventing stress' deleterious effect on memory. Male Wistar rats were trained in a spatial task in the Barnes maze; 1-h movement restraint was applied to half of them before training. Immediately after training, stressed and non-stressed animals were randomly assigned to receive either TSA (1mg/kg) or vehicle intraperitoneal injection. Twenty-four hours after training, long-term spatial memory was tested; plasma and brain tissue were collected immediately after the memory test to evaluate corticosterone levels and histone H3 acetylation in several brain areas. Stressed animals receiving vehicle displayed memory impairment, increased plasma corticosterone levels and markedly reduced histone H3 acetylation in prelimbic cortex and hippocampus. Such effects did not occur in stressed animals treated with TSA. The aforementioned results support the hypothesis that acute stress induced-memory impairment is related to histone deacetylation. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Temporal pore pressure induced stress changes during injection and depletion

    Science.gov (United States)

    Müller, Birgit; Heidbach, Oliver; Schilling, Frank; Fuchs, Karl; Röckel, Thomas

    2016-04-01

    Induced seismicity is observed during injection of fluids in oil, gas or geothermal wells as a rather immediate response close to the injection wells due to the often high-rate pressurization. It was recognized even earlier in connection with more moderate rate injection of fluid waste on a longer time frame but higher induced event magnitudes. Today, injection-related induced seismicity significantly increased the number of events with M>3 in the Mid U.S. However, induced seismicity is also observed during production of fluids and gas, even years after the onset of production. E.g. in the Groningen gas field production was required to be reduced due to the increase in felt and damaging seismicity after more than 50 years of exploitation of that field. Thus, injection and production induced seismicity can cause severe impact in terms of hazard but also on economic measures. In order to understand the different onset times of induced seismicity we built a generic model to quantify the role of poro-elasticity processes with special emphasis on the factors time, regional crustal stress conditions and fault parameters for three case studies (injection into a low permeable crystalline rock, hydrothermal circulation and production of fluids). With this approach we consider the spatial and temporal variation of reservoir stress paths, the "early" injection-related induced events during stimulation and the "late" production induced ones. Furthermore, in dependence of the undisturbed in situ stress field conditions the stress tensor can change significantly due to injection and long-term production with changes of the tectonic stress regime in which previously not critically stressed faults could turn to be optimally oriented for fault reactivation.

  13. Stress induces pain transition by potentiation of AMPA receptor phosphorylation.

    Science.gov (United States)

    Li, Changsheng; Yang, Ya; Liu, Sufang; Fang, Huaqiang; Zhang, Yong; Furmanski, Orion; Skinner, John; Xing, Ying; Johns, Roger A; Huganir, Richard L; Tao, Feng

    2014-10-08

    Chronic postsurgical pain is a serious issue in clinical practice. After surgery, patients experience ongoing pain or become sensitive to incident, normally nonpainful stimulation. The intensity and duration of postsurgical pain vary. However, it is unclear how the transition from acute to chronic pain occurs. Here we showed that social defeat stress enhanced plantar incision-induced AMPA receptor GluA1 phosphorylation at the Ser831 site in the spinal cord and greatly prolonged plantar incision-induced pain. Interestingly, targeted mutation of the GluA1 phosphorylation site Ser831 significantly inhibited stress-induced prolongation of incisional pain. In addition, stress hormones enhanced GluA1 phosphorylation and AMPA receptor-mediated electrical activity in the spinal cord. Subthreshold stimulation induced spinal long-term potentiation in GluA1 phosphomimetic mutant mice, but not in wild-type mice. Therefore, spinal AMPA receptor phosphorylation contributes to the mechanisms underlying stress-induced pain transition. Copyright © 2014 the authors 0270-6474/14/3413737-10$15.00/0.

  14. Bioanalytical evidence that chemicals in tattoo ink can induce adaptive stress responses.

    Science.gov (United States)

    Neale, Peta A; Stalter, Daniel; Tang, Janet Y M; Escher, Beate I

    2015-10-15

    Tattooing is becoming increasingly popular, particularly amongst young people. However, tattoo inks contain a complex mixture of chemical impurities that may pose a long-term risk for human health. As a first step towards the risk assessment of these complex mixtures we propose to assess the toxicological hazard potential of tattoo ink chemicals with cell-based bioassays. Targeted modes of toxic action and cellular endpoints included cytotoxicity, genotoxicity and adaptive stress response pathways. The studied tattoo inks, which were extracted with hexane as a proxy for the bioavailable fraction, caused effects in all bioassays, with the red and yellow tattoo inks having the greatest response, particularly inducing genotoxicity and oxidative stress response endpoints. Chemical analysis revealed the presence of polycyclic aromatic hydrocarbons in the tested black tattoo ink at concentrations twice the recommended level. The detected polycyclic aromatic hydrocarbons only explained 0.06% of the oxidative stress response of the black tattoo ink, thus the majority of the effect was caused by unidentified components. The study indicates that currently available tattoo inks contain components that induce adaptive stress response pathways, but to evaluate the risk to human health further work is required to understand the toxicokinetics of tattoo ink chemicals in the body. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. EFFECT OF DROUGHT STRESS INDUCED BY MANNITOL ON PHYSIOLOGICAL PARAMETERS OF MAIZE (ZEA MAYS L. SEEDLINGS AND PLANTS

    Directory of Open Access Journals (Sweden)

    Katarzyna Możdżeń

    2015-02-01

    Full Text Available Plants are exposed to various stress factors which might lead to structural damage and physiological function abnormalities. Drought is one of the environmental stress factors that reduce the productivity of plants. The aim of our study was to determine the influence of drought stress induced by mannitol (-0.5 and -1.5MPa on selected physiological processes in Z. mays L. In the first stage we studied the effect of mannitol on the germination. In the second stage the effect of mannitol on the growth of plants germinated on distilled water and watered with mannitol in growth phase were measured. Mannitol, which decreased the water content in a concentration-dependent manner, had an inhibitory effect on germination and growth of seedlings and adult plants. Electrolyte leakage of cell membranes of the Z. mays seedlings showed high disturbances in the functioning of the membrane structures in the osmotic drought conditions. Similar results were obtained for maize roots, shoots and leaves in both treatment studies. Chlorophyll content showed only significant differences in plants from treated during the growth phase. Drought stress caused a decrease in chlorophyll content by almost a half compared to the control plants. Measurements of chlorophyll fluorescence of plant leaves from the second stage of experiments showed changes in fluorescence activity parameters Fv/Fm, NPQ, Rfd, qP, ect.; gas exchange measurements also showed changes in activity in each of the two phases.

  16. Modulation of Hypercholesterolemia-Induced Oxidative/Nitrative Stress in the Heart

    Science.gov (United States)

    Sárközy, Márta; Pipicz, Márton; Dux, László; Csont, Tamás

    2016-01-01

    Hypercholesterolemia is a frequent metabolic disorder associated with increased risk for cardiovascular morbidity and mortality. In addition to its well-known proatherogenic effect, hypercholesterolemia may exert direct effects on the myocardium resulting in contractile dysfunction, aggravated ischemia/reperfusion injury, and diminished stress adaptation. Both preclinical and clinical studies suggested that elevated oxidative and/or nitrative stress plays a key role in cardiac complications induced by hypercholesterolemia. Therefore, modulation of hypercholesterolemia-induced myocardial oxidative/nitrative stress is a feasible approach to prevent or treat deleterious cardiac consequences. In this review, we discuss the effects of various pharmaceuticals, nutraceuticals, some novel potential pharmacological approaches, and physical exercise on hypercholesterolemia-induced oxidative/nitrative stress and subsequent cardiac dysfunction as well as impaired ischemic stress adaptation of the heart in hypercholesterolemia. PMID:26788247

  17. Study of the tunnelling initiated leakage current through the carbon nanotube embedded gate oxide in metal oxide semiconductor structures

    International Nuclear Information System (INIS)

    Chakraborty, Gargi; Sarkar, C K; Lu, X B; Dai, J Y

    2008-01-01

    The tunnelling currents through the gate dielectric partly embedded with semiconducting single-wall carbon nanotubes in a silicon metal-oxide-semiconductor (MOS) structure have been investigated. The application of the gate voltage to such an MOS device results in the band bending at the interface of the partly embedded oxide dielectric and the surface of the silicon, initiating tunnelling through the gate oxide responsible for the gate leakage current whenever the thickness of the oxide is scaled. A model for silicon MOS structures, where carbon nanotubes are confined in a narrow layer embedded in the gate dielectric, is proposed to investigate the direct and the Fowler-Nordheim (FN) tunnelling currents of such systems. The idea of embedding such elements in the gate oxide is to assess the possibility for charge storage for memory device applications. Comparing the FN tunnelling onset voltage between the pure gate oxide and the gate oxide embedded with carbon nanotubes, it is found that the onset voltage decreases with the introduction of the nanotubes. The direct tunnelling current has also been studied at very low gate bias, for the thin oxide MOS structure which plays an important role in scaling down the MOS transistors. The FN tunnelling current has also been studied with varying nanotube diameter

  18. Role of abscisic acid (aba) in modulating the responses of two apple rootstocks to drought stress

    International Nuclear Information System (INIS)

    Zhang, L.; Li, X.; Li, B.; Han, M.; Liu, F.; Zhang, L.; Zheng, P.

    2014-01-01

    Drought stress is considered as the main limiting factor for apple (Malus domestica L.) production in some semi-arid areas of China. In this study, we investigated the modulation role of abscisic acid (ABA) and fluridone (ABA synthesis inhibitor) on water relations and antioxidant enzyme system in 2-year-old seedlings of two apple rootstocks i.e. Malus sieversii (Ledeb.) Roem. (MS) and Malus hupehensis (Pamp.) Rehd. (MH). Drought stress induced ion leakage, accumulation of malondiadehyde (MDA) and decreases in leaf water potential and relative water content (RWC) in both rootstocks, which were significantly alleviated by exogenous ABA application. Drought stress also induced markedly increases in endogenous ABA content and activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), and glutathione reductase (GR), to a greater magnitude in MS as compared to MH rootstock. Concentration of 100 mol/L and 50 mol/L ABA had the most positive effects on drought-stressed rootstocks of MS and MH, respectively. Spraying optimum exogenous ABA contributed to enhancement in most of the above antioxidant enzymes activities but reduction in content of MDA and maintained the appropriate leaf water potential and RWC in both rootstocks. Pretreatment with fluridone aggravated ion leakage and the accumulation of MDA in two apple rootstocks under drought stress, which was overcome by exogenous ABA application to some extent. In conclusion, the endogenous ABA was probably involved in the regulation of two apple rootstocks in responses to drought stress. (author)

  19. The effect of cathode bias (field effect) on the surface leakage current of CdZnTe detectors

    International Nuclear Information System (INIS)

    Bolotnikov, A.E.; Hubert Chen, C.M.; Cook, W.R.; Harrison, F.A.; Kuvvetli, I.; Schindler, S.M.; Stahle, C.M.; Parker, B.H.

    2003-01-01

    Surface resistivity is an important parameter of multi-electrode CZT detectors such as coplanar-grid, strip, or pixel detectors. Low surface resistivity results in a high leakage current and affects the charge collection efficiency in the areas near contacts. Thus, it is always desirable to have the surface resistivity of the detector as high as possible. In the past the most significant efforts were concentrated to develop passivation techniques for CZT detectors. However, as we found, the field-effect caused by a bias applied on the cathode can significantly reduce the surface resistivity even though the detector surface was carefully passivated. In this paper we illustrate that the field-effect is a common feature of the CZT multi-electrode detectors, and discuss how to take advantage of this effect to improve the surface resistivity of CZT detectors

  20. Contrast-induced nephrotoxicity: possible synergistic effect of stress hyperglycemia.

    LENUS (Irish Health Repository)

    O'Donnell, David H

    2010-07-01

    Oxidative stress on the renal tubules has been implicated as a mechanism of injury in both stress hyperglycemia and contrast-induced nephrotoxicity. The purpose of this study was to determine whether the combination of these effects has a synergistic effect on accentuating renal tubular apoptosis and therefore increasing the risk of contrast-induced nephrotoxicity.

  1. Using provenance of terrigenous sediment to reconstruct the Agulhas Leakage during the Early and Late Pleistocene

    Science.gov (United States)

    Pearson, B.; Franzese, A. M.

