Study of the characteristics of crust stress field in East China by inversion of stress tensor
International Nuclear Information System (INIS)
Huilan, Z.; Rugang, D.
1991-12-01
This paper combines the search procedure with the optimization procedure to inverse the average stress tensor, and applies this method to study the crustal stress field using data of the solution of P wave first motion. By dealing with the data of Haicheng, Tangshan, Xingtai, Anyang, Liyang, Taiwan, Fujian and Guangdong areas, we obtain the characteristics of crust stress field of East China. The directions of the principal pressure stress always possess a small dip angle, but the azimuths vary from NEE (in north part of East China) to SEE (in the south part). This frame probably is related to the push-extrusive effects of the northwestern Pacific plate from NEE and the Philippine plate from SEE. (author). 5 refs, 8 figs, 4 tabs
Wéber, Zoltán
2016-01-01
We have successfully estimated the full moment tensors of 22 local earthquakes with local magnitude ranging from 1.2 to 4.8 that occurred in the Hungarian part of the Pannonian basin between 1995 and 2014. We used a probabilistic waveform inversion procedure that takes into account the effects of the random noise contained in the seismograms, the uncertainty of the hypocentre determined from arrival times and the inaccurate knowledge of the velocity structure, while estimating the error affecting the derived focal parameters. The applied probabilistic approach maps the posterior probability density functions (PPDFs) for both the hypocentral coordinates and the moment tensor components. The final estimates are given by the maximum likelihood points of the PPDFs, while solution uncertainties are presented by histogram plots. The estimated uncertainties in the moment tensor components are plotted on the focal sphere in such a way, that the significance of the double couple (DC), the compensated linear vector dipole (CLVD) and the isotropic (ISO) parts of the source can be assessed. We have shown that the applied waveform inversion method is equally suitable to recover the source mechanism for low-magnitude events using short-period local waveforms as well as for moderate-size earthquakes using long-period seismograms. The non-DC components of the retrieved focal mechanisms are statistically insignificant for all the analysed earthquakes. The negligible amount of the ISO component implies the tectonic nature of the investigated events. The moment tensor solutions reported by other agencies for five of the ML > 4 earthquakes studied in this paper are very similar to those calculated by the applied waveform inversion algorithm. We have found only strike-slip and thrust faulting events, giving further support to the hypothesis that the Pannonian basin is currently experiencing a compressional regime of deformation. The orientations of the obtained focal mechanisms are in
3D Inversion of SQUID Magnetic Tensor Data
DEFF Research Database (Denmark)
Zhdanov, Michael; Cai, Hongzhu; Wilson, Glenn
2012-01-01
Developments in SQUID-based technology have enabled direct measurement of magnetic tensor data for geophysical exploration. For quantitative interpretation, we introduce 3D regularized inversion for magnetic tensor data. For mineral exploration-scale targets, our model studies show that magnetic...... tensor data have significantly improved resolution compared to magnetic vector data for the same model. We present a case study for the 3D regularized inversion of magnetic tensor data acquired over a magnetite skarn at Tallawang, Australia. The results obtained from our 3D regularized inversion agree...
3D inversion of full tensor magnetic gradiometry (FTMG) data
DEFF Research Database (Denmark)
Zhdanov, Michael; Cai, Hongzhu; Wilson, Glenn
2011-01-01
Following recent advances in SQUID technology, full tensor magnetic gradiometry (FTMG) is emerging as a practical exploration method. We introduce 3D regularized focusing inversion for FTMG data. Our model studies show that inversion of magnetic tensor data can significantly improve resolution...
Local recovery of lithospheric stress tensor from GOCE gravitational tensor
Eshagh, Mehdi
2017-04-01
The sublithospheric stress due to mantle convection can be computed from gravity data and propagated through the lithosphere by solving the boundary-value problem of elasticity for the Earth's lithosphere. In this case, a full tensor of stress can be computed at any point inside this elastic layer. Here, we present mathematical foundations for recovering such a tensor from gravitational tensor measured at satellite altitudes. The mathematical relations will be much simpler in this way than the case of using gravity data as no derivative of spherical harmonics (SHs) or Legendre polynomials is involved in the expressions. Here, new relations between the SH coefficients of the stress and gravitational tensor elements are presented. Thereafter, integral equations are established from them to recover the elements of stress tensor from those of the gravitational tensor. The integrals have no closed-form kernels, but they are easy to invert and their spatial truncation errors are reducible. The integral equations are used to invert the real data of the gravity field and steady-state ocean circulation explorer mission (GOCE), in 2009 November, over the South American plate and its surroundings to recover the stress tensor at a depth of 35 km. The recovered stress fields are in good agreement with the tectonic and geological features of the area.
Inversion for seismic moment tensors from 6-component waveform data
Donner, Stefanie; Bernauer, Felix; Wassermann, Joachim; Igel, Heiner
2017-04-01
Waveform inversion for the seismic moment tensor nowadays is a well-established standard method in teleseismic distances. Nevertheless, several difficulties remain, especially for shallow and/or regional/local distances. These difficulties include e.g. the resolution of the mechanism, especially the non-double-couple components and the resolution of the centroid depth but also the uncertainty of a determined moment tensor. During the last decade, the observation of rotational ground motions gained increasing attention amongst seismologists. So far, studies were based on one (vertical) component ring laser data but 3-component ring laser data and even data from portable rotation sensors are in reach. These new developments can contribute to solve the difficulties in waveform inversion for moment tensors. Here, we present results for moment tensors, mainly in the regional distance range, derived from collocated translational and rotational ground motion measurements. These results are based on numerical and real-data studies. We inverted the ground motions recorded by a network of stations but also addressed the question of how reliable the inversion for moment tensors is from a single 6-component measurement.
Moran, S.C.
2003-01-01
The volcanological significance of seismicity within Katmai National Park has been debated since the first seismograph was installed in 1963, in part because Katmai seismicity consists almost entirely of high-frequency earthquakes that can be caused by a wide range of processes. I investigate this issue by determining 140 well-constrained first-motion fault-plane solutions for shallow (depth regions within the park. Earthquakes removed by several kilometers from the volcanic axis occur in a stress field characterized by horizontally oriented ??1 and ??3 axes, with ??1 rotated slightly (12??) relative to the NUVELIA subduction vector, indicating that these earthquakes are occurring in response to regional tectonic forces. On the other hand, stress tensors for earthquake clusters beneath several Katmai cluster volcanoes have vertically oriented ??1 axes, indicating that these events are occuring in response to local, not regional, processes. At Martin-Mageik, vertically oriented ??1 is most consistent with failure under edifice loading conditions in conjunction with localized pore pressure increases associated with hydrothermal circulation cells. At Trident-Novarupta, it is consistent with a number of possible models, including occurence along fractures formed during the 1912 eruption that now serve as horizontal conduits for migrating fluids and/or volatiles from nearby degassing and cooling magma bodies. At Mount Katmai, it is most consistent with continued seismicity along ring-fracture systems created in the 1912 eruption, perhaps enhanced by circulating hydrothermal fluids and/or seepage from the caldera-filling lake.
Electromagnetic stress tensor for an amorphous metamaterial medium
Wang, Neng; Wang, Shubo; Ng, Jack
2018-03-01
We analytically and numerically investigated the internal optical forces exerted by an electromagnetic wave inside an amorphous metamaterial medium. We derived, by using the principle of virtual work, the Helmholtz stress tensor, which takes into account the electrostriction effect. Several examples of amorphous media are considered, and different electromagnetic stress tensors, such as the Einstein-Laub tensor and Minkowski tensor, are also compared. It is concluded that the Helmholtz stress tensor is the appropriate tensor for such systems.
Single-well moment tensor inversion of tensile microseismic events
Czech Academy of Sciences Publication Activity Database
Grechka, V.; Li, Z.; Howell, B.; Vavryčuk, Václav
2016-01-01
Roč. 81, č. 6 (2016), KS219-KS229 ISSN 0016-8033 R&D Projects: GA ČR(CZ) GAP210/12/1491; GA ČR(CZ) GC16-19751J Institutional support: RVO:67985530 Keywords : microseismic events * moment tensor inversion * mathematical formulation Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.391, year: 2016
Ma, Ju; Dineva, Savka; Cesca, Simone; Heimann, Sebastian
2018-03-01
Mining induced seismicity is an undesired consequence of mining operations, which poses significant hazard to miners and infrastructures and requires an accurate analysis of the rupture process. Seismic moment tensors of mining-induced events help to understand the nature of mining-induced seismicity by providing information about the relationship between the mining, stress redistribution and instabilities in the rock mass. In this work, we adapt and test a waveform-based inversion method on high frequency data recorded by a dense underground seismic system in one of the largest underground mines in the world (Kiruna mine, Sweden). Stable algorithm for moment tensor inversion for comparatively small mining induced earthquakes, resolving both the double couple and full moment tensor with high frequency data is very challenging. Moreover, the application to underground mining system requires accounting for the 3D geometry of the monitoring system. We construct a Green's function database using a homogeneous velocity model, but assuming a 3D distribution of potential sources and receivers. We first perform a set of moment tensor inversions using synthetic data to test the effects of different factors on moment tensor inversion stability and source parameters accuracy, including the network spatial coverage, the number of sensors and the signal-to-noise ratio. The influence of the accuracy of the input source parameters on the inversion results is also tested. Those tests show that an accurate selection of the inversion parameters allows resolving the moment tensor also in presence of realistic seismic noise conditions. Finally, the moment tensor inversion methodology is applied to 8 events chosen from mining block #33/34 at Kiruna mine. Source parameters including scalar moment, magnitude, double couple, compensated linear vector dipole and isotropic contributions as well as the strike, dip, rake configurations of the double couple term were obtained. The orientations
Bayesian ISOLA: new tool for automated centroid moment tensor inversion
Vackář, Jiří; Burjánek, Jan; Gallovič, František; Zahradník, Jiří; Clinton, John
2017-04-01
Focal mechanisms are important for understanding seismotectonics of a region, and they serve as a basic input for seismic hazard assessment. Usually, the point source approximation and the moment tensor (MT) are used. We have developed a new, fully automated tool for the centroid moment tensor (CMT) inversion in a Bayesian framework. It includes automated data retrieval, data selection where station components with various instrumental disturbances and high signal-to-noise are rejected, and full-waveform inversion in a space-time grid around a provided hypocenter. The method is innovative in the following aspects: (i) The CMT inversion is fully automated, no user interaction is required, although the details of the process can be visually inspected latter on many figures which are automatically plotted.(ii) The automated process includes detection of disturbances based on MouseTrap code, so disturbed recordings do not affect inversion.(iii) A data covariance matrix calculated from pre-event noise yields an automated weighting of the station recordings according to their noise levels and also serves as an automated frequency filter suppressing noisy frequencies.(iv) Bayesian approach is used, so not only the best solution is obtained, but also the posterior probability density function.(v) A space-time grid search effectively combined with the least-squares inversion of moment tensor components speeds up the inversion and allows to obtain more accurate results compared to stochastic methods. The method has been tested on synthetic and observed data. It has been tested by comparison with manually processed moment tensors of all events greater than M≥3 in the Swiss catalogue over 16 years using data available at the Swiss data center (http://arclink.ethz.ch). The quality of the results of the presented automated process is comparable with careful manual processing of data. The software package programmed in Python has been designed to be as versatile as possible in
Regional Moment Tensor Inversion for Source Type Identification
Dreger, D. S.; Ford, S. R.; Walter, W. R.
2008-12-01
With Green's functions from calibrated seismic velocity models it is possible to use regional distance moment tensor inversion for source-type identification. The deviatoric and isotropic source components for 17 explosions at the Nevada Test Site, as well as 12 earthquakes and 3 collapses in the surrounding region of the western US, are calculated using a regional time-domain full waveform inversion for the complete moment tensor. The events separate into specific populations according to their deviation from a pure double-couple and ratio of isotropic to deviatoric energy. The separation allows for anomalous event identification and discrimination between explosions, earthquakes, and collapses. Confidence regions of the model parameters are estimated from the data misfit by assuming normally distributed parameter values. We investigate the sensitivity of the resolved parameters of an explosion to imperfect Earth models, inaccurate event depths, and data with a low signal-to-noise ratio (SNR) assuming a reasonable azimuthal distribution of stations. In the band of interest (0.02-0.10 Hz) the source-type calculated from complete moment tensor inversion is insensitive to velocity models perturbations that cause less than a half-cycle shift (explosion source-type is insensitive to an incorrect depth assumption (for a true depth of 1 km), and the goodness-of-fit of the inversion result cannot be used to resolve the true depth of the explosion. Noise degrades the explosive character of the result, and a good fit and accurate result are obtained when the signal-to-noise ratio (SNR) is greater than 5. We assess the depth and frequency dependence upon the resolved explosive moment. As the depth decreases from 1 km to 200 m, the isotropic moment is no longer accurately resolved and is in error between 50-200%. However, even at the most shallow depth the resultant moment tensor is dominated by the explosive component when the data has a good SNR. Finally, the sensitivity
Magnetic hydrodynamics with asymmetric stress tensor
Billig, Yuly
2005-04-01
In this paper we study equations of magnetic hydrodynamics with a stress tensor. We interpret this system as the generalized Euler equation associated with an Abelian extension of the Lie algebra of vector fields with a nontrivial 2-cocycle. We use the Lie algebra approach to prove the energy conservation law and the conservation of cross-helicity.
Magnetic hydrodynamics with asymmetric stress tensor
Billig, Yuly
2004-01-01
In this paper we study equations of magnetic hydrodynamics with a stress tensor. We interpret this system as the generalized Euler equation associated with an abelian extension of the Lie algebra of vector fields with a non-trivial 2-cocycle. We use the Lie algebra approach to prove the energy conservation law and the conservation of cross-helicity.
Radiation Forces and Torques without Stress (Tensors)
Bohren, Craig F.
2011-01-01
To understand radiation forces and torques or to calculate them does not require invoking photon or electromagnetic field momentum transfer or stress tensors. According to continuum electromagnetic theory, forces and torques exerted by radiation are a consequence of electric and magnetic fields acting on charges and currents that the fields induce…
Sampling-free Bayesian inversion with adaptive hierarchical tensor representations
Eigel, Martin; Marschall, Manuel; Schneider, Reinhold
2018-03-01
A sampling-free approach to Bayesian inversion with an explicit polynomial representation of the parameter densities is developed, based on an affine-parametric representation of a linear forward model. This becomes feasible due to the complete treatment in function spaces, which requires an efficient model reduction technique for numerical computations. The advocated perspective yields the crucial benefit that error bounds can be derived for all occuring approximations, leading to provable convergence subject to the discretization parameters. Moreover, it enables a fully adaptive a posteriori control with automatic problem-dependent adjustments of the employed discretizations. The method is discussed in the context of modern hierarchical tensor representations, which are used for the evaluation of a random PDE (the forward model) and the subsequent high-dimensional quadrature of the log-likelihood, alleviating the ‘curse of dimensionality’. Numerical experiments demonstrate the performance and confirm the theoretical results.
Bayesian ISOLA: new tool for automated centroid moment tensor inversion
Vackář, Jiří; Burjánek, Jan; Gallovič, František; Zahradník, Jiří; Clinton, John
2017-08-01
We have developed a new, fully automated tool for the centroid moment tensor (CMT) inversion in a Bayesian framework. It includes automated data retrieval, data selection where station components with various instrumental disturbances are rejected and full-waveform inversion in a space-time grid around a provided hypocentre. A data covariance matrix calculated from pre-event noise yields an automated weighting of the station recordings according to their noise levels and also serves as an automated frequency filter suppressing noisy frequency ranges. The method is tested on synthetic and observed data. It is applied on a data set from the Swiss seismic network and the results are compared with the existing high-quality MT catalogue. The software package programmed in Python is designed to be as versatile as possible in order to be applicable in various networks ranging from local to regional. The method can be applied either to the everyday network data flow, or to process large pre-existing earthquake catalogues and data sets.
Theoretical study of lithium clusters by electronic stress tensor
International Nuclear Information System (INIS)
Ichikawa, Kazuhide; Nozaki, Hiroo; Komazawa, Naoya; Tachibana, Akitomo
2012-01-01
We study the electronic structure of small lithium clusters Li n (n = 2 ∼ 8) using the electronic stress tensor. We find that the three eigenvalues of the electronic stress tensor of the Li clusters are negative and degenerate, just like the stress tensor of liquid. This leads us to propose that we may characterize a metallic bond in terms of the electronic stress tensor. Our proposal is that in addition to the negativity of the three eigenvalues of the electronic stress tensor, their degeneracy characterizes some aspects of the metallic nature of chemical bonding. To quantify the degree of degeneracy, we use the differential eigenvalues of the electronic stress tensor. By comparing the Li clusters and hydrocarbon molecules, we show that the sign of the largest eigenvalue and the differential eigenvalues could be useful indices to evaluate the metallicity or covalency of a chemical bond.
Forward modeling and inversion of tensor CSAMT in 3D anisotropic media
Wang, Tao; Wang, Kun-Peng; Tan, Han-Dong
2017-12-01
Tensor controlled-source audio-frequency magnetotellurics (CSAMT) can yield information about electric and magnetic fields owing to its multi-transmitter configuration compared with the common scalar CSAMT. The most current theories, numerical simulations, and inversion of tensor CSAMT are based on far-field measurements and the assumption that underground media have isotropic resistivity. We adopt a three-dimensional (3D) staggered-grid finite difference numerical simulation method to analyze the resistivity in axial anisotropic and isotropic media. We further adopt the limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) method to perform 3D tensor CSAMT axial anisotropic inversion. The inversion results suggest that when the underground structure is anisotropic, the isotropic inversion will introduce errors to the interpretation.
Holographic stress tensor for non-relativistic theories
International Nuclear Information System (INIS)
Ross, Simon F.; Saremi, Omid
2009-01-01
We discuss the calculation of the field theory stress tensor from the dual geometry for two recent proposals for gravity duals of non-relativistic conformal field theories. The first of these has a Schroedinger symmetry including Galilean boosts, while the second has just an anisotropic scale invariance (the Lifshitz case). For the Lifshitz case, we construct an appropriate action principle. We propose a definition of the non-relativistic stress tensor complex for the field theory as an appropriate variation of the action in both cases. In the Schroedinger case, we show that this gives physically reasonable results for a simple black hole solution and agrees with an earlier proposal to determine the stress tensor from the familiar AdS prescription. In the Lifshitz case, we solve the linearised equations of motion for a general perturbation around the background, showing that our stress tensor is finite on-shell.
Bayesian ISOLA: new tool for automated centroid moment tensor inversion
Czech Academy of Sciences Publication Activity Database
Vackář, J.; Burjánek, Jan; Gallovič, F.; Zahradník, J.; Clinton, J.
2017-01-01
Roč. 210, č. 2 (2017), s. 693-705 ISSN 0956-540X Institutional support: RVO:67985530 Keywords : inverse theory * waveform inversion * computational seismology * earthquake source observations * seismic noise Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 2.414, year: 2016
Identifying Isotropic Events using an Improved Regional Moment Tensor Inversion Technique
Energy Technology Data Exchange (ETDEWEB)
Dreger, Douglas S. [Univ. of California, Berkeley, CA (United States); Ford, Sean R. [Univ. of California, Berkeley, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Walter, William R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-12-08
Research was carried out investigating the feasibility of using a regional distance seismic waveform moment tensor inverse procedure to estimate source parameters of nuclear explosions and to use the source inversion results to develop a source-type discrimination capability. The results of the research indicate that it is possible to robustly determine the seismic moment tensor of nuclear explosions, and when compared to natural seismicity in the context of the a Hudson et al. (1989) source-type diagram they are found to separate from populations of earthquakes and underground cavity collapse seismic sources.
Stress tensor computations at Mount St. Helens (1995-1998
Directory of Open Access Journals (Sweden)
S. Gresta
2000-06-01
Full Text Available Fault plane solutions of 459 events occurring between 1995 and 1998 at Mount St. Helens (State of Washington, Northwest U.S.A. were considered in order to infer the state of stress beneath the volcano. These events occurred in two distinct depth zones. The shallower zone is between 2 and 5.5 km, with shocks clustering in a tight cylindrical distribution about 1 km in radius directly beneath the crater. The deeper events are spread over a larger volume from 5.5 to 10 km depth and surround an aseismic zone below and slightly west of the lava dome. Faulting is characterized by a mixture of strike-slip, reverse and normal faults with maximum compression axes which do not cluster around a single direction. In the deep zone, between 5.5 and 10 km, P axes define a wheel-spoke pattern pointing radially away from the center of the aseismic zone. The 459 fault plane solutions were inverted for stress tensor parameters using the algorithm of Gephart and Forsyth. The inversion of the whole data set revealed that faulting was not produced by a uniform stress distribution. The subdivision of the zone into smaller volumes significantly reduced misfit and confidence areas of the solutions, whereas temporal subdivision of the sample did not lead to significant improvements in terms of stress uniformity. We suggest that the inhomogeneous stress field is consistent with a varying pressure source originating from the inferred crustal magma chamber and a thin conduit extending above it.
Ford, S. R.; Dreger, D. S.; Walter, W. R.
2006-12-01
Seismic moment tensor analysis at regional distances commonly involves solving for the deviatoric moment tensor and decomposing it to characterize the tectonic earthquake source. The full seismic moment tensor solution can also recover the isotropic component of the seismic source, which is theoretically dominant in explosions and collapses, and present in volcanic events. Analysis of events with demonstrably significant isotropic energy can aid in understanding the source processes of volcanic and geothermal seismic events and the monitoring of nuclear explosions. Using a regional time-domain waveform inversion for the complete moment tensor we calculate the deviatoric and isotropic source components for several explosions at the Nevada Test Site (NTS) and earthquakes, collapses, and volcanic events in the surrounding region of the NTS (Western US). The events separate into specific populations according to their deviation from a pure double-couple and ratio of isotropic to deviatoric energy. The separation allows for anomalous event identification and discrimination of explosions, earthquakes, and collapses. Analysis of the source principal axes can characterize the regional stress field, and tectonic release due to explosions. Error in the moment tensor solutions and source parameters is also calculated. We investigate the sensitivity of the moment tensor solutions to Green's functions calculated with imperfect Earth models, inaccurate event locations, and data with a low signal-to-noise ratio. We also test the performance of the method under a range of recording conditions from excellent azimuthal coverage to cases of sparse coverage as might be expected for smaller events. This analysis will be used to determine the magnitude range where well-constrained solutions can be obtained.
Moment tensor inversions using strong motion waveforms of Taiwan TSMIP data, 1993–2009
Chang, Kaiwen; Chi, Wu-Cheng; Gung, Yuancheng; Dreger, Douglas; Lee, William H K.; Chiu, Hung-Chie
2011-01-01
Earthquake source parameters are important for earthquake studies and seismic hazard assessment. Moment tensors are among the most important earthquake source parameters, and are now routinely derived using modern broadband seismic networks around the world. Similar waveform inversion techniques can also apply to other available data, including strong-motion seismograms. Strong-motion waveforms are also broadband, and recorded in many regions since the 1980s. Thus, strong-motion data can be used to augment moment tensor catalogs with a much larger dataset than that available from the high-gain, broadband seismic networks. However, a systematic comparison between the moment tensors derived from strong motion waveforms and high-gain broadband waveforms has not been available. In this study, we inverted the source mechanisms of Taiwan earthquakes between 1993 and 2009 by using the regional moment tensor inversion method using digital data from several hundred stations in the Taiwan Strong Motion Instrumentation Program (TSMIP). By testing different velocity models and filter passbands, we were able to successfully derive moment tensor solutions for 107 earthquakes of Mw >= 4.8. The solutions for large events agree well with other available moment tensor catalogs derived from local and global broadband networks. However, for Mw = 5.0 or smaller events, we consistently over estimated the moment magnitudes by 0.5 to 1.0. We have tested accelerograms, and velocity waveforms integrated from accelerograms for the inversions, and found the results are similar. In addition, we used part of the catalogs to study important seismogenic structures in the area near Meishan Taiwan which was the site of a very damaging earthquake a century ago, and found that the structures were dominated by events with complex right-lateral strike-slip faulting during the recent decade. The procedures developed from this study may be applied to other strong-motion datasets to compliment or fill
Moment Tensor Inversion of the 1998 Aiquile Earthquake Using Long-period surface waves
Wang, H.
2016-12-01
On 22nd May 1998 at 04:49(GMT), an earthquake of magnitude Mw = 6.6 struck the Aiquile region of Bolivia, causing 105 deaths and significant damage to the nearby towns of Hoyadas and Pampa Grande. This was the largest shallow earthquake (15 km depth) in Bolivia in over 50 years, and was felt as far Sucre, approximately 100 km away. In this report, a centroid moment tensor (CMT) inversion is carried using body waves and surface waves from 1998 Aiquile earthquake with 1-D and 3-D earth models to obtain the source model parameters and moment tensor, which are the values will be subsequently compared against the Global Centroid Moment Tensor Catalog(GCMT). Also, the excitation kernels could be gained and synthetic data can be created with different earth models. The two method for calculating synthetic seismograms are SPECFEM3D Globe which is based on shear wave mantle model S40RTS and crustal model CRUST 2.0, and AxiSEM which is based on PREM 1-D earth Model. Within the report, the theory behind the CMT inversion was explained and the source parameters gained from the inversion can be used to reveal the tectonics of the source of this earthquake, these information could be helpful in assessing seismic hazard and overall tectonic regime of this region. Furthermore, results of synthetic seismograms and the solution of inversion are going to be used to assess two models.
Lithospheric Stress Tensor from Gravity and Lithospheric Structure Models
Eshagh, Mehdi; Tenzer, Robert
2017-07-01
In this study we investigate the lithospheric stresses computed from the gravity and lithospheric structure models. The functional relation between the lithospheric stress tensor and the gravity field parameters is formulated based on solving the boundary-value problem of elasticity in order to determine the propagation of stresses inside the lithosphere, while assuming the horizontal shear stress components (computed at the base of the lithosphere) as lower boundary values for solving this problem. We further suppress the signature of global mantle flow in the stress spectrum by subtracting the long-wavelength harmonics (below the degree of 13). This numerical scheme is applied to compute the normal and shear stress tensor components globally at the Moho interface. The results reveal that most of the lithospheric stresses are accumulated along active convergent tectonic margins of oceanic subductions and along continent-to-continent tectonic plate collisions. These results indicate that, aside from a frictional drag caused by mantle convection, the largest stresses within the lithosphere are induced by subduction slab pull forces on the side of subducted lithosphere, which are coupled by slightly less pronounced stresses (on the side of overriding lithospheric plate) possibly attributed to trench suction. Our results also show the presence of (intra-plate) lithospheric loading stresses along Hawaii islands. The signature of ridge push (along divergent tectonic margins) and basal shear traction resistive forces is not clearly manifested at the investigated stress spectrum (between the degrees from 13 to 180).
Dettmer, J.; Benavente, R. F.; Cummins, P. R.
2017-12-01
This work considers probabilistic, non-linear centroid moment tensor inversion of data from earthquakes at teleseismic distances. The moment tensor is treated as deviatoric and centroid location is parametrized with fully unknown latitude, longitude, depth and time delay. The inverse problem is treated as fully non-linear in a Bayesian framework and the posterior density is estimated with interacting Markov chain Monte Carlo methods which are implemented in parallel and allow for chain interaction. The source mechanism and location, including uncertainties, are fully described by the posterior probability density and complex trade-offs between various metrics are studied. These include the percent of double couple component as well as fault orientation and the probabilistic results are compared to results from earthquake catalogs. Additional focus is on the analysis of complex events which are commonly not well described by a single point source. These events are studied by jointly inverting for multiple centroid moment tensor solutions. The optimal number of sources is estimated by the Bayesian information criterion to ensure parsimonious solutions. [Supported by NSERC.
Milton, Kimball A.; Fulling, Stephen A.; Parashar, Prachi; Kalauni, Pushpa; Murphy, Taylor
2016-04-01
Motivated by a desire to understand quantum fluctuation energy densities and stress within a spatially varying dielectric medium, we examine the vacuum expectation value for the stress tensor of a scalar field with arbitrary conformal parameter, in the background of a given potential that depends on only one spatial coordinate. We regulate the expressions by incorporating a temporal-spatial cutoff in the (imaginary) time and transverse-spatial directions. The divergences are captured by the zeroth- and second-order WKB approximations. Then the stress tensor is "renormalized" by omitting the terms that depend on the cutoff. The ambiguities that inevitably arise in this procedure are both duly noted and restricted by imposing certain physical conditions; one result is that the renormalized stress tensor exhibits the expected trace anomaly. The renormalized stress tensor exhibits no pressure anomaly, in that the principle of virtual work is satisfied for motions in a transverse direction. We then consider a potential that defines a wall, a one-dimensional potential that vanishes for z 0 , for z >0 . Previously, the stress tensor had been computed outside of the wall, whereas now we compute all components of the stress tensor in the interior of the wall. The full finite stress tensor is computed numerically for the two cases where explicit solutions to the differential equation are available, α =1 and 2. The energy density exhibits an inverse linear divergence as the boundary is approached from the inside for a linear potential, and a logarithmic divergence for a quadratic potential. Finally, the interaction between two such walls is computed, and it is shown that the attractive Casimir pressure between the two walls also satisfies the principle of virtual work (i.e., the pressure equals the negative derivative of the energy with respect to the distance between the walls).
Large Airborne Full Tensor Gradient Data Inversion Based on a Non-Monotone Gradient Method
Sun, Yong; Meng, Zhaohai; Li, Fengting
2018-03-01
Following the development of gravity gradiometer instrument technology, the full tensor gravity (FTG) data can be acquired on airborne and marine platforms. Large-scale geophysical data can be obtained using these methods, making such data sets a number of the "big data" category. Therefore, a fast and effective inversion method is developed to solve the large-scale FTG data inversion problem. Many algorithms are available to accelerate the FTG data inversion, such as conjugate gradient method. However, the conventional conjugate gradient method takes a long time to complete data processing. Thus, a fast and effective iterative algorithm is necessary to improve the utilization of FTG data. Generally, inversion processing is formulated by incorporating regularizing constraints, followed by the introduction of a non-monotone gradient-descent method to accelerate the convergence rate of FTG data inversion. Compared with the conventional gradient method, the steepest descent gradient algorithm, and the conjugate gradient algorithm, there are clear advantages of the non-monotone iterative gradient-descent algorithm. Simulated and field FTG data were applied to show the application value of this new fast inversion method.
Stress regimes in the northwest of Iran from stress inversion of earthquake focal mechanisms
Afra, Mahsa; Moradi, Ali; Pakzad, Mehrdad
2017-11-01
Northwestern Iran is one of the seismically active regions with a high seismic risk in the world. This area is a part of the complex tectonic system due to the interaction between Arabia, Anatolia and Eurasia. The purpose of this study is to deduce the stress regimes in the northwestern Iran and surrounding regions from stress inversion of earthquake focal mechanisms. We compile 92 focal mechanisms data from the Global CMT catalogue and other sources and also determine the focal mechanisms of 14 earthquakes applying the moment tensor inversion. We divide the studied region into 9 zones using similarity of the horizontal GPS velocities and existing focal mechanisms. We implement two stress inversion methods, Multiple Inverse Method and Iterative Joint Inversion Method, which provide comparable results in terms of orientations of maximum horizontal stress axes SHmax. The similar results of the two methods should make us more confident about the interpretations. We consider zones of exclusion surrounding all the earthquakes according to independent focal mechanisms hypothesis. The hypothesis says that the inversion should involve events that are far enough from each other in order that any previous event doesn't affect the stress field near the earthquake under consideration. Accordingly we deal with the matter by considering zones of exclusion around all the events. The result of exclusion is only significant for eastern Anatolia. The stress regime in this region changes from oblique to strike slip faulting because of the exclusion. In eastern Anatolia, the direction of maximum horizontal stress is nearly north-south. The direction alters to east-west in Talesh region. Errors of σ1 are lower in all zones comparing with errors of σ2 and σ3 and there is a trade-off between data resolution and covariance of the model. The results substantiate the strike-slip and thrust faulting stress regimes in the northwest of Iran.
Stress-tensor OPE in N=2 superconformal theories
International Nuclear Information System (INIS)
Liendo, Pedro; Ramírez, Israel; Seo, Jihye
2016-01-01
We carry out a detailed superspace analysis of the OPE of two N=2 stress-tensor multiplets. Knowledge of the multiplets appearing in the expansion, together with the two-dimensional chiral algebra description of N=2 SCFTs, imply an analytic bound on the central charge c. This bound is valid for any N=2 SCFT regardless of its matter content and flavor symmetries, and is saturated by the simplest Argyres-Douglas fixed point. We also present a partial conformal block analysis for the scalar superconformal primary of the multiplet.
Quantum stress tensor in Schwarzschild space-time
International Nuclear Information System (INIS)
Howard, K.W.; Candelas, P.
1984-01-01
The vacuum expectation value of the stress-energy tensor for the Hartle-Hawking state in Schwartzschild space-time has been calculated for the conformal scalar field. separates naturally into the sum of two terms. The first coincides with an approximate expression suggested by Page. The second term is a ''remainder'' that may be evaluated numerically. The total expression is in good qualitative agreement with Page's approximation. These results are at variance with earlier results given by Fawcett whose error is explained
Queitsch, M.; Schiffler, M.; Stolz, R.; Meyer, M.; Kukowski, N.
2017-12-01
Measurements of the Earth's magnetic field are one of the most used methods in geophysical exploration. The ambiguity of the method, especially during modeling and inversion of magnetic field data sets, is one of its biggest challenges. Additional directional information, e.g. gathered by gradiometer systems based on Superconducting Quantum Interference Devices (SQUIDs), will positively influence the inversion results and will thus lead to better subsurface magnetization models. This is especially beneficial, regarding the shape and direction of magnetized structures, especially when a significant remanent magnetization of the underlying sources is present. The possibility to separate induced and remanent contributions to the total magnetization may in future also open up advanced ways for geological interpretation of the data, e.g. a first estimation of diagenesis processes. In this study we present the results of airborne full tensor magnetic gradiometry (FTMG) surveys conducted over a dolerite intrusion in central Germany and the results of two magnetization vector inversions (MVI) of the FTMG and a conventional total field anomaly data set. A separation of the two main contributions of the acquired total magnetization will be compared with information of the rock magnetization measured on orientated rock samples. The FTMG inversion results show a much better agreement in direction and strength of both total and remanent magnetization compared to the inversion using only total field anomaly data. To enhance the separation process, the application of additional geophysical methods, i.e. frequency domain electromagnetics (FDEM), in order to gather spatial information of subsurface rock susceptibility will also be discussed. In this approach, we try to extract not only information on subsurface conductivity but also the induced magnetization. Using the total magnetization from the FTMG data and the induced magnetization from the FDEM data, the full separation of
Barth, A.; Wenzel, F.; Giardini, D.
2007-08-01
We provide a procedure for the routine determination of moment tensors from earthquakes with magnitudes as low as M W 4.4 using data recorded by only a few permanent seismic stations at regional to teleseismic distances. Waveforms are inverted for automatically determined frequency pass-bands that depend on source-receiver locations as well as the earthquake magnitude. Inversion results are stable against small variations in the frequency band and provide low data variances, i.e., a good fit between observed and modelled waveform traces. The total frequency band used for our procedure ranges from 10 mHz to 29 mHz (periods of 35 s to 100 s). This enables us to determine focal mechanisms for earthquakes that were not derived previously by routine procedures of CMT or other agencies. As a case study, we determine focal mechanism solutions of 38 light to moderate magnitude earthquakes in eastern Africa between 1995 and 2002.
Centroid Moment Tensor Inversion in a 3D heterogeneous Earth: Application to the Australasian region
Hejrani, B.; Tkalcic, H.; Fichtner, A.
2015-12-01
radially anisotropic structure: new insights into present and past states of the Australasian upper mantle. Earth Planet. Sci. Lett. 290, 270-280. Hingee, M., Tkalčić, H., Fichtner A., Sambridge, M., 2011. Moment tensor inversion using a 3-D structural model: Applications for the Australian region, Geophys. J. Int., 184(2), 949-964.
Czech Academy of Sciences Publication Activity Database
Benetatos, C.; Málek, Jiří; Verga, F.
2013-01-01
Roč. 17, č. 2 (2013), s. 557-577 ISSN 1383-4649 Institutional support: RVO:67985891 Keywords : micro-earthquake * moment-tensor inversion * gas storage * ISOLA Subject RIV: DD - Geochemistry Impact factor: 1.386, year: 2013
Gravity waves from quantum stress tensor fluctuations in inflation
International Nuclear Information System (INIS)
Wu, Chun-Hsien; Hsiang, Jen-Tsung; Ford, L. H.; Ng, Kin-Wang
2011-01-01
We consider the effects of the quantum stress tensor fluctuations of a conformal field in generating gravity waves in inflationary models. We find a nonscale invariant, non-Gaussian contribution which depends upon the total expansion factor between an initial time and the end of inflation. This spectrum of gravity wave perturbations is an illustration of a negative power spectrum, which is possible in quantum field theory. We discuss possible choices for the initial conditions. If the initial time is taken to be sufficiently early, the fluctuating gravity waves are potentially observable both in the CMB radiation and in gravity wave detectors, and could offer a probe of trans-Planckian physics. The fact that they have not yet been observed might be used to constrain the duration and energy scale of inflation. However, this conclusion is contingent upon including the contribution of modes which were trans-Planckian at the beginning of inflation.
Gravity waves from quantum stress tensor fluctuations in inflation
Wu, Chun-Hsien; Hsiang, Jen-Tsung; Ford, L. H.; Ng, Kin-Wang
2011-11-01
We consider the effects of the quantum stress tensor fluctuations of a conformal field in generating gravity waves in inflationary models. We find a nonscale invariant, non-Gaussian contribution which depends upon the total expansion factor between an initial time and the end of inflation. This spectrum of gravity wave perturbations is an illustration of a negative power spectrum, which is possible in quantum field theory. We discuss possible choices for the initial conditions. If the initial time is taken to be sufficiently early, the fluctuating gravity waves are potentially observable both in the CMB radiation and in gravity wave detectors, and could offer a probe of trans-Planckian physics. The fact that they have not yet been observed might be used to constrain the duration and energy scale of inflation. However, this conclusion is contingent upon including the contribution of modes which were trans-Planckian at the beginning of inflation.
Stress-energy tensors for vector fields outside a static black hole
International Nuclear Information System (INIS)
Barrios, F.A.; Vaz, C.
1989-01-01
We obtain new, approximate stress-energy tensors to describe gauge fields in the neighborhood of a Schwarzschild black hole. We assume that the coefficient of ∇ 2 R in the trace anomaly is correctly given by ζ-function regularization. Our approximation differs from that of Page and of Brown and Ottewill and relies upon a new, improved ansatz for the form of the stress-energy tensor in the ultrastatic optical metric of the black hole. The Israel-Hartle-Hawking thermal tensor is constructed to be regular on the horizon and possess the correct asymptotic behavior. Our approximation of Unruh's tensor is likewise constructed to be regular on the future horizon and exhibit a luminosity which agrees with Page's numerically obtained value. Geometric expressions for the approximate tensors are given, and the approximate energy density of the thermal tensor on the horizon is compared with recent numerical estimates
2009-09-30
for earthquakes in southern California, Bull. Seism . Soc. Am. 94: 1748-1761. Liu, Q., and J. Tromp (2006). Finite-frequency kernels based on adjoint...2008a). Component-dependent Frechet sensitivity kernels and utility of three- component seismic records. Bull. Seism . Soc. Am. 98: doi.10.1785/0120070283...L., P. Chen, and T. H. Jordan (2006). Strain Green tensor, reciprocity, and their applications to seismic source and structure studies, Bull. Seism
Convers, Jaime; Custodio, Susana
2016-04-01
Rapid assessment of seismological parameters pertinent to the nucleation and rupture of earthquakes are now routinely calculated by local and regional seismic networks. With the increasing number of stations, fast data transmission, and advanced computer power, we can now go beyond accurate magnitude and epicentral locations, to rapid estimations of other higher-order earthquake parameters such as seismic moment tensor. Although an increased number of stations can minimize azimuthal gaps, it also increases computation time, and potentially introduces poor quality data that often leads to a lower the stability of automated inversions. In this presentation, we focus on moment tensor calculations for earthquakes occurring offshore the southwestern Iberian peninsula. The available regional seismic data in this region has a significant azimuthal gap that results from the geographical setting. In this case, increasing the number of data from stations spanning a small area (and at a small azimuthal angle) increases the calculation time without necessarily improving the accuracy of the inversion. Additionally, limited regional data coverage makes it imperative to exclude poor-quality data, as their negative effect on moment tensor inversions is often significant. In our work, we analyze methods to minimize the effects of large azimuthal gaps in a regional station coverage, of potential bias by uneven station distribution, and of poor data quality in moment tensor inversions obtained for earthquakes offshore the southwestern Iberian peninsula. We calculate moment tensors using the KIWI tools, and we implement different configurations of station-weighing, and cross-correlation of neighboring stations, with the aim of automatically estimating and selecting high-quality data, improving the accuracy of results, and reducing the computation time of moment tensor inversions. As the available recent intermediate-size events offshore the Iberian peninsula is limited due to the long
Realizability conditions for the turbulent stress tensor in large-eddy simulation
Vreman, A.W.; Geurts, Bernardus J.; Kuerten, Johannes G.M.
1994-01-01
The turbulent stress tensor in large-eddy simulation is examined from a theoretical point of view. Realizability conditions for the components of this tensor are derived, which hold if and only if the filter function is positive. The spectral cut-off, one of the filters frequently used in large-eddy
Characteristics of the Residual Stress tensor when filter width is larger than the Ozmidov scale
de Bragança Alves, Felipe Augusto; de Bruyn Kops, Stephen
2017-11-01
In stratified turbulence, the residual stress tensor is statistically anisotropic unless the smallest resolved length scale is smaller than the Ozmidov scale and the buoyancy Reynolds number is sufficiently high for there to exist a range of scales that is statistically isotropic. We present approximations to the residual stress tensor that are derived analytically. These approximations are evaluated by filtering data from direct numerical simulations of homogeneous stratified turbulence, with unity Prandtl number, resolved on up to 8192 × 8192 × 4096 grid points along with an isotropic homogeneous case resolved on 81923 grid points. It is found that the best possible scaling of the strain rate tensor yields a residual stress tensor (RST) that is less well statistically aligned with the exact RST than a randomly generated tensor. It is also found that, while a scaling of the strain rate tensor can dissipate the right amount of energy, it produces incorrect anisotropic dissipation, removing energy from the wrong components of the velocity vector. We find that a combination of the strain rate tensor and a tensor related to energy redistribution caused by a Newtonian fluid viscous stress yields an excellent tensorial basis for modelling the RST.
Membrane stress tensor in the presence of lipid density and composition inhomogeneities.
Bitbol, A-F; Peliti, L; Fournier, J-B
2011-05-01
We derive the expression of the stress tensor for one- and two-component lipid membranes with density and composition inhomogeneities. We first express the membrane stress tensor as a function of the free-energy density by means of the principle of virtual work. We then apply this general result to a monolayer model which is shown to be a local version of the area-difference elasticity (ADE) model. The resulting stress tensor expression generalizes the one associated with the Helfrich model, and can be specialized to obtain the one associated with the ADE model. Our stress tensor directly gives the force exchanged through a boundary in a monolayer with density and composition inhomogeneities. Besides, it yields the force density, which is also directly obtained in covariant formalism. We apply our results to study the forces induced in a membrane by a local perturbation.
2014-04-30
nodes in numerical methods, we adapt a multigrid/multilevel method ( Briggs , 1987) to solve the wave propagation and inversion problem (Figure 2...passed from coarse to fine grids, and vice versa. Approved for public release; distribution is unlimited. 3 multi-grid scheme ( Briggs , 1987...compressional and shear velocity in the Earth’s mantle, Geophys. J. Int. 153, pp. 443- 466. Antoun, T., D. Harris, T. Lay, S. C. Myers , M. E. Pasyanos
DEFF Research Database (Denmark)
Donner, Stefanie; Krüger, Frank; Rössler, Dirk
2014-01-01
In this study, we suggest a novel approach for the retrieval of regional moment tensors for earthquakes with small to moderate magnitudes. The first modification is the combined inversion of broadband and short‐period waveform data. The broadband waveforms are inverted in a frequency range suitable.......1). In this area, several factors exacerbate the difficulty of performing inversion for moment tensors, for example, a heterogeneous station network and large azimuthal gaps. We have demonstrated that our approach supplies reliable moment tensors when inversion from broadband data alone fails. In one case, we...... successfully retrieved a stable solution from short‐period waveform data alone. Thus, our approach enables successful determination of seismic moment tensors wherever a sparse network of broadband stations has thus far prevented it....
Directory of Open Access Journals (Sweden)
Shiann-Jong Lee
2010-01-01
Full Text Available Moment tensor inversion is a routine procedure to obtain information on an earthquake source for moment magnitude and focal mechanism. However, the inversion quality is usually controlled by factors such as knowledge of an earthquake location and the suitability of a 1-D velocity model used. Here we present an improved method to invert the moment tensor solution for local earthquakes. The proposed method differs from routine centroid-moment-tensor inversion of the Broadband Array in Taiwan for Seismology in three aspects. First, the inversion is repeated in the neighborhood of an earthquake_?s hypocenter on a grid basis. Second, it utilizes Green_?s functions based on a true three-dimensional velocity model. And third, it incorporates most of the input waveforms from strong-motion records. The proposed grid-based moment tensor inversion is applied to a local earthquake that occurred near the Taipei basin on 23 October 2004 to demonstrate its effectiveness and superiority over methods used in previous studies. By using the grid-based moment tensor inversion technique and 3-D Green_?s functions, the earthquake source parameters, including earthquake location, moment magnitude and focal mechanism, are accurately found that are sufficiently consistent with regional ground motion observations up to a frequency of 1.0 Hz. This approach can obtain more precise source parameters for other earthquakes in or near a well-modeled basin and crustal structure.
Jia, Z.; Ni, S.; Zhan, Z.
2016-12-01
Rapid and accurate determination of full moment tensors plays an important role in seismic source studies. We developed a joint inversion method for full moment tensors that combines both local and teleseismic waveform data. This method, called "gCAPjoint", which is based on the CAP method, enables time shift for synthetics, thus is more robust to inaccuracies in velocity models. Meantime, this method uses both local full waveforms and teleseismic body waves, thus provides enhanced coverage of azimuth and take-off angles of seismic waves, which are critical in constraining focal mechanism and depth. As a case study, we applied the method to two moderate-size intermediate-depth earthquakes (Mw6.3 and Mw6.6) in Hindu Kush. These two earthquakes share very close centroid locations, but the retrieved moment tensors of them are very different. While one event is essentially a pure double-couple thrust earthquake, the other event shows focal mechanism dominated by CLVD component, which can potentially be attributed to multiple double couple sub-events. Such difference for these two events suggests complex faulting geometries in the source region.
Long-Lived Inverse Chirp Signals from Core-Collapse in Massive Scalar-Tensor Gravity.
Sperhake, Ulrich; Moore, Christopher J; Rosca, Roxana; Agathos, Michalis; Gerosa, Davide; Ott, Christian D
2017-11-17
This Letter considers stellar core collapse in massive scalar-tensor theories of gravity. The presence of a mass term for the scalar field allows for dramatic increases in the radiated gravitational wave signal. There are several potential smoking gun signatures of a departure from general relativity associated with this process. These signatures could show up within existing LIGO-Virgo searches.
CSIR Research Space (South Africa)
Linzer, LM
2005-04-01
Full Text Available The primary objective of this study was to develop a robust MTI method to estimate the moment tensors of clusters of seismic events recorded in the underground environment. To achieve this, three 'hybrid' MTI methods were developed by the author...
Plate-wide stress relaxation explains European Palaeocene basin inversions
DEFF Research Database (Denmark)
Nielsen, S.B.; Thomsen, Erik; Hansen, D.L.
2005-01-01
of the in-plane tectonic stress. The onset of relaxation inversions was plate-wide and simultaneous, and may have been triggered by stress changes caused by elevation of the North Atlantic lithosphere by the Iceland plume or the drop in NS convergence rate between Africa and Europe....
Beijeren, H. van
1984-01-01
It is conjectured that the large values at intermediate times of the stress tensor autocorrelation function, found in computer simulations, may be caused by a coupling of the stress tensor to pairs of slowly decaying extended heat modes of large wave number. Approximate expressions, amenable to
Shen, Weisen
2016-11-24
Using receiver functions, Rayleigh wave phase velocity dispersion determined from ambient noise and teleseismic earthquakes, and Rayleigh wave horizontal to vertical ground motion amplitude ratios from earthquakes observed across the PLUTONS seismic array, we construct a one-dimensional (1-D) S-wave velocity (Vs) seismic model with uncertainties for Uturuncu volcano, Bolivia, located in the central Andes and overlying the eastward-subducting Nazca plate. We find a fast upper crustal lid placed upon a low-velocity zone (LVZ) in the mid-crust. By incorporating all three types of measurements with complimentary sensitivity, we also explore the average density and Vp/Vs (ratio of P-wave to S-wave velocity) structures beneath the young silicic volcanic field. We observe slightly higher Vp/Vs and a decrease in density near the LVZ, which implies a dacitic source of the partially molten magma body. We exploit the impact of the 1-D model on full moment tensor inversion for the two largest local earthquakes recorded (both magnitude ∼3), demonstrating that the 1-D model influences the waveform fits and the estimated source type for the full moment tensor. Our 1-D model can serve as a robust starting point for future efforts to determine a three-dimensional velocity model for Uturuncu volcano.
Coupled ADCPs can yield complete Reynolds stress tensor profiles in geophysical surface flows
Vermeulen, B.; Hoitink, A.J.F.; Sassi, M.G.
2011-01-01
We introduce a new technique to measure profiles of each term in the Reynolds stress tensor using coupled acoustic Doppler current profilers (ADCPs). The technique is based on the variance method which is extended to the case with eight acoustic beams. Methods to analyze turbulence from a single
Effects of Induced Stress on Seismic Forward Modelling and Inversion
Tromp, Jeroen; Trampert, Jeannot
2018-01-01
We demonstrate how effects of induced stress may be incorporated in seismic modelling and inversion. Our approach is motivated by the accommodation of prestress in global seismology. Induced stress modifies both the equation of motion and the constitutive relationship. The theory predicts that induced pressure linearly affects the unstressed isotropic moduli with a slope determined by their adiabatic pressure derivatives. The induced deviatoric stress produces anisotropic compressional and shear wavespeeds; the latter result in shear-wave splitting. For forward modelling purposes, we determine the weak form of the equation of motion under induced stress. In the context of the inverse problem, we determine induced stress sensitivity kernels, which may be used for adjoint tomography. The theory is illustrated by considering 2D propagation of SH waves and related Fréchet derivatives based on a spectral-element method.
Electromagnetic energy density and stress tensor in a warm plasma with finite flow velocity
International Nuclear Information System (INIS)
Choi, Cheong R.; Lee, Nam C.
2004-01-01
The expressions of the average of energy density and the average stress tensor of the electromagnetic field in a warm collisionless plasma moving with a finite velocity are obtained by using a microscopic method that uses the fluid description of plasma. The result contains terms involved with derivatives of the dielectric tensor with respect to the velocity, which explicitly represent the effects of the finite velocity of the medium. In the zero-velocity limit, the results reduce to the well-known expressions for a plasma at rest with temporal and spatial dispersion
The existence of a symmetric stress tensor in a non-local description of continuum mechanics
Schwarz, G.
1993-12-01
Among the foundations of continuum mechanics is the description of the constitutive forces in terms of a symmetric tensor. Noll showed that this is a consequence of the axiom of material frame indifference, what in turn means a local invariance of the system under the Euclidean group. Here we will prove, in order to obtain the same result, that the assumption of locality in this axiom is redundant. We model a non-local system by means of a virtual work principle. Under the global demand that the corresponding functional does not respond on rigid infinitesimal motions, we show the existence of a symmetric stress tensor as a local result.
Directory of Open Access Journals (Sweden)
C. Musumeci
1997-06-01
Full Text Available Fault-plane solutions of some tens of local earthquakes which occurred at Mt. Etna volcano during 1983-1986 have been inverted for stress tensor parameters by the algorithm of Gephart and Forsyth (1984. Three seismic sequences were focused on which respectively occurred during a flank eruption (June 1983, just after the end of a subterminal eruption (October 1984 and during an inter-eruptive period (May 1986. The application to the three sets of data of both the "approximate" and the "exact" methods evidenced the stability of results, and the stress directions are well defined in spite of the small number of events used for the inversion. The s1 obtained agrees with the regional tectonic framework, nearly horizontal and oriented N-S, only in the shallow crust, and just after the 1984 eruption. This supports the hypothesis of a tectonic control on the end of the eruptive activities at Mt. Etna. Conversely, results concerning the depth range 10-30 km are in apparent disagreement with other investigations (Cocina et al., 1997, as well as with the regional tectonics. The stress was here found homogeneous, but with s1 respectively trending ENE-WSW (June 1983 and E-W (May 1986. We suggest that the stress field could be temporarily modified by a local stress regime driven by the intrusion of uprising magma.
Formalev, V. F.; Kolesnik, S. A.
