WorldWideScience

Sample records for stress stimulate calpain-mediated

  1. Calpain-Mediated Degradation of Drebrin by Excitotoxicity In vitro and In vivo.

    Directory of Open Access Journals (Sweden)

    Takahiko Chimura

    Full Text Available The level of drebrin, an evolutionarily conserved f-actin-binding protein that regulates synaptic structure and function, is reduced in the brains of patients with chronic neurodegenerative diseases such as Alzheimer's disease (AD and Down's syndrome (DS. It was suggested that excitotoxic neuronal death caused by overactivation of NMDA-type glutamate receptors (NMDARs occurs in AD and DS; however, the relationship between excitotoxicity and drebrin loss is unknown. Here, we show that drebrin is a novel target of calpain-mediated proteolysis under excitotoxic conditions induced by the overactivation of NMDARs. In cultured rodent neurons, degradation of drebrin was confirmed by the detection of proteolytic fragments, as well as a reduction in the amount of full-length drebrin. Notably, the NMDA-induced degradation of drebrin in mature neurons occurred concomitantly with a loss of f-actin. Furthermore, pharmacological inhibition of f-actin loss facilitated the drebrin degradation, suggesting a functional linkage between f-actin and drebrin degradation. Biochemical analyses using purified drebrin and calpain revealed that calpain degraded drebrin directly in vitro. Furthermore, cerebral ischemia also induced the degradation of drebrin in vivo. These findings suggest that calpain-mediated degradation of drebrin is a fundamental pathology of neurodegenerative diseases mediated by excitotoxicity, regardless of whether they are acute or chronic. Drebrin regulates the synaptic clustering of NMDARs; therefore, degradation of drebrin under excitotoxic conditions may modulate NMDAR-mediated signal transductions, including pro-survival signaling. Overall, the results presented here provide novel insights into the molecular basis of cellular responses to excitotoxicity in vitro and in vivo.

  2. Calpain-mediated proteolysis of tropomodulin isoforms leads to thin filament elongation in dystrophic skeletal muscle.

    Science.gov (United States)

    Gokhin, David S; Tierney, Matthew T; Sui, Zhenhua; Sacco, Alessandra; Fowler, Velia M

    2014-03-01

    Duchenne muscular dystrophy (DMD) induces sarcolemmal mechanical instability and rupture, hyperactivity of intracellular calpains, and proteolytic breakdown of muscle structural proteins. Here we identify the two sarcomeric tropomodulin (Tmod) isoforms, Tmod1 and Tmod4, as novel proteolytic targets of m-calpain, with Tmod1 exhibiting ∼10-fold greater sensitivity to calpain-mediated cleavage than Tmod4 in situ. In mdx mice, increased m-calpain levels in dystrophic soleus muscle are associated with loss of Tmod1 from the thin filament pointed ends, resulting in ∼11% increase in thin filament lengths. In mdx/mTR mice, a more severe model of DMD, Tmod1 disappears from the thin filament pointed ends in both tibialis anterior (TA) and soleus muscles, whereas Tmod4 additionally disappears from soleus muscle, resulting in thin filament length increases of ∼10 and ∼12% in TA and soleus muscles, respectively. In both mdx and mdx/mTR mice, both TA and soleus muscles exhibit normal localization of α-actinin, the nebulin M1M2M3 domain, Tmod3, and cytoplasmic γ-actin, indicating that m-calpain does not cause wholesale proteolysis of other sarcomeric and actin cytoskeletal proteins in dystrophic skeletal muscle. These results implicate Tmod proteolysis and resultant thin filament length misspecification as novel mechanisms that may contribute to DMD pathology, affecting muscles in a use- and disease severity-dependent manner.

  3. Calpain-mediated proteolysis of polycystin-1 C-terminus induces JAK2 and ERK signal alterations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunho [Transplantation Research Institute, Seoul National University Medical Research Center, Seoul (Korea, Republic of); Department of Medicine, University of Maryland, Baltimore, MD (United States); Kang, Ah-Young [Transplantation Research Institute, Seoul National University Medical Research Center, Seoul (Korea, Republic of); Department of Medicine, Program of Immunology, Graduate School, Seoul National University, Seoul (Korea, Republic of); Ko, Ah-ra [Clinical Research Center, Samsung Biomedical Research Institute, Seoul (Korea, Republic of); Park, Hayne Cho [Transplantation Research Institute, Seoul National University Medical Research Center, Seoul (Korea, Republic of); Research Coordination Center for Rare Diseases, Seoul National University Hospital, Seoul (Korea, Republic of); So, Insuk [Department of Physiology, Seoul National University College of Medicine, Seoul (Korea, Republic of); Park, Jong Hoon [Department of Biological Science, Sookmyung Women’s University, Seoul (Korea, Republic of); Cheong, Hae Il [Research Coordination Center for Rare Diseases, Seoul National University Hospital, Seoul (Korea, Republic of); Department of Pediatrics, Seoul National University Children’s Hospital, Seoul (Korea, Republic of); Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul (Korea, Republic of); Hwang, Young-Hwan [Research Coordination Center for Rare Diseases, Seoul National University Hospital, Seoul (Korea, Republic of); Department of Internal Medicine, Eulji General Hospital, Eulji University College of Medicine, Seoul (Korea, Republic of); and others

    2014-01-01

    Autosomal dominant polycystic kidney disease (ADPKD), a hereditary renal disease caused by mutations in PKD1 (85%) or PKD2 (15%), is characterized by the development of gradually enlarging multiple renal cysts and progressive renal failure. Polycystin-1 (PC1), PKD1 gene product, is an integral membrane glycoprotein which regulates a number of different biological processes including cell proliferation, apoptosis, cell polarity, and tubulogenesis. PC1 is a target of various proteolytic cleavages and proteosomal degradations, but its role in intracellular signaling pathways remains poorly understood. Herein, we demonstrated that PC1 is a novel substrate for μ- and m-calpains, which are calcium-dependent cysteine proteases. Overexpression of PC1 altered both Janus-activated kinase 2 (JAK2) and extracellular signal-regulated kinase (ERK) signals, which were independently regulated by calpain-mediated PC1 degradation. They suggest that the PC1 function on JAK2 and ERK signaling pathways might be regulated by calpains in response to the changes in intracellular calcium concentration. - Highlights: • Polycystin-1 is a target of ubiquitin-independent degradation by calpains. • The PEST domain is required for calpain-mediated degradation of polycystin-1. • Polycystin-1 may independently regulate JAK2 and ERK signaling pathways.

  4. Autophagy fails to prevent glucose deprivation/glucose reintroduction-induced neuronal death due to calpain-mediated lysosomal dysfunction in cortical neurons.

    Science.gov (United States)

    Gerónimo-Olvera, Cristian; Montiel, Teresa; Rincon-Heredia, Ruth; Castro-Obregón, Susana; Massieu, Lourdes

    2017-06-29

    Autophagy is triggered during nutrient and energy deprivation in a variety of cells as a homeostatic response to metabolic stress. In the CNS, deficient autophagy has been implicated in neurodegenerative diseases and ischemic brain injury. However, its role in hypoglycemic damage is poorly understood and the dynamics of autophagy during the hypoglycemic and the glucose reperfusion periods, has not been fully described. In the present study, we analyzed the changes in the content of the autophagy proteins BECN1, LC3-II and p62/SQSTM1 by western blot, and autophagosome formation was followed through time-lapse experiments, during glucose deprivation (GD) and glucose reintroduction (GR) in cortical cultures. According to the results, autophagosome formation rapidly increased during GD, and was followed by an active autophagic flux early after glucose replenishment. However, cells progressively died during GR and autophagy inhibition reduced neuronal death. Neurons undergoing apoptosis during GR did not form autophagosomes, while those surviving up to late GR showed autophagosomes. Calpain activity strongly increased during GR and remained elevated during progressive neuronal death. Its activation led to the cleavage of LAMP2 resulting in lysosome membrane permeabilization (LMP) and release of cathepsin B to the cytosol. Calpain inhibition prevented LMP and increased the number of neurons containing lysosomes and autophagosomes increasing cell viability. Taken together, the present results suggest that calpain-mediated lysosome dysfunction during GR turns an adaptive autophagy response to energy stress into a defective autophagy pathway, which contributes to neuronal death. In these conditions, autophagy inhibition results in the improvement of cell survival.

  5. Brain stimulation in posttraumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Vladan Novakovic

    2011-10-01

    Full Text Available Posttraumatic stress disorder (PTSD is a complex, heterogeneous disorder that develops following trauma and often includes perceptual, cognitive, affective, physiological, and psychological features. PTSD is characterized by hyperarousal, intrusive thoughts, exaggerated startle response, flashbacks, nightmares, sleep disturbances, emotional numbness, and persistent avoidance of trauma-associated stimuli. The efficacy of available treatments for PTSD may result in part from relief of associated depressive and anxiety-related symptoms in addition to treatment of core symptoms that derive from reexperiencing, numbing, and hyperarousal. Diverse, heterogeneous mechanisms of action and the ability to act broadly or very locally may enable brain stimulation devices to address PTSD core symptoms in more targeted ways. To achieve this goal, specific theoretical bases derived from novel, well-designed research protocols will be necessary. Brain stimulation devices include both long-used and new electrical and magnetic devices. Electroconvulsive therapy (ECT and Cranial electrotherapy stimulation (CES have both been in use for decades; transcranial magnetic stimulation (TMS, magnetic seizure therapy (MST, deep brain stimulation (DBS, transcranial Direct Current Stimulation (tDCS, and vagus nerve stimulation (VNS have been developed recently, over approximately the past twenty years. The efficacy of brain stimulation has been demonstrated as a treatment for psychiatric and neurological disorders such as anxiety (CES, depression (ECT, CES, rTMS, VNS, DBS, obsessive-compulsive disorder (OCD (DBS, essential tremor, dystonia (DBS, epilepsy (DBS, VNS, Parkinson Disease (DBS, pain (CES, and insomnia (CES. To date, limited data on brain stimulation for PTSD offer only modest guidance. ECT has shown some efficacy in reducing comorbid depression in PTSD patients but has not been demonstrated to improve most core PTSD symptoms. CES and VNS have shown some efficacy in

  6. Stimulated bioluminescence by fluid shear stress associated with pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Cao Jing; Wang Jiangan; Wu Ronghua, E-mail: caojing981@126.com [Col. of Electronic Eng., Naval University of Engineering, Wuhan 430033 (China)

    2011-01-01

    Dinoflagellate can be stimulated bioluminescence by hydrodynamic agitation. Two typical dinoflagellate (Lingulodinium polyedrum and Pyrocystis noctiluca) was choosed to research stimulated bioluminescence. The bioluminescence intensity and shear stress intensity were measured using fully developed pipe flow. There is shear stress threshold to agitate organism bioluminescence. From these experiment, the response thresholds of the stimulated bioluminscence always occurred in laminar flows at a shear stress level of 0.6-3 dyn/cm{sup 2}. At the same time, the spectral characteristc of dinoflagellate was recorded, the wavelength of them is about 470nm, and the full width at half maximum is approximate 30nm.

  7. Hyperosmotic stress stimulates autophagy via polycystin-2.

    Science.gov (United States)

    Peña-Oyarzun, Daniel; Troncoso, Rodrigo; Kretschmar, Catalina; Hernando, Cecilia; Budini, Mauricio; Morselli, Eugenia; Lavandero, Sergio; Criollo, Alfredo

    2017-08-22

    Various intracellular mechanisms are activated in response to stress, leading to adaptation or death. Autophagy, an intracellular process that promotes lysosomal degradation of proteins, is an adaptive response to several types of stress. Osmotic stress occurs under both physiological and pathological conditions, provoking mechanical stress and activating various osmoadaptive mechanisms. Polycystin-2 (PC2), a membrane protein of the polycystin family, is a mechanical sensor capable of activating the cell signaling pathways required for cell adaptation and survival. Here we show that hyperosmotic stress provoked by treatment with hyperosmolar concentrations of sorbitol or mannitol induces autophagy in HeLa and HCT116 cell lines. In addition, we show that mTOR and AMPK, two stress sensor proteins involved modulating autophagy, are downregulated and upregulated, respectively, when cells are subjected to hyperosmotic stress. Finally, our findings show that PC2 is required to promote hyperosmotic stress-induced autophagy. Downregulation of PC2 prevents inhibition of hyperosmotic stress-induced mTOR pathway activation. In conclusion, our data provide new insight into the role of PC2 as a mechanosensor that modulates autophagy under hyperosmotic stress conditions.

  8. Stimulated resonant scattering at stressed fused silica surface

    International Nuclear Information System (INIS)

    Bouchut, Philippe; Reymermier, Maryse

    2015-01-01

    The radiative emission in CO 2 laser heated stressed fused silica is radically modified when gold microspheres are on the surface. At high heating rates, the emission dynamics changes from thermoluminescence to stimulated resonant scattering with an emission rate that is increased tenfold and the near infrared (NIR) spectrum is red-shifted. We show that the dynamic tensile stress that rises in heated silica is coupled with a fluctuating electromagnetic field that enables electromagnetic friction between moving OH emitters from silica bulk and NIR resonant scatterers at the silica surface. (paper)

  9. Stress- and Chemistry-Mediated Permeability Enhancement/Degradation in Stimulated Critically-Stressed Fractures

    Energy Technology Data Exchange (ETDEWEB)

    Derek Elsworth; Abraham S. Grader; Chris Marone; Phillip Halleck; Peter Rose; Igor Faoro; Joshua Taron; André Niemeijer; Hideaki Yasuhara

    2009-03-30

    This work has investigated the interactions between stress and chemistry in controlling the evolution of permeability in stimulated fractured reservoirs through an integrated program of experimentation and modeling. Flow-through experiments on natural and artificial fractures in Coso diorite have examined the evolution of permeability under paths of mean and deviatoric stresses, including the role of dissolution and precipitation. Models accommodating these behaviors have examined the importance of incorporating the complex couplings between stress and chemistry in examining the evolution of permeability in EGS reservoirs. This document reports the findings of experiment [1,2] and analysis [3,4], in four sequential chapters.

  10. Modeling thermal stress propagation during hydraulic stimulation of geothermal wells

    Science.gov (United States)

    Jansen, Gunnar; Miller, Stephen A.

    2017-04-01

    A large fraction of the world's water and energy resources are located in naturally fractured reservoirs within the earth's crust. Depending on the lithology and tectonic history of a formation, fracture networks can range from dense and homogeneous highly fractured networks to single large scale fractures dominating the flow behavior. Understanding the dynamics of such reservoirs in terms of flow and transport is crucial to successful application of engineered geothermal systems (also known as enhanced geothermal systems or EGS) for geothermal energy production in the future. Fractured reservoirs are considered to consist of two distinct separate media, namely the fracture and matrix space respectively. Fractures are generally thin, highly conductive containing only small amounts of fluid, whereas the matrix rock provides high fluid storage but typically has much smaller permeability. Simulation of flow and transport through fractured porous media is challenging due to the high permeability contrast between the fractures and the surrounding rock matrix. However, accurate and efficient simulation of flow through a fracture network is crucial in order to understand, optimize and engineer reservoirs. It has been a research topic for several decades and is still under active research. Accurate fluid flow simulations through field-scale fractured reservoirs are still limited by the power of current computer processing units (CPU). We present an efficient implementation of the embedded discrete fracture model, which is a promising new technique in modeling the behavior of enhanced geothermal systems. An efficient coupling strategy is determined for numerical performance of the model. We provide new insight into the coupled modeling of fluid flow, heat transport of engineered geothermal reservoirs with focus on the thermal stress changes during the stimulation process. We further investigate the interplay of thermal and poro-elastic stress changes in the reservoir

  11. Transcutaneous mechanical nerve stimulation using perineal vibration: a novel method for the treatment of female stress urinary incontinence

    DEFF Research Database (Denmark)

    Sønksen, Jens; Ohl, Dana A; Bonde, Birthe

    2007-01-01

    We defined basic guidelines for transcutaneous mechanical nerve stimulation in modifying pelvic floor responses in women and determined the efficacy of transcutaneous mechanical nerve stimulation in treating stress urinary incontinence.......We defined basic guidelines for transcutaneous mechanical nerve stimulation in modifying pelvic floor responses in women and determined the efficacy of transcutaneous mechanical nerve stimulation in treating stress urinary incontinence....

  12. Physiology-driven adaptive virtual reality stimulation for prevention and treatment of stress related disorders.

    Science.gov (United States)

    Cosić, Kresimir; Popović, Sinisa; Kukolja, Davor; Horvat, Marko; Dropuljić, Branimir

    2010-02-01

    The significant proportion of severe psychological problems related to intensive stress in recent large peacekeeping operations underscores the importance of effective methods for strengthening the prevention and treatment of stress-related disorders. Adaptive control of virtual reality (VR) stimulation presented in this work, based on estimation of the person's emotional state from physiological signals, may enhance existing stress inoculation training (SIT). Physiology-driven adaptive VR stimulation can tailor the progress of stressful stimuli delivery to the physiological characteristics of each individual, which is indicated for improvement in stress resistance. Following an overview of physiology-driven adaptive VR stimulation, its major functional subsystems are described in more detail. A specific algorithm of stimuli delivery applicable to SIT is outlined.

  13. Stress inoculation training supported by physiology-driven adaptive virtual reality stimulation.

    Science.gov (United States)

    Popović, Sinisa; Horvat, Marko; Kukolja, Davor; Dropuljić, Branimir; Cosić, Kresimir

    2009-01-01

    Significant proportion of psychological problems related to combat stress in recent large peacekeeping operations underscores importance of effective methods for strengthening the stress resistance of military personnel. Adaptive control of virtual reality (VR) stimulation, based on estimation of the subject's emotional state from physiological signals, may enhance existing stress inoculation training (SIT). Physiology-driven adaptive VR stimulation can tailor the progress of stressful stimuli delivery to the physiological characteristics of each individual, which is indicated for improvement in stress resistance. Therefore, following an overview of SIT and its applications in the military setting, generic concept of physiology-driven adaptive VR stimulation is presented in the paper. Toward the end of the paper, closed-loop adaptive control strategy applicable to SIT is outlined.

  14. Electroconvulsive stimulations prevent stress-induced morphological changes in the hippocampus

    DEFF Research Database (Denmark)

    Hageman, I; Nielsen, M; Wörtwein, Gitta

    2008-01-01

    whether repeated electroconvulsive stimulations (ECSs) could influence such changes in stressed rats. Furthermore, we investigated whether ECSs per se could influence neuronal branching and total length of the CA3 hippocampal neuronal dendritic tree in normal rats. Rats were stressed using the 21-day 6 h...

  15. Transcranial Stimulation of the Dorsolateral Prefrontal Cortex Prevents Stress-Induced Working Memory Deficits.

    Science.gov (United States)

    Bogdanov, Mario; Schwabe, Lars

    2016-01-27

    Stress is known to impair working memory performance. This disruptive effect of stress on working memory has been linked to a decrease in the activity of the dorsolateral prefrontal cortex (dlPFC). In the present experiment, we tested whether transcranial direct current stimulation (tDCS) of the dlPFC can prevent stress-induced working memory impairments. We tested 120 healthy participants in a 2 d, sham-controlled, double-blind between-subjects design. Participants completed a test of their individual baseline working memory capacity on day 1. On day 2, participants were exposed to either a stressor or a control manipulation before they performed a visuospatial and a verbal working memory task. While participants completed the tasks, anodal, cathodal, or sham tDCS was applied over the right dlPFC. Stress impaired working memory performance in both tasks, albeit to a lesser extent in the verbal compared with the visuospatial working memory task. This stress-induced working memory impairment was prevented by anodal, but not sham or cathodal, stimulation of the dlPFC. Compared with sham or cathodal stimulation, anodal tDCS led to significantly better working memory performance in both tasks after stress. Our findings indicate a causal role of the dlPFC in working memory impairments after acute stress and point to anodal tDCS as a promising tool to reduce cognitive deficits related to working memory in stress-related mental disorders, such as depression, schizophrenia, or post-traumatic stress disorder. Working memory deficits are prominent in stress-related mental disorders, such as depression, schizophrenia, or post-traumatic stress disorder. Similar working memory impairments have been observed in healthy individuals exposed to acute stress. So far, attempts to prevent such stress-induced working memory deficits focused mainly on pharmacological interventions. Here, we tested the idea that transcranial direct current stimulation of the dorsolateral prefrontal

  16. An education management information system with simultaneous monitoring of stress stimulators for students Mental Health management.

    Science.gov (United States)

    Manimaran, S; Jayakumar, S; Lakshmi, K Bhagya

    2016-11-14

    Education Management Information System (EMIS) is a widely acceptable and developing technology within the Information Technology field. The advancement in technology in this century is being collaborated with scientific invention or explorer and information strengthening or development. This paper presents the results and experiences gained from applying students oriented EMIS for monitoring and managing mental health. The Mental Health of students depends on the acquiring adequate knowledge on basic concepts within a time period or academic schedule. It's obviously significance to evaluate and appraise the stress stimulators as a challenge or threat. The theoretical framework for the study was designed for analyzing the stress stimulators, academic performance and EMIS accessibility. The sample examined in this study was stratified random sample from 75 students specifically all engineering college in Dindigul District of Tamilnadu. The primary factor is the academic stress stimulators that form one module of EMIS for each of the key variable such as curriculum & instruction related stressors, placement related, teamwork related and assessment related. The Mental Health related stress stimulators namely curriculum & syllabus, placement related, assessment related and team work related have a significant influence on academic performance by students in various institution. The important factor leading to the EMIS application in monitoring stress stimulators is curriculum & syllabus related and assessment related.

  17. Transcranial direct current stimulation may modulate extinction memory in posttraumatic stress disorder

    OpenAIRE

    van?t Wout, Mascha; Longo, Sharon M.; Reddy, Madhavi K.; Philip, Noah S.; Bowker, Marguerite T.; Greenberg, Benjamin D.

    2017-01-01

    Abstract Background Abnormalities in fear extinction and recall are core components of posttraumatic stress disorder (PTSD). Data from animal and human studies point to a role of the ventromedial prefrontal cortex (vmPFC) in extinction learning and subsequent retention of extinction memories. Given the increasing interest in developing noninvasive brain stimulation protocols for psychopathology treatment, we piloted whether transcranial direct current stimulation (tDCS) during extinction lear...

  18. Sublethal Heavy Metal Stress Stimulates Innate Immunity in Tomato

    Directory of Open Access Journals (Sweden)

    Nilanjan Chakraborty

    2015-01-01

    Full Text Available Effect of sublethal heavy metal stress as plant biotic elicitor for triggering innate immunity in tomato plant was investigated. Copper in in vivo condition induced accumulation of defense enzymes like peroxidase (PO, polyphenol oxidase (PPO, phenylalanine ammonia-lyase (PAL, and β-1,3 glucanase along with higher accumulation of total phenol, antioxidative enzymes (catalase and ascorbate peroxidase, and total chlorophyll content. Furthermore, the treatment also induced nitric oxide (NO production which was confirmed by realtime visualization of NO burst using a fluorescent probe 4,5-diaminofluorescein diacetate (DAF-2DA and spectrophotometric analysis. The result suggested that the sublethal dose of heavy metal can induce an array of plant defense responses that lead to the improvement of innate immunity in plants.

  19. Anti-stress effects of transcutaneous electrical nerve stimulation (TENS) on colonic motility in rats.

    Science.gov (United States)

    Yoshimoto, Sazu; Babygirija, Reji; Dobner, Anthony; Ludwig, Kirk; Takahashi, Toku

    2012-05-01

    Disorders of colonic motility may contribute to symptoms in patients with irritable bowel syndrome (IBS), and stress is widely believed to play a major role in developing IBS. Stress increases corticotropin releasing factor (CRF) of the hypothalamus, resulting in acceleration of colonic transit in rodents. In contrast, hypothalamic oxytocin (OXT) has an anti-stress effect via inhibiting CRF expression and hypothalamic-pituitary-adrenal axis activity. Although transcutaneous electrical nerve stimulation (TENS) and acupuncture have been shown to have anti-stress effects, the mechanism of the beneficial effects remains unknown. We tested the hypothesis that TENS upregulates hypothalamic OXT expression resulting in reduced CRF expression and restoration of colonic dysmotility in response to chronic stress. Male SD rats received different types of stressors for seven consecutive days (chronic heterotypic stress). TENS was applied to the bilateral hind limbs every other day before stress loading. Another group of rats did not receive TENS treatment. TENS significantly attenuated accelerated colonic transit induced by chronic heterotypic stress, which was antagonized by a central injection of an OXT antagonist. Immunohistochemical study showed that TENS increased OXT expression and decreased CRF expression at the paraventricular nucleus (PVN) following chronic heterotypic stress. It is suggested that TENS upregulates hypothalamic OXT expression which acts as an anti-stressor agent and mediates restored colonic dysmotility following chronic stress. TENS may be useful to treat gastrointestinal symptoms associated with stress.

  20. Electroconvulsive Stimulation, but not Chronic Restraint Stress, Causes Structural Alterations in Adult Rat Hippocampus

    DEFF Research Database (Denmark)

    Olesen, Mikkel V.; Wörtwein, Gitta; Pakkenberg, Bente

    2015-01-01

    The neurobiological mechanisms underlying depression are not fully understood. Only a few previous studies have used validated stereological methods to test how stress and animal paradigms of depression affect adult hippocampal neurogenesis and whether antidepressant therapy can counteract possible...... changes in an animal model. Thus, in this study we applied methods that are state of the art in regard to stereological cell counting methods. Using a validated rat model of depression in combination with a clinically relevant schedule of electroconvulsive stimulation, we estimated the total number...... of newly formed neurons in the hippocampal subgranular zone. Also estimated were the total number of neurons and the volume of the granule cell layer in adult rats subjected to chronic restraint stress and electroconvulsive stimulation either alone or in combination. We found that chronic restraint stress...

  1. Parenting stress in parents of children with refractory epilepsy before and after vagus nerve stimulation implantation

    Directory of Open Access Journals (Sweden)

    Sung-Tse Li

    2017-12-01

    Full Text Available Objectives: The purpose of this study was to evaluate parenting stress in parents of children with refractory epilepsy before and after their children received vagus nerve stimulation (VNS implantation. Methods: Parents of children with refractory epilepsy completed the Parenting Stress Index (PSI under a psychologist's assessment before and at least 12 months after their children received VNS implantation. The PSI questionnaire measures parenting stress in two domains; a parent domain with seven subscales, and a child domain with six. Age, gender, epilepsy comorbidity, VNS implantation date, seizure frequency, and anticonvulsant history before and after VNS implantation were obtained from reviews of medical charts. Results: In total, 30 parents completed the first and follow-up PSI questionnaires. Seventeen of their children (56.7% were boys. The children aged from 1 to 12 years (7.43 ± 3.59 years, mean ± SD. After VNS implantation, the mean total parenting stress scores decreased from 282.1 ± 38.0 to 272.4 ± 42.9. A significant decrease was found on the spouse subscale of the parent domain. For the parents of boys, the mean total parenting stress scores decreased significantly. The mean total parenting stress scores also decreased significantly for parents of epileptic children without autism and who did not taper off the number of different anticonvulsants used after VNS. Conclusions: VNS is an advisable choice to treat refractory epilepsy. Our study showed that 12 months or more after VNS implantation, seizure frequency and parenting stress typically decreased. However, in some special cases the parenting stress may increase, and external help may be required to support these patients and their parents. Key Words: children, refractory epilepsy, parenting stress, vagus nerve stimulation

  2. Optical stimulation of the hearing and deaf cochlea under thermal and stress confinement condition

    Science.gov (United States)

    Schultz, M.; Baumhoff, P.; Kallweit, N.; Sato, M.; Krüger, A.; Ripken, T.; Lenarz, T.; Kral, A.

    2014-03-01

    There is a controversy, to which extend cochlear stimulation with near infrared laser pulses at a wavelength of 1860 nm is based on optoacoustic stimulation of intact hair cells or -in contrast- is based on direct stimulation of the nerve cells in absence of functional hair cells. Thermal and stress confinement conditions apply, because of the pulse duration range (5 ns, 10 μs-20 ms) of the two lasers used. The dependency of the signal characteristics on pulse peak power and pulse duration was investigated in this study. The compound action potential (CAP) was measured during stimulation of the cochlea of four anaesthetized guinea pigs, which were hearing at first and afterwards acutely deafened using intracochlear neomycin-rinsing. For comparison hydrophone measurements in a water tank were performed to investigate the optoacoustic signals at different laser interaction regimes. With rising pulse peak power CAPs of the hearing animals showed first a threshold, then a positively correlated and finally a saturating dependency. CAPs also showed distinct responses at laser onset and offset separated with the pulse duration. At pulse durations shorter than physiological response times the signals merged. Basically the same signal characteristics were observed in the optoacoustic hydrophone measurements, scaled with the sensitivity and response time of the hydrophone. Taking together the qualitative correspondence in the signal response and the absence of any CAPs in deafened animals our results speak in favor of an optoacoustic stimulation of intact hair cells rather than a direct stimulation of nerve cells.

  3. Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots.

    Science.gov (United States)

    Zolla, Gaston; Heimer, Yair M; Barak, Simon

    2010-01-01

    Plant roots exhibit remarkable developmental plasticity in response to local soil conditions. It is shown here that mild salt stress stimulates a stress-induced morphogenic response (SIMR) in Arabidopsis thaliana roots characteristic of several other abiotic stresses: the proliferation of lateral roots (LRs) with a concomitant reduction in LR and primary root length. The LR proliferation component of the salt SIMR is dramatically enhanced by the transfer of seedlings from a low to a high NO3- medium, thereby compensating for the decreased LR length and maintaining overall LR surface area. Increased LR proliferation is specific to salt stress (osmotic stress alone has no stimulatory effect) and is due to the progression of more LR primordia from the pre-emergence to the emergence stage, in salt-stressed plants. In salt-stressed seedlings, greater numbers of LR primordia exhibit expression of a reporter gene driven by the auxin-sensitive DR5 promoter than in unstressed seedlings. Moreover, in the auxin transporter mutant aux1-7, the LR proliferation component of the salt SIMR is completely abrogated. The results suggest that salt stress promotes auxin accumulation in developing primordia thereby preventing their developmental arrest at the pre-emergence stage. Examination of ABA and ethylene mutants revealed that ABA synthesis and a factor involved in the ethylene signalling network also regulate the LR proliferation component of the salt SIMR.

  4. Gold nanoparticle-mediated laser stimulation induces a complex stress response in neuronal cells.

    Science.gov (United States)

    Johannsmeier, Sonja; Heeger, Patrick; Terakawa, Mitsuhiro; Kalies, Stefan; Heisterkamp, Alexander; Ripken, Tammo; Heinemann, Dag

    2018-04-25

    Stimulation of neuronal cells generally resorts to electric signals. Recent advances in laser-based stimulation methods could present an alternative with superior spatiotemporal resolution. The avoidance of electronic crosstalk makes these methods attractive for in vivo therapeutic application. In particular, nano-mediators, such as gold nanoparticles, can be used to transfer the energy from a laser pulse to the cell membrane and subsequently activate excitable cells. Although the underlying mechanisms of neuronal activation have been widely unraveled, the overall effect on the targeted cell is not understood. Little is known about the physiological and pathophysiological impact of a laser pulse targeted onto nanoabsorbers on the cell membrane. Here, we analyzed the reaction of the neuronal murine cell line Neuro-2A and murine primary cortical neurons to gold nanoparticle mediated laser stimulation. Our study reveals a severe, complex and cell-type independent stress response after laser irradiation, emphasizing the need for a thorough assessment of this approach's efficacy and safety.

  5. Alcohol, psychomotor-stimulants and behaviour: methodological considerations in preclinical models of early-life stress.

    Science.gov (United States)

    McDonnell-Dowling, Kate; Miczek, Klaus A

    2018-04-01

    In order to assess the risk associated with early-life stress, there has been an increase in the amount of preclinical studies investigating early-life stress. There are many challenges associated with investigating early-life stress in animal models and ensuring that such models are appropriate and clinically relevant. The purpose of this review is to highlight the methodological considerations in the design of preclinical studies investigating the effects of early-life stress on alcohol and psychomotor-stimulant intake and behaviour. The protocols employed for exploring early-life stress were investigated and summarised. Experimental variables include animals, stress models, and endpoints employed. The findings in this paper suggest that there is little consistency among these studies and so the interpretation of these results may not be as clinically relevant as previously thought. The standardisation of these simple stress procedures means that results will be more comparable between studies and that results generated will give us a more robust understanding of what can and may be happening in the human and veterinary clinic.

  6. Salivary alpha-amylase and cortisol responsiveness following electrical stimulation stress in major depressive disorder patients.

    Science.gov (United States)

    Tanaka, Yoshihiro; Ishitobi, Yoshinobu; Maruyama, Yoshihiro; Kawano, Aimi; Ando, Tomoko; Okamoto, Shizuko; Kanehisa, Masayuki; Higuma, Haruka; Ninomiya, Taiga; Tsuru, Jusen; Hanada, Hiroaki; Kodama, Kensuke; Isogawa, Koichi; Akiyoshi, Jotaro

    2012-03-30

    Major depressive disorder (MDD) is often associated with dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis by chronic stress. In comparison, psychosocial stress-induced activation of salivary α-amylase (sAA) functions as a marker of sympathoadrenal medullary system (SAM) activity. However, in contrast to salivary cortisol, sAA has been less extensively studied in MDD patients. The present study measured sAA and salivary cortisol levels in patients with MDD. The authors determined Profile of Mood State (POMS) and State-Trait anxiety Inventory (STAI) scores, Heart Rate Variability (HRV), and sAA and salivary cortisol levels in 88 patients with MDD and 41 healthy volunteers following the application of electrical stimulation stress. Patients with major depressive disorder were 8 points or more on Hamilton Depression Scale (HAM-D) scores. Tension-Anxiety, Depression-Dejection, Anger-Hostility, Fatigue, and Confusion scores in patients with major depressive disorder were significantly increased compared to healthy controls. In contrast, Vigor scores in patients with MDD were significantly decreased compared with healthy controls. There was no difference in heart rate variability measures between MDD patients and healthy controls. The threshold of electrical stimulation applied in MDD patients was lower than that in healthy controls. SAA levels in female MDD patients were significantly elevated relative to controls both before and after electrical stimulation. Finally, there were no differences in salivary cortisol levels between major depressive patients and controls. In the present study only three time points were explored. Furthermore, the increased secretion of sAA before and after stimulation could allude to an increased responsiveness of novel and uncontrollable situations in patients with MDD. These preliminary results suggest that sAA might be a useful biological marker of MDD. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Lifetime stress cumulatively programs brain transcriptome and impedes stroke recovery: benefit of sensory stimulation.

    Directory of Open Access Journals (Sweden)

    Fabíola C R Zucchi

    Full Text Available Prenatal stress (PS represents a critical variable affecting lifetime health trajectories, metabolic and vascular functions. Beneficial experiences may attenuate the effects of PS and its programming of health outcomes in later life. Here we investigated in a rat model (1 if PS modulates recovery following cortical ischemia in adulthood; (2 if a second hit by adult stress (AS exaggerates stress responses and ischemic damage; and (3 if tactile stimulation (TS attenuates the cumulative effects of PS and AS. Prenatally stressed and non-stressed adult male rats underwent focal ischemic motor cortex lesion and were tested in skilled reaching and skilled walking tasks. Two groups of rats experienced recurrent restraint stress in adulthood and one of these groups also underwent daily TS therapy. Animals that experienced both PS and AS displayed the most severe motor disabilities after lesion. By contrast, TS promoted recovery from ischemic lesion and reduced hypothalamic-pituitary-adrenal axis activity. The data also showed that cumulative effects of adverse and beneficial lifespan experiences interact with disease outcomes and brain plasticity through the modulation of gene expression. Microarray analysis of the lesion motor cortex revealed that cumulative PS and AS interact with genes related to growth factors and transcription factors, which were not affected by PS or lesion alone. TS in PS+AS animals reverted these changes, suggesting a critical role for these factors in activity-dependent motor cortical reorganization after ischemic lesion. These findings suggest that beneficial experience later in life can moderate adverse consequences of early programming to improve cerebrovascular health.

  8. T-Stimulator effect on cotton protein composition and synthesis in salinization stress

    International Nuclear Information System (INIS)

    Ibragimova, E.A.; Nazirova, E.R.; Samarkhodjaeva, N.R.; Nalbandyan, A.A.; Babaev, T.A.

    2004-01-01

    Full text: T-stimulator was established to possess a wide spectrum of physiological effects, to enhance plant adaptation to thermal stress and to increase plant resistance to pathogens. Plant adaptation to unfavorable conditions manifests in changes in many links of metabolism, that of proteins included. We studied effect of cottonseed treatment with T-stimulator on composition and synthesis of plasma membrane proteins upon chloride salinization by means of the radioisotope method. Electrophoretic fractionation of cottonseed plasma membrane proteins showed absence of more than 40 polypeptides with molecular mass from 10 to more than 100 kDa in the cotton root membranes. Major fractions-polypeptides with molecular mass of 61, 53, 46, 25, 21, 20 and 18 kDa constitute about 50% of the total polypeptide composition. The salinization significantly affects the total membrane protein output, proportion of some polypeptides and their synthesis rate. Analysis of phoreogram radioautographs showed that 2-hour exposition of cotton roots to 35 S methionine suppresses synthesis of major polypeptides with molecular mass of 63, 61 and 53 kDa, that of low molecular polypeptides (46, 20, 18 kDa) increasing. Changes in the proportion of major polypeptides in cotton plasma membranes, reduction in rate of biosynthesis of high molecular fractions with the general suppression of label inclusion in the membrane fraction are the evidence for a disturbance in biosynthesis of some membrane proteins in cotton tissue cells upon salinization. The inhibiting effect of salinization on the protein-synthesizing system was observed in plants treated with T-stimulator, but the rate of synthesis in plasma membranes of the treated plants was found significantly higher. The activation of some plasma membrane proteins under T-stimulator effect suggests an association with the increase in adaptation of the treated plants to the disturbing effect of salinization

  9. Trigeminal Nerve Stimulation for Comorbid Posttraumatic Stress Disorder and Major Depressive Disorder.

    Science.gov (United States)

    Cook, Ian A; Abrams, Michelle; Leuchter, Andrew F

    2016-04-01

    External stimulation of the trigeminal nerve (eTNS) is an emerging neuromodulation therapy for epilepsy and depression. Preliminary studies suggest it has an excellent safety profile and is associated with significant improvements in seizures and mood. Neuroanatomical projections of the trigeminal system suggest eTNS may alter activity in structures regulating mood, anxiety, and sleep. In this proof-of-concept trial, the effects of eTNS were evaluated in adults with posttraumatic stress disorder (PTSD) and comorbid unipolar major depressive disorder (MDD) as an adjunct to pharmacotherapy for these commonly co-occurring conditions. Twelve adults with PTSD and MDD were studied in an eight-week open outpatient trial (age 52.8 [13.7 sd], 8F:4M). Stimulation was applied to the supraorbital and supratrochlear nerves for eight hours each night as an adjunct to pharmacotherapy. Changes in symptoms were monitored using the PTSD Patient Checklist (PCL), Hamilton Depression Rating Scale (HDRS-17), Quick Inventory of Depressive Symptomatology (QIDS-C), and the Quality of Life Enjoyment and Satisfaction Questionnaire (Q-LES-Q). Over the eight weeks, eTNS treatment was associated with significant decreases in PCL (p = 0.003; median decrease of 15 points; effect size d 1.5), HDRS-17 (p depression severity were achieved in the eight weeks of acute eTNS treatment. This novel approach to wearable brain stimulation may have use as an adjunct to pharmacotherapy in these disorders if efficacy and tolerability are confirmed with additional studies. © 2016 International Neuromodulation Society.

  10. The water avoidance stress induces bladder pain due to a prolonged alpha1A adrenoceptor stimulation.

    Science.gov (United States)

    Matos, Rita; Serrão, Paula; Rodriguez, Larissa; Birder, Lori Ann; Cruz, Francisco; Charrua, Ana

    2017-08-01

    Bladder Pain Syndrome/Interstitial Cystitis (BPS/IC) remains an elusive disease with the cause for the pain unclear. BPS/IC patients present increased sympathetic activity and high levels of urinary noradrenaline. At the experimental level, it has been shown that chronic adrenergic stimulation produces pain and bladder changes through an alpha 1A adrenoceptor mediated mechanism. Water avoidance stress (WAS) in rodents reproduces signs of nociception and bladder changes seen in BPS/IC patients. In this study, we explore the possible role of alpha 1A adrenoceptor in bladder pain and morphological changes. WAS was induced in a group of female Wistar rats. A separate WAS group received 0.2 mg/kg day silodosin (WAS + S). Lower abdominal pain was determined by performing sensitivity to Von Frey filaments. Bladder reflex activity was determined by cystometry in anaesthetised animals. Urine was collected for noradrenaline quantification by HPLC. Bladders were harvested and stained with Haematoxylin-eosin (to analyse urothelial morphology and to determine the disruption of surface umbrella cells) or with Toluidine Blue 0.1% to analyse mast cell infiltration. WAS increased urinary noradrenaline level and bladder frequency and decreased mechanical pain threshold, which was reversed by silodosin. WAS induced lymphocytic and mast cells infiltration in the mucosa and mild urothelial disruption, which was absent in WAS + S group. Alpha 1A adrenoceptor stimulation has an important role in the appearance of bladder pain in rats. Since BPS/IC patients present high levels of noradrenaline, alpha 1A stimulation may be an additional trigger for bladder dysfunction presented by these patients. Further studies will determine the clinical relevance of this finding in the treatment of BPS/IC patients.

  11. The conformity of BPP and vibroacoustic stimulation results in fetal non reactive non stress test

    Directory of Open Access Journals (Sweden)

    M. Modarres

    2006-08-01

    Full Text Available Background: The most frequently used test for evaluation of fetal health is the Non Stress Test (NST. Unfortunately it has a high incidence of false positive results. The combination of vibroacoustic stimulation with the NTS has been shown to reduce non reactive results. Methods: A tests assessment method was chosen with a simple randomized sampling. 40 pregnant women with non reactive NST in the first 20 minutes who received VAS in one of Tehran University's Hospitals were compared with BPP scores. A vibroacoustic stimulation was applied for a 3 seconds on the maternal abdomen and fallowed within 10 minutes.Data collection tools were NST, sonography instruments ,NST result paper, tooth brusher, watch, demographic questioner and check list. Data analysis was made by descriptive static and by using the Fisher's Exact Test (with level of significant at p<0/05. All statistical analysis were performed using an spss/win. Results: After VAS, 70% of non reactive tracing became reactive. All cases with fetal reactivity response after a VAS had a subsequent BPP score of 8 (negative predictive value of 100%. False positivity of VAS was lower than NST. Conclusion: VAS offers benefits, by decreasing the incidence of non reactive test and reducing test time. VAS lowers the rate of false positive NST. VAS is safe and allows more efficient of prenatal services. This test could be used as a rapid antepartum test to predict fetal well-being.

  12. Copper ions stimulate the proliferation of hepatic stellate cells via oxygen stress in vitro.

    Science.gov (United States)

    Xu, San-qing; Zhu, Hui-yun; Lin, Jian-guo; Su, Tang-feng; Liu, Yan; Luo, Xiao-ping

    2013-02-01

    This study examined the effect of copper ions on the proliferation of hepatic stellate cells (HSCs) and the role of oxidative stress in this process in order to gain insight into the mechanism of hepatic fibrosis in Wilson's disease. LX-2 cells, a cell line of human HSCs, were cultured in vitro and treated with different agents including copper sulfate, N-acetyl cysteine (NAC) and buthionine sulfoximine (BSO) for different time. The proliferation of LX-2 cells was measured by non-radioactive cell proliferation assay. Real-time PCR and Western blotting were used to detect the mRNA and protein expression of platelet-derived growth factor receptor β subunit (PDGFβR), ELISA to determine the level of glutathione (GSH) and oxidized glutathione (GSSG), dichlorofluorescein assay to measure the level of reactive oxygen species (ROS), and lipid hydroperoxide assay to quantify the level of lipid peroxide (LPO). The results showed that copper sulfate over a certain concentration range could promote the proliferation of LX-2 cells in a time- and dose-dependent manner. The effect was most manifest when LX-2 cells were treated with copper sulfate at a concentration of 100 μmol/L for 24 h. Additionally, copper sulfate could dose-dependently increase the levels of ROS and LPO, and decrease the ratio of GSH/GSSG in LX-2 cells. The copper-induced increase in mRNA and protein expression of PDGFβR was significantly inhibited in LX-2 cells pre-treated with NAC, a precursor of GSH, and this phenomenon could be reversed by the intervention of BSO, an inhibitor of NAC. It was concluded that copper ions may directly stimulate the proliferation of HSCs via oxidative stress. Anti-oxidative stress therapies may help suppress the copper-induced activation and proliferation of HSCs.

  13. Possible stimulation of anti-tumor immunity using repeated cold stress: a hypothesis

    Directory of Open Access Journals (Sweden)

    Radoja Sasa

    2007-11-01

    Full Text Available Abstract Background The phenomenon of hormesis, whereby small amounts of seemingly harmful or stressful agents can be beneficial for the health and lifespan of laboratory animals has been reported in literature. In particular, there is accumulating evidence that daily brief cold stress can increase both numbers and activity of peripheral cytotoxic T lymphocytes and natural killer cells, the major effectors of adaptive and innate tumor immunity, respectively. This type of regimen (for 8 days has been shown to improve survival of mice infected with intracellular parasite Toxoplasma gondii, which would also be consistent with enhanced cell-mediated immunity. Presentation of the hypothesis This paper hypothesizes that brief cold-water stress repeated daily over many months could enhance anti-tumor immunity and improve survival rate of a non-lymphoid cancer. The possible mechanism of the non-specific stimulation of cellular immunity by repeated cold stress appears to involve transient activation of the sympathetic nervous system, hypothalamic-pituitary-adrenal and hypothalamic-pituitary-thyroid axes, as described in more detail in the text. Daily moderate cold hydrotherapy is known to reduce pain and does not appear to have noticeable adverse effects on normal test subjects, although some studies have shown that it can cause transient arrhythmias in patients with heart problems and can also inhibit humoral immunity. Sudden immersion in ice-cold water can cause transient pulmonary edema and increase permeability of the blood-brain barrier, thereby increasing mortality of neurovirulent infections. Testing the hypothesis The proposed procedure is an adapted cold swim (5–7 minutes at 20 degrees Celsius, includes gradual adaptation to be tested on a mouse tumor model. Mortality, tumor size, and measurements of cellular immunity (numbers and activity of peripheral CD8+ T lymphocytes and natural killer cells of the cold-exposed group would be compared to

  14. Numerical modeling of injection, stress and permeability enhancement during shear stimulation at the Desert Peak Enhanced Geothermal System

    Science.gov (United States)

    Dempsey, David; Kelkar, Sharad; Davatzes, Nick; Hickman, Stephen H.; Moos, Daniel

    2015-01-01

    Creation of an Enhanced Geothermal System relies on stimulation of fracture permeability through self-propping shear failure that creates a complex fracture network with high surface area for efficient heat transfer. In 2010, shear stimulation was carried out in well 27-15 at Desert Peak geothermal field, Nevada, by injecting cold water at pressure less than the minimum principal stress. An order-of-magnitude improvement in well injectivity was recorded. Here, we describe a numerical model that accounts for injection-induced stress changes and permeability enhancement during this stimulation. In a two-part study, we use the coupled thermo-hydrological-mechanical simulator FEHM to: (i) construct a wellbore model for non-steady bottom-hole temperature and pressure conditions during the injection, and (ii) apply these pressures and temperatures as a source term in a numerical model of the stimulation. In this model, a Mohr-Coulomb failure criterion and empirical fracture permeability is developed to describe permeability evolution of the fractured rock. The numerical model is calibrated using laboratory measurements of material properties on representative core samples and wellhead records of injection pressure and mass flow during the shear stimulation. The model captures both the absence of stimulation at low wellhead pressure (WHP ≤1.7 and ≤2.4 MPa) as well as the timing and magnitude of injectivity rise at medium WHP (3.1 MPa). Results indicate that thermoelastic effects near the wellbore and the associated non-local stresses further from the well combine to propagate a failure front away from the injection well. Elevated WHP promotes failure, increases the injection rate, and cools the wellbore; however, as the overpressure drops off with distance, thermal and non-local stresses play an ongoing role in promoting shear failure at increasing distance from the well.

  15. Direct Imaging of Natural Fractures and Stress Compartments Stimulated by Hydraulic Fracturing

    Science.gov (United States)

    Lacazette, A.; Vermilye, J. M.

    2014-12-01

    This contribution will present results from passive seismic studies of hydraulic fracture treatments in North American and Asian basins. One of the key data types is a comparatively new surface-based seismic imaging product - "Tomographic Fracture Images®" (TFI®). The procedure is an extension of Seismic Emission Tomography (SET), which is well-established and widely used. Conventional microseismic results - microearthquake hypocenter locations, magnitudes, and focal mechanism solutions - are also obtained from the data via a branch of the processing workflow. TFI is accomplished by summing the individual time steps in a multidimensional SET hypervolume over extended periods of time, such as an entire frac stage. The dimensions of a SET hypervolume are the X, Y, and Z coordinates of the voxels, the time step (typically on the order of 100 milliseconds), and the seismic activity value. The resulting summed volume is skeletonized to produce images of the main fracture surfaces, which are known to occupy the maximum activity surfaces of the high activity clouds from theory, field studies, and experiments. The orientation vs. area of the resulting TFIs can be analyzed in detail and compared with independent data sets such as volumetric structural attributes from reflection seismic data and borehole fracture data. We find that the primary effect of hydraulic fracturing is to stimulate preexisting natural fracture networks and faults. The combination of TFIs with hypocenter distributions and microearthquake focal mechanisms provides detailed information on subsurface stress compartmentalization. Faults are directly imaged which allows discrimination of fault planes from auxiliary planes of focal mechanism solutions. Examples that will be shown include simultaneous movement on a thrust fault and tear fault and examples of radically different stress compartments (e.g. extensional vs. wrench faulting) stimulated during a single hydraulic fracture treatment. The figure

  16. Sensory trigeminal ULF-TENS stimulation reduces HRV response to experimentally induced arithmetic stress: A randomized clinical trial.

    Science.gov (United States)

    Monaco, Annalisa; Cattaneo, Ruggero; Ortu, Eleonora; Constantinescu, Marian Vladimir; Pietropaoli, Davide

    2017-05-01

    Ultra Low Frequency Transcutaneous Electric Nervous Stimulation (ULF-TENS) is extensively used for pain relief and for the diagnosis and treatment of temporomandibular disorders (TMD). In addition to its local effects, ULF-TENS acts on the autonomic nervous system (ANS), with particular reference to the periaqueductal gray (PAG), promoting the release of endogenous opioids and modulating descending pain systems. It has been suggested that the PAG participates in the coupling between the emotional stimulus and the appropriate behavioral autonomic response. This function is successfully investigated by HRV. Therefore, our goal is to investigate the effects of trigeminal ULF-TENS stimulation on autonomic behavior in terms of HRV and respiratory parameters during an experimentally-induced arithmetic stress test in healthy subjects. Thirty healthy women between 25 and 35years of age were enrolled and randomly assigned to either the control (TENS stimulation off) or test group (TENS stimulation on). Heart (HR, LF, HF, LF/HF ratio, DET, RMSSD, PNN50, RR) and respiratory (BR) rate were evaluated under basal, T1 (TENS off/on), and stress (mathematical task) conditions. Results showed that HRV parameters and BR significantly changed during the arithmetic stress paradigm (pTENS and control group could be discriminated only by non-linear HRV data, namely RR and DET (p=0.038 and p=0.027, respectively). During the arithmetic task, LF/HF ratio was the most sensitive parameter to discriminate between groups (p=0.019). Our data suggest that trigeminal sensory ULF-TENS reduces the autonomic response in terms of HRV and BR during acute mental stress in healthy subjects. Future directions of our work aim at applying the HRV and BR analysis, with and without TENS stimulation, to individuals with dysfunctional ANS among those with TMD. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae).

    Science.gov (United States)

    Chia, Mathias Ahii; Lombardi, Ana Teresa; da Graça Gama Melão, Maria; Parrish, Christopher C

    2015-03-01

    Metals have interactive effects on the uptake and metabolism of nutrients in microalgae. However, the effect of trace metal toxicity on amino acid composition of Chlorella vulgaris as a function of varying nitrogen concentrations is not known. In this research, C. vulgaris was used to investigate the influence of cadmium (10(-7) and 2.0×10(-8)molL(-1) Cd) under varying nitrogen (2.9×10(-6), 1.1×10(-5) and 1.1×10(-3)molL(-1)N) concentrations on its growth rate, biomass and biochemical composition. Total carbohydrates, total proteins, total lipids, as well as individual amino acid proportions were determined. The combination of Cd stress and N limitation significantly inhibited growth rate and cell density of C. vulgaris. However, increasing N limitation and Cd stress stimulated higher dry weight and chlorophyll a production per cell. Furthermore, biomolecules like total proteins, carbohydrates and lipids increased with increasing N limitation and Cd stress. Ketogenic and glucogenic amino acids were accumulated under the stress conditions investigated in the present study. Amino acids involved in metal chelation like proline, histidine and glutamine were significantly increased after exposure to combined Cd stress and N limitation. We conclude that N limitation and Cd stress affects the physiology of C. vulgaris by not only decreasing its growth but also stimulating biomolecule production. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae)

    Energy Technology Data Exchange (ETDEWEB)

    Chia, Mathias Ahii, E-mail: chia28us@yahoo.com [Department of Botany, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Lombardi, Ana Teresa [Department of Botany, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Graça Gama Melão, Maria da [Department of Hydrobiology, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Parrish, Christopher C. [Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Newfoundland A1C 5S7 (Canada)

    2015-03-15

    Highlights: • Chlorella vulgaris was exposed to Cd under varying N concentrations. • Growth rate and cell density decreased with increasing Cd stress and N limitation. • Dry weight, chlorophyll a, total lipid, carbohydrate and protein were accumulated. • Amino acids like proline and glutamine were accumulated under N and Cd stress. • Changes in amino acid composition are sensitive biomarkers for Cd and N stress. - Abstract: Metals have interactive effects on the uptake and metabolism of nutrients in microalgae. However, the effect of trace metal toxicity on amino acid composition of Chlorella vulgaris as a function of varying nitrogen concentrations is not known. In this research, C. vulgaris was used to investigate the influence of cadmium (10{sup −7} and 2.0 × 10{sup −8} mol L{sup −1} Cd) under varying nitrogen (2.9 × 10{sup −6}, 1.1 × 10{sup −5} and 1.1 × 10{sup −3} mol L{sup −1} N) concentrations on its growth rate, biomass and biochemical composition. Total carbohydrates, total proteins, total lipids, as well as individual amino acid proportions were determined. The combination of Cd stress and N limitation significantly inhibited growth rate and cell density of C. vulgaris. However, increasing N limitation and Cd stress stimulated higher dry weight and chlorophyll a production per cell. Furthermore, biomolecules like total proteins, carbohydrates and lipids increased with increasing N limitation and Cd stress. Ketogenic and glucogenic amino acids were accumulated under the stress conditions investigated in the present study. Amino acids involved in metal chelation like proline, histidine and glutamine were significantly increased after exposure to combined Cd stress and N limitation. We conclude that N limitation and Cd stress affects the physiology of C. vulgaris by not only decreasing its growth but also stimulating biomolecule production.

  19. Neuropeptide Y stimulation as primary target for preventive measures of maladaptative cardiovascular reactions in occupational chronic stress exposure.

    Science.gov (United States)

    Ciumaşu-Rîmbu, Mălina; Popa, Livia; Vulpoi, Carmen

    2012-01-01

    Chronic stress may produce a decrease in central NPY expression and subjects exposed to it may prove hypersensitivity to a novel stressor with dysfunctions in the NPY system and cardiovascular maladaptation to stress, even hypertension. Upregulation of NPY expression may contribute to successful behavioral adaptation to stress by reducing cardiovascular tone and suppressing anxious behaviors. Adaptogens, a new class of metabolic regulators stimulate NPY expression and release. The aim of this study is to increase tolerance and adaptation to stress of hypersensitive to novel stressor, occupational chronic stress exposed subjects with cardiovascular maladaptation to mild new stressor using adaptogens as part of prevention protocol. 40 military personnel with known cardiostressor reactional mode and occupational chronic stress exposure were exposed to mild novel stressor: occupational medicine routine evaluation and clinically assessed for maladaptative cardiovascular response prior and before application of 30 day prevention protocol. Employees were randomly split in two groups, one receiving standard prevention protocol (lifestyle counseling) plus adaptogens in multiple dose administration, twice daily and the other receiving only standard prevention protocol. We found significant statistic differences in all cardiovascular parameters in adaptogen group and only in diastolic blood pressure in control group. Adaptogens could be an important factor in successful prevention protocols of chronic occupational stress dysfunctions involving NPY systems.

  20. Intraoperative hemidiaphragm electrical stimulation reduces oxidative stress and upregulates autophagy in surgery patients undergoing mechanical ventilation: exploratory study

    Directory of Open Access Journals (Sweden)

    Robert T. Mankowski

    2016-10-01

    Full Text Available Abstract Background Mechanical ventilation (MV during a cardio-thoracic surgery contributes to diaphragm muscle dysfunction that impairs weaning and can lead to the ventilator- induced diaphragm dysfunction. Especially, it is critical in older adults who have lower muscle reparative capacity following MV. Reports have shown that the intraoperative intermittent hemidiaphragm electrical stimulation can maintain and/or improve post-surgery diaphragm function. In particular, from a molecular point of view, intermittent electrical stimulation (ES may reduce oxidative stress and increase regulatory autophagy levels, and therefore improve diaphragm function in animal studies. We have recently shown in humans that intraoperative ES attenuates mitochondrial dysfunction and force decline in single diaphragm muscle fibers. The aim of this study was to investigate an effect of ES on oxidative stress, antioxidant status and autophagy biomarker levels in the human diaphragm during surgery. Methods One phrenic nerve was simulated with an external cardiac pacer in operated older subjects (62.4 ± 12.9 years (n = 8 during the surgery. The patients received 30 pulses per min every 30 min. The muscle biopsy was collected from both hemidiaphragms and frozen for further analyses. 4-hydroxynonenal (4-HNE, an oxidative stress marker, and autophagy marker levels (Beclin-1 and the ratio of microtubule-associated protein light chain 3, I and II-LC3 II/I protein concentrations were detected by the Western Blot technique. Antioxidant enzymatic activity copper-zinc (CuZnSOD and manganese (MnSOD superoxide dismutase were analyzed. Results Levels of lipid peroxidation (4-HNE were significantly lower in the stimulated side (p  0.05. Additionally, the protein concentrations of Beclin-1 and the LC3 II/I ratio were higher in the stimulated side (p < 0.05. Conclusion These results suggest that the intraoperative electrical stimulation decreases oxidative stress levels

  1. Electroconvulsive stimulation reverses anhedonia and cognitive impairments in rats exposed to chronic mild stress

    DEFF Research Database (Denmark)

    K, Henningsen,; Woldbye, David Paul Drucker; Wiborg, Ove

    2013-01-01

    Electroconvulsive therapy remains the most effective treatment for depression including a fast onset of action. However, this therapeutic approach suffers from some potential drawbacks. In the acute phase this includes amnesia. Electroconvulsive stimulation (ECS) has previously been shown...

  2. Cocaine enhances resistance to extinction of responding for brain-stimulation reward in adult prenatally stressed rats.

    Science.gov (United States)

    Gao, Shuibo; Suenaga, Toshiko; Oki, Yutaka; Yukie, Masao; Nakahara, Daiichiro

    2011-10-01

    The present experiment assessed whether prenatal stress (PS) can alter the ability of acute and chronic cocaine administration to increase and decrease the rewarding effectiveness of the medial forebrain bundle (MFB) using intracranial self-stimulation (ICSS), and also whether PS can affect the extinction of the MFB stimulation response. Adult male offspring of female rats that received PS or no PS (nPS) were implanted with MFB stimulating electrodes, and were then tested in ICSS paradigms. In both nPS and PS offspring, acute cocaine injection decreased ICSS thresholds dose-dependently. However, the threshold-lowering effects at any dose were not significantly different between groups. There was also no group-difference in the threshold-elevating effects of chronic cocaine administration. Nevertheless, chronically drug-administered PS rats exhibited a resistance to the extinguishing of the response for brain-stimulation reward when acutely treated with cocaine, as compared to extinction without cocaine treatment. The results suggest that PS may weaken the ability for response inhibition under cocaine loading in male adult offspring. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Maternal stress-associated cortisol stimulation may protect embryos from cortisol excess in zebrafish

    OpenAIRE

    Faught, Erin; Best, Carol; Vijayan, Mathilakath M.

    2016-01-01

    Abnormal embryo cortisol level causes developmental defects and poor survival in zebrafish (Danio rerio). However, no study has demonstrated that maternal stress leads to higher embryo cortisol content in zebrafish. We tested the hypothesis that maternal stress-associated elevation in cortisol levels increases embryo cortisol content in this asynchronous breeder. Zebrafish mothers were fed cortisol-spiked food for 5 days, to mimic maternal stress, followed by daily breeding for 10 days to mon...

  4. Electroconvulsive stimulations normalizes stress-induced changes in the glucocorticoid receptor and behaviour

    DEFF Research Database (Denmark)

    Hageman, Ida; Nielsen, Marianne; Wörtwein, Gitta

    2009-01-01

    Animal models of chronic stress, such as 21 days of 6h/daily restraint stress cause changes in neuronal morphology in the hippocampus and alter behaviour. These changes are partly mediated by the glucocorticoids. The objective of this study was threefold: (1) to study how this particular chronic ...

  5. [Effect of axial stress stimulation on tibial and fibular open fractures healing after Taylor space stent fixation].

    Science.gov (United States)

    Ge, Qihang; Wan, Chunyou; Liu, Yabei; Ji, Xu; Ma, Jihai; Cao, Haikun; Yong, Wei; Liu, Zhao; Zhang, Ningning

    2017-08-01

    To investigate the effect of axial stress stimulation on tibial and fibular open fractures healing after Taylor space stent fixation. The data of 45 cases with tibial and fibular open fractures treated by Taylor space stent fixation who meet the selection criteria between January 2015 and June 2016 were retrospectively analysed. The patients were divided into trial group (23 cases) and control group (22 cases) according to whether the axial stress stimulation was performed after operation. There was no significant difference in gender, age, affected side, cause of injury, type of fracture, and interval time from injury to operation between 2 groups ( P >0.05). The axial stress stimulation was performed in trial group after operation. The axial load sharing ratio was tested, and when the value was less than 10%, the external fixator was removed. The fracture healing time, full weight-bearing time, and external fixator removal time were recorded and compared. After 6 months of external fixator removal, the function of the limb was assessed by Johner-Wruhs criteria for evaluation of final effectiveness of treatment of tibial shaft fractures. There were 2 and 3 cases of needle foreign body reaction in trial group and control group, respectively, and healed after symptomatic anti allergic treatment. All the patients were followed up 8-12 months with an average of 10 months. All the fractures reached clinical healing, no complication such as delayed union, nonunion, or osteomyelitis occurred. The fracture healing time, full weight-bearing time, and external fixator removal time in trial group were significantly shorter than those in control group ( P good in 6 cases, fair in 3 cases, and poor in 1 case in trial group, with an excellent and good rate of 82.6%; and was excellent in 5 cases, good in 10 cases, fair in 4 cases, and poor in 3 cases in control group, with an excellent and good rate of 68.2%, showing significant difference between 2 groups ( Z =-2.146, P =0

  6. Chew the Pain Away: Oral Habits to Cope with Pain and Stress and to Stimulate Cognition

    Directory of Open Access Journals (Sweden)

    Roxane Anthea Francesca Weijenberg

    2015-01-01

    Full Text Available The acute effects of chewing gum on cognitive performance, stress, and pain have been intensively studied in the last decade. The results have been contradicting, and replication studies proved challenging. Here, we review some of the recent findings of this topic and explore possible explanations for these discrepancies by incorporating knowledge derived from studies into oral habits and bruxism. Both stress and cerebral functional specialization (i.e., the involvement of specific brain structures in distinctive cognitive processes are hypothesized to play a major role in the underlying physiological mechanisms of the diverse effects of chewing gum on cognition, stress, and pain.

  7. Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress

    Directory of Open Access Journals (Sweden)

    Aisha Waheed Qurashi

    2012-09-01

    Full Text Available To compensate for stress imposed by salinity, biofilm formation and exopolysaccharide production are significant strategies of salt tolerant bacteria to assist metabolism. We hypothesized that two previously isolated salt-tolerant strains Halomonas variabilis (HT1 and Planococcus rifietoensis (RT4 have an ability to improve plant growth, These strains can form biofilm and accumulate exopolysacharides at increasing salt stress. These results showed that bacteria might be involved in developing microbial communities under salt stress and helpful in colonizing of bacterial strains to plant roots and soil particles. Eventually, it can add to the plant growth and soil structure. We investigated the comparative effect of exopolysacharide and biofilm formation in two bacterial strains Halomonas variabilis (HT1 and Planococcus rifietoensis (RT4 in response to varying salt stress. We found that biofilm formation and exopolysaccharide accumulation increased at higher salinity. To check the effect of bacterial inoculation on the plant (Cicer arietinum Var. CM-98 growth and soil aggregation, pot experiment was conducted by growing seedlings under salt stress. Inoculation of both strains increased plant growth at elevated salt stress. Weight of soil aggregates attached with roots and present in soil were added at higher salt concentrations compared to untreated controls. Soil aggregation was higher at plant roots under salinity. These results suggest the feasibility of using above strains in improving plant growth and soil fertility under salinity.

  8. Neuroprotective activity of Leontice leontopetalum extract against H2O2-stimulated oxidative stress in PC12 cells

    Directory of Open Access Journals (Sweden)

    S. Sahranavard*

    2017-11-01

    Full Text Available Background and objectives: Neuronal toxicity can be induced by oxidative stress via free radicals production. In recent years, great interest has been expressed to the traditional and herbal medicines. The purpose of this study was to elucidate the neuroprotective activity of Leontice leontopetalum methanol extract against H2O2-stimulated oxidative stress in PC12 cells. Methods: The plantLeontice leontopetalum was selected based on the ethnobotanical approach, which is used traditionally for the treatment of diseases related to inflammation and pain in Turkmen Sahra, Iran. Cytotoxicity of different concentrations of the methanol extract against PC12 cells was evaluated by MTT assay. Then PC12 cells were exposed to H2O2 in the presence or absence of the extract. In the next step, the total protein concentration was measured via Bradford assay and cyclooxygenase inhibition was determined by a screening assay kit. Nitrite accumulated in culture medium of supernatant was measured by Griess reaction. Results: Our results indicated that the methanol extract of Leontice leontopetalum significantly inhibited cyclooxygenase activity in the presence of H2O2; however, it was not able to inhibit nitric oxide generation in the stimulated PC12 cells. Conclusion: The results suggested that Leontice leontopetalum may be useful in reducing risk of neurodegenerative related diseases such as Alzheimer Disease.

  9. Effective stimulation of the biotechnological potential of the medicinal white rot fungus: Phellinus pini by menadione-mediated oxidative stress.