    2017-12-01

    The Agulhas Current, the strongest western boundary current in the southern hemisphere, is uniquely characterized by its strong retroflection. The current carries water southward from the Indian Ocean toward the cape of South Africa, before turning back on itself. At this point of retroflection, some of the current's flow escapes into the southern Atlantic Ocean. This transfer of water from the Indian Ocean to Atlantic Ocean makes up the Agulhas Leakage. The Leakage occurs in a series of eddies and rings located in the Cape Basin south of the African continent. Scientific literature demonstrates that relatively buoyant leakage water has been a determining factor varying strength of the Atlantic Meridional Ocean Current (AMOC), during glacial-interglacial cycles. It has been demonstrated that radiogenic isotope, major, and trace element concentrations serve as a proxy for terrigenous sediment provenance in the Agulhas region. Current understanding is that terrigenous sediment provenance is older during warmer periods of deposition. This corresponds to more input from southeastern African end members, and thus a stronger Agulhas Current, during warming periods in the paleoclimate record. Conversely, younger terrigenous sediment deposited during colder periods, such as the Last Glacial Maximum, suggests a weaker Agulhas Current, and less Agulhas Leakage. In 2016, on the International Ocean Discovery Program Expedition 361, sediment cores were drilled at 6 sites in the Greater Agulhas region. A major goal of the expedition was to expand knowledge of the relation between changes in the Agulhas System and changes in paleoclimate, southern African climate, and AMOC. We analyzed sediment from Expedition 361 Site U1479 (35°03.53'S; 17°24.06'E; 2615 mbsl) located where the Agulhas Leakage occurs. We measured Argon, strontium isotope ratios, ɛNd, trace and major element concentrations on the <2 micron clay fraction. Preliminary results foretell promising findings. For

  2. Heavy-ion induced current through an oxide layer

    International Nuclear Information System (INIS)

    Takahashi, Yoshihiro; Ohki, Takahiro; Nagasawa, Takaharu; Nakajima, Yasuhito; Kawanabe, Ryu; Ohnishi, Kazunori; Hirao, Toshio; Onoda, Shinobu; Mishima, Kenta; Kawano, Katsuyasu; Itoh, Hisayoshi

    2007-01-01

    In this paper, the heavy-ion induced current in MOS structure is investigated. We have measured the transient gate current in a MOS capacitor and a MOSFET induced by single heavy-ions, and found that a transient current can be observed when the semiconductor surface is under depletion condition. In the case of MOSFET, a transient gate current with both positive and negative peaks is observed if the ion hits the gate area, and that the total integrated charge is almost zero within 100-200 ns after irradiation. From these results, we conclude that the radiation-induced gate current is dominated by a displacement current. We also discuss the generation mechanism of the radiation-induced current through the oxide layer by device simulation

  3. Quercetin protects human hepatoma HepG2 against oxidative stress induced by tert-butyl hydroperoxide

    International Nuclear Information System (INIS)

    Alia, Mario; Ramos, Sonia; Mateos, Raquel; Granado-Serrano, Ana Belen; Bravo, Laura; Goya, Luis

    2006-01-01

    Flavonols such as quercetin, have been reported to exhibit a wide range of biological activities related to their antioxidant capacity. The objective of the present study was to investigate the protective effect of quercetin on cell viability and redox status of cultured HepG2 cells submitted to oxidative stress induced by tert-butyl hydroperoxide. Concentrations of reduced glutathione and malondialdehyde, generation of reactive oxygen species and activity and gene expression of antioxidant enzymes were used as markers of cellular oxidative status. Pretreatment of HepG2 with 10 μM quercetin completely prevented lactate dehydrogenase leakage from the cells. Pretreatment for 2 or 20 h with all doses of quercetin (0.1-10 μM) prevented the decrease of reduced glutathione and the increase of malondialdehyde evoked by tert-butyl hydroperoxide in HepG2 cells. Reactive oxygen species generation induced by tert-butyl hydroperoxide was significantly reduced when cells were pretreated for 2 or 20 h with 10 μM and for 20 h with 5 μM quercetin. Finally, some of the quercetin treatments prevented the significant increase of glutathione peroxidase, superoxide dismutase, glutathione reductase and catalase activities induced by tert-butyl hydroperoxide. Gene expression of antioxidant enzymes was also affected by the treatment with the polyphenol. The results of the biomarkers analyzed clearly show that treatment of HepG2 cells in culture with the natural dietary antioxidant quercetin strongly protects the cells against an oxidative insult

  4. Oxidative stress in MeHg-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Farina, Marcelo, E-mail: farina@ccb.ufsc.br [Departamento de Bioquimica, Centro de Ciencias Biologicas, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil); Aschner, Michael [Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN (United States); Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN (United States); Rocha, Joao B.T., E-mail: jbtrocha@yahoo.com.br [Departamento de Quimica, Centro de Ciencias Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil)

    2011-11-15

    Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have been reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the classically

  5. Possible antidepressant effects of vanillin against experimentally induced chronic mild stress in rats

    Directory of Open Access Journals (Sweden)

    Amira M. Abo-youssef

    2016-06-01

    Full Text Available Vanillin is a flavoring agent widely used in food and beverages such as chocolates and dairy products and it is also used to mask unpleasant tastes in medicine. It has been reported to have antioxidant, anti-inflammatory and antiapoptotic properties. The current study was designed to investigate the protective effects of vanillin against experimentally induced stress in rats. Briefly rats were subdivided into four groups. Three groups were subjected to chronic mild stress and the fourth group served as normal control group. One week before induction of stress drugs or saline was administered daily and continued for another nine weeks. At the end of the experimental period behavioral tests including sucrose preference test, forced swim test and elevated plus maze test were assessed. In addition, brain biochemical parameters including MDA, GSH, NO and serotonin were determined. Vanillin succeeded to restore the behavioral and biochemical changes associated with stress. It significantly increased sucrose consumption in sucrose preference test and time spent in open arm in elevated plus maze test as compared to stress control group. It also reduced immobility time in forced swim test and time spent in closed arm in elevated plus maze test. Additionally, it significantly decreased brain MDA and NO levels and significantly increased brain GSH and Serotonin levels compared to stress control group. It could be concluded that vanillin showed beneficial protective effects against experimentally induced stress in rats.

  6. Dynamic Behavior of Fault Slip Induced by Stress Waves

    Directory of Open Access Journals (Sweden)

    Guang-an Zhu

    2016-01-01

    Full Text Available Fault slip burst is a serious dynamic hazard in coal mining. A static and dynamic analysis for fault slip was performed to assess the risk of rock burst. A numerical model FLAC3D was established to understand the stress state and mechanical responses of fault rock system. The results obtained from the analysis show that the dynamic behavior of fault slip induced by stress waves is significantly affected by mining depth, as well as dynamic disturbance intensity and the distance between the stope and the fault. The isolation effect of the fault is also discussed based on the numerical results with the fault angle appearing to have the strongest influence on peak vertical stress and velocity induced by dynamic disturbance. By taking these risks into account, a stress-relief technology using break-tip blast was used for fault slip burst control. This technique is able to reduce the stress concentration and increase the attenuation of dynamic load by fracturing the structure of coal and rock. The adoption of this stress-relief method leads to an effective reduction of fault slip induced rock burst (FSIRB occurrence.

  7. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching.

    Science.gov (United States)

    Downs, C A; McDougall, Kathleen E; Woodley, Cheryl M; Fauth, John E; Richmond, Robert H; Kushmaro, Ariel; Gibb, Stuart W; Loya, Yossi; Ostrander, Gary K; Kramarsky-Winter, Esti

    2013-01-01

    Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m(-2) s(-1) PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching.

  8. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching.

    Directory of Open Access Journals (Sweden)

    C A Downs

    Full Text Available Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex, usually by expulsion or xenophagy (symbiophagy of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m(-2 s(-1 PAR at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching.

  9. Behavior of deep level defects on voltage-induced stress of Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.W.; Cho, S.E. [Department of Physics and Semiconductor Science, Dongguk University, Seoul (Korea, Republic of); Jeong, J.H. [Solar Cell Center, Korea Institute of Science and Technology, Seoul (Korea, Republic of); Cho, H.Y., E-mail: hycho@dongguk.edu [Department of Physics and Semiconductor Science, Dongguk University, Seoul (Korea, Republic of)

    2015-05-01

    The behavior of deep level defects by a voltage-induced stress for CuInGaSe{sub 2} (CIGS) solar cells has been investigated. CIGS solar cells were used with standard structures which are Al-doped ZnO/i-ZnO/CdS/CIGSe{sub 2}/Mo on soda lime glass, and that resulted in conversion efficiencies as high as 16%. The samples with the same structure were isothermally stressed at 100 °C under the reverse voltages. The voltage-induced stressing in CIGS samples causes a decrease in the carrier density and conversion efficiency. To investigate the behavior of deep level defects in the stressed CIGS cells, photo-induced current transient spectroscopy was utilized, and normally 3 deep level defects (including 2 hole traps and 1 electron trap) were found to be located at 0.18 eV and 0.29 eV above the valence band maximum (and 0.36 eV below the conduction band). In voltage-induced cells, especially, it was found that the decrease of the hole carrier density could be responsible for the increase of the 0.29 eV defect, which is known to be observed in less efficient CIGS solar cells. And the carrier density and the defects are reversible at least to a large extent by resting at room-temperature without the bias voltage. From optical capture kinetics in photo-induced current transient spectroscopy measurement, the types of defects could be distinguished into the isolated point defect and the extended defect. In this work, it is suggested that the increase of the 0.29 eV defect by voltage-induced stress could be due to electrical activation accompanied by a loss of positive ion species and the activated defect gives rise to reduction of the carrier density. - Highlights: • We investigated behavior of deep level defects by voltage-induced stress. • Defect generation could affect the decrease of the conversion efficiency of cells. • Defect generation could be electrically activated by a loss of positive ion species. • Type of defects could be studied with models of point defects

  10. Differential responses of two Egyptian barley (Hordeum vulgare L.) cultivars to salt stress.

    Science.gov (United States)

    Elsawy, Hayam I A; Mekawy, Ahmad Mohammad M; Elhity, Mahmoud A; Abdel-Dayem, Sherif M; Abdelaziz, Maha Nagy; Assaha, Dekoum V M; Ueda, Akihiro; Saneoka, Hirofumi

    2018-06-01

    Although barley (Hordeum vulgare L.) is considered a salt tolerant crop species, productivity of barley is affected differently by ionic, osmotic, and oxidative stresses resulting from a salty rhizosphere. The current study was conducted to elucidate the mechanism of salt tolerance in two barley cultivars, Giza128 and Giza126. The two cultivars were exposed to 200 mM NaCl hydroponically for 12 days. Although both cultivars accumulated a large amount of Na + in their leaves with similar concentrations, the growth of Giza128 was much better than that of Giza126, as measured by maintaining a higher dry weight, relative growth rate, leaf area, and plant height. To ascertain the underlying mechanisms of this differential tolerance, first, the relative expression patterns of the genes encoding Na + /H + antiporters (NHX) and the associated proton pumps (V-PPase and V-ATPase) as well as the gene encoding the plasma membrane PM H + -ATPase were analyzed in leaf tissues. Salt stress induced higher HvNHX1 expression in Giza128 (3.3-fold) than in Giza126 (1.9-fold), whereas the expression of the other two genes, HvNHX2 and HvNHX3, showed no induction in either cultivar. The expression of HvHVP1 and HvHVA was higher in Giza128 (3.8- and 2.1-fold, respectively) than in Giza126 (1.6- and 1.1-fold, respectively). The expression of the PM H + -ATPase (ha1) gene was induced more in Giza128 (8.8-fold) than in Giza126 (1.8-fold). Second, the capacity for ROS detoxification was assessed using the oxidative stress biomarkers electrolyte leakage ratio (ELR) and the concentrations of malondialdehyde (MDA) and hydrogen peroxide (H 2 O 2 ), and these parameters sharply increased in Giza126 leaves by 66.5%, 42.8% and 50.0%, respectively, compared with those in Giza128 leaves. The antioxidant enzyme (CAT, APX, sPOD, GR, and SOD) activities were significantly elevated by salt treatment in Giza128 leaves, whereas in Giza126, these activities were not significantly altered. Overall, the

  11. Photoinduced current and emission induced by current in a ...

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 3. Photoinduced current and emission induced by current in a nanowire transistor: Temperature dependence. Darehdor Mahvash Arabi Shahtahmassebi Nasser. Regular Volume 86 Issue 3 March 2016 pp ...

  12. Neuroendocrine and oxidoreductive mechanisms of stress-induced cardiovascular diseases.

    Science.gov (United States)

    Pajović, S B; Radojcić, M B; Kanazir, D T

    2008-01-01

    The review concerns a number of basic molecular pathways that play a crucial role in perception, transmission, and modulation of the stress signals, and mediate the adaptation of the vital processes in the cardiovascular system (CVS). These highly complex systems for intracellular transfer of information include stress hormones and their receptors, stress-activated phosphoprotein kinases, stress-activated heat shock proteins, and antioxidant enzymes maintaining oxidoreductive homeostasis of the CVS. Failure to compensate for the deleterious effects of stress may result in the development of different pathophysiological states of the CVS, such as ischemia, hypertension, atherosclerosis and infarction. Stress-induced dysbalance in each of the CVS molecular signaling systems and their contribution to the CVS malfunctioning is reviewed. The general picture of the molecular mechanisms of the stress-induced pathophysiology in the CVS pointed out the importance of stress duration and intensity as etiological factors, and suggested that future studies should be complemented by the careful insights into the individual factors of susceptibility to stress, prophylactic effects of 'healthy' life styles and beneficial action of antioxidant-rich nutrition.

  13. How to attribute market leakage to CDM projects

    NARCIS (Netherlands)

    Vöhringer, F.; Kuosmanen, T.K.; Dellink, R.B.