2017-11-01
The authors are the first to present a closed procedure for numerical solution of inverse coefficient problems of heat conduction in anisotropic materials used as heat-shielding ones in rocket and space equipment. The reconstructed components of the thermal-conductivity tensor depend on temperature (are nonlinear). The procedure includes the formation of experimental data, the implicit gradient-descent method, the economical absolutely stable method of numerical solution of parabolic problems containing mixed derivatives, the parametric identification, construction, and numerical solution of the problem for elements of sensitivity matrices, the development of a quadratic residual functional and regularizing functionals, and also the development of algorithms and software systems. The implicit gradient-descent method permits expanding the quadratic functional in a Taylor series with retention of the linear terms for the increments of the sought functions. This substantially improves the exactness and stability of solution of the inverse problems. Software systems are developed with account taken of the errors in experimental data and disregarding them. On the basis of a priori assumptions of the qualitative behavior of the functional dependences of the components of the thermal-conductivity tensor on temperature, regularizing functionals are constructed by means of which one can reconstruct the components of the thermal-conductivity tensor with an error no higher than the error of the experimental data. Results of the numerical solution of the inverse coefficient problems on reconstruction of nonlinear components of the thermal-conductivity tensor have been obtained and are discussed.
A stress inversion procedure for automatic recognition of polyphase fault/slip data sets
Shan, Yehua; Li, Zian; Lin, Ge
2004-05-01
In deformed rocks fault/slip data are commonly heterogeneous due to variation of the tectonic stress field. Previous methods for separating heterogeneous fault/slip data are based upon hard division, and do not take into account the indeterminable nature of the data. The indeterminability is controlled by many factors such as inaccuracy in the measurement of fault/slip data, heterogeneity of the stress field, and similarity between controlling stress tensors. A new method for separating heterogeneous fault/slip data uses fuzzy C-lines clustering algorithms. It is applied in Fry's (1999) sigma space, in which nonlinear stress inversion is rendered as a solution of hyperlines normal to the girdle of the datum vectors. The method is efficient and quick to make the optimal division and the optimal stress estimates for any chosen division number. From a variety of estimated divisions, the concept of a partition coefficient is introduced ( K), which is maximised to determine the best division. As the partition coefficient is only dependent upon the division number and the internal structure of the fault/slip data, the best division obtained in this way is more sound and objective than with previous methods. Two examples illustrate the validity of this method.
Four-point correlation function of stress-energy tensors in N=4 superconformal theories
Korchemsky, G P
2015-01-01
We derive the explicit expression for the four-point correlation function of stress-energy tensors in four-dimensional N=4 superconformal theory. We show that it has a remarkably simple and suggestive form allowing us to predict a large class of four-point correlation functions involving the stress-energy tensor and other conserved currents. We then apply the obtained results on the correlation functions to computing the energy-energy correlations, which measure the flow of energy in the final states created from the vacuum by a source. We demonstrate that they are given by a universal function independent of the choice of the source. Our analysis relies only on N=4 superconformal symmetry and does not use the dynamics of the theory.
International Nuclear Information System (INIS)
Iwanicki, T.; Maurer, W.; Heinz, W.
1983-01-01
For the calculation of mechanical properties of large magnet systems in 3-dimensional space, a very fine subdivision of the magnet structure is necessary. In the finite element programmes, this will lead to unacceptable long computing times and to the limits of computer-storage capacity. This limitation requires a simplification of the structure model. This problem can be solved by the numerical method, called ''numerical simulation'', by which an effective elasticity tensor will be obtained for a composite material. The structure has to perform a homogeneity condition, i.e. it must be possible to define a ''representative volume element'' (RVE). With the effective elasticity tensor, which can be found for such RVE, it is possible to calculate the average stress and with the interpolation of a surface displacement also the peak stresses in each point of the structure. A good agreement is found between experimental and theoretical moduli of elasticity. (author)
Stress-energy tensor of quantized massive fields in static wormhole spacetimes
Kocuper, Ewa; Matyjasek, Jerzy; Zwierzchowska, Kasia
2017-11-01
In order to be traversable, the static Lorentzian wormhole must be made out of some exotic matter that violates the weak energy condition. The quantized fields are the natural candidates as their stress-energy tensor, in many cases, possesses desired properties. In this paper we construct and examine the stress-energy tensor of the quantized massive scalar, spinor and vector fields in six static wormhole spacetimes. We find that in all considered cases the quantum fields violate the Morris-Thorne conditions and do not have the form necessary to support the wormhole throat. This is in concord with the previous results and indicates that the massive quantum fields make the wormholes less operable.
Quantum stress tensor fluctuations of a conformal field and inflationary cosmology
International Nuclear Information System (INIS)
Ford, L. H.; Miao, S. P.; Ng, Kin-Wang; Woodard, R. P.; Wu, C.-H.
2010-01-01
We discuss the additional perturbation introduced during inflation by quantum stress tensor fluctuations of a conformally invariant field such as the photon. We consider both a kinematical model, which deals only with the expansion fluctuations of geodesics, and a dynamical model which treats the coupling of the stress tensor fluctuations to a scalar inflaton. In neither model do we find any growth at late times, in accordance with a theorem due to Weinberg. What we find instead is a correction which becomes larger the earlier one starts inflation. This correction is non-Gaussian and highly scale dependent, so the absence of such effects from the observed power spectra may imply a constraint on the total duration of inflation. We discuss different views about the validity of perturbation theory at very early times during which currently observable modes are trans-Planckian.
Vacuum stress tensor of a scalar field in a rectangular waveguide
International Nuclear Information System (INIS)
Rodrigues, R.B.; Svaiter, N.F.; Paola, R.D.M. de
2001-11-01
Using the heat Kernel method and the analytical continuation of the zeta function, we calculate the canonical and improved vacuum stress tensors, {T μν (vector x)} and {Θ μν (vector x)}, associated with a massless scalar field confined in the interior of an infinity long rectangular waveguide. The local depence of the renormalized energy for two special configurations when the total energy is positive and negative are presented using {T 00 (vector x)} and {Θ 00 (vector x)}. From the stress tensors we obtain the local casimir forces in all walls by introducing a particular external configuration. It is hown that this external configuration cannot give account of the edge divergences of the local forces. The local form of the forces is obtained for three special configurations. (author)
Stress tensor correlators of CCFT{sub 2} using flat-space holography
Energy Technology Data Exchange (ETDEWEB)
Asadi, Mohammad; Baghchesaraei, Omid; Fareghbal, Reza [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of)
2017-11-15
We use the correspondence between three-dimensional asymptotically flat spacetimes and two-dimensional contracted conformal field theories (CCFTs) to derive the stress tensor correlators of CCFT{sub 2}. On the gravity side we use the metric formulation instead of the Chern-Simons formulation of three-dimensional gravity. This method can also be used for the four-dimensional case, where there is no Chern-Simons formulation for the bulk theory. (orig.)
The stress-energy tensor of flavor fields from AdS/CFT
Karch, Andreas; O'Bannon, Andy; Thompson, Ethan
2009-04-01
We use the AdS/CFT correspondence to study the transport properties of massive Script N = 2 hypermultiplet fields in an Script N = 4 SU(Nc) super-Yang-Mills theory plasma in the large Nc, large 't Hooft coupling limit, and in the presence of a baryon number chemical potential and external electric and magnetic fields. In particular, we compute the flavor fields' contribution to the stress-energy tensor. We find infrared divergences in the stress-energy tensor, arising from the flavor fields' constant rate of energy and momentum loss. We regulate these divergences and extract the energy and momentum loss rates from the divergent terms. We also check our result in various limits in which the divergences are absent. The supergravity dual is a system of D7-branes, with a particular configuration of worldvolume fields, probing an AdS-Schwarzschild background. The supergravity calculation amounts to computing the stress-energy tensor of the D7-branes.
Kao, Honn; Jian, Pei-Ru; Ma, Kuo-Fong; Huang, Bor-Shouh; Liu, Chun-Chi
Reliable determination of source parameters for offshore earthquakes east of Taiwan with mbstep procedure to select best velocity models for individual epicenter-station paths. Our results are consistent with the overall patterns of regional collision and indicate that the resulting compressive stress has caused significant intraplate deformation within the Philippine Sea plate. Simulation of the region's geological evolution and orogenic processes should take this factor into account and allow the Philippine Sea plate to deform internally.
International Nuclear Information System (INIS)
Adler, S.L.; Lieberman, J.
1978-01-01
We reanalyze the problem of regularization of the stress-energy tensor for massless vector particles propating in a general background metric, using covariant point separation techniques applied to the Hadamard elementary solution. We correct an error, point out by Wald, in the earlier formulation of Adler, Lieberman, and Ng, and find a stress-energy tensor trace anomaly agreeing with that found by other regularization methods
Compartmentalization of the Coso East Flank geothermal field imaged by 3-D full-tensor MT inversion
Lindsey, Nathaniel J.; Kaven, Joern; Davatzes, Nicholas C.; Newman, Gregory A.
2017-01-01
Previous magnetotelluric (MT) studies of the high-temperature Coso geothermal system in California identified a subvertical feature of low resistivity (2–5 Ohm m) and appreciable lateral extent (>1 km) in the producing zone of the East Flank field. However, these models could not reproduce gross 3-D effects in the recorded data. We perform 3-D full-tensor inversion and retrieve a resistivity model that out-performs previous 2-D and 3-D off-diagonal models in terms of its fit to the complete 3-D MT data set as well as the degree of modelling bias. Inclusion of secondary Zxx and Zyy data components leads to a robust east-dip (60†) to the previously identified conductive East Flank reservoir feature, which correlates strongly with recently mapped surface faults, downhole well temperatures, 3-D seismic reflection data, and local microseismicity. We perform synthetic forward modelling to test the best-fit dip of this conductor using the response at a nearby MT station. We interpret the dipping conductor as a fractured and fluidized compartment, which is structurally controlled by an unmapped blind East Flank fault zone.
Compartmentalization of the Coso East Flank geothermal field imaged by 3-D full-tensor MT inversion
Lindsey, Nathaniel J.; Kaven, Joern Ole; Davatzes, Nicholas; Newman, Gregory A.
2017-02-01
Previous magnetotelluric (MT) studies of the high-temperature Coso geothermal system in California identified a subvertical feature of low resistivity (2-5 Ohm m) and appreciable lateral extent (>1 km) in the producing zone of the East Flank field. However, these models could not reproduce gross 3-D effects in the recorded data. We perform 3-D full-tensor inversion and retrieve a resistivity model that out-performs previous 2-D and 3-D off-diagonal models in terms of its fit to the complete 3-D MT data set as well as the degree of modelling bias. Inclusion of secondary Zxx and Zyy data components leads to a robust east-dip (60†) to the previously identified conductive East Flank reservoir feature, which correlates strongly with recently mapped surface faults, downhole well temperatures, 3-D seismic reflection data, and local microseismicity. We perform synthetic forward modelling to test the best-fit dip of this conductor using the response at a nearby MT station. We interpret the dipping conductor as a fractured and fluidized compartment, which is structurally controlled by an unmapped blind East Flank fault zone.
Hoy, Andrew R; Kecskemeti, Steven R; Alexander, Andrew L
2015-12-01
White matter tractography reconstructions using conventional diffusion tensor imaging (DTI) near cerebrospinal fluid (CSF) spaces are often adversely affected by CSF partial volume effects (PVEs). This study evaluates the ability of free water elimination (FWE) DTI methods to minimize the PVE of CSF for deterministic tractography applications. Ten healthy individuals were scanned with "traditional," FLAIR (fluid-attenuated inversion recovery), and FWE DTI scans. The fornix, corpus callosum, and cingulum bundles were reconstructed using deterministic tractography. The FWE DTI scan was performed twice to separately match total acquisition time (long FWE) and number of measurements (encoding directions, short FWE) to the FLAIR and "traditional" DTI scans. PVE resolution was determined based on reconstructed tract volume. All reconstructions underwent blinded review for anatomical correctness, symmetry, and completeness. Reconstructions of the fornix demonstrated that the FWE and FLAIR scans produce more complete, anatomically plausible reconstructions than "traditional" DTI. Additionally, the tract reconstructions using FWE-DTI were significantly larger than when FLAIR was used with DTI (P acquisitions did not significantly (P ≥ 0.31) differ from one another for any of the reconstructed tracts. The FWE diffusion model overcomes CSF PVE without the time, SNR, and volumetric coverage penalties inherent to FLAIR DTI. © 2015 Wiley Periodicals, Inc.
Radiative processes for Rindler and accelerating observers and the stress-tensor detector
International Nuclear Information System (INIS)
Paola, R. De; Svaiter, N.F.
1996-04-01
It is considered a monopole detector interacting with a massive scalar field. Using the rotating wave approximation the radiative processes is discussed from the accelerated frame point of view. After this, it is obtained the Minkowski vacuum stress tensor measured by the accelerated observer using a non-gravitational stress sensor detector. Finally we analyse radiative processes of the monopole detector travelling in a world line that is inertial in the infinite past and has a constant proper acceleration in the infinite future. (author). 30 refs
Gu, Chen; Marzouk, Youssef M.; Toksöz, M. Nafi
2018-03-01
Small earthquakes occur due to natural tectonic motions and are induced by oil and gas production processes. In many oil/gas fields and hydrofracking processes, induced earthquakes result from fluid extraction or injection. The locations and source mechanisms of these earthquakes provide valuable information about the reservoirs. Analysis of induced seismic events has mostly assumed a double-couple source mechanism. However, recent studies have shown a non-negligible percentage of non-double-couple components of source moment tensors in hydraulic fracturing events, assuming a full moment tensor source mechanism. Without uncertainty quantification of the moment tensor solution, it is difficult to determine the reliability of these source models. This study develops a Bayesian method to perform waveform-based full moment tensor inversion and uncertainty quantification for induced seismic events, accounting for both location and velocity model uncertainties. We conduct tests with synthetic events to validate the method, and then apply our newly developed Bayesian inversion approach to real induced seismicity in an oil/gas field in the sultanate of Oman—determining the uncertainties in the source mechanism and in the location of that event.
Mock, A.; Korlacki, R.; Knight, S.; Schubert, M.
2018-04-01
We determine the frequency dependence of the four independent Cartesian tensor elements of the dielectric function for monoclinic symmetry Y2SiO5 using generalized spectroscopic ellipsometry from 40-1200 cm-1. Three different crystal cuts, each perpendicular to a principle axis, are investigated. We apply our recently described augmentation of lattice anharmonicity onto the eigendielectric displacement vector summation approach [A. Mock et al., Phys. Rev. B 95, 165202 (2017), 10.1103/PhysRevB.95.165202], and we present and demonstrate the application of an eigendielectric displacement loss vector summation approach with anharmonic broadening. We obtain an excellent match between all measured and model-calculated dielectric function tensor elements and all dielectric loss function tensor elements. We obtain 23 Au and 22 Bu symmetry long-wavelength active transverse and longitudinal optical mode parameters including their eigenvector orientation within the monoclinic lattice. We perform density functional theory calculations and obtain 23 Au symmetry and 22 Bu transverse and longitudinal optical mode parameters and their orientation within the monoclinic lattice. We compare our results from ellipsometry and density functional theory and find excellent agreement. We also determine the static and above reststrahlen spectral range dielectric tensor values and find a recently derived generalization of the Lyddane-Sachs-Teller relation for polar phonons in monoclinic symmetry materials satisfied [M. Schubert, Phys Rev. Lett. 117, 215502 (2016), 10.1103/PhysRevLett.117.215502].
Reduced Stress Tensor and Dissipation and the Transport of Lamb Vector
Wu, Jie-Zhi; Zhou, Ye; Wu, Jian-Ming
1996-01-01
We develop a methodology to ensure that the stress tensor, regardless of its number of independent components, can be reduced to an exactly equivalent one which has the same number of independent components as the surface force. It is applicable to the momentum balance if the shear viscosity is constant. A direct application of this method to the energy balance also leads to a reduction of the dissipation rate of kinetic energy. Following this procedure, significant saving in analysis and computation may be achieved. For turbulent flows, this strategy immediately implies that a given Reynolds stress model can always be replaced by a reduced one before putting it into computation. Furthermore, we show how the modeling of Reynolds stress tensor can be reduced to that of the mean turbulent Lamb vector alone, which is much simpler. As a first step of this alternative modeling development, we derive the governing equations for the Lamb vector and its square. These equations form a basis of new second-order closure schemes and, we believe, should be favorably compared to that of traditional Reynolds stress transport equation.
Stress estimation in reservoirs using an integrated inverse method
Mazuyer, Antoine; Cupillard, Paul; Giot, Richard; Conin, Marianne; Leroy, Yves; Thore, Pierre
2018-05-01
Estimating the stress in reservoirs and their surroundings prior to the production is a key issue for reservoir management planning. In this study, we propose an integrated inverse method to estimate such initial stress state. The 3D stress state is constructed with the displacement-based finite element method assuming linear isotropic elasticity and small perturbations in the current geometry of the geological structures. The Neumann boundary conditions are defined as piecewise linear functions of depth. The discontinuous functions are determined with the CMA-ES (Covariance Matrix Adaptation Evolution Strategy) optimization algorithm to fit wellbore stress data deduced from leak-off tests and breakouts. The disregard of the geological history and the simplified rheological assumptions mean that only the stress field, statically admissible and matching the wellbore data should be exploited. The spatial domain of validity of this statement is assessed by comparing the stress estimations for a synthetic folded structure of finite amplitude with a history constructed assuming a viscous response.
Quantum fields interacting with colliding plane waves: the stress-energy tensor and backreaction
International Nuclear Information System (INIS)
Dorca, M.; Verdaguer, E.
1997-01-01
Following a previous work on the quantization of a massless scalar field in a space-time representing the head on collision of two plane waves which focus into a Killing-Cauchy horizon, we compute the renormalized expectation value of the stress-energy tensor of the quantum field near that horizon in the physical state which corresponds to the Minkowski vacuum before the collision of the waves. It is found that for minimally coupled and conformally coupled scalar fields the respective stress-energy tensors are unbounded in the horizon. The specific form of the divergences suggests that when the semiclassical Einstein equations describing the backreaction of the quantum fields on the space-time geometry are taken into account, the horizon will acquire a curvature singularity. Thus the Killing-Cauchy horizon which is known to be unstable under ''generic'' classical perturbations is also unstable by vacuum polarization. The calculation is done following the point-splitting regularization technique. The dynamical colliding wave space-time has four quite distinct space-time regions, namely, one flat region, two single plane wave regions, and one interaction region. Exact mode solutions of the quantum field equation cannot be found exactly, but the blueshift suffered by the initial modes in the plane wave and interaction regions makes the use of the WKB expansion a suitable method of solution. To ensure the correct regularization of the stress-energy tensor, the initial flat modes propagated into the interaction region must be given to a rather high adiabatic order of approximation. (orig.)
Soh, Inho; Chang, Chandong; Lee, Junhyung; Hong, Tae-Kyung; Park, Eui-Seob
2018-02-01
We characterize the present-day stress state in and around the Korean Peninsula using formal inversions of earthquake focal mechanisms. Two different methods are used to select preferred fault planes in the double-couple focal mechanism solutions: one that minimizes average misfit angle and the other choosing faults with higher instability. We invert selected sets of fault planes for estimating the principal stresses at regularly spaced grid points, using a circular-area data-binning method, where the bin radius is optimized to yield the best possible stress inversion results based on the World Stress Map quality ranking scheme. The inversions using the two methods yield well constrained and fairly comparable results, which indicate that the prevailing stress regime is strike-slip, and the maximum horizontal principal stress (SHmax) is oriented ENE-WSW throughout the study region. Although the orientation of the stresses is consistent across the peninsula, the relative stress magnitude parameter (R-value) varies significantly, from 0.22 in the northwest to 0.89 in the southeast. Based on our knowledge of the R-values and stress regime, and using a value for vertical stress (Sv) estimated from the overburden weight of rock, together with a value for the maximum differential stress (based on the Coulomb friction of faults optimally oriented for slip), we estimate the magnitudes of the two horizontal principal stresses. The horizontal stress magnitudes increase from west to east such that SHmax/Sv ratio rises from 1.5 to 2.4, and the Shmin/Sv ratio from 0.6 to 0.8. The variation in the magnitudes of the tectonic stresses appears to be related to differences in the rigidity of crustal rocks. Using the complete stress tensors, including both orientations and magnitudes, we assess the possible ranges of frictional coefficients for different types of faults. We show that normal and reverse faults have lower frictional coefficients than strike-slip faults, suggesting that
Soh, Inho; Chang, Chandong; Lee, Junhyung; Hong, Tae-Kyung; Park, Eui-Seob
2018-05-01
We characterize the present-day stress state in and around the Korean Peninsula using formal inversions of earthquake focal mechanisms. Two different methods are used to select preferred fault planes in the double-couple focal mechanism solutions: one that minimizes average misfit angle and the other choosing faults with higher instability. We invert selected sets of fault planes for estimating the principal stresses at regularly spaced grid points, using a circular-area data-binning method, where the bin radius is optimized to yield the best possible stress inversion results based on the World Stress Map quality ranking scheme. The inversions using the two methods yield well constrained and fairly comparable results, which indicate that the prevailing stress regime is strike-slip, and the maximum horizontal principal stress (SHmax) is oriented ENE-WSW throughout the study region. Although the orientation of the stresses is consistent across the peninsula, the relative stress magnitude parameter (R-value) varies significantly, from 0.22 in the northwest to 0.89 in the southeast. Based on our knowledge of the R-values and stress regime, and using a value for vertical stress (Sv) estimated from the overburden weight of rock, together with a value for the maximum differential stress (based on the Coulomb friction of faults optimally oriented for slip), we estimate the magnitudes of the two horizontal principal stresses. The horizontal stress magnitudes increase from west to east such that SHmax/Sv ratio rises from 1.5 to 2.4, and the Shmin/Sv ratio from 0.6 to 0.8. The variation in the magnitudes of the tectonic stresses appears to be related to differences in the rigidity of crustal rocks. Using the complete stress tensors, including both orientations and magnitudes, we assess the possible ranges of frictional coefficients for different types of faults. We show that normal and reverse faults have lower frictional coefficients than strike-slip faults, suggesting that
TensorLy: Tensor Learning in Python
Kossaifi, Jean; Panagakis, Yannis; Pantic, Maja
2016-01-01
Tensor methods are gaining increasing traction in machine learning. However, there are scant to no resources available to perform tensor learning and decomposition in Python. To answer this need we developed TensorLy. TensorLy is a state of the art general purpose library for tensor learning.
Renormalized Stress-Energy Tensor of an Evaporating Spinning Black Hole.
Levi, Adam; Eilon, Ehud; Ori, Amos; van de Meent, Maarten
2017-04-07
We provide the first calculation of the renormalized stress-energy tensor (RSET) of a quantum field in Kerr spacetime (describing a stationary spinning black hole). More specifically, we employ a recently developed mode-sum regularization method to compute the RSET of a minimally coupled massless scalar field in the Unruh vacuum state, the quantum state corresponding to an evaporating black hole. The computation is done here for the case a=0.7M, using two different variants of the method: t splitting and φ splitting, yielding good agreement between the two (in the domain where both are applicable). We briefly discuss possible implications of the results for computing semiclassical corrections to certain quantities, and also for simulating dynamical evaporation of a spinning black hole.
Correlation functions of the chiral stress-tensor multiplet in $ \\mathcal{N}=4 $ SYM
Chicherin, Dmitry; Eden, Burkhard; Heslop, Paul; Korchemsky, Gregory P.; Mason, Lionel; Sokatchev, Emery
2015-01-01
We give a new method for computing the correlation functions of the chiral part of the stress-tensor supermultiplet that relies on the reformulation of N=4 SYM in twistor space. It yields the correlation functions in the Born approximation as a sum of Feynman diagrams on twistor space that involve only propagators and no integration vertices. We use this unusual feature of the twistor Feynman rules to compute the correlation functions in terms of simple building blocks which we identify as a new class of N=4 off-shell superconformal invariants. Making use of the duality between correlation functions and planar scattering amplitudes, we demonstrate that these invariants represent an off-shell generalisation of the on-shell invariants defining tree-level scattering amplitudes in N=4 SYM.
Correlation functions of the chiral stress-tensor multiplet in N=4 SYM
Energy Technology Data Exchange (ETDEWEB)
Chicherin, Dmitry [LAPTH (Laboratoire d’Annecy-le-Vieux de Physique Théorique, UMR 5108),Université de Savoie, CNRS, B.P. 110, F-74941 Annecy-le-Vieux (France); Doobary, Reza [Science Laboratories, Mathematics Department, Durham University, South Rd, Durham DH1 3LE (United Kingdom); Eden, Burkhard [Institut für Mathematik und Physik, Humboldt-Universität,Zum großen Windkanal 6, 12489 Berlin (Germany); Heslop, Paul [Science Laboratories, Mathematics Department, Durham University, South Rd, Durham DH1 3LE (United Kingdom); Korchemsky, Gregory P. [Institut de Physique Théorique, Unité Mixte de Recherche du CNRS, UMR 3681,CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Mason, Lionel [Mathematics Department, Oxford University,Woodstock Road, OX2 6GG (United Kingdom); Sokatchev, Emery [LAPTH (Laboratoire d’Annecy-le-Vieux de Physique Théorique, UMR 5108),Université de Savoie, CNRS, B.P. 110, F-74941 Annecy-le-Vieux (France); Physics Department, Theory Unit, CERN,CH -1211, Geneva 23 (Switzerland); Institut Universitaire de France,103, bd Saint-Michel F-75005 Paris (France)
2015-06-29
We give a new method for computing the correlation functions of the chiral part of the stress-tensor supermultiplet that relies on the reformulation of N=4 SYM in twistor space. It yields the correlation functions in the Born approximation as a sum of Feynman diagrams on twistor space that involve only propagators and no integration vertices. We use this unusual feature of the twistor Feynman rules to compute the correlation functions in terms of simple building blocks which we identify as a new class of N=4 off-shell superconformal invariants. Making use of the duality between correlation functions and planar scattering amplitudes, we demonstrate that these invariants represent an off-shell generalisation of the on-shell invariants defining tree-level scattering amplitudes in N=4 SYM.
Löwer, Alexander; Junge, Andreas
2017-05-01
The influence of anisotropic conductivity structures on magnetotelluric transfer functions is not easy to analyse in its entire complexity. In this study, we investigate the spatial and frequency-dependent behaviour of phase tensors and tipper vectors above a 3D anisotropic conductivity anomaly. The anomaly consists of a simple cubic block embedded in a homogeneous half space. Using a 3D FD code, we compare an isotropic, 2 anisotropic models with an anisotropy factor of 10 and one anisotropic model with the anisotropy factor of 100. The results show characteristic differences between the isotropic and anisotropic cases. For the anisotropic anomalies, the tipper vectors are parallel over the entire area despite the 3D geometry of the anomalous body. The size of the tipper vectors depends on the position of the site relative to the anomaly's boundaries and the direction of the anisotropic strike. Above the anomalous anisotropic body, the main diagonal elements of the phase tensor show the well-known split. Outside the anomaly, the phase tensor principal axis rotates according to the site position in contrast to the constant tipper direction. The 3D inversion of the forward data using an isotropic 3D code (ModEM) yields a very good fit for all cases. Whereas the inversion result matches the isotropic model, wave-like structures with high conductivity contrast occur for the anisotropic models. These structures extend far beyond the extension of the original anomalous body. Thus, the study reveals important indications of the existence of anisotropic conductivity structures for observed magnetotelluric transfer functions.
Jongschaap, R.J.J.
1987-01-01
The so-called generalized Kramers-Kirkwood expression for the average stress tensor of a system of interacting point particles, derived by Bird and Curtiss on using a phase-space-kinetic formalism has been reconsidered from different points of view. First a derivation based upon volume averaging is
International Nuclear Information System (INIS)
Christensen, S.M.
1976-01-01
A method known as covariant geodesic point separation is developed to calculate the vacuum expectation value of the stress tensor for a massive scalar field in an arbitrary gravitational field. The vacuum expectation value will diverge because the stress-tensor operator is constructed from products of field operators evaluated at the same space-time point. To remedy this problem, one of the field operators is taken to a nearby point. The resultant vacuum expectation value is finite and may be expressed in terms of the Hadamard elementary function. This function is calculated using a curved-space generalization of Schwinger's proper-time method for calculating the Feynman Green's function. The expression for the Hadamard function is written in terms of the biscalar of geodetic interval which gives a measure of the square of the geodesic distance between the separated points. Next, using a covariant expansion in terms of the tangent to the geodesic, the stress tensor may be expanded in powers of the length of the geodesic. Covariant expressions for each divergent term and for certain terms in the finite portion of the vacuum expectation value of the stress tensor are found. The properties, uses, and limitations of the results are discussed
TensorLy: Tensor Learning in Python
Kossaifi, Jean; Panagakis, Yannis; Pantic, Maja
2016-01-01
Tensor methods are gaining increasing traction in machine learning. However, there are scant to no resources available to perform tensor learning and decomposition in Python. To answer this need we developed TensorLy. TensorLy is a state of the art general purpose library for tensor learning. Written in Python, it aims at following the same standard adopted by the main projects of the Python scientific community and fully integrating with these. It allows for fast and straightforward tensor d...
Stress tensor and viscosity of water: Molecular dynamics and generalized hydrodynamics results
Bertolini, Davide; Tani, Alessandro
1995-08-01
The time correlation functions (CF's) of diagonal and off-diagonal components of the stress tensor of water have been calculated at 245 and 298 K in a molecular dynamics (MD) study on 343 molecules in the microcanonical ensemble. We present results obtained at wave number k=0 and at a few finite values of k, in the atomic and molecular formalism. In all cases, more than 98% of these functions are due to the potential term of the stress tensor. At k=0, their main features are a fast oscillatory initial decay, followed by a long-time tail more apparent in the supercooled region. Bulk and shear viscosities, calculated via Green-Kubo integration of the relevant CF at k=0, are underestimated with respect to experimental data, mainly at low temperature, but their ratio (~=2) is correctly reproduced. Both shear and bulk viscosity decrease as a function of k, the latter more rapidly, so that they become almost equal at ~=1 Å-1. Also, both viscosities drop rapidly from their maximum at ω=0. This behavior has been related to the large narrowing observed in the acoustic band, mainly in the supercooled region. The infinite frequency bulk and shear rigidity moduli have been shown to be in fair agreement with the experimental data, provided the MD value used for comparison is that corresponding to the frequency range relevant to ultrasonic measurements. The MD results of stress-stress CF's compare well with those predicted by Bertolini and Tani [Phys. Rev. E 51, 1091 (1995)] at k=0, by an application of generalized hydrodynamics [de Schepper et al., Phys. Rev. A 38, 271 (1988)] in the molecular formalism, to the same model of water (TIP4P) [Jorgensen et al., J. Chem. Phys. 79, 926 (1983)]. These CF's are essentially equal in the atomic and molecular formalism, the only minor difference being restricted to the high frequency librational region of the shear function. By a comparison of atomic and molecular results, we show here that neglecting libration has no effect on the
Tectonic stress pattern in the Chinese Mainland from the inversion of ...
Indian Academy of Sciences (India)
1School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China. ... In the present study, 421 focal mechanism data up to January. 2010 were compiled ..... Note: Box definition: box number, location and the number of data in the box; Reduced stress tensor parameters: plunge.
Rodríguez Cardozo, Félix; Hjörleifsdóttir, Vala; Caló, Marco
2017-04-01
Moment tensor inversions for intermediate and small earthquakes (M. < 4.5) are challenging as they principally excite relatively short period seismic waves that interact strongly with local heterogeneities. Incorporating detailed regional 3D velocity models permits obtaining realistic synthetic seismograms and recover the seismic source parameters these smaller events. Two 3D regional velocity models have recently been developed for Mexico, using surface waves and seismic noise tomography (Spica et al., 2016; Gaite et al., 2015), which could be used to model the waveforms of intermediate magnitud earthquakes in this region. Such models are parameterized as layered velocity profiles and for some of the profiles, the velocity difference between two layers are considerable. The "jump" in velocities between two layers is inconvenient for some methods and algorithms that calculate synthetic waveforms, in particular for the method that we are using, the spectral element method (SPECFEM3D GLOBE, Komatitsch y Tromp, 2000), when the mesh does not follow the layer boundaries. In order to make the velocity models more easily implementec in SPECFEM3D GLOBE it is neccesary to apply a homogenization algorithm (Capdeville et al., 2015) such that the (now anisotropic) layer velocities are smoothly varying with depth. In this work, we apply a homogenization algorithm to the regional velocity models in México for implementing them in SPECFEM3D GLOBE, calculate synthetic waveforms for intermediate-magnitude earthquakes in México and invert them for the seismic moment tensor.
Boundary stress-energy tensor and Newton-Cartan geometry in Lifshitz holography
International Nuclear Information System (INIS)
Christensen, Morten H.; Hartong, Jelle; Obers, Niels A.; Rollier, Blaise
2014-01-01
For a specific action supporting z=2 Lifshitz geometries we identify the Lifshitz UV completion by solving for the most general solution near the Lifshitz boundary. We identify all the sources as leading components of bulk fields which requires a vielbein formalism. This includes two linear combinations of the bulk gauge field and timelike vielbein where one asymptotes to the boundary timelike vielbein and the other to the boundary gauge field. The geometry induced from the bulk onto the boundary is a novel extension of Newton-Cartan geometry that we call torsional Newton-Cartan (TNC) geometry. There is a constraint on the sources but its pairing with a Ward identity allows one to reduce the variation of the on-shell action to unconstrained sources. We compute all the vevs along with their Ward identities and derive conditions for the boundary theory to admit conserved currents obtained by contracting the boundary stress-energy tensor with a TNC analogue of a conformal Killing vector. We also obtain the anisotropic Weyl anomaly that takes the form of a Hořava-Lifshitz action defined on a TNC geometry. The Fefferman-Graham expansion contains a free function that does not appear in the variation of the on-shell action. We show that this is related to an irrelevant deformation that selects between two different UV completions
On the equivalence among stress tensors in a gauge-fluid system
Mitra, Arpan Krishna; Banerjee, Rabin; Ghosh, Subir
2017-12-01
In this paper, we bring out the subtleties involved in the study of a first-order relativistic field theory with auxiliary field variables playing an essential role. In particular, we discuss the nonisentropic Eulerian (or Hamiltonian) fluid model. Interactions are introduced by coupling the fluid to a dynamical Maxwell (U(1)) gauge field. This dynamical nature of the gauge field is crucial in showing the equivalence, on the physical subspace, of the stress tensor derived from two definitions, i.e. the canonical (Noether) one and the symmetric one. In the conventional equal-time formalism, we have shown that the generators of the space-time transformations obtained from these two definitions agree modulo the Gauss constraint. This equivalence in the physical sector has been achieved only because of the dynamical nature of the gauge fields. Subsequently, we have explicitly demonstrated the validity of the Schwinger condition. A detailed analysis of the model in lightcone formalism has also been done where several interesting features are revealed.
International Nuclear Information System (INIS)
Dappiagi, Claudio; Hack, Thomas-Paul; Pinamonti, Nicola
2009-03-01
We discuss from scratch the classical structure of Dirac spinors on an arbitrary globally hyperbolic, Lorentzian spacetime, their formulation as a locally covariant quantum field theory, and the associated notion of a Hadamard state. Eventually, we develop the notion of Wick polynomials for spinor fields, and we employ the latter to construct a covariantly conserved stress-energy tensor suited for back-reaction computations. We explicitly calculate its trace anomaly in particular. (orig.)
CSIR Research Space (South Africa)
Linzer, LM
2002-03-01
Full Text Available could lie in the yield point of the pillar foundation. The aim of this project therefore was to use a moment tensor inversion technique to establish design criteria for the prediction of the yield point of stabilizing pillar/foundation system in deep...
Levashov, V A
2016-03-07
It is possible to associate with every atom or molecule in a liquid its own atomic stress tensor. These atomic stress tensors can be used to describe liquids' structures and to investigate the connection between structural and dynamic properties. In particular, atomic stresses allow to address atomic scale correlations relevant to the Green-Kubo expression for viscosity. Previously correlations between the atomic stresses of different atoms were studied using the Cartesian representation of the stress tensors or the representation based on spherical harmonics. In this paper we address structural correlations in a 3D model binary liquid using the eigenvalues and eigenvectors of the atomic stress tensors. This approach allows to interpret correlations relevant to the Green-Kubo expression for viscosity in a simple geometric way. On decrease of temperature the changes in the relevant stress correlation function between different atoms are significantly more pronounced than the changes in the pair density function. We demonstrate that this behaviour originates from the orientational correlations between the eigenvectors of the atomic stress tensors. We also found correlations between the eigenvalues of the same atomic stress tensor. For the studied system, with purely repulsive interactions between the particles, the eigenvalues of every atomic stress tensor are positive and they can be ordered: λ1 ≥ λ2 ≥ λ3 ≥ 0. We found that, for the particles of a given type, the probability distributions of the ratios (λ2/λ1) and (λ3/λ2) are essentially identical to each other in the liquids state. We also found that λ2 tends to be equal to the geometric average of λ1 and λ3. In our view, correlations between the eigenvalues may represent "the Poisson ratio effect" at the atomic scale.
A tensor approach to the estimation of hydraulic conductivities in ...
African Journals Online (AJOL)
2006-07-03
Jul 3, 2006 ... coefficients, i.e. the fracture roughness and combined stress conditions, are adapted to calibrate the tensor model application. The application ... Darcy's law is always used to estimate the groundwater flow in both porous and ... Inverse analysis on continuous or discontinuous problems dependent on ...
A Review of Tensors and Tensor Signal Processing
Cammoun, L.; Castaño-Moraga, C. A.; Muñoz-Moreno, E.; Sosa-Cabrera, D.; Acar, B.; Rodriguez-Florido, M. A.; Brun, A.; Knutsson, H.; Thiran, J. P.
Tensors have been broadly used in mathematics and physics, since they are a generalization of scalars or vectors and allow to represent more complex properties. In this chapter we present an overview of some tensor applications, especially those focused on the image processing field. From a mathematical point of view, a lot of work has been developed about tensor calculus, which obviously is more complex than scalar or vectorial calculus. Moreover, tensors can represent the metric of a vector space, which is very useful in the field of differential geometry. In physics, tensors have been used to describe several magnitudes, such as the strain or stress of materials. In solid mechanics, tensors are used to define the generalized Hooke’s law, where a fourth order tensor relates the strain and stress tensors. In fluid dynamics, the velocity gradient tensor provides information about the vorticity and the strain of the fluids. Also an electromagnetic tensor is defined, that simplifies the notation of the Maxwell equations. But tensors are not constrained to physics and mathematics. They have been used, for instance, in medical imaging, where we can highlight two applications: the diffusion tensor image, which represents how molecules diffuse inside the tissues and is broadly used for brain imaging; and the tensorial elastography, which computes the strain and vorticity tensor to analyze the tissues properties. Tensors have also been used in computer vision to provide information about the local structure or to define anisotropic image filters.
Jenkins, Samantha; Blancafort, Lluís; Kirk, Steven R; Bearpark, Michael J
2014-04-21
New insights into the double bond isomerization of fulvene in the ground and excited electronic states are provided by newly developed QTAIM and stress tensor tools. The S0 and S1 states follow the 'biradical' torsion model, but the double bond is stiffer in the S0 state; by contrast, the S2 state follows the 'zwitterionic' torsion. Differences are explained in terms of the ellipticity and bond critical point (BCP) stiffness for both QTAIM and the stress tensor. Overall, the wave-function based analysis is found to be in agreement with the work of Bonačić-Koutecký and Michl that the bond-twisted species can have biradical or zwitterionic character, depending on the state. Using QTAIM and the stress tensor a new understanding of bond torsion is revealed; the electronic charge density around the twisted bond is found not to rotate in concert with the nuclei of the rotated -CH2 methylene group. The ability to visualize how the bond stiffness varies between individual electronic states and how this correlates with the QTAIM and stress tensor bond stiffness is highlighted. In addition, the most and least preferred morphologies of bond-path torsion are visualized. Briefly we discuss the prospects for using this new QTAIM and stress tensor analysis for excited state chemistry.
De Hoop, A.T.; Abubakar, A.; Habashy, T.M.
2009-01-01
The contrast-source stress-velocity integral-equation formulation of three-dimensional time-domain elastodynamic scattering problems is discussed. A novel feature of the formulation is a tensor partitioning of the relevant dynamic stress and the contrast source volume density of deformation rate.
Wassermann, J.; Krüger, F.
2001-12-01
In the ongoing Indonesian-German MERAPI project the seismic signals at Merapi volcano are recorded continuously since July 1997 with a combined seismic network-array approach. With this network it was possible to record the seismicity before the onset of the eruption in July 1998 with a high dynamic and broad frequency range. The automatic standard analysis of the recorded seismic data before the first of two larger pyroclastic density flows emphasized the importance of a seismic swarm of VT-B type events in order to forecast the location of the newly formed lava lobe during this eruptive phase. To improve the location accuracy, we relocate these events using an extended cluster analysis technique. We first estimate the amount of events in three different seismic clusters. After this we estimate the relative onset times of all event combinations within one cluster using the SmoothedCOherencyTransform algorithm. Further we use the amplitude of the computed cross-correlation coefficients of each event-event waveform pair to further restrict our hypocenter constrain. In the final step we invert iteratively all estimated travel times, the relative travel times within the different arrays and the correlation coefficients in one single matrix. The resulting high precision hypocenter determination of the distinct clusters indicate a small source volume in the intersection of a old crater floor and the active part of Mt. Merapi. The high precision in hypocenter determination make a detailed analysis of the source mechanisms of these VTB events feasible. We use a point source full moment tensor inversion and simple source time functions to invert for the source mechanism. Greens functions are calculated with the reflectivity method and local 1D models based on refraction on different scales. The bias in the results due to not modelled topography and 3D-structure is estimated using a bootstrap approach.
X-ray strain tensor imaging: FEM simulation and experiments with a micro-CT.
Kim, Jae G; Park, So E; Lee, Soo Y
2014-01-01
In tissue elasticity imaging, measuring the strain tensor components is necessary to solve the inverse problem. However, it is impractical to measure all the tensor components in ultrasound or MRI elastography because of their anisotropic spatial resolution. The objective of this study is to compute 3D strain tensor maps from the 3D CT images of a tissue-mimicking phantom. We took 3D micro-CT images of the phantom twice with applying two different mechanical compressions to it. Applying the 3D image correlation technique to the CT images under different compression, we computed 3D displacement vectors and strain tensors at every pixel. To evaluate the accuracy of the strain tensor maps, we made a 3D FEM model of the phantom, and we computed strain tensor maps through FEM simulation. Experimentally obtained strain tensor maps showed similar patterns to the FEM-simulated ones in visual inspection. The correlation between the strain tensor maps obtained from the experiment and the FEM simulation ranges from 0.03 to 0.93. Even though the strain tensor maps suffer from high level noise, we expect the x-ray strain tensor imaging may find some biomedical applications such as malignant tissue characterization and stress analysis inside the tissues.
Li, Jiahui; Xu, Tianlv; Ping, Yang; van Mourik, Tanja; Früchtl, Herbert; Kirk, Steven R.; Jenkins, Samantha
2018-03-01
QTAIM and the stress tensor were used to provide a detailed analysis of the topology of the molecular graph, BCP and bond-path properties, including the new introduced helicity length H, of a Tyr-Gly dipeptide conformer subjected to a torsion with four levels of theory; MP2, M06-2X, B3LYP-D3 and B3LYP and a modest-sized basis set, 6-31+G(d). Structural effects and bonding properties are quantified and reflect differences in the BSSE and lack of inclusion of dispersion effects in the B3LYP calculations. The helicity length H demonstrated that MP2 produced a unique response to the torsion suggesting future use as a diagnostic tool.
Adaptive Role of Inversion Polymorphism of Drosophila subobscura in Lead Stressed Environment.
Directory of Open Access Journals (Sweden)
Bojan Kenig
Full Text Available Local adaptation to environmental stress at different levels of genetic polymorphism in various plants and animals has been documented through evolution of heavy metal tolerance. We used samples of Drosophila subobscura populations from two differently polluted environments to analyze the change of chromosomal inversion polymorphism as genetic marker during laboratory exposure to lead. Exposure to environmental contamination can affect the genetic content within a particular inversion and produce targets for selection in populations from different environments. The aims were to discover whether the inversion polymorphism is shaped by the local natural environments, and if lead as a selection pressure would cause adaptive divergence of two populations during the multigenerational laboratory experiment. The results showed that populations retain signatures from past contamination events, and that heavy metal pollution can cause adaptive changes in population. Differences in inversion polymorphism between the two populations increased over generations under lead contamination in the laboratory. The inversion polymorphism of population originating from the more polluted natural environment was more stable during the experiment, both under conditions with and without lead. Therefore, results showed that inversion polymorphism as a genetic marker reflects a strong signature of adaptation to the local environment, and that historical demographic events and selection are important for both prediction of evolutionary potential and long-term viability of natural populations.
The stress energy tensor of a locally supersymmetric quantum field on a curved spacetime
International Nuclear Information System (INIS)
Koehler, M.
1995-04-01
For an analogon of the free Wess-Zumino model on Ricci flat spacetimes, the relation between a conserved 'supercurrent' and the point-separated improved energy momentum tensor is investigated and a similar relation as on Minkowski space is established. The expectation value of the latter in any globally Hadamard product state is found to be a priori finite in the coincidence limit if the theory is massive. On arbitrary globally hyperbolic spacetimes the 'supercurrent' is shown to be a well defined operator valued distribution on the GNS Hilbertspace of any globally Hadamard product state. Viewed as a new field, all n-point distributions exist, giving a new example for a Wightman field on that manifold. Moreover, it is shown that this field satisfies a new wave front set spectrum condition in a nontrivial way. (orig.)
Levitas, Valery I; Attariani, Hamed
2013-01-01
Si is a promising anode material for Li-ion batteries, since it absorbs large amounts of Li. However, insertion of Li leads to 334% of volumetric expansion, huge stresses, and fracture; it can be suppressed by utilizing nanoscale anode structures. Continuum approaches to stress relaxation in LixSi, based on plasticity theory, are unrealistic, because the yield strength of LixSi is much higher than the generated stresses. Here, we suggest that stress relaxation is due to anisotropic (tensorial) compositional straining that occurs during insertion-extraction at any deviatoric stresses. Developed theory describes known experimental and atomistic simulation data. A method to reduce stresses is predicted and confirmed by known experiments. Chemical potential has an additional contribution due to deviatoric stresses, which leads to increases in the driving force both for insertion and extraction. The results have conceptual and general character and are applicable to any material systems.
A new deteriorated energy-momentum tensor
International Nuclear Information System (INIS)
Duff, M.J.
1982-01-01
The stress-tensor of a scalar field theory is not unique because of the possibility of adding an 'improvement term'. In supersymmetric field theories the stress-tensor will appear in a super-current multiplet along with the sypersymmetry current. The general question of the supercurrent multiplet for arbitrary deteriorated stress tensors and their relationship to supercurrent multiplets for models with gauge antisymmetric tensors is answered for various models of N = 1, 2 and 4 supersymmetry. (U.K.)
Metric Tensor Vs. Metric Extensor
Fernández, V. V.; Moya, A. M.; Rodrigues Jr, Waldyr A.
2002-01-01
In this paper we give a comparison between the formulation of the concept of metric for a real vector space of finite dimension in terms of \\emph{tensors} and \\emph{extensors}. A nice property of metric extensors is that they have inverses which are also themselves metric extensors. This property is not shared by metric tensors because tensors do \\emph{not} have inverses. We relate the definition of determinant of a metric extensor with the classical determinant of the corresponding matrix as...
Tensor surgery and tensor rank
M. Christandl (Matthias); J. Zuiddam (Jeroen)
2018-01-01
textabstractWe introduce a method for transforming low-order tensors into higher-order tensors and apply it to tensors defined by graphs and hypergraphs. The transformation proceeds according to a surgery-like procedure that splits vertices, creates and absorbs virtual edges and inserts new vertices
DEFF Research Database (Denmark)
Pessah, Martin Elias; Chan, Chi-kwan; Psaltis, Dimitrios
2006-01-01
The magnetorotational instability is thought to be responsible for the generation of magnetohydrodynamic turbulence that leads to enhanced outward angular momentum transport in accretion discs. Here, we present the first formal analytical proof showing that, during the exponential growth...... of the instability, the mean (averaged over the disc scale-height) Reynolds stress is always positive, the mean Maxwell stress is always negative, and hence the mean total stress is positive and leads to a net outward flux of angular momentum. More importantly, we show that the ratio of the Maxwell to the Reynolds...
Cerracchio, Priscilla; Gherlone, Marco; Di Sciuva, Marco; Tessler, Alexander
2013-01-01
The marked increase in the use of composite and sandwich material systems in aerospace, civil, and marine structures leads to the need for integrated Structural Health Management systems. A key capability to enable such systems is the real-time reconstruction of structural deformations, stresses, and failure criteria that are inferred from in-situ, discrete-location strain measurements. This technology is commonly referred to as shape- and stress-sensing. Presented herein is a computationally efficient shape- and stress-sensing methodology that is ideally suited for applications to laminated composite and sandwich structures. The new approach employs the inverse Finite Element Method (iFEM) as a general framework and the Refined Zigzag Theory (RZT) as the underlying plate theory. A three-node inverse plate finite element is formulated. The element formulation enables robust and efficient modeling of plate structures instrumented with strain sensors that have arbitrary positions. The methodology leads to a set of linear algebraic equations that are solved efficiently for the unknown nodal displacements. These displacements are then used at the finite element level to compute full-field strains, stresses, and failure criteria that are in turn used to assess structural integrity. Numerical results for multilayered, highly heterogeneous laminates demonstrate the unique capability of this new formulation for shape- and stress-sensing.
Stress Inversion of Coal with a Gas Drilling Borehole and the Law of Crack Propagation
Directory of Open Access Journals (Sweden)
Tianjun Zhang
2017-10-01
Full Text Available For studying the law of crack propagation around a gas drilling borehole, an experimental study about coal with a cavity under uniaxial compression was carried out, with the digital speckle correlation method capturing the images of coal failure. A sequence of coal failure images and the full-field strain of failure were obtained. The strain softening characteristic was shown by the curve. A method of curve dividing—named fitting-damaging—was proposed, combining the least square fitting residual norm and damage fraction. By this method, the five stages and four key points of a stress-strain curve were defined. Then, the full-field stress was inverted by means of the theory of elasticity and the adjacent element weight sharing model. The results show that σci was 30.28–41.71 percent of σf and σcd was 83.08–87.34 percent of σf, calculated by the fitting-damaging method, agreeing with former research. The results of stress inversion showed that under a low stress level (0.15 σf < σ < 0.5 σf, microdamage evolving into plastic failure later was formed around the cavity. Under a high stress level (0.5 σf < σ < 0.85 σf, the region of stress concentration suddenly crazed and formed a brittle crack. When σ ≥ 0.85 σf, the crack was developing, crack lines were connecting with each other, and the coal finally failed. The outcome of the stress inversion was completely concomitant with the images of crack propagation. Additionally, the stress around the cavity was able to be calculated accurately.
Stress tensor analysis in the Taiwan area from focal mechanisms of earthquakes
Yih-Hsiung, Yeh; Eric, Barrier; Cheng-Horng Lin; Jacques, Angelier
1991-12-01
We produce a map of the stress pattern in and around Taiwan based on 200 earthquake focal mechanism solutions. These solutions were determined by using data from Taiwan Telemetered Seismographic Network, microearthquake surveys and WWSSN. The stresses are derived through a minimization of angles between the slip vector and the shear stress on each nodal plane considered as a fault, employing appropriate weighting factors. The whole set of focal mechanisms is divided into several groups, mainly according to apparent clustering of the event locations. The results show that the direction of maximum principal stress in Taiwan area is nearly horizontal and SE-NW on average. This is in good agreement with the direction of relative motion between the Philippine Sea plate and the Eurasian plate. In western Taiwan, the fan-shaped distribution of the maximum principal stress is consistent with the direction of Philippine Sea-Eurasian plate convergence through a simple model of viscous material indented by a rigid wedge. In the northeastern part of Taiwan, a nearly horizontal minimum principal stress oriented N-S is found for shallow depths; it occurs in a region of low seismic velocities, probably related to the back-arc activity of the Okinawa Trough. Down-dip compressional and down-dip extensional stresses have been identified in different depth ranges within the subducting slab of the Philippine Sea plate in the northern Taiwan; this may reflect the slab characteristics in this area. A complex stress pattern prevails in the Hualien area, at the junction between the Ryukyu subduction system and the Taiwan collision zone.
Inverse strain rate effect on cyclic stress response in annealed Zircaloy-2
Energy Technology Data Exchange (ETDEWEB)
Sudhakar Rao, G.; Verma, Preeti [Center of Advanced Study, Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Chakravartty, J.K. [Mechanical Metallurgy Group, Bhabha Atomic Research Center, Trombay 400 085, Mumbai (India); Nudurupati, Saibaba [Nuclear Fuel Complex, Hyderabad 500 062 (India); Mahobia, G.S.; Santhi Srinivas, N.C. [Center of Advanced Study, Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Singh, Vakil, E-mail: vsingh.met@itbhu.ac.in [Center of Advanced Study, Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)
2015-02-15
Low cycle fatigue behavior of annealed Zircaloy-2 was investigated at 300 and 400 °C at different strain amplitudes and strain rates of 10{sup −2}, 10{sup −3}, and 10{sup −4} s{sup −1}. Cyclic stress response showed initial hardening with decreasing rate of hardening, followed by linear cyclic hardening and finally secondary hardening with increasing rate of hardening for low strain amplitudes at both the temperatures. The rate as well the degree of linear hardening and secondary hardening decreased with decrease in strain rate at 300 °C, however, there was inverse effect of strain rate on cyclic stress response at 400 °C and cyclic stress was increased with decrease in strain rate. The fatigue life decreased with decrease in strain rate at both the temperatures. The occurrence of linear cyclic hardening, inverse effect of strain rate on cyclic stress response and deterioration in fatigue life with decrease in strain rate may be attributed to dynamic strain aging phenomena resulting from enhanced interaction of dislocations with solutes. Fracture surfaces revealed distinct striations, secondary cracking, and oxidation with decrease in strain rate. Deformation substructure showed parallel dislocation lines and dislocation band structure at 300 °C. Persistent slip band wall structure and development of fine Corduroy structure was observed at 400 °C.