    Science.gov (United States)

    Jaszek, Magdalena; Kos, Katarzyna; Matuszewska, Anna; Grąz, Marcin; Stefaniuk, Dawid; Osińska-Jaroszuk, Monika; Prendecka, Monika; Jóźwik, Ewa; Grzywnowicz, Krzysztof

    2014-09-01

    The effect of menadione (MQ; 2-methyl-1,4-naphtoquinone), a superoxide-generating agent, on the natural biodegradation system in the medicinal white rot fungus Phellinus pini was determined. While measuring the activities of extracellular manganese-dependent peroxidase (MnP) and intracellular chitinase, it was found that the application of MQ (0.75 mM) distinctly stimulated the activities of these enzymes in comparison to the control values (without MQ). Using the capillary electrophoresis (CE) method, an increase in the extracellular oxalic acid (OXA) concentration was detected during the first days after the addition of MQ. It was observed that the rate of intracellular proteolysis at pH 3.5 evidently decreased under oxidative stress conditions. Contrary to these results, the activities of serine proteases at pH 9.5 measured against fluorogenic peptide substrates distinctly increased in stressed cultures. The MQ treatment also caused an evident increase in the catalase (CAT) activity, as well as the levels of superoxide anion radicals (SORs), formaldehyde (FA), and phenolic compounds (PHC) in the experimental cultures. The results obtained confirm that prooxidants may find application as an effective way to stimulate biotechnological production of MnP and chitinase by white rot fungi.

  10. Neutrophils stimulation index in people under consumption of broiler chickens meat at pre-slaughter stress correction

    Directory of Open Access Journals (Sweden)

    S. Grabovskyi

    2015-09-01

    introduced before slaughter (experimental group. The neutrophils stimulation index decreased in men blood (–2,21 after consumption of broiler chickens meat at pre-slaughter stress (control group. The neutrophils stimulation index in men blood of experimental and control groups differed by 34,8%, but did not go beyond the physiological norm. At the final stage of poultry feeding it is necessary to consider pre-slaughter stress and to apply biologically active substances of natural origin, such as spleen extract. The results obtained in the experiment on broiler chickens can be used in studies of non-specific resistance indices of the farm animals for increasing the organism resistance, correction and avoiding of pre-slaughter stress and improvement of product quality

  11. ADHD-specific stimulant misuse, mood, anxiety, and stress in college-age women at high risk for or with eating disorders

    Science.gov (United States)

    Gibbs, Elise L.; Kass, Andrea E.; Eichen, Dawn M.; Fitzsimmons-Craft, Ellen E.; Trockel, Mickey; Wilfley, Denise E.; Taylor, C. Barr

    2016-01-01

    Objective To examine the misuse of ADHD-specific stimulants in a college population at high risk for or with clinical or subclinical eating disorders. Participants 448 college-age women ages 18–25 at high risk for or with a clinical or subclinical eating disorder. Methods Participants completed assessments of stimulant misuse and psychopathology from September 2009 - June 2010. Results Greater eating disorder pathology, objective binge eating, purging, eating disorder-related clinical impairment, depressive symptoms, perceived stress, and trait anxiety were associated with an increased likelihood of stimulant misuse. Subjective binge eating, excessive exercise, and dietary restraint were not associated with stimulant misuse. Conclusions ADHD-specific stimulant misuse is associated with eating disorder and comorbid pathology among individuals at high risk for or with clinical or subclinical eating disorders. Screening for stimulant misuse and eating disorder pathology may improve identification of college-age women who may be engaging in maladaptive behaviors and inform prevention efforts. PMID:26822019

  12. Gold nanoparticle-mediated laser stimulation causes a complex stress signal in neuronal cells

    Science.gov (United States)

    Johannsmeier, Sonja; Heeger, Patrick; Terakawa, Mitsuhiro; Kalies, Stefan; Heisterkamp, Alexander; Ripken, Tammo; Heinemann, Dag

    2017-07-01

    Gold nanoparticle mediated laser stimulation of neuronal cells allows for cell activation on a single-cell level. It could therefore be considered an alternative to classical electric neurostimulation. The physiological impact of this new approach has not been intensively studied so far. Here, we investigate the targeted cell's reaction to a laser stimulus based on its calcium response. A complex cellular reaction involving multiple sources has been revealed.

  13. The Impact of Simultaneously Applying Normal Stress and Vibrotactile Stimulation for Feedback of Exteroceptive Information.

    Science.gov (United States)

    Reza Motamedi, M; Otis, Martin; Duchaine, Vincent

    2017-06-01

    Commercially available prosthetic hands do not convey any tactile information, forcing amputees to rely solely on visual attention. A promising solution to this problem is haptics, which could lead to new prostheses in which tactile information is conveyed between the amputee and the artificial limb. However, the haptic feedback must be optimized so that amputees can use it effectively; and although several studies have examined how specific haptic feedback systems can transmit certain types of tactile information, there has not yet been much research on the effects of superposing two or more types of feedback at the same location, which might prove to be more effective than using a single type of feedback alone. This paper investigates how the simultaneous application of two different types of haptic feedback-vibration and normal stress-impacts the human sensory perception of each separate feedback type. These stimuli were applied to glabrous skin on the forearms of 14 participants. Our experiments tested whether participants experienced more accurate sensory perception, compared to vibration or normal stress alone, when vibration was applied at the same time as the normal stress, at either the same location, or at a different location 6 cm away. Results indicate that although participants' perception of the normal stress diminished when vibration was applied at the same location, the same combination improved their perception of the vibration. Apparently, vibration has a negative impact upon the ability to perceive normal stress, whether applied at the same or a different location; whereas the opposite is true for the effect of normal stress upon the perception of vibration.

  14. Chronic inflammatory diseases are stimulated by current lifestyle: how diet, stress levels and medication prevent our body from recovering

    Directory of Open Access Journals (Sweden)

    Bosma-den Boer Margarethe M

    2012-04-01

    Full Text Available Abstract Serhan and colleagues introduced the term "Resoleomics" in 1996 as the process of inflammation resolution. The major discovery of Serhan's work is that onset to conclusion of an inflammation is a controlled process of the immune system (IS and not simply the consequence of an extinguished or "exhausted" immune reaction. Resoleomics can be considered as the evolutionary mechanism of restoring homeostatic balances after injury, inflammation and infection. Under normal circumstances, Resoleomics should be able to conclude inflammatory responses. Considering the modern pandemic increase of chronic medical and psychiatric illnesses involving chronic inflammation, it has become apparent that Resoleomics is not fulfilling its potential resolving capacity. We suggest that recent drastic changes in lifestyle, including diet and psycho-emotional stress, are responsible for inflammation and for disturbances in Resoleomics. In addition, current interventions, like chronic use of anti-inflammatory medication, suppress Resoleomics. These new lifestyle factors, including the use of medication, should be considered health hazards, as they are capable of long-term or chronic activation of the central stress axes. The IS is designed to produce solutions for fast, intensive hazards, not to cope with long-term, chronic stimulation. The never-ending stress factors of recent lifestyle changes have pushed the IS and the central stress system into a constant state of activity, leading to chronically unresolved inflammation and increased vulnerability for chronic disease. Our hypothesis is that modern diet, increased psycho-emotional stress and chronic use of anti-inflammatory medication disrupt the natural process of inflammation resolution ie Resoleomics.

  15. Chew the pain away: oral habits to cope with pain and stress and to stimulate cognition

    NARCIS (Netherlands)

    Weijenberg, R.A.F.; Lobbezoo, F.

    2015-01-01

    The acute effects of chewing gum on cognitive performance, stress, and pain have been intensively studied in the last decade. The results have been contradicting, and replication studies proved challenging. Here, we review some of the recent findings of this topic and explore possible explanations

  16. Chew the pain away - Oral habits to cope with pain and stress, and to stimulate cognition?

    NARCIS (Netherlands)

    Weijenberg, R.A.F.; Lobbezoo, F.

    2015-01-01

    The acute effects of chewing gum on cognitive performance, stress, and pain have been intensively studied in the last decade. The results have been contradicting, and replication studies proved challenging. Here, we review some of the recent findings of this topic and explore possible explanations

  17. Effects of progesterone stimulated allopregnanolone on craving and stress response in cocaine dependent men and women.

    Science.gov (United States)

    Milivojevic, Verica; Fox, Helen C; Sofuoglu, Mehmet; Covault, Jonathan; Sinha, Rajita

    2016-03-01

    Fluctuations in progesterone levels during the menstrual cycle have been shown to affect physiological and subjective effects of cocaine. Furthermore, our laboratory has demonstrated that following drug-cue exposure, cocaine dependent women with high levels of circulating progesterone display lower diastolic and systolic blood pressure responses and report lower levels of anxiety and drug craving compared to cocaine dependent women with low levels of progesterone. In the current study we examined the role of the progesterone derived neuroactive steroid allopregnanolone (ALLO) on stress arousal, inhibitory control and drug craving in cocaine dependent subjects. Plasma levels of ALLO were measured using GC/MS in 46 treatment-seeking cocaine dependent men and women on day 5 of a 7-day treatment regimen of micronized progesterone (15M/8F) (400mg/day) or placebo (14M/9F) administered in a double blind, randomized manner. As a control, levels of the testosterone derived neurosteroid androstanediol (ADIOL) were also measured. All subjects participated in laboratory sessions on days 5-7 of progesterone/placebo administration in which they were exposed to a series of 5-min personalized guided imagery of either a stressful situation, cocaine use or of a neutral setting and dependent variables including subjective craving, mood, Stroop task as a measure of inhibitory control performance and plasma cortisol were assessed. Participants were grouped by high or low ALLO level and levels of dependent variables compared between ALLO groups. Progesterone relative to placebo significantly increased ALLO levels with no sex differences. There were no effects of micronized progesterone on the testosterone derived ADIOL. Individuals in the high versus the low ALLO group showed decreased levels of cortisol at baseline, and a higher cortisol response to stress; higher positive mood scores at baseline and improved Stroop performance in the drug-cue and stress conditions, and reduced cocaine

  18. Treating Stress-Related Pain with the Flotation Restricted Environmental Stimulation Technique: Are There Differences between Women and Men?

    Directory of Open Access Journals (Sweden)

    Sven Å Bood

    2009-01-01

    Full Text Available The aim of the present study was to explore, for the first time, sex differences among patients diagnosed with stress-related pain before and after flotation restricted environmental stimulation technique (REST treatment, delivered 12 times during seven weeks. The present study included 88 patients (69 women, 19 men from three different studies (post hoc analysis. They had been diagnosed by a physician as having chronic stress-related muscle tension pain. The analyses indicated that the flotation-REST treatment had beneficial effects on stress, anxiety, depression, sleep quality and pain and that there were few sex differences. Women were more depressed than men before treatment, but after treatment there was no difference between sexes. However, there was a sex difference in the ability to endure experimentally induced pain, suggesting that men exhibited greater endurance both before and after the flotation-REST treatment. The results also showed, for the first time, that both sexes improved their ability to endure experimentally induced pain (higher scores for upper pain threshold following the successful flotation-REST pain treatment.

  19. UVB radiation prevents skeleton growth and stimulates the expression of stress markers in sea urchin embryos

    International Nuclear Information System (INIS)

    Bonaventura, Rosa; Poma, Veronica; Costa, Caterina; Matranga, Valeria

    2005-01-01

    Ozone depletion results in an increased flux of biologically damaging radiations reaching the earth. Although ultraviolet (UV) penetration is attenuated by the seawater, harmful effects can be still observed at low depths where sea urchin embryos are living. We have used Paracentrotus lividus embryos to study the impacts of UV radiation on their development. Blastula cultures were exposed to different doses of UVB (312 nm) radiations and the resulting endpoint effects were evaluated in terms of embryonic morphological abnormalities, variations in specific gene expression, and changes in the levels of stress proteins. We found that embryos were moderately sensitive to 50 J/m 2 UVB radiation; an increase in the number of developmentally delayed and malformed embryos was detected when increasing doses, up to 1000 J/m 2 , were used. Major developmental defects, observed 24 and 48 h after exposure, consisted in the failure of skeleton elongation and patterning. Accordingly, we found a reduction in the number of primary mesenchyme cells that expressed Pl-SM30, a gene coding for one of the specific matrix proteins of the skeleton. The morphological effects observed 1, 24, and 48 h after exposure were correlated with a dose-dependent increase in the level and in the activation of two recognized stress markers, namely hsp70 and p38 MAPk, respectively, consistent with their role in mediating cellular response to stress and suggesting a function in embryo survival

  20. Cellular stress stimulates nuclear localization signal (NLS) independent nuclear transport of MRJ

    Science.gov (United States)

    Andrews, Joel F.; Sykora, Landon J.; Barik-Letostak, Tiasha; Menezes, Mitchell E.; Mitra, Aparna; Barik, Sailen; Shevde, Lalita A.; Samant, Rajeev S.

    2012-01-01

    HSP40 family member MRJ (DNAJB6) has been in the spot light for its relevance to Huntington’s, Parkinson’s diseases, limb-girdle muscular dystrophy, placental development, neural stem cells, cell cycle and malignancies such as breast cancer and melanoma. This gene has two spliced variants coding for 2 distinct proteins with significant homology. However, MRJ(L) (large variant) is predominantly localized to the nucleus whereas MRJ(S) (small variant) is predominantly cytoplasmic. Interestingly MRJ(S) translocates to the nucleus in response to heat shock. The classical heat shock proteins respond to crises (stress) by increasing the number of molecules, usually by transcriptional up-regulation. Our studies imply that a quick increase in the molar concentration of MRJ in the nuclear compartment is a novel method by which MRJ responds to stress. We found that MRJ(S) shows NLS (nuclear localization signal) independent nuclear localization in response to heat shock and hypoxia. The specificity of this response is realized due to lack of such response by MRJ(S) when challenged by other stressors, such as some cytokines or UV light. Deletion analysis has allowed us to narrow down on a 20 amino acid stretch at the C-terminal region of MRJ(S) as a potential stress sensing region. Functional studies indicated that constitutive nuclear localization of MRJ(S) promoted attributes of malignancy such as proliferation and invasiveness overall indicating distinct phenotypic characteristics of nuclear MRJ(S). PMID:22504047

  1. Cellular stress stimulates nuclear localization signal (NLS) independent nuclear transport of MRJ

    International Nuclear Information System (INIS)

    Andrews, Joel F.; Sykora, Landon J.; Barik Letostak, Tiasha; Menezes, Mitchell E.; Mitra, Aparna; Barik, Sailen; Shevde, Lalita A.; Samant, Rajeev S.

    2012-01-01

    HSP40 family member MRJ (DNAJB6) has been in the spot light for its relevance to Huntington's, Parkinson's diseases, limb-girdle muscular dystrophy, placental development, neural stem cells, cell cycle and malignancies such as breast cancer and melanoma. This gene has two spliced variants coding for 2 distinct proteins with significant homology. However, MRJ(L) (large variant) is predominantly localized to the nucleus whereas MRJ(S) (small variant) is predominantly cytoplasmic. Interestingly MRJ(S) translocates to the nucleus in response to heat shock. The classical heat shock proteins respond to crises (stress) by increasing the number of molecules, usually by transcriptional up-regulation. Our studies imply that a quick increase in the molar concentration of MRJ in the nuclear compartment is a novel method by which MRJ responds to stress. We found that MRJ(S) shows NLS (nuclear localization signal) independent nuclear localization in response to heat shock and hypoxia. The specificity of this response is realized due to lack of such response by MRJ(S) when challenged by other stressors, such as some cytokines or UV light. Deletion analysis has allowed us to narrow down on a 20 amino acid stretch at the C-terminal region of MRJ(S) as a potential stress sensing region. Functional studies indicated that constitutive nuclear localization of MRJ(S) promoted attributes of malignancy such as proliferation and invasiveness overall indicating distinct phenotypic characteristics of nuclear MRJ(S).

  2. Cellular stress stimulates nuclear localization signal (NLS) independent nuclear transport of MRJ

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Joel F.; Sykora, Landon J.; Barik Letostak, Tiasha; Menezes, Mitchell E.; Mitra, Aparna [Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL (United States); Barik, Sailen [Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Science, Cleveland State University, Cleveland, OH (United States); Shevde, Lalita A. [Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL (United States); Samant, Rajeev S., E-mail: rsamant@usouthal.edu [Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL (United States)

    2012-06-10

    HSP40 family member MRJ (DNAJB6) has been in the spot light for its relevance to Huntington's, Parkinson's diseases, limb-girdle muscular dystrophy, placental development, neural stem cells, cell cycle and malignancies such as breast cancer and melanoma. This gene has two spliced variants coding for 2 distinct proteins with significant homology. However, MRJ(L) (large variant) is predominantly localized to the nucleus whereas MRJ(S) (small variant) is predominantly cytoplasmic. Interestingly MRJ(S) translocates to the nucleus in response to heat shock. The classical heat shock proteins respond to crises (stress) by increasing the number of molecules, usually by transcriptional up-regulation. Our studies imply that a quick increase in the molar concentration of MRJ in the nuclear compartment is a novel method by which MRJ responds to stress. We found that MRJ(S) shows NLS (nuclear localization signal) independent nuclear localization in response to heat shock and hypoxia. The specificity of this response is realized due to lack of such response by MRJ(S) when challenged by other stressors, such as some cytokines or UV light. Deletion analysis has allowed us to narrow down on a 20 amino acid stretch at the C-terminal region of MRJ(S) as a potential stress sensing region. Functional studies indicated that constitutive nuclear localization of MRJ(S) promoted attributes of malignancy such as proliferation and invasiveness overall indicating distinct phenotypic characteristics of nuclear MRJ(S).

  3. Cellular stress stimulates nuclear localization signal (NLS) independent nuclear transport of MRJ

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Joel F.; Sykora, Landon J.; Barik Letostak, Tiasha; Menezes, Mitchell E.; Mitra, Aparna [Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL (United States); Barik, Sailen [Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Science, Cleveland State University, Cleveland, OH (United States); Shevde, Lalita A. [Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL (United States); Samant, Rajeev S., E-mail: rsamant@usouthal.edu [Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL (United States)

    2012-06-10

    HSP40 family member MRJ (DNAJB6) has been in the spot light for its relevance to Huntington's, Parkinson's diseases, limb-girdle muscular dystrophy, placental development, neural stem cells, cell cycle and malignancies such as breast cancer and melanoma. This gene has two spliced variants coding for 2 distinct proteins with significant homology. However, MRJ(L) (large variant) is predominantly localized to the nucleus whereas MRJ(S) (small variant) is predominantly cytoplasmic. Interestingly MRJ(S) translocates to the nucleus in response to heat shock. The classical heat shock proteins respond to crises (stress) by increasing the number of molecules, usually by transcriptional up-regulation. Our studies imply that a quick increase in the molar concentration of MRJ in the nuclear compartment is a novel method by which MRJ responds to stress. We found that MRJ(S) shows NLS (nuclear localization signal) independent nuclear localization in response to heat shock and hypoxia. The specificity of this response is realized due to lack of such response by MRJ(S) when challenged by other stressors, such as some cytokines or UV light. Deletion analysis has allowed us to narrow down on a 20 amino acid stretch at the C-terminal region of MRJ(S) as a potential stress sensing region. Functional studies indicated that constitutive nuclear localization of MRJ(S) promoted attributes of malignancy such as proliferation and invasiveness overall indicating distinct phenotypic characteristics of nuclear MRJ(S).

  4. Deep-brain magnetic stimulation promotes adult hippocampal neurogenesis and alleviates stress-related behaviors in mouse models for neuropsychiatric disorders

    Science.gov (United States)

    2014-01-01

    Background Repetitive Transcranial Magnetic Stimulation (rTMS)/ Deep-brain Magnetic Stimulation (DMS) is an effective therapy for various neuropsychiatric disorders including major depression disorder. The molecular and cellular mechanisms underlying the impacts of rTMS/DMS on the brain are not yet fully understood. Results Here we studied the effects of deep-brain magnetic stimulation to brain on the molecular and cellular level. We examined the adult hippocampal neurogenesis and hippocampal synaptic plasticity of rodent under stress conditions with deep-brain magnetic stimulation treatment. We found that DMS promotes adult hippocampal neurogenesis significantly and facilitates the development of adult new-born neurons. Remarkably, DMS exerts anti-depression effects in the learned helplessness mouse model and rescues hippocampal long-term plasticity impaired by restraint stress in rats. Moreover, DMS alleviates the stress response in a mouse model for Rett syndrome and prolongs the life span of these animals dramatically. Conclusions Deep-brain magnetic stimulation greatly facilitates adult hippocampal neurogenesis and maturation, also alleviates depression and stress-related responses in animal models. PMID:24512669

  5. Effects of vagus nerve stimulation on extinction of conditioned fear and post-traumatic stress disorder symptoms in rats.

    Science.gov (United States)

    Noble, L J; Gonzalez, I J; Meruva, V B; Callahan, K A; Belfort, B D; Ramanathan, K R; Meyers, E; Kilgard, M P; Rennaker, R L; McIntyre, C K

    2017-08-22

    Exposure-based therapies help patients with post-traumatic stress disorder (PTSD) to extinguish conditioned fear of trauma reminders. However, controlled laboratory studies indicate that PTSD patients do not extinguish conditioned fear as well as healthy controls, and exposure therapy has high failure and dropout rates. The present study examined whether vagus nerve stimulation (VNS) augments extinction of conditioned fear and attenuates PTSD-like symptoms in an animal model of PTSD. To model PTSD, rats were subjected to a single prolonged stress (SPS) protocol, which consisted of restraint, forced swim, loss of consciousness, and 1 week of social isolation. Like PTSD patients, rats subjected to SPS show impaired extinction of conditioned fear. The SPS procedure was followed, 1 week later, by auditory fear conditioning (AFC) and extinction. VNS or sham stimulation was administered during half of the extinction days, and was paired with presentations of the conditioned stimulus. One week after completion of extinction training, rats were given a battery of behavioral tests to assess anxiety, arousal and avoidance. Results indicated that rats given SPS 1 week prior to AFC (PTSD model) failed to extinguish the freezing response after eleven consecutive days of extinction. Administration of VNS reversed the extinction impairment and attenuated reinstatement of the conditioned fear response. Delivery of VNS during extinction also eliminated the PTSD-like symptoms, such as anxiety, hyperarousal and social avoidance for more than 1 week after VNS treatment. These results provide evidence that extinction paired with VNS treatment can lead to remission of fear and improvements in PTSD-like symptoms. Taken together, these findings suggest that VNS may be an effective adjunct to exposure therapy for the treatment of PTSD.

  6. 5 Hz Repetitive transcranial magnetic stimulation for posttraumatic stress disorder comorbid with major depressive disorder.

    Science.gov (United States)

    Carpenter, Linda L; Conelea, Christine; Tyrka, Audrey R; Welch, Emma S; Greenberg, Benjamin D; Price, Lawrence H; Niedzwiecki, Matthew; Yip, Agustin G; Barnes, Jennifer; Philip, Noah S

    2018-08-01

    Standard clinical protocols for repetitive transcranial magnetic stimulation (rTMS) for major depressive disorder (MDD) apply 10 Hz pulses over left prefrontal cortex, yet little is known about the effects of rTMS in more diagnostically complex depressed patients. Posttraumatic stress disorder (PTSD) is commonly comorbid with MDD, and while rTMS has been shown to alleviate PTSD symptoms in preliminary studies, ideal parameters remain unclear. We conducted a prospective, open-label study of 5 Hz rTMS for patients with comorbid PTSD + MDD and hypothesized stimulation would reduce symptoms of both disorders. Outpatients (N = 40) with PTSD + MDD and at least moderate global severity were enrolled. 5 Hz rTMS included up to 40 daily sessions followed by a 5-session taper. Symptoms were measured using the PTSD Checklist (PCL-5) and Inventory of Depressive Symptomatology, Self-Report (IDS-SR). Baseline-to-endpoint changes were analyzed. The intent-to-treat population included 35 participants. Stimulation significantly reduced PTSD symptoms (PCL-5 baseline mean ± SD score 52.2 ± 13.1 versus endpoint 34.0 ± 21.6; p < .001); 23 patients (48.6%) met a pre-defined categorical PTSD response criteria. MDD symptoms also improved significantly (IDS-SR, baseline 47.8 ± 11.9 to endpoint 30.9 ± 18.9; p < .001); 15 patients (42.9%) demonstrated categorical response and 12 (34.3%) remitted. PTSD and MDD symptom change was highly correlated (r = 0.91, p < .001). Unblinded single-arm study, with modest sample size. Significant and clinically meaningful reductions in both MDD and PTSD symptoms were observed following stimulation. The preliminary efficacy of 5 Hz rTMS for both symptom domains in patients with comorbid disorders supports future controlled studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. The Stimulation Effects of N+ Ion Beam on Liquorice and Its Influence on Water Stress

    International Nuclear Information System (INIS)

    Wei Shenglin; Liu Jingnan; Wu Lijun; Wang Jiabao; Yu Zengliang

    2006-01-01

    We have developed a large number of exocrine glands on liquorice leaves and facilitated polysaccharide secretion. Liquorice polysaccharide possesses stronger bound water affinity to gaseous water compared with sucrose and glucose. Our results show that the bound water affinity of liquorice polysaccharide to gaseous water is 49.75% higher than glucose (p + implantation (total dosage of 4.68x10 16 ions/cm 2 and energy of 20 keV) into dry liquorice seeds, both the bound water affinity to gaseous water and the bound water content of dry liquorice leaf can be significantly increased 30.24% ( p + implantation into dry liquorice seeds, the leaf polysaccharide content under water stress (ψ w = -1.5 MPa) can increase significantly (p<0.05) and the plant growth can also improve significantly (p<0.05)

  8. Network Mechanisms of Clinical Response to Transcranial Magnetic Stimulation in Posttraumatic Stress Disorder and Major Depressive Disorder.

    Science.gov (United States)

    Philip, Noah S; Barredo, Jennifer; van 't Wout-Frank, Mascha; Tyrka, Audrey R; Price, Lawrence H; Carpenter, Linda L

    2018-02-01

    Repetitive transcranial magnetic stimulation (TMS) therapy can modulate pathological neural network functional connectivity in major depressive disorder (MDD). Posttraumatic stress disorder is often comorbid with MDD, and symptoms of both disorders can be alleviated with TMS therapy. This is the first study to evaluate TMS-associated changes in connectivity in patients with comorbid posttraumatic stress disorder and MDD. Resting-state functional connectivity magnetic resonance imaging was acquired before and after TMS therapy in 33 adult outpatients in a prospective open trial. TMS at 5 Hz was delivered, in up to 40 daily sessions, to the left dorsolateral prefrontal cortex. Analyses used a priori seeds relevant to TMS, posttraumatic stress disorder, or MDD (subgenual anterior cingulate cortex [sgACC], left dorsolateral prefrontal cortex, hippocampus, and basolateral amygdala) to identify imaging predictors of response and to evaluate clinically relevant changes in connectivity after TMS, followed by leave-one-out cross-validation. Imaging results were explored using data-driven multivoxel pattern activation. More negative pretreatment connectivity between the sgACC and the default mode network predicted clinical improvement, as did more positive amygdala-to-ventromedial prefrontal cortex connectivity. After TMS, symptom reduction was associated with reduced connectivity between the sgACC and the default mode network, left dorsolateral prefrontal cortex, and insula, and reduced connectivity between the hippocampus and the salience network. Multivoxel pattern activation confirmed seed-based predictors and correlates of treatment outcomes. These results highlight the central role of the sgACC, default mode network, and salience network as predictors of TMS response and suggest their involvement in mechanisms of action. Furthermore, this work indicates that there may be network-based biomarkers of clinical response relevant to these commonly comorbid disorders

  9. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress stimulates an inflammatory response

    Science.gov (United States)

    Sorescu, George P.; Sykes, Michelle; Weiss, Daiana; Platt, Manu O.; Saha, Aniket; Hwang, Jinah; Boyd, Nolan; Boo, Yong C.; Vega, J. David; Taylor, W. Robert; hide

    2003-01-01

    Atherosclerosis is now viewed as an inflammatory disease occurring preferentially in arterial regions exposed to disturbed flow conditions, including oscillatory shear stress (OS), in branched arteries. In contrast, the arterial regions exposed to laminar shear (LS) are relatively lesion-free. The mechanisms underlying the opposite effects of OS and LS on the inflammatory and atherogenic processes are not clearly understood. Here, through DNA microarrays, protein expression, and functional studies, we identify bone morphogenic protein 4 (BMP4) as a mechanosensitive and pro-inflammatory gene product. Exposing endothelial cells to OS increased BMP4 protein expression, whereas LS decreased it. In addition, we found BMP4 expression only in the selective patches of endothelial cells overlying foam cell lesions in human coronary arteries. The same endothelial patches also expressed higher levels of intercellular cell adhesion molecule-1 (ICAM-1) protein compared with those of non-diseased areas. Functionally, we show that OS and BMP4 induced ICAM-1 expression and monocyte adhesion by a NFkappaB-dependent mechanism. We suggest that BMP4 is a mechanosensitive, inflammatory factor playing a critical role in early steps of atherogenesis in the lesion-prone areas.

  10. ER stress stimulates production of the key antimicrobial peptide, cathelicidin, by forming a previously unidentified intracellular S1P signaling complex.

    Science.gov (United States)

    Park, Kyungho; Ikushiro, Hiroko; Seo, Ho Seong; Shin, Kyong-Oh; Kim, Young Il; Kim, Jong Youl; Lee, Yong-Moon; Yano, Takato; Holleran, Walter M; Elias, Peter; Uchida, Yoshikazu

    2016-03-08

    We recently identified a previously unidentified sphingosine-1-phosphate (S1P) signaling mechanism that stimulates production of a key innate immune element, cathelicidin antimicrobial peptide (CAMP), in mammalian cells exposed to external perturbations, such as UVB irradiation and other oxidative stressors that provoke subapoptotic levels of endoplasmic reticulum (ER) stress, independent of the well-known vitamin D receptor-dependent mechanism. ER stress increases cellular ceramide and one of its distal metabolites, S1P, which activates NF-κB followed by C/EBPα activation, leading to CAMP production, but in a S1P receptor-independent fashion. We now show that S1P activates NF-κB through formation of a previously unidentified signaling complex, consisting of S1P, TRAF2, and RIP1 that further associates with three stress-responsive proteins; i.e., heat shock proteins (GRP94 and HSP90α) and IRE1α. S1P specifically interacts with the N-terminal domain of heat shock proteins. Because this ER stress-initiated mechanism is operative in both epithelial cells and macrophages, it appears to be a universal, highly conserved response, broadly protective against diverse external perturbations that lead to increased ER stress. Finally, these studies further illuminate how ER stress and S1P orchestrate critical stress-specific signals that regulate production of one protective response by stimulating production of the key innate immune element, CAMP.

  11. Rap system of stress stimulation can promote bone union after lower tibial bone fracture: a clinical research.

    Science.gov (United States)

    Yao, Jian-fei; Shen, Jia-zuo; Li, Da-kun; Lin, Da-sheng; Li, Lin; Li, Qiang; Qi, Peng; Lian, Ke-jian; Ding, Zhen-qi

    2012-01-01

    Lower tibial bone fracture may easily cause bone delayed union or nonunion because of lacking of dynamic mechanical load. Research Group would design a new instrument as Rap System of Stress Stimulation (RSSS) to provide dynamic mechanical load which would promote lower tibial bone union postoperatively. This clinical research was conducted from January 2008 to December 2010, 92 patients(male 61/female 31, age 16-70 years, mean 36.3 years) who suffered lower tibial bone closed fracture were given intramedullary nail fixation and randomly averagely separated into experimental group and control group(according to the successively order when patients went for the admission procedure). Then researchers analysed the clinical healing time, full weight bearing time, VAS (Visual Analogue Scales) score and callus growth score of Lane-Sandhu in 3,6,12 months postoperatively. The delayed union and nonunion rates were compared at 6 and 12 months separately. All the 92 patients had been followed up (mean 14 months). Clinical bone healing time in experimental group was 88.78±8.80 days but control group was 107.91±9.03 days. Full weight bearing time in experimental group was 94.07±9.81 days but control group was 113.24±13.37 days respectively (Ptibial bone union, reduce bone delayed union or nonunion rate. It is an adjuvant therapy for promoting bone union after lower tibial bone fracture.

  12. Single-blind, randomized, controlled trial of pelvic floor muscle training, electrical stimulation, vaginal cones, and no active treatment in the management of stress urinary incontinence

    Directory of Open Access Journals (Sweden)

    Rodrigo A. Castro

    2008-01-01

    Full Text Available PURPOSE: To compare the effectiveness of pelvic floor exercises, electrical stimulation, vaginal cones, and no active treatment in women with urodynamic stress urinary incontinence. PATIENTS AND METHODS: One hundred eighteen subjects were randomly selected to recieve pelvic floor exercises (n=31, ES (n=30, vaginal cones (n=27, or no treatment (untreated control (n=30. Women were evaluated before and after completion of six months of treatment by the pad test, quality of life questionnaire (I-QOL, urodynamic test, voiding diary, and subjective response. RESULTS: In the objective evaluation, we observed a statistically significant reduction in the pad test (p=0.003, in the number of stress urinary episodes (p<0.001, and a significant improvement in the quality of life (p<0.001 in subjects who used pelvic floor exercises, electrical stimulation, and vaginal cones compared to the control group. No significant difference was found between groups in the urodynamic parameters. In the subjective evaluation, 58%, 55%, and 54% of women who had used pelvic floor exercises, electrical stimulation, and vaginal cones, respectively, reported being satisfied after treatment. In the control group, only 21% patients were satisfied with the treatment. CONCLUSION: Based on this study, pelvic floor exercises, electrical stimulation, and vaginal cones are equally effective treatments and are far superior to no treatment in women with urodynamic stress urinary incontinence.

  13. Simultaneous perineal ultrasound and vaginal pressure measurement prove the action of electrical pudendal nerve stimulation in treating female stress incontinence.

    Science.gov (United States)

    Wang, Siyou; Zhang, Shujing

    2012-11-01

    Study Type - Diagnostic (case series) Level of Evidence 4. What's known on the subject? and What does the study add? Pelvic floor muscle training (PFMT) and transvaginal electrical stimulation (TES) are two commonly used forms of conservative treatment for stress urinary incontinence (SUI). PFMT may build up the structural support of the pelvis, but many SUI patients are unable to perform PFMT effectively and its primary disadvantage is lack of long-term patient compliance. TES is a passive treatment that produces PFM contraction and patient compliance with it is good; however, its effect is not as good as that of PFMT when performed correctly. Electrical pudendal nerve stimulation (EPNS) combines the advantages of PFMT and TES and incorporates the technique of deep insertion of long needles. In this study, simultaneous perineal ultrasound and vaginal pressure measurement prove that EPNS can contract the PFM and simulate PFMT. It is shown that EPNS is an alternative therapy for female SUI patients who fail PFMT and TES and the therapy can also be used for severe SUI. • To prove that electrical pudendal nerve stimulation (EPNS) can contract the pelvic floor muscles (PFM) and simulate pelvic floor muscle training (PFMT). • To show that EPNS is an alternative therapy for female stress urinary incontinence (SUI) that does not respond effectively to PFMT and transvaginal electrical stimulation (TES). • Thirty-five female patients with SUI who did not respond effectively to PFMT and TES (group I) were enrolled and 60 other female patients with SUI were allocated to group II (30 patients) and group III (30 patients). • Long needles were deeply inserted into four sacral points and electrified to stimulate the pudendal nerves. Group I and group II were treated by a doctor skilled in performing EPNS and group III, by a doctor unskilled in performing EPNS. • When EPNS was performed in group I, perineal ultrasonographic PFM movements, vaginal pressure (VP) and PFM

  14. Comparison of soluble guanylate cyclase stimulators and activators in models of cardiovascular disease associated with oxidative stress

    Directory of Open Access Journals (Sweden)

    Melissa H Costell

    2012-07-01

    Full Text Available Soluble guanylate cyclase (sGC, the primary mediator of nitric oxide (NO bioactivity, exists as reduced (NO-sensitive and oxidized (NO-insensitive forms. We tested the hypothesis that the cardiovascular protective effects of NO-insensitive sGC activation would be potentiated under conditions of oxidative stress compared to NO-sensitive sGC stimulation. The cardiovascular effects of the NO-insensitive sGC activator GSK2181236A (a non-depressor dose and a higher dose which lowered mean arterial pressure [MAP] by 5-10mmHg and equi-efficacious doses of the NO-sensitive sGC stimulator BAY 60-4552 were assessed in Sprague Dawley rats during coronary artery ischemia/reperfusion (I/R and spontaneously hypertensive stroke prone rats (SHR-SP on a high salt/fat diet (HSFD. In I/R, neither compound reduced infarct size. In SHR-SP, HSFD increased MAP, urine output, microalbuminuria and mortality, caused left ventricular hypertrophy and impaired endothelium-dependent vasorelaxation. The low dose of BAY 60-4552 but not GSK2181236A decreased urine output and mortality. Conversely, the low dose of GSK2181236A attenuated cardiac hypertrophy. The high doses of both compounds similarly attenuated cardiac hypertrophy and mortality. In addition, the high dose of BAY 60-4552 reduced urine output, microalbuminuria and MAP. Neither compound improved endothelium-dependent vasorelaxation. In SHR-SP aorta, the vasodilatory responses to the NO-dependent compounds carbachol and sodium nitroprusside were attenuated by HSFD. In contrast, the vasodilatory responses to GSK2181236A and BAY 60-4552 were unaltered by HSFD, indicating that reduced NO-bioavailability and not changes in the sGC oxidative state is responsible for the vascular dysfunction. In summary, GSK2181236A and BAY 60-4552 provide partial benefit against hypertension-induced end organ damage. The differential beneficial effects observed between these compounds could reflect tissue-specific changes in the s

  15. Electroconvulsive stimulations prevent chronic stress-induced increases in L-type calcium channel mRNAs in the hippocampus and basolateral amygdala

    DEFF Research Database (Denmark)

    Maigaard, Katrine; Pedersen, Ida Hageman; Jørgensen, Anders

    2012-01-01

    Although affective disorders have high prevalence, morbidity and mortality, we do not fully understand disease etiopathology, nor have we determined the exact mechanisms by which treatment works. Recent research indicates that intracellular calcium ion dysfunction might be involved. Here we use...... the chronic restraint stress model of affective disorder (6 h restraint per day for 21 days) in combination with electroconvulsive stimulations to examine the effects of stress and an effective antidepressive treatment modality on L-type voltage gated calcium channel subunit mRNA expression patterns...... in the brain. We find that stress tended to upregulate Ca(v)1.2 and Ca(v)1.3 channels in a brain region specific manner, while ECS tended to normalise this effect. This was more pronounced for Ca(v)1.2 channels, where stress clearly increased expression in both the basolateral amygdala, dentate gyrus and CA3...

  16. Contraction-stimulated glucose transport in muscle is controlled by AMPK and mechanical stress but not sarcoplasmatic reticulum Ca2+ release

    DEFF Research Database (Denmark)

    Jensen, Thomas Elbenhardt; Sylow, Lykke; Rose, Adam John

    2014-01-01

    signals through proteins such as AMPK. Here, we demonstrate in incubated mouse muscle that Ca(2+) release is neither sufficient nor strictly necessary to increase glucose transport. Rather, the glucose transport response is associated with metabolic feedback signals through AMPK, and mechanical stress......-activated signals. Furthermore, artificial stimulation of AMPK combined with passive stretch of muscle is additive and sufficient to elicit the full contraction glucose transport response. These results suggest that ATP-turnover and mechanical stress feedback are sufficient to fully increase glucose transport...

  17. The influence of N-acetyl-L-cysteine on oxidative stress and nitric oxide synthesis in stimulated macrophages treated with a mustard gas analogue

    Directory of Open Access Journals (Sweden)

    Smith Milton

    2008-06-01

    Full Text Available Abstract Background Sulphur mustard gas, 2, 2'-dichlorodiethyl sulphide (HD, is a chemical warfare agent. Both mustard gas and its monofunctional analogue, 2-chloroethyl ethyl sulphide (CEES, are alkylating agents that react with and diminish cellular thiols and are highly toxic. Previously, we reported that lipopolysaccharide (LPS significantly enhances the cytotoxicity of CEES in murine RAW 264.7 macrophages and that CEES transiently inhibits nitric oxide (NO production via suppression of inducible NO synthase (iNOS protein expression. NO generation is an important factor in wound healing. In this paper, we explored the hypotheses that LPS increases CEES toxicity by increasing oxidative stress and that treatment with N-acetyl-L-cysteine (NAC would block LPS induced oxidative stress and protect against loss of NO production. NAC stimulates glutathione (GSH synthesis and also acts directly as a free radical scavenger. The potential therapeutic use of the antibiotic, polymyxin B, was also evaluated since it binds to LPS and could thereby block the enhancement of CEES toxicity by LPS and also inhibit the secondary infections characteristic of HD/CEES wounds. Results We found that 10 mM NAC, when administered simultaneously or prior to treatment with 500 μM CEES, increased the viability of LPS stimulated macrophages. Surprisingly, NAC failed to protect LPS stimulated macrophages from CEES induced loss of NO production. Macrophages treated with both LPS and CEES show increased oxidative stress parameters (cellular thiol depletion and increased protein carbonyl levels. NAC effectively protected RAW 264.7 cells simultaneously treated with CEES and LPS from GSH loss and oxidative stress. Polymyxin B was found to partially block nitric oxide production and diminish CEES toxicity in LPS-treated macrophages. Conclusion The present study shows that oxidative stress is an important mechanism contributing to CEES toxicity in LPS stimulated macrophages and

  18. Inhibition of xanthine oxidase reduces oxidative stress and improves skeletal muscle function in response to electrically stimulated isometric contractions in aged mice

    Science.gov (United States)

    Ryan, Michael J.; Jackson, Janna R.; Hao, Yanlei; Leonard, Stephen S.; Alway, Stephen E.

    2012-01-01

    Oxidative stress is a putative factor responsible for reducing function and increasing apoptotic signaling in skeletal muscle with aging. This study examined the contribution and functional significance of the xanthine oxidase enzyme as a potential source of oxidant production in aged skeletal muscle during repetitive in situ electrically stimulated isometric contractions. Xanthine oxidase activity was inhibited in young adult and aged mice via a subcutaneously placed time release (2.5 mg/day) allopurinol pellet, 7 days prior to the start of in situ electrically stimulated isometric contractions. Gastrocnemius muscles were electrically activated with 20 maximal contractions for three consecutive days. Xanthine oxidase activity was 65% greater in the gastrocnemius muscle of aged mice compared to young mice. Xanthine oxidase activity also increased after in situ electrically stimulated isometric contractions in muscles from both young (33%) and aged (28%) mice, relative to contralateral non-contracted muscles. Allopurinol attenuated the exercise-induced increase in oxidative stress, but it did not affect the elevated basal levels of oxidative stress that was associated with aging. In addition, inhibition of xanthine oxidase activity decreased caspase 3 activity, but it had no effect on other markers of mitochondrial associated apoptosis. Our results show that compared to control conditions, suppression of xanthine oxidase activity by allopurinol reduced xanthine oxidase activity, H2O2 levels, lipid peroxidation and caspase-3 activity, prevented the in situ electrically stimulated isometric contraction-induced loss of glutathione, prevented the increase of catalase and copper-zinc superoxide dismutase activities, and increased maximal isometric force in the plantar flexor muscles of aged mice after repetitive electrically evoked contractions. PMID:21530649

  19. The wake-promoting drug modafinil stimulates specific hypothalamic circuits to promote adaptive stress responses in an animal model of PTSD.

    Science.gov (United States)

    Cohen, S; Ifergane, G; Vainer, E; Matar, M A; Kaplan, Z; Zohar, J; Mathé, A A; Cohen, H

    2016-10-11

    Pharmacotherapeutic intervention during traumatic memory consolidation has been suggested to alleviate or even prevent the development of posttraumatic stress disorder (PTSD). We recently reported that, in a controlled, prospective animal model, depriving rats of sleep following stress exposure prevents the development of a PTSD-like phenotype. Here, we report that administering the wake-promoting drug modafinil to rats in the aftermath of a stressogenic experience has a similar prophylactic effect, as it significantly reduces the prevalence of PTSD-like phenotype. Moreover, we show that the therapeutic value of modafinil appears to stem from its ability to stimulate a specific circuit within the hypothalamus, which ties together the neuropeptide Y, the orexin system and the HPA axis, to promote adaptive stress responses. The study not only confirms the value of sleep prevention and identifies the mechanism of action of a potential prophylactic treatment after traumatic exposure, but also contributes to understanding mechanisms underlying the shift towards adaptive behavioral response.

  20. Mitochondrial oxidative stress contributes differently to rat pancreatic islet cell apoptosis and insulin secretory defects after prolonged culture in a low non-stimulating glucose concentration.

    Science.gov (United States)

    Roma, L P; Pascal, S M; Duprez, J; Jonas, J-C

    2012-08-01

    Pancreatic beta cells chronically exposed to low glucose concentrations show signs of oxidative stress, loss of glucose-stimulated insulin secretion (GSIS) and increased apoptosis. Our aim was to confirm the role of mitochondrial oxidative stress in rat islet cell apoptosis under these culture conditions and to evaluate whether its reduction similarly improves survival and GSIS. Apoptosis, oxidative stress-response gene mRNA expression and glucose-induced stimulation of mitochondrial metabolism, intracellular Ca(2+) concentration and insulin secretion were measured in male Wistar rat islets cultured for 1 week in RPMI medium containing 5-10 mmol/l glucose with or without manganese(III)tetrakis(4-benzoic acid)porphyrin (MnTBAP) or N-acetyl-L-: cysteine (NAC). Oxidative stress was measured in islet cell clusters cultured under similar conditions using cytosolic and mitochondrial redox-sensitive green fluorescent protein (roGFP1/mt-roGFP1). Prolonged culture in 5 vs 10 mmol/l glucose increased mt-roGFP1 (but not roGFP1) oxidation followed by beta cell apoptosis and loss of GSIS resulting from reduced insulin content, mitochondrial metabolism, Ca(2+) influx and Ca(2+)-induced secretion. Tolbutamide-induced, but not high K(+)-induced, Ca(2+) influx was also suppressed. Under these conditions, MnTBAP, but not NAC, triggered parallel ~50-70% reductions in mt-roGFP1 oxidation and beta cell apoptosis, but failed to protect against the loss of GSIS despite significant improvement in glucose-induced and tolbutamide-induced Ca(2+) influx. Mitochondrial oxidative stress contributes differently to rat pancreatic islet cell apoptosis and insulin secretory defects during culture in a low glucose concentration. Thus, targeting beta cell survival may not be sufficient to restore insulin secretion when beta cells suffer from prolonged mitochondrial oxidative stress, e.g. in the context of reduced glucose metabolism.

  1. Stress

    Science.gov (United States)

    ... can be life-saving. But chronic stress can cause both physical and mental harm. There are at least three different types of stress: Routine stress related to the pressures of work, family, and other daily responsibilities Stress brought about ...

  2. Deep brain stimulation of the basolateral amygdala for treatment-refractory combat post-traumatic stress disorder (PTSD): study protocol for a pilot randomized controlled trial with blinded, staggered onset of stimulation.

    Science.gov (United States)

    Koek, Ralph J; Langevin, Jean-Philippe; Krahl, Scott E; Kosoyan, Hovsep J; Schwartz, Holly N; Chen, James W Y; Melrose, Rebecca; Mandelkern, Mark J; Sultzer, David

    2014-09-10

    Combat post-traumatic stress disorder (PTSD) involves significant suffering, impairments in social and occupational functioning, substance use and medical comorbidity, and increased mortality from suicide and other causes. Many veterans continue to suffer despite current treatments. Deep brain stimulation (DBS) has shown promise in refractory movement disorders, depression and obsessive-compulsive disorder, with deep brain targets chosen by integration of clinical and neuroimaging literature. The basolateral amygdala (BLn) is an optimal target for high-frequency DBS in PTSD based on neurocircuitry findings from a variety of perspectives. DBS of the BLn was validated in a rat model of PTSD by our group, and limited data from humans support the potential safety and effectiveness of BLn DBS. We describe the protocol design for a first-ever Phase I pilot study of bilateral BLn high-frequency DBS for six severely ill, functionally impaired combat veterans with PTSD refractory to conventional treatments. After implantation, patients are monitored for a month with stimulators off. An electroencephalographic (EEG) telemetry session will test safety of stimulation before randomization to staggered-onset, double-blind sham versus active stimulation for two months. Thereafter, patients will undergo an open-label stimulation for a total of 24 months. Primary efficacy outcome is a 30% decrease in the Clinician Administered PTSD Scale (CAPS) total score. Safety outcomes include extensive assessments of psychiatric and neurologic symptoms, psychosocial function, amygdala-specific and general neuropsychological functions, and EEG changes. The protocol requires the veteran to have a cohabiting significant other who is willing to assist in monitoring safety and effect on social functioning. At baseline and after approximately one year of stimulation, trauma script-provoked 18FDG PET metabolic changes in limbic circuitry will also be evaluated. While the rationale for studying DBS

  3. Effects of flotation-restricted environmental stimulation technique on stress-related muscle pain: what makes the difference in therapy--attention-placebo or the relaxation response?

    Science.gov (United States)

    Bood, Sven A; Sundequist, Ulf; Kjellgren, Anette; Nordstrom, Gun; Norlander, Torsten

    2005-01-01

    The purpose of the present study was to examine the potential effects of attention-placebo on flotation tank therapy. Flotation-restricted environmental stimulation technique is a method whereby an individual lies in a floating tank and all stimuli are reduced to a minimum. Thirty-two patients were diagnosed as having stress-related muscular pain. In addition, 16 of the participants had received the diagnosis of burnout depression. The patients were treated with flotation-restricted environmental stimulation technique for six weeks. One-half of the patients were also given special attention for 12 weeks (high attention), while the remainder received attention for only six weeks (normal attention). The participants exhibited lowered blood pressure, reduced pain, anxiety, depression, stress and negative affectivity, as well as increased optimism, energy and positive affectivity. The results were largely unaffected by the degree of attention-placebo or diagnosis. It was concluded that flotation therapy is an effective, noninvasive method for treating stress-related pain, and that the method is not more affected by placebo than by other methods currently used in pain treatment. The treatment of both burnout depression and pain related to muscle tension constitutes a major challenge for the patient as well as the care provider, an area in which great gains can be made if the treatment is effective. Flotation therapy may constitute an integral part of such treatment.

  4. [Comparison of the efficacy and safety between TVT-O and TVT-O with biofeedback pelvic floor electrical stimulation on female stress urinary incontinence].

    Science.gov (United States)

    Min, Ling; Zhao, Xia

    2015-01-01

    To compare the efficacy and safety between tension-free vaginal tape obturator technique (TVT-O) and TVT-O with biofeedback pelvic floor electrical stimulation on the therapy of female stress urinary incontinence. In this prospective study, 120 female patients of female stress urinary incontinence were enrolled from January 2012 to December 2013. The patients were randomly assigned to two groups, 60 in group A received TVT-O alone, while 60 in group B not only received TVT-O but also received biofeedback pelvic floor electrical stimulation. All the patients were followed up for 12 months to assess the efficacy and safety of the two procedures. Subjective indices [total volume of urine (TV), the total frequency of urination (TOV), the total leakage of urine events (TL), urinary incontinence related quality of life questionnaire (I-QOL), International Advisory Committee on urinary incontinence urinary incontinence questionnaire short form scale (ICI-Q-SF)] and objective indices [Valsalva leak point pressure (VLPP), maximum flow rate (MFR), residual urine volume (RUV),pad test] were analyzed. Overall, the cure rate was 75% at 1 year follow-up for group A and 88.33% for group B (PTVT-O on the treatment of female stress urinary incontinence.

  5. Whole-body heat stress and exercise stimulate the appearance of platelet microvesicles in plasma with limited influence of vascular shear stress.

    Science.gov (United States)

    Wilhelm, Eurico N; González-Alonso, José; Chiesa, Scott T; Trangmar, Steven J; Kalsi, Kameljit K; Rakobowchuk, Mark

    2017-11-01

    Intense, large muscle mass exercise increases circulating microvesicles, but our understanding of microvesicle dynamics and mechanisms inducing their release remains limited. However, increased vascular shear stress is generally thought to be involved. Here, we manipulated exercise-independent and exercise-dependent shear stress using systemic heat stress with localized single-leg cooling (low shear) followed by single-leg knee extensor exercise with the cooled or heated leg (Study 1, n  = 8) and whole-body passive heat stress followed by cycling (Study 2, n  = 8). We quantified femoral artery shear rates (SRs) and arterial and venous platelet microvesicles (PMV-CD41 + ) and endothelial microvesicles (EMV-CD62E + ). In Study 1, mild passive heat stress while one leg remained cooled did not affect [microvesicle] ( P  ≥ 0.05). Single-leg knee extensor exercise increased active leg SRs by ~12-fold and increased arterial and venous [PMVs] by two- to threefold, even in the nonexercising contralateral leg ( P  body passive heat stress increased arterial [PMV] compared with baseline (mean±SE, from 19.9 ± 1.5 to 35.5 ± 5.4 PMV . μ L -1. 10 3 , P  stress increased [PMV] further in the venous circulation (from 27.5 ± 2.2 at baseline to 57.5 ± 7.2 PMV . μ L -1. 10 3 during cycling with heat stress, P  body heat stress may increase arterial [PMV], and intense exercise engaging either large or small muscle mass promote PMV formation locally and systemically, with no influence upon [EMV]. Local shear stress, however, does not appear to be the major stimulus modulating PMV formation in healthy humans. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  6. Mechanical loading by fluid shear stress of myotube glycocalyx stimulates growth factor expression and nitric oxide production

    NARCIS (Netherlands)

    Juffer, P.; Bakker, A.D.; Klein-Nulend, J.; Jaspers, R.T.

    2014-01-01

    Skeletal muscle fibers have the ability to increase their size in response to a mechanical overload. Finite element modeling data suggest that mechanically loaded muscles in vivo may experience not only tensile strain but also shear stress. However, whether shear stress affects biological pathways

  7. Contraction-stimulated glucose transport in muscle is controlled by AMPK and mechanical stress but not sarcoplasmatic reticulum Ca2+ release

    Directory of Open Access Journals (Sweden)

    Thomas E. Jensen

    2014-10-01

    Full Text Available Understanding how muscle contraction orchestrates insulin-independent muscle glucose transport may enable development of hyperglycemia-treating drugs. The prevailing concept implicates Ca2+ as a key feed forward regulator of glucose transport with secondary fine-tuning by metabolic feedback signals through proteins such as AMPK. Here, we demonstrate in incubated mouse muscle that Ca2+ release is neither sufficient nor strictly necessary to increase glucose transport. Rather, the glucose transport response is associated with metabolic feedback signals through AMPK, and mechanical stress-activated signals. Furthermore, artificial stimulation of AMPK combined with passive stretch of muscle is additive and sufficient to elicit the full contraction glucose transport response. These results suggest that ATP-turnover and mechanical stress feedback are sufficient to fully increase glucose transport during muscle contraction, and call for a major reconsideration of the established Ca2+ centric paradigm.

  8. Particulate matter air pollution disrupts endothelial cell barrier via calpain-mediated tight junction protein degradation

    Directory of Open Access Journals (Sweden)

    Wang Ting

    2012-08-01

    Full Text Available Abstract Background Exposure to particulate matter (PM is a significant risk factor for increased cardiopulmonary morbidity and mortality. The mechanism of PM-mediated pathophysiology remains unknown. However, PM is proinflammatory to the endothelium and increases vascular permeability in vitro and in vivo via ROS generation. Objectives We explored the role of tight junction proteins as targets for PM-induced loss of lung endothelial cell (EC barrier integrity and enhanced cardiopulmonary dysfunction. Methods Changes in human lung EC monolayer permeability were assessed by Transendothelial Electrical Resistance (TER in response to PM challenge (collected from Ft. McHenry Tunnel, Baltimore, MD, particle size >0.1 μm. Biochemical assessment of ROS generation and Ca2+ mobilization were also measured. Results PM exposure induced tight junction protein Zona occludens-1 (ZO-1 relocation from the cell periphery, which was accompanied by significant reductions in ZO-1 protein levels but not in adherens junction proteins (VE-cadherin and β-catenin. N-acetyl-cysteine (NAC, 5 mM reduced PM-induced ROS generation in ECs, which further prevented TER decreases and atteneuated ZO-1 degradation. PM also mediated intracellular calcium mobilization via the transient receptor potential cation channel M2 (TRPM2, in a ROS-dependent manner with subsequent activation of the Ca2+-dependent protease calpain. PM-activated calpain is responsible for ZO-1 degradation and EC barrier disruption. Overexpression of ZO-1 attenuated PM-induced endothelial barrier disruption and vascular hyperpermeability in vivo and in vitro. Conclusions These results demonstrate that PM induces marked increases in vascular permeability via ROS-mediated calcium leakage via activated TRPM2, and via ZO-1 degradation by activated calpain. These findings support a novel mechanism for PM-induced lung damage and adverse cardiovascular outcomes.

  9. Carbamazepine suppresses calpain-mediated autophagy impairment after ischemia/reperfusion in mouse livers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Sung, E-mail: Jae.Kim@surgery.ufl.edu; Wang, Jin-Hee, E-mail: jin-hee.wang@surgery.ufl.edu; Biel, Thomas G., E-mail: Thomas.Biel@surgery.ufl.edu; Kim, Do-Sung, E-mail: do-sung.kim@surgery.med.ufl.edu; Flores-Toro, Joseph A., E-mail: Joseph.Flores-Toro@surgery.ufl.edu; Vijayvargiya, Richa, E-mail: rvijayvargiya@ufl.edu; Zendejas, Ivan, E-mail: ivan.zendejas@surgery.ufl.edu; Behrns, Kevin E., E-mail: Kevin.Behrns@surgery.ufl.edu

    2013-12-15

    Onset of the mitochondrial permeability transition (MPT) plays a causative role in ischemia/reperfusion (I/R) injury. Current therapeutic strategies for reducing reperfusion injury remain disappointing. Autophagy is a lysosome-mediated, catabolic process that timely eliminates abnormal or damaged cellular constituents and organelles such as dysfunctional mitochondria. I/R induces calcium overloading and calpain activation, leading to degradation of key autophagy-related proteins (Atg). Carbamazepine (CBZ), an FDA-approved anticonvulsant drug, has recently been reported to increase autophagy. We investigated the effects of CBZ on hepatic I/R injury. Hepatocytes and livers from male C57BL/6 mice were subjected to simulated in vitro, as well as in vivo I/R, respectively. Cell death, intracellular calcium, calpain activity, changes in autophagy-related proteins (Atg), autophagic flux, MPT and mitochondrial membrane potential after I/R were analyzed in the presence and absence of 20 μM CBZ. CBZ significantly increased hepatocyte viability after reperfusion. Confocal microscopy revealed that CBZ prevented calcium overloading, the onset of the MPT and mitochondrial depolarization. Immunoblotting and fluorometric analysis showed that CBZ blocked calpain activation, depletion of Atg7 and Beclin-1 and loss of autophagic flux after reperfusion. Intravital multiphoton imaging of anesthetized mice demonstrated that CBZ substantially reversed autophagic defects and mitochondrial dysfunction after I/R in vivo. In conclusion, CBZ prevents calcium overloading and calpain activation, which, in turn, suppresses Atg7 and Beclin-1 depletion, defective autophagy, onset of the MPT and cell death after I/R. - Highlights: • A mechanism of carbamazepine (CBZ)-induced cytoprotection in livers is proposed. • Impaired autophagy is a key event contributing to lethal reperfusion injury. • The importance of autophagy is extended and confirmed in an in vivo model. • CBZ is a potential agent to improve liver function after liver surgery.

  10. NCYM promotes calpain-mediated Myc-nick production in human MYCN-amplified neuroblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, Wataru [Division of Biochemistry and Innovative Cancer Therapeutics and Children' s Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717 (Japan); Department of Pediatric Surgery, Graduate School of Medicine, Tohoku University, Sendai 980-8574 (Japan); Suenaga, Yusuke, E-mail: ysuenaga@chiba-cc.jp [Division of Biochemistry and Innovative Cancer Therapeutics and Children' s Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717 (Japan); Cancer Genome Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717 (Japan); Kaneko, Yoshiki; Islam, S.M. Rafiqul; Alagu, Jennifer [Division of Biochemistry and Innovative Cancer Therapeutics and Children' s Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717 (Japan); Yokoi, Sana [Cancer Genome Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717 (Japan); Nio, Masaki [Department of Pediatric Surgery, Graduate School of Medicine, Tohoku University, Sendai 980-8574 (Japan); Nakagawara, Akira, E-mail: nakagawara-a@koseikan.jp [Division of Biochemistry and Innovative Cancer Therapeutics and Children' s Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717 (Japan)

    2015-06-05

    NCYM is a cis-antisense gene of MYCN and is amplified in human neuroblastomas. High NCYM expression is associated with poor prognoses, and the NCYM protein stabilizes MYCN to promote proliferation of neuroblastoma cells. However, the molecular mechanisms of NCYM in the regulation of cell survival have remained poorly characterized. Here we show that NCYM promotes cleavage of MYCN to produce the anti-apoptotic protein, Myc-nick, both in vitro and in vivo. NCYM and Myc-nick were induced at G2/M phase, and NCYM knockdown induced apoptotic cell death accompanied by Myc-nick downregulation. These results reveal a novel function of NCYM as a regulator of Myc-nick production in human neuroblastomas. - Highlights: • NCYM promotes cleavages of MYC and MYCN to produce Myc-nick in vitro. • NCYM increases Myc-nick production in MYCN-amplified neuroblastoma cells. • NCYM knockdown decreases Myc-nick production and induces apoptosis at G2/M phase.

  11. NCYM promotes calpain-mediated Myc-nick production in human MYCN-amplified neuroblastoma cells

    International Nuclear Information System (INIS)

    Shoji, Wataru; Suenaga, Yusuke; Kaneko, Yoshiki; Islam, S.M. Rafiqul; Alagu, Jennifer; Yokoi, Sana; Nio, Masaki; Nakagawara, Akira

    2015-01-01

    NCYM is a cis-antisense gene of MYCN and is amplified in human neuroblastomas. High NCYM expression is associated with poor prognoses, and the NCYM protein stabilizes MYCN to promote proliferation of neuroblastoma cells. However, the molecular mechanisms of NCYM in the regulation of cell survival have remained poorly characterized. Here we show that NCYM promotes cleavage of MYCN to produce the anti-apoptotic protein, Myc-nick, both in vitro and in vivo. NCYM and Myc-nick were induced at G2/M phase, and NCYM knockdown induced apoptotic cell death accompanied by Myc-nick downregulation. These results reveal a novel function of NCYM as a regulator of Myc-nick production in human neuroblastomas. - Highlights: • NCYM promotes cleavages of MYC and MYCN to produce Myc-nick in vitro. • NCYM increases Myc-nick production in MYCN-amplified neuroblastoma cells. • NCYM knockdown decreases Myc-nick production and induces apoptosis at G2/M phase

  12. Heat Stress and Lipopolysaccharide Stimulation of Chicken Macrophage-Like Cell Line Activates Expression of Distinct Sets of Genes.

    Directory of Open Access Journals (Sweden)

    Anna Slawinska

    Full Text Available Acute heat stress requires immediate adjustment of the stressed individual to sudden changes of ambient temperatures. Chickens are particularly sensitive to heat stress due to development of insufficient physiological mechanisms to mitigate its effects. One of the symptoms of heat stress is endotoxemia that results from release of the lipopolysaccharide (LPS from the guts. Heat-related cytotoxicity is mitigated by the innate immune system, which is comprised mostly of phagocytic cells such as monocytes and macrophages. The objective of this study was to analyze the molecular responses of the chicken macrophage-like HD11 cell line to combined heat stress and lipopolysaccharide treatment in vitro. The cells were heat-stressed and then allowed a temperature-recovery period, during which the gene expression was investigated. LPS was added to the cells to mimic the heat-stress-related endotoxemia. Semi high-throughput gene expression analysis was used to study a gene panel comprised of heat shock proteins, stress-related genes, signaling molecules and immune response genes. HD11 cell line responded to heat stress with increased mRNA abundance of the HSP25, HSPA2 and HSPH1 chaperones as well as DNAJA4 and DNAJB6 co-chaperones. The anti-apoptotic gene BAG3 was also highly up-regulated, providing evidence that the cells expressed pro-survival processes. The immune response of the HD11 cell line to LPS in the heat stress environment (up-regulation of CCL4, CCL5, IL1B, IL8 and iNOS was higher than in thermoneutral conditions. However, the peak in the transcriptional regulation of the immune genes was after two hours of temperature-recovery. Therefore, we propose the potential influence of the extracellular heat shock proteins not only in mitigating effects of abiotic stress but also in triggering the higher level of the immune responses. Finally, use of correlation networks for the data analysis aided in discovering subtle differences in the gene

  13. Non-invasive Vagal Nerve Stimulation Effects on Hyperarousal and Autonomic State in Patients with Posttraumatic Stress Disorder and History of Mild Traumatic Brain Injury: Preliminary Evidence

    Directory of Open Access Journals (Sweden)

    Damon G. Lamb

    2017-07-01

    Full Text Available Posttraumatic stress disorder (PTSD is a reaction to trauma that results in a chronic perception of threat, precipitating mobilization of the autonomic nervous system, and may be reflected by chronic disinhibition of limbic structures. A common injury preceding PTSD in veterans is mild traumatic brain injury (mTBI. This may be due to the vulnerability of white matter in these networks and such damage may affect treatment response. We evaluated transcutaneous vagal nerve stimulation (tVNS, a non-invasive, low-risk approach that may alter the functions of the limbo-cortical and peripheral networks underlying the hyperarousal component of PTSD and thus improve patient health and well-being. In this single visit pilot study evaluating the impact of tVNS in 22 combat veterans, we used a between-subjects design in people with either PTSD with preceding mTBI or healthy controls. Participants were randomized into stimulation or sham groups and completed a posturally modulated autonomic assessment and emotionally modulated startle paradigm. The primary measures used were respiratory sinus arrhythmia (high-frequency heart rate variability during a tilt-table procedure derived from an electrocardiogram, and skin conductance changes in response to acoustic startle while viewing emotional images (International Affective Picture System. The stimulation was well tolerated and resulted in improvements in vagal tone and moderation of autonomic response to startle, consistent with modulation of autonomic state and response to stress in this population. Our results suggest that tVNS affects systems underlying emotional dysregulation in this population and, therefore, should be further evaluated and developed as a potential treatment tool for these patients.