    2006-01-01

    Economic studies suggest that market leakage rates of greenhouse gas abatement can reach the two-digit percentage range. Although the Marrakesh Accords require Clean Development Mechanism (CDM) projects to account for leakage, most projects neglect market leakage. Insufficient leakage accounting is

  14. Tributyltin-induced endoplasmic reticulum stress and its Ca2+-mediated mechanism

    International Nuclear Information System (INIS)

    Isomura, Midori; Kotake, Yaichiro; Masuda, Kyoichi; Miyara, Masatsugu; Okuda, Katsuhiro; Samizo, Shigeyoshi; Sanoh, Seigo; Hosoi, Toru; Ozawa, Koichiro; Ohta, Shigeru

    2013-01-01

    Organotin compounds, especially tributyltin chloride (TBT), have been widely used in antifouling paints for marine vessels, but exhibit various toxicities in mammals. The endoplasmic reticulum (ER) is a multifunctional organelle that controls post-translational modification and intracellular Ca 2+ signaling. When the capacity of the quality control system of ER is exceeded under stress including ER Ca 2+ homeostasis disruption, ER functions are impaired and unfolded proteins are accumulated in ER lumen, which is called ER stress. Here, we examined whether TBT causes ER stress in human neuroblastoma SH-SY5Y cells. We found that 700 nM TBT induced ER stress markers such as CHOP, GRP78, spliced XBP1 mRNA and phosphorylated eIF2α. TBT also decreased the cell viability both concentration- and time-dependently. Dibutyltin and monobutyltin did not induce ER stress markers. We hypothesized that TBT induces ER stress via Ca 2+ depletion, and to test this idea, we examined the effect of TBT on intracellular Ca 2+ concentration using fura-2 AM, a Ca 2+ fluorescent probe. TBT increased intracellular Ca 2+ concentration in a TBT-concentration-dependent manner, and Ca 2+ increase in 700 nM TBT was mainly blocked by 50 μM dantrolene, a ryanodine receptor antagonist (about 70% inhibition). Dantrolene also partially but significantly inhibited TBT-induced GRP78 expression and cell death. These results suggest that TBT increases intracellular Ca 2+ concentration by releasing Ca 2+ from ER, thereby causing ER stress. - Highlights: • We established that tributyltin induces endoplasmic reticulum (ER) stress. • Tributyltin induces ER stress markers in a concentration-dependent manner. • Tributyltin increases Ca 2+ release from ER, thereby causing ER stress. • Dibutyltin and monobutyltin did not increase GRP78 or intracellular Ca 2+

  15. Recovery in dc and rf performance of off-state step-stressed AlGaN/GaN high electron mobility transistors with thermal annealing

    International Nuclear Information System (INIS)

    Kim, Byung-Jae; Hwang, Ya-Hsi; Ahn, Shihyun; Zhu, Weidi; Dong, Chen; Lu, Liu; Ren, Fan; Holzworth, M. R.; Jones, Kevin S.; Pearton, Stephen J.; Smith, David J.; Kim, Jihyun; Zhang, Ming-Lan

    2015-01-01

    The recovery effects of thermal annealing on dc and rf performance of off-state step-stressed AlGaN/GaN high electron mobility transistors were investigated. After stress, reverse gate leakage current and sub-threshold swing increased and drain current on-off ratio decreased. However, these degradations were completely recovered after thermal annealing at 450 °C for 10 mins for devices stressed either once or twice. The trap densities, which were estimated by temperature-dependent drain-current sub-threshold swing measurements, increased after off-state step-stress and were reduced after subsequent thermal annealing. In addition, the small signal rf characteristics of stressed devices were completely recovered after thermal annealing

  16. Excessive leakage measurement using pressure decay method in containment building local leakage rate test at nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Kyu; Kim, Chang Soo; Kim, Wang Bae [KHNP, Central Research Institute, Daejeon (Korea, Republic of)

    2016-06-15

    There are two methods for conducting the containment local leakage rate test (LLRT) in nuclear power plants: the make-up flow rate method and the pressure decay method. The make-up flow rate method is applied first in most power plants. In this method, the leakage rate is measured by checking the flow rate of the make-up flow. However, when it is difficult to maintain the test pressure because of excessive leakage, the pressure decay method can be used as a complementary method, as the leakage rates at pressures lower than normal can be measured using this method. We studied the method of measuring over leakage using the pressure decay method for conducting the LLRT for the containment building at a nuclear power plant. We performed experiments under conditions similar to those during an LLRT conducted on-site. We measured the characteristics of the leakage rate under varies pressure decay conditions, and calculated the compensation ratio based on these data.

  17. Maternal chewing during prenatal stress ameliorates stress-induced hypomyelination, synaptic alterations, and learning impairment in mouse offspring.

    Science.gov (United States)

    Suzuki, Ayumi; Iinuma, Mitsuo; Hayashi, Sakurako; Sato, Yuichi; Azuma, Kagaku; Kubo, Kin-Ya

    2016-11-15

    Maternal chewing during prenatal stress attenuates both the development of stress-induced learning deficits and decreased cell proliferation in mouse hippocampal dentate gyrus. Hippocampal myelination affects spatial memory and the synaptic structure is a key mediator of neuronal communication. We investigated whether maternal chewing during prenatal stress ameliorates stress-induced alterations of hippocampal myelin and synapses, and impaired development of spatial memory in adult offspring. Pregnant mice were divided into control, stress, and stress/chewing groups. Stress was induced by placing mice in a ventilated restraint tube, and was initiated on day 12 of pregnancy and continued until delivery. Mice in the stress/chewing group were given a wooden stick to chew during restraint. In 1-month-old pups, spatial memory was assessed in the Morris water maze, and hippocampal oligodendrocytes and synapses in CA1 were assayed by immunohistochemistry and electron microscopy. Prenatal stress led to impaired learning ability, and decreased immunoreactivity of myelin basic protein (MBP) and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) in the hippocampal CA1 in adult offspring. Numerous myelin sheath abnormalities were observed. The G-ratio [axonal diameter to axonal fiber diameter (axon plus myelin sheath)] was increased and postsynaptic density length was decreased in the hippocampal CA1 region. Maternal chewing during stress attenuated the prenatal stress-induced impairment of spatial memory, and the decreased MBP and CNPase immunoreactivity, increased G-ratios, and decreased postsynaptic-density length in the hippocampal CA1 region. These findings suggest that chewing during prenatal stress in dams could be an effective coping strategy to prevent hippocampal behavioral and morphologic impairments in their offspring. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A Spatial-Spectral Approach for Visualization of Vegetation Stress Resulting from Pipeline Leakage

    Directory of Open Access Journals (Sweden)

    Gert Jan Groothuis

    2008-06-01

    Full Text Available Hydrocarbon leakage into the environment has large economic and environmental impact. Traditional methods for investigating seepages and their resulting pollution, such as drilling, are destructive, time consuming and expensive. Remote sensing is an efficient tool that offers a non-destructive investigation method. Optical remote sensing has been extensively tested for exploration of onshore hydrocarbon reservoirs and detection of hydrocarbons at the Earth’s surface. In this research, we investigate indirect manifestations of pipeline leakage by way of visualizing vegetation anomalies in airborne hyperspectral imagery. Agricultural land-use causes a heterogeneous landcover; variation in red edge position between fields was much larger than infield red edge position variation that could be related to hydrocarbon pollution. A moving and growing kernel procedure was developed to normalzie red edge values relative to values of neighbouring pixels to enhance pollution related anomalies in the image. Comparison of the spatial distribution of anomalies with geochemical data obtained by drilling showed that 8 out of 10 polluted sites were predicted correctly while 2 out of 30 sites that were predicted clean were actually polluted.

  19. Possibilities of Monitoring the Technical Condition of the Combustion Engine with Starter Load Current

    Directory of Open Access Journals (Sweden)

    Michal Jukl

    2014-01-01

    Full Text Available This article deals with the verification of relations between the electric current of engine starter and tightness of the combustion chamber and the possibility of its use for the evaluation of the state in terms of engine wear. Engine wear is closely related to the quality of fuel combustion and also with the amount of produced harmful emissions. On this basis, it would be possible to extend the technical requirements of the protocol OBD to include the indirect control of engine wear. To meet the objectives set out above measurement was carried out by a petrol engine, which was located in the vehicle Škoda Felicia Combi GLX 1.3 The whole measurement was divided into several parts. The first measurement was carried out on the abovementioned motor without simulating leakage. The second measurement was performed when the leakage of one cylinder was simulated. Simulated leakage was conducted at removing the spark plugs. Other measurements simulated “mild” leak of the whole engine – all cylinders. Leakage was implemented by loosing all the spark plugs about 8 turns against full tightening with the appropriate torque. The last, fourth measurement simulates a “large” leaks of engine cylinders. This leakage was induced by removing all the spark plugs from all cylinders. As the measurement results showed leakage of one cylinder, and also the whole engine is reflected not only in the individual amplitude of the starter current, but also the shape of the entire curve.

  20. Modifications of Fowler-Nordheim injection characteristics in γ irradiated MOS devices

    International Nuclear Information System (INIS)

    Scarpa, A.; Paccagnella, A.; Montera, F.; Candelori, A.; Ghidini, G.; Fuochi, P.G.

    1998-01-01

    In this work the authors have investigated how gamma irradiation affects the tunneling conduction mechanism of a 20 nm thick oxide in MOS capacitors. The radiation induced positive charge is rapidly compensated by the injected electrons, and does not impact the gate current under positive injection after the first current-voltage measurement. Only a transient stress induced leakage current at low gate bias is observed. Instead, a radiation induced negative charge has been observed near the polysilicon gate, which enhances the gate voltage needed for Fowler-Nordheim conduction at negative gate bias. No time decay of this charge has been observed. Such charges slightly modify the trapping kinetics of negative charge during subsequent electrical stresses performed at constant current condition

  1. [Prediabetes as a riskmarker for stress-induced hyperglycemia in critically ill adults].

    Science.gov (United States)

    García-Gallegos, Diego Jesús; Luis-López, Eliseo

    2017-01-01

    It is not known if patients with prediabetes, a subgroup of non-diabetic patients that usually present hyperinsulinemia, have higher risk to present stress-induced hyperglycemia. The objective was to determine if prediabetes is a risk marker to present stress-induced hyperglycemia. Analytic, observational, prospective cohort study of non-diabetic critically ill patients of a third level hospital. We determined plasmatic glucose and glycated hemoglobin (HbA1c) at admission to diagnose stress-induced hyperglycemia (glucose ≥ 140 mg/dL) and prediabetes (HbA1c between 5.7 and 6.4%), respectively. We examined the proportion of non-prediabetic and prediabetic patients that developed stress hyperglycemia with contingence tables and Fisher's exact test for nominal scales. Of 73 patients studied, we found a proportion of stress-induced hyperglycemia in 6.6% in those without prediabetes and 61.1% in those with prediabetes. The Fisher's exact test value was 22.46 (p Prediabetes is a risk marker for stress-induced hyperglycemia in critically ill adults.

  2. Investigation of the current collapse induced in InGaN back barrier AlGaN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Wan Xiaojia; Wang Xiaoliang; Xiao Hongling; Feng Chun; Jiang Lijuan; Qu Shenqi; Wang Zhanguo; Hou Xun

    2013-01-01

    Current collapses were studied, which were observed in AlGaN/GaN high electron mobility transistors (HEMTs) with and without InGaN back barrier (BB) as a result of short-term bias stress. More serious drain current collapses were observed in InGaN BB AlGaN/GaN HEMTs compared with the traditional HEMTs. The results indicate that the defects and surface states induced by the InGaN BB layer may enhance the current collapse. The surface states may be the primary mechanism of the origination of current collapse in AlGaN/GaN HEMTs for short-term direct current stress. (semiconductor devices)

  3. Cholinergic Modulation of Restraint Stress Induced Neurobehavioral ...

    African Journals Online (AJOL)

    The involvement of the cholinergic system in restraint stress induced neurobehavioral alterations was investigated in rodents using the hole board, elevated plus maze, the open field and the light and dark box tests. Restraint stress (3h) reduced significantly (p<0.05) the number of entries and time spent in the open arm, ...

  4. Protective properties of artichoke (Cynara scolymus) against oxidative stress induced in cultured endothelial cells and monocytes.

    Science.gov (United States)

    Zapolska-Downar, Danuta; Zapolski-Downar, Andrzej; Naruszewicz, Marek; Siennicka, Aldona; Krasnodebska, Barbara; Kołdziej, Blanka

    2002-11-01

    It is currently believed that oxidative stress and inflammation play a significant role in atherogenesis. Artichoke extract exhibits hypolipemic properties and contains numerous active substances with antioxidant properties in vitro. We have studied the influence of aqueous and ethanolic extracts from artichoke on intracellular oxidative stress stimulated by inflammatory mediators (TNFalpha and LPS) and ox-LDL in endothelial cells and monocytes. Oxidative stress which reflects the intracellular production of reactive oxygen species (ROS) was followed by measuring the oxidation of 2', 7'-dichlorofluorescin (DCFH) to 2', 7'-dichlorofluorescein (DCF). Agueous and ethanolic extracts from artichoke were found to inhibit basal and stimulated ROS production in endothelial cells and monocytes in dose dependent manner. In endothelial cells, the ethanolic extract (50 microg/ml) reduced ox-LDL-induced intracellular ROS production by 60% (partichoke extracts have marked protective properties against oxidative stress induced by inflammatory mediators and ox-LDL in cultured endothelial cells and monocytes.