Hamilton, Nicholas; Cal, Raúl Bayoán
2015-01-01
A 4 × 3 wind turbine array in a Cartesian arrangement was constructed in a wind tunnel setting with four configurations based on the rotational sense of the rotor blades. The fourth row of devices is considered to be in the fully developed turbine canopy for a Cartesian arrangement. Measurements of the flow field were made with stereo particle-image velocimetry immediately upstream and downstream of the selected model turbines. Rotational sense of the turbine blades is evident in the mean spanwise velocity W and the Reynolds shear stress - v w ¯ . The flux of kinetic energy is shown to be of greater magnitude following turbines in arrays where direction of rotation of the blades varies. Invariants of the normalized Reynolds stress anisotropy tensor (η and ξ) are plotted in the Lumley triangle and indicate that distinct characters of turbulence exist in regions of the wake following the nacelle and the rotor blade tips. Eigendecomposition of the tensor yields principle components and corresponding coordinate system transformations. Characteristic spheroids representing the balance of components in the normalized anisotropy tensor are composed with the eigenvalues yielding shapes predicted by the Lumley triangle. Rotation of the coordinate system defined by the eigenvectors demonstrates trends in the streamwise coordinate following the rotors, especially trailing the top-tip of the rotor and below the hub. Direction of rotation of rotor blades is shown by the orientation of characteristic spheroids according to principle axes. In the inflows of exit row turbines, the normalized Reynolds stress anisotropy tensor shows cumulative effects of the upstream turbines, tending toward prolate shapes for uniform rotational sense, oblate spheroids for streamwise organization of rotational senses, and a mixture of characteristic shapes when the rotation varies by row. Comparison between the invariants of the Reynolds stress anisotropy tensor and terms from the mean
Chen, Sean Kuanhsiang; Wu, Yih-Min; Hsu, Ya-Ju; Chan, Yu-Chang
2017-07-01
We study internal deformation of the Taiwan orogen, a young arc-continental collision belt, which the spatial heterogeneity remains unclear. We aim to ascertain heterogeneity of the orogenic crust in depth when specifying general mechanisms of the Taiwan orogeny. To reach this goal, we used updated data of continuous GPS (cGPS) and earthquake focal mechanisms to reassess geodetic strain-rate and seismic stress fields of Taiwan, respectively. We updated the both data sets from 1990 to 2015 to provide large amount of constraints on surficial and internal deformation of the crust for a better understanding. We estimated strain-rate tensors by calculating gradient tensors of cGPS station velocities in horizontal 0.1°-spacing grids via Delaunay triangulation. We determined stress tensors within a given horizontal and vertical grid cell of 0.1° and 10 km, respectively, by employing the spatial and temporal stress inversion. To minimize effects of the 1999 Mw 7.6 Chi-Chi earthquake on trends of the strain and stress, we modified observational possible bias of the cGPS velocities after the earthquake and removed the first 15-month focal mechanisms within the fault rupture zone. We also calculated the Anderson fault parameter (Aϕ) based on stress ratios and rake angles to quantitatively describe tectonic regimes of Taiwan. By examining directions of seismic compressive axes and styles of faulting, our results indicate that internal deformation of the crust is presently heterogeneous in the horizontal and vertical spaces. Directions of the compressive axes are fan-shaped oriented between N10°W and N110°W in the western and mid-eastern Taiwan at the depths of 0-20 km and near parallel to orientations of geodetic compressional axes. The orientations agreed with predominantly reverse faulting in the western Taiwan at the same depth range, implying a brittle deformation regime against the Peikang Basement High. Orientations of the compressive axes most rotated counter
Directory of Open Access Journals (Sweden)
Filipović Vilim
2018-06-01
Full Text Available Global climate change is projected to continue and result in prolonged and more intense droughts, which can increase soil water repellency (SWR. To be able to estimate the consequences of SWR on vadose zone hydrology, it is important to determine soil hydraulic properties (SHP. Sequential modeling using HYDRUS (2D/3D was performed on an experimental field site with artificially imposed drought scenarios (moderately M and severely S stressed and a control plot. First, inverse modeling was performed for SHP estimation based on water and ethanol infiltration experimental data, followed by model validation on one selected irrigation event. Finally, hillslope modeling was performed to assess water balance for 2014. Results suggest that prolonged dry periods can increase soil water repellency. Inverse modeling was successfully performed for infiltrating liquids, water and ethanol, with R2 and model efficiency (E values both > 0.9. SHP derived from the ethanol measurements showed large differences in van Genuchten-Mualem (VGM parameters for the M and S plots compared to water infiltration experiments. SWR resulted in large saturated hydraulic conductivity (Ks decrease on the M and S scenarios. After validation of SHP on water content measurements during a selected irrigation event, one year simulations (2014 showed that water repellency increases surface runoff in non-structured soils at hillslopes.
Inversion of residual stress profiles from ultrasonic Rayleigh wave dispersion data
Mora, P.; Spies, M.
2018-05-01
We investigate theoretically and with synthetic data the performance of several inversion methods to infer a residual stress state from ultrasonic surface wave dispersion data. We show that this particular problem may reveal in relevant materials undesired behaviors for some methods that could be reliably applied to infer other properties. We focus on two methods, one based on a Taylor-expansion, and another one based on a piecewise linear expansion regularized by a singular value decomposition. We explain the instabilities of the Taylor-based method by highlighting singularities in the series of coefficients. At the same time, we show that the other method can successfully provide performances which only weakly depend on the material.
Planning of step-stress accelerated degradation test based on the inverse Gaussian process
International Nuclear Information System (INIS)
Wang, Huan; Wang, Guan-jun; Duan, Feng-jun
2016-01-01
The step-stress accelerated degradation test (SSADT) is a useful tool for assessing the lifetime distribution of highly reliable or expensive product. Some efficient SSADT plans have been proposed when the underlying degradation follows the Wiener process or Gamma process. However, how to design an efficient SSADT plan for the inverse Gaussian (IG) process is still a problem to be solved. The aim of this paper is to provide an optimal SSADT plan for the IG degradation process. A cumulative exposure model for the SSADT is adopted, in which the product degradation path depends only on the current stress level and the degradation accumulated, and has nothing to do with the way of accumulation. Under the constraint of the total experimental budget, some design variables are optimized by minimizing the asymptotic variance of the estimated p-quantile of the lifetime distribution of the product. Finally, we use the proposed method to deal with the optimal SSADT design for a type of electrical connector based on a set of stress relaxation data. The sensitivity and stability of the SSADT plan are studied, and we find that the optimal test plan is quite robust for a moderate departure from the values of the parameters. - Highlights: • We propose an optimal SSADT plan for the IG degradation process. • A CE model is assumed in describing the degradation path of the SSADT. • The asymptotic variance of the estimated p-quantile is used as the objective function. • A set of stress relaxation data is analyzed and used for illustration of our method.
Buchner, Abel-John; Lozano-Durán, Adrián; Kitsios, Vassili; Atkinson, Callum; Soria, Julio
2016-04-01
Previous works have shown that momentum transfer in the wall-normal direction within turbulent wall-bounded flows occurs primarily within coherent structures defined by regions of intense Reynolds stress [1]. Such structures may be classified into wall-attached and wall-detached structures with the latter being typically weak, small-scale, and isotropically oriented, while the former are larger and carry most of the Reynolds stresses. The mean velocity fluctuation within each structure may also be used to separate structures by their dynamic properties. This study aims to extract information regarding the scales, kinematics and dynamics of these structures within the topological framework of the invariants of the velocity gradient tensor (VGT). The local topological characteristics of these intense Reynolds stress structures are compared to the topological characteristics of vortex clusters defined by the discriminant of the velocity gradient tensor. The alignment of vorticity with the principal strain directions within these structures is also determined, and the implications of these findings are discussed.
Czech Academy of Sciences Publication Activity Database
Jechumtálová, Zuzana; Bulant, P.
2014-01-01
Roč. 18, č. 3 (2014), s. 511-531 ISSN 1383-4649 R&D Projects: GA ČR GAP210/10/1728 EU Projects: European Commission(XE) 230669 - AIM Institutional support: RVO:67985530 Keywords : ray tracing * 1-D and 3-D velocity models * earthquake mechanism * amplitude inversion * Dobrá Voda earthquakes Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.386, year: 2014
Schuster, T; Louis, A K
2003-01-01
The paper deals with the depth determination of residual stress states from diffraction data. First an historical overview of the known approaches is given. Then we apply the approximate inverse method to this problem. This method is known to be very efficient and stable with respect to noise-contaminated data. It is even possible to prove convergence and it allows an error estimate of the calculated depth resolved residual stress profile. (orig.)
Directory of Open Access Journals (Sweden)
Lei Zhang
2015-01-01
Full Text Available In the concrete dam construction, it is very necessary to strengthen the real-time monitoring and scientific management of concrete temperature control. This paper constructs the analysis and inverse analysis system of temperature stress simulation, which is based on various useful data collected in real time in the process of concrete construction. The system can produce automatically data file of temperature and stress calculation and then achieve the remote real-time simulation calculation of temperature stress by using high performance computing techniques, so the inverse analysis can be carried out based on a basis of monitoring data in the database; it fulfills the automatic feedback calculation according to the error requirement and generates the corresponding curve and chart after the automatic processing and analysis of corresponding results. The system realizes the automation and intellectualization of complex data analysis and preparation work in simulation process and complex data adjustment in the inverse analysis process, which can facilitate the real-time tracking simulation and feedback analysis of concrete temperature stress in construction process and enable you to discover problems timely, take measures timely, and adjust construction scheme and can well instruct you how to ensure project quality.
Benz, N.; Bartlow, N. M.
2017-12-01
The addition of borehole strainmeter (BSM) to cGPS time series inversions can yield more precise slip distributions at the subduction interface during episodic tremor and slip (ETS) events in the Cascadia subduction zone. Traditionally very noisy BSM data has not been easy to incorporate until recently, but developments in processing noise, re-orientation of strain components, removal of tidal, hydrologic, and atmospheric signals have made this additional source of data viable (Roeloffs, 2010). The major advantage with BSMs is their sensitivity to spatial derivatives in slip, which is valuable for investigating the ETS nucleation process and stress changes on the plate interface due to ETS. Taking advantage of this, we simultaneously invert PBO GPS and cleaned BSM time series with the Network Inversion Filter (Segall and Matthews, 1997) for slip distribution and slip rate during selected Cascadia ETS events. Stress distributions are also calculated for the plate interface using these inversion results to estimate the amount of stress change during an ETS event. These calculations are performed with and without the utilization of BSM time series, highlighting the role of BSM data in constraining slip and stress.
Chicherin, Dmitry
2017-03-09
We study the multipoint super-correlation functions of the full non-chiral stress-tensor multiplet in N=4 super-Yang-Mills theory in the Born approximation. We derive effective supergraph Feynman rules for them. Surprisingly, the Feynman rules for the non-chiral correlators differ only slightly from those for the chiral correlators. We rely on the formulation of the theory in Lorentz harmonic chiral (LHC) superspace elaborated in the twin paper \\cite{PartI}. In this approach only the chiral half of the supersymmetry is manifest. The other half is realized by nonlinear and nonlocal transformations of the LHC superfields. However, at Born level only the simple linear part of the transformations is relevant. It corresponds to effectively working in the self-dual sector of the theory. Our method is also applicable to a wider class of supermultiplets like all the half-BPS operators and the Konishi multiplet.
International Nuclear Information System (INIS)
Yoshida, Go J.; Saya, Hideyuki
2014-01-01
Highlights: •CD44 variant8–10 and c-Myc are inversely expressed in gastric cancer cells. •Redox-stress enhances c-Myc expression via canonical Wnt signal. •CD44v, but not CD44 standard, suppresses redox stress-induced Wnt activation. •CD44v expression promotes both transcription and proteasome degradation of c-Myc. •Inversed expression pattern between CD44v and c-Myc is often recognized in vivo. -- Abstract: Cancer stem-like cells express high amount of CD44 variant8-10 which protects cancer cells from redox stress. We have demonstrated by immunohistochemical analysis and Western blotting, and reverse-transcription polymerase chain reaction, that CD44 variant8-10 and c-Myc tend to show the inversed expression manner in gastric cancer cells. That is attributable to the oxidative stress-induced canonical Wnt activation, and furthermore, the up-regulation of the downstream molecules, one of which is oncogenic c-Myc, is not easily to occur in CD44 variant-positive cancer cells. We have also found out that CD44v8-10 expression is associated with the turn-over of the c-Myc with the experiments using gastric cancer cell lines. This cannot be simply explained by the model of oxidative stress-induced Wnt activation. CD44v8-10-positive cancer cells are enriched at the invasive front. Tumor tissue at the invasive area is considered to be composed of heterogeneous cellular population; dormant cancer stem-like cells with CD44v8-10 high / Fbw7 high / c-Myc low and proliferative cancer stem-like cells with CD44v8-10 high / Fbw7 low / c-Myc high
Energy Technology Data Exchange (ETDEWEB)
Yoshida, Go J., E-mail: medical21go@yahoo.co.jp; Saya, Hideyuki
2014-01-10
Highlights: •CD44 variant8–10 and c-Myc are inversely expressed in gastric cancer cells. •Redox-stress enhances c-Myc expression via canonical Wnt signal. •CD44v, but not CD44 standard, suppresses redox stress-induced Wnt activation. •CD44v expression promotes both transcription and proteasome degradation of c-Myc. •Inversed expression pattern between CD44v and c-Myc is often recognized in vivo. -- Abstract: Cancer stem-like cells express high amount of CD44 variant8-10 which protects cancer cells from redox stress. We have demonstrated by immunohistochemical analysis and Western blotting, and reverse-transcription polymerase chain reaction, that CD44 variant8-10 and c-Myc tend to show the inversed expression manner in gastric cancer cells. That is attributable to the oxidative stress-induced canonical Wnt activation, and furthermore, the up-regulation of the downstream molecules, one of which is oncogenic c-Myc, is not easily to occur in CD44 variant-positive cancer cells. We have also found out that CD44v8-10 expression is associated with the turn-over of the c-Myc with the experiments using gastric cancer cell lines. This cannot be simply explained by the model of oxidative stress-induced Wnt activation. CD44v8-10-positive cancer cells are enriched at the invasive front. Tumor tissue at the invasive area is considered to be composed of heterogeneous cellular population; dormant cancer stem-like cells with CD44v8-10 {sup high}/ Fbw7 {sup high}/ c-Myc {sup low} and proliferative cancer stem-like cells with CD44v8-10 {sup high}/ Fbw7 {sup low}/ c-Myc {sup high}.
Tensor Transpose and Its Properties
Pan, Ran
2014-01-01
Tensor transpose is a higher order generalization of matrix transpose. In this paper, we use permutations and symmetry group to define? the tensor transpose. Then we discuss the classification and composition of tensor transposes. Properties of tensor transpose are studied in relation to tensor multiplication, tensor eigenvalues, tensor decompositions and tensor rank.
Inversion for the composite moment tensor
Czech Academy of Sciences Publication Activity Database
Vavryčuk, Václav
2015-01-01
Roč. 105, č. 6 (2015), s. 3024-3035 ISSN 0037-1106 R&D Projects: GA ČR(CZ) GAP210/12/1491; GA ČR GA13-08971S Institutional support: RVO:67985530 Keywords : double-couple earthquakes * West Bohemia * focal mechanisms Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.311, year: 2015
3D reconstruction of tensors and vectors
Energy Technology Data Exchange (ETDEWEB)
Defrise, Michel; Gullberg, Grant T.
2005-02-17
Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields.
Hess, Siegfried
2015-01-01
This book presents the science of tensors in a didactic way. The various types and ranks of tensors and the physical basis is presented. Cartesian Tensors are needed for the description of directional phenomena in many branches of physics and for the characterization the anisotropy of material properties. The first sections of the book provide an introduction to the vector and tensor algebra and analysis, with applications to physics, at undergraduate level. Second rank tensors, in particular their symmetries, are discussed in detail. Differentiation and integration of fields, including generalizations of the Stokes law and the Gauss theorem, are treated. The physics relevant for the applications in mechanics, quantum mechanics, electrodynamics and hydrodynamics is presented. The second part of the book is devoted to tensors of any rank, at graduate level. Special topics are irreducible, i.e. symmetric traceless tensors, isotropic tensors, multipole potential tensors, spin tensors, integration and spin-...
Gurau, Razvan
2017-01-01
Written by the creator of the modern theory of random tensors, this book is the first self-contained introductory text to this rapidly developing theory. Starting from notions familiar to the average researcher or PhD student in mathematical or theoretical physics, the book presents in detail the theory and its applications to physics. The recent detections of the Higgs boson at the LHC and gravitational waves at LIGO mark new milestones in Physics confirming long standing predictions of Quantum Field Theory and General Relativity. These two experimental results only reinforce today the need to find an underlying common framework of the two: the elusive theory of Quantum Gravity. Over the past thirty years, several alternatives have been proposed as theories of Quantum Gravity, chief among them String Theory. While these theories are yet to be tested experimentally, key lessons have already been learned. Whatever the theory of Quantum Gravity may be, it must incorporate random geometry in one form or another....
Tensor rank is not multiplicative under the tensor product
M. Christandl (Matthias); A. K. Jensen (Asger Kjærulff); J. Zuiddam (Jeroen)
2018-01-01
textabstractThe tensor rank of a tensor t is the smallest number r such that t can be decomposed as a sum of r simple tensors. Let s be a k-tensor and let t be an ℓ-tensor. The tensor product of s and t is a (k+ℓ)-tensor. Tensor rank is sub-multiplicative under the tensor product. We revisit the
Tensor rank is not multiplicative under the tensor product
M. Christandl (Matthias); A. K. Jensen (Asger Kjærulff); J. Zuiddam (Jeroen)
2017-01-01
textabstractThe tensor rank of a tensor is the smallest number r such that the tensor can be decomposed as a sum of r simple tensors. Let s be a k-tensor and let t be an l-tensor. The tensor product of s and t is a (k + l)-tensor (not to be confused with the "tensor Kronecker product" used in
Taguchi, Y-H
2017-12-21
Although post-traumatic stress disorder (PTSD) is primarily a mental disorder, it can cause additional symptoms that do not seem to be directly related to the central nervous system, which PTSD is assumed to directly affect. PTSD-mediated heart diseases are some of such secondary disorders. In spite of the significant correlations between PTSD and heart diseases, spatial separation between the heart and brain (where PTSD is primarily active) prevents researchers from elucidating the mechanisms that bridge the two disorders. Our purpose was to identify genes linking PTSD and heart diseases. In this study, gene expression profiles of various murine tissues observed under various types of stress or without stress were analyzed in an integrated manner using tensor decomposition (TD). Based upon the obtained features, ∼ 400 genes were identified as candidate genes that may mediate heart diseases associated with PTSD. Various gene enrichment analyses supported biological reliability of the identified genes. Ten genes encoding protein-, DNA-, or mRNA-interacting proteins-ILF2, ILF3, ESR1, ESR2, RAD21, HTT, ATF2, NR3C1, TP53, and TP63-were found to be likely to regulate expression of most of these ∼ 400 genes and therefore are candidate primary genes that cause PTSD-mediated heart diseases. Approximately 400 genes in the heart were also found to be strongly affected by various drugs whose known adverse effects are related to heart diseases and/or fear memory conditioning; these data support the reliability of our findings. TD-based unsupervised feature extraction turned out to be a useful method for gene selection and successfully identified possible genes causing PTSD-mediated heart diseases.
The Topology of Symmetric Tensor Fields
Levin, Yingmei; Batra, Rajesh; Hesselink, Lambertus; Levy, Yuval
1997-01-01
Combinatorial topology, also known as "rubber sheet geometry", has extensive applications in geometry and analysis, many of which result from connections with the theory of differential equations. A link between topology and differential equations is vector fields. Recent developments in scientific visualization have shown that vector fields also play an important role in the analysis of second-order tensor fields. A second-order tensor field can be transformed into its eigensystem, namely, eigenvalues and their associated eigenvectors without loss of information content. Eigenvectors behave in a similar fashion to ordinary vectors with even simpler topological structures due to their sign indeterminacy. Incorporating information about eigenvectors and eigenvalues in a display technique known as hyperstreamlines reveals the structure of a tensor field. The simplify and often complex tensor field and to capture its important features, the tensor is decomposed into an isotopic tensor and a deviator. A tensor field and its deviator share the same set of eigenvectors, and therefore they have a similar topological structure. A a deviator determines the properties of a tensor field, while the isotopic part provides a uniform bias. Degenerate points are basic constituents of tensor fields. In 2-D tensor fields, there are only two types of degenerate points; while in 3-D, the degenerate points can be characterized in a Q'-R' plane. Compressible and incompressible flows share similar topological feature due to the similarity of their deviators. In the case of the deformation tensor, the singularities of its deviator represent the area of vortex core in the field. In turbulent flows, the similarities and differences of the topology of the deformation and the Reynolds stress tensors reveal that the basic addie-viscosity assuptions have their validity in turbulence modeling under certain conditions.
Baust, Maximilian; Weinmann, Andreas; Wieczorek, Matthias; Lasser, Tobias; Storath, Martin; Navab, Nassir
2016-08-01
In this paper, we consider combined TV denoising and diffusion tensor fitting in DTI using the affine-invariant Riemannian metric on the space of diffusion tensors. Instead of first fitting the diffusion tensors, and then denoising them, we define a suitable TV type energy functional which incorporates the measured DWIs (using an inverse problem setup) and which measures the nearness of neighboring tensors in the manifold. To approach this functional, we propose generalized forward- backward splitting algorithms which combine an explicit and several implicit steps performed on a decomposition of the functional. We validate the performance of the derived algorithms on synthetic and real DTI data. In particular, we work on real 3D data. To our knowledge, the present paper describes the first approach to TV regularization in a combined manifold and inverse problem setup.
Tectonic stress pattern in the Chinese Mainland from the inversion of ...
Indian Academy of Sciences (India)
Home; Journals; Journal of Earth System Science; Volume 126; Issue 3. Tectonic stress pattern in the ... models (e.g., the extrusion model). From the perspective of tectonics, the mutual actions among the Eurasian plate, Pacific plate and Indian plate caused the present-day tectonic stress field in the Chinese Mainland.
Sharpley, Christopher F; Christie, David R H; Bitsika, Vicki; Agnew, Linda L; Andronicos, Nicholas M; McMillan, Mary E; Richards, Timothy M
2018-01-01
To investigate the effect of chronic stress as measured in cortisol concentrations upon the association between psychological resilience (PR) and depression in prostate cancer (PCa) patients. A total of 104 men with PCa completed inventories on PR, depression, and background factors, plus gave a sample of their saliva for cortisol assay. The inverse correlation between PR and depression was present only for PCa patients with low or moderate concentrations of salivary cortisol (when classified as more than 1.0 SD below the mean vs within 1.0 SD of the group mean) but not for those men whose cortisol was >1.0 SD from the group mean. Specific PR factors and behaviours that made the greatest contribution to depression were identified for the low and moderate cortisol groups. These results suggest that there are particular aspects of PR that are most strongly related to depression, but that PR's inverse association with depression may be absent in participants with extreme chronic physiological stress. Copyright © 2017 John Wiley & Sons, Ltd.
Ye, Qian; Lin, Haoze
2017-07-01
Though extensively used in calculating optical force and torque acting on a material object illuminated by laser, the Maxwell stress tensor (MST) method follows the electromagnetic linear and angular momentum balance that is usually derived in most textbooks for a continuous volume charge distribution in free space, if not resorting to the application of Noether’s theorem in electrodynamics. To cast the conservation laws into a physically appealing form involving the current densities of linear and angular momentum, on which the MST method is based, the divergence theorem is employed to transform a volume integral into a surface integral. When a material object of finite volume is put into the field, it brings about a discontinuity of field across its surface, due to the presence of induced surface charge and surface current. Ambiguity arises among students in whether the divergence theorem can still be directly used without any justification. By taking into account the effect of the induced surface charge and current, we present a simple pedagogical derivation for the MST method for calculating the optical force and torque on an object immersed in monochromatic optical field, without resorting to Noether’s theorem. Although the results turn out to be identical to those given in the standard textbooks, our derivation avoids the direct use of the divergence theorem on a discontinuous function.
Energy Technology Data Exchange (ETDEWEB)
Chicherin, Dmitry [LAPTH, Université de Savoie, CNRS,B.P. 110, F-74941 Annecy-le-Vieux (France); Sokatchev, Emery [LAPTH, Université de Savoie, CNRS,B.P. 110, F-74941 Annecy-le-Vieux (France); Theoretical Physics Department, CERN,CH-1211, Geneva 23 (Switzerland)
2017-03-09
We study the multipoint super-correlation functions of the full non-chiral stress-tensor multiplet in N=4 super-Yang-Mills theory in the Born approximation. We derive effective supergraph Feynman rules for them. Surprisingly, the Feynman rules for the non-chiral correlators are obtained from those for the chiral correlators by a simple Grassmann shift of the space-time variables. We rely on the formulation of the theory in Lorentz harmonic chiral (LHC) superspace elaborated in the twin paper arXiv:1601.06803. In this approach only the chiral half of the supersymmetry is manifest. The other half is realized by nonlinear and nonlocal transformations of the LHC superfields. However, at Born level only the simple linear part of the transformations is relevant. It corresponds to effectively working in the self-dual sector of the theory. Our method is also applicable to a wider class of supermultiplets like all the half-BPS operators and the Konishi multiplet.
Chicherin, Dmitry; Sokatchev, Emery
2017-03-01
We study the multipoint super-correlation functions of the full non-chiral stress-tensor multiplet in N = 4 super-Yang-Mills theory in the Born approximation. We derive effective supergraph Feynman rules for them. Surprisingly, the Feynman rules for the non-chiral correlators are obtained from those for the chiral correlators by a simple Grassmann shift of the space-time variables. We rely on the formulation of the theory in Lorentz harmonic chiral (LHC) superspace elaborated in the twin paper arXiv:1601.06803. In this approach only the chiral half of the supersymmetry is manifest. The other half is realized by nonlinear and nonlocal transformations of the LHC superfields. However, at Born level only the simple linear part of the transformations is relevant. It corresponds to effectively working in the self-dual sector of the theory. Our method is also applicable to a wider class of supermultiplets like all the half-BPS operators and the Konishi multiplet.
Tensor rank is not multiplicative under the tensor product
Christandl, Matthias; Jensen, Asger Kjærulff; Zuiddam, Jeroen
2017-01-01
The tensor rank of a tensor t is the smallest number r such that t can be decomposed as a sum of r simple tensors. Let s be a k-tensor and let t be an l-tensor. The tensor product of s and t is a (k + l)-tensor. Tensor rank is sub-multiplicative under the tensor product. We revisit the connection between restrictions and degenerations. A result of our study is that tensor rank is not in general multiplicative under the tensor product. This answers a question of Draisma and Saptharishi. Specif...
Bigornia, Sherman J; Falcón, Luis M; Ordovás, José M; Lai, Chao-Qiang
2016-01-01
Background: Omega-3 (n–3) fatty acid (FA) consumption is thought to improve depressive symptoms. However, current evidence is limited, and whether this association exists among Puerto Ricans, a population burdened by depression, remains uncertain. Objectives: We examined the association between ω-3 FA biomarkers and depressive symptoms as well as the potential influence of oxidative stress. Methods: Baseline and longitudinal analyses were conducted in the Boston Puerto Rican Health Study (n = 787; participants aged 57 ± 0.52 y, 73% women). Urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) concentration, a measure of oxidative stress, and erythrocyte FA composition were collected at baseline. We calculated the omega-3 index as the sum of eicosapentaenoic and docosahexaenoic acids, expressed as a percentage of total FAs. Baseline and 2-y depressive symptoms were characterized by using the Center for Epidemiological Studies–Depression Scale (CES-D). Statistical analyses included linear and logistic regression. Results: Urinary 8-OHdG concentration tended to modify the relation between the erythrocyte omega-3 index and baseline CES-D score (P-interaction = 0.10). In stratified analyses, the omega-3 index was inversely associated with CES-D score (β = −1.74, SE = 0.88; P = 0.02) among those in the top quartile of 8-OHdG concentration but not among those in the lower quartiles. The relation between the omega-3 index and CES-D at 2 y was more clearly modified by 8-OHdG concentration (P-interaction = 0.04), where the omega-3 index was inversely associated with CES-D at 2 y, adjusted for baseline (β = −1.66, SE = 0.66; P = 0.02), only among those with elevated 8-OHdG concentrations. Among individuals not taking antidepressant medications and in the top tertile of urinary 8-OHdG concentration, the omega-3 index was associated with significantly lower odds of a CES-D score ≥16 at baseline (OR: 0.72; 95% CI: 0.53, 0.96) but not at 2 y (OR: 0.83; 95% CI: 0.60, 1
Full paleostress tensor reconstruction: case study of the Panasqueira Mine, Portugal.
Pascal, C.; Jaques Ribeiro, L. M.
2017-12-01
Paleostress tensor restoration methods are traditionally limited to reconstructing geometrical parameters and are unable to resolve stress magnitudes. Based on previous studies we further developed a methodology to restore full paleostress tensors. We concentrated on inversion of Mode I fractures and acquired data in Panasqueira Mine, Portugal, where optimal 3D exposures of mineralised quartz veins can be found. To carry out full paleostress restoration we needed to determine (1) pore (paleo)pressure and (2) vein attitudes. To these aims we conducted an extensive fluid inclusion study to derive fluid isochores from the quartz of the studied veins. To further constrain P-T conditions, we combined these isochores with crystallisation temperatures derived from geochemical analyses of coeval arsenopyrite. We also applied the sphalerite geobarometer and considered two other independent pressure indicators. Our results point to pore pressures of 300 MPa and formation depths of 10 km. As a second step, we measured 600 subhorizontal quartz veins in all the levels of the mine. The inversion of the attitudes of the veins allowed for reconstructing the orientations of the principal axes of stress, the unscaled Mohr circle and the relative pore pressure. After merging these results with the previously obtained absolute pore pressure we reconstructed the six parameters of the paleostress tensor.
Tensor structure for Nori motives
Barbieri-Viale, Luca; Huber, Annette; Prest, Mike
2018-01-01
We construct a tensor product on Freyd's universal abelian category attached to an additive tensor category or a tensor quiver and establish a universal property. This is used to give an alternative construction for the tensor product on Nori motives.
Tensor eigenvalues and their applications
Qi, Liqun; Chen, Yannan
2018-01-01
This book offers an introduction to applications prompted by tensor analysis, especially by the spectral tensor theory developed in recent years. It covers applications of tensor eigenvalues in multilinear systems, exponential data fitting, tensor complementarity problems, and tensor eigenvalue complementarity problems. It also addresses higher-order diffusion tensor imaging, third-order symmetric and traceless tensors in liquid crystals, piezoelectric tensors, strong ellipticity for elasticity tensors, and higher-order tensors in quantum physics. This book is a valuable reference resource for researchers and graduate students who are interested in applications of tensor eigenvalues.
Comon, Pierre
2014-01-01
International audience; Tensor decompositions are at the core of many Blind Source Separation (BSS) algorithms, either explicitly or implicitly. In particular, the Canonical Polyadic (CP) tensor decomposition plays a central role in identification of underdetermined mixtures. Despite some similarities, CP and Singular value Decomposition (SVD) are quite different. More generally, tensors and matrices enjoy different properties, as pointed out in this brief survey.
Tectonic stress pattern in the Chinese Mainland from the inversion of ...
Indian Academy of Sciences (India)
In the past several decades, several tectonic stress maps have been figured out; however, they generally suffer a poor time control. In the present ... Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process, Ministry of Education, China University of Mining and Technology, Xuzhou 221008, China.
Local Tensor Radiation Conditions For Elastic Waves
DEFF Research Database (Denmark)
Krenk, S.; Kirkegaard, Poul Henning
2001-01-01
A local boundary condition is formulated, representing radiation of elastic waves from an arbitrary point source. The boundary condition takes the form of a tensor relation between the stress at a point on an arbitrarily oriented section and the velocity and displacement vectors at the point....... The tensor relation generalizes the traditional normal incidence impedance condition by accounting for the angle between wave propagation and the surface normal and by including a generalized stiffness term due to spreading of the waves. The effectiveness of the local tensor radiation condition...
International Nuclear Information System (INIS)
Beig, Robert; Krammer, Werner
2004-01-01
For a conformally flat 3-space, we derive a family of linear second-order partial differential operators which sends vectors into trace-free, symmetric 2-tensors. These maps, which are parametrized by conformal Killing vectors on the 3-space, are such that the divergence of the resulting tensor field depends only on the divergence of the original vector field. In particular, these maps send source-free electric fields into TT tensors. Moreover, if the original vector field is the Coulomb field on R 3 {0}, the resulting tensor fields on R 3 {0} are nothing but the family of TT tensors originally written by Bowen and York
Monte Carlo Volcano Seismic Moment Tensors
Waite, G. P.; Brill, K. A.; Lanza, F.
2015-12-01
Inverse modeling of volcano seismic sources can provide insight into the geometry and dynamics of volcanic conduits. But given the logistical challenges of working on an active volcano, seismic networks are typically deficient in spatial and temporal coverage; this potentially leads to large errors in source models. In addition, uncertainties in the centroid location and moment-tensor components, including volumetric components, are difficult to constrain from the linear inversion results, which leads to a poor understanding of the model space. In this study, we employ a nonlinear inversion using a Monte Carlo scheme with the objective of defining robustly resolved elements of model space. The model space is randomized by centroid location and moment tensor eigenvectors. Point sources densely sample the summit area and moment tensors are constrained to a randomly chosen geometry within the inversion; Green's functions for the random moment tensors are all calculated from modeled single forces, making the nonlinear inversion computationally reasonable. We apply this method to very-long-period (VLP) seismic events that accompany minor eruptions at Fuego volcano, Guatemala. The library of single force Green's functions is computed with a 3D finite-difference modeling algorithm through a homogeneous velocity-density model that includes topography, for a 3D grid of nodes, spaced 40 m apart, within the summit region. The homogenous velocity and density model is justified by long wavelength of VLP data. The nonlinear inversion reveals well resolved model features and informs the interpretation through a better understanding of the possible models. This approach can also be used to evaluate possible station geometries in order to optimize networks prior to deployment.
Ostadhadi, Sattar; Haj-Mirzaian, Arya; Nikoui, Vahid; Kordjazy, Nastaran; Dehpour, Ahmad-Reza
2016-02-01
Cannabinoid inverse agonists possess antidepressant-like properties, but the mechanism of this action is unknown. Numerous studies have reported the interaction between opioid and cannabinoid pathways. In this study, acute foot-shock stress was used in mice to investigate the involvement of the opioid pathway in the antidepressant-like effect of the cannabinoid CB1 receptor inverse agonist AM-251. Stress was induced by intermittent foot-shock stimulation for 30 min. Then, using the forced swimming test (FST) and tail suspension test (TST), the immobility time was measured. Results show that the immobility time was significantly prolonged in animals subjected to foot-shock stress, compared with non-stressed controls (P AM-251 (0.5 and 0.3 mg/kg, intraperitoneally (i.p.)), significantly decreased the immobility time of stressed mice in the FST (P AM-251 (0.1 mg/kg), naltrexone (0.3 mg/kg), and morphine (1.0 mg/kg) did not show any significant effect on stressed animals (P > 0.05). Co-administration of AM-251 with sub-effective dose of naltrexone decreased the effective dose of this cannabinoid inverse agonist, to 0.1 mg/kg (P AM-251 (0.5 mg/kg; P AM-251 in a foot-shock stress model. © 2016 John Wiley & Sons Australia, Ltd.
Herman, Matthew W.; Herrmann, Robert B.; Benz, Harley M.; Furlong, Kevin P.
2014-01-01
On September 3, 2010, a MW 7.0 (U.S. Geological Survey moment magnitude) earthquake ruptured across the Canterbury Plains in South Island, New Zealand. Since then, New Zealand GNS Science has recorded over 10,000 aftershocks ML 2.0 and larger, including three destructive ~ MW 6.0 earthquakes near Christchurch. We treat the Canterbury earthquake sequence as an intraplate earthquake sequence, and compare its kinematics to an Andersonian model for fault slip in a uniform stress field. We determined moment magnitudes and double couple solutions for 150 earthquakes having MW 3.7 and larger through the use of a waveform inversion technique using data from broadband seismic stations on South Island, New Zealand. The majority (126) of these double couple solutions have strike-slip focal mechanisms, with right-lateral slip on ENE fault planes or equivalently left-lateral slip on SSE fault planes. The remaining focal mechanisms indicate reverse faulting, except for two normal faulting events. The strike-slip segments have compatible orientations for slip in a stress field with a horizontal σ1 oriented ~ N115°E, and horizontal σ3. The preference for right lateral strike-slip earthquakes suggests that these structures are inherited from previous stages of deformation. Reverse slip is interpreted to have occurred on previously existing structures in regions with an absence of existing structures optimally oriented for strike-slip deformation. Despite the variations in slip direction and faulting style, most aftershocks had nearly the same P-axis orientation, consistent with the regional σ1. There is no evidence for significant changes in these stress orientations throughout the Canterbury earthquake sequence.
Maerten, Frantz; Madden, Elizabeth H.; Pollard, David D.; Maerten, Laurent
2016-04-01
We present a new stress inversion algorithm that accounts for the physics relating the remote stress, slip along complex faults, and aftershock focal mechanisms, in a linear-elastic, heterogeneous, isotropic whole- or half-space. For each new remote stress, the solution of the simulation is obtained by the superposition of three pre-calculated solutions, leading to a constant time evaluation. Consequently, the full three-dimensional boundary element method model need not be recomputed and is independent of the structural complexity of the underlying model. Using a synthetic model, we evaluate several different measures of fit, or cost functions, between aftershocks and model results. Cost functions that account for aftershock slip direction provide good constraint on the remote stress, while functions that evaluate only nodal plane orientations do not. Inversion results are stable for values of friction ≤ 0.5 on mainshock faults. We demonstrate the technique by recovering the remote stress regime at the time of the 1992 M 7.3 Landers, California earthquake from its aftershocks and find that the algorithm performs well relative to methods that invert earthquakes occurring prior to the Landers mainshock. In the mechanical inversion, incorporating fault structures is necessary, but small differences in fault geometries do not impact these inversion results. Each inversion provides a complete solution for an earthquake as output, including fault slip and the stress and deformation fields around the fault(s). This allows for many additional datasets to be used as input, including fault surface slip, GPS data, InSAR data, and/or secondary fracture orientations.
Jaques, Luís; Pascal, Christophe
2017-09-01
Paleostress tensor restoration methods are traditionally limited to reconstructing geometrical parameters and are unable to resolve stress magnitudes. Based on previous studies we further developed a methodology to restore full paleostress tensors. We concentrated on inversion of Mode I fractures and acquired data in Panasqueira Mine, Portugal, where optimal exposures of mineralized quartz veins can be found. To carry out full paleostress restoration we needed to determine (1) pore (paleo)pressure and (2) vein attitudes. The present contribution focuses specifically on the determination of pore pressure. To these aims we conducted an extensive fluid inclusion study to derive fluid isochores from the quartz of the studied veins. To constrain P-T conditions, we combined these isochores with crystallisation temperatures derived from geochemical analyses of coeval arsenopyrite. We also applied the sphalerite geobarometer and considered two other independent pressure indicators. Our results point to pore pressures of ∼300 MPa and formation depths of ∼10 km. Such formation depths are in good agreement with the regional geological evolution. The obtained pore pressure will be merged with vein inversion results, in order to achieve full paleostress tensor restoration, in a forthcoming companion paper.
Direct tensor rendering using a bidirectional reflectance model
Nagasawa, Mikio; Suzuki, Yoshio
2000-02-01
For the multi variable volumetric tensor field visualization, an efficient direct rendering technique without using geometrical primitive is proposed. The bi- directional reflectance shading model is used to map the anisotropy stress shear tensor components in direct volume rendering. We model the sub-pixel-sized microfacet at tensor sampling points. The nine component of 3D tensor field are mapped onto grid deformation, opacity mapping, color specification, and normal directions of these microfacets. The ray integration is executed though these irregular infinitesimal microfacets distribution. This direct tensor rendering was applied for at-a-glance tensor visualization of earthquake simulation. That realized a view of deformed structure, stress distribution, local shear discontinuity and the shock front, integrated in a single image. The characteristic P- and S-wave modes are distinguished in the rendered earthquake simulations. Compared with the glyph representation of tensor features, the direct tensor rendering gives the general and total image of tensor field even for the low resolution pixel planes, because the sampling object is assumed as infinitesimally small. the computational cost of direct tensor rendering is not so high than that of scalar volume rendering because the modifications are only ins hading calculation but not in the ray integration.
Tensor rank is not multiplicative under the tensor product
DEFF Research Database (Denmark)
Christandl, Matthias; Jensen, Asger Kjærulff; Zuiddam, Jeroen
2018-01-01
The tensor rank of a tensor t is the smallest number r such that t can be decomposed as a sum of r simple tensors. Let s be a k-tensor and let t be an ℓ-tensor. The tensor product of s and t is a (k+ℓ)-tensor. Tensor rank is sub-multiplicative under the tensor product. We revisit the connection...... between restrictions and degenerations. A result of our study is that tensor rank is not in general multiplicative under the tensor product. This answers a question of Draisma and Saptharishi. Specifically, if a tensor t has border rank strictly smaller than its rank, then the tensor rank of t...... is not multiplicative under taking a sufficiently hight tensor product power. The “tensor Kronecker product” from algebraic complexity theory is related to our tensor product but different, namely it multiplies two k-tensors to get a k-tensor. Nonmultiplicativity of the tensor Kronecker product has been known since...
Otsubo, Makoto; Miyakawa, Ayumu; Imanishi, Kazutoshi
2018-03-01
Spatial and temporal variations in inland crustal stress prior to the 2011 Mw 9.0 Tohoku earthquake are investigated using focal mechanism solutions for shallow seismicity in Iwaki City, Japan. The multiple inverse method of stress tensor inversion detected two normal-faulting stress states that dominate in different regions. The stress field around Iwaki City changed from a NNW-SSE-trending triaxial extensional stress (stress regime A) to a NW-SE-trending axial tension (stress regime B) between 2005 and 2008. These stress changes may be the result of accumulated extensional stress associated with co- and post-seismic deformation due to the M7 class earthquakes. In this study we suggest that the stress state around Iwaki City prior to the 2011 Tohoku earthquake may have been extensional with a low differential stress. High pore pressure is required to cause earthquakes under such small differential stresses.
Cartesian tensors an introduction
Temple, G
2004-01-01
This undergraduate text provides an introduction to the theory of Cartesian tensors, defining tensors as multilinear functions of direction, and simplifying many theorems in a manner that lends unity to the subject. The author notes the importance of the analysis of the structure of tensors in terms of spectral sets of projection operators as part of the very substance of quantum theory. He therefore provides an elementary discussion of the subject, in addition to a view of isotropic tensors and spinor analysis within the confines of Euclidean space. The text concludes with an examination of t
Linear Invariant Tensor Interpolation Applied to Cardiac Diffusion Tensor MRI
Gahm, Jin Kyu; Wisniewski, Nicholas; Kindlmann, Gordon; Kung, Geoffrey L.; Klug, William S.; Garfinkel, Alan; Ennis, Daniel B.
2015-01-01
Purpose Various methods exist for interpolating diffusion tensor fields, but none of them linearly interpolate tensor shape attributes. Linear interpolation is expected not to introduce spurious changes in tensor shape. Methods Herein we define a new linear invariant (LI) tensor interpolation method that linearly interpolates components of tensor shape (tensor invariants) and recapitulates the interpolated tensor from the linearly interpolated tensor invariants and the eigenvectors of a linearly interpolated tensor. The LI tensor interpolation method is compared to the Euclidean (EU), affine-invariant Riemannian (AI), log-Euclidean (LE) and geodesic-loxodrome (GL) interpolation methods using both a synthetic tensor field and three experimentally measured cardiac DT-MRI datasets. Results EU, AI, and LE introduce significant microstructural bias, which can be avoided through the use of GL or LI. Conclusion GL introduces the least microstructural bias, but LI tensor interpolation performs very similarly and at substantially reduced computational cost. PMID:23286085
Russo, E.; Waite, G. P.; Tibaldi, A.
2017-03-01
Although the last rhyolite eruption occurred around 70 ka ago, the silicic Yellowstone volcanic field is still considered active due to high hydrothermal and seismic activity and possible recent magma intrusions. Geodetic measurements document complex deformation patterns in crustal strain and seismic activity likewise reveal spatial and temporal variations in the stress field. We use earthquake data recorded between 1988 and 2010 to investigate these variations and their possible causes in more detail. Earthquake relocations and a set of 369 well-constrained, double-couple, focal mechanism solutions were computed. Events were grouped according to location and time to investigate trends in faulting. The majority of the events have normal-faulting solutions, subordinate strike-slip kinematics, and very rarely, reverse motions. The dominant direction of extension throughout the 0.64 Ma Yellowstone caldera is nearly ENE, consistent with the perpendicular direction of alignments of volcanic vents within the caldera, but our study also reveals spatial and temporal variations. Stress-field solutions for different areas and time periods were calculated from earthquake focal mechanism inversion. A well-resolved rotation of σ3 was found, from NNE-SSW near the Hebgen Lake fault zone, to ENE-WSW near Norris Junction. In particular, the σ3 direction changed throughout the years around Norris Geyser Basin, from being ENE-WSW, as calculated in the study by Waite and Smith (2004), to NNE-SSW, while the other σ3 directions are mostly unchanged over time. The presence of ;chocolate tablet; structures, with two sets of nearly perpendicular normal faults, was identified in many stages of the deformation history both in the Norris Geyser Basin area and inside the caldera.
Earthquakes focal mechanism and stress field pattern in the northeastern part of Egypt
Directory of Open Access Journals (Sweden)
Emad K. Mohamed
2015-12-01
The inversion technique scheme is used also in the present study for determining the regional stress field parameters for earthquake focal mechanism solutions based on the grid search method of Gephart and Forsyth (1984. The Results of the stress tensor using focal mechanisms of recent earthquakes show a prevailed tension stress field in N52°E, N41°E and N52°E for the northern Red Sea, Gulf of Suez and Gulf of Aqaba zone respectively.
Soibelman, Yan
1997-01-01
We introduce the notion of meromorphic tensor category and illustrate it in several examples. They include representations of quantum affine algebras, chiral algebras of Beilinson and Drinfeld, G-vertex algebras of Borcherds, and representations of GL over a local field. Hopefully the formalism will accomodate various tensor structures arising in relation to the quantized Knizhnik-Zamolodchikov equations and deformed CFT
Bayesian approach to magnetotelluric tensor decomposition
Czech Academy of Sciences Publication Activity Database
Červ, Václav; Pek, Josef; Menvielle, M.
2010-01-01
Roč. 53, č. 2 (2010), s. 21-32 ISSN 1593-5213 R&D Projects: GA AV ČR IAA200120701; GA ČR GA205/04/0746; GA ČR GA205/07/0292 Institutional research plan: CEZ:AV0Z30120515 Keywords : galvanic distortion * telluric distortion * impedance tensor * basic procedure * inversion * noise Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.336, year: 2010
Robust tensor estimation in diffusion tensor imaging
Maximov, Ivan I.; Grinberg, Farida; Jon Shah, N.
2011-12-01
The signal response measured in diffusion tensor imaging is subject to detrimental influences caused by noise. Noise fields arise due to various contributions such as thermal and physiological noise and sources related to the hardware imperfection. As a result, diffusion tensors estimated by different linear and non-linear least squares methods in absence of a proper noise correction tend to be substantially corrupted. In this work, we propose an advanced tensor estimation approach based on the least median squares method of the robust statistics. Both constrained and non-constrained versions of the method are considered. The performance of the developed algorithm is compared to that of the conventional least squares method and of the alternative robust methods proposed in the literature. Two examples of simulated diffusion attenuations and experimental in vivo diffusion data sets were used as a basis for comparison. The robust algorithms were shown to be advantageous compared to the least squares method in the cases where elimination of the outliers is desirable. Additionally, the constraints were applied in order to prevent generation of the non-positive definite tensors and reduce related artefacts in the maps of fractional anisotropy. The developed method can potentially be exploited also by other MR techniques where a robust regression or outlier localisation is required.
Parlangeau, Camille; Lacombe, Olivier; Schueller, Sylvie; Daniel, Jean-Marc
2018-01-01
The inversion of calcite twin data is a powerful tool to reconstruct paleostresses sustained by carbonate rocks during their geological history. Following Etchecopar's (1984) pioneering work, this study presents a new technique for the inversion of calcite twin data that reconstructs the 5 parameters of the deviatoric stress tensors from both monophase and polyphase twin datasets. The uncertainties in the parameters of the stress tensors reconstructed by this new technique are evaluated on numerically-generated datasets. The technique not only reliably defines the 5 parameters of the deviatoric stress tensor, but also reliably separates very close superimposed stress tensors (30° of difference in maximum principal stress orientation or switch between σ3 and σ2 axes). The technique is further shown to be robust to sampling bias and to slight variability in the critical resolved shear stress. Due to our still incomplete knowledge of the evolution of the critical resolved shear stress with grain size, our results show that it is recommended to analyze twin data subsets of homogeneous grain size to minimize possible errors, mainly those concerning differential stress values. The methodological uncertainty in principal stress orientations is about ± 10°; it is about ± 0.1 for the stress ratio. For differential stresses, the uncertainty is lower than ± 30%. Applying the technique to vein samples within Mesozoic limestones from the Monte Nero anticline (northern Apennines, Italy) demonstrates its ability to reliably detect and separate tectonically significant paleostress orientations and magnitudes from naturally deformed polyphase samples, hence to fingerprint the regional paleostresses of interest in tectonic studies.
Tensor spherical harmonics and tensor multipoles. II. Minkowski space
International Nuclear Information System (INIS)
Daumens, M.; Minnaert, P.
1976-01-01
The bases of tensor spherical harmonics and of tensor multipoles discussed in the preceding paper are generalized in the Hilbert space of Minkowski tensor fields. The transformation properties of the tensor multipoles under Lorentz transformation lead to the notion of irreducible tensor multipoles. We show that the usual 4-vector multipoles are themselves irreducible, and we build the irreducible tensor multipoles of the second order. We also give their relations with the symmetric tensor multipoles defined by Zerilli for application to the gravitational radiation
Tensors and their applications
Islam, Nazrul
2006-01-01
About the Book: The book is written is in easy-to-read style with corresponding examples. The main aim of this book is to precisely explain the fundamentals of Tensors and their applications to Mechanics, Elasticity, Theory of Relativity, Electromagnetic, Riemannian Geometry and many other disciplines of science and engineering, in a lucid manner. The text has been explained section wise, every concept has been narrated in the form of definition, examples and questions related to the concept taught. The overall package of the book is highly useful and interesting for the people associated with the field. Contents: Preliminaries Tensor Algebra Metric Tensor and Riemannian Metric Christoffel`s Symbols and Covariant Differentiation Riemann-Christoffel Tensor The e-Systems and the Generalized Krönecker Deltas Geometry Analytical Mechanics Curvature of a Curve, Geodesic Parallelism of Vectors Ricci`s Coefficients of Rotation and Congruence Hyper Surfaces
Symmetric Tensor Decomposition
DEFF Research Database (Denmark)
Brachat, Jerome; Comon, Pierre; Mourrain, Bernard
2010-01-01
We present an algorithm for decomposing a symmetric tensor, of dimension n and order d, as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables...... of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on this characterization and on linear algebra computations with Hankel matrices. The impact of this contribution is two-fold. First it permits an efficient computation...... of the decomposition of any tensor of sub-generic rank, as opposed to widely used iterative algorithms with unproved global convergence (e.g. Alternate Least Squares or gradient descents). Second, it gives tools for understanding uniqueness conditions and for detecting the rank....
International Nuclear Information System (INIS)
Scheunert, M.
1982-10-01
We develop a graded tensor calculus corresponding to arbitrary Abelian groups of degrees and arbitrary commutation factors. The standard basic constructions and definitions like tensor products, spaces of multilinear mappings, contractions, symmetrization, symmetric algebra, as well as the transpose, adjoint, and trace of a linear mapping, are generalized to the graded case and a multitude of canonical isomorphisms is presented. Moreover, the graded versions of the classical Lie algebras are introduced and some of their basic properties are described. (orig.)
Complete algebraic reduction of one-loop tensor Feynman integrals
International Nuclear Information System (INIS)
Fleischer, J.; Riemann, T.