  14. Sex-Specific Consequences of Neonatal Stress on Cardio-Respiratory Inhibition Following Laryngeal Stimulation in Rat Pups

    Science.gov (United States)

    Baldy, Cécile; Chamberland, Simon

    2017-01-01

    Abstract The presence of liquid near the larynx of immature mammals triggers prolonged apneas with significant O2 desaturations and bradycardias. When excessive, this reflex (the laryngeal chemoreflex; LCR) can be fatal. Our understanding of the origins of abnormal LCR are limited; however, perinatal stress and male sex are risk factors for cardio-respiratory failure in infants. Because exposure to stress during early life has deleterious and sex-specific consequences on brain development it is plausible that respiratory reflexes are vulnerable to neuroendocrine dysfunction. To address this issue, we tested the hypothesis that neonatal maternal separation (NMS) is sufficient to exacerbate LCR-induced cardio-respiratory inhibition in anesthetized rat pups. Stressed pups were separated from their mother 3 h/d from postnatal days 3 to 12. At P14–P15, pups were instrumented to monitor breathing, O2 saturation (Spo2), and heart rate. The LCR was activated by water injections near the larynx (10 µl). LCR-induced apneas were longer in stressed pups than controls; O2 desaturations and bradycardias were more profound, especially in males. NMS increased the frequency and amplitude of spontaneous EPSCs (sEPSCs) in the dorsal motor nucleus of the vagus (DMNV) of males but not females. The positive relationship between corticosterone and testosterone observed in stressed pups (males only) suggests that disruption of neuroendocrine function by stress is key to sex-based differences in abnormal LCR. Because testosterone application onto medullary slices augments EPSC amplitude only in males, we propose that testosterone-mediated enhancement of synaptic connectivity within the DMNV contributes to the male bias in cardio-respiratory inhibition following LCR activation in stressed pups. PMID:29308430

  15. Insulin-like growth factor stimulation increases radiosensitivity of a pancreatic cancer cell line through endoplasmic reticulum stress under hypoxic conditions

    International Nuclear Information System (INIS)

    Isohashi, Fumiaki; Endo, Hiroko; Mukai, Mutsuko; Inoue, Masahiro; Inoue, Takehiro

    2008-01-01

    Tumor hypoxia is an obstacle to radiotherapy. Radiosensitivity under hypoxic conditions is determined by molecular oxygen levels, as well as by various biological cellular responses. The insulin-like growth factor (IGF) signaling pathway is a widely recognized survival signal that confers radioresistance. However, under hypoxic conditions the role of IGF signaling in radiosensitivity is still poorly understood. Here, we demonstrate that IGF-II stimulation decreases clonogenic survival under hypoxic conditions in the pancreatic cancer cell lines AsPC-1 and Panc-1, and in the human breast cancer cell line MCF-7. IGF treatment under hypoxic conditions suppressed increased radiation sensitivity in these cell lines by pharmacologically inhibiting the phosphoinositide 3-kinase-mammalian target of rapamycin pathway, a major IGF signal-transduction pathway. Meanwhile, IGF-II induced the endoplasmic reticulum stress response under hypoxia, including increased protein levels of CHOP and ATF4, mRNA levels of CHOP, GADD34, and BiP as well as splicing levels of XBP-1. The response was suppressed by inhibiting phosphoinositide 3-kinase and mammalian target of rapamycin activity. Overexpression of CHOP in AsPC-1 cells increased radiation sensitivity by IGF-II simulation under hypoxic conditions, whereas suppression of CHOP expression levels with small hairpin RNA or a dominant negative form of a proline-rich extensin-like receptor protein kinase in hypoxia decreased IGF-induced radiosensitivity. IGF-induced endoplasmic reticulum stress contributed to radiosensitization independent of cell cycle status. Taken together, IGF stimulation increased radiosensitivity through the endoplasmic reticulum stress response under hypoxic conditions. (author)

  16. Stress

    Science.gov (United States)

    ... taking care of an aging parent. With mental stress, the body pumps out hormones to no avail. Neither fighting ... with type 1 diabetes. This difference makes sense. Stress blocks the body from releasing insulin in people with type 2 ...

  17. Transverse stress induced LP 02-LP 21 modal interference of stimulated Raman scattered light in a few-mode optical fiber

    Science.gov (United States)

    Sharma, A.; Posey, R.

    1996-02-01

    Four-photon mixing followed by stimulated Raman scattering is observed in LP 02 mode in a 7.9 μm core diameter optical fiber. A localized transverse stress efficiency couples LP 02 to the LP 21 mode with a macroscopic beat length of 1.8 mm. LP 02-LP 21 modal interference is investigated by detecting the 550-590 nm SRS through a pinhole in the far field exit plane. Quantitative explanation of wavelength dependent intensity modulation results in a precise experimental determination of {∂[β 02(λ) - β 21(λ)] }/{∂λ}, for mode-propagation constants β02( λ) and β21( λ) of LP 02 and LP 21 modes respectively, as well as Δ, the relative core-cladding refractive index difference. The LP 02-LP 21 modal interference is used for sensing of temperature between 50-300°C.

  18. Higher glucose level and systemic oxidative stress decrease the mean velocity index of the retinal artery during flickering light stimulation in type 1 diabetes.

    Science.gov (United States)

    Debelić, Vladimir; Drnovšek Olup, Brigita; Žižek, Bogomir; Skitek, Milan; Jerin, Aleš

    2016-10-31

    To determine whether higher glucose level and systemic oxidative stress decrease mean velocity (MV) index of the central retinal artery (CRA) during flickering light stimulation in type 1 diabetes (T1D). The study was performed in the period from 2008 to 2015 at the University Eye Clinic in Ljubljana. 41 patients with T1D and 37 participants without diabetes were included. MV in the CRA was measured using Doppler ultrasound diagnostics in basal conditions and during 8 Hz flickering light irritation. The plasma levels of glucose, fructosamine, 8-hydroxy-2'-deoxyguanosine (8-OHdG), triglycerides, cholesterol, and low-density lipoprotein (LDL) were measured. Patients with T1D had significantly higher levels of blood glucose (Ptriglycerides (P=0.108), cholesterol (P=0.531), and LDL (P=0.645) between the groups. Patients with T1D also had a significantly lower MV index in the CRA (1.11±0.15 vs 1.24±0.23; P=0.010). In the T1D group, a significant negative correlation was found between the level of glucose (r=0.58; Pindex in the CRA. At the same time, in this group fructosamine and 8-OHdG levels had a separate effect on the MV index (adjusted R2=0.38, Pglucose levels, the medium-term glucose level, and systemic oxidative stress could importantly reduce retinal vasodilatation during flickering light irritation in patients with T1D.

  19. l-Arginine induces antioxidant response to prevent oxidative stress via stimulation of glutathione synthesis and activation of Nrf2 pathway.

    Science.gov (United States)

    Liang, Mingcai; Wang, Zhengxuan; Li, Hui; Cai, Liang; Pan, Jianghao; He, Hongjuan; Wu, Qiong; Tang, Yinzhao; Ma, Jiapei; Yang, Lin

    2018-05-01

    Arginine is a conditionally essential amino acid. To elucidate the influence of l-arginine on the activation of endogenous antioxidant defence, male Wistar rats were orally administered daily with l-arginine at different levels of 25, 50, 100 mg/100 g body weight. After 7 and 14 days feeding, the antioxidative capacities and glutathione (GSH) contents in the plasma and in the liver were uniformly enhanced with the increasing consumption of l-arginine, whereas the oxidative stress was effectively suppressed by l-arginine treatment. After 14 days feeding, the mRNA levels and protein expressions of Keap1 and Cul3 were gradually reduced by increasing l-arginine intake, resulting that the nuclear factor Nrf2 was activated. Upon activation of Nrf2, the expressions of antioxidant responsive element (ARE)-dependent genes and proteins (GCLC, GCLM, GS, GR, GST, GPx, CAT, SOD, NQO1, HO-1) were up-regulated by l-arginine feeding, indicating an upward trend in antioxidant capacity uniformly with the increasing consumption of l-arginine. The present study demonstrates that the supplementation of l-arginine stimulates GSH synthesis and activates Nrf2 pathway, leading to the up-regulation of ARE-driven antioxidant expressions via Nrf2-Keap1 pathway. Results suggest the availability of l-arginine is a critical factor to suppress oxidative stress and induce an endogenous antioxidant response. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. AtchitIV gene expression is stimulated under abiotic stresses and is spatially and temporally regulated during embryo development

    Directory of Open Access Journals (Sweden)

    Liliane B. de A. Gerhardt

    2004-01-01

    Full Text Available The expression of AtchitIV gene was analysed in Arabidopsis plants submitted to abiotic stresses. Transcript accumulation was detected in leaves in response to UV light exposure, exogenous salicylic acid administration and wounding. Transgenic Arabidopsis plants carrying AtchitIV promoter::gus fusion also showed differential expression of the reporter gene in response to these treatments. The AtchitIV expression was also analysed during Arabidopsis embryo development. GUS assay demonstrated AtchitIV promoter activation in zygotic embryos from torpedo stage up to full maturation. Promoter deletion analysis indicated that all the 5' cis-acting elements responsible for the specific tissue expression are located in a region of 1083 bp, adjacent to the start of transcription. A negative regulatory region located between portions -1083 and -600 was also observed.

  1. Nicotine stimulates pancreatic cancer xenografts by systemic increase in stress neurotransmitters and suppression of the inhibitory neurotransmitter gamma-aminobutyric acid.

    Science.gov (United States)

    Al-Wadei, Hussein A N; Plummer, Howard K; Schuller, Hildegard M

    2009-03-01

    Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer mortality in Western countries. We have shown previously that four representative human PDAC cell lines were regulated by beta-adrenoreceptors via cyclic adenosine 3',5'-monophosphate (cAMP)-dependent signaling. In the current study, we have tested the hypothesis that nicotine stimulates the growth of PDAC xenografts in nude mice by increasing the systemic levels of the stress neurotransmitters adrenaline and noradrenaline, which are the physiological agonists for beta-adrenoreceptors and that inhibition by gamma-aminobutyric acid (GABA) of the adenylyl cyclase-dependent pathway downstream of adrenoreceptors blocks this effect. The size of xenografts from PDAC cell line Panc-1 was determined 30 days after inoculation of the cancer cells. Stress neurotransmitters in serum as well as cAMP in the cellular fraction of blood and in tumor tissue were assessed by immunoassays. Levels of GABA, its synthesizing enzymes GAD65 and GAD67 and beta-adrenergic signaling proteins in the tumor tissue were determined by western blotting. Nicotine significantly increased the systemic levels of adrenaline, noradrenaline and cAMP while increasing xenograft size and protein levels of cAMP, cyclic AMP response element-binding protein and p-extracellular signal-regulated kinase 1/2 in the tumor tissue. Nicotine additionally reduced the protein levels of both GAD isozymes and GABA in tumor tissue. Treatment with GABA abolished these responses to nicotine and blocked the development of xenografts in mice not exposed to nicotine. These findings suggest that the development and progression of PDAC is subject to significant modulation by stimulatory stress neurotransmitters and inhibitory GABA and that treatment with GABA may be useful for marker-guided cancer intervention of PDAC.

  2. Baseline Goblet Cell Mucin Secretion in the Airways Exceeds Stimulated Secretion over Extended Time Periods, and Is Sensitive to Shear Stress and Intracellular Mucin Stores.

    Directory of Open Access Journals (Sweden)

    Yunxiang Zhu

    Full Text Available Airway mucin secretion studies have focused on goblet cell responses to exogenous agonists almost to the exclusion of baseline mucin secretion (BLMS. In human bronchial epithelial cell cultures (HBECCs, maximal agonist-stimulated secretion exceeds baseline by ~3-fold as measured over hour-long periods, but mucin stores are discharged completely and require 24 h for full restoration. Hence, over 24 h, total baseline exceeds agonist-induced secretion by several-fold. Studies with HBECCs and mouse tracheas showed that BLMS is highly sensitive to mechanical stresses. Harvesting three consecutive 1 h baseline luminal incubations with HBECCs yielded equal rates of BLMS; however, lengthening the middle period to 72 h decreased the respective rate significantly, suggesting a stimulation of BLMS by the gentle washes of HBECC luminal surfaces. BLMS declined exponentially after washing HBECCs (t1/2 = 2.75 h, to rates approaching zero. HBECCs exposed to low perfusion rates exhibited spike-like increases in BLMS when flow was jumped 5-fold: BLMS increased >4 fold, then decreased within 5 min to a stable plateau at 1.5-2-fold over control. Higher flow jumps induced proportionally higher BLMS increases. Inducing mucous hyperplasia in HBECCs increased mucin production, BLMS and agonist-induced secretion. Mouse tracheal BLMS was ~6-fold higher during perfusion, than when flow was stopped. Munc13-2 null mouse tracheas, with their defect of accumulated cellular mucins, exhibited similar BLMS as WT, contrary to predictions of lower values. Graded mucous metaplasia induced in WT and Munc13-2 null tracheas with IL-13, caused proportional increases in BLMS, suggesting that naïve Munc13-2 mouse BLMS is elevated by increased mucin stores. We conclude that BLMS is, [i] a major component of mucin secretion in the lung, [ii] sustained by the mechanical activity of a dynamic lung, [iii] proportional to levels of mucin stores, and [iv] regulated differentially from agonist

  3. Baseline Goblet Cell Mucin Secretion in the Airways Exceeds Stimulated Secretion over Extended Time Periods, and Is Sensitive to Shear Stress and Intracellular Mucin Stores

    Science.gov (United States)

    Doyle, Sean P.; Nguyen, Kristine; Ribeiro, Carla M. P.; Vasquez, Paula A.; Forest, M. Gregory; Lethem, Michael I.; Dickey, Burton F.; Davis, C. William

    2015-01-01

    Airway mucin secretion studies have focused on goblet cell responses to exogenous agonists almost to the exclusion of baseline mucin secretion (BLMS). In human bronchial epithelial cell cultures (HBECCs), maximal agonist-stimulated secretion exceeds baseline by ~3-fold as measured over hour-long periods, but mucin stores are discharged completely and require 24 h for full restoration. Hence, over 24 h, total baseline exceeds agonist-induced secretion by several-fold. Studies with HBECCs and mouse tracheas showed that BLMS is highly sensitive to mechanical stresses. Harvesting three consecutive 1 h baseline luminal incubations with HBECCs yielded equal rates of BLMS; however, lengthening the middle period to 72 h decreased the respective rate significantly, suggesting a stimulation of BLMS by the gentle washes of HBECC luminal surfaces. BLMS declined exponentially after washing HBECCs (t1/2 = 2.75 h), to rates approaching zero. HBECCs exposed to low perfusion rates exhibited spike-like increases in BLMS when flow was jumped 5-fold: BLMS increased >4 fold, then decreased within 5 min to a stable plateau at 1.5–2-fold over control. Higher flow jumps induced proportionally higher BLMS increases. Inducing mucous hyperplasia in HBECCs increased mucin production, BLMS and agonist-induced secretion. Mouse tracheal BLMS was ~6-fold higher during perfusion, than when flow was stopped. Munc13-2 null mouse tracheas, with their defect of accumulated cellular mucins, exhibited similar BLMS as WT, contrary to predictions of lower values. Graded mucous metaplasia induced in WT and Munc13-2 null tracheas with IL-13, caused proportional increases in BLMS, suggesting that naïve Munc13-2 mouse BLMS is elevated by increased mucin stores. We conclude that BLMS is, [i] a major component of mucin secretion in the lung, [ii] sustained by the mechanical activity of a dynamic lung, [iii] proportional to levels of mucin stores, and [iv] regulated differentially from agonist-induced mucin

  4. In vitro mechanical stimulation facilitates stress dissipation and sealing ability at the conventional glass ionomer cement-dentin interface.

    Science.gov (United States)

    Toledano, Manuel; Osorio, Raquel; Osorio, Estrella; Cabello, Inmaculada; Toledano-Osorio, Manuel; Aguilera, Fátima S

    2018-06-01

    The aim of this study was to evaluate the induced changes in the chemical and mechanical performance at the glass-ionomer cement-dentin interface after mechanical load application. A conventional glass-ionomer cement (GIC) (Ketac Bond), and a resin-modified glass-ionomer cement (RMGIC) (Vitrebond Plus) were used. Bonded interfaces were stored in simulated body fluid, and then tested or submitted to the mechanical loading challenge. Different loading waveforms were applied: No cycling, 24 h cycled in sine or loaded in sustained hold waveforms. The cement-dentin interface was evaluated using a nano-dynamic mechanical analysis, estimating the complex modulus and tan δ. Atomic Force Microscopy (AFM) imaging, Raman analysis and dye assisted confocal microscopy evaluation (CLSM) were also performed. The complex modulus was lower and tan delta was higher at interfaces promoted with the GIC if compared to the RMGIC unloaded. The conventional GIC attained evident reduction of nanoleakage. Mechanical loading favored remineralization and promoted higher complex modulus and lower tan delta values at interfaces with RMGIC, where porosity, micropermeability and nanoleakage were more abundant. Mechanical stimuli diminished the resistance to deformation and increased the stored energy at the GIC-dentin interface. The conventional GIC induced less porosity and nanoleakage than RMGIC. The RMGIC increased nanoleakage at the porous interface, and dye sorption appeared within the cement. Both cements created amorphous and crystalline apatites at the interface depending on the type of mechanical loading. Remineralization, lower stress concentration and resistance to deformation after mechanical loading improved the sealing of the GIC-dentin interface. In vitro oral function will favor high levels of accumulated energy and permits micropermeability at the RMGIC-dentin interface which will become remineralized. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Stress

    DEFF Research Database (Denmark)

    Keller, Hanne Dauer

    2015-01-01

    Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....

  6. Stress !!!

    OpenAIRE

    Fledderus, M.

    2012-01-01

    Twee op de vijf UT-studenten hebben last van ernstige studiestress, zo erg zelfs dat het ze in hun privéleven belemmert. Die cijfers komen overeen met het landelijk beeld van stress onder studenten. Samen met 14 andere universiteits- en hogeschoolbladen enquêteerde UT Nieuws bijna 5500 studenten. Opvallend is dat mannelijke studenten uit Twente zich veel minder druk lijken te maken over hun studie. Onder vrouwen ligt de stress juist erg hoog ten opzichte van het landelijk gemiddelde.

  7. Lowered quality of life in mood disorders is associated with increased neuro-oxidative stress and basal thyroid-stimulating hormone levels and use of anticonvulsant mood stabilizers.

    Science.gov (United States)

    Nunes, Caroline Sampaio; Maes, Michael; Roomruangwong, Chutima; Moraes, Juliana Brum; Bonifacio, Kamila Landucci; Vargas, Heber Odebrecht; Barbosa, Decio Sabbatini; Anderson, George; de Melo, Luiz Gustavo Piccoli; Drozdstoj, Stoyanov; Moreira, Estefania; Carvalho, André F; Nunes, Sandra Odebrecht Vargas

    2018-04-17

    Major affective disorders including bipolar disorder (BD) and major depressive disorder (MDD) are associated with impaired health-related quality of life (HRQoL). Oxidative stress and subtle thyroid abnormalities may play a pathophysiological role in both disorders. Thus, the current study was performed to examine whether neuro-oxidative biomarkers and thyroid-stimulating hormone (TSH) levels could predict HRQoL in BD and MDD. This cross-sectional study enrolled 68 BD and 37 MDD patients and 66 healthy controls. The World Health Organization (WHO) QoL-BREF scale was used to assess 4 QoL subdomains. Peripheral blood malondialdehyde (MDA), advanced oxidation protein products, paraoxonaxe/CMPAase activity, a composite index of nitro-oxidative stress, and basal TSH were measured. In the total WHOQoL score, 17.3% of the variance was explained by increased advanced oxidation protein products and TSH levels and lowered CMPAase activity and male gender. Physical HRQoL (14.4%) was associated with increased MDA and TSH levels and lowered CMPAase activity. Social relations HRQoL (17.4%) was predicted by higher nitro-oxidative index and TSH values, while mental and environment HRQoL were independently predicted by CMPAase activity. Finally, 73.0% of the variance in total HRQoL was explained by severity of depressive symptoms, use of anticonvulsants, lower income, early lifetime emotional neglect, MDA levels, the presence of mood disorders, and suicidal ideation. These data show that lowered HRQoL in major affective disorders could at least in part result from the effects of lipid peroxidation, protein oxidation, lowered antioxidant enzyme activities, and higher levels of TSH. © 2018 John Wiley & Sons, Ltd.

  8. Effect of extracorporeal magnetic energy stimulation on bothersome lower urinary tract symptoms and quality of life in female patients with stress urinary incontinence and overactive bladder.

    Science.gov (United States)

    Lo, Tsia-Shu; Tseng, Ling-Hong; Lin, Yi-Hao; Liang, Ching-Chung; Lu, Ching-Yi; Pue, Leng Boi

    2013-11-01

    The aim of this study was to investigate the efficacy of extracorporeal magnetic stimulation (EMS) for the treatment of bothersome and severe symptoms of stress urinary incontinence (SUI) and overactive bladder syndrome (OAB) in female patients. A retrospective review was conducted on patients with SUI and OAB who were referred to EMS therapy. Successful treatment for the bothersome symptoms of OAB and SUI was defined as score ≤1 for questions 2 and 3 on the Urodynamic Distress Inventory-6. The objective cure of SUI and OAB was defined as no urinary leakage during the cough stress test and any urgency, urge incontinence and voiding frequency of less than eight times per 24 h based on the 3-day bladder diary, after the 9 weeks of treatment, respectively. Ninety-three patients with SUI or OAB underwent a 9-week course of EMS at 20 min twice weekly. Seventy-two (77%) patients completed EMS treatment. Geographical factor and poor economic status were two main factors for dropout. A total of 94.1% (32 of 34) and 86.8% (33 of 38) of subjects had successful treatment for the bothersome symptoms of OAB and SUI, respectively. In contrast, the cure rate for OAB and SUI was only 61.7% and 42.1%, respectively. There was also a significant improvement in both Urogenital Distress Inventory Short Form (bothersome on lower urinary tract symptoms) and the Incontinence Impact Questionnaire Short Form (quality of life) total score in both groups after EMS. EMS is a safe and effective alternative method for treating SUI and OAB. Further studies are needed to evaluate the long-term efficacy. © 2013 The Authors. Journal of Obstetrics and Gynaecology Research © 2013 Japan Society of Obstetrics and Gynecology.

  9. Effects of forced swimming stress on thyroid function, pituitary thyroid-stimulating hormone and hypothalamus thyrotropin releasing hormone expression in adrenalectomy Wistar rats.

    Science.gov (United States)

    Sun, Qiuyan; Liu, Aihua; Ma, Yanan; Wang, Anyi; Guo, Xinhong; Teng, Weiping; Jiang, Yaqiu

    2016-11-01

    In order to study the impact that is imposed on the hypothalamic-pituitary-thyroid (HPT) axis of adrenalectomy male Wistar rats by stress caused by swimming, the blood level of triiodothyronine (T3), thyroxine (T4) and thyroid-stimulating hormone (TSH), the expression of TSHβ mRNA at the pituitary and thyrotropin releasing hormone (TRH) expression at the paraventricular nucleus (PVN) were measured. A total of 50 male Wistar rats of 6-8 weeks of age and with an average weight of 190-210 grams were randomly divided into the following two groups: The surgical (without adrenal glands) and non-surgical (adrenalectomy) group. These two groups were then divided into the following five groups, according to the time delay of sacrifice following forced swim (10 min, 2 h, 12 h and 24 h) and control (not subjected to swimming) groups. A bilateral adrenalectomy animal model was established. Serum TSH in the blood was measurement by chemiluminescent immunoassay, and cerebrum tissue were excised for the measurement of TRH expression using an immunohistochemistry assay. In addition, pituitaries were excised for the extraction of total RNA. Finally, reverse transcription-quantitative polymerase chain reaction was performed for quantitation of TSHβ. Following swimming, the serum T3, T4 and TSH, the TSHβ mRNA expression levels in the pituitary and the TRH expression in the PVN of the surgical group were gradually increased. In the non-surgical group, no significant differences were observed in the serum T3, T4 and TSH levels compared with the control group. The TSHβ mRNA expression at the pituitary showed a similar result. Furthermore, the TRH expression at PVN was gradually increased and stress from swimming could increase the blood T4, T3 and TSH levels, TSHβ mRNA expression at the pituitary and TRH expression at the PVN in adrenalectomy Wistar rats. Moreover, the index in the surgical group changed significantly compared with the non-surgical group. In conclusion, the results

  10. Stress !!!

    NARCIS (Netherlands)

    Fledderus, M.

    2012-01-01

    Twee op de vijf UT-studenten hebben last van ernstige studiestress, zo erg zelfs dat het ze in hun privéleven belemmert. Die cijfers komen overeen met het landelijk beeld van stress onder studenten. Samen met 14 andere universiteits- en hogeschoolbladen enquêteerde UT Nieuws bijna 5500 studenten.

  11. Hypoxic stress simultaneously stimulates vascular endothelial growth factor via hypoxia-inducible factor-1α and inhibits stromal cell-derived factor-1 in human endometrial stromal cells.

    Science.gov (United States)

    Tsuzuki, Tomoko; Okada, Hidetaka; Cho, Hisayuu; Tsuji, Shoko; Nishigaki, Akemi; Yasuda, Katsuhiko; Kanzaki, Hideharu

    2012-02-01

    Hypoxia of the human endometrium is a physiologic event occurring during the perimenstrual period and the local stimulus for angiogenesis. The aim of this study was to investigate the effects of hypoxic stress on the regulation of vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1 (SDF-1/CXCL12), and the potential role of hypoxia-inducible factor-1α (HIF-1α) in the endometrium. Human endometrial stromal cells (ESCs, n= 22 samples) were studied in vitro. ESCs were cultured under hypoxic and normoxic conditions and treated with cobalt chloride (CoCl₂; a hypoxia-mimicking agent) and/or echinomycin, a small-molecule inhibitor of HIF-1α activity. The mRNA levels and production of VEGF and SDF-1 were assessed by real-time PCR and ELISA, respectively. The HIF-1α protein levels were measured using western blot analysis. Hypoxia simultaneously induced the expression of mRNA and production of VEGF and attenuated the expression and production of SDF-1 from ESCs in a time-dependent manner. Similar changes were observed in the ESCs after stimulation with CoCl₂ in a dose-dependent manner. CoCl₂ significantly induced the expression of HIF-1α protein, and its highest expression was observed at 6 h. Echinomycin inhibited hypoxia-induced VEGF production without affecting the HIF-1α protein level and cell toxicity and had no effect on SDF-1 secretion (P hypoxic conditions that could influence angiogenesis in the human endometrium.

  12. Daily maternal separations during stress hyporesponsive period decrease the thresholds of panic-like behaviors to electrical stimulation of the dorsal periaqueductal gray of the adult rat.

    Science.gov (United States)

    Borges-Aguiar, Ana Cristina; Schauffer, Luana Zanoni; de Kloet, Edo Ronald; Schenberg, Luiz Carlos

    2018-05-15

    The present study examined whether early life maternal separation (MS), a model of childhood separation anxiety, predisposes to panic at adulthood. For this purpose, male pups were submitted to 3-h daily maternal separations along postnatal (PN) days of either the 'stress hyporesponsive period' (SHRP) from PN4 to PN14 (MS11) or throughout lactation from PN2 to PN21 (MS20). Pups were further reunited to conscious (CM) or anesthetized (AM) mothers to assess the effect of mother-pup interaction upon reunion. Controls were subjected to brief handling (15 s) once a day throughout lactation (BH20). As adults (PN60), rats were tested for the thresholds to evoke panic-like behaviors upon electrical stimulation of dorsal periaqueductal gray matter and exposed to an elevated plus-maze, an open-field, a forced swim and a sucrose preference test. A factor analysis was also performed to gain insight into the meaning of behavioral tests. MS11-CM rather than MS20-CM rats showed enhanced panic responses and reductions in both swimming and sucrose preference. Panic facilitations were less intense in mother-neglected rats. Although MS did not affect anxiety, MS11-AM showed robust reductions of defecation in an open-field. Factor analysis singled out anxiety, hedonia, exploration, coping and gut activity. Although sucrose preference and coping loaded on separate factors, appetite (adult weight) correlated with active coping in both forced swim and open-field (central area exploration). Concluding, whereas 3h-daily maternal separations during SHRP increased rat's susceptibility to experimental panic attacks, separations throughout lactation had no effects on panic and enhanced active coping. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Supplementation with linoleic acid-rich soybean oil stimulates macrophage foam cell formation via increased oxidative stress and diacylglycerol acyltransferase1-mediated triglyceride biosynthesis.

    Science.gov (United States)

    Rom, Oren; Jeries, Helana; Hayek, Tony; Aviram, Michael

    2017-01-02

    During the last decades there has been a staggering rise in human consumption of soybean oil (SO) and its major polyunsaturated fatty acid linoleic acid (LA). The role of SO or LA in cardiovascular diseases is highly controversial, and their impact on macrophage foam cell formation, the hallmark of early atherogenesis, is unclear. To investigate the effects of high SO or LA intake on macrophage lipid metabolism and the related mechanisms of action, C57BL/6 mice were orally supplemented with increasing levels of SO-based emulsion or equivalent levels of purified LA for 1 month, followed by analyses of lipid accumulation and peroxidation in aortas, serum and in peritoneal macrophages (MPM) of the mice. Lipid peroxidation and triglyceride mass in aortas from SO or LA supplemented mice were dose-dependently and significantly increased. In MPM from SO or LA supplemented mice, lipid peroxides were significantly increased and a marked accumulation of cellular triglycerides was found in accordance with enhanced triglyceride biosynthesis rate and overexpression of diacylglycerol acyltransferase1 (DGAT1), the key enzyme in triglyceride biosynthesis. In cultured J774A.1 macrophages treated with SO or LA, triglyceride accumulated via increased oxidative stress and a p38 mitogen-activated protein kinase (MAPK)-mediated overexpression of DGAT1. Accordingly, anti-oxidants (pomegranate polyphenols), inhibition of p38 MAPK (by SB202190) or DGAT1 (by oleanolic acid), all significantly attenuated SO or LA-induced macrophage triglyceride accumulation. These findings reveal novel mechanisms by which supplementation with SO or LA stimulate macrophage foam cell formation, suggesting a pro-atherogenic role for overconsumption of SO or LA. © 2016 BioFactors, 43(1):100-116, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  14. Stress.

    Science.gov (United States)

    Chambers, David W

    2008-01-01

    We all experience stress as a regular, and sometimes damaging and sometimes useful, part of our daily lives. In our normal ups and downs, we have our share of exhaustion, despondency, and outrage--matched with their corresponding positive moods. But burnout and workaholism are different. They are chronic, dysfunctional, self-reinforcing, life-shortening habits. Dentists, nurses, teachers, ministers, social workers, and entertainers are especially susceptible to burnout; not because they are hard-working professionals (they tend to be), but because they are caring perfectionists who share control for the success of what they do with others and perform under the scrutiny of their colleagues (they tend to). Workaholics are also trapped in self-sealing cycles, but the elements are ever-receding visions of control and using constant activity as a barrier against facing reality. This essay explores the symptoms, mechanisms, causes, and successful coping strategies for burnout and workaholism. It also takes a look at the general stress response on the physiological level and at some of the damage American society inflicts on itself.

  15. Relationship between levels of thyroid stimulating hormone, age, and gender, with symptoms of depression among patients with thyroid disorders as measured by the Depression Anxiety Stress Scale 21 (DASS-21).

    Science.gov (United States)

    Saidi, Sanisah; Iliani Jaafar, Siti Nur; Daud, Azlina; Musa, Ramli; Nik Ahmad, Nik Noor Fatnoon

    2018-02-01

    The aim of this study was to investigate the correlation between levels of depression symptoms and age, thyroid-stimulating hormone levels, and stressful life events of the participants. Patients above 18 years old, with any thyroid disorders, and without psychiatric disorders were included in this study. All participants completed the Depression Anxiety Stress Scale 21 (DASS-21). The depression symptom score was calculated and interpreted as follows: less than 9: no depression; between 10 and 13: mild depression; between 14 and 20: moderate depression; between 21 and 27: severe depression, and more than 28: extremely severe depression. The total number of participants in this study was 199. There was no correlation between age, thyroid stimulating hormone, and the DASS score. There was also no significant difference in the DASS-21 score between genders. However, there was a positive correlation between depression symptoms and stressful life events (r=0.201, n=199, p < 0.05). These findings would suggest that increased depression symptom scores correlate with increased stressful life events. A larger study should be undertaken to confirm these findings. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  16. The modulatory role of alpha-melanocyte stimulating hormone administered spinally in the regulation of blood glucose level in d-glucose-fed and restraint stress mouse models.

    Science.gov (United States)

    Sim, Yun-Beom; Park, Soo-Hyun; Kim, Sung-Su; Lim, Su-Min; Jung, Jun-Sub; Suh, Hong-Won

    2014-08-01

    Alpha-melanocyte stimulating hormone (α-MSH) is known as a regulator of the blood glucose homeostasis and food intake. In the present study, the possible roles of α-MSH located in the spinal cord in the regulation of the blood glucose level were investigated in d-glucose-fed and immobilization stress (IMO) mouse models. We found in the present study that intrathecal (i.t.) injection with α-MSH alone did not affect the blood glucose level. However, i.t. administration with α-MSH reduced the blood glucose level in d-glucose-fed model. The plasma insulin level was increased in d-glucose-fed model and was further increased by α-MSH, whereas α-MSH did not affect plasma corticosterone level in d-glucose-fed model. In addition, i.t. administration with glucagon alone enhanced blood glucose level and, i.t. injection with glucagon also increased the blood glucose level in d-glucose-fed model. In contrasted to results observed in d-glucose-fed model, i.t. treatment with α-MSH caused enhancement of the blood glucose level in IMO model. The plasma insulin level was increased in IMO model. The increased plasma insulin level by IMO was reduced by i.t. treatment with α-MSH, whereas i.t. pretreatment with α-MSH did not affect plasma corticosterone level in IMO model. Taken together, although spinally located α-MSH itself does not alter the blood glucose level, our results suggest that the activation of α-MSH system located in the spinal cord play important modulatory roles for the reduction of the blood glucose level in d-glucose fed model whereas α-MSH is responsible for the up-regulation of the blood glucose level in IMO model. The enhancement of insulin release may be responsible for modulatory action of α-MSH in down-regulation of the blood glucose in d-glucose fed model whereas reduction of insulin release may be responsible for modulatory action of α-MSH in up-regulation of the blood glucose in IMO model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Chronic electroconvulsive stimulation but not chronic restraint stress modulates mRNA expression of voltage-dependent potassium channels Kv7.2 and Kv11.1 in the rat piriform cortex

    DEFF Research Database (Denmark)

    Hjæresen, Marie-Louise; Hageman, Ida; Wörtwein, Gitta

    2008-01-01

    The mechanisms by which stress and electroconvulsive therapy exert opposite effects on the course of major depression are not known. Potential candidates might include the voltage-dependent potassium channels. Potassium channels play an important role in maintaining the resting membrane potential...... and controlling neuronal excitability. To explore this hypothesis, we examined the effects of one or several electroconvulsive stimulations and chronic restraint stress (6 h/day for 21 days) on the expression of voltage-dependent potassium channel Kv7.2, Kv11.1, and Kv11.3 mRNA in the rat brain using in situ...... hybridization. Repeated, but not acute, electroconvulsive stimulation increased Kv7.2 and Kv11.1 mRNA levels in the piriform cortex. In contrast, restraint stress had no significant effect on mRNA expression of Kv7.2, Kv11.1, or Kv11.3 in any of the brain regions examined. Thus, it appears that the investigated...

  18. Estimating the Reactivation Potential of Pre-Existing Fractures in Subsurface Granitoids from Outcrop Analogues and in-Situ Stress Modeling: Implications for EGS Reservoir Stimulation with an Example from Thuringia (Central Germany)

    Science.gov (United States)

    Kasch, N.; Ustaszewski, K. M.; Siegburg, M.; Navabpour, P.; Hesse, G.

    2014-12-01

    The Mid-German Crystalline Rise (MGCR) in Thuringia (central Germany) is part of the European Variscan orogen and hosts large extents of Visean granites (c. 350 Ma), locally overlain by up to 3 km of Early Permian to Mid-Triassic volcanic and sedimentary rocks. A geothermal gradient of 36°C km-1 suggests that such subsurface granites form an economically viable hot dry rock reservoir at > 4 km depth. In order to assess the likelihood of reactivating any pre-existing fractures during hydraulic reservoir stimulation, slip and dilation tendency analyses (Morris et al. 1996) were carried out. For this purpose, we determined orientations of pre-existing fractures in 14 granite exposures along the southern border fault of an MGCR basement high. Additionally, the strike of 192 Permian magmatic dikes affecting the granite was considered. This analysis revealed a prevalence of NW-SE-striking fractures (mainly joints, extension veins, dikes and subordinately brittle faults) with a maximum at 030/70 (dip azimuth/dip). Borehole data and earthquake focal mechanisms reveal a maximum horizontal stress SHmax trending N150°E and a strike-slip regime. Effective in-situ stress magnitudes at 4.5 km depth, assuming hydrostatic conditions and frictional equilibrium along pre-existing fractures with a friction coefficient of 0.85 yielded 230 and 110 MPa for SHmax and Shmin, respectively. In this stress field, fractures with the prevailing orientations show a high tendency of becoming reactivated as dextral strike-slip faults if stimulated hydraulically. To ensure that a stimulation well creates fluid connectivity on a reservoir volume as large as possible rather than dissipating fluids along existing fractures, it should follow a trajectory at the highest possible angle to the orientation of prevailing fractures, i.e. subhorizontal and NE-SW-oriented. References: Morris, A., D. A. Ferrill, and D. B. Henderson (1996), Slip-tendency analysis and fault reactivation, Geology, 24, 275-278.

  19. growth stimulant

    African Journals Online (AJOL)

    Effects of timing and duration of supplementation of LIVFIT VET ® (growth stimulant) as substitute for fish meal on the growth performance, haematology and clinical enzymes concentration of growing pigs.

  20. Calpain-Mediated positional information directs cell wall orientation to sustain plant stem cell activity, growth and development

    Science.gov (United States)

    Eukaryotic development and stem cell control depend on the integration of cell positional sensing with cell cycle control and cell wall positioning, yet few factors that directly link these events are known. The DEFECTIVE KERNEL1 (DEK1) gene encoding the unique plant calpain protein is fundamental f...

  1. Lesions of entorhinal cortex produce a calpain-mediated degradation of brain spectrin in dentate gyrus. I. Biochemical studies.

    Science.gov (United States)

    Seubert, P; Ivy, G; Larson, J; Lee, J; Shahi, K; Baudry, M; Lynch, G

    1988-09-06

    Lesions of the rat entorhinal cortex cause extensive synaptic restructuring and perturbation of calcium regulation in the dentate gyrus of hippocampus. Calpain is a calcium-activated protease which has been implicated in degenerative phenomena in muscles and in peripheral nerves. In addition, calpain degrades several major structural neuronal proteins and has been proposed to play a critical role in the morphological changes observed following deafferentation. In this report we present evidence that lesions of the entorhinal cortex produce a marked increase in the breakdown of brain spectrin, a substrate for calpain, in the dentate gyrus. Two lines of evidence indicate that this effect is due to calpain activation: (i) the spectrin breakdown products observed following the lesion are indistinguishable from calpain-generated spectrin fragments in vitro; and (ii) their appearance can be reduced by prior intraventricular in fusion of leupeptin, a calpain inhibitor. Levels of spectrin breakdown products are increased as early as 4 h post-lesion, reach maximal values at 2 days, and remain above normal to some degree for at least 27 days. In addition, a small but significant increase in spectrin proteolysis is also observed in the hippocampus contralateral to the lesioned side in the first week postlesion. At 2 days postlesion the total spectrin immunoreactivity (native polypeptide plus breakdown products) increases by 40%, suggesting that denervation of the dentate gyrus produces not only an increased rate of spectrin degradation but also an increased rate of spectrin synthesis. These results indicate that calpain activation and spectrin degradation are early biochemical events following deafferentation and might well participate in the remodelling of postsynaptic structures. Finally, the magnitude of the observed effects as well as the stable nature of the breakdown products provide a sensitive assay for neuronal pathology.

  2. Attention-Deficit/Hyperactivity Disorder-Specific Stimulant Misuse, Mood, Anxiety, and Stress in College-Age Women at High Risk for or with Eating Disorders

    Science.gov (United States)

    Gibbs, Elise L.; Kass, Andrea E.; Eichen, Dawn M.; Fitzsimmons-Craft, Ellen E.; Trockel, Mickey; Wilfley, Denise E.; Taylor, C. Barr

    2016-01-01

    Objective: To examine the misuse of attention-deficit/hyperactivity disorder (ADHD)-specific stimulants in a college population at high risk for or with clinical or subclinical eating disorders. Participants: Four hundred forty-eight college-age women aged 18-25 at high risk for or with a clinical or subclinical eating disorder. Methods:…

  3. JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks

    Directory of Open Access Journals (Sweden)

    Michael Van Meter

    2016-09-01

    Full Text Available The accumulation of damage caused by oxidative stress has been linked to aging and to the etiology of numerous age-related diseases. The longevity gene, sirtuin 6 (SIRT6, promotes genome stability by facilitating DNA repair, especially under oxidative stress conditions. Here we uncover the mechanism by which SIRT6 is activated by oxidative stress to promote DNA double-strand break (DSB repair. We show that the stress-activated protein kinase, c-Jun N-terminal kinase (JNK, phosphorylates SIRT6 on serine 10 in response to oxidative stress. This post-translational modification facilitates the mobilization of SIRT6 to DNA damage sites and is required for efficient recruitment of poly (ADP-ribose polymerase 1 (PARP1 to DNA break sites and for efficient repair of DSBs. Our results demonstrate a post-translational mechanism regulating SIRT6, and they provide the link between oxidative stress signaling and DNA repair pathways that may be critical for hormetic response and longevity assurance.

  4. Nerve growth factor (NGF) immunoreactive neurons in the juvenile rat hippocampus: response to acute and long-term high-light open-field (HL-OF) or forced swim (FS) stress stimulation.

    Science.gov (United States)

    Badowska-Szalewska, E; Spodnik, E; Ludkiewicz, B; Klejbor, I; Moryś, J

    2011-12-29

    This study aimed at examining and comparing the influence of two different stress stimuli on the density (number of cells/mm²) of nerve growth factor (NGF) containing neurons in the hippocampal CA1 and CA3 pyramidal cell layers and the dentate gyrus (DG) granule cell layer in juvenile rats (P28; P-postnatal day). The high-light open-field (HL-OF) test and forced swim (FS) test were employed to investigate the effects of a single, 15-min acute exposure and repeated (15 min daily for 21 days) long-term exposure to stress. In order to detect NGF-ir neurons, immunohistochemical (-ir) techniques were used. In comparison with nonstressed animals, acute and long-term HL-OF or FS stimulation resulted in a marked increase (P<0.001) in the density of NGF-ir containing cells in all the hippocampal structures. The frequency of stress application (acute vs. long-term), however, did not have a substantial impact on the studied parameter, with the exception of the CA3 sector, where a decreased density (P<0.001) of NGF-ir neurons was observed after long-term exposure to FS. It may be concluded that a rise in the density of NGF-ir neurons in the juvenile rat hippocampus after exposure to HL-OF or FS stressors could have affected the activity of the hypothalamic-pituitary-adrenocortical (HPA) stress axis. Prolonged HL-OF or FS stress was probably aggravating enough not to trigger the habituation process. The type of stressor applied (HL-OF vs. FS) was not essentially a factor determining the density of NGF-ir cells in the hippocampus. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Brain Stimulation Therapies

    Science.gov (United States)

    ... Magnetic Seizure Therapy Deep Brain Stimulation Additional Resources Brain Stimulation Therapies Overview Brain stimulation therapies can play ... for a shorter recovery time than ECT Deep Brain Stimulation Deep brain stimulation (DBS) was first developed ...

  6. On the nanotoxicity of PAMAM dendrimers: Superfect® stimulates the EGFR-ERK1/2 signal transduction pathway via an oxidative stress-dependent mechanism in HEK 293 cells.

    Science.gov (United States)

    Akhtar, Saghir; Chandrasekhar, Bindu; Attur, Sreeja; Yousif, Mariam H M; Benter, Ibrahim F

    2013-05-01

    Polyamidoamine (PAMAM) dendrimers are cationic branch-like macromolecules that may serve as drug delivery systems for gene-based therapies such as RNA interference. For their safe use in the clinic, they should ideally only enhance drug delivery to target tissues and exhibit no adverse effects. However, little is known about their toxicological profiles in terms of their interactions with cellular signal transduction pathways such as the epidermal growth factor receptor (EGFR). The EGFR is an important signaling cascade that regulates cell growth, differentiation, migration, survival and apoptosis. Here, we investigated the impact of naked, unmodified Superfect (SF), a commercially available generation 6 PAMAM dendrimer, on the epidermal growth factor receptor (EGFR) tyrosine kinase-extracellular-regulated kinase 1/2 (ERK1/2) signaling pathway in human embryonic kidney (HEK 293) cells. At concentrations routinely used for transfection, SF exhibited time and dose-dependent stimulation of EGFR and ERK1/2 phosphorylation whereas AG1478, a selective EGFR tyrosine kinase antagonist, inhibited EGFR-ERK1/2 signaling. SF-induced phosphorylation of EGFR for 1h was partly reversible upon removal of the dendrimer and examination of cells 24 later. Co-treatment of SF with epidermal growth factor (EGF) ligand resulted in greater EGFR stimulation than either agent alone implying that the stimulatory effects of SF and the ligand are synergistic. Dendrimer-induced stimulation of EGFR-ERK1/2 signaling could be attenuated by the antioxidants apocynin, catalase and tempol implying that an oxidative stress dependent mechanism was involved. These results show for the first time that PAMAM dendrimers, aside from their ability to improve drug delivery, can modulate the important EGFR-ERK1/2 cellular signal transduction pathway - a novel finding that may have a bearing on their safe application as drug delivery systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Melatonin-Stimulated Triacylglycerol Breakdown and Energy Turnover under Salinity Stress Contributes to the Maintenance of Plasma Membrane H+-ATPase Activity and K+/Na+ Homeostasis in Sweet Potato.

    Science.gov (United States)

    Yu, Yicheng; Wang, Aimin; Li, Xiang; Kou, Meng; Wang, Wenjun; Chen, Xianyang; Xu, Tao; Zhu, Mingku; Ma, Daifu; Li, Zongyun; Sun, Jian

    2018-01-01

    Melatonin (MT) is a multifunctional molecule in animals and plants and is involved in defense against salinity stress in various plant species. In this study, MT pretreatment was simultaneously applied to the roots and leaves of sweet potato seedlings [ Ipomoea batatas (L.) Lam.], which is an important food and industry crop worldwide, followed by treatment of 150 mM NaCl. The roles of MT in mediating K + /Na + homeostasis and lipid metabolism in salinized sweet potato were investigated. Exogenous MT enhanced the resistance to NaCl and improved K + /Na + homeostasis in sweet potato seedlings as indicated by the low reduced K + content in tissues and low accumulation of Na + content in the shoot. Electrophysiological experiments revealed that exogenous MT significantly suppressed NaCl-induced K + efflux in sweet potato roots and mesophyll tissues. Further experiments showed that MT enhanced the plasma membrane (PM) H + -ATPase activity and intracellular adenosine triphosphate (ATP) level in the roots and leaves of salinized sweet potato. Lipidomic profiling revealed that exogenous MT completely prevented salt-induced triacylglycerol (TAG) accumulation in the leaves. In addition, MT upregulated the expression of genes related to TAG breakdown, fatty acid (FA) β-oxidation, and energy turnover. Chemical inhibition of the β-oxidation pathway led to drastic accumulation of lipid droplets in the vegetative tissues of NaCl-stressed sweet potato and simultaneously disrupted the MT-stimulated energy state, PM H + -ATPase activity, and K + /Na + homeostasis. Results revealed that exogenous MT stimulated TAG breakdown, FA β-oxidation, and energy turnover under salinity conditions, thereby contributing to the maintenance of PM H + -ATPase activity and K + /Na + homeostasis in sweet potato.

  8. Bifunctional role of ephrin A1-Eph system in stimulating cell proliferation and protecting cells from cell death through the attenuation of ER stress and inflammatory responses in bovine mammary epithelial cells.

    Science.gov (United States)

    Kang, Minkyung; Jeong, Wooyoung; Bae, Hyocheol; Lim, Whasun; Bazer, Fuller W; Song, Gwonhwa

    2018-03-01

    Structural and functional development of the mammary gland is constant in the mammary gland life cycle. Eph receptors and their ligands, ephrins, control events through cell-to-cell interactions during embryonic development, and adult tissue homeostasis; however, little information on participation of ephrin A1, a representative ligand of the Eph receptor, in the development and function of normal mammary glands is known. In this study, we demonstrated functional effects of the ephrin A1-Eph system and mechanisms of its action on bovine mammary epithelial (MAC-T) cells. The in vitro cultured MAC-T cells expressed the ephrin A1 ligand and EphA1, A2, A4, A7, and A8 among the eight members of the Eph A family. Our results revealed that ephrin A1 induced MAC-T cell cycle progression and stimulated cell proliferation with abundant expression of nucleic PCNA and cyclin D1 proteins. Additionally, ephrin A1 induced activation of intracellular signaling molecules involved in PI3 K/AKT and MAPK signaling, and the proliferation-stimulating effect of ephrin A1 was mediated by activation of these pathways. Furthermore, ephrin A1 influenced expression and activation of various ER stress-related proteins and protected MAC-T cells from stress-induced cell death. Finally, ephrin A1 alleviated LPS-induced cell death through down-regulation of inflammatory cytokines. In conclusion, the results of this study suggest that the Eph A-ephrin A1 system is a positive factor in the increase and maintenance of epithelial cells in mammary glands of cows; the signaling system contributes to development, remodeling, and functionality of normal mammary glands and could overcome mastitis in cows and other mammals. © 2017 Wiley Periodicals, Inc.

  9. Melatonin-Stimulated Triacylglycerol Breakdown and Energy Turnover under Salinity Stress Contributes to the Maintenance of Plasma Membrane H+–ATPase Activity and K+/Na+ Homeostasis in Sweet Potato

    Directory of Open Access Journals (Sweden)

    Yicheng Yu

    2018-02-01

    Full Text Available Melatonin (MT is a multifunctional molecule in animals and plants and is involved in defense against salinity stress in various plant species. In this study, MT pretreatment was simultaneously applied to the roots and leaves of sweet potato seedlings [Ipomoea batatas (L. Lam.], which is an important food and industry crop worldwide, followed by treatment of 150 mM NaCl. The roles of MT in mediating K+/Na+ homeostasis and lipid metabolism in salinized sweet potato were investigated. Exogenous MT enhanced the resistance to NaCl and improved K+/Na+ homeostasis in sweet potato seedlings as indicated by the low reduced K+ content in tissues and low accumulation of Na+ content in the shoot. Electrophysiological experiments revealed that exogenous MT significantly suppressed NaCl-induced K+ efflux in sweet potato roots and mesophyll tissues. Further experiments showed that MT enhanced the plasma membrane (PM H+–ATPase activity and intracellular adenosine triphosphate (ATP level in the roots and leaves of salinized sweet potato. Lipidomic profiling revealed that exogenous MT completely prevented salt-induced triacylglycerol (TAG accumulation in the leaves. In addition, MT upregulated the expression of genes related to TAG breakdown, fatty acid (FA β-oxidation, and energy turnover. Chemical inhibition of the β-oxidation pathway led to drastic accumulation of lipid droplets in the vegetative tissues of NaCl-stressed sweet potato and simultaneously disrupted the MT-stimulated energy state, PM H+–ATPase activity, and K+/Na+ homeostasis. Results revealed that exogenous MT stimulated TAG breakdown, FA β-oxidation, and energy turnover under salinity conditions, thereby contributing to the maintenance of PM H+–ATPase activity and K+/Na+ homeostasis in sweet potato.

  10. Low nitrogen stress stimulating the indole-3-acetic acid biosynthesis of Serratia sp. ZM is vital for the survival of the bacterium and its plant growth-promoting characteristic.

    Science.gov (United States)

    Ouyang, Liming; Pei, Haiyan; Xu, Zhaohui

    2017-04-01

    Serratia sp. ZM is a plant growth-promoting (PGP) bacterial strain isolated from the rhizospheric soil of Populus euphratica in northwestern China. In this study, low nitrogen supply significantly stimulated the production of indole-3-acetic acid (IAA) in Serratia sp.ZM. The inoculation of the bacterium to wheat seedlings improved plant growth compared with the uninoculated group, and the stimulating effect was more prominent under low nitrogen stress. Inactivation of the predicted key gene in the IAA biosynthesis pathway impaired IAA production and significantly hampered mutant growth in poor medium. Furthermore, the IAA-deficient mutant lost the PGP effect under either normal or low nitrogen conditions in plant experiments. This study revealed the significant impact of environmental nitrogen levels on IAA production in the PGP strain and the vital effect of IAA on resistance physiology of both the bacterium and host plant. The characteristics of Serratia sp. ZM also indicated its application potential as a biofertilizer for plants, especially those suffering from poor nitrogen soil.

  11. Protection against Ischemia-Induced Oxidative Stress Conferred by Vagal Stimulation in the Rat Heart: Involvement of the AMPK-PKC Pathway

    Directory of Open Access Journals (Sweden)

    Wei-Jin Zang

    2012-11-01

    Full Text Available Reactive oxygen species (ROS production is an important mechanism in myocardial ischemia and nicotinamide adenine dinucleotide phosphate (NADPH oxidase is one of major sources of ROS in the heart. Previous studies showed that vagus nerve stimulation (VNS is beneficial in treating ischemic heart diseases. However, the effect of VNS on ROS production remains elusive. In this study, we investigated the role of VNS onischemia-induced ROS production. Our results demonstrated that VNS alleviated the myocardial injury, attenuated the cardiac dysfunction, reserved the antioxidant enzyme activity and inhibited the formation of ROS as evidenced by the decreased NADPH oxidase (Nox activity and superoxide fluorescence intensity as well as the expression of p67phox, Rac1 and nitrotyrosine. Furthermore, VNS resulted in the phosphorylation and activation of adenosine monophosphate activated protein kinase (AMPK, which in turn led to an inactivation of Nox by protein kinase C (PKC; however, the phenomena were repressed by the administration of a muscarinic antagonist atropine. Taken together, these data indicate that VNS decreases ROS via AMPK-PKC-Nox pathway; this may have potential importance for the treatment of ischemic heart diseases.

  12. Step-wise stimulated martensitic transformations

    International Nuclear Information System (INIS)

    Airoldi, G.; Riva, G.

    1991-01-01

    NiTi alloys, widely known both for their shape memory properties and for unusual pseudoelastic behaviour, are now on the forefront attention for step-wise induced memory processes, thermal or stress stimulated. Literature results related to step-wise stimulated martensite (direct transformation) are examined and contrasted with step-wise thermal stimulated parent phase (reverse transformation). Hypothesis are given to explain the key characters of both transformations, a thermodynamic model from first principles being till now lacking

  13. Zinc rescues obesity-induced cardiac hypertrophy via stimulating metallothionein to suppress oxidative stress-activated BCL10/CARD9/p38 MAPK pathway.

    Science.gov (United States)

    Wang, Shudong; Gu, Junlian; Xu, Zheng; Zhang, Zhiguo; Bai, Tao; Xu, Jianxiang; Cai, Jun; Barnes, Gregory; Liu, Qiu-Ju; Freedman, Jonathan H; Wang, Yonggang; Liu, Quan; Zheng, Yang; Cai, Lu

    2017-06-01

    Obesity often leads to obesity-related cardiac hypertrophy (ORCH), which is suppressed by zinc-induced inactivation of p38 mitogen-activated protein kinase (p38 MAPK). In this study, we investigated the mechanisms by which zinc inactivates p38 MAPK to prevent ORCH. Mice (4-week old) were fed either high fat diet (HFD, 60% kcal fat) or normal diet (ND, 10% kcal fat) containing variable amounts of zinc (deficiency, normal and supplement) for 3 and 6 months. P38 MAPK siRNA and the p38 MAPK inhibitor SB203580 were used to suppress p38 MAPK activity in vitro and in vivo, respectively. HFD activated p38 MAPK and increased expression of B-cell lymphoma/CLL 10 (BCL10) and caspase recruitment domain family member 9 (CARD9). These responses were enhanced by zinc deficiency and attenuated by zinc supplement. Administration of SB203580 to HFD mice or specific siRNA in palmitate-treated cardiomyocytes eliminated the HFD and zinc deficiency activation of p38 MAPK, but did not significantly impact the expression of BCL10 and CARD9. In cultured cardiomyocytes, inhibition of BCL10 expression by siRNA prevented palmitate-induced increased p38 MAPK activation and atrial natriuretic peptide (ANP) expression. In contrast, inhibition of p38 MAPK prevented ANP expression, but did not affect BCL10 expression. Deletion of metallothionein abolished the protective effect of zinc on palmitate-induced up-regulation of BCL10 and phospho-p38 MAPK. HFD and zinc deficiency synergistically induce ORCH by increasing oxidative stress-mediated activation of BCL10/CARD9/p38 MAPK signalling. Zinc supplement ameliorates ORCH through activation of metallothionein to repress oxidative stress-activated BCL10 expression and p38 MAPK activation. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  14. Effect of interleukin-2 on cell proliferation, sister-chromatid exchange induction, and nuclear stress protein phosphorylation in PHA-stimulated Fischer 344 rat spleen lymphocytes: Modulation by 2-mercaptoethanol

    Energy Technology Data Exchange (ETDEWEB)

    Morris, S.M.; Aidoo, A.; Domon, O.E.; McGarrity, L.J.; Kodell, R.L.; Schol, H.M.; Hinson, W.G.; Pipkin, J.L.; Casciano, D.A. (National Center for Toxicological Research, Jefferson, AR (USA))

    1990-01-01

    The effect of interleukin-2 (IL-2) on cell proliferation, sister-chromatid exchange (SCE) frequency, and the phosphorylation of nuclear stress proteins was evaluated in phytohemagglutinin (PHA)-stimulated spleen lymphocytes isolated from Fischer 344 rats. In addition, the ability of 2-mercaptoethanol (2-ME) to modulate the induction of these biological responses was characterized. Cell proliferation, as measured by the mitotic index, increased significantly. The average generation time (AGT) did not respond to IL-2 in a concentration-dependent manner and decreased significantly. The number of SCE increased significantly from control frequencies, to frequencies of 18.5 to 21.5 SCE per cell as the concentration of IL-2 in the culture medium increased to 50 half-maximal units per ml. A reduction in SCE frequency was observed when cells were cultured with 20 {mu}M 2-ME and IL-2 compared to IL-2 alone. Three nuclear proteins, with relative molecular masses of approximately 13,000-18,000, 20,000, and 80,000, were phosphorylated in IL-2-exposed G{sub 1}-phase nuclei. Elicitation of these nuclear proteins in IL-2-exposed cells was not affected by exposure to 2-ME.

  15. Stress for Success: How to Optimize Your Performance.

    Science.gov (United States)

    Gmelch, Walter H.

    1983-01-01

    This article explores linkages between stress and effective job performance: while too much stress can lead to burnout, too little stressful stimulation can result in boredom. Generating the proper amount of stress for optimal job performance is discussed. (PP)

  16. Stress revisited: A critical evaluation of the stress concept

    NARCIS (Netherlands)

    Koolhaas, J.M.; Bartolomucci, A.; Buwalda, B.; de Boer, S.F.; Flügge, G.; Korte, S.M.; Meerloo, P.; Murison, R.; Olivier, B.; Palanza, P.; Richter-Levin, G.; Sgoifo, A.; Steimer, T.; Stiedl, O.; van Dijk, G.; Wöhr, M.; Fuchs, E.

    2011-01-01

    With the steadily increasing number of publications in the field of stress research it has become evident that the conventional usage of the stress concept bears considerable problems. The use of the term 'stress' to conditions ranging from even the mildest challenging stimulation to severely

  17. Stress revisited : a critical evaluation of the stress concept

    NARCIS (Netherlands)

    Koolhaas, J.M.; Bartolomucci, A; Buwalda, B; Flügge, G; de Boer, Sietse; Korte, S M; Meerlo, P; Murison, R; Olivier, B; Palanza, P; Richter-Levin, G; Sgoifo, A; Steimer, T; Stiedl, O; van Dijk, G; Wöhr, M; Fuchs, E

    2011-01-01

    With the steadily increasing number of publications in the field of stress research it has become evident that the conventional usage of the stress concept bears considerable problems. The use of the term 'stress' to conditions ranging from even the mildest challenging stimulation to severely

  18. Spinal cord stimulation

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007560.htm Spinal cord stimulation To use the sharing features on this page, please enable JavaScript. Spinal cord stimulation is a treatment for pain that uses ...

  19. Feldspar, Infrared Stimulated Luminescence

    DEFF Research Database (Denmark)

    Jain, Mayank

    2014-01-01

    This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars.......This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars....

  20. Growth hormone stimulation test

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003377.htm Growth hormone stimulation test To use the sharing features on this page, please enable JavaScript. The growth hormone (GH) stimulation test measures the ability of ...

  1. Stimulation of phagocytosis by sulforaphane

    International Nuclear Information System (INIS)

    Suganuma, Hiroyuki; Fahey, Jed W.; Bryan, Kelley E.; Healy, Zachary R.; Talalay, Paul

    2011-01-01

    Research highlights: → Sulforaphane stimulates the phagocytosis of RAW 264.7 macrophages under conditions of serum deprivation. → This effect does not require Nrf2-dependent induction of phase 2 genes. → Inactivation of macrophage migration inhibitory factor (MIF) by sulforaphane may be involved in stimulation of phagocytosis by sulforaphane. -- Abstract: Sulforaphane, a major isothiocyanate derived from cruciferous vegetables, protects living systems against electrophile toxicity, oxidative stress, inflammation, and radiation. A major protective mechanism is the induction of a network of endogenous cytoprotective (phase 2) genes that are regulated by transcription factor Nrf2. To obtain a more detailed understanding of the anti-inflammatory and immunomodulatory effects of sulforaphane, we evaluated its effect on the phagocytosis activity of RAW 264.7 murine macrophage-like cells by measuring the uptake of 2-μm diameter polystyrene beads. Sulforaphane raised the phagocytosis activity of RAW 264.7 cells but only in the absence or presence of low concentrations (1%) of fetal bovine serum. Higher serum concentrations depressed phagocytosis and abolished its stimulation by sulforaphane. This stimulation did not depend on the induction of Nrf2-regulated genes since it occurred in peritoneal macrophages of nrf2 -/- mice. Moreover, a potent triterpenoid inducer of Nrf2-dependent genes did not stimulate phagocytosis, whereas sulforaphane and another isothiocyanate (benzyl isothiocyanate) had comparable inducer potencies. It has been shown recently that sulforaphane is a potent and direct inactivator of macrophage migration inhibitory factor (MIF), an inflammatory cytokine. Moreover, the addition of recombinant MIF to RAW 264.7 cells attenuated phagocytosis, but sulforaphane-inactivated MIF did not affect phagocytosis. The inactivation of MIF may therefore be involved in the phagocytosis-enhancing activity of sulforaphane.

  2. Stimulation of phagocytosis by sulforaphane

    Energy Technology Data Exchange (ETDEWEB)

    Suganuma, Hiroyuki, E-mail: hsuganu1@jhmi.edu [Lewis B. and Dorothy Cullman Cancer Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 (United States); Fahey, Jed W., E-mail: jfahey@jhmi.edu [Lewis B. and Dorothy Cullman Cancer Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 (United States); Bryan, Kelley E., E-mail: kbryanm1@jhmi.edu [Lewis B. and Dorothy Cullman Cancer Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 (United States); Healy, Zachary R., E-mail: zhealy1@jhmi.edu [Lewis B. and Dorothy Cullman Cancer Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 (United States); Talalay, Paul, E-mail: ptalalay@jhmi.edu [Lewis B. and Dorothy Cullman Cancer Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 (United States)

    2011-02-04

    Research highlights: {yields} Sulforaphane stimulates the phagocytosis of RAW 264.7 macrophages under conditions of serum deprivation. {yields} This effect does not require Nrf2-dependent induction of phase 2 genes. {yields} Inactivation of macrophage migration inhibitory factor (MIF) by sulforaphane may be involved in stimulation of phagocytosis by sulforaphane. -- Abstract: Sulforaphane, a major isothiocyanate derived from cruciferous vegetables, protects living systems against electrophile toxicity, oxidative stress, inflammation, and radiation. A major protective mechanism is the induction of a network of endogenous cytoprotective (phase 2) genes that are regulated by transcription factor Nrf2. To obtain a more detailed understanding of the anti-inflammatory and immunomodulatory effects of sulforaphane, we evaluated its effect on the phagocytosis activity of RAW 264.7 murine macrophage-like cells by measuring the uptake of 2-{mu}m diameter polystyrene beads. Sulforaphane raised the phagocytosis activity of RAW 264.7 cells but only in the absence or presence of low concentrations (1%) of fetal bovine serum. Higher serum concentrations depressed phagocytosis and abolished its stimulation by sulforaphane. This stimulation did not depend on the induction of Nrf2-regulated genes since it occurred in peritoneal macrophages of nrf2{sup -/-} mice. Moreover, a potent triterpenoid inducer of Nrf2-dependent genes did not stimulate phagocytosis, whereas sulforaphane and another isothiocyanate (benzyl isothiocyanate) had comparable inducer potencies. It has been shown recently that sulforaphane is a potent and direct inactivator of macrophage migration inhibitory factor (MIF), an inflammatory cytokine. Moreover, the addition of recombinant MIF to RAW 264.7 cells attenuated phagocytosis, but sulforaphane-inactivated MIF did not affect phagocytosis. The inactivation of MIF may therefore be involved in the phagocytosis-enhancing activity of sulforaphane.

  3. Stimulation of entorhinal cortex-dentate gyrus circuitry is antidepressive.

    Science.gov (United States)

    Yun, Sanghee; Reynolds, Ryan P; Petrof, Iraklis; White, Alicia; Rivera, Phillip D; Segev, Amir; Gibson, Adam D; Suarez, Maiko; DeSalle, Matthew J; Ito, Naoki; Mukherjee, Shibani; Richardson, Devon R; Kang, Catherine E; Ahrens-Nicklas, Rebecca C; Soler, Ivan; Chetkovich, Dane M; Kourrich, Saïd; Coulter, Douglas A; Eisch, Amelia J

    2018-04-16

    Major depressive disorder (MDD) is considered a 'circuitopathy', and brain stimulation therapies hold promise for ameliorating MDD symptoms, including hippocampal dysfunction. It is unknown whether stimulation of upstream hippocampal circuitry, such as the entorhinal cortex (Ent), is antidepressive, although Ent stimulation improves learning and memory in mice and humans. Here we show that molecular targeting (Ent-specific knockdown of a psychosocial stress-induced protein) and chemogenetic stimulation of Ent neurons induce antidepressive-like effects in mice. Mechanistically, we show that Ent-stimulation-induced antidepressive-like behavior relies on the generation of new hippocampal neurons. Thus, controlled stimulation of Ent hippocampal afferents is antidepressive via increased hippocampal neurogenesis. These findings emphasize the power and potential of Ent glutamatergic afferent stimulation-previously well-known for its ability to influence learning and memory-for MDD treatment.

  4. [Transcranial magnetic stimulation].

    Science.gov (United States)

    Tormos, J M; Catalá, M D; Pascual-Leone, A

    Transcranial magnetic stimulation (TMS) permits stimulation of the cerebral cortex in humans without requiring open access to the brain and is one of the newest tools available in neuroscience. There are two main types of application: single-pulse TMS and repetitive TMS. The magnetic stimulator is composed of a series of capacitors that store the voltage necessary to generate a stimulus of the sufficient intensity of generate an electric field in the stimulation coil. The safety of TMS is supported by the considerable experience derived from studies involving electrical stimulation of the cortex in animals and humans, and also specific studies on the safety of TMS in humans. In this article we review historical and technical aspects of TMS, describe its adverse effects and how to avoid them, summarize the applications of TMS in the investigation of different cerebral functions, and discuss the possibility of using TMS for the treatment of neuropsychiatric disorders.

  5. Music acupuncture stimulation method.

    Science.gov (United States)

    Brătilă, F; Moldovan, C

    2007-01-01

    Harmonic Medicine is the model using the theory that the body rhythms synchronize to an outer rhythm applied for therapeutic purpose, can restores the energy balance in acupuncture channels and organs and the condition of well-being. The purpose of this scientific work was to demonstrate the role played by harmonic sounds in the stimulation of the Lung (LU) Meridian (Shoutaiyin Feijing) and of the Kidney (KI) Meridian (Zushaoyin Shenjing). It was used an original method that included: measurement and electronic sound stimulation of the Meridian Entry Point, measurement of Meridian Exit Point, computer data processing, bio feed-back adjustment of the music stimulation parameters. After data processing, it was found that the sound stimulation of the Lung Meridian Frequency is optimal between 122 Hz and 128 Hz, with an average of 124 Hz (87% of the subjects) and for Kidney Meridian from 118 Hz to 121 Hz, with an average of 120 Hz (67% of the subjects). The acupuncture stimulation was more intense for female subjects (> 7%) than for the male ones. We preliminarily consider that an informational resonance phenomenon can be developed between the acupuncture music stimulation frequency and the cellular dipole frequency, being a really "resonant frequency signature" of an acupoint. The harmonic generation and the electronic excitation or low-excitation status of an acupuncture point may be considered as a resonance mechanism. By this kind of acupunctural stimulation, a symphony may act and play a healer role.