  5. Similar cold stress induces sex-specific neuroendocrine and working memory responses.

    Science.gov (United States)

    Solianik, Rima; Skurvydas, Albertas; Urboniene, Daiva; Eimantas, Nerijus; Daniuseviciute, Laura; Brazaitis, Marius

    2015-01-01

    Men have higher cold-induced neuroendocrine response than women; nevertheless, it is not known whether a different stress hormone rise elicits different effects on cognition during whole body cooling. The objective was to compare the effect of cold-induced neuroendocrine responses on the performance of working memory sensitive tasks between men and women. The cold stress continued until rectal temperature reached 35.5 degree C or for a maximum of 170 min. Working memory performance and stress hormone concentrations were monitored. During cold stress, body temperature variables dropped in all subjects (P < 0.001) and did not differ between sexes. Cold stress raised plasma epinephrine and serum cortisol levels only in men (P < 0.05). Cold stress adversely affected memory performance in men but not in women (P < 0.05). The present study indicated that similar moderate cold stress in men and women induces sex-specific neuroendocrine and working memory responses.

  6. Mechanism of leakage of ion-implantation isolated AlGaN/GaN MIS-high electron mobility transistors on Si substrate

    Science.gov (United States)

    Zhang, Zhili; Song, Liang; Li, Weiyi; Fu, Kai; Yu, Guohao; Zhang, Xiaodong; Fan, Yaming; Deng, Xuguang; Li, Shuiming; Sun, Shichuang; Li, Xiajun; Yuan, Jie; Sun, Qian; Dong, Zhihua; Cai, Yong; Zhang, Baoshun

    2017-08-01

    In this paper, we systematically investigated the leakage mechanism of the ion-implantation isolated AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors (MIS-HEMTs) on Si substrate. By means of combined DC tests at different temperatures and electric field dependence, we demonstrated the following original results: (1) It is proved that gate leakage is the main contribution to OFF-state leakage of ion-implantation isolated AlGaN/GaN MIS-HEMTs, and the gate leakage path is a series connection of the gate dielectric Si3N4 and Si3N4-GaN interface. (2) The dominant mechanisms of the leakage current through LPCVD-Si3N4 gate dielectric and Si3N4-GaN interface are identified to be Frenkel-Poole emission and two-dimensional variable range hopping (2D-VRH), respectively. (3) A certain temperature annealing could reduce the density of the interface state that produced by ion implantation, and consequently suppress the interface leakage transport, which results in a decrease in OFF-state leakage current of ion-implantation isolated AlGaN/GaN MIS-HEMTs.

  7. Water stress induces overexpression of superoxide dismutases that ...

    African Journals Online (AJOL)

    SERVER

    2007-09-05

    Sep 5, 2007 ... Water stress is known to induce active oxygen species in plants. ... photosystem II photochemistry and whole plant growth against oxidative stress in these plants. ..... CO2. Plant Physiol. 110: 393-402. Sen Gupta A, Heinen JL, ...

  8. Visual Inspection of Water Leakage from Ground Penetrating Radar Radargram

    Science.gov (United States)

    Halimshah, N. N.; Yusup, A.; Mat Amin, Z.; Ghazalli, M. D.

    2015-10-01

    Water loss in town and suburban is currently a significant issue which reflect the performance of water supply management in Malaysia. Consequently, water supply distribution system has to be maintained in order to prevent shortage of water supply in an area. Various techniques for detecting a mains water leaks are available but mostly are time-consuming, disruptive and expensive. In this paper, the potential of Ground Penetrating Radar (GPR) as a non-destructive method to correctly and efficiently detect mains water leaks has been examined. Several experiments were designed and conducted to prove that GPR can be used as tool for water leakage detection. These include instrument validation test and soil compaction test to clarify the maximum dry density (MDD) of soil and simulation studies on water leakage at a test bed consisting of PVC pipe burying in sand to a depth of 40 cm. Data from GPR detection are processed using the Reflex 2D software. Identification of water leakage was visually inspected from the anomalies in the radargram based on GPR reflection coefficients. The results have ascertained the capability and effectiveness of the GPR in detecting water leakage which could help avoiding difficulties with other leak detection methods.

  9. VISUAL INSPECTION OF WATER LEAKAGE FROM GROUND PENETRATING RADAR RADARGRAM

    Directory of Open Access Journals (Sweden)

    N. N. Halimshah

    2015-10-01

    Full Text Available Water loss in town and suburban is currently a significant issue which reflect the performance of water supply management in Malaysia. Consequently, water supply distribution system has to be maintained in order to prevent shortage of water supply in an area. Various techniques for detecting a mains water leaks are available but mostly are time-consuming, disruptive and expensive. In this paper, the potential of Ground Penetrating Radar (GPR as a non-destructive method to correctly and efficiently detect mains water leaks has been examined. Several experiments were designed and conducted to prove that GPR can be used as tool for water leakage detection. These include instrument validation test and soil compaction test to clarify the maximum dry density (MDD of soil and simulation studies on water leakage at a test bed consisting of PVC pipe burying in sand to a depth of 40 cm. Data from GPR detection are processed using the Reflex 2D software. Identification of water leakage was visually inspected from the anomalies in the radargram based on GPR reflection coefficients. The results have ascertained the capability and effectiveness of the GPR in detecting water leakage which could help avoiding difficulties with other leak detection methods.

  10. Model for Stress-induced Protein Degradation in Lemna minor1

    Science.gov (United States)

    Cooke, Robert J.; Roberts, Keith; Davies, David D.

    1980-01-01

    Transfer of Lemna minor fronds to adverse or stress conditions produces a large increase in the rate of protein degradation. Cycloheximide partially inhibits stress-induced protein degradation and also partially inhibits the protein degradation which occurs in the absence of stress. The increased protein degradation does not appear to be due to an increase in activity of soluble proteolytic enzymes. Biochemical evidence indicates that stress, perhaps acting via hormones, affects the permeability of certain membranes, particularly the tonoplast. A general model for stress-induced protein degradation is presented in which changes in membrane properties allow vacuolar proteolytic enzymes increased access to cytoplasmic proteins. PMID:16661588

  11. Geochemical monitoring for detection of CO_{2} leakage from subsea storage sites

    Science.gov (United States)

    García-Ibáñez, Maribel I.; Omar, Abdirahman M.; Johannessen, Truls

    2017-04-01

    Carbon Capture and Storage (CCS) in subsea geological formations is a promising large-scale technology for mitigating the increases of carbon dioxide (CO2) in the atmosphere. However, detection and quantification of potential leakage of the stored CO2 remains as one of the main challenges of this technology. Geochemical monitoring of the water column is specially demanding because the leakage CO2 once in the seawater may be rapidly dispersed by dissolution, dilution and currents. In situ sensors capture CO2 leakage signal if they are deployed very close to the leakage point. For regions with vigorous mixing and/or deep water column, and for areas far away from the leakage point, a highly sensitive carbon tracer (Cseep tracer) was developed based on the back-calculation techniques used to estimate anthropogenic CO2 in the water column. Originally, the Cseep tracer was computed using accurate discrete measurements of total dissolved inorganic carbon (DIC) and total alkalinity (AT) in the Norwegian Sea to isolate the effect of natural submarine vents in the water column. In this work we assess the effect of measurement variables on the performance of the method by computing the Cseep tracer twice: first using DIC and AT, and second using partial pressure of CO2 (pCO2) and pH. The assessment was performed through the calculation of the signal to noise ratios (STNR). We found that the use of the Cseep tracer increases the STNR ten times compared to the raw measurement data, regardless of the variables used. Thus, while traditionally the pH-pCO2 pair generates the greatest uncertainties in the oceanic CO2 system, it seems that the Cseep technique is insensitive to that issue. On the contrary, the use of the pCO2-pH pair has the highest CO2 leakage detection and localization potential due to the fact that both pCO2 and pH can currently be measured at high frequency and in an autonomous mode.

  12. Evaluation of the Repeatability of the Delta Q Duct Leakage Testing TechniqueIncluding Investigation of Robust Analysis Techniques and Estimates of Weather Induced Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Dickerhoff, Darryl; Walker, Iain

    2008-08-01

    The DeltaQ test is a method of estimating the air leakage from forced air duct systems. Developed primarily for residential and small commercial applications it uses the changes in blower door test results due to forced air system operation. Previous studies established the principles behind DeltaQ testing, but raised issues of precision of the test, particularly for leaky homes on windy days. Details of the measurement technique are available in an ASTM Standard (ASTM E1554-2007). In order to ease adoption of the test method, this study answers questions regarding the uncertainty due to changing weather during the test (particularly changes in wind speed) and the applicability to low leakage systems. The first question arises because the building envelope air flows and pressures used in the DeltaQ test are influenced by weather induced pressures. Variability in wind induced pressures rather than temperature difference induced pressures dominates this effect because the wind pressures change rapidly over the time period of a test. The second question needs to answered so that DeltaQ testing can be used in programs requiring or giving credit for tight ducts (e.g., California's Building Energy Code (CEC 2005)). DeltaQ modeling biases have been previously investigated in laboratory studies where there was no weather induced changes in envelope flows and pressures. Laboratory work by Andrews (2002) and Walker et al. (2004) found biases of about 0.5% of forced air system blower flow and individual test uncertainty of about 2% of forced air system blower flow. The laboratory tests were repeated by Walker and Dickerhoff (2006 and 2008) using a new ramping technique that continuously varied envelope pressures and air flows rather than taking data at pre-selected pressure stations (as used in ASTM E1554-2003 and other previous studies). The biases and individual test uncertainties for ramping were found to be very close (less than 0.5% of air handler flow) to those

  13. Simulation of leakage through mechanical sealing device

    Science.gov (United States)

    Tikhomorov, V. P.; Gorlenko, O. A.; Izmerov, M. A.

    2018-03-01

    The procedure of mathematical modeling of leakage through the mechanical seal taking into account waviness and roughness is considered. The percolation process is represented as the sum of leakages through a gap between wavy surfaces and percolation through gaps formed by fractal roughness, i.e. the total leakage is determined by the slot model and filtration leakage. Dependences of leaks on the contact pressure of corrugated and rough surfaces of the mechanical seal elements are presented.

  14. Induced resistance in tomato by SAR activators during predisposing salinity stress

    Directory of Open Access Journals (Sweden)

    Matthew Francis Pye

    2013-05-01

    Full Text Available Plant activators are chemicals that induce disease resistance. The phytohormone salicylic acid (SA is a crucial signal for systemic acquired resistance (SAR, and SA-mediated resistance is a target of several commercial plant activators, including Actigard (1,2,3-benzothiadiazole-7-thiocarboxylic acid-s-methyl-ester, BTH and Tiadinil (N-(3-chloro-4-methylphenyl-4-methyl-1,2,3-thiadiazole-5-carboxamide, TDL. BTH and TDL were examined for their impact on abscisic acid (ABA-mediated, salt-induced disease predisposition in tomato seedlings. A brief episode of salt stress to roots significantly increased the severity of disease caused by Pseudomonas syringae pv. tomato (Pst and Phytophthora capsici relative to non-stressed plants. Root treatment with TDL induced resistance to Pst in leaves and provided protection in both non-stressed and salt-stressed seedlings in WT and highly susceptible NahG plants. Non-stressed and salt-stressed ABA-deficient sitiens mutants were highly resistant to Pst. Neither TDL nor BTH induced resistance to root infection by P. capsici, nor did they moderate the salt-induced increment in disease severity. Root treatment with these plant activators increased the levels of ABA in roots and shoots similar to levels observed in salt-stressed plants. The results indicate that SAR activators can protect tomato plants from bacterial speck disease under predisposing salt stress, and suggest that some SA-mediated defense responses function sufficiently in plants with elevated levels of ABA.

  15. Rnd3 induces stress fibres in endothelial cells through RhoB

    Directory of Open Access Journals (Sweden)

    Undine Gottesbühren

    2012-12-01

    Rnd proteins are atypical Rho family proteins that do not hydrolyse GTP and are instead regulated by expression levels and post-translational modifications. Rnd1 and Rnd3/RhoE induce loss of actin stress fibres and cell rounding in multiple cell types, whereas responses to Rnd2 are more variable. Here we report the responses of endothelial cells to Rnd proteins. Rnd3 induces a very transient decrease in stress fibres but subsequently stimulates a strong increase in stress fibres, in contrast to the reduction observed in other cell types. Rnd2 also increases stress fibres whereas Rnd1 induces a loss of stress fibres and weakening of cell–cell junctions. Rnd3 does not act through any of its known signalling partners and does not need to associate with membranes to increase stress fibres. Instead, it acts by increasing RhoB expression, which is then required for Rnd3-induced stress fibre assembly. Rnd2 also increases RhoB levels. These data indicate that the cytoskeletal response to Rnd3 expression is dependent on cell type and context, and identify regulation of RhoB as a new mechanism for Rnd proteins to affect the actin cytoskeleton.

  16. Hypoxic-induced stress protein expression in rat cardiac myocytes

    International Nuclear Information System (INIS)

    Howard, G.; Geoghegan, T.E.

    1986-01-01

    Mammalian stress proteins can be induced in cells and tissues exposed to a variety of conditions including hyperthermia and diminished O 2 supply. The authors have previously shown that the expression of three stress proteins (71, 85, and 95 kDa) was induced in cardiac tissue from mice exposed to hypoxic conditions. The expression of mRNAs coding for the 85 and 95 kDa proteins increase with time of exposure to hypoxia, while the mRNA coding for the 71 kDa protein is transiently induced. The authors extended these studies to investigate the expression of stress proteins in isolated rat cardiac myocytes. Freshly prepared myocytes were exposed to control, hypoxic, anoxic, or heat-shock environments for up to 16 h. The proteins were then labeled for 6 hours with [ 35 S]methionine. Analysis of the solubilized proteins by SDS-PAGE and autoradiography showed that there was a 6-fold increase in synthesis of the 85 kDa protein upon exposure to hypoxia but not heat-shock conditions. The 71 kDa protein was present at high levels in both control and treated myocyte protein preparations, and presumably had been induced during the isolation procedure. Total RNA isolated from intact rat heart and isolated myocytes was compared by cell-free translation analysis and showed induction of RNAs coding for several stress proteins in the myocyte preparation. The induced proteins at 85 and 95 kDa have molecular weights similar to reported cell stress and/or glucose-regulated proteins

  17. In-vitro comparison of micro-leakage between nanocomposite and microhybrid composite in class v cavities treated with the self-etch technique

    International Nuclear Information System (INIS)

    Mahvish, S.; Khan, F.R.

