WorldWideScience

Sample records for stress responsive micrornas

  1. MicroRNA-122 is involved in oxidative stress in isoniazid-induced liver injury in mice.

    Science.gov (United States)

    Song, L; Zhang, Z R; Zhang, J L; Zhu, X B; He, L; Shi, Z; Gao, L; Li, Y; Hu, B; Feng, F M

    2015-10-27

    Many studies have shown that the pathogenesis of liver injury includes oxidative stress. MicroRNA-122 may be a marker for the early diagnosis of drug-induced liver injury. However, the relationship between microRNA-122 and oxidative stress in anti-tuberculosis drug-induced liver injury remains unknown. We measured changes in tissue microRNA-122 levels and indices of oxidative stress during liver injury in mice after administration of isoniazid, a first-line anti-tuberculosis drug. We quantified microRNA-122 expression and indices of oxidative stress at 7 time points, including 1, 3, and 5 days and 1, 2, 3, and 4 weeks. The tissue microRNA-122 levels and oxidative stress significantly changed at 3 and 5 days, suggesting that isoniazid-induced liver injury reduces oxidative stress and microRNA-122 expression compared to in the control group (P microRNA-122, began to change at 5 days (P microRNA-122 profile may affect oxidative stress by regulating mitochondrial ribosome protein S11 gene during isoniazid-induced liver injury, which may contribute to the response mechanisms of microRNA-122 and oxidative stress.

  2. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice

    DEFF Research Database (Denmark)

    Patrick, David M; Montgomery, Rusty L; Qi, Xiaoxia

    2010-01-01

    MicroRNAs inhibit mRNA translation or promote mRNA degradation by binding complementary sequences in 3' untranslated regions of target mRNAs. MicroRNA-21 (miR-21) is upregulated in response to cardiac stress, and its inhibition by a cholesterol-modified antagomir has been reported to prevent card...

  3. Neuro-Epigenetic Indications of Acute Stress Response in Humans: The Case of MicroRNA-29c.

    Directory of Open Access Journals (Sweden)

    Sharon Vaisvaser

    Full Text Available Stress research has progressively become more integrative in nature, seeking to unfold crucial relations between the different phenotypic levels of stress manifestations. This study sought to unravel stress-induced variations in expression of human microRNAs sampled in peripheral blood mononuclear cells and further assess their relationship with neuronal and psychological indices. We obtained blood samples from 49 healthy male participants before and three hours after performing a social stress task, while undergoing functional magnetic resonance imaging (fMRI. A seed-based functional connectivity (FC analysis was conducted for the ventro-medial prefrontal cortex (vmPFC, a key area of stress regulation. Out of hundreds of microRNAs, a specific increase was identified in microRNA-29c (miR-29c expression, corresponding with both the experience of sustained stress via self-reports, and alterations in vmPFC functional connectivity. Explicitly, miR-29c expression levels corresponded with both increased connectivity of the vmPFC with the anterior insula (aIns, and decreased connectivity of the vmPFC with the left dorso-lateral prefrontal cortex (dlPFC. Our findings further revealed that miR-29c mediates an indirect path linking enhanced vmPFC-aIns connectivity during stress with subsequent experiences of sustained stress. The correlative patterns of miR-29c expression and vmPFC FC, along with the mediating effects on subjective stress sustainment and the presumed localization of miR-29c in astrocytes, together point to an intriguing assumption; miR-29c may serve as a biomarker in the blood for stress-induced functional neural alterations reflecting regulatory processes. Such a multi-level model may hold the key for future personalized intervention in stress psychopathology.

  4. Genome-wide identification of conserved microRNA and their response to drought stress in Dongxiang wild rice (Oryza rufipogon Griff.).

    Science.gov (United States)

    Zhang, Fantao; Luo, Xiangdong; Zhou, Yi; Xie, Jiankun

    2016-04-01

    To identify drought stress-responsive conserved microRNA (miRNA) from Dongxiang wild rice (Oryza rufipogon Griff., DXWR) on a genome-wide scale, high-throughput sequencing technology was used to sequence libraries of DXWR samples, treated with and without drought stress. 505 conserved miRNAs corresponding to 215 families were identified. 17 were significantly down-regulated and 16 were up-regulated under drought stress. Stem-loop qRT-PCR revealed the same expression patterns as high-throughput sequencing, suggesting the accuracy of the sequencing result was high. Potential target genes of the drought-responsive miRNA were predicted to be involved in diverse biological processes. Furthermore, 16 miRNA families were first identified to be involved in drought stress response from plants. These results present a comprehensive view of the conserved miRNA and their expression patterns under drought stress for DXWR, which will provide valuable information and sequence resources for future basis studies.

  5. Genome-Wide Identification of MicroRNAs in Response to Cadmium Stress in Oilseed Rape (Brassica napus L. Using High-Throughput Sequencing

    Directory of Open Access Journals (Sweden)

    Hongju Jian

    2018-05-01

    Full Text Available MicroRNAs (miRNAs have important roles in regulating stress-response genes in plants. However, identification of miRNAs and the corresponding target genes that are induced in response to cadmium (Cd stress in Brassica napus remains limited. In the current study, we sequenced three small-RNA libraries from B. napus after 0 days, 1 days, and 3 days of Cd treatment. In total, 44 known miRNAs (belonging to 27 families and 103 novel miRNAs were identified. A comprehensive analysis of miRNA expression profiles found 39 differentially expressed miRNAs between control and Cd-treated plants; 13 differentially expressed miRNAs were confirmed by qRT-PCR. Characterization of the corresponding target genes indicated functions in processes including transcription factor regulation, biotic stress response, ion homeostasis, and secondary metabolism. Furthermore, we propose a hypothetical model of the Cd-response mechanism in B. napus. Combined with qRT-PCR confirmation, our data suggested that miRNAs were involved in the regulations of TFs, biotic stress defense, ion homeostasis and secondary metabolism synthesis to respond Cd stress in B. napus.

  6. MicroRNA mir-34 provides robustness to environmental stress response via the DAF-16 network in C. elegans

    NARCIS (Netherlands)

    Isik, Meltem; Blackwell, T. Keith; Berezikov, Eugene

    2016-01-01

    Diverse stresses and aging alter expression levels of microRNAs, suggesting a role for these posttranscriptional regulators of gene expression in stress modulation and longevity. Earlier studies demonstrated a central role for the miR-34 family in promoting cell cycle arrest and cell death following

  7. Transcriptome dynamics of the microRNA inhibition response

    DEFF Research Database (Denmark)

    Wen, Jiayu; Leucci, Elenora; Vendramin, Roberto

    2015-01-01

    We report a high-resolution time series study of transcriptome dynamics following antimiR-mediated inhibition of miR-9 in a Hodgkin lymphoma cell-line-the first such dynamic study of the microRNA inhibition response-revealing both general and specific aspects of the physiological response. We show...... validate the key observations with independent time series qPCR and we experimentally validate key predicted miR-9 targets. Methodologically, we developed sensitive functional data analytic predictive methods to analyse the weak response inherent in microRNA inhibition experiments. The methods...... of this study will be applicable to similar high-resolution time series transcriptome analyses and provides the context for more accurate experimental design and interpretation of future microRNA inhibition studies....

  8. MicroRNAs, the DNA damage response and cancer

    International Nuclear Information System (INIS)

    Wouters, Maikel D.; Gent, Dik C. van; Hoeijmakers, Jan H.J.; Pothof, Joris

    2011-01-01

    Many carcinogenic agents such as ultra-violet light from the sun and various natural and man-made chemicals act by damaging the DNA. To deal with these potentially detrimental effects of DNA damage, cells induce a complex DNA damage response (DDR) that includes DNA repair, cell cycle checkpoints, damage tolerance systems and apoptosis. This DDR is a potent barrier against carcinogenesis and defects within this response are observed in many, if not all, human tumors. DDR defects fuel the evolution of precancerous cells to malignant tumors, but can also induce sensitivity to DNA damaging agents in cancer cells, which can be therapeutically exploited by the use of DNA damaging treatment modalities. Regulation of and coordination between sub-pathways within the DDR is important for maintaining genome stability. Although regulation of the DDR has been extensively studied at the transcriptional and post-translational level, less is known about post-transcriptional gene regulation by microRNAs, the topic of this review. More specifically, we highlight current knowledge about DNA damage responsive microRNAs and microRNAs that regulate DNA damage response genes. We end by discussing the role of DNA damage response microRNAs in cancer etiology and sensitivity to ionizing radiation and other DNA damaging therapeutic agents.

  9. MicroRNA-19b associates with Ago2 in the amygdala following chronic stress and regulates the adrenergic receptor beta 1.

    Science.gov (United States)

    Volk, Naama; Paul, Evan D; Haramati, Sharon; Eitan, Chen; Fields, Brandon K K; Zwang, Raaya; Gil, Shosh; Lowry, Christopher A; Chen, Alon

    2014-11-05

    Activation of the stress response in the presence of diverse challenges requires numerous adaptive molecular and cellular changes. To identify specific microRNA molecules that are altered following chronic stress, mice were subjected to the chronic social defeat procedure. The amygdala from these mice was collected and a screen for microRNAs that were recruited to the RNA-induced silencing complex and differentially expressed between the stressed and unstressed mice was conducted. One of the microRNAs that were significantly altered was microRNA-19b (miR-19b). Bioinformatics analysis revealed the adrenergic receptor β-1 (Adrb1) as a potential target for this microRNA with multiple conserved seed sites. Consistent with its putative regulation by miR-19b, Adrb1 levels were reduced in the basolateral amygdala (BLA) following chronic stress. In vitro studies using luciferase assays showed a direct effect of miR-19b on Adrb1 levels, which were not evident when miR-19b seed sequences at the Adrb1 transcript were mutated. To assess the role of miR-19b in memory stabilization, previously attributed to BLA-Adrb1, we constructed lentiviruses designed to overexpress or knockdown miR-19b. Interestingly, adult mice injected bilaterally with miR-19b into the BLA showed lower freezing time relative to control in the cue fear conditioning test, and deregulation of noradrenergic circuits, consistent with downregulation of Adrb1 levels. Knockdown of endogenous BLA-miR-19b levels resulted in opposite behavioral and noradrenergic profile with higher freezing time and increase 3-methoxy-4-hydroxyphenylglycol/noradrenaline ratio. These findings suggest a key role for miR-19b in modulating behavioral responses to chronic stress and Adrb1 as an important target of miR-19b in stress-linked brain regions. Copyright © 2014 the authors 0270-6474/14/3415070-13$15.00/0.

  10. High-throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane.

    Directory of Open Access Journals (Sweden)

    Mariana Carnavale Bottino

    Full Text Available Salt stress is a primary cause of crop losses worldwide, and it has been the subject of intense investigation to unravel the complex mechanisms responsible for salinity tolerance. MicroRNA is implicated in many developmental processes and in responses to various abiotic stresses, playing pivotal roles in plant adaptation. Deep sequencing technology was chosen to determine the small RNA transcriptome of Saccharum sp cultivars grown on saline conditions. We constructed four small RNAs libraries prepared from plants grown on hydroponic culture submitted to 170 mM NaCl and harvested after 1 h, 6 hs and 24 hs. Each library was sequenced individually and together generated more than 50 million short reads. Ninety-eight conserved miRNAs and 33 miRNAs* were identified by bioinformatics. Several of the microRNA showed considerable differences of expression in the four libraries. To confirm the results of the bioinformatics-based analysis, we studied the expression of the 10 most abundant miRNAs and 1 miRNA* in plants treated with 170 mM NaCl and in plants with a severe treatment of 340 mM NaCl. The results showed that 11 selected miRNAs had higher expression in samples treated with severe salt treatment compared to the mild one. We also investigated the regulation of the same miRNAs in shoots of four cultivars grown on soil treated with 170 mM NaCl. Cultivars could be grouped according to miRNAs expression in response to salt stress. Furthermore, the majority of the predicted target genes had an inverse regulation with their correspondent microRNAs. The targets encode a wide range of proteins, including transcription factors, metabolic enzymes and genes involved in hormone signaling, probably assisting the plants to develop tolerance to salinity. Our work provides insights into the regulatory functions of miRNAs, thereby expanding our knowledge on potential salt-stressed regulated genes.

  11. microRNA Response to Listeria monocytogenes Infection in Epithelial Cells

    Science.gov (United States)

    Izar, Benjamin; Mannala, Gopala Krishna; Mraheil, Mobarak Abu; Chakraborty, Trinad; Hain, Torsten

    2012-01-01

    microRNAs represent a family of very small non-coding RNAs that control several physiologic and pathologic processes, including host immune response and cancer by antagonizing a number of target mRNAs. There is limited knowledge about cell expression and the regulatory role of microRNAs following bacterial infections. We investigated whether infection with a Gram-positive bacterium leads to altered expression of microRNAs involved in the host cell response in epithelial cells. Caco-2 cells were infected with Listeria monocytogenes EGD-e, a mutant strain (ΔinlAB or Δhly) or incubated with purified listeriolysin (LLO). Total RNA was isolated and microRNA and target gene expression was compared to the expression in non-infected cells using microRNA microarrays and qRT-PCR. We identified and validated five microRNAs (miR- 146b, miR-16, let-7a1, miR-145 and miR-155) that were significantly deregulated following listerial infection. We show that expression patterns of particular microRNAs strongly depend on pathogen localization and the presence of bacterial effector proteins. Strikingly, miR-155 which was shown to have an important role in inflammatory responses during infection was induced by wild-type bacteria, by LLO-deficient bacteria and following incubation with purified LLO. It was downregulated following ΔinlAB infection indicating a new potent role for internalins in listerial pathogenicity and miRNA regulation. Concurrently, we observed differences in target transcript expression of the investigated miRNAs. We provide first evidence that L. monocytogenes infection leads to deregulation of a set of microRNAs with important roles in host response. Distinct microRNA expression depends on both LLO and pathogen localization. PMID:22312311

  12. From Oxidative Stress Damage to Pathways, Networks, and Autophagy via MicroRNAs

    Directory of Open Access Journals (Sweden)

    Nikolai Engedal

    2018-01-01

    Full Text Available Oxidative stress can alter the expression level of many microRNAs (miRNAs, but how these changes are integrated and related to oxidative stress responses is poorly understood. In this article, we addressed this question by using in silico tools. We reviewed the literature for miRNAs whose expression is altered upon oxidative stress damage and used them in combination with various databases and software to predict common gene targets of oxidative stress-modulated miRNAs and affected pathways. Furthermore, we identified miRNAs that simultaneously target the predicted oxidative stress-modulated miRNA gene targets. This generated a list of novel candidate miRNAs potentially involved in oxidative stress responses. By literature search and grouping of pathways and cellular responses, we could classify these candidate miRNAs and their targets into a larger scheme related to oxidative stress responses. To further exemplify the potential of our approach in free radical research, we used our explorative tools in combination with ingenuity pathway analysis to successfully identify new candidate miRNAs involved in the ubiquitination process, a master regulator of cellular responses to oxidative stress and proteostasis. Lastly, we demonstrate that our approach may also be useful to identify novel candidate connections between oxidative stress-related miRNAs and autophagy. In summary, our results indicate novel and important aspects with regard to the integrated biological roles of oxidative stress-modulated miRNAs and demonstrate how this type of in silico approach can be useful as a starting point to generate hypotheses and guide further research on the interrelation between miRNA-based gene regulation, oxidative stress signaling pathways, and autophagy.

  13. Identification and Functional Analysis of MicroRNAs and Their Targets in Platanus acerifolia under Lead (Pb) Stress

    OpenAIRE

    Yuanlong Wang; Zhenli Zhao; Minjie Deng; Rongning Liu; Suyan Niu; Guoqiang Fan

    2015-01-01

    MicroRNAs (miRNAs) play important regulatory roles in development and stress responses in plants. Lead (Pb) is a non-essential element that is highly toxic to living organisms. Platanus acerifolia is grown as a street tree in cities throughout temperate regions for its importance in improving the urban ecological environment. MiRNAs that respond to abiotic stresses have been identified in plants; however, until now, the influence of Pb stress on P. acerifolia miRNAs has not been reported. To ...

  14. Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response

    Directory of Open Access Journals (Sweden)

    Chong Kang

    2009-09-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are endogenous small RNAs having large-scale regulatory effects on plant development and stress responses. Extensive studies of miRNAs have only been performed in a few model plants. Although miRNAs are proved to be involved in plant cold stress responses, little is known for winter-habit monocots. Brachypodium distachyon, with close evolutionary relationship to cool-season cereals, has recently emerged as a novel model plant. There are few reports of Brachypodium miRNAs. Results High-throughput sequencing and whole-genome-wide data mining led to the identification of 27 conserved miRNAs, as well as 129 predicted miRNAs in Brachypodium. For multiple-member conserved miRNA families, their sizes in Brachypodium were much smaller than those in rice and Populus. The genome organization of miR395 family in Brachypodium was quite different from that in rice. The expression of 3 conserved miRNAs and 25 predicted miRNAs showed significant changes in response to cold stress. Among these miRNAs, some were cold-induced and some were cold-suppressed, but all the conserved miRNAs were up-regulated under cold stress condition. Conclusion Our results suggest that Brachypodium miRNAs are composed of a set of conserved miRNAs and a large proportion of non-conserved miRNAs with low expression levels. Both kinds of miRNAs were involved in cold stress response, but all the conserved miRNAs were up-regulated, implying an important role for cold-induced miRNAs. The different size and genome organization of miRNA families in Brachypodium and rice suggest that the frequency of duplication events or the selection pressure on duplicated miRNAs are different between these two closely related plant species.

  15. Identification and Characterization of Wilt and Salt Stress-Responsive MicroRNAs in Chickpea through High-Throughput Sequencing

    Science.gov (United States)

    Deokar, Amit Atmaram; Bhardwaj, Ankur R.; Agarwal, Manu; Katiyar-Agarwal, Surekha; Srinivasan, Ramamurthy; Jain, Pradeep Kumar

    2014-01-01

    Chickpea (Cicer arietinum) is the second most widely grown legume worldwide and is the most important pulse crop in the Indian subcontinent. Chickpea productivity is adversely affected by a large number of biotic and abiotic stresses. MicroRNAs (miRNAs) have been implicated in the regulation of plant responses to several biotic and abiotic stresses. This study is the first attempt to identify chickpea miRNAs that are associated with biotic and abiotic stresses. The wilt infection that is caused by the fungus Fusarium oxysporum f.sp. ciceris is one of the major diseases severely affecting chickpea yields. Of late, increasing soil salinization has become a major problem in realizing these potential yields. Three chickpea libraries using fungal-infected, salt-treated and untreated seedlings were constructed and sequenced using next-generation sequencing technology. A total of 12,135,571 unique reads were obtained. In addition to 122 conserved miRNAs belonging to 25 different families, 59 novel miRNAs along with their star sequences were identified. Four legume-specific miRNAs, including miR5213, miR5232, miR2111 and miR2118, were found in all of the libraries. Poly(A)-based qRT-PCR (Quantitative real-time PCR) was used to validate eleven conserved and five novel miRNAs. miR530 was highly up regulated in response to fungal infection, which targets genes encoding zinc knuckle- and microtubule-associated proteins. Many miRNAs responded in a similar fashion under both biotic and abiotic stresses, indicating the existence of cross talk between the pathways that are involved in regulating these stresses. The potential target genes for the conserved and novel miRNAs were predicted based on sequence homologies. miR166 targets a HD-ZIPIII transcription factor and was validated by 5′ RLM-RACE. This study has identified several conserved and novel miRNAs in the chickpea that are associated with gene regulation following exposure to wilt and salt stress. PMID:25295754

  16. Tamarix microRNA Profiling Reveals New Insight into Salt Tolerance

    Directory of Open Access Journals (Sweden)

    Jianwen Wang

    2018-04-01

    Full Text Available The halophyte tamarisk (Tamarix is extremely salt tolerant, making it an ideal material for salt tolerance-related studies. Although many salt-responsive genes of Tamarix were identified in previous studies, there are no reports on the role of post-transcriptional regulation in its salt tolerance. We constructed six small RNA libraries of Tamarix chinensis roots with NaCl treatments. High-throughput sequencing of the six libraries was performed and microRNA expression profiles were constructed. We investigated salt-responsive microRNAs to uncover the microRNA-mediated genes regulation. From these analyses, 251 conserved and 18 novel microRNA were identified from all small RNAs. From 191 differentially expressed microRNAs, 74 co-expressed microRNAs were identified as salt-responsive candidate microRNAs. The most enriched GO (gene ontology terms for the 157 genes targeted by differentially expressed microRNAs suggested that transcriptions factors were highly active. Two hub microRNAs (miR414, miR5658, which connected by several target genes into an organic microRNA regulatory network, appeared to be the key regulators of post-transcriptional salt-stress responses. As the first survey on the tamarisk small RNAome, this study improves the understanding of tamarisk salt-tolerance mechanisms and will contribute to the molecular-assisted resistance breeding.

  17. microRNAs targeting DEAD-box helicases are involved in salinity stress response in rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Macovei Anca

    2012-10-01

    Full Text Available Abstract Background Rice (Oryza sativa L., one of the most important food crop in the world, is considered to be a salt-sensitive crop. Excess levels of salt adversely affect all the major metabolic activities, including cell wall damage, cytoplasmic lysis and genomic stability. In order to cope with salt stress, plants have evolved high degrees of developmental plasticity, including adaptation via cascades of molecular networks and changes in gene expression profiles. Posttranscriptional regulation, through the activity of microRNAs, also plays an important role in the plant response to salinity conditions. MicroRNAs are small endogenous RNAs that modulate gene expression and are involved in the most essential physiological processes, including plant development and adaptation to environmental changes. Results In the present study, we investigated the expression profiles of osa-MIR414, osa-MIR408 and osa-MIR164e along with their targeted genes, under salinity stress conditions in wild type and transgenic rice plants ectopically expressing the PDH45 (Pea DNA Helicase gene. The present miRNAs were predicted to target the OsABP (ATP-Binding Protein, OsDSHCT (DOB1/SK12/helY-like DEAD-box Helicase and OsDBH (DEAD-Box Helicase genes, included in the DEAD-box helicase family. An in silico characterization of the proteins was performed and the miRNAs predicted targets were validated by RLM-5′RACE. The qRT-PCR analysis showed that the OsABP, OsDBH and OsDSHCT genes were up-regulated in response to 100 and 200 mM NaCl treatments. The present study also highlighted an increased accumulation of the gene transcripts in wild type plants, with the exception of the OsABP mRNA which showed the highest level (15.1-fold change compared to control in the transgenic plants treated with 200 mM NaCl. Salinity treatments also affected the expression of osa-MIR414, osa-MIR164e and osa-MIR408, found to be significantly down-regulated, although the changes in mi

  18. Regulation of cardiac microRNAs by serum response factor

    Directory of Open Access Journals (Sweden)

    Wei Jeanne Y

    2011-02-01

    Full Text Available Abstract Serum response factor (SRF regulates certain microRNAs that play a role in cardiac and skeletal muscle development. However, the role of SRF in the regulation of microRNA expression and microRNA biogenesis in cardiac hypertrophy has not been well established. In this report, we employed two distinct transgenic mouse models to study the impact of SRF on cardiac microRNA expression and microRNA biogenesis. Cardiac-specific overexpression of SRF (SRF-Tg led to altered expression of a number of microRNAs. Interestingly, downregulation of miR-1, miR-133a and upregulation of miR-21 occurred by 7 days of age in these mice, long before the onset of cardiac hypertrophy, suggesting that SRF overexpression impacted the expression of microRNAs which contribute to cardiac hypertrophy. Reducing cardiac SRF level using the antisense-SRF transgenic approach (Anti-SRF-Tg resulted in the expression of miR-1, miR-133a and miR-21 in the opposite direction. Furthermore, we observed that SRF regulates microRNA biogenesis, specifically the transcription of pri-microRNA, thereby affecting the mature microRNA level. The mir-21 promoter sequence is conserved among mouse, rat and human; one SRF binding site was found to be in the mir-21 proximal promoter region of all three species. The mir-21 gene is regulated by SRF and its cofactors, including myocardin and p49/Strap. Our study demonstrates that the downregulation of miR-1, miR-133a, and upregulation of miR-21 can be reversed by one single upstream regulator, SRF. These results may help to develop novel therapeutic interventions targeting microRNA biogenesis.