2011-01-01
We set up a new, flexible approach for the tensor reduction of one-loop Feynman integrals. The 5-point tensor integrals up to rank R=5 are expressed by 4-point tensor integrals of rank R-1, such that the appearance of the inverse 5-point Gram determinant is avoided. The 4-point tensor coefficients are represented in terms of 4-point integrals, defined in d dimensions, 4-2ε≤d≤4-2ε+2(R-1), with higher powers of the propagators. They can be further reduced to expressions which stay free of the inverse 4-point Gram determinants but contain higher-dimensional 4-point integrals with only the first power of scalar propagators, plus 3-point tensor coefficients. A direct evaluation of the higher-dimensional 4-point functions would avoid the appearance of inverse powers of the Gram determinants completely. The simplest approach, however, is to apply here dimensional recurrence relations in order to reduce them to the familiar 2- to 4-point functions in generic dimension d=4-2ε, introducing thereby coefficients with inverse 4-point Gram determinants up to power R for tensors of rank R. For small or vanishing Gram determinants--where this reduction is not applicable--we use analytic expansions in positive powers of the Gram determinants. Improving the convergence of the expansions substantially with Pade approximants we close up to the evaluation of the 4-point tensor coefficients for larger Gram determinants. Finally, some relations are discussed which may be useful for analytic simplifications of Feynman diagrams.
Dark energy in scalar-tensor theories
International Nuclear Information System (INIS)
Moeller, J.
2007-12-01
We investigate several aspects of dynamical dark energy in the framework of scalar-tensor theories of gravity. We provide a classification of scalar-tensor coupling functions admitting cosmological scaling solutions. In particular, we recover that Brans-Dicke theory with inverse power-law potential allows for a sequence of background dominated scaling regime and scalar field dominated, accelerated expansion. Furthermore, we compare minimally and non-minimally coupled models, with respect to the small redshift evolution of the dark energy equation of state. We discuss the possibility to discriminate between different models by a reconstruction of the equation-of-state parameter from available observational data. The non-minimal coupling characterizing scalar-tensor models can - in specific cases - alleviate fine tuning problems, which appear if (minimally coupled) quintessence is required to mimic a cosmological constant. Finally, we perform a phase-space analysis of a family of biscalar-tensor models characterized by a specific type of σ-model metric, including two examples from recent literature. In particular, we generalize an axion-dilaton model of Sonner and Townsend, incorporating a perfect fluid background consisting of (dark) matter and radiation. (orig.)
Dark energy in scalar-tensor theories
Energy Technology Data Exchange (ETDEWEB)
Moeller, J.
2007-12-15
We investigate several aspects of dynamical dark energy in the framework of scalar-tensor theories of gravity. We provide a classification of scalar-tensor coupling functions admitting cosmological scaling solutions. In particular, we recover that Brans-Dicke theory with inverse power-law potential allows for a sequence of background dominated scaling regime and scalar field dominated, accelerated expansion. Furthermore, we compare minimally and non-minimally coupled models, with respect to the small redshift evolution of the dark energy equation of state. We discuss the possibility to discriminate between different models by a reconstruction of the equation-of-state parameter from available observational data. The non-minimal coupling characterizing scalar-tensor models can - in specific cases - alleviate fine tuning problems, which appear if (minimally coupled) quintessence is required to mimic a cosmological constant. Finally, we perform a phase-space analysis of a family of biscalar-tensor models characterized by a specific type of {sigma}-model metric, including two examples from recent literature. In particular, we generalize an axion-dilaton model of Sonner and Townsend, incorporating a perfect fluid background consisting of (dark) matter and radiation. (orig.)
Carvalho, Juraci; Barros, Lucas Vieira; Zahradník, Jiří
2016-11-01
This paper documents an investigation on the use of full waveform inversion to retrieve focal mechanisms of 11 micro-earthquakes (Mw 0.8 to 1.4). The events represent aftershocks of a 5.0 mb earthquake that occurred on October 8, 2010 close to the city of Mara Rosa in the state of Goiás, Brazil. The main contribution of the work lies in demonstrating the feasibility of waveform inversion of such weak events. The inversion was made possible thanks to recordings available at 8 temporary seismic stations in epicentral distances of less than 8 km, at which waveforms can be successfully modeled at relatively high frequencies (1.5-2.0 Hz). On average, the fault-plane solutions obtained are in agreement with a composite focal mechanism previously calculated from first-motion polarities. They also agree with the fault geometry inferred from precise relocation of the Mara Rosa aftershock sequence. The focal mechanisms provide an estimate of the local stress field. This paper serves as a pilot study for similar investigations in intraplate regions where the stress-field investigations are difficult due to rare earthquake occurrences, and where weak events must be studied with a detailed quality assessment.
Tensor analysis for physicists
Schouten, J A
1989-01-01
This brilliant study by a famed mathematical scholar and former professor of mathematics at the University of Amsterdam integrates a concise exposition of the mathematical basis of tensor analysis with admirably chosen physical examples of the theory. The first five chapters incisively set out the mathematical theory underlying the use of tensors. The tensor algebra in EN and RN is developed in Chapters I and II. Chapter II introduces a sub-group of the affine group, then deals with the identification of quantities in EN. The tensor analysis in XN is developed in Chapter IV. In chapters VI through IX, Professor Schouten presents applications of the theory that are both intrinsically interesting and good examples of the use and advantages of the calculus. Chapter VI, intimately connected with Chapter III, shows that the dimensions of physical quantities depend upon the choice of the underlying group, and that tensor calculus is the best instrument for dealing with the properties of anisotropic media. In Chapte...
Killing tensors and conformal Killing tensors from conformal Killing vectors
International Nuclear Information System (INIS)
Rani, Raffaele; Edgar, S Brian; Barnes, Alan
2003-01-01
Koutras has proposed some methods to construct reducible proper conformal Killing tensors and Killing tensors (which are, in general, irreducible) when a pair of orthogonal conformal Killing vectors exist in a given space. We give the completely general result demonstrating that this severe restriction of orthogonality is unnecessary. In addition, we correct and extend some results concerning Killing tensors constructed from a single conformal Killing vector. A number of examples demonstrate that it is possible to construct a much larger class of reducible proper conformal Killing tensors and Killing tensors than permitted by the Koutras algorithms. In particular, by showing that all conformal Killing tensors are reducible in conformally flat spaces, we have a method of constructing all conformal Killing tensors, and hence all the Killing tensors (which will in general be irreducible) of conformally flat spaces using their conformal Killing vectors
International Nuclear Information System (INIS)
Kubo, S; Uchida, K; Ishizaka, T; Ioka, S
2008-01-01
It is important to reduce the thermal stresses for managing and extending the lives of pipes in plants. In this problem, heat conduction, elastic deformation, heat transfer, liquid flow should be considered, and therefore the problem is of a multidisciplinary nature. An inverse method was proposed by the present authors for determining the optimum thermal load history which reduced transient thermal stress considering the multidisciplinary physics. But the obtained solution had a problem that the temperature increasing rate of inner surface of the pipe was discontinuous at the end time of heat up. In this study we introduce temperature history functions that ensure the continuity of the temperature increasing rate. The multidisciplinary complex problem is decomposed into a heat conduction problem, a heat transfer problem, and a thermal stress problem. An analytical solution of the temperature distribution of radial thickness and thermal hoop stress distribution is obtained. The maximum tensile and compressive hoop stresses are minimized for the case where inner surface temperature T s (t) is expressed in terms of the 4th order polynomial function of time t. Finally, from the temperature distributions, the optimum fluid temperature history is obtained for reducing the thermal stresses.
Tensors, relativity, and cosmology
Dalarsson, Mirjana
2015-01-01
Tensors, Relativity, and Cosmology, Second Edition, combines relativity, astrophysics, and cosmology in a single volume, providing a simplified introduction to each subject that is followed by detailed mathematical derivations. The book includes a section on general relativity that gives the case for a curved space-time, presents the mathematical background (tensor calculus, Riemannian geometry), discusses the Einstein equation and its solutions (including black holes and Penrose processes), and considers the energy-momentum tensor for various solutions. In addition, a section on relativistic astrophysics discusses stellar contraction and collapse, neutron stars and their equations of state, black holes, and accretion onto collapsed objects, with a final section on cosmology discussing cosmological models, observational tests, and scenarios for the early universe. This fully revised and updated second edition includes new material on relativistic effects, such as the behavior of clocks and measuring rods in m...
DEFF Research Database (Denmark)
Ziegel, Johanna; Nyengaard, Jens Randel; Jensen, Eva B. Vedel
In the present paper, statistical procedures for estimating shape and orientation of arbitrary three-dimensional particles are developed. The focus of this work is on the case where the particles cannot be observed directly, but only via sections. Volume tensors are used for describing particle...... shape and orientation, and stereological estimators of the tensors are derived. It is shown that these estimators can be combined to provide consistent estimators of the moments of the so-called particle cover density. The covariance structure associated with the particle cover density depends...... may be analysed using a generalized methods of moments in which the volume tensors enter. The developed methods are used to study the cell organization in the human brain cortex....
International Nuclear Information System (INIS)
Malyshev, C
2007-01-01
A translational gauge approach of the Einstein type is proposed for obtaining the stresses that are due to non-singular screw dislocation. The stress distribution of the second order around the screw dislocation is classically known for the hollow circular cylinder with traction-free external and internal boundaries. The inner boundary surrounds the dislocation's core, which is not captured by the conventional solution. The present gauge approach enables us to continue the classically known quadratic stresses inside the core. The gauge equation is chosen in the Hilbert-Einstein form, and it plays the role of non-conventional incompatibility law. The stress function method is used, and it leads to the modified stress potential given by two constituents: the conventional one, say, the 'background' and a short-ranged gauge contribution. The latter just causes additional stresses, which are localized. The asymptotic properties of the resulting stresses are studied. Since the gauge contributions are short-ranged, the background stress field dominates sufficiently far from the core. The outer cylinder's boundary is traction-free. At sufficiently moderate distances, the second-order stresses acquire regular continuation within the core region, and the cut-off at the core does not occur. Expressions for the asymptotically far stresses provide self-consistently new length scales dependent on the elastic parameters. These lengths could characterize an exteriority of the dislocation core region
Inverse problem in transformation optics
Novitsky, Andrey V.
2011-01-01
The straightforward method of transformation optics implies that one starts from the coordinate transformation and determines the Jacobian matrix, the fields and material parameters of the cloak. However, the coordinate transformation appears as an optional function: it is not necessary to know it. We offer the solution of some sort of inverse problem: starting from the fields in the invisibility cloak we directly derive the permittivity and permeability tensors of the cloaking shell. This ap...
Visualizing Tensor Normal Distributions at Multiple Levels of Detail.
Abbasloo, Amin; Wiens, Vitalis; Hermann, Max; Schultz, Thomas
2016-01-01
Despite the widely recognized importance of symmetric second order tensor fields in medicine and engineering, the visualization of data uncertainty in tensor fields is still in its infancy. A recently proposed tensorial normal distribution, involving a fourth order covariance tensor, provides a mathematical description of how different aspects of the tensor field, such as trace, anisotropy, or orientation, vary and covary at each point. However, this wealth of information is far too rich for a human analyst to take in at a single glance, and no suitable visualization tools are available. We propose a novel approach that facilitates visual analysis of tensor covariance at multiple levels of detail. We start with a visual abstraction that uses slice views and direct volume rendering to indicate large-scale changes in the covariance structure, and locations with high overall variance. We then provide tools for interactive exploration, making it possible to drill down into different types of variability, such as in shape or orientation. Finally, we allow the analyst to focus on specific locations of the field, and provide tensor glyph animations and overlays that intuitively depict confidence intervals at those points. Our system is demonstrated by investigating the effects of measurement noise on diffusion tensor MRI, and by analyzing two ensembles of stress tensor fields from solid mechanics.
Chauveau, F; Piérard, C; Coutan, M; Drouet, I; Liscia, P; Béracochéa, D
2008-09-01
Previous data from our team have shown that pre-test stress in mice reversed the pattern of memory retrieval in a contextual serial spatial task (CSD; Celerier, A., Pierard, C., Rachbauer, D., Sarrieau, A., & Beracochea, D. (2004). Contextual and serial discriminations: A new learning paradigm to assess simultaneously the effects of acute stress on retrieval of flexible or stable information in mice. Learning and Memory, 11, 196-204). The present study is aimed at determining brain areas which might be critically involved in mediating the stress effect on memory retrieval in the CSD task. For that purpose, we studied hereby the effects of ibotenic acid lesions of either the prefrontal cortex (PFC) or the basolateral amygdala (BLA) in Stressed or Non-Stressed Balb/c mice on memory retrieval in the CSD task. In that task, mice learned two successive spatial discriminations (D1 and D2) within two different internal contexts in a four-hole board. The stressor (electric footshocks) was delivered 5 min before test, occurring 24 h after acquisition. During test, mice were relocated either on the floor of the first or of the second discrimination. Results showed that (i) spatial memory was substantial and remained unaffected both by lesions and stress; (ii) Non-Stressed controls as well as Non-Stressed or Stressed PFC and BLA-lesioned mice remembered accurately D1 but not D2; and (iii) in contrast, Stressed controls accurately remembered D2 but not D1. In parallel to behavioral experiments, we also showed that PFC and BLA lesions did not affect the stress-induced increase of plasma corticosterone levels. All together, PFC and BLA integrity are not necessary for retrieval processes per se; in contrast, the PFC and BLA are critically involved in the mediation of the deleterious stress effects on serial order memory retrieval.
-Dimensional Fractional Lagrange's Inversion Theorem
Directory of Open Access Journals (Sweden)
F. A. Abd El-Salam
2013-01-01
Full Text Available Using Riemann-Liouville fractional differential operator, a fractional extension of the Lagrange inversion theorem and related formulas are developed. The required basic definitions, lemmas, and theorems in the fractional calculus are presented. A fractional form of Lagrange's expansion for one implicitly defined independent variable is obtained. Then, a fractional version of Lagrange's expansion in more than one unknown function is generalized. For extending the treatment in higher dimensions, some relevant vectors and tensors definitions and notations are presented. A fractional Taylor expansion of a function of -dimensional polyadics is derived. A fractional -dimensional Lagrange inversion theorem is proved.
Tensor Calculus: Unlearning Vector Calculus
Lee, Wha-Suck; Engelbrecht, Johann; Moller, Rita
2018-01-01
Tensor calculus is critical in the study of the vector calculus of the surface of a body. Indeed, tensor calculus is a natural step-up for vector calculus. This paper presents some pitfalls of a traditional course in vector calculus in transitioning to tensor calculus. We show how a deeper emphasis on traditional topics such as the Jacobian can…
The evolution of tensor polarization
International Nuclear Information System (INIS)
Huang, H.; Lee, S.Y.; Ratner, L.
1993-01-01
By using the equation of motion for the vector polarization, the spin transfer matrix for spin tensor polarization, the spin transfer matrix for spin tensor polarization is derived. The evolution equation for the tensor polarization is studied in the presence of an isolate spin resonance and in the presence of a spin rotor, or snake
Diffusion tensor image registration using hybrid connectivity and tensor features.
Wang, Qian; Yap, Pew-Thian; Wu, Guorong; Shen, Dinggang
2014-07-01
Most existing diffusion tensor imaging (DTI) registration methods estimate structural correspondences based on voxelwise matching of tensors. The rich connectivity information that is given by DTI, however, is often neglected. In this article, we propose to integrate complementary information given by connectivity features and tensor features for improved registration accuracy. To utilize connectivity information, we place multiple anchors representing different brain anatomies in the image space, and define the connectivity features for each voxel as the geodesic distances from all anchors to the voxel under consideration. The geodesic distance, which is computed in relation to the tensor field, encapsulates information of brain connectivity. We also extract tensor features for every voxel to reflect the local statistics of tensors in its neighborhood. We then combine both connectivity features and tensor features for registration of tensor images. From the images, landmarks are selected automatically and their correspondences are determined based on their connectivity and tensor feature vectors. The deformation field that deforms one tensor image to the other is iteratively estimated and optimized according to the landmarks and their associated correspondences. Experimental results show that, by using connectivity features and tensor features simultaneously, registration accuracy is increased substantially compared with the cases using either type of features alone. Copyright © 2013 Wiley Periodicals, Inc.
Evaluation of Bayesian tensor estimation using tensor coherence
Kim, Dae-Jin; Kim, In-Young; Jeong, Seok-Oh; Park, Hae-Jeong
2009-06-01
Fiber tractography, a unique and non-invasive method to estimate axonal fibers within white matter, constructs the putative streamlines from diffusion tensor MRI by interconnecting voxels according to the propagation direction defined by the diffusion tensor. This direction has uncertainties due to the properties of underlying fiber bundles, neighboring structures and image noise. Therefore, robust estimation of the diffusion direction is essential to reconstruct reliable fiber pathways. For this purpose, we propose a tensor estimation method using a Bayesian framework, which includes an a priori probability distribution based on tensor coherence indices, to utilize both the neighborhood direction information and the inertia moment as regularization terms. The reliability of the proposed tensor estimation was evaluated using Monte Carlo simulations in terms of accuracy and precision with four synthetic tensor fields at various SNRs and in vivo human data of brain and calf muscle. Proposed Bayesian estimation demonstrated the relative robustness to noise and the higher reliability compared to the simple tensor regression.
Evaluation of Bayesian tensor estimation using tensor coherence
Energy Technology Data Exchange (ETDEWEB)
Kim, Dae-Jin; Park, Hae-Jeong [Laboratory of Molecular Neuroimaging Technology, Brain Korea 21 Project for Medical Science, Yonsei University, College of Medicine, Seoul (Korea, Republic of); Kim, In-Young [Department of Biomedical Engineering, Hanyang University, Seoul (Korea, Republic of); Jeong, Seok-Oh [Department of Statistics, Hankuk University of Foreign Studies, Yongin (Korea, Republic of)], E-mail: parkhj@yuhs.ac
2009-06-21
Fiber tractography, a unique and non-invasive method to estimate axonal fibers within white matter, constructs the putative streamlines from diffusion tensor MRI by interconnecting voxels according to the propagation direction defined by the diffusion tensor. This direction has uncertainties due to the properties of underlying fiber bundles, neighboring structures and image noise. Therefore, robust estimation of the diffusion direction is essential to reconstruct reliable fiber pathways. For this purpose, we propose a tensor estimation method using a Bayesian framework, which includes an a priori probability distribution based on tensor coherence indices, to utilize both the neighborhood direction information and the inertia moment as regularization terms. The reliability of the proposed tensor estimation was evaluated using Monte Carlo simulations in terms of accuracy and precision with four synthetic tensor fields at various SNRs and in vivo human data of brain and calf muscle. Proposed Bayesian estimation demonstrated the relative robustness to noise and the higher reliability compared to the simple tensor regression.
Preliminary analysis on the tectonic stress level in the source region of Tangshan earthquake
Jian-Tao, Zhao; Cui, Xiao-Feng; Xie, Fu-Ren
2002-05-01
The abundant data of focal mechanism solutions in Tangshan region, China, are inverted for the tectonic stress field. Combined with tectonophysical consideration, the magnitude of the three principal stresses, as well as their vertical variation under the average crustal rock property, in the source region of the 1976 Tangshan earthquake is estimated. The relationship between crustal stress and friction μ c, pore pressure P 0 and stress shape factor Φ is studied. The paper draws the conclusion that the vertical increasing rate of the maximum principal stress σ is directly proportional to friction, and inversely to pore pressure P 0 and stress shape factor Φ; while the vertical increasing rate of the minimum principal tress σ is directly proportional to pore pressure P 0, inversely to friction μ c and stress shape factor Φ. This study is a try to invert the data of focal mechanism solutions for the complete stress tensor.
Gogny interactions with tensor terms
Energy Technology Data Exchange (ETDEWEB)
Anguiano, M.; Lallena, A.M.; Bernard, R.N. [Universidad de Granada, Departamento de Fisica Atomica, Molecular y Nuclear, Granada (Spain); Co' , G. [INFN, Lecce (Italy); De Donno, V. [Universita del Salento, Dipartimento di Matematica e Fisica ' ' E. De Giorgi' ' , Lecce (Italy); Grasso, M. [Universite Paris-Sud, Institut de Physique Nucleaire, IN2P3-CNRS, Orsay (France)
2016-07-15
We present a perturbative approach to include tensor terms in the Gogny interaction. We do not change the values of the usual parameterisations, with the only exception of the spin-orbit term, and we add tensor terms whose only free parameters are the strengths of the interactions. We identify observables sensitive to the presence of the tensor force in Hartree-Fock, Hartree-Fock-Bogoliubov and random phase approximation calculations. We show the need of including two tensor contributions, at least: a pure tensor term and a tensor-isospin term. We show results relevant for the inclusion of the tensor term for single-particle energies, charge-conserving magnetic excitations and Gamow-Teller excitations. (orig.)
The geomagnetic field gradient tensor
DEFF Research Database (Denmark)
Kotsiaros, Stavros; Olsen, Nils
2012-01-01
We develop the general mathematical basis for space magnetic gradiometry in spherical coordinates. The magnetic gradient tensor is a second rank tensor consisting of 3 × 3 = 9 spatial derivatives. Since the geomagnetic field vector B is always solenoidal (∇ · B = 0) there are only eight independent...... tensor elements. Furthermore, in current free regions the magnetic gradient tensor becomes symmetric, further reducing the number of independent elements to five. In that case B is a Laplacian potential field and the gradient tensor can be expressed in series of spherical harmonics. We present properties...... of the magnetic gradient tensor and provide explicit expressions of its elements in terms of spherical harmonics. Finally we discuss the benefit of using gradient measurements for exploring the Earth’s magnetic field from space, in particular the advantage of the various tensor elements for a better determination...
Kastrup, U.; Zoback, M.L.; Deichmann, N.; Evans, Kenneth F.; Giardini, D.; Michael, A.J.
2004-01-01
This study is devoted to a systematic analysis of the state of stress of the central European Alps and northern Alpine foreland in Switzerland based on focal mechanisms of 138 earthquakes with magnitudes between 1 and 5. The most robust feature of the results is that the azimuth of the minimum compressive stress, S3, is generally well constrained for all data subsets and always lies in the NE quadrant. However, within this quadrant, the orientation of S3 changes systematically both along the structural strike of the Alpine chain and across it. The variation in stress along the mountain belt from NE to SW involves a progressive, counterclockwise rotation of S3 and is most clear in the foreland, where it amounts to 45??-50??. This pattern of rotation is compatible with the disturbance to the stress field expected from the indentation of the Adriatic Block into the central European Plate, possibly together with buoyancy forces arising from the strongly arcuate structure of the Moho to the immediate west of our study area. Across the Alps, the variation in azimuth of S3 is defined by a progressive, counterclockwise rotation of about 45?? from the foreland in the north across the Helvetic domain to the Penninic nappes in the south and is accompanied by a change from a slight predominance of strike-slip mechanisms in the foreland to a strong predominance of normal faulting in the high parts of the Alps. The observed rotation can be explained by the perturbation of the large-scale regional stress by a local uniaxial deviatoric tension with a magnitude similar to that of the regional differential stress and with an orientation perpendicular to the strike of the Alpine belt. The tensile nature and orientation of this stress is consistent with the "spreading" stress expected from lateral density changes due to a crustal root beneath the Alps. Copyright 2004 by the American Geophysical Union.
Dillon, Joshua V.; Langmore, Ian; Tran, Dustin; Brevdo, Eugene; Vasudevan, Srinivas; Moore, Dave; Patton, Brian; Alemi, Alex; Hoffman, Matt; Saurous, Rif A.
2017-01-01
The TensorFlow Distributions library implements a vision of probability theory adapted to the modern deep-learning paradigm of end-to-end differentiable computation. Building on two basic abstractions, it offers flexible building blocks for probabilistic computation. Distributions provide fast, numerically stable methods for generating samples and computing statistics, e.g., log density. Bijectors provide composable volume-tracking transformations with automatic caching. Together these enable...
Simultaneous Invariants of Strain and Rotation Rate Tensors and Their Admitted Region
Directory of Open Access Journals (Sweden)
Igor Vigdorovich
2015-01-01
Full Text Available The purpose of this paper is to establish the admitted region for five simultaneous, functionally independent invariants of the strain rate tensor S and rotation rate tensor Ω and calculate some simultaneous invariants of these tensors which are encountered in the theory of constitutive relations for turbulent flows. Such a problem, as far as we know, has not yet been considered, though it is obviously an integral part of any problem in which scalar functions of the tensors S and Ω are studied. The theory provided inside this paper is the building block for a derivation of new algebraic constitutive relations for three-dimensional turbulent flows in the form of expansions of the Reynolds-stress tensor in a tensorial basis formed by the tensors S and Ω, in which the scalar coefficients depend on simultaneous invariants of these tensors.
The tensor product in Wadler's analysis of lists
DEFF Research Database (Denmark)
Nielson, Flemming; Nielson, Hanne Riis
1994-01-01
We consider abstract interpretation (in particular strictness analysis) for pairs and lists. We begin by reviewing the well-known fact that the best known description of a pair of elements is obtained using the tensor product rather than the cartesian product. We next present a generalisation...... of Wadler's strictness analysis for lists (1987) using the notion of open set. Finally, we illustrate the intimate connection between the case analysis implicit in Wadler's strictness analysis and the precision that the tensor product allows for modelling the inverse cons operation...
The tensor product in Wadler's analysis of lists
DEFF Research Database (Denmark)
Nielson, Flemming; Nielson, Hanne Riis
1992-01-01
We consider abstract interpretation (in particular strictness analysis) for pairs and lists. We begin by reviewing the well-known fact that the best known description of a pair of elements is obtained using the tensor product rather than the cartesian product. We next present a generalisation...... of Wadler's strictness analysis for lists using the notion of open set. Finally, we illustrate the intimate connection between the case analysis implicit in Wadler's strictness analysis and the precision that the tensor product allows for modelling the inverse cons operation....
Tensor Permutation Matrices in Finite Dimensions
Christian, Rakotonirina
2005-01-01
We have generalised the properties with the tensor product, of one 4x4 matrix which is a permutation matrix, and we call a tensor commutation matrix. Tensor commutation matrices can be constructed with or without calculus. A formula allows us to construct a tensor permutation matrix, which is a generalisation of tensor commutation matrix, has been established. The expression of an element of a tensor commutation matrix has been generalised in the case of any element of a tensor permutation ma...
International Nuclear Information System (INIS)
Namatame, Hirofumi; Taniguchi, Masaki
1994-01-01
Photoelectron spectroscopy is regarded as the most powerful means since it can measure almost perfectly the occupied electron state. On the other hand, inverse photoelectron spectroscopy is the technique for measuring unoccupied electron state by using the inverse process of photoelectron spectroscopy, and in principle, the similar experiment to photoelectron spectroscopy becomes feasible. The development of the experimental technology for inverse photoelectron spectroscopy has been carried out energetically by many research groups so far. At present, the heightening of resolution of inverse photoelectron spectroscopy, the development of inverse photoelectron spectroscope in which light energy is variable and so on are carried out. But the inverse photoelectron spectroscope for vacuum ultraviolet region is not on the market. In this report, the principle of inverse photoelectron spectroscopy and the present state of the spectroscope are described, and the direction of the development hereafter is groped. As the experimental equipment, electron guns, light detectors and so on are explained. As the examples of the experiment, the inverse photoelectron spectroscopy of semimagnetic semiconductors and resonance inverse photoelectron spectroscopy are reported. (K.I.)
Tensor Factorization for Low-Rank Tensor Completion.
Zhou, Pan; Lu, Canyi; Lin, Zhouchen; Zhang, Chao
2018-03-01
Recently, a tensor nuclear norm (TNN) based method was proposed to solve the tensor completion problem, which has achieved state-of-the-art performance on image and video inpainting tasks. However, it requires computing tensor singular value decomposition (t-SVD), which costs much computation and thus cannot efficiently handle tensor data, due to its natural large scale. Motivated by TNN, we propose a novel low-rank tensor factorization method for efficiently solving the 3-way tensor completion problem. Our method preserves the low-rank structure of a tensor by factorizing it into the product of two tensors of smaller sizes. In the optimization process, our method only needs to update two smaller tensors, which can be more efficiently conducted than computing t-SVD. Furthermore, we prove that the proposed alternating minimization algorithm can converge to a Karush-Kuhn-Tucker point. Experimental results on the synthetic data recovery, image and video inpainting tasks clearly demonstrate the superior performance and efficiency of our developed method over state-of-the-arts including the TNN and matricization methods.
DEFF Research Database (Denmark)
Rathleff, Michael Skovdal; Samani, Afshin; Olesen, Christian Gammelgaard
2011-01-01
Medial tibial stress syndrome is a common overuse injury characterized by pain located on the medial side of the lower leg during weight bearing activities such as gait. The purpose of this study was to apply linear and nonlinear methods to compare the structure of variability of midfoot kinemati...
Tensor norms and operator ideals
Defant, A; Floret, K
1992-01-01
The three chapters of this book are entitled Basic Concepts, Tensor Norms, and Special Topics. The first may serve as part of an introductory course in Functional Analysis since it shows the powerful use of the projective and injective tensor norms, as well as the basics of the theory of operator ideals. The second chapter is the main part of the book: it presents the theory of tensor norms as designed by Grothendieck in the Resumé and deals with the relation between tensor norms and operator ideals. The last chapter deals with special questions. Each section is accompanied by a series of exer
Notes on super Killing tensors
Energy Technology Data Exchange (ETDEWEB)
Howe, P.S. [Department of Mathematics, King’s College London,The Strand, London WC2R 2LS (United Kingdom); Lindström, University [Department of Physics and Astronomy, Theoretical Physics, Uppsala University,SE-751 20 Uppsala (Sweden); Theoretical Physics, Imperial College London,Prince Consort Road, London SW7 2AZ (United Kingdom)
2016-03-14
The notion of a Killing tensor is generalised to a superspace setting. Conserved quantities associated with these are defined for superparticles and Poisson brackets are used to define a supersymmetric version of the even Schouten-Nijenhuis bracket. Superconformal Killing tensors in flat superspaces are studied for spacetime dimensions 3,4,5,6 and 10. These tensors are also presented in analytic superspaces and super-twistor spaces for 3,4 and 6 dimensions. Algebraic structures associated with superconformal Killing tensors are also briefly discussed.
Tensor Train Neighborhood Preserving Embedding
Wang, Wenqi; Aggarwal, Vaneet; Aeron, Shuchin
2018-05-01
In this paper, we propose a Tensor Train Neighborhood Preserving Embedding (TTNPE) to embed multi-dimensional tensor data into low dimensional tensor subspace. Novel approaches to solve the optimization problem in TTNPE are proposed. For this embedding, we evaluate novel trade-off gain among classification, computation, and dimensionality reduction (storage) for supervised learning. It is shown that compared to the state-of-the-arts tensor embedding methods, TTNPE achieves superior trade-off in classification, computation, and dimensionality reduction in MNIST handwritten digits and Weizmann face datasets.
Asymptotic tensor rank of graph tensors: beyond matrix multiplication
M. Christandl (Matthias); P. Vrana (Péter); J. Zuiddam (Jeroen)
2016-01-01
textabstractWe present an upper bound on the exponent of the asymptotic behaviour of the tensor rank of a family of tensors defined by the complete graph on $k$ vertices. For $k\\geq4$, we show that the exponent per edge is at most 0.77, outperforming the best known upper bound on the exponent per
Ingram, WT
2012-01-01
Inverse limits provide a powerful tool for constructing complicated spaces from simple ones. They also turn the study of a dynamical system consisting of a space and a self-map into a study of a (likely more complicated) space and a self-homeomorphism. In four chapters along with an appendix containing background material the authors develop the theory of inverse limits. The book begins with an introduction through inverse limits on [0,1] before moving to a general treatment of the subject. Special topics in continuum theory complete the book. Although it is not a book on dynamics, the influen
New results for algebraic tensor reduction of Feynman integrals
Energy Technology Data Exchange (ETDEWEB)
Fleischer, Jochem [Bielefeld Univ. (Germany). Fakultaet fuer Physik; Riemann, Tord [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Yundin, Valery [Copenhagen Univ. (Denmark). Niels Bohr International Academy and Discovery Center
2012-02-15
We report on some recent developments in algebraic tensor reduction of one-loop Feynman integrals. For 5-point functions, an efficient tensor reduction was worked out recently and is now available as numerical C++ package, PJFry, covering tensor ranks until five. It is free of inverse 5- point Gram determinants and inverse small 4-point Gram determinants are treated by expansions in higher-dimensional 3-point functions. By exploiting sums over signed minors, weighted with scalar products of chords (or, equivalently, external momenta), extremely efficient expressions for tensor integrals contracted with external momenta were derived. The evaluation of 7-point functions is discussed. In the present approach one needs for the reductions a (d +2)-dimensional scalar 5-point function in addition to the usual scalar basis of 1- to 4-point functions in the generic dimension d=4-2{epsilon}. When exploiting the four-dimensionality of the kinematics, this basis is sufficient. We indicate how the (d+2)-dimensional 5-point function can be evaluated. (orig.)
New results for algebraic tensor reduction of Feynman integrals
International Nuclear Information System (INIS)
Fleischer, Jochem; Yundin, Valery
2012-02-01
We report on some recent developments in algebraic tensor reduction of one-loop Feynman integrals. For 5-point functions, an efficient tensor reduction was worked out recently and is now available as numerical C++ package, PJFry, covering tensor ranks until five. It is free of inverse 5- point Gram determinants and inverse small 4-point Gram determinants are treated by expansions in higher-dimensional 3-point functions. By exploiting sums over signed minors, weighted with scalar products of chords (or, equivalently, external momenta), extremely efficient expressions for tensor integrals contracted with external momenta were derived. The evaluation of 7-point functions is discussed. In the present approach one needs for the reductions a (d +2)-dimensional scalar 5-point function in addition to the usual scalar basis of 1- to 4-point functions in the generic dimension d=4-2ε. When exploiting the four-dimensionality of the kinematics, this basis is sufficient. We indicate how the (d+2)-dimensional 5-point function can be evaluated. (orig.)
Indicial tensor manipulation on MACSYMA
International Nuclear Information System (INIS)
Bogen, R.A.; Pavelle, R.
1977-01-01
A new computational tool for physical calculations is described. It is the first computer system capable of performing indicial tensor calculus (as opposed to component tensor calculus). It is now operational on the symbolic manipulation system MACSYMA. The authors outline the capabilities of the system and describe some of the physical problems considered as well as others being examined at this time. (Auth.)
Tucker Tensor analysis of Matern functions in spatial statistics
Litvinenko, Alexander
2018-03-09
In this work, we describe advanced numerical tools for working with multivariate functions and for the analysis of large data sets. These tools will drastically reduce the required computing time and the storage cost, and, therefore, will allow us to consider much larger data sets or finer meshes. Covariance matrices are crucial in spatio-temporal statistical tasks, but are often very expensive to compute and store, especially in 3D. Therefore, we approximate covariance functions by cheap surrogates in a low-rank tensor format. We apply the Tucker and canonical tensor decompositions to a family of Matern- and Slater-type functions with varying parameters and demonstrate numerically that their approximations exhibit exponentially fast convergence. We prove the exponential convergence of the Tucker and canonical approximations in tensor rank parameters. Several statistical operations are performed in this low-rank tensor format, including evaluating the conditional covariance matrix, spatially averaged estimation variance, computing a quadratic form, determinant, trace, loglikelihood, inverse, and Cholesky decomposition of a large covariance matrix. Low-rank tensor approximations reduce the computing and storage costs essentially. For example, the storage cost is reduced from an exponential O(n^d) to a linear scaling O(drn), where d is the spatial dimension, n is the number of mesh points in one direction, and r is the tensor rank. Prerequisites for applicability of the proposed techniques are the assumptions that the data, locations, and measurements lie on a tensor (axes-parallel) grid and that the covariance function depends on a distance, ||x-y||.
Killing-Yano tensors and Nambu mechanics
International Nuclear Information System (INIS)
Baleanu, D.
1998-01-01
Killing-Yano tensors were introduced in 1952 by Kentaro-Yano from mathematical point of view. The physical interpretation of Killing-Yano tensors of rank higher than two was unclear. We found that all Killing-Yano tensors η i 1 i 2 . .. i n with covariant derivative zero are Nambu tensors. We found that in the case of flat space case all Killing-Yano tensors are Nambu tensors. In the case of Taub-NUT and Kerr-Newmann metric Killing-Yano tensors of order two generate Nambu tensors of rank 3
Reduction method for one-loop tensor 5- and 6-point integrals revisited
International Nuclear Information System (INIS)
Diakonidis, Theodoros
2009-01-01
A complete analytical reduction of general one-loop Feynman integrals with five legs for tensors up to rank R=3 and six legs for tensors up to rank 4 is reviewed. An elegant formalism with extensive use of signed minors was developed for the cancellation of leading inverse Gram determinants. The resulting compact formulae allow both for a study of analytical properties and for efficient numerical programming. Here some special numerical examples are presented. (orig.)
International Nuclear Information System (INIS)
Beleggia, M.; Graef, M. de
2003-01-01
A method is presented to compute the demagnetization tensor field for uniformly magnetized particles of arbitrary shape. By means of a Fourier space approach it is possible to compute analytically the Fourier representation of the demagnetization tensor field for a given shape. Then, specifying the direction of the uniform magnetization, the demagnetizing field and the magnetostatic energy associated with the particle can be evaluated. In some particular cases, the real space representation is computable analytically. In general, a numerical inverse fast Fourier transform is required to perform the inversion. As an example, the demagnetization tensor field for the tetrahedron will be given
Inverse problem in transformation optics
DEFF Research Database (Denmark)
Novitsky, Andrey
2011-01-01
. We offer the solution of some sort of inverse problem: starting from the fields in the invisibility cloak we directly derive the permittivity and permeability tensors of the cloaking shell. This approach can be useful for finding material parameters for the specified electromagnetic fields......The straightforward method of transformation optics implies that one starts from the coordinate transformation and determines the Jacobian matrix, the fields and material parameters of the cloak. However, the coordinate transformation appears as an optional function: it is not necessary to know it...... in the cloaking shell without knowing the coordinate transformation....
MATLAB tensor classes for fast algorithm prototyping.
Energy Technology Data Exchange (ETDEWEB)
Bader, Brett William; Kolda, Tamara Gibson (Sandia National Laboratories, Livermore, CA)
2004-10-01
Tensors (also known as mutidimensional arrays or N-way arrays) are used in a variety of applications ranging from chemometrics to psychometrics. We describe four MATLAB classes for tensor manipulations that can be used for fast algorithm prototyping. The tensor class extends the functionality of MATLAB's multidimensional arrays by supporting additional operations such as tensor multiplication. The tensor as matrix class supports the 'matricization' of a tensor, i.e., the conversion of a tensor to a matrix (and vice versa), a commonly used operation in many algorithms. Two additional classes represent tensors stored in decomposed formats: cp tensor and tucker tensor. We descibe all of these classes and then demonstrate their use by showing how to implement several tensor algorithms that have appeared in the literature.
Random SU(2) invariant tensors
Li, Youning; Han, Muxin; Ruan, Dong; Zeng, Bei
2018-04-01
SU(2) invariant tensors are states in the (local) SU(2) tensor product representation but invariant under the global group action. They are of importance in the study of loop quantum gravity. A random tensor is an ensemble of tensor states. An average over the ensemble is carried out when computing any physical quantities. The random tensor exhibits a phenomenon known as ‘concentration of measure’, which states that for any bipartition the average value of entanglement entropy of its reduced density matrix is asymptotically the maximal possible as the local dimensions go to infinity. We show that this phenomenon is also true when the average is over the SU(2) invariant subspace instead of the entire space for rank-n tensors in general. It is shown in our earlier work Li et al (2017 New J. Phys. 19 063029) that the subleading correction of the entanglement entropy has a mild logarithmic divergence when n = 4. In this paper, we show that for n > 4 the subleading correction is not divergent but a finite number. In some special situation, the number could be even smaller than 1/2, which is the subleading correction of random state over the entire Hilbert space of tensors.
Full-wave Moment Tensor and Tomographic Inversions Based on 3D Strain Green Tensor
2010-01-31
out on a Beowulf PC cluster purchased with a grant from the National Science Foundation. This work would not be possible without the creativity and...J. Ritsema, and J. Tromp, The spectral-element method, Beowulf computing, and global seismology, Science 298, 1737-1742, 2002. Li, X., and B
Calculating contracted tensor Feynman integrals
International Nuclear Information System (INIS)
Fleischer, J.; Riemann, T.
2011-01-01
A recently derived approach to the tensor reduction of 5-point one-loop Feynman integrals expresses the tensor coefficients by scalar 1-point to 4-point Feynman integrals completely algebraically. In this Letter we derive extremely compact algebraic expressions for the contractions of the tensor integrals with external momenta. This is based on sums over signed minors weighted with scalar products of the external momenta. With these contractions one can construct the invariant amplitudes of the matrix elements under consideration, and the evaluation of one-loop contributions to massless and massive multi-particle production at high energy colliders like LHC and ILC is expected to be performed very efficiently.
Calculating contracted tensor Feynman integrals
International Nuclear Information System (INIS)
Fleischer, J.
2011-05-01
A recently derived approach to the tensor reduction of 5-point one-loop Feynman integrals expresses the tensor coefficients by scalar 1-point to 4-point Feynman integrals completely algebraically. In this letter we derive extremely compact algebraic expressions for the contractions of the tensor integrals with externalmomenta. This is based on sums over signedminors weighted with scalar products of the external momenta. With these contractions one can construct the invariant amplitudes of the matrix elements under consideration, and the evaluation of one-loop contributions to massless and massive multi-particle production at high energy colliders like LHC and ILC is expected to be performed very efficiently. (orig.)
Tensor Product of Polygonal Cell Complexes
Chien, Yu-Yen
2017-01-01
We introduce the tensor product of polygonal cell complexes, which interacts nicely with the tensor product of link graphs of complexes. We also develop the unique factorization property of polygonal cell complexes with respect to the tensor product, and study the symmetries of tensor products of polygonal cell complexes.
Colored Tensor Models - a Review
Directory of Open Access Journals (Sweden)
Razvan Gurau
2012-04-01
Full Text Available Colored tensor models have recently burst onto the scene as a promising conceptual and computational tool in the investigation of problems of random geometry in dimension three and higher. We present a snapshot of the cutting edge in this rapidly expanding research field. Colored tensor models have been shown to share many of the properties of their direct ancestor, matrix models, which encode a theory of fluctuating two-dimensional surfaces. These features include the possession of Feynman graphs encoding topological spaces, a 1/N expansion of graph amplitudes, embedded matrix models inside the tensor structure, a resumable leading order with critical behavior and a continuum large volume limit, Schwinger-Dyson equations satisfying a Lie algebra (akin to the Virasoro algebra in two dimensions, non-trivial classical solutions and so on. In this review, we give a detailed introduction of colored tensor models and pointers to current and future research directions.
Physical and Geometric Interpretations of the Riemann Tensor, Ricci Tensor, and Scalar Curvature
Loveridge, Lee C.
2004-01-01
Various interpretations of the Riemann Curvature Tensor, Ricci Tensor, and Scalar Curvature are described. Also, the physical meanings of the Einstein Tensor and Einstein's Equations are discussed. Finally a derivation of Newtonian Gravity from Einstein's Equations is given.
A Simplified Algorithm for Inverting Higher Order Diffusion Tensors
Directory of Open Access Journals (Sweden)
Laura Astola
2014-11-01
Full Text Available In Riemannian geometry, a distance function is determined by an inner product on the tangent space. In Riemann–Finsler geometry, this distance function can be determined by a norm. This gives more freedom on the form of the so-called indicatrix or the set of unit vectors. This has some interesting applications, e.g., in medical image analysis, especially in diffusion weighted imaging (DWI. An important application of DWI is in the inference of the local architecture of the tissue, typically consisting of thin elongated structures, such as axons or muscle fibers, by measuring the constrained diffusion of water within the tissue. From high angular resolution diffusion imaging (HARDI data, one can estimate the diffusion orientation distribution function (dODF, which indicates the relative diffusivity in all directions and can be represented by a spherical polynomial. We express this dODF as an equivalent spherical monomial (higher order tensor to directly generalize the (second order diffusion tensor approach. To enable efficient computation of Riemann–Finslerian quantities on diffusion weighted (DW-images, such as the metric/norm tensor, we present a simple and efficient algorithm to invert even order spherical monomials, which extends the familiar inversion of diffusion tensors, i.e., symmetric matrices.
The tensor rank of tensor product of two three-qubit W states is eight
Chen, Lin; Friedland, Shmuel
2017-01-01
We show that the tensor rank of tensor product of two three-qubit W states is not less than eight. Combining this result with the recent result of M. Christandl, A. K. Jensen, and J. Zuiddam that the tensor rank of tensor product of two three-qubit W states is at most eight, we deduce that the tensor rank of tensor product of two three-qubit W states is eight. We also construct the upper bound of the tensor rank of tensor product of many three-qubit W states.
DUCASSE , Eric; YAACOUBI , Slah
2010-01-01
International audience; A tensor Hankel transform'' (THT) is defined for vector fields, such as displacement, and second-order tensor fields, such as stress or strain. The THT establishes a bijection between the real space and the wave-vector domain, and, remarkably, cannot be reduced to a scalar transform applied separately to each component. One of the advantages of this approach is that some standard elasticity problems can be concisely rewritten by applying this tensor integral transform ...
Tensor Target Polarization at TRIUMF
Energy Technology Data Exchange (ETDEWEB)
Smith, G
2014-10-27
The first measurements of tensor observables in $\\pi \\vec{d}$ scattering experiments were performed in the mid-80's at TRIUMF, and later at SIN/PSI. The full suite of tensor observables accessible in $\\pi \\vec{d}$ elastic scattering were measured: $T_{20}$, $T_{21}$, and $T_{22}$. The vector analyzing power $iT_{11}$ was also measured. These results led to a better understanding of the three-body theory used to describe this reaction. %Some measurements were also made in the absorption and breakup channels. A direct measurement of the target tensor polarization was also made independent of the usual NMR techniques by exploiting the (nearly) model-independent result for the tensor analyzing power at 90$^\\circ _{cm}$ in the $\\pi \\vec{d} \\rightarrow 2p$ reaction. This method was also used to check efforts to enhance the tensor polarization by RF burning of the NMR spectrum. A brief description of the methods developed to measure and analyze these experiments is provided.
Link prediction via generalized coupled tensor factorisation
DEFF Research Database (Denmark)
Ermiş, Beyza; Evrim, Acar Ataman; Taylan Cemgil, A.
2012-01-01
and higher-order tensors. We propose to use an approach based on probabilistic interpretation of tensor factorisation models, i.e., Generalised Coupled Tensor Factorisation, which can simultaneously fit a large class of tensor models to higher-order tensors/matrices with com- mon latent factors using...... different loss functions. Numerical experiments demonstrate that joint analysis of data from multiple sources via coupled factorisation improves the link prediction performance and the selection of right loss function and tensor model is crucial for accurately predicting missing links....
Hardebeck, Jeanne L.
2015-01-01
Smith and Heaton (2011) propose a model in which stress in the crust is fractal‐like and highly variable on a range of length scales, including short length‐scales of ~1 km. Smith and Heaton (2011) motivate the need for stress heterogeneity on short length‐scales by citing observations such as short length‐scale changes in stress directions inferred from borehole breakouts, short length‐scale changes in earthquake slip, and the success of numerical models that include short‐wavelength stress heterogeneity. The heterogeneous part of the stress field in their model is more than twice as large as the homogeneous part. The stress field in this model frequently reverses itself over short distances, as can be seen in figure14 a of Smith and Heaton (2011). The modeled stress field contains at least 10 areas of reversed shear stress direction over the length of a 100 km long profile, with the length of the reversed areas ranging from <1 to ~5 km.
Tensor product of quantum logics
Pulmannová, Sylvia
1985-01-01
A quantum logic is the couple (L,M) where L is an orthomodular σ-lattice and M is a strong set of states on L. The Jauch-Piron property in the σ-form is also supposed for any state of M. A ``tensor product'' of quantum logics is defined. This definition is compared with the definition of a free orthodistributive product of orthomodular σ-lattices. The existence and uniqueness of the tensor product in special cases of Hilbert space quantum logics and one quantum and one classical logic are studied.
Phase transition in tensor models
Energy Technology Data Exchange (ETDEWEB)
Delepouve, Thibault [Laboratoire de Physique Théorique, CNRS UMR 8627, Université Paris Sud,91405 Orsay Cedex (France); Centre de Physique Théorique, CNRS UMR 7644, École Polytechnique,91128 Palaiseau Cedex (France); Gurau, Razvan [Centre de Physique Théorique, CNRS UMR 7644, École Polytechnique,91128 Palaiseau Cedex (France); Perimeter Institute for Theoretical Physics,31 Caroline St. N, N2L 2Y5, Waterloo, ON (Canada)
2015-06-25
Generalizing matrix models, tensor models generate dynamical triangulations in any dimension and support a 1/N expansion. Using the intermediate field representation we explicitly rewrite a quartic tensor model as a field theory for a fluctuation field around a vacuum state corresponding to the resummation of the entire leading order in 1/N (a resummation of the melonic family). We then prove that the critical regime in which the continuum limit in the sense of dynamical triangulations is reached is precisely a phase transition in the field theory sense for the fluctuation field.
Tensor calculus for physics a concise guide
Neuenschwander, Dwight E
2015-01-01
Understanding tensors is essential for any physics student dealing with phenomena where causes and effects have different directions. A horizontal electric field producing vertical polarization in dielectrics; an unbalanced car wheel wobbling in the vertical plane while spinning about a horizontal axis; an electrostatic field on Earth observed to be a magnetic field by orbiting astronauts—these are some situations where physicists employ tensors. But the true beauty of tensors lies in this fact: When coordinates are transformed from one system to another, tensors change according to the same rules as the coordinates. Tensors, therefore, allow for the convenience of coordinates while also transcending them. This makes tensors the gold standard for expressing physical relationships in physics and geometry. Undergraduate physics majors are typically introduced to tensors in special-case applications. For example, in a classical mechanics course, they meet the "inertia tensor," and in electricity and magnetism...
The 'gravitating' tensor in the dualistic theory
International Nuclear Information System (INIS)
Mahanta, M.N.
1989-01-01
The exact microscopic system of Einstein-type field equations of the dualistic gravitation theory is investigated as well as an analysis of the modified energy-momentum tensor or so called 'gravitating' tensor is presented
Reciprocal mass tensor : a general form
International Nuclear Information System (INIS)
Roy, C.L.
1978-01-01
Using the results of earlier treatment of wave packets, a general form of reciprocal mass tensor has been obtained. The elements of this tensor are seen to be dependent on momentum as well as space coordinates of the particle under consideration. The conditions under which the tensor would reduce to the usual space-independent form, are discussed and the impact of the space-dependence of this tensor on the motion of Bloch electrons, is examined. (author)
Tensor-based spatiotemporal saliency detection
Dou, Hao; Li, Bin; Deng, Qianqian; Zhang, LiRui; Pan, Zhihong; Tian, Jinwen
2018-03-01
This paper proposes an effective tensor-based spatiotemporal saliency computation model for saliency detection in videos. First, we construct the tensor representation of video frames. Then, the spatiotemporal saliency can be directly computed by the tensor distance between different tensors, which can preserve the complete temporal and spatial structure information of object in the spatiotemporal domain. Experimental results demonstrate that our method can achieve encouraging performance in comparison with the state-of-the-art methods.
Akkerman, Erik M.
2010-01-01
Both in diffusion tensor imaging (DTI) and in generalized diffusion tensor imaging (GDTI) the relation between the diffusion tensor and the measured apparent diffusion coefficients is given by a tensorial equation, which needs to be inverted in order to solve the diffusion tensor. The traditional
Weyl tensors for asymmetric complex curvatures
International Nuclear Information System (INIS)
Oliveira, C.G.
Considering a second rank Hermitian field tensor and a general Hermitian connection the associated complex curvature tensor is constructed. The Weyl tensor that corresponds to this complex curvature is determined. The formalism is applied to the Weyl unitary field theory and to the Moffat gravitational theory. (Author) [pt
Vector and tensor analysis with applications
Borisenko, A I; Silverman, Richard A
1979-01-01
Concise and readable, this text ranges from definition of vectors and discussion of algebraic operations on vectors to the concept of tensor and algebraic operations on tensors. It also includes a systematic study of the differential and integral calculus of vector and tensor functions of space and time. Worked-out problems and solutions. 1968 edition.
Projectors and seed conformal blocks for traceless mixed-symmetry tensors
Energy Technology Data Exchange (ETDEWEB)
Costa, Miguel S. [Centro de Física do Porto, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Theory Division, Department of Physics, CERN, CH-1211 Genève 23 (Switzerland); Hansen, Tobias [Centro de Física do Porto, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany); Penedones, João [Centro de Física do Porto, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Theory Division, Department of Physics, CERN, CH-1211 Genève 23 (Switzerland); Fields and Strings Laboratory, Institute of Physics, EPFL, CH-1015 Lausanne (Switzerland); Trevisani, Emilio [Centro de Física do Porto, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)
2016-07-05
In this paper we derive the projectors to all irreducible SO(d) representations (traceless mixed-symmetry tensors) that appear in the partial wave decomposition of a conformal correlator of four stress-tensors in d dimensions. These projectors are given in a closed form for arbitrary length l{sub 1} of the first row of the Young diagram. The appearance of Gegenbauer polynomials leads directly to recursion relations in l{sub 1} for seed conformal blocks. Further results include a differential operator that generates the projectors to traceless mixed-symmetry tensors and the general normalization constant of the shadow operator.