    2016-01-01

    Background: When a light cure composite resin is used to restore a class V lesion, certain stresses are generated at the tooth-restoration interface. If these stresses exceed the bond strength of the restorative material, microscopic gaps are formed which eventually cause micro-leakage at the tooth-restoration interface. The objective of the present study was to compare the micro-leakage values at the tooth-restoration interface using dye penetration method between a Nano filled and a Micro hybrid light cured composite resin in class V cavities using the self-etch technique. Methods: Sixty class V cavities were made coronal to the cemento-enamel junction in the extracted premolars. These were then randomly divided into two study groups. Group A: Self-etch; filled with P-60 (micro-hybrid) n=30. Group B: Self-etch; filled with Z-350 (nano-filled) n=30. Specimens were subjected to thermo-cycling at 5-55 degree C ± 2 degree C with a 30 seconds dwell time. After which they were stained with 2% methylene blue. Later, sectioned bucco-lingually and examined using a stereo microscope (magnification X4) at the occlusal, axial and gingival surfaces. Micro-leakage around the tooth-restoration interface was assessed by using the degree of dye penetration in millimetres. Results: There was 100% micro leakage seen at both the occlusal and gingival surfaces when using the P-60 composite. With the Z-350 composite 84% occlusal and 88% of the gingival surfaces exhibited micro-leakage. Conclusions: With respect to micro-leakage in class V cavities, Z-350 was found to be a superior restorative material compared to P-60 on the occlusal surface. Overall, there is no statistically significant difference in the micro-leakage exhibited by the two restorative materials in class V preparations subjected to self-etch protocol. (author)

  18. Combined approach to reduced duration integrated leakage rate testing

    International Nuclear Information System (INIS)

    Galanti, P.J.

    1987-01-01

    Even though primary reactor containment allowable leakage rates are expressed in weight percent per day of contained air, engineers have been attempting to define acceptable methods to test in < 24 h as long as these tests have been performed. The reasons to reduce testing duration are obvious, because time not generating electricity is time not generating revenue for the utilities. The latest proposed revision to 10CFR50 Appendix J, concerning integrated leakage rate testing (ILRTs), was supplemented with a draft regulatory guide proposing yet another method. This paper proposes a method that includes elements of currently accepted concepts for short duration testing with a standard statistical check for criteria acceptance. Following presentation of the method, several cases are presented showing the results of these combined criteria

  19. Current-induced runaway vibrations in dehydrogenated graphene nanoribbons

    Directory of Open Access Journals (Sweden)

    Rasmus Bjerregaard Christensen

    2016-01-01

    Full Text Available We employ a semi-classical Langevin approach to study current-induced atomic dynamics in a partially dehydrogenated armchair graphene nanoribbon. All parameters are obtained from density functional theory. The dehydrogenated carbon dimers behave as effective impurities, whose motion decouples from the rest of carbon atoms. The electrical current can couple the dimer motion in a coherent fashion. The coupling, which is mediated by nonconservative and pseudo-magnetic current-induced forces, change the atomic dynamics, and thereby show their signature in this simple system. We study the atomic dynamics and current-induced vibrational instabilities using a simplified eigen-mode analysis. Our study illustrates how armchair nanoribbons can serve as a possible testbed for probing the current-induced forces.

  20. RF capacitance-voltage characterization of MOSFETs with high-leakage dielectric

    NARCIS (Netherlands)

    Schmitz, Jurriaan; Cubaynes, F.N; Cubaynes, F.N.; Havens, R.J.; de Kort, R.; Scholten, A.J.; Tiemeijer, L.F.

    2003-01-01

    We present a MOS Capacitance-Voltage measurement methodology that, contrary to present methods, is highly robust against gate leakage current densities up to 1000 A/cm/sup 2/. The methodology features specially designed RF test structures and RF measurement frequencies. It allows MOS parameter

  1. Carbon leakage from a Nordic perspective

    Energy Technology Data Exchange (ETDEWEB)

    Naess-Schmidt, S.; Hansen, Martin Bo; Sand Kirk, J. [Copenhagen Economics, Copenhagen (Denmark)

    2012-02-15

    Carbon pricing is generally considered a highly effective tool in reducing carbon emissions. Putting a price on carbon provides incentives for users and producers of fossil fuels to reduce consumption and develop low carbon products and processes. However, pursuing an ambitious climate policy can lead to carbon leakage, which refers to a situation where unilateral or regional climate change policy drives the relocation of industry investments and installations, and associated emissions, to third countries. This report by Copenhagen Economics has been commissioned by the Nordic Council of Ministers to give an overview of the industries at risk of carbon leakage in the Nordic countries, and estimate the expected extent of carbon leakage from unilateral climate policies in the Nordic countries. The report also assesses available policy options that may reduce the risk of carbon leakage, such as exemptions from energy tax and exemptions from quota obligations under green certificate schemes. The key drivers of carbon leakage are identified, which include energy intensity, product differentiation, transportation costs and capital intensity. The analysis suggests that industries such as paper and pulp, iron and steel, aluminium, cement, pharmaceuticals, chemicals, and fertilizers are most at risk of carbon leakage in the Nordic manufacturing sector. (Author)

  2. Support calculations for management of PRISE leakage accidents

    Energy Technology Data Exchange (ETDEWEB)

    Matejovic, P.; Vranka, L. [Nuclear Power Plants Research Inst. Vuje, Trnava (Slovakia)

    1997-12-31

    Accidents involving primary-to-secondary leakage (PRISE) caused by rupture of one or a few tubes are well known design basis events in both, western and VVER NPPs. Operating experience and in-service inspections of VVER-440 units have demonstrated also the potential for large PRISE leaks in the case of the steam generator (SG) primary collector cover lift-up (Rovno NPP). Without performing any countermeasure for limitation of SG collector cover lift-up, a full opening results in PRISE leak with an equivalent diameter 107 mm. Although this accident was not considered in the original design, this event is usually analysed as DBA too. Different means are available for detection and mitigation of PRISE leakage in NPPs currently in operation (J.Bohunice V-1 and V-2) or under construction (Mochovce) in Slovakia. 8 refs.

  3. Support calculations for management of PRISE leakage accidents

    Energy Technology Data Exchange (ETDEWEB)

    Matejovic, P; Vranka, L [Nuclear Power Plants Research Inst. Vuje, Trnava (Slovakia)

    1998-12-31

    Accidents involving primary-to-secondary leakage (PRISE) caused by rupture of one or a few tubes are well known design basis events in both, western and VVER NPPs. Operating experience and in-service inspections of VVER-440 units have demonstrated also the potential for large PRISE leaks in the case of the steam generator (SG) primary collector cover lift-up (Rovno NPP). Without performing any countermeasure for limitation of SG collector cover lift-up, a full opening results in PRISE leak with an equivalent diameter 107 mm. Although this accident was not considered in the original design, this event is usually analysed as DBA too. Different means are available for detection and mitigation of PRISE leakage in NPPs currently in operation (J.Bohunice V-1 and V-2) or under construction (Mochovce) in Slovakia. 8 refs.

  4. Roxby Downs water leakage

    International Nuclear Information System (INIS)

    1996-01-01

    The Environment, Resource and development Committee has been asked by Parliament to examine 'a massive leakage of water at Roxby Downs' and to make recommendations 'as to further action'. It has also been specifically asked to comment on 'the desirability of the Department of Mines and Energy having prime responsibility for environmental matters in relation to mining operations'. This report begins with a description of the Olympic Dam operations near Roxby Downs and with a brief overview of the regulations controlling those operations. The site of the leakage the Olympic Dam tailings retention system is then described in greater detail. Part 3 describes how the system was originally designed, modified and approved. It ends with a series of findings about the adequacy of the original design (including the monitoring systems built into it) and of the approvals process. Recommendations are then made about how future approvals should be handled. Part 4 of the report outlines how the tailings retention system was built and operated and how the massive leakage from it was detected and reported. Findings about the adequacy of the management of the system and about the initial reactions to the leakage are then made, together with recommendations designed to improve future management of the system. 25 refs., 15 figs

  5. Impaired Functional Connectivity in the Prefrontal Cortex: A Mechanism for Chronic Stress-Induced Neuropsychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Ignacio Negrón-Oyarzo

    2016-01-01

    Full Text Available Chronic stress-related psychiatric diseases, such as major depression, posttraumatic stress disorder, and schizophrenia, are characterized by a maladaptive organization of behavioral responses that strongly affect the well-being of patients. Current evidence suggests that a functional impairment of the prefrontal cortex (PFC is implicated in the pathophysiology of these diseases. Therefore, chronic stress may impair PFC functions required for the adaptive orchestration of behavioral responses. In the present review, we integrate evidence obtained from cognitive neuroscience with neurophysiological research with animal models, to put forward a hypothesis that addresses stress-induced behavioral dysfunctions observed in stress-related neuropsychiatric disorders. We propose that chronic stress impairs mechanisms involved in neuronal functional connectivity in the PFC that are required for the formation of adaptive representations for the execution of adaptive behavioral responses. These considerations could be particularly relevant for understanding the pathophysiology of chronic stress-related neuropsychiatric disorders.

  6. Coolant leakage detection device

    International Nuclear Information System (INIS)

    Ito, Takao.

    1983-01-01

    Purpose: To surely detect the coolant leakage at a time when the leakage amount is still low in the intra-reactor inlet pipeway of FBR type reactor. Constitution: Outside of the intra-reactor inlet piping for introducing coolants at low temperature into a reactor core, an outer closure pipe is furnished. The upper end of the outer closure pipe opens above the liquid level of the coolants in the reactor, and a thermocouple is inserted to the opening of the upper end. In such a structure, if the coolants in the in-reactor piping should leak to the outer closure pipe, coolants over-flows from the opening thereof, at which the thermocouple detects the temperature of the coolants at a low temperature, thereby enabling to detect the leakage of the coolants at a time when it is still low. (Kamimura, M.)

  7. Evaluation of Winter Hardiness in Peppermint (Mentha piperita L. by Electrolyte Leakage Indicator

    Directory of Open Access Journals (Sweden)

    A. Nezami

    2016-10-01

    Full Text Available Introduction: Peppermint or Mentha is an aromatic, medicinal and perennial herb from Lamiaceae family which has been used for healing a variety of diseases such as common cold, bronchitis, nausea, flatulence, diarrhea, vomiting, indigestion, stomach cramps, menstrual cramps and parasitoids. Peppermint is largely cultivated in Indiana, Mexican and California for the production of peppermint oil. Mentha reveals suitable winter hardiness in warm and temperate regions, But in cold areas, it confronts with winter stresses particularly freezing stress. So recognizing the freeze tolerance of peppermint for successful planting and using of this plant in cold regions such as Mashhad, Iran where peppermint is cultivated now is important. Among the many laboratory methods which have been developed to evaluate freez ing tolerance of plants, electrolyte leakage (EL test is widely used. This test is based on this principle that any damage to the cell membranes results in enhanced leakage of solutes into the apoplastic water, hence measuring the amount of leakage after stress treatments provides an estimation of tissue injury. Often, the 50% level of relative EL, or index of injury, is simply equaled to 50% sample mortality. This study was done to evaluate the freeze tolerance of peppermint organs by electrolyte leakage test and also to determine the winter survival ability of this plant by lethal temperature at which 50% of electrolytes leaked from the cell (LT50el. Materials and methods: In order to evaluate the cold tolerance of peppermint, a factorial experiment based on completely randomized design with four replications was carried out under controlled conditions. For this aim samples from stolon and rhizome of peppermint were selected monthly (December 2010 to April 2011 from Research Field, College of Agriculture, Ferdowsi University of Mashhad and were exposed to low temperatures (from 0 to -20°C with 4°C intervals in a thermo gradient freezer at

  8. High salt intake enhances swim stress-induced PVN vasopressin cell activation and active stress coping.

    Science.gov (United States)

    Mitchell, N C; Gilman, T L; Daws, L C; Toney, G M

    2018-07-01

    Stress contributes to many psychiatric disorders; however, responsivity to stressors can vary depending on previous or current stress exposure. Relatively innocuous heterotypic (differing in type) stressors can summate to result in exaggerated neuronal and behavioral responses. Here we investigated the ability of prior high dietary sodium chloride (salt) intake, a dehydrating osmotic stressor, to enhance neuronal and behavioral responses of mice to an acute psychogenic swim stress (SS). Further, we evaluated the contribution of the osmo-regulatory stress-related neuropeptide arginine vasopressin (VP) in the hypothalamic paraventricular nucleus (PVN), one of only a few brain regions that synthesize VP. The purpose of this study was to determine the impact of high dietary salt intake on responsivity to heterotypic stress and the potential contribution of VPergic-mediated neuronal activity on high salt-induced stress modulation, thereby providing insight into how dietary (homeostatic) and environmental (psychogenic) stressors might interact to facilitate psychiatric disorder vulnerability. Salt loading (SL) with 4% saline for 7 days was used to dehydrate and osmotically stress mice prior to exposure to an acute SS. Fluid intake and hematological measurements were taken to quantify osmotic dehydration, and serum corticosterone levels were measured to index stress axis activation. Immunohistochemistry (IHC) was used to stain for the immediate early gene product c-Fos to quantify effects of SL on SS-induced activation of neurons in the PVN and extended amygdala - brain regions that are synaptically connected and implicated in responding to osmotic stress and in modulation of SS behavior, respectively. Lastly, the role of VPergic PVN neurons and VP type 1 receptor (V1R) activity in the amygdala in mediating effects of SL on SS behavior was evaluated by quantifying c-Fos activation of VPergic PVN neurons and, in functional experiments, by nano-injecting the V1R selective

  9. Review of current research and understanding of irradiation-assisted stress corrosion cracking

    International Nuclear Information System (INIS)

    Nelson, J.L.; Andresen, P.L.