  6. High frequency oscillations evoked by peripheral magnetic stimulation.

    Science.gov (United States)

    Biller, S; Simon, L; Fiedler, P; Strohmeier, D; Haueisen, J

    2011-01-01

    The analysis of somatosensory evoked potentials (SEP) and / or fields (SEF) is a well-established and important tool for investigating the functioning of the peripheral and central human nervous system. A standard technique to evoke SEPs / SEFs is the stimulation of the median nerve by using a bipolar electrical stimulus. We aim at an alternative stimulation technique enabling stimulation of deep nerve structures while reducing patient stress and error susceptibility. In the current study, we apply a commercial transcranial magnetic stimulation system for peripheral magnetic stimulation of the median nerve. We compare the results of simultaneously recorded EEG signals to prove applicability of our technique to evoke SEPs including low frequency components (LFC) as well as high frequency oscillations (HFO). Therefore, we compare amplitude, latency and time-frequency characteristics of the SEP of 14 healthy volunteers after electric and magnetic stimulation. Both low frequency components and high frequency oscillations were detected. The HFOs were superimposed onto the primary cortical response N20. Statistical analysis revealed significantly lower amplitudes and increased latencies for LFC and HFO components after magnetic stimulation. The differences indicate the inability of magnetic stimulation to elicit supramaximal responses. A psycho-perceptual evaluation showed that magnetic stimulation was less unpleasant for 12 out of the 14 volunteers. In conclusion, we showed that LFC and HFO components related to median nerve stimulation can be evoked by peripheral magnetic stimulation.

  7. Stress Management: Job Stress

    Science.gov (United States)

    Healthy Lifestyle Stress management Job stress can be all-consuming — but it doesn't have to be. Address your triggers, keep perspective and ... stress triggers, it's often helpful to improve time management skills — especially if you tend to feel overwhelmed ...

  8. Stimulation of Na{sup +} transport by stress protein and by its inhibitors by sheep maw epithelium; Stimulacia transportu Na{sup +} stresovym proteinom a jeho inhibitormi cez epitel bachora oviec

    Energy Technology Data Exchange (ETDEWEB)

    Dano, M; Galambos, M; Rosskopfova, O [Univerzita Komenskeho v Bratislave, Prirodovedecka fakulta, Katedra jadrovej chemie, 84215 Bratislava (Slovakia)

    2012-04-25

    Stress proteins - 'Heat shock proteins' (Hsp) are formed during sublethal stress and other impulses, and can play an important role in protecting the functions of sheep maw epithelium, such as transport of minerals and development of the epithelium itself. The paper is aimed at assessing the protective mechanism of Hsp originated during returning to the original state from temporary acidosis of sheep maw epithelium. The aim was to determine the activity of the Na{sup +}/H{sup +} exchanger, which was affected by the expression of Hsp70 in ruminal acidosis by the method of radioactive indication. (authors)

  9. Childhood Stress

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Childhood Stress KidsHealth / For Parents / Childhood Stress What's in this ... and feel stress to some degree. Sources of Stress Stress is a function of the demands placed ...

  10. Performance Enhancement by Brain Stimulation

    Directory of Open Access Journals (Sweden)

    Parisa Gazerani

    2017-09-01

    et al., 2017 has summarized that overall brain stimulation by some techniques including TMS and tDCS seem to speed up motor learning, and motor skills in sport activities. Considering that performance enhancement can be seen (Colzato et al., 2017, one would ask how and by which mechanism. Davis proposed that there would be two ways that brain stimulation could possibly improve sport performance (Davis, 2013. One way is to benefit from brain stimulation before performance to, for instance, reduce stress level or muscle tension or to enhance focus for a quicker action. The other way would be potential use during training for athletic performance that can eventually help athletes to learn motor skills better. Presented research results are mainly based on the experimental set up; therefore, it is important to identify whether physical and mental performance gains under experimental conditions would also be meaningful in a real world competition. To study actual gain by brain stimulation, future investigations must properly be designed, include placebo and control arms, remain blinded until after data analysis, and include objective assessments in addition to subjective outcomes. Time-course of beneficial effect in certain sport competition is not clear. It has been shown that repetitive applications of tDCS can increase the effects of stimulation (Nitsche and Paulus, 2011; but, it is not clear if this is the case for athletic performance. There is no evidence on side effects especially for long term use of these techniques. Overall, these techniques are considered non-invasive and safe (Rossi et al., 2009. Under medical application, it has been notified that some individuals are highly responders while others do not respond well. This might be the case for athletes. Additive or synergistic effects of these techniques together with other techniques or methods of performance enhancement have not yet been investigated either. Therefore, further studies are required to

  11. Facilitating Access to Emotions: Neural Signature of EMDR Stimulation

    Science.gov (United States)

    Herkt, Deborah; Tumani, Visal; Grön, Georg; Kammer, Thomas; Hofmann, Arne; Abler, Birgit

    2014-01-01

    Background Eye Movement Desensitisation and Reprocessing (EMDR) is a method in psychotherapy effective in treating symptoms of posttraumatic stress disorder. The client attends to alternating bilateral visual, auditory or sensory stimulation while confronted with emotionally disturbing material. It is thought that the bilateral stimulation as a specific element of EMDR facilitates accessing and processing of negative material while presumably creating new associative links. We hypothesized that the putatively facilitated access should be reflected in increased activation of the amygdala upon bilateral EMDR stimulation even in healthy subjects. Methods We investigated 22 healthy female university students (mean 23.5 years) with fMRI. Subjects were scanned while confronted with blocks of disgusting and neutral picture stimuli. One third of the blocks was presented without any additional stimulation, one third with bilateral simultaneous auditory stimulation, and one third with bilateral alternating auditory stimulation as used in EMDR. Results Contrasting disgusting vs. neutral picture stimuli confirmed the expected robust effect of amygdala activation for all auditory stimulation conditions. The interaction analysis with the type of auditory stimulation revealed a specific increase in activation of the right amygdala for the bilateral alternating auditory stimulation. Activation of the left dorsolateral prefrontal cortex showed the opposite effect with decreased activation. Conclusions We demonstrate first time evidence for a putative neurobiological basis of the bilateral alternating stimulation as used in the EMDR method. The increase in limbic processing along with decreased frontal activation is in line with theoretical models of how bilateral alternating stimulation could help with therapeutic reintegration of information, and present findings may pave the way for future research on EMDR in the context of posttraumatic stress disorder. PMID:25165974

  12. New York Canyon Stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Raemy, Bernard

    2012-06-21

    The New York Canyon Stimulation Project was to demonstrate the commercial application of Enhanced Geothermal System techniques in Buena Vista Valley area of Pershing County, Nevada. From October 2009 to early 2012, TGP Development Company aggressively implemented Phase I of Pre-Stimulation and Site/Wellbore readiness. This included: geological studies; water studies and analyses and procurement of initial permits for drilling. Oversubscription of water rights and lack of water needed for implementation of EGS were identified and remained primary obstacles. Despite extended efforts to find alternative solutions, the water supply circumstances could not be overcome and led TGP to determine a "No Go" decision and initiate project termination in April 2012.

  13. Vitamin E γ-Tocotrienol Inhibits Cytokine-Stimulated NF-κB Activation by Induction of Anti-Inflammatory A20 via Stress Adaptive Response Due to Modulation of Sphingolipids.

    Science.gov (United States)

    Wang, Yun; Park, Na-Young; Jang, Yumi; Ma, Averil; Jiang, Qing

    2015-07-01

    NF-κB plays a central role in pathogenesis of inflammation and cancer. Many phytochemicals, including γ-tocotrienol (γTE), a natural form of vitamin E, have been shown to inhibit NF-κB activation, but the underlying mechanism has not been identified. In this study, we show that γTE inhibited cytokine-triggered activation of NF-κB and its upstream regulator TGF-β-activated kinase-1 in murine RAW 264.7 macrophages and primary bone marrow-derived macrophages. In these cells, γTE induced upregulation of A20, an inhibitor of NF-κB. Knockout of A20 partially diminished γTE's anti-NF-κB effect, but γTE increased another NF-κB inhibitor, Cezanne, in A20(-/-) cells. In search of the reason for A20 upregulation, we found that γTE treatment increased phosphorylation of translation initiation factor 2, IκBα, and JNK, indicating induction of endoplasmic reticulum stress. Liquid chromatography-tandem mass spectrometry analyses revealed that γTE modulated sphingolipids, including enhancement of intracellular dihydroceramides, sphingoid bases in de novo synthesis of the sphingolipid pathway. Chemical inhibition of de novo sphingolipid synthesis partially reversed γTE's induction of A20 and the anti-NF-κB effect. The importance of dihydroceramide increase is further supported by the observation that C8-dihydroceramide mimicked γTE in upregulating A20, enhancing endoplasmic reticulum stress, and attenuating TNF-triggered NF-κB activation. Our study identifies a novel anti-NF-κB mechanism where A20 is induced by stress-induced adaptive response as a result of modulation of sphingolipids, and it demonstrates an immunomodulatory role of dihydrocermides. Copyright © 2015 by The American Association of Immunologists, Inc.

  14. Numerical modeling of shear stimulation in naturally fractured geothermal reservoirs

    OpenAIRE

    Ucar, Eren

    2018-01-01

    Shear-dilation-based hydraulic stimulations are conducted to create enhanced geothermal systems (EGS) from low permeable geothermal reservoirs, which are initially not amenable to energy production. Reservoir stimulations are done by injecting low-pressurized fluid into the naturally fractured formations. The injection aims to activate critically stressed fractures by decreasing frictional strength and ultimately cause a shear failure. The shear failure leads to a permanent ...

  15. Stress Management

    Science.gov (United States)

    Healthy Lifestyle Stress management By Mayo Clinic Staff Stress basics Stress is a normal psychological and physical reaction to the demands of life. ... some people's alarm systems rarely shut off. Stress management gives you a range of tools to reset ...

  16. Manage Stress

    Science.gov (United States)

    ... Manage Stress Print This Topic En español Manage Stress Browse Sections The Basics Overview Signs and Health ... and Health Effects What are the signs of stress? When people are under stress, they may feel: ...

  17. Stress Incontinence

    Science.gov (United States)

    Stress incontinence Overview Urinary incontinence is the unintentional loss of urine. Stress incontinence happens when physical movement or activity — such ... coughing, sneezing, running or heavy lifting — puts pressure (stress) on your bladder. Stress incontinence is not related ...

  18. IDEA: Stimulating Oral Production.

    Science.gov (United States)

    Easley, Jacob J.

    1995-01-01

    Presents daily activities that facilitate complete sentence response, promote oral production, and aid the learning of vocabulary in foreign-language classes. Because speech is the primary form of communication in the foreign-language classroom, it is important to stimulate students to converse as soon as possible. (Author/CK)

  19. stimulated BV2 Microglial

    African Journals Online (AJOL)

    2012-03-26

    Mar 26, 2012 ... 2), in LPS-stimulated BV2 microglial cells. The level of NO production was analyzed using Griess reaction. The release of PGE2 was determined using sandwich enzyme-linked immunosorbent assay. The DNA-binding activity of nuclear factor-κB (NF-κB) was measured by electrophoretic mobility shift assay ...

  20. Brain stimulation in migraine.

    Science.gov (United States)

    Brighina, Filippo; Cosentino, Giuseppe; Fierro, Brigida

    2013-01-01

    Migraine is a very prevalent disease with great individual disability and socioeconomic burden. Despite intensive research effort in recent years, the etiopathogenesis of the disease remains to be elucidated. Recently, much importance has been given to mechanisms underlying the cortical excitability that has been suggested to be dysfunctional in migraine. In recent years, noninvasive brain stimulation techniques based on magnetic fields (transcranial magnetic stimulation, TMS) and on direct electrical currents (transcranial direct current stimulation, tDCS) have been shown to be safe and effective tools to explore the issue of cortical excitability, activation, and plasticity in migraine. Moreover, TMS, repetitive TMS (rTMS), and tDCS, thanks to their ability to interfere with and/or modulate cortical activity inducing plastic, persistent effects, have been also explored as potential therapeutic approaches, opening an interesting perspective for noninvasive neurostimulation for both symptomatic and preventive treatment of migraine and other types of headache. In this chapter we critically review evidence regarding the role of noninvasive brain stimulation in the pathophysiology and treatment of migraine, delineating the advantages and limits of these techniques together with potential development and future application. © 2013 Elsevier B.V. All rights reserved.

  1. [Transcranial magnetic stimulation and motor cortex stimulation in neuropathic pain].

    Science.gov (United States)

    Mylius, V; Ayache, S S; Teepker, M; Kappus, C; Kolodziej, M; Rosenow, F; Nimsky, C; Oertel, W H; Lefaucheur, J P

    2012-12-01

    Non-invasive and invasive cortical stimulation allows the modulation of therapy-refractory neuropathic pain. High-frequency repetitive transcranial magnetic stimulation (rTMS) of the contralateral motor cortex yields therapeutic effects at short-term and predicts the benefits of epidural motor cortex stimulation (MCS). The present article summarizes the findings on application, mechanisms and therapeutic effects of cortical stimulation in neuropathic pain.

  2. Upper respiratory tract nociceptor stimulation and stress response following acute and repeated Cyfluthrin inhalation in normal and pregnant rats: Physiological rat-specific adaptions can easily be misunderstood as adversities.

    Science.gov (United States)

    Pauluhn, Juergen

    2018-01-05

    This paper reviews the results from past regulatory and mechanistic inhalation studies in rats with the type II pyrethroid Cyfluthrin. Apart from many chemical irritants, Cyfluthrin was shown to be a neuroexcitatory agent without any inherent tissue-destructive or irritant property. Thus, any Cyfluthrin-induced neuroexcitatory afferent sensory stimulus from peripheral nociceptors in the upper respiratory tract is likely to be perceived as a transient stimulus triggering annoyance and/or avoidance by both rats and humans. However, while thermolabile rats respond to such stresses reflexively, homeothermic humans appear to respond psychologically. With this focus in mind, past inhalation studies in rats and human volunteers were reevaluated and assessed to identify common denominators to such neuroexcitatory stimuli upon inhalation exposure. This analysis supports the conclusion that the adaptive physiological response occurring in rats secondary to such chemosensory stimuli requires inhalation exposures above the chemosensory threshold. Rats, a species known to undergo adaptively a hibernation-like physiological state upon environmental stresses, experienced reflexively-induced bradypnea, bradycardia, hypothermia, and changes in acid-base status during inhalation exposure. After cessation of the sensory stimulus, rapid recovery occurred. Physiological data of male and female rats from a 4-week repeated inhalation study (exposure 6-h/day, 5-times/week) were used to select concentration for a 10-day developmental inhalation toxicity study in pregnant rats. Maternal hypothermia and hypoventilation were identified as likely cause of fetal and placental growth retardations because of a maternal adaptation-driven reduced feto-placental transfer of oxygen. In summary, maternal reflex-hypothermia, reduced cardiac output and placental perfusion, and disruption of the gestation-related hyperventilation are believed to be the maternally mediated causes for developmental

  3. Grating stimulated echo

    International Nuclear Information System (INIS)

    Dubetsky, B.; Berman, P.R.; Sleator, T.

    1992-01-01

    A theory of a grating simulated echo (GTE) is developed. The GSE involves the sequential excitation of atoms by two counterpropagating traveling waves, a standing wave, and a third traveling wave. It is shown that the echo signal is very sensitive to small changes in atomic velocity, much more sensitive than the normal stimulated echo. Use of the GSE as a collisional probe or accelerometer is discussed

  4. Thyroid Stimulating Hormone Receptor

    Directory of Open Access Journals (Sweden)

    Murat Tuncel

    2017-02-01

    Full Text Available Thyroid stimulating hormone receptor (TSHR plays a pivotal role in thyroid hormone metabolism. It is a major controller of thyroid cell function and growth. Mutations in TSHR may lead to several thyroid diseases, most commonly hyperthyroidism. Although its genetic and epigenetic alterations do not directly lead to carcinogenesis, it has a crucial role in tumor growth, which is initiated by several oncogenes. This article will provide a brief review of TSHR and related diseases.

  5. Nuclear stress test

    Science.gov (United States)

    ... Persantine stress test; Thallium stress test; Stress test - nuclear; Adenosine stress test; Regadenoson stress test; CAD - nuclear stress; Coronary artery disease - nuclear stress; Angina - nuclear ...

  6. Low intensity transcranial electric stimulation

    DEFF Research Database (Denmark)

    Antal, Andrea; Alekseichuk, I; Bikson, M

    2017-01-01

    Low intensity transcranial electrical stimulation (TES) in humans, encompassing transcranial direct current (tDCS), transcutaneous spinal Direct Current Stimulation (tsDCS), transcranial alternating current (tACS), and transcranial random noise (tRNS) stimulation or their combinations, appears...

  7. Longitudinal association between child stress and lifestyle.

    Science.gov (United States)

    Michels, Nathalie; Sioen, Isabelle; Boone, Liesbet; Braet, Caroline; Vanaelst, Barbara; Huybrechts, Inge; De Henauw, Stefaan

    2015-01-01

    Psychosocial stress has been linked with an unhealthy lifestyle but the relation's direction remains unclear. Does stress induce sleeping problems, comfort food consumption, and lower physical activity, or do these unhealthy lifestyle factors enhance stress? This study examined the bidirectional stress-lifestyle relation in children. The relation between stress and lifestyle was examined over 2 years in 312 Belgian children 5-12 years old as part of the Children's Body Composition and Stress study. Stress-related aspects were measured by questionnaires concerning negative events, negative emotions, and behavioral problems. The following lifestyle factors were assessed: physical activity (by accelerometers), sleep duration, food consumption (sweet food, fatty food, snacks, fruits and vegetables), and eating behavior (emotional, external, restrained). Bidirectional relations were examined with cross-lagged analyses. Certain stress aspects increased physical activity, sweet food consumption, emotional eating, restrained eating, and external eating (βs = .140-.319). All relations were moderated by sex and age: Dietary effects were mainly in the oldest children and girls; stress increased physical activity in the youngest, whereas it tended to decrease physical activity in the oldest. One reversed direction effect was found: Maladaptive eating behaviors increased anxiety feelings. Relations were mainly unidirectional: Stress influenced children's lifestyle. Stress stimulated eating in the absence of hunger, which could facilitate overweight. Consequently, families should realize that stress may influence children's diet, and problem-solving coping skills should be acquired. In contrast to recent findings, stress might also stimulate physical activity in the youngest as positive stress coping style.

  8. Mechanical stimulation of bone cells using fluid flow

    NARCIS (Netherlands)

    Huesa, C.; Bakker, A.D.

    2012-01-01

    This chapter describes several methods suitable for mechanically stimulating monolayers of bone cells by fluid shear stress (FSS) in vitro. Fluid flow is generated by pumping culture medium through two parallel plates, one of which contains a monolayer of cells. Methods for measuring nitric oxide

  9. [Stress and auto-immunity].

    Science.gov (United States)

    Delévaux, I; Chamoux, A; Aumaître, O

    2013-08-01

    The etiology of auto-immune disorders is multifactorial. Stress is probably a participating factor. Indeed, a high proportion of patients with auto-immune diseases report uncommon stress before disease onset or disease flare. The biological consequences of stress are increasingly well understood. Glucocorticoids and catecholamines released by hypothalamic-pituitary-adrenal axis during stress will alter the balance Th1/Th2 and the balance Th17/Treg. Stress impairs cellular immunity, decreases immune tolerance and stimulates humoral immunity exposing individuals to autoimmune disease among others. The treatment for autoimmune disease should include stress management. Copyright © 2012 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  10. Pressure Stimulated Currents (PSCin marble samples

    Directory of Open Access Journals (Sweden)

    F. Vallianatos

    2004-06-01

    Full Text Available The electrical behaviour of marble samples from Penteli Mountain was studied while they were subjected to uniaxial stress. The application of consecutive impulsive variations of uniaxial stress to thirty connatural samples produced Pressure Stimulated Currents (PSC. The linear relationship between the recorded PSC and the applied variation rate was investigated. The main results are the following: as far as the samples were under pressure corresponding to their elastic region, the maximum PSC value obeyed a linear law with respect to pressure variation. In the plastic region deviations were observed which were due to variations of Young s modulus. Furthermore, a special burst form of PSC recordings during failure is presented. The latter is emitted when irregular longitudinal splitting is observed during failure.

  11. Spinal Cord Stimulation

    DEFF Research Database (Denmark)

    Meier, Kaare

    2014-01-01

    Spinal cord stimulation (SCS) is a surgical treatment for chronic neuropathic pain that is refractory to other treatment. Originally described by Shealy et al. in 1967(1), it is used to treat a range of conditions such as complex regional pain syndrome (CRPS I)(2), angina pectoris(3), radicular...... pain after failed back surgery syndrome (FBSS)(4), pain due to peripheral nerve injury, stump pain(5), peripheral vascular disease(6) and diabetic neuropathy(7,8); whereas phantom pain(9), postherpetic neuralgia(10), chronic visceral pain(11), and pain after partial spinal cord injury(12) remain more...

  12. Stress og belastning eller effekt

    DEFF Research Database (Denmark)

    Netterstrøm, Bo

    2012-01-01

    Stress is in medical terms a condition characterized by physiological reactions and symptoms initiated by stressors. The physiological reactions increase the tone in the sympathetic nervous system, change metabolism in a catabolic direction and stimulate immunological reactions. The effect on hea...

  13. Noradrenergic Stimulation Impairs Memory Generalization in Women.

    Science.gov (United States)

    Kluen, Lisa Marieke; Agorastos, Agorastos; Wiedemann, Klaus; Schwabe, Lars

    2017-07-01

    Memory generalization is essential for adaptive decision-making and action. Our ability to generalize across past experiences relies on medial-temporal lobe structures, known to be highly sensitive to stress. Recent evidence suggests that stressful events may indeed interfere with memory generalization. Yet, the mechanisms involved in this generalization impairment are unknown. We tested here whether a pharmacological elevation of major stress mediators-noradrenaline and glucocorticoids-is sufficient to disrupt memory generalization. In a double-blind, placebo-controlled design, healthy men and women received orally a placebo, hydrocortisone, the α2-adrenoceptor antagonist yohimbine that leads to increased noradrenergic stimulation, or both drugs, before they completed an associative learning task probing memory generalization. Drugs left learning performance intact. Yohimbine, however, led to a striking generalization impairment in women, but not in men. Hydrocortisone, in turn, had no effect on memory generalization, neither in men nor in women. The present findings indicate that increased noradrenergic activity, but not cortisol, is sufficient to disrupt memory generalization in a sex-specific manner, with relevant implications for stress-related mental disorders characterized by generalization deficits.

  14. A distributed current stimulator ASIC for high density neural stimulation.

    Science.gov (United States)

    Jeong Hoan Park; Chaebin Kim; Seung-Hee Ahn; Tae Mok Gwon; Joonsoo Jeong; Sang Beom Jun; Sung June Kim

    2016-08-01

    This paper presents a novel distributed neural stimulator scheme. Instead of a single stimulator ASIC in the package, multiple ASICs are embedded at each electrode site for stimulation with a high density electrode array. This distributed architecture enables the simplification of wiring between electrodes and stimulator ASIC that otherwise could become too complex as the number of electrode increases. The individual ASIC chip is designed to have a shared data bus that independently controls multiple stimulating channels. Therefore, the number of metal lines is determined by the distributed ASICs, not by the channel number. The function of current steering is also implemented within each ASIC in order to increase the effective number of channels via pseudo channel stimulation. Therefore, the chip area can be used more efficiently. The designed chip was fabricated with area of 0.3 mm2 using 0.18 μm BCDMOS process, and the bench-top test was also conducted to validate chip performance.

  15. An Examination of Prescription Stimulant Misuse and Psychological Variables among Sorority and Fraternity College Populations

    Science.gov (United States)

    Dussault, Crystal L.; Weyandt, Lisa L.

    2013-01-01

    Objective: The objective of this study was to examine nonmedical stimulant use among fraternity/sorority members and nonmembers and whether psychological variables (e.g., internal restlessness, depression, anxiety, and stress) were related to nonmedical stimulant use. Method: The sample consisted of 1,033 undergraduate students from five…

  16. Computationally Developed Sham Stimulation Protocol for Multichannel Desynchronizing Stimulation

    Directory of Open Access Journals (Sweden)

    Magteld Zeitler

    2018-05-01

    Full Text Available A characteristic pattern of abnormal brain activity is abnormally strong neuronal synchronization, as found in several brain disorders, such as tinnitus, Parkinson's disease, and epilepsy. As observed in several diseases, different therapeutic interventions may induce a placebo effect that may be strong and hinder reliable clinical evaluations. Hence, to distinguish between specific, neuromodulation-induced effects and unspecific, placebo effects, it is important to mimic the therapeutic procedure as precisely as possibly, thereby providing controls that actually lack specific effects. Coordinated Reset (CR stimulation has been developed to specifically counteract abnormally strong synchronization by desynchronization. CR is a spatio-temporally patterned multichannel stimulation which reduces the extent of coincident neuronal activity and aims at an anti-kindling, i.e., an unlearning of both synaptic connectivity and neuronal synchrony. Apart from acute desynchronizing effects, CR may cause sustained, long-lasting desynchronizing effects, as already demonstrated in pre-clinical and clinical proof of concept studies. In this computational study, we set out to computationally develop a sham stimulation protocol for multichannel desynchronizing stimulation. To this end, we compare acute effects and long-lasting effects of six different spatio-temporally patterned stimulation protocols, including three variants of CR, using a no-stimulation condition as additional control. This is to provide an inventory of different stimulation algorithms with similar fundamental stimulation parameters (e.g., mean stimulation rates but qualitatively different acute and/or long-lasting effects. Stimulation protocols sharing basic parameters, but inducing nevertheless completely different or even no acute effects and/or after-effects, might serve as controls to validate the specific effects of particular desynchronizing protocols such as CR. In particular, based on

  17. Stimulated Thomson scattering

    International Nuclear Information System (INIS)

    Spencer, R.L.

    1979-03-01

    The theory of stimulated Thomson scattering is investigated both quantum mechanically and classically. Two monochromatic electromagnetic waves of like polarization travelling in opposite directions are allowed to interact for a time tau with the electrons in a collisionless plasma. The electromagnetic waves have frequencies well above the plasma frequency, and their difference frequency is allowed to range upward from the plasma frequency. With the difference frequency well above the plasma frequency, the rate at which energy is transferred from one wave to the other is calculated quantum mechanically, classically from a fluid theory, and classically from an independent electron theory. The rate is calculated in both the homogeneously broadened limit, and in the inhomogeneously broadened limit

  18. Engagement sensitive visual stimulation

    Directory of Open Access Journals (Sweden)

    Deepesh Kumar

    2016-06-01

    Full Text Available Stroke is one of leading cause of death and disability worldwide. Early detection during golden hour and treatment of individual neurological dysfunction in stroke using easy-to-access biomarkers based on a simple-to-use, cost-effective, clinically-valid screening tool can bring a paradigm shift in healthcare, both urban and rural. In our research we have designed a quantitative automatic home-based oculomotor assessment tool that can play an important complementary role in prognosis of neurological disorders like stroke for the neurologist. Once the patient has been screened for stroke, the next step is to design proper rehabilitation platform to alleviate the disability. In addition to the screening platform, in our research, we work in designing virtual reality based rehabilitation exercise platform that has the potential to deliver visual stimulation and in turn contribute to improving one’s performance.

  19. Stimulated coherent transition radiation

    International Nuclear Information System (INIS)

    Hung-chi Lihn.

    1996-03-01

    Coherent radiation emitted from a relativistic electron bunch consists of wavelengths longer than or comparable to the bunch length. The intensity of this radiation out-numbers that of its incoherent counterpart, which extends to wavelengths shorter than the bunch length, by a factor equal to the number of electrons in the bunch. In typical accelerators, this factor is about 8 to 11 orders of magnitude. The spectrum of the coherent radiation is determined by the Fourier transform of the electron bunch distribution and, therefore, contains information of the bunch distribution. Coherent transition radiation emitted from subpicosecond electron bunches at the Stanford SUNSHINE facility is observed in the far-infrared regime through a room-temperature pyroelectric bolometer and characterized through the electron bunch-length study. To measure the bunch length, a new frequency-resolved subpicosecond bunch-length measuring system is developed. This system uses a far-infrared Michelson interferometer to measure the spectrum of coherent transition radiation through optical autocorrelation with resolution far better than existing time-resolved methods. Hence, the radiation spectrum and the bunch length are deduced from the autocorrelation measurement. To study the stimulation of coherent transition radiation, a special cavity named BRAICER is invented. Far-infrared light pulses of coherent transition radiation emitted from electron bunches are delayed and circulated in the cavity to coincide with subsequent incoming electron bunches. This coincidence of light pulses with electron bunches enables the light to do work on electrons, and thus stimulates more radiated energy. The possibilities of extending the bunch-length measuring system to measure the three-dimensional bunch distribution and making the BRAICER cavity a broadband, high-intensity, coherent, far-infrared light source are also discussed

  20. Occupational Stress

    OpenAIRE

    Löblová, Klára

    2011-01-01

    The thesis deals with load, stress and related questions of the working life. Work-related stress brings numerous difficulties not only to affected individuals, but as a result also to organizations. The thesis follows symptoms, impacts, somatic and mental aspects of stress, its types and also types of stressors, which cause this problem. It is concentrated on workload as a specific area of work-related stress, individual resistance to the load, factors of workload and work-related stress and...

  1. Ultrasound stimulation on bone healing. The optimization of stimulation time

    International Nuclear Information System (INIS)

    Rosim, R.C.; Paulin, J.B.P.; Goncalves, R.P.

    1990-01-01

    Previous works in ultrasonic simulation of bone healing dealt with parameters optimization. Albertin (1983) studied the stimulation time and found forty minutes as ideal. However, this stimulation time was the largest one employed and remained some doubt about the most appropriated value. 30, 40, 50 and 60 minutes of stimulation time were selected, while others parameters were held constant with: pulse width in 200 μs, repetition rate in 1000 pulses per second and amplitude in 30 V. Partial incomplete transverse osteotomies were done in the middle third of radio in the right forearm of rabbits. Twenty four animals divided in four subgroups, with 6 animals each were stimulated. The daily stimulation time for each subgroup was 30, 40, 50 and minutes respectively, during 15 consecutive days. The stimulation procedure started 24 hours after surgery. After the stimulation period, radiological, histological and morphometric evaluations were done and greater bone healing was found for the 50 minutes stimulation subgroup, in them new bone was also prominent. (author)

  2. Pacing stress echocardiography

    Directory of Open Access Journals (Sweden)

    Agrusta Marco

    2005-12-01

    values, biphasic with an initial up- sloping followed by a later down-sloping trend, or flat or negative when peak stress pacing systolic pressure/end-systolic volume index is equal or lower than baseline stress values. This approach is certainly highly feasible and allows a conceptually immaculate definition of contractility with prognostic usefulness, but its therapeutic implications remains to be established. Bowditch treppe, assessed with pacing stress, can be used to assess the optimal stimulation frequency and to optimise the patient's chronotropic response in programming rate-adaptive pacemakers.

  3. Transcranial brain stimulation: closing the loop between brain and stimulation

    DEFF Research Database (Denmark)

    Karabanov, Anke; Thielscher, Axel; Siebner, Hartwig Roman

    2016-01-01

    -related and state-related variability. Fluctuations in brain-states can be traced online with functional brain imaging and inform the timing or other settings of transcranial brain stimulation. State-informed open-loop stimulation is aligned to the expression of a predefined brain state, according to prespecified......PURPOSE OF REVIEW: To discuss recent strategies for boosting the efficacy of noninvasive transcranial brain stimulation to improve human brain function. RECENT FINDINGS: Recent research exposed substantial intra- and inter-individual variability in response to plasticity-inducing transcranial brain...... stimulation. Trait-related and state-related determinants contribute to this variability, challenging the standard approach to apply stimulation in a rigid, one-size-fits-all fashion. Several strategies have been identified to reduce variability and maximize the plasticity-inducing effects of noninvasive...

  4. EOR by stimulated microflora

    Energy Technology Data Exchange (ETDEWEB)

    Svarovskaya, L.I.; Altunina, L.K.; Rozhenkova, Z.A.; Bulavin, V.D. [Institute of Petroleum Chemistry, Tomsk (Russian Federation)

    1995-12-31

    A combined microbiological and physico-chemical method for EOR has been developed for flooded West Siberia oil fields with formation temperature of 45{degrees}-95{degrees}C (318-365K). Formation water includes rich and various biocenoses numbering up to 2 x 10{sup 7} cells per ml. Representatives of genera, i.e, Pseudomonas, Bacillus, Actinomyces, Micrococcus, Mycobacterium, Sarcina, etc. were found to be the most widely distributed microorganisms. The method is based on injection of systems exhibiting high oil displacing capacity and at the same time being an additional nitrous nutrient for endemic populations of microorganisms. Their injection into formation water favors biomass growth by 4-6 orders and promotes syntheses of biosurfactants, biopolymers, acids, etc., and gaseous products. The features of residual oil displacement have been studied on laboratory models using a combined microbiological and physico-chemical method. A curve for the yield of residual oil is presented by two peaks. The first peak is stipulated by the washing action of oil displacement system, and the second one by the effect of metabolites produced at stimulation of biogenic processes. Oil displacement index increases by 15%-30%.

  5. Subliminal Stimulation: Hoax or Reality?

    Science.gov (United States)

    Trank, Douglas M.

    Subliminal stimulation is defined as that which is perceived by an individual below the threshold of awareness or cognizance. This article traces the history of research in subliminal stimulation to illustrate that under certain circumstances and conditions, this behavioral phenomenon does occur. Although subliminal stimuli do affect human…

  6. Stimulating Language: Insights from TMS

    Science.gov (United States)

    Devlin, Joseph T.; Watkins, Kate E.

    2007-01-01

    Fifteen years ago, Pascual-Leone and colleagues used transcranial magnetic stimulation (TMS) to investigate speech production in pre-surgical epilepsy patients and in doing so, introduced a novel tool into language research. TMS can be used to non-invasively stimulate a specific cortical region and transiently disrupt information processing. These…

  7. Virtual Reality Adaptive Stimulation in Stress Resistance Training

    Science.gov (United States)

    2011-04-01

    Kukolja, Branimir Dropuljić University of Zagreb Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb , Croatia Ivica Kostović...Miloš Judaš, Marko Radoš, Milan Radoš, Lana Vasung, Branka Bartolić Spajić University of Zagreb School of Medicine, Croatian Institute for Brain...Research, Šalata 12, 10000 Zagreb , Croatia Svjetlana Doričić, Dalibor Mesić Ministry of Defense, Republic of Croatia ABSTRACT Serious mental health

  8. Cold Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH COLD STRESS Recommend on Facebook Tweet Share Compartir Workers who ... cold environments may be at risk of cold stress. Extreme cold weather is a dangerous situation that ...

  9. Heat Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH HEAT STRESS Recommend on Facebook Tweet Share Compartir OSHA-NIOSH ... hot environments may be at risk of heat stress. Exposure to extreme heat can result in occupational ...

  10. Neuromuscular Stress.

    Science.gov (United States)

    White, Timothy P.; Kern, Marialice

    1994-01-01

    Discusses exercise-induced stress that results from motor unit recruitment, the impact of recruitment on selected systemic support systems, and some of the environmental overlays that affect the degree of physiological stress. Adaptations to sustained changes in physical activity and muscle and myotendinous injury induced by stress are examined.…

  11. Stress Fractures

    Science.gov (United States)

    Stress fractures Overview Stress fractures are tiny cracks in a bone. They're caused by repetitive force, often from overuse — such as repeatedly jumping up and down or running long distances. Stress fractures can also arise from normal use of ...

  12. Vagal nerve stimulation therapy: what is being stimulated?

    Science.gov (United States)

    Kember, Guy; Ardell, Jeffrey L; Armour, John A; Zamir, Mair

    2014-01-01

    Vagal nerve stimulation in cardiac therapy involves delivering electrical current to the vagal sympathetic complex in patients experiencing heart failure. The therapy has shown promise but the mechanisms by which any benefit accrues is not understood. In this paper we model the response to increased levels of stimulation of individual components of the vagal sympathetic complex as a differential activation of each component in the control of heart rate. The model provides insight beyond what is available in the animal experiment in as much as allowing the simultaneous assessment of neuronal activity throughout the cardiac neural axis. The results indicate that there is sensitivity of the neural network to low level subthreshold stimulation. This leads us to propose that the chronic effects of vagal nerve stimulation therapy lie within the indirect pathways that target intrinsic cardiac local circuit neurons because they have the capacity for plasticity.

  13. Vagal nerve stimulation therapy: what is being stimulated?

    Directory of Open Access Journals (Sweden)

    Guy Kember

    Full Text Available Vagal nerve stimulation in cardiac therapy involves delivering electrical current to the vagal sympathetic complex in patients experiencing heart failure. The therapy has shown promise but the mechanisms by which any benefit accrues is not understood. In this paper we model the response to increased levels of stimulation of individual components of the vagal sympathetic complex as a differential activation of each component in the control of heart rate. The model provides insight beyond what is available in the animal experiment in as much as allowing the simultaneous assessment of neuronal activity throughout the cardiac neural axis. The results indicate that there is sensitivity of the neural network to low level subthreshold stimulation. This leads us to propose that the chronic effects of vagal nerve stimulation therapy lie within the indirect pathways that target intrinsic cardiac local circuit neurons because they have the capacity for plasticity.

  14. Electrical stimulation in exercise training

    Science.gov (United States)

    Kroll, Walter

    1994-01-01

    Electrical stimulation has a long history of use in medicine dating back to 46 A.D. when the Roman physician Largus found the electrical discharge of torpedo fishes useful in the treatment of pain produced by headache and gout. A rival Greek physician, Dioscorides, discounted the value of the torpedo fish for headache relief but did recommend its use in the treatment of hemorrhoids. In 1745, the Leyden jar and various sized electrostatic generators were used to treat angina pectoris, epilepsy, hemiplegia, kidney stones, and sciatica. Benjamin Franklin used an electrical device to treat successfully a young woman suffering from convulsive fits. In the late 1800's battery powered hydroelectric baths were used to treat chronic inflammation of the uterus while electrified athletic supporters were advertised for the treatment of male problems. Fortunately, such an amusing early history of the simple beginnings of electrical stimulation did not prevent eventual development of a variety of useful therapeutic and rehabilitative applications of electrical stimulation. Over the centuries electrical stimulation has survived as a modality in the treatment of various medical disorders with its primary application being in the rehabilitation area. Recently, a surge of new interest in electrical stimulation has been kindled by the work of a Russian sport scientist who reported remarkable muscle strength and endurance improvements in elite athletes. Yakov Kots reported his research on electric stimulation and strength improvements in 1977 at a Canadian-Soviet Exchange Symposium held at Concordia University in Montreal. Since then an explosion of new studies has been seen in both sport science and in medicine. Based upon the reported works of Kots and the present surge of new investigations, one could be misled as to the origin of electrical stimulation as a technique to increase muscle strength. As a matter of fact, electric stimulation has been used as a technique to improve

  15. Understanding the True Stimulated Reservoir Volume in Shale Reservoirs

    KAUST Repository

    Hussain, Maaruf

    2017-06-06

    Successful exploitation of shale reservoirs largely depends on the effectiveness of hydraulic fracturing stimulation program. Favorable results have been attributed to intersection and reactivation of pre-existing fractures by hydraulically-induced fractures that connect the wellbore to a larger fracture surface area within the reservoir rock volume. Thus, accurate estimation of the stimulated reservoir volume (SRV) becomes critical for the reservoir performance simulation and production analysis. Micro-seismic events (MS) have been commonly used as a proxy to map out the SRV geometry, which could be erroneous because not all MS events are related to hydraulic fracture propagation. The case studies discussed here utilized a fully 3-D simulation approach to estimate the SRV. The simulation approach presented in this paper takes into account the real-time changes in the reservoir\\'s geomechanics as a function of fluid pressures. It is consisted of four separate coupled modules: geomechanics, hydrodynamics, a geomechanical joint model for interfacial resolution, and an adaptive re-meshing. Reservoir stress condition, rock mechanical properties, and injected fluid pressure dictate how fracture elements could open or slide. Critical stress intensity factor was used as a fracture criterion governing the generation of new fractures or propagation of existing fractures and their directions. Our simulations were run on a Cray XC-40 HPC system. The studies outcomes proved the approach of using MS data as a proxy for SRV to be significantly flawed. Many of the observed stimulated natural fractures are stress related and very few that are closer to the injection field are connected. The situation is worsened in a highly laminated shale reservoir as the hydraulic fracture propagation is significantly hampered. High contrast in the in-situ stresses related strike-slip developed thereby shortens the extent of SRV. However, far field nature fractures that were not connected to

  16. 2017 GTO Project review Laboratory Evaluation of EGS Shear Stimulation.

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Stephen J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    The objectives and purpose of this research has been to produce laboratory-based experimental and numerical analyses to provide a physics-based understanding of shear stimulation phenomena (hydroshearing) and its evolution during stimulation. Water was flowed along fractures in hot and stressed fractured rock, to promote slip. The controlled laboratory experiments provide a high resolution/high quality data resource for evaluation of analysis methods developed by DOE to assess EGS “behavior” during this stimulation process. Segments of the experimental program will provide data sets for model input parameters, i.e., material properties, and other segments of the experimental program will represent small scale physical models of an EGS system, which may be modeled. The coupled lab/analysis project has been a study of the response of a fracture in hot, water-saturated fractured rock to shear stress experiencing fluid flow. Under this condition, the fracture experiences a combination of potential pore pressure changes and fracture surface cooling, resulting in slip along the fracture. The laboratory work provides a means to assess the role of “hydroshearing” on permeability enhancement in reservoir stimulation. Using the laboratory experiments and results to define boundary and input/output conditions of pore pressure, thermal stress, fracture shear deformation and fluid flow, and models were developed and simulations completed by the University of Oklahoma team. The analysis methods are ones used on field scale problems. The sophisticated numerical models developed contain parameters present in the field. The analysis results provide insight into the role of fracture slip on permeability enhancement-“hydroshear” is to be obtained. The work will provide valuable input data to evaluate stimulation models, thus helping design effective EGS.

  17. Stimulation of Suicidal Erythrocyte Death by Garcinol

    Directory of Open Access Journals (Sweden)

    Antonella Fazio

    2015-09-01

    Full Text Available Background/Aims: The benzophenone garcinol from dried fruit rind of Garcinia indica counteracts malignancy, an effect at least in part due to stimulation of apoptosis. The proapototic effect of garcinol is attributed in part to inhibition of histone acetyltransferases and thus modification of gene expression. Moreover, garcinol triggers mitochondrial depolarisation. Erythrocytes lack gene expression and mitochondria but are nevertheless able to enter apoptosis-like suicidal death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include oxidative stress, energy depletion and Ca2+ entry with increase of cytosolic Ca2+ activity ([Ca2+]i. The present study explored, whether and how garcinol induces eryptosis. Methods: To this end, phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, hemolysis from hemoglobin release, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence and cytosolic ATP levels utilizing a luciferin-luciferase-based assay. Results: A 24 hours exposure of human erythrocytes to garcinol (2.5 or 5 µM significantly increased the percentage of annexin-V-binding cells. Garcinol decreased (at 1 µM and 2.5 µM or increased (at 5 µM forward scatter. Garcinol (5 µM further increased Fluo3-fluorescence, increased DCFDA fluorescence, and decreased cytosolic ATP levels. The effect of garcinol on annexin-V-binding was significantly blunted, but not abolished by removal of extracellular Ca2+. Conclusions: Garcinol triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part due to stimulation of ROS formation, energy depletion and Ca2+ entry.

  18. Spinal cord stimulation suppresses bradycardias and atrial tachyarrhythmias induced by mediastinal nerve stimulation in dogs.

    Science.gov (United States)

    Cardinal, René; Pagé, Pierre; Vermeulen, Michel; Bouchard, Caroline; Ardell, Jeffrey L; Foreman, Robert D; Armour, J Andrew

    2006-11-01

    Spinal cord stimulation (SCS) applied to the dorsal aspect of the cranial thoracic cord imparts cardioprotection under conditions of neuronally dependent cardiac stress. This study investigated whether neuronally induced atrial arrhythmias can be modulated by SCS. In 16 anesthetized dogs with intact stellate ganglia and in five with bilateral stellectomy, trains of five electrical stimuli were delivered during the atrial refractory period to right- or left-sided mediastinal nerves for up to 20 s before and after SCS (20 min). Recordings were obtained from 191 biatrial epicardial sites. Before SCS (11 animals), mediastinal nerve stimulation initiated bradycardia alone (12 nerve sites), bradycardia followed by tachyarrhythmia/fibrillation (50 sites), as well as tachyarrhythmia/fibrillation without a preceding bradycardia (21 sites). After SCS, the number of responsive sites inducing bradycardia was reduced by 25% (62 to 47 sites), and the cycle length prolongation in residual bradycardias was reduced. The number of responsive sites inducing tachyarrhythmia was reduced by 60% (71 to 29 sites). Once elicited, residual tachyarrhythmias arose from similar epicardial foci, displaying similar dynamics (cycle length) as in control states. In the absence of SCS, bradycardias and tachyarrhythmias induced by repeat nerve stimulation were reproducible (five additional animals). After bilateral stellectomy, SCS no longer influenced neuronal induction of bradycardia and atrial tachyarrhythmias. These data indicate that SCS obtunds the induction of atrial arrhythmias resulting from excessive activation of intrinsic cardiac neurons and that such protective effects depend on the integrity of nerves coursing via the subclavian ansae and stellate ganglia.

  19. Multielectrode intrafascicular and extraneural stimulation

    NARCIS (Netherlands)

    Veltink, Petrus H.; van Alste, Jan A.; Boom, H.B.K.

    1989-01-01

    The relationship between nerve stimulation, pulse amplitude and isometric muscle force was measured to investigate recruitment of motor units. Force addition experiments were performed to obtain insight in the intersection of motor unit groups recruited by different electrodes. Intrafascicular and

  20. Noninvasive Stimulation of the Human Brain

    DEFF Research Database (Denmark)

    Di Lazzaro, Vincenzo; Rothwell, John; Capogna, Marco

    2017-01-01

    Noninvasive brain stimulation methods, such as transcranial electric stimulation and transcranial magnetic stimulation are widely used tools for both basic research and clinical applications. However, the cortical circuits underlying their effects are poorly defined. Here we review the current...

  1. Bilateral Alternating Auditory Stimulations Facilitate Fear Extinction and Retrieval

    OpenAIRE

    Boukezzi, Sarah; Silva, Catarina; Nazarian, Bruno; Rousseau, Pierre-François; Guedj, Eric; Valenzuela-Moguillansky, Camila; Khalfa, Stéphanie

    2017-01-01

    Disruption of fear conditioning, its extinction and its retrieval are at the core of posttraumatic stress disorder (PTSD). Such deficits, especially fear extinction delay, disappear after alternating bilateral stimulations (BLS) during eye movement desensitization and reprocessing (EMDR) therapy. An animal model of fear recovery, based on auditory cued fear conditioning and extinction learning, recently showed that BLS facilitate fear extinction and fear extinction retrieval. Our goal was to ...

  2. Physical injury stimulates aerobic methane emissions from terrestrial plants

    Directory of Open Access Journals (Sweden)

    Z.-P. Wang

    2009-04-01

    Full Text Available Physical injury is common in terrestrial plants as a result of grazing, harvesting, trampling, and extreme weather events. Previous studies demonstrated enhanced emission of non-microbial CH4 under aerobic conditions from plant tissues when they were exposed to increasing UV radiation and temperature. Since physical injury is also a form of environmental stress, we sought to determine whether it would also affect CH4 emissions from plants. Physical injury (cutting stimulated CH4 emission from fresh twigs of Artemisia species under aerobic conditions. More cutting resulted in more CH4 emissions. Hypoxia also enhanced CH4 emission from both uncut and cut Artemisia frigida twigs. Physical injury typically results in cell wall degradation, which may either stimulate formation of reactive oxygen species (ROS or decrease scavenging of them. Increased ROS activity might explain increased CH4 emission in response to physical injury and other forms of stress. There were significant differences in CH4 emissions among 10 species of Artemisia, with some species emitting no detectable CH4 under any circumstances. Consequently, CH4 emissions may be species-dependent and therefore difficult to estimate in nature based on total plant biomass. Our results and those of previous studies suggest that a variety of environmental stresses stimulate CH4 emission from a wide variety of plant species. Global change processes, including climate change, depletion of stratospheric ozone, increasing ground-level ozone, spread of plant pests, and land-use changes, could cause more stress in plants on a global scale, potentially stimulating more CH4 emission globally.

  3. Residual stresses

    International Nuclear Information System (INIS)

    Sahotra, I.M.

    2006-01-01

    The principal effect of unloading a material strained into the plastic range is to create a permanent set (plastic deformation), which if restricted somehow, gives rise to a system of self-balancing within the same member or reaction balanced by other members of the structure., known as residual stresses. These stresses stay there as locked-in stresses, in the body or a part of it in the absence of any external loading. Residual stresses are induced during hot-rolling and welding differential cooling, cold-forming and extruding: cold straightening and spot heating, fabrication and forced fitting of components constraining the structure to a particular geometry. The areas which cool more quickly develop residual compressive stresses, while the slower cooling areas develop residual tensile stresses, and a self-balancing or reaction balanced system of residual stresses is formed. The phenomenon of residual stresses is the most challenging in its application in surface modification techniques determining endurance mechanism against fracture and fatigue failures. This paper discusses the mechanism of residual stresses, that how the residual stresses are fanned and what their behavior is under the action of external forces. Such as in the case of a circular bar under limit torque, rectangular beam under limt moment, reclaiming of shafts welds and peening etc. (author)

  4. STRESS INDUCED OBESITY: LESSONS FROM RODENT MODELS OF STRESS

    Directory of Open Access Journals (Sweden)

    Zachary Robert Patterson

    2013-07-01

    Full Text Available Stress is defined as the behavioral and physiological responses generated in the face of, or in anticipation of, a perceived threat. The stress response involves activation of the sympathetic nervous system and recruitment of the hypothalamic-pituitary-adrenal (HPA axis. When an organism encounters a stressor (social, physical, etc., these endogenous stress systems are stimulated in order to generate a fight-or-flight response, and manage the stressful situation. As such, an organism is forced to liberate energy resources in attempt to meet the energetic demands posed by the stressor. A change in the energy homeostatic balance is thus required to exploit an appropriate resource and deliver useable energy to the target muscles and tissues involved in the stress response. Acutely, this change in energy homeostasis and the liberation of energy is considered advantageous, as it is required for the survival of the organism. However, when an organism is subjected to a prolonged stressor, as is the case during chronic stress, a continuous irregularity in energy homeostasis is considered detrimental and may lead to the development of metabolic disturbances such as cardiovascular disease, type II diabetes mellitus and obesity. This concept has been studied extensively using animal models, and the neurobiological underpinnings of stress induced metabolic disorders are beginning to surface. However, different animal models of stress continue to produce divergent metabolic phenotypes wherein some animals become anorexic and loose body mass while others increase food intake and body mass and become vulnerable to the development of metabolic disturbances. It remains unclear exactly what factors associated with stress models can be used to predict the metabolic outcome of the organism. This review will explore a variety of rodent stress models and discuss the elements that influence the metabolic outcome in order to further our understanding of stress

  5. Economics of nuclear gas stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Frank, G W [Austral Oil Company Incorporated, Houston, TX (United States); Coffer, H F; Luetkehans, G R [CER Geonuclear Corporation, Las Vegas, NV (United States)

    1970-05-01

    Nuclear stimulation of the Mesaverde Formation in the Piceance Basin appears to be the only available method that can release the contained gas economically. In the Rulison Field alone estimates show six to eight trillion cubic feet of gas may be made available by nuclear means, and possibly one hundred trillion cubic feet could be released in the Piceance Basin. Several problems remain to be solved before this tremendous gas reserve can be tapped. Among these are (1) rates of production following nuclear stimulation; (2) costs of nuclear stimulation; (3) radioactivity of the chimney gas; and (4) development of the ideal type of device to carry out the stimulations. Each of these problems is discussed in detail with possible solutions suggested. First and foremost is the rate at which gas can be delivered following nuclear stimulation. Calculations have been made for expected production behavior following a 5-kiloton device and a 40-kiloton device with different permeabilities. These are shown, along with conventional production history. The calculations show that rates of production will be sufficient if costs can be controlled. Costs of nuclear stimulation must be drastically reduced for a commercial process. Project Rulison will cost approximately $3.7 million, excluding lease costs, preliminary tests, and well costs. At such prices, nothing can possibly be commercial; however, these costs can come down in a logical step-wise fashion. Radiation contamination of the gas remains a problem. Three possible solutions to this problem are included. (author)

  6. Economics of nuclear gas stimulation

    International Nuclear Information System (INIS)

    Frank, G.W.; Coffer, H.F.; Luetkehans, G.R.

    1970-01-01

    Nuclear stimulation of the Mesaverde Formation in the Piceance Basin appears to be the only available method that can release the contained gas economically. In the Rulison Field alone estimates show six to eight trillion cubic feet of gas may be made available by nuclear means, and possibly one hundred trillion cubic feet could be released in the Piceance Basin. Several problems remain to be solved before this tremendous gas reserve can be tapped. Among these are (1) rates of production following nuclear stimulation; (2) costs of nuclear stimulation; (3) radioactivity of the chimney gas; and (4) development of the ideal type of device to carry out the stimulations. Each of these problems is discussed in detail with possible solutions suggested. First and foremost is the rate at which gas can be delivered following nuclear stimulation. Calculations have been made for expected production behavior following a 5-kiloton device and a 40-kiloton device with different permeabilities. These are shown, along with conventional production history. The calculations show that rates of production will be sufficient if costs can be controlled. Costs of nuclear stimulation must be drastically reduced for a commercial process. Project Rulison will cost approximately $3.7 million, excluding lease costs, preliminary tests, and well costs. At such prices, nothing can possibly be commercial; however, these costs can come down in a logical step-wise fashion. Radiation contamination of the gas remains a problem. Three possible solutions to this problem are included. (author)

  7. Biomarkers and Stimulation Algorithms for Adaptive Brain Stimulation

    Directory of Open Access Journals (Sweden)

    Kimberly B. Hoang

    2017-10-01

    Full Text Available The goal of this review is to describe in what ways feedback or adaptive stimulation may be delivered and adjusted based on relevant biomarkers. Specific treatment mechanisms underlying therapeutic brain stimulation remain unclear, in spite of the demonstrated efficacy in a number of nervous system diseases. Brain stimulation appears to exert widespread influence over specific neural networks that are relevant to specific disease entities. In awake patients, activation or suppression of these neural networks can be assessed by either symptom alleviation (i.e., tremor, rigidity, seizures or physiological criteria, which may be predictive of expected symptomatic treatment. Secondary verification of network activation through specific biomarkers that are linked to symptomatic disease improvement may be useful for several reasons. For example, these biomarkers could aid optimal intraoperative localization, possibly improve efficacy or efficiency (i.e., reduced power needs, and provide long-term adaptive automatic adjustment of stimulation parameters. Possible biomarkers for use in portable or implanted devices span from ongoing physiological brain activity, evoked local field potentials (LFPs, and intermittent pathological activity, to wearable devices, biochemical, blood flow, optical, or magnetic resonance imaging (MRI changes, temperature changes, or optogenetic signals. First, however, potential biomarkers must be correlated directly with symptom or disease treatment and network activation. Although numerous biomarkers are under consideration for a variety of stimulation indications the feasibility of these approaches has yet to be fully determined. Particularly, there are critical questions whether the use of adaptive systems can improve efficacy over continuous stimulation, facilitate adjustment of stimulation interventions and improve our understanding of the role of abnormal network function in disease mechanisms.

  8. Stress og belastning eller effekt

    DEFF Research Database (Denmark)

    Netterstrøm, Bo

    2012-01-01

    on health is dependent on the strength and duration of the stressors, how the situation is perceived, the resources of the individual, and to what extend coping succeeds. An increase in the prevalence of reported stress in the working population in Denmark has occurred from 1987 (8%) to 2005 (12%).......Stress is in medical terms a condition characterized by physiological reactions and symptoms initiated by stressors. The physiological reactions increase the tone in the sympathetic nervous system, change metabolism in a catabolic direction and stimulate immunological reactions. The effect...

  9. Stress og belastning eller effekt

    DEFF Research Database (Denmark)

    Netterstrøm, Bo

    2012-01-01

    Stress is in medical terms a condition characterized by physiological reactions and symptoms initiated by stressors. The physiological reactions increase the tone in the sympathetic nervous system, change metabolism in a catabolic direction and stimulate immunological reactions. The effect...... on health is dependent on the strength and duration of the stressors, how the situation is perceived, the resources of the individual, and to what extend coping succeeds. An increase in the prevalence of reported stress in the working population in Denmark has occurred from 1987 (8%) to 2005 (12%)....

  10. Oxidative stress

    Directory of Open Access Journals (Sweden)

    Osredkar Joško

    2012-05-01

    Full Text Available The human organism is exposed to the influence of various forms of stress, either physical, psychological or chemical, which all have in common that they may adversely affect our body. A certain amount of stress is always present and somehow directs, promotes or inhibits the functioning of the human body. Unfortunately, we are now too many and too often exposed to excessive stress, which certainly has adverse consequences. This is especially true for a particular type of stress, called oxidative stress. All aerobic organisms are exposed to this type of stress because they produce energy by using oxygen. For this type of stress you could say that it is rather imperceptibly involved in our lives, as it becomes apparent only at the outbreak of certain diseases. Today we are well aware of the adverse impact of radicals, whose surplus is the main cause of oxidative stress. However, the key problem remains the detection of oxidative stress, which would allow us to undertake timely action and prevent outbreak of many diseases of our time. There are many factors that promote oxidative stress, among them are certainly a fast lifestyle and environmental pollution. The increase in oxidative stress can also trigger intense physical activity that is directly associated with an increased oxygen consumption and the resulting formation of free radicals. Considering generally positive attitude to physical activity, this fact may seem at first glance contradictory, but the finding has been confimed by several studies in active athletes. Training of a top athlete daily demands great physical effort, which is also reflected in the oxidative state of the organism. However, it should be noted that the top athletes in comparison with normal individuals have a different defense system, which can counteract the negative effects of oxidative stress. Quite the opposite is true for irregular or excessive physical activity to which the body is not adapted.

  11. Work Stress

    OpenAIRE

    Roeters, Anne

    2014-01-01

    Most of us agree that stress is a growing problem within organizations. We hear about the postal workers who had killed fellow employees and supervisors, and then hear that a major cause of tension is at work. Friends tell us that they are stressed due to increased workload and he has to work overtime because the company is restructured. We read the polls that employees complain about the stress in trying to balance family life with the work. Stress is a dynamic condition in which an individu...

  12. Brain sites mediating corticosteroid feedback inhibition of stimulated ACTH secretion

    International Nuclear Information System (INIS)

    Jacobson, L.

    1989-01-01

    There is substantial evidence that the brain mediates stress-induced and circadian increases in ACTH secretion and that corticosteroid concentrations which normalize basal plasma ACTH are insufficient to normalize ACTH responses to circadian or stressful stimuli in adrenalectomized rats. To identify brain sites mediating corticosteroid inhibition of stimulated ACTH secretion, two approaches were used. The first compared brain [ 14 C]-2-deoxyglucose uptake in rats with differential ACTH responses to stress. Relative to sham-adrenalectomized (SHAM) rats, adrenalectomized rats replaced with low, constant corticosterone levels via a subcutaneous corticosterone pellet (B-PELLET) exhibited elevated and prolonged ACTH responses to a variety of stimuli. Adrenalectomized rate given a circadian corticosterone rhythm via corticosterone in their drinking water exhibited elevated ACTH levels immediately after stress, but unlike B-PELLET rats, terminated stress induced ACTH secretion normally relative to SHAMS. Therefore, the abnormal ACTH responses to stress in B-PELLET rats were due to the lack of both circadian variations and stress-induced increases in corticosterone. Hypoxia was selected as a standardized stimulus for correlating brain [ 14 C]-2-deoxyglucose uptake with ACTH secretion. In intact rats, increases in plasma ACTH and decreases in arterial PO 2 correlated with the severity of hypoxia at arterial PCO 2 below 60 mm Hg. Hypoxia PELLET vs. SHAM rats. However, in preliminary experiments, although hypoxia increased brain 2-deoxyglucose uptake in most brain regions, plasma ACTH correlated poorly with 2-deoxyglucose uptake at 12% and 10% O 2

  13. Electrical stimulation and motor recovery.

    Science.gov (United States)

    Young, Wise

    2015-01-01

    In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as "neurons that fire together, wire together." This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical

  14. A Review of Repetitive Transcranial Magnetic Stimulation Use in Psychiatry

    Directory of Open Access Journals (Sweden)

    Onur Durmaz

    2013-08-01

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS is a non-invasive brain stimulation technique first introduced by Barker et al. in 1985. The principle of rTMS is based on a cortical neuronal transmembrane potential stimulated by a pulsative magnetic field. This magnetic field is induced by a direct electrical current sent through a circular coil. rTMS is an effective and widely used therapeutic stimulation method for psychiatric disorders, primarily for unipolar depression. Cost-effectiveness, minor side effects and well-tolerated profile of rTMS with no need to hospitalization for administation are the prominent features of this method. Beside the information for depression, rTMS has been reported to have some remarkable impacts in alleviating symptoms of anxiety disorders. Although data regarding efficacy of rTMS in anxiety disorders is conflicting, there are positive outcomes about generalized anxiety disorder, post-traumatic stress disorder and panic disorder whereas results of rTMS treatment in obsessive-compulsive disorder are generally not favorable. Since low frequency stimulation techniques have been found to be effective in treatment of auditory hallucinations, methodological similarity in concerned studies could be accepted as a supportive aspect of efficacy. Additionally, high frequency stimulation techniques applied to prefrontal area have a potential to impact negative symptoms of schizophrenia. With improving novel techniques of this stimulation method, rTMS is being used increasingly in psychiatric disorders. However, some issues concerning rTMS treatment such as maintenance or prophilactic therapy procedures, duration of effect are remain unclear. Hence, we conclude that multicenter sham controlled studies including similar designs, sociodemographic and clinical variables, methodological protocols with larger sample sizes and studies guieded by imaging methods are warranted to determinate efficacy and side effects of rTMS use

  15. A Programmable Optical Stimulator for the Drosophila Eye.

    Science.gov (United States)

    Chen, Xinping; Leon-Salas, Walter D; Zigon, Taylor; Ready, Donald F; Weake, Vikki M

    2017-10-01

    A programmable optical stimulator for Drosophila eyes is presented. The target application of the stimulator is to induce retinal degeneration in fly photoreceptor cells by exposing them to light in a controlled manner. The goal of this work is to obtain a reproducible system for studying age-related changes in susceptibility to environmental ocular stress. The stimulator uses light emitting diodes and an embedded computer to control illuminance, color (blue or red) and duration in two independent chambers. Further, the stimulator is equipped with per-chamber light and temperature sensors and a fan to monitor light intensity and to control temperature. An ON/OFF temperature control implemented on the embedded computer keeps the temperature from reaching levels that will induce the heat shock stress response in the flies. A custom enclosure was fabricated to house the electronic components of the stimulator. The enclosure provides a light-impermeable environment that allows air flow and lets users easily load and unload fly vials. Characterization results show that the fabricated stimulator can produce light at illuminances ranging from 0 to 16000 lux and power density levels from 0 to 7.2 mW/cm 2 for blue light. For red light the maximum illuminance is 8000 lux which corresponds to a power density of 3.54 mW/cm 2 . The fans and the ON/OFF temperature control are able to keep the temperature inside the chambers below 28.17°C. Experiments with white-eye male flies were performed to assess the ability of the fabricated simulator to induce blue light-dependent retinal degeneration. Retinal degeneration is observed in flies exposed to 8 hours of blue light at 7949 lux. Flies in a control experiment with no light exposure show no retinal degeneration. Flies exposed to red light for the similar duration and light intensity (8 hours and 7994 lux) do not show retinal degeneration either. Hence, the fabricated stimulator can be used to create environmental ocular stress

  16. A programmable optical stimulator for the Drosophila eye

    Directory of Open Access Journals (Sweden)

    Xinping Chen

    2017-10-01

    Full Text Available A programmable optical stimulator for Drosophila eyes is presented. The target application of the stimulator is to induce retinal degeneration in fly photoreceptor cells by exposing them to light in a controlled manner. The goal of this work is to obtain a reproducible system for studying age-related changes in susceptibility to environmental ocular stress. The stimulator uses light emitting diodes and an embedded computer to control illuminance, color (blue or red and duration in two independent chambers. Further, the stimulator is equipped with per-chamber light and temperature sensors and a fan to monitor light intensity and to control temperature. An ON/OFF temperature control implemented on the embedded computer keeps the temperature from reaching levels that will induce the heat shock stress response in the flies. A custom enclosure was fabricated to house the electronic components of the stimulator. The enclosure provides a light-impermeable environment that allows air flow and lets users easily load and unload fly vials. Characterization results show that the fabricated stimulator can produce light at illuminances ranging from 0 to 16000 lux and power density levels from 0 to 7.2 mW/cm2 for blue light. For red light the maximum illuminance is 8000 lux which corresponds to a power density of 3.54 mW/cm2. The fans and the ON/OFF temperature control are able to keep the temperature inside the chambers below 28.17 °C. Experiments with white-eye male flies were performed to assess the ability of the fabricated simulator to induce blue light-dependent retinal degeneration. Retinal degeneration is observed in flies exposed to 8 h of blue light at 7949 lux. Flies in a control experiment with no light exposure show no retinal degeneration. Flies exposed to red light for the similar duration and light intensity (8 h and 7994 lux do not show retinal degeneration either. Hence, the fabricated stimulator can be used to create environmental

  17. Evoked Electromyographically Controlled Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Hayashibe

    2016-07-01

    Full Text Available Time-variant muscle responses under electrical stimulation (ES are often problematic for all the applications of neuroprosthetic muscle control. This situation limits the range of ES usage in relevant areas, mainly due to muscle fatigue and also to changes in stimulation electrode contact conditions, especially in transcutaneous ES. Surface electrodes are still the most widely used in noninvasive applications.Electrical field variations caused by changes in the stimulation contact condition markedly affect the resulting total muscle activation levels. Fatigue phenomena under functional electrical stimulation (FES are also well known source of time-varying characteristics coming from muscle response under ES. Therefore it is essential to monitor the actual muscle state and assess the expected muscle response by ES so as to improve the current ES system in favour of adaptive muscle-response-aware FES control. To deal with this issue, we have been studying a novel control technique using evoked electromyography (eEMG signals to compensate for these muscle time-variances under ES for stable neuroprosthetic muscle control. In this perspective article, I overview the background of this topic and highlight important points to be aware of when using ES to induce the desired muscle activation regardless of the time-variance. I also demonstrate how to deal with the common critical problem of ES to move toward robust neuroprosthetic muscle control with the Evoked Electromyographically Controlled Electrical Stimulation paradigm.

  18. Residual stresses

    International Nuclear Information System (INIS)

    Macherauch, E.