Projectors and seed conformal blocks for traceless mixed-symmetry tensors
Costa, Miguel S.; Penedones, João; Trevisani, Emilio
2016-01-01
In this paper we derive the projectors to all irreducible SO(d) representations (traceless mixed-symmetry tensors) that appear in the partial wave decomposition of a conformal correlator of four stress-tensors in d dimensions. These projectors are given in a closed form for arbitrary length $l_1$ of the first row of the Young diagram. The appearance of Gegenbauer polynomials leads directly to recursion relations in $l_1$ for seed conformal blocks. Further results include a differential operator that generates the projectors to traceless mixed-symmetry tensors and the general normalization constant of the shadow operator.
Regional Moment Tensor Source-Type Discrimination Analysis
2015-11-16
66 34: COSO and Amargosa full moment tensor inversion results with 1D and 3D Green’s functions...Md) COSO 1990/03/10, 16:00:00.08 37.104 -116.075 417 4.50 (Md) HOYA 1991/09/14, 19:00:00.08 37.226 -116.429 658 5.40 (Md) JUNCTION 1992/03/26...explosions (METROPOLIS, COSO , HOYA and JUNCTION), we fix the source depth at 1 km for both 1D and 3D GFs. For the comparison at different frequency
Comparison of Magnetic Susceptibility Tensor and Diffusion Tensor of the Brain.
Li, Wei; Liu, Chunlei
2013-10-01
Susceptibility tensor imaging (STI) provides a novel approach for noninvasive assessment of the white matter pathways of the brain. Using mouse brain ex vivo , we compared STI with diffusion tensor imaging (DTI), in terms of tensor values, principal tensor values, anisotropy values, and tensor orientations. Despite the completely different biophysical underpinnings, magnetic susceptibility tensors and diffusion tensors show many similarities in the tensor and principal tensor images, for example, the tensors perpendicular to the fiber direction have the highest gray-white matter contrast, and the largest principal tensor is along the fiber direction. Comparison to DTI fractional anisotropy, the susceptibility anisotropy provides much higher sensitivity to the chemical composition of the white matter, especially myelin. The high sensitivity can be further enhanced with the perfusion of ProHance, a gadolinium-based contrast agent. Regarding the tensor orientations, the direction of the largest principal susceptibility tensor agrees with that of diffusion tensors in major white matter fiber bundles. The STI fiber tractography can reconstruct the fiber pathways for the whole corpus callosum and for white matter fiber bundles that are in close contact but in different orientations. There are some differences between susceptibility and diffusion tensor orientations, which are likely due to the limitations in the current STI reconstruction. With the development of more accurate reconstruction methods, STI holds the promise for probing the white matter micro-architectures with more anatomical details and higher chemical sensitivity.
Tensor Fields for Use in Fractional-Order Viscoelasticity
Freed, Alan D.; Diethelm, Kai
2003-01-01
To be able to construct viscoelastic material models from fractional0order differentegral equations that are applicable for 3D finite-strain analysis requires definitions for fractional derivatives and integrals for symmetric tensor fields, like stress and strain. We define these fields in the body manifold. We then map them ito spatial fields expressed in terms of an Eulerian or Lagrangian reference frame where most analysts prefer to solve boundary problems.
Evaluation of the tensor polynomial failure criterion for composite materials
Tennyson, R. C.; Macdonald, D.; Nanyaro, A. P.
1978-01-01
A comprehensive experimental and analytical evaluation of the tensor polynomial failure criterion was undertaken to determine its capability for predicting the ultimate strength of laminated composite structures subject to a plane stress state. Results are presented demonstrating that a quadratic formulation is too conservative and a cubic representation is required. Strength comparisons with test data derived from glass/epoxy and graphite/epoxy tubular specimens are also provided to validate the cubic strength criterion.
The Physical Interpretation of the Lanczos Tensor
Roberts, Mark D.
1999-01-01
The field equations of general relativity can be written as first order differential equations in the Weyl tensor, the Weyl tensor in turn can be written as a first order differential equation in a three index tensor called the Lanczos tensor. The Lanczos tensor plays a similar role in general relativity to that of the vector potential in electro-magnetic theory. The Aharonov-Bohm effect shows that when quantum mechanics is applied to electro-magnetic theory the vector potential is dynamicall...
Testing earthquake source inversion methodologies
Page, Morgan T.
2011-01-01
Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data and the complex rupture process at depth. The resulting earthquake source models quantify the spatiotemporal evolution of ruptures. They are also used to provide a rapid assessment of the severity of an earthquake and to estimate losses. However, because of uncertainties in the data, assumed fault geometry and velocity structure, and chosen rupture parameterization, it is not clear which features of these source models are robust. Improved understanding of the uncertainty and reliability of earthquake source inversions will allow the scientific community to use the robust features of kinematic inversions to more thoroughly investigate the complexity of the rupture process and to better constrain other earthquakerelated computations, such as ground motion simulations and static stress change calculations.
Conformal correlators of mixed-symmetry tensors
Costa, Miguel S
2015-01-01
We generalize the embedding formalism for conformal field theories to the case of general operators with mixed symmetry. The index-free notation encoding symmetric tensors as polynomials in an auxiliary polarization vector is extended to mixed-symmetry tensors by introducing a new commuting or anticommuting polarization vector for each row or column in the Young diagram that describes the index symmetries of the tensor. We determine the tensor structures that are allowed in n-point conformal correlation functions and give an algorithm for counting them in terms of tensor product coefficients. We show, with an example, how the new formalism can be used to compute conformal blocks of arbitrary external fields for the exchange of any conformal primary and its descendants. The matching between the number of tensor structures in conformal field theory correlators of operators in d dimensions and massive scattering amplitudes in d+1 dimensions is also seen to carry over to mixed-symmetry tensors.
Antisymmetric tensor generalizations of affine vector fields.
Houri, Tsuyoshi; Morisawa, Yoshiyuki; Tomoda, Kentaro
2016-02-01
Tensor generalizations of affine vector fields called symmetric and antisymmetric affine tensor fields are discussed as symmetry of spacetimes. We review the properties of the symmetric ones, which have been studied in earlier works, and investigate the properties of the antisymmetric ones, which are the main theme in this paper. It is shown that antisymmetric affine tensor fields are closely related to one-lower-rank antisymmetric tensor fields which are parallelly transported along geodesics. It is also shown that the number of linear independent rank- p antisymmetric affine tensor fields in n -dimensions is bounded by ( n + 1)!/ p !( n - p )!. We also derive the integrability conditions for antisymmetric affine tensor fields. Using the integrability conditions, we discuss the existence of antisymmetric affine tensor fields on various spacetimes.
Koch, Saskia B. J.; van Zuiden, Mirjam; Nawijn, Laura; Frijling, Jessie L.; Veltman, Dick J.; Olff, Miranda
2017-01-01
Background: Posttraumatic stress disorder (PTSD) is a disabling psychiatric disorder that has been associated with lower white matter integrity of tracts connecting the prefrontal cortex with limbic regions. However, previous diffusion tensor imaging (DTI) findings have been inconsistent, showing
Spectral Tensor-Train Decomposition
DEFF Research Database (Denmark)
Bigoni, Daniele; Engsig-Karup, Allan Peter; Marzouk, Youssef M.
2016-01-01
discretizations of the target function. We assess the performance of the method on a range of numerical examples: a modified set of Genz functions with dimension up to 100, and functions with mixed Fourier modes or with local features. We observe significant improvements in performance over an anisotropic......The accurate approximation of high-dimensional functions is an essential task in uncertainty quantification and many other fields. We propose a new function approximation scheme based on a spectral extension of the tensor-train (TT) decomposition. We first define a functional version of the TT.......e., the “cores”) comprising the functional TT decomposition. This result motivates an approximation scheme employing polynomial approximations of the cores. For functions with appropriate regularity, the resulting spectral tensor-train decomposition combines the favorable dimension-scaling of the TT...
Diffusion tensor optical coherence tomography
Marks, Daniel L.; Blackmon, Richard L.; Oldenburg, Amy L.
2018-01-01
In situ measurements of diffusive particle transport provide insight into tissue architecture, drug delivery, and cellular function. Analogous to diffusion-tensor magnetic resonance imaging (DT-MRI), where the anisotropic diffusion of water molecules is mapped on the millimeter scale to elucidate the fibrous structure of tissue, here we propose diffusion-tensor optical coherence tomography (DT-OCT) for measuring directional diffusivity and flow of optically scattering particles within tissue. Because DT-OCT is sensitive to the sub-resolution motion of Brownian particles as they are constrained by tissue macromolecules, it has the potential to quantify nanoporous anisotropic tissue structure at micrometer resolution as relevant to extracellular matrices, neurons, and capillaries. Here we derive the principles of DT-OCT, relating the detected optical signal from a minimum of six probe beams with the six unique diffusion tensor and three flow vector components. The optimal geometry of the probe beams is determined given a finite numerical aperture, and a high-speed hardware implementation is proposed. Finally, Monte Carlo simulations are employed to assess the ability of the proposed DT-OCT system to quantify anisotropic diffusion of nanoparticles in a collagen matrix, an extracellular constituent that is known to become highly aligned during tumor development.
Transposes, L-Eigenvalues and Invariants of Third Order Tensors
Qi, Liqun
2017-01-01
Third order tensors have wide applications in mechanics, physics and engineering. The most famous and useful third order tensor is the piezoelectric tensor, which plays a key role in the piezoelectric effect, first discovered by Curie brothers. On the other hand, the Levi-Civita tensor is famous in tensor calculus. In this paper, we study third order tensors and (third order) hypermatrices systematically, by regarding a third order tensor as a linear operator which transforms a second order t...
Normal stresses in semiflexible polymer hydrogels
Vahabi, M.; Vos, Bart E.; de Cagny, Henri C. G.; Bonn, Daniel; Koenderink, Gijsje H.; MacKintosh, F. C.
2018-03-01
Biopolymer gels such as fibrin and collagen networks are known to develop tensile axial stress when subject to torsion. This negative normal stress is opposite to the classical Poynting effect observed for most elastic solids including synthetic polymer gels, where torsion provokes a positive normal stress. As shown recently, this anomalous behavior in fibrin gels depends on the open, porous network structure of biopolymer gels, which facilitates interstitial fluid flow during shear and can be described by a phenomenological two-fluid model with viscous coupling between network and solvent. Here we extend this model and develop a microscopic model for the individual diagonal components of the stress tensor that determine the axial response of semiflexible polymer hydrogels. This microscopic model predicts that the magnitude of these stress components depends inversely on the characteristic strain for the onset of nonlinear shear stress, which we confirm experimentally by shear rheometry on fibrin gels. Moreover, our model predicts a transient behavior of the normal stress, which is in excellent agreement with the full time-dependent normal stress we measure.
Sparse alignment for robust tensor learning.
Lai, Zhihui; Wong, Wai Keung; Xu, Yong; Zhao, Cairong; Sun, Mingming
2014-10-01
Multilinear/tensor extensions of manifold learning based algorithms have been widely used in computer vision and pattern recognition. This paper first provides a systematic analysis of the multilinear extensions for the most popular methods by using alignment techniques, thereby obtaining a general tensor alignment framework. From this framework, it is easy to show that the manifold learning based tensor learning methods are intrinsically different from the alignment techniques. Based on the alignment framework, a robust tensor learning method called sparse tensor alignment (STA) is then proposed for unsupervised tensor feature extraction. Different from the existing tensor learning methods, L1- and L2-norms are introduced to enhance the robustness in the alignment step of the STA. The advantage of the proposed technique is that the difficulty in selecting the size of the local neighborhood can be avoided in the manifold learning based tensor feature extraction algorithms. Although STA is an unsupervised learning method, the sparsity encodes the discriminative information in the alignment step and provides the robustness of STA. Extensive experiments on the well-known image databases as well as action and hand gesture databases by encoding object images as tensors demonstrate that the proposed STA algorithm gives the most competitive performance when compared with the tensor-based unsupervised learning methods.
Tensor SOM and tensor GTM: Nonlinear tensor analysis by topographic mappings.
Iwasaki, Tohru; Furukawa, Tetsuo
2016-05-01
In this paper, we propose nonlinear tensor analysis methods: the tensor self-organizing map (TSOM) and the tensor generative topographic mapping (TGTM). TSOM is a straightforward extension of the self-organizing map from high-dimensional data to tensorial data, and TGTM is an extension of the generative topographic map, which provides a theoretical background for TSOM using a probabilistic generative model. These methods are useful tools for analyzing and visualizing tensorial data, especially multimodal relational data. For given n-mode relational data, TSOM and TGTM can simultaneously organize a set of n-topographic maps. Furthermore, they can be used to explore the tensorial data space by interactively visualizing the relationships between modes. We present the TSOM algorithm and a theoretical description from the viewpoint of TGTM. Various TSOM variations and visualization techniques are also described, along with some applications to real relational datasets. Additionally, we attempt to build a comprehensive description of the TSOM family by adapting various data structures. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, J.; Zheng, Y.; Thomsen, L.
2017-12-01
Knowing the in situ seismic anisotropy around deep earthquakes in slabs is important in understanding deep-earthquake mechanism as it may provide critically needed information about the rock fabric where deep earthquakes occur. It has been recognized for about 50 years that many deep earthquakes are not double-couple (DC) events. Previously we showed that in situ anisotropy around deep earthquakes could explain such observed non-DC events. Traditionally, the shear wave splitting method has been used to infer such anisotropy around deep earthquakes but this is challenging because it will need many crossing ray paths for the method to localize the anisotropic region (Long 2013). In this abstract, we adopt the same procedure to obtain anisotropy in the Pacific slab under Japan using moment tensors provided by the Japan Meteorological Agency using the F-net data. We directly probe the in situ anisotropy within the subducting slabs using the radiation patterns (represented by the moment tensors) of deep earthquakes (with depth greater than 60 km). By assuming a group of shear dislocation events embedded in a common tilted transversely isotropic (TTI) medium, we used the moment tensors as our input data to invert for the anisotropy in Mariana-Japan-Kuril subducting zone. The TTI medium is characterized by the P and S wave velocities along the symmetry axis (described by two free angles) and three Thomsen parameters. We divided the deep earthquake events into 9 groups by their spatial proximity using the k-means clustering method (Hartigan and Wong 1979). These 9 groups include 2 intermediate-depth groups (depth from 60 km to 300 km) and 7 deep-focus groups (depth greater than 300 km). Our inversion results show that the inverted TTI symmetry axes are perpendicular to the slab interface for two intermediate-depth groups (consistent with dehydration metamorphic reactions) and parallel to the slab interface for 7 deep-focus group. The shear wave anisotropy is best resolved
Seamless warping of diffusion tensor fields
DEFF Research Database (Denmark)
Xu, Dongrong; Hao, Xuejun; Bansal, Ravi
2008-01-01
To warp diffusion tensor fields accurately, tensors must be reoriented in the space to which the tensors are warped based on both the local deformation field and the orientation of the underlying fibers in the original image. Existing algorithms for warping tensors typically use forward mapping...... of seams, including voxels in which the deformation is extensive. Backward mapping, however, cannot reorient tensors in the template space because information about the directional orientation of fiber tracts is contained in the original, unwarped imaging space only, and backward mapping alone cannot...... transfer that information to the template space. To combine the advantages of forward and backward mapping, we propose a novel method for the spatial normalization of diffusion tensor (DT) fields that uses a bijection (a bidirectional mapping with one-to-one correspondences between image spaces) to warp DT...
Numerical Approximation of Elasticity Tensor Associated With Green-Naghdi Rate.
Liu, Haofei; Sun, Wei
2017-08-01
Objective stress rates are often used in commercial finite element (FE) programs. However, deriving a consistent tangent modulus tensor (also known as elasticity tensor or material Jacobian) associated with the objective stress rates is challenging when complex material models are utilized. In this paper, an approximation method for the tangent modulus tensor associated with the Green-Naghdi rate of the Kirchhoff stress is employed to simplify the evaluation process. The effectiveness of the approach is demonstrated through the implementation of two user-defined fiber-reinforced hyperelastic material models. Comparisons between the approximation method and the closed-form analytical method demonstrate that the former can simplify the material Jacobian evaluation with satisfactory accuracy while retaining its computational efficiency. Moreover, since the approximation method is independent of material models, it can facilitate the implementation of complex material models in FE analysis using shell/membrane elements in abaqus.
Schrimpf, Martin
2016-01-01
Google's Machine Learning framework TensorFlow was open-sourced in November 2015 [1] and has since built a growing community around it. TensorFlow is supposed to be flexible for research purposes while also allowing its models to be deployed productively. This work is aimed towards people with experience in Machine Learning considering whether they should use TensorFlow in their environment. Several aspects of the framework important for such a decision are examined, such as the heterogenity,...
Dictionary-Based Tensor Canonical Polyadic Decomposition
Cohen, Jeremy Emile; Gillis, Nicolas
2018-04-01
To ensure interpretability of extracted sources in tensor decomposition, we introduce in this paper a dictionary-based tensor canonical polyadic decomposition which enforces one factor to belong exactly to a known dictionary. A new formulation of sparse coding is proposed which enables high dimensional tensors dictionary-based canonical polyadic decomposition. The benefits of using a dictionary in tensor decomposition models are explored both in terms of parameter identifiability and estimation accuracy. Performances of the proposed algorithms are evaluated on the decomposition of simulated data and the unmixing of hyperspectral images.
Bayesian regularization of diffusion tensor images
DEFF Research Database (Denmark)
Frandsen, Jesper; Hobolth, Asger; Østergaard, Leif
2007-01-01
Diffusion tensor imaging (DTI) is a powerful tool in the study of the course of nerve fibre bundles in the human brain. Using DTI, the local fibre orientation in each image voxel can be described by a diffusion tensor which is constructed from local measurements of diffusion coefficients along...... several directions. The measured diffusion coefficients and thereby the diffusion tensors are subject to noise, leading to possibly flawed representations of the three dimensional fibre bundles. In this paper we develop a Bayesian procedure for regularizing the diffusion tensor field, fully utilizing...
Inflationary cosmology and 4-index tensor fields
International Nuclear Information System (INIS)
Moorhouse, R.G.; Nixon, J.
1985-01-01
We show how an arbitrarily large expansion of the ordinary dimensions in the very early universe can be achieved in the d=11 supergravity theory where the 4-index anti-symmetric tensor field supplies the energy-momentum tensor. However, the decrease of the extra dimensions is too fast to give a satisfactory inflationary cosmology. If a 4-index tensor field is similar used to provide the energy-momentum tensor in dimensions significantly greater than 11 the inflationary outlook is more hopeful. (orig.)
A RENORMALIZATION PROCEDURE FOR TENSOR MODELS AND SCALAR-TENSOR THEORIES OF GRAVITY
SASAKURA, NAOKI
2010-01-01
Tensor models are more-index generalizations of the so-called matrix models, and provide models of quantum gravity with the idea that spaces and general relativity are emergent phenomena. In this paper, a renormalization procedure for the tensor models whose dynamical variable is a totally symmetric real three-tensor is discussed. It is proven that configurations with certain Gaussian forms are the attractors of the three-tensor under the renormalization procedure. Since these Gaussian config...
Inverse problems of geophysics
International Nuclear Information System (INIS)
Yanovskaya, T.B.
2003-07-01
This report gives an overview and the mathematical formulation of geophysical inverse problems. General principles of statistical estimation are explained. The maximum likelihood and least square fit methods, the Backus-Gilbert method and general approaches for solving inverse problems are discussed. General formulations of linearized inverse problems, singular value decomposition and properties of pseudo-inverse solutions are given
Directory of Open Access Journals (Sweden)
Halis Aygün
2008-01-01
Full Text Available We introduce definitions of fuzzy inverse compactness, fuzzy inverse countable compactness, and fuzzy inverse Lindelöfness on arbitrary -fuzzy sets in -fuzzy topological spaces. We prove that the proposed definitions are good extensions of the corresponding concepts in ordinary topology and obtain different characterizations of fuzzy inverse compactness.
Bound-Preserving Reconstruction of Tensor Quantities for Remap in ALE Fluid Dynamics
Energy Technology Data Exchange (ETDEWEB)
Klima, Matej [Czech Technical Univ. in Prague, Praha (Czech Republic); Kucharik, MIlan [Czech Technical Univ. in Prague, Praha (Czech Republic); Shashkov, Mikhail Jurievich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Velechovsky, Jan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-01-06
We analyze several new and existing approaches for limiting tensor quantities in the context of deviatoric stress remapping in an ALE numerical simulation of elastic flow. Remapping and limiting of the tensor component-by-component is shown to violate radial symmetry of derived variables such as elastic energy or force. Therefore, we have extended the symmetry-preserving Vector Image Polygon algorithm, originally designed for limiting vector variables. This limiter constrains the vector (in our case a vector of independent tensor components) within the convex hull formed by the vectors from surrounding cells – an equivalent of the discrete maximum principle in scalar variables. We compare this method with a limiter designed specifically for deviatoric stress limiting which aims to constrain the J_{2} invariant that is proportional to the specific elastic energy and scale the tensor accordingly. We also propose a method which involves remapping and limiting the J_{2} invariant independently using known scalar techniques. The deviatoric stress tensor is then scaled to match this remapped invariant, which guarantees conservation in terms of elastic energy.
Algebraic classification of the Weyl tensor in higher dimensions based on its 'superenergy' tensor
International Nuclear Information System (INIS)
Senovilla, Jose M M
2010-01-01
The algebraic classification of the Weyl tensor in the arbitrary dimension n is recovered by means of the principal directions of its 'superenergy' tensor. This point of view can be helpful in order to compute the Weyl aligned null directions explicitly, and permits one to obtain the algebraic type of the Weyl tensor by computing the principal eigenvalue of rank-2 symmetric future tensors. The algebraic types compatible with states of intrinsic gravitational radiation can then be explored. The underlying ideas are general, so that a classification of arbitrary tensors in the general dimension can be achieved. (fast track communication)
Im, Jong Hee; Cho, Young-Hee; Kim, Geun-Don; Kang, Geun-Ho; Hong, Jung-Woo; Yoo, Sang-Dong
2014-10-01
Terrestrial plants are exposed to complex stresses of high salt-induced abscisic acid (ABA) and submergence-induced hypoxia when seawater floods fields. Many studies have investigated plant responses to individual stress conditions, but not so much for coupled or sequentially imposed stresses. We examined molecular regulatory mechanisms of gene expression underlying the cellular responses involved in crosstalk between salt and hypoxia stresses. Salt/ABA- and AtMYC2-dependent induction of a synthetic ABA-responsive element and the native RD22 promoters were utilized in our cell-based functional assays. Such promoter-based reporter induction was largely inhibited by hypoxia and hypoxia-inducible AKIN10 activity. Biochemical analyses showed that AKIN10 negatively modulates AtMYC2 protein accumulation via proteasome activity upon AKIN10 kinase activity-dependent protein modification. Further genetic analysis using transgenic plants expressing AKIN10 provided evidence that AKIN10 activity undermined AtMYC2-dependent salt tolerance. Our findings unravel a novel molecular interaction between the key signalling constituents leading crosstalk between salt and hypoxia stresses in Arabidopsis thaliana under the detrimental condition of submergence in saltwater. © 2014 John Wiley & Sons Ltd.
Unique characterization of the Bel-Robinson tensor
International Nuclear Information System (INIS)
Bergqvist, G; Lankinen, P
2004-01-01
We prove that a completely symmetric and trace-free rank-4 tensor is, up to sign, a Bel-Robinson-type tensor, i.e., the superenergy tensor of a tensor with the same algebraic symmetries as the Weyl tensor, if and only if it satisfies a certain quadratic identity. This may be seen as the first Rainich theory result for rank-4 tensors
Differential invariants for higher-rank tensors. A progress report
International Nuclear Information System (INIS)
Tapial, V.
2004-07-01
We outline the construction of differential invariants for higher-rank tensors. In section 2 we outline the general method for the construction of differential invariants. A first result is that the simplest tensor differential invariant contains derivatives of the same order as the rank of the tensor. In section 3 we review the construction for the first-rank tensors (vectors) and second-rank tensors (metrics). In section 4 we outline the same construction for higher-rank tensors. (author)
Friction tensor concept for textured surfaces
Indian Academy of Sciences (India)
This paper proposes the concept of a friction tensor analogous to the heat conduc- tion tensor in anisotropic media. This implies that there exists two principal friction coefficients μ1,2 analogous to the principal conductivities k1,2. For symmetrically textured surfaces the principal directions are orthogonal with atleast one ...
Gravitational Metric Tensor Exterior to Rotating Homogeneous ...
African Journals Online (AJOL)
The covariant and contravariant metric tensors exterior to a homogeneous spherical body rotating uniformly about a common φ axis with constant angular velocity ω is constructed. The constructed metric tensors in this gravitational field have seven non-zero distinct components.The Lagrangian for this gravitational field is ...
Friction tensor concept for textured surfaces
Indian Academy of Sciences (India)
Depending on the sliding direction the coefﬁcient of friction varies between maximum and minimum for textured surfaces. For random surfaces without any texture the friction coefﬁcient becomes independent of the sliding direction. This paper proposes the concept of a friction tensor analogous to the heat conduction tensor ...
DEFF Research Database (Denmark)
Schnohr, P; Kristensen, T S; Prescott, E
2005-01-01
The associations between physical activity in leisure time with special focus on jogging and the level of mental stress and life dissatisfaction were studied in 12 028 randomly selected men and women aged 20-79 years. The associations were similar in men and women; thus, results are given...... for pooled data. The odds ratios (ORs) are presented as adjusted for sex, age, body mass index, smoking, alcohol consumption, education and income. With increasing physical activity in leisure time, there was a decrease in high level of stress, between sedentary persons and joggers, OR=0.30 (95% confidence...... pronounced difference with regard to the level of stress and dissatisfaction was seen between the group with low and the group with moderate physical activity, e.g., 2-4 h of walking per week. In conclusion, we recommend that increased well-being should be a key argument in future campaigns for increased...
Directory of Open Access Journals (Sweden)
Kuang-dai Leng
2012-01-01
Full Text Available Fabric tensor has proved to be an effective tool statistically characterizing directional data in a smooth and frame-indifferent form. Directional data arising from microscopic physics and mechanics can be summed up as tensor-valued orientation distribution functions (ODFs. Two characterizations of the tensor-valued ODFs are proposed, using the asymmetric and symmetric fabric tensors respectively. The later proves to be nonconvergent and less accurate but still an available solution for where fabric tensors are required in full symmetry. Analytic solutions of the two types of fabric tensors characterizing centrosymmetric and anticentrosymmetric tensor-valued ODFs are presented in terms of orthogonal irreducible decompositions in both two- and three-dimensional (2D and 3D spaces. Accuracy analysis is performed on normally distributed random ODFs to evaluate the approximation quality of the two characterizations, where fabric tensors of higher orders are employed. It is shown that the fitness is dominated by the dispersion degree of the original ODFs rather than the orders of fabric tensors. One application of tensor-valued ODF and fabric tensor in continuum damage mechanics is presented.
Tensor completion and low-n-rank tensor recovery via convex optimization
International Nuclear Information System (INIS)
Gandy, Silvia; Yamada, Isao; Recht, Benjamin
2011-01-01
In this paper we consider sparsity on a tensor level, as given by the n-rank of a tensor. In an important sparse-vector approximation problem (compressed sensing) and the low-rank matrix recovery problem, using a convex relaxation technique proved to be a valuable solution strategy. Here, we will adapt these techniques to the tensor setting. We use the n-rank of a tensor as a sparsity measure and consider the low-n-rank tensor recovery problem, i.e. the problem of finding the tensor of the lowest n-rank that fulfills some linear constraints. We introduce a tractable convex relaxation of the n-rank and propose efficient algorithms to solve the low-n-rank tensor recovery problem numerically. The algorithms are based on the Douglas–Rachford splitting technique and its dual variant, the alternating direction method of multipliers
Weyl curvature tensor in static spherical sources
International Nuclear Information System (INIS)
Ponce de Leon, J.
1988-01-01
The role of the Weyl curvature tensor in static sources of the Schwarzschild field is studied. It is shown that in general the contribution from the Weyl curvature tensor (the ''purely gravitational field energy'') to the mass-energy inside the body may be positive, negative, or zero. It is proved that a positive (negative) contribution from the Weyl tensor tends to increase (decrease) the effective gravitational mass, the red-shift (from a point in the sphere to infinity), as well as the gravitational force which acts on a constituent matter element of a body. It is also proved that the contribution from the Weyl tensor always is negative in sources with surface gravitational potential larger than (4/9. It is pointed out that large negative contributions from the Weyl tensor could give rise to the phenomenon of gravitational repulsion. A simple example which illustrates the results is discussed
A recursive reduction of tensor Feynman integrals
International Nuclear Information System (INIS)
Diakonidis, T.; Riemann, T.; Tausk, J.B.; Fleischer, J.
2009-07-01
We perform a recursive reduction of one-loop n-point rank R tensor Feynman integrals [in short: (n,R)-integrals] for n≤6 with R≤n by representing (n,R)-integrals in terms of (n,R-1)- and (n-1,R-1)-integrals. We use the known representation of tensor integrals in terms of scalar integrals in higher dimension, which are then reduced by recurrence relations to integrals in generic dimension. With a systematic application of metric tensor representations in terms of chords, and by decomposing and recombining these representations, we find the recursive reduction for the tensors. The procedure represents a compact, sequential algorithm for numerical evaluations of tensor Feynman integrals appearing in next-to-leading order contributions to massless and massive three- and four-particle production at LHC and ILC, as well as at meson factories. (orig.)
Seamless warping of diffusion tensor fields
DEFF Research Database (Denmark)
Xu, Dongrong; Hao, Xuejun; Bansal, Ravi
2008-01-01
of seams, including voxels in which the deformation is extensive. Backward mapping, however, cannot reorient tensors in the template space because information about the directional orientation of fiber tracts is contained in the original, unwarped imaging space only, and backward mapping alone cannot......To warp diffusion tensor fields accurately, tensors must be reoriented in the space to which the tensors are warped based on both the local deformation field and the orientation of the underlying fibers in the original image. Existing algorithms for warping tensors typically use forward mapping...... deformations in an attempt to ensure that the local deformations in the warped image remains true to the orientation of the underlying fibers; forward mapping, however, can also create "seams" or gaps and consequently artifacts in the warped image by failing to define accurately the voxels in the template...
On Lovelock analogs of the Riemann tensor
Energy Technology Data Exchange (ETDEWEB)
Camanho, Xian O. [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik, Golm (Germany); Dadhich, Naresh [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); Inter-University Centre for Astronomy and Astrophysics, Pune (India)
2016-03-15
It is possible to define an analog of the Riemann tensor for Nth order Lovelock gravity, its characterizing property being that the trace of its Bianchi derivative yields the corresponding analog of the Einstein tensor. Interestingly there exist two parallel but distinct such analogs and the main purpose of this note is to reconcile both formulations. In addition we will introduce a simple tensor identity and use it to show that any pure Lovelock vacuum in odd d = 2N + 1 dimensions is Lovelock flat, i.e. any vacuum solution of the theory has vanishing Lovelock-Riemann tensor. Further, in the presence of cosmological constant it is the Lovelock-Weyl tensor that vanishes. (orig.)
Czech Academy of Sciences Publication Activity Database
Staněk, František; Eisner, Leo; Vesnaver, A.
2017-01-01
Roč. 14, č. 2 (2017), s. 235-240 ISSN 1214-9705 Grant - others:AV ČR(CZ) CNR-16-17 Program:Bilaterální spolupráce Institutional support: RVO:67985891 Keywords : microseismic monitoring * source mechanism * moment tensor * inversion Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: 1.7 Other natural sciences Impact factor: 0.699, year: 2016
Moment Tensor code for the Antelope Environmental Monitoring System
Reyes, J.; Newman, R.; Vernon, F.; van den Hazel, G.
2012-04-01
The time domain seismic moment tensor inversion software package written by Dreger (2003) and updated by Minson & Dreger (2008) has been rewritten for inclusion into the open-source contributed code repository for the Boulder Real Time Technology (BRTT) Antelope Environmental Monitoring System. The new code-base was written natively in the Python language and utilizes the Python interface to Antelope (Lindquist et al., 2008) for data access, Scientific Tools for Python library (Eric Jones et al., 2001) for computation and analysis, and the ObsPy library (Beyreuther et al., 2010) for graphical representation. The new code archives all data products into a Center for Seismic Studies (CSS) 3.0 schema table for easy access and distribution of solutions. Stability of the analysis, verification of results and correlation of solutions with similar methods are discussed in this presentation. Analysis is focused on regional earthquakes recorded by Earthscope's USArray network and event parameters are taken from real time and post-event processed data analysis at the Array Network Facility (ANF). A calibrated velocity model representative of the south-west continental United States is used for the analysis. Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y. and Wassermann, J. (2010) ObsPy: A Python Toolbox for Seismology, Seismic Research Letters, 81(3), 530-533. Dreger, D. (2003) TDMT_INV: Time Domain Seismic Moment Tensor INVersion, International Handbook of Earthquake and Engineering Seismology, Volume 81B, p 1627. Eric Jones, Travis Oliphant, Pearu Peterson (2001) SciPy: Open Source Scientific Tools for Python, "http://www.scipy.org/" Lindquist, K.G., Clemesha, A., Newman, R.L. and Vernon, F.L. (2008) The Python Interface to Antelope and Applications. Eos Trans. AGU 89(53), Fall Meet. Suppl., Abstract G43A-0671 Minson, S. & Dreger, D. (2008) Stable inversions for complete moment tensors. Geophys. J. Int., 174, 585-592 Saikia, C. (1994) Modified frequency
Inverse bootstrapping conformal field theories
Li, Wenliang
2018-01-01
We propose a novel approach to study conformal field theories (CFTs) in general dimensions. In the conformal bootstrap program, one usually searches for consistent CFT data that satisfy crossing symmetry. In the new method, we reverse the logic and interpret manifestly crossing-symmetric functions as generating functions of conformal data. Physical CFTs can be obtained by scanning the space of crossing-symmetric functions. By truncating the fusion rules, we are able to concentrate on the low-lying operators and derive some approximate relations for their conformal data. It turns out that the free scalar theory, the 2d minimal model CFTs, the ϕ 4 Wilson-Fisher CFT, the Lee-Yang CFTs and the Ising CFTs are consistent with the universal relations from the minimal fusion rule ϕ 1 × ϕ 1 = I + ϕ 2 + T , where ϕ 1 , ϕ 2 are scalar operators, I is the identity operator and T is the stress tensor.
Czech Academy of Sciences Publication Activity Database
Kolář, Petr
2008-01-01
Roč. 5, 1 /149/ (2008), s. 31-39 ISSN 1214-9705 R&D Projects: GA AV ČR IAA300120502; GA AV ČR IAA200120701; GA AV ČR(CZ) IAA300120805 Institutional research plan: CEZ:AV0Z30120515 Keywords : seismic moment tensor inversion * error estimation * seismic moment tensor decomposition Subject RIV: DC - Siesmology, Volcanology, Earth Structure
International Nuclear Information System (INIS)
Montesinos, M.; Flores, E.
2006-01-01
The symmetric and gauge-invariant energy-momentum tensors for source-free Maxwell and Yang-Mills theories are obtained by means of translations in spacetime via a systematic implementation of Noether's theorem. For the source-free neutral Proca field, the same procedure yields also the symmetric energy-momentum tensor. In all cases, the key point to get the right expressions for the energy-momentum tensors is the appropriate handling of their equations of motion and the Bianchi identities. It must be stressed that these results are obtained without using Belinfante's symmetrization techniques which are usually employed to this end. (Author)
Dislocations, the elastic energy momentum tensor and crack propagation
International Nuclear Information System (INIS)
Lung, Chi-wei
1979-07-01
Based upon dislocation theory, some stress intensity factors can be calculated for practical cases. The results obtained by this method have been found to agree fairly well with the results obtained by the conventional fracture mechanics. The elastic energy momentum tensor has been used to calculate the force acting on the crack tip. A discussion on the kinetics of migration of impurities to the crack tip was given. It seems that the crack tip sometimes may be considered as a singularity in an elastic field and the fundamental law of classical field theory is applicable on the problem in fracture of materials. (author)
Gradiometry - an Inverse Problem in Modern Satellite Geodesy
Freeden, Willi; Schneider, F.; Schreiner, Michael
1996-01-01
Satellite gradiometry and its instrumentation is an ultra-sensitive detection technique of the space gravitational gradient (i.e. the Hesse tensor of the gravitational potential). Gradeometry will be of great significance in inertial navigation, gravity survey, geodynamics and earthquake prediction research. In this paper, satellite gradiometry formulated as an inverse problem of satellite geodesy is discussed from two mathematical aspects: Firstly, satellite gradiometry is considered as a co...
Efficient Tensor Completion for Color Image and Video Recovery: Low-Rank Tensor Train.
Bengua, Johann A; Phien, Ho N; Tuan, Hoang Duong; Do, Minh N
2017-05-01
This paper proposes a novel approach to tensor completion, which recovers missing entries of data represented by tensors. The approach is based on the tensor train (TT) rank, which is able to capture hidden information from tensors thanks to its definition from a well-balanced matricization scheme. Accordingly, new optimization formulations for tensor completion are proposed as well as two new algorithms for their solution. The first one called simple low-rank tensor completion via TT (SiLRTC-TT) is intimately related to minimizing a nuclear norm based on TT rank. The second one is from a multilinear matrix factorization model to approximate the TT rank of a tensor, and is called tensor completion by parallel matrix factorization via TT (TMac-TT). A tensor augmentation scheme of transforming a low-order tensor to higher orders is also proposed to enhance the effectiveness of SiLRTC-TT and TMac-TT. Simulation results for color image and video recovery show the clear advantage of our method over all other methods.
Schnohr, P; Kristensen, T S; Prescott, E; Scharling, H
2005-04-01
The associations between physical activity in leisure time with special focus on jogging and the level of mental stress and life dissatisfaction were studied in 12 028 randomly selected men and women aged 20-79 years. The associations were similar in men and women; thus, results are given for pooled data. The odds ratios (ORs) are presented as adjusted for sex, age, body mass index, smoking, alcohol consumption, education and income. With increasing physical activity in leisure time, there was a decrease in high level of stress, between sedentary persons and joggers, OR=0.30 (95% confidence interval (CI) from 0.16 to 0.56). With increasing physical activity there was also a decrease in life dissatisfaction, between sedentary persons and joggers, OR=0.30 (95% CI from 0.18 to 0.52). Although there was a dose-response effect between physical activity and psychosocial well-being the most pronounced difference with regard to the level of stress and dissatisfaction was seen between the group with low and the group with moderate physical activity, e.g., 2-4 h of walking per week. In conclusion, we recommend that increased well-being should be a key argument in future campaigns for increased leisure-time physical activity.
Conformal field theories and tensor categories. Proceedings
Energy Technology Data Exchange (ETDEWEB)
Bai, Chengming [Nankai Univ., Tianjin (China). Chern Institute of Mathematics; Fuchs, Juergen [Karlstad Univ. (Sweden). Theoretical Physics; Huang, Yi-Zhi [Rutgers Univ., Piscataway, NJ (United States). Dept. of Mathematics; Kong, Liang [Tsinghua Univ., Beijing (China). Inst. for Advanced Study; Runkel, Ingo; Schweigert, Christoph (eds.) [Hamburg Univ. (Germany). Dept. of Mathematics
2014-08-01
First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.
Tensor network method for reversible classical computation
Yang, Zhi-Cheng; Kourtis, Stefanos; Chamon, Claudio; Mucciolo, Eduardo R.; Ruckenstein, Andrei E.
2018-03-01
We develop a tensor network technique that can solve universal reversible classical computational problems, formulated as vertex models on a square lattice [Nat. Commun. 8, 15303 (2017), 10.1038/ncomms15303]. By encoding the truth table of each vertex constraint in a tensor, the total number of solutions compatible with partial inputs and outputs at the boundary can be represented as the full contraction of a tensor network. We introduce an iterative compression-decimation (ICD) scheme that performs this contraction efficiently. The ICD algorithm first propagates local constraints to longer ranges via repeated contraction-decomposition sweeps over all lattice bonds, thus achieving compression on a given length scale. It then decimates the lattice via coarse-graining tensor contractions. Repeated iterations of these two steps gradually collapse the tensor network and ultimately yield the exact tensor trace for large systems, without the need for manual control of tensor dimensions. Our protocol allows us to obtain the exact number of solutions for computations where a naive enumeration would take astronomically long times.
Coupled channels Marchenko inversion for nucleon-nucleon potentials
International Nuclear Information System (INIS)
Kohlhoff, H.; Geramb, H.V. von
1994-01-01
Marchenko inversion is used to determine local energy independent but channel dependent potential matrices from optimum sets of experimental phase shifts. 3 SD 1 and 3 PF 2 channels of nucleon-nucleon systems contain in their off-diagonal potential matrices explicitly the tensor force for T = 0 and 1 isospin. We obtain, together with single channels, complete sets of quantitative nucleon-nucleon potential results which are ready for application in nuclear structure and reaction analyses. The historic coupled channels inversion result of Newton and Fulton is revisited. (orig.)
Inversion of P-wave traveltimes from a VSP experiment in a homogeneous anisotropic medium
Ruzek, Bohuslav; Psencik, Ivan
2016-04-01
Determination of seismic anisotropy of rock environment plays an important role both in structural and exploration seismology. Knowledge of the orientation and strength of anisotropy has important geological implications as, e.g., estimation of the orientation of structural elements (layering, dikes, fissures) or of the orientation of the tectonic stress. The goal of this contribution is to test, first in a homogeneous model, the P-wave traveltime inversion based on weak-anisotropy approximation. In this approximation, traveltimes depend, approximately, on 15 P-wave weak-anisotropy (WA) parameters representing an alternative to the standard parameterization by a stiffness tensor. A typical VSP (vertical seismic profiling) configuration is considered, which guarantees relatively high angular illumination of a medium. As observed data, exact P-wave traveltimes generated in homogeneous orthorhombic media of arbitrary orientation, noise free or with added Gaussian noise are used. Results of the inversion are estimates of 15 P-wave WA parameters with corresponding resolution and covariance matrices. Properties of resolution matrices indicate quality of the measurement configuration. Properties of covariance matrices allow us to estimate the accuracy, with which individual WA parameters are determined. Results of a number of synthetic tests for varying source-receiver configurations, two velocity approximations, varying noise types/levels, etc. are presented.
Surface tensor estimation from linear sections
DEFF Research Database (Denmark)
Kousholt, Astrid; Kiderlen, Markus; Hug, Daniel
From Crofton's formula for Minkowski tensors we derive stereological estimators of translation invariant surface tensors of convex bodies in the n-dimensional Euclidean space. The estimators are based on one-dimensional linear sections. In a design based setting we suggest three types of estimators....... These are based on isotropic uniform random lines, vertical sections, and non-isotropic random lines, respectively. Further, we derive estimators of the specific surface tensors associated with a stationary process of convex particles in the model based setting....
Abelian gauge theories with tensor gauge fields
International Nuclear Information System (INIS)
Kapuscik, E.
1984-01-01
Gauge fields of arbitrary tensor type are introduced. In curved space-time the gravitational field serves as a bridge joining different gauge fields. The theory of second order tensor gauge field is developed on the basis of close analogy to Maxwell electrodynamics. The notion of tensor current is introduced and an experimental test of its detection is proposed. The main result consists in a coupled set of field equations representing a generalization of Maxwell theory in which the Einstein equivalence principle is not satisfied. (author)
Surface tensor estimation from linear sections
DEFF Research Database (Denmark)
Kousholt, Astrid; Kiderlen, Markus; Hug, Daniel
2015-01-01
From Crofton’s formula for Minkowski tensors we derive stereological estimators of translation invariant surface tensors of convex bodies in the n-dimensional Euclidean space. The estimators are based on one-dimensional linear sections. In a design based setting we suggest three types of estimators....... These are based on isotropic uniform random lines, vertical sections, and non-isotropic random lines, respectively. Further, we derive estimators of the specific surface tensors associated with a stationary process of convex particles in the model based setting....
Why are tensor field theories asymptotically free?
Rivasseau, V.
2015-09-01
In this pedagogic letter we explain the combinatorics underlying the generic asymptotic freedom of tensor field theories. We focus on simple combinatorial models with a 1/p2 propagator and quartic interactions and on the comparison between the intermediate field representations of the vector, matrix and tensor cases. The transition from asymptotic freedom (tensor case) to asymptotic safety (matrix case) is related to the crossing symmetry of the matrix vertex, whereas in the vector case, the lack of asymptotic freedom (“Landau ghost”), as in the ordinary scalar φ^44 case, is simply due to the absence of any wave function renormalization at one loop.
Li, Xu; van Zijl, Peter C M
2014-09-01
An increasing number of studies show that magnetic susceptibility in white matter fibers is anisotropic and may be described by a tensor. However, the limited head rotation possible for in vivo human studies leads to an ill-conditioned inverse problem in susceptibility tensor imaging (STI). Here we suggest the combined use of limiting the susceptibility anisotropy to white matter and imposing morphology constraints on the mean magnetic susceptibility (MMS) for regularizing the STI inverse problem. The proposed MMS regularized STI (MMSR-STI) method was tested using computer simulations and in vivo human data collected at 3T. The fiber orientation estimated from both the STI and MMSR-STI methods was compared to that from diffusion tensor imaging (DTI). Computer simulations show that the MMSR-STI method provides a more accurate estimation of the susceptibility tensor than the conventional STI approach. Similarly, in vivo data show that use of the MMSR-STI method leads to a smaller difference between the fiber orientation estimated from STI and DTI for most selected white matter fibers. The proposed regularization strategy for STI can improve estimation of the susceptibility tensor in white matter. © 2014 Wiley Periodicals, Inc.
Tucker tensor analysis of Matern functions in spatial statistics
Litvinenko, Alexander
2018-04-20
Low-rank Tucker tensor methods in spatial statistics 1. Motivation: improve statistical models 2. Motivation: disadvantages of matrices 3. Tools: Tucker tensor format 4. Tensor approximation of Matern covariance function via FFT 5. Typical statistical operations in Tucker tensor format 6. Numerical experiments
Minimal Gersgorin tensor eigenvalue inclusion set and its numerical approximation
Li, Chaoqian; Li, Yaotang
2015-01-01
For a complex tensor A, Minimal Gersgorin tensor eigenvalue inclusion set of A is presented, and its sufficient and necessary condition is given. Furthermore, we study its boundary by the spectrums of the equimodular set and the extended equimodular set for A. Lastly, for an irreducible tensor, a numerical approximation to Minimal Gersgorin tensor eigenvalue inclusion set is given.
TensorFlow Agents: Efficient Batched Reinforcement Learning in TensorFlow
Hafner, Danijar; Davidson, James; Vanhoucke, Vincent
2017-01-01
We introduce TensorFlow Agents, an efficient infrastructure paradigm for building parallel reinforcement learning algorithms in TensorFlow. We simulate multiple environments in parallel, and group them to perform the neural network computation on a batch rather than individual observations. This allows the TensorFlow execution engine to parallelize computation, without the need for manual synchronization. Environments are stepped in separate Python processes to progress them in parallel witho...
C%2B%2B tensor toolbox user manual.
Energy Technology Data Exchange (ETDEWEB)
Plantenga, Todd D.; Kolda, Tamara Gibson
2012-04-01
The C++ Tensor Toolbox is a software package for computing tensor decompositions. It is based on the Matlab Tensor Toolbox, and is particularly optimized for sparse data sets. This user manual briefly overviews tensor decomposition mathematics, software capabilities, and installation of the package. Tensors (also known as multidimensional arrays or N-way arrays) are used in a variety of applications ranging from chemometrics to network analysis. The Tensor Toolbox provides classes for manipulating dense, sparse, and structured tensors in C++. The Toolbox compiles into libraries and is intended for use with custom applications written by users.
Unsupervised Tensor Mining for Big Data Practitioners.
Papalexakis, Evangelos E; Faloutsos, Christos
2016-09-01
Multiaspect data are ubiquitous in modern Big Data applications. For instance, different aspects of a social network are the different types of communication between people, the time stamp of each interaction, and the location associated to each individual. How can we jointly model all those aspects and leverage the additional information that they introduce to our analysis? Tensors, which are multidimensional extensions of matrices, are a principled and mathematically sound way of modeling such multiaspect data. In this article, our goal is to popularize tensors and tensor decompositions to Big Data practitioners by demonstrating their effectiveness, outlining challenges that pertain to their application in Big Data scenarios, and presenting our recent work that tackles those challenges. We view this work as a step toward a fully automated, unsupervised tensor mining tool that can be easily and broadly adopted by practitioners in academia and industry.
Potentials for transverse trace-free tensors
International Nuclear Information System (INIS)
Conboye, Rory; Murchadha, Niall Ó
2014-01-01
In constructing and understanding initial conditions in the 3 + 1 formalism for numerical relativity, the transverse and trace-free (TT) part of the extrinsic curvature plays a key role. We know that TT tensors possess two degrees of freedom per space point. However, finding an expression for a TT tensor depending on only two scalar functions is a non-trivial task. Assuming either axial or translational symmetry, expressions depending on two scalar potentials alone are derived here for all TT tensors in flat 3-space. In a more general spatial slice, only one of these potentials is found, the same potential given in (Baker and Puzio 1999 Phys. Rev. D 59 044030) and (Dain 2001 Phys. Rev. D 64 124002), with the remaining equations reduced to a partial differential equation, depending on boundary conditions for a solution. As an exercise, we also derive the potentials which give the Bowen-York curvature tensor in flat space. (paper)
Correlators in tensor models from character calculus
Directory of Open Access Journals (Sweden)
A. Mironov
2017-11-01
Full Text Available We explain how the calculations of [20], which provided the first evidence for non-trivial structures of Gaussian correlators in tensor models, are efficiently performed with the help of the (Hurwitz character calculus. This emphasizes a close similarity between technical methods in matrix and tensor models and supports a hope to understand the emerging structures in very similar terms. We claim that the 2m-fold Gaussian correlators of rank r tensors are given by r-linear combinations of dimensions with the Young diagrams of size m. The coefficients are made from the characters of the symmetric group Sm and their exact form depends on the choice of the correlator and on the symmetries of the model. As the simplest application of this new knowledge, we provide simple expressions for correlators in the Aristotelian tensor model as tri-linear combinations of dimensions.
Energy-momentum tensor in scalar QED
International Nuclear Information System (INIS)
Joglekar, S.D.; Misra, A.
1988-01-01
We consider the renormalization of the energy-momentum tensor in scalar quantum electrodynamics. We show the need for adding an improvement term to the conventional energy-momentum tensor. We consider two possible forms for the improvement term: (i) one in which the improvement coefficient is a finite function of bare parameters of the theory (so that the energy-momentum tensor can be obtained from an action that is a finite function of bare quantities); (ii) one in which the improvement coefficient is a finite quantity, i.e., a finite function of renormalized parameters. We establish a negative result; viz., neither form leads to a finite energy-momentum tensor to O(e 2 λ/sup n/). .AE
Reconstruction of convex bodies from surface tensors
DEFF Research Database (Denmark)
Kousholt, Astrid; Kiderlen, Markus
. The output of the reconstruction algorithm is a polytope P, where the surface tensors of P and K are identical up to rank s. We establish a stability result based on a generalization of Wirtinger’s inequality that shows that for large s, two convex bodies are close in shape when they have identical surface...... that are translates of each other. An algorithm for reconstructing an unknown convex body in R 2 from its surface tensors up to a certain rank is presented. Using the reconstruction algorithm, the shape of an unknown convex body can be approximated when only a finite number s of surface tensors are available...... tensors up to rank s. This is used to establish consistency of the developed reconstruction algorithm....
Reconstruction of convex bodies from surface tensors
DEFF Research Database (Denmark)
Kousholt, Astrid; Kiderlen, Markus
2016-01-01
We present two algorithms for reconstruction of the shape of convex bodies in the two-dimensional Euclidean space. The first reconstruction algorithm requires knowledge of the exact surface tensors of a convex body up to rank s for some natural number s. When only measurements subject to noise...... of surface tensors are available for reconstruction, we recommend to use certain values of the surface tensors, namely harmonic intrinsic volumes instead of the surface tensors evaluated at the standard basis. The second algorithm we present is based on harmonic intrinsic volumes and allows for noisy...... measurements. From a generalized version of Wirtinger's inequality, we derive stability results that are utilized to ensure consistency of both reconstruction procedures. Consistency of the reconstruction procedure based on measurements subject to noise is established under certain assumptions on the noise...
An introduction to linear algebra and tensors
Akivis, M A; Silverman, Richard A
1978-01-01
Eminently readable, completely elementary treatment begins with linear spaces and ends with analytic geometry, covering multilinear forms, tensors, linear transformation, and more. 250 problems, most with hints and answers. 1972 edition.
Correlators in tensor models from character calculus
Mironov, A.; Morozov, A.
2017-11-01
We explain how the calculations of [20], which provided the first evidence for non-trivial structures of Gaussian correlators in tensor models, are efficiently performed with the help of the (Hurwitz) character calculus. This emphasizes a close similarity between technical methods in matrix and tensor models and supports a hope to understand the emerging structures in very similar terms. We claim that the 2m-fold Gaussian correlators of rank r tensors are given by r-linear combinations of dimensions with the Young diagrams of size m. The coefficients are made from the characters of the symmetric group Sm and their exact form depends on the choice of the correlator and on the symmetries of the model. As the simplest application of this new knowledge, we provide simple expressions for correlators in the Aristotelian tensor model as tri-linear combinations of dimensions.