  19. microRNAs Associated with Drought Response in the Bioenergy Crop Sugarcane (Saccharum spp.)

    Science.gov (United States)

    Vilela, Romel Duarte; Costa, Gustavo Gilson Lacerda; Dias, Lara Isys; Endres, Laurício; Menossi, Marcelo

    2012-01-01

    Sugarcane (Saccharum spp.) is one of the most important crops in the world. Drought stress is a major abiotic stress factor that significantly reduces sugarcane yields. However the gene network that mediates plant responses to water stress remains largely unknown in several crop species. Although several microRNAs that mediate post-transcriptional regulation during water stress have been described in other species, the role of the sugarcane microRNAs during drought stress has not been studied. The objective of this work was to identify sugarcane miRNAs that are differentially expressed under drought stress and to correlate this expression with the behavior of two sugarcane cultivars with different drought tolerances. The sugarcane cultivars RB867515 (higher drought tolerance) and RB855536 (lower drought tolerance) were cultivated in a greenhouse for three months and then subjected to drought for 2, 4, 6 or 8 days. By deep sequencing of small RNAs, we were able to identify 18 miRNA families. Among all of the miRNAs thus identified, seven were differentially expressed during drought. Six of these miRNAs were differentially expressed at two days of stress, and five miRNAs were differentially expressed at four days. The expression levels of five miRNAs (ssp-miR164, ssp-miR394, ssp-miR397, ssp-miR399-seq 1 and miR528) were validated by RT-qPCR (quantitative reverse transcriptase PCR). Six precursors and the targets of the differentially expressed miRNA were predicted using an in silico approach and validated by RT-qPCR; many of these targets may play important roles in drought tolerance. These findings constitute a significant increase in the number of identified miRNAs in sugarcane and contribute to the elucidation of the complex regulatory network that is activated by drought stress. PMID:23071617

  20. microRNA and mRNA profiles in ventral tegmental area relevant to stress-induced depression and resilience.

    Science.gov (United States)

    Sun, Xiaoyan; Song, Zhenhua; Si, Yawei; Wang, Jin-Hui

    2018-06-01

    Chronic stress with lack of reward presumably may impair brain reward circuit, leading to major depressive disorder (MDD). Most individuals experiencing chronic stress do not suffer from MDD, i.e., resilience, implying the presence of endogenous anti-depression in the brain. Molecular mechanisms underlying stress-induced depression versus resilience were investigated. Mice were treated by chronic unpredictable mild stress (CUMS) for four weeks. Their mood state was assessed by behavioral tasks, such as sucrose preference, Y-maze and forced swimming testes. To reveal comprehensive molecular profiles of major depression versus resilience, mRNA and microRNA profiles were analyzed by high-throughput sequencing in the ventral tegmental area (VTA) harvested from control, CUMS-susceptible and CUMS-resilience mice. In data analyses of control versus CUMS-susceptible mice as well as control versus CUMS-resilience mice, 1.5 fold ratio in reads per kilo-base per million reads was set as the threshold to judge the involvement of mRNAs and microRNAs in the CUMS, depression or resilience. The downregulation of synaptic vesicle cycle, neurotrophin, GABAergic synapse and morphine addiction as well as the upregulation of transmitter release, calcium signal and cAMP-dependent response element binding are associated to CUMS-susceptibility. The downregulation of tyrosine metabolism and protein process in endoplasmic reticulum as well as the upregulation of amino acid biosynthesis, neuroactive ligand-receptor interaction and dopaminergic synapse are associated to CUMS-resilience. Therefore, the impairment of neurons and GABA/dopaminergic synapses in the VTA is associated with major depression. The upregulation of these entities is associated with resilience. Consistent results obtained from analyzing mRNAs and microRNAs as well as using different approaches strengthen our finding and conclusion. Copyright © 2018. Published by Elsevier Inc.

  1. Specific microRNAs Regulate Heat Stress Responses in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Nehammer, Camilla; Podolska, Agnieszka; Mackowiak, Sebastian D

    2015-01-01

    have identified additional functions for already known players (mir-71 and mir-239) as well as identifying mir-80 and the mir-229 mir-64-66 cluster as important regulators of the heat stress response in C. elegans. These findings uncover an additional layer of complexity to the regulation of stress...... to heat stress in Caenorhabditis elegans and show that a discrete subset of miRNAs is thermoregulated. Using in-depth phenotypic analyses of miRNA deletion mutant strains we reveal multiple developmental and post-developmental survival and behavioral functions for specific miRNAs during heat stress. We...

  2. Differentially Expressed microRNAs and Target Genes Associated with Plastic Internode Elongation in Alternanthera philoxeroides in Contrasting Hydrological Habitats

    Directory of Open Access Journals (Sweden)

    Gengyun Li

    2017-12-01

    Full Text Available Phenotypic plasticity is crucial for plants to survive in changing environments. Discovering microRNAs, identifying their targets and further inferring microRNA functions in mediating plastic developmental responses to environmental changes have been a critical strategy for understanding the underlying molecular mechanisms of phenotypic plasticity. In this study, the dynamic expression patterns of microRNAs under contrasting hydrological habitats in the amphibious species Alternanthera philoxeroides were identified by time course expression profiling using high-throughput sequencing technology. A total of 128 known and 18 novel microRNAs were found to be differentially expressed under contrasting hydrological habitats. The microRNA:mRNA pairs potentially associated with plastic internode elongation were identified by integrative analysis of microRNA and mRNA expression profiles, and were validated by qRT-PCR and 5′ RLM-RACE. The results showed that both the universal microRNAs conserved across different plants and the unique microRNAs novelly identified in A. philoxeroides were involved in the responses to varied water regimes. The results also showed that most of the differentially expressed microRNAs were transiently up-/down-regulated at certain time points during the treatments. The fine-scale temporal changes in microRNA expression highlighted the importance of time-series sampling in identifying stress-responsive microRNAs and analyzing their role in stress response/tolerance.

  3. Apple ring rot-responsive putative microRNAs revealed by high-throughput sequencing in Malus × domestica Borkh.

    Science.gov (United States)

    Yu, Xin-Yi; Du, Bei-Bei; Gao, Zhi-Hong; Zhang, Shi-Jie; Tu, Xu-Tong; Chen, Xiao-Yun; Zhang, Zhen; Qu, Shen-Chun

    2014-08-01

    MicroRNAs (miRNAs) are small non-coding RNAs, which silence target mRNA via cleavage or translational inhibition to function in regulating gene expression. MiRNAs act as important regulators of plant development and stress response. For understanding the role of miRNAs responsive to apple ring rot stress, we identified disease-responsive miRNAs using high-throughput sequencing in Malus × domestica Borkh.. Four small RNA libraries were constructed from two control strains in M. domestica, crabapple (CKHu) and Fuji Naga-fu No. 6 (CKFu), and two disease stress strains, crabapple (DSHu) and Fuji Naga-fu No. 6 (DSFu). A total of 59 miRNA families were identified and five miRNAs might be responsive to apple ring rot infection and validated via qRT-PCR. Furthermore, we predicted 76 target genes which were regulated by conserved miRNAs potentially. Our study demonstrated that miRNAs was responsive to apple ring rot infection and may have important implications on apple disease resistance.

  4. MicroRNA response to hypoxic stress in soft tissue sarcoma cells: microRNA mediated regulation of HIF3α

    International Nuclear Information System (INIS)

    Gits, Caroline MM; Wiemer, Erik AC; Kuijk, Patricia F van; Rijck, Jonneke CWM de; Muskens, Nikky; Jonkers, Moniek BE; IJcken, Wilfred F van; Mathijssen, Ron HJ; Verweij, Jaap; Sleijfer, Stefan

    2014-01-01

    Hypoxia is often encountered in solid tumors and known to contribute to aggressive tumor behavior, radiation- and chemotherapy resistance resulting in a poor prognosis for the cancer patient. MicroRNAs (miRNAs) play a role in the regulation of the tumor cell response to hypoxia, however, not much is known about the involvement of miRNAs in hypoxic signalling pathways in soft tissue sarcomas (STS). A panel of twelve STS cell lines was exposed to atmospheric oxygen concentrations (normoxia) or 1% oxygen (hypoxia) for up to 48 h. Hypoxic conditions were verified and miRNA expression profiles were assessed by LNA™ oligonucleotide microarrays and RT-PCR after 24 h. The expression of target genes regulated by hypoxia responsive miRNAs is examined by end-point PCR and validated by luciferase reporter constructs. Exposure of STS cell lines to hypoxic conditions gave rise to upregulation of Hypoxia Inducible Factor (HIF) 1α protein levels and increased mRNA expression of HIF1 target genes CA9 and VEGFA. Deregulation of miRNA expression after 24 h of hypoxia was observed. The most differentially expressed miRNAs (p < 0.001) in response to hypoxia were miR-185-3p, miR-485-5p, miR-216a-5p (upregulated) and miR-625-5p (downregulated). The well-known hypoxia responsive miR-210-3p could not be reliably detected by the microarray platform most likely for technical reasons, however, its upregulation upon hypoxic stress was apparent by qPCR. Target prediction algorithms identified 11 potential binding sites for miR-485-5p and a single putative miR-210-3p binding site in the 3’UTR of HIF3α, the least studied member of the HIF family. We showed that HIF3α transcripts, expressing a 3’UTR containing the miR-485-5p and miR-210-3p target sites, are expressed in all sarcoma cell lines and upregulated upon hypoxia. Additionally, luciferase reporter constructs containing the 3’UTR of HIF3α were used to demonstrate regulation of HIF3α by miR-210-3p and miR-485-5p. Here we provide

  5. High throughput deep degradome sequencing reveals microRNAs and their targets in response to drought stress in mulberry (Morus alba).

    Science.gov (United States)

    Li, Ruixue; Chen, Dandan; Wang, Taichu; Wan, Yizhen; Li, Rongfang; Fang, Rongjun; Wang, Yuting; Hu, Fei; Zhou, Hong; Li, Long; Zhao, Weiguo

    2017-01-01

    MicroRNAs (miRNAs) play important regulatory roles by targeting mRNAs for cleavage or translational repression. Identification of miRNA targets is essential to better understanding the roles of miRNAs. miRNA targets have not been well characterized in mulberry (Morus alba). To anatomize miRNA guided gene regulation under drought stress, transcriptome-wide high throughput degradome sequencing was used in this study to directly detect drought stress responsive miRNA targets in mulberry. A drought library (DL) and a contrast library (CL) were constructed to capture the cleaved mRNAs for sequencing. In CL, 409 target genes of 30 conserved miRNA families and 990 target genes of 199 novel miRNAs were identified. In DL, 373 target genes of 30 conserved miRNA families and 950 target genes of 195 novel miRNAs were identified. Of the conserved miRNA families in DL, mno-miR156, mno-miR172, and mno-miR396 had the highest number of targets with 54, 52 and 41 transcripts, respectively, indicating that these three miRNA families and their target genes might play important functions in response to drought stress in mulberry. Additionally, we found that many of the target genes were transcription factors. By analyzing the miRNA-target molecular network, we found that the DL independent networks consisted of 838 miRNA-mRNA pairs (63.34%). The expression patterns of 11 target genes and 12 correspondent miRNAs were detected using qRT-PCR. Six miRNA targets were further verified by RNA ligase-mediated 5' rapid amplification of cDNA ends (RLM-5' RACE). Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that these target transcripts were implicated in a broad range of biological processes and various metabolic pathways. This is the first study to comprehensively characterize target genes and their associated miRNAs in response to drought stress by degradome sequencing in mulberry. This study provides a framework for understanding

  6. MicroRNAs play big roles in modulating macrophages response toward mycobacteria infection.

    Science.gov (United States)

    Abdalla, Abualgasim Elgaili; Duan, Xiangke; Deng, Wanyan; Zeng, Jie; Xie, Jianping

    2016-11-01

    Macrophages are crucial player in the defense against multiple intracellular pathogens. Mycobacterium tuberculosis, the causative agent of tuberculosis which inflicted around one third of global population, can replicate and persist within macrophages. MicroRNAs, endogenous, small noncoding RNA, can regulate the expression of macrophages genes required for appropriate signaling. Mycobacteria can manipulate the expression of macrophages microRNAs to subvert cell response for its survival and persistence. This review summarized the progress of microRNAs in mycobacterial pathogenesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Identification of protoplast-isolation responsive microRNAs in Citrus reticulata Blanco by high-throughput sequencing.

    Science.gov (United States)

    Xu, Xiaoyong; Xu, Xiaoling; Zhou, Yipeng; Zeng, Shaohua; Kong, Weiwen

    2017-01-01

    Protoplast isolation is a stress-inducing process, during which a variety of physiological and molecular alterations take place. Such stress response affects the expression of totipotency of cultured protoplasts. MicroRNAs (miRNAs) play important roles in plant growth, development and stress responses. However, the underlying mechanism of miRNAs involved in the protoplast totipotency remains unclear. In this study, high-throughput sequencing technology was used to sequence two populations of small RNA from calli and callus-derived protoplasts in Citrus reticulata Blanco. A total of 67 known miRNAs from 35 families and 277 novel miRNAs were identified. Among these miRNAs, 18 known miRNAs and 64 novel miRNAs were identified by differentially expressed miRNAs (DEMs) analysis. The expression patterns of the eight DEMs were verified by qRT-PCR. Target prediction showed most targets of the miRNAs were transcription factors. The expression levels of half targets showed a negative correlation to those of the miRNAs. Furthermore, the physiological analysis showed high levels of antioxidant activities in isolated protoplasts. In short, our results indicated that miRNAs may play important roles in protoplast-isolation response.

  8. Transgenic expression of microRNA-181d augments the stress-sensitivity of CD4(+CD8(+ thymocytes.

    Directory of Open Access Journals (Sweden)

    Serkan Belkaya

    Full Text Available Physiological stress resulting from infections, trauma, surgery, alcoholism, malnutrition, and/or pregnancy results in a substantial depletion of immature CD4(+CD8(+ thymocytes. We previously identified 18 distinct stress-responsive microRNAs (miRs in the thymus upon systemic stress induced by lipopolysaccharide (LPS or the synthetic glucocorticoid, dexamethasone (Dex. MiRs are short, non-coding RNAs that play critical roles in the immune system by targeting diverse mRNAs, suggesting that their modulation in the thymus in response to stress could impact thymopoiesis. MiR-181d is one such stress-responsive miR, exhibiting a 15-fold down-regulation in expression. We utilized both transgenic and gene-targeting approaches to study the impact of miR-181d on thymopoiesis under normal and stress conditions. The over-expression of miR-181d in developing thymocytes reduced the total number of immature CD4(+CD8(+ thymocytes. LPS or Dex injections caused a 4-fold greater loss of these cells when compared with the wild type controls. A knockout mouse was developed to selectively eliminate miR-181d, leaving the closely spaced and contiguous family member miR-181c intact. The targeted elimination of just miR-181d resulted in a thymus stress-responsiveness similar to wild-type mice. These experiments suggest that one or more of three other miR-181 family members have overlapping or compensatory functions. Gene expression comparisons of thymocytes from the wild type versus transgenic mice indicated that miR-181d targets a number of stress, metabolic, and signaling pathways. These findings demonstrate that selected miRs enhance stress-mediated thymic involution in vivo.

  9. MicroRNAs in Post-traumatic Stress Disorder.

    Science.gov (United States)

    Snijders, Clara; de Nijs, Laurence; Baker, Dewleen G; Hauger, Richard L; van den Hove, Daniel; Kenis, Gunter; Nievergelt, Caroline M; Boks, Marco P; Vermetten, Eric; Gage, Fred H; Rutten, Bart P F

    2017-10-21

    Post-traumatic stress disorder (PTSD) is a psychiatric disorder that can develop following exposure to or witnessing of a (potentially) threatening event. A critical issue is to pinpoint the (neuro)biological mechanisms underlying the susceptibility to stress-related disorder such as PTSD, which develops in the minority of ~15% of individuals exposed to trauma. Over the last few years, a first wave of epigenetic studies has been performed in an attempt to identify the molecular underpinnings of the long-lasting behavioral and mental effects of trauma exposure. The potential roles of non-coding RNAs (ncRNAs) such as microRNAs (miRNAs) in moderating or mediating the impact of severe stress and trauma are increasingly gaining attention. To date, most studies focusing on the roles of miRNAs in PTSD have, however, been completed in animals, using cross-sectional study designs and focusing almost exclusively on subjects with susceptible phenotypes. Therefore, there is a strong need for new research comprising translational and cross-species approaches that use longitudinal designs for studying trajectories of change contrasting susceptible and resilient subjects. The present review offers a comprehensive overview of available studies of miRNAs in PTSD and discusses the current challenges, pitfalls, and future perspectives of this field.

  10. Stress-induced ECM alteration modulates cellular microRNAs that feedback to readjust the extracellular environment and cell behaviour

    Directory of Open Access Journals (Sweden)

    Halyna R Shcherbata

    2013-12-01

    Full Text Available The extracellular environment is a complex entity comprising of the extracellular matrix (ECM and regulatory molecules. It is highly dynamic and under cell-extrinsic stress, transmits the stressed organism’s state to each individual ECM-connected cell. microRNAs (miRNAs are regulatory molecules involved in virtually all the processes in the cell, especially under stress. In this review, we analyse how microRNA expression is regulated downstream of various signal transduction pathways induced by changes in the extracellular environment. In particular, we focus on the muscular dystrophy-associated cell adhesion molecule dystroglycan capable of signal transduction. Then we show how exactly the same miRNAs feedback to regulate the extracellular environment. The ultimate goal of this bi-directional signal transduction process is to change cell behaviour under cell-extrinsic stress in order to respond to it accordingly.

  11. MicroRNA-target gene responses to lead-induced stress in cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    He, Qiuling; Zhu, Shuijin; Zhang, Baohong

    2014-09-01

    MicroRNAs (miRNAs) play key roles in plant responses to various metal stresses. To investigate the miRNA-mediated plant response to heavy metals, cotton (Gossypium hirsutum L.), the most important fiber crop in the world, was exposed to different concentrations (0, 25, 50, 100, and 200 µM) of lead (Pb) and then the toxicological effects were investigated. The expression patterns of 16 stress-responsive miRNAs and 10 target genes were monitored in cotton leaves and roots by quantitative real-time PCR (qRT-PCR); of these selected genes, several miRNAs and their target genes are involved in root development. The results show a reciprocal regulation of cotton response to lead stress by miRNAs. The characterization of the miRNAs and the associated target genes in response to lead exposure would help in defining the potential roles of miRNAs in plant adaptation to heavy metal stress and further understanding miRNA regulation in response to abiotic stress.

  12. Transcriptome and Degradome of microRNAs and Their Targets in Response to Drought Stress in the Plants of a Diploid and Its Autotetraploid Paulownia australis.

    Directory of Open Access Journals (Sweden)

    Suyan Niu

    Full Text Available MicroRNAs (miRNAs are small, non-coding RNAs that play vital roles in plant growth, development, and stress response. Increasing numbers of studies aimed at discovering miRNAs and analyzing their functions in plants are being reported. In this study, we investigated the effect of drought stress on the expression of miRNAs and their targets in plants of a diploid and derived autotetraploid Paulownia australis. Four small RNA (sRNA libraries and four degradome libraries were constructed from diploid and autotetraploid P. australis plants treated with either 75% or 25% relative soil water content. A total of 33 conserved and 104 novel miRNAs (processing precision value > 0.1 were identified, and 125 target genes were identified for 36 of the miRNAs by using the degradome sequencing. Among the identified miRNAs, 54 and 68 were differentially expressed in diploid and autotetraploid plants under drought stress (25% relative soil water content, respectively. The expressions of miRNAs and target genes were also validated by quantitative real-time PCR. The results showed that the relative expression trends of the randomly selected miRNAs were similar to the trends predicted by Illumina sequencing. And the correlations between miRNAs and their target genes were also analyzed. Furthermore, the functional analysis showed that most of these miRNAs and target genes were associated with plant development and environmental stress response. This study provided molecular evidence for the possible involvement of certain miRNAs in the drought response and/or tolerance in P. australis, and certain level of differential expression between diploid and autotetraploid plants.

  13. Pulmonary microRNA profiling: implications in upper lobe predominant lung disease.

    Science.gov (United States)

    Armstrong, David A; Nymon, Amanda B; Ringelberg, Carol S; Lesseur, Corina; Hazlett, Haley F; Howard, Louisa; Marsit, Carmen J; Ashare, Alix

    2017-01-01

    Numerous pulmonary diseases manifest with upper lobe predominance including cystic fibrosis, smoking-related chronic obstructive pulmonary disease, and tuberculosis. Zonal hypoxia, characteristic of these pulmonary maladies, and oxygen stress in general is known to exert profound effects on various important aspects of cell biology. Lung macrophages are major participants in the pulmonary innate immune response and regional differences in macrophage responsiveness to hypoxia may contribute in the development of lung disease. MicroRNAs are ubiquitous regulators of human biology and emerging evidence indicates altered microRNA expression modulates respiratory disease processes. The objective of this study is to gain insight into the epigenetic and cellular mechanisms influencing regional differences in lung disease by investigating effect of hypoxia on regional microRNA expression in the lung. All studies were performed using primary alveolar macrophages ( n  = 10) or bronchoalveolar lavage fluid ( n  = 16) isolated from human subjects. MicroRNA was assayed via the NanoString nCounter microRNA assay. Divergent molecular patterns of microRNA expression were observed in alternate lung lobes, specifically noted was disparate expression of miR-93 and miR-4454 in alveolar macrophages along with altered expression of miR-451a and miR-663a in bronchoalveolar lavage fluid. Gene ontology was used to identify potential downstream targets of divergent microRNAs. Targets include cytokines and matrix metalloproteinases, molecules that could have a significant impact on pulmonary inflammation and fibrosis. Our findings show variant regional microRNA expression associated with hypoxia in alveolar macrophages and BAL fluid in the lung-upper vs lower lobe. Future studies should address whether these specific microRNAs may act intracellularly, in a paracrine/endocrine manner to direct the innate immune response or may ultimately be involved in pulmonary host-to-pathogen trans

  14. Transcripts and MicroRNAs Responding to Salt Stress in Musa acuminata Colla (AAA Group cv. Berangan Roots.

    Directory of Open Access Journals (Sweden)

    Wan Sin Lee

    Full Text Available Physiological responses to stress are controlled by expression of a large number of genes, many of which are regulated by microRNAs. Since most banana cultivars are salt-sensitive, improved understanding of genetic regulation of salt induced stress responses in banana can support future crop management and improvement in the face of increasing soil salinity related to irrigation and climate change. In this study we focused on determining miRNA and their targets that respond to NaCl exposure and used transcriptome sequencing of RNA and small RNA from control and NaCl-treated banana roots to assemble a cultivar-specific reference transcriptome and identify orthologous and Musa-specific miRNA responding to salinity. We observed that, banana roots responded to salinity stress with changes in expression for a large number of genes (9.5% of 31,390 expressed unigenes and reduction in levels of many miRNA, including several novel miRNA and banana-specific miRNA-target pairs. Banana roots expressed a unique set of orthologous and Musa-specific miRNAs of which 59 respond to salt stress in a dose-dependent manner. Gene expression patterns of miRNA compared with those of their predicted mRNA targets indicated that a majority of the differentially expressed miRNAs were down-regulated in response to increased salinity, allowing increased expression of targets involved in diverse biological processes including stress signaling, stress defence, transport, cellular homeostasis, metabolism and other stress-related functions. This study may contribute to the understanding of gene regulation and abiotic stress response of roots and the high-throughput sequencing data sets generated may serve as important resources related to salt tolerance traits for functional genomic studies and genetic improvement in banana.

  15. The Role of MicroRNAs in Environmental Risk Factors, Noise-Induced Hearing Loss, and Mental Stress.

    Science.gov (United States)

    Miguel, Verónica; Cui, Julia Yue; Daimiel, Lidia; Espinosa-Díez, Cristina; Fernández-Hernando, Carlos; Kavanagh, Terrance J; Lamas, Santiago

    2018-03-20

    MicroRNAs (miRNAs) are important regulators of gene expression and define part of the epigenetic signature. Their influence on every realm of biomedicine is established and progressively increasing. The impact of environment on human health is enormous. Among environmental risk factors impinging on quality of life are those of chemical nature (toxic chemicals, heavy metals, pollutants, and pesticides) as well as those related to everyday life such as exposure to noise or mental and psychosocial stress. Recent Advances: This review elaborates on the relationship between miRNAs and these environmental risk factors. The most relevant facts underlying the role of miRNAs in the response to these environmental stressors, including redox regulatory changes and oxidative stress, are highlighted and discussed. In the cases wherein miRNA mutations are relevant for this response, the pertinent literature is also reviewed. We conclude that, even though in some cases important advances have been made regarding close correlations between specific miRNAs and biological responses to environmental risk factors, a need for prospective large-cohort studies is likely necessary to establish causative roles. Antioxid. Redox Signal. 28, 773-796.