    1978-01-01

    Residual stresses are stresses which exist in a material without the influence of external powers and moments. They come into existence when the volume of a material constantly changes its form as a consequence of mechanical, thermal, and/or chemical processes and is hindered by neighbouring volumes. Bodies with residual stress are in mechanical balance. These residual stresses can be manifested by means of all mechanical interventions disturbing this balance. Acoustical, optical, radiological, and magnetical methods involving material changes caused by residual stress can also serve for determining residual stress. Residual stresses have an ambivalent character. In technical practice, they are feared and liked at the same time. They cause trouble because they can be the cause for unexpected behaviour of construction elements. They are feared since they can cause failure, in the worst case with catastrophical consequences. They are appreciated, on the other hand, because, in many cases, they can contribute to improvements of the material behaviour under certain circumstances. But they are especially liked for their giving convenient and (this is most important) mostly uncontrollable explanations. For only in very few cases we have enough knowledge and possibilities for the objective evaluation of residual stresses. (orig.) [de

  19. Geopotential Stress

    DEFF Research Database (Denmark)

    Schiffer, Christian; Nielsen, S.B.

    Density heterogeneity in the Earth’s lithosphere causes lateral pressure variations. Horizontal gradients of the vertically integrated lithostatic pressure, the Geopotential Energy (GPE), are a source of stresses (Geopotential Stress) that contribute to the Earth’s Stress Field. In theory the GPE...... is linearly related to the lithospheric part of the Geoid. The Geopotential Stress can be calculated if either the density structure and as a consequence the GPE or the lithospheric contribution to the Geoid is known. The lithospheric Geoid is usually obtained by short pass filtering of satellite Geoid...... are not entirely suitable for the stress calculations but can be compiled and adjusted. We present an approach in which a global lithospheric density model based on CRUST2.0 is obtained by simultaneously fitting topography and surface heat flow in the presence of isostatic compensation and long-wavelength lateral...

  20. Stress, eating and the reward system.

    Science.gov (United States)

    Adam, Tanja C; Epel, Elissa S

    2007-07-24

    An increasing number of people report concerns about the amount of stress in their life. At the same time obesity is an escalating health problem worldwide. Evidence is accumulating rapidly that stress related chronic stimulation of the hypothalamic-pituitary-adrenal (HPA) axis and resulting excess glucocorticoid exposure may play a potential role in the development of visceral obesity. Since adequate regulation of energy and food intake under stress is important for survival, it is not surprising that the HPA axis is not only the 'conductor' of an appropriate stress response, but is also tightly intertwined with the endocrine regulation of appetite. Here we attempt to link animal and human literatures to tease apart how different types of psychological stress affect eating. We propose a theoretical model of Reward Based Stress Eating. This model emphasizes the role of cortisol and reward circuitry on motivating calorically dense food intake, and elucidating potential neuroendocrine mediators in the relationship between stress and eating. The addiction literature suggests that the brain reward circuitry may be a key player in stress-induced food intake. Stress as well as palatable food can stimulate endogenous opioid release. In turn, opioid release appears to be part of an organisms' powerful defense mechanism protecting from the detrimental effects of stress by decreasing activity of the HPA axis and thus attenuating the stress response. Repeated stimulation of the reward pathways through either stress induced HPA stimulation, intake of highly palatable food or both, may lead to neurobiological adaptations that promote the compulsive nature of overeating. Cortisol may influence the reward value of food via neuroendocrine/peptide mediators such as leptin, insulin and neuropeptide Y (NPY). Whereas glucocorticoids are antagonized by insulin and leptin acutely, under chronic stress, that finely balanced system is dysregulated, possibly contributing to increased food

  1. Learn to manage stress

    Science.gov (United States)

    Stress - managing; Stress - recognizing; Stress - relaxation techniques ... LEARN TO RECOGNIZE STRESS The first step in managing stress is recognizing it in your life. Everyone feels stress in a different way. ...

  2. Noninvasive Transcranial Brain Stimulation and Pain

    OpenAIRE

    Rosen, Allyson C.; Ramkumar, Mukund; Nguyen, Tam; Hoeft, Fumiko

    2009-01-01

    Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are two noninvasive brain stimulation techniques that can modulate activity in specific regions of the cortex. At this point, their use in brain stimulation is primarily investigational; however, there is clear evidence that these tools can reduce pain and modify neurophysiologic correlates of the pain experience. TMS has also been used to predict response to surgically implanted stimulation for the tre...

  3. Radioelectric asymmetric brain stimulation and lingual apex repositioning in patients with atypical deglutition

    Directory of Open Access Journals (Sweden)

    Castagna A

    2011-06-01

    Full Text Available Alessandro Castagna1, Salvatore Rinaldi1,2, Vania Fontani1, Piero Mannu11Rinaldi-Fontani Institute, 2School of Occupational Medicine, University of Florence, Florence, ItalyBackground: Atypical deglutition is exacerbated by stress and anxiety. Several therapeutic approaches have been employed to treat stress and anxiety disorders, ranging from typical psychopharmacological strategies to novel physical protocols, such as transcranial magnetic stimulation and radioelectric asymmetric conveyor (REAC stimulation. The purpose of the present study was to test the efficacy of REAC brain stimulation in atypical deglutition.Methods: The position of the lingual apex (Payne method, pattern of free deglutition, and subjective and objective impression of deglutition were evaluated in 128 outpatients suffering from atypical deglutition. Deglutition testing consisted of an operator holding down the lower lip, hence counteracting the strength exerted by the orbicularis muscle. All subjects were treated using two REAC brain stimulation protocols. Patients were assessed before treatment, immediately after treatment, and three months following the last cycle of REAC therapy.Results: REAC stimulation led to an improvement in positioning of the lingual apex and a significant decrease of muscle involvement in all patients immediately after REAC treatment, and the improvement was maintained at three-month follow-up.Conclusion: In the present study, the REAC therapeutic protocols led to normalization in lingual apex positioning and significant improvement in swallowing in all participants suffering from atypical deglutition.Keywords: atypical deglutition, stress, anxiety, radioelectric asymmetric brain stimulation

  4. Stimulating effects of ionizing radiation

    International Nuclear Information System (INIS)

    Jaworowski, Z.

    1995-01-01

    The influence of low doses on human organism is not definite known up to now. The worldwide discussion on this topic has been presented. A lot of analysed statistical data proved that the stimulating effect of low doses of ionizing radiation really exists and can have a beneficial influence on human health. 43 refs, 4 figs, 6 tabs

  5. Ovarian stimulation and embryo quality

    NARCIS (Netherlands)

    Baart, Esther; Macklon, Nick S.; Fauser, Bart J. C. M.

    To Study the effects of different ovarian stimulation approaches on oocyte and embryo quality, it is imperative to assess embryo quality with a reliable and objective method. Embryos rated as high quality by standardized morphological assessment are associated with higher implantation and pregnancy

  6. Enteral feeding without pancreatic stimulation

    DEFF Research Database (Denmark)

    Kaushik, Neeraj; Pietraszewski, Marie; Holst, Jens Juul

    2005-01-01

    OBJECTIVE: All forms of commonly practiced enteral feeding techniques stimulate pancreatic secretion, and only intravenous feeding avoids it. In this study, we explored the possibility of more distal enteral infusions of tube feeds to see whether activation of the ileal brake mechanism can result...

  7. Transcranial magnetic stimulation in schizophrenia.

    Science.gov (United States)

    Zaman, Rashid; Thind, Dilraj; Kocmur, Marga

    2008-11-01

    Transcranial magnetic stimulation (TMS) is a non-invasive and painless way of stimulating the neural tissue (cerebral cortex, spinal roots, and cranial and peripheral nerves). The first attempts at stimulating the neural tissue date back to 1896 by d'Arsonval; however, it was successfully carried out by Barker and colleagues in Sheffield, UK, in 1985. It soon became a useful tool in neuroscience for neurophysiologists and neurologists and psychiatrists. The original single-pulse TMS, largely used as an investigative tool, was further refined and developed in the early 1990s into what is known as repetitive TMS (rTMS), having a frequency range of 1-60 Hz. The stimulation by both TMS and rTMS of various cortical regions displayed alteration of movement, mood, and behavior, leading researchers to investigate a number of psychiatric and neuropsychiatric disorders, as well as to explore its therapeutic potential. There is now a large amount of literature on the use of TMS/rTMS in depression; however, its use in schizophrenia, both as an investigative and certainly as a therapeutic tool is relatively recent with a limited but increasing number of publications. In this article, we will outline the principles of TMS/rTMS and critically review their use in schizophrenia both as investigative and potential therapeutic tools.

  8. Aversive Stimulation -- Criteria for Application.

    Science.gov (United States)

    O'Donnell, Patrick A.; Ohlson, Glenn A.

    Criteria for applying aversive stimulation with severely handicapped children are examined, and practical and ethical issues are considered. Factors seen to influence punishment outcomes include timing, intensity, and schedule of reinforcement. Suggested is the need for further research on the comparative effectiveness of positive and negative…

  9. Thalamic stimulation in absence epilepsy

    NARCIS (Netherlands)

    Luttjohann, A.K.; Luijtelaar, E.L.J.M. van

    2013-01-01

    Purpose The site specific effects of two different types of electrical stimulation of the thalamus on electroencephalic epileptic activity as generated in the cortico-thalamo-cortical system were investigated in genetic epileptic WAG/Rij rats, a well characterized and validated absence

  10. Stress Management

    Science.gov (United States)

    ... with regions of your brain that control mood, motivation and fear. The body's stress-response system is ... problems Headaches Heart disease Sleep problems Weight gain Memory and concentration impairment That's why it's so important ...

  11. Stressing academia?

    DEFF Research Database (Denmark)

    Opstrup, Niels; Pihl-Thingvad, Signe

    Incongruences between the individual and the organizational work context are potential stressors. The present study focuses on the relationship between a complementary need-supply fit and Danish researchers’ self-perceived job stress. Strain is expected to increase as organizational supplies fall...... hand, the fit on “hard” dimensions as salary, financial rewards and career opportunities is found to be unrelated to the researchers’ self-perceived stress-level. The fit with regard to job security is an important exception, however....... to “soft” dimensions as freedom and independence in the job, personal and professional development at work, and receiving peer recognition is highly significant for the researchers’ self-perceived stress-level. The better the fit is the lower stress-levels the researchers’ on average report. On the other...

  12. Low doses of ionizing radiation and hydrogen peroxide stimulate plant growth

    International Nuclear Information System (INIS)

    Korystov, Y.; Narimanov, A.

    1997-01-01

    The present study shows that low-dose oxidative stress induced by ionizing radiation (10-20 cGy) and hydrogen peroxide (1-100 pmol per litre) stimulates germination of seeds and growth of sprouts and roots. The growth of seedlings can be stimulated by treatment of seeds as well as seedlings but in the latter case it needs lower doses. The stimulation effect is observed in a narrow dose interval which is the same for the plant species studied: barley, wheat, pea, maize and melon

  13. Stress Management

    Directory of Open Access Journals (Sweden)

    Prof.Univ. Dr. Paul Marinescu

    2007-05-01

    Full Text Available In the post-modern management organizational leaders have the obligation of protecting their employees against factors that could cause damages to their potentially wealthy lives. Stress is such a factor. We shall attempt by means of the present article to draw attention on certain general aspects that should be taken into account in drafting plans for fighting against and diminishing the stress faced by the employees

  14. Stress fractures

    International Nuclear Information System (INIS)

    Berquist, T.H.; Cooper, K.L.; Pritchard, D.J.

    1985-01-01

    The diagnosis of a stress fracture should be considered in patients presented with pain after a change in activity, especially if the activity is strenuous and the pain is in the lower extremities. Since evidence of the stress fracture may not be apparent for weeks on routine radiographs, proper use of other imaging techniques will allow an earlier diagnosis. Prompt diagnosis is especially important in the femur, where displacement may occur

  15. Comparison between two different neuromuscular electrical stimulation protocols for the treatment of female stress urinary incontinence: a randomized controlled trial Comparação de diferentes procedimentos de estimulação elétrica neuromuscular utilizados no tratamento da incontinência urinária de esforço feminina: ensaio clínico randomizado

    Directory of Open Access Journals (Sweden)

    Priscila G. J. M. Alves

    2011-10-01

    Full Text Available BACKGROUND: Neuromuscular electrical stimulation (NMES is widely treatment for stress urinary incontinence (SUI but there is no consensus in literature regarding the most effective treatment parameters. OBJECTIVE: To compare two NMESintra-vaginal protocols for the treatment of SUI in women. METHODS: The study included 20 volunteers with an average age of 55.55±6.51 years and with the clinical diagnosis of SUI. Volunteers were randomly divided into two groups: group 1 (G1 received NMES with medium-frequency current and group 2 (G2 received NMES with low-frequency current. Functional assessments of pelvic floor muscles (PFM were performed by perineometry. The severity of signs and symptoms were objectively evaluated using the 1 hour pad test and subjectively evaluated using a visual analog scale that measured the discomfort caused by the SUI. Shapiro-Wilk test was used to analyze data normality, and the Friedman test was used to analyze nonparametric data. For analysis of symptoms related to SUI the Fisher exact test and the Mann-Whitney test were used. Significance level of 5% was set for all data analysis. RESULTS: No significant differences (p>0.05 were found between groups for any of the variable assessed. The within group analysis of initial and final evaluations (after NMES demonstrated significant differences (pCONTEXTUALIZAÇÃO: A estimulação elétrica neuromuscular (EENM é amplamente utilizada no tratamento da incontinência urinária de esforço (IUE, no entanto não há consenso na literatura sobre os parâmetros de tratamento mais eficazes. OBJETIVO: Avaliar os procedimentos de EENM intravaginal no tratamento de mulheres com IUE. MÉTODOS: Participaram do estudo 20 voluntárias com idade média de 55,55±6,51 anos, com diagnóstico clínico de IUE. As voluntárias foram divididas aleatoriamente em dois grupos: grupo 1 (G1, que recebeu EENM com corrente de média frequência, e grupo 2 (G2, com corrente de baixa frequência. A

  16. Channelled scaffolds for engineering myocardium with mechanical stimulation.

    Science.gov (United States)

    Zhang, Ting; Wan, Leo Q; Xiong, Zhuo; Marsano, Anna; Maidhof, Robert; Park, Miri; Yan, Yongnian; Vunjak-Novakovic, Gordana

    2012-10-01

    The characteristics of the matrix (composition, structure, mechanical properties) and external culture environment (pulsatile perfusion, physical stimulation) of the heart are important characteristics in the engineering of functional myocardial tissue. This study reports on the development of chitosan-collagen scaffolds with micropores and an array of parallel channels (~ 200 µm in diameter) that were specifically designed for cardiac tissue engineering using mechanical stimulation. The scaffolds were designed to have similar structural and mechanical properties of those of native heart matrix. Scaffolds were seeded with neonatal rat heart cells and subjected to dynamic tensile stretch using a custom designed bioreactor. The channels enhanced oxygen transport and facilitated the establishment of cell connections within the construct. The myocardial patches (14 mm in diameter, 1-2 mm thick) consisted of metabolically active cells that began to contract synchronously after 3 days of culture. Mechanical stimulation with high tensile stress promoted cell alignment, elongation, and expression of connexin-43 (Cx-43). This study confirms the importance of scaffold design and mechanical stimulation for the formation of contractile cardiac constructs. Copyright © 2011 John Wiley & Sons, Ltd.

  17. Channeled Scaffolds for Engineering Myocardium with Mechanical Stimulation

    Science.gov (United States)

    Zhang, Ting; Wan, Leo Q.; Xiong, Zhuo; Marsano, Anna; Maidhof, Robert; Park, Miri; Yan, Yongnian; Vunjak-Novakovic, Gordana

    2011-01-01

    The characteristics of the matrix (composition, structure, mechanical properties) and external culture environment (pulsatile perfusion, physical stimulation) are critically important for engineering functional myocardial tissue. We report the development of chitosan-collagen scaffolds with micro-pores and an array of parallel channels (~200 μm in diameter) that were specifically designed for cardiac tissue engineering with mechanical stimulation. The scaffolds were designed to have the structural and mechanical properties similar to those of the native human heart matrix. Scaffolds were seeded with neonatal rat heart cells and subjected to dynamic tensile stretch using a custom-designed bioreactor. The channels enhanced oxygen transport and facilitated the establishment of cell connections within the construct. The myocardial patches (14 mm in diameter, 1–2 mm thick) consisted of metabolically active cells and started to contract synchronously after 3 days of culture. Mechanical stimulation with high tensile stresses promoted cell alignment, elongation, and the expression of connexin-43 (Cx-43). This study confirms the importance of scaffold design and mechanical stimulation for the formation of contractile cardiac constructs. PMID:22081518

  18. Vestibulosympathetic reflex during mental stress

    Science.gov (United States)

    Carter, Jason R.; Ray, Chester A.; Cooke, William H.

    2002-01-01

    Increases in sympathetic neural activity occur independently with either vestibular or mental stimulation, but it is unknown whether sympathetic activation is additive or inhibitive when both stressors are combined. The purpose of the present study was to investigate the combined effects of vestibular and mental stimulation on sympathetic neural activation and arterial pressure in humans. Muscle sympathetic nerve activity (MSNA), arterial pressure, and heart rate were recorded in 10 healthy volunteers in the prone position during 1) head-down rotation (HDR), 2) mental stress (MS; using arithmetic), and 3) combined HDR and MS. HDR significantly (P < 0.05) increased MSNA (9 +/- 2 to 13 +/- 2 bursts/min). MS significantly increased MSNA (8 +/- 2 to 13 +/- 2 bursts/min) and mean arterial pressure (87 +/- 2 to 101 +/- 2 mmHg). Combined HDR and MS significantly increased MSNA (9 +/- 1 to 16 +/- 2 bursts/min) and mean arterial pressure (89 +/- 2 to 100 +/- 3 mmHg). Increases in MSNA (7 +/- 1 bursts/min) during the combination trial were not different from the algebraic sum of each trial performed alone (8 +/- 2 bursts/min). We conclude that the interaction for MSNA and arterial pressure is additive during combined vestibular and mental stimulation. Therefore, vestibular- and stress-mediated increases of MSNA appear to occur independently in humans.

  19. Quantifying Discrete Fracture Network Connectivity in Hydraulic Fracturing Stimulation

    Science.gov (United States)

    Urbancic, T.; Ardakani, E. P.; Baig, A.

    2017-12-01

    Hydraulic fracture stimulations generally result in microseismicity that is associated with the activation or extension of pre-existing microfractures and discontinuities. Microseismic events acquired under 3D downhole sensor coverage provide accurate event locations outlining hydraulic fracture growth. Combined with source characteristics, these events provide a high quality input for seismic moment tensor inversion and eventually constructing the representative discrete fracture network (DFN). In this study, we investigate the strain and stress state, identified fracture orientation, and DFN connectivity and performance for example stages in a multistage perf and plug completion in a North American shale play. We use topology, the familiar concept in many areas of structural geology, to further describe the relationships between the activated fractures and their effectiveness in enhancing permeability. We explore how local perturbations of stress state lead to the activation of different fractures sets and how that effects the DFN interaction and complexity. In particular, we observe that a more heterogeneous stress state shows a higher percentage of sub-horizontal fractures or bedding plane slips. Based on topology, the fractures are evenly distributed from the injection point, with decreasing numbers of connections by distance. The dimensionless measure of connection per branch and connection per line are used for quantifying the DFN connectivity. In order to connect the concept of connectivity back to productive volume and stimulation efficiency, the connectivity is compared with the character of deformation in the reservoir as deduced from the collective behavior of microseismicity using robustly determined source parameters.

  20. Professional stress

    Directory of Open Access Journals (Sweden)

    Stanojević Dragana Z.

    2011-01-01

    Full Text Available Job stress is a line, for the person at work hired adverse physiological, psychological and behavioral reactions to situations in which job requirements are not in accordance with its capabilities, abilities and needs. Sources of stress at work are numerous. Personal factors: personality types have been most studied so far, environmental changes and demographic characteristics as well. Interpersonal stress inducing factors act and influence to the occurrence of many psychosomatic diseases. Psychosocial climate and relationships which are prevented or encouraged such as: cooperation and competition, trust and suspicion certainly affect to the appearance of professional stress. The way of leadership is very important. Organizational factors are the type of work, work time, noncompliance of the job, the introduction of new ethnologies, the conflict of personal roles, fear of job loss, bad physical conditions of working environment. The consequences of stress at work are numerous: at the cognitive level, the emotional level, the production plan, the health, plan reduces the immune system that cause a variety of psychosomatic illnesses and accidents at work.

  1. Somato stimulation and acupuncture therapy.

    Science.gov (United States)

    Zhao, Jing-Jun; Rong, Pei-Jing; Shi, Li; Ben, Hui; Zhu, Bing

    2016-05-01

    Acupuncture is an oldest somato stimulus medical technique. As the most representative peripheral nerve stimulation therapy, it has a complete system of theory and application and is applicable to a large population. This paper expounds the bionic origins of acupuncture and analyzes the physiological mechanism by which acupuncture works. For living creatures, functionally sound viscera and effective endurance of pain are essential for survival. This paper discusses the way in which acupuncture increases the pain threshold of living creatures and the underlying mechanism from the perspective of bionics. Acupuncture can also help to adjust visceral functions and works most effectively in facilitating the process of digestion and restraining visceral pain. This paper makes an in-depth overview of peripheral nerve stimulation therapy represented by acupuncture. We look forward to the revival of acupuncture, a long-standing somato stimulus medicine, in the modern medical systems.

  2. Femtosecond Broadband Stimulated Raman Spectroscopy

    International Nuclear Information System (INIS)

    Lee, Soo-Y; Yoon, Sagwoon; Mathies, Richard A

    2006-01-01

    Femtosecond broadband stimulated Raman spectroscopy (FSRS) is a new technique where a narrow bandwidth picosecond Raman pump pulse and a red-shifted broadband femtosecond Stokes probe pulse (with or without time delay between the pulses) act on a sample to produce a high resolution Raman gain spectrum with high efficiency and speed, free from fluorescence background interference. It can reveal vibrational structural information and dynamics of stationary or transient states. Here, the quantum picture for femtosecond broadband stimulated Raman spectroscopy (FSRS) is used to develop the semiclassical coupled wave theory of the phenomenon and to derive an expression for the measurable Raman gain in FSRS. The semiclassical theory is applied to study the dependence of lineshapes in FSRS on the pump-probe time delay and to deduce vibrational dephasing times in cyclohexane in the ground state

  3. Vagal stimulation in heart failure.

    Science.gov (United States)

    De Ferrari, Gaetano M

    2014-04-01

    Heart failure (HF) is accompanied by an autonomic imbalance that is almost always characterized by both increased sympathetic activity and withdrawal of vagal activity. Experimentally, vagal stimulation has been shown to exert profound antiarrhythmic activity and to improve cardiac function and survival in HF models. A open-label pilot clinical study in 32 patients with chronic HF has shown safety and tolerability of chronic vagal stimulation associated with subjective (improved quality of life and 6-min walk test) and objective improvements (reduced left ventricular systolic volumes and improved left ventricular ejection fraction). Three larger clinical studies, including a phase III trial are currently ongoing and will evaluate the clinical role of this new approach.

  4. Designing electrical stimulated bioreactors for nerve tissue engineering

    Science.gov (United States)

    Sagita, Ignasius Dwi; Whulanza, Yudan; Dhelika, Radon; Nurhadi, Ibrahim

    2018-02-01

    Bioreactor provides a biomimetic ecosystem that is able to culture cells in a physically controlled system. In general, the controlled-parameters are temperature, pH, fluid flow, nutrition flow, etc. In this study, we develop a bioreactor that specifically targeted to culture neural stem cells. This bioreactor could overcome some limitations of conventional culture technology, such as petri dish, by providing specific range of observation area and a uniform treatment. Moreover, the microfluidic bioreactor, which is a small-controlled environment, is able to observe as small number of cells as possible. A perfusion flow is applied to mimic the physiological environment in human body. Additionally, this bioreactor also provides an electrical stimulation which is needed by neural stem cells. In conclusion, we found the correlation between the induced shear stress with geometric parameters of the bioreactor. Ultimately, this system shall be used to observe the interaction between stimulation and cell growth.

  5. The effect of oscillatory mechanical stimulation on osteoblast attachment and proliferation

    International Nuclear Information System (INIS)

    Aryaei, Ashkan; Jayasuriya, Ambalangodage C.

    2015-01-01

    The aim of this paper is to investigate the effect of the magnitude and duration of oscillatory mechanical stimulation on osteoblast attachment and proliferation as well as the time gap between seeding and applying the stimulation. Cells were exposed to three levels of speed at two different conditions. For the first group, mechanical shear stress was applied after 20 min of cell seeding. For the second group there was no time gap between cell seeding and applying mechanical stimulation. The total area subjected to shear stress was divided into three parts and for each part a comparative study was conducted at defined time points. Our results showed that both shear stress magnitude and the time gap between cell seeding and applying shear stress, are important in further cell proliferation and attachment. The effect of shear stress was not significant at lower speeds for both groups at earlier time points. However, a higher percentage of area was covered by cells at later time points under shear stress. In addition, the time gap can also improve osteoblast attachment. For the best rate of cell attachment and proliferation, the magnitude of shear stress and time gap should be optimized. The results of this paper can be utilized to improve cell attachment and proliferation in bioreactors. - Highlights: • The effect of oscillatory mechanical stimulation on osteoblast functions was studied. • Cells were exposed at three levels of speed to attach cells. • Shear stress magnitude and time gap are important for cell functions. • Cells start developing extracellular components at the early stage of seeding

  6. Tactile Stimulation and Consumer Response.

    OpenAIRE

    Hornik, Jacob

    1992-01-01

    Tactile behavior is a basic communication form as well as an expression of interpersonal involvement. This article presents three studies offering evidence for the positive role of casual interpersonal touch on consumer behavior. More specifically, it provides initial support for the view that tactile stimulation in various consumer behavior situations enhances the positive feeling for and evaluation of both the external stimuli and the touching source. Further, customers touched by a request...

  7. Resonant Impulsive Stimulated Raman Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, A; Chesnoy, J

    1988-03-15

    Using a femtosecond dye laser, we observe in real-time vibrational oscillations excited by impulsive stimulated Raman scattering (ISRS) close to an electronic resonance. We perform single-beam Raman excitation and probe the driven coherence by a polarization-sensitive detection. We demonstrate for the first time impulsively Raman-induced dichroism, birefringence as well as frequency and time delay shifts. We analyse the characteristics of resonant ISRS on a vibrational mode of a dye molecule (malachite green) in solution.

  8. Transcranial Magnetic Stimulation in Children

    OpenAIRE

    Garvey, Marjorie A.; Mall, Volker

    2008-01-01

    Developmental disabilities (e.g. attention deficit disorder; cerebral palsy) are frequently associated with deviations of the typical pattern of motor skill maturation. Neurophysiologic tools, such as transcranial magnetic stimulation (TMS), which probe motor cortex function, can potentially provide insights into both typical neuromotor maturation and the mechanisms underlying the motor skill deficits in children with developmental disabilities. These insights may set the stage for finding ef...

  9. Resonant Impulsive Stimulated Raman Scattering

    International Nuclear Information System (INIS)

    Mokhtari, A.; Chesnoy, J.

    1988-01-01

    Using a femtosecond dye laser, we observe in real-time vibrational oscillations excited by impulsive stimulated Raman scattering (ISRS) close to an electronic resonance. We perform single-beam Raman excitation and probe the driven coherence by a polarization-sensitive detection. We demonstrate for the first time impulsively Raman-induced dichroism, birefringence as well as frequency and time delay shifts. We analyse the characteristics of resonant ISRS on a vibrational mode of a dye molecule (malachite green) in solution

  10. Optical stimulated luminescence (OSL) dating

    International Nuclear Information System (INIS)

    Banerjee, D.

    1999-01-01

    Since the pioneering work by Huntley et al. (1985), optical dating is being increasingly recognised as an important technique for establishing a time frame of deposition of sediments (Aitken, 1998). Optical dating differs from thermoluminescence (TL) dating in that visible/infrared light from lasers or LEDs (light-emitting-diodes) is used as a means of stimulation, in contrast to thermal stimulation. It has several advantages over TL dating: (i) the resetting of the OSL (optically stimulated luminescence) clock is more effective than that of TL clock; for sediments transported under water or in other situations where the sediment grains have undergone inhomogeneous bleaching, this property ensures that ages based on optical dating are generally more reliable than TL ages, (ii) the optical dating technique is non-destructive, and multiple readouts of the optical signal is possible; this feature has resulted in the development of single-aliquot and single-grain protocols (Murray and Wintle, 1999; Banerjee et al. 1999), (iii) the sample is not heated as in TL; thus, spurious luminescence is avoided and there is a significant reduction in blackbody radiation. Dating of materials which change phase on heating is also practical, and finally, (iv) thermal quenching of luminescence is negligible, allowing accurate estimation of kinetic parameters using standard techniques and providing access to deep OSL traps. This characteristic may be helpful in extending the limits of optical dating beyond the last 150 ka from a global point of view

  11. Cortical stimulation and neuropathic pain

    Directory of Open Access Journals (Sweden)

    Cristiane Cagnoni Ramos

    2015-02-01

    Full Text Available http://dx.doi.org/10.5007/2175-7925.2015v28n2p1 This paper is a review of physiological and behavioral data on motor cortex stimulation (MCS and its role in persistent neuropathic pain. MCS has been widely used in clinical medicine as a tool for the management of pain that does not respond satisfactorily to any kind of conventional analgesia. Some important mechanisms involved in nociceptive modulation still remains unclear. The aim of this study was to describe the mechanisms involved in neuropathic pain and introduce the effectiveness of electrical stimulation of the motor cortex used in the treatment of this disease. The ascending pain pathways are activated by peripheral receptors, in which there is the transduction of a chemical, physical or mechanical stimulus as a nerve impulse, where this impulse is transmitted to the dorsal horn of the spinal cord, which connects with second-order neurons and ascends to different locations in the central nervous system where the stimulus is perceived as pain. Because MCS has been proved to modulate this pathway in the motor cortex, it has been studied to mimic its effects in clinical practice and improve the treatments used for chronic pain. MCS has gained much attention in recent years due to its action in reversing chronic neuropathic pain, this being more effective than electrical stimulation at different locations and related pain nuclei.

  12. Cortical stimulation and neuropathic pain

    Directory of Open Access Journals (Sweden)

    Cristiane Cagnoni Ramos

    2015-05-01

    Full Text Available This paper is a review of physiological and behavioral data on motor cortex stimulation (MCS and its role in persistent neuropathic pain. MCS has been widely used in clinical medicine as a tool for the management of pain that does not respond satisfactorily to any kind of conventional analgesia. Some important mechanisms involved in nociceptive modulation still remains unclear. The aim of this study was to describe the mechanisms involved in neuropathic pain and introduce the effectiveness of electrical stimulation of the motor cortex used in the treatment of this disease. The ascending pain pathways are activated by peripheral receptors, in which there is the transduction of a chemical, physical or mechanical stimulus as a nerve impulse, where this impulse is transmitted to the dorsal horn of the spinal cord, which connects with second-order neurons and ascends to different locations in the central nervous system where the stimulus is perceived as pain. Because MCS has been proved to modulate this pathway in the motor cortex, it has been studied to mimic its effects in clinical practice and improve the treatments used for chronic pain. MCS has gained much attention in recent years due to its action in reversing chronic neuropathic pain, this being more effective than electrical stimulation at different locations and related pain nuclei.

  13. Radiation, hypoxia and genetic stimulation: implications for future therapies

    International Nuclear Information System (INIS)

    Adams, Gerald E.; Hasan, Na'il M.; Joiner, Michael C.

    1997-01-01

    The cellular stress response, whereby very low doses of cytotoxic agents induce resistance to much higher doses, is an evolutionary defence mechanism and is stimulated following challenges by numerous chemical, biological and physical agents including particularly radiation, drugs, heat and hypoxia. There is much homology in the effects of these agents which are manifest through the up-regulation of various genetic pathways. Low-dose radiation stress influences processes involved in cell-cycle control, signal transduction pathways, radiation sensitivity, changes in cell adhesion and cell growth. There is also homology between radiation and other cellular stress agents, particularly hypoxia. Whereas traditionally, hypoxia was regarded mainly as an agent conferring resistance to radiation, there is now much evidence illustrating the cytokine-like properties of hypoxia as well as radiation. Stress phenomena are likely to be important in risks arising from low doses of radiation. Conversely, exploitation of the stress response in settings appropriate to therapy can be particularly beneficial not only in regard to radiation alone but in combinations of radiation and drugs. Similarly, tissue hypoxia can be exploited in novel ways of enhancing therapeutic efficacy. Bioreductive drugs, which are cytotoxically activated in hypoxic regions of tissue, can be rendered even more effective by hypoxia-induced increased expression of enzyme reductases. Nitric oxide pathways are influenced by hypoxia thereby offering possibilities for novel vascular based therapies. Other approaches are discussed

  14. Sympathetic stimulation alters left ventricular relaxation and chamber size.

    Science.gov (United States)

    Burwash, I G; Morgan, D E; Koilpillai, C J; Blackmore, G L; Johnstone, D E; Armour, J A

    1993-01-01

    Alterations in left ventricular (LV) contractility, relaxation, and chamber dimensions induced by efferent sympathetic nerve stimulation were investigated in nine anesthetized open-chest dogs in sinus rhythm. Supramaximal stimulation of acutely decentralized left stellate ganglia augmented heart rate, LV systolic pressure, and rate of LV pressure rise (maximum +dP/dt, 1,809 +/- 191 to 6,304 +/- 725 mmHg/s) and fall (maximum -dP/dt, -2,392 +/- 230 to -4,458 +/- 482 mmHg/s). It also reduced the time constant of isovolumic relaxation, tau (36.5 +/- 4.8 to 14.9 +/- 1.1 ms). Simultaneous two-dimensional echocardiography recorded reductions in end-diastolic and end-systolic LV cross-sectional chamber areas (23 and 31%, respectively), an increase in area ejection fraction (32%), and increases in end-diastolic and end-systolic wall thicknesses (14 and 13%, respectively). End-systolic and end-diastolic wall stresses were unchanged by stellate ganglion stimulation (98 +/- 12 to 95 +/- 9 dyn x 10(3)/cm2; 6.4 +/- 2.4 to 2.4 +/- 0.3 dyn x 10(3)/cm2, respectively). Atrial pacing to similar heart rates did not alter monitored indexes of contractility. Dobutamine and isoproterenol induced changes similar to those resulting from sympathetic neuronal stimulation. These data indicate that when the efferent sympathetic nervous system increases left ventricular contractility and relaxation, concomitant reductions in systolic and diastolic dimensions of that chamber occur that are associated with increasing wall thickness such that LV wall stress changes are minimized.

  15. Follicle-stimulating hormone (FSH) blood test

    Science.gov (United States)

    ... ency/article/003710.htm Follicle-stimulating hormone (FSH) blood test To use the sharing features on this page, please enable JavaScript. The follicle stimulating hormone (FSH) blood test measures the level of FSH in blood. FSH ...

  16. Vagus Nerve Stimulation for Treating Epilepsy

    Science.gov (United States)

    ... and their FAMILIES VAGUS NERVE STIMULATION FOR TREATING EPILEPSY This information sheet is provided to help you ... how vagus nerve stimulation (VNS) may help treat epilepsy. The American Academy of Neurology (AAN) is the ...

  17. Stress Analysis

    DEFF Research Database (Denmark)

    Burcharth, Hans F.

    The following types of forces contribute to the stresses in a Dolos in a pack exposed to waves: 1)Gravity forces Compaction forces (mainly due to settlements, gravity and flow forces) 2) Flow forces 3) Impact forces (impacts between moving concrete blocks)......The following types of forces contribute to the stresses in a Dolos in a pack exposed to waves: 1)Gravity forces Compaction forces (mainly due to settlements, gravity and flow forces) 2) Flow forces 3) Impact forces (impacts between moving concrete blocks)...

  18. Welding stresses

    International Nuclear Information System (INIS)

    Poirier, J.; Barbe, B.; Jolly, N.

    1976-01-01

    The aim is to show how internal stresses are generated and to fix the orders of magnitude. A realistic case, the vertical welding of thick plates free to move one against the other, is described and the deformations and stresses are analyzed. The mathematical model UEDA, which accounts for the elastic modulus, the yield strength and the expansion coefficient of the metal with temperature, is presented. The hypotheses and results given apply only to the instantaneous welding of a welded plate and to a plate welded by a moving electrode [fr

  19. CRH-stimulated cortisol release and food intake in healthy, non-obese adults.

    Science.gov (United States)

    George, Sophie A; Khan, Samir; Briggs, Hedieh; Abelson, James L

    2010-05-01

    There is considerable anecdotal and some scientific evidence that stress triggers eating behavior, but underlying physiological mechanisms remain uncertain. The hypothalamic-pituitary-adrenal (HPA) axis is a key mediator of physiological stress responses and may play a role in the link between stress and food intake. Cortisol responses to laboratory stressors predict consumption but it is unclear whether such responses mark a vulnerability to stress-related eating or whether cortisol directly stimulates eating in humans. We infused healthy adults with corticotropin-releasing hormone (CRH) at a dose that is subjectively undetectable but elicits a robust endogenous cortisol response, and measured subsequent intake of snack foods, allowing analysis of HPA reactivity effects on food intake without the complex psychological effects of a stress paradigm. CRH elevated cortisol levels relative to placebo but did not impact subjective anxious distress. Subjects ate more following CRH than following placebo and peak cortisol response to CRH was strongly related to both caloric intake and total consumption. These data show that HPA axis reactivity to pharmacological stimulation predicts subsequent food intake and suggest that cortisol itself may directly stimulate food consumption in humans. Understanding the physiological mechanisms that underlie stress-related eating may prove useful in efforts to attack the public health crises created by obesity. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. A Chip for an Implantable Neural Stimulator

    DEFF Research Database (Denmark)

    Gudnason, Gunnar; Bruun, Erik; Haugland, Morten

    2000-01-01

    This paper describes a chip for a multichannel neural stimulator for functional electrical stimulation (FES). The purpose of FES is to restore muscular control in disabled patients. The chip performs all the signal processing required in an implanted neural stimulator. The power and digital data...

  1. Frequency shifts in stimulated Raman scattering

    International Nuclear Information System (INIS)

    Zinth, W.; Kaiser, W.

    1980-01-01

    The nonresonant contributions to the nonlinear susceptibility chisup(()3) produce a frequency chirp during stimulated Raman scattering. In the case of transient stimulated Raman scattering, the spectrum of the generated Stokes pulse is found at higher frequencies than expected from spontaneous Raman data. The frequency difference can be calculated from the theory of stimulated Raman scattering. (orig.)

  2. Geothermal Reservoir Well Stimulation Program: technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    Each of the following types of well stimulation techniques are summarized and explained: hydraulic fracturing; thermal; mechanical, jetting, and drainhole drilling; explosive and implosive; and injection methods. Current stimulation techniques, stimulation techniques for geothermal wells, areas of needed investigation, and engineering calculations for various techniques. (MHR)

  3. Optical stimulator for vision-based sensors

    DEFF Research Database (Denmark)

    Rössler, Dirk; Pedersen, David Arge Klevang; Benn, Mathias

    2014-01-01

    We have developed an optical stimulator system for vision-based sensors. The stimulator is an efficient tool for stimulating a camera during on-ground testing with scenes representative of spacecraft flights. Such scenes include starry sky, planetary objects, and other spacecraft. The optical...

  4. Bacterial stress

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Bacterial stress. Physicochemical and chemical parameters: temperature, pressure, pH, salt concentration, oxygen, irradiation. Nutritional depravation: nutrient starvation, water shortage. Toxic compounds: Antibiotics, heavy metals, toxins, mutagens. Interactions with other cells: ...

  5. (stress) testing

    African Journals Online (AJOL)

    However, maximal HR was significantly higher in all groups during their sporting activities than during stress testing in the laboratory (P < 0.01). Conclusions. Maximal HR in veteran athletes during specific sporting activities was significantly higher than that attained during a routine sECG. This finding was not sport-specific, ...

  6. Coulomb stress change during and after tensile fracture opening in a geothermal reservoir

    NARCIS (Netherlands)

    Urpi, L.; Blöcher, G.; Zimmermann, G.; Wees, J.D. van; Fokker, P.

    2013-01-01

    Stress shadowing and the ratio of shear to normal stress in the rock surrounding a newly created tensile fracture are investigated. Shearing on plane of weakness near the stimulated volume can be inhibited or promoted by change in poro- and thermo-elastic stress, while pore pressure increase tends

  7. Stress, depression and immunity: the role of defense and coping styles

    NARCIS (Netherlands)

    Olff, M.

    1999-01-01

    It is by now widely recognized that acute and chronic stress have an impact on the immune system. Acute stress may have a stimulating effect on the immune system, while in the case of chronic stress--and in particular in depression--the immune system may be down-regulated. However, there is

  8. Stress, depression and immunity : the role of defense and coping styles

    NARCIS (Netherlands)

    Olff, M

    1999-01-01

    It is by now widely recognized that acute and chronic stress have an impact on the immune system. Acute stress may have a stimulating effect on the immune system, while in the case of chronic stress - and in particular in depression - the immune system may be down-regulated. However, there is

  9. Technical review of the high energy gas stimulation technique

    Energy Technology Data Exchange (ETDEWEB)

    Haney, B.; Cuthill, D. [Computalog Ltd., Calgary, AB (Canada)

    1997-08-01

    High Energy Gas Stimulation (HEGS) or propellant stimulation is a process that enhances production of oil wells by decreasing wellbore damage and increasing near wellbore permeability. The technique has been used on about 7,000 wells with varying results. The HEGS tool is a cast cylinder of solid rocket propellant with a central ignition system. The propellant is fired and as it burns it produces a pressure load on the formation, increasing fracture volume which enhances the flow channels. Background information on the development and application of this stimulation technique was provided. The introduction of fractures around a wellbore is dependent on the pressure loading rate and the dynamic response of the rock. Propellant stimulation relies on controlling the pressure-time behaviour to maximize fracture growth by fluid pressurization. The process is composed of 3 sequential phases: (1) wellbore pressurization, (2) fracture initiation, and (3) fracture extension. A full description of each of these phases was provided. Geologic and well-tool factors that have a significant influence on the fracturing process such as in-situ stress, natural fractures and flaws, formation mechanical properties, formation fluid and flow properties, formation thermal properties, and wellbore, tool, and tamp configuration, were also reviewed. The many applications for HEGS were presented. It was emphasized that the success of HEGS is dependent on pre-stimulation problem evaluation and on proper charge design. Since HEGS will decrease near-wellbore restrictions and initiate formation breakdown, it should only be used in cases where this will be beneficial to the well. Careful attention to engineering will optimize results. 21 refs., 13 figs.

  10. Work stress, life stress, and smoking among rural–urban migrant workers in China

    Directory of Open Access Journals (Sweden)

    Cui Xiaobo

    2012-11-01

    Full Text Available Abstract Background Stimulated by rapid modernization and industrialization, there is massive rural–urban migration in China. The migrants are highly susceptible to smoking and mental health problems. This study examined the association between both perceived work stress and perceived life stress with smoking behavior among this group during the period of migration. Methods Participants (n = 1,595 were identified through stratified, multi-stage, systematic sampling. Smoking status separated non-smokers from daily and occasional smokers, and migration history, work stress, and life stress were also measured. Analyses were conducted using the Chi-square test and multiple logistic regression. Two models were utilized. The first was the full model that comprised sociodemographic and migration-related characteristics, as well as the two stress variables. In addressing potential overlap between life and work stress, the second model eliminated one of the two stress variables as appropriate. Results Overall smoking prevalence was 64.9% (95% CI: 62.4-67.2%. In the regression analysis, under the full model, migrants with high perceived life stress showed a 45% excess likelihood to be current smokers relative to low-stress counterparts (OR: 1.45; 95% CI: 1.05 – 2.06. Applying the second model, which excluded the life stress variable, migrants with high perceived work stress had a 75% excess likelihood to be current smokers relative to opposites (OR: 1.75; 95% CI: 1.26–2.45. Conclusions Rural–urban migrant workers manifested a high prevalence of both life stress and work stress. While both forms of stress showed associations with current smoking, life stress appeared to outweigh the impact of work stress. Our findings could inform the design of tobacco control programs that would target Chinese rural–urban migrant workers as a special population.

  11. Stimulation of hair cells with ultraviolet light

    Science.gov (United States)

    Azimzadeh, Julien B.; Fabella, Brian A.; Hudspeth, A. J.

    2018-05-01

    Hair bundles are specialized organelles that transduce mechanical inputs into electrical outputs. To activate hair cells, physiologists have resorted to mechanical methods of hair-bundle stimulation. Here we describe a new method of hair-bundle stimulation, irradiation with ultraviolet light. A hair bundle illuminated by ultraviolet light rapidly moves towards its tall edge, a motion typically associated with excitatory stimulation. The motion disappears upon tip-link rupture and is associated with the opening of mechanotransduction channels. Hair bundles can be induced to move sinusoidally with oscillatory modulation of the stimulation power. We discuss the implications of ultraviolet stimulation as a novel hair-bundle stimulus.

  12. Stretch-stimulated glucose transport in skeletal muscle is regulated by Rac1.

    Science.gov (United States)

    Sylow, Lykke; Møller, Lisbeth L V; Kleinert, Maximilian; Richter, Erik A; Jensen, Thomas E

    2015-02-01

    Rac1 regulates stretch-stimulated (i.e. mechanical stress) glucose transport in muscle. Actin depolymerization decreases stretch-induced glucose transport in skeletal muscle. Rac1 is a required part of the mechanical stress-component of the contraction-stimulus to glucose transport in skeletal muscle. An alternative to the canonical insulin signalling pathway for glucose transport is muscle contraction/exercise. Mechanical stress is an integrated part of the muscle contraction/relaxation cycle, and passive stretch stimulates muscle glucose transport. However, the signalling mechanism regulating stretch-stimulated glucose transport is not well understood. We recently reported that the actin cytoskeleton regulating GTPase, Rac1, was activated in mouse muscle in response to stretching. Rac1 is a regulator of contraction- and insulin-stimulated glucose transport, however, its role in stretch-stimulated glucose transport and signalling is unknown. We therefore investigated whether stretch-induced glucose transport in skeletal muscle required Rac1 and the actin cytoskeleton. We used muscle-specific inducible Rac1 knockout mice as well as pharmacological inhibitors of Rac1 and the actin cytoskeleton in isolated soleus and extensor digitorum longus muscles. In addition, the role of Rac1 in contraction-stimulated glucose transport during conditions without mechanical load on the muscles was evaluated in loosely hanging muscles and muscles in which cross-bridge formation was blocked by the myosin ATPase inhibitors BTS and Blebbistatin. Knockout as well as pharmacological inhibition of Rac1 reduced stretch-stimulated glucose transport by 30-50% in soleus and extensor digitorum longus muscle. The actin depolymerizing agent latrunculin B similarly decreased glucose transport in response to stretching by 40-50%. Rac1 inhibition reduced contraction-stimulated glucose transport by 30-40% in tension developing muscle but did not affect contraction-stimulated glucose transport in

  13. Impulsivity and Stress Response in Pathological Gamblers During the Trier Social Stress Test

    NARCIS (Netherlands)

    Maniaci, G.; Goudriaan, A. E.; Cannizzaro, C.; van Holst, R. J.

    2017-01-01

    Gambling has been associated with increased sympathetic nervous system output and stimulation of the hypothalamic-pituitary-adrenal axis. However it is unclear how these systems are affected in pathological gambling. This study aimed to investigate the effect of the Trier Social Stress Test (TSST)

  14. Thermally stimulated scattering in plasmas

    DEFF Research Database (Denmark)

    Dysthe, K. B.; Mjølhus, E.; Pécseli, H. L.

    1985-01-01

    this experiment local heat conduction is of little importance and the dynamic evolution for the electron temperature is dominated by heating and energy exchange with the ion component. These features are incorporated in the analysis. The resulting set of equations gives a growth rate and characteristic scale size......A theory for stimulated scattering of a laser beam is formulated where the dominant nonlinearity is the ohmic heating of the plasma. The analysis is carried out with particular reference to experimental investigations of CO2 laser heating of linear discharge plasma. In the conditions characterizing...

  15. Evaluation of different types of rooting stimulators

    Directory of Open Access Journals (Sweden)

    Petr Salaš

    2012-01-01

    Full Text Available This paper focuses on the assessment of selected stimulators, especially from Rhizopon product line, which are used for rooting and root system enhancement in various ornamental woody species. Two available methods of cuttings stimulation were selected from the available range of rooting stimulators: stimulation by long-term immersion in solutions or treatment of cuttings with powder stimulators. The experiment involved stimulators with two active components, currently the most commonly used phytohormones for this purpose – IBA and NAA – that were applied in different concentrations. The experiment took place in three propagation terms with twelve coniferous and deciduous shrub varieties. The results of the experiment show the different reactions of the individual species as well as varieties on the respective term of propagation and used form of stimulator.

  16. Prenatal stress, prematurity and asthma

    Science.gov (United States)

    Medsker, Brock; Forno, Erick; Simhan, Hyagriv; Celedón, Juan C.

    2016-01-01

    Asthma is the most common chronic disease of childhood, affecting millions of children in the U.S. and worldwide. Prematurity is a risk factor for asthma, and certain ethnic or racial minorities such as Puerto Ricans and non-Hispanic Blacks are disproportionately affected by both prematurity and asthma. In this review, we examine current evidence to support maternal psychosocial stress as a putative link between prematurity and asthma, while also focusing on disruption of the hypothalamic-pituitary-adrenal (HPA) axis and immune responses as potential underlying mechanisms for stress-induced “premature asthma”. Prenatal stress may not only cause abnormalities in the HPA axis but also epigenetic changes in the fetal glucocorticoid receptor gene (NR3C1), leading to impaired glucocorticoid metabolism. Moreover, maternal stress can alter fetal cytokine balance, favoring Th2 (allergic) immune responses characteristic of atopic asthma: IL-6, which has been associated with premature labor, can promote Th2 responses by stimulating production of IL-4 and IL-13. Given a link among stress, prematurity, and asthma, future research should include birth cohorts aimed at confirming and better characterizing “premature asthma”. If confirmed, clinical trials of prenatal maternal stress reduction would be warranted to reduce the burden of these common co-morbidities. While awaiting the results of such studies, sound policies to prevent domestic and community violence (e.g. from firearms) are justified, not only by public safety but also by growing evidence of detrimental effects of violence-induced stress on psychiatric and somatic health. PMID:26676148

  17. Acute Cold / Restraint Stress in Castrated Rats

    Directory of Open Access Journals (Sweden)

    Farideh Zafari Zangeneh

    2008-09-01

    Full Text Available Objective: The present study aimed to determine whether castration altered osmotically stimulated vasopressin (VP release and urinary volume and what is the role of endocrine-stress axis in this process.Materials and methods: Totally 108 mice were studied in two main groups of castrated (n=78 and control (n=30. Each group was extracted by acute cold stress (4◦C for 2h/day, restraint stress (by syringes 60cc 2h/day and cold/restraint stress. The castrated group was treated in sub groups of testosterone, control (sesame oil as vehicle of testosterone. Propranolol as blocker of sympathetic nervous system was given to both groups of castrated mice and main control.Results: Our results showed that, there is interactions between testosterone and sympathetic nervous system on vasopressin, because urine volume was decreased only in testoctomized mice with cold/restraint and cold stress (P<0.001; propranolol as the antagonist of sympathetic nervous system could block and increase urine volume in castrated mice. This increased volume of urine was due to acute cold stress, not restraint stress (p<0.001. The role of testosterone, noradrenalin (NA and Vasopressin (VP in the acute cold stress is confirmed, because testosterone could return the effect of decreased urine volume in control group (P<0.001. Conclusion: Considering the effect of cold/restraint stress on urinary volume in castrated mice shows that there is interaction between sex hormone (testosterone, vasopressin and adrenergic systems.

  18. Stress proteins, autoimmunity, and autoimmune disease.

    Science.gov (United States)

    Winfield, J B; Jarjour, W N

    1991-01-01

    At birth, the immune system is biased toward recognition of microbial antigens in order to protect the host from infection. Recent data suggest that an important initial line of defense in this regard involves autologous stress proteins, especially conserved peptides of hsp60, which are presented to T cells bearing gamma delta receptors by relatively nonpolymorphic class lb molecules. Natural antibodies may represent a parallel B cell mechanism. Through an evolving process of "physiological" autoreactivity and selection by immunodominant stress proteins common to all prokaryotes, B and T cell repertoires expand during life to meet the continuing challenge of infection. Because stress proteins of bacteria are homologous with stress proteins of the host, there exists in genetically susceptible individuals a constant risk of autoimmune disease due to failure of mechanisms for self-nonself discrimination. That stress proteins actually play a role in autoimmune processes is supported by a growing body of evidence which, collectively, suggests that autoreactivity in chronic inflammatory arthritis involves, at least initially, gamma delta cells which recognize epitopes of the stress protein hsp60. Alternate mechanisms for T cell stimulation by stress proteins undoubtedly also exist, e.g., molecular mimicry of the DR beta third hypervariable region susceptibility locus for rheumatoid arthritis by a DnaJ stress protein epitope in gram-negative bacteria. While there still is confusion with respect to the most relevant stress protein epitopes, a central role for stress proteins in the etiology of arthritis appears likely. Furthermore, insight derived from the work thus far in adjuvant-induced arthritis already is stimulating analyses of related phenomena in autoimmune diseases other than those involving joints. Only limited data are available in the area of humoral autoimmunity to stress proteins. Autoantibodies to a number of stress proteins have been identified in SLE and

  19. Effects of acute and chronic psychological stress on platelet aggregation in mice.

    Science.gov (United States)

    Matsuhisa, Fumikazu; Kitamura, Nobuo; Satoh, Eiki

    2014-03-01

    Although psychological stress has long been known to alter cardiovascular function, there have been few studies on the effect of psychological stress on platelets, which play a pivotal role in cardiovascular disease. In the present study, we investigated the effects of acute and chronic psychological stress on the aggregation of platelets and platelet cytosolic free calcium concentration ([Ca(2+)]i). Mice were subjected to both transportation stress (exposure to novel environment, psychological stress) and restraint stress (psychological stress) for 2 h (acute stress) or 3 weeks (2 h/day) (chronic stress). In addition, adrenalectomized mice were subjected to similar chronic stress (both transportation and restraint stress for 3 weeks). The aggregation of platelets from mice and [Ca(2+)]i was determined by light transmission assay and fura-2 fluorescence assay, respectively. Although acute stress had no effect on agonist-induced platelet aggregation, chronic stress enhanced the ability of the platelet agonists thrombin and ADP to stimulate platelet aggregation. However, chronic stress failed to enhance agonist-induced increase in [Ca(2+)]i. Adrenalectomy blocked chronic stress-induced enhancement of platelet aggregation. These results suggest that chronic, but not acute, psychological stress enhances agonist-stimulated platelet aggregation independently of [Ca(2+)]i increase, and the enhancement may be mediated by stress hormones secreted from the adrenal glands.

  20. Braille line using electrical stimulation

    International Nuclear Information System (INIS)

    Puertas, A; Pures, P; Echenique, A M; Ensinck, J P Graffigna y G

    2007-01-01

    Conceived within the field of Rehabilitation Technologies for visually impaired persons, the present work aims at enabling the blind user to read written material by means of a tactile display. Once he is familiarized to operate this system, the user will be able to achieve greater performance in study, academic and job activities, thus achieving a rapid and easier social inclusion. The devise accepts any kind of text that is computer-loadable (documents, books, Internet information, and the like) which, through digital means, can be read as Braille text on the pad. This tactile display is composed of an electrodes platform that simulate, through stimulation the writing/reading Braille characters. In order to perceive said characters in similar way to the tactile feeling from paper material, the skin receptor of fingers are stimulated electrically so as to simulate the same pressure and depressions as those of the paper-based counterpart information. Once designed and developed, the display was tested with blind subjects, with relatively satisfactory results. As a continuing project, this prototype is currently being improved as regards

  1. Braille line using electrical stimulation

    Science.gov (United States)

    Puertas, A.; Purés, P.; Echenique, A. M.; Ensinck, J. P. Graffigna y. G.

    2007-11-01

    Conceived within the field of Rehabilitation Technologies for visually impaired persons, the present work aims at enabling the blind user to read written material by means of a tactile display. Once he is familiarized to operate this system, the user will be able to achieve greater performance in study, academic and job activities, thus achieving a rapid and easier social inclusion. The devise accepts any kind of text that is computer-loadable (documents, books, Internet information, and the like) which, through digital means, can be read as Braille text on the pad. This tactile display is composed of an electrodes platform that simulate, through stimulation the writing/reading Braille characters. In order to perceive said characters in similar way to the tactile feeling from paper material, the skin receptor of fingers are stimulated electrically so as to simulate the same pressure and depressions as those of the paper-based counterpart information. Once designed and developed, the display was tested with blind subjects, with relatively satisfactory results. As a continuing project, this prototype is currently being improved as regards.

  2. Transcranial magnetic stimulation: language function.

    Science.gov (United States)

    Epstein, C M

    1998-07-01

    Studies of language using transcranial magnetic stimulation (TMS) have focused both on identification of language areas and on elucidation of function. TMS may result in either inhibition or facilitation of language processes and may operate directly at a presumptive site of language cortex or indirectly through intracortical networks. TMS has been used to create reversible "temporary lesions," similar to those produced by Wada tests and direct cortical electrical stimulation, in cerebral cortical areas subserving language function. Rapid-rate TMS over the left inferior frontal region blocks speech output in most subjects. However, the results are not those predicted from classic models of language organization. Speech arrest is obtained most easily over facial motor cortex, and true aphasia is rare, whereas right hemisphere or bilateral lateralization is unexpectedly prominent. A clinical role for these techniques is not yet fully established. Interfering with language comprehension and verbal memory is currently more difficult than blocking speech output, but numerous TMS studies have demonstrated facilitation of language-related tasks, including oral word association, story recall, digit span, and picture naming. Conversely, speech output also facilitates motor responses to TMS in the dominant hemisphere. Such new and often-unexpected findings may provide important insights into the organization of language.

  3. Braille line using electrical stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Puertas, A; Pures, P; Echenique, A M; Ensinck, J P Graffigna y G [Gabinete de TecnologIa Medica. Universidad N. de San Juan (Argentina)

    2007-11-15

    Conceived within the field of Rehabilitation Technologies for visually impaired persons, the present work aims at enabling the blind user to read written material by means of a tactile display. Once he is familiarized to operate this system, the user will be able to achieve greater performance in study, academic and job activities, thus achieving a rapid and easier social inclusion. The devise accepts any kind of text that is computer-loadable (documents, books, Internet information, and the like) which, through digital means, can be read as Braille text on the pad. This tactile display is composed of an electrodes platform that simulate, through stimulation the writing/reading Braille characters. In order to perceive said characters in similar way to the tactile feeling from paper material, the skin receptor of fingers are stimulated electrically so as to simulate the same pressure and depressions as those of the paper-based counterpart information. Once designed and developed, the display was tested with blind subjects, with relatively satisfactory results. As a continuing project, this prototype is currently being improved as regards.

  4. Virtual reality adaptive stimulation of limbic networks in the mental readiness training.

    Science.gov (United States)

    Cosić, Kresimir; Popović, Sinisa; Kostović, Ivica; Judas, Milos

    2010-01-01

    A significant proportion of severe psychological problems in recent large-scale peacekeeping operations underscores the importance of effective methods for strengthening the stress resilience. Virtual reality (VR) adaptive stimulation, based on the estimation of the participant's emotional state from physiological signals, may enhance the mental readiness training (MRT). Understanding neurobiological mechanisms by which the MRT based on VR adaptive stimulation can affect the resilience to stress is important for practical application in the stress resilience management. After the delivery of a traumatic audio-visual stimulus in the VR, the cascade of events occurs in the brain, which evokes various physiological manifestations. In addition to the "limbic" emotional and visceral brain circuitry, other large-scale sensory, cognitive, and memory brain networks participate with less known impact in this physiological response. The MRT based on VR adaptive stimulation may strengthen the stress resilience through targeted brain-body interactions. Integrated interdisciplinary efforts, which would integrate the brain imaging and the proposed approach, may contribute to clarifying the neurobiological foundation of the resilience to stress.

  5. Use of repetitive transcranial magnetic stimulation for treatment in psychiatry.

    Science.gov (United States)

    Aleman, André

    2013-08-01

    The potential of noninvasive neurostimulation by repetitive transcranial magnetic stimulation (rTMS) for improving psychiatric disorders has been studied increasingly over the past two decades. This is especially the case for major depression and for auditory-verbal hallucinations in schizophrenia. The present review briefly describes the background of this novel treatment modality and summarizes evidence from clinical trials into the efficacy of rTMS for depression and hallucinations. Evidence for efficacy in depression is stronger than for hallucinations, although a number of studies have reported clinically relevant improvements for hallucinations too. Different stimulation parameters (frequency, duration, location of stimulation) are discussed. There is a paucity of research into other psychiatric disorders, but initial evidence suggests that rTMS may also hold promise for the treatment of negative symptoms in schizophrenia, obsessive compulsive disorder and post-traumatic stress disorder. It can be concluded that rTMS induces alterations in neural networks relevant for psychiatric disorders and that more research is needed to elucidate efficacy and underlying mechanisms of action.

  6. Comparison of Coil Designs for Transcranial Magnetic Stimulation on Mice

    Science.gov (United States)

    Rastogi, Priyam; Hadimani, Ravi; Jiles, David

    2015-03-01

    Transcranial magnetic stimulation (TMS) is a non-invasive treatment for neurological disorders using time varying magnetic field. The electric field generated by the time varying magnetic field is used to depolarize the brain neurons which can lead to measurable effects. TMS provides a surgical free method for the treatment of neurological brain disorders like depression, post-traumatic stress disorder, traumatic brain injury and Parkinson's disease. Before using TMS on human subjects, it is appropriate that its effects are verified on animals such as mice. The magnetic field intensity and stimulated region of the brain can be controlled by the shape, position and current in the coils. There are few reports on the designs of the coils for mice. In this paper, different types of coils are developed and compared using an anatomically realistic mouse model derived from MRI images. Parameters such as focality, depth of the stimulation, electric field strength on the scalp and in the deep brain regions, are taken into account. These parameters will help researchers to determine the most suitable coil design according to their need. This should result in improvements in treatment of specific disorders. Carver Charitable Trust.

  7. Stimulation of Suicidal Erythrocyte Death by the Antimalarial Drug Mefloquine

    Directory of Open Access Journals (Sweden)

    Rosi Bissinger

    2015-07-01

    Full Text Available Background: The antimalarial drug mefloquine has previously been shown to stimulate apoptosis of nucleated cells. Similar to apoptosis, erythrocytes may enter suicidal death or eryptosis, which is characterized by cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include oxidative stress, increase of cytosolic Ca2+-activity ([Ca2+]i, and ceramide. Methods: Phosphatidylserine abundance at the cell surface was estimated from annexin V binding, cell volume from forward scatter, reactive oxidant species (ROS from 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA fluorescence, [Ca2+]i from Fluo3-fluorescence, and ceramide abundance from specific antibody binding. Results: A 48 h treatment of human erythrocytes with mefloquine significantly increased the percentage of annexin-V-binding cells (≥5 µg/ml, significantly decreased forward scatter (≥5 µg/ml, significantly increased ROS abundance (5 µg/ml, significantly increased [Ca2+]i (7.5 µg/ml and significantly increased ceramide abundance (10 µg/ml. The up-regulation of annexin-V-binding following mefloquine treatment was significantly blunted but not abolished by removal of extracellular Ca2+. Even in the absence of extracellular Ca2+, mefloquine significantly increased annexin-V-binding. Conclusions: Mefloquine treatment leads to erythrocyte shrinkage and erythrocyte membrane scrambling, effects at least partially due to induction of oxidative stress, increase of [Ca2+]i and up-regulation of ceramide abundance.

  8. Stress and Mood

    Science.gov (United States)

    ... Relaxation Emotions & Relationships HealthyYouTXT Tools Home » Stress & Mood Stress & Mood Many people who go back to smoking ... story: Time Out Times 10 >> share What Causes Stress? Read full story: What Causes Stress? >> share The ...

  9. Stress Management: Positive Thinking

    Science.gov (United States)

    Healthy Lifestyle Stress management Positive thinking helps with stress management and can even improve your health. Practice overcoming negative self-talk ... with optimism is a key part of effective stress management. And effective stress management is associated with ...

  10. Stress and your heart

    Science.gov (United States)

    Coronary heart disease - stress; Coronary artery disease - stress ... Your body responds to stress on many levels. First, it releases stress hormones that make you breathe faster. Your blood pressure goes up. Your muscles ...

  11. Repetitive Stress Injuries

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Repetitive Stress Injuries KidsHealth / For Teens / Repetitive Stress Injuries What's ... t had any problems since. What Are Repetitive Stress Injuries? Repetitive stress injuries (RSIs) are injuries that ...

  12. Multisensory stimulation in stroke rehabilitation

    Directory of Open Access Journals (Sweden)

    Barbro Birgitta Johansson

    2012-04-01

    Full Text Available The brain has a large capacity for automatic simultaneous processing and integration of sensory information. Combining information from different sensory modalities facilitates our ability to detect, discriminate, and recognize sensory stimuli, and learning is often optimal in a multisensory environment. Currently used multisensory stimulation methods in stroke rehabilitation include motor imagery, action observation, training with a mirror or in a virtual environment, or various kinds of music therapy. Several studies have shown positive effects been reported but to give general recommendation more studies are needed. Patient heterogeneity and the interactions of age, gender, genes and environment are discussed. Randomized controlled longitudinal trials starting earlier post stroke are needed. The advance in brain network science and neuroimaging enabling longitudinal studies of structural and functional networks are likely to have an important impact on patient selection for specific interventions in future stroke rehabilitation.

  13. Non-invasive neural stimulation

    Science.gov (United States)

    Tyler, William J.; Sanguinetti, Joseph L.; Fini, Maria; Hool, Nicholas

    2017-05-01

    Neurotechnologies for non-invasively interfacing with neural circuits have been evolving from those capable of sensing neural activity to those capable of restoring and enhancing human brain function. Generally referred to as non-invasive neural stimulation (NINS) methods, these neuromodulation approaches rely on electrical, magnetic, photonic, and acoustic or ultrasonic energy to influence nervous system activity, brain function, and behavior. Evidence that has been surmounting for decades shows that advanced neural engineering of NINS technologies will indeed transform the way humans treat diseases, interact with information, communicate, and learn. The physics underlying the ability of various NINS methods to modulate nervous system activity can be quite different from one another depending on the energy modality used as we briefly discuss. For members of commercial and defense industry sectors that have not traditionally engaged in neuroscience research and development, the science, engineering and technology required to advance NINS methods beyond the state-of-the-art presents tremendous opportunities. Within the past few years alone there have been large increases in global investments made by federal agencies, foundations, private investors and multinational corporations to develop advanced applications of NINS technologies. Driven by these efforts NINS methods and devices have recently been introduced to mass markets via the consumer electronics industry. Further, NINS continues to be explored in a growing number of defense applications focused on enhancing human dimensions. The present paper provides a brief introduction to the field of non-invasive neural stimulation by highlighting some of the more common methods in use or under current development today.