Shifted power method for computing tensor eigenpairs.
Energy Technology Data Exchange (ETDEWEB)
Mayo, Jackson R.; Kolda, Tamara Gibson
2010-10-01
Recent work on eigenvalues and eigenvectors for tensors of order m {>=} 3 has been motivated by applications in blind source separation, magnetic resonance imaging, molecular conformation, and more. In this paper, we consider methods for computing real symmetric-tensor eigenpairs of the form Ax{sup m-1} = {lambda}x subject to {parallel}x{parallel} = 1, which is closely related to optimal rank-1 approximation of a symmetric tensor. Our contribution is a novel shifted symmetric higher-order power method (SS-HOPM), which we showis guaranteed to converge to a tensor eigenpair. SS-HOPM can be viewed as a generalization of the power iteration method for matrices or of the symmetric higher-order power method. Additionally, using fixed point analysis, we can characterize exactly which eigenpairs can and cannot be found by the method. Numerical examples are presented, including examples from an extension of the method to fnding complex eigenpairs.
Calculus of tensors and differential forms
Sinha, Rajnikant
2014-01-01
Calculus of tensors and differential forms is an introductory-level textbook. Through this book, students will familiarize themselves with tools they need in order to use for further study on general relativity and research, such as affine tensors, tensor calculus on manifolds, relative tensors, Lie derivatives, wedge products, differential forms, and Stokes' theorem. The treatment is concrete and in detail, so that abstract concepts do not deter even physics and engineering students. This self contained book requires undergraduate-level calculus of several variables and linear algebra as prerequisite. Fubini's theorem in real analysis, to be used in Stokes' theorem, has been proved earlier than Stokes' theorem so that students don't have to search elsewhere.
The energy–momentum tensor(s in classical gauge theories
Directory of Open Access Journals (Sweden)
Daniel N. Blaschke
2016-11-01
Full Text Available We give an introduction to, and review of, the energy–momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space–time. For the canonical energy–momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy–momentum tensor. The relationship with the Einstein–Hilbert tensor following from the coupling to a gravitational field is also discussed.
The Energy-Momentum Tensor(s) in Classical Gauge Theories
Blaschke, Daniel N.; Gieres, Francois; Reboud, Meril; Schweda, Manfred
2016-01-01
We give an introduction to, and review of, the energy–momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space–time. For the canonical energy–momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy–momentum tensor. The relationship with the Einstein–Hilbert tensor following from t...
The energy–momentum tensor(s) in classical gauge theories
Energy Technology Data Exchange (ETDEWEB)
Blaschke, Daniel N., E-mail: dblaschke@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Gieres, François, E-mail: gieres@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Claude Bernard Lyon 1 and CNRS/IN2P3, Bat. P. Dirac, 4 rue Enrico Fermi, F-69622 Villeurbanne (France); Reboud, Méril, E-mail: meril.reboud@ens-lyon.fr [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Claude Bernard Lyon 1 and CNRS/IN2P3, Bat. P. Dirac, 4 rue Enrico Fermi, F-69622 Villeurbanne (France); Ecole Normale Supérieure de Lyon, 46 allée d' Italie, F-69364 Lyon CEDEX 07 (France); Schweda, Manfred, E-mail: mschweda@tph.tuwien.ac.at [Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, A-1040 Vienna (Austria)
2016-11-15
We give an introduction to, and review of, the energy–momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space–time. For the canonical energy–momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy–momentum tensor. The relationship with the Einstein–Hilbert tensor following from the coupling to a gravitational field is also discussed.
Geometric decomposition of the conformation tensor in viscoelastic turbulence
Hameduddin, Ismail; Meneveau, Charles; Zaki, Tamer A.; Gayme, Dennice F.
2018-05-01
This work introduces a mathematical approach to analysing the polymer dynamics in turbulent viscoelastic flows that uses a new geometric decomposition of the conformation tensor, along with associated scalar measures of the polymer fluctuations. The approach circumvents an inherent difficulty in traditional Reynolds decompositions of the conformation tensor: the fluctuating tensor fields are not positive-definite and so do not retain the physical meaning of the tensor. The geometric decomposition of the conformation tensor yields both mean and fluctuating tensor fields that are positive-definite. The fluctuating tensor in the present decomposition has a clear physical interpretation as a polymer deformation relative to the mean configuration. Scalar measures of this fluctuating conformation tensor are developed based on the non-Euclidean geometry of the set of positive-definite tensors. Drag-reduced viscoelastic turbulent channel flow is then used an example case study. The conformation tensor field, obtained using direct numerical simulations, is analysed using the proposed framework.
Extended obstruction tensors and renormalized volume coefficients
Graham, C. Robin
2009-01-01
The behavior under conformal change of the renormalized volume coefficients associated to a pseudo-Riemannian metric is investigated. It is shown that they define second order fully nonlinear operators in the conformal factor whose algebraic structure is elucidated via the introduction of "extended obstruction tensors". These together with the Schouten tensor constitute building blocks for the coefficients in the ambient metric expansion. The renormalized volume coefficients have recently bee...
Higher-Order Tensors in Diffusion Imaging
Schultz, Thomas; Fuster, Andrea; Ghosh, Aurobrata; Deriche, Rachid; Florack, Luc; Lek-Heng, Lim
2013-01-01
International audience; Diffusion imaging is a noninvasive tool for probing the microstructure of fibrous nerve and muscle tissue. Higher-order tensors provide a powerful mathematical language to model and analyze the large and complex data that is generated by its modern variants such as High Angular Resolution Diffusion Imaging (HARDI) or Diffusional Kurtosis Imaging. This survey gives a careful introduction to the foundations of higher-order tensor algebra, and explains how some concepts f...
Goldsborough, Peter
2016-01-01
Deep learning is a branch of artificial intelligence employing deep neural network architectures that has significantly advanced the state-of-the-art in computer vision, speech recognition, natural language processing and other domains. In November 2015, Google released $\\textit{TensorFlow}$, an open source deep learning software library for defining, training and deploying machine learning models. In this paper, we review TensorFlow and put it in context of modern deep learning concepts and ...
Diffusion tensor MRI: clinical applications
International Nuclear Information System (INIS)
Meli, Francisco; Romero, Carlos; Carpintiero, Silvina; Salvatico, Rosana; Lambre, Hector; Vila, Jose
2005-01-01
Purpose: To evaluate the usefulness of diffusion-tensor imaging (DTI) on different neurological diseases, and to know if this technique shows additional information than conventional Magnetic Resonance Imaging (MRI). Materials and method: Eight patients, with neurological diseases (five patients with brain tumors, one with multiple sclerosis (MS), one with variant Creutzfeldt-Jakob disease (vCJD) and the other with delayed CO intoxication were evaluated. A MR scanner of 1.5 T was used and conventional sequences and DTI with twenty-five directions were done. Quantitative maps were gotten, where the fractional anisotropy (FA) through regions of interest (ROIs) in specific anatomic area were quantified (i.e.: internal and external capsules, frontal and temporal bundles, corpus fibers). Results: In the patients with brain tumors, there was a decrease of FA on intra and peritumoral fibers. Some of them had a disruption in their pattern. In patients with MS and CO intoxication, partial interruption along white matter bundles was demonstrated. However, a 'mismatch' between the findings of FLAIR, Diffusion-weighted images (DWI) and DTI, in the case of CO intoxication, was seen. Conclusions: DTI gave more information compared to conventional sequences about ultrastructural brain tissue in almost all the diseases above mentioned. Therefore, there is a work in progress about DTI acquisition, to evaluate a new technique, called tractography. (author)
Diffusion Tensor Imaging of Pedophilia.
Cantor, James M; Lafaille, Sophie; Soh, Debra W; Moayedi, Massieh; Mikulis, David J; Girard, Todd A
2015-11-01
Pedophilia is a principal motivator of child molestation, incurring great emotional and financial burdens on victims and society. Even among pedophiles who never commit any offense,the condition requires lifelong suppression and control. Previous comparison using voxel-based morphometry (VBM)of MR images from a large sample of pedophiles and controls revealed group differences in white matter. The present study therefore sought to verify and characterize white matter involvement using diffusion tensor imaging (DTI), which better captures the microstructure of white matter than does VBM. Pedophilics ex offenders (n=24) were compared with healthy, age-matched controls with no criminal record and no indication of pedophilia (n=32). White matter microstructure was analyzed with Tract-Based Spatial Statistics, and the trajectories of implicated fiber bundles were identified by probabilistic tractography. Groups showed significant, highly focused differences in DTI parameters which related to participants’ genital responses to sexual depictions of children, but not to measures of psychopathy or to childhood histories of physical abuse, sexual abuse, or neglect. Some previously reported gray matter differences were suggested under highly liberal statistical conditions (p(uncorrected)pedophilia is characterized by neuroanatomical differences in white matter microstructure, over and above any neural characteristics attributable to psychopathy and childhood adversity, which show neuroanatomic footprints of their own. Although some gray matter structures were implicated previously, only few have emerged reliably.
(Ln-bar, g)-spaces. Special tensor fields
International Nuclear Information System (INIS)
Manoff, S.; Dimitrov, B.
1998-01-01
The Kronecker tensor field, the contraction tensor field, as well as the multi-Kronecker and multi-contraction tensor fields are determined and the action of the covariant differential operator, the Lie differential operator, the curvature operator, and the deviation operator on these tensor fields is established. The commutation relations between the operators Sym and Asym and the covariant and Lie differential operators are considered acting on symmetric and antisymmetric tensor fields over (L n bar, g)-spaces
On the concircular curvature tensor of Riemannian manifolds
International Nuclear Information System (INIS)
Rahman, M.S.; Lal, S.
1990-06-01
Definition of the concircular curvature tensor, Z hijk , along with Z-tensor, Z ij , is given and some properties of Z hijk are described. Tensors identical with Z hijk are shown. A necessary and sufficient condition that a Riemannian V n has zero Z-tensor is found. A number of theorems on concircular symmetric space, concircular recurrent space (Z n -space) and Z n -space with zero Z-tensor are deduced. (author). 6 refs
Tensor Toolbox for MATLAB v. 3.0
Energy Technology Data Exchange (ETDEWEB)
2017-03-07
Tensors (also known as multidimensional arrays or N-way arrays) are used in a variety of applications ranging from chemometrics to network analysis. The Tensor Toolbox provides classes for manipulating dense, sparse, and structured tensors using MATLAB's object-oriented features. It also provides algorithms for tensor decomposition and factorization, algorithms for computing tensor eigenvalues, and methods for visualization of results.
Fledderus, M.
2012-01-01
Twee op de vijf UT-studenten hebben last van ernstige studiestress, zo erg zelfs dat het ze in hun privéleven belemmert. Die cijfers komen overeen met het landelijk beeld van stress onder studenten. Samen met 14 andere universiteits- en hogeschoolbladen enquêteerde UT Nieuws bijna 5500 studenten. Opvallend is dat mannelijke studenten uit Twente zich veel minder druk lijken te maken over hun studie. Onder vrouwen ligt de stress juist erg hoog ten opzichte van het landelijk gemiddelde.
DEFF Research Database (Denmark)
Keller, Hanne Dauer
2015-01-01
Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....
Measuring Nematic Susceptibilities from the Elastoresistivity Tensor
Hristov, A. T.; Shapiro, M. C.; Hlobil, Patrick; Maharaj, Akash; Chu, Jiun-Haw; Fisher, Ian
The elastoresistivity tensor mijkl relates changes in resistivity to the strain on a material. As a fourth-rank tensor, it contains considerably more information about the material than the simpler (second-rank) resistivity tensor; in particular, certain elastoresistivity coefficients can be related to thermodynamic susceptibilities and serve as a direct probe of symmetry breaking at a phase transition. The aim of this talk is twofold. First, we enumerate how symmetry both constrains the structure of the elastoresistivity tensor into an easy-to-understand form and connects tensor elements to thermodynamic susceptibilities. In the process, we generalize previous studies of elastoresistivity to include the effects of magnetic field. Second, we describe an approach to measuring quantities in the elastoresistivity tensor with a novel transverse measurement, which is immune to relative strain offsets. These techniques are then applied to BaFe2As2 in a proof of principle measurement. This work is supported by the Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract DE-AC02-76SF00515.
An Automated Approach for the Determination of the Seismic Moment Tensor in Mining Environments
Wamboldt, Lawrence R.
A study was undertaken to evaluate an automated process to invert for seismic moment tensors from seismic data recorded in mining environments. The data for this study was recorded at Nickel Rim South mine, Sudbury, Ontario. The mine has a seismic monitoring system manufactured by ESG Solutions that performs continuous monitoring of seismicity. On average, approximately 400 seismic events are recorded each day. Currently, data are automatically processed by ESG Solution's software suite during acquisition. The automatic processors pick the P- and/or S-wave arrivals, locate the events and solve for certain source parameters, excluding the seismic moment tensor. In order to solve for the moment tensor, data must be manually processed, which is laborious and therefore seldom performed. This research evaluates an automatic seismic moment tensor inversion method and demonstrates some of the difficulties (through inversions of real and synthetic seismic data) of the inversion process. Results using the method are also compared to the inversion method currently available from ESG Solutions, which requires the manual picking of first-motion polarities for every event. As a result of the extensive synthetic testing of the automatic inversion program, as well as the inversion of real seismic data, it is apparent that there are key parameters requiring greater accuracy in order to increase the reliability of the automation. These parameters include the source time function definition, source location (in turn requiring more accurate and precise knowledge of the earth media), arrival time picks and an attenuation model to account for ray-path dependent filtering of the source time function. In order to improve the automatic method three key pieces of research are needed: (1) studying various location algorithms (and the effects of increasing earth model intricacy) and automatic time picking to improve source location methods, (2) studying how the source time pulse can be
Marin Quintero, Maider J.
2013-01-01
The structure tensor for vector valued images is most often defined as the average of the scalar structure tensors in each band. The problem with this definition is the assumption that all bands provide the same amount of edge information giving them the same weights. As a result non-edge pixels can be reinforced and edges can be weakened…
Lepore, N; Brun, C; Chou, Y Y; Chiang, M C; Dutton, R A; Hayashi, K M; Luders, E; Lopez, O L; Aizenstein, H J; Toga, A W; Becker, J T; Thompson, P M
2008-01-01
This paper investigates the performance of a new multivariate method for tensor-based morphometry (TBM). Statistics on Riemannian manifolds are developed that exploit the full information in deformation tensor fields. In TBM, multiple brain images are warped to a common neuroanatomical template via 3-D nonlinear registration; the resulting deformation fields are analyzed statistically to identify group differences in anatomy. Rather than study the Jacobian determinant (volume expansion factor) of these deformations, as is common, we retain the full deformation tensors and apply a manifold version of Hotelling's $T(2) test to them, in a Log-Euclidean domain. In 2-D and 3-D magnetic resonance imaging (MRI) data from 26 HIV/AIDS patients and 14 matched healthy subjects, we compared multivariate tensor analysis versus univariate tests of simpler tensor-derived indices: the Jacobian determinant, the trace, geodesic anisotropy, and eigenvalues of the deformation tensor, and the angle of rotation of its eigenvectors. We detected consistent, but more extensive patterns of structural abnormalities, with multivariate tests on the full tensor manifold. Their improved power was established by analyzing cumulative p-value plots using false discovery rate (FDR) methods, appropriately controlling for false positives. This increased detection sensitivity may empower drug trials and large-scale studies of disease that use tensor-based morphometry.
Tensor network state correspondence and holography
Singh, Sukhwinder
2018-01-01
In recent years, tensor network states have emerged as a very useful conceptual and simulation framework to study quantum many-body systems at low energies. In this paper, we describe a particular way in which any given tensor network can be viewed as a representation of two different quantum many-body states. The two quantum many-body states are said to correspond to each other by means of the tensor network. We apply this "tensor network state correspondence"—a correspondence between quantum many-body states mediated by tensor networks as we describe—to the multi-scale entanglement renormalization ansatz (MERA) representation of ground states of one dimensional (1D) quantum many-body systems. Since the MERA is a 2D hyperbolic tensor network (the extra dimension is identified as the length scale of the 1D system), the two quantum many-body states obtained from the MERA, via tensor network state correspondence, are seen to live in the bulk and on the boundary of a discrete hyperbolic geometry. The bulk state so obtained from a MERA exhibits interesting features, some of which caricature known features of the holographic correspondence of String theory. We show how (i) the bulk state admits a description in terms of "holographic screens", (ii) the conformal field theory data associated with a critical ground state can be obtained from the corresponding bulk state, in particular, how pointlike boundary operators are identified with extended bulk operators. (iii) We also present numerical results to illustrate that bulk states, dual to ground states of several critical spin chains, have exponentially decaying correlations, and that the bulk correlation length generally decreases with increase in central charge for these spin chains.
Fledderus, M.
2012-01-01
Twee op de vijf UT-studenten hebben last van ernstige studiestress, zo erg zelfs dat het ze in hun privéleven belemmert. Die cijfers komen overeen met het landelijk beeld van stress onder studenten. Samen met 14 andere universiteits- en hogeschoolbladen enquêteerde UT Nieuws bijna 5500 studenten.
Susceptibility tensor imaging (STI) of the brain.
Li, Wei; Liu, Chunlei; Duong, Timothy Q; van Zijl, Peter C M; Li, Xu
2017-04-01
Susceptibility tensor imaging (STI) is a recently developed MRI technique that allows quantitative determination of orientation-independent magnetic susceptibility parameters from the dependence of gradient echo signal phase on the orientation of biological tissues with respect to the main magnetic field. By modeling the magnetic susceptibility of each voxel as a symmetric rank-2 tensor, individual magnetic susceptibility tensor elements as well as the mean magnetic susceptibility and magnetic susceptibility anisotropy can be determined for brain tissues that would still show orientation dependence after conventional scalar-based quantitative susceptibility mapping to remove such dependence. Similar to diffusion tensor imaging, STI allows mapping of brain white matter fiber orientations and reconstruction of 3D white matter pathways using the principal eigenvectors of the susceptibility tensor. In contrast to diffusion anisotropy, the main determinant factor of the susceptibility anisotropy in brain white matter is myelin. Another unique feature of the susceptibility anisotropy of white matter is its sensitivity to gadolinium-based contrast agents. Mechanistically, MRI-observed susceptibility anisotropy is mainly attributed to the highly ordered lipid molecules in the myelin sheath. STI provides a consistent interpretation of the dependence of phase and susceptibility on orientation at multiple scales. This article reviews the key experimental findings and physical theories that led to the development of STI, its practical implementations, and its applications for brain research. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Primordial tensor modes of the early Universe
Martínez, Florencia Benítez; Olmedo, Javier
2016-06-01
We study cosmological tensor perturbations on a quantized background within the hybrid quantization approach. In particular, we consider a flat, homogeneous and isotropic spacetime and small tensor inhomogeneities on it. We truncate the action to second order in the perturbations. The dynamics is ruled by a homogeneous scalar constraint. We carry out a canonical transformation in the system where the Hamiltonian for the tensor perturbations takes a canonical form. The new tensor modes now admit a standard Fock quantization with a unitary dynamics. We then combine this representation with a generic quantum scheme for the homogeneous sector. We adopt a Born-Oppenheimer ansatz for the solutions to the constraint operator, previously employed to study the dynamics of scalar inhomogeneities. We analyze the approximations that allow us to recover, on the one hand, a Schrödinger equation similar to the one emerging in the dressed metric approach and, on the other hand, the ones necessary for the effective evolution equations of these primordial tensor modes within the hybrid approach to be valid. Finally, we consider loop quantum cosmology as an example where these quantization techniques can be applied and compare with other approaches.
Source Estimation by Full Wave Form Inversion
Energy Technology Data Exchange (ETDEWEB)
Sjögreen, Björn [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Center for Applied Scientific Computing; Petersson, N. Anders [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Center for Applied Scientific Computing
2013-08-07
Given time-dependent ground motion recordings at a number of receiver stations, we solve the inverse problem for estimating the parameters of the seismic source. The source is modeled as a point moment tensor source, characterized by its location, moment tensor components, the start time, and frequency parameter (rise time) of its source time function. In total, there are 11 unknown parameters. We use a non-linear conjugate gradient algorithm to minimize the full waveform misfit between observed and computed ground motions at the receiver stations. An important underlying assumption of the minimization problem is that the wave propagation is accurately described by the elastic wave equation in a heterogeneous isotropic material. We use a fourth order accurate finite difference method, developed in [12], to evolve the waves forwards in time. The adjoint wave equation corresponding to the discretized elastic wave equation is used to compute the gradient of the misfit, which is needed by the non-linear conjugated minimization algorithm. A new source point moment source discretization is derived that guarantees that the Hessian of the misfit is a continuous function of the source location. An efficient approach for calculating the Hessian is also presented. We show how the Hessian can be used to scale the problem to improve the convergence of the non-linear conjugated gradient algorithm. Numerical experiments are presented for estimating the source parameters from synthetic data in a layer over half-space problem (LOH.1), illustrating rapid convergence of the proposed approach.
International Nuclear Information System (INIS)
Huf, P A; Carminati, J
2015-01-01
In this paper we: (1) introduce TensorPack, a software package for the algebraic manipulation of tensors in covariant index format in Maple; (2) briefly demonstrate the use of the package with an orthonormal tensor proof of the shearfree conjecture for dust. TensorPack is based on the Riemann and Canon tensor software packages and uses their functions to express tensors in an indexed covariant format. TensorPack uses a string representation as input and provides functions for output in index form. It extends the functionality to basic algebra of tensors, substitution, covariant differentiation, contraction, raising/lowering indices, symmetry functions and other accessory functions. The output can be merged with text in the Maple environment to create a full working document with embedded dynamic functionality. The package offers potential for manipulation of indexed algebraic tensor expressions in a flexible software environment. (paper)
(Ln-bar, g)-spaces. Ordinary and tensor differentials
International Nuclear Information System (INIS)
Manoff, S.; Dimitrov, B.
1998-01-01
Different types of differentials as special cases of differential operators acting on tensor fields over (L n bar, g)-spaces are considered. The ordinary differential, the covariant differential as a special case of the covariant differential operator, and the Lie differential as a special case of the Lie differential operator are investigated. The tensor differential and its special types (Covariant tensor differential, and Lie tensor differential) are determined and their properties are discussed. Covariant symmetric and antisymmetric (external) tensor differentials, Lie symmetric, and Lie antisymmetric (external) tensor differentials are determined and considered over (L n bar, g)-spaces
Energy-momentum tensor in the fermion-pairing model
International Nuclear Information System (INIS)
Kawati, S.; Miyata, H.
1980-01-01
The symmetric energy-momentum tensor for the self-interacting fermion theory (psi-barpsi) 2 is expressed in terms of the collective mode within the Hartree approximation. The divergent part of the energy-momentum tensor for the fermion theory induces an effective energy-momentum tensor for the collective mode, and this effective energy-momentum tensor automatically has the Callan-Coleman-Jackiw improved form. The renormalized energy-momentum tensor is structurally equivalent to the Callan-Coleman-Jackiw improved tensor for the Yukawa theory
Inverse Kinematics using Quaternions
DEFF Research Database (Denmark)
Henriksen, Knud; Erleben, Kenny; Engell-Nørregård, Morten
In this project I describe the status of inverse kinematics research, with the focus firmly on the methods that solve the core problem. An overview of the different methods are presented Three common methods used in inverse kinematics computation have been chosen as subject for closer inspection....
Inverse logarithmic potential problem
Cherednichenko, V G
1996-01-01
The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.
Seismic sensitivity of normal-mode coupling to Lorentz stresses in the Sun
Hanasoge, Shravan M.
2017-09-01
Understanding the governing mechanism of solar magnetism remains an outstanding challenge in astrophysics. Seismology is the most compelling technique to infer the internal properties of the Sun and stars. Waves in the Sun, nominally acoustic, are sensitive to the emergence and cyclical strengthening of magnetic field, evidenced by measured changes in resonant oscillation frequencies that are correlated with the solar cycle. The inference of internal Lorentz stresses from these measurements has the potential to significantly advance our appreciation of the dynamo. Indeed, seismological inverse theory for the Sun is well understood for perturbations in composition, thermal structure and flows but, is not fully developed for magnetism, owing to the complexity of the ideal magnetohydrodynamic (MHD) equation. Invoking first-Born perturbation theory to characterize departures from spherically symmetric hydrostatic models of the Sun and applying the notation of generalized spherical harmonics, we calculate sensitivity functions of seismic measurements to the general time-varying Lorentz stress tensor. We find that eigenstates of isotropic (I.e. acoustic only) background models are dominantly sensitive to isotropic deviations in the stress tensor and much more weakly than anisotropic stresses (and therefore challenging to infer). The apple cannot fall far from the tree.
Encoding !-tensors as !-graphs with neighbourhood orders
Directory of Open Access Journals (Sweden)
David Quick
2015-11-01
Full Text Available Diagrammatic reasoning using string diagrams provides an intuitive language for reasoning about morphisms in a symmetric monoidal category. To allow working with infinite families of string diagrams, !-graphs were introduced as a method to mark repeated structure inside a diagram. This led to !-graphs being implemented in the diagrammatic proof assistant Quantomatic. Having a partially automated program for rewriting diagrams has proven very useful, but being based on !-graphs, only commutative theories are allowed. An enriched abstract tensor notation, called !-tensors, has been used to formalise the notion of !-boxes in non-commutative structures. This work-in-progress paper presents a method to encode !-tensors as !-graphs with some additional structure. This will allow us to leverage the existing code from Quantomatic and quickly provide various tools for non-commutative diagrammatic reasoning.
Federated Tensor Factorization for Computational Phenotyping
Kim, Yejin; Sun, Jimeng; Yu, Hwanjo; Jiang, Xiaoqian
2017-01-01
Tensor factorization models offer an effective approach to convert massive electronic health records into meaningful clinical concepts (phenotypes) for data analysis. These models need a large amount of diverse samples to avoid population bias. An open challenge is how to derive phenotypes jointly across multiple hospitals, in which direct patient-level data sharing is not possible (e.g., due to institutional policies). In this paper, we developed a novel solution to enable federated tensor factorization for computational phenotyping without sharing patient-level data. We developed secure data harmonization and federated computation procedures based on alternating direction method of multipliers (ADMM). Using this method, the multiple hospitals iteratively update tensors and transfer secure summarized information to a central server, and the server aggregates the information to generate phenotypes. We demonstrated with real medical datasets that our method resembles the centralized training model (based on combined datasets) in terms of accuracy and phenotypes discovery while respecting privacy. PMID:29071165
Exploring extra dimensions through inflationary tensor modes
Im, Sang Hui; Nilles, Hans Peter; Trautner, Andreas
2018-03-01
Predictions of inflationary schemes can be influenced by the presence of extra dimensions. This could be of particular relevance for the spectrum of gravitational waves in models where the extra dimensions provide a brane-world solution to the hierarchy problem. Apart from models of large as well as exponentially warped extra dimensions, we analyze the size of tensor modes in the Linear Dilaton scheme recently revived in the discussion of the "clockwork mechanism". The results are model dependent, significantly enhanced tensor modes on one side and a suppression on the other. In some cases we are led to a scheme of "remote inflation", where the expansion is driven by energies at a hidden brane. In all cases where tensor modes are enhanced, the requirement of perturbativity of gravity leads to a stringent upper limit on the allowed Hubble rate during inflation.
Permittivity and permeability tensors for cloaking applications
Choudhury, Balamati; Jha, Rakesh Mohan
2016-01-01
This book is focused on derivations of analytical expressions for stealth and cloaking applications. An optimal version of electromagnetic (EM) stealth is the design of invisibility cloak of arbitrary shapes in which the EM waves can be controlled within the cloaking shell by introducing a prescribed spatial variation in the constitutive parameters. The promising challenge in design of invisibility cloaks lies in the determination of permittivity and permeability tensors for all the layers. This book provides the detailed derivation of analytical expressions of the permittivity and permeability tensors for various quadric surfaces within the eleven Eisenhart co-ordinate systems. These include the cylinders and the surfaces of revolutions. The analytical modeling and spatial metric for each of these surfaces are provided along with their tensors. This mathematical formulation will help the EM designers to analyze and design of various quadratics and their hybrids, which can eventually lead to design of cloakin...
Tensor calculus for engineers and physicists
de Souza Sánchez Filho, Emil
2016-01-01
This textbook provides a rigorous approach to tensor manifolds in several aspects relevant for Engineers and Physicists working in industry or academia. With a thorough, comprehensive, and unified presentation, this book offers insights into several topics of tensor analysis, which covers all aspects of N dimensional spaces. The main purpose of this book is to give a self-contained yet simple, correct and comprehensive mathematical explanation of tensor calculus for undergraduate and graduate students and for professionals. In addition to many worked problems, this book features a selection of examples, solved step by step. Although no emphasis is placed on special and particular problems of Engineering or Physics, the text covers the fundamentals of these fields of science. The book makes a brief introduction into the basic concept of the tensorial formalism so as to allow the reader to make a quick and easy review of the essential topics that enable having the grounds for the subsequent themes, without need...
Tensor pressure tokamak equilibrium and stability
Energy Technology Data Exchange (ETDEWEB)
Cooper, W.A.
1981-03-01
We investigate the equilibrium and magnetohydrodynamic (MHD) stability of tokamaks with tensor pressure and examine, in particular, the effects of anisotropies induced by neutral beam injection. Perpendicular and parallel beam pressure components are evaluated by taking moments of a distribution function obtained from the solution of a Fokker-Planck equation that models the injection of high-energy neutral beams into a tokamak. We numerically generate D-shaped beam-induced tensor pressure equilibria. A double adiabatic energy principle is derived from a modified version of the guiding center plasma energy principle. Finally, we apply the tensor pressure ballooning mode equation to computed equilibria that model experimentally determined ISX-B discharge profiles with high-power neutral beam injection. We predict that the plasma is unstable to flutelike modes in the central core of the discharge as a result of the pressure profile peakedness induced by the beams.
Some late-time asymptotics of general scalar-tensor cosmologies
Energy Technology Data Exchange (ETDEWEB)
Barrow, John D [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Shaw, Douglas J [Astronomy Unit, Queen Mary University, Mile End Rd., London E1 4NS (United Kingdom)
2008-04-21
We study the asymptotic behaviour of isotropic and homogeneous universes in general scalar-tensor gravity theories containing a p = -{rho} vacuum fluid stress and other sub-dominant matter stresses. It is shown that in order for there to be an approach to a de Sitter spacetime at large 4-volumes the coupling function, {omega}({phi}), which defines the scalar-tensor theory, must diverge faster than |{phi}{sub {infinity}} - {phi}|{sup -1+{epsilon}} for all {epsilon} > 0 as {phi} {yields} {phi}{sub {infinity}} {ne} 0 for large values of the time. Thus, for a given theory, specified by {omega}({phi}), there must exist some {phi}{sub {infinity}} element of (0, {infinity}) such that {omega} {yields} {infinity} and {omega}'/{omega}{sup 2+{epsilon}} {yields} 0 as {phi} {yields} {phi}{sub {infinity}} in order for cosmological solutions of the theory to approach de Sitter expansion at late times. We also classify the possible asymptotic time variations of the gravitation 'constant' G(t) at late times in scalar-tensor theories. We show that (unlike in general relativity) the problem of a profusion of 'Boltzmann brains' at late cosmological times can be avoided in scalar-tensor theories, including Brans-Dicke theory, in which {phi} {yields} {infinity} and {omega} {approx}o({phi}{sup 1/2}) at asymptotically late times.
Kronecker-Basis-Representation Based Tensor Sparsity and Its Applications to Tensor Recovery.
Xie, Qi; Zhao, Qian; Meng, Deyu; Xu, Zongben
2017-08-02
It is well known that the sparsity/low-rank of a vector/matrix can be rationally measured by nonzero-entries-number ($l_0$ norm)/nonzero- singular-values-number (rank), respectively. However, data from real applications are often generated by the interaction of multiple factors, which obviously cannot be sufficiently represented by a vector/matrix, while a high order tensor is expected to provide more faithful representation to deliver the intrinsic structure underlying such data ensembles. Unlike the vector/matrix case, constructing a rational high order sparsity measure for tensor is a relatively harder task. To this aim, in this paper we propose a measure for tensor sparsity, called Kronecker-basis-representation based tensor sparsity measure (KBR briefly), which encodes both sparsity insights delivered by Tucker and CANDECOMP/PARAFAC (CP) low-rank decompositions for a general tensor. Then we study the KBR regularization minimization (KBRM) problem, and design an effective ADMM algorithm for solving it, where each involved parameter can be updated with closed-form equations. Such an efficient solver makes it possible to extend KBR to various tasks like tensor completion and tensor robust principal component analysis. A series of experiments, including multispectral image (MSI) denoising, MSI completion and background subtraction, substantiate the superiority of the proposed methods beyond state-of-the-arts.
Diffusion tensor smoothing through weighted Karcher means
Carmichael, Owen; Chen, Jun; Paul, Debashis; Peng, Jie
2014-01-01
Diffusion tensor magnetic resonance imaging (MRI) quantifies the spatial distribution of water Diffusion at each voxel on a regular grid of locations in a biological specimen by Diffusion tensors– 3 × 3 positive definite matrices. Removal of noise from DTI is an important problem due to the high scientific relevance of DTI and relatively low signal to noise ratio it provides. Leading approaches to this problem amount to estimation of weighted Karcher means of Diffusion tensors within spatial neighborhoods, under various metrics imposed on the space of tensors. However, it is unclear how the behavior of these estimators varies with the magnitude of DTI sensor noise (the noise resulting from the thermal e!ects of MRI scanning) as well as the geometric structure of the underlying Diffusion tensor neighborhoods. In this paper, we combine theoretical analysis, empirical analysis of simulated DTI data, and empirical analysis of real DTI scans to compare the noise removal performance of three kernel-based DTI smoothers that are based on Euclidean, log-Euclidean, and affine-invariant metrics. The results suggest, contrary to conventional wisdom, that imposing a simplistic Euclidean metric may in fact provide comparable or superior noise removal, especially in relatively unstructured regions and/or in the presence of moderate to high levels of sensor noise. On the contrary, log-Euclidean and affine-invariant metrics may lead to better noise removal in highly structured anatomical regions, especially when the sensor noise is of low magnitude. These findings emphasize the importance of considering the interplay of sensor noise magnitude and tensor field geometric structure when assessing Diffusion tensor smoothing options. They also point to the necessity for continued development of smoothing methods that perform well across a large range of scenarios. PMID:25419264
Diffusion tensor imaging in spinal cord compression
International Nuclear Information System (INIS)
Wang, Wei; Qin, Wen; Hao, Nanxin; Wang, Yibin; Zong, Genlin
2012-01-01
Background Although diffusion tensor imaging has been successfully applied in brain research for decades, several main difficulties have hindered its extended utilization in spinal cord imaging. Purpose To assess the feasibility and clinical value of diffusion tensor imaging and tractography for evaluating chronic spinal cord compression. Material and Methods Single-shot spin-echo echo-planar DT sequences were scanned in 42 spinal cord compression patients and 49 healthy volunteers. The mean values of the apparent diffusion coefficient and fractional anisotropy were measured in region of interest at the cervical and lower thoracic spinal cord. The patients were divided into two groups according to the high signal on T2WI (the SCC-HI group and the SCC-nHI group for with or without high signal). A one-way ANOVA was used. Diffusion tensor tractography was used to visualize the morphological features of normal and impaired white matter. Results There were no statistically significant differences in the apparent diffusion coefficient and fractional anisotropy values between the different spinal cord segments of the normal subjects. All of the patients in the SCC-HI group had increased apparent diffusion coefficient values and decreased fractional anisotropy values at the lesion level compared to the normal controls. However, there were no statistically significant diffusion index differences between the SCC-nHI group and the normal controls. In the diffusion tensor imaging maps, the normal spinal cord sections were depicted as fiber tracts that were color-encoded to a cephalocaudal orientation. The diffusion tensor images were compressed to different degrees in all of the patients. Conclusion Diffusion tensor imaging and tractography are promising methods for visualizing spinal cord tracts and can provide additional information in clinical studies in spinal cord compression
A moment-tensor catalog for intermediate magnitude earthquakes in Mexico
Rodríguez Cardozo, Félix; Hjörleifsdóttir, Vala; Martínez-Peláez, Liliana; Franco, Sara; Iglesias Mendoza, Arturo
2016-04-01
Located among five tectonic plates, Mexico is one of the world's most seismically active regions. The earthquake focal mechanisms provide important information on the active tectonics. A widespread technique for estimating the earthquake magnitud and focal mechanism is the inversion for the moment tensor, obtained by minimizing a misfit function that estimates the difference between synthetic and observed seismograms. An important element in the estimation of the moment tensor is an appropriate velocity model, which allows for the calculation of accurate Green's Functions so that the differences between observed and synthetics seismograms are due to the source of the earthquake rather than the velocity model. However, calculating accurate synthetic seismograms gets progressively more difficult as the magnitude of the earthquakes decreases. Large earthquakes (M>5.0) excite waves of longer periods that interact weakly with lateral heterogeneities in the crust. For these events, using 1D velocity models to compute Greens functions works well and they are well characterized by seismic moment tensors reported in global catalogs (eg. USGS fast moment tensor solutions and GCMT). The opposite occurs for small and intermediate sized events, where the relatively shorter periods excited interact strongly with lateral heterogeneities in the crust and upper mantle. To accurately model the Green's functions for the smaller events in a large heterogeneous area, requires 3D or regionalized 1D models. To obtain a rapid estimate of earthquake magnitude, the National Seismological Survey in Mexico (Servicio Sismológico Nacional, SSN) automatically calculates seismic moment tensors for events in the Mexican Territory (Franco et al., 2002; Nolasco-Carteño, 2006). However, for intermediate-magnitude and small earthquakes the signal-to-noise ratio could is low for many of the seismic stations, and without careful selection and filtering of the data, obtaining a stable focal mechanism
Tensor network models of multiboundary wormholes
Peach, Alex; Ross, Simon F.
2017-05-01
We study the entanglement structure of states dual to multiboundary wormhole geometries using tensor network models. Perfect and random tensor networks tiling the hyperbolic plane have been shown to provide good models of the entanglement structure in holography. We extend this by quotienting the plane by discrete isometries to obtain models of the multiboundary states. We show that there are networks where the entanglement structure is purely bipartite, extending results obtained in the large temperature limit. We analyse the entanglement structure in a range of examples.
Tensor modes in pure natural inflation
Nomura, Yasunori; Yamazaki, Masahito
2018-05-01
We study tensor modes in pure natural inflation [1], a recently-proposed inflationary model in which an axionic inflaton couples to pure Yang-Mills gauge fields. We find that the tensor-to-scalar ratio r is naturally bounded from below. This bound originates from the finiteness of the number of metastable branches of vacua in pure Yang-Mills theories. Details of the model can be probed by future cosmic microwave background experiments and improved lattice gauge theory calculations of the θ-angle dependence of the vacuum energy.
Reconstruction of convex bodies from surface tensors
DEFF Research Database (Denmark)
Kousholt, Astrid; Kiderlen, Markus
We present two algorithms for reconstruction of the shape of convex bodies in the two-dimensional Euclidean space. The first reconstruction algorithm requires knowledge of the exact surface tensors of a convex body up to rank s for some natural number s. The second algorithm uses harmonic intrinsic...... volumes which are certain values of the surface tensors and allows for noisy measurements. From a generalized version of Wirtinger's inequality, we derive stability results that are utilized to ensure consistency of both reconstruction procedures. Consistency of the reconstruction procedure based...
Improving Tensor Based Recommenders with Clustering
DEFF Research Database (Denmark)
Leginus, Martin; Dolog, Peter; Zemaitis, Valdas
2012-01-01
Social tagging systems (STS) model three types of entities (i.e. tag-user-item) and relationships between them are encoded into a 3-order tensor. Latent relationships and patterns can be discovered by applying tensor factorization techniques like Higher Order Singular Value Decomposition (HOSVD...... of the recommendations and execution time are improved and memory requirements are decreased. The clustering is motivated by the fact that many tags in a tag space are semantically similar thus the tags can be grouped. Finally, promising experimental results are presented...
Analysis and interpretation of stress indicators in deviated wells of the Coso Geothermal Field
Schoenball, Martin; Glen, Jonathan M. G.; Davatzes, Nicholas C.
2016-04-01
Characterizing the tectonic stress field is an integral part for the development of hydrothermal systems, especially enhanced geothermal systems (EGS). With a known stress field, critically stressed faults can be identified. Faults that are critically oriented with respect to the in-situ stress field exhibit a high tendency for slip, and thus are likely candidates for reactivation during the creation of an EGS. Reactivated faults are known to serve as dominant fluid pathways during hydrothermal circulation and the characteristics of this process determine the potential for damaging earthquakes; should extensive portions of well-oriented, large features be reactivated. As part of the FORGE initiative at the West Flank of the Coso Geothermal Field, we analyze a large set of image logs obtained from wells distributed across the geothermal field for details about the stress state revealed by indicators such as borehole breakouts and drilling-induced tensile fractures. Previous stress analyses at Coso have ignored deviated well sections, since their interpretation for the orientation of the stress tensor is non-unique with respect to varying stress magnitudes. Using interpreted borehole-induced structures, we perform a grid search over all possible Andersonian stress states and find a best fitting vertical stress tensor for each stress state characterized by principal stress magnitudes. By including deviated well sections and recently drilled wells, we considerably expand the suite of stress measurements in the Coso Geothermal Field. Along individual wells, this analysis also reveals local meter length-scale deviations from the best-fitting mean stress orientation. While most wells show consistent horizontal principal stress orientations with standard deviations of about 10°, other wells show large standard deviations on the order of 25°. Several regions have logged well trajectories with lateral spacing below 1 km. This enables us to trace changes of the stress
Observations About the Projective Tensor Product of Banach Spaces
African Journals Online (AJOL)
, 46B, 46E, 47B. Keywords: tensor, Banach, banach space, tensor product, projective norm, greatest crossnorm, semi-embedding, Radon-Nikodym property, absolutely p-summable sequence, strongly p-summable sequence, topological linear ...
International Nuclear Information System (INIS)
Burkhard, N.R.
1979-01-01
The gravity inversion code applies stabilized linear inverse theory to determine the topography of a subsurface density anomaly from Bouguer gravity data. The gravity inversion program consists of four source codes: SEARCH, TREND, INVERT, and AVERAGE. TREND and INVERT are used iteratively to converge on a solution. SEARCH forms the input gravity data files for Nevada Test Site data. AVERAGE performs a covariance analysis on the solution. This document describes the necessary input files and the proper operation of the code. 2 figures, 2 tables
Chambers, David W
2008-01-01
We all experience stress as a regular, and sometimes damaging and sometimes useful, part of our daily lives. In our normal ups and downs, we have our share of exhaustion, despondency, and outrage--matched with their corresponding positive moods. But burnout and workaholism are different. They are chronic, dysfunctional, self-reinforcing, life-shortening habits. Dentists, nurses, teachers, ministers, social workers, and entertainers are especially susceptible to burnout; not because they are hard-working professionals (they tend to be), but because they are caring perfectionists who share control for the success of what they do with others and perform under the scrutiny of their colleagues (they tend to). Workaholics are also trapped in self-sealing cycles, but the elements are ever-receding visions of control and using constant activity as a barrier against facing reality. This essay explores the symptoms, mechanisms, causes, and successful coping strategies for burnout and workaholism. It also takes a look at the general stress response on the physiological level and at some of the damage American society inflicts on itself.
Tensor completion for PDEs with uncertain coefficients and Bayesian Update
Litvinenko, Alexander
2017-03-05
In this work, we tried to show connections between Bayesian update and tensor completion techniques. Usually, only a small/sparse vector/tensor of measurements is available. The typical measurement is a function of the solution. The solution of a stochastic PDE is a tensor, the measurement as well. The idea is to use completion techniques to compute all "missing" values of the measurement tensor and only then apply the Bayesian technique.
A preliminary report on the development of MATLAB tensor classes for fast algorithm prototyping.
Energy Technology Data Exchange (ETDEWEB)
Bader, Brett William; Kolda, Tamara Gibson (Sandia National Laboratories, Livermore, CA)
2004-07-01
We describe three MATLAB classes for manipulating tensors in order to allow fast algorithm prototyping. A tensor is a multidimensional or N-way array. We present a tensor class for manipulating tensors which allows for tensor multiplication and 'matricization.' We have further added two classes for representing tensors in decomposed format: cp{_}tensor and tucker{_}tensor. We demonstrate the use of these classes by implementing several algorithms that have appeared in the literature.
Collineations of the curvature tensor in general relativity
Indian Academy of Sciences (India)
physics pp. 43–48. Collineations of the curvature tensor in general relativity. RISHI KUMAR TIWARI. Department of Mathematics and Computer Application, ... and kinematical properties of the models. Keywords. Collineation; Killing vectors; Ricci tensor; Riemannian curvature tensor. PACS No. 98.80. 1. Introduction.
Efficient MATLAB computations with sparse and factored tensors.
Energy Technology Data Exchange (ETDEWEB)
Bader, Brett William; Kolda, Tamara Gibson (Sandia National Lab, Livermore, CA)
2006-12-01
In this paper, the term tensor refers simply to a multidimensional or N-way array, and we consider how specially structured tensors allow for efficient storage and computation. First, we study sparse tensors, which have the property that the vast majority of the elements are zero. We propose storing sparse tensors using coordinate format and describe the computational efficiency of this scheme for various mathematical operations, including those typical to tensor decomposition algorithms. Second, we study factored tensors, which have the property that they can be assembled from more basic components. We consider two specific types: a Tucker tensor can be expressed as the product of a core tensor (which itself may be dense, sparse, or factored) and a matrix along each mode, and a Kruskal tensor can be expressed as the sum of rank-1 tensors. We are interested in the case where the storage of the components is less than the storage of the full tensor, and we demonstrate that many elementary operations can be computed using only the components. All of the efficiencies described in this paper are implemented in the Tensor Toolbox for MATLAB.
[An Improved Spectral Quaternion Interpolation Method of Diffusion Tensor Imaging].
Xu, Yonghong; Gao, Shangce; Hao, Xiaofei
2016-04-01
Diffusion tensor imaging(DTI)is a rapid development technology in recent years of magnetic resonance imaging.The diffusion tensor interpolation is a very important procedure in DTI image processing.The traditional spectral quaternion interpolation method revises the direction of the interpolation tensor and can preserve tensors anisotropy,but the method does not revise the size of tensors.The present study puts forward an improved spectral quaternion interpolation method on the basis of traditional spectral quaternion interpolation.Firstly,we decomposed diffusion tensors with the direction of tensors being represented by quaternion.Then we revised the size and direction of the tensor respectively according to different situations.Finally,we acquired the tensor of interpolation point by calculating the weighted average.We compared the improved method with the spectral quaternion method and the Log-Euclidean method by the simulation data and the real data.The results showed that the improved method could not only keep the monotonicity of the fractional anisotropy(FA)and the determinant of tensors,but also preserve the tensor anisotropy at the same time.In conclusion,the improved method provides a kind of important interpolation method for diffusion tensor image processing.
Tensor based structure estimation in multi-channel images
DEFF Research Database (Denmark)
Schou, Jesper; Dierking, Wolfgang; Skriver, Henning
2000-01-01
. In the second part tensors are used for representing the structure information. This approach has the advantage, that tensors can be averaged either spatially or by applying several images, and the resulting tensor provides information of the average strength as well as orientation of the structure...
The nonabelian tensor square of a bieberbach group with ...
African Journals Online (AJOL)
The main objective of this paper is to compute the nonabelian tensor square of one Bieberbach group with elementary abelian 2-group point group of dimension three by using the computational method of the nonabelian tensor square for polycyclic groups. The finding of the computation showed that the nonabelian tensor ...
Relativistic particles with spin and antisymmetric tensor fields
International Nuclear Information System (INIS)
Sandoval Junior, L.
1990-09-01
A study is made on antisymmetric tensor fields particularly on second order tensor field as far as his equivalence to other fields and quantization through the path integral are concerned. Also, a particle model is studied which has been recently proposed and reveals to be equivalent to antisymmetric tensor fields of any order. (L.C.J.A.)
Superstrings with tensor degrees of freedom
Energy Technology Data Exchange (ETDEWEB)
Amorim, R. (Inst. de Fisica, Univ. Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil)); Barcelos-Neto, J. (Inst. de Fisica, Univ. Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil))
1994-10-01
We add antisymmetric tensor degrees of freedom to the usual superstring coordinates. We show that super and kappa symmetries are only achieved for the spacetime dimension D = 4. We also address problems related to the quantization of the model and discuss the influences of this extended spacetime in the usual quantum field theory. (orig.)
Norm of the Riemannian Curvature Tensor
Indian Academy of Sciences (India)
We consider the Riemannian functional R p ( g ) = ∫ M | R ( g ) | p d v g defined on the space of Riemannian metrics with unit volume on a closed smooth manifold where R ( g ) and d v g denote the corresponding Riemannian curvature tensor and volume form and p ∈ ( 0 , ∞ ) . First we prove that the Riemannian metrics ...
Abelian tensor models on the lattice
Chaudhuri, Soumyadeep; Giraldo-Rivera, Victor I.; Joseph, Anosh; Loganayagam, R.; Yoon, Junggi
2018-04-01
We consider a chain of Abelian Klebanov-Tarnopolsky fermionic tensor models coupled through quartic nearest-neighbor interactions. We characterize the gauge-singlet spectrum for small chains (L =2 ,3 ,4 ,5 ) and observe that the spectral statistics exhibits strong evidence in favor of quasi-many-body localization.
Primordial tensor modes from quantum corrected inflation
DEFF Research Database (Denmark)
Joergensen, Jakob; Sannino, Francesco; Svendsen, Ole
2014-01-01
. Finally we confront these theories with the Planck and BICEP2 data. We demonstrate that the discovery of primordial tensor modes by BICEP2 require the presence of sizable quantum departures from the $\\phi^4$-Inflaton model for the non-minimally coupled scenario which we parametrize and quantify. We...
Magnetotelluric impedance tensor analysis for identification of ...
Indian Academy of Sciences (India)
G Pavan Kumar
2017-07-18
Jul 18, 2017 ... Magnetotelluric impedance tensor analysis for identification of transverse tectonic feature in the Wagad uplift, Kachchh, northwest India. G Pavan Kumar*, Virender Kumar, Mehul Nagar, Dilip Singh,. E Mahendar, Pruthul Patel and P Mahesh. Institute of Seismological Research (ISR), Raisan, Gandhinagar ...
Tensor network methods for invariant theory
Biamonte, Jacob; Bergholm, Ville; Lanzagorta, Marco
2013-11-01
Invariant theory is concerned with functions that do not change under the action of a given group. Here we communicate an approach based on tensor networks to represent polynomial local unitary invariants of quantum states. This graphical approach provides an alternative to the polynomial equations that describe invariants, which often contain a large number of terms with coefficients raised to high powers. This approach also enables one to use known methods from tensor network theory (such as the matrix product state (MPS) factorization) when studying polynomial invariants. As our main example, we consider invariants of MPSs. We generate a family of tensor contractions resulting in a complete set of local unitary invariants that can be used to express the Rényi entropies. We find that the graphical approach to representing invariants can provide structural insight into the invariants being contracted, as well as an alternative, and sometimes much simpler, means to study polynomial invariants of quantum states. In addition, many tensor network methods, such as MPSs, contain excellent tools that can be applied in the study of invariants.
Seamless warping of diffusion tensor fields
DEFF Research Database (Denmark)
Xu, Dongrong; Hao, Xuejun; Bansal, Ravi
2008-01-01
transfer that information to the template space. To combine the advantages of forward and backward mapping, we propose a novel method for the spatial normalization of diffusion tensor (DT) fields that uses a bijection (a bidirectional mapping with one-to-one correspondences between image spaces) to warp DT...
Visualization and processing of tensor fields
Weickert, Joachim
2007-01-01
Presents information on the visualization and processing of tensor fields. This book serves as an overview for the inquiring scientist, as a basic foundation for developers and practitioners, and as a textbook for specialized classes and seminars for graduate and doctoral students.
Magnetotelluric impedance tensor analysis for identification of ...
Indian Academy of Sciences (India)
We present the results of magnetotelluric (MT) impedance tensors analyses of 18 sites located along a profile cutting various faults in the uplifted Wagad block of the Kachchh basin. The MT time series of 4–5 days recording duration have been processed and the earth response functions are estimated in broad frequency ...
Fermionic topological quantum states as tensor networks
Wille, C.; Buerschaper, O.; Eisert, J.
2017-06-01
Tensor network states, and in particular projected entangled pair states, play an important role in the description of strongly correlated quantum lattice systems. They do not only serve as variational states in numerical simulation methods, but also provide a framework for classifying phases of quantum matter and capture notions of topological order in a stringent and rigorous language. The rapid development in this field for spin models and bosonic systems has not yet been mirrored by an analogous development for fermionic models. In this work, we introduce a tensor network formalism capable of capturing notions of topological order for quantum systems with fermionic components. At the heart of the formalism are axioms of fermionic matrix-product operator injectivity, stable under concatenation. Building upon that, we formulate a Grassmann number tensor network ansatz for the ground state of fermionic twisted quantum double models. A specific focus is put on the paradigmatic example of the fermionic toric code. This work shows that the program of describing topologically ordered systems using tensor networks carries over to fermionic models.