  16. MicroRNA-101 mediates the suppressive effect of laminar shear stress on mTOR expression in vascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kui; Fan, Wendong; Wang, Xing; Ke, Xiao [Division of Cardiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080 (China); Wu, Guifu, E-mail: eecpchina@yahoo.com.cn [Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou 510080 (China); Hu, Chengheng, E-mail: huchenghengpci@yahoo.com.cn [Division of Cardiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080 (China)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Laminar shear stress upregulates miR-101 expression in vascular endothelial cells. Black-Right-Pointing-Pointer miR-101 represses mTOR expression through a specific 3 Prime UTR binding site. Black-Right-Pointing-Pointer Overexpression of miR-101 inhibits G1/S transition and endothelial cell proliferation. Black-Right-Pointing-Pointer Blockade of miR-101 attenuates the suppressive effect of laminar flow on mTOR expression. -- Abstract: Shear stress associated with blood flow plays an important role in regulating gene expression and cell function in endothelial cells (ECs). MicroRNAs (miRNAs) are highly conserved, small non-coding RNAs that negatively regulate the expression of target genes by binding to the mRNA 3 Prime -untranslated region (3 Prime UTR) at the posttranscriptional level involved in diverse cellular processes. This study demonstrates that microRNA-101 in response to laminar shear stress (LSS) is involved in the flow regulation of gene expression in ECs. qRT-PCR analysis showed that miR-101 expression was significantly upregulated in human umbilical vein endothelial cells (HUVECs) exposed to 12 dyn/cm{sup 2} laminar shear stress for 12 h. We found that transfection of miR-101 significantly decreased the luciferase activity of plasmid reporter containing the 3 Prime UTR of mammalian target of rapamycin (mTOR) gene. Western analysis revealed that the protein level of mTOR was significantly reduced in ECs transfected with miR-101. Furthermore, miR-101 overexpression induced cell cycle arrest at the G1/S transition and suppressed endothelial cell proliferation. Finally, transfection of miR-101 inhibitors attenuated the suppressive effects of LSS on mTOR expression, which identified the efficacy of loss-of-function of miR-101 in laminar flow-treated ECs. In conclusion, we have demonstrated that upregulation of miR-101 in response to LSS contributes to the suppressive effects of LSS on mTOR expression and EC

  17. MicroRNAs regulate the main events in rice drought stress response by manipulating the water supply to shoots.

    Science.gov (United States)

    Fard, Ehsan Mohseni; Bakhshi, Behnam; Farsi, Mohammad; Kakhki, Amin Mirshamsi; Nikpay, Nava; Ebrahimi, Mohammad Ali; Mardi, Mohsen; Salekdeh, Ghasem Hosseini

    2017-10-24

    MicroRNAs (miRNAs) are small endogenous regulatory RNAs that are involved in a variety of biological processes related to proliferation, development, and response to biotic and abiotic stresses. miRNA profiles of rice (Oryza sativa L. cv. IR64.) leaves in a partial root zone drying (PRD) system were analysed using a high-throughput sequencing approach to identify miRNAs associated with drought signalling. The treatments performed in this study were as follows: well-watered ("wet" roots, WW), wherein both halves of the pot were watered daily; drought ("dry" roots, DD), wherein water was withheld from both halves of the pot; and well-watered/drought ("wet" and "dry" roots, WD), wherein one half of each pot was watered daily, the same as in WW, and water was withheld from the other part, the same as in DD. High-throughput sequencing enabled us to detect novel miRNAs and study the differential expression of known miRNAs. A total of 209 novel miRNAs were detected in this study. Differential miRNA profiling of the DD, WD and WW conditions showed differential expression of 159 miRNAs, among which 83, 44 and 32 miRNAs showed differential expression under both DD and WD conditions. The detection of putative targets of the differentially expressed miRNAs and investigation of their functions showed that most of these genes encode transcription factors involved in growth and development, leaf morphology, regulation of hormonal homeostasis, and stress response. The most important differences between the DD and WD conditions involved regulation of the levels of hormones such as auxin, cytokinin, abscisic acid, and jasmonic acid and also regulation of phosphor homeostasis. Overall, differentially expressed miRNAs under WD conditions were found to differ from those under DD conditions, with such differences playing a role in adaptation and inducing the normal condition. The mechanisms involved in regulating hormonal homeostasis and involved in energy production and consumption

  18. Arsenic responsive microRNAs in vivo and their potential involvement in arsenic-induced oxidative stress

    International Nuclear Information System (INIS)

    Ren, Xuefeng; Gaile, Daniel P.; Gong, Zhihong; Qiu, Wenting; Ge, Yichen; Zhang, Chuanwu; Huang, Chenping; Yan, Hongtao; Olson, James R.; Kavanagh, Terrance J.; Wu, Hongmei

    2015-01-01

    Arsenic exposure is postulated to modify microRNA (miRNA) expression, leading to changes of gene expression and toxicities, but studies relating the responses of miRNAs to arsenic exposure are lacking, especially with respect to in vivo studies. We utilized high-throughput sequencing technology and generated miRNA expression profiles of liver tissues from Sprague Dawley (SD) rats exposed to various concentrations of sodium arsenite (0, 0.1, 1, 10 and 100 mg/L) for 60 days. Unsupervised hierarchical clustering analysis of the miRNA expression profiles clustered the SD rats into different groups based on the arsenic exposure status, indicating a highly significant association between arsenic exposure and cluster membership (p-value of 0.0012). Multiple miRNA expressions were altered by arsenic in an exposure concentration-dependent manner. Among the identified arsenic-responsive miRNAs, several are predicted to target Nfe2l2-regulated antioxidant genes, including glutamate–cysteine ligase (GCL) catalytic subunit (GCLC) and modifier subunit (GCLM) which are involved in glutathione (GSH) synthesis. Exposure to low concentrations of arsenic increased mRNA expression for Gclc and Gclm, while high concentrations significantly reduced their expression, which were correlated to changes in hepatic GCL activity and GSH level. Moreover, our data suggested that other mechanisms, e.g., miRNAs, rather than Nfe2l2-signaling pathway, could be involved in the regulation of mRNA expression of Gclc and Gclm post-arsenic exposure in vivo. Together, our findings show that arsenic exposure disrupts the genome-wide expression of miRNAs in vivo, which could lead to the biological consequence, such as an altered balance of antioxidant defense and oxidative stress. - Highlights: • Chronic arsenic exposure induces changes of hepatic miRNA expression profiles. • Hepatic GCL activity and GSH level in rats are altered following arsenic exposure. • Arsenic induced GCL expression change is

  19. Arsenic responsive microRNAs in vivo and their potential involvement in arsenic-induced oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Xuefeng, E-mail: xuefengr@buffalo.edu [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Department of Pharmacology and Toxicology, School of Biomedical Sciences, The State University of New York, Buffalo, NY 14214 (United States); Gaile, Daniel P. [Department of Biostatistics, School of Public Health and Health Professions, the State University of New York, Buffalo, NY 14214 (United States); Gong, Zhihong [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Qiu, Wenting [School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China); Ge, Yichen [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Zhang, Chuanwu; Huang, Chenping; Yan, Hongtao [School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China); Olson, James R. [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Department of Pharmacology and Toxicology, School of Biomedical Sciences, The State University of New York, Buffalo, NY 14214 (United States); Kavanagh, Terrance J. [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195 (United States); Wu, Hongmei, E-mail: hongmeiwwu@hotmail.com [School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China)

    2015-03-15

    Arsenic exposure is postulated to modify microRNA (miRNA) expression, leading to changes of gene expression and toxicities, but studies relating the responses of miRNAs to arsenic exposure are lacking, especially with respect to in vivo studies. We utilized high-throughput sequencing technology and generated miRNA expression profiles of liver tissues from Sprague Dawley (SD) rats exposed to various concentrations of sodium arsenite (0, 0.1, 1, 10 and 100 mg/L) for 60 days. Unsupervised hierarchical clustering analysis of the miRNA expression profiles clustered the SD rats into different groups based on the arsenic exposure status, indicating a highly significant association between arsenic exposure and cluster membership (p-value of 0.0012). Multiple miRNA expressions were altered by arsenic in an exposure concentration-dependent manner. Among the identified arsenic-responsive miRNAs, several are predicted to target Nfe2l2-regulated antioxidant genes, including glutamate–cysteine ligase (GCL) catalytic subunit (GCLC) and modifier subunit (GCLM) which are involved in glutathione (GSH) synthesis. Exposure to low concentrations of arsenic increased mRNA expression for Gclc and Gclm, while high concentrations significantly reduced their expression, which were correlated to changes in hepatic GCL activity and GSH level. Moreover, our data suggested that other mechanisms, e.g., miRNAs, rather than Nfe2l2-signaling pathway, could be involved in the regulation of mRNA expression of Gclc and Gclm post-arsenic exposure in vivo. Together, our findings show that arsenic exposure disrupts the genome-wide expression of miRNAs in vivo, which could lead to the biological consequence, such as an altered balance of antioxidant defense and oxidative stress. - Highlights: • Chronic arsenic exposure induces changes of hepatic miRNA expression profiles. • Hepatic GCL activity and GSH level in rats are altered following arsenic exposure. • Arsenic induced GCL expression change is

  20. High Throughput Sequencing of Small RNAs in the Two Cucurbita Germplasm with Different Sodium Accumulation Patterns Identifies Novel MicroRNAs Involved in Salt Stress Response.

    Science.gov (United States)

    Xie, Junjun; Lei, Bo; Niu, Mengliang; Huang, Yuan; Kong, Qiusheng; Bie, Zhilong

    2015-01-01

    MicroRNAs (miRNAs), a class of small non-coding RNAs, recognize their mRNA targets based on perfect sequence complementarity. MiRNAs lead to broader changes in gene expression after plants are exposed to stress. High-throughput sequencing is an effective method to identify and profile small RNA populations in non-model plants under salt stresses, significantly improving our knowledge regarding miRNA functions in salt tolerance. Cucurbits are sensitive to soil salinity, and the Cucurbita genus is used as the rootstock of other cucurbits to enhance salt tolerance. Several cucurbit crops have been used for miRNA sequencing but salt stress-related miRNAs in cucurbit species have not been reported. In this study, we subjected two Cucurbita germplasm, namely, N12 (Cucurbita. maxima Duch.) and N15 (Cucurbita. moschata Duch.), with different sodium accumulation patterns, to Illumina sequencing to determine small RNA populations in root tissues after 4 h of salt treatment and control. A total of 21,548,326 and 19,394,108 reads were generated from the control and salt-treated N12 root tissues, respectively. By contrast, 19,108,240 and 20,546,052 reads were obtained from the control and salt-treated N15 root tissues, respectively. Fifty-eight conserved miRNA families and 33 novel miRNAs were identified in the two Cucurbita germplasm. Seven miRNAs (six conserved miRNAs and one novel miRNAs) were up-regulated in salt-treated N12 and N15 samples. Most target genes of differentially expressed novel miRNAs were transcription factors and salt stress-responsive proteins, including dehydration-induced protein, cation/H+ antiporter 18, and CBL-interacting serine/threonine-protein kinase. The differential expression of miRNAs between the two Cucurbita germplasm under salt stress conditions and their target genes demonstrated that novel miRNAs play an important role in the response of the two Cucurbita germplasm to salt stress. The present study initially explored small RNAs in the

  1. High Throughput Sequencing of Small RNAs in the Two Cucurbita Germplasm with Different Sodium Accumulation Patterns Identifies Novel MicroRNAs Involved in Salt Stress Response.

    Directory of Open Access Journals (Sweden)

    Junjun Xie

    Full Text Available MicroRNAs (miRNAs, a class of small non-coding RNAs, recognize their mRNA targets based on perfect sequence complementarity. MiRNAs lead to broader changes in gene expression after plants are exposed to stress. High-throughput sequencing is an effective method to identify and profile small RNA populations in non-model plants under salt stresses, significantly improving our knowledge regarding miRNA functions in salt tolerance. Cucurbits are sensitive to soil salinity, and the Cucurbita genus is used as the rootstock of other cucurbits to enhance salt tolerance. Several cucurbit crops have been used for miRNA sequencing but salt stress-related miRNAs in cucurbit species have not been reported. In this study, we subjected two Cucurbita germplasm, namely, N12 (Cucurbita. maxima Duch. and N15 (Cucurbita. moschata Duch., with different sodium accumulation patterns, to Illumina sequencing to determine small RNA populations in root tissues after 4 h of salt treatment and control. A total of 21,548,326 and 19,394,108 reads were generated from the control and salt-treated N12 root tissues, respectively. By contrast, 19,108,240 and 20,546,052 reads were obtained from the control and salt-treated N15 root tissues, respectively. Fifty-eight conserved miRNA families and 33 novel miRNAs were identified in the two Cucurbita germplasm. Seven miRNAs (six conserved miRNAs and one novel miRNAs were up-regulated in salt-treated N12 and N15 samples. Most target genes of differentially expressed novel miRNAs were transcription factors and salt stress-responsive proteins, including dehydration-induced protein, cation/H+ antiporter 18, and CBL-interacting serine/threonine-protein kinase. The differential expression of miRNAs between the two Cucurbita germplasm under salt stress conditions and their target genes demonstrated that novel miRNAs play an important role in the response of the two Cucurbita germplasm to salt stress. The present study initially explored small

  2. Diet-responsive microRNAs are likely exogenous

    Science.gov (United States)

    In a recent report Title "et al". fostered miRNA-375 and miR-200c knock-out pups to wild-type dams and arrived at the conclusion that milk microRNAs are bioavailable in trace amounts at best and that postprandial concentrations of microRNAs are too low to elicit biological effects. Their take home m...

  3. Identification and Target Prediction of MicroRNAs in Ulmus pumila L. Seedling Roots under Salt Stress by High-Throughput Sequencing

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhu

    2016-12-01

    Full Text Available MicroRNAs (miRNAs are a class of endogenous small RNAs with important roles in plant growth, development, and environmental stress responses. Ulmus pumila L., a deciduous broadleaved tree species of northern temperate regions, is widely distributed in central and northern Asia and has important economic and ecological value. With the spread and aggravation of soil salinization, salt stress has become a major abiotic stress affecting the normal growth and development of U. pumila. However, the influence of salt stress on U. pumila miRNA expression has not been investigated. To identify miRNAs and predict their target mRNA genes under salt stress, three small RNA libraries were generated and sequenced from roots of U. pumila seedlings treated with various concentrations of NaCl corresponding to no salt stress, light short-term salt stress, and medium-heavy long-term salt stress. Integrative analysis identified 254 conserved miRNAs representing 29 families and 49 novel miRNAs; 232 potential targets of the miRNAs were also predicted. Expression profiling of miRNAs between libraries was performed, and the expression of six miRNAs was validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR. Our findings provide an overview of potential miRNAs and corresponding targets involved in regulating U. pumila salt defense responses. These results lay the foundation for further research into molecular mechanisms involved in salt stress resistance in U. pumila and other Ulmaceae species.

  4. microRNAs involved in auxin signalling modulate male sterility under high-temperature stress in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Ding, Yuanhao; Ma, Yizan; Liu, Nian; Xu, Jiao; Hu, Qin; Li, Yaoyao; Wu, Yuanlong; Xie, Sai; Zhu, Longfu; Min, Ling; Zhang, Xianlong

    2017-09-01

    Male sterility caused by long-term high-temperature (HT) stress occurs widely in crops. MicroRNAs (miRNAs), a class of endogenous non-coding small RNAs, play an important role in the plant response to various abiotic stresses. To dissect the working principle of miRNAs in male sterility under HT stress in cotton, a total of 112 known miRNAs, 270 novel miRNAs and 347 target genes were identified from anthers of HT-insensitive (84021) and HT-sensitive (H05) cotton cultivars under normal-temperature and HT conditions through small RNA and degradome sequencing. Quantitative reverse transcriptase-polymerase chain reaction and 5'-RNA ligase-mediated rapid amplification of cDNA ends experiments were used to validate the sequencing data. The results show that miR156 was suppressed by HT stress in both 84021 and H05; miR160 was suppressed in 84021 but induced in H05. Correspondingly, SPLs (target genes of miR156) were induced both in 84021 and H05; ARF10 and ARF17 (target genes of miR160) were induced in 84021 but suppressed in H05. Overexpressing miR160 increased cotton sensitivity to HT stress seen as anther indehiscence, associated with the suppression of ARF10 and ARF17 expression, thereby activating the auxin response that leads to anther indehiscence. Supporting this role for auxin, exogenous Indole-3-acetic acid (IAA) leads to a stronger male sterility phenotype both in 84021 and H05 under HT stress. Cotton plants overexpressing miR157 suppressed the auxin signal, and also showed enhanced sensitivity to HT stress, with microspore abortion and anther indehiscence. Thus, we propose that the auxin signal, mediated by miRNAs, is essential for cotton anther fertility under HT stress. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  5. Genome-Wide Analysis of Gene and microRNA Expression in Diploid and Autotetraploid Paulownia fortunei (Seem Hemsl. under Drought Stress by Transcriptome, microRNA, and Degradome Sequencing

    Directory of Open Access Journals (Sweden)

    Zhenli Zhao

    2018-02-01

    Full Text Available Drought is a common and recurring climatic condition in many parts of the world, and it can have disastrous impacts on plant growth and development. Many genes involved in the drought response of plants have been identified. Transcriptome, microRNA (miRNA, and degradome analyses are rapid ways of identifying drought-responsive genes. The reference genome sequence of Paulownia fortunei (Seem Hemsl. is now available, which makes it easier to explore gene expression, transcriptional regulation, and post-transcriptional in this species. In this study, four transcriptome, small RNA, and degradome libraries were sequenced by Illumina sequencing, respectively. A total of 258 genes and 11 miRNAs were identified for drought-responsive genes and miRNAs in P. fortunei. Degradome sequencing detected 28 miRNA target genes that were cleaved by members of nine conserved miRNA families and 12 novel miRNAs. The results here will contribute toward enriching our understanding of the response of Paulownia fortunei trees to drought stress and may provide new direction for further experimental studies related the development of molecular markers, the genetic map construction, and other genomic research projects in Paulownia.

  6. Specific and Novel microRNAs Are Regulated as Response to Fungal Infection in Human Dendritic Cells

    Science.gov (United States)

    Dix, Andreas; Czakai, Kristin; Leonhardt, Ines; Schäferhoff, Karin; Bonin, Michael; Guthke, Reinhard; Einsele, Hermann; Kurzai, Oliver; Löffler, Jürgen; Linde, Jörg

    2017-01-01

    Within the last two decades, the incidence of invasive fungal infections has been significantly increased. They are characterized by high mortality rates and are often caused by Candida albicans and Aspergillus fumigatus. The increasing number of infections underlines the necessity for additional anti-fungal therapies, which require extended knowledge of gene regulations during fungal infection. MicroRNAs are regulators of important cellular processes, including the immune response. By analyzing their regulation and impact on target genes, novel therapeutic and diagnostic approaches may be developed. Here, we examine the role of microRNAs in human dendritic cells during fungal infection. Dendritic cells represent the bridge between the innate and the adaptive immune systems. Therefore, analysis of gene regulation of dendritic cells is of particular significance. By applying next-generation sequencing of small RNAs, we quantify microRNA expression in monocyte-derived dendritic cells after 6 and 12 h of infection with C. albicans and A. fumigatus as well as treatment with lipopolysaccharides (LPS). We identified 26 microRNAs that are differentially regulated after infection by the fungi or LPS. Three and five of them are specific for fungal infections after 6 and 12 h, respectively. We further validated interactions of miR-132-5p and miR-212-5p with immunological relevant target genes, such as FKBP1B, KLF4, and SPN, on both RNA and protein level. Our results indicate that these microRNAs fine-tune the expression of immune-related target genes during fungal infection. Beyond that, we identified previously undiscovered microRNAs. We validated three novel microRNAs via qRT-PCR. A comparison with known microRNAs revealed possible relations with the miR-378 family and miR-1260a/b for two of them, while the third one features a unique sequence with no resemblance to known microRNAs. In summary, this study analyzes the effect of known microRNAs in dendritic cells during

  7. Antioxidant responses and cellular adjustments to oxidative stress.

    Science.gov (United States)

    Espinosa-Diez, Cristina; Miguel, Verónica; Mennerich, Daniela; Kietzmann, Thomas; Sánchez-Pérez, Patricia; Cadenas, Susana; Lamas, Santiago

    2015-12-01

    Redox biological reactions are now accepted to bear the Janus faceted feature of promoting both physiological signaling responses and pathophysiological cues. Endogenous antioxidant molecules participate in both scenarios. This review focuses on the role of crucial cellular nucleophiles, such as glutathione, and their capacity to interact with oxidants and to establish networks with other critical enzymes such as peroxiredoxins. We discuss the importance of the Nrf2-Keap1 pathway as an example of a transcriptional antioxidant response and we summarize transcriptional routes related to redox activation. As examples of pathophysiological cellular and tissular settings where antioxidant responses are major players we highlight endoplasmic reticulum stress and ischemia reperfusion. Topologically confined redox-mediated post-translational modifications of thiols are considered important molecular mechanisms mediating many antioxidant responses, whereas redox-sensitive microRNAs have emerged as key players in the posttranscriptional regulation of redox-mediated gene expression. Understanding such mechanisms may provide the basis for antioxidant-based therapeutic interventions in redox-related diseases. Copyright © 2015. Published by Elsevier B.V.

  8. microRNAs in mycobacterial disease: friend or foe?

    Directory of Open Access Journals (Sweden)

    Manali D Mehta

    2014-07-01

    Full Text Available As the role of microRNA in all aspects of biology continues to be unraveled, the interplay between microRNAs and human disease is becoming clearer. It should come of no surprise that microRNAs play a major part in the outcome of infectious diseases, since early work has implicated microRNAs as regulators of the immune response. Here, we provide a review on how microRNAs influence the course of mycobacterial infections, which cause two of humanity’s most ancient infectious diseases: tuberculosis and leprosy. Evidence derived from profiling and functional experiments suggests that regulation of specific microRNAs during infection can either enhance the immune response or facilitate pathogen immune evasion. Now, it remains to be seen if the manipulation of host cell microRNA profiles can be an opportunity for therapeutic intervention for these difficult-to-treat diseases.

  9. Integrated mRNA and microRNA analysis identifies genes and small miRNA molecules associated with transcriptional and post-transcriptional-level responses to both drought stress and re-watering treatment in tobacco.