  14. Oxidative stress

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2012-01-01

    Full Text Available The unceasing need for oxygen is in contradiction to the fact that it is in fact toxic to mammals. Namely, its monovalent reduction can have as a consequence the production of short-living, chemically very active free radicals and certain non-radical agents (nitrogen-oxide, superoxide-anion-radicals, hydroxyl radicals, peroxyl radicals, singlet oxygen, peroxynitrite, hydrogen peroxide, hypochlorous acid, and others. There is no doubt that they have numerous positive roles, but when their production is stepped up to such an extent that the organism cannot eliminate them with its antioxidants (superoxide-dismutase, glutathione-peroxidase, catalase, transferrin, ceruloplasmin, reduced glutathion, and others, a series of disorders is developed that are jointly called „oxidative stress.“ The reactive oxygen species which characterize oxidative stress are capable of attacking all main classes of biological macromolecules, actually proteins, DNA and RNA molecules, and in particular lipids. The free radicals influence lipid peroxidation in cellular membranes, oxidative damage to DNA and RNA molecules, the development of genetic mutations, fragmentation, and the altered function of various protein molecules. All of this results in the following consequences: disrupted permeability of cellular membranes, disrupted cellular signalization and ion homeostasis, reduced or loss of function of damaged proteins, and similar. That is why the free radicals that are released during oxidative stress are considered pathogenic agents of numerous diseases and ageing. The type of damage that will occur, and when it will take place, depends on the nature of the free radicals, their site of action and their source. [Projekat Ministarstva nauke Republike Srbije, br. 173034, br. 175061 i br. 31085

  15. Consensus paper: combining transcranial stimulation with neuroimaging

    DEFF Research Database (Denmark)

    Siebner, Hartwig R; Bergmann, Til O; Bestmann, Sven

    2009-01-01

    neuroimaging (online approach), TMS can be used to test how focal cortex stimulation acutely modifies the activity and connectivity in the stimulated neuronal circuits. TMS and neuroimaging can also be separated in time (offline approach). A conditioning session of repetitive TMS (rTMS) may be used to induce...... information obtained by neuroimaging can be used to define the optimal site and time point of stimulation in a subsequent experiment in which TMS is used to probe the functional contribution of the stimulated area to a specific task. In this review, we first address some general methodologic issues that need......In the last decade, combined transcranial magnetic stimulation (TMS)-neuroimaging studies have greatly stimulated research in the field of TMS and neuroimaging. Here, we review how TMS can be combined with various neuroimaging techniques to investigate human brain function. When applied during...

  16. Bursting behaviours in cascaded stimulated Brillouin scattering

    International Nuclear Information System (INIS)

    Liu Zhan-Jun; He Xian-Tu; Zheng Chun-Yang; Wang Yu-Gang

    2012-01-01

    Stimulated Brillouin scattering is studied by numerically solving the Vlasov—Maxwell system. A cascade of stimulated Brillouin scattering can occur when a linearly polarized laser pulse propagates in a plasma. It is found that a stimulated Brillouin scattering cascade can reduce the scattering and increase the transmission of light, as well as introduce a bursting behaviour in the evolution of the laser-plasma interaction. The bursting time in the reflectivity is found to be less than half the ion acoustic period. The ion temperature can affect the stimulated Brillouin scattering cascade, which can repeat several times at low ion temperatures and can be completely eliminated at high ion temperatures. For stimulated Brillouin scattering saturation, higher-harmonic generation and wave—wave interaction of the excited ion acoustic waves can restrict the amplitude of the latter. In addition, stimulated Brillouin scattering cascade can restrict the amplitude of the scattered light. (physics of gases, plasmas, and electric discharges)

  17. Mimicking muscle activity with electrical stimulation

    Science.gov (United States)

    Johnson, Lise A.; Fuglevand, Andrew J.

    2011-02-01

    Functional electrical stimulation is a rehabilitation technology that can restore some degree of motor function in individuals who have sustained a spinal cord injury or stroke. One way to identify the spatio-temporal patterns of muscle stimulation needed to elicit complex upper limb movements is to use electromyographic (EMG) activity recorded from able-bodied subjects as a template for electrical stimulation. However, this requires a transfer function to convert the recorded (or predicted) EMG signals into an appropriate pattern of electrical stimulation. Here we develop a generalized transfer function that maps EMG activity into a stimulation pattern that modulates muscle output by varying both the pulse frequency and the pulse amplitude. We show that the stimulation patterns produced by this transfer function mimic the active state measured by EMG insofar as they reproduce with good fidelity the complex patterns of joint torque and joint displacement.

  18. Noninvasive transcranial brain stimulation and pain.

    Science.gov (United States)

    Rosen, Allyson C; Ramkumar, Mukund; Nguyen, Tam; Hoeft, Fumiko

    2009-02-01

    Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are two noninvasive brain stimulation techniques that can modulate activity in specific regions of the cortex. At this point, their use in brain stimulation is primarily investigational; however, there is clear evidence that these tools can reduce pain and modify neurophysiologic correlates of the pain experience. TMS has also been used to predict response to surgically implanted stimulation for the treatment of chronic pain. Furthermore, TMS and tDCS can be applied with other techniques, such as event-related potentials and pharmacologic manipulation, to illuminate the underlying physiologic mechanisms of normal and pathological pain. This review presents a description and overview of the uses of two major brain stimulation techniques and a listing of useful references for further study.

  19. Transcranial electrical stimulation accelerates human sleep homeostasis.

    Directory of Open Access Journals (Sweden)

    Davide Reato

    Full Text Available The sleeping brain exhibits characteristic slow-wave activity which decays over the course of the night. This decay is thought to result from homeostatic synaptic downscaling. Transcranial electrical stimulation can entrain slow-wave oscillations (SWO in the human electro-encephalogram (EEG. A computational model of the underlying mechanism predicts that firing rates are predominantly increased during stimulation. Assuming that synaptic homeostasis is driven by average firing rates, we expected an acceleration of synaptic downscaling during stimulation, which is compensated by a reduced drive after stimulation. We show that 25 minutes of transcranial electrical stimulation, as predicted, reduced the decay of SWO in the remainder of the night. Anatomically accurate simulations of the field intensities on human cortex precisely matched the effect size in different EEG electrodes. Together these results suggest a mechanistic link between electrical stimulation and accelerated synaptic homeostasis in human sleep.

  20. Stress proteins and the immune response.

    Science.gov (United States)

    Moseley, P

    2000-07-25

    , 243-282.]. This importance in immune regulation is best addressed using Matzinger's model of the immune response - The Danger Theory of Immunity [Matzinger, P., Fuchs, E.J., 1996. Beyond self and non-self: immunity is a conversation, not a war. J. NIH Res. 8, 35-39.]. Matzinger suggests that an immune system model based on the differentiation between "self and non-self" does not easily account for the changes that occur in the organism with growth and development. Why, for example does an organism not self-destruct when the immune system encounters the myriad of new peptides generated at puberty? Instead, she proposes a model of immune function based on the ability to detect and address dangers. This model states that the basic function of all cells of the organism is appropriately timed death "from natural causes". This type of cell death, or apoptosis, generates no stress signals. If, on the other hand, a cell is "murdered" by an infectious agent or dies an untimely death due to necrosis or ischemia, the cell undergoes a stress response with the liberation of stress protein-peptide complexes into the extracellular environment upon cell lysis. Not only do they serve as a "danger signal" to alert the immune system to the death of a cell under stress, but their role as protein carriers allows the immune effector cells to survey the peptides released by this stressed cell and to activate against new or unrecognized peptides carried by the stress protein. Matzinger bases the Danger Theory of Immunity on three "Laws of Lymphotics". These laws state that: (1) resting T lymphocytes require both antigen stimulation by an antigen-presenting cell (APC) and co-stimulation with a danger signal to become activated; (2) the co-stimulatory signal must be received through the APC; and (3) T cells receiving only antigen stimulation without the co-stimulatory signal undergo apoptosis. The Danger Theory gives a simple model for both tolerance and activation. (ABSTRACT TRUNCATED)

  1. Anion channels: master switches of stress responses.

    Science.gov (United States)

    Roelfsema, M Rob G; Hedrich, Rainer; Geiger, Dietmar

    2012-04-01

    During stress, plant cells activate anion channels and trigger the release of anions across the plasma membrane. Recently, two new gene families have been identified that encode major groups of anion channels. The SLAC/SLAH channels are characterized by slow voltage-dependent activation (S-type), whereas ALMT genes encode rapid-activating channels (R-type). Both S- and R-type channels are stimulated in guard cells by the stress hormone ABA, which leads to stomatal closure. Besides their role in ABA-dependent stomatal movement, anion channels are also activated by biotic stress factors such as microbe-associated molecular patterns (MAMPs). Given that anion channels occur throughout the plant kingdom, they are likely to serve a general function as master switches of stress responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Knowledge work and work-related stress

    DEFF Research Database (Denmark)

    Ipsen, Christine

    2006-01-01

    Work-related stress is an increasing problem in Europe. Earlier studies have stated that knowledge-work comprises working conditions which reflect a good psychosocial environment. Recent Danish studies, however, point at stress being an increasing problem in knowledge-intensive companies...... with informally, individu-ally and incidentally. It is only when problems exist that enhanced support is offered in order to help an employee to cope or recover. As most workplace initiatives work at this tertiary level, the sources of work-related and organiza-tional stress are not reduced or eliminated...... as good and stimulating, but has on the other hand sides to it which can cause frustration and stress. The implication of organisational characteristics of the knowledge-intensive companies studied is a transfer of the responsibility for ones own working-life. Consequently, issues are dealt...

  3. General Stress Responses in the Honey Bee

    Directory of Open Access Journals (Sweden)

    Naïla Even

    2012-12-01

    Full Text Available The biological concept of stress originated in mammals, where a “General Adaptation Syndrome” describes a set of common integrated physiological responses to diverse noxious agents. Physiological mechanisms of stress in mammals have been extensively investigated through diverse behavioral and physiological studies. One of the main elements of the stress response pathway is the endocrine hypothalamo-pituitary-adrenal (HPA axis, which underlies the “fight-or-flight” response via a hormonal cascade of catecholamines and corticoid hormones. Physiological responses to stress have been studied more recently in insects: they involve biogenic amines (octopamine, dopamine, neuropeptides (allatostatin, corazonin and metabolic hormones (adipokinetic hormone, diuretic hormone. Here, we review elements of the physiological stress response that are or may be specific to honey bees, given the economical and ecological impact of this species. This review proposes a hypothetical integrated honey bee stress pathway somewhat analogous to the mammalian HPA, involving the brain and, particularly, the neurohemal organ corpora cardiaca and peripheral targets, including energy storage organs (fat body and crop. We discuss how this system can organize rapid coordinated changes in metabolic activity and arousal, in response to adverse environmental stimuli. We highlight physiological elements of the general stress responses that are specific to honey bees, and the areas in which we lack information to stimulate more research into how this fascinating and vital insect responds to stress.

  4. Particle trapping in stimulated scattering processes

    International Nuclear Information System (INIS)

    Karttunen, S.J.; Heikkinen, J.A.

    1981-01-01

    Particle trapping effects on stimulated Brillouin and Raman scattering are investigated. A time and space dependent model assumes a Maxwellian plasma which is taken to be homogeneous in the interaction region. Ion trapping has a rather weak effect on stimulated Brillouin scattering and large reflectivities are obtained even in strong trapping regime. Stimulated Raman scattering is considerably reduced by electron trapping. Typically 15-20 times larger laser intensities are required to obtain same reflectivity levels than without trapping. (author)

  5. Analysis of Facial Expression by Taste Stimulation

    Science.gov (United States)

    Tobitani, Kensuke; Kato, Kunihito; Yamamoto, Kazuhiko

    In this study, we focused on the basic taste stimulation for the analysis of real facial expressions. We considered that the expressions caused by taste stimulation were unaffected by individuality or emotion, that is, such expressions were involuntary. We analyzed the movement of facial muscles by taste stimulation and compared real expressions with artificial expressions. From the result, we identified an obvious difference between real and artificial expressions. Thus, our method would be a new approach for facial expression recognition.

  6. Geothermal Reservoir Well Stimulation Program: technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    A literature search on reservoir and/or well stimulation techniques suitable for application in geothermal fields is presented. The literature on stimulation techniques in oil and gas field applications was also searched and evaluated as to its relevancy to geothermal operations. The equivalent low-temperature work documented in the open literature is cited, and an attempt is made to evaluate the relevance of this information as far as high-temperature stimulation work is concerned. Clays play an important role in any stimulation work. Therefore, special emphasis has been placed on clay behavior anticipated in geothermal operations. (MHR)

  7. Studies in dosimetry using stimulated exoelectron emission

    International Nuclear Information System (INIS)

    Petel, Maurice.

    1976-06-01

    Some applications of the stimulated exoelectron emission in radiation dosimetry are discussed. The principles which govern the phenomenon are presented. The apparatus, in particular the counter, used to monitor the emission is discussed with reference to both optical and thermal stimulation. The correlation existing between thermoluminescence and thermally stimulated exoelectron emission were studied in both lithium fluoride and aluminium oxide. Furthermore, aluminium oxides from different sources were examined, and one of these, chosen to investigate the dosimetric properties of this material using both methods of stimulation [fr

  8. Optical stimulation of peripheral nerves in vivo

    Science.gov (United States)

    Wells, Jonathon D.

    This dissertation documents the emergence and validation of a new clinical tool that bridges the fields of biomedical optics and neuroscience. The research herein describes an innovative method for direct neurostimulation with pulsed infrared laser light. Safety and effectiveness of this technique are first demonstrated through functional stimulation of the rat sciatic nerve in vivo. The Holmium:YAG laser (lambda = 2.12 mum) is shown to operate at an optimal wavelength for peripheral nerve stimulation with advantages over standard electrical neural stimulation; including contact-free stimulation, high spatial selectivity, and lack of a stimulation artifact. The underlying biophysical mechanism responsible for transient optical nerve stimulation appears to be a small, absorption driven thermal gradient sustained at the axonal layer of nerve. Results explicitly prove that low frequency optical stimulation can reliably stimulate without resulting in tissue thermal damage. Based on the positive results from animal studies, these optimal laser parameters were utilized to move this research into the clinic with a combined safety and efficacy study in human subjects undergoing selective dorsal rhizotomy. The clinical Holmium:YAG laser was used to effectively stimulate human dorsal spinal roots and elicit functional muscle responses recorded during surgery without evidence of nerve damage. Overall these results predict that this technology can be a valuable clinical tool in various neurosurgical applications.

  9. Effect of pertussis toxin pretreated centrally on blood glucose level induced by stress.

    Science.gov (United States)

    Suh, Hong-Won; Sim, Yun-Beom; Park, Soo-Hyun; Sharma, Naveen; Im, Hyun-Ju; Hong, Jae-Seung

    2016-09-01

    In the present study, we examined the effect of pertussis toxin (PTX) administered centrally in a variety of stress-induced blood glucose level. Mice were exposed to stress after the pretreatment of PTX (0.05 or 0.1 µg) i.c.v. or i.t. once for 6 days. Blood glucose level was measured at 0, 30, 60 and 120 min after stress stimulation. The blood glucose level was increased in all stress groups. The blood glucose level reached at maximum level after 30 min of stress stimulation and returned to a normal level after 2 h of stress stimulation in restraint stress, physical, and emotional stress groups. The blood glucose level induced by cold-water swimming stress was gradually increased up to 1 h and returned to the normal level. The intracerebroventricular (i.c.v.) or intrathecal (i.t.) pretreatment with PTX, a Gi inhibitor, alone produced a hypoglycemia and almost abolished the elevation of the blood level induced by stress stimulation. The central pretreatment with PTX caused a reduction of plasma insulin level, whereas plasma corticosterone level was further up-regulated in all stress models. Our results suggest that the hyperglycemia produced by physical stress, emotional stress, restraint stress, and the cold-water swimming stress appear to be mediated by activation of centrally located PTX-sensitive G proteins. The reduction of blood glucose level by PTX appears to due to the reduction of plasma insulin level. The reduction of blood glucose level by PTX was accompanied by the reduction of plasma insulin level. Plasma corticosterone level up-regulation by PTX in stress models may be due to a blood glucose homeostatic mechanism.

  10. Streetscape greenery and health: stress, social cohesion and physical activity as mediators.

    NARCIS (Netherlands)

    Vries, S. de; Dillen, S.M.E. van; Groenewegen, P.P.; Spreeuwenberg, P.

    2013-01-01

    Several studies have shown a positive relationship between local greenspace availability and residents' health, which may offer opportunities for health improvement. This study focuses on three mechanisms through which greenery might exert its positive effect on health: stress reduction, stimulating

  11. Cognitive stimulation in healthy older adults: a cognitive stimulation program using leisure activities compared to a conventional cognitive stimulation program.

    Science.gov (United States)

    Grimaud, Élisabeth; Taconnat, Laurence; Clarys, David

    2017-06-01

    The aim of this study was to compare two methods of cognitive stimulation for the cognitive functions. The first method used an usual approach, the second used leisure activities in order to assess their benefits on cognitive functions (speed of processing; working memory capacity and executive functions) and psychoaffective measures (memory span and self esteem). 67 participants over 60 years old took part in the experiment. They were divided into three groups: 1 group followed a program of conventional cognitive stimulation, 1 group a program of cognitive stimulation using leisure activities and 1 control group. The different measures have been evaluated before and after the training program. Results show that the cognitive stimulation program using leisure activities is as effective on memory span, updating and memory self-perception as the program using conventional cognitive stimulation, and more effective on self-esteem than the conventional program. There is no difference between the two stimulated groups and the control group on speed of processing. Neither of the two cognitive stimulation programs provides a benefit over shifting and inhibition. These results indicate that it seems to be possible to enhance working memory and to observe far transfer benefits over self-perception (self-esteem and memory self-perception) when using leisure activities as a tool for cognitive stimulation.

  12. Modern management of epilepsy: Vagus nerve stimulation.

    Science.gov (United States)

    Ben-Menachem, E

    1996-12-01

    Vagus nerve stimulation (VNS) was first tried as a treatment for seizure patients in 1988. The idea to stimulate the vagus nerve and disrupt or prevent seizures was proposed by Jacob Zabarra. He observed a consistent finding among several animal studies which indicated that stimulation of the vagus nerve could alter the brain wave patterns of the animals under study. His hypothesis formed the basis for the development of the vagus nerve stimulator, an implantable device similar to a pacemaker, which is implanted in the left chest and attached to the left vagus nerve via a stimulating lead. Once implanted, the stimulator is programmed by a physician to deliver regular stimulation 24 hours a day regardless of seizure activity. Patients can also activate extra 'on-demand' stimulation with a handheld magnet. Clinical studies have demonstrated VNS therapy to be a safe and effective mode of treatment when added to the existing regimen of severe, refractory patients with epilepsy. Efficacy ranges from seizure free to no response with the majority of patients (> 50%) reporting at least a 50% improvement in number of seizures after 1.5 years of treatment. The side-effect profile is unique and mostly includes stimulation-related sensations in the neck and throat. The mechanism of action for VNS is not clearly understood although two theories have emerged. First, the direct connection theory hypothesizes that the anticonvulsant action of VNS is caused by a threshold raising effect of the connections to the nucleus of the solitary tract and on to other structures. The second is the concept that chronic stimulation of the vagus nerve increases the amount of inhibitory neurotransmitters and decreases the amount of excitatory neurotransmitters. Additional research into the optimal use of VNS is ongoing. Animal and clinical research have produced some interesting new data suggesting there are numerous ways to improve the clinical performance of vagus nerve stimulation as a

  13. Stress cardiomyopathy syndrome: a contemporary review.

    Science.gov (United States)

    Kapoor, Divya; Bybee, Kevin A

    2009-12-01

    Stress cardiomyopathy (SC) syndrome represents a reversible form of cardiomyopathy that commonly presents proximate to an acute emotional or physiologic stressor. The clinical presentation is similar to an acute coronary syndrome in the absence of obstructive coronary artery disease to explain the unusual distribution of associated transient wall motion abnormalities. Postmenopausal women seem particularly prone to SC for unclear reasons. The pathophysiology of the syndrome is unknown but may involve pathologic sympathetic myocardial stimulation.

  14. NK cells of the oldest seniors represent constant and resistant to stimulation high expression of cellular protective proteins SIRT1 and HSP70.

    Science.gov (United States)

    Kaszubowska, Lucyna; Foerster, Jerzy; Kaczor, Jan Jacek; Schetz, Daria; Ślebioda, Tomasz Jerzy; Kmieć, Zbigniew

    2018-01-01

    Natural killer cells (NK cells) are cytotoxic lymphocytes of innate immunity that reveal some immunoregulatory properties, however, their role in the process of ageing is not completely understood. The study aimed to analyze the expression of proteins involved in cellular stress response: sirtuin 1 (SIRT1), heat shock protein 70 (HSP70) and manganese superoxide dismutase (SOD2) in human NK cells with reference to the process of ageing. Non-stimulated and stimulated with IL-2, LPS or PMA with ionomycin cells originated from peripheral blood samples of: seniors aged over 85 ('the oldest'; n  = 25; 88.5 ± 0.5 years, mean ± SEM), seniors aged under 85 ('the old'; n  = 30; 75.6 ± 0.9 years) and the young ( n  = 31; 20.9 ± 0.3 years). The relationships between the levels of expression of cellular protective proteins in the studied population were also analyzed. The concentrations of carbonyl groups and 8-isoprostanes, markers of oxidative stress, in both stimulated and non-stimulated cultured NK cells were measured to assess the level of the oxidative stress in the cells. The oldest seniors varied from the other age groups by significantly higher expression of SIRT1 and HSP70 both in non-stimulated and stimulated NK cells. These cells also appeared to be resistant to further stimulations with IL-2, LPS or PMA with ionomycin. Highly positive correlations between SIRT1 and intracellular HSP70 in both stimulated and non-stimulated NK cells were observed. SOD2 presented low expression in non-stimulated cells, whereas its sensitivity to stimulation increased with age of donors. High positive correlations between SOD2 and surface HSP70 were observed. We found that the markers of oxidative stress in NK cells did not change with ageing. The oldest seniors revealed well developed adaptive stress response in NK cells with increased, constant levels of SIRT1 and intracellular HSP70. They presented also very high positive correlations between

  15. Stressed podocytes

    DEFF Research Database (Denmark)

    Svenningsen, Per

    2015-01-01

    and in response to injury induced by endoplasmatic reticulum (ER) stress (Golubinskaya et al., 2015). Their report shed light on the complex regulation of Best3 in podocytes and will help pave the way for future studies on the pathogenesis of kidneys diseases with podocyte injury. This article is protected...... structure appears to be a common finding in acquired proteinuric conditions (Pavenstadt et al., 2003). Identification of genes that are involved in physiological and pathophysiological functions of the podocytes is a major task. Recent studies indicate that Bestrophin (Best) 3 has cell protective functions...... in a number of cell types (Lee et al., 2012, Jiang et al., 2013, Song et al., 2014). In the present issue of Acta Physiologica, Golubinskaya et al. use cultured podocytes, kidneys and isolated glomeruli of the mouse kidney to provide a thorough characterisation of Best3 expression under normal conditions...

  16. Hyperthermia stimulates HIV-1 replication.

    Directory of Open Access Journals (Sweden)

    Ferdinand Roesch

    Full Text Available HIV-infected individuals may experience fever episodes. Fever is an elevation of the body temperature accompanied by inflammation. It is usually beneficial for the host through enhancement of immunological defenses. In cultures, transient non-physiological heat shock (42-45°C and Heat Shock Proteins (HSPs modulate HIV-1 replication, through poorly defined mechanisms. The effect of physiological hyperthermia (38-40°C on HIV-1 infection has not been extensively investigated. Here, we show that culturing primary CD4+ T lymphocytes and cell lines at a fever-like temperature (39.5°C increased the efficiency of HIV-1 replication by 2 to 7 fold. Hyperthermia did not facilitate viral entry nor reverse transcription, but increased Tat transactivation of the LTR viral promoter. Hyperthermia also boosted HIV-1 reactivation in a model of latently-infected cells. By imaging HIV-1 transcription, we further show that Hsp90 co-localized with actively transcribing provirus, and this phenomenon was enhanced at 39.5°C. The Hsp90 inhibitor 17-AAG abrogated the increase of HIV-1 replication in hyperthermic cells. Altogether, our results indicate that fever may directly stimulate HIV-1 replication, in a process involving Hsp90 and facilitation of Tat-mediated LTR activity.

  17. Transcranial magnetic stimulation in children.

    Science.gov (United States)

    Garvey, Marjorie A; Mall, Volker

    2008-05-01

    Developmental disabilities (e.g. attention deficit disorder; cerebral palsy) are frequently associated with deviations of the typical pattern of motor skill maturation. Neurophysiologic tools, such as transcranial magnetic stimulation (TMS), which probe motor cortex function, can potentially provide insights into both typical neuromotor maturation and the mechanisms underlying the motor skill deficits in children with developmental disabilities. These insights may set the stage for finding effective interventions for these disorders. We review the literature pertaining to the use of TMS in pediatrics. Most TMS-evoked parameters show age-related changes in typically developing children and some of these are abnormal in a number of childhood-onset neurological disorders. Although no TMS-evoked parameters are diagnostic for any disorder, changes in certain parameters appear to reflect disease burden or may provide a measure of treatment-related improvement. Furthermore, TMS may be especially useful when combined with other neurophysiologic modalities (e.g. fMRI). However, much work remains to be done to determine if TMS-evoked parameters can be used as valid and reliable biomarkers for disease burden, the natural history of neurological injury and repair, and the efficacy of pharmacological and rehabilitation interventions.

  18. Transdermal optogenetic peripheral nerve stimulation

    Science.gov (United States)

    Maimon, Benjamin E.; Zorzos, Anthony N.; Bendell, Rhys; Harding, Alexander; Fahmi, Mina; Srinivasan, Shriya; Calvaresi, Peter; Herr, Hugh M.

    2017-06-01

    Objective: A fundamental limitation in both the scientific utility and clinical translation of peripheral nerve optogenetic technologies is the optical inaccessibility of the target nerve due to the significant scattering and absorption of light in biological tissues. To date, illuminating deep nerve targets has required implantable optical sources, including fiber-optic and LED-based systems, both of which have significant drawbacks. Approach: Here we report an alternative approach involving transdermal illumination. Utilizing an intramuscular injection of ultra-high concentration AAV6-hSyn-ChR2-EYFP in rats. Main results: We demonstrate transdermal stimulation of motor nerves at 4.4 mm and 1.9 mm depth with an incident laser power of 160 mW and 10 mW, respectively. Furthermore, we employ this technique to accurately control ankle position by modulating laser power or position on the skin surface. Significance: These results have the potential to enable future scientific optogenetic studies of pathologies implicated in the peripheral nervous system for awake, freely-moving animals, as well as a basis for future clinical studies.

  19. Electrocutaneous stimulation system for Braille reading.

    Science.gov (United States)

    Echenique, Ana Maria; Graffigna, Juan Pablo; Mut, Vicente

    2010-01-01

    This work is an assistive technology for people with visual disabilities and aims to facilitate access to written information in order to achieve better social inclusion and integration into work and educational activities. Two methods of electrical stimulation (by current and voltage) of the mechanoreceptors was tested to obtain tactile sensations on the fingertip. Current and voltage stimulation were tested in a Braille cell and line prototype, respectively. These prototypes are evaluated in 33 blind and visually impaired subjects. The result of experimentation with both methods showed that electrical stimulation causes sensations of touch defined in the fingertip. Better results in the Braille characters reading were obtained with current stimulation (85% accuracy). However this form of stimulation causes uncomfortable sensations. The latter feeling was minimized with the method of voltage stimulation, but with low efficiency (50% accuracy) in terms of identification of the characters. We concluded that electrical stimulation is a promising method for the development of a simple and unexpensive Braille reading system for blind people. We observed that voltage stimulation is preferred by the users. However, more experimental tests must be carry out in order to find the optimum values of the stimulus parameters and increase the accuracy the Braille characters reading.

  20. Twiddler's syndrome in spinal cord stimulation.

    Science.gov (United States)

    Al-Mahfoudh, Rafid; Chan, Yuen; Chong, Hsu Pheen; Farah, Jibril Osman

    2016-01-01

    The aims are to present a case series of Twiddler's syndrome in spinal cord stimulators with analysis of the possible mechanism of this syndrome and discuss how this phenomenon can be prevented. Data were collected retrospectively between 2007 and 2013 for all patients presenting with failure of spinal cord stimulators. The diagnostic criterion for Twiddler's syndrome is radiological evidence of twisting of wires in the presence of failure of spinal cord stimulation. Our unit implants on average 110 spinal cord stimulators a year. Over the 5-year study period, all consecutive cases of spinal cord stimulation failure were studied. Three patients with Twiddler's syndrome were identified. Presentation ranged from 4 to 228 weeks after implantation. Imaging revealed repeated rotations and twisting of the wires of the spinal cord stimulators leading to hardware failure. To the best of our knowledge this is the first reported series of Twiddler's syndrome with implantable pulse generators (IPGs) for spinal cord stimulation. Hardware failure is not uncommon in spinal cord stimulation. Awareness and identification of Twiddler's syndrome may help prevent its occurrence and further revisions. This may be achieved by implanting the IPG in the lumbar region subcutaneously above the belt line. Psychological intervention may have a preventative role for those who are deemed at high risk of Twiddler's syndrome from initial psychological screening.

  1. Stimulation of seeds by low dose irradiation

    International Nuclear Information System (INIS)

    Lawson, Helen

    1976-05-01

    The first section of the bibliography lists materials on the stimulation of seeds by low dose irradiation, with particular reference to stimulation of germination and yield. The second section contains a small number of selected references on seed irradiation facilities. (author)

  2. Motor cortex stimulation: role of computer modeling

    NARCIS (Netherlands)

    Manola, L.; Holsheimer, J.; Sakas, D.E.; Simpson, B.A

    Motor cortex stimulation (MCS) is a promising clinical technique used to treat chronic, otherwise intractable pain. However, the mechanisms by which the neural elements that are stimulated during MCS induce pain relief are not understood. Neither is it known which neural elements (fibers (parallel

  3. Thyroid stimulating hormone and subclinical thyroid dysfunction

    International Nuclear Information System (INIS)

    Guo Yongtie

    2008-01-01

    Subclinical thyroid dysfunction has mild clinical symptoms. It is nonspecific and not so noticeable. It performs only for thyroid stimulating hormone rise and decline. The value of early diagnosis and treatment of thyroid stimulating hormone in subclinical thyroid dysfunction were reviewed. (authors)

  4. Effects of polycationic compounds on mitogen stimulation

    DEFF Research Database (Denmark)

    Heron, I; Larsen, B; Hokland, M

    1981-01-01

    The effects of polycations added to phytomitogen stimulated human lymphocyte cultures have been studied. Within certain dose ranges all polycations tested gave rise to augmented thymidine uptake in mitogen stimulated cultures. The optimum enhancing concentrations of polycations was depending on t...

  5. Oligofructose stimulates calcium absorption in adolescents

    NARCIS (Netherlands)

    Heuvel, E.G.H.M. van den; Muys, T.; Dokkum, W. van; Schaafsma, G.

    1999-01-01

    Background: In rats, nondigestible oligosaccharides stimulate calcium absorption. Recently, this effect was also found in human subjects. Objective: The objective of the study was to investigate whether consumption of 15 g oligofructose/d stimulates calcium absorption in male adolescents. Design:

  6. Swelling of rat hepatocytes stimulates glycogen synthesis

    NARCIS (Netherlands)

    Baquet, A.; Hue, L.; Meijer, A. J.; van Woerkom, G. M.; Plomp, P. J.

    1990-01-01

    In hepatocytes from fasted rats, several amino acids are known to stimulate glycogen synthesis via activation of glycogen synthase. The hypothesis that an increase in cell volume resulting from amino acid uptake may be involved in the stimulation of glycogen synthesis is supported by the following

  7. Kinetics of infrared stimulated luminescence from feldspars

    DEFF Research Database (Denmark)

    Jain, Mayank; Sohbati, Reza; Guralnik, Benny

    2015-01-01

    thermal and optical, of the infrared stimulated luminescence signal from feldspar. Based on the application of this model, it is concluded that different infra-red stimulated luminescence emissions (UV, blue, yellow and far-red) follow the same kinetics, and, therefore, involve participation of the same...

  8. Massive hydraulic fracturing gas stimulation project

    International Nuclear Information System (INIS)

    Appledorn, C.R.; Mann, R.L.

    1977-01-01

    The Rio Blanco Massive Hydraulic Fracturing Project was fielded in 1974 as a joint Industry/ERDA demonstration to test the relative formations that were stimulated by the Rio Blanco Nuclear fracturing experiment. The project is a companion effort to and a continuation of the preceding nuclear stimulation project, which took place in May 1973. 8 figures

  9. Nanotopography follows force in TGF-β1 stimulated epithelium

    International Nuclear Information System (INIS)

    Thoelking, Gerold; Oberleithner, Hans; Riethmuller, Christoph; Reiss, Bjoern; Wegener, Joachim; Pavenstaedt, Hermann

    2010-01-01

    Inflammation and cellular fibrosis often imply an involvement of the cytokine TGF-β1. TGF-β1 induces epithelial-to-mesenchymal transdifferentiation (EMT), a term describing the loss of epithelium-specific function. Indicative for this process are an elongated cell shape parallel to stress fibre formation. Many signalling pathways of TGF-β1 have been discovered, but mechanical aspects have not yet been investigated. In this study, atomic force microscopy (AFM) was used to analyse surface topography and mechanical properties of EMT in proximal kidney tubule epithelium (NRK52E). Elongated cells, an increase of stress fibre formation and a loss of microvillus compatible structures were observed as characteristic signs of EMT. Furthermore, AFM could identify an increase in stiffness by 71% after six days of stimulation with TGF-β1. As a novel topographical phenomenon, nodular protrusions emerged at the cell-cell junctions. They occurred preferentially at sites where stress fibres cross the border. Since these nodular protrusions were sensitive to inhibitors of force generation, they can indicate intracellular tension. The results demonstrate a manifest impact of elevated tension on the cellular topography.

  10. Addictive drugs and brain stimulation reward.

    Science.gov (United States)

    Wise, R A

    1996-01-01

    Direct electrical or chemical stimulation of specific brain regions can establish response habits similar to those established by natural rewards such as food or sexual contact. Cocaine, mu and delta opiates, nicotine, phencyclidine, and cannabis each have actions that summate with rewarding electrical stimulation of the medial forebrain bundle (MFB). The reward-potentiating effects of amphetamine and opiates are associated with central sites of action where these drugs also have their direct rewarding effects, suggesting common mechanisms for drug reward per se and for drug potentiation of brain stimulation reward. The central sites at which these and perhaps other drugs of abuse potentiate brain stimulation reward and are rewarding in their own right are consistent with the hypothesis that the laboratory reward of brain stimulation and the pharmacological rewards of addictive drugs are habit forming because they act in the brain circuits that subserve more natural and biologically significant rewards.

  11. Neurologic Complications of Psychomotor Stimulant Abuse.

    Science.gov (United States)

    Sanchez-Ramos, Juan

    2015-01-01

    Psychomotor stimulants are drugs that act on the central nervous system (CNS) to increase alertness, elevate mood, and produce a sense of well-being. These drugs also decrease appetite and the need for sleep. Stimulants can enhance stamina and improve performance in tasks that have been impaired by fatigue or boredom. Approved therapeutic applications of stimulants include attention deficit hyperactivity disorder (ADHD), narcolepsy, and obesity. These agents also possess potent reinforcing properties that can result in excessive self-administration and abuse. Chronic use is associated with adverse effects including psychosis, seizures, and cerebrovascular accidents, though these complications usually occur in individuals with preexisting risk factors. This chapter reviews the adverse neurologic consequences of chronic psychomotor stimulant use and abuse, with a focus on two prototypical stimulants methamphetamine and cocaine. © 2015 Elsevier Inc. All rights reserved.

  12. [Electrical acupoint stimulation increases athletes' rapid strength].

    Science.gov (United States)

    Yang, Hua-yuan; Liu, Tang-yi; Kuai, Le; Gao, Ming

    2006-05-01

    To search for a stimulation method for increasing athletes' performance. One hundred and fifty athletes were randomly divided into a trial group and a control group, 75 athletes in each group. Acupoints were stimulated with audio frequency pulse modulated wave and multi-blind method were used to investigate effects of the electric stimulation of acupoints on 30-meter running, standing long jumping and Cybex isokinetic testing index. The acupoint electric stimulation method could significantly increase athlete's performance (P < 0.05), and the biomechanical indexes, maximal peak moment of force (P < 0.05), force moment accelerating energy (P < 0.05) and average power (P < 0.05). Electrical acupoint stimulation can enhance athlete's rapid strength.

  13. [Psychological stress and sudden death].

    Science.gov (United States)

    Pignalberi, Carlo; Ricci, Renato; Santini, Massimo

    2002-10-01

    Recent studies provide relevant evidence that psychological stress significantly influences the pathogenesis of sudden cardiac death. Psychological stress expresses a situation of imbalance, derived from a real or perceived disparity between environmental demands and the individual's ability to cope with these demands. A situation of psychological stress may include different components: personality factors and character traits, anxiety and depression, social isolation and acute or chronic adverse life events. In particular, it has been documented that a sudden extremely hard event, such as an earthquake or a war strike, can significantly increase the incidence of sudden death. Nevertheless, each one of these factors, if not present, can balance a partially unfavorable situation; this overview suggests a multifactorial situation where almost all elements are present and in which the relative influence of each one varies according to the individual examined. Sudden death occurs when a transient disruption (such as acute myocardial ischemia, platelet activation or neuroendocrine variations), occurring in a patient with a diseased myocardium (such as one with a post-necrotic scar or hypertrophy), triggers a malignant arrhythmia. Psychological stress acts at both levels: by means of a "chronic" action it contributes to create the myocardial background, while by means of an acute action it can create the transient trigger precipitating sudden death. In the chronic action two possible mechanisms can be detected: the first is a direct interaction, which contributes to cause a hypertension status or to exacerbate coronary atherosclerosis consequent to endothelial dysfunction; the second one acts through adverse health behaviors, such as a poor diet, alcohol consumption or smoking. In case of acute psychological stress, the mechanisms involved are mainly the ability to trigger myocardial ischemia, to promote arrhythmogenesis, to stimulate platelet function, and to increase

  14. Managing Leadership Stress

    CERN Document Server

    Bal, Vidula; McDowell-Larsen, Sharon

    2011-01-01

    Everyone experiences stress, and leaders face the additional stress brought about by the unique demands of leadership: having to make decisions with limited information, to manage conflict, to do more with less . . . and faster! The consequences of stress can include health problems and deteriorating relationships. Knowing what signs of stress to look for and having a strategy for increasing your resources will help you manage leadership stress and be more effective over a long career.Table of ContentsThe Stress of Leadership 7Why Is Leadership Stressful? 8Stress Assessment 13When Stress Is Wh

  15. Neuroimaging Mechanisms of Therapeutic Transcranial Magnetic Stimulation for Major Depressive Disorder.

    Science.gov (United States)

    Philip, Noah S; Barredo, Jennifer; Aiken, Emily; Carpenter, Linda L

    2018-03-01

    Research into therapeutic transcranial magnetic stimulation (TMS) for major depression has dramatically increased in the last decade. Understanding the mechanism of action of TMS is crucial to improve efficacy and develop the next generation of therapeutic stimulation. Early imaging research provided initial data supportive of widely held assumptions about hypothesized inhibitory or excitatory consequences of stimulation. Early work also indicated that while TMS modulated brain activity under the stimulation site, effects at deeper regions, in particular, the subgenual anterior cingulate cortex, were associated with clinical improvement. Concordant with earlier findings, functional connectivity studies also demonstrated that clinical improvements were related to changes distal, rather than proximal, to the site of stimulation. Moreover, recent work suggests that TMS modulates and potentially normalizes functional relationships between neural networks. An important observation that emerged from this review is that similar patterns of connectivity changes are observed across studies regardless of TMS parameters. Though promising, we stress that these imaging findings must be evaluated cautiously given the widespread reliance on modest sample sizes and little implementation of statistical validation. Additional limitations included use of imaging before and after a course of TMS, which provided little insight into changes that might occur during the weeks of stimulation. Furthermore, as studies to date have focused on depression, it is unclear whether our observations were related to mechanisms of action of TMS for depression or represented broader patterns of functional brain changes associated with clinical improvement. Published by Elsevier Inc.

  16. Device-based brain stimulation to augment fear extinction: implications for PTSD treatment and beyond.

    Science.gov (United States)

    Marin, Marie-France; Camprodon, Joan A; Dougherty, Darin D; Milad, Mohammed R

    2014-04-01

    Conditioned fear acquisition and extinction paradigms have been widely used both in animals and humans to examine the neurobiology of emotional memory. Studies have also shown that patients suffering from posttraumatic stress disorder (PTSD) exhibit deficient extinction recall along with dysfunctional activation of the fear extinction network, including the ventromedial prefrontal cortex, amygdala, and hippocampus. A great deal of overlap exists between this fear extinction network and brain regions associated with symptom severity in PTSD. This suggests that the neural nodes of fear extinction could be targeted to reduce behavioral deficits that may subsequently translate into symptom improvement. In this article, we discuss potential applications of brain stimulation and neuromodulation methods, which, combined with a mechanistic understanding of the neurobiology of fear extinction, could be used to further our understanding of the pathophysiology of anxiety disorders and develop novel therapeutic tools. To this end, we discuss the following stimulation approaches: deep-brain stimulation, vagus nerve stimulation, transcranial direct current stimulation, and transcranial magnetic stimulation. We propose new translational research avenues that, from a systems neuroscience perspective, aim to expand our understanding of circuit dynamics and fear processing toward the practical development of clinical tools, to be used alone or in combination with behavioral therapies. © 2014 Wiley Periodicals, Inc.

  17. Australian University Students' Coping Strategies and Use of Pharmaceutical Stimulants as Cognitive Enhancers.

    Science.gov (United States)

    Jensen, Charmaine; Forlini, Cynthia; Partridge, Brad; Hall, Wayne

    2016-01-01

    There are reports that some university students are using prescription stimulants for non-medical 'pharmaceutical cognitive enhancement (PCE)' to improve alertness, focus, memory, and mood in an attempt to manage the demands of study at university. Purported demand for PCEs in academic contexts have been based on incomplete understandings of student motivations, and often based on untested assumptions about the context within which stimulants are used. They may represent attempts to cope with biopsychosocial stressors in university life by offsetting students' inadequate coping responses, which in turn may affect their cognitive performance. This study aimed to identify (a) what strategies students adopted to cope with the stress of university life and, (b) to assess whether students who have used stimulants for PCE exhibit particular stress or coping patterns. We interviewed 38 university students (with and without PCE experience) about their experience of managing student life, specifically their: educational values; study habits; achievement; stress management; getting assistance; competing activities and demands; health habits; and cognitive enhancement practices. All interview transcripts were coded into themes and analyzed. Our thematic analysis revealed that, generally, self-rated coping ability decreased as students' self-rated stress level increased. Students used emotion- and problem-focused coping for the most part and adjustment-focused coping to a lesser extent. Avoidance, an emotion-focused coping strategy, was the most common, followed by problem-focused coping strategies, the use of cognition on enhancing substances, and planning and monitoring of workload. PCE users predominantly used avoidant emotion-focused coping strategies until they no longer mitigated the distress of approaching deadlines resulting in the use of prescription stimulants as a substance-based problem-focused coping strategy. Our study suggests that students who choose coping

  18. Australian university students’ coping strategies and use of pharmaceutical stimulants as cognitive enhancers

    Directory of Open Access Journals (Sweden)

    Charmaine eJensen

    2016-03-01

    Full Text Available Background: There are reports that some university students are using prescription stimulants for non-medical ‘pharmaceutical cognitive enhancement (PCE’ to improve alertness, focus, memory, and mood in an attempt to manage the demands of study at university. Purported demand for PCEs in academic contexts have been based on incomplete understandings of student motivations, and often based on untested assumptions about the context within which stimulants are used. They may represent attempts to cope with biopsychosocial stressors in university life by offsetting students’ inadequate coping responses, which in turn may affect their cognitive performance. This study aimed to identify (a what strategies students adopted to cope with the stress of university life and, (b to assess whether students who have used stimulants for PCE exhibit particular stress or coping patterns.Methods: We interviewed 38 university students (with and without PCE experience about their experience of managing student life, specifically their educational values, study habits and achievement, stress management, getting assistance, competing activities and responsibilities, health habits, and cognitive enhancement practices. All interview transcripts were coded into themes and analysed.Results: Our thematic analysis revealed that, generally, self-rated coping ability decreased as students’ self-rated stress level increased. Students used emotion- and problem-focused coping for the most part and adjustment-focused coping to a lesser extent. Avoidance, an emotion-focused coping strategy, was the most common, followed by problem-focused coping strategies, the use of cognition on enhancing substances, and planning and monitoring of workload. PCE users predominantly used avoidant emotion-focused coping strategies until they no longer mitigated the distress of approaching deadlines resulting in the use of prescription stimulants as a substance-based problem-focused coping

  19. Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    2015-07-01

    Full Text Available Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation. However, the stimulation comfort of textile electrodes and the mechanism behind stimulation discomfort is still unknown. In this study, a textile stimulation electrode was developed using conductive fabrics and then its impedance spectroscopy, stimulation thresholds, and stimulation comfort were quantitatively assessed and compared with those of a wet textile electrode and a hydrogel electrode on healthy subjects. The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain. Our results showed that the wet textile electrode could achieve similar stimulation performance as the hydrogel electrode in motor threshold and stimulation comfort. However, the dry textile electrode was found to have very low pain threshold and induced obvious cutaneous painful sensations during stimulation, in comparison to the wet and hydrogel electrodes. Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers. Future work will be done to make textile electrodes have similar stimulation performance and comfort as hydrogel electrodes.

  20. Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation

    Science.gov (United States)

    Zhou, Hui; Lu, Yi; Chen, Wanzhen; Wu, Zhen; Zou, Haiqing; Krundel, Ludovic; Li, Guanglin

    2015-01-01

    Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation. However, the stimulation comfort of textile electrodes and the mechanism behind stimulation discomfort is still unknown. In this study, a textile stimulation electrode was developed using conductive fabrics and then its impedance spectroscopy, stimulation thresholds, and stimulation comfort were quantitatively assessed and compared with those of a wet textile electrode and a hydrogel electrode on healthy subjects. The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain. Our results showed that the wet textile electrode could achieve similar stimulation performance as the hydrogel electrode in motor threshold and stimulation comfort. However, the dry textile electrode was found to have very low pain threshold and induced obvious cutaneous painful sensations during stimulation, in comparison to the wet and hydrogel electrodes. Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers. Future work will be done to make textile electrodes have similar stimulation performance and comfort as hydrogel electrodes. PMID:26193273

  1. A wireless wearable surface functional electrical stimulator

    Science.gov (United States)

    Wang, Hai-Peng; Guo, Ai-Wen; Zhou, Yu-Xuan; Xia, Yang; Huang, Jia; Xu, Chong-Yao; Huang, Zong-Hao; Lü, Xiao-Ying; Wang, Zhi-Gong

    2017-09-01

    In this paper, a wireless wearable functional electrical stimulator controlled by Android phone with real-time-varying stimulation parameters for multichannel surface functional electrical stimulation application has been developed. It can help post-stroke patients using more conveniently. This study focuses on the prototype design, including the specific wristband concept, circuits and stimulation pulse-generation algorithm. A novel stimulator circuit with a driving stage using a complementary current source technique is proposed to achieve a high-voltage compliance, a large output impedance and an accurate linear voltage-to-current conversion. The size of the prototype has been significantly decreased to 17 × 7.5 × 1 cm3. The performance of the prototype has been tested with a loaded resistor and wrist extension/flexion movement of three hemiplegic patients. According to the experiments, the stimulator can generate four-channel charge-balanced biphasic stimulation with a voltage amplitude up to 60 V, and the pulse frequency and width can be adjusted in real time with a range of 100-600 μs and 20-80 Hz, respectively.

  2. Computational modeling of epidural cortical stimulation

    Science.gov (United States)

    Wongsarnpigoon, Amorn; Grill, Warren M.

    2008-12-01

    Epidural cortical stimulation (ECS) is a developing therapy to treat neurological disorders. However, it is not clear how the cortical anatomy or the polarity and position of the electrode affects current flow and neural activation in the cortex. We developed a 3D computational model simulating ECS over the precentral gyrus. With the electrode placed directly above the gyrus, about half of the stimulus current flowed through the crown of the gyrus while current density was low along the banks deep in the sulci. Beneath the electrode, neurons oriented perpendicular to the cortical surface were depolarized by anodic stimulation, and neurons oriented parallel to the boundary were depolarized by cathodic stimulation. Activation was localized to the crown of the gyrus, and neurons on the banks deep in the sulci were not polarized. During regulated voltage stimulation, the magnitude of the activating function was inversely proportional to the thickness of the CSF and dura. During regulated current stimulation, the activating function was not sensitive to the thickness of the dura but was slightly more sensitive than during regulated voltage stimulation to the thickness of the CSF. Varying the width of the gyrus and the position of the electrode altered the distribution of the activating function due to changes in the orientation of the neurons beneath the electrode. Bipolar stimulation, although often used in clinical practice, reduced spatial selectivity as well as selectivity for neuron orientation.

  3. Numerical dosimetry of transcranial magnetic stimulation coils

    Science.gov (United States)

    Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2014-03-01

    Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique capable of stimulating neurons by means of electromagnetic induction. TMS can be used to map brain function and shows promise for the diagnosis and treatment of neurological and psychiatric disorders. Calculation of fields induced in the brain are necessary to accurately identify stimulated neural tissue during TMS. This allows the development of novel TMS coil designs capable of stimulating deeper brain regions and increasing the localization of stimulation that can be achieved. We have performed numerical calculations of magnetic and electric field with high-resolution anatomically realistic human head models to find these stimulated brain regions for a variety of proposed TMS coil designs. The realistic head models contain heterogeneous tissue structures and electrical conductivities, yielding superior results to those obtained from the simplified homogeneous head models that are commonly employed. The attenuation of electric field as a function of depth in the brain and the localization of stimulating field have been methodically investigated. In addition to providing a quantitative comparison of different TMS coil designs the variation of induced field between subjects has been investigated. We also show the differences in induced fields between adult, adolescent and child head models to preemptively identify potential safety issues in the application of pediatric TMS.

  4. A fully implantable rodent neural stimulator

    Science.gov (United States)

    Perry, D. W. J.; Grayden, D. B.; Shepherd, R. K.; Fallon, J. B.

    2012-02-01

    The ability to electrically stimulate neural and other excitable tissues in behaving experimental animals is invaluable for both the development of neural prostheses and basic neurological research. We developed a fully implantable neural stimulator that is able to deliver two channels of intra-cochlear electrical stimulation in the rat. It is powered via a novel omni-directional inductive link and includes an on-board microcontroller with integrated radio link, programmable current sources and switching circuitry to generate charge-balanced biphasic stimulation. We tested the implant in vivo and were able to elicit both neural and behavioural responses. The implants continued to function for up to five months in vivo. While targeted to cochlear stimulation, with appropriate electrode arrays the stimulator is well suited to stimulating other neurons within the peripheral or central nervous systems. Moreover, it includes significant on-board data acquisition and processing capabilities, which could potentially make it a useful platform for telemetry applications, where there is a need to chronically monitor physiological variables in unrestrained animals.

  5. Stress Management: Yoga

    Science.gov (United States)

    Healthy Lifestyle Stress management Is yoga right for you? It is if you want to fight stress, get fit and stay healthy. By ... particular, may be a good choice for stress management. Hatha is one of the most common styles ...

  6. Stress and Heart Health

    Science.gov (United States)

    ... It Works Healthy Workplace Food and Beverage Toolkit Stress and Heart Health Updated:Jan 8,2018 When ... therapist in your community. Last reviewed 6/2014 Stress Management • Home • How Does Stress Affect You? Introduction ...

  7. Overcoming job stress

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000884.htm Overcoming job stress To use the sharing features on this page, ... stay healthy and feel better. Causes of Job Stress Although the cause of job stress is different ...

  8. Posttraumatic Stress Disorder

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Posttraumatic Stress Disorder (PTSD) KidsHealth / For Parents / Posttraumatic Stress Disorder ( ... My Child? Looking Ahead Print What Is Posttraumatic Stress Disorder (PTSD)? Someone who is the victim of ( ...

  9. Stress Management: Spirituality

    Science.gov (United States)

    Healthy Lifestyle Stress management Taking the path less traveled by exploring your spirituality can lead to a clearer life purpose, better personal relationships and enhanced stress management skills. By Mayo Clinic Staff Some stress relief ...

  10. Openness to experience and adapting to change: Cardiovascular stress habituation to change in acute stress exposure.

    Science.gov (United States)

    Ó Súilleabháin, Páraic S; Howard, Siobhán; Hughes, Brian M

    2018-05-01

    Underlying psychophysiological mechanisms of effect linking openness to experience to health outcomes, and particularly cardiovascular well-being, are unknown. This study examined the role of openness in the context of cardiovascular responsivity to acute psychological stress. Continuous cardiovascular response data were collected for 74 healthy young female adults across an experimental protocol, including differing counterbalanced acute stressors. Openness was measured via self-report questionnaire. Analysis of covariance revealed openness was associated with systolic blood pressure (SBP; p = .016), and diastolic blood pressure (DBP; p = .036) responsivity across the protocol. Openness was also associated with heart rate (HR) responding to the initial stress exposure (p = .044). Examination of cardiovascular adaptation revealed that higher openness was associated with significant SBP (p = .001), DBP (p = .009), and HR (p = .002) habituation in response to the second differing acute stress exposure. Taken together, the findings suggest persons higher in openness are characterized by an adaptive cardiovascular stress response profile within the context of changing acute stress exposures. This study is also the first to demonstrate individual differences in cardiovascular adaptation across a protocol consisting of differing stress exposures. More broadly, this research also suggests that future research may benefit from conceptualizing an adaptive fitness of openness within the context of change. In summary, the present study provides evidence that higher openness stimulates short-term stress responsivity, while ensuring cardiovascular habituation to change in stress across time. © 2017 Society for Psychophysiological Research.

  11. Optimal stimulation as theoretical basis of hyperactivity.

    Science.gov (United States)

    Zentall, Sydney

    1975-07-01

    Current theory and practice in the clinical and educational management of hyperactive children recommend reduction of environmental stimulation, assuming hyperactive and distractable behaviors to be due to overstimulation. This paper reviews research suggesting that hyperactive behavior may result from a homeostatic mechanism that functions to increase stimulation for a child experienceing insufficient sensory stimulation. It is suggested that the effectiveness of drug and behavior therapies, as well as evidence from the field of sensory deprivation, further support the theory of a homeostatic mechanism that attempts to optimize sensory input.

  12. Radioimmunoassay for thyroid-stimulating hormone (TSH)

    International Nuclear Information System (INIS)

    Blakemore, J.I.; Lewin, N.; Burgett, M.W.

    1978-01-01

    This invention provides a method for the radioimmunoassay of thyroid-stimulating hormone which utilizes a rapid and convenient version of a double antibody procedure. Highly purified second antibody is bound, by means of covalent bonds, to hydrolyzed polyacrylamide particles to produce a two-phase system. The solid phase comprises immobilized second antibody bound to the reaction product of labeled and unlabeled thyroid-stimulating hormone with the first antibody (first antibody-antigen complex) and the liquid phase comprises free (unbound) labeled and unlabeled thyroid-stimulating hormone. The two phases are separated and the radioactivity of either phase is measured

  13. Stimulation Technologies for Deep Well Completions

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Wolhart

    2005-06-30

    The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies conducted a study to evaluate the stimulation of deep wells. The objective of the project was to review U.S. deep well drilling and stimulation activity, review rock mechanics and fracture growth in deep, high-pressure/temperature wells and evaluate stimulation technology in several key deep plays. This report documents results from this project.

  14. Elevated progesterone during ovarian stimulation for IVF

    DEFF Research Database (Denmark)

    Al-Azemi, M; Kyrou, D; Kolibianakis, E M

    2012-01-01

    of Medline and PubMed were searched to identify relevant publications. Good-quality evidence supports the negative impact on endometrial receptivity of elevated progesterone concentrations at the end of the follicular phase in ovarian stimulation. Future trials should document the cause and origin...... phase in ovarian stimulation. The databases of Medline and PubMed were searched to identify relevant publications. Good-quality evidence supports the negative impact on endometrial receptivity of elevated progesterone concentrations at the end of follicular phase in ovarian stimulation. Future trials...

  15. Transcranial Alternating Current Stimulation Attenuates Neuronal Adaptation.

    Science.gov (United States)

    Kar, Kohitij; Duijnhouwer, Jacob; Krekelberg, Bart

    2017-03-01

    We previously showed that brief application of 2 mA (peak-to-peak) transcranial currents alternating at 10 Hz significantly reduces motion adaptation in humans. This is but one of many behavioral studies showing that weak currents applied to the scalp modulate neural processing. Transcranial stimulation has been shown to improve perception, learning, and a range of clinical symptoms. Few studies, however, have measured the neural consequences of transcranial current stimulation. We capitalized on the strong link between motion perception and neural activity in the middle temporal (MT) area of the macaque monkey to study the neural mechanisms that underlie the behavioral consequences of transcranial alternating current stimulation. First, we observed that 2 mA currents generated substantial intracranial fields, which were much stronger in the stimulated hemisphere (0.12 V/m) than on the opposite side of the brain (0.03 V/m). Second, we found that brief application of transcranial alternating current stimulation at 10 Hz reduced spike-frequency adaptation of MT neurons and led to a broadband increase in the power spectrum of local field potentials. Together, these findings provide a direct demonstration that weak electric fields applied to the scalp significantly affect neural processing in the primate brain and that this includes a hitherto unknown mechanism that attenuates sensory adaptation. SIGNIFICANCE STATEMENT Transcranial stimulation has been claimed to improve perception, learning, and a range of clinical symptoms. Little is known, however, how transcranial current stimulation generates such effects, and the search for better stimulation protocols proceeds largely by trial and error. We investigated, for the first time, the neural consequences of stimulation in the monkey brain. We found that even brief application of alternating current stimulation reduced the effects of adaptation on single-neuron firing rates and local field potentials; this mechanistic

  16. Teacher Wellness: Too Stressed for Stress Management?

    Science.gov (United States)

    Kipps-Vaughan, Debi; Ponsart, Tyler; Gilligan, Tammy

    2012-01-01

    Healthier, happier teachers promote healthier, happier, and more effective learning environments. Yet, many teachers experience considerable stress. Studies have found that between one fifth and one fourth of teachers frequently experience a great deal of stress (Kyriacou, 1998). Stress in teaching appears to be universal across nations and…

  17. Prenatal Maternal Stress Programs Infant Stress Regulation

    Science.gov (United States)

    Davis, Elysia Poggi; Glynn, Laura M.; Waffarn, Feizal; Sandman, Curt A.

    2011-01-01

    Objective: Prenatal exposure to inappropriate levels of glucocorticoids (GCs) and maternal stress are putative mechanisms for the fetal programming of later health outcomes. The current investigation examined the influence of prenatal maternal cortisol and maternal psychosocial stress on infant physiological and behavioral responses to stress.…

  18. Extracellular Vesicles from Hypoxic Adipocytes and Obese Subjects Reduce Insulin‐Stimulated Glucose Uptake

    Science.gov (United States)

    Mleczko, Justyna; Ortega, Francisco J.; Falcon‐Perez, Juan Manuel; Wabitsch, Martin; Fernandez‐Real, Jose Manuel

    2018-01-01

    Scope We investigate the effects of extracellular vesicles (EVs) obtained from in vitro adipocyte cell models and from obese subjects on glucose transport and insulin responsiveness. Methods and results EVs are isolated from the culture supernatant of adipocytes cultured under normoxia, hypoxia (1% oxygen), or exposed to macrophage conditioned media (15% v/v). EVs are isolated from the plasma of lean individuals and subjects with obesity. Cultured adipocytes are incubated with EVs and activation of insulin signalling cascades and insulin‐stimulated glucose transport are measured. EVs released from hypoxic adipocytes impair insulin‐stimulated 2‐deoxyglucose uptake and reduce insulin mediated phosphorylation of AKT. Insulin‐mediated phosphorylation of extracellular regulated kinases (ERK1/2) is not affected. EVs from individuals with obesity decrease insulin stimulated 2‐deoxyglucose uptake in adipocytes (p = 0.0159). Conclusion EVs released by stressed adipocytes impair insulin action in neighboring adipocytes. PMID:29292863

  19. Masking of infrared neural stimulation (INS) in hearing and deaf guinea pigs

    Science.gov (United States)

    Kadakia, Sama; Young, Hunter; Richter, Claus-Peter

    2013-03-01

    Spatial selective infrared neural stimulation has potential to improve neural prostheses, including cochlear implants. The heating of a confined target volume depolarizes the cell membrane and results in an action potential. Tissue heating may also results in thermal damage or the generation of a stress relaxation wave. Stress relaxation waves may result in a direct mechanical stimulation of remaining hair cells in the cochlea, so called optophony. Data are presented that quantify the effect of an acoustical stimulus (noise masker) on the response obtained with INS in normal hearing, acutely deafened, and chronic deaf animals. While in normal hearing animals an acoustic masker can reduce the response to INS, in acutely deafened animals the masking effect is reduced, and in chronic deaf animals this effect has not been detected. The responses to INS remain stable following the different degrees of cochlear damage.

  20. Reducing surgical nurses' aseptic practice-related stress.

    Science.gov (United States)

    Aholaakko, Teija-Kaisa

    2011-12-01

    This paper aims to explore aseptic practice-related stress in surgery. The objectives are to define stress-related factors and the means to reduce the stress. Occupational stress is related to personal characteristics: job satisfaction and physiological and psychological well-being. The stress symptoms are often classified as part of a negative mood. Nurses have expressed stress when deadening their conscience to external demands with co-workers or internal working role-related demands. Surgery nurses expect fair division of work and compliance with rules. The hospital management, technology and the medical profession, instead of the needs of the patient, are recognised as a danger in the development of surgery nurses' role. A qualitative stimulated recall interview was performed in the surgery of the university hospital. Thirty-one operations were videotaped, and 31 nurses interviewed during videotape stimulation. The 1306 text pages were transcripted and analysed by a qualitative membership categorisation device analysis. The analysis revealed aseptic practice-related stress which constructed a sixteen level category. The membership categorisation identified connections between qualitatively attributed personnel and seven stress factors: working experience; time; equipment; person; patient; working morals and power. Final analysis revealed nurses reducing aseptic practice-related stress by safe, peaceful, competent and relative means. The aseptic practice-related stress varied from positive motivating feelings to exhaustion. The stress was experienced by medical and nursing co-workers and reduced by means which varied according to expertise and co-workers. This study showed needs for both the shared multiprofessional documentation of aseptic practice and better adherence to recommendations. Constructive means are useful when solving conflicts and replacing person-related aseptic practice with evidence-based. They may support nurses' professional growth, reduce

  1. Towards a Switched-Capacitor Based Stimulator for Efficient Deep-Brain Stimulation

    Science.gov (United States)

    Vidal, Jose; Ghovanloo, Maysam

    2013-01-01

    We have developed a novel 4-channel prototype stimulation circuit for implantable neurological stimulators (INS). This Switched-Capacitor based Stimulator (SCS) aims to utilize charge storage and charge injection techniques to take advantage of both the efficiency of conventional voltage-controlled stimulators (VCS) and the safety and controllability of current-controlled stimulators (CCS). The discrete SCS prototype offers fine control over stimulation parameters such as voltage, current, pulse width, frequency, and active electrode channel via a LabVIEW graphical user interface (GUI) when connected to a PC through USB. Furthermore, the prototype utilizes a floating current sensor to provide charge-balanced biphasic stimulation and ensure safety. The stimulator was analyzed using an electrode-electrolyte interface (EEI) model as well as with a pair of pacing electrodes in saline. The primary motivation of this research is to test the feasibility and functionality of a safe, effective, and power-efficient switched-capacitor based stimulator for use in Deep Brain Stimulation. PMID:21095987

  2. Computational analysis of transcranial magnetic stimulation in the presence of deep brain stimulation probes

    Science.gov (United States)

    Syeda, F.; Holloway, K.; El-Gendy, A. A.; Hadimani, R. L.

    2017-05-01

    Transcranial Magnetic Stimulation is an emerging non-invasive treatment for depression, Parkinson's disease, and a variety of other neurological disorders. Many Parkinson's patients receive the treatment known as Deep Brain Stimulation, but often require additional therapy for speech and swallowing impairment. Transcranial Magnetic Stimulation has been explored as a possible treatment by stimulating the mouth motor area of the brain. We have calculated induced electric field, magnetic field, and temperature distributions in the brain using finite element analysis and anatomically realistic heterogeneous head models fitted with Deep Brain Stimulation leads. A Figure of 8 coil, current of 5000 A, and frequency of 2.5 kHz are used as simulation parameters. Results suggest that Deep Brain Stimulation leads cause surrounding tissues to experience slightly increased E-field (Δ Emax =30 V/m), but not exceeding the nominal values induced in brain tissue by Transcranial Magnetic Stimulation without leads (215 V/m). The maximum temperature in the brain tissues surrounding leads did not change significantly from the normal human body temperature of 37 °C. Therefore, we ascertain that Transcranial Magnetic Stimulation in the mouth motor area may stimulate brain tissue surrounding Deep Brain Stimulation leads, but will not cause tissue damage.

  3. SREBP-1c regulates glucose-stimulated hepatic clusterin expression

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gukhan [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Geun Hyang; Oh, Gyun-Sik; Yoon, Jin [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Hae Won [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Min-Seon [Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Seung-Whan, E-mail: swkim7@amc.seoul.kr [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of)

    2011-05-20

    Highlights: {yields} This is the first report to show nutrient-regulated clusterin expression. {yields} Clusterin expression in hepatocytes was increased by high glucose concentration. {yields} SREBP-1c is directly involved in the transcriptional activation of clusterin by glucose. {yields} This glucose-stimulated activation process is mediated through tandem E-box motifs. -- Abstract: Clusterin is a stress-response protein that is involved in diverse biological processes, including cell proliferation, apoptosis, tissue differentiation, inflammation, and lipid transport. Its expression is upregulated in a broad spectrum of diverse pathological states. Clusterin was recently reported to be associated with diabetes, metabolic syndrome, and their sequelae. However, the regulation of clusterin expression by metabolic signals was not addressed. In this study we evaluated the effects of glucose on hepatic clusterin expression. Interestingly, high glucose concentrations significantly increased clusterin expression in primary hepatocytes and hepatoma cell lines, but the conventional promoter region of the clusterin gene did not respond to glucose stimulation. In contrast, the first intronic region was transcriptionally activated by high glucose concentrations. We then defined a glucose response element (GlRE) of the clusterin gene, showing that it consists of two E-box motifs separated by five nucleotides and resembles carbohydrate response element (ChoRE). Unexpectedly, however, these E-box motifs were not activated by ChoRE binding protein (ChREBP), but were activated by sterol regulatory element binding protein-1c (SREBP-1c). Furthermore, we found that glucose induced recruitment of SREBP-1c to the E-box of the clusterin gene intronic region. Taken together, these results suggest that clusterin expression is increased by glucose stimulation, and SREBP-1c plays a crucial role in the metabolic regulation of clusterin.