Tensor B mode and stochastic Faraday mixing
Giovannini, Massimo
2014-01-01
This paper investigates the Faraday effect as a different source of B mode polarization. The E mode polarization is Faraday rotated provided a stochastic large-scale magnetic field is present prior to photon decoupling. In the first part of the paper we discuss the case where the tensor modes of the geometry are absent and we argue that the B mode recently detected by the Bicep2 collaboration cannot be explained by a large-scale magnetic field rotating, through the Faraday effect, the well established E mode polarization. In this case, the observed temperature autocorrelations would be excessively distorted by the magnetic field. In the second part of the paper the formation of Faraday rotation is treated as a stationary, random and Markovian process with the aim of generalizing a set of scaling laws originally derived in the absence of the tensor modes of the geometry. We show that the scalar, vector and tensor modes of the brightness perturbations can all be Faraday rotated even if the vector and tensor par...
Introduction to vector and tensor analysis
Wrede, Robert C
1972-01-01
A broad introductory treatment, this volume examines general Cartesian coordinates, the cross product, Einstein's special theory of relativity, bases in general coordinate systems, maxima and minima of functions of two variables, line integrals, integral theorems, fundamental notions in n-space, Riemannian geometry, algebraic properties of the curvature tensor, and more. 1963 edition.
Tensor algebra and tensor analysis for engineers with applications to continuum mechanics
Itskov, Mikhail
2015-01-01
This is the fourth and revised edition of a well-received book that aims at bridging the gap between the engineering course of tensor algebra on the one side and the mathematical course of classical linear algebra on the other side. In accordance with the contemporary way of scientific publications, a modern absolute tensor notation is preferred throughout. The book provides a comprehensible exposition of the fundamental mathematical concepts of tensor calculus and enriches the presented material with many illustrative examples. In addition, the book also includes advanced chapters dealing with recent developments in the theory of isotropic and anisotropic tensor functions and their applications to continuum mechanics. Hence, this monograph addresses graduate students as well as scientists working in this field. In each chapter numerous exercises are included, allowing for self-study and intense practice. Solutions to the exercises are also provided.
Sharp spatially constrained inversion
DEFF Research Database (Denmark)
Vignoli, Giulio G.; Fiandaca, Gianluca G.; Christiansen, Anders Vest C A.V.C.
2013-01-01
We present sharp reconstruction of multi-layer models using a spatially constrained inversion with minimum gradient support regularization. In particular, its application to airborne electromagnetic data is discussed. Airborne surveys produce extremely large datasets, traditionally inverted...... by using smoothly varying 1D models. Smoothness is a result of the regularization constraints applied to address the inversion ill-posedness. The standard Occam-type regularized multi-layer inversion produces results where boundaries between layers are smeared. The sharp regularization overcomes...... inversions are compared against classical smooth results and available boreholes. With the focusing approach, the obtained blocky results agree with the underlying geology and allow for easier interpretation by the end-user....
International Nuclear Information System (INIS)
Rosenwald, J.-C.
2008-01-01
The lecture addressed the following topics: Optimizing radiotherapy dose distribution; IMRT contributes to optimization of energy deposition; Inverse vs direct planning; Main steps of IMRT; Background of inverse planning; General principle of inverse planning; The 3 main components of IMRT inverse planning; The simplest cost function (deviation from prescribed dose); The driving variable : the beamlet intensity; Minimizing a 'cost function' (or 'objective function') - the walker (or skier) analogy; Application to IMRT optimization (the gradient method); The gradient method - discussion; The simulated annealing method; The optimization criteria - discussion; Hard and soft constraints; Dose volume constraints; Typical user interface for definition of optimization criteria; Biological constraints (Equivalent Uniform Dose); The result of the optimization process; Semi-automatic solutions for IMRT; Generalisation of the optimization problem; Driving and driven variables used in RT optimization; Towards multi-criteria optimization; and Conclusions for the optimization phase. (P.A.)
Submucous Myoma Induces Uterine Inversion
Directory of Open Access Journals (Sweden)
Yu-Li Chen
2006-06-01
Conclusion: Nonpuerperal inversion of the uterus is rarely encountered by gynecologists. Diagnosis of uterine inversion is often not easy and imaging studies might be helpful. Surgical treatment is the method of choice in nonpuerperal uterine inversion.
Lepore, Natasha; Brun, Caroline; Chou, Yi-Yu; Chiang, Ming-Chang; Dutton, Rebecca A.; Hayashi, Kiralee M.; Luders, Eileen; Lopez, Oscar L.; Aizenstein, Howard J.; Toga, Arthur W.; Becker, James T.; Thompson, Paul M.
2008-01-01
This paper investigates the performance of a new multivariate method for tensor-based morphometry (TBM). Statistics on Riemannian manifolds are developed that exploit the full information in deformation tensor fields. In TBM, multiple brain images are warped to a common neuroanatomical template via 3-D nonlinear registration; the resulting deformation fields are analyzed statistically to identify group differences in anatomy. Rather than study the Jacobian determinant (volume expansion factor...
Energy Technology Data Exchange (ETDEWEB)
Montesinos, M. [CINVESTAV-IPN, 07360 Mexico D.F. (Mexico); Flores, E. [Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)]. E-mail: merced@fis.cinvestav.mx
2006-07-01
The symmetric and gauge-invariant energy-momentum tensors for source-free Maxwell and Yang-Mills theories are obtained by means of translations in spacetime via a systematic implementation of Noether's theorem. For the source-free neutral Proca field, the same procedure yields also the symmetric energy-momentum tensor. In all cases, the key point to get the right expressions for the energy-momentum tensors is the appropriate handling of their equations of motion and the Bianchi identities. It must be stressed that these results are obtained without using Belinfante's symmetrization techniques which are usually employed to this end. (Author)
Spectral Method with the Tensor-Product Nodal Basis for the Steklov Eigenvalue Problem
Directory of Open Access Journals (Sweden)
Xuqing Zhang
2013-01-01
Full Text Available This paper discusses spectral method with the tensor-product nodal basis at the Legendre-Gauss-Lobatto points for solving the Steklov eigenvalue problem. A priori error estimates of spectral method are discussed, and based on the work of Melenk and Wohlmuth (2001, a posterior error estimator of the residual type is given and analyzed. In addition, this paper combines the shifted-inverse iterative method and spectral method to establish an efficient scheme. Finally, numerical experiments with MATLAB program are reported.
Direct and inverse scattering for viscoelastic media
International Nuclear Information System (INIS)
Ammicht, E.; Corones, J.P.; Krueger, R.J.
1987-01-01
A time domain approach to direct and inverse scattering problems for one-dimensional viscoelastic media is presented. Such media can be characterized as having a constitutive relation between stress and strain which involves the past history of the strain through a memory function, the relaxation modulus. In the approach in this article, the relaxation modulus of a material is shown to be related to the reflection properties of the material. This relation provides a constructive algorithm for direct and inverse scattering problems. A numerical implementation of this algorithm is tested on several problems involving realistic relaxation moduli
Experimental investigation of acoustic emissions and their moment tensors in rock during failure
Czech Academy of Sciences Publication Activity Database
Aker, E.; Kühn, D.; Vavryčuk, Václav; Soldal, M.; Oye, V.
2014-01-01
Roč. 70, September (2014), s. 286-295 ISSN 1365-1609 R&D Projects: GA ČR(CZ) GAP210/12/1491 EU Projects: European Commission(XE) 230669 - AIM Institutional support: RVO:67985530 Keywords : acoustic emissions * focal mechanisms * moment tensors * rock fracturing * hoop stresses * laboratory experiment Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.686, year: 2014
Massless and massive quanta resulting from a mediumlike metric tensor
International Nuclear Information System (INIS)
Soln, J.
1985-01-01
A simple model of the ''primordial'' scalar field theory is presented in which the metric tensor is a generalization of the metric tensor from electrodynamics in a medium. The radiation signal corresponding to the scalar field propagates with a velocity that is generally less than c. This signal can be associated simultaneously with imaginary and real effective (momentum-dependent) masses. The requirement that the imaginary effective mass vanishes, which we take to be the prerequisite for the vacuumlike signal propagation, leads to the ''spontaneous'' splitting of the metric tensor into two distinct metric tensors: one metric tensor gives rise to masslesslike radiation and the other to a massive particle. (author)
Feature Surfaces in Symmetric Tensor Fields Based on Eigenvalue Manifold.
Palacios, Jonathan; Yeh, Harry; Wang, Wenping; Zhang, Yue; Laramee, Robert S; Sharma, Ritesh; Schultz, Thomas; Zhang, Eugene
2016-03-01
Three-dimensional symmetric tensor fields have a wide range of applications in solid and fluid mechanics. Recent advances in the (topological) analysis of 3D symmetric tensor fields focus on degenerate tensors which form curves. In this paper, we introduce a number of feature surfaces, such as neutral surfaces and traceless surfaces, into tensor field analysis, based on the notion of eigenvalue manifold. Neutral surfaces are the boundary between linear tensors and planar tensors, and the traceless surfaces are the boundary between tensors of positive traces and those of negative traces. Degenerate curves, neutral surfaces, and traceless surfaces together form a partition of the eigenvalue manifold, which provides a more complete tensor field analysis than degenerate curves alone. We also extract and visualize the isosurfaces of tensor modes, tensor isotropy, and tensor magnitude, which we have found useful for domain applications in fluid and solid mechanics. Extracting neutral and traceless surfaces using the Marching Tetrahedra method can cause the loss of geometric and topological details, which can lead to false physical interpretation. To robustly extract neutral surfaces and traceless surfaces, we develop a polynomial description of them which enables us to borrow techniques from algebraic surface extraction, a topic well-researched by the computer-aided design (CAD) community as well as the algebraic geometry community. In addition, we adapt the surface extraction technique, called A-patches, to improve the speed of finding degenerate curves. Finally, we apply our analysis to data from solid and fluid mechanics as well as scalar field analysis.
Glyph-Based Comparative Visualization for Diffusion Tensor Fields.
Zhang, Changgong; Schultz, Thomas; Lawonn, Kai; Eisemann, Elmar; Vilanova, Anna
2016-01-01
Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging modality that enables the in-vivo reconstruction and visualization of fibrous structures. To inspect the local and individual diffusion tensors, glyph-based visualizations are commonly used since they are able to effectively convey full aspects of the diffusion tensor. For several applications it is necessary to compare tensor fields, e.g., to study the effects of acquisition parameters, or to investigate the influence of pathologies on white matter structures. This comparison is commonly done by extracting scalar information out of the tensor fields and then comparing these scalar fields, which leads to a loss of information. If the glyph representation is kept, simple juxtaposition or superposition can be used. However, neither facilitates the identification and interpretation of the differences between the tensor fields. Inspired by the checkerboard style visualization and the superquadric tensor glyph, we design a new glyph to locally visualize differences between two diffusion tensors by combining juxtaposition and explicit encoding. Because tensor scale, anisotropy type, and orientation are related to anatomical information relevant for DTI applications, we focus on visualizing tensor differences in these three aspects. As demonstrated in a user study, our new glyph design allows users to efficiently and effectively identify the tensor differences. We also apply our new glyphs to investigate the differences between DTI datasets of the human brain in two different contexts using different b-values, and to compare datasets from a healthy and HIV-infected subject.
Tensoral for post-processing users and simulation authors
Dresselhaus, Eliot
1993-01-01
The CTR post-processing effort aims to make turbulence simulations and data more readily and usefully available to the research and industrial communities. The Tensoral language, which provides the foundation for this effort, is introduced here in the form of a user's guide. The Tensoral user's guide is presented in two main sections. Section one acts as a general introduction and guides database users who wish to post-process simulation databases. Section two gives a brief description of how database authors and other advanced users can make simulation codes and/or the databases they generate available to the user community via Tensoral database back ends. The two-part structure of this document conforms to the two-level design structure of the Tensoral language. Tensoral has been designed to be a general computer language for performing tensor calculus and statistics on numerical data. Tensoral's generality allows it to be used for stand-alone native coding of high-level post-processing tasks (as described in section one of this guide). At the same time, Tensoral's specialization to a minute task (namely, to numerical tensor calculus and statistics) allows it to be easily embedded into applications written partly in Tensoral and partly in other computer languages (here, C and Vectoral). Embedded Tensoral, aimed at advanced users for more general coding (e.g. of efficient simulations, for interfacing with pre-existing software, for visualization, etc.), is described in section two of this guide.
Energy-momentum tensor of the electromagnetic field
International Nuclear Information System (INIS)
Horndeski, G.W.; Wainwright, J.
1977-01-01
In this paper we investigate the energy-momentum tensor of the most general second-order vector-tensor theory of gravitation and electromagnetism which has field equations which are (i) derivable from a variational principle, (ii) consistent with the notion of conservation of charge, and (iii) compatible with Maxwell's equations in a flat space. This energy-momentum tensor turns out to be quadratic in the first partial derivatives of the electromagnetic field tensor and depends upon the curvature tensor. The asymptotic behavior of this energy-momentum tensor is examined for solutions to Maxwell's equations in Minkowski space, and it is demonstrated that this energy-momentum tensor predicts regions of negative energy density in the vicinity of point sources
Quantum mechanics of Yano tensors: Dirac equation in curved spacetime
International Nuclear Information System (INIS)
Cariglia, Marco
2004-01-01
In spacetimes admitting Yano tensors, the classical theory of the spinning particle possesses enhanced worldline supersymmetry. Quantum mechanically generators of extra supersymmetries correspond to operators that in the classical limit commute with the Dirac operator and generate conserved quantities. We show that the result is preserved in the full quantum theory, that is, Yano symmetries are not anomalous. This was known for Yano tensors of rank 2, but our main result is to show that it extends to Yano tensors of arbitrary rank. We also describe the conformal Yano equation and show that is invariant under Hodge duality. There is a natural relationship between Yano tensors and supergravity theories. As the simplest possible example, we show that when the spacetime admits a Killing spinor then this generates Yano and conformal Yano tensors. As an application, we construct Yano tensors on maximally symmetric spaces: they are spanned by tensor products of Killing vectors
Algebraic and computational aspects of real tensor ranks
Sakata, Toshio; Miyazaki, Mitsuhiro
2016-01-01
This book provides comprehensive summaries of theoretical (algebraic) and computational aspects of tensor ranks, maximal ranks, and typical ranks, over the real number field. Although tensor ranks have been often argued in the complex number field, it should be emphasized that this book treats real tensor ranks, which have direct applications in statistics. The book provides several interesting ideas, including determinant polynomials, determinantal ideals, absolutely nonsingular tensors, absolutely full column rank tensors, and their connection to bilinear maps and Hurwitz-Radon numbers. In addition to reviews of methods to determine real tensor ranks in details, global theories such as the Jacobian method are also reviewed in details. The book includes as well an accessible and comprehensive introduction of mathematical backgrounds, with basics of positive polynomials and calculations by using the Groebner basis. Furthermore, this book provides insights into numerical methods of finding tensor ranks through...
Limitations of the Concept of Stress in Structural Analysis.
Edelman, Steven Harold
1989-01-01
Provides an introduction and explanations of stress-strain relationships, measuring stress, a goal of structural analysis, and legitimate applications of the concept of stress. Diagrams include a derivation of the stress tensor, graphical representations of stress-strain relations, and related problems. (RT)
Inverse scale space decomposition
DEFF Research Database (Denmark)
Schmidt, Marie Foged; Benning, Martin; Schönlieb, Carola-Bibiane
2018-01-01
We investigate the inverse scale space flow as a decomposition method for decomposing data into generalised singular vectors. We show that the inverse scale space flow, based on convex and even and positively one-homogeneous regularisation functionals, can decompose data represented...... by the application of a forward operator to a linear combination of generalised singular vectors into its individual singular vectors. We verify that for this decomposition to hold true, two additional conditions on the singular vectors are sufficient: orthogonality in the data space and inclusion of partial sums...... of the subgradients of the singular vectors in the subdifferential of the regularisation functional at zero. We also address the converse question of when the inverse scale space flow returns a generalised singular vector given that the initial data is arbitrary (and therefore not necessarily in the range...
A Tensor-Product-Kernel Framework for Multiscale Neural Activity Decoding and Control
Li, Lin; Brockmeier, Austin J.; Choi, John S.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.
2014-01-01
Brain machine interfaces (BMIs) have attracted intense attention as a promising technology for directly interfacing computers or prostheses with the brain's motor and sensory areas, thereby bypassing the body. The availability of multiscale neural recordings including spike trains and local field potentials (LFPs) brings potential opportunities to enhance computational modeling by enriching the characterization of the neural system state. However, heterogeneity on data type (spike timing versus continuous amplitude signals) and spatiotemporal scale complicates the model integration of multiscale neural activity. In this paper, we propose a tensor-product-kernel-based framework to integrate the multiscale activity and exploit the complementary information available in multiscale neural activity. This provides a common mathematical framework for incorporating signals from different domains. The approach is applied to the problem of neural decoding and control. For neural decoding, the framework is able to identify the nonlinear functional relationship between the multiscale neural responses and the stimuli using general purpose kernel adaptive filtering. In a sensory stimulation experiment, the tensor-product-kernel decoder outperforms decoders that use only a single neural data type. In addition, an adaptive inverse controller for delivering electrical microstimulation patterns that utilizes the tensor-product kernel achieves promising results in emulating the responses to natural stimulation. PMID:24829569
The 2003 Boumerdes, Algeria earthquake: Regional moment tensor analysis
Braunmiller, Jochen; Bernardi, Fabrizio
2005-03-01
We used regional broadband seismograms to determine seismic moment tensors for the destructive May 21, 2003 Boumerdes (Algeria) Mw = 7.0 earthquake and its larger aftershocks. Fully automatic inversions using near-real time data provided solutions for seven Mw >= 4.7 events within 90 minutes after event occurrence. After adding off-line data, we manually obtained 30 solutions (Mw >= 3.8) from May 2003 to January 2004. All have shallow source depths (6-21 km). The median P-axis orientation (338°) of 24 thrust and four strike-slip events is consistent with Africa-Eurasia plate motion (330°). The main shock hypocenter at 8-10 km depth at the coastline and its shallow southward dip (25° +/- 5°) puts the fault surface trace 15-20 km offshore, consistent with documented seafloor deformation at the base of the continental slope. A main shock rupture length of about 50 km is deduced from first day aftershocks and location of strike-slip events. The strike-slip events probably define the western rupture end and indicate a left-step of main convergence. Fault strike variability of thrust events suggests fault orientation changes and possibly fault segmentation.
Relations between pressurized triaxial cavities and moment tensor distributions
Directory of Open Access Journals (Sweden)
Claudio Ferrari
2015-09-01
Full Text Available Pressurized cavities are commonly used to compute ground deformation in volcanic areas: the set of available solutions is limited and in some cases the moment tensors inferred from inversion of geodetic data cannot be associated with any of the available models. Two different source models (pure tensile source, TS and mixed tensile/shear source, MS are studied using a boundary element approach for rectangular dislocations buried in a homogeneous elastic medium employing a new C/C++ code which provides a new implementation of the dc3d Okada fortran code. Pressurized triaxial cavities are obtained assigning the overpressure in the middle of each boundary element distributed over the cavity surface. The MS model shows a moment domain very similar to triaxial ellipsoidal cavities. The TS and MS models are also compared in terms of the total volume increment limiting the analysis to cubic sources: the observed discrepancy (~10% is interpreted in terms of the different deformation of the source interior which provides significantly different internal contributions (~30%. Comparing the MS model with a Mogi source with the some volume, the overpressure of the latter must be ~37% greater than the former, in order to obtain the same surface deformation; however the outward expansion and the inner contraction separately differ by ~±10% and the total volume increments differ only by ~2%. Thus, the density estimations for the intrusion extracted from the MS model and the Mogi model are nearly identical.
Tensor coupling and pseudospin symmetry in nuclei
International Nuclear Information System (INIS)
Alberto, P.; Castro, A.S. de; Lisboa, R.; Malheiro, M.
2005-01-01
In this work we study the contribution of the isoscalar tensor coupling to the realization of pseudospin symmetry in nuclei. Using realistic values for the tensor coupling strength, we show that this coupling reduces noticeably the pseudospin splittings, especially for single-particle levels near the Fermi surface. By using an energy decomposition of the pseudospin energy splittings, we show that the changes in these splittings come mainly through the changes induced in the lower radial wave function for the low-lying pseudospin partners and through changes in the expectation value of the pseudospin-orbit coupling term for surface partners. This allows us to confirm the conclusion already reached in previous studies, namely that the pseudospin symmetry in nuclei is of a dynamical nature
Tensor modes on the string theory landscape
Energy Technology Data Exchange (ETDEWEB)
Westphal, Alexander
2012-06-15
We attempt an estimate for the distribution of the tensor mode fraction r over the landscape of vacua in string theory. The dynamics of eternal inflation and quantum tunneling lead to a kind of democracy on the landscape, providing no bias towards large-field or small-field inflation regardless of the class of measure. The tensor mode fraction then follows the number frequency distributions of inflationary mechanisms of string theory over the landscape. We show that an estimate of the relative number frequencies for small-field vs large-field inflation, while unattainable on the whole landscape, may be within reach as a regional answer for warped Calabi-Yau flux compactifications of type IIB string theory.
International Nuclear Information System (INIS)
Kibler, M.; Grenet, G.
1979-07-01
The SU 2 unit tensor operators tsub(k,α) are studied. In the case where the spinor point group G* coincides with U 1 , then tsub(k α) reduces up to a constant to the Wigner-Racah-Schwinger tensor operator tsub(kqα), an operator which produces an angular momentum state. One first investigates those general properties of tsub(kα) which are independent of their realization. The tsub(kα) in terms of two pairs of boson creation and annihilation operators are realized. This leads to look at the Schwinger calculus relative to one angular momentum of two coupled angular momenta. As a by-product, a procedure is given for producing recursion relationships between SU 2 Wigner coefficients. Finally, some of the properties of the Wigner and Racah operators for an arbitrary compact group and the SU 2 coupling coefficients are studied
Proton hyperfine tensors in nitroxide radicals
Energy Technology Data Exchange (ETDEWEB)
Brustolon, M.; Maniero, A.L.; Segre, U. (Universita di Padova (Italy)); Ottaviani, M.F. (Universita di Firenze (Italy)); Romanelli, M. (Universita della Basilicata (Italy))
1990-08-23
The proton hyperfine tensors of five nitroxide radicals have been obtained by ENDOR spectroscopy in frozen solution. The spectra are interpreted by computing the dipolar hyperfine interaction and simulating the spectra. EPR spectra in solution of the same radicals have been simulated by taking into account the effects of the proton hyperfine tensors. We have been able to reproduce accurately the line broadening effects of the proton hyperfine structures inside each nitrogen hyperfine component and we have determined the correlation times for the rotational motion. In the case of the radical Tempol, our analysis allows discrimination between the effects due to the protons of the axial and equatorial methyl groups. On the basis of experimental evidence we can attribute the larger isotropic hyperfine coupling constant to the axial methyl protons. The possible use of the present results for interpreting the spectra of other nitroxide radicals is discussed.
Tensor modes on the string theory landscape
International Nuclear Information System (INIS)
Westphal, Alexander
2012-06-01
We attempt an estimate for the distribution of the tensor mode fraction r over the landscape of vacua in string theory. The dynamics of eternal inflation and quantum tunneling lead to a kind of democracy on the landscape, providing no bias towards large-field or small-field inflation regardless of the class of measure. The tensor mode fraction then follows the number frequency distributions of inflationary mechanisms of string theory over the landscape. We show that an estimate of the relative number frequencies for small-field vs large-field inflation, while unattainable on the whole landscape, may be within reach as a regional answer for warped Calabi-Yau flux compactifications of type IIB string theory.
Sasakian manifolds with purely transversal Bach tensor
Ghosh, Amalendu; Sharma, Ramesh
2017-10-01
We show that a (2n + 1)-dimensional Sasakian manifold (M, g) with a purely transversal Bach tensor has constant scalar curvature ≥2 n (2 n +1 ) , equality holding if and only if (M, g) is Einstein. For dimension 3, M is locally isometric to the unit sphere S3. For dimension 5, if in addition (M, g) is complete, then it has positive Ricci curvature and is compact with finite fundamental group π1(M).
Anisotropic diffusion tensor applied to temporal mammograms
DEFF Research Database (Denmark)
Karemore, Gopal; Brandt, Sami; Sporring, Jon
2010-01-01
changes related to specific effects like Hormonal Replacement Therapy (HRT) and aging. Given effect-grouped patient data, we demonstrated how anisotropic diffusion tensor and its coherence features computed in an anatomically oriented breast coordinate system followed by statistical learning...
Tensor Networks and Quantum Error Correction
Ferris, Andrew J.; Poulin, David
2014-07-01
We establish several relations between quantum error correction (QEC) and tensor network (TN) methods of quantum many-body physics. We exhibit correspondences between well-known families of QEC codes and TNs, and demonstrate a formal equivalence between decoding a QEC code and contracting a TN. We build on this equivalence to propose a new family of quantum codes and decoding algorithms that generalize and improve upon quantum polar codes and successive cancellation decoding in a natural way.
Numerical CP Decomposition of Some Difficult Tensors
Czech Academy of Sciences Publication Activity Database
Tichavský, Petr; Phan, A. H.; Cichocki, A.
2017-01-01
Roč. 317, č. 1 (2017), s. 362-370 ISSN 0377-0427 R&D Projects: GA ČR(CZ) GA14-13713S Institutional support: RVO:67985556 Keywords : Small matrix multiplication * Canonical polyadic tensor decomposition * Levenberg-Marquardt method Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Applied mathematics Impact factor: 1.357, year: 2016 http://library.utia.cas.cz/separaty/2017/SI/tichavsky-0468385.pdf
FABRIC TENSOR FOR DISCONTINUOUS GEOLOGICAL MATERIALS
小田, 匡寛
1982-01-01
Geometrical property (fabric) of discontinuity in geological materials is discussed in terms of (1) position and density, (2) shape and dimension and (3) orientation of related discontinuities such as joint, fault and discrete particle. By taking into account these geometrical elements, a unique measure called fabric tensor F_ is definitely introduced to embody the fabric concept without loss of generality.The first invariant of F_ is important as an index measure to evaluate the crack intens...
User-transparent Distributed TensorFlow
Vishnu, Abhinav; Manzano, Joseph; Siegel, Charles; Daily, Jeff
2017-01-01
Deep Learning (DL) algorithms have become the {\\em de facto} choice for data analysis. Several DL implementations -- primarily limited to a single compute node -- such as Caffe, TensorFlow, Theano and Torch have become readily available. Distributed DL implementations capable of execution on large scale systems are becoming important to address the computational needs of large data produced by scientific simulations and experiments. Yet, the adoption of distributed DL implementations faces si...
Tensor Fusion Network for Multimodal Sentiment Analysis
Zadeh, Amir; Chen, Minghai; Poria, Soujanya; Cambria, Erik; Morency, Louis-Philippe
2017-01-01
Multimodal sentiment analysis is an increasingly popular research area, which extends the conventional language-based definition of sentiment analysis to a multimodal setup where other relevant modalities accompany language. In this paper, we pose the problem of multimodal sentiment analysis as modeling intra-modality and inter-modality dynamics. We introduce a novel model, termed Tensor Fusion Network, which learns both such dynamics end-to-end. The proposed approach is tailored for the vola...
Effect of Multi-Axial Loading on Residual Strain Tensor for 12L14 Steel Alloy
Bunn, Jeffrey R.; Penumadu, Dayakar; Lou, Xin; Hubbard, Camden R.
2014-08-01
Evaluating the state of residual strain or stress is critically important for structural materials and for reliable design of complex shape components that need to function in extreme environment subjected to large thermo-mechanical loading. When residual stress state is superposed to external loads, it can lead to reduction or increase in failure strength. Past diffraction studies for evaluating the residual strain state involved measuring lattice spacings in three orthogonal directions and do not often correspond to principal directions. To completely resolve the state of strain at a given location, a full strain tensor must be determined. This is especially important when characterizing materials or metallic components exposed to biaxial or complex loading. Neutron diffraction at the second Generation Neutron Residual Stress Facility (NRSF2) at Oak Ridge National Laboratory is used in this study to measure strain tensors associated with different modes of stress path. Hollow cylinder steel samples with 2 mm wall thickness are subjected to either pure axial extension or pure torsion to simulate multi-axial loading conditions. A virgin sample that is not subjected to any deformation, but subjected to identical manufacturing conditions and machining steps involved to obtain hollow cylinder geometry is used for obtaining reference d-spacing for given hkl planes at target spatial location(s). The two samples which are subjected to either pure tension or torsion are loaded to a deformation state that corresponded to equal amount of octahedral shear strain which is an invariant. This procedure is used so that a basis for comparison between the two samples can be made to isolate the stress path effects. A 2-circle Huber orienteer is used to obtain strain measurements on identical gauge volume at a series of φ and ψ values. The residual state of stress tensor corresponding to ex situ (upon unloading) conditions is presented for three lattice planes (211, 110, 200) for
Liu, Chunlei; Murphy, Nicole E.; Li, Wei
2012-01-01
Diffusion MRI has become an invaluable tool for studying white matter microstructure and brain connectivity. The emergence of quantitative susceptibility mapping and susceptibility tensor imaging (STI) has provided another unique tool for assessing the structure of white matter. In the highly ordered white matter structure, diffusion MRI measures hindered water mobility induced by various tissue and cell membranes, while susceptibility sensitizes to the molecular composition and axonal arrangement. Integrating these two methods may produce new insights into the complex physiology of white matter. In this study, we investigated the relationship between diffusion and magnetic susceptibility in the white matter. Experiments were conducted on phantoms and human brains in vivo. Diffusion properties were quantified with the diffusion tensor model and also with the higher order tensor model based on the cumulant expansion. Frequency shift and susceptibility tensor were measured with quantitative susceptibility mapping and susceptibility tensor imaging. These diffusion and susceptibility quantities were compared and correlated in regions of single fiber bundles and regions of multiple fiber orientations. Relationships were established with similarities and differences identified. It is believed that diffusion MRI and susceptibility MRI provide complementary information of the microstructure of white matter. Together, they allow a more complete assessment of healthy and diseased brains. PMID:23507987
Tensor interaction in heavy-ion scattering. Pt. 1
International Nuclear Information System (INIS)
Nishioka, H.; Johnson, R.C.
1985-01-01
The Heidelberg shape-effect model for heavy-ion tensor interactions is reformulated and generalized using the Hooton-Johnson formulation. The generalized semiclassical model (the turning-point model) predicts that the components of the tensor analysing power anti Tsub(2q) have certain relations with each other for each type of tensor interaction (Tsub(R), Tsub(P) and Tsub(L) types). The predicted relations between the anti Tsub(2q) are very simple and have a direct connection with the properties of the tensor interaction at the turning point. The model predictions are satisfied in quantum-mechanical calculations for 7 Li and 23 Na elastic scattering from 58 Ni in the Fresnel-diffraction energy region. As a consequence of this model, it becomes possible to single out effects from a Tsub(P)- or Tsub(L)-type tensor interaction in polarized heavy-ion scattering. The presence of a Tsub(P)-type tensor interaction is suggested by measured anti T 20 /anti T 22 ratios for 7 Li + 58 Ni scattering. In the turning-point model the three types of tensor operator are not independent, and this is found to be true also in a quantum-mechanical calculation. The model also predicts relations between the components of higher-rank tensor analysing power in the presence of a higher-rank tensor interaction. The rank-3 tensor case is discussed in detail. (orig.)
Inversion assuming weak scattering
DEFF Research Database (Denmark)
Xenaki, Angeliki; Gerstoft, Peter; Mosegaard, Klaus
2013-01-01
due to the complex nature of the field. A method based on linear inversion is employed to infer information about the statistical properties of the scattering field from the obtained cross-spectral matrix. A synthetic example based on an active high-frequency sonar demonstrates that the proposed...
Broekhuis, H.
2005-01-01
This article aims at reformulating in more current terms Hoekstra and Mulder’s (1990) analysis of the Locative Inversion (LI) construction. The new proposal is crucially based on the assumption that Small Clause (SC) predicates agree with their external argument in phi-features, which may be
Complete moment tensor retrieval for weak events: application to orogenic and volcanic areas
Campus, P.; Suhadolc, P.; Panza, G. F.; Sileny, J.
1996-08-01
Aiming to study the mechanism and time history of weak local events we invert the dominant part of high-frequency seismograms (S and surface waves) by using two methods which implement moment tensor description of the focus. The point-source approximation is applied since we assume that the size of the focus with respect to the minimum wavelength of the analyzed signals is relatively small. Various constraints of the moment tensor are applied to cover local events of different origin - both the tectonic earthquakes and seismic events induced by volcanic activity. In the former case the double-couple constraint is applied, in the latter one a full moment tensor is decomposed into a volumetric part (V), representing volume changes, a compensated linear vector-dipole part (CLVD), describing opening of a fluid-filled lenticular crack, and a double couple part (DC), representing a shear slip. In the full moment tensor inversion the hypocentral depth and structural model may vary within pre-defined intervals. In the orogenic area of Friuli, Northern Italy, both the method looking for a DC only and the procedure implying the complete moment tensor arrive produce a DC mechanism, the orientation of which is consistent with the polarity readings. In the volcanic area of Phlegrean Fields, Southern Italy, the possible existence of fluid motion, which can be associated to volume changes and crack openings has to be taken into account, therefore, we used only the full moment tensor description to analyze several events in the magnitude range from 1.3 to 3. The obtained source durations vary from a few tenths of a second to about two seconds, suggesting that even small events may be characterized by relatively complex rupture history, although some of the retrieved complexities may be an artifact due to lateral inhomogeneities and other unmodelled structural effects. The percentage of the V component was found to be as large as 30% here, while it was negligible in the orogenic
Moment tensor inversion of waveforms: a two-step time-frequency approach
Czech Academy of Sciences Publication Activity Database
Vavryčuk, Václav; Kühn, D.
2012-01-01
Roč. 190, č. 3 (2012), s. 1761-1776 ISSN 0956-540X R&D Projects: GA AV ČR IAA300120801; GA ČR(CZ) GAP210/12/1491 Institutional research plan: CEZ:AV0Z30120515 Keywords : earthquake source observations * computational seismology * wave propagation * dynamics and mechanics of faulting Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.853, year: 2012
Analysis of In-Situ Stress During EGS Resource Development at The Geysers, CA
Boyd, O. S.; Dreger, D. S.; Gritto, R.
2016-12-01
Creating, identifying, and managing fractures and flow paths are essential tasks during Enhanced Geothermal Systems (EGS) resource development. Successful generation of a fracture network requires a priori knowledge of in-situ stress and natural fracture orientation and spacing. However, because the orientation and magnitude of in-situ stress may not be reliably available, and injecting fluids at high rates and volume may disturb the natural stress state, it is advantageous to monitor in-situ stress during the injection process. In this study we investigate M ≥ 1.3 seismicity in the vicinity of EGS development in the Northwest Geysers Prati 32 (P-32) injection well and Prati State 31 (PS-31) production well to determine moment magnitudes and focal mechanisms of events that occur before and during reservoir stimulation starting October 6, 2011. In general, event rate and magnitude increase as well as variability in focal mechanism during injection operations. We use our focal mechanism catalog of more than 150 events to estimate the stress tensor using the approach outlined in Hardebeck and Michaels (2006). Preliminary results of the stress inversion suggest temporal changes in the orientation of the principal stress axes during the first year of injection. It is found that the tension axis remains stable while the trend and plunge of the intermediate axis varies the most. The variations appear to be well resolved based on the 95% confidence intervals from the bootstrap analysis.
Bayesian seismic AVO inversion
Energy Technology Data Exchange (ETDEWEB)
Buland, Arild
2002-07-01
A new linearized AVO inversion technique is developed in a Bayesian framework. The objective is to obtain posterior distributions for P-wave velocity, S-wave velocity and density. Distributions for other elastic parameters can also be assessed, for example acoustic impedance, shear impedance and P-wave to S-wave velocity ratio. The inversion algorithm is based on the convolutional model and a linearized weak contrast approximation of the Zoeppritz equation. The solution is represented by a Gaussian posterior distribution with explicit expressions for the posterior expectation and covariance, hence exact prediction intervals for the inverted parameters can be computed under the specified model. The explicit analytical form of the posterior distribution provides a computationally fast inversion method. Tests on synthetic data show that all inverted parameters were almost perfectly retrieved when the noise approached zero. With realistic noise levels, acoustic impedance was the best determined parameter, while the inversion provided practically no information about the density. The inversion algorithm has also been tested on a real 3-D dataset from the Sleipner Field. The results show good agreement with well logs but the uncertainty is high. The stochastic model includes uncertainties of both the elastic parameters, the wavelet and the seismic and well log data. The posterior distribution is explored by Markov chain Monte Carlo simulation using the Gibbs sampler algorithm. The inversion algorithm has been tested on a seismic line from the Heidrun Field with two wells located on the line. The uncertainty of the estimated wavelet is low. In the Heidrun examples the effect of including uncertainty of the wavelet and the noise level was marginal with respect to the AVO inversion results. We have developed a 3-D linearized AVO inversion method with spatially coupled model parameters where the objective is to obtain posterior distributions for P-wave velocity, S
Hallo, Miroslav; Asano, Kimiyuki; Gallovič, František
2017-09-01
On April 16, 2016, Kumamoto prefecture in Kyushu region, Japan, was devastated by a shallow M JMA7.3 earthquake. The series of foreshocks started by M JMA6.5 foreshock 28 h before the mainshock. They have originated in Hinagu fault zone intersecting the mainshock Futagawa fault zone; hence, the tectonic background for this earthquake sequence is rather complex. Here we infer centroid moment tensors (CMTs) for 11 events with M JMA between 4.8 and 6.5, using strong motion records of the K-NET, KiK-net and F-net networks. We use upgraded Bayesian full-waveform inversion code ISOLA-ObsPy, which takes into account uncertainty of the velocity model. Such an approach allows us to reliably assess uncertainty of the CMT parameters including the centroid position. The solutions show significant systematic spatial and temporal variations throughout the sequence. Foreshocks are right-lateral steeply dipping strike-slip events connected to the NE-SW shear zone. Those located close to the intersection of the Hinagu and Futagawa fault zones are dipping slightly to ESE, while those in the southern area are dipping to WNW. Contrarily, aftershocks are mostly normal dip-slip events, being related to the N-S extensional tectonic regime. Most of the deviatoric moment tensors contain only minor CLVD component, which can be attributed to the velocity model uncertainty. Nevertheless, two of the CMTs involve a significant CLVD component, which may reflect complex rupture process. Decomposition of those moment tensors into two pure shear moment tensors suggests combined right-lateral strike-slip and normal dip-slip mechanisms, consistent with the tectonic settings of the intersection of the Hinagu and Futagawa fault zones.[Figure not available: see fulltext.
Moment-tensor solutions estimated using optimal filter theory: Global seismicity, 2001
Sipkin, S.A.; Bufe, C.G.; Zirbes, M.D.
2003-01-01
This paper is the 12th in a series published yearly containing moment-tensor solutions computed at the US Geological Survey using an algorithm based on the theory of optimal filter design (Sipkin, 1982 and Sipkin, 1986b). An inversion has been attempted for all earthquakes with a magnitude, mb or MS, of 5.5 or greater. Previous listings include solutions for earthquakes that occurred from 1981 to 2000 (Sipkin, 1986b; Sipkin and Needham, 1989, Sipkin and Needham, 1991, Sipkin and Needham, 1992, Sipkin and Needham, 1993, Sipkin and Needham, 1994a and Sipkin and Needham, 1994b; Sipkin and Zirbes, 1996 and Sipkin and Zirbes, 1997; Sipkin et al., 1998, Sipkin et al., 1999, Sipkin et al., 2000a, Sipkin et al., 2000b and Sipkin et al., 2002).The entire USGS moment-tensor catalog can be obtained via anonymous FTP at ftp://ghtftp.cr.usgs.gov. After logging on, change directory to “momten”. This directory contains two compressed ASCII files that contain the finalized solutions, “mt.lis.Z” and “fmech.lis.Z”. “mt.lis.Z” contains the elements of the moment tensors along with detailed event information; “fmech.lis.Z” contains the decompositions into the principal axes and best double-couples. The fast moment-tensor solutions for more recent events that have not yet been finalized and added to the catalog, are gathered by month in the files “jan01.lis.Z”, etc. “fmech.doc.Z” describes the various fields.
Wang, Kunpeng; Tan, Handong; Zhang, Zhiyong; Li, Zhiqiang; Cao, Meng
2017-05-01
Resistivity anisotropy and full-tensor controlled-source audio-frequency magnetotellurics (CSAMT) have gradually become hot research topics. However, much of the current anisotropy research for tensor CSAMT only focuses on the one-dimensional (1D) solution. As the subsurface is rarely 1D, it is necessary to study three-dimensional (3D) model response. The staggered-grid finite difference method is an effective simulation method for 3D electromagnetic forward modelling. Previous studies have suggested using the divergence correction to constrain the iterative process when using a staggered-grid finite difference model so as to accelerate the 3D forward speed and enhance the computational accuracy. However, the traditional divergence correction method was developed assuming an isotropic medium. This paper improves the traditional isotropic divergence correction method and derivation process to meet the tensor CSAMT requirements for anisotropy using the volume integral of the divergence equation. This method is more intuitive, enabling a simple derivation of a discrete equation and then calculation of coefficients related to the anisotropic divergence correction equation. We validate the result of our 3D computational results by comparing them to the results computed using an anisotropic, controlled-source 2.5D program. The 3D resistivity anisotropy model allows us to evaluate the consequences of using the divergence correction at different frequencies and for two orthogonal finite length sources. Our results show that the divergence correction plays an important role in 3D tensor CSAMT resistivity anisotropy research and offers a solid foundation for inversion of CSAMT data collected over an anisotropic body.
Energy Technology Data Exchange (ETDEWEB)
Shin, Chang Soo; Park, Keun Pil [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of); Suh, Jung Hee; Hyun, Byung Koo; Shin, Sung Ryul [Seoul National University, Seoul (Korea, Republic of)
1995-12-01
The seismic reflection exploration technique which is one of the geophysical methods for oil exploration became effectively to image the subsurface structure with rapid development of computer. However, the imagining of subsurface based on the conventional data processing is almost impossible to obtain the information on physical properties of the subsurface such as velocity and density. Since seismic data are implicitly function of velocities of subsurface, it is necessary to develop the inversion method that can delineate the velocity structure using seismic topography and waveform inversion. As a tool to perform seismic inversion, seismic forward modeling program using ray tracing should be developed. In this study, we have developed the algorithm that calculate the travel time of the complex geologic structure using shooting ray tracing by subdividing the geologic model into blocky structure having the constant velocity. With the travel time calculation, the partial derivatives of travel time can be calculated efficiently without difficulties. Since the current ray tracing technique has a limitation to calculate the travel times for extremely complex geologic model, our aim in the future is to develop the powerful ray tracer using the finite element technique. After applying the pseudo waveform inversion to the seismic data of Korea offshore, we can obtain the subsurface velocity model and use the result in bring up the quality of the seismic data processing. If conventional seismic data processing and seismic interpretation are linked with this inversion technique, the high quality of seismic data processing can be expected to image the structure of the subsurface. Future research area is to develop the powerful ray tracer of ray tracing which can calculate the travel times for the extremely complex geologic model. (author). 39 refs., 32 figs., 2 tabs.
Calculation of the inverse data space via sparse inversion
Saragiotis, Christos
2011-01-01
The inverse data space provides a natural separation of primaries and surface-related multiples, as the surface multiples map onto the area around the origin while the primaries map elsewhere. However, the calculation of the inverse data is far from trivial as theory requires infinite time and offset recording. Furthermore regularization issues arise during inversion. We perform the inversion by minimizing the least-squares norm of the misfit function by constraining the $ell_1$ norm of the solution, being the inverse data space. In this way a sparse inversion approach is obtained. We show results on field data with an application to surface multiple removal.
Diffusion tensor imaging tensor shape analysis for assessment of regional white matter differences.
Middleton, Dana M; Li, Jonathan Y; Lee, Hui J; Chen, Steven; Dickson, Patricia I; Ellinwood, N Matthew; White, Leonard E; Provenzale, James M
2017-08-01
Purpose The purpose of this study was to investigate a novel tensor shape plot analysis technique of diffusion tensor imaging data as a means to assess microstructural differences in brain tissue. We hypothesized that this technique could distinguish white matter regions with different microstructural compositions. Methods Three normal canines were euthanized at seven weeks old. Their brains were imaged using identical diffusion tensor imaging protocols on a 7T small-animal magnetic resonance imaging system. We examined two white matter regions, the internal capsule and the centrum semiovale, each subdivided into an anterior and posterior region. We placed 100 regions of interest in each of the four brain regions. Eigenvalues for each region of interest triangulated onto tensor shape plots as the weighted average of three shape metrics at the plot's vertices: CS, CL, and CP. Results The distribution of data on the plots for the internal capsule differed markedly from the centrum semiovale data, thus confirming our hypothesis. Furthermore, data for the internal capsule were distributed in a relatively tight cluster, possibly reflecting the compact and parallel nature of its fibers, while data for the centrum semiovale were more widely distributed, consistent with the less compact and often crossing pattern of its fibers. This indicates that the tensor shape plot technique can depict data in similar regions as being alike. Conclusion Tensor shape plots successfully depicted differences in tissue microstructure and reflected the microstructure of individual brain regions. This proof of principle study suggests that if our findings are reproduced in larger samples, including abnormal white matter states, the technique may be useful in assessment of white matter diseases.
An introduction to tensors and group theory for physicists
Jeevanjee, Nadir
2011-01-01
An Introduction to Tensors and Group Theory for Physicists provides both an intuitive and rigorous approach to tensors and groups and their role in theoretical physics and applied mathematics. A particular aim is to demystify tensors and provide a unified framework for understanding them in the context of classical and quantum physics. Connecting the component formalism prevalent in physics calculations with the abstract but more conceptual formulation found in many mathematical texts, the work will be a welcome addition to the literature on tensors and group theory. Part I of the text begins with linear algebraic foundations, follows with the modern component-free definition of tensors, and concludes with applications to classical and quantum physics through the use of tensor products. Part II introduces abstract groups along with matrix Lie groups and Lie algebras, then intertwines this material with that of Part I by introducing representation theory. Exercises and examples are provided throughout for go...
Radiative corrections in a vector-tensor model
International Nuclear Information System (INIS)
Chishtie, F.; Gagne-Portelance, M.; Hanif, T.; Homayouni, S.; McKeon, D.G.C.
2006-01-01
In a recently proposed model in which a vector non-Abelian gauge field interacts with an antisymmetric tensor field, it has been shown that the tensor field possesses no physical degrees of freedom. This formal demonstration is tested by computing the one-loop contributions of the tensor field to the self-energy of the vector field. It is shown that despite the large number of Feynman diagrams in which the tensor field contributes, the sum of these diagrams vanishes, confirming that it is not physical. Furthermore, if the tensor field were to couple with a spinor field, it is shown at one-loop order that the spinor self-energy is not renormalizable, and hence this coupling must be excluded. In principle though, this tensor field does couple to the gravitational field
Fast Bayesian optimal experimental design for seismic source inversion
Long, Quan
2015-07-01
We develop a fast method for optimally designing experiments in the context of statistical seismic source inversion. In particular, we efficiently compute the optimal number and locations of the receivers or seismographs. The seismic source is modeled by a point moment tensor multiplied by a time-dependent function. The parameters include the source location, moment tensor components, and start time and frequency in the time function. The forward problem is modeled by elastodynamic wave equations. We show that the Hessian of the cost functional, which is usually defined as the square of the weighted L2 norm of the difference between the experimental data and the simulated data, is proportional to the measurement time and the number of receivers. Consequently, the posterior distribution of the parameters, in a Bayesian setting, concentrates around the "true" parameters, and we can employ Laplace approximation and speed up the estimation of the expected Kullback-Leibler divergence (expected information gain), the optimality criterion in the experimental design procedure. Since the source parameters span several magnitudes, we use a scaling matrix for efficient control of the condition number of the original Hessian matrix. We use a second-order accurate finite difference method to compute the Hessian matrix and either sparse quadrature or Monte Carlo sampling to carry out numerical integration. We demonstrate the efficiency, accuracy, and applicability of our method on a two-dimensional seismic source inversion problem. © 2015 Elsevier B.V.
Fast Bayesian Optimal Experimental Design for Seismic Source Inversion
Long, Quan
2016-01-06
We develop a fast method for optimally designing experiments [1] in the context of statistical seismic source inversion [2]. In particular, we efficiently compute the optimal number and locations of the receivers or seismographs. The seismic source is modeled by a point moment tensor multiplied by a time-dependent function. The parameters include the source location, moment tensor components, and start time and frequency in the time function. The forward problem is modeled by the elastic wave equations. We show that the Hessian of the cost functional, which is usually defined as the square of the weighted L2 norm of the difference between the experimental data and the simulated data, is proportional to the measurement time and the number of receivers. Consequently, the posterior distribution of the parameters, in a Bayesian setting, concentrates around the true parameters, and we can employ Laplace approximation and speed up the estimation of the expected Kullback-Leibler divergence (expected information gain), the optimality criterion in the experimental design procedure. Since the source parameters span several magnitudes, we use a scaling matrix for efficient control of the condition number of the original Hessian matrix. We use a second-order accurate finite difference method to compute the Hessian matrix and either sparse quadrature or Monte Carlo sampling to carry out numerical integration. We demonstrate the efficiency, accuracy, and applicability of our method on a two-dimensional seismic source inversion problem.
Comparison of two global digital algorithms for Minkowski tensor estimation
DEFF Research Database (Denmark)
The geometry of real world objects can be described by Minkowski tensors. Algorithms have been suggested to approximate Minkowski tensors if only a binary image of the object is available. This paper presents implementations of two such algorithms. The theoretical convergence properties...... are confirmed by simulations on test sets, and recommendations for input arguments of the algorithms are given. For increasing resolutions, we obtain more accurate estimators for the Minkowski tensors. Digitisations of more complicated objects are shown to require higher resolutions....
Energy-momentum tensor in the quantum field theory
International Nuclear Information System (INIS)
Azakov, S.I.
1977-01-01
An energy-momentum tensor in the scalar field theory is built. The tensor must satisfy the finiteness requirement of the Green function. The Green functions can always be made finite by renormalizations in the S-matrix by introducing counter terms into the Hamiltonian (or Lagrangian) of the interaction. Such a renormalization leads to divergencies in the Green functions. Elimination of these divergencies requires the introduction of new counter terms, which must be taken into account in the energy-momentum tensor
Introduction to Tensor Decompositions and their Applications in Machine Learning
Rabanser, Stephan; Shchur, Oleksandr; Günnemann, Stephan
2017-01-01
Tensors are multidimensional arrays of numerical values and therefore generalize matrices to multiple dimensions. While tensors first emerged in the psychometrics community in the $20^{\\text{th}}$ century, they have since then spread to numerous other disciplines, including machine learning. Tensors and their decompositions are especially beneficial in unsupervised learning settings, but are gaining popularity in other sub-disciplines like temporal and multi-relational data analysis, too. The...
Scattering of charged tensor bosons in gauge and superstring theories
Antoniadis, Ignatios
2010-01-01
We calculate the leading-order scattering amplitude of one vector and two tensor gauge bosons in a recently proposed non-Abelian tensor gauge field theory and open superstring theory. The linear in momenta part of the superstring amplitude has identical Lorentz structure with the gauge theory, while its cubic in momenta part can be identified with an effective Lagrangian which is constructed using generalized non-Abelian field strength tensors.
Supergravity tensor calculus in 5D from 6D
International Nuclear Information System (INIS)
Kugo, Taichiro; Ohashi, Keisuke
2000-01-01
Supergravity tensor calculus in five spacetime dimensions is derived by dimensional reduction from the d=6 superconformal tensor calculus. In particular, we obtain an off-shell hypermultiplet in 5D from the on-shell hypermultiplet in 6D. Our tensor calculus retains the dilatation gauge symmetry, so that it is a trivial gauge fixing to make the Einstein term canonical in a general matter-Yang-Mills-supergravity coupled system. (author)
Directory of Open Access Journals (Sweden)
Rex E Jung
Full Text Available That creativity and psychopathology are somehow linked remains a popular but controversial idea in neuroscience research. Brain regions implicated in both psychosis-proneness and creative cognition include frontal projection zones and association fibers. In normal subjects, we have previously demonstrated that a composite measure of divergent thinking (DT ability exhibited significant inverse relationships in frontal lobe areas with both cortical thickness and metabolite concentration of N-acetyl-aspartate (NAA. These findings support the idea that creativity may reside upon a continuum with psychopathology. Here we examine whether white matter integrity, assessed by Fractional Anisotropy (FA, is related to two measures of creativity (Divergent Thinking and Openness to Experience. Based on previous findings, we hypothesize inverse correlations within fronto-striatal circuits. Seventy-two healthy, young adult (18-29 years subjects were scanned on a 3 Tesla scanner with Diffusion Tensor Imaging. DT measures were scored by four raters (alpha = .81 using the Consensual Assessment Technique, from which a composite creativity index (CCI was derived. We found that the CCI was significantly inversely related to FA within the left inferior frontal white matter (t = 5.36, p = .01, and Openness was inversely related to FA within the right inferior frontal white matter (t = 4.61, p = .04. These findings demonstrate an apparent overlap in specific white matter architecture underlying the normal variance of divergent thinking, openness, and psychotic-spectrum traits, consistent with the idea of a continuum.