    Science.gov (United States)

    Chen, Qiansi; Li, Meng; Zhang, Zhongchun; Tie, Weiwei; Chen, Xia; Jin, Lifeng; Zhai, Niu; Zheng, Qingxia; Zhang, Jianfeng; Wang, Ran; Xu, Guoyun; Zhang, Hui; Liu, Pingping; Zhou, Huina

    2017-01-10

    Drought stress is one of the most severe problem limited agricultural productivity worldwide. It has been reported that plants response to drought-stress by sophisticated mechanisms at both transcriptional and post-transcriptional levels. However, the precise molecular mechanisms governing the responses of tobacco leaves to drought stress and water status are not well understood. To identify genes and miRNAs involved in drought-stress responses in tobacco, we performed both mRNA and small RNA sequencing on tobacco leaf samples from the following three treatments: untreated-control (CL), drought stress (DL), and re-watering (WL). In total, we identified 798 differentially expressed genes (DEGs) between the DL and CL (DL vs. CL) treatments and identified 571 DEGs between the WL and DL (WL vs. DL) treatments. Further analysis revealed 443 overlapping DEGs between the DL vs. CL and WL vs. DL comparisons, and, strikingly, all of these genes exhibited opposing expression trends between these two comparisons, strongly suggesting that these overlapping DEGs are somehow involved in the responses of tobacco leaves to drought stress. Functional annotation analysis showed significant up-regulation of genes annotated to be involved in responses to stimulus and stress, (e.g., late embryogenesis abundant proteins and heat-shock proteins) antioxidant defense (e.g., peroxidases and glutathione S-transferases), down regulation of genes related to the cell cycle pathway, and photosynthesis processes. We also found 69 and 56 transcription factors (TFs) among the DEGs in, respectively, the DL vs. CL and the WL vs. DL comparisons. In addition, small RNA sequencing revealed 63 known microRNAs (miRNA) from 32 families and 368 novel miRNA candidates in tobacco. We also found that five known miRNA families (miR398, miR390, miR162, miR166, and miR168) showed differential regulation under drought conditions. Analysis to identify negative correlations between the differentially expressed mi

  10. The role of microRNAs in copper and cadmium homeostasis

    International Nuclear Information System (INIS)

    Ding, Yan-Fei; Zhu, Cheng

    2009-01-01

    Essential heavy metals (e.g., copper) and non-essential metals (e.g., cadmium) are both toxic to plants at high concentrations. Recently, microRNAs (miRNAs) have emerged as important modulators of plants adaptive response to heavy metal stress. Plant miRNAs negatively regulate target mRNAs by post-transcriptional cleavage. miR398 regulates copper homeostasis via down-regulating the expression of Cu,Zn-superoxide dismutase (CSD), a scavenger of superoxide radicals. miR393 and miR171 play an important role in cadmium stress mediation. This review focuses on the recent advance in the involvement of miRNAs in copper and cadmium stress regulatory networks in plants.

  11. Genome-wide identification of microRNAs in pomegranate (Punica granatum L.) by high-throughput sequencing

    Science.gov (United States)

    Background: MicroRNAs (miRNAs), a class of small non-coding endogenous RNAs that regulate gene expression post-transcriptionally, play multiple key roles in plant growth and development and in biotic and abiotic stress response. Knowledge and roles of miRNAs in pomegranate fruit development have not...

  12. Cellular Response to Ionizing Radiation: A MicroRNA Story

    Science.gov (United States)

    Halimi, Mohammad; Asghari, S. Mohsen; Sariri, Reyhaneh; Moslemi, Dariush; Parsian, Hadi

    2012-01-01

    MicroRNAs (miRNAs) represent a class of small non-coding RNA molecules that regulate gene expression at the post-transcriptional level. They play a crucial role in diverse cellular pathways. Ionizing radiation (IR) is one of the most important treatment protocols for patients that suffer from cancer and affects directly or indirectly cellular integration. Recently it has been discovered that microRNA-mediated gene regulation interferes with radio-related pathways in ionizing radiation. Here, we review the recent discoveries about miRNAs in cellular response to IR. Thoroughly understanding the mechanism of miRNAs in radiation response, it will be possible to design new strategies for improving radiotherapy efficiency and ultimately cancer treatment. PMID:24551775

  13. Use of microRNAs in directing therapy and evaluating treatment response in colorectal cancer

    International Nuclear Information System (INIS)

    Andreoli, Silmara Cristiane da Silveira; Gasparini, Nina Jardim; Carvalho, Gisele Pereira de; Garicochea, Bernardo; Pogue, Robert Edward; Andrade, Rosângela Vieira de

    2014-01-01

    Colorectal cancer is the third most common cancer worldwide. Survival and prognosis depend on tumor stage upon diagnosis, and in more than 50% of cases, the tumor has already invaded adjacent tissues or metastasis has occurred. Aiming to improve diagnosis, clinical prognosis and treatment of patients with colorectal cancer, several studies have investigated microRNAs as molecular markers of the disease due to their potential regulatory functions on tumor suppressor genes and oncogenes. This review aimed to summarize the main topics related to the use of microRNAs in diagnosis, clinical prognosis and evaluating treatment response in colorectal cancer

  14. Use of microRNAs in directing therapy and evaluating treatment response in colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Andreoli, Silmara Cristiane da Silveira; Gasparini, Nina Jardim [Universidade Católica de Brasília, Brasilia, DF (Brazil); Carvalho, Gisele Pereira de [Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS (Brazil); Garicochea, Bernardo [Centro de Oncologia Sírio Libanês, São Paulo, SP (Brazil); Pogue, Robert Edward; Andrade, Rosângela Vieira de [Universidade Católica de Brasília, Brasilia, DF (Brazil)

    2014-07-01

    Colorectal cancer is the third most common cancer worldwide. Survival and prognosis depend on tumor stage upon diagnosis, and in more than 50% of cases, the tumor has already invaded adjacent tissues or metastasis has occurred. Aiming to improve diagnosis, clinical prognosis and treatment of patients with colorectal cancer, several studies have investigated microRNAs as molecular markers of the disease due to their potential regulatory functions on tumor suppressor genes and oncogenes. This review aimed to summarize the main topics related to the use of microRNAs in diagnosis, clinical prognosis and evaluating treatment response in colorectal cancer.

  15. Physiological response and microRNA expression profiles in head kidney of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) exposed to acute cold stress.

    Science.gov (United States)

    Qiang, Jun; Cui, Yan T; Tao, Fan Y; Bao, Wen J; He, Jie; Li, Xia H; Xu, Pao; Sun, Lan Y

    2018-01-09

    Cold stress has a serious impact on the overwintering survival and yield of genetically improved farmed tilapia (GIFT, Oreochromis niloticus). Understanding the physiological and molecular regulation mechanisms of low-temperature adaptation is necessary to help breed new tolerant strains. The semi-lethal low temperature of juvenile GIFT at 96 h was determined as 9.4 °C. We constructed and sequenced two small RNA libraries from head kidney tissues, one for the control (CO) group and one for the 9.4 °C-stressed (LTS) group, and identified 1736 and 1481 known microRNAs (miRNAs), and 164 and 152 novel miRNAs in the CO and LTS libraries, respectively. We verify the expression of nine up-regulated miRNAs and eight down-regulation miRNAs by qRT-PCR, and found their expression patterns were consistent with the sequencing results. We found that cold stress may have produced dysregulation of free radical and lipid metabolism, decreased superoxide dismutase activity, reduced respiratory burst and phagocytic activity of macrophages, increased malondialdehyde content, and adversely affected the physiological adaptation of GIFT, eventually leading to death. This study revealed interactions among miRNAs and signal regulated pathways in GIFT under cold stress that may help to understand the pathways involved in cold resistance.

  16. Dose-responsiveness and persistence of microRNA expression alterations induced by cigarette smoke in mouse lung

    International Nuclear Information System (INIS)

    Izzotti, Alberto; Larghero, Patrizia; Longobardi, Mariagrazia; Cartiglia, Cristina; Camoirano, Anna; Steele, Vernon E.; De Flora, Silvio

    2011-01-01

    Our previous studies demonstrated that exposure to cigarette smoke (CS), either mainstream or environmental, results in a remarkable downregulation of microRNA expression in the lung of both mice and rats. The goals of the present study were to evaluate the dose responsiveness to CS and the persistence of microRNA alterations after smoking cessation. ICR (CD-1) neonatal mice were exposed whole-body to mainstream CS, at the doses of 119, 292, 438, and 631 mg/m 3 of total particulate matter. Exposure started within 12 h after birth and continued daily for 4 weeks. The levels of bulky DNA adducts and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) were measured by 32 P postlabeling procedures, and the expression of 697 mouse microRNAs was analyzed by microarray. The highest CS dose was lethal. Exposure to CS caused a dose-dependent increase of DNA alterations. DNA adducts and, even more sharply, 8-oxodGuo were reverted 1 and 4 weeks after smoking cessation. Exposure to CS resulted in an evident dysregulation of microRNA expression profiles, mainly in the sense of downregulation. The two lowest doses were not particularly effective, while the highest nonlethal dose produced extensive microRNA alterations. The expression of most downregulated microRNAs, including among others 7 members of the let-7 family, was restored one week after smoking cessation. However, the recovery was incomplete for a limited array of microRNAs, including mir-34b, mir-345, mir-421, mir-450b, mir-466, and mir-469. Thus, it appears that microRNAs mainly behave as biomarkers of effect and that exposure to high-dose, lasting for an adequate period of time, is needed to trigger the CS-related carcinogenesis process in the experimental animal model used.

  17. MicroRNAs Control Macrophage Formation and Activation: The Inflammatory Link between Obesity and Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Richard Cheng-An Chang

    2014-07-01

    Full Text Available Activation and recruitment of resident macrophages in tissues in response to physiological stress are crucial regulatory processes in promoting the development of obesity-associated metabolic disorders and cardiovascular diseases. Recent studies have provided compelling evidence that microRNAs play important roles in modulating monocyte formation, macrophage maturation, infiltration into tissues and activation. Macrophage-dependent systemic physiological and tissue-specific responses also involve cell-cell interactions between macrophages and host tissue niche cell components, including other tissue-resident immune cell lineages, adipocytes, vascular smooth muscle and others. In this review, we highlight the roles of microRNAs in regulating the development and function of macrophages in the context of obesity, which could provide insights into the pathogenesis of obesity-related metabolic syndrome and cardiovascular diseases.

  18. Identification of novel and conserved microRNAs related to drought stress in potato by deep sequencing.

    Science.gov (United States)

    Zhang, Ning; Yang, Jiangwei; Wang, Zemin; Wen, Yikai; Wang, Jie; He, Wenhui; Liu, Bailin; Si, Huaijun; Wang, Di

    2014-01-01

    MicroRNAs (miRNAs) are a group of small, non-coding RNAs that play important roles in plant growth, development and stress response. There have been an increasing number of investigations aimed at discovering miRNAs and analyzing their functions in model plants (such as Arabidopsis thaliana and rice). In this research, we constructed small RNA libraries from both polyethylene glycol (PEG 6,000) treated and control potato samples, and a large number of known and novel miRNAs were identified. Differential expression analysis showed that 100 of the known miRNAs were down-regulated and 99 were up-regulated as a result of PEG stress, while 119 of the novel miRNAs were up-regulated and 151 were down-regulated. Based on target prediction, annotation and expression analysis of the miRNAs and their putative target genes, 4 miRNAs were identified as regulating drought-related genes (miR811, miR814, miR835, miR4398). Their target genes were MYB transcription factor (CV431094), hydroxyproline-rich glycoprotein (TC225721), quaporin (TC223412) and WRKY transcription factor (TC199112), respectively. Relative expression trends of those miRNAs were the same as that predicted by Solexa sequencing and they showed a negative correlation with the expression of the target genes. The results provide molecular evidence for the possible involvement of miRNAs in the process of drought response and/or tolerance in the potato plant.

  19. Identification and characterization of microRNAs and their targets in high-altitude stress-adaptive plant maca (Lepidium meyenii Walp).

    Science.gov (United States)

    Paul, Sujay

    2017-06-01

    MicroRNAs (miRNAs) are endogenous, short (~21-nucleotide), non-coding RNA molecules that play pivotal roles in plant growth, development, and stress response signaling. In this study using recently published draft genome sequence of a high-altitude plant maca (Lepidium meyenii Walp) and applying genome-wide computational-based approaches, a total of 62 potentially conserved miRNAs belonging to 28 families were identified and four (lme-miR160a, lme-miR164c, lme-miR 166a, and lme-miR 319a) of them further validated by RT-PCR. Deploying psRNATarget tool a total of 99 potential miRNA target transcripts were also identified in maca. Targets include a number of transcription factors like Squamosa promoter-binding, NAC, MYB, auxin response factor, APETALA, WRKY, and F-box protein. To the best of my knowledge, this is the first genome-based miRNA profiling of a high-altitude plant.

  20. Dehydration triggers differential microRNA expression in Xenopus laevis brain.

    Science.gov (United States)

    Luu, Bryan E; Storey, Kenneth B

    2015-11-15

    African clawed frogs, Xenopus laevis, although primarily aquatic, have a high tolerance for dehydration, being capable of withstanding the loss of up to 32-35% of total water body water. Recent studies have shown that microRNAs play a role in the response to dehydration by the liver, kidney and ventral skin of X. laevis. MicroRNAs act by modulating the expression of mRNA transcripts, thereby affecting diverse biochemical pathways. In this study, 43 microRNAs were assessed in frog brains comparing control and dehydrated (31.2±0.83% of total body water lost) conditions. MicroRNAs of interest were measured using a modified protocol which employs polyadenylation of microRNAs prior to reverse transcription and qPCR. Twelve microRNAs that showed a significant decrease in expression (to 41-77% of control levels) in brains from dehydrated frogs (xla-miR-15a, -150, -181a, -191, -211, -218, -219b, -30c, -30e, -31, -34a, and -34b) were identified. Genomic analysis showed that the sequences of these dehydration-responsive microRNAs were highly conserved as compared with the comparable microRNAs of mice (91-100%). Suppression of these microRNAs implies that translation of the mRNA transcripts under their control could be enhanced in response to dehydration. Bioinformatic analysis using the DIANA miRPath program (v.2.0) predicted the top two KEGG pathways that these microRNAs collectively regulate: 1. Axon guidance, and 2. Long-term potentiation. Previous studies indicated that suppression of these microRNAs promotes neuroprotective pathways by increasing the expression of brain-derived neurotrophic factor and activating anti-apoptotic pathways. This suggests that similar actions may be triggered in X. laevis brains as a protective response to dehydration. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  1. Association of microRNAs with antibody response to mycoplasma bovis in beef cattle

    Science.gov (United States)

    The objective of this study was to identify microRNAs associated with a serum antibody response to Mycoplasma bovis in beef cattle. Serum from sixteen beef calves was collected at three points: in summer after calves were born, in fall at weaning, and in the following spring. All sera collected in t...

  2. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants

    KAUST Repository

    Khraiwesh, Basel

    2012-02-01

    Small, non-coding RNAs are a distinct class of regulatory RNAs in plants and animals that control a variety of biological processes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved through a series of pathways. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs control the expression of cognate target genes by binding to reverse complementary sequences, resulting in cleavage or translational inhibition of the target RNAs. siRNAs have a similar structure, function, and biogenesis as miRNAs but are derived from long double-stranded RNAs and can often direct DNA methylation at target sequences. Besides their roles in growth and development and maintenance of genome integrity, small RNAs are also important components in plant stress responses. One way in which plants respond to environmental stress is by modifying their gene expression through the activity of small RNAs. Thus, understanding how small RNAs regulate gene expression will enable researchers to explore the role of small RNAs in biotic and abiotic stress responses. This review focuses on the regulatory roles of plant small RNAs in the adaptive response to stresses. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress. © 2011 Elsevier B.V.

  3. MicroRNA expression profiles in human cancer cells after ionizing radiation

    International Nuclear Information System (INIS)

    Niemoeller, Olivier M; Niyazi, Maximilian; Corradini, Stefanie; Zehentmayr, Franz; Li, Minglun; Lauber, Kirsten; Belka, Claus

    2011-01-01

    MicroRNAs are regulators of central cellular processes and are implicated in the pathogenesis and prognosis of human cancers. MicroRNAs also modulate responses to anti-cancer therapy. In the context of radiation oncology microRNAs were found to modulate cell death and proliferation after irradiation. However, changes in microRNA expression profiles in response to irradiation have not been comprehensively analyzed so far. The present study's intend is to present a broad screen of changes in microRNA expression following irradiation of different malignant cell lines. 1100 microRNAs (Sanger miRBase release version 14.0) were analyzed in six malignant cell lines following irradiation with clinically relevant doses of 2.0 Gy. MicroRNA levels 6 hours after irradiation were compared to microRNA levels in non-irradiated cells using the 'Geniom Biochip MPEA homo sapiens'. Hierarchical clustering analysis revealed a pattern, which significantly (p = 0.014) discerned irradiated from non-irradiated cells. The expression levels of a number of microRNAs known to be involved in the regulation of cellular processes like apoptosis, proliferation, invasion, local immune response and radioresistance (e. g. miR-1285, miR-24-1, miR-151-5p, let-7i) displayed 2 - 3-fold changes after irradiation. Moreover, several microRNAs previously not known to be radiation-responsive were discovered. Ionizing radiation induced significant changes in microRNA expression profiles in 3 glioma and 3 squamous cell carcinoma cell lines. The functional relevance of these changes is not addressed but should by analyzed by future work especially focusing on clinically relevant endpoints like radiation induced cell death, proliferation, migration and metastasis

  4. Identification and characterization of microRNAs related to salt stress in broccoli, using high-throughput sequencing and bioinformatics analysis.

    Science.gov (United States)

    Tian, Yunhong; Tian, Yunming; Luo, Xiaojun; Zhou, Tao; Huang, Zuoping; Liu, Ying; Qiu, Yihan; Hou, Bing; Sun, Dan; Deng, Hongyu; Qian, Shen; Yao, Kaitai

    2014-09-03

    MicroRNAs (miRNAs) are a new class of endogenous regulators of a broad range of physiological processes, which act by regulating gene expression post-transcriptionally. The brassica vegetable, broccoli (Brassica oleracea var. italica), is very popular with a wide range of consumers, but environmental stresses such as salinity are a problem worldwide in restricting its growth and yield. Little is known about the role of miRNAs in the response of broccoli to salt stress. In this study, broccoli subjected to salt stress and broccoli grown under control conditions were analyzed by high-throughput sequencing. Differential miRNA expression was confirmed by real-time reverse transcription polymerase chain reaction (RT-PCR). The prediction of miRNA targets was undertaken using the Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology (KO) database and Gene Ontology (GO)-enrichment analyses. Two libraries of small (or short) RNAs (sRNAs) were constructed and sequenced by high-throughput Solexa sequencing. A total of 24,511,963 and 21,034,728 clean reads, representing 9,861,236 (40.23%) and 8,574,665 (40.76%) unique reads, were obtained for control and salt-stressed broccoli, respectively. Furthermore, 42 putative known and 39 putative candidate miRNAs that were differentially expressed between control and salt-stressed broccoli were revealed by their read counts and confirmed by the use of stem-loop real-time RT-PCR. Amongst these, the putative conserved miRNAs, miR393 and miR855, and two putative candidate miRNAs, miR3 and miR34, were the most strongly down-regulated when broccoli was salt-stressed, whereas the putative conserved miRNA, miR396a, and the putative candidate miRNA, miR37, were the most up-regulated. Finally, analysis of the predicted gene targets of miRNAs using the GO and KO databases indicated that a range of metabolic and other cellular functions known to be associated with salt stress were up-regulated in broccoli treated with salt. A comprehensive

  5. Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response.

    Science.gov (United States)

    Zhong, Hong; Ma, Minjuan; Liang, Tingming; Guo, Li

    2018-01-01

    In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival. Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs) have participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways. Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets for therapy in immune dysfunction.

  6. The phenotypic and molecular assessment of the non-conserved Arabidopsis MICRORNA163/S-ADENOSYL-METHYLTRANSFERASE regulatory module during biotic stress.

    Science.gov (United States)

    Litholdo, Celso Gaspar; Eamens, Andrew Leigh; Waterhouse, Peter Michael

    2018-04-01

    In plants, microRNAs (miRNAs) have evolved in parallel to the protein-coding genes that they target for expression regulation, and miRNA-directed gene expression regulation is central to almost every cellular process. MicroRNA, miR163, is unique to the Arabidopsis genus and is processed into a 24-nucleotide (nt) mature small regulatory RNA (sRNA) from a single precursor transcript transcribed from a single locus, the MIR163 gene. The MIR163 locus is a result of a recent inverted duplication event of one of the five closely related S-ADENOSYL-METHYLTRANSFERASE genes that the mature miR163 sRNA targets for expression regulation. Currently, however, little is known about the role of the miR163/S-ADENOSYL-METHYLTRANSFERASE regulatory module in response to biotic stress. Here, we document the expression domains of MIR163 and the S-ADENOSYL-METHYLTRANSFERASE target genes following fusion of their putative promoter sequences to the β-glucuronidase (GUS) reporter gene and subsequent in planta expression. Further, we report on our phenotypic and molecular assessment of Arabidopsis thaliana plants with altered miR163 accumulation, namely the mir163-1 and mir163-2 insertion knockout mutants and the miR163 overexpression line, the MIR163-OE plant. Finally, we reveal miR163 accumulation and S-ADENOSYL-METHYLTRANSFERASE target gene expression post treatment with the defence elicitors, salicylic acid and jasmonic acid, and following Fusarium oxysporum infection, wounding, and herbivory attack. Together, the work presented here provides a comprehensive new biological insight into the role played by the Arabidopsis genus-specific miR163/S-ADENOSYL-METHYLTRANSFERASE regulatory module in normal A. thaliana development and during the exposure of A. thaliana plants to biotic stress.

  7. MicroRNAs as putative mediators of treatment response in prostate cancer.

    LENUS (Irish Health Repository)

    O'Kelly, Fardod

    2012-05-22

    MicroRNAs (miRNAs) are an abundant class of noncoding RNAs that function to regulate post-transcriptional gene expression, predominantly by translational repression. In addition to their role in prostate cancer initiation and progression, recent evidence suggests that miRNAs might also participate in treatment response across a range of therapies including radiation treatment, chemotherapy and androgen suppression. The mechanism of this regulation is thought to be multifactorial and is currently poorly understood. To date, only a small number of studies have examined the functional role of miRNAs in response to prostate cancer treatment. Elucidating the role of miRNAs in treatment response following radiotherapy, chemotherapy and androgen suppression will provide new avenues of investigation for the development of novel therapies for the treatment of prostate cancer.

  8. Identification of conserved microRNAs and their targets in chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Hu, Jihong; Sun, Lulu; Ding, Yi

    2013-04-01

    The microRNAs (miRNAs) are a new class of non-protein coding small RNAs that regulate gene expression at the post-transcriptional level in plants. Although thousands of miRNAs have been identified in many plant species, little studies have been reported about chickpea microRNAs. In this study, 28 potential miRNA candidates belonging to 20 families were identified from 16 ESTs and 12 GSSs in chickpea using a comparative genome-based computational analysis. A total of 664 miRNA targets were predicted and some of them encoded transcription factors as well as genes that function in stress response, signal transduction, methylation and a variety of other metabolic processes. These findings lay the foundation for further understanding of miRNA function in the development of chickpea.

  9. Elongated Hypocotyl 5-Homolog (HYH Negatively Regulates Expression of the Ambient Temperature-Responsive MicroRNA Gene MIR169

    Directory of Open Access Journals (Sweden)

    Phanu T. Serivichyaswat

    2017-12-01

    Full Text Available Arabidopsis microRNA169 (miR169 is an ambient temperature-responsive microRNA that plays an important role in stress responses and the floral transition. However, the transcription factors that regulate the expression of MIR169 have remained unknown. In this study, we show that Elongated Hypocotyl 5-Homolog (HYH directly binds to the promoter of MIR169a and negatively regulates its expression. Absolute quantification identified MIR169a as the major locus producing miR169. GUS reporter assays revealed that the deletion of a 498-bp fragment (–1,505 to –1,007, relative to the major transcriptional start site of MIR169a abolished its ambient temperature-responsive expression. DNA-affinity chromatography followed by liquid chromatography-mass spectrometry analysis identified transcription factor HYH as a trans-acting factor that binds to the 498-bp promoter fragment of pri-miR169a. Electrophoretic mobility shift assays and chromatin immunoprecipitation–quantitative PCR demonstrated that the HYH.2 protein, a predominant isoform of HYH, directly associated with a G-box-like motif in the 498-bp fragment of pri-miR169a. Higher enrichment of HYH.2 protein on the promoter region of MIR169a was seen at 23°C, consistent with the presence of more HYH.2 protein in the cell at the temperature. Transcript levels of pri-miR169a increased in hyh mutants and decreased in transgenic plants overexpressing HYH. Consistent with the negative regulation of MIR169a by HYH, the diurnal levels of HYH mRNA and pri-miR169a showed opposite patterns. Taken together, our results suggest that HYH is a transcription factor that binds to a G-box-like motif in the MIR169a promoter and negatively regulates ambient temperature-responsive expression of MIR169a at higher temperatures in Arabidopsis.

  10. Identification, Expression Analysis, and Target Prediction of Flax Genotroph MicroRNAs Under Normal and Nutrient Stress Conditions

    Science.gov (United States)

    Melnikova, Nataliya V.; Dmitriev, Alexey A.; Belenikin, Maxim S.; Koroban, Nadezhda V.; Speranskaya, Anna S.; Krinitsina, Anastasia A.; Krasnov, George S.; Lakunina, Valentina A.; Snezhkina, Anastasiya V.; Sadritdinova, Asiya F.; Kishlyan, Natalya V.; Rozhmina, Tatiana A.; Klimina, Kseniya M.; Amosova, Alexandra V.; Zelenin, Alexander V.; Muravenko, Olga V.; Bolsheva, Nadezhda L.; Kudryavtseva, Anna V.