  4. Benfotiamine attenuates inflammatory response in LPS stimulated BV-2 microglia.

    Science.gov (United States)

    Bozic, Iva; Savic, Danijela; Laketa, Danijela; Bjelobaba, Ivana; Milenkovic, Ivan; Pekovic, Sanja; Nedeljkovic, Nadezda; Lavrnja, Irena

    2015-01-01

    Microglial cells are resident immune cells of the central nervous system (CNS), recognized as key elements in the regulation of neural homeostasis and the response to injury and repair. As excessive activation of microglia may lead to neurodegeneration, therapeutic strategies targeting its inhibition were shown to improve treatment of most neurodegenerative diseases. Benfotiamine is a synthetic vitamin B1 (thiamine) derivate exerting potentially anti-inflammatory effects. Despite the encouraging results regarding benfotiamine potential to alleviate diabetic microangiopathy, neuropathy and other oxidative stress-induced pathological conditions, its activities and cellular mechanisms during microglial activation have yet to be elucidated. In the present study, the anti-inflammatory effects of benfotiamine were investigated in lipopolysaccharide (LPS)-stimulated murine BV-2 microglia. We determined that benfotiamine remodels activated microglia to acquire the shape that is characteristic of non-stimulated BV-2 cells. In addition, benfotiamine significantly decreased production of pro-inflammatory mediators such as inducible form of nitric oxide synthase (iNOS) and NO; cyclooxygenase-2 (COX-2), heat-shock protein 70 (Hsp70), tumor necrosis factor alpha α (TNF-α), interleukin-6 (IL-6), whereas it increased anti-inflammatory interleukin-10 (IL-10) production in LPS stimulated BV-2 microglia. Moreover, benfotiamine suppressed the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinases (JNK) and protein kinase B Akt/PKB. Treatment with specific inhibitors revealed that benfotiamine-mediated suppression of NO production was via JNK1/2 and Akt pathway, while the cytokine suppression includes ERK1/2, JNK1/2 and Akt pathways. Finally, the potentially protective effect is mediated by the suppression of translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in the nucleus. Therefore, benfotiamine may

  5. Anal sphincter responses after perianal electrical stimulation

    DEFF Research Database (Denmark)

    Pedersen, Ejnar; Klemar, B; Schrøder, H D

    1982-01-01

    By perianal electrical stimulation and EMG recording from the external anal sphincter three responses were found with latencies of 2-8, 13-18 and 30-60 ms, respectively. The two first responses were recorded in most cases. They were characterised by constant latency and uniform pattern, were...... not fatigued by repeated stimulation, were most dependent on placement of stimulating and recording electrodes, and always had a higher threshold than the third response. The third response was constantly present in normal subjects. It had the longest EMG response and the latency decreased with increasing...... stimulation to a minimum of 30-60 ms. This response represented the clinical observable spinal reflex, "the classical anal reflex". The latencies of the two first responses were so short that they probably do not represent spinal reflexes. This was further supported by the effect of epidural anaesthesia which...

  6. Stimulation Technologies for Deep Well Completions

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-09-30

    The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a study to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. An assessment of historical deep gas well drilling activity and forecast of future trends was completed during the first six months of the project; this segment of the project was covered in Technical Project Report No. 1. The second progress report covers the next six months of the project during which efforts were primarily split between summarizing rock mechanics and fracture growth in deep reservoirs and contacting operators about case studies of deep gas well stimulation.

  7. TSH (Thyroid-stimulating hormone) test

    Science.gov (United States)

    ... K. Brunner & Suddarth's Handbook of Laboratory and Diagnostic Tests. 2 nd Ed, Kindle. Philadelphia: Wolters Kluwer Health, Lippincott Williams & Wilkins; c2014. Thyroid-Stimulating Hormone, Serum; p. 484. ...

  8. On elementary act of stimulated emission

    International Nuclear Information System (INIS)

    Buzek, V.; Grigorijev, V.I.

    1984-11-01

    A microscopical description of stimulated emission in the framework of the modified Lee model is given. Besides this, the exact solutions in all sectors (n photons + atom) are obtained in the proposed model. (author)

  9. Neural adaptations to electrical stimulation strength training

    NARCIS (Netherlands)

    Hortobagyi, Tibor; Maffiuletti, Nicola A.

    2011-01-01

    This review provides evidence for the hypothesis that electrostimulation strength training (EST) increases the force of a maximal voluntary contraction (MVC) through neural adaptations in healthy skeletal muscle. Although electrical stimulation and voluntary effort activate muscle differently, there

  10. Aromatase inhibitors in stimulated IVF cycles

    DEFF Research Database (Denmark)

    Papanikolaou, Evangelos G; Polyzos, Nikolaos P; Al Humaidan, Peter Samir Heskjær

    2011-01-01

    are available regarding their efficacy in IVF stimulated cycles. Current available evidence support that letrozole may have a promising role in stimulated IVF cycles, either when administered during the follicular phase for ovarian stimulation. Especially for women with poor ovarian response, letrozole appears...... to have the potential to increase clinical pregnancy rates when combined with gonadotropins, whereas at the same time reduces the total gonadotropin dose required for ovarian stimulation. However, given that in all of the trials letrozole has been administered in GnRH antagonist cycles, it is intriguing...... to test in the future how it may perform when used in GnRH agonist cycles. Finally administration of letrozole during luteal phase in IVF cycles offers another treatment modality for patients at high risk for OHSS taking into account that it drastically reduces estradiol levels....

  11. [Functional electric stimulation (FES) in cerebral palsy].

    Science.gov (United States)

    Miyazaki, M H; Lourenção, M I; Ribeiro Sobrinho, J B; Battistella, L R

    1992-01-01

    Our study concerns a patient with cerebral palsy, submitted to conventional occupational therapy and functional electrical stimulation. The results as to manual ability, spasticity, sensibility and synkinesis were satisfactory.

  12. Thermally stimulated exoelectron emission from solid Xe

    International Nuclear Information System (INIS)

    Khyzhniy, I.V.; Grigorashchenko, O.N.; Savchenko, E.V.; Ponomarev, A.N.; Bondybey, V.E.

    2007-01-01

    Thermally-stimulated emission of exoelectrons and photons from solid Xe pre-irradiated by low-energy electrons were studied. A high sensitivity of thermally-stimulated luminescence (TSL) and thermally-stimulated exoelectron emission (TSEE) to sample prehistory was demonstrated. It was shown that electron traps in unannealed samples are characterized by much broader distribution of trap levels in comparison with annealed samples and their concentration exceeds in number that in annealed samples. Both phenomena, TSL and TSEE, were found to be triggered by release of electrons from the same kind of traps. The data obtained suggest a competition between two relaxation channels: charge recombination and electron transport terminated by TSL and TSEE. It was found that TSEE predominates at low temperatures while at higher temperatures TSL prevails. An additional relaxation channel, a photon-stimulated exoelectron emission pre-irradiated solid Xe, was revealed

  13. Stimulated Raman scattering: old physics, new applications.

    Science.gov (United States)

    Yakovlev, Vladislav V; Petrov, Georgi I; Zhang, Hao F; Noojin, Gary D; Denton, Michael L; Thomas, Robert J; Scully, Marlan O

    2009-10-01

    Stimulated Raman scattering as a promising way of expanding the tunability of ultrafast lasers and as an exciting new biomedical imaging modality capable of selective excitation and chemically-specific diagnostics of molecular species.

  14. Transcranial alternating current stimulation (tACS

    Directory of Open Access Journals (Sweden)

    Andrea eAntal

    2013-06-01

    Full Text Available Transcranial alternating current stimulation (tACS seems likely to open a new era of the field of noninvasive electrical stimulation of the human brain by directly interfering with cortical rhythms. It is expected to synchronize (by one single resonance frequency or desynchronize (e.g. by the application of several frequencies cortical oscillations. If applied long enough it may cause neuroplastic effects. In the theta range it may improve cognition when applied in phase. Alpha rhythms could improve motor performance, whereas beta intrusion may deteriorate them. TACS with both alpha and beta frequencies has a high likelihood to induce retinal phosphenes. Gamma intrusion can possibly interfere with attention. Stimulation in the ripple range induces intensity dependent inhibition or excitation in the motor cortex most likely by entrainment of neuronal networks, whereas stimulation in the low kHz range induces excitation by neuronal membrane interference. TACS in the 200 kHz range may have a potential in oncology.

  15. Growth hormone stimulation test - series (image)

    Science.gov (United States)

    The growth hormone (GH) is a protein hormone released from the anterior pituitary gland under the control of the hypothalamus. In children, GH has growth-promoting effects on the body. It stimulates the ...

  16. 21 CFR 874.1800 - Air or water caloric stimulator.

    Science.gov (United States)

    2010-04-01

    ... vestibular function testing of a patient's body balance system. The vestibular stimulation of the... stimulator. (a) Identification. An air or water caloric stimulator is a device that delivers a stream of air...

  17. Comparing the force ripple during asynchronous and conventional stimulation.

    Science.gov (United States)

    Downey, Ryan J; Tate, Mark; Kawai, Hiroyuki; Dixon, Warren E

    2014-10-01

    Asynchronous stimulation has been shown to reduce fatigue during electrical stimulation; however, it may also exhibit a force ripple. We quantified the ripple during asynchronous and conventional single-channel transcutaneous stimulation across a range of stimulation frequencies. The ripple was measured during 5 asynchronous stimulation protocols, 2 conventional stimulation protocols, and 3 volitional contractions in 12 healthy individuals. Conventional 40 Hz and asynchronous 16 Hz stimulation were found to induce contractions that were as smooth as volitional contractions. Asynchronous 8, 10, and 12 Hz stimulation induced contractions with significant ripple. Lower stimulation frequencies can reduce fatigue; however, they may also lead to increased ripple. Future efforts should study the relationship between force ripple and the smoothness of the evoked movements in addition to the relationship between stimulation frequency and NMES-induced fatigue to elucidate an optimal stimulation frequency for asynchronous stimulation. © 2014 Wiley Periodicals, Inc.

  18. Survey of Stimulant Use in U.S. Air Force Special Tactics Operators

    Science.gov (United States)

    2013-03-26

    NUMBER(s) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release ; distribution is unlimited. 13. SUPPLEMENTARY NOTES The views...Frequency of Energy Drink/ Workout Supplements and Caffeine Consumption ............. 8 Table 3. Effects of Energy Drink and Caffeine Consumption on...less honest may have been lower for the stimulant survey than for the more sensitive questions (e.g., questions about Post-Traumatic Stress Disorder

  19. Oxidative stress induced pulmonary endothelial cell proliferation is ...

    African Journals Online (AJOL)

    Cellular hyper-proliferation, endothelial dysfunction and oxidative stress are hallmarks of the pathobiology of pulmonary hypertension. Indeed, pulmonary endothelial cells proliferation is susceptible to redox state modulation. Some studies suggest that superoxide stimulates endothelial cell proliferation while others have ...

  20. Modulation of the immune response by emotional stress

    NARCIS (Netherlands)

    Croiset, G; Heijnen, C J; Veldhuis, H D; de Wied, D; Ballieux, R E

    1987-01-01

    The influence of mild, emotional stress was investigated for its effect on the immune system by subjecting rats to the one-trial-learning passive avoidance test. The reactivity of the immune system was tested by determining the proliferative response after mitogenic stimulation in vitro as well as

  1. Stress and Health

    DEFF Research Database (Denmark)

    Rod, Naja Hulvej

    2014-01-01

    Background Stress is an important public health issue. One in ten Danish adults experience high levels of stress in their daily lives and stress is one of the main occupational health problems in Europe. The link between stress and health is still debated in the scientific literature...... and the pathways underlying these potential health effects are far from elucidated. The dissertation contributions to the literature on stress and health by empirically testing the relationship between stress and major chronic disorders and by providing new evidence on the underlying physiological, psychological...... and behavioral mechanisms. Stress is a complex concept and in order to better understand the relation between stress and health, the dissertation works with a clear distinction between the health consequences of different types of stress including external stressors, perceived stress, and measures of the stress...

  2. Use of basal stimulation at anesthesiology department

    OpenAIRE

    MARKOVÁ, Alena

    2012-01-01

    The theme ?The Use of Basal Stimulation at the Anaesthesiology and Resuscitation Department? was chosen in order to map out the use of this nursing method by the nurses and the staff who I cooperate with. The theoretical part deals with the environment at the Anaesthesiology and Resuscitation Department where the basal stimulation is used and also with special characteristics of the nursing care. Further, it deals with monitoring patients, causes of consciousness defects occurrence and kinds ...

  3. Closing the loop of deep brain stimulation.

    Science.gov (United States)

    Carron, Romain; Chaillet, Antoine; Filipchuk, Anton; Pasillas-Lépine, William; Hammond, Constance

    2013-12-20

    High-frequency deep brain stimulation is used to treat a wide range of brain disorders, like Parkinson's disease. The stimulated networks usually share common electrophysiological signatures, including hyperactivity and/or dysrhythmia. From a clinical perspective, HFS is expected to alleviate clinical signs without generating adverse effects. Here, we consider whether the classical open-loop HFS fulfills these criteria and outline current experimental or theoretical research on the different types of closed-loop DBS that could provide better clinical outcomes. In the first part of the review, the two routes followed by HFS-evoked axonal spikes are explored. In one direction, orthodromic spikes functionally de-afferent the stimulated nucleus from its downstream target networks. In the opposite direction, antidromic spikes prevent this nucleus from being influenced by its afferent networks. As a result, the pathological synchronized activity no longer propagates from the cortical networks to the stimulated nucleus. The overall result can be described as a reversible functional de-afferentation of the stimulated nucleus from its upstream and downstream nuclei. In the second part of the review, the latest advances in closed-loop DBS are considered. Some of the proposed approaches are based on mathematical models, which emphasize different aspects of the parkinsonian basal ganglia: excessive synchronization, abnormal firing-rate rhythms, and a deficient thalamo-cortical relay. The stimulation strategies are classified depending on the control-theory techniques on which they are based: adaptive and on-demand stimulation schemes, delayed and multi-site approaches, stimulations based on proportional and/or derivative control actions, optimal control strategies. Some of these strategies have been validated experimentally, but there is still a large reservoir of theoretical work that may point to ways of improving practical treatment.

  4. Closing the loop of deep brain stimulation

    Directory of Open Access Journals (Sweden)

    Romain eCARRON

    2013-12-01

    Full Text Available High-frequency deep brain stimulation is used to treat a wide range of brain disorders, like Parkinson's disease. The stimulated networks usually share common electrophysiological signatures, including hyperactivity and/or dysrhythmia. From a clinical perspective, HFS is expected to alleviate clinical signs without generating adverse effects. Here, we consider whether the classical open-loop HFS fulfils these criteria and outline current experimental or theoretical research on the different types of closed-loop DBS that could provide better clinical outcomes. In the first part of the review, the two routes followed by HFS-evoked axonal spikes are explored. In one direction, orthodromic spikes functionally de-afferent the stimulated nucleus from its downstream target networks. In the opposite direction, antidromic spikes prevent this nucleus from being influenced by its afferent networks. As a result, the pathological synchronized activity no longer propagates from the cortical networks to the stimulated nucleus. The overall result can be described as a reversible functional de-afferentation of the stimulated nucleus from its upstream and downstream nuclei. In the second part of the review, the latest advances in closed-loop DBS are considered. Some of the proposed approaches are based on mathematical models, which emphasize different aspects of the parkinsonian basal ganglia: excessive synchronization, abnormal firing-rate rhythms, and a deficient thalamo-cortical relay. The stimulation strategies are classified depending on the control-theory techniques on which they are based: adaptive and on-demand stimulation schemes, delayed and multi-site approaches, stimulations based on proportional and/or derivative control actions, optimal control strategies. Some of these strategies have been validated experimentally, but there is still a large reservoir of theoretical work that may point to ways of improving practical treatment.

  5. Closing the loop of deep brain stimulation

    Science.gov (United States)

    Carron, Romain; Chaillet, Antoine; Filipchuk, Anton; Pasillas-Lépine, William; Hammond, Constance

    2013-01-01

    High-frequency deep brain stimulation is used to treat a wide range of brain disorders, like Parkinson's disease. The stimulated networks usually share common electrophysiological signatures, including hyperactivity and/or dysrhythmia. From a clinical perspective, HFS is expected to alleviate clinical signs without generating adverse effects. Here, we consider whether the classical open-loop HFS fulfills these criteria and outline current experimental or theoretical research on the different types of closed-loop DBS that could provide better clinical outcomes. In the first part of the review, the two routes followed by HFS-evoked axonal spikes are explored. In one direction, orthodromic spikes functionally de-afferent the stimulated nucleus from its downstream target networks. In the opposite direction, antidromic spikes prevent this nucleus from being influenced by its afferent networks. As a result, the pathological synchronized activity no longer propagates from the cortical networks to the stimulated nucleus. The overall result can be described as a reversible functional de-afferentation of the stimulated nucleus from its upstream and downstream nuclei. In the second part of the review, the latest advances in closed-loop DBS are considered. Some of the proposed approaches are based on mathematical models, which emphasize different aspects of the parkinsonian basal ganglia: excessive synchronization, abnormal firing-rate rhythms, and a deficient thalamo-cortical relay. The stimulation strategies are classified depending on the control-theory techniques on which they are based: adaptive and on-demand stimulation schemes, delayed and multi-site approaches, stimulations based on proportional and/or derivative control actions, optimal control strategies. Some of these strategies have been validated experimentally, but there is still a large reservoir of theoretical work that may point to ways of improving practical treatment. PMID:24391555

  6. Stimulants for the Control of Hedonic Appetite

    OpenAIRE

    Poulton, Alison S.; Hibbert, Emily J.; Champion, Bernard L.; Nanan, Ralph K. H.

    2016-01-01

    The focus of this paper is treatment of obesity in relation to the management of hedonic appetite. Obesity is a complex condition which may be potentiated by excessive reward seeking in combination with executive functioning deficits that impair cognitive control of behaviour. Stimulant medications address both reward deficiency and enhance motivation, as well as suppressing appetite. They have long been recognised to be effective for treating obesity. However, stimulants can be abused for th...

  7. Transcranial magnetic stimulation and the human brain

    Science.gov (United States)

    Hallett, Mark

    2000-07-01

    Transcranial magnetic stimulation (TMS) is rapidly developing as a powerful, non-invasive tool for studying the human brain. A pulsed magnetic field creates current flow in the brain and can temporarily excite or inhibit specific areas. TMS of motor cortex can produce a muscle twitch or block movement; TMS of occipital cortex can produce visual phosphenes or scotomas. TMS can also alter the functioning of the brain beyond the time of stimulation, offering potential for therapy.

  8. Brain stimulation methods to treat tobacco addiction.

    Science.gov (United States)

    Wing, Victoria C; Barr, Mera S; Wass, Caroline E; Lipsman, Nir; Lozano, Andres M; Daskalakis, Zafiris J; George, Tony P

    2013-05-01

    Tobacco smoking is the leading cause of preventable deaths worldwide, but many smokers are simply unable to quit. Psychosocial and pharmaceutical treatments have shown modest results on smoking cessation rates, but there is an urgent need to develop treatments with greater efficacy. Brain stimulation methods are gaining increasing interest as possible addiction therapeutics. The purpose of this paper is to review the studies that have evaluated brain stimulation techniques on tobacco addiction, and discuss future directions for research in this novel area of addiction interventions. Electronic and manual literature searches identified fifteen studies that administered repetitive transcranial magnetic stimulation (rTMS), cranial electrostimulation (CES), transcranial direct current stimulation (tDCS) or deep brain stimulation (DBS). rTMS was found to be the most well studied method with respect to tobacco addiction. Results indicate that rTMS and tDCS targeted to the dorsolateral prefrontal cortex (DLPFC) were the most efficacious in reducing tobacco cravings, an effect that may be mediated through the brain reward system involved in tobacco addiction. While rTMS was shown to reduce consumption of cigarettes, as yet no brain stimulation technique has been shown to significantly increase abstinence rates. It is possible that the therapeutic effects of rTMS and tDCS may be improved by optimization of stimulation parameters and increasing the duration of treatment. Although further studies are needed to confirm the ability of brain stimulation methods to treat tobacco addiction, this review indicates that rTMS and tDCS both represent potentially novel treatment modalities. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Transgenerational stress memory is not a general response in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ales Pecinka

    Full Text Available Adverse conditions can trigger DNA damage as well as DNA repair responses in plants. A variety of stress factors are known to stimulate homologous recombination, the most accurate repair pathway, by increasing the concentration of necessary enzymatic components and the frequency of events. This effect has been reported to last into subsequent generations not exposed to the stress. To establish a basis for a genetic analysis of this transgenerational stress memory, a broad range of treatments was tested for quantitative effects on homologous recombination in the progeny. Several Arabidopsis lines, transgenic for well-established recombination traps, were exposed to 10 different physical and chemical stress treatments, and scored for the number of somatic homologous recombination (SHR events in the treated generation as well as in the two subsequent generations that were not treated. These numbers were related to the expression level of genes involved in homologous recombination and repair. SHR was enhanced after the majority of treatments, confirming previous data and adding new effective stress types, especially interference with chromatin. Compounds that directly modify DNA stimulated SHR to values exceeding previously described induction rates, concomitant with an induction of genes involved in SHR. In spite of the significant stimulation in the stressed generations, the two subsequent non-treated generations only showed a low and stochastic increase in SHR that did not correlate with the degree of stimulation in the parental plants. Transcripts coding for SHR enzymes generally returned to pre-treatment levels in the progeny. Thus, transgenerational effects on SHR frequency are not a general response to abiotic stress in Arabidopsis and may require special conditions.

  10. The effect of academic stress and attachment stress on stress-eaters and stress-undereaters.

    Science.gov (United States)

    Emond, Michael; Ten Eycke, Kayla; Kosmerly, Stacey; Robinson, Adele Lafrance; Stillar, Amanda; Van Blyderveen, Sherry

    2016-05-01

    It is well established that stress is related to changes in eating patterns. Some individuals are more likely to increase their overall food intake under conditions of stress, whereas others are more likely to consume less food when stressed. Attachment style has been linked to disordered eating and eating disorders; however, comparisons of eating behaviors under attachment versus other types of stress have yet to be explored. The present laboratory study examined the eating patterns in self-identified stress-undereaters and stress-eaters under various types of stress. More specifically, the study examined the effects of academic and attachment stress on calorie, carbohydrate and sugar consumption within these two groups. Under the guise of critiquing student films, university students viewed either one of two stress-inducing videos (academic stress or attachment stress, both designed to be emotionally arousing) or a control video (designed to be emotionally neutral), and their food intake was recorded. Results demonstrated that the video manipulations were effective in inducing stress. Differential patterns of eating were noted based on group and stress condition. Specifically, stress-undereaters ate fewer calories, carbohydrates and sugars than stress-eaters in the academic stress condition, but not in the attachment stress or control condition. Findings suggest that specific types of stressors may influence eating behaviors differently. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Oxidative stress may cause metastatic disease in patients with colorectal cancer

    DEFF Research Database (Denmark)

    Søndergaard, Edith Smed; Gögenur, Ismail

    2014-01-01

    Despite surgical treatment of stage II colorectal cancer many patients will experience relapse. Inflammatory and immunologic reactions created due to the surgical stress response result in the production of reactive oxygen species. Oxidative stress in turn, may result in the stimulation of cancer...

  12. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells

    OpenAIRE

    Kim, Ji-Seok; Kim, Boa; Lee, Hojun; Thakkar, Sunny; Babbitt, Dianne M.; Eguchi, Satoru; Brown, Michael D.; Park, Joon-Young

    2015-01-01

    This study assesses effects of aerobic exercise training on the release of microparticles from endothelial cells and corroborates these findings using an in vitro experimental exercise stimulant, laminar shear stress. Furthermore, this study demonstrated that shear stress-induced mitochondrial biogenesis mediates these effects against endothelial cell activation and injury.

  13. Organizational stress management interventions: Is it the singer not the song? [Editorial

    NARCIS (Netherlands)

    Kompier, M.A.J.; Aust, B.

    2016-01-01

    Good reasons exist for combating stress at work. It is a burden for individual employees and their families and costly to companies and society. Moreover preventing stress at work is a sign of good corporate citizenship as it respects modern legislation that stimulates the provision of a good

  14. Mild electrical stimulation with heat stimulation increase heat shock protein 70 in articular chondrocyte.

    Science.gov (United States)

    Hiraoka, Nobuyuki; Arai, Yuji; Takahashi, Kenji A; Mazda, Osam; Kishida, Tsunao; Honjo, Kuniaki; Tsuchida, Shinji; Inoue, Hiroaki; Morino, Saori; Suico, Mary Ann; Kai, Hirofumi; Kubo, Toshikazu

    2013-06-01

    The objective of this study is to investigate the effects of mild electrical stimulation (MES) and heat stress (HS) on heat shock protein 70 (HSP70), that protects chondrocytes and enhances cartilage matrix metabolism, in chondrocyte and articular cartilage. Rabbit articular chondrocytes were treated with MES and/or HS. The safeness was assessed by LDH assay and morphology. HSP70 protein, ubiquitinated proteins and HSP70 mRNA were examined by Western blotting and real-time PCR. Rat knee joints were treated with MES and/or HS. HSP70 protein, ubiquitinated proteins, HSP70 mRNA and proteoglycan core protein (PG) mRNA in articular cartilage were investigated. In vitro, HS increased HSP70 mRNA and HSP70 protein. MES augmented ubiquitinated protein and HSP70 protein, but not HSP70 mRNA. MES + HS raised HSP70 mRNA and ubiquitinated protein, and significantly increased HSP70 protein. In vivo, HS and MES + HS treatment augmented HSP70 mRNA. HS modestly augmented HSP70 protein. MES + HS significantly increased HSP70 protein and ubiquitinated proteins. PG mRNA was markedly raised by MES + HS. This study demonstrated that MES, in combination with HS, increases HSP70 protein in chondrocytes and articular cartilage, and promotes cartilage matrix metabolism in articular cartilage. MES in combination with HS can be a novel physical therapy for osteoarthritis by inducing HSP70 in articular cartilage. Copyright © 2013 Orthopaedic Research Society.

  15. The Combined Use of Hypnosis and Sensory and Motor Stimulation in Assisting Children with Developmental Learning Problems.

    Science.gov (United States)

    Jampolsky, Gerald G.

    Hypnosis was combined with sensory and motor stimulation to remediate reversal problems in five children (6 1/2- 9-years-old). Under hypnosis Ss were given the suggestion that they learn their numbers through feel and then given 1 hour of structured instruction daily for 10 days. Instruction stressed conditioning, vibratory memory, touch memory,…

  16. Progranulin causes adipose insulin resistance via increased autophagy resulting from activated oxidative stress and endoplasmic reticulum stress.

    Science.gov (United States)

    Guo, Qinyue; Xu, Lin; Li, Huixia; Sun, Hongzhi; Liu, Jiali; Wu, Shufang; Zhou, Bo

    2017-01-31

    Progranulin (PGRN) has recently emerged as an important regulator for insulin resistance. However, the direct effect of progranulin in adipose insulin resistance associated with the autophagy mechanism is not fully understood. In the present study, progranulin was administered to 3T3-L1 adipocytes and C57BL/6 J mice with/without specific inhibitors of oxidative stress and endoplasmic reticulum stress, and metabolic parameters, oxidative stress, endoplasmic reticulum stress and autophagy markers were assessed. Progranulin treatment increased iNOS expression, NO synthesis and ROS generation, and elevated protein expressions of CHOP, GRP78 and the phosphorylation of PERK, and caused a significant increase in Atg7 and LC3-II protein expression and a decreased p62 expression, and decreased insulin-stimulated tyrosine phosphorylation of IRS-1 and glucose uptake, demonstrating that progranulin activated oxidative stress and ER stress, elevated autophagy and induced insulin insensitivity in adipocytes and adipose tissue of mice. Interestingly, inhibition of iNOS and ER stress both reversed progranulin-induced stress response and increased autophagy, protecting against insulin resistance in adipocytes. Furthermore, the administration of the ER stress inhibitor 4-phenyl butyric acid reversed the negative effect of progranulin in vivo. Our findings showed the clinical potential of the novel adipokine progranulin in the regulation of insulin resistance, suggesting that progranulin might mediate adipose insulin resistance, at least in part, by inducing autophagy via activated oxidative stress and ER stress.

  17. Dysregulated stress signal sensitivity and inflammatory disinhibition as a pathophysiological mechanism of stress-related chronic fatigue.

    Science.gov (United States)

    Strahler, Jana; Skoluda, Nadine; Rohleder, Nicolas; Nater, Urs M

    2016-09-01

    Chronic stress and its subsequent effects on biological stress systems have long been recognized as predisposing and perpetuating factors in chronic fatigue, although the exact mechanisms are far from being completely understood. In this review, we propose that sensitivity of immune cells to glucocorticoids (GCs) and catecholamines (CATs) may be the missing link in elucidating how stress turns into chronic fatigue. We searched for in vitro studies investigating the impact of GCs or CATs on mitogen-stimulated immune cells in chronically stressed or fatigued populations, with 34 original studies fulfilling our inclusion criteria. Besides mixed cross-sectional findings for stress- and fatigue-related changes of GC sensitivity under basal conditions or acute stress, longitudinal studies indicate a decrease with ongoing stress. Research on CATs is still scarce, but initial findings point towards a reduction of CAT sensitivity under chronic stress. In the long run, resistance of immune cells to stress signals under conditions of chronic stress might translate into self-maintaining inflammation and inflammatory disinhibition under acute stress, which in turn lead to fatigue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Questiomycin A stimulates sorafenib-induced cell death via suppression of glucose-regulated protein 78.

    Science.gov (United States)

    Machihara, Kayo; Tanaka, Hidenori; Hayashi, Yoshihiro; Murakami, Ichiro; Namba, Takushi

    2017-10-07

    Hepatocellular carcinoma (HCC) is one of the most difficult cancers to treat owing to the lack of effective chemotherapeutic methods. Sorafenib, the first-line and only available treatment for HCC, extends patient overall survival by several months, with a response rate below 10%. Thus, the identification of an agent that enhances the anticancer effect of sorafenib is critical for the development of therapeutic options for HCC. Endoplasmic reticulum (ER) stress response is one of the methods of sorafenib-induced cell death. Here we report that questiomycin A suppresses expression of GRP78, a cell-protective ER chaperone protein. Analysis of the molecular mechanisms of questiomycin A revealed that this compound stimulated GRP78 protein degradation in an ER stress response-independent manner. Cotreatment with sorafenib and questiomycin A suppressed GRP78 protein expression, which is essential for the stimulation of sorafenib-induced cell death. Moreover, our in vivo study demonstrated that the coadministration of sorafenib and questiomycin A suppressed tumor formation in HCC-induced xenograft models. These results suggest that cotreatment with sorafenib and questiomycin A is a novel therapeutic strategy for HCC by enhancing sorafenib-dependent ER stress-induced cell death, and downregulation of GRP78 is a new target for the stimulation of the therapeutic effects of sorafenib in HCC. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Some Motivational Properties of Sensory Stimulation in Psychotic Children

    Science.gov (United States)

    Rincover, Arnold; And Others

    1977-01-01

    This experiment assessed the reinforcing properties of sensory stimulation for autistic children using three different types of sensory stimulation: music, visual flickering, and visual movement. (SB)

  20. Can the human lumbar posterior columns be stimulated by transcutaneous spinal cord stimulation? A modeling study

    OpenAIRE

    Danner, Simon M.; Hofstoetter, Ursula S.; Ladenbauer, Josef; Rattay, Frank; Minassian, Karen

    2011-01-01

    Stimulation of different spinal cord segments in humans is a widely developed clinical practice for modification of pain, altered sensation and movement. The human lumbar cord has become a target for modification of motor control by epidural and more recently by transcutaneous spinal cord stimulation. Posterior columns of the lumbar spinal cord represent a vertical system of axons and when activated can add other inputs to the motor control of the spinal cord than stimulated posterior roots. ...

  1. The Codacs™ direct acoustic cochlear implant actuator: exploring alternative stimulation sites and their stimulation efficiency.

    Science.gov (United States)

    Grossöhmichen, Martin; Salcher, Rolf; Kreipe, Hans-Heinrich; Lenarz, Thomas; Maier, Hannes

    2015-01-01

    This work assesses the efficiency of the Codacs system actuator (Cochlear Ltd., Sydney Australia) in different inner ear stimulation modalities. Originally the actuator was intended for direct perilymph stimulation after stapedotomy using a piston prosthesis. A possible alternative application is the stimulation of middle ear structures or the round window (RW). Here the perilymph stimulation with a K-piston through a stapes footplate (SFP) fenestration (N = 10) as well as stimulation of the stapes head (SH) with a Bell prosthesis (N = 9), SFP stimulation with an Omega/Aerial prosthesis (N = 8) and reverse RW stimulation (N = 10) were performed in cadaveric human temporal bones (TBs). Codacs actuator output is expressed as equivalent sound pressure level (eq. SPL) using RW and SFP displacement responses, measured by Laser Doppler velocimetry as reference. The axial actuator coupling force in stimulation of stapes and RW was adjusted to ~5 mN. The Bell prosthesis and Omega/Aerial prosthesis stimulation generated similar mean eq. SPLs (Bell: 127.5-141.8 eq. dB SPL; Omega/Aerial: 123.6-143.9 eq. dB SPL), being significantly more efficient than K-piston perilymph stimulation (108.6-131.6 eq. dB SPL) and RW stimulation (108.3-128.2 eq. dB SPL). Our results demonstrate that SH, SFP and RW are adequate alternative stimulation sites for the Codacs actuator using coupling prostheses and an axial coupling force of ~5 mN. Based on the eq. SPLs, all investigated methods were adequate for in vivo hearing aid applications, provided that experimental conditions including constant coupling force will be implemented.

  2. The Codacs™ direct acoustic cochlear implant actuator: exploring alternative stimulation sites and their stimulation efficiency.

    Directory of Open Access Journals (Sweden)

    Martin Grossöhmichen

    Full Text Available This work assesses the efficiency of the Codacs system actuator (Cochlear Ltd., Sydney Australia in different inner ear stimulation modalities. Originally the actuator was intended for direct perilymph stimulation after stapedotomy using a piston prosthesis. A possible alternative application is the stimulation of middle ear structures or the round window (RW. Here the perilymph stimulation with a K-piston through a stapes footplate (SFP fenestration (N = 10 as well as stimulation of the stapes head (SH with a Bell prosthesis (N = 9, SFP stimulation with an Omega/Aerial prosthesis (N = 8 and reverse RW stimulation (N = 10 were performed in cadaveric human temporal bones (TBs. Codacs actuator output is expressed as equivalent sound pressure level (eq. SPL using RW and SFP displacement responses, measured by Laser Doppler velocimetry as reference. The axial actuator coupling force in stimulation of stapes and RW was adjusted to ~5 mN. The Bell prosthesis and Omega/Aerial prosthesis stimulation generated similar mean eq. SPLs (Bell: 127.5-141.8 eq. dB SPL; Omega/Aerial: 123.6-143.9 eq. dB SPL, being significantly more efficient than K-piston perilymph stimulation (108.6-131.6 eq. dB SPL and RW stimulation (108.3-128.2 eq. dB SPL. Our results demonstrate that SH, SFP and RW are adequate alternative stimulation sites for the Codacs actuator using coupling prostheses and an axial coupling force of ~5 mN. Based on the eq. SPLs, all investigated methods were adequate for in vivo hearing aid applications, provided that experimental conditions including constant coupling force will be implemented.

  3. The seismo-hydromechanical behavior during deep geothermal reservoir stimulations: open questions tackled in a decameter-scale in situ stimulation experiment

    Science.gov (United States)

    Amann, Florian; Gischig, Valentin; Evans, Keith; Doetsch, Joseph; Jalali, Reza; Valley, Benoît; Krietsch, Hannes; Dutler, Nathan; Villiger, Linus; Brixel, Bernard; Klepikova, Maria; Kittilä, Anniina; Madonna, Claudio; Wiemer, Stefan; Saar, Martin O.; Loew, Simon; Driesner, Thomas; Maurer, Hansruedi; Giardini, Domenico

    2018-02-01

    In this contribution, we present a review of scientific research results that address seismo-hydromechanically coupled processes relevant for the development of a sustainable heat exchanger in low-permeability crystalline rock and introduce the design of the In situ Stimulation and Circulation (ISC) experiment at the Grimsel Test Site dedicated to studying such processes under controlled conditions. The review shows that research on reservoir stimulation for deep geothermal energy exploitation has been largely based on laboratory observations, large-scale projects and numerical models. Observations of full-scale reservoir stimulations have yielded important results. However, the limited access to the reservoir and limitations in the control on the experimental conditions during deep reservoir stimulations is insufficient to resolve the details of the hydromechanical processes that would enhance process understanding in a way that aids future stimulation design. Small-scale laboratory experiments provide fundamental insights into various processes relevant for enhanced geothermal energy, but suffer from (1) difficulties and uncertainties in upscaling the results to the field scale and (2) relatively homogeneous material and stress conditions that lead to an oversimplistic fracture flow and/or hydraulic fracture propagation behavior that is not representative of a heterogeneous reservoir. Thus, there is a need for intermediate-scale hydraulic stimulation experiments with high experimental control that bridge the various scales and for which access to the target rock mass with a comprehensive monitoring system is possible. The ISC experiment is designed to address open research questions in a naturally fractured and faulted crystalline rock mass at the Grimsel Test Site (Switzerland). Two hydraulic injection phases were executed to enhance the permeability of the rock mass. During the injection phases the rock mass deformation across fractures and within intact rock

  4. Cadmium stimulates myofibroblast differentiation and mouse lung fibrosis

    International Nuclear Information System (INIS)

    Hu, Xin; Fernandes, Jolyn; Jones, Dean P.; Go, Young-Mi

    2017-01-01

    Highlights: • Low-dose Cd stimulates differentiation of human lung fibroblast to myofibroblast. • Cd-stimulated fibrosis signaling involves activation of SMAD transcription factor. • Low-dose Cd intake in mice activates myofibroblast differentiation. - Abstract: Increasing evidence suggests that Cd at levels found in the human diet can cause oxidative stress and activate redox-sensitive transcription factors in inflammatory signaling. Following inflammation, tissue repair often involves activation of redox-sensitive transcription factors in fibroblasts. In lungs, epithelial barrier remodeling is required to restore gas exchange and barrier function, and aberrant myofibroblast differentiation leads to pulmonary fibrosis. Contributions of exogenous exposures, such as dietary Cd, to pulmonary fibrosis remain inCompletely defined. In the current study, we tested whether Cd activates fibrotic signaling in human fetal lung fibroblasts (HFLF) at micromolar and submicromolar Cd concentrations that do not cause cell death. Exposure of HFLF to low-dose Cd (≤1.0 μM) caused an increase in stress fibers and increased protein levels of myofibroblast differentiation markers, including α-smooth muscle actin (α-SMA) and extra-domain-A-containing fibronectin (ED-A-FN). Assay of transcription factor (TF) activity using a 45-TF array showed that Cd increased activity of 12 TF, including SMAD2/3/4 (mothers against decapentaplegic homolog) signaling differentiation and fibrosis. Results were confirmed by real-time PCR and supported by increased expression of target genes of SMAD2/3/4. Immunocytochemistry of lungs of mice exposed to low-dose Cd (0.3 and 1.0 mg/L in drinking water) showed increased α-SMA protein level with lung Cd accumulation similar to lung Cd in non-smoking humans. Together, the results show that relatively low Cd exposures stimulate pulmonary fibrotic signaling and myofibroblast differentiation by activating SMAD2/3/4-dependent signaling. The results

  5. Development of Femtosecond Stimulated Raman Spectroscopy: Stimulated Raman Gain via Elimination of Cross Phase Modulation

    International Nuclear Information System (INIS)

    Jin, Seung Min; Lee, Young Jong; Yu, Jong Wan; Kim, Seong Keun

    2004-01-01

    We have developed a new femtosecond probe technique by using stimulated Raman spectroscopy. The cross phase modulation in femtosecond time scale associated with off-resonant interaction was shown to be eliminated by integrating the transient gain/loss signal over the time delay between the Raman pump pulse and the continuum pulse. The stimulated Raman gain of neat cyclohexane was obtained to demonstrate the feasibility of the technique. Spectral and temporal widths of stimulated Raman spectra were controlled by using a narrow band pass filter. Femtosecond stimulated Raman spectroscopy was proposed as a highly useful probe in time-resolved vibrational spectroscopy

  6. Stimulating at the right time: phase-specific deep brain stimulation.

    Science.gov (United States)

    Cagnan, Hayriye; Pedrosa, David; Little, Simon; Pogosyan, Alek; Cheeran, Binith; Aziz, Tipu; Green, Alexander; Fitzgerald, James; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Friston, Karl J; Denison, Timothy; Brown, Peter

    2017-01-01

    SEE MOLL AND ENGEL DOI101093/AWW308 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Brain regions dynamically engage and disengage with one another to execute everyday actions from movement to decision making. Pathologies such as Parkinson's disease and tremor emerge when brain regions controlling movement cannot readily decouple, compromising motor function. Here, we propose a novel stimulation strategy that selectively regulates neural synchrony through phase-specific stimulation. We demonstrate for the first time the therapeutic potential of such a stimulation strategy for the treatment of patients with pathological tremor. Symptom suppression is achieved by delivering stimulation to the ventrolateral thalamus, timed according to the patient's tremor rhythm. Sustained locking of deep brain stimulation to a particular phase of tremor afforded clinically significant tremor relief (up to 87% tremor suppression) in selected patients with essential tremor despite delivering less than half the energy of conventional high frequency stimulation. Phase-specific stimulation efficacy depended on the resonant characteristics of the underlying tremor network. Selective regulation of neural synchrony through phase-locked stimulation has the potential to both increase the efficiency of therapy and to minimize stimulation-induced side effects. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  7. Stress og insomni

    DEFF Research Database (Denmark)

    Jennum, Poul; Zachariae, Bobby

    2012-01-01

    Insomnia and stress are two conditions, which are strongly associated and appear to be pathophysiologically integrated: the occurrence of stress increases the risk of insomnia, insomnia exacerbates stress, and coexistence of both factors has a negative influence on their prognosis. Stress...

  8. Assessment of brain activities during an emotional stress state using fMRI

    International Nuclear Information System (INIS)

    Hayashi, Takuto; Mizuno-Matsumoto, Yuko; Kawasaki, Aika; Kato, Makoto; Murata, Tsutomu

    2011-01-01

    We investigated cerebrum activation using functional magnetic resonance imaging during a mental stress state. Thirty-four healthy adults participated. Before the experiment, we assessed their stress states using the Stress Self-rating Scale and divided the participants into Stress and Non-stress groups. The experiment consisted of 6 trials. Each trial consisted of a 20-s block of emotional audio-visual stimuli (4-s stimulation x 5 slides) and a fixation point. These processes were performed 3 times continuously (Relaxed, Pleasant, Unpleasant stimuli) in a random order. These results showed that the Non-stress group indicated activation of the amygdala and hippocampus in the Pleasant and Unpleasant stimuli while the Stress group indicated activation of the hippocampus in Pleasant stimuli, and the amygdala and hippocampus in Unpleasant stimuli. These findings suggested that the mental stress state engages the reduction of emotional processing. Also, the responsiveness of the memory system remained during and after the emotional stress state. (author)

  9. Stimulation of protein synthesis by internalized insulin

    International Nuclear Information System (INIS)

    Miller, D.S.; Sykes, D.B.

    1991-01-01

    Previous studies showed that microinjected insulin stimulates transcription and translation in Stage 4 Xenopus oocytes by acting at nuclear and cytoplasmic sites. The present report is concerned with the question of whether hormone, internalized from an external medium, can act on those sites to alter cell function. Both intracellular accumulation of undegraded 125I-insulin and insulin-stimulated 35S-methionine incorporation into oocyte protein were measured. Anti-insulin antiserum and purified anti-insulin antibody were microinjected into the cytoplasm of insulin-exposed cells to determine if insulin derived from the medium acted through internal sites. In cells exposed for 2 h to 7 or 70 nM external insulin, methionine incorporation was stimulated, but intracellular hormone accumulation was minimal and microinjected antibody was without effect. In cells exposed for 24 h, methionine incorporation again increased, but now accumulation of undegraded, intracellular hormone was substantial (2.6 and 25.3 fmol with 7 and 70 nM, respectively), and microinjected anti-insulin antibody significantly reduced the insulin-stimulated component of incorporation; basal incorporation was not affected. For cells exposed to 70 nM insulin for 24 h, inhibition of the insulin-stimulated component was maximal at 39%. Thus under those conditions, about 40% of insulin's effects were mediated by the internal sites. Together, the data show that inhibition of insulin-stimulated protein synthesis by microinjected antibody was associated with the intracellular accumulation of insulin. They indicate that when oocytes are exposed to external insulin, hormone eventually gains access to intracellular sites of action and through these stimulates translation. Control of translation appears to be shared between the internal sites and the surface receptor

  10. Stress og aldring

    DEFF Research Database (Denmark)

    Jørgensen, Anders; Jørgensen, Martin Balslev; Poulsen, Henrik Enghusen

    2012-01-01

    Accumulating evidence supports the popular notion that psychological stress states may accelerate aging. Stress has been shown to influence cellular systems known to be involved in the aging process. Furthermore, stress is associated with an increased risk of various age-related medical disorders....... These effects are likely mediated by the secretion of stress hormones. In this short review we focus on biochemical and epidemiological evidence for a link between stress and aging....

  11. Relationship between hyposalivation and oxidative stress in aging mice.

    Science.gov (United States)

    Yamauchi, Yoshitaka; Matsuno, Tomonori; Omata, Kazuhiko; Satoh, Tazuko

    2017-07-01

    The increase in oxidative stress that accompanies aging has been implicated in the abnormal advance of aging and in the onset of various systemic diseases. However, the details of what effects the increase in oxidative stress that accompanies aging has on saliva secretion are not known. In this study, naturally aging mice were used to examine the stimulated whole saliva flow rate, saliva and serum oxidative stress, antioxidant level, submandibular gland H-E staining, and immunofluorescence staining to investigate the effect of aging on the volume of saliva secretion and the relationship with oxidative stress, as well as the effect of aging on the structure of salivary gland tissue. The stimulated whole saliva flow rate decreased significantly with age. Also, oxidative stress increased significantly with age. Antioxidant levels, however, decreased significantly with age. Structural changes of the submandibular gland accompanying aging included atrophy of parenchyma cells and fatty degeneration and fibrosis of stroma, and the submandibular gland weight ratio decreased. These results suggest that oxidative stress increases with age, not just systemically but also locally in the submandibular gland, and that oxidative stress causes changes in the structure of the salivary gland and is involved in hyposalivation.

  12. Self-soothing behaviors with particular reference to oxytocin release induced by non-noxious sensory stimulation.

    Science.gov (United States)

    Uvnäs-Moberg, Kerstin; Handlin, Linda; Petersson, Maria

    2014-01-01

    Oxytocin, a hypothalamic nonapeptide, is linked to increased levels of social interaction, well-being and anti-stress effects. The effects of oxytocin that is released by sensory stimulation during different kinds of interactive behaviors are often underestimated or even forgotten. In fact, many of the positive effects caused during interaction, such a wellbeing, stress reduction and even health promotion, are indeed linked to oxytocin released in response to activation of various types of sensory nerves. Oxytocin is released in response to activation of sensory nerves during labor, breastfeeding and sexual activity. In addition oxytocin is released in response to low intensity stimulation of the skin, e.g., in response to touch, stroking, warm temperature, etc. Consequently oxytocin is not only released during interaction between mothers and infants, but also during positive interaction between adults or between humans and animals. Finally oxytocin is also released in response to suckling and food intake. Oxytocin released in the brain in response to sensory stimulation as a consequence of these types of interactive behaviors, contributes to every day wellbeing and ability to handle stress. Food intake or sex may be used or even abused to achieve oxytocin-linked wellbeing and stress relief to compensate for lack of good relationships or when the levels of anxiety are high. The present review article will summarize the role played by oxytocin released by sensory (in particular somatosensory) stimulation, during various kinds of interactive behaviors. Also the fact that the anti-stress effects of oxytocin are particularly strong when oxytocin is released in response to "low intensity" stimulation of the skin will be highlighted.

  13. Self-soothing behaviors with particular reference to oxytocin release induced by non-noxious sensory stimulation

    Directory of Open Access Journals (Sweden)

    Kerstin eUvnäs-Moberg

    2015-01-01

    Full Text Available Oxytocin, a hypothalamic nonapeptide, is linked to increased levels of social interaction, well-being and anti-stress effects. The effects of oxytocin that is released by sensory stimulation during different kinds of interactive behaviors are often underestimated or even forgotten. In fact, many of the positive effects caused during interaction, such a wellbeing, stress reduction and even health promotion, are indeed linked to oxytocin released in response to activation of various types of sensory nerves. Oxytocin is released in response to activation of sensory nerves during labor, breastfeeding and sexual activity. In addition oxytocin is released in response to low intensity stimulation of the skin, e.g. in response to touch, stroking, warm temperature etc . Consequently oxytocin is not only released during interaction between mothers and infants, but also during positive interaction between adult or between humans and animals. Finally oxytocin is also released in response to suckling and food intake. Oxytocin released in the brain in response to sensory stimulation as a consequence of these types of interactive behaviors, contributes to every day wellbeing and ability to handle stress. Food intake or sex may be used or even abused to achieve oxytocin-linked wellbeing and stress relief to compensate for lack of good relationships or when the levels of anxiety are high. The present review article will summarize the role played by oxytocin released by sensory (in particular somatosensory stimulation, during various kinds of interactive behaviors. Also the fact that the anti-stress effects of oxytocin are particularly strong when oxytocin is released in response to low intensity stimulation of the skin will be highlighted.

  14. A comparison of breast stimulation and intravenous oxytocin for the augmentation of labor.

    Science.gov (United States)

    Curtis, P; Resnick, J C; Evens, S; Thompson, C J

    1999-06-01

    Breast stimulation to augment labor has been used for centuries in tribal societies and by midwives. In recent years it has been shown to be effective in ripening the cervix, inducing labor, and as an alternative to oxytocin for the contraction stress test. This study compared the effectiveness of breast stimulation with oxytocin infusion in augmenting labor. Women admitted to the labor ward were eligible for the study if they had inadequate labor with premature rupture of the membranes and met inclusion criteria. They were assigned to oxytocin augmentation or breast stimulation (manual or pump), and were switched to oxytocin in the event of method failure. Outcomes included time to delivery, intervention to delivery, proportion of spontaneous deliveries, and Apgar scores. One hundred participants were needed in each arm of the study to demonstrate a 2- to 3-hour difference in delivery time, with a power of 80 percent. Analysis was performed on 79 women, of whom 49 were in the breast stimulation group and 30 in the oxytocin group. Sixty-five percent of the participants failed breast stimulation and were switched to oxytocin infusion. Although augmentation start to delivery was shorter for the oxytocin group (p < 0.001), no differences in total labor time occurred between the groups. Nulliparas receiving breast stimulation had more spontaneous (relative risk 1.7, p = 0.04), and fewer instrumental deliveries than those receiving oxytocin (relative risk 0.2, p = 0.02). No significant differences in adverse fetal outcomes occurred between the study groups. The small number of participants and a variety of problems with the conduct of the study prevented the formulation of reliable conclusions from the results. However, the study provided important insights into the feasibility and problems of developing a high-quality randomized trial of augmentation by breast stimulation.

  15. Bruxism affects stress responses in stressed rats.

    Science.gov (United States)

    Sato, Chikatoshi; Sato, Sadao; Takashina, Hirofumi; Ishii, Hidenori; Onozuka, Minoru; Sasaguri, Kenichi

    2010-04-01

    It has been proposed that suppression of stress-related emotional responses leads to the simultaneous activation of both sympathetic and parasympathetic divisions of the autonomic nervous system (ANS) and that the expression of these emotional states has a protective effect against ulcerogenesis. In the present study, we investigated whether stress-induced bruxism activity (SBA) has a physiological effect of on the stress-induced changes of the stomach, thymus, and spleen as well as blood leukocytes, cortisol, and adrenaline. This study demonstrated that SBA attenuated the stress-induced ulcer genesis as well as degenerative changes of thymus and spleen. SBA also attenuated increases of adrenaline, cortisol, and neutrophils in the blood. In conclusion, expression of aggression through SBA during stress exposure attenuates both stress-induced ANS response, including gastric ulcer formation.

  16. In vitro magnetic stimulation: a simple stimulation device to deliver defined low intensity electromagnetic fields

    Directory of Open Access Journals (Sweden)

    Stephanie Grehl

    2016-11-01

    Full Text Available Non-invasive electromagnetic field brain stimulation (NIBS appears to benefit human neurological and psychiatric conditions, although the optimal stimulation parameters and underlying mechanisms remain unclear. Although in vitro studies have begun to elucidate cellular mechanisms, stimulation is delivered by a range of coils (from commercially available human stimulation coils to laboratory-built circuits so that the electromagnetic fields induced within the tissue to produce the reported effects are ill-defined.Here we develop a simple in vitro stimulation device with plug-and-play features that allow delivery of a range of stimulation parameters. We chose to test low intensity repetitive magnetic stimulation (LI-rMS delivered at 3 frequencies to hindbrain explant cultures containing the olivocerebellar pathway. We used computational modelling to define the parameters of a stimulation circuit and coil that deliver a unidirectional homogeneous magnetic field of known intensity and direction, and therefore a predictable electric field, to the target. We built the coil to be compatible with culture requirements: stimulation within an incubator; a flat surface allowing consistent position and magnetic field direction; location outside the culture plate to maintain sterility and no heating or vibration. Measurements at the explant confirmed the induced magnetic field was homogenous and matched the simulation results. To validate our system we investigated biological effects following LI-rMS at 1 Hz, 10 Hz and biomimetic high frequency (BHFS, which we have previously shown induces neural circuit reorganisation. We found that gene expression was modified by LI-rMS in a frequency-related manner. Four hours after a single 10-minute stimulation session, the number of c-fos positive cells increased, indicating that our stimulation activated the tissue. Also, after 14 days of LI-rMS, the expression of genes normally present in the tissue was differentially

  17. Interleukin 6 protects pancreatic β cells from apoptosis by stimulation of autophagy.

    Science.gov (United States)

    Linnemann, Amelia K; Blumer, Joseph; Marasco, Michelle R; Battiola, Therese J; Umhoefer, Heidi M; Han, Jee Young; Lamming, Dudley W; Davis, Dawn Belt

    2017-09-01

    IL-6 is a pleiotropic cytokine with complex roles in inflammation and metabolic disease. The role of IL-6 as a pro- or anti-inflammatory cytokine is still unclear. Within the pancreatic islet, IL-6 stimulates secretion of the prosurvival incretin hormone glucagon-like peptide 1 (GLP-1) by α cells and acts directly on β cells to stimulate insulin secretion in vitro Uncovering physiologic mechanisms promoting β-cell survival under conditions of inflammation and stress can identify important pathways for diabetes prevention and treatment. Given the established role of GLP-1 in promoting β-cell survival, we hypothesized that IL-6 may also directly protect β cells from apoptosis. Herein, we show that IL-6 robustly activates signal transducer and activator of transcription 3 (STAT3), a transcription factor that is involved in autophagy. IL-6 stimulates LC3 conversion and autophagosome formation in cultured β cells. In vivo IL-6 infusion stimulates a robust increase in lysosomes in the pancreas that is restricted to the islet. Autophagy is critical for β-cell homeostasis, particularly under conditions of stress and increased insulin demand. The stimulation of autophagy by IL-6 is regulated via multiple complementary mechanisms including inhibition of mammalian target of rapamycin complex 1 (mTORC1) and activation of Akt, ultimately leading to increases in autophagy enzyme production. Pretreatment with IL-6 renders β cells resistant to apoptosis induced by proinflammatory cytokines, and inhibition of autophagy with chloroquine prevents the ability of IL-6 to protect from apoptosis. Importantly, we find that IL-6 can activate STAT3 and the autophagy enzyme GABARAPL1 in human islets. We also see evidence of decreased IL-6 pathway signaling in islets from donors with type 2 diabetes. On the basis of our results, we propose direct stimulation of autophagy as a novel mechanism for IL-6-mediated protection of β cells from stress-induced apoptosis.-Linnemann, A. K

  18. Appetite stimulants for people with cystic fibrosis.

    Science.gov (United States)

    Chinuck, Ruth; Dewar, Jane; Baldwin, David R; Hendron, Elizabeth

    2014-07-27

    Chronic loss of appetite in cystic fibrosis concerns both individuals and families. Appetite stimulants have been used to help cystic fibrosis patients with chronic anorexia attain optimal body mass index and nutritional status. However, these may have adverse effects on clinical status. The aim of this review is to systematically search for and evaluate evidence on the beneficial effects of appetite stimulants in the management of CF-related anorexia and synthesize reports of any side-effects. Trials were identified by searching the Cochrane Cystic Fibrosis and Genetic Disorders Group's Cystic Fibrosis Trials Register, MEDLINE, Embase, CINAHL, handsearching reference lists and contacting local and international experts.Last search of online databases: 01 April 2014.Last search of the Cystic Fibrosis Trials Register: 08 April 2014. Randomised and quasi-randomised controlled trials of appetite stimulants, compared to placebo or no treatment for at least one month in adults and children with cystic fibrosis. Authors independently extracted data and assessed the risk of bias within eligible trials. Meta-analyses were performed. Three trials (total of 47 recruited patients) comparing appetite stimulants (cyproheptadine hydrochloride and megesterol acetate) to placebo were included; the numbers of adults or children within each trial were not always reported. The risk of bias of the included trials was graded as moderate.A meta-analysis of all three trials showed appetite stimulants produced a larger increase in weight z score at three months compared to placebo, mean difference 0.61 (95% confidence interval 0.29 to 0.93) (P children, appetite stimulants improved only two of the outcomes in this review - weight (or weight z score) and appetite; and side effects were insufficiently reported to determine the full extent of their impact. Whilst the data may suggest the potential use of appetite stimulants in treating anorexia in adults and children with cystic fibrosis

  19. MOTIVATION AND STIMULATION SYSTEM OF THE PERSONNEL OF INDUSTRIAL ENTERPRISES

    Directory of Open Access Journals (Sweden)

    Aliona Klymchuk

    2016-03-01

    Full Text Available This article is devoted to the problems of studying the system of motivation and stimulation of personnel at the industrial enterprises, which are important in today's conditions. The purpose of the study is a detailed analysis of system characteristics and motivation of personnel at the enterprises. It is proved that the enterprise's management must constantly deal with the improvement of the system of motivation and stimulation of personnel, that should be adapted to the new conditions for the market functioning. The author notes that the system of motivation and stimulation at the industrial enterprises is effectively connected with the problem of production activities at the enterprise and the final results of its operations increasing and the living standards of workers improving. In the article the basic functions (attracting qualified specialists, preservation groups of professionals within the required time limit, which must perform a system of motivation and stimulation of the personnel at the enterprise are determined. The main tasks that are necessary to ensure the desired level of labor activity of personnel are formed: determining a set of values that should form the basis of personnel motivation; needs formation of each employee, his interests and capabilities of pleasure; specification of the types of work that require the enterprise and that it is advisable to motivate; labour organization so as to convince the employee's ability to satisfy its interests; coordination of certain types of worker with a set of values and preferences; clarify the motives, interests and values when hiring an employee at the enterprise. In order, to form the control system of motivation and stimulation, the need for the following conditions are stressed: availability of complete and accurate information about equipment management; the need to have permanent representation on the status and dynamics of the motivational orientation of personnel

  20. Stimulants for the control of hedonic appetite

    Directory of Open Access Journals (Sweden)

    Alison Sally Poulton

    2016-04-01

    Full Text Available The focus of this paper is treatment of obesity in relation to the management of hedonic appetite. Obesity is a complex condition which may be potentiated by excessive reward seeking in combination with executive functioning deficits that impair cognitive control of behaviour. Stimulant medications address both reward deficiency and enhance motivation, as well as suppressing appetite. They have long been recognised to be effective for treating obesity. However, stimulants can be abused for their euphoric effect. They induce euphoria via the same neural pathway that underlies their therapeutic effect in obesity. For this reason they have generally not been endorsed for use in obesity. Among the stimulants, only phentermine (either alone or in combination with topiramate and bupropion (which has stimulant-like properties and is used in combination with naltrexone, are approved by the United States Food and Drug Administration (FDA for obesity, although dexamphetamine and methylpenidate are approved and widely used for treating attention deficit hyperactivity disorder (ADHD in adults and children. Experience gained over many years in the treatment of ADHD demonstrates that with careful dose titration, stimulants can be used safely. In obesity, improvement in mood and executive functioning could assist with the lifestyle changes necessary for weight control, acting synergistically with appetite suppression. The obesity crisis has reached the stage that strong consideration should be given to adequate utilisation of this effective and inexpensive class of drug.

  1. Palatoglossus coupling in selective upper airway stimulation.

    Science.gov (United States)

    Heiser, Clemens; Edenharter, Günther; Bas, Murat; Wirth, Markus; Hofauer, Benedikt

    2017-10-01

    Selective upper airway stimulation (sUAS) of the hypoglossal nerve is a useful therapy to treat patients with obstructive sleep apnea. Is it known that multiple obstructions can be solved by this stimulation technique, even at the retropalatal region. The aim of this study was to verify the palatoglossus coupling at the soft palate during stimulation. Single-center, prospective clinical trail. Twenty patients who received an sUAS implant from April 2015 to April 2016 were included. A drug-induced sedated endoscopy (DISE) was performed before surgery. Six to 12 months after activation of the system, patients' tongue motions were recorded, an awake transnasal endoscopy was performed with stimulation turned on, and a DISE with stimulation off and on was done. Patients with a bilateral protrusion of the tongue base showed a significantly increased opening at the retropalatal level compared to ipsilateral protrusions. Furthermore, patients with a clear activation of the geniohyoid muscle showed a better reduction in apnea-hypopnea index. A bilateral protrusion of the tongue base during sUAS seems to be accompanied with a better opening of the soft palate. This effect can be explained by the palatoglossal coupling, due to its linkage of the muscles within the soft palate to those of the lateral tongue body. 4 Laryngoscope, 127:E378-E383, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  2. Technological Advances in Deep Brain Stimulation.

    Science.gov (United States)

    Ughratdar, Ismail; Samuel, Michael; Ashkan, Keyoumars

    2015-01-01

    Functional and stereotactic neurosurgery has always been regarded as a subspecialty based on and driven by technological advances. However until recently, the fundamentals of deep brain stimulation (DBS) hardware and software design had largely remained stagnant since its inception almost three decades ago. Recent improved understanding of disease processes in movement disorders as well clinician and patient demands has resulted in new avenues of development for DBS technology. This review describes new advances both related to hardware and software for neuromodulation. New electrode designs with segmented contacts now enable sophisticated shaping and sculpting of the field of stimulation, potentially allowing multi-target stimulation and avoidance of side effects. To avoid lengthy programming sessions utilising multiple lead contacts, new user-friendly software allows for computational modelling and individualised directed programming. Therapy delivery is being improved with the next generation of smaller profile, longer-lasting, re-chargeable implantable pulse generators (IPGs). These include IPGs capable of delivering constant current stimulation or personalised closed-loop adaptive stimulation. Post-implantation Magnetic Resonance Imaging (MRI) has long been an issue which has been partially overcome with 'MRI conditional devices' and has enabled verification of DBS lead location. Surgical technique is considering a shift from frame-based to frameless stereotaxy or greater role for robot assisted implantation. The challenge for these contemporary techniques however, will be in demonstrating equivalent safety and accuracy to conventional methods. We also discuss potential future direction utilising wireless technology allowing for miniaturisation of hardware.

  3. Stress and Coping with Stress in Adolescence

    Directory of Open Access Journals (Sweden)

    Petra Dolenc

    2015-12-01

    Full Text Available Because of the many developmental changes in adolescence, young people are exposed to greater likelihood of experiencing stress. On the other hand, this period is critical for developing effective and constructive coping strategies. In the contribution, we summarize part of what is known about stress, stress responses and coping. Throughout, we focus on common stressful events among adolescents and emphasize the importance of dealing successfully with stressors in their daily lives. Finally, we highlight the most frequently used instruments to measure coping behaviour in youth and present an overview of the research findings on differences in coping among adolescents according to age and gender.

  4. Cognitive enhancement or cognitive cost: trait-specific outcomes of brain stimulation in the case of mathematics anxiety.

    Science.gov (United States)

    Sarkar, Amar; Dowker, Ann; Cohen Kadosh, Roi

    2014-12-10

    The surge in noninvasive brain stimulation studies investigating cognitive enhancement has neglected the effect of interindividual differences, such as traits, on stimulation outcomes. Using the case of mathematics anxiety in a sample of healthy human participants in a placebo-controlled, double-blind, crossover experiment, we show that identical transcranial direct current stimulation (tDCS) exerts opposite behavioral and physiological effects depending on individual trait levels. Mathematics anxiety is the negative emotional response elicited by numerical tasks, impairing mathematical achievement. tDCS was applied to the dorsolateral prefrontal cortex, a frequent target for modulating emotional regulation. It improved reaction times on simple arithmetic decisions and decreased cortisol concentrations (a biomarker of stress) in high mathematics anxiety individuals. In contrast, tDCS impaired reaction times for low mathematics anxiety individuals and prevented a decrease in cortisol concentration compared with sham stimulation. Both groups showed a tDCS-induced side effect-impaired executive control in a flanker task-a cognitive function subserved by the stimulated region. These behavioral and physiological double dissociations have implications for brain stimulation research by highlighting the role of individual traits in experimental findings. Brain stimulation clearly does not produce uniform benefits, even applied in the same configuration during the same tasks, but may interact with traits to produce markedly opposed outcomes. Copyright © 2014 Sarkar et al.

  5. A theoretical argumentation on the consequences of moral stress.

    Science.gov (United States)

    Cronqvist, Agneta; Nyström, Maria

    2007-05-01

    Intensive care units are characterized by heavy workloads, increasing work complexity and ethical concerns related to life-and-death decisions. In the present study, it is assumed that there is a relationship between moral stress, support and competence for nurses in intensive care units. To analyse and describe the theoretical relationship between moral stress and support on the one hand and competence on the other, in the context of intensive care. A form of qualitative secondary analysis based on the findings from three original studies. In the analytic process a theory on professional competence was used. The findings suggest that imbalance due to moral stress between different competences hinders the development of collectively shared caring competence. Moral stress cannot be totally eliminated in the intensive care unit. But moral stress is not only a problem. It can also become a driving force to stimulate competence.

  6. Avoiding Internal Capsule Stimulation With a New Eight-Channel Steering Deep Brain Stimulation Lead

    NARCIS (Netherlands)

    van Dijk, Kees J.; Verhagen, Rens; Bour, Lo J.; Heida, Ciska; Veltink, Peter H.

    2017-01-01

    Objective: Novel deep brain stimulation (DBS) lead designs are currently entering the market, which are hypothesized to provide a way to steer the stimulation field away from neural populations responsible for side effects and towards populations responsible for beneficial effects. The objective of

  7. Avoiding Internal Capsule Stimulation With a New Eight-Channel Steering Deep Brain Stimulation Lead

    NARCIS (Netherlands)

    van Dijk, Kees J.; Verhagen, Rens; Bour, Lo J.; Heida, Ciska; Veltink, Peter H.

    2017-01-01

    Novel deep brain stimulation (DBS) lead designs are currently entering the market, which are hypothesized to provide a way to steer the stimulation field away from neural populations responsible for side effects and towards populations responsible for beneficial effects. The objective of this study

  8. Overall bolt stress optimization

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2013-01-01

    The state of stress in bolts and nuts with International Organization for Standardization metric thread design is examined and optimized. The assumed failure mode is fatigue, so the applied preload and the load amplitude together with the stress concentrations define the connection strength....... Maximum stress in the bolt is found at the fillet under the head, at the thread start, or at the thread root. To minimize the stress concentration, shape optimization is applied. Nut shape optimization also has a positive effect on the maximum stress. The optimization results show that designing a nut......, which results in a more evenly distribution of load along the engaged thread, has a limited influence on the maximum stress due to the stress concentration at the first thread root. To further reduce the maximum stress, the transition from bolt shank to the thread must be optimized. Stress reduction...

  9. Magnetic fields in noninvasive brain stimulation.

    Science.gov (United States)

    Vidal-Dourado, Marcos; Conforto, Adriana Bastos; Caboclo, Luis Otávio Sales Ferreira; Scaff, Milberto; Guilhoto, Laura Maria de Figueiredo Ferreira; Yacubian, Elza Márcia Targas

    2014-04-01

    The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsène d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985.