    1992-01-01

    Concerns for irradiation-assisted stress corrosion cracking (IASCC) of reactor internals are increasing, especially for components that are not readily replaceable. Both laboratory and field data show that intergranular stress corrosion cracking of stainless steels and nickel-base alloys can result from long term exposure to the high energy neutron and gamma radiation that exists in the core of light water reactors (LWR's). Radiation affects cracking susceptibility via changes in material micro-chemistry (radiation induced segregation, or RIS), water chemistry (radiolysis) and material properties/stress (e.g., radiation induced creep and hardening). Based on many common dependencies, e.g., to solution purity, corrosion potential, crevicing and stress, IASCC falls within the continuum of environmental cracking phenomenon in high temperature water

  10. Current-induced dynamics in carbon atomic contacts

    DEFF Research Database (Denmark)

    Lu, Jing Tao; Gunst, Tue; Brandbyge, Mads

    2011-01-01

    voltage, which can be used to explore current-induced vibrational instabilities due the NC/BP forces. Furthermore, using tight-binding and the Brenner potential we illustrate how Langevin-type molecular-dynamics calculations including the Joule heating effect for the carbon-chain systems can be performed...... be used to explore current-induced dynamics and instabilities. We find instabilities at experimentally relevant bias and gate voltages for the carbon-chain system. © 2011 Lü et al....... carbon chain connecting electrically gated graphene electrodes. This illustrates how the device stability can be predicted solely from the modes obtained from the Langevin equation, including the current-induced forces. We point out that the gate offers control of the current, independent of the bias...

  11. Neonatal Handling Produces Sex Hormone-Dependent Resilience to Stress-Induced Muscle Hyperalgesia in Rats.

    Science.gov (United States)

    Alvarez, Pedro; Green, Paul G; Levine, Jon D

    2018-06-01

    Neonatal handling (NH) of male rat pups strongly attenuates stress response and stress-induced persistent muscle hyperalgesia in adults. Because female sex is a well established risk factor for stress-induced chronic muscle pain, we explored whether NH provides resilience to stress-induced hyperalgesia in adult female rats. Rat pups underwent NH, or standard (control) care. Muscle mechanical nociceptive threshold was assessed before and after water avoidance (WA) stress, when they were adults. In contrast to male rats, NH produced only a modest protection against WA stress-induced muscle hyperalgesia in female rats. Gonadectomy completely abolished NH-induced resilience in male rats but produced only a small increase in this protective effect in female rats. The administration of the antiestrogen drug fulvestrant, in addition to gonadectomy, did not enhance the protective effect of NH in female rats. Finally, knockdown of the androgen receptor by intrathecal antisense treatment attenuated the protective effect of NH in intact male rats. Together, these data indicate that androgens play a key role in NH-induced resilience to WA stress-induced muscle hyperalgesia. NH induces androgen-dependent resilience to stress-induced muscle pain. Therefore, androgens may contribute to sex differences observed in chronic musculoskeletal pain and its enhancement by stress. Copyright © 2018 The American Pain Society. Published by Elsevier Inc. All rights reserved.

  12. Association between changes in heart rate variability during the anticipation of a stressful situation and the stress-induced cortisol response.

    Science.gov (United States)

    Pulopulos, Matias M; Vanderhasselt, Marie-Anne; De Raedt, Rudi

    2018-08-01

    Vagal activity - reflecting the activation of stress regulatory mechanisms and prefrontal cortex activation - is thought to play an inhibitory role in the regulation of the hypothalamus-pituitary-adrenal axis. However, most studies investigating the association between stress-induced changes in heart rate variability (HRV, an index of cardiac vagal tone) and cortisol have shown a non-significant relationship. It has been proposed that physiological changes observed during anticipation of a stressor allow individuals to make behavioral, cognitive, and physiological adjustments that are necessary to deal with the upcoming actual stressor. In this study, in a large sample of 171 healthy adults (96 men and 75 women; mean age = 29.98, SD = 11.07), we investigated whether the cortisol response to a laboratory-based stress task was related to anticipation-induced or stress task-induced changes in HRV. As expected, regression analyses showed that a larger decrease in HRV during the anticipation of a stress task was related to higher stress task-induced cortisol increase, but not cortisol recovery. In line with prior research, the stress task-induced change in HRV was not significantly related to cortisol increase or recovery. Our results show for the first time that anticipatory HRV (reflecting differences in stress regulation and prefrontal activity before the encounter with the stressor) is important to understand the stress-induced cortisol increase. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Changes in polyphenol and sugar concentrations in wild type and genetically modified Nicotiana langsdorffii Weinmann in response to water and heat stress.

    Science.gov (United States)

    Ancillotti, Claudia; Bogani, Patrizia; Biricolti, Stefano; Calistri, Elisa; Checchini, Leonardo; Ciofi, Lorenzo; Gonnelli, Cristina; Del Bubba, Massimo

    2015-12-01

    In this study wild type Nicotiana langsdorffii plants were genetically transformed by the insertion of the rat gene (gr) encoding the glucocorticoid receptor or the rolC gene and exposed to water and heat stress. Water stress was induced for 15 days by adding 20% PEG 6000 in the growth medium, whereas the heat treatment was performed at 50 °C for 2 h, after that a re-growing capability study was carried out. The plant response to stress was investigated by determining electrolyte leakage, dry weight biomass production and water content. These data were evaluated in relation to antiradical activity and concentrations of total polyphenols, selected phenolic compounds and some soluble sugars, as biochemical indicators of metabolic changes due to gene insertion and/or stress treatments. As regards the water stress, the measured physiological parameters evidenced an increasing stress level in the order rolC < gr < WT plants (e.g. about 100% and 50% electrolyte leakage increase in WT and gr samples, respectively) and complied with the biochemical pattern, which consisted in a general decrease of antiradical activity and phenolics, together with an increase in sugars. As regard heat stress, electrolyte leakage data were only in partial agreement with the re-growing capability study. In fact, according to this latter evaluation, gr was the genotype less affected by the heat shock. In this regard, sugars and especially phenolic compounds are informative of the long-term effects due to heat shock treatment. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  14. Numerical and experimental study of the leakage flow in guide vanes with different hydrofoils

    Directory of Open Access Journals (Sweden)

    Sailesh Chitrakar

    2017-07-01

    Full Text Available Clearance gaps between guide vanes and cover plates of Francis turbines tend to increase in size due to simultaneous effect of secondary flow and erosion in sediment affected hydropower plants. The pressure difference between the two sides of the guide vane induces leakage flow through the gap. This flow enters into the suction side with high acceleration, disturbing the primary flow and causing more erosion and losses in downstream turbine components. A cascade rig containing a single guide vane passage has been built to study the effect of the clearance gap using pressure sensors and PIV (Particle Image Velocimetry technique. This study focuses on developing a numerical model of the test rig, validating the results with experiments and investigating the behavior of leakage flow numerically. It was observed from both CFD and experiment that the leakage flow forms a passage vortex, which shifts away from the wall while travelling downstream. The streamlines contributing to the formation of this vortex have been discussed. Furthermore, the reference guide vane with symmetrical hydrofoil has been compared with four cambered profiles, in terms of the guide vane loading and the consequent effect on the leakage flow. A dimensionless term called Leakage Flow Factor (Lff has been introduced to compare the performances of hydrofoils. It is shown that the leakage flow and its effect on increasing losses and erosion can be minimized by changing the pressure distribution over the guide vane.

  15. Trauma- and Stress-Induced Response in Veterans with Alcohol Dependence and Comorbid Post-Traumatic Stress Disorder.

    Science.gov (United States)

    Ralevski, Elizabeth; Southwick, Steven; Jackson, Eric; Jane, Jane Serrita; Russo, Melanie; Petrakis, Ismene

    2016-08-01

    Alcohol dependence (AD) and post-traumatic stress disorder (PTSD) commonly co-occur, and the co-occurrence is associated with worse prognosis than either disorder absent the other. Craving is an important construct related to relapse, but the relationship between PTSD symptoms, craving, and relapse is not well understood. Several studies have documented the relationship between stress and craving in individuals without comorbid PTSD, but the effect on those with comorbid PTSD is not well known. A small literature suggests that trauma imagery affects craving. This is the first study to explore the effects of trauma-induced and stress-induced scripts on alcohol craving, affect, cardiovascular, and cortisol responses in the laboratory. Veterans (n = 25) diagnosed with AD and PTSD who were participating in a randomized clinical treatment trial took part in this laboratory study. Baseline assessment included PTSD symptoms and drinking quantity and frequency over 3 months before study initiation. In the laboratory, participants were exposed to neutral, stressful, and trauma scripts randomly assigned. Main outcomes included craving, anxiety, mood states, salivary cortisol, and cardiovascular responses. Both stress and trauma scripts produced greater increases in craving, negative affect, and cardiovascular reactivity, compared to neutral scripts. Trauma scripts produced significantly stronger craving for alcohol and greater cardiovascular reactivity than stress scripts. Also, trauma-induced but not stress-induced craving was positively correlated with baseline levels of drinking. There were no changes in cortisol levels from pre- to postexposure of any scripts. The results highlight that trauma cues are more salient in inducing alcohol craving than stress cues and higher reactivity is related to more baseline drinking. This finding is consistent with clinical observations that show an association between PTSD symptoms and alcohol relapse. It also underscores the

  16. Stress-Induced Cubic-to-Hexagonal Phase Transformation in Perovskite Nanothin Films.

    Science.gov (United States)

    Cao, Shi-Gu; Li, Yunsong; Wu, Hong-Hui; Wang, Jie; Huang, Baoling; Zhang, Tong-Yi

    2017-08-09

    The strong coupling between crystal structure and mechanical deformation can stabilize low-symmetry phases from high-symmetry phases or induce novel phase transformation in oxide thin films. Stress-induced structural phase transformation in oxide thin films has drawn more and more attention due to its significant influence on the functionalities of the materials. Here, we discovered experimentally a novel stress-induced cubic-to-hexagonal phase transformation in the perovskite nanothin films of barium titanate (BaTiO 3 ) with a special thermomechanical treatment (TMT), where BaTiO 3 nanothin films under various stresses are annealed at temperature of 575 °C. Both high-resolution transmission electron microscopy and Raman spectroscopy show a higher density of hexagonal phase in the perovskite thin film under higher tensile stress. Both X-ray photoelectron spectroscopy and electron energy loss spectroscopy does not detect any change in the valence state of Ti atoms, thereby excluding the mechanism of oxygen vacancy induced cubic-to-hexagonal (c-to-h) phase transformation. First-principles calculations show that the c-to-h phase transformation can be completed by lattice shear at elevated temperature, which is consistent with the experimental observation. The applied bending plus the residual tensile stress produces shear stress in the nanothin film. The thermal energy at the elevated temperature assists the shear stress to overcome the energy barriers during the c-to-h phase transformation. The stress-induced phase transformation in perovskite nanothin films with TMT provides materials scientists and engineers a novel approach to tailor nano/microstructures and properties of ferroelectric materials.

  17. Blockade of Drp1 rescues oxidative stress-induced osteoblast dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Xueqi; Huang, Shengbin; Yu, Qing [Department of Pharmacology and Toxicology and Higuchi Bioscience Center, University of Kansas, Lawrence, KS, 66047 (United States); State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 (China); Yu, Haiyang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 (China); Yan, Shirley ShiDu, E-mail: shidu@ku.edu [Department of Pharmacology and Toxicology and Higuchi Bioscience Center, University of Kansas, Lawrence, KS, 66047 (United States)

    2015-12-25

    Osteoblast dysfunction, induced by oxidative stress, plays a critical role in the pathophysiology of osteoporosis. However, the underlying mechanisms remain unclarified. Imbalance of mitochondrial dynamics has been closely linked to oxidative stress. Here, we reveal an unexplored role of dynamic related protein 1(Drp1), the major regulator in mitochondrial fission, in the oxidative stress-induced osteoblast injury model. We demonstrate that levels of phosphorylation and expression of Drp1 significantly increased under oxidative stress. Blockade of Drp1, through pharmaceutical inhibitor or gene knockdown, significantly protected against H{sub 2}O{sub 2}-induced osteoblast dysfunction, as shown by increased cell viability, improved cellular alkaline phosphatase (ALP) activity and mineralization and restored mitochondrial function. The protective effects of blocking Drp1 in H{sub 2}O{sub 2}-induced osteoblast dysfunction were evidenced by increased mitochondrial function and suppressed production of reactive oxygen species (ROS). These findings provide new insights into the role of the Drp1-dependent mitochondrial pathway in the pathology of osteoporosis, indicating that the Drp1 pathway may be targetable for the development of new therapeutic approaches in the prevention and the treatment of osteoporosis. - Highlights: • Oxidative stress is an early pathological event in osteoporosis. • Imbalance of mitochondrial dynamics are linked to oxidative stress in osteoporosis. • The role of the Drp1-dependent mitochondrial pathway in osteoporosis.