    2016-01-01

    Cultivated flax (Linum usitatissimum L.) is an important plant valuable for industry. Some flax lines can undergo heritable phenotypic and genotypic changes (LIS-1 insertion being the most common) in response to nutrient stress and are called plastic lines. Offspring of plastic lines, which stably inherit the changes, are called genotrophs. MicroRNAs (miRNAs) are involved in a crucial regulatory mechanism of gene expression. They have previously been assumed to take part in nutrient stress response and can, therefore, participate in genotroph formation. In the present study, we performed high-throughput sequencing of small RNAs (sRNAs) extracted from flax plants grown under normal, phosphate deficient and nutrient excess conditions to identify miRNAs and evaluate their expression. Our analysis revealed expression of 96 conserved miRNAs from 21 families in flax. Moreover, 475 novel potential miRNAs were identified for the first time, and their targets were predicted. However, none of the identified miRNAs were transcribed from LIS-1. Expression of seven miRNAs (miR168, miR169, miR395, miR398, miR399, miR408, and lus-miR-N1) with up- or down-regulation under nutrient stress (on the basis of high-throughput sequencing data) was evaluated on extended sampling using qPCR. Reference gene search identified ETIF3H and ETIF3E genes as most suitable for this purpose. Down-regulation of novel potential lus-miR-N1 and up-regulation of conserved miR399 were revealed under the phosphate deficient conditions. In addition, the negative correlation of expression of lus-miR-N1 and its predicted target, ubiquitin-activating enzyme E1 gene, as well as, miR399 and its predicted target, ubiquitin-conjugating enzyme E2 gene, was observed. Thus, in our study, miRNAs expressed in flax plastic lines and genotrophs were identified and their expression and expression of their targets was evaluated using high-throughput sequencing and qPCR for the first time. These data provide new insights

  11. MicroRNA and cancer

    DEFF Research Database (Denmark)

    Jansson, Martin D; Lund, Anders H

    2012-01-01

    biological phenomena and pathologies. The best characterized non-coding RNA family consists in humans of about 1400 microRNAs for which abundant evidence have demonstrated fundamental importance in normal development, differentiation, growth control and in human diseases such as cancer. In this review, we...... summarize the current knowledge and concepts concerning the involvement of microRNAs in cancer, which have emerged from the study of cell culture and animal model systems, including the regulation of key cancer-related pathways, such as cell cycle control and the DNA damage response. Importantly, micro...

  12. Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response

    Directory of Open Access Journals (Sweden)

    Hong Zhong

    2018-01-01

    Full Text Available In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival. Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs have participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways. Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets for therapy in immune dysfunction.

  13. Isolation of microRNA targets using biotinylated synthetic microRNAs

    DEFF Research Database (Denmark)

    Ørom, Ulf Andersson; Lund, Anders H

    2007-01-01

    MicroRNAs are small regulatory RNAs found in multicellular organisms where they post-transcriptionally regulate gene expression. In animals, microRNAs bind mRNAs via incomplete base pairings making the identification of microRNA targets inherently difficult. Here, we present a detailed method...... for experimental identification of microRNA targets based on affinity purification of tagged microRNAs associated with their targets. Udgivelsesdato: 2007-Oct...

  14. Regulation of B cell differentiation by intracellular membrane associated proteins and microRNAs: role in the antibody response

    Directory of Open Access Journals (Sweden)

    Zheng eLou

    2015-10-01

    Full Text Available B cells are central to adaptive immunity and their functions in antibody responses are exquisitely regulated. As suggested by recent findings, B cell differentiation is mediated by intracellular membrane structures (including endosomes, lysosomes and autophagosomes and protein factors specifically associated with these membranes, including Rab7, Atg5 and Atg7. These factors participate in vesicle formation/trafficking, signal transduction and induction of gene expression to promote antigen presentation, CSR/SHM, and generation/maintenance of plasma cells and memory B cells. Their expression is induced in B cells activated to differentiate and further fine-tuned by immune-modulating microRNAs, which coordinates CSR/SHM, plasma cell differentiation and memory B cell differentiation. These short non-coding RNAs would individually target multiple factors associated with the same intracellular membrane compartments and collaboratively target a single factor in addition to regulate AID and Blimp-1. These, together with regulation of microRNA biogenesis and activities by endosomes and autophagosomes, show that intracellular membranes and microRNAs, two broadly relevant cell constituents, play important roles in balancing gene expression to specify B cell differentiation processes for optimal antibody responses.

  15. MicroRNAs meet calcium: joint venture in ER proteostasis.

    Science.gov (United States)

    Finger, Fabian; Hoppe, Thorsten

    2014-11-04

    The endoplasmic reticulum (ER) is a cellular compartment that has a key function in protein translation and folding. Maintaining its integrity is of fundamental importance for organism's physiology and viability. The dynamic regulation of intraluminal ER Ca(2+) concentration directly influences the activity of ER-resident chaperones and stress response pathways that balance protein load and folding capacity. We review the emerging evidence that microRNAs play important roles in adjusting these processes to frequently changing intracellular and environmental conditions to modify ER Ca(2+) handling and storage and maintain ER homeostasis. Copyright © 2014, American Association for the Advancement of Science.

  16. MicroRNA-29b modulates innate and antigen-specific immune responses in mouse models of autoimmunity.

    Directory of Open Access Journals (Sweden)

    Apolline Salama

    Full Text Available In addition to important regulatory roles in gene expression through RNA interference, it has recently been shown that microRNAs display immune stimulatory effects through direct interaction with receptors of innate immunity of the Toll-like receptor family, aggravating neuronal damage and tumour growth. Yet no evidence exists on consequences of microRNA immune stimulatory actions in the context of an autoimmune disease. Using microRNA analogues, we here show that pancreatic beta cell-derived microRNA sequences induce pro-inflammatory (TNFa, IFNa, IL-12, IL-6 or suppressive (IL-10 cytokine secretion by primary mouse dendritic cells in a sequence-dependent manner. For miR-29b, immune stimulation in RAW264.7 macrophages involved the endosomal Toll-like receptor-7, independently of the canonical RNA interference pathway. In vivo, the systemic delivery of miR-29b activates CD11b+B220- myeloid and CD11b-B220+ plasmacytoid dendritic cells and induces IFNa, TNFa and IL-6 production in the serum of recipient mice. Strikingly, in a murine model of adoptive transfer of autoimmune diabetes, miR-29b reduces the cytolytic activity of transferred effector CD8+ T-cells, insulitis and disease incidence in a single standalone intervention. Endogenous miR-29b, spontaneously released from beta-cells within exosomes, stimulates TNFa secretion from spleen cells isolated from diabetes-prone NOD mice in vitro. Hence, microRNA sequences modulate innate and ongoing adaptive immune responses raising the question of their potential role in the breakdown of tolerance and opening up new applications for microRNA-based immune therapy.

  17. MicroRNA-146a Regulates Perfusion Recovery in Response to Arterial Occlusion via Arteriogenesis

    Directory of Open Access Journals (Sweden)

    Joshua L. Heuslein

    2018-01-01

    Full Text Available The growth of endogenous collateral arteries that bypass arterial occlusion(s, or arteriogenesis, is a fundamental shear stress-induced adaptation with implications for treating peripheral arterial disease. MicroRNAs (miRs are key regulators of gene expression in response to injury and have strong therapeutic potential. In a previous study, we identified miR-146a as a candidate regulator of vascular remodeling. Here, we tested whether miR-146a regulates in vitro angiogenic endothelial cell (EC behaviors, as well as perfusion recovery, arteriogenesis, and angiogenesis in response to femoral arterial ligation (FAL in vivo. We found miR-146a inhibition impaired EC tube formation and migration in vitro. Following FAL, Balb/c mice were treated with a single, intramuscular injection of anti-miR-146a or scramble locked nucleic acid (LNA oligonucleotides directly into the non-ischemic gracilis muscles. Serial laser Doppler imaging demonstrated that anti-miR-146a treated mice exhibited significantly greater perfusion recovery (a 16% increase compared mice treated with scramble LNA. Moreover, anti-miR-146a treated mice exhibited a 22% increase in collateral artery diameter compared to controls, while there was no significant effect on in vivo angiogenesis or muscle regeneration. Despite exerting no beneficial effects on angiogenesis, the inhibition of mechanosensitive miR-146a enhances perfusion recovery after FAL via enhanced arteriogenesis.

  18. MicroRNA-27b Modulates Inflammatory Response and Apoptosis during Mycobacterium tuberculosis Infection.

    Science.gov (United States)

    Liang, Shuxin; Song, Zhigang; Wu, Yongyan; Gao, Yuanpeng; Gao, Mingqing; Liu, Fayang; Wang, Fengyu; Zhang, Yong

    2018-04-16

    Mycobacterium tuberculosis poses a significant global health threat. MicroRNAs play an important role in regulating host anti-mycobacterial defense; however, their role in apoptosis-mediated mycobacterial elimination and inflammatory response remains unclear. In this study, we explored the role of microRNA-27b (miR-27b) in murine macrophage responses to M. tuberculosis infection. We uncovered that the TLR-2/MyD88/NF-κB signaling pathway induced the expression of miR-27b and miR-27b suppressed the production of proinflammatory factors and the activity of NF-κB, thereby avoiding an excessive inflammation during M. tuberculosis infection. Luciferase reporter assay and Western blotting showed that miR-27b directly targeted Bcl-2-associated athanogene 2 (Bag2) in macrophages. Overexpression of Bag2 reversed miR-27b-mediated inhibition of the production of proinflammatory factors. In addition, miR-27b increased p53-dependent cell apoptosis and the production of reactive oxygen species and decreased the bacterial burden. We also showed that Bag2 interacts with p53 and negatively regulates its activity, thereby controlling cell apoptosis and facilitating bacterial survival. In summary, we revealed a novel role of the miR-27b/Bag2 axis in the regulation of inflammatory response and apoptosis and provide a potential molecular host defense mechanism against mycobacteria. Copyright © 2018 by The American Association of Immunologists, Inc.

  19. MicroRNAs in inflammation and response to injuries induced by environmental pollution

    International Nuclear Information System (INIS)

    Sonkoly, Enikö; Pivarcsi, Andor

    2011-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs that regulate basic biological processes by posttranscriptional suppression of their target genes. Altered miRNA expression may lead to widespread gene expression changes and has been implicated in pathophysiological processes such as cancer and inflammation. In this review, we summarize the present knowledge about the role of miRNAs in inflammation and in the response to environmental agents and pollutants, such as cigarette smoke, ethanol, carcinogenic chemicals such as benzo(a)pyrene (BaP) and dioxin, and UV radiation.

  20. MicroRNAs in inflammation and response to injuries induced by environmental pollution

    Energy Technology Data Exchange (ETDEWEB)

    Sonkoly, Enikoe [Molecular Dermatology Research Group, Unit of Dermatology and Venerology, Department of Medicine, Karolinska Institute, Stockholm (Sweden); Department of Dermatology and Allergology, University of Szeged, Szeged (Hungary); Pivarcsi, Andor, E-mail: andor.pivarcsi@ki.se [Molecular Dermatology Research Group, Unit of Dermatology and Venerology, Department of Medicine, Karolinska Institute, Stockholm (Sweden); Department of Dermatology and Allergology, University of Szeged, Szeged (Hungary)

    2011-12-01

    MicroRNAs (miRNAs) are small noncoding RNAs that regulate basic biological processes by posttranscriptional suppression of their target genes. Altered miRNA expression may lead to widespread gene expression changes and has been implicated in pathophysiological processes such as cancer and inflammation. In this review, we summarize the present knowledge about the role of miRNAs in inflammation and in the response to environmental agents and pollutants, such as cigarette smoke, ethanol, carcinogenic chemicals such as benzo(a)pyrene (BaP) and dioxin, and UV radiation.

  1. MicroRNAs associated with exercise and diet: a systematic review.

    Science.gov (United States)

    Flowers, Elena; Won, Gloria Y; Fukuoka, Yoshimi

    2015-01-01

    MicroRNAs are posttranscriptional regulators of gene expression. MicroRNAs reflect individual biologic adaptation to exposures in the environment. As such, measurement of circulating microRNAs presents an opportunity to evaluate biologic changes associated with behavioral interventions (i.e., exercise, diet) for weight loss. The aim of this study was to perform a systematic review of the literature to summarize what is known about circulating microRNAs associated with exercise, diet, and weight loss. We performed a systematic review of three scientific databases. We included studies reporting on circulating microRNAs associated with exercise, diet, and weight loss in humans. Of 1,219 studies identified in our comprehensive database search, 14 were selected for inclusion. Twelve reported on microRNAs associated with exercise, and two reported on microRNAs associated with diet and weight loss. The majority of studies used a quasiexperimental, cross-sectional design. There were numerous differences in the type and intensity of exercise and dietary interventions, the biologic source of microRNAs, and the methodological approaches used quantitate microRNAs. Data from several studies support an association between circulating microRNAs and exercise. The evidence for an association between circulating microRNAs and diet is weaker because of a small number of studies. Additional research is needed to validate previous observations using methodologically rigorous approaches to microRNA quantitation to determine the specific circulating microRNA signatures associated with behavioral approaches to weight loss. Future directions include longitudinal studies to determine if circulating microRNAs are predictive of response to behavioral interventions. Copyright © 2015 the American Physiological Society.

  2. The significance of microRNAs or the cellular response in endothelium cells; Die Bedeutung von microRNAs fuer die zellulaere Strahlenantwort in Endothelzellen

    Energy Technology Data Exchange (ETDEWEB)

    Moertl, Simone; Heider, Theresa [Helmholtz Center Muenchen, Neuherberg (Germany). Arbeitsgruppe Clinical Radiation Biology

    2016-08-01

    Ionizing radiation causes a variety of cell damages. Several cell constituents like DNA, mitochondria, proteins or membranes are affected. Cells have developed numerous and cross-linked radiation response processes for counteraction. In case of failure of the repair mechanism cell proliferation or cell death are the consequences. Many proteins in these processes are controlled by microRNAs (miRNAs). The accurate knowledge of miRNA functions is therefore importance not only for radiation protection but also the therapeutic use of ionizing radiations.

  3. Listeria monocytogenes Induces a Virulence-Dependent microRNA Signature That Regulates the Immune Response in Galleria mellonella

    Directory of Open Access Journals (Sweden)

    Gopala K. Mannala

    2017-12-01

    Full Text Available microRNAs (miRNAs coordinate several physiological and pathological processes by regulating the fate of mRNAs. Studies conducted in vitro indicate a role of microRNAs in the control of host-microbe interactions. However, there is limited understanding of miRNA functions in in vivo models of bacterial infections. In this study, we systematically explored changes in miRNA expression levels of Galleria mellonella larvae (greater-wax moth, a model system that recapitulates the vertebrate innate immunity, following infection with L. monocytogenes. Using an insect-specific miRNA microarray with more than 2000 probes, we found differential expression of 90 miRNAs (39 upregulated and 51 downregulated in response to infection with L. monocytogenes. We validated the expression of a subset of miRNAs which have mammalian homologs of known or predicted function. In contrast, non-pathogenic L. innocua failed to induce these miRNAs, indicating a virulence-dependent miRNA deregulation. To predict miRNA targets using established algorithms, we generated a publically available G. mellonella transcriptome database. We identified miRNA targets involved in innate immunity, signal transduction and autophagy, including spätzle, MAP kinase, and optineurin, respectively, which exhibited a virulence-specific differential expression. Finally, in silico estimation of minimum free energy of miRNA-mRNA duplexes of validated microRNAs and target transcripts revealed a regulatory network of the host immune response to L. monocytogenes. In conclusion, this study provides evidence for a role of miRNAs in the regulation of the innate immune response following bacterial infection in a simple, rapid and scalable in vivo model that may predict host-microbe interactions in higher vertebrates.

  4. Exploration of low temperature microRNA function in an anoxia tolerant vertebrate ectotherm, the red eared slider turtle (Trachemys scripta elegans).

    Science.gov (United States)

    Biggar, Kyle K; Storey, Kenneth B

    2017-08-01

    As a model for vertebrate long-term survival in oxygen-restricted environments, the red-eared slider turtle (Trachemys scripta elegans) can adapt at the biochemical level to survive in oxygen-free (anoxic) cold water (<10°C). This impressive ability is enabled through a coordinated suppression of energy-expensive, non-essential, cell processes. This study explored the anoxia-responsive expression of several microRNA species (miR-1a, -133, -17, -107, -148a, -21, -103, -210, -20a, -365 and -29b) in adult turtles exposed to 5h and 20h anoxia (at 5±1°C). Furthermore, since microRNA target binding is regularly defined only by microRNA-mRNA interactions at 37°C, the possibility of unique low temperature-selective microRNA targeting interactions with mRNA was explored in this ectotherm. Approximately twice as many microRNA-mRNA interactions were predicted at 5°C versus 37°C with particular enrichment of mRNA targets involved in biological processes known to be part of the stress response. Hence, the results suggest that the influence of temperature should be considered for the prediction of microRNA targets (and their follow-up) in poikilothermic animals and that interacting effects of low body temperature and anoxia on microRNA expression could potentially be important to achieve the profound metabolic rate depression that characterizes turtle hibernation underwater during the winter. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Antioxidant properties of cumin (Bunium persicum Boiss.) extract and its protective role against abiotic stress tested by microRNA markers

    OpenAIRE

    Katarína Ražná; Nishonoy Khasanova; Eva Ivanišová; Davranov Qahramon; Miroslav Habán

    2018-01-01

    Bunium persicum Boiss. seeds have been used for medicinal and nutritional properties such as antioxidant, antihelmetic and antimicrobial activity. The aim of this study was to to tested protective role of cumin extract against abiotic stress by microRNA markers. Secondary also was to evaluate antioxidant activity as well as total polyphenol, flavonoid and phenolic acid content of cumin extract. We observed that cumin DNA itself has not been damaged by sonication teratment. This protective im...

  6. Role of microRNAs in sepsis.

    Science.gov (United States)

    Kingsley, S Manoj Kumar; Bhat, B Vishnu

    2017-07-01

    MicroRNAs have been found to be of high significance in the regulation of various genes and processes in the body. Sepsis is a serious clinical problem which arises due to the excessive host inflammatory response to infection. The non-specific clinical features and delayed diagnosis of sepsis has been a matter of concern for long time. MicroRNAs could enable better diagnosis of sepsis and help in the identification of the various stages of sepsis. Improved diagnosis may enable quicker and more effective treatment measures. The initial acute and transient phase of sepsis involves excessive secretion of pro-inflammatory cytokines which causes severe damage. MicroRNAs negatively regulate the toll-like receptor signaling pathway and regulate the production of inflammatory cytokines during sepsis. Likewise, microRNAs have shown to regulate the vascular barrier and endothelial function in sepsis. They are also involved in the regulation of the apoptosis, immunosuppression, and organ dysfunction in later stages of sepsis. Their importance at various levels of the pathophysiology of sepsis has been discussed along with the challenges and future perspectives. MicroRNAs could be key players in the diagnosis and staging of sepsis. Their regulation at various stages of sepsis suggests that they may have an important role in altering the outcome associated with sepsis.

  7. Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing

    Directory of Open Access Journals (Sweden)

    Peng Huiru

    2011-04-01

    Full Text Available Abstract Background Biotic and abiotic stresses, such as powdery mildew infection and high temperature, are important limiting factors for yield and grain quality in wheat production. Emerging evidences suggest that long non-protein coding RNAs (npcRNAs are developmentally regulated and play roles in development and stress responses of plants. However, identification of long npcRNAs is limited to a few plant species, such as Arabidopsis, rice and maize, no systematic identification of long npcRNAs and their responses to abiotic and biotic stresses is reported in wheat. Results In this study, by using computational analysis and experimental approach we identified 125 putative wheat stress responsive long npcRNAs, which are not conserved among plant species. Among them, some were precursors of small RNAs such as microRNAs and siRNAs, two long npcRNAs were identified as signal recognition particle (SRP 7S RNA variants, and three were characterized as U3 snoRNAs. We found that wheat long npcRNAs showed tissue dependent expression patterns and were responsive to powdery mildew infection and heat stress. Conclusion Our results indicated that diverse sets of wheat long npcRNAs were responsive to powdery mildew infection and heat stress, and could function in wheat responses to both biotic and abiotic stresses, which provided a starting point to understand their functions and regulatory mechanisms in the future.

  8. microRNAs: Implications for air pollution research

    International Nuclear Information System (INIS)

    Jardim, Melanie J.

    2011-01-01

    The purpose of this review is to provide an update of the current understanding on the role of microRNAs in mediating genetic responses to air pollutants and to contemplate on how these responses ultimately control susceptibility to ambient air pollution. Morbidity and mortality attributable to air pollution continues to be a growing public health concern worldwide. Despite several studies on the health effects of ambient air pollution, underlying molecular mechanisms of susceptibility and disease remain elusive. In the last several years, special attention has been given to the role of epigenetics in mediating, not only genetic and physiological responses to certain environmental insults, but also in regulating underlying susceptibility to environmental stressors. Epigenetic mechanisms control the expression of gene products, both basally and as a response to a perturbation, without affecting the sequence of DNA itself. These mechanisms include structural regulation of the chromatin structure, such as DNA methylation and histone modifications, and post-transcriptional gene regulation, such as microRNA mediated repression of gene expression. microRNAs are small noncoding RNAs that have been quickly established as key regulators of gene expression. As such, miRNAs have been found to control several cellular processes including apoptosis, proliferation and differentiation. More recently, research has emerged suggesting that changes in the expression of some miRNAs may be critical for mediating biological, and ultimately physiological, responses to air pollutants. Although the study of microRNAs, and epigenetics as a whole, has come quite far in the field of cancer, the understanding of how these mechanisms regulate gene–environment interactions to environmental exposures in everyday life is unclear. This article does not necessarily reflect the views and policies of the US EPA.

  9. microRNAs: Implications for air pollution research

    Energy Technology Data Exchange (ETDEWEB)

    Jardim, Melanie J., E-mail: melaniejardim@gmail.com [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Chapel Hill, NC (United States)

    2011-12-01

    The purpose of this review is to provide an update of the current understanding on the role of microRNAs in mediating genetic responses to air pollutants and to contemplate on how these responses ultimately control susceptibility to ambient air pollution. Morbidity and mortality attributable to air pollution continues to be a growing public health concern worldwide. Despite several studies on the health effects of ambient air pollution, underlying molecular mechanisms of susceptibility and disease remain elusive. In the last several years, special attention has been given to the role of epigenetics in mediating, not only genetic and physiological responses to certain environmental insults, but also in regulating underlying susceptibility to environmental stressors. Epigenetic mechanisms control the expression of gene products, both basally and as a response to a perturbation, without affecting the sequence of DNA itself. These mechanisms include structural regulation of the chromatin structure, such as DNA methylation and histone modifications, and post-transcriptional gene regulation, such as microRNA mediated repression of gene expression. microRNAs are small noncoding RNAs that have been quickly established as key regulators of gene expression. As such, miRNAs have been found to control several cellular processes including apoptosis, proliferation and differentiation. More recently, research has emerged suggesting that changes in the expression of some miRNAs may be critical for mediating biological, and ultimately physiological, responses to air pollutants. Although the study of microRNAs, and epigenetics as a whole, has come quite far in the field of cancer, the understanding of how these mechanisms regulate gene-environment interactions to environmental exposures in everyday life is unclear. This article does not necessarily reflect the views and policies of the US EPA.

  10. miR398 and miR395 are involved in response to SO2 stress in Arabidopsis thaliana.