  10. Evaluation of Galvanic Vestibular Stimulation System

    Science.gov (United States)

    Kofman, I. S.; Warren, E.; DeSoto, R.; Moroney, G.; Chastain, J.; De Dios, Y. E.; Gadd, N.; Taylor, L.; Peters, B. T.; Allen, E.; hide

    2017-01-01

    Microgravity exposure results in an adaptive central reinterpretation of information from multiple sensory sources to produce a sensorimotor state appropriate for motor actions in this unique environment, but this new adaptive state is no longer appropriate for the 1-g gravitational environment on Earth. During these gravitational transitions, astronauts experience deficits in both perceptual and motor functions including impaired postural control, disruption in spatial orientation, impaired control of locomotion that include alterations in muscle activation variability, modified lower limb kinematics, alterations in head-trunk coordination as well as reduced dynamic visual acuity. Post-flight changes in postural and locomotor control might have adverse consequences if a rapid egress was required following a long-duration mission, where support personnel may not be available to aid crewmembers. The act of emergency egress includes, but is not limited to standing, walking, climbing a ladder, jumping down, monitoring displays, actuating discrete controls, operating auxiliary equipment, and communicating with Mission Control and recovery teams while maintaining spatial orientation, mobility and postural stability in order to escape safely. The average time to recover impaired postural control and functional mobility to preflight levels of performance has been shown to be approximately two weeks after long-duration spaceflight. The postflight alterations are due in part to central reinterpretation of vestibular information caused by exposure to microgravity. In this study we will use a commonly used technique of transcutaneous electrical stimulation applied across the vestibular end organs (galvanic vestibular stimulation, GVS) to disrupt vestibular function as a simulation of post-flight disturbances. The goal of this project is an engineering human-in-the-loop evaluation of a device that can degrade performance of functional tasks (e.g. to maintain upright balance

  11. Pathways of translation: deep brain stimulation.

    Science.gov (United States)

    Gionfriddo, Michael R; Greenberg, Alexandra J; Wahegaonkar, Abhijeet L; Lee, Kendall H

    2013-12-01

    Electrical stimulation of the brain has a 2000 year history. Deep brain stimulation (DBS), one form of neurostimulation, is a functional neurosurgical approach in which a high-frequency electrical current stimulates targeted brain structures for therapeutic benefit. It is an effective treatment for certain neuropathologic movement disorders and an emerging therapy for psychiatric conditions and epilepsy. Its translational journey did not follow the typical bench-to-bedside path, but rather reversed the process. The shift from ancient and medieval folkloric remedy to accepted medical practice began with independent discoveries about electricity during the 19th century and was fostered by technological advances of the 20th. In this paper, we review that journey and discuss how the quest to expand its applications and improve outcomes is taking DBS from the bedside back to the bench. © 2013 Wiley Periodicals, Inc.

  12. Mechanical stress and stress release channels in 10–350 nm palladium hydrogen thin films with different micro-structures

    International Nuclear Information System (INIS)

    Wagner, Stefan; Kramer, Thilo; Uchida, Helmut; Dobron, Patrik; Cizek, Jakub; Pundt, Astrid

    2016-01-01

    For thin metal films adhered to rigid substrates hydrogen uptake results in compressive stresses in the GPa range. Stresses affect the thermodynamics as well as the durability of thin films, but many films can release stress above critical stress values. Depending on the films' thickness, microstructure and adhesion to the substrate, which determine the energy available in the nano-sized system, stress release is conducted via different release mechanisms. To evaluate the different mechanisms, Palladium thin films ranging from 10 nm to 350 nm and with three different types of microstructures (nanocrystalline, multi-oriented epitaxy and three-fold epitaxy) are studied with special focus on the mechanical stress. In-situ substrate curvature measurements, XRD stress analyses and acoustic emission (AE) measurements are conducted to determine intrinsic stresses, hydrogen-induced stress changes and stress release signals. By this complementary experimental approach, different stress release mechanisms (named channels) are identified. Discrete stress relaxation (DSR) events are found already within the overall linear elastic stress-strain regime. Energies to stimulate DSRs lay well below the formation energy of dislocations, and may allow the movement of defects pre-existing in the films. For higher strain energies, all studied films can release stress by the formation of new dislocations and plastic deformation. When the adhesion to the substrate is small, an alternative release channel of film buckling opens for thick films.

  13. Transcranial Direct Current Stimulation in Epilepsy.

    Science.gov (United States)

    San-Juan, Daniel; Morales-Quezada, León; Orozco Garduño, Adolfo Josué; Alonso-Vanegas, Mario; González-Aragón, Maricarmen Fernández; Espinoza López, Dulce Anabel; Vázquez Gregorio, Rafael; Anschel, David J; Fregni, Felipe

    2015-01-01

    Transcranial direct current stimulation (tDCS) is an emerging non-invasive neuromodulation therapy in epilepsy with conflicting results in terms of efficacy and safety. Review the literature about the efficacy and safety of tDCS in epilepsy in humans and animals. We searched studies in PubMed, MedLine, Scopus, Web of Science and Google Scholar (January 1969 to October 2013) using the keywords 'transcranial direct current stimulation' or 'tDCS' or 'brain polarization' or 'galvanic stimulation' and 'epilepsy' in animals and humans. Original articles that reported tDCS safety and efficacy in epileptic animals or humans were included. Four review authors independently selected the studies, extracted data and assessed the methodological quality of the studies using the recommendations of the Cochrane Handbook for Systematic Reviews of Interventions, PRISMA guidelines and Jadad Scale. A meta-analysis was not possible due to methodological, clinical and statistical heterogeneity of included studies. We analyzed 9 articles with different methodologies (3 animals/6 humans) with a total of 174 stimulated individuals; 109 animals and 65 humans. In vivo and in vitro animal studies showed that direct current stimulation can successfully induce suppression of epileptiform activity without neurological injury and 4/6 (67%) clinical studies showed an effective decrease in epileptic seizures and 5/6 (83%) reduction of inter-ictal epileptiform activity. All patients tolerated tDCS well. tDCS trials have demonstrated preliminary safety and efficacy in animals and patients with epilepsy. Further larger studies are needed to define the best stimulation protocols and long-term follow-up. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Stimulation of Managers in Regional Enterprises

    Directory of Open Access Journals (Sweden)

    Vladimir Nikiforovich Belkin

    2018-03-01

    Full Text Available Most of the principles related to top managers work incentives were inherited from the planned economy that produces demotivation and opportunistic behaviour. Remuneration is a commercial secret and shall not be disclosed. The system of top managers’ stimulation is unbalanced and does not motivate them to achieve medium- and long-term goals of the company. The study pays great attention to the development of managers’ stimulation policies, the transparency of remuneration, correlation between pay and performance. We provide practical examples of foreign and national experience, showing the ability to ensure the transparency of remuneration of managers, and the relation between compensation and performance. These examples show that managers’ remuneration amount does not always correspond to the efficiency of enterprises and return on capital. To solve these problems, we offer to develop philosophy and policy for the stimulation of managers in enterprises. It will allow to find a balance between the interests of shareholders and managers. Furthermore, this philosophy will have a positive impact on the competitiveness of enterprises in a region. The policy of stimulating managers should include certain key areas. Firstly, it should ensure the competitiveness of managers’ remuneration. Secondly, it implies studying the motives of managers’ work and the integration of these motives in the development of incentive system for the managers. Thirdly, it should include an optimal combination of elements to stimulate labour: base salary, material and social remuneration, short and long-term remuneration, etc. And last, it should consider the indicators and norms of enterprise’s effectiveness as well as the assessment of working results of managers. The results of this research can be used for further study of the stimulation of managers’ work in Russian companies. They can also be used in practice for the analysis of labour incentives of

  15. Methods of measuring residual stresses in components

    International Nuclear Information System (INIS)

    Rossini, N.S.; Dassisti, M.; Benyounis, K.Y.; Olabi, A.G.

    2012-01-01

    Highlights: ► Defining the different methods of measuring residual stresses in manufactured components. ► Comprehensive study on the hole drilling, neutron diffraction and other techniques. ► Evaluating advantage and disadvantage of each method. ► Advising the reader with the appropriate method to use. -- Abstract: Residual stresses occur in many manufactured structures and components. Large number of investigations have been carried out to study this phenomenon and its effect on the mechanical characteristics of these components. Over the years, different methods have been developed to measure residual stress for different types of components in order to obtain reliable assessment. The various specific methods have evolved over several decades and their practical applications have greatly benefited from the development of complementary technologies, notably in material cutting, full-field deformation measurement techniques, numerical methods and computing power. These complementary technologies have stimulated advances not only in measurement accuracy and reliability, but also in range of application; much greater detail in residual stresses measurement is now available. This paper aims to classify the different residual stresses measurement methods and to provide an overview of some of the recent advances in this area to help researchers on selecting their techniques among destructive, semi destructive and non-destructive techniques depends on their application and the availabilities of those techniques. For each method scope, physical limitation, advantages and disadvantages are summarized. In the end this paper indicates some promising directions for future developments.

  16. Stimulating thought: a functional MRI study of transcranial direct current stimulation in schizophrenia.

    Science.gov (United States)

    Orlov, Natasza D; O'Daly, Owen; Tracy, Derek K; Daniju, Yusuf; Hodsoll, John; Valdearenas, Lorena; Rothwell, John; Shergill, Sukhi S

    2017-09-01

    Individuals with schizophrenia typically suffer a range of cognitive deficits, including prominent deficits in working memory and executive function. These difficulties are strongly predictive of functional outcomes, but there is a paucity of effective therapeutic interventions targeting these deficits. Transcranial direct current stimulation is a novel neuromodulatory technique with emerging evidence of potential pro-cognitive effects; however, there is limited understanding of its mechanism. This was a double-blind randomized sham controlled pilot study of transcranial direct current stimulation on a working memory (n-back) and executive function (Stroop) task in 28 individuals with schizophrenia using functional magnetic resonance imaging. Study participants received 30 min of real or sham transcranial direct current stimulation applied to the left frontal cortex. The 'real' and 'sham' groups did not differ in online working memory task performance, but the transcranial direct current stimulation group demonstrated significant improvement in performance at 24 h post-transcranial direct current stimulation. Transcranial direct current stimulation was associated with increased activation in the medial frontal cortex beneath the anode; showing a positive correlation with consolidated working memory performance 24 h post-stimulation. There was reduced activation in the left cerebellum in the transcranial direct current stimulation group, with no change in the middle frontal gyrus or parietal cortices. Improved performance on the executive function task was associated with reduced activity in the anterior cingulate cortex. Transcranial direct current stimulation modulated functional activation in local task-related regions, and in more distal nodes in the network. Transcranial direct current stimulation offers a potential novel approach to altering frontal cortical activity and exerting pro-cognitive effects in schizophrenia. © The Author (2017). Published by Oxford

  17. Pudendal nerve stimulation and block by a wireless-controlled implantable stimulator in cats.

    Science.gov (United States)

    Yang, Guangning; Wang, Jicheng; Shen, Bing; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2014-07-01

    The study aims to determine the functionality of a wireless-controlled implantable stimulator designed for stimulation and block of the pudendal nerve. In five cats under α-chloralose anesthesia, the stimulator was implanted underneath the skin on the left side in the lower back along the sacral spine. Two tripolar cuff electrodes were implanted bilaterally on the pudendal nerves in addition to one bipolar cuff electrode that was implanted on the left side central to the tripolar cuff electrode. The stimulator provided high-frequency (5-20 kHz) biphasic stimulation waveforms to the two tripolar electrodes and low-frequency (1-100 Hz) rectangular pulses to the bipolar electrode. Bladder and urethral pressures were measured to determine the effects of pudendal nerve stimulation (PNS) or block. The maximal (70-100 cmH2O) urethral pressure generated by 20-Hz PNS applied via the bipolar electrode was completely eliminated by the pudendal nerve block induced by the high-frequency stimulation (6-15 kHz, 6-10 V) applied via the two tripolar electrodes. In a partially filled bladder, 20-30 Hz PNS (2-8 V, 0.2 ms) but not 5 Hz stimulation applied via the bipolar electrode elicited a large sustained bladder contraction (45.9 ± 13.4 to 52.0 ± 22 cmH2O). During cystometry, the 5 Hz PNS significantly (p < 0.05) increased bladder capacity to 176.5 ± 27.1% of control capacity. The wireless-controlled implantable stimulator successfully generated the required waveforms for stimulation and block of pudendal nerve, which will be useful for restoring bladder functions after spinal cord injury. © 2013 International Neuromodulation Society.

  18. Eating behaviour and stress: a pathway to obesity

    Directory of Open Access Journals (Sweden)

    Sarah J Spencer

    2014-05-01

    Full Text Available Stress causes or contributes to a huge variety of diseases and disorders. Recent evidence suggests obesity and other eating-related disorders may be among these. Immediately after a stressful event is experienced, there is a corticotropin-releasing-hormone (CRH-mediated suppression of food intake. This diverts the body’s resources away from the less pressing need to find and consume food, prioritizing fight, flight, or withdrawal behaviours so the stressful event can be dealt with. In the hours following this, however, there is a glucocorticoid-mediated stimulation of hunger and eating behaviour. In the case of an acute stress that requires a physical response, such as a predator-prey interaction, this hypothalamic-pituitary-adrenal (HPA axis modulation of food intake allows the stressful event to be dealt with and the energy used to be replaced afterwards. In the case of ongoing psychological stress, however, chronically elevated glucocorticoids can lead to chronically stimulated eating behaviour and excessive weight gain. In particular, stress can enhance the propensity to eat high calorie palatable food via its interaction with central reward pathways. Activation of this circuitry can also interact with the HPA axis to suppress its further activation, meaning not only can stress encourage eating behaviour, but eating can suppress the HPA axis and the feeling of stress. In this review we will explore the theme of eating behaviour and stress and how these can modulate one another. We will address the interactions between the HPA axis and eating, introducing a potential integrative role for the orexigenic hormone, ghrelin. We will also examine early life and epigenetic modulation of the HPA axis and how this can influence eating behaviour. Finally, we will investigate the clinical implications of changes to HPA axis function and how this may be contributing to obesity in our society.

  19. Dissociation between neural and vascular responses to sympathetic stimulation : contribution of local adrenergic receptor function

    Science.gov (United States)

    Jacob, G.; Costa, F.; Shannon, J.; Robertson, D.; Biaggioni, I.

    2000-01-01

    Sympathetic activation produced by various stimuli, eg, mental stress or handgrip, evokes regional vascular responses that are often nonhomogeneous. This phenomenon is believed to be the consequence of the recruitment of differential central neural pathways or of a sympathetically mediated vasodilation. The purpose of this study was to determine whether a similar heterogeneous response occurs with cold pressor stimulation and to test the hypothesis that local differences in adrenergic receptor function could be in part responsible for this diversity. In 8 healthy subjects, local norepinephrine spillover and blood flow were measured in arms and legs at baseline and during sympathetic stimulation induced by baroreflex mechanisms (nitroprusside infusion) or cold pressor stimulation. At baseline, legs had higher vascular resistance (27+/-5 versus 17+/-2 U, P=0.05) despite lower norepinephrine spillover (0.28+/-0.04 versus 0.4+/-0.05 mg. min(-1). dL(-1), P=0.03). Norepinephrine spillover increased similarly in both arms and legs during nitroprusside infusion and cold pressor stimulation. On the other hand, during cold stimulation, vascular resistance increased in arms but not in legs (20+/-9% versus -7+/-4%, P=0.03). Increasing doses of isoproterenol and phenylephrine were infused intra-arterially in arms and legs to estimate beta-mediated vasodilation and alpha-induced vasoconstriction, respectively. beta-Mediated vasodilation was significantly lower in legs compared with arms. Thus, we report a dissociation between norepinephrine spillover and vascular responses to cold stress in lower limbs characterized by a paradoxical decrease in local resistance despite increases in sympathetic activity. The differences observed in adrenergic receptor responses cannot explain this phenomenon.

  20. Neural dynamics during repetitive visual stimulation

    Science.gov (United States)

    Tsoneva, Tsvetomira; Garcia-Molina, Gary; Desain, Peter

    2015-12-01

    Objective. Steady-state visual evoked potentials (SSVEPs), the brain responses to repetitive visual stimulation (RVS), are widely utilized in neuroscience. Their high signal-to-noise ratio and ability to entrain oscillatory brain activity are beneficial for their applications in brain-computer interfaces, investigation of neural processes underlying brain rhythmic activity (steady-state topography) and probing the causal role of brain rhythms in cognition and emotion. This paper aims at analyzing the space and time EEG dynamics in response to RVS at the frequency of stimulation and ongoing rhythms in the delta, theta, alpha, beta, and gamma bands. Approach.We used electroencephalography (EEG) to study the oscillatory brain dynamics during RVS at 10 frequencies in the gamma band (40-60 Hz). We collected an extensive EEG data set from 32 participants and analyzed the RVS evoked and induced responses in the time-frequency domain. Main results. Stable SSVEP over parieto-occipital sites was observed at each of the fundamental frequencies and their harmonics and sub-harmonics. Both the strength and the spatial propagation of the SSVEP response seem sensitive to stimulus frequency. The SSVEP was more localized around the parieto-occipital sites for higher frequencies (>54 Hz) and spread to fronto-central locations for lower frequencies. We observed a strong negative correlation between stimulation frequency and relative power change at that frequency, the first harmonic and the sub-harmonic components over occipital sites. Interestingly, over parietal sites for sub-harmonics a positive correlation of relative power change and stimulation frequency was found. A number of distinct patterns in delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz) and beta (15-30 Hz) bands were also observed. The transient response, from 0 to about 300 ms after stimulation onset, was accompanied by increase in delta and theta power over fronto-central and occipital sites, which returned to baseline

  1. Low dose stimulation in foeniculum vulgare

    International Nuclear Information System (INIS)

    Jahagirdar, H.A.; Khalatkar, A.W.; Dnyansagar, V.R.

    1974-01-01

    Genetically pure seeds with a moisture content of 12.5% were irradiated in a 60 Co γ-source at a dose rate of 1.1 KR/min, the radiation dose varying between 2 and 14 KR. Four days after irradiation the seeds were sown into the open field. Stimulation was determined on the basis of a lot of parameters e.g. height. The results indicated a significant stimulation after 10 KR as far as seed yield is concerned. (MG) [de

  2. Gender and injuries predict stimulant medication

    DEFF Research Database (Denmark)

    Dalsgaard, Søren; Leckman, James F.; Nielsen, Helena Skyt

    2014-01-01

    Objective: The purpose of this article was to examine whether injuries in early childhood and gender predict prescriptions of stimulant medication in three groups of children: With attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and other psychiatric disorders (OPD...... follow-up of all cases. We found that the number of injuries prior to diagnosis was associated with initiation of stimulant treatment in all three groups of patients. In addition, male gender predicted treatment with ADHD medications. Our results suggest that the number of injuries early in life prior...

  3. Stress at Work Place

    OpenAIRE

    Mohammad A. Shahrour

    2010-01-01

    One of hardest forms of stresses to avoid is that work place or job stress Job stress refers to stress experienced by an individual at or because of issues at their work place The term work related stress has many meanings and it causes different levels of anxiety. Not all challenges at work can be called stress as some of these challenges drive employees upward, and empower them to learn new skills or push them to work harder to achieve a certain goal. So, this type of challenges cannot be c...

  4. Stress: a concept analysis.

    Science.gov (United States)

    Goodnite, Patricia M

    2014-01-01

    To analyze the concept of stress and provide an operational definition of stress. Literature review revealed that stress is a commonly used, but often ambiguous, term. Findings supported a definition of stress entailing an individual's perception of a stimulus as overwhelming, which in turn elicits a measurable response resulting in a transformed state. This analysis adopts a dynamic definition of stress that may serve to encourage communication, promote reflection, and enhance concept understanding. This definition may provide direction for future work, as well as enhance efforts to serve patients affected by stress. © 2013 Wiley Periodicals, Inc.

  5. A novel dual-wavelength laser stimulator to elicit transient and tonic nociceptive stimulation.

    Science.gov (United States)

    Dong, Xiaoxi; Liu, Tianjun; Wang, Han; Yang, Jichun; Chen, Zhuying; Hu, Yong; Li, Yingxin

    2017-07-01

    This study aimed to develop a new laser stimulator to elicit both transient and sustained heat stimulation with a dual-wavelength laser system as a tool for the investigation of both transient and tonic experimental models of pain. The laser stimulator used a 980-nm pulsed laser to generate transient heat stimulation and a 1940-nm continuous-wave (CW) laser to provide sustained heat stimulation. The laser with 980-nm wavelength can elicit transient pain with less thermal injury, while the 1940-nm CW laser can effectively stimulate both superficial and deep nociceptors to elicit tonic pain. A proportional integral-derivative (PID) temperature feedback control system was implemented to ensure constancy of temperature during heat stimulation. The performance of this stimulator was evaluated by in vitro and in vivo animal experiments. In vitro experiments on totally 120 specimens fresh pig skin included transient heat stimulation by 980-nm laser (1.5 J, 10 ms), sustained heat stimulation by 1940-nm laser (50-55 °C temperature control mode or 1.5 W, 5 min continuous power supply), and the combination of transient/sustained heat stimulation by dual lasers (1.5 J, 10 ms, 980-nm pulse laser, and 1940-nm laser with 50-55 °C temperature control mode). Hemoglobin brushing and wind-cooling methods were tested to find better stimulation model. A classic tail-flick latency (TFL) experiment with 20 Wistar rats was used to evaluate the in vivo efficacy of transient and tonic pain stimulation with 15 J, 100 ms 980-nm single laser pulse, and 1.5 W constant 1940-nm laser power. Ideal stimulation parameters to generate transient pain were found to be a 26.6 °C peak temperature rise and 0.67 s pain duration. In our model of tonic pain, 5 min of tonic stimulation produced a temperature change of 53.7 ± 1.3 °C with 1.6 ± 0.2% variation. When the transient and tonic stimulation protocols were combined, no significant difference was observed depending on the order

  6. Endoplasmic Reticulum Stress Sensor IRE1α Enhances IL-23 Expression by Human Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Saioa Márquez

    2017-06-01

    Full Text Available Human monocyte-derived dendritic cells (DCs exposed to pathogen-associated molecular patterns (PAMPs undergo bioenergetic changes that influence the immune response. We found that stimulation with PAMPs enhanced glycolysis in DCs, whereas oxidative phosphorylation remained unaltered. Glucose starvation and the hexokinase inhibitor 2-deoxy-d-glucose (2-DG modulated cytokine expression in stimulated DCs. Strikingly, IL23A was markedly induced upon 2-DG treatment, but not during glucose deprivation. Since 2-DG can also rapidly inhibit protein N-glycosylation, we postulated that this compound could induce IL-23 in DCs via activation of the endoplasmic reticulum (ER stress response. Indeed, stimulation of DCs with PAMPs in the presence of 2-DG robustly activated inositol-requiring protein 1α (IRE1α signaling and to a lesser extent the PERK arm of the unfolded protein response. Additional ER stressors such as tunicamycin and thapsigargin also promoted IL-23 expression by PAMP-stimulated DCs. Pharmacological, biochemical, and genetic analyses using conditional knockout mice revealed that IL-23 induction in ER stressed DCs stimulated with PAMPs was IRE1α/X-box binding protein 1-dependent upon zymosan stimulation. Interestingly, we further evidenced PERK-mediated and CAAT/enhancer-binding protein β-dependent trans-activation of IL23A upon lipopolysaccharide treatment. Our findings uncover that the ER stress response can potently modulate cytokine expression in PAMP-stimulated human DCs.

  7. Modulating Hippocampal Plasticity with In Vivo Brain Stimulation

    Science.gov (United States)

    2016-11-17

    wires were left unhooked from stimulation device. Following stimulation , the animals were returned to their homecage until time of euthanasia and...current stimulation (tDCS) to enhance cognitive training: effect of timing of stimulation . Exp Brain Res 232:3345-3351. 15 DISTRIBUTION...AFRL-RH-WP-TR-2016-0082 MODULATING HIPPOCAMPAL PLASTICITY WITH IN-VIVO BRAIN STIMULATION Joyce G. Rohan Oakridge Institute

  8. An Implantable Mixed Analog/Digital Neural Stimulator Circuit

    DEFF Research Database (Denmark)

    Gudnason, Gunnar; Bruun, Erik; Haugland, Morten

    1999-01-01

    This paper describes a chip for a multichannel neural stimulator for functional electrical stimulation. The chip performs all the signal processing required in an implanted neural stimulator. The power and signal transmission to the stimulator is carried out via an inductive link. From the signals...... electrical stimulation is to restore various bodily functions (e.g. motor functions) in patients who have lost them due to injury or disease....

  9. Optimal number of stimulation contacts for coordinated reset neuromodulation

    Science.gov (United States)

    Lysyansky, Borys; Popovych, Oleksandr V.; Tass, Peter A.

    2013-01-01

    In this computational study we investigate coordinated reset (CR) neuromodulation designed for an effective control of synchronization by multi-site stimulation of neuronal target populations. This method was suggested to effectively counteract pathological neuronal synchrony characteristic for several neurological disorders. We study how many stimulation sites are required for optimal CR-induced desynchronization. We found that a moderate increase of the number of stimulation sites may significantly prolong the post-stimulation desynchronized transient after the stimulation is completely switched off. This can, in turn, reduce the amount of the administered stimulation current for the intermittent ON–OFF CR stimulation protocol, where time intervals with stimulation ON are recurrently followed by time intervals with stimulation OFF. In addition, we found that the optimal number of stimulation sites essentially depends on how strongly the administered current decays within the neuronal tissue with increasing distance from the stimulation site. In particular, for a broad spatial stimulation profile, i.e., for a weak spatial decay rate of the stimulation current, CR stimulation can optimally be delivered via a small number of stimulation sites. Our findings may contribute to an optimization of therapeutic applications of CR neuromodulation. PMID:23885239

  10. Non-Medical Prescription Stimulant Use in Graduate Students: Relationship With Academic Self-Efficacy and Psychological Variables.

    Science.gov (United States)

    Verdi, Genevieve; Weyandt, Lisa L; Zavras, Brynheld Martinez

    2016-09-01

    The objective of this study was to examine graduate students' non-medical use of prescription stimulant medication, and the relationship between non-medical use of prescription stimulants with academic self-efficacy, psychological factors (i.e., anxiety, depression, and stress), and internal restlessness. The sample consisted of 807 graduate students from universities located in five geographic regions of the United States. Past-year rates of self-reported non-medical use were determined to be 5.9%, with overall lifetime prevalence of 17.5%. Observed self-reported non-medical use of prescription stimulant medications was significantly correlated with self-reported levels of anxiety and stress, various aspects of internal restlessness, and perceived safety of the medications. Findings support graduate students' motivations of non-medical prescription stimulant use to be both academic and social in nature. Effective prevention and education efforts are needed to help address the non-medical use of prescription stimulants by graduate students on university campuses. © The Author(s) 2014.

  11. The stress of life

    National Research Council Canada - National Science Library

    Selye, H

    1978-01-01

    .... This is also a dependable personal guide that tells you how to combat both physical and mental stress, how to handle yourself during the stress of everyday life, and how your bodily changes can help...

  12. Stress and Migraine

    Science.gov (United States)

    ... Spotlight On News Content Capsule Contact Understanding Migraine Stress and Migraine Doctor Q&A Managing Migraine Migraine ... of Headache Disorders Cluster Headache Post-Traumatic Headache Stress and Migraine March 16, 2017 How to cope ...

  13. Institutional Preventive Stress Management.

    Science.gov (United States)

    Quick, James C.

    1987-01-01

    Stress is an inevitable characteristic of academic life, but colleges and universities can introduce stress management activities at the organizational level to avert excessive tension. Preventive actions are described, including flexible work schedules and social supports. (Author/MSE)

  14. Stress og aldring

    DEFF Research Database (Denmark)

    Jørgensen, Anders; Jørgensen, Martin Balslev; Poulsen, Henrik Enghusen

    2012-01-01

    Accumulating evidence supports the popular notion that psychological stress states may accelerate aging. Stress has been shown to influence cellular systems known to be involved in the aging process. Furthermore, stress is associated with an increased risk of various age-related medical disorders....... These effects are likely mediated by the secretion of stress hormones. In this short review we focus on biochemical and epidemiological evidence for a link between stress and aging.......Accumulating evidence supports the popular notion that psychological stress states may accelerate aging. Stress has been shown to influence cellular systems known to be involved in the aging process. Furthermore, stress is associated with an increased risk of various age-related medical disorders...

  15. Neuroepigenetics of stress.

    Science.gov (United States)

    Griffiths, B B; Hunter, R G

    2014-09-05

    Stress, a common if unpredictable life event, can have pronounced effects on physiology and behavior. Individuals show wide variation in stress susceptibility and resilience, which are only partially explained by variations in coding genes. Developmental programing of the hypothalamic-pituitary-adrenal stress axis provides part of the explanation for this variance. Epigenetic approaches have successfully helped fill the explanatory gaps between the influences of gene and environment on stress responsiveness, and differences in the sequelae of stress across individuals and generations. Stress and the stress axis interacts bi-directionally with epigenetic marks within the brain. It is now clear that exposure to stress, particularly in early life, has both acute and lasting effects on these marks. They in turn influence cognitive function and behavior, as well as the risk for suicide and psychiatric disorders across the lifespan and, in some cases, unto future generations. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Stress and Health

    DEFF Research Database (Denmark)

    Rod, Naja Hulvej

    2014-01-01

    and behavioral mechanisms. Stress is a complex concept and in order to better understand the relation between stress and health, the dissertation works with a clear distinction between the health consequences of different types of stress including external stressors, perceived stress, and measures of the stress......’s disease patients. Results The combined evidence of this dissertation shows a moderately higher risk of some common chronic disorders including cardiovascular disease and atopic disorders among individuals exposed to work-related stressors and perceived stress. Most empirical studies also report higher...... of pathways. The physiological stress response has the ability to directly affect vital body systems including the cardiovascular, immune, and metabolic systems. Further, stress can lead to unfavorable changes in health-related behavior, impaired sleep and poor mental health. An increasing number of well...

  17. Effects of stimulation parameters and electrode location on thresholds for epidural stimulation of cat motor cortex

    Science.gov (United States)

    Wongsarnpigoon, Amorn; Grill, Warren M.

    2011-12-01

    Epidural electrical stimulation (ECS) of the motor cortex is a developing therapy for neurological disorders. Both placement and programming of ECS systems may affect the therapeutic outcome, but the treatment parameters that will maximize therapeutic outcomes and minimize side effects are not known. We delivered ECS to the motor cortex of anesthetized cats and investigated the effects of electrode placement and stimulation parameters on thresholds for evoking motor responses in the contralateral forelimb. Thresholds were inversely related to stimulation frequency and the number of pulses per stimulus train. Thresholds were lower over the forelimb representation in motor cortex (primary site) than surrounding sites (secondary sites), and thresholds at sites 4 mm away. Electrode location and montage influenced the effects of polarity on thresholds: monopolar anodic and cathodic thresholds were not significantly different over the primary site, cathodic thresholds were significantly lower than anodic thresholds over secondary sites and bipolar thresholds were significantly lower with the anode over the primary site than with the cathode over the primary site. A majority of bipolar thresholds were either between or equal to the respective monopolar thresholds, but several bipolar thresholds were greater than or less than the monopolar thresholds of both the anode and cathode. During bipolar stimulation, thresholds were influenced by both electric field superposition and indirect, synaptically mediated interactions. These results demonstrate the influence of stimulation parameters and electrode location during cortical stimulation, and these effects should be considered during the programming of systems for therapeutic cortical stimulation.

  18. Higher-order power harmonics of pulsed electrical stimulation modulates corticospinal contribution of peripheral nerve stimulation.

    Science.gov (United States)

    Chen, Chiun-Fan; Bikson, Marom; Chou, Li-Wei; Shan, Chunlei; Khadka, Niranjan; Chen, Wen-Shiang; Fregni, Felipe

    2017-03-03

    It is well established that electrical-stimulation frequency is crucial to determining the scale of induced neuromodulation, particularly when attempting to modulate corticospinal excitability. However, the modulatory effects of stimulation frequency are not only determined by its absolute value but also by other parameters such as power at harmonics. The stimulus pulse shape further influences parameters such as excitation threshold and fiber selectivity. The explicit role of the power in these harmonics in determining the outcome of stimulation has not previously been analyzed. In this study, we adopted an animal model of peripheral electrical stimulation that includes an amplitude-adapted pulse train which induces force enhancements with a corticospinal contribution. We report that the electrical-stimulation-induced force enhancements were correlated with the amplitude of stimulation power harmonics during the amplitude-adapted pulse train. In an exploratory analysis, different levels of correlation were observed between force enhancement and power harmonics of 20-80 Hz (r = 0.4247, p = 0.0243), 100-180 Hz (r = 0.5894, p = 0.0001), 200-280 Hz (r = 0.7002, p harmonics. This is a pilot, but important first demonstration that power at high order harmonics in the frequency spectrum of electrical stimulation pulses may contribute to neuromodulation, thus warrant explicit attention in therapy design and analysis.

  19. Residual-stress distributions near stainless steel butt weldments

    International Nuclear Information System (INIS)

    Elligson, W.A.; Shack, W.J.

    1978-01-01

    Concern for the integrity of stainless steel butt-weldments in boiling-water-reactor (BWR) piping systems has stimulated study of the conditions that cause stress corrosion cracking (SCC) in the heat-affected zones (HAZ) of the weldments. It is generally agreed that a high stress exceeding the initial yield strength is one of the essential elements for crack initiation. Since design procedures usually ensure that load stresses are below initial yield, the source of the high stresses necessary to produce SCC is thought to be the residual stresses due to welding. To examine the level of residual stresses in the weldments of interest, bulk residual stresses were measured on 100 mm (4-in.) and 254 mm (10-in.) diameter Schedule 80 piping weldments using strain relief techniques. Both laboratory welded specimens and field welded specimens from reactors in service were studied. Axial bulk residual stress distributions were obtained at 45 0 intervals around the circumference. At each azimuthal position, the residual stresses were measured at seven axial positions: on the weld centerline and 13, 20, and 25 mm on either side of the weld centerline on both the inside and outside surfaces

  20. Stimulating Strategically Aligned Behaviour among Employees

    NARCIS (Netherlands)

    C.B.M. van Riel (Cees); G.A.J.M. Berens (Guido); M. Dijkstra (Majorie)

    2008-01-01

    textabstractStrategically aligned behaviour (SAB), i.e., employee action that is consistent with the company’s strategy, is of vital importance to companies. This study provides insights into the way managers can promote such behaviour among employees by stimulating employee motivation and by

  1. Stimulated Deep Neural Network for Speech Recognition

    Science.gov (United States)

    2016-09-08

    similarities. As illustrated in Figure 1(b), the network grid behaves as a smooth surface on each layer of a stimulated DNN. The nearby nodes in the...for HTK version 3.5),” 2015. [19] S. Tranter, M. Gales, R. Sinha, S. Umesh, and P. Woodland, “The development of the Cambridge University RT-04

  2. Aromatase inhibitors in stimulated IVF cycles

    Directory of Open Access Journals (Sweden)

    Tournaye Herman

    2011-06-01

    Full Text Available Abstract Aromatase inhibitors have been introduced as a new treatment modality that could challenge clomiphene citrate as an ovulation induction regiment in patients with PCOS. Although several randomized trials have been conducted regarding their use as ovulation induction agents, only few trials are available regarding their efficacy in IVF stimulated cycles. Current available evidence support that letrozole may have a promising role in stimulated IVF cycles, either when administered during the follicular phase for ovarian stimulation. Especially for women with poor ovarian response, letrozole appears to have the potential to increase clinical pregnancy rates when combined with gonadotropins, whereas at the same time reduces the total gonadotropin dose required for ovarian stimulation. However, given that in all of the trials letrozole has been administered in GnRH antagonist cycles, it is intriguing to test in the future how it may perform when used in GnRH agonist cycles. Finally administration of letrozole during luteal phase in IVF cycles offers another treatment modality for patients at high risk for OHSS taking into account that it drastically reduces estradiol levels

  3. STIMULATION TECHNOLOGIES FOR DEEP WELL COMPLETIONS

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Wolhart

    2003-06-01

    The Department of Energy (DOE) is sponsoring a Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a project to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. Phase 1 was recently completed and consisted of assessing deep gas well drilling activity (1995-2007) and an industry survey on deep gas well stimulation practices by region. Of the 29,000 oil, gas and dry holes drilled in 2002, about 300 were drilled in the deep well; 25% were dry, 50% were high temperature/high pressure completions and 25% were simply deep completions. South Texas has about 30% of these wells, Oklahoma 20%, Gulf of Mexico Shelf 15% and the Gulf Coast about 15%. The Rockies represent only 2% of deep drilling. Of the 60 operators who drill deep and HTHP wells, the top 20 drill almost 80% of the wells. Six operators drill half the U.S. deep wells. Deep drilling peaked at 425 wells in 1998 and fell to 250 in 1999. Drilling is expected to rise through 2004 after which drilling should cycle down as overall drilling declines.

  4. Computer Games Functioning as Motivation Stimulants

    Science.gov (United States)

    Lin, Grace Hui Chin; Tsai, Tony Kung Wan; Chien, Paul Shih Chieh

    2011-01-01

    Numerous scholars have recommended computer games can function as influential motivation stimulants of English learning, showing benefits as learning tools (Clarke and Dede, 2007; Dede, 2009; Klopfer and Squire, 2009; Liu and Chu, 2010; Mitchell, Dede & Dunleavy, 2009). This study aimed to further test and verify the above suggestion,…

  5. Gastric applications of electrical field stimulation.

    LENUS (Irish Health Repository)

    Hogan, Aisling M

    2012-02-01

    Advances in clinical applications of electricity have been vast since the launch of Hayman\\'s first cardiac pacemaker more than 70 years ago. Gastric electrical stimulation devices have been recently licensed for treatment of gastroparesis and preliminary studies examining their potential for use in refractory obesity yield promising results.

  6. Ipsilateral masking between acoustic and electric stimulations.

    Science.gov (United States)

    Lin, Payton; Turner, Christopher W; Gantz, Bruce J; Djalilian, Hamid R; Zeng, Fan-Gang

    2011-08-01

    Residual acoustic hearing can be preserved in the same ear following cochlear implantation with minimally traumatic surgical techniques and short-electrode arrays. The combined electric-acoustic stimulation significantly improves cochlear implant performance, particularly speech recognition in noise. The present study measures simultaneous masking by electric pulses on acoustic pure tones, or vice versa, to investigate electric-acoustic interactions and their underlying psychophysical mechanisms. Six subjects, with acoustic hearing preserved at low frequencies in their implanted ear, participated in the study. One subject had a fully inserted 24 mm Nucleus Freedom array and five subjects had Iowa/Nucleus hybrid implants that were only 10 mm in length. Electric masking data of the long-electrode subject showed that stimulation from the most apical electrodes produced threshold elevations over 10 dB for 500, 625, and 750 Hz probe tones, but no elevation for 125 and 250 Hz tones. On the contrary, electric stimulation did not produce any electric masking in the short-electrode subjects. In the acoustic masking experiment, 125-750 Hz pure tones were used to acoustically mask electric stimulation. The acoustic masking results showed that, independent of pure tone frequency, both long- and short-electrode subjects showed threshold elevations at apical and basal electrodes. The present results can be interpreted in terms of underlying physiological mechanisms related to either place-dependent peripheral masking or place-independent central masking.

  7. Stimulating Strategically Aligned Behaviour Among Employees

    NARCIS (Netherlands)

    C.B.M. van Riel (Cees); G.A.J.M. Berens (Guido); M. Dijkstra (Majorie)

    2007-01-01

    textabstractIn recent years it has become increasingly important for companies to ensure strategically aligned behaviour, i.e., employee actions that are consistent with the company’s strategy. This study provides insights into the way companies can stimulate such behaviour through motivating and

  8. Causal Measurement Models: Can Criticism Stimulate Clarification?

    Science.gov (United States)

    Markus, Keith A.

    2016-01-01

    In their 2016 work, Aguirre-Urreta et al. provided a contribution to the literature on causal measurement models that enhances clarity and stimulates further thinking. Aguirre-Urreta et al. presented a form of statistical identity involving mapping onto the portion of the parameter space involving the nomological net, relationships between the…

  9. Stimulated secondary emission from semiconductor microcavities

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Mizeikis, V.; Langbein, Wolfgang Werner

    2001-01-01

    We find strong influence of final-state stimulation on the time-resolved light emission dynamics from semiconductor microcavities after pulsed excitation allowing angle-resonant polariton-polariton scattering on the lower-polariton branch. The polariton dynamics can be controlled by injection...

  10. Stimulant ADHD Medications -- Methylphenidate and Amphetamines

    Science.gov (United States)

    ... g., to help study or boost grades in school; see box). Stimulant ADHD Medications • January 2014 • Page 1 Because they may ... taken by people who do not actually have ADHD. Also, research has shown that ... have lower GPAs in high school and college than those who don’t. How ...

  11. Novel transcranial magnetic stimulation coil for mice

    Science.gov (United States)

    March, Stephen; Stark, Spencer; Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2014-03-01

    Transcranial magnetic stimulation (TMS) shows potential for non-invasive treatment of various neurological disorders. Significant work has been performed on the design of coils used for TMS on human subjects but few reports have been made on the design of coils for use on the brains of animals such as mice. This work is needed as TMS studies utilizing mice can allow rapid preclinical development of TMS for human disorders but the coil designs developed for use on humans are inadequate for optimal stimulation of the much smaller mouse brain. A novel TMS coil has been developed with the goal of inducing strong and focused electric fields for the stimulation of small animals such as mice. Calculations of induced electric fields were performed utilizing an MRI derived inhomogeneous model of an adult male mouse. Mechanical and thermal analysis of this new TMS helmet-coil design have also been performed at anticipated TMS operating conditions to ensure mechanical stability of the new coil and establish expected linear attraction and rotational force values. Calculated temperature increases for typical stimulation periods indicate the helmet-coil system is capable of operating within established medical standards. A prototype of the coil has been fabricated and characterization results are presented.

  12. Galvanic vestibular stimulation speeds visual memory recall.

    Science.gov (United States)

    Wilkinson, David; Nicholls, Sophie; Pattenden, Charlotte; Kilduff, Patrick; Milberg, William

    2008-08-01

    The experiments of Alessandro Volta were amongst the first to indicate that visuo-spatial function can be altered by stimulating the vestibular nerves with galvanic current. Until recently, the beneficial effects of the procedure were masked by the high levels of electrical current applied, which induced nystagmus-related gaze deviation and spatial disorientation. However, several neuropsychological studies have shown that much weaker, imperceptible currents that do not elicit unpleasant side-effects can help overcome visual loss after stroke. Here, we show that visual processing in neurologically healthy individuals can also benefit from galvanic vestibular stimulation. Participants first learnt the names of eight unfamiliar faces and then after a short delay, answered questions from memory about how pairs of these faces differed. Mean correct reaction times were significantly shorter when sub-sensory, noise-enhanced anodal stimulation was administered to the left mastoid, compared to when no stimulation was administered at all. This advantage occurred with no loss in response accuracy, and raises the possibility that the procedure may constitute a more general form of cognitive enhancement.

  13. Feeding stimulants for the colorado beetle

    NARCIS (Netherlands)

    Ritter, F.J.

    1967-01-01

    Potato leaf extract was fractionated and the fractions obtained were tested for their activity as feeding stimulants for Colorado beetle larvae. Also leaves and leaf extracts of different kinds of plants, as well as a number of known pure compounds and mixtures of them, were tested for this

  14. Targeted transtracheal stimulation for vocal fold closure.

    Science.gov (United States)

    Hadley, Aaron J; Thompson, Paul; Kolb, Ilya; Hahn, Elizabeth C; Tyler, Dustin J

    2014-06-01

    Paralysis of the structures in the head and neck due to stroke or other neurological disorder often causes dysphagia (difficulty in swallowing). Patients with dysphagia have a significantly higher incidence of aspiration pneumonia and death. The recurrent laryngeal nerve (RLN), which innervates the intrinsic laryngeal muscles that control the vocal folds, travels superiorly in parallel to the trachea in the tracheoesophageal groove. This study tests the hypothesis that functional electrical stimulation (FES) applied via transtracheal electrodes can produce controlled vocal fold adduction. Bipolar electrodes were placed at 15° intervals around the interior mucosal surface of the canine trachea, and current was applied to the tissue while electromyography (EMG) from the intrinsic laryngeal muscles and vocal fold movement visualization via laryngoscopy were recorded. The lowest EMG thresholds were found at an average location of 100° to the left of the ventral midsagittal line and 128° to the right. A rotatable pair of bipolar electrodes spaced 230° apart were able to stimulate bilaterally both RLNs in every subject. Laryngoscopy showed complete glottal closure with transtracheal stimulation in six of the eight subjects, and this closure was maintained under simultaneous FES-induced laryngeal elevation. Transtracheal stimulation is an effective tool for minimally invasive application of FES to induce vocal fold adduction, providing an alternative mechanism to study airway protection.

  15. Human transient response under local thermal stimulation

    Directory of Open Access Journals (Sweden)

    Wang Lijuan

    2017-01-01

    Full Text Available Human body can operate physiological thermoregulation system when it is exposed to cold or hot environment. Whether it can do the same work when a local part of body is stimulated by different temperatures? The objective of this paper is to prove it. Twelve subjects are recruited to participate in this experiment. After stabilizing in a comfort environment, their palms are stimulated by a pouch of 39, 36, 33, 30, and 27°C. Subject’s skin temperature, heart rate, heat flux of skin, and thermal sensation are recorded. The results indicate that when local part is suffering from harsh temperature, the whole body is doing physiological thermoregulation. Besides, when the local part is stimulated by high temperature and its thermal sensation is warm, the thermal sensation of whole body can be neutral. What is more, human body is more sensitive to cool stimulation than to warm one. The conclusions are significant to reveal and make full use of physiological thermoregulation.

  16. Effects of Vibrotactile Stimulation During Virtual Sandboarding

    DEFF Research Database (Denmark)

    Lind, Stine; Thomsen, Lui; Egebjerg, Mie

    2016-01-01

    This poster details a within-subjects study (n=17) investigating the effects of vibrotactile stimulation on illusory self-motion, presence and perceived realism during an interactive sandboarding simulation. Vibrotactile feedback was delivered using a low frequency audio transducer mounted undern...

  17. A level stimulator programmed for audiometry

    International Nuclear Information System (INIS)

    Fayart, Gerard

    1976-02-01

    This stimulator has been designed for automated audiometric experiments on lemurians. The variations of the transmission level are programmed on punched tape whose reading is controlled by an audiofrequency attenuator. The positive answers of the animal are stored in a seven-counter memory and the results are read by display [fr

  18. Metallic taste from electrical and chemical stimulation.

    Science.gov (United States)

    Lawless, Harry T; Stevens, David A; Chapman, Kathryn W; Kurtz, Anne

    2005-03-01

    A series of three experiments investigated the nature of metallic taste reports after stimulation with solutions of metal salts and after stimulation with metals and electric currents. To stimulate with electricity, a device was fabricated consisting of a small battery affixed to a plastic handle with the anode side exposed for placement on the tongue or oral tissues. Intensity of taste from metals and batteries was dependent upon the voltage and was more robust in areas dense in fungiform papillae. Metallic taste was reported from stimulation with ferrous sulfate solutions, from metals and from electric stimuli. However, reports of metallic taste were more frequent when the word 'metallic' was presented embedded in a list of choices, as opposed to simple free-choice labeling. Intensity decreased for ferrous sulfate when the nose was occluded, consistent with a decrease in retronasal smell, as previously reported. Intensity of taste evoked by copper metal, bimetallic stimuli (zinc/copper) or small batteries (1.5-3 V) was not affected by nasal occlusion. This difference suggests two distinct mechanisms for evocation of metallic taste reports, one dependent upon retronasal smell and a second mediated by oral chemoreceptors.

  19. Stimulating the senses with multi-media

    International Nuclear Information System (INIS)

    Rehn, H.; Majohr, N.; Staude, F.; Haferburg, M.; Foerster, K.

    1995-01-01

    Difficult subjects have always been better taught by example, demonstration and repetition than simply through book learning. Multi-media computer systems deliver these through learning programs which combine text, video, animation, graphics and sound to stimulate and motivate students. (author)

  20. Investigating Tactile Stimulation in Symbiotic Systems

    DEFF Research Database (Denmark)

    Orso, Valeria; Mazza, Renato; Gamberini, Luciano

    2017-01-01

    The core characteristics of tactile stimuli, i.e., recognition reliability and tolerance to ambient interference, make them an ideal candidate to be integrated into a symbiotic system. The selection of the appropriate stimulation is indeed important in order not to hinder the interaction from...

  1. Thyroid Stimulating Hormone and Bone Mineral Density

    DEFF Research Database (Denmark)

    van Vliet, Nicolien A; Noordam, Raymond; van Klinken, Jan B

    2018-01-01

    With population aging, prevalence of low bone mineral density (BMD) and associated fracture risk are increased. To determine whether low circulating thyroid stimulating hormone (TSH) levels within the normal range are causally related to BMD, we conducted a two-sample Mendelian randomization (MR...

  2. Stimulating Cultural Appetites: An Experiential Gourmet Approach

    Science.gov (United States)

    Chavez, Carolyn I.; Hu Poirier, Vickie

    2007-01-01

    This article is an extension of a presentation that won "Best Exercise" at the Eastern Academy of Management, 1998. The authors introduce an experiential gourmet approach using "food stories" to stimulate an aura of acceptance and appreciation for human commonalities before delving into human differences. The authors use a semester long…

  3. Ultrasound stimulation of mandibular bone defect healing

    NARCIS (Netherlands)

    Schortinghuis, Jurjen

    2004-01-01

    The conclusions of the experimental work presented in this thesis are: 1. Low intensity pulsed ultrasound is not effective in stimulating bone growth into a rat mandibular defect, either with or without the use of osteoconductive membranes. 2. Low intensity pulsed ultrasound does not seem to have an

  4. Evaluation of intradural stimulation efficiency and selectivity in a computational model of spinal cord stimulation.

    Directory of Open Access Journals (Sweden)

    Bryan Howell

    Full Text Available Spinal cord stimulation (SCS is an alternative or adjunct therapy to treat chronic pain, a prevalent and clinically challenging condition. Although SCS has substantial clinical success, the therapy is still prone to failures, including lead breakage, lead migration, and poor pain relief. The goal of this study was to develop a computational model of SCS and use the model to compare activation of neural elements during intradural and extradural electrode placement. We constructed five patient-specific models of SCS. Stimulation thresholds predicted by the model were compared to stimulation thresholds measured intraoperatively, and we used these models to quantify the efficiency and selectivity of intradural and extradural SCS. Intradural placement dramatically increased stimulation efficiency and reduced the power required to stimulate the dorsal columns by more than 90%. Intradural placement also increased selectivity, allowing activation of a greater proportion of dorsal column fibers before spread of activation to dorsal root fibers, as well as more selective activation of individual dermatomes at different lateral deviations from the midline. Further, the results suggest that current electrode designs used for extradural SCS are not optimal for intradural SCS, and a novel azimuthal tripolar design increased stimulation selectivity, even beyond that achieved with an intradural paddle array. Increased stimulation efficiency is expected to increase the battery life of implantable pulse generators, increase the recharge interval of rechargeable implantable pulse generators, and potentially reduce stimulator volume. The greater selectivity of intradural stimulation may improve the success rate of SCS by mitigating the sensitivity of pain relief to malpositioning of the electrode. The outcome of this effort is a better quantitative understanding of how intradural electrode placement can potentially increase the selectivity and efficiency of SCS

  5. Mechanism of orientation of stimulating currents in magnetic brain stimulation (abstract)

    Science.gov (United States)

    Ueno, S.; Matsuda, T.

    1991-04-01

    We made a functional map of the human motor cortex related to the hand and foot areas by stimulating the human brain with a focused magnetic pulse. We observed that each functional area in the cortex has an optimum direction for which stimulating currents can produce neural excitation. The present report focuses on the mechanism which is responsible for producing this anisotropic response to brain stimulation. We first obtained a functional map of the brain related to the left ADM (abductor digiti minimi muscles). When the stimulating currents were aligned in the direction from the left to the right hemisphere, clear EMG (electromyographic) responses were obtained only from the left ADM to magnetic stimulation of both hemisphere. When the stimulating currents were aligned in the direction from the right to the left hemisphere, clear EMG signals were obtained only from the right ADM to magnetic stimulation of both hemisphere. The functional maps of the brain were sensitive to changes in the direction of the stimulating currents. To explain the phenomena obtained in the experiments, we developed a model of neural excitation elicited by magnetic stimulation. When eddy currents which are induced by pulsed magnetic fields flow in the direction from soma to the distal part of neural fiber, depolarized area in the distal part are excited, and the membrane excitation propagates along the nerve fiber. In contrast, when the induced currents flow in the direction from the distal part to soma, hyperpolarized parts block or inhibit neural excitation even if the depolarized parts near the soma can be excited. The model explains our observation that the orientation of the induced current vectors reflect both the functional and anatomical organization of the neural fibers in the brain.

  6. Optimization of Bolt Stress

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2013-01-01

    The state of stress in bolts and nuts with ISO metric thread design is examined and optimized. The assumed failure mode is fatigue so the applied preload and the load amplitude together with the stress concentrations define the connection strength. Maximum stress in the bolt is found at, the fillet...... under the head, at the thread start or at the thread root. To minimize the stress concentration shape optimization is applied....

  7. Stress og insomni

    DEFF Research Database (Denmark)

    Jennum, Poul; Zachariae, Bobby

    2012-01-01

    Insomnia and stress are two conditions, which are strongly associated and appear to be pathophysiologically integrated: the occurrence of stress increases the risk of insomnia, insomnia exacerbates stress, and coexistence of both factors has a negative influence on their prognosis. Stress...... and insomnia thus share complex interactions and the mechanisms involved are insufficiently understood but involve both psychological and physiological processes. First choice interventions involve behavioural and cognitive strategies and, to a lesser extent, pharmacological treatment....

  8. Novel systems for the application of isolated tensile, compressive, and shearing stimulation of distraction callus tissue.

    Directory of Open Access Journals (Sweden)

    Nicholaus Meyers

    Full Text Available Distraction osteogenesis is a procedure widely used for the correction of large bone defects. However, a high complication rate persists, likely due to insufficient stability during maturation. Numerical fracture healing models predict bone regeneration under different mechanical conditions allowing fixation stiffness optimization. However, most models apply a linear elastic material law inappropriate for the transient stresses/strains present during limb lengthening or segment transport. They are also often validated using in vivo osteotomy models lacking precise mechanical regulation due to the unavoidable stimulation of secondary interfragmentary motion during ambulation under finitely stiff fixation. Therefore, in order to create a robust numerical model of distraction osteogenesis, it is necessary to both characterize the new tissue's viscoelasticity during distraction and determine the influence of strictly isolated stimulation in each loading mode (tension, compression, and shear to account for potential differences in mechanical and histological response.Two electromechanical fixators with integrated load cells were designed to precisely perform and monitor in vivo lateral distraction and isolated stimulation in sheep tibiae using a mobile, hydroxyapatite-coated titanium plate. The novel surgical procedure circumvents osteotomy, eliminating the undesirable and unquantifiable mechanical stimulation during ambulation.After a 10-day post-surgery latency period, two 0.275 mm distraction steps were performed daily for 10 days. The load cell collected data before, during, and after each distraction step and was terminated after no less than one minute from the time of distraction. A 7-day consolidation period separated the distraction phase and 18-day stimulation phase. Stimulation was carried out in isolated tension, compression, or shear while recording force/time data. Each stimulation session consisted of 120 cycles with a magnitude of

  9. Stress and Protists: No life without stress.

    Science.gov (United States)

    Slaveykova, Vera; Sonntag, Bettina; Gutiérrez, Juan Carlos

    2016-08-01

    We report a summary of the symposium "Stress and Protists: No life without stress", which was held in September 2015 on the VII European Congress of Protistology in partnership with the International Society of Protistologists (Seville, Spain). We present an overview on general comments and concepts on cellular stress which can be also applied to any protist. Generally, various environmental stressors may induce similar cell responses in very different protists. Two main topics are reported in this manuscript: (i) metallic nanoparticles as environmental pollutants and stressors for aquatic protists, and (ii) ultraviolet radiation - induced stress and photoprotective strategies in ciliates. Model protists such as Chlamydomonas reinhardtii and Tetrahymena thermophila were used to assess stress caused by nanoparticles while stress caused by ultraviolet radiation was tested with free living planktonic ciliates as well as with the symbiont-bearing model ciliate Paramecium bursaria. For future studies, we suggest more intensive analyses on protist stress responses to specific environmental abiotic and/or biotic stressors at molecular and genetic levels up to ecological consequences and food web dynamics. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Managing Stress. Project Seed.

    Science.gov (United States)

    Muto, Donna; Wilk, Jan

    One of eight papers from Project Seed, this paper describes a stress management project undertaken with high school sophomores. Managing Stress is described as an interactive workshop that offers young people an opportunity to examine specific areas of stress in their lives and to learn effective ways to deal with them. The program described…

  11. Stress i gymnasiet

    DEFF Research Database (Denmark)

    Nielsen, Anne Maj; Lagermann, Laila Colding

    Denne undersøgelse af stress hos gymnasieelever i Aalborg viser, hvordan stress giver sig udslag i gymnasiet, hvad der stresser eleverne, hvad der adskiller de stressramte elever fra andre elever, hvordan et stressreduktionskurset Åben og Rolig for Unge virker for de unge i gymnasiet, og hvad der...... kan modvirke stress i gymnasiet....

  12. Oxidative Stress in BPH

    Directory of Open Access Journals (Sweden)

    Murat Savas

    2009-01-01

    The present study has shown that there were not relationship between potency of oxidative stress and BPH. Further well designed studies should be planned to find out whether the oxidative stress-related parameters play role in BPH as an interesting pathology in regard of the etiopathogenesis. Keywords: benign prostatic hyperplasia, oxidative stress, prostate

  13. The price of stress

    NARCIS (Netherlands)

    Groot, W.; Maassen, van den H.

    1999-01-01

    In this paper an economic approach is taken to the analysis of work-related stress. This economic approach not only allows us to infer the monetary equivalent of stress, it also enables us to test some of the psychological theories on stress, such as the demand/control theory. Evidence is found that

  14. Leadership and Occupational Stress

    Science.gov (United States)

    Stickle, Fred E.; Scott, Kelly

    2016-01-01

    In a leadership position, it is important to understand what stress is and how it affects others. In an occupational setting, stressors vary according to personality types, gender, and occupational rank. The purpose of this manuscript is to review the foundations of stress and to explore how personality characteristics influence stress.…

  15. Occupational Stress among Teachers.

    Science.gov (United States)

    Albertson, Larry M.; Kagan, Dona M.

    1987-01-01

    Two studies were conducted to investigate the degree to which occupational stress among teachers could be attributed to personal characteristics of the individuals themselves. The first study developed dispositional stress scales. The second examined correlations between these scales, occupational stress scales, and teachers' attitudes toward…

  16. Well screening for matrix stimulation treatments

    International Nuclear Information System (INIS)

    Saavedra, N; Solano, R; Gidley, J; Reyes, C.A; Rodriguez; Kondo, F; Hernandez, J

    1998-01-01

    Matrix acidizing is a stimulation technique only applicable to wells with surrounding damage. It is therefore very important to differentiate the real formation damage from the damage caused by flow Ni dynamic effects. The mechanical damage corresponds to flow restrictions caused by partial penetration, poor perforation as well as to reduce diameters of the production tubing. The dynamic effects are generated by inertia caused by high flow rates and high-pressure differentials. A common practice in our oil fields is to use a general formulation as acid treatment, most of the times without previous lab studies that guarantee the applicability of the treatment in the formation. Additionally, stimulation is randomly applied even treating undamaged wells with negative results and in the best of the cases, loss of the treatment. The selection of the well for matrix stimulation is an essential factor for the success of the treatment. Selection is done through the evaluation of the skin factor (S) and of the economic benefits of reducing the skin in comparison to the cost of the work. The most appropriate tool for skin evaluation is a good pressure test where the radial flow period can be identified. Nevertheless, we normally find-outdated tests most of the times taken with inaccurate tools. The interpretation problem is worsened by completions in which there is simultaneous production from several sand packages and it is difficult to individually differentiate damage factors. This works states a procedure for the selection of wells appropriate for stimulation; it also proposes a method to evaluate the skin factor when there are no accurate interpretations of the pressure tests. A new and increasingly applied methodology to treat wells with high water cuts, which are usually discarded due to the risk of stimulating water zones, is also mentioned

  17. Lipopolysaccharide (LPS) stimulation of fungal secondary metabolism

    Science.gov (United States)

    Khalil, Zeinab G.; Kalansuriya, Pabasara; Capon, Robert J.

    2014-01-01

    We report on a preliminary investigation of the use the Gram-negative bacterial cell wall constituent lipopolysaccharide (LPS) as a natural chemical cue to stimulate and alter the expression of fungal secondary metabolism. Integrated high-throughput micro-cultivation and micro-analysis methods determined that 6 of 40 (15%) of fungi tested responded to an optimal exposure to LPS (0.6 ng/mL) by activating, enhancing or accelerating secondary metabolite production. To explore the possible mechanisms behind this effect, we employed light and fluorescent microscopy in conjunction with a nitric oxide (NO)-sensitive fluorescent dye and an NO scavenger to provide evidence that LPS stimulation of fungal secondary metabolism coincided with LPS activation of NO. Several case studies demonstrated that LPS stimulation can be scaled from single microplate well (1.5 mL) to preparative (>400 mL) scale cultures. For example, LPS treatment of Penicillium sp. (ACM-4616) enhanced pseurotin A and activated pseurotin A1 and pseurotin A2 biosynthesis, whereas LPS treatment of Aspergillus sp. (CMB-M81F) substantially accelerated and enhanced the biosynthesis of shornephine A and a series of biosynthetically related ardeemins and activated production of neoasterriquinone. As an indication of broader potential, we provide evidence that cultures of Penicillium sp. (CMB-TF0411), Aspergillus niger (ACM-4993F), Rhizopus oryzae (ACM-165F) and Thanatephorus cucumeris (ACM-194F) were responsive to LPS stimulation, the latter two examples being particular noteworthy as neither are known to produce secondary metabolites. Our results encourage the view that LPS stimulation can be used as a valuable tool to expand the molecular discovery potential of fungal strains that either have been exhaustively studied by or are unresponsive to traditional culture methodology. PMID:25379339

  18. Proinflammatory mediators stimulate neutrophil-directed angiogenesis.

    LENUS (Irish Health Repository)

    McCourt, M

    2012-02-03

    BACKGROUND: Vascular endothelial growth factor (VEGF; vascular permeability factor) is one of the most potent proangiogenic cytokines, and it plays a central role in mediating the process of angiogenesis or new blood vessel formation. Neutrophils (PMNs) recently have been shown to produce VEGF. HYPOTHESIS: The acute inflammatory response is a potent stimulus for PMN-directed angiogenesis. METHODS: Neutrophils were isolated from healthy volunteers and stimulated with lipopolysaccharide (LPS), tumor necrosis factor alpha (TNF-alpha), interleukin 6 (IL-6), and anti-human Fas monoclonal antibody. Culture supernatants were assayed for VEGF using enzyme-linked immunosorbent assays. Culture supernatants from LPS- and TNF-alpha-stimulated PMNs were then added to human umbilical vein endothelial cells and human microvessel endothelial cells and assessed for endothelial cell proliferation using 5-bromodeoxyuridine labeling. Tubule formation was also assessed on MATRIGEL basement membrane matrix. Neutrophils were lysed to measure total VEGF release, and VEGF expression was detected using Western blot analysis. RESULTS: Lipopolysaccharide and TNF-alpha stimulation resulted in significantly increased release of PMN VEGF (532+\\/-49 and 484+\\/-80 pg\\/mL, respectively; for all, presented as mean +\\/- SEM) compared with control experiments (32+\\/-4 pg\\/mL). Interleukin 6 and Fas had no effect. Culture supernatants from LPS- and TNF-alpha-stimulated PMNs also resulted in significant increases (P<.005) in macrovascular and microvascular endothelial cell proliferation and tubule formation. Adding anti-human VEGF-neutralizing polyclonal antibody to stimulated PMN supernatant inhibited these effects. Total VEGF release following cell lysis and Western blot analysis suggests that the VEGF is released from an intracellular store. CONCLUSION: Activated human PMNs are directly angiogenic by releasing VEGF, and this has important implications for inflammation, capillary leak syndrome

  19. Zearalenone altered the cytoskeletal structure via ER stress- autophagy- oxidative stress pathway in mouse TM4 Sertoli cells.

    Science.gov (United States)

    Zheng, Wanglong; Wang, Bingjie; Si, Mengxue; Zou, Hui; Song, Ruilong; Gu, Jianhong; Yuan, Yan; Liu, Xuezhong; Zhu, Guoqiang; Bai, Jianfa; Bian, Jianchun; Liu, ZongPing

    2018-02-20

    The aim of this study was to investigate the molecular mechanisms of the destruction of cytoskeletal structure by Zearalenone (ZEA) in mouse-derived TM4 cells. In order to investigate the role of autophagy, oxidative stress and endoplasmic reticulum(ER) stress in the process of destruction of cytoskeletal structure, the effects of ZEA on the cell viability, cytoskeletal structure, autophagy, oxidative stress, ER stress, MAPK and PI3K- AKT- mTOR signaling pathways were studied. The data demonstrated that ZEA damaged the cytoskeletal structure through the induction of autophagy that leads to the alteration of cytoskeletal structure via elevated oxidative stress. Our results further showed that the autophagy was stimulated by ZEA through PI3K-AKT-mTOR and MAPK signaling pathways in TM4 cells. In addition, ZEA also induced the ER stress which was involved in the induction of the autophagy through inhibiting the ERK signal pathway to suppress the phosphorylation of mTOR. ER stress was involved in the damage of cytoskeletal structure through induction of autophagy by producing ROS. Taken together, this study revealed that ZEA altered the cytoskeletal structure via oxidative stress - autophagy- ER stress pathway in mouse TM4 Sertoli cells.

  20. Sleep, Stress & Relaxation: Rejuvenate Body & Mind

    Science.gov (United States)

    Sleep, Stress & Relaxation: Rejuvenate Body & Mind; Relieve Stress; best ways to relieve stress; best way to relieve stress; different ways to relieve stress; does smoking relieve stress; does tobacco relieve stress; how can I relieve stress; how can you relieve stress; how do I relieve stress; reduce stress; does smoking reduce stress; how can I reduce stress; how to reduce stress; reduce stress; reduce stress levels; reducing stress; smoking reduce stress; smoking reduces stress; stress reducing techniques; techniques to reduce stress; stress relief; best stress relief; natural stress relief; need stress relief; relief for stress; relief from stress; relief of stress; smoking and stress relief; smoking for stress relief; smoking stress relief; deal with stress; dealing with stress; dealing with anger; dealing with stress; different ways of dealing with stress; help dealing with stress; how to deal with anger; how to deal with stress; how to deal with stress when quitting smoking; stress management; free stress management; how can you manage stress; how do you manage stress; how to manage stress; manage stress; management of stress; management stress; managing stress; strategies for managing stress; coping with stress; cope with stress; copeing with stress; coping and stress; coping skills for stress; coping strategies for stress; coping strategies with stress; coping strategy for stress; coping with stress; coping with stress and anxiety; emotional health; emotional health; emotional health article; emotional health articles; deep relaxation; deep breathing relaxation techniques; deep muscle relaxation; deep relaxation; deep relaxation meditation; deep relaxation technique; deep relaxation techniques; meditation exercises; mindful exercises; mindful meditation exercises; online relaxation exercises; relaxation breathing exercises; relaxation exercise; relaxation exercises; stress relaxation; methods of relaxation for stress; relax stress; relax techniques stress