  18. Horizontal H 2-air turbulent buoyant jet resulting from hydrogen leakage

    KAUST Repository

    El-Amin, Mohamed; Sun, Shuyu

    2012-01-01

    The current article is devoted to introducing mathematical and physical analyses with numerical investigation of a buoyant jet resulting from hydrogen leakage in air from a horizontal round source. H 2-air jet is an example of the non

  19. The Effects of Portulaca oleracea on Hypoxia-Induced Pulmonary Edema in Mice.

    Science.gov (United States)

    Yue, Tan; Xiaosa, Wen; Ruirui, Qi; Wencai, Shi; Hailiang, Xin; Min, Li

    2015-03-01

    Portulaca oleracea L. (PO) is known as "a vegetable for long life" due to its antioxidant, anti-inflammatory, and other pharmacological activities. However, the protective activity of the ethanol extract of PO (EEPO) against hypoxia-induced pulmonary edema has not been fully investigated. In this study, we exposed mice to a simulated altitude of 7000 meters for 0, 3, 6, 9, and 12 h to observe changes in the water content and transvascular leakage of the mouse lung. It was found that transvascular leakage increased to the maximum in the mouse lung after 6 h exposure to hypobaric hypoxia. Prophylactic administration of EEPO before hypoxic exposure markedly reduced the transvascular leakage and oxidative stress, and inhibited the upregulation of NF-kB in the mouse lung, as compared with the control group. In addition, EEPO significantly reduced the levels of proinflammatory cytokines and cell adhesion molecules in the lungs of mice, as compared with the hypoxia group. Our results show that EEPO can reduce initial transvascular leakage and pulmonary edema under hypobaric hypoxia conditions.

  20. Review of nuclear power reactor coolant system leakage events and leak detection requirements

    International Nuclear Information System (INIS)

    Chokshi, N.C.; Srinivasan, M.; Kupperman, D.S.; Krishnaswamy, P.

    2005-01-01

    In response to the vessel head event at the Davis-Besse reactor, the U.S. Nuclear Regulatory Commission (NRC) formed a Lessons Learned Task Force (LLTF). Four action plans were formulated to respond to the recommendations of the LLTF. The action plans involved efforts on barrier integrity, stress corrosion cracking (SCC), operating experience, and inspection and program management. One part of the action plan on barrier integrity was an assessment to identify potential safety benefits from changes in requirements pertaining to leakage in the reactor coolant system (RCS). In this effort, experiments and models were reviewed to identify correlations between crack size, crack-tip-opening displacement (CTOD), and leak rate in the RCS. Sensitivity studies using the Seepage Quantification of Upsets In Reactor Tubes (SQUIRT) code were carried out to correlate crack parameters, such as crack size, with leak rate for various types of crack configurations in RCS components. A database that identifies the leakage source, leakage rate, and resulting actions from RCS leaks discovered in U.S. light water reactors was developed. Humidity monitoring systems for detecting leakage and acoustic emission crack monitoring systems for the detection of crack initiation and growth before a leak occurs were also considered. New approaches to the detection of a leak in the reactor head region by monitoring boric-acid aerosols were also considered. (authors)

  1. Analysis of ONKALO water leakage mapping results

    Energy Technology Data Exchange (ETDEWEB)

    Ahokas, H.; Nummela, J; Turku, J. [Poeyry Finland Oy, Vantaa (Finland)

    2014-04-15

    As part of the programme for the final disposal of spent nuclear fuel, an analysis has been compiled of water leakage mapping performed in ONKALO. Leakage mapping is part of the Olkiluoto Monitoring Programme (OMO) and the field work has been carried out by Posiva Oy. The main objective of the study is to analyse differences detected between mapping campaigns carried out typically twice a year in 2005-2012. Differences were estimated to be caused by the differences in groundwater conditions caused by seasonal effects or by differences between the years. The effect of technical changes like shotcreting, postgrouting, ventilation etc. on the results was also studied. The development of the visualisation of mapping results was also an objective of this work. Leakage mapping results have been reported yearly in the monitoring reports of Hydrology with some brief comments on the detected differences. In this study, the development of the total area and the number of different leakages as well as the correlation of changes with shotcreting and grouting operations were studied. In addition, traces of fractures on tunnel surfaces, and the location of rock bolts and drain pipes were illustrated together with leakage mapping. In water leakage mapping, the tunnel surfaces are visually mapped to five categories: dry, damp, wet, dripping and flowing. Major changes were detected in the total area of damp leakages. It is likely that the increase has been caused by the condensation of warm ventilation air on the tunnel surfaces and the corresponding decrease by the evaporation of moisture into the dry ventilation air. Shotcreting deep in ONKALO may also have decreased the total area of damp leakages. Changes in the total area and number of wet leakages correlate at least near the surface with differences in yearly precipitation. It is possible that strong rains have also caused a temporary increase in wet leakages. Dripping and wet leakages have been observed on average more

  2. Analysis of ONKALO water leakage mapping results

    International Nuclear Information System (INIS)

    Ahokas, H.; Nummela, J; Turku, J.

    2014-04-01

    As part of the programme for the final disposal of spent nuclear fuel, an analysis has been compiled of water leakage mapping performed in ONKALO. Leakage mapping is part of the Olkiluoto Monitoring Programme (OMO) and the field work has been carried out by Posiva Oy. The main objective of the study is to analyse differences detected between mapping campaigns carried out typically twice a year in 2005-2012. Differences were estimated to be caused by the differences in groundwater conditions caused by seasonal effects or by differences between the years. The effect of technical changes like shotcreting, postgrouting, ventilation etc. on the results was also studied. The development of the visualisation of mapping results was also an objective of this work. Leakage mapping results have been reported yearly in the monitoring reports of Hydrology with some brief comments on the detected differences. In this study, the development of the total area and the number of different leakages as well as the correlation of changes with shotcreting and grouting operations were studied. In addition, traces of fractures on tunnel surfaces, and the location of rock bolts and drain pipes were illustrated together with leakage mapping. In water leakage mapping, the tunnel surfaces are visually mapped to five categories: dry, damp, wet, dripping and flowing. Major changes were detected in the total area of damp leakages. It is likely that the increase has been caused by the condensation of warm ventilation air on the tunnel surfaces and the corresponding decrease by the evaporation of moisture into the dry ventilation air. Shotcreting deep in ONKALO may also have decreased the total area of damp leakages. Changes in the total area and number of wet leakages correlate at least near the surface with differences in yearly precipitation. It is possible that strong rains have also caused a temporary increase in wet leakages. Dripping and wet leakages have been observed on average more

  3. Phenotypic heterogeneity in a bacteriophage population only appears as stress-induced mutagenesis.

    Science.gov (United States)

    Yosef, Ido; Edgar, Rotem; Qimron, Udi

    2016-11-01

    Stress-induced mutagenesis has been studied in cancer cells, yeast, bacteria, and archaea, but not in viruses. In a recent publication, we present a bacteriophage model showing an apparent stress-induced mutagenesis. We show that the stress does not drive the mutagenesis, but only selects the fittest mutants. The mechanism underlying the observed phenomenon is a phenotypic heterogeneity that resembles persistence of the viral population. The new findings, the background for the ongoing debate on stress-induced mutagenesis, and the phenotypic heterogeneity underlying a novel phage infection strategy are discussed in this short manuscript.

  4. Neuromodulator and Emotion Biomarker for Stress Induced Mental Disorders.

    Science.gov (United States)

    Gu, Simeng; Wang, Wei; Wang, Fushun; Huang, Jason H

    2016-01-01

    Affective disorders are a leading cause of disabilities worldwide, and the etiology of these many affective disorders such as depression and posttraumatic stress disorder is due to hormone changes, which includes hypothalamus-pituitary-adrenal axis in the peripheral nervous system and neuromodulators in the central nervous system. Consistent with pharmacological studies indicating that medical treatment acts by increasing the concentration of catecholamine, the locus coeruleus (LC)/norepinephrine (NE) system is regarded as a critical part of the central "stress circuitry," whose major function is to induce "fight or flight" behavior and fear and anger emotion. Despite the intensive studies, there is still controversy about NE with fear and anger. For example, the rats with LC ablation were more reluctant to leave a familiar place and took longer to consume the food pellets in an unfamiliar place (neophobia, i.e., fear in response to novelty). The reason for this discrepancy might be that NE is not only for flight (fear), but also for fight (anger). Here, we try to review recent literatures about NE with stress induced emotions and their relations with mental disorders. We propose that stress induced NE release can induce both fear and anger. "Adrenaline rush or norepinephrine rush" and fear and anger emotion might act as biomarkers for mental disorders.

  5. Induced current heating probe

    International Nuclear Information System (INIS)

    Thatcher, G.; Ferguson, B.G.; Winstanley, J.P.

    1984-01-01

    An induced current heating probe is of thimble form and has an outer conducting sheath and a water flooded flux-generating unit formed from a stack of ferrite rings coaxially disposed in the sheath. The energising coil is made of solid wire which connects at one end with a coaxial water current tube and at the other end with the sheath. The stack of ferrite rings may include non-magnetic insulating rings which help to shape the flux. (author)

  6. A high-temperature silicon-on-insulator stress sensor

    International Nuclear Information System (INIS)

    Wang Zheyao; Tian Kuo; Zhou Youzheng; Pan Liyang; Liu Litian; Hu Chaohong

    2008-01-01

    A piezoresistive stress sensor is developed using silicon-on-insulator (SOI) wafers and calibrated for stress measurement for high-temperature applications. The stress sensor consists of 'silicon-island-like' piezoresistor rosettes that are etched on the SOI layer. This eliminates leakage current and enables excellent electrical insulation at high temperature. To compensate for the measurement errors caused by the misalignment of the piezoresistor rosettes with respect to the crystallographic axes, an anisotropic micromachining technique, tetramethylammonium hydroxide etching, is employed to alleviate the misalignment issue. To realize temperature-compensated stress measurement, a planar diode is fabricated as a temperature sensor to decouple the temperature information from the piezoresistors, which are sensitive to both stress and temperature. Design, fabrication and calibration of the piezoresistors are given. SOI-related characteristics such as piezoresistive coefficients and temperature coefficients as well as the influence of the buried oxide layer are discussed in detail

  7. MicroRNA-140-5p attenuated oxidative stress in Cisplatin induced acute kidney injury by activating Nrf2/ARE pathway through a Keap1-independent mechanism.

    Science.gov (United States)

    Liao, Weitang; Fu, Zongjie; Zou, Yanfang; Wen, Dan; Ma, Hongkun; Zhou, Fangfang; Chen, Yongxi; Zhang, Mingjun; Zhang, Wen

    2017-11-15

    Oxidative stress was predominantly involved in the pathogenesis of acute kidney injury (AKI). Recent studies had reported the protective role of specific microRNAs (miRNAs) against oxidative stress. Hence, we investigated the levels of miR140-5p and its functional role in the pathogenesis of Cisplatin induced AKI. A mice Cisplatin induced-AKI model was established. We found that miR-140-5p expression was markedly increased in mice kidney. Bioinformatics analysis revealed nuclear factor erythroid 2-related factor (Nrf2) was a potential target of miR-140-5p, We demonstrated that miR-140-5p did not affect Kelch-like ECH-associated protein 1 (Keap1) level but directly targeted the 3'-UTR of Nrf2 mRNA and played a positive role in the regulation of Nrf2 expression which was confirmed by luciferase activity assay and western blot. What was more, consistent with miR140-5p expression, the mRNA and protein levels of Nrf2, as well as antioxidant response element (ARE)-driven genes Heme Oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase l (NQO1) were significantly increased in mice kidney tissues. In vitro study, Enforced expression of miR-140-5p in HK2 cells significantly attenuated oxidative stress by decreasing ROS level and increasing the expression of manganese superoxide dismutase (MnSOD). Simultaneously, miR-140-5p decreased lactate dehydrogenase (LDH) leakage and improved cell vitality in HK2 cells under Cisplatin-induced oxidative stress. However, HK2 cells transfected with a siRNA targeting Nrf2 abrogated the protective effects of miR-140-5p against oxidative stress. These results indicated that miR-140-5p might exert its anti-oxidative stress function via targeting Nrf2. Our findings showed the novel transcriptional role of miR140-5p in the expression of Nrf2 and miR-140-5p protected against Cisplatin induced oxidative stress by activating Nrf2-dependent antioxidant pathway, providing a potentially therapeutic target in acute kidney injury. Copyright © 2017

  8. Stress effect on the critical current of Ti-Nb-Zr-Ta multifilamentary superconductors

    International Nuclear Information System (INIS)