    Science.gov (United States)

    Li, Lihong; Yi, Huilan; Xue, Meizhao; Yi, Min

    2017-11-01

    Sulfur dioxide (SO 2 ) is a common air pollutant that has adverse effects on plants. MicroRNAs (miRNAs) are small noncoding RNA that play critical roles in plant development and stress response. In this study, we found that two miRNAs, miR398 and miR395, were differentially expressed in Arabidopsis shoots under SO 2 stress. The expression of miR398 was down-regulated, and the transcript levels of its target genes, Cu/Zn superoxide dismutases (CSD1 and CSD2), were increased during SO 2 exposure. The activity of superoxide dismutase (SOD), one of the major antioxidant enzymes, was enhanced with the increase in the CSD transcript level, suggesting an important role of miR398 in response to SO 2 -induced oxidative stress. Meanwhile, the expression of miR395 was increased, and the transcript levels of its target genes, ATP sulfurylases (APS3 and APS4) and a low-affinity sulfate transporter (SULTR2;1), were decreased in Arabidopsis shoots, showing that miR395 played important roles in the regulation of sulfate assimilation and translocation during SO 2 exposure. The content of glutathione (GSH), an important sulfur-containing antioxidant, was enhanced with the changes in sulfur metabolism in Arabidopsis shoots under SO 2 stress. These results showed that both miR398 and miR395 were involved in protecting plants from oxidative damage during SO 2 exposure. Many stress-responsive cis-elements were found in the promoter regions of MIR398 and MIR395, suggesting that these miRNAs might respond to various environmental conditions, including SO 2 stress. Overall, our study provides an insight into the regulatory roles of miRNAs in response to SO 2 stress in plants, and highlights the molecular mechanisms of plant adaptation to environmental stress.

  11. MicroRNA-146a modulates human bronchial epithelial cell survival in response to the cytokine-induced apoptosis

    International Nuclear Information System (INIS)

    Liu Xiangde; Nelson, Amy; Wang Xingqi; Kanaji, Nobuhiro; Kim, Miok; Sato, Tadashi; Nakanishi, Masanori; Li Yingji; Sun Jianhong; Michalski, Joel; Patil, Amol; Basma, Hesham; Rennard, Stephen I.

    2009-01-01

    MicroRNA plays an important role in cell differentiation, proliferation and cell death. The current study found that miRNA-146a was up-regulated in human bronchial epithelial cells (HBECs) in response to stimulation by TGF-ss1 plus cytomix (a mixture of IL-1ss, IFN-γ and TNF-α). TGF-ss1 plus cytomix (TCM) induced apoptosis in HBECs (3.4 ± 0.6% of control vs 83.1 ± 4.0% of TCM treated cells, p < 0.01), and this was significantly blocked by the miRNA-146a mimic (8.8 ± 1.5%, p < 0.01). In contrast, a miRNA-146a inhibitor had only a modest effect on cell survival but appeared to augment the induction of epithelial-mesenchymal transition (EMT) in response to the cytokines. The MicroRNA-146a mimic appears to modulate HBEC survival through a mechanism of up-regulating Bcl-XL and STAT3 phosphorylation, and by this mechanism it could contribute to tissue repair and remodeling.

  12. Identification of reference genes for quantitative expression analysis of microRNAs and mRNAs in barley under various stress conditions.

    Directory of Open Access Journals (Sweden)

    Jannatul Ferdous

    Full Text Available For accurate and reliable gene expression analysis using quantitative real-time reverse transcription PCR (qPCR, the selection of appropriate reference genes as an internal control for normalization is crucial. We hypothesized that non-coding, small nucleolar RNAs (snoRNAswould be stably expressed in different barley varieties and under different experimental treatments,in different tissues and at different developmental stages of plant growth and therefore might prove to be suitable reference genes for expression analysis of both microRNAs (miRNAsand mRNAs. In this study, we examined the expression stability of ten candidate reference genes in six barley genotypes under five experimental stresses, drought, fungal infection,boron toxicity, nutrient deficiency and salinity. We compared four commonly used housekeeping genes; Actin (ACT, alpha-Tubulin (α-TUB, Glycolytic glyceraldehyde-3-phosphate dehydrogenase(GAPDH, ADP-ribosylation factor 1-like protein (ADP, four snoRNAs; (U18,U61, snoR14 and snoR23 and two microRNAs (miR168, miR159 as candidate reference genes. We found that ADP, snoR14 and snoR23 were ranked as the best of these candidates across diverse samples. Additionally, we found that miR168 was a suitable reference gene for expression analysis in barley. Finally, we validated the performance of our stable and unstable candidate reference genes for both mRNA and miRNA qPCR data normalization under different stress conditions and demonstrated the superiority of the stable candidates. Our data demonstrate the suitability of barley snoRNAs and miRNAs as potential reference genes form iRNA and mRNA qPCR data normalization under different stress treatments [corrected].

  13. Stress Responses in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Frees, Dorte; Ingmer, Hanne

    2016-01-01

    stress responses allowing it to sense and adapt to its very different niches. The stress responses often involve dramatic cellular reprogramming, and the technological advances provided by the access to whole genome sequences have let to an unprecedented insight into the global reorganization of gene...... and protein expression following stress-exposure. Characterization of global gene responses has been very helpful both in identifying regulators sensing specific environmental stress signals and overlaps between different stress responses. In this chapter we review the recent progress in our understanding...... of the specific and general S. aureusstress responses, with a special emphasis on how stress responses contribute to virulence and antibiotic resistance in this important human pathogen....

  14. Identification of microRNAs in Response to Drought in Common Wild Rice (Oryza rufipogon Griff.) Shoots and Roots.

    Science.gov (United States)

    Zhang, Jing-Wen; Long, Yan; Xue, Man-de; Xiao, Xing-Guo; Pei, Xin-Wu

    2017-01-01

    Drought is the most important factor that limits rice production in drought-prone environments. Plant microRNAs (miRNAs) are involved in biotic and abiotic stress responses. Common wild rice (Oryza rufipogon Griff.) contains abundant drought-resistant genes, which provide an opportunity to explore these excellent resources as contributors to improve rice resistance, productivity, and quality. In this study, we constructed four small RNA libraries, called CL and CR from PEG6000-free samples and DL and DR from PEG6000-treated samples, where 'R' indicates the root tissue and 'L' indicates the shoot tissue. A total of 200 miRNAs were identified to be differentially expressed under the drought-treated conditions (16% PEG6000 for 24 h), and the changes in the miRNA expression profile of the shoot were distinct from those of the root. At the miRNA level, 77 known miRNAs, which belong to 23 families, including 40 up-regulated and 37 down-regulated in the shoot, and 85 known miRNAs in 46 families, including 65 up-regulated and 20 down-regulated in the root, were identified as differentially expressed. In addition, we predicted 26 new miRNA candidates from the shoot and 43 from the root that were differentially expressed during the drought stress. The quantitative real-time PCR analysis results were consistent with high-throughput sequencing data. Moreover, 88 miRNAs that were differentially-expressed were predicted to match with 197 targets for drought-stress. Our results suggest that the miRNAs of O. rufipogon are responsive to drought stress. The differentially expressed miRNAs that are tissue-specific under drought conditions could play different roles in the regulation of the auxin pathway, the flowering pathway, the drought pathway, and lateral root formation. Thus, the present study provides an account of tissue-specific miRNAs that are involved in the drought adaption of O. rufipogon.

  15. A plant microRNA regulates the adaptation of roots to drought stress

    KAUST Repository

    Chen, Hao; Li, Zhuofu; Xiong, Liming

    2012-01-01

    Plants tend to restrict their horizontal root proliferation in response to drought stress, an adaptive response mediated by the phytohormone abscisic acid (ABA) in antagonism with auxin through unknown mechanisms. Here, we found that stress

  16. Regulation of immune responses and tolerance: the microRNA perspective

    Science.gov (United States)

    Chen, Chang-Zheng; Schaffert, Steven; Fragoso, Rita; Loh, Christina

    2013-01-01

    Summary Much has been learned about the molecular and cellular components critical for the control of immune responses and tolerance. It remains a challenge, however, to control the immune response and tolerance at the system level without causing significant toxicity to normal tissues. Recent studies suggest that microRNA (miRNA) genes, an abundant class of non-coding RNA genes that produce characteristic approximately 22 nucleotides small RNAs, play important roles in immune cells. In this article, we discuss emerging knowledge regarding the functions of miRNA genes in the immune system. We delve into the roles of miRNAs in regulating signaling strength and threshold, homeostasis, and the dynamics of the immune response and tolerance during normal and pathogenic immunological conditions. We also present observations based on analyzes of miR-181 family genes that indicate the potential functions of primary and/ or precursor miRNAs in target recognition and explore the impact of these findings on target identification. Finally, we illustrate that despite the subtle effects of miRNAs on gene expression, miRNAs have the potential to influence the outcomes of normal and pathogenic immune responses by controlling the quantitative and dynamic aspects of immune responses. Tuning miRNA functions in immune cells, through gain- and loss-of-function approaches in mice, may reveal novel approach to restore immune equilibrium from pathogenic conditions, such as autoimmune disease and leukemia, without significant toxicity. PMID:23550642

  17. Regulation of immune responses and tolerance: the microRNA perspective.

    Science.gov (United States)

    Chen, Chang-Zheng; Schaffert, Steven; Fragoso, Rita; Loh, Christina

    2013-05-01

    Much has been learned about the molecular and cellular components critical for the control of immune responses and tolerance. It remains a challenge, however, to control the immune response and tolerance at the system level without causing significant toxicity to normal tissues. Recent studies suggest that microRNA (miRNA) genes, an abundant class of non-coding RNA genes that produce characteristic approximately 22 nucleotides small RNAs, play important roles in immune cells. In this article, we discuss emerging knowledge regarding the functions of miRNA genes in the immune system. We delve into the roles of miRNAs in regulating signaling strength and threshold, homeostasis, and the dynamics of the immune response and tolerance during normal and pathogenic immunological conditions. We also present observations based on analyzes of miR-181 family genes that indicate the potential functions of primary and/or precursor miRNAs in target recognition and explore the impact of these findings on target identification. Finally, we illustrate that despite the subtle effects of miRNAs on gene expression, miRNAs have the potential to influence the outcomes of normal and pathogenic immune responses by controlling the quantitative and dynamic aspects of immune responses. Tuning miRNA functions in immune cells, through gain- and loss-of-function approaches in mice, may reveal novel approach to restore immune equilibrium from pathogenic conditions, such as autoimmune disease and leukemia, without significant toxicity. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  18. From cell biology to immunology: Controlling metastatic progression of cancer via microRNA regulatory networks.

    Science.gov (United States)

    Park, Jae Hyon; Theodoratou, Evropi; Calin, George A; Shin, Jae Il

    2016-01-01

    Recently, the study of microRNAs has expanded our knowledge of the fundamental processes of cancer biology and the underlying mechanisms behind tumor metastasis. Extensive research in the fields of microRNA and its novel mechanisms of actions against various cancers has more recently led to the trial of a first cancer-targeted microRNA drug, MRX34. Yet, these microRNAs are mostly being studied and clinically trialed solely based on the understanding of their cell biologic effects, thus, neglecting the important immunologic effects that are sometimes opposite of the cell biologic effects. Here, we summarize both the cell biologic and immunologic effects of various microRNAs and discuss the importance of considering both effects before using them in clinical settings. We stress the importance of understanding the miRNA's effect on cancer metastasis from a "systems" perspective before developing a miRNA-targeted therapeutic in treating cancer metastasis.

  19. Plant Nucleolar Stress Response, a New Face in the NAC-Dependent Cellular Stress Responses

    Directory of Open Access Journals (Sweden)

    Iwai Ohbayashi

    2018-01-01

    Full Text Available The nucleolus is the most prominent nuclear domain, where the core processes of ribosome biogenesis occur vigorously. All these processes are finely orchestrated by many nucleolar factors to build precisely ribosome particles. In animal cells, perturbations of ribosome biogenesis, mostly accompanied by structural disorders of the nucleolus, cause a kind of cellular stress to induce cell cycle arrest, senescence, or apoptosis, which is called nucleolar stress response. The best-characterized pathway of this stress response involves p53 and MDM2 as key players. p53 is a crucial transcription factor that functions in response to not only nucleolar stress but also other cellular stresses such as DNA damage stress. These cellular stresses release p53 from the inhibition by MDM2, an E3 ubiquitin ligase targeting p53, in various ways, which leads to p53-dependent activation of a set of genes. In plants, genetic impairments of ribosome biogenesis factors or ribosome components have been shown to cause characteristic phenotypes, including a narrow and pointed leaf shape, implying a common signaling pathway connecting ribosomal perturbations and certain aspects of growth and development. Unlike animals, however, plants have neither p53 nor MDM2 family proteins. Then the question arises whether plant cells have a nucleolar stress response pathway. In recent years, it has been reported that several members of the plant-specific transcription factor family NAC play critical roles in the pathways responsive to various cellular stresses. In this mini review, we outline the plant cellular stress response pathways involving NAC transcription factors with reference to the p53-MDM2-dependent pathways of animal cells, and discuss the possible involvement of a plant-unique, NAC-mediated pathway in the nucleolar stress response in plants.

  20. Plant Nucleolar Stress Response, a New Face in the NAC-Dependent Cellular Stress Responses.

    Science.gov (United States)

    Ohbayashi, Iwai; Sugiyama, Munetaka

    2017-01-01

    The nucleolus is the most prominent nuclear domain, where the core processes of ribosome biogenesis occur vigorously. All these processes are finely orchestrated by many nucleolar factors to build precisely ribosome particles. In animal cells, perturbations of ribosome biogenesis, mostly accompanied by structural disorders of the nucleolus, cause a kind of cellular stress to induce cell cycle arrest, senescence, or apoptosis, which is called nucleolar stress response. The best-characterized pathway of this stress response involves p53 and MDM2 as key players. p53 is a crucial transcription factor that functions in response to not only nucleolar stress but also other cellular stresses such as DNA damage stress. These cellular stresses release p53 from the inhibition by MDM2, an E3 ubiquitin ligase targeting p53, in various ways, which leads to p53-dependent activation of a set of genes. In plants, genetic impairments of ribosome biogenesis factors or ribosome components have been shown to cause characteristic phenotypes, including a narrow and pointed leaf shape, implying a common signaling pathway connecting ribosomal perturbations and certain aspects of growth and development. Unlike animals, however, plants have neither p53 nor MDM2 family proteins. Then the question arises whether plant cells have a nucleolar stress response pathway. In recent years, it has been reported that several members of the plant-specific transcription factor family NAC play critical roles in the pathways responsive to various cellular stresses. In this mini review, we outline the plant cellular stress response pathways involving NAC transcription factors with reference to the p53-MDM2-dependent pathways of animal cells, and discuss the possible involvement of a plant-unique, NAC-mediated pathway in the nucleolar stress response in plants.

  1. Comparison of the release of microRNAs and extracellular vesicles from platelets in response to different agonists.

    Science.gov (United States)

    Ambrose, Ashley R; Alsahli, Mohammed A; Kurmani, Sameer A; Goodall, Alison H

    2018-07-01

    On activation platelets release microRNAs and extracellular vesicles (EV) into circulation. The release of EV from platelets has been shown to be dependent on the agonist; in this study, we investigated whether the microRNA profile or EV released from platelets was also agonist specific. Washed platelets from healthy subjects were maximally stimulated with agonists specific for the receptors for collagen (Glycoprotein VI (GPVI)), thrombin (PAR1/PAR4), or ADP (P2Y1/P2Y12) with/without inhibiting secondary mediators, using aspirin to block cyclooxygenase-1 and apyrase to remove ADP. The released microRNAs were profiled using TaqMan microRNA microarray cards. Platelet-derived EV (pdEV) were characterized by size (Nanoparticle Tracking Analysis, NTA), for procoagulant activity (Annexin-V binding and support of thrombin generation), and for the EV markers CD63 and HSP70. Platelet activation triggered the release of 57-79 different microRNAs, dependent upon agonist, with a core of 46 microRNAs observed with all agonists. There was a high level of correlation between agonists (r 2  > 0.98; p  0.98; p < 0.0001). The 46 microRNAs seen in all samples are predicted to have significant effects on the translation of proteins involved in endocytosis, cell cycle control, and differentiation. MiR-223-3p was the most abundant in all samples and has previously been implicated in myeloid lineage development and demonstrated to have anti-inflammatory effects. Stimulation through GPVI produced a pdEV population with significantly more procoagulant activity than the other agonists. Apyrase significantly reduced microRNA and pdEV release, while aspirin had little effect. These data suggest that all tested agonists trigger the release of a similar microRNA profile while the procoagulant activity of the pdEV was agonist dependent. ADP was shown to play an important role in the release of both microRNAs and pdEV.

  2. Genome wide identification of chilling responsive microRNAs in Prunus persica

    Directory of Open Access Journals (Sweden)

    Barakat Abdelali

    2012-09-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are small RNAs (sRNAs approximately 21 nucleotides in length that negatively control gene expression by cleaving or inhibiting the translation of target gene transcripts. Within this context, miRNAs and siRNAs are coming to the forefront as molecular mediators of gene regulation in plant responses to annual temperature cycling and cold stress. For this reason, we chose to identify and characterize the conserved and non-conserved miRNA component of peach (Prunus persica (L. Batsch focusing our efforts on both the recently released whole genome sequence of peach and sRNA transcriptome sequences from two tissues representing non-dormant leaves and dormant leaf buds. Conserved and non-conserved miRNAs, and their targets were identified. These sRNA resources were used to identify cold-responsive miRNAs whose gene targets co-localize with previously described QTLs for chilling requirement (CR. Results Analysis of 21 million peach sRNA reads allowed us to identify 157 and 230 conserved and non-conserved miRNA sequences. Among the non-conserved miRNAs, we identified 205 that seem to be specific to peach. Comparative genome analysis between peach and Arabidopsis showed that conserved miRNA families, with the exception of miR5021, are similar in size. Sixteen of these conserved miRNA families are deeply rooted in land plant phylogeny as they are present in mosses and/or lycophytes. Within the other conserved miRNA families, five families (miR1446, miR473, miR479, miR3629, and miR3627 were reported only in tree species (Populustrichocarpa, Citrus trifolia, and Prunus persica. Expression analysis identified several up-regulated or down-regulated miRNAs in winter buds versus young leaves. A search of the peach proteome allowed the prediction of target genes for most of the conserved miRNAs and a large fraction of non-conserved miRNAs. A fraction of predicted targets in peach have not been previously reported in other

  3. Rice microRNA osa-miR1848 targets the obtusifoliol 14α-demethylase gene OsCYP51G3 and mediates the biosynthesis of phytosterols and brassinosteroids during development and in response to stress.

    Science.gov (United States)

    Xia, Kuaifei; Ou, Xiaojing; Tang, Huadan; Wang, Ren; Wu, Ping; Jia, Yongxia; Wei, Xiaoyi; Xu, Xinlan; Kang, Seung-Hye; Kim, Seong-Ki; Zhang, Mingyong

    2015-11-01

    Phytosterols are membrane components or precursors for brassinosteroid (BR) biosynthesis. As they cannot be transported long distances, their homeostasis is tightly controlled through their biosynthesis and metabolism. However, it is unknown whether microRNAs are involved in their homeostatic regulation. Rice (Oryza sativa) plants transformed with microRNA osa-miR1848 and its target, the obtusifoliol 14α-demethylase gene, OsCYP51G3, were used to investigate the role of osa-miR1848 in the regulation of phytosterol biosynthesis. osa-miR1848 directs OsCYP51G3 mRNA cleavage to regulate phytosterol and BR biosynthesis in rice. The role of OsCYP51G3 as one of the osa-miR1848 targets is supported by the opposite expression patterns of osa-miR1848 and OsCYP51G3 in transgenic rice plants, and by the identification of OsCYP51G3 mRNA cleavage sites. Increased osa-miR1848 and decreased OsCYP51G3 expression reduced phytosterol and BR concentrations, and caused typical phenotypic changes related to phytosterol and BR deficiency, including dwarf plants, erect leaves, semi-sterile pollen grains, and shorter cells. Circadian expression of osa-miR1848 regulated the diurnal abundance of OsCYP51G3 transcript in developing organs, and the response of OsCYP51G3 to salt stress. We propose that osa-miR1848 regulates OsCYP51G3 expression posttranscriptionally, and mediates phytosterol and BR biosynthesis. osa-miR1848 and OsCYP51G3 might have potential applications in rice breeding to modulate leaf angle, and the size and quality of seeds. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  4. Identification of microRNAs in Caragana intermedia by high-throughput sequencing and expression analysis of 12 microRNAs and their targets under salt stress.

    Science.gov (United States)

    Zhu, Jianfeng; Li, Wanfeng; Yang, Wenhua; Qi, Liwang; Han, Suying

    2013-09-01

    142 miRNAs were identified and 38 miRNA targets were predicted, 4 of which were validated, in C. intermedia . The expression of 12 miRNAs in salt-stressed leaves was assessed by qRT-PCR. MicroRNAs (miRNAs) are endogenous small RNAs that play important roles in various biological and metabolic processes in plants. Caragana intermedia is an important ecological and economic tree species prominent in the desert environment of west and northwest China. To date, no investigation into C. intermedia miRNAs has been reported. In this study, high-throughput sequencing of small RNAs and analysis of transcriptome data were performed to identify both conserved and novel miRNAs, and also their target mRNA genes in C. intermedia. Based on sequence similarity and hairpin structure prediction, 132 putative conserved miRNAs (12 of which were confirmed to form hairpin precursors) belonging to 31 known miRNA families were identified. Ten novel miRNAs (including the miRNA* sequences of three novel miRNAs) were also discovered. Furthermore, 36 potential target genes of 17 known miRNA families and 2 potential target genes of 1 novel miRNA were predicted; 4 of these were validated by 5' RACE. The expression of 12 miRNAs was validated in different tissues, and these and five target mRNAs were assessed by qRT-PCR after salt treatment. The expression levels of seven miRNAs (cin-miR157a, cin-miR159a, cin-miR165a, cin-miR167b, cin-miR172b, cin-miR390a and cin-miR396a) were upregulated, while cin-miR398a expression was downregulated after salt treatment. The targets of cin-miR157a, cin-miR165a, cin-miR172b and cin-miR396a were downregulated and showed an approximately negative correlation with their corresponding miRNAs under salt treatment. These results would help further understanding of miRNA regulation in response to abiotic stress in C. intermedia.

  5. Bruxism affects stress responses in stressed rats.

    Science.gov (United States)

    Sato, Chikatoshi; Sato, Sadao; Takashina, Hirofumi; Ishii, Hidenori; Onozuka, Minoru; Sasaguri, Kenichi

    2010-04-01

    It has been proposed that suppression of stress-related emotional responses leads to the simultaneous activation of both sympathetic and parasympathetic divisions of the autonomic nervous system (ANS) and that the expression of these emotional states has a protective effect against ulcerogenesis. In the present study, we investigated whether stress-induced bruxism activity (SBA) has a physiological effect of on the stress-induced changes of the stomach, thymus, and spleen as well as blood leukocytes, cortisol, and adrenaline. This study demonstrated that SBA attenuated the stress-induced ulcer genesis as well as degenerative changes of thymus and spleen. SBA also attenuated increases of adrenaline, cortisol, and neutrophils in the blood. In conclusion, expression of aggression through SBA during stress exposure attenuates both stress-induced ANS response, including gastric ulcer formation.

  6. Circulating MicroRNAs as Potential Molecular Biomarkers in Pathophysiological Evolution of Pregnancy

    Directory of Open Access Journals (Sweden)

    Dragos Cretoiu

    2016-01-01

    Full Text Available MicroRNAs represent nonprotein coding small RNA molecules that are very stable to degradation and responsible for gene silencing in most eukaryotic cells. Increased evidence has been accumulating over the years about their potential value as biomarkers for several diseases. MicroRNAs were predicted to be involved in nearly all biological processes from development to oncogenesis. In this review, we address the importance of circulating microRNAs in different conditions associated with pregnancy starting with the implantation period to preeclampsia and we shortly describe the correlation between placental circulating miRNAs and pregnancy status. We also discuss the importance of microRNAs in recurrent abortion and ectopic pregnancy.

  7. Combinatorial microRNA target predictions

    DEFF Research Database (Denmark)

    Krek, Azra; Grün, Dominic; Poy, Matthew N.

    2005-01-01

    MicroRNAs are small noncoding RNAs that recognize and bind to partially complementary sites in the 3' untranslated regions of target genes in animals and, by unknown mechanisms, regulate protein production of the target transcript1, 2, 3. Different combinations of microRNAs are expressed...... in different cell types and may coordinately regulate cell-specific target genes. Here, we present PicTar, a computational method for identifying common targets of microRNAs. Statistical tests using genome-wide alignments of eight vertebrate genomes, PicTar's ability to specifically recover published micro......RNA targets, and experimental validation of seven predicted targets suggest that PicTar has an excellent success rate in predicting targets for single microRNAs and for combinations of microRNAs. We find that vertebrate microRNAs target, on average, roughly 200 transcripts each. Furthermore, our results...