The classification of the Ricci tensor in the general theory of relativity
International Nuclear Information System (INIS)
Cormack, W.J.
1979-10-01
A comprehensive classification of the Ricci tensor in General Relativity using several techniques is given and their connection with existing classification studied under the headings; canonical forms for the Ricci tensor, invariant 2-spaces in the classification of the Ricci tensor, Riemannian curvature and the classification of the Riemann and Ricci tensors, and spinor classifications of the Ricci tensor. (U.K.)
Electrochemically driven emulsion inversion
International Nuclear Information System (INIS)
Johans, Christoffer; Kontturi, Kyoesti
2007-01-01
It is shown that emulsions stabilized by ionic surfactants can be inverted by controlling the electrical potential across the oil-water interface. The potential dependent partitioning of sodium dodecyl sulfate (SDS) was studied by cyclic voltammetry at the 1,2-dichlorobenzene|water interface. In the emulsion the potential control was achieved by using a potential-determining salt. The inversion of a 1,2-dichlorobenzene-in-water (O/W) emulsion stabilized by SDS was followed by conductometry as a function of added tetrapropylammonium chloride. A sudden drop in conductivity was observed, indicating the change of the continuous phase from water to 1,2-dichlorobenzene, i.e. a water-in-1,2-dichlorobenzene emulsion was formed. The inversion potential is well in accordance with that predicted by the hydrophilic-lipophilic deviation if the interfacial potential is appropriately accounted for
CONSTRUCTION A CORING FROM TENSOR PRODUCT OF BIALGEBRA
Directory of Open Access Journals (Sweden)
Nikken Prima Puspita
2015-01-01
Full Text Available In this Paper introduced a coring from tensor product of bialgebra. An algebra with compatible coalgebrastructure are known as bialgebra. For any bialgebra B we can obtained tensor product between B anditself. Defined a right and left B -action on the tensor product of bialgebra B such that we have tensorproduct of B and itself is a bimodule over B. In this note we expect that the tensor product B anditself becomes a B -coring with comultiplication and counit.Keywords : action, algebra, coalgebra, coring.
Airborne LIDAR Points Classification Based on Tensor Sparse Representation
Li, N.; Pfeifer, N.; Liu, C.
2017-09-01
The common statistical methods for supervised classification usually require a large amount of training data to achieve reasonable results, which is time consuming and inefficient. This paper proposes a tensor sparse representation classification (SRC) method for airborne LiDAR points. The LiDAR points are represented as tensors to keep attributes in its spatial space. Then only a few of training data is used for dictionary learning, and the sparse tensor is calculated based on tensor OMP algorithm. The point label is determined by the minimal reconstruction residuals. Experiments are carried out on real LiDAR points whose result shows that objects can be distinguished by this algorithm successfully.
p-Norm SDD tensors and eigenvalue localization
Directory of Open Access Journals (Sweden)
Qilong Liu
2016-07-01
Full Text Available Abstract We present a new class of nonsingular tensors (p-norm strictly diagonally dominant tensors, which is a subclass of strong H $\\mathcal{H}$ -tensors. As applications of the results, we give a new eigenvalue inclusion set, which is tighter than those provided by Li et al. (Linear Multilinear Algebra 64:727-736, 2016 in some case. Based on this set, we give a checkable sufficient condition for the positive (semidefiniteness of an even-order symmetric tensor.
Joint Tensor Feature Analysis For Visual Object Recognition.
Wong, Wai Keung; Lai, Zhihui; Xu, Yong; Wen, Jiajun; Ho, Chu Po
2015-11-01
Tensor-based object recognition has been widely studied in the past several years. This paper focuses on the issue of joint feature selection from the tensor data and proposes a novel method called joint tensor feature analysis (JTFA) for tensor feature extraction and recognition. In order to obtain a set of jointly sparse projections for tensor feature extraction, we define the modified within-class tensor scatter value and the modified between-class tensor scatter value for regression. The k-mode optimization technique and the L(2,1)-norm jointly sparse regression are combined together to compute the optimal solutions. The convergent analysis, computational complexity analysis and the essence of the proposed method/model are also presented. It is interesting to show that the proposed method is very similar to singular value decomposition on the scatter matrix but with sparsity constraint on the right singular value matrix or eigen-decomposition on the scatter matrix with sparse manner. Experimental results on some tensor datasets indicate that JTFA outperforms some well-known tensor feature extraction and selection algorithms.
TENSOR MODELING BASED FOR AIRBORNE LiDAR DATA CLASSIFICATION
Directory of Open Access Journals (Sweden)
N. Li
2016-06-01
Full Text Available Feature selection and description is a key factor in classification of Earth observation data. In this paper a classification method based on tensor decomposition is proposed. First, multiple features are extracted from raw LiDAR point cloud, and raster LiDAR images are derived by accumulating features or the “raw” data attributes. Then, the feature rasters of LiDAR data are stored as a tensor, and tensor decomposition is used to select component features. This tensor representation could keep the initial spatial structure and insure the consideration of the neighborhood. Based on a small number of component features a k nearest neighborhood classification is applied.
Many-particle quantum hydrodynamics: Exact equations and pressure tensors
Renziehausen, Klaus; Barth, Ingo
2018-01-01
In the first part of this paper, the many-particle quantum hydrodynamics equations for a system containing many particles of different sorts are derived exactly from the many-particle Schrödinger equation, including the derivation of the many-particle continuity equations, many-particle Ehrenfest equations of motion, and many-particle quantum Cauchy equations for any of the different particle sorts and for the total particle ensemble. The new point in our analysis is that we consider a set of arbitrary particles of different sorts in the system. In the many-particle quantum Cauchy equations, there appears a quantity called the pressure tensor. In the second part of this paper, we analyze two versions of this tensor in depth: the Wyatt pressure tensor and the Kuzmenkov pressure tensor. There are different versions because there is a gauge freedom for the pressure tensor similar to that for potentials. We find that the interpretation of all the quantities contributing to the Wyatt pressure tensor is understandable, but for the Kuzmenkov tensor it is difficult. Furthermore, the transformation from Cartesian coordinates to cylindrical coordinates for the Wyatt tensor can be done in a clear way, but for the Kuzmenkov tensor it is rather cumbersome.
On the magnetic polarizability tensor of US coinage
Davidson, John L.; Abdel-Rehim, Omar A.; Hu, Peipei; Marsh, Liam A.; O’Toole, Michael D.; Peyton, Anthony J.
2018-03-01
The magnetic dipole polarizability tensor of a metallic object gives unique information about the size, shape and electromagnetic properties of the object. In this paper, we present a novel method of coin characterization based on the spectroscopic response of the absolute tensor. The experimental measurements are validated using a combination of tests with a small set of bespoke coin surrogates and simulated data. The method is applied to an uncirculated set of US coins. Measured and simulated spectroscopic tensor responses of the coins show significant differences between different coin denominations. The presented results are encouraging as they strongly demonstrate the ability to characterize coins using an absolute tensor approach.
A local potential for the Weyl tensor in all dimensions
International Nuclear Information System (INIS)
Edgar, S Brian; Senovilla, Jose M M
2004-01-01
In all dimensions n ≥ 4 and arbitrary signature, we demonstrate the existence of a new local potential-a double (2, 3)-form, P ab cde -for the Weyl curvature tensor C abcd , and more generally for all tensors W abcd with the symmetry properties of the Weyl tensor. The classical four-dimensional Lanczos potential for a Weyl tensor-a double (2, 1)-form, H ab c -is proven to be a particular case of the new potential: its double dual. (letter to the editor)
DEFF Research Database (Denmark)
Gale, A.S.; Surlyk, Finn; Anderskouv, Kresten
2013-01-01
Evidence from regional stratigraphical patterns in Santonian−Campanian chalk is used to infer the presence of a very broad channel system (5 km across) with a depth of at least 50 m, running NNW−SSE across the eastern Isle of Wight; only the western part of the channel wall and fill is exposed. W......−Campanian chalks in the eastern Isle of Wight, involving penecontemporaneous tectonic inversion of the underlying basement structure, are rejected....
Analysis of the stress regime and tectonic evolution of the Azerbaijan Plateau, Northwestern Iran
Alizadeh, A.; Hoseynalizadeh, Z.
2017-05-01
The increasing number of earthquakes in recent decades in Northwestern Iran and the determination of the epicenters of these events makes possible to estimate accurately the changing tectonic regime using the Win-Tensor inversion focal mechanism program. For this purpose focal mechanism data were collected from various sources, including the Centroid Moment Tensor catalog (CMT). The focal mechanism and fault slip data were analyzed to determine change in the stress field up to the present day. The results showed that two stages of brittle deformation occurred in the region. The first stage was related to Eocene compression in NE-SW direction, which created compressional structures with NW-SE strike, including the North and South Bozgush, south Ahar and Gushedagh thrust belts. The second brittle stage began in the Miocene with NW-SE compression and caused developing thrusts with N-S trends that were active presently. These stress regimes were created by the counter-clockwise rotation of the Azerbaijan plateau caused by movement on strike slip faults and continuous compression between the Arabian plate, the south Caspian basin and the Caucasus region. Pliocene-Quaternary activity of the Sabalan and Sahand volcanoes as well as recent earthquakes occurred as a result of this displacement and rotational movement. The abundance of hot springs in the Ardebil, Hero Abad and Bostanabad areas also bore witness to this activity.
Intersections, ideals, and inversion
International Nuclear Information System (INIS)
Vasco, D.W.
1998-01-01
Techniques from computational algebra provide a framework for treating large classes of inverse problems. In particular, the discretization of many types of integral equations and of partial differential equations with undetermined coefficients lead to systems of polynomial equations. The structure of the solution set of such equations may be examined using algebraic techniques.. For example, the existence and dimensionality of the solution set may be determined. Furthermore, it is possible to bound the total number of solutions. The approach is illustrated by a numerical application to the inverse problem associated with the Helmholtz equation. The algebraic methods are used in the inversion of a set of transverse electric (TE) mode magnetotelluric data from Antarctica. The existence of solutions is demonstrated and the number of solutions is found to be finite, bounded from above at 50. The best fitting structure is dominantly one dimensional with a low crustal resistivity of about 2 ohm-m. Such a low value is compatible with studies suggesting lower surface wave velocities than found in typical stable cratons
Intersections, ideals, and inversion
Energy Technology Data Exchange (ETDEWEB)
Vasco, D.W.
1998-10-01
Techniques from computational algebra provide a framework for treating large classes of inverse problems. In particular, the discretization of many types of integral equations and of partial differential equations with undetermined coefficients lead to systems of polynomial equations. The structure of the solution set of such equations may be examined using algebraic techniques.. For example, the existence and dimensionality of the solution set may be determined. Furthermore, it is possible to bound the total number of solutions. The approach is illustrated by a numerical application to the inverse problem associated with the Helmholtz equation. The algebraic methods are used in the inversion of a set of transverse electric (TE) mode magnetotelluric data from Antarctica. The existence of solutions is demonstrated and the number of solutions is found to be finite, bounded from above at 50. The best fitting structure is dominantly onedimensional with a low crustal resistivity of about 2 ohm-m. Such a low value is compatible with studies suggesting lower surface wave velocities than found in typical stable cratons.
International Nuclear Information System (INIS)
Steinhauer, L.C.; Romea, R.D.; Kimura, W.D.
1997-01-01
A new method for laser acceleration is proposed based upon the inverse process of transition radiation. The laser beam intersects an electron-beam traveling between two thin foils. The principle of this acceleration method is explored in terms of its classical and quantum bases and its inverse process. A closely related concept based on the inverse of diffraction radiation is also presented: this concept has the significant advantage that apertures are used to allow free passage of the electron beam. These concepts can produce net acceleration because they do not satisfy the conditions in which the Lawson-Woodward theorem applies (no net acceleration in an unbounded vacuum). Finally, practical aspects such as damage limits at optics are employed to find an optimized set of parameters. For reasonable assumptions an acceleration gradient of 200 MeV/m requiring a laser power of less than 1 GW is projected. An interesting approach to multi-staging the acceleration sections is also presented. copyright 1997 American Institute of Physics
Symmetric Topological Phases and Tensor Network States
Jiang, Shenghan
Classification and simulation of quantum phases are one of main themes in condensed matter physics. Quantum phases can be distinguished by their symmetrical and topological properties. The interplay between symmetry and topology in condensed matter physics often leads to exotic quantum phases and rich phase diagrams. Famous examples include quantum Hall phases, spin liquids and topological insulators. In this thesis, I present our works toward a more systematically understanding of symmetric topological quantum phases in bosonic systems. In the absence of global symmetries, gapped quantum phases are characterized by topological orders. Topological orders in 2+1D are well studied, while a systematically understanding of topological orders in 3+1D is still lacking. By studying a family of exact solvable models, we find at least some topological orders in 3+1D can be distinguished by braiding phases of loop excitations. In the presence of both global symmetries and topological orders, the interplay between them leads to new phases termed as symmetry enriched topological (SET) phases. We develop a framework to classify a large class of SET phases using tensor networks. For each tensor class, we can write down generic variational wavefunctions. We apply our method to study gapped spin liquids on the kagome lattice, which can be viewed as SET phases of on-site symmetries as well as lattice symmetries. In the absence of topological order, symmetry could protect different topological phases, which are often referred to as symmetry protected topological (SPT) phases. We present systematic constructions of tensor network wavefunctions for bosonic symmetry protected topological (SPT) phases respecting both onsite and spatial symmetries.
Scalar-tensor cosmology with cosmological constant
International Nuclear Information System (INIS)
Maslanka, K.
1983-01-01
The equations of scalar-tensor theory of gravitation with cosmological constant in the case of homogeneous and isotropic cosmological model can be reduced to dynamical system of three differential equations with unknown functions H=R/R, THETA=phi/phi, S=e/phi. When new variables are introduced the system becomes more symmetrical and cosmological solutions R(t), phi(t), e(t) are found. It is shown that when cosmological constant is introduced large class of solutions which depend also on Dicke-Brans parameter can be obtained. Investigations of these solutions give general limits for cosmological constant and mean density of matter in plane model. (author)
Tensor glueball-meson mixing phenomenology
International Nuclear Information System (INIS)
Burakovsky, L.; Page, P.R.
2000-01-01
The overpopulated isoscalar tensor states are sifted using Schwinger-type mass relations. Two solutions are found: one where the glueball is the f J (2220), and one where the glueball is more distributed, with f 2 (1820) having the largest component. The f 2 (1565) and f J (1710) cannot be accommodated as glueball-(hybrid) meson mixtures in the absence of significant coupling to decay channels. f 2 '(1525)→ππ is in agreement with experiment. The f J (2220) decays neither flavour democratically nor is narrow. (orig.)
Tensor Network Wavefunctions for Topological Phases
Ware, Brayden Alexander
The combination of quantum effects and interactions in quantum many-body systems can result in exotic phases with fundamentally entangled ground state wavefunctions--topological phases. Topological phases come in two types, both of which will be studied in this thesis. In topologically ordered phases, the pattern of entanglement in the ground state wavefunction encodes the statistics of exotic emergent excitations, a universal indicator of a phase that is robust to all types of perturbations. In symmetry protected topological phases, the entanglement instead encodes a universal response of the system to symmetry defects, an indicator that is robust only to perturbations respecting the protecting symmetry. Finding and creating these phases in physical systems is a motivating challenge that tests all aspects--analytical, numerical, and experimental--of our understanding of the quantum many-body problem. Nearly three decades ago, the creation of simple ansatz wavefunctions--such as the Laughlin fractional quantum hall state, the AKLT state, and the resonating valence bond state--spurred analytical understanding of both the role of entanglement in topological physics and physical mechanisms by which it can arise. However, quantitative understanding of the relevant phase diagrams is still challenging. For this purpose, tensor networks provide a toolbox for systematically improving wavefunction ansatz while still capturing the relevant entanglement properties. In this thesis, we use the tools of entanglement and tensor networks to analyze ansatz states for several proposed new phases. In the first part, we study a featureless phase of bosons on the honeycomb lattice and argue that this phase can be topologically protected under any one of several distinct subsets of the crystalline lattice symmetries. We discuss methods of detecting such phases with entanglement and without. In the second part, we consider the problem of constructing fixed-point wavefunctions for
A Case of Tensor Fasciae Suralis Muscle
Miyauchi, Ryosuke; Kurihara, Kazushige; Tachibana, Gen
1985-01-01
An anomalous muscle was found on the dorsum of the right lower limb of a 67-year-old Japanese male. It originated by two heads from the semitendinosus and long head of the biceps femoris and ran distally to insert into the deep surface of the sural fascia. The origin, insertion and location of the muscle were compared with those of the various supernumerary muscles hitherto published. The muscle is consequently regarded as being the tensor fasciae suralis. This is the fifth case in Japan.
Holographic duality from random tensor networks
Energy Technology Data Exchange (ETDEWEB)
Hayden, Patrick; Nezami, Sepehr; Qi, Xiao-Liang; Thomas, Nathaniel; Walter, Michael; Yang, Zhao [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,382 Via Pueblo, Stanford, CA 94305 (United States)
2016-11-02
Tensor networks provide a natural framework for exploring holographic duality because they obey entanglement area laws. They have been used to construct explicit toy models realizing many of the interesting structural features of the AdS/CFT correspondence, including the non-uniqueness of bulk operator reconstruction in the boundary theory. In this article, we explore the holographic properties of networks of random tensors. We find that our models naturally incorporate many features that are analogous to those of the AdS/CFT correspondence. When the bond dimension of the tensors is large, we show that the entanglement entropy of all boundary regions, whether connected or not, obey the Ryu-Takayanagi entropy formula, a fact closely related to known properties of the multipartite entanglement of assistance. We also discuss the behavior of Rényi entropies in our models and contrast it with AdS/CFT. Moreover, we find that each boundary region faithfully encodes the physics of the entire bulk entanglement wedge, i.e., the bulk region enclosed by the boundary region and the minimal surface. Our method is to interpret the average over random tensors as the partition function of a classical ferromagnetic Ising model, so that the minimal surfaces of Ryu-Takayanagi appear as domain walls. Upon including the analog of a bulk field, we find that our model reproduces the expected corrections to the Ryu-Takayanagi formula: the bulk minimal surface is displaced and the entropy is augmented by the entanglement of the bulk field. Increasing the entanglement of the bulk field ultimately changes the minimal surface behavior topologically, in a way similar to the effect of creating a black hole. Extrapolating bulk correlation functions to the boundary permits the calculation of the scaling dimensions of boundary operators, which exhibit a large gap between a small number of low-dimension operators and the rest. While we are primarily motivated by the AdS/CFT duality, the main
Czech Academy of Sciences Publication Activity Database
Kopský, Vojtěch
2006-01-01
Roč. 62, - (2006), s. 65-76 ISSN 0108-7673 R&D Projects: GA ČR GA202/04/0992 Institutional research plan: CEZ:AV0Z10100520 Keywords : tensor ial covariants * domain states * stability spaces Subject RIV: BE - Theoretical Physics Impact factor: 1.676, year: 2006
Mantle conductivity obtained by 3-D inversion of magnetic satellite data
DEFF Research Database (Denmark)
Kuvshinov, A.; Olsen, Nils
and perform the most consuming-time part of the IE forward simulations (the calculation of electric and magnetic tensor Green’s functions) only once. Approximate calculation of the data sensitivities also gives essential speed up of the inversion. We validate our inversion scheme using synthetic induction......We present an approach to determine the three-dimensional (3-D) conductivity distribution of the Earth’s upper mantle from magnetic satellite data. The approach is based on a minimization of the misfit between the measured and modeled (predicted) magnetic field using a quasi-Newton method, solving...... distributed geomagnetic observatories. Due to the high computational load of a 3-D inversion (requiring thousands of forward calculations), a comprehensive numerical framework is developed to increase the efficiency of the inversion.In particular, we take an advantage of specific features of the IE approach...
Hörl, Anton; Trügler, Andreas; Hohenester, Ulrich
2015-10-21
Electron energy loss spectroscopy (EELS) has emerged as a powerful tool for the investigation of plasmonic nanoparticles, but the interpretation of EELS results in terms of optical quantities, such as the photonic local density of states, remains challenging. Recent work has demonstrated that, under restrictive assumptions, including the applicability of the quasistatic approximation and a plasmonic response governed by a single mode, one can rephrase EELS as a tomography scheme for the reconstruction of plasmonic eigenmodes. In this paper we lift these restrictions by formulating EELS as an inverse problem and show that the complete dyadic Green tensor can be reconstructed for plasmonic particles of arbitrary shape. The key steps underlying our approach are a generic singular value decomposition of the dyadic Green tensor and a compressed sensing optimization for the determination of the expansion coefficients. We demonstrate the applicability of our scheme for prototypical nanorod, bowtie, and cube geometries.
Moment Tensor Descriptions for Simulated Explosions of the Source Physics Experiment (SPE)
Yang, X.; Rougier, E.; Knight, E. E.; Patton, H. J.
2014-12-01
In this research we seek to understand damage mechanisms governing the behavior of geo-materials in the explosion source region, and the role they play in seismic-wave generation. Numerical modeling tools can be used to describe these mechanisms through the development and implementation of appropriate material models. Researchers at Los Alamos National Laboratory (LANL) have been working on a novel continuum-based-viscoplastic strain-rate-dependent fracture material model, AZ_Frac, in an effort to improve the description of these damage sources. AZ_Frac has the ability to describe continuum fracture processes, and at the same time, to handle pre-existing anisotropic material characteristics. The introduction of fractures within the material generates further anisotropic behavior that is also accounted for within the model. The material model has been calibrated to a granitic medium and has been applied in a number of modeling efforts under the SPE project. In our modeling, we use a 2D, axisymmetric layered earth model of the SPE site consisting of a weathered layer on top of a half-space. We couple the hydrodynamic simulation code with a seismic simulation code and propagate the signals to distances of up to 2 km. The signals are inverted for time-dependent moment tensors using a modified inversion scheme that accounts for multiple sources at different depths. The inversion scheme is evaluated for its resolving power to determine a centroid depth and a moment tensor description of the damage source. The capabilities of the inversion method to retrieve such information from waveforms recorded on three SPE tests conducted to date are also being assessed.
Stress field reconstruction in an active mudslide
Baroň, Ivo; Kernstocková, Markéta; Melichar, Rostislav
2017-07-01
Meso-scale structures from gravitational slope deformation observed in landslides and deep-seated gravitational slope failures are very similar to those of endogenous ones. Therefore we applied palaeostress analysis of fault-slip data for reconstructing the stress field of an active mudslide in Pechgraben, Austria. This complex compound landslide has developed in clayey colluvium and shale and was activated after a certain period of dormancy in June 2013. During the active motion on June 12, 2013, 73 fault-slip traces at 9 locations were measured within the landslide body. The heterogeneous fault-slip data were processed in term of palaeostresses, the reconstructed palaeostress tensor being characterized by the orientations of the three principal stress axes and the stress ratio (which provides the shape of the stress ellipsoid). The results of the palaeostress analysis were compared to airborne laser scan digital terrain models that revealed dynamics and superficial displacements of the moving mass prior and after our survey. The results were generally in good agreement with the observed landslide displacement pattern and with the anticipated stress regime according to Mohr-Coulomb failure criteria and Anderson's theory. The compressional regime was mostly registered at the toe in areas, where a compressional stress field is expected during previous mass-movement stages, or at margins loaded by subsequent landslide bodies from above. On the other hand, extension regimes were identified at the head scarps of secondary slides, subsequently on bulged ridges at the toe and in the zone of horst-and-graben structures in the lower central part of the main landslide body, where the basal slip surface probably had locally convex character. Strike-slip regimes, as well as oblique normal or oblique reverse regimes were observed at the lateral margins of the landslide bodies. The directions of principal stresses could be used as markers of landslide movement directions
Interactive Volume Rendering of Diffusion Tensor Data
Energy Technology Data Exchange (ETDEWEB)
Hlawitschka, Mario; Weber, Gunther; Anwander, Alfred; Carmichael, Owen; Hamann, Bernd; Scheuermann, Gerik
2007-03-30
As 3D volumetric images of the human body become an increasingly crucial source of information for the diagnosis and treatment of a broad variety of medical conditions, advanced techniques that allow clinicians to efficiently and clearly visualize volumetric images become increasingly important. Interaction has proven to be a key concept in analysis of medical images because static images of 3D data are prone to artifacts and misunderstanding of depth. Furthermore, fading out clinically irrelevant aspects of the image while preserving contextual anatomical landmarks helps medical doctors to focus on important parts of the images without becoming disoriented. Our goal was to develop a tool that unifies interactive manipulation and context preserving visualization of medical images with a special focus on diffusion tensor imaging (DTI) data. At each image voxel, DTI provides a 3 x 3 tensor whose entries represent the 3D statistical properties of water diffusion locally. Water motion that is preferential to specific spatial directions suggests structural organization of the underlying biological tissue; in particular, in the human brain, the naturally occuring diffusion of water in the axon portion of neurons is predominantly anisotropic along the longitudinal direction of the elongated, fiber-like axons [MMM+02]. This property has made DTI an emerging source of information about the structural integrity of axons and axonal connectivity between brain regions, both of which are thought to be disrupted in a broad range of medical disorders including multiple sclerosis, cerebrovascular disease, and autism [Mos02, FCI+01, JLH+99, BGKM+04, BJB+03].
Black holes in vector-tensor theories
Energy Technology Data Exchange (ETDEWEB)
Heisenberg, Lavinia [Institute for Theoretical Studies, ETH Zurich, Clausiusstrasse 47, 8092 Zurich (Switzerland); Kase, Ryotaro; Tsujikawa, Shinji [Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Minamitsuji, Masato, E-mail: lavinia.heisenberg@eth-its.ethz.ch, E-mail: r.kase@rs.tus.ac.jp, E-mail: masato.minamitsuji@tecnico.ulisboa.pt, E-mail: shinji@rs.kagu.tus.ac.jp [Centro Multidisciplinar de Astrofisica—CENTRA, Departamento de Fisica, Instituto Superior Tecnico—IST, Universidade de Lisboa—UL, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal)
2017-08-01
We study static and spherically symmetric black hole (BH) solutions in second-order generalized Proca theories with nonminimal vector field derivative couplings to the Ricci scalar, the Einstein tensor, and the double dual Riemann tensor. We find concrete Lagrangians which give rise to exact BH solutions by imposing two conditions of the two identical metric components and the constant norm of the vector field. These exact solutions are described by either Reissner-Nordström (RN), stealth Schwarzschild, or extremal RN solutions with a non-trivial longitudinal mode of the vector field. We then numerically construct BH solutions without imposing these conditions. For cubic and quartic Lagrangians with power-law couplings which encompass vector Galileons as the specific cases, we show the existence of BH solutions with the difference between two non-trivial metric components. The quintic-order power-law couplings do not give rise to non-trivial BH solutions regular throughout the horizon exterior. The sixth-order and intrinsic vector-mode couplings can lead to BH solutions with a secondary hair. For all the solutions, the vector field is regular at least at the future or past horizon. The deviation from General Relativity induced by the Proca hair can be potentially tested by future measurements of gravitational waves in the nonlinear regime of gravity.
Quantum chaos and holographic tensor models
International Nuclear Information System (INIS)
Krishnan, Chethan; Sanyal, Sambuddha; Subramanian, P.N. Bala
2017-01-01
A class of tensor models were recently outlined as potentially calculable examples of holography: their perturbative large-N behavior is similar to the Sachdev-Ye-Kitaev (SYK) model, but they are fully quantum mechanical (in the sense that there is no quenched disorder averaging). These facts make them intriguing tentative models for quantum black holes. In this note, we explicitly diagonalize the simplest non-trivial Gurau-Witten tensor model and study its spectral and late-time properties. We find parallels to (a single sample of) SYK where some of these features were recently attributed to random matrix behavior and quantum chaos. In particular, the spectral form factor exhibits a dip-ramp-plateau structure after a running time average, in qualitative agreement with SYK. But we also observe that even though the spectrum has a unique ground state, it has a huge (quasi-?)degeneracy of intermediate energy states, not seen in SYK. If one ignores the delta function due to the degeneracies however, there is level repulsion in the unfolded spacing distribution hinting chaos. Furthermore, there are gaps in the spectrum. The system also has a spectral mirror symmetry which we trace back to the presence of a unitary operator with which the Hamiltonian anticommutes. We use it to argue that to the extent that the model exhibits random matrix behavior, it is controlled not by the Dyson ensembles, but by the BDI (chiral orthogonal) class in the Altland-Zirnbauer classification.
Quantum chaos and holographic tensor models
Energy Technology Data Exchange (ETDEWEB)
Krishnan, Chethan [Center for High Energy Physics, Indian Institute of Science,Bangalore 560012 (India); Sanyal, Sambuddha [International Center for Theoretical Sciences, Tata Institute of Fundamental Research,Bangalore 560089 (India); Subramanian, P.N. Bala [Center for High Energy Physics, Indian Institute of Science,Bangalore 560012 (India)
2017-03-10
A class of tensor models were recently outlined as potentially calculable examples of holography: their perturbative large-N behavior is similar to the Sachdev-Ye-Kitaev (SYK) model, but they are fully quantum mechanical (in the sense that there is no quenched disorder averaging). These facts make them intriguing tentative models for quantum black holes. In this note, we explicitly diagonalize the simplest non-trivial Gurau-Witten tensor model and study its spectral and late-time properties. We find parallels to (a single sample of) SYK where some of these features were recently attributed to random matrix behavior and quantum chaos. In particular, the spectral form factor exhibits a dip-ramp-plateau structure after a running time average, in qualitative agreement with SYK. But we also observe that even though the spectrum has a unique ground state, it has a huge (quasi-?)degeneracy of intermediate energy states, not seen in SYK. If one ignores the delta function due to the degeneracies however, there is level repulsion in the unfolded spacing distribution hinting chaos. Furthermore, there are gaps in the spectrum. The system also has a spectral mirror symmetry which we trace back to the presence of a unitary operator with which the Hamiltonian anticommutes. We use it to argue that to the extent that the model exhibits random matrix behavior, it is controlled not by the Dyson ensembles, but by the BDI (chiral orthogonal) class in the Altland-Zirnbauer classification.
DEFF Research Database (Denmark)
Mosegaard, Klaus
2012-01-01
For non-linear inverse problems, the mathematical structure of the mapping from model parameters to data is usually unknown or partly unknown. Absence of information about the mathematical structure of this function prevents us from presenting an analytical solution, so our solution depends on our...... ability to produce efficient search algorithms. Such algorithms may be completely problem-independent (which is the case for the so-called 'meta-heuristics' or 'blind-search' algorithms), or they may be designed with the structure of the concrete problem in mind. We show that pure meta...
Anisotropic cosmological models and generalized scalar tensor theory
Indian Academy of Sciences (India)
physics pp. 669–673. Anisotropic cosmological models and generalized scalar tensor theory. SUBENOY CHAKRABORTY1,*, BATUL CHANDRA SANTRA2 and ... Anisotropic cosmological models; general scalar tensor theory; inflation. PACS Nos 98.80.Hw; 04.50.+h; 98.80.Cq. 1. Introduction. Brans–Dicke theory [1] (BD ...
The ultrarelativistic Kerr geometry and its energy-momentum tensor
Balasin, Herbert; Nachbagauer, Herbert
1995-03-01
The ultrarelativistic limit of the Schwarzschild and the Kerr-geometry together with their respective energy-momentum tensors is derived. The approach is based on tensor-distributions making use of the underlying Kerr-Schild structure, which remains stable under the ultrarelativistic boost.
Exploring the tensor networks/AdS correspondence
Energy Technology Data Exchange (ETDEWEB)
Bhattacharyya, Arpan [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); Centre For High Energy Physics, Indian Institute of Science,560012 Bangalore (India); Gao, Zhe-Shen [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); Hung, Ling-Yan [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); State Key Laboratory of Surface Physics and Department of Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University,Nanjing, 210093 (China); Liu, Si-Nong [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Road, 200433 Shanghai (China)
2016-08-11
In this paper we study the recently proposed tensor networks/AdS correspondence. We found that the Coxeter group is a useful tool to describe tensor networks in a negatively curved space. Studying generic tensor network populated by perfect tensors, we find that the physical wave function generically do not admit any connected correlation functions of local operators. To remedy the problem, we assume that wavefunctions admitting such semi-classical gravitational interpretation are composed of tensors close to, but not exactly perfect tensors. Computing corrections to the connected two point correlation functions, we find that the leading contribution is given by structures related to geodesics connecting the operators inserted at the boundary physical dofs. Such considerations admit generalizations at least to three point functions. This is highly suggestive of the emergence of the analogues of Witten diagrams in the tensor network. The perturbations alone however do not give the right entanglement spectrum. Using the Coxeter construction, we also constructed the tensor network counterpart of the BTZ black hole, by orbifolding the discrete lattice on which the network resides. We found that the construction naturally reproduces some of the salient features of the BTZ black hole, such as the appearance of RT surfaces that could wrap the horizon, depending on the size of the entanglement region A.
Square Deal: Lower Bounds and Improved Relaxations for Tensor Recovery
2013-08-16
drawn uniformly at random (by the command orth(randn(·, ·)) in Matlab ). The observed entries are chosen uniformly with ratio ρ. We increase the...and 4d pre-stack seismic data completion using tensor nuclear norm (tnn). preprint, 2013. [GQ12] D. Goldfarb and Z. Qin. Robust low-rank tensor
Tensor estimation for double-pulsed diffusional kurtosis imaging.
Shaw, Calvin B; Hui, Edward S; Helpern, Joseph A; Jensen, Jens H
2017-07-01
Double-pulsed diffusional kurtosis imaging (DP-DKI) represents the double diffusion encoding (DDE) MRI signal in terms of six-dimensional (6D) diffusion and kurtosis tensors. Here a method for estimating these tensors from experimental data is described. A standard numerical algorithm for tensor estimation from conventional (i.e. single diffusion encoding) diffusional kurtosis imaging (DKI) data is generalized to DP-DKI. This algorithm is based on a weighted least squares (WLS) fit of the signal model to the data combined with constraints designed to minimize unphysical parameter estimates. The numerical algorithm then takes the form of a quadratic programming problem. The principal change required to adapt the conventional DKI fitting algorithm to DP-DKI is replacing the three-dimensional diffusion and kurtosis tensors with the 6D tensors needed for DP-DKI. In this way, the 6D diffusion and kurtosis tensors for DP-DKI can be conveniently estimated from DDE data by using constrained WLS, providing a practical means for condensing DDE measurements into well-defined mathematical constructs that may be useful for interpreting and applying DDE MRI. Data from healthy volunteers for brain are used to demonstrate the DP-DKI tensor estimation algorithm. In particular, representative parametric maps of selected tensor-derived rotational invariants are presented. Copyright © 2017 John Wiley & Sons, Ltd.
The Twist Tensor Nuclear Norm for Video Completion.
Hu, Wenrui; Tao, Dacheng; Zhang, Wensheng; Xie, Yuan; Yang, Yehui
2017-12-01
In this paper, we propose a new low-rank tensor model based on the circulant algebra, namely, twist tensor nuclear norm (t-TNN). The twist tensor denotes a three-way tensor representation to laterally store 2-D data slices in order. On one hand, t-TNN convexly relaxes the tensor multirank of the twist tensor in the Fourier domain, which allows an efficient computation using fast Fourier transform. On the other, t-TNN is equal to the nuclear norm of block circulant matricization of the twist tensor in the original domain, which extends the traditional matrix nuclear norm in a block circulant way. We test the t-TNN model on a video completion application that aims to fill missing values and the experiment results validate its effectiveness, especially when dealing with video recorded by a nonstationary panning camera. The block circulant matricization of the twist tensor can be transformed into a circulant block representation with nuclear norm invariance. This representation, after transformation, exploits the horizontal translation relationship between the frames in a video, and endows the t-TNN model with a more powerful ability to reconstruct panning videos than the existing state-of-the-art low-rank models.
Multiple M2-branes and the embedding tensor
Bergshoeff, Eric A.; de Roo, Mees; Hohm, Olaf
2008-01-01
We show that the Bagger-Lambert theory of multiple M2-branes fits into the general construction of maximally supersymmetric gauge theories using the embedding tensor technique. We apply the embedding tensor technique in order to systematically obtain the consistent gaugings of N = 8 superconformal
Subtracting a best rank-1 approximation may increase tensor rank
Stegeman, Alwin; Comon, Pierre
2010-01-01
It has been shown that a best rank-R approximation of an order-k tensor may not exist when R >= 2 and k >= 3. This poses a serious problem to data analysts using tensor decompositions it has been observed numerically that, generally, this issue cannot be solved by consecutively computing and
(2, 0) tensor multiplets and conformal supergravity in D = 6
Bergshoeff, Eric; Sezgin, Ergin; Proeyen, Antoine Van
1999-01-01
We construct the supercurrent multiplet that contains the energyâ€“momentum tensor of the (2, 0) tensor multiplet. By coupling this multiplet of currents to the fields of conformal supergravity, we first construct the linearized superconformal transformations rules of the (2, 0) Weyl multiplet.
Data fusion in metabolomics using coupled matrix and tensor factorizations
DEFF Research Database (Denmark)
Evrim, Acar Ataman; Bro, Rasmus; Smilde, Age Klaas
2015-01-01
of heterogeneous (i.e., in the form of higher order tensors and matrices) data sets with shared/unshared factors. In order to jointly analyze such heterogeneous data sets, we formulate data fusion as a coupled matrix and tensor factorization (CMTF) problem, which has already proved useful in many data mining...
Fast evaluation of nonlinear functionals of tensor product wavelet expansions
Schwab, C.; Stevenson, R.
2011-01-01
Abstract For a nonlinear functional f, and a function u from the span of a set of tensor product interpolets, it is shown how to compute the interpolant of f (u) from the span of this set of tensor product interpolets in linear complexity, assuming that the index set has a certain multiple tree
Gauge theories, duality relations and the tensor hierarchy
Bergshoeff, Eric A.; Hartong, Jelle; Hohm, Olaf; Huebscher, Mechthild; Ortin, Tomas; Hübscher, Mechthild
We compute the complete 3- and 4-dimensional tensor hierarchies, i.e. sets of p-form fields, with 1 We construct gauge-invariant actions that include all the fields in the tensor hierarchies. We elucidate the relation between the gauge transformations of the p-form fields in the action and those of
Secoond order parallel tensors on some paracontact manifolds | Liu ...
African Journals Online (AJOL)
The object of the present paper is to study the symmetric and skewsymmetric properties of a second order parallel tensor on paracontact metric (k;μ)- spaces and almost β-para-Kenmotsu (k;μ)-spaces. In this paper, we prove that if there exists a second order symmetric parallel tensor on a paracontact metric (k;μ)- space M, ...
Couplings of self-dual tensor multiplet in six dimensions
Bergshoeff, E.; Sezgin, E.; Sokatchev, E.
1996-01-01
The (1, 0) supersymmetry in six dimensions admits a tensor multiplet which contains a second-rank antisymmetric tensor field with a self-dual field strength and a dilaton. We describe the fully supersymmetric coupling of this multiplet to a Yangâ€“Mills multiplet, in the absence of supergravity. The
Superconformal tensor calculus and matter couplings in six dimensions
Bergshoeff, E.; Sezgin, E.; Proeyen, A. Van
1986-01-01
Using superconformal tensor calculus we construct general interactions of N = 2, d = 6 supergravity with a tensor multiplet and a number of scalar, vector and linear multiplets. We start from the superconformal algebra which we realize on a 40+40 Weyl multiplet and on several matter multiplets. A
A tensor approach to the estimation of hydraulic conductivities in ...
African Journals Online (AJOL)
Based on the field measurements of the physical properties of fractured rocks, the anisotropic properties of hydraulic conductivity (HC) of the fractured rock aquifer can be assessed and presented using a tensor approach called hydraulic conductivity tensor. Three types of HC values, namely point value, axial value and flow ...
Black holes with surrounding matter in scalar-tensor theories.
Cardoso, Vitor; Carucci, Isabella P; Pani, Paolo; Sotiriou, Thomas P
2013-09-13
We uncover two mechanisms that can render Kerr black holes unstable in scalar-tensor gravity, both associated with the presence of matter in the vicinity of the black hole and the fact that this introduces an effective mass for the scalar. Our results highlight the importance of understanding the structure of spacetime in realistic, astrophysical black holes in scalar-tensor theories.
Superspace actions and duality transformations for N=2 tensor multiplets
International Nuclear Information System (INIS)
Galperin, A.; Ivanov, E.; Ogievetsky, V.
1985-01-01
General actions for self-interacting N=2 tensor multiplets are considered in the harmonic superspace approach. All of them are shown to be equivalent, by superfield duality transformations, to some restricted class of the hypermultiplets actions. In particular, the improved tensor multiplet theory is dual to a free hypermultiplet one. Superspace couplings of these improved matter multiplets against conformal supergravity are also constructed
Tensor Basis Neural Network v. 1.0 (beta)
Energy Technology Data Exchange (ETDEWEB)
2017-03-28
This software package can be used to build, train, and test a neural network machine learning model. The neural network architecture is specifically designed to embed tensor invariance properties by enforcing that the model predictions sit on an invariant tensor basis. This neural network architecture can be used in developing constitutive models for applications such as turbulence modeling, materials science, and electromagnetism.
MATLAB tensor classes for fast algorithm prototyping : source code.
Energy Technology Data Exchange (ETDEWEB)
Bader, Brett William; Kolda, Tamara Gibson (Sandia National Laboratories, Livermore, CA)
2004-10-01
We present the source code for three MATLAB classes for manipulating tensors in order to allow fast algorithm prototyping. A tensor is a multidimensional or Nway array. This is a supplementary report; details on using this code are provided separately in SAND-XXXX.
Relativistic interpretation of the nature of the nuclear tensor force
Zong, Yao-Yao; Sun, Bao-Yuan
2018-02-01
The spin-dependent nature of the nuclear tensor force is studied in detail within the relativistic Hartree-Fock approach. The relativistic formalism for the tensor force is supplemented with an additional Lorentz-invariant tensor formalism in the σ-scalar channel, so as to take into account almost fully the nature of the tensor force brought about by the Fock diagrams in realistic nuclei. Specifically, the tensor sum rules are tested for the spin and pseudo-spin partners with and without nodes, to further understand the nature of the tensor force within the relativistic model. It is shown that the interference between the two components of nucleon spinors causes distinct violations of the tensor sum rules in realistic nuclei, mainly due to the opposite signs on the κ quantities of the upper and lower components, as well as the nodal difference. However, the sum rules can be precisely reproduced if the same radial wave functions are taken for the spin/pseudo-spin partners in addition to neglecting the lower/upper components, revealing clearly the nature of the tensor force. Supported by National Natural Science Foundation of China (11375076, 11675065) and the Fundamental Research Funds for the Central Universities (lzujbky-2016-30)
MacPhail, M. D.; Stump, B. W.; Zhou, R.
2017-12-01
The Source Phenomenology Experiment (SPE - Arizona) was a series of nine, contained and partially contained chemical explosions within the porphyry granite at the Morenci Copper mine in Arizona. Its purpose was to detonate, record and analyze seismic waveforms from these single-fired explosions. Ground motion data from the SPE is analyzed in this study to assess the uniqueness of the time domain moment tensor source representation and its ability to quantify containment and yield scaling. Green's functions were computed for each of the explosions based on a 1D velocity model developed for the SPE. The Green's functions for the sixteen, near-source stations focused on observations from 37 to 680 m. This study analyzes the three deepest, fully contained explosions with a depth of burial of 30 m and yields of 0.77e-3, 3.08e-3 and 6.17e-3 kt. Inversions are conducted within the frequency domain and moment tensors are decomposed into deviatoric and isotropic components to evaluate the effects of containment and yield on the resulting source representation. Isotropic moments are compared to those for other contained explosions as reported by Denny and Johnson, 1991, and are in good agreement with their scaling results. The explosions in this study have isotropic moments of 1.2e12, 3.1e12 and 6.1e13 n*m. Isotropic and Mzz moment tensor spectra are compared to Mueller-Murphy, Denny-Johnson and revised Heard-Ackerman (HA) models and suggest that the larger explosions fit the HA model better. Secondary source effects resulting from free surface interactions including the effects of spallation contribute to the resulting moment tensors which include a CLVD component. Hudson diagrams, using frequency domain moment tensor data, are computed as a tool to assess how these containment scenarios affect the source representation. Our analysis suggests that, within our band of interest (2-20 Hz), as the frequency increases, the source representation becomes more explosion like
Minakov, A.; Medvedev, S.
2017-12-01
Analysis of lithospheric stresses is necessary to gain understanding of the forces that drive plate tectonics and intraplate deformations and the structure and strength of the lithosphere. A major source of lithospheric stresses is believed to be in variations of surface topography and lithospheric density. The traditional approach to stress estimation is based on direct calculations of the Gravitational Potential Energy (GPE), the depth integrated density moment of the lithosphere column. GPE is highly sensitive to density structure which, however, is often poorly constrained. Density structure of the lithosphere may be refined using methods of gravity modeling. However, the resulted density models suffer from non-uniqueness of the inverse problem. An alternative approach is to directly estimate lithospheric stresses (depth integrated) from satellite gravimetry data. Satellite gravity gradient measurements by the ESA GOCE mission ensures a wealth of data for mapping lithospheric stresses if a link between data and stresses or GPE can be established theoretically. The non-uniqueness of interpretation of sources of the gravity signal holds in this case as well. Therefore, the data analysis was tested for the North Atlantic region where reliable additional constraints are supplied by both controlled-source and earthquake seismology. The study involves comparison of three methods of stress modeling: (1) the traditional modeling approach using a thin sheet approximation; (2) the filtered geoid approach; and (3) the direct utilization of the gravity gradient tensor. Whereas the first two approaches (1)-(2) calculate GPE and utilize a computationally expensive finite element mechanical modeling to calculate stresses, the approach (3) uses a much simpler numerical treatment but requires simplifying assumptions that yet to be tested. The modeled orientation of principal stresses and stress magnitudes by each of the three methods are compared with the World Stress Map.
Evaluation of uncertainty in alignment tensors obtained from dipolar couplings
International Nuclear Information System (INIS)
Zweckstetter, Markus; Bax, Ad
2002-01-01
Residual dipolar couplings and their corresponding alignment tensors are useful for structural analysis of macromolecules. The error in an alignment tensor, derived from residual dipolar couplings on the basis of a known structure, is determined not only by the accuracy of the measured couplings but also by the uncertainty in the structure (structural noise). This dependence is evaluated quantitatively on the basis of simulated structures using Monte-Carlo type analyses. When large numbers of dipolar couplings are available, structural noise is found to result in a systematic underestimate of the magnitude of the alignment tensor. Particularly in cases where only few dipolar couplings are available, structural noise can cause significant errors in best-fitted alignment tensor values, making determination of the relative orientation of small fragments and evaluation of local backbone mobility from dipolar couplings difficult. An example for the protein ubiquitin demonstrates the inherent limitations in characterizing motions on the basis of local alignment tensor magnitudes
Coordinate independent expression for transverse trace-free tensors
International Nuclear Information System (INIS)
Conboye, Rory
2016-01-01
The transverse and trace-free (TT) part of the extrinsic curvature represents half of the dynamical degrees of freedom of the gravitational field in the 3 + 1 formalism. As such, it is part of the freely specifiable initial data for numerical relativity. Though TT tensors in three-space possess only two component degrees of freedom, they cannot ordinarily be given solely by two scalar potentials. Such expressions have been derived, however, in coordinate form, for all TT tensors in flat space which are also translationally or axially symmetric (Conboye and Murchadha 2014 Class. Quantum Grav. 31 085019). Since TT tensors are conformally covariant, these also give TT tensors in conformally flat space. In this article, the work above has been extended by giving a coordinate-independent expression for these TT tensors. The translational and axial symmetry conditions have also been generalized to invariance along any hypersurface orthogonal Killing vector. (paper)
On energy-momentum tensors of gravitational field
International Nuclear Information System (INIS)
Nikishov, A.I.
2001-01-01
The phenomenological approach to gravitation is discussed in which the 3-graviton interaction is reduced to the interaction of each graviton with the energy-momentum tensor of two others. If this is so, (and in general relativity this is not so), then the problem of choosing the correct energy-momentum tensor comes to finding the right 3-graviton vertex. Several energy-momentum tensors od gravitational field are considered and compared in the lowest approximation. Each of them together with the energy-momentum tensor of point-like particles satisfies the conservation laws when equations of motion of particles are the same as in general relativity. It is shown that in Newtonian approximation the considered tensors differ one from other in the way their energy density is distributed between energy density of interaction (nonzero only at locations of particles) and energy density of gravitational field. Stating from Lorentz invariance, the Lagrangians for spin-2, mass-0 field are considered [ru
On the energy-momentum tensor in Moyal space
International Nuclear Information System (INIS)
Balasin, Herbert; Schweda, Manfred; Blaschke, Daniel N.; Gieres, Francois
2015-01-01
We study the properties of the energy-momentum tensor of gauge fields coupled to matter in non-commutative (Moyal) space. In general, the non-commutativity affects the usual conservation law of the tensor as well as its transformation properties (gauge covariance instead of gauge invariance). It is well known that the conservation of the energy-momentum tensor can be achieved by a redefinition involving another star-product. Furthermore, for a pure gauge theory it is always possible to define a gauge invariant energy-momentum tensor by means of a Wilson line. We show that the last two procedures are incompatible with each other if couplings of gauge fields to matter fields (scalars or fermions) are considered: The gauge invariant tensor (constructed via Wilson line) does not allow for a redefinition assuring its conservation, and vice versa the introduction of another star-product does not allow for gauge invariance by means of a Wilson line. (orig.)
Decomposition of a symmetric second-order tensor
Heras, José A.
2018-05-01
In the three-dimensional space there are different definitions for the dot and cross products of a vector with a second-order tensor. In this paper we show how these products can uniquely be defined for the case of symmetric tensors. We then decompose a symmetric second-order tensor into its ‘dot’ part, which involves the dot product, and the ‘cross’ part, which involves the cross product. For some physical applications, this decomposition can be interpreted as one in which the dot part identifies with the ‘parallel’ part of the tensor and the cross part identifies with the ‘perpendicular’ part. This decomposition of a symmetric second-order tensor may be suitable for undergraduate courses of vector calculus, mechanics and electrodynamics.
The effects of noise over the complete space of diffusion tensor shape.
Gahm, Jin Kyu; Kindlmann, Gordon; Ennis, Daniel B
2014-01-01
Diffusion tensor magnetic resonance imaging (DT-MRI) is a technique used to quantify the microstructural organization of biological tissues. Multiple images are necessary to reconstruct the tensor data and each acquisition is subject to complex thermal noise. As such, measures of tensor invariants, which characterize components of tensor shape, derived from the tensor data will be biased from their true values. Previous work has examined this bias, but over a narrow range of tensor shape. Herein, we define the mathematics for constructing a tensor from tensor invariants, which permits an intuitive and principled means for building tensors with a complete range of tensor shape and salient microstructural properties. Thereafter, we use this development to evaluate by simulation the effects of noise on characterizing tensor shape over the complete space of tensor shape for three encoding schemes with different SNR and gradient directions. We also define a new framework for determining the distribution of the true values of tensor invariants given their measures, which provides guidance about the confidence the observer should have in the measures. Finally, we present the statistics of tensor invariant estimates over the complete space of tensor shape to demonstrate how the noise sensitivity of tensor invariants varies across the space of tensor shape as well as how the imaging protocol impacts measures of tensor invariants. Copyright © 2013 Elsevier B.V. All rights reserved.
Endoscopic Anatomy of the Tensor Fold and Anterior Attic.
Li, Bin; Doan, Phi; Gruhl, Robert R; Rubini, Alessia; Marchioni, Daniele; Fina, Manuela
2018-02-01
Objectives The objectives of the study were to (1) study the anatomical variations of the tensor fold and its anatomic relation with transverse crest, supratubal recess, and anterior epitympanic space and (2) explore the most appropriate endoscopic surgical approach to each type of the tensor fold variants. Study Design Cadaver dissection study. Setting Temporal bone dissection laboratory. Subjects and Methods Twenty-eight human temporal bones (26 preserved and 2 fresh) were dissected through an endoscopic transcanal approach between September 2016 and June 2017. The anatomical variations of the tensor fold, transverse crest, supratubal recess, and anterior epitympanic space were studied before and after removing ossicles. Results Three different tensor fold orientations were observed: vertical (type A, 11/28, 39.3%) with attachment to the transverse crest, oblique (type B, 13/28, 46.4%) with attachment to the anterior tegmen tympani, and horizontal (type C, 4/28, 14.3%) with attachment to the tensor tympani canal. The tensor fold was a complete membrane in 20 of 28 (71.4%) specimens, preventing direct ventilation between the supratubal recess and anterior epitympanic space. We identified 3 surgical endoscopic approaches, which allowed visualization of the tensor fold without removing the ossicles. Conclusions The orientation of the tensor fold is the determining structure that dictates the conformation and limits of the epitympanic space. We propose a classification of the tensor fold based on 3 anatomical variants. We also describe 3 different minimally invasive endoscopic approaches to identify the orientation of the tensor fold while maintaining ossicular chain continuity.