    Monju, Yoshiyuki; Tatara, Isamu

    1978-01-01

    The tensile behaviour at R.T., 77K, 4.2K and the degradation of the critical current with stress have been measured on multifilamentary Ti-Nb-Zr-Ta alloy superconductors. The assembly of the stress effect apparatus is as follows; At the center of the 60KOe superconducting solenoid coil, sample wire is hold around an FRP spool and the wire ends are gripped to the load train. Current is supplied through helium vapourcooled flexible leads up to 2000 A. It was clear that a definite degradation of the critical current with stress was not observed up to the stress equal to one third of the fracture stress at 4.2K. This stress value should be defined the maximum allowable stress of alloy superconductors examined from stress effects. (author)

  9. The role of substance P in the maintenance of colonic hypermotility induced by repeated stress in rats.

    Science.gov (United States)

    Lu, Ping; Luo, Hesheng; Quan, Xiaojing; Fan, Han; Tang, Qincai; Yu, Guang; Chen, Wei; Xia, Hong

    2016-04-01

    The mechanism underlying chronic stress-induced gastrointestinal (GI) dysmotility has not been fully elucidated and GI hormones have been indicated playing a role in mediating stress-induced changes in GI motor function. Our objective was to study the possible role of substance P (SP) in the colonic hypermotility induced by repeated water avoidance stress (WAS) which mimics irritable bowel syndrome. Male Wistar rats were submitted to WAS or sham WAS (SWAS) (1h/day) for up to 10 consecutive days. Enzyme Immunoassay Kit was used to detect the serum level of SP. The expression of neurokinin-1 receptor (NK1R) was investigated by Immunohistochemistry and Western blotting. The spontaneous contraction of muscle strip was studied in an organ bath system. L-type calcium channel currents (ICa,L) of smooth muscle cells (SMCs) were recorded by whole-cell patch-clamp technique. Fecal pellet expulsion and spontaneous contraction of proximal colon in rats were increased after repeated WAS. The serum level of SP was elevated following WAS. Immunohistochemistry proved the expression of NK1R in mucosa, muscularis and myenteric plexus. Western blotting demonstrated stress-induced up-regulation of NK1R in colon devoid of mucosa and submucosa. Repeated WAS increased the contractile activities of longitudinal muscle and circular muscle strips induced by SP and this effect was reversed by a selective NK1R antagonist. The ICa,L of SMCs in the WAS rats were drastically increased compared to controls after addition of SP. Increased serum SP level and up-regulated NK1R in colon may contribute to stress-induced colonic hypermotility. And L-type calcium channels play a potentially important role in the process of WAS-induced dysmotility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Stress-related hormone norepinephrine induces interleukin-6 expression in GES-1 cells

    International Nuclear Information System (INIS)

    Yang, R.; Lin, Q.; Gao, H.B.; Zhang, P.

    2014-01-01

    In the current literature, there is evidence that psychological factors can affect the incidence and progression of some cancers. Interleukin 6 (IL-6) is known to be elevated in individuals experiencing chronic stress and is also involved in oncogenesis and cancer progression. However, the precise mechanism of IL-6 induction by the stress-related hormone norepinephrine (NE) is not clear, and, furthermore, there are no reports about the effect of NE on IL-6 expression in gastric epithelial cells. In this study, we examined the effect of NE on IL-6 expression in immortalized human gastric epithelial cells (GES-1 cells). Using real-time PCR and enzyme-linked immunoassay, we demonstrated that NE can induce IL-6 mRNA and protein expression in GES-1 cells. The induction is through the β-adrenergic receptor-cAMP-protein kinase A pathway and mainly at the transcriptional level. Progressive 5′-deletions and site-directed mutagenesis of the parental construct show that, although activating-protein-1 (AP-1), cAMP-responsive element binding protein (CREB), CCAAT-enhancer binding protein-β (C/EBP-β), and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) binding sites are all required in the basal transcription of IL-6, only AP-1 and CREB binding sites in the IL-6 promoter are required in NE-induced IL-6 expression. The results suggest that chronic stress may increase IL-6 secretion of human gastric epithelial cells, at least in part, by the stress-associated hormone norepinephrine, and provides basic data on stress and gastric cancer progression

  11. Stress-related hormone norepinephrine induces interleukin-6 expression in GES-1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, R.; Lin, Q.; Gao, H.B.; Zhang, P. [Department of Biochemistry and Molecular Cell Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China, Department of Biochemistry and Molecular Cell Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai (China)

    2014-02-17

    In the current literature, there is evidence that psychological factors can affect the incidence and progression of some cancers. Interleukin 6 (IL-6) is known to be elevated in individuals experiencing chronic stress and is also involved in oncogenesis and cancer progression. However, the precise mechanism of IL-6 induction by the stress-related hormone norepinephrine (NE) is not clear, and, furthermore, there are no reports about the effect of NE on IL-6 expression in gastric epithelial cells. In this study, we examined the effect of NE on IL-6 expression in immortalized human gastric epithelial cells (GES-1 cells). Using real-time PCR and enzyme-linked immunoassay, we demonstrated that NE can induce IL-6 mRNA and protein expression in GES-1 cells. The induction is through the β-adrenergic receptor-cAMP-protein kinase A pathway and mainly at the transcriptional level. Progressive 5′-deletions and site-directed mutagenesis of the parental construct show that, although activating-protein-1 (AP-1), cAMP-responsive element binding protein (CREB), CCAAT-enhancer binding protein-β (C/EBP-β), and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) binding sites are all required in the basal transcription of IL-6, only AP-1 and CREB binding sites in the IL-6 promoter are required in NE-induced IL-6 expression. The results suggest that chronic stress may increase IL-6 secretion of human gastric epithelial cells, at least in part, by the stress-associated hormone norepinephrine, and provides basic data on stress and gastric cancer progression.

  12. Laser-induced capillary leakage for blood biomarker detection and vaccine delivery via the skin.

    Science.gov (United States)

    Wu, Jeffrey H; Li, Bo; Wu, Mei X

    2016-07-01

    Circulation system is the center for coordination and communication of all organs in our body. Examination of any change in its analytes or delivery of therapeutic drugs into the system consists of important medical practice in today's medicine. Two recent studies prove that brief illumination of skin with a low powered laser, at wavelengths preferentially absorbed by hemoglobin, increases the amount of circulating biomarkers in the epidermis and upper dermis by more than 1,000-fold. When probe-coated microneedle arrays are applied into laser-treated skin, plasma blood biomarkers can be reliably, accurately, and sufficiently quantified in 15∼30 min assays, with a maximal detection in one hr in a manner independent of penetration depth or a molecular mass of the biomarker. Moreover, the laser treatment permits a high efficient delivery of radiation-attenuated malarial sporozoites (RAS) into the circulation, leading to robust immunity against malaria infections, whereas similar immunization at sham-treated skin elicits poor immune responses. Thus this technology can potentially instruct designs of small, portable devices for onsite, in mobile clinics, or at home for point-of-care diagnosis and drug/vaccine delivery via the skin. Laser-induced capillary leakage (a) to induce extravasation of circualing molecules only (b) or facilitate entry of attenuated malaria sporozoites into the capillary (c). Skin illumination with a laser preferably absorbed by hemoglobin causes dilation of the capillary beneath the skin. The extravasated molecules can be sufficiently measured in the skin or guide sporozoites to enter the vessel. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Mechanisms of stress-induced cellular HSP72 release: implications for exercise-induced increases in extracellular HSP72.

    Science.gov (United States)

    Lancaster, Graeme I; Febbraio, Mark A

    2005-01-01

    The heat shock proteins are a family of highly conserved proteins with critical roles in maintaining cellular homeostasis and in protecting the cell from stressful conditions. While the critical intracellular roles of heat shock proteins are undisputed, evidence suggests that the cell possess the necessary machinery to actively secrete specific heat shock proteins in response to cellular stress. In this review, we firstly discuss the evidence that physical exercise induces the release of heat shock protein 72 from specific tissues in humans. Importantly, it appears as though this release is the result of an active secretory process, as opposed to non-specific processes such as cell lysis. Next we discuss recent in vitro evidence that has identified a mechanistic basis for the observation that cellular stress induces the release of a specific subset of heat shock proteins. Importantly, while the classical protein secretory pathway does not seem to be involved in the stress-induced release of HSP72, we discuss the evidence that lipid-rafts and exosomes are important mediators of the stress-induced release of HSP72.

  14. Signal attenuation due to cavity leakage

    International Nuclear Information System (INIS)

    Sherman, M.H.; Modera, M.P.

    1988-01-01

    The propagation of sound waves in fluids requires information about three properties of the system: capacitance (compressibility), resistance (friction), and inductance (inertia). Acoustical design techniques to date have tended to ignore the frictional effects associated with airflow across the envelope of the acoustic cavity (e.g., resistive vents). Since such leakage through the cavity envelope is best expressed with a power law dependence on the pressure, standard Fourier techniques that rely on linearity cannot be used. In this article, the theory relevant to nonlinear leakage is developed and equations presented. Potential applications of the theory to techniques for quantifying the leakage of buildings are presented. Experimental results from pressure decays in a full-scale test structure are presented and the leakage so measured is compared with independent measurements to demonstrate the technique

  15. Oxidative Stress Induces Senescence in Cultured RPE Cells.

    Science.gov (United States)

    Aryan, Nona; Betts-Obregon, Brandi S; Perry, George; Tsin, Andrew T

    2016-01-01

    The aim of this research is to determine whether oxidative stress induces cellular senescence in human retinal pigment epithelial cells. Cultured ARPE19 cells were subjected to different concentrations of hydrogen peroxide to induce oxidative stress. Cells were seeded into 24-well plates with hydrogen peroxide added to cell medium and incubated at 37°C + 5% CO2 for a 90-minute period [at 0, 300, 400 and 800 micromolar (MCM) hydrogen peroxide]. The number of viable ARPE19 cells were recorded using the Trypan Blue Dye Exclusion Method and cell senescence was measured by positive staining for senescence-associated beta-galactosidase (SA-beta-Gal) protein. Without hydrogen peroxide treatment, the number of viable ARPE19 cells increased significantly from 50,000 cells/well to 197,000 within 72 hours. Treatment with hydrogen peroxide reduced this level of cell proliferation significantly (to 52,167 cells at 400 MCM; to 49,263 cells at 800 MCM). Meanwhile, cells with a high level of positive senescence-indicator SA-Beta-Gal-positive staining was induced by hydrogen peroxide treatment (from a baseline level of 12% to 80% at 400 MCM and at 800 MCM). Our data suggests that oxidative stress from hydrogen peroxide treatment inhibited ARPE19 cell proliferation and induced cellular senescence.

  16. Tributyltin-induced endoplasmic reticulum stress and its Ca{sup 2+}-mediated mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Isomura, Midori; Kotake, Yaichiro, E-mail: yaichiro@hiroshima-u.ac.jp; Masuda, Kyoichi; Miyara, Masatsugu; Okuda, Katsuhiro; Samizo, Shigeyoshi; Sanoh, Seigo; Hosoi, Toru; Ozawa, Koichiro; Ohta, Shigeru

    2013-10-01

    Organotin compounds, especially tributyltin chloride (TBT), have been widely used in antifouling paints for marine vessels, but exhibit various toxicities in mammals. The endoplasmic reticulum (ER) is a multifunctional organelle that controls post-translational modification and intracellular Ca{sup 2+} signaling. When the capacity of the quality control system of ER is exceeded under stress including ER Ca{sup 2+} homeostasis disruption, ER functions are impaired and unfolded proteins are accumulated in ER lumen, which is called ER stress. Here, we examined whether TBT causes ER stress in human neuroblastoma SH-SY5Y cells. We found that 700 nM TBT induced ER stress markers such as CHOP, GRP78, spliced XBP1 mRNA and phosphorylated eIF2α. TBT also decreased the cell viability both concentration- and time-dependently. Dibutyltin and monobutyltin did not induce ER stress markers. We hypothesized that TBT induces ER stress via Ca{sup 2+} depletion, and to test this idea, we examined the effect of TBT on intracellular Ca{sup 2+} concentration using fura-2 AM, a Ca{sup 2+} fluorescent probe. TBT increased intracellular Ca{sup 2+} concentration in a TBT-concentration-dependent manner, and Ca{sup 2+} increase in 700 nM TBT was mainly blocked by 50 μM dantrolene, a ryanodine receptor antagonist (about 70% inhibition). Dantrolene also partially but significantly inhibited TBT-induced GRP78 expression and cell death. These results suggest that TBT increases intracellular Ca{sup 2+} concentration by releasing Ca{sup 2+} from ER, thereby causing ER stress. - Highlights: • We established that tributyltin induces endoplasmic reticulum (ER) stress. • Tributyltin induces ER stress markers in a concentration-dependent manner. • Tributyltin increases Ca{sup 2+} release from ER, thereby causing ER stress. • Dibutyltin and monobutyltin did not increase GRP78 or intracellular Ca{sup 2+}.

  17. Alopecia associated with unexpected leakage from electron cone

    Energy Technology Data Exchange (ETDEWEB)

    Wen, B.C.; Pennington, E.C.; Hussey, D.H.; Jani, S.K.

    1989-06-01

    Excessive irradiation due to unexpected leakage was found on a patient receiving electron beam therapy. The cause of this leakage was analyzed and the amount of leakage was measured for different electron beam energies. The highest leakage occurred with a 6 x 6 cm cone using a 12 MeV electron beam. The leakage dose measured along the side of the cone could be as great as 40%. Until the cones are modified or redesigned, it is advised that all patient setups be carefully reviewed to assure that no significant patient areas are in the side scatter region.

  18. Automation of unit