  8. Environmental Stressors and Their Impact on Health and Disease with Focus on Oxidative Stress.

    Science.gov (United States)

    Münzel, Thomas; Daiber, Andreas

    2018-03-20

    Epidemiological, preclinical and interventional clinical studies have demonstrated that environmental stressors are associated with health problems, namely cardiovascular diseases. According to estimations of the World Health Organization (WHO), environmental risk factors account for an appreciable part of global deaths and life years spent with disability. This Forum addresses the impact of the environmental risk factors such as traffic noise exposure, air pollution by particulate matter (PM), mental stress/loneliness, and the life style risk factor (water-pipe) smoking on health and disease with focus on the cardiovascular system. We will critically discuss the use of observatory/modifiable biomarkers of oxidative stress and inflammation in environmental research on the aforementioned risk factors highlighting the need of exposome studies. Another focus will be on the epigenetic regulation via microRNAs in environmental stress upon exposure to noise and toxins/heavy metals as well as mental stress conditions, providing mechanistic insights into the modulation of microRNA signaling by oxidative stress, and vice versa the contribution of microRNAs to oxidative stress conditions. We will also provide an in-depth overview on the mechanistic pathways that lead to health problems (e.g., cardiovascular diseases) in response to environmental psychosocial stress, air pollution exposure in the form of ambient PM and diesel exhaust, traffic noise exposure, and the life style drug (water-pipe) smoking. Almost all stressors share the activation of the hypothalamic-pituitary-adrenocortical axis and of the sympathetic nervous system with subsequent onset of inflammation and oxidative stress, defining the here proposed therapeutic (antioxidant and exercise) strategies. Antioxid. Redox Signal. 28, 735-740.

  9. A plant microRNA regulates the adaptation of roots to drought stress

    KAUST Repository

    Chen, Hao

    2012-06-01

    Plants tend to restrict their horizontal root proliferation in response to drought stress, an adaptive response mediated by the phytohormone abscisic acid (ABA) in antagonism with auxin through unknown mechanisms. Here, we found that stress-regulated miR393-guided cleavage of the transcripts encoding two auxin receptors, TIR1 and AFB2, was required for inhibition of lateral root growth by ABA or osmotic stress. Unlike in the control plants, the lateral root growth of seedlings expressing miR393-resistant TIR1 or AFB2 was no longer inhibited by ABA or osmotic stress. Our results indicate that miR393-mediated attenuation of auxin signaling modulates root adaptation to drought stress. © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  10. Search for microRNAs expressed by intracellular bacterial pathogens in infected mammalian cells.

    Science.gov (United States)

    Furuse, Yuki; Finethy, Ryan; Saka, Hector A; Xet-Mull, Ana M; Sisk, Dana M; Smith, Kristen L Jurcic; Lee, Sunhee; Coers, Jörn; Valdivia, Raphael H; Tobin, David M; Cullen, Bryan R

    2014-01-01

    MicroRNAs are expressed by all multicellular organisms and play a critical role as post-transcriptional regulators of gene expression. Moreover, different microRNA species are known to influence the progression of a range of different diseases, including cancer and microbial infections. A number of different human viruses also encode microRNAs that can attenuate cellular innate immune responses and promote viral replication, and a fungal pathogen that infects plants has recently been shown to express microRNAs in infected cells that repress host cell immune responses and promote fungal pathogenesis. Here, we have used deep sequencing of total expressed small RNAs, as well as small RNAs associated with the cellular RNA-induced silencing complex RISC, to search for microRNAs that are potentially expressed by intracellular bacterial pathogens and translocated into infected animal cells. In the case of Legionella and Chlamydia and the two mycobacterial species M. smegmatis and M. tuberculosis, we failed to detect any bacterial small RNAs that had the characteristics expected for authentic microRNAs, although large numbers of small RNAs of bacterial origin could be recovered. However, a third mycobacterial species, M. marinum, did express an ∼ 23-nt small RNA that was bound by RISC and derived from an RNA stem-loop with the characteristics expected for a pre-microRNA. While intracellular expression of this candidate bacterial microRNA was too low to effectively repress target mRNA species in infected cultured cells in vitro, artificial overexpression of this potential bacterial pre-microRNA did result in the efficient repression of a target mRNA. This bacterial small RNA therefore represents the first candidate microRNA of bacterial origin.

  11. Search for microRNAs expressed by intracellular bacterial pathogens in infected mammalian cells.

    Directory of Open Access Journals (Sweden)

    Yuki Furuse

    Full Text Available MicroRNAs are expressed by all multicellular organisms and play a critical role as post-transcriptional regulators of gene expression. Moreover, different microRNA species are known to influence the progression of a range of different diseases, including cancer and microbial infections. A number of different human viruses also encode microRNAs that can attenuate cellular innate immune responses and promote viral replication, and a fungal pathogen that infects plants has recently been shown to express microRNAs in infected cells that repress host cell immune responses and promote fungal pathogenesis. Here, we have used deep sequencing of total expressed small RNAs, as well as small RNAs associated with the cellular RNA-induced silencing complex RISC, to search for microRNAs that are potentially expressed by intracellular bacterial pathogens and translocated into infected animal cells. In the case of Legionella and Chlamydia and the two mycobacterial species M. smegmatis and M. tuberculosis, we failed to detect any bacterial small RNAs that had the characteristics expected for authentic microRNAs, although large numbers of small RNAs of bacterial origin could be recovered. However, a third mycobacterial species, M. marinum, did express an ∼ 23-nt small RNA that was bound by RISC and derived from an RNA stem-loop with the characteristics expected for a pre-microRNA. While intracellular expression of this candidate bacterial microRNA was too low to effectively repress target mRNA species in infected cultured cells in vitro, artificial overexpression of this potential bacterial pre-microRNA did result in the efficient repression of a target mRNA. This bacterial small RNA therefore represents the first candidate microRNA of bacterial origin.

  12. Understanding alcoholism through microRNA signatures in brains of human alcoholics

    Directory of Open Access Journals (Sweden)

    R. Dayne eMayfield

    2012-04-01

    Full Text Available Advances in the fields of genomics and genetics in the last decade have identified a large number of genes that can potentially influence alcohol-drinking behavior in humans as well as animal models. Consequently, the task of identifying efficient molecular targets that could be used to develop effective therapeutics against the disease has become increasingly daunting. One of the reasons for this is the fact that each of the many alcohol-responsive genes only contributes a small effect to the overall mechanism and disease phenotype, as is characteristic of complex traits. Current research trends are hence shifting towards the analysis of gene networks rather than emphasizing individual genes. The discovery of microRNAs and their mechanisms of action on regulation of transcript level and protein translation have made evident the utility of these small non-coding RNA molecules that act as central coordinators of multiple cross-communicating cellular pathways. Cells exploit the fact that a single microRNA can target hundreds of mRNA transcripts and that a single mRNA transcript can be simultaneously targeted by distinct microRNAs, to ensure fine-tuned and/or redundant control over a large number of cellular functions. By the same token, we can use these properties of microRNAs to develop novel, targeted strategies to combat complex disorders. In this review, we will focus on recent discoveries of microRNA signatures in brain of human alcoholics supporting the hypothesis that changes in gene expression and regulation by microRNAs are responsible for long-term neuroadaptations occurring during development of alcoholism. We also discuss insights into the potential modulation of epigenetic regulators by a subset of microRNAs. Taken together, microRNA activity may be controlling many of the cellular mechanisms already known to be involved in the development of alcoholism, and suggests potential targets for the development of novel therapeutic

  13. Role of microRNAs in the immune system, inflammation and cancer.

    Science.gov (United States)

    Raisch, Jennifer; Darfeuille-Michaud, Arlette; Nguyen, Hang Thi Thu

    2013-05-28

    MicroRNAs, a key class of gene expression regulators, have emerged as crucial players in various biological processes such as cellular proliferation and differentiation, development and apoptosis. In addition, microRNAs are coming to light as crucial regulators of innate and adaptive immune responses, and their abnormal expression and/or function in the immune system have been linked to multiple human diseases including inflammatory disorders, such as inflammatory bowel disease, and cancers. In this review, we discuss our current understanding of microRNAs with a focus on their role and mode of action in regulating the immune system during inflammation and carcinogenesis.

  14. Targeting Glial Mitochondrial Function for Protection from Cerebral Ischemia: Relevance, Mechanisms, and the Role of MicroRNAs

    Directory of Open Access Journals (Sweden)

    Le Li

    2016-01-01

    Full Text Available Astrocytes and microglia play crucial roles in the response to cerebral ischemia and are effective targets for stroke therapy in animal models. MicroRNAs (miRs are important posttranscriptional regulators of gene expression that function by inhibiting the translation of select target genes. In astrocytes, miR expression patterns regulate mitochondrial function in response to oxidative stress via targeting of Bcl2 and heat shock protein 70 family members. Mitochondria play an active role in microglial activation, and miRs regulate the microglial neuroinflammatory response. As endogenous miR expression patterns can be altered with exogenous mimics and inhibitors, miR-targeted therapies represent a viable intervention to optimize glial mitochondrial function and improve clinical outcome following cerebral ischemia. In the present article, we review the role that astrocytes and microglia play in neuronal function and fate following ischemic stress, discuss the relevance of mitochondria in the glial response to injury, and present current evidence implicating miRs as critical regulators in the glial mitochondrial response to cerebral ischemia.

  15. Identification of microRNAs in the coral Stylophora pistillata.

    KAUST Repository

    Liew, Yi Jin

    2014-03-21

    Coral reefs are major contributors to marine biodiversity. However, they are in rapid decline due to global environmental changes such as rising sea surface temperatures, ocean acidification, and pollution. Genomic and transcriptomic analyses have broadened our understanding of coral biology, but a study of the microRNA (miRNA) repertoire of corals is missing. miRNAs constitute a class of small non-coding RNAs of ∼22 nt in size that play crucial roles in development, metabolism, and stress response in plants and animals alike. In this study, we examined the coral Stylophora pistillata for the presence of miRNAs and the corresponding core protein machinery required for their processing and function. Based on small RNA sequencing, we present evidence for 31 bona fide microRNAs, 5 of which (miR-100, miR-2022, miR-2023, miR-2030, and miR-2036) are conserved in other metazoans. Homologues of Argonaute, Piwi, Dicer, Drosha, Pasha, and HEN1 were identified in the transcriptome of S. pistillata based on strong sequence conservation with known RNAi proteins, with additional support derived from phylogenetic trees. Examination of putative miRNA gene targets indicates potential roles in development, metabolism, immunity, and biomineralisation for several of the microRNAs. Here, we present first evidence of a functional RNAi machinery and five conserved miRNAs in S. pistillata, implying that miRNAs play a role in organismal biology of scleractinian corals. Analysis of predicted miRNA target genes in S. pistillata suggests potential roles of miRNAs in symbiosis and coral calcification. Given the importance of miRNAs in regulating gene expression in other metazoans, further expression analyses of small non-coding RNAs in transcriptional studies of corals should be informative about miRNA-affected processes and pathways.

  16. High-Throughput microRNA and mRNA Sequencing Reveals that microRNAs May Be Involved in Melatonin-Mediated Cold Tolerance in Citrullus Lanatus L.

    Directory of Open Access Journals (Sweden)

    Hao Li

    2016-08-01

    Full Text Available Transcriptional regulation of cold-responsive genes is crucial for exogenous melatonin-mediated cold tolerance in plants. Nonetheless, how melatonin regulates cold-responsive genes is largely unknown. In this study, we found that exogenous melatonin improved cold tolerance in watermelon by regulating expression of microRNAs (miRNAs. We identified a set of miRNAs that were regulated by melatonin under unstressed or cold conditions. Importantly, mRNA-seq analysis revealed that melatonin-induced downregulation of some miRNAs, such as miR159-5p, miR858, miR8029-3p, and novel-m0048-3p correlated with the upregulation of target genes involved in signal transduction (CDPK, BHLH, WRKY, MYB, and DREB and protection/detoxification (LEA and MDAR under cold stress. These results suggest that miRNAs may be involved in melatonin-mediated cold tolerance in watermelon by negatively regulating the expression of target mRNAs.

  17. High-Throughput MicroRNA and mRNA Sequencing Reveals That MicroRNAs May Be Involved in Melatonin-Mediated Cold Tolerance in Citrullus lanatus L.

    Science.gov (United States)

    Li, Hao; Dong, Yuchuan; Chang, Jingjing; He, Jie; Chen, Hejie; Liu, Qiyan; Wei, Chunhua; Ma, Jianxiang; Zhang, Yong; Yang, Jianqiang; Zhang, Xian

    2016-01-01

    Transcriptional regulation of cold-responsive genes is crucial for exogenous melatonin-mediated cold tolerance in plants. Nonetheless, how melatonin regulates cold-responsive genes is largely unknown. In this study, we found that exogenous melatonin improved cold tolerance in watermelon by regulating expression of microRNAs (miRNAs). We identified a set of miRNAs that were regulated by melatonin under unstressed or cold conditions. Importantly, mRNA-seq analysis revealed that melatonin-induced downregulation of some miRNAs, such as miR159-5p, miR858, miR8029-3p, and novel-m0048-3p correlated with the upregulation of target genes involved in signal transduction (CDPK, BHLH, WRKY, MYB, and DREB) and protection/detoxification (LEA and MDAR) under cold stress. These results suggest that miRNAs may be involved in melatonin-mediated cold tolerance in watermelon by negatively regulating the expression of target mRNAs. PMID:27574526

  18. Predictors of responses to stress among families coping with poverty-related stress.

    Science.gov (United States)

    Santiago, Catherine DeCarlo; Etter, Erica Moran; Wadsworth, Martha E; Raviv, Tali

    2012-05-01

    This study tested how poverty-related stress (PRS), psychological distress, and responses to stress predicted future effortful coping and involuntary stress responses one year later. In addition, we explored age, sex, ethnicity, and parental influences on responses to stress over time. Hierarchical linear modeling analyses conducted with 98 low-income families (300 family members: 136 adults, 82 school-aged children, 82 adolescents) revealed that primary control coping, secondary control coping, disengagement, involuntary engagement, and involuntary disengagement each significantly predicted future use of that response. Primary and secondary control coping also predicted less maladaptive future responses to stress, while involuntary responses to stress undermined the development of adaptive responding. Age, sex, and interactions among PRS and prior coping were also found to predict certain responses to stress. In addition, child subgroup analyses demonstrate the importance of parental modeling of coping and involuntary stress responses, and warmth/nurturance and monitoring practices. Results are discussed with regard to the implications for preventive interventions with families in poverty.

  19. microRNA 125a Regulates MHC-I Expression on Esophageal Adenocarcinoma Cells, Associated With Suppression of Anti-tumor Immune Response and Poor Outcomes of Patients.

    Science.gov (United States)

    Mari, Luigi; Hoefnagel, Sanne J M; Zito, Domenico; van de Meent, Marian; van Endert, Peter; Calpe, Silvia; Sancho Serra, Maria Del Carmen; Heemskerk, Mirjam H M; van Laarhoven, Hanneke W M; Hulshof, Maarten C C M; Gisbertz, Susanne S; Medema, Jan Paul; van Berge Henegouwen, Mark I; Meijer, Sybren L; Bergman, Jacques J G H M; Milano, Francesca; Krishnadath, Kausilia K

    2018-06-07

    Immune checkpoint inhibition may affect growth or progression of highly aggressive cancers, such as esophageal adenocarcinoma (EAC). We investigated the regulation of expression of major histocompatibility complex, class 1 (MHC-I) proteins (encoded by HLA-A, HLA-B, and HLA-C) and the immune response to EACs in patient samples. We performed quantitative PCR array analyses of OE33 cells and OE19 cells, which express different levels of the ATP binding cassette subfamily B member 1 (TAP1) and TAP2, required for antigen presentation by MHC-I, to identify microRNAs that regulate their expression. We performed luciferase assays to validate interactions between microRNAs and potential targets. We overexpressed candidate microRNAs in OE33, FLO-1, and OACP4 C cell lines and performed quantitative PCR, immunoblot, and flow cytometry analyses to identify changes in mRNA and protein expression; we studied the effects of cytotoxic T cells. We performed microRNA in situ hybridization, RNA-sequencing, and immunohistochemical analyses of tumor tissues from 51 untreated patients with EAC in the Netherlands. Clinical and survival data were collected for patients, and EACs subtypes were determined. We found OE19 cells to have increased levels of 7 microRNAs. Of these, we found binding sites for microRNA 125a (MIR125a)-5p in the 3'UTR of the TAP2 mRNA and binding sites for MIR148a-3p in 3'UTRs of HLA-A, HLA-B, and HLA-C mRNAs. Overexpression of these microRNAs reduced expression of TAP2 in OE33, FLO-1, and OACP4 C cells, and reduced cell-surface levels of MHC-I. OE33 cells that expressed the viral peptide BZLF1 were killed by cytotoxic T cells, whereas OE33 that overexpressed MIR125a-5p or MIR 148a along with BZLF1 were not. In EAC and non-tumor tissues, levels of MIR125a-5p correlated inversely with levels of TAP2 protein. High expression of TAP1 by EAC correlated with significantly shorter overall survival times of patients. EACs that expressed high levels of TAP1 and genes involved

  20. Functions of microRNA in response to cocaine stimulation.

    Science.gov (United States)

    Xu, L-F; Wang, J; Lv, F B; Song, Q

    2013-12-04

    MicroRNAs (miRNAs) are a type of non-protein-coding single-stranded RNA, which are typically 20-25 nt in length. miRNAs play important roles in various biological processes, including development, cell proliferation, differentiation, and apoptosis. We aimed to detect the miRNA response to cocaine stimulations and their target genes. Using the miRNA expression data GSE21901 downloaded from the Gene Expression Omnibus database, we screened out the differentially expressed miRNA after short-term (1 h) and longer-term (6 h) cocaine stimulations based on the fold change >1.2. Target genes of differentially expressed miRNAs were retrieved from TargetScan database with the context score -0.3. Functional annotation enrichment analysis was performed for all the target genes with DAVID. A total of 121 differentially expressed miRNAs between the 1-h treatment and the control samples, 58 between the 6-h treatment and the control samples, and 69 between the 1-h and the 6-h treatment samples. Among them, miR-212 results of particular interest, since its expression level was constantly elevated responding to cocaine treatment. After functional and pathway annotations of target genes, we proved that miR-212 was a critical element in cocaine-addiction, because of its involvement in regulating several important cell cycle events. The results may pave the way for further understanding the regulatory mechanisms of cocaine-response in human bodies.

  1. NAViGaTing the micronome--using multiple microRNA prediction databases to identify signalling pathway-associated microRNAs.

    Directory of Open Access Journals (Sweden)

    Elize A Shirdel

    2011-02-01

    Full Text Available MicroRNAs are a class of small RNAs known to regulate gene expression at the transcript level, the protein level, or both. Since microRNA binding is sequence-based but possibly structure-specific, work in this area has resulted in multiple databases storing predicted microRNA:target relationships computed using diverse algorithms. We integrate prediction databases, compare predictions to in vitro data, and use cross-database predictions to model the microRNA:transcript interactome--referred to as the micronome--to study microRNA involvement in well-known signalling pathways as well as associations with disease. We make this data freely available with a flexible user interface as our microRNA Data Integration Portal--mirDIP (http://ophid.utoronto.ca/mirDIP.mirDIP integrates prediction databases to elucidate accurate microRNA:target relationships. Using NAViGaTOR to produce interaction networks implicating microRNAs in literature-based, KEGG-based and Reactome-based pathways, we find these signalling pathway networks have significantly more microRNA involvement compared to chance (p<0.05, suggesting microRNAs co-target many genes in a given pathway. Further examination of the micronome shows two distinct classes of microRNAs; universe microRNAs, which are involved in many signalling pathways; and intra-pathway microRNAs, which target multiple genes within one signalling pathway. We find universe microRNAs to have more targets (p<0.0001, to be more studied (p<0.0002, and to have higher degree in the KEGG cancer pathway (p<0.0001, compared to intra-pathway microRNAs.Our pathway-based analysis of mirDIP data suggests microRNAs are involved in intra-pathway signalling. We identify two distinct classes of microRNAs, suggesting a hierarchical organization of microRNAs co-targeting genes both within and between pathways, and implying differential involvement of universe and intra-pathway microRNAs at the disease level.

  2. MicroRNA expression profile in head and neck cancer: HOX-cluster embedded microRNA-196a and microRNA-10b dysregulation implicated in cell proliferation

    International Nuclear Information System (INIS)

    Severino, Patricia; Mathor, Monica Beatriz; Nunes, Fabio Daumas; Ragoussis, Jiannis; Tajara, Eloiza Helena; Brüggemann, Holger; Andreghetto, Flavia Maziero; Camps, Carme; Klingbeil, Maria de Fatima Garrido; Pereira, Welbert Oliveira de; Soares, Renata Machado; Moyses, Raquel; Wünsch-Filho, Victor

    2013-01-01

    Current evidence implicates aberrant microRNA expression patterns in human malignancies; measurement of microRNA expression may have diagnostic and prognostic applications. Roles for microRNAs in head and neck squamous cell carcinomas (HNSCC) are largely unknown. HNSCC, a smoking-related cancer, is one of the most common malignancies worldwide but reliable diagnostic and prognostic markers have not been discovered so far. Some studies have evaluated the potential use of microRNA as biomarkers with clinical application in HNSCC. MicroRNA expression profile of oral squamous cell carcinoma samples was determined by means of DNA microarrays. We also performed gain-of-function assays for two differentially expressed microRNA using two squamous cell carcinoma cell lines and normal oral keratinocytes. The effect of the over-expression of these molecules was evaluated by means of global gene expression profiling and cell proliferation assessment. Altered microRNA expression was detected for a total of 72 microRNAs. Among these we found well studied molecules, such as the miR-17-92 cluster, comprising potent oncogenic microRNA, and miR-34, recently found to interact with p53. HOX-cluster embedded miR-196a/b and miR-10b were up- and down-regulated, respectively, in tumor samples. Since validated HOX gene targets for these microRNAs are not consistently deregulated in HNSCC, we performed gain-of-function experiments, in an attempt to outline their possible role. Our results suggest that both molecules interfere in cell proliferation through distinct processes, possibly targeting a small set of genes involved in cell cycle progression. Functional data on miRNAs in HNSCC is still scarce. Our data corroborate current literature and brings new insights into the role of microRNAs in HNSCC. We also show that miR-196a and miR-10b, not previously associated with HNSCC, may play an oncogenic role in this disease through the deregulation of cell proliferation. The study of microRNA

  3. MicroRNAs as regulatory elements in psoriasis

    Directory of Open Access Journals (Sweden)

    Liu Yuan

    2016-01-01

    Full Text Available Psoriasis is a chronic, autoimmune, and complex genetic disorder that affects 23% of the European population. The symptoms of Psoriatic skin are inflammation, raised and scaly lesions. microRNA, which is short, nonprotein-coding, regulatory RNAs, plays critical roles in psoriasis. microRNA participates in nearly all biological processes, such as cell differentiation, development and metabolism. Recent researches reveal that multitudinous novel microRNAs have been identified in skin. Some of these substantial novel microRNAs play as a class of posttranscriptional gene regulator in skin disease, such as psoriasis. In order to insight into microRNAs biological functions and verify microRNAs biomarker, we review diverse references about characterization, profiling and subtype of microRNAs. Here we will share our opinions about how and which microRNAs are as regulatory in psoriasis.

  4. Calcitriol increases Dicer expression and modifies the microRNAs signature in SiHa cervical cancer cells.

    Science.gov (United States)

    González-Duarte, Ramiro José; Cázares-Ordoñez, Verna; Romero-Córdoba, Sandra; Díaz, Lorenza; Ortíz, Víctor; Freyre-González, Julio Augusto; Hidalgo-Miranda, Alfredo; Larrea, Fernando; Avila, Euclides

    2015-08-01

    MicroRNAs play important roles in cancer biology. Calcitriol, the hormonal form of vitamin D3, regulates microRNAs expression in tumor cells. In the present study we asked if calcitriol would modify some of the components of the microRNA processing machinery, namely, Drosha and Dicer, in calcitriol-responsive cervical cancer cells. We found that calcitriol treatment did not affect Drosha mRNA; however, it significantly increased Dicer mRNA and protein expression in VDR-positive SiHa and HeLa cells. In VDR-negative C33-A cells, calcitriol had no effect on Dicer mRNA. We also found a vitamin D response element in Dicer promoter that interacts in vitro to vitamin D and retinoid X receptors. To explore the biological plausibility of these results, we asked if calcitriol alters the microRNA expression profile in SiHa cells. Our results revealed that calcitriol regulates the expression of a subset of microRNAs with potential regulatory functions in cancer pathways, such as miR-22, miR-296-3p, and miR-498, which exert tumor-suppressive effects. In summary, the data indicate that in SiHa cells, calcitriol stimulates the expression of Dicer possibly through the vitamin D response element located in its promoter. This may explain the calcitriol-dependent modulation of microRNAs whose target mRNAs are related to anticancer pathways, further adding to the various anticancer mechanisms of calcitriol.

  5. Profiling microRNAs in lung tissue from pigs infected with Actinobacillus pleuropneumoniae

    DEFF Research Database (Denmark)

    Podolska, Agnieszka; Anthon, Christian; Bak, Mads

    2012-01-01

    significantly up-regulated in the necrotic sample and 12 were down-regulated. The expression analysis of a number of candidates revealed microRNAs of potential importance in the innate immune response. MiR-155, a known key player in inflammation, was found expressed in both samples. Moreover, miR-664-5p, mi......R-451 and miR-15a appear as very promising candidates for microRNAs involved in response to pathogen infection. Conclusions: This is the first study revealing significant differences in composition and expression profiles of miRNAs in lungs infected with a bacterial pathogen. Our results extend......Background: MicroRNAs (miRNAs) are a class of non-protein-coding genes that play a crucial regulatory role in mammalian development and disease. Whereas a large number of miRNAs have been annotated at the structural level during the latest years, functional annotation is sparse. Actinobacillus...

  6. Expression Profile of Stress-responsive Arabidopsis thaliana miRNAs and their Target Genes in Response to Inoculation with Pectobacterium carotovorum subsp. carotovorum.

    Science.gov (United States)

    Djami-Tchatchou, A T; Ntushelo, K

    2017-01-01

    Pectobacterium carotovorum subsp. carotovorum (Pcc) is a soft rot bacterium which upon entry into the plant macerates plant tissues by producing plant cell wall degrading enzymes. It has a wide host range which includes carrot, potato, tomato, leafy greens, squash and other cucurbits, onion, green peppers and cassava. During plant-microbe interactions, one of the ways of plant response to pathogen infection is through the small RNA silencing mechanism. Under pathogen attack the plant utilizes microRNAs to regulate gene expression by means of mediating gene silencing at transcriptional and post-transcriptional level. This study aims to assess for the first time, the expression profile of some stress-responsive miRNA and differential expression pattern of their target genes in Arabidopsis thaliana inoculated with Pcc. Leaves of five weeks old Arabidopsis thaliana plants were infected with Pcc and the quantitative real time-PCR, was used to investigate after 0, 24, 48 and 72 h post infection, the expression profiling of the stress-responsive miRNAs which include: miR156, miR159, miR169, miR393, miR396 miR398, miR399 and miR408 along with their target genes which include: Squamosa promoter-binding-like protein, myb domain protein 101, nuclear factor Y subunit A8, concanavalin A-like lectin protein kinase, growth regulating factor 4, copper superoxide dismutase, ubiquitin-protein ligase and plantacyanin respectively. The findings showed that the overexpression of 6 miRNAs at 24, 48 and 72 h after infection resulted in the repression of their target genes and the expression of 2 miRNAs didn't affect their target genes. These results provide the first indication of the miRNAs role in response to the infection of Pcc in A. thaliana and open new vistas for a better understanding of miRNA regulation of plant response to Pcc.

  7. Plant Core Environmental Stress Response Genes Are Systemically Coordinated during Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Kenneth W. Berendzen

    2013-04-01

    Full Text Available Studying plant stress responses is an important issue in a world threatened by global warming. Unfortunately, comparative analyses are hampered by varying experimental setups. In contrast, the AtGenExpress abiotic stress experiment displays intercomparability. Importantly, six of the nine stresses (wounding, genotoxic, oxidative, UV-B light, osmotic and salt can be examined for their capacity to generate systemic signals between the shoot and root, which might be essential to regain homeostasis in Arabidopsis thaliana. We classified the systemic responses into two groups: genes that are regulated in the non-treated tissue only are defined as type I responsive and, accordingly, genes that react in both tissues are termed type II responsive. Analysis of type I and II systemic responses suggest distinct functionalities, but also significant overlap between different stresses. Comparison with salicylic acid (SA and methyl-jasmonate (MeJA responsive genes implies that MeJA is involved in the systemic stress response. Certain genes are predominantly responding in only one of the categories, e.g., WRKY genes respond mainly non-systemically. Instead, genes of the plant core environmental stress response (PCESR, e.g., ZAT10, ZAT12, ERD9 or MES9, are part of different response types. Moreover, several PCESR genes switch between the categories in a stress-specific manner.

  8. The role of microRNA399 and sucrose in physiological responses to phosphate deficiency in Arabidopsis thalina plant

    Directory of Open Access Journals (Sweden)

    Farzaneh Mohammadsaleh

    2015-03-01

    Full Text Available microRNAs (miRNAs are noncoding small RNAs that generally function as posttranscriptional negative regulators. The miRNAs play a direct role in plant responses to many types of environmental stresses. For example miR399 had a role in response to Pi deficiency. The aim of this study was to investigate the role of miR399 and sucrose in some physiological responses of Arabidopsis thaliana plants to phosphate deficiency. Therefore, miR399-overexpressing transgenic and wild type Arabidopsis plants were used. The plant seeds were cultured on the Suc+Pi+ (S+P+, Suc-Pi+ (S-P+, Suc+Pi- (S+P- and Suc-Pi- (S-P- media. Pi+ and Pi- refer to 1.2 mM and 10 µM Pi, respectively and Suc+ or Suc- are media culture with 1% sucrose or without. The results showed that sucrose and miR399 had a dramatic effect on root architecture so that primary root length and its branches on S-P+ medium were significantly reduced in over expressed as compared with wild type plants. The highest anthocyanin and starch accumulation was achieved in S+P- media in both plant types. However, miR399 over expression was resulted in significant rise in anthocyanin accumulation on S-P- medium in transgenic relative to wild type plants. In addition, miR399 was resulted in significant rise in free phosphorous level in all types' media. compared to wild type. These results were probably due to the role of sucrose and miR399 in signalling pathway during phosphate starvation in Arabidopsis plant.

  9. Overexpression of miR529a confers enhanced resistance to oxidative stress in rice (Oryza sativa L.).

    Science.gov (United States)

    Yue, Erkui; Liu, Zhen; Li, Chao; Li, Yu; Liu, Qiuxiang; Xu, Jian-Hong

    2017-07-01

    Overexpressing miR529a can enhance oxidative stress resistance by targeting OsSPL2 and OsSPL14 genes that can regulate the expression of their downstream SOD and POD related genes. MicroRNAs are involved in the regulation of plant developmental and physiological processes, and their expression can be altered when plants suffered environment stresses, including salt, oxidative, drought and Cadmium. The expression of microRNA529 (miR529) can be induced under oxidative stress. However, its biological function under abiotic stress responses is still unclear. In this study, miR529a was overexpressed to investigate the function of miR529a under oxidative stress in rice. Our results demonstrated that the expression of miR529a can be induced by exogenous H 2 O 2 , and overexpressing miR529a can increase plant tolerance to high level of H 2 O 2 , resulting in increased seed germination rate, root tip cell viability, reduced leaf rolling rate and chlorophyll retention. The expression of oxidative stress responsive genes and the activities of superoxide dismutase (SOD) and peroxidase (POD) were increased in miR529a overexpression plant, which could help to reduce redundant reactive oxygen species (ROS). Furthermore, only OsSPL2 and OsSPL14 were targeted by miR529a in rice seedlings, repressing their expression in miR529aOE plants could lead to strengthen plant tolerance to oxidation stress. Our study provided the evidence that overexpression of miR529a could strengthen oxidation resistance, and its target genes OsSPL2 and OsSPL14 were responsible for oxidative tolerance, implied the manipulation of miR529a and its target genes regulation on H 2 O 2 related response genes could improve oxidative stress tolerance in rice.

  10. Identification of drought-responsive miRNAs and physiological characterization of tea plant (Camellia sinensis L.) under drought stress.

    Science.gov (United States)

    Guo, Yuqiong; Zhao, Shanshan; Zhu, Chen; Chang, Xiaojun; Yue, Chuan; Wang, Zhong; Lin, Yuling; Lai, Zhongxiong

    2017-11-21

    Drought stress is one of the major natural challenges in the main tea-producing regions of China. The tea plant (Camellia sinensis) is a traditional beverage plant whose growth status directly affects tea quality. Recent studies have revealed that microRNAs (miRNAs) play key functions in plant growth and development. Although some miRNAs have been identified in C. sinensis, little is known about their roles in the drought stress response of tea plants. Physiological characterization of Camellia sinensis 'Tieguanyin' under drought stress showed that the malondialdehyde concentration and electrical conductivity of leaves of drought-stressed plants increased when the chlorophyll concentration decreased under severe drought stress. We sequenced four small-RNA (sRNA) libraries constructed from leaves of plants subjected to four different treatments, normal water supply (CK); mild drought stress (T1); moderate drought stress (T2) and severe drought stress (T3). A total of 299 known mature miRNA sequences and 46 novel miRNAs were identified. Gene Ontology enrichment analysis revealed that most of the differentially expressed-miRNA target genes were related to regulation of transcription. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the most highly enriched pathways under drought stress were D-alanine metabolism, sulfur metabolism, and mineral absorption pathways. Real-time quantitative PCR (qPCR) was used to validate the expression patterns of 21 miRNAs (2 up-regulated and 19 down-regulated under drought stress). The observed co-regulation of the miR166 family and their targets ATHB-14-like and ATHB-15-like indicate the presence of negative feedback regulation in miRNA pathways. Analyses of drought-responsive miRNAs in tea plants showed that most of differentially expressed-miRNA target genes were related to regulation of transcription. The results of study revealed that the expressions of phase-specific miRNAs vary with morphological, physiological, and

  11. MicroRNA signature of the human developing pancreas

    Directory of Open Access Journals (Sweden)

    Correa-Medina Mayrin

    2010-09-01

    Full Text Available Abstract Background MicroRNAs are non-coding RNAs that regulate gene expression including differentiation and development by either inhibiting translation or inducing target degradation. The aim of this study is to determine the microRNA expression signature during human pancreatic development and to identify potential microRNA gene targets calculating correlations between the signature microRNAs and their corresponding mRNA targets, predicted by bioinformatics, in genome-wide RNA microarray study. Results The microRNA signature of human fetal pancreatic samples 10-22 weeks of gestational age (wga, was obtained by PCR-based high throughput screening with Taqman Low Density Arrays. This method led to identification of 212 microRNAs. The microRNAs were classified in 3 groups: Group number I contains 4 microRNAs with the increasing profile; II, 35 microRNAs with decreasing profile and III with 173 microRNAs, which remain unchanged. We calculated Pearson correlations between the expression profile of microRNAs and target mRNAs, predicted by TargetScan 5.1 and miRBase altgorithms, using genome-wide mRNA expression data. Group I correlated with the decreasing expression of 142 target mRNAs and Group II with the increasing expression of 876 target mRNAs. Most microRNAs correlate with multiple targets, just as mRNAs are targeted by multiple microRNAs. Among the identified targets are the genes and transcription factors known to play an essential role in pancreatic development. Conclusions We have determined specific groups of microRNAs in human fetal pancreas that change the degree of their expression throughout the development. A negative correlative analysis suggests an intertwined network of microRNAs and mRNAs collaborating with each other. This study provides information leading to potential two-way level of combinatorial control regulating gene expression through microRNAs targeting multiple mRNAs and, conversely, target mRNAs regulated in

  12. Expression of MicroRNA-146a and MicroRNA-155 in Placental Villi in Early- and Late-Onset Preeclampsia.

    Science.gov (United States)

    Nizyaeva, N V; Kulikova, G V; Nagovitsyna, M N; Kan, N E; Prozorovskaya, K N; Shchegolev, A I; Sukhikh, G T

    2017-07-01

    We studied the expression of microRNA-146a and microRNA-155 in placental villi from 18 women (26-39 weeks of gestation) of reproductive age with early- or late-onset preeclampsia. The reference group consisted of women with physiological pregnancy and full-term gestation and with preterm birth after caesarian section on gestation week 26-31. MicroRNA-146a and microRNA-155 were detected by in situ hybridization with digoxigenin on paraffin sections. It was found that the expression of microRNA-146a in both syncytiotrophoblast of the intermediate villi and syncytial knots was lower at late-onset preeclampsia than at physiologic pregnancy of full-term period (p=0.037 and p=0.001 respectively). The expression of microRNA-155 in syncytiotrophoblast of intermediate placental villi in early-onset preeclampsia was higher than in group with preterm delivery (p=0.003). However, in syncytiotrophoblast of intermediate villi and in syncytial knots, the expression of microRNA-155 was lower at late-onset preeclampsia in comparison with full-term physiological pregnancy (p=0.005). In addition, the expression of microRNA-146a and microRNA-155 did not increase in the later terms in preeclampsia, while in the reference groups demonstrating gradual increase in the expression of these markers with increasing gestational age. Expression microRNA-146a and microRNA-155 little differed in early- and late-onset preeclampsia. These findings suggest that different variants of preeclampsia are probably characterized by common pathogenetic pathways. Damaged trophoblast cannot maintain of microRNAs synthesis at the required level, which determines the formation of a vicious circle in preeclampsia and further progression of the disease.

  13. MicroRNAs as diagnostic markers and therapeutic targets for traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Bridget Martinez

    2017-01-01

    Full Text Available Traumatic brain injury (TBI is characterized by primary damage to the brain from the external mechanical force and by subsequent secondary injury due to various molecular and pathophysiological responses that eventually lead to neuronal cell death. Secondary brain injury events may occur minutes, hours, or even days after the trauma, and provide valuable therapeutic targets to prevent further neuronal degeneration. At the present time, there is no effective treatment for TBI due, in part, to the widespread impact of numerous complex secondary biochemical and pathophysiological events occurring at different time points following the initial injury. MicroRNAs control a range of physiological and pathological functions such as development, differentiation, apoptosis and metabolism, and may serve as potential targets for progress assessment and intervention against TBI to mitigate secondary damage to the brain. This has implications regarding improving the diagnostic accuracy of brain impairment and long-term outcomes as well as potential novel treatments. Recent human studies have identified specific microRNAs in serum/plasma (miR-425-p, -21, -93, -191 and -499 and cerebro-spinal fluid (CSF (miR-328, -362-3p, -451, -486a as possible indicators of the diagnosis, severity, and prognosis of TBI. Experimental animal studies have examined specific microRNAs as biomarkers and therapeutic targets for moderate and mild TBI (e.g., miR-21, miR-23b. MicroRNA profiling was altered by voluntary exercise. Differences in basal microRNA expression in the brain of adult and aged animals and alterations in response to TBI (e.g., miR-21 have also been reported. Further large-scale studies with TBI patients are needed to provide more information on the changes in microRNA profiles in different age groups (children, adults, and elderly.

  14. STRESS RESPONSE STUDIES USING ANIMAL MODELS

    Science.gov (United States)

    This presentation will provide the evidence that ozone exposure in animal models induce neuroendocrine stress response and this stress response modulates lung injury and inflammation through adrenergic and glucocorticoid receptors.

  15. Micro-RNAs

    DEFF Research Database (Denmark)

    Taipaleenmäki, H.; Hokland, L. B.; Chen, Li

    2012-01-01

    Osteoblast differentiation and bone formation (osteogenesis) are regulated by transcriptional and post-transcriptional mechanisms. Recently, a novel class of regulatory factors termed microRNAs has been identified as playing an important role in the regulation of many aspects of osteoblast biology...... including proliferation, differentiation, metabolism and apoptosis. Also, preliminary data from animal disease models suggest that targeting miRNAs in bone can be a novel approach to increase bone mass. This review highlights the current knowledge of microRNA biology and their role in bone formation...

  16. MicroRNA expression characterizes oligometastasis(es).

    Science.gov (United States)

    Lussier, Yves A; Xing, H Rosie; Salama, Joseph K; Khodarev, Nikolai N; Huang, Yong; Zhang, Qingbei; Khan, Sajid A; Yang, Xinan; Hasselle, Michael D; Darga, Thomas E; Malik, Renuka; Fan, Hanli; Perakis, Samantha; Filippo, Matthew; Corbin, Kimberly; Lee, Younghee; Posner, Mitchell C; Chmura, Steven J; Hellman, Samuel; Weichselbaum, Ralph R

    2011-01-01

    Cancer staging and treatment presumes a division into localized or metastatic disease. We proposed an intermediate state defined by ≤ 5 cumulative metastasis(es), termed oligometastases. In contrast to widespread polymetastases, oligometastatic patients may benefit from metastasis-directed local treatments. However, many patients who initially present with oligometastases progress to polymetastases. Predictors of progression could improve patient selection for metastasis-directed therapy. Here, we identified patterns of microRNA expression of tumor samples from oligometastatic patients treated with high-dose radiotherapy. Patients who failed to develop polymetastases are characterized by unique prioritized features of a microRNA classifier that includes the microRNA-200 family. We created an oligometastatic-polymetastatic xenograft model in which the patient-derived microRNAs discriminated between the two metastatic outcomes. MicroRNA-200c enhancement in an oligometastatic cell line resulted in polymetastatic progression. These results demonstrate a biological basis for oligometastases and a potential for using microRNA expression to identify patients most likely to remain oligometastatic after metastasis-directed treatment.

  17. Identification and profiling of conserved and novel microRNAs in Laodelphax striatellus in response to rice black-streaked dwarf virus (RBSDV infection

    Directory of Open Access Journals (Sweden)

    Jun-Min Li

    2015-03-01

    Full Text Available MicroRNAs (miRNAs are small non-coding endogenous RNA molecules that play important roles in various biological processes. This study examined microRNA profiles of Laodelphax striatellus using the small RNA libraries derived from virus free (VF and rice black-streaked dwarf virus (RBSDV infected (RB insects. A total of 59 mature miRNAs (46 miRNA families were identified as conserved insect miRNAs in both VF and RB libraries. Among these conserved miRNAs, 24 were derived from the two arms of 12 miRNA precursors. Nine conserved L. striatellus miRNAs were up-regulated and 12 were down-regulated in response to RBSDV infection. In addition, a total of 20 potential novel miRNA candidates were predicted in the VF and RB libraries. The miRNA transcriptome profiles and the identification of L. striatellus miRNAs differentially expressed in response to RBSDV infection will contribute to future studies to elucidate the complex miRNA-mediated regulatory network activated by pathogen challenge in insect vectors.

  18. Longevity and the stress response in Drosophila

    DEFF Research Database (Denmark)

    Vermeulen, Corneel J.; Loeschcke, Volker

    2007-01-01

    briefly review the state of the art of research on ageing and longevity in the model organism Drosophila, with focus on the role of the general stress response. We will conclude by contemplating some of the implications of the findings in this research and will suggest several directions for future...... research. Keywords: Ageing; Stress response; Hsp; Drosophila; Stress......The concept that lifespan is a function of the capacity to withstand extrinsic stress is very old. In concordance with this, long-lived individuals often have increased resistance against a variety of stresses throughout life. Genes underlying the stress response may therefore have the ability...

  19. DNA methylation, microRNAs, and their crosstalk as potential biomarkers in hepatocellular carcinoma

    Science.gov (United States)

    Anwar, Sumadi Lukman; Lehmann, Ulrich

    2014-01-01

    Epigenetic alterations have been identified as a major characteristic in human cancers. Advances in the field of epigenetics have contributed significantly in refining our knowledge of molecular mechanisms underlying malignant transformation. DNA methylation and microRNA expression are epigenetic mechanisms that are widely altered in human cancers including hepatocellular carcinoma (HCC), the third leading cause of cancer related mortality worldwide. Both DNA methylation and microRNA expression patterns are regulated in developmental stage specific-, cell type specific- and tissue-specific manner. The aberrations are inferred in the maintenance of cancer stem cells and in clonal cell evolution during carcinogenesis. The availability of genome-wide technologies for DNA methylation and microRNA profiling has revolutionized the field of epigenetics and led to the discovery of a number of epigenetically silenced microRNAs in cancerous cells and primary tissues. Dysregulation of these microRNAs affects several key signalling pathways in hepatocarcinogenesis suggesting that modulation of DNA methylation and/or microRNA expression can serve as new therapeutic targets for HCC. Accumulative evidence shows that aberrant DNA methylation of certain microRNA genes is an event specifically found in HCC which correlates with unfavorable outcomes. Therefore, it can potentially serve as a biomarker for detection as well as for prognosis, monitoring and predicting therapeutic responses in HCC. PMID:24976726

  20. Generalized Unsafety Theory of Stress: Unsafe Environments and Conditions, and the Default Stress Response.

    Science.gov (United States)

    Brosschot, Jos F; Verkuil, Bart; Thayer, Julian F

    2018-03-07

    Prolonged physiological stress responses form an important risk factor for disease. According to neurobiological and evolution-theoretical insights the stress response is a default response that is always "on" but inhibited by the prefrontal cortex when safety is perceived. Based on these insights the Generalized Unsafety Theory of Stress (GUTS) states that prolonged stress responses are due to generalized and largely unconsciously perceived unsafety rather than stressors. This novel perspective necessitates a reconstruction of current stress theory, which we address in this paper. We discuss a variety of very common situations without stressors but with prolonged stress responses, that are not, or not likely to be caused by stressors, including loneliness, low social status, adult life after prenatal or early life adversity, lack of a natural environment, and less fit bodily states such as obesity or fatigue. We argue that in these situations the default stress response may be chronically disinhibited due to unconsciously perceived generalized unsafety. Also, in chronic stress situations such as work stress, the prolonged stress response may be mainly caused by perceived unsafety in stressor-free contexts. Thus, GUTS identifies and explains far more stress-related physiological activity that is responsible for disease and mortality than current stress theories.

  1. Generalized Unsafety Theory of Stress: Unsafe Environments and Conditions, and the Default Stress Response

    Directory of Open Access Journals (Sweden)

    Jos F. Brosschot

    2018-03-01

    Full Text Available Prolonged physiological stress responses form an important risk factor for disease. According to neurobiological and evolution-theoretical insights the stress response is a default response that is always “on” but inhibited by the prefrontal cortex when safety is perceived. Based on these insights the Generalized Unsafety Theory of Stress (GUTS states that prolonged stress responses are due to generalized and largely unconsciously perceived unsafety rather than stressors. This novel perspective necessitates a reconstruction of current stress theory, which we address in this paper. We discuss a variety of very common situations without stressors but with prolonged stress responses, that are not, or not likely to be caused by stressors, including loneliness, low social status, adult life after prenatal or early life adversity, lack of a natural environment, and less fit bodily states such as obesity or fatigue. We argue that in these situations the default stress response may be chronically disinhibited due to unconsciously perceived generalized unsafety. Also, in chronic stress situations such as work stress, the prolonged stress response may be mainly caused by perceived unsafety in stressor-free contexts. Thus, GUTS identifies and explains far more stress-related physiological activity that is responsible for disease and mortality than current stress theories.

  2. MicroRNA involvement in glioblastoma pathogenesis

    International Nuclear Information System (INIS)

    Novakova, Jana; Slaby, Ondrej; Vyzula, Rostislav; Michalek, Jaroslav

    2009-01-01

    MicroRNAs are endogenously expressed regulatory noncoding RNAs. Altered expression levels of several microRNAs have been observed in glioblastomas. Functions and direct mRNA targets for these microRNAs have been relatively well studied over the last years. According to these data, it is now evident, that impairment of microRNA regulatory network is one of the key mechanisms in glioblastoma pathogenesis. MicroRNA deregulation is involved in processes such as cell proliferation, apoptosis, cell cycle regulation, invasion, glioma stem cell behavior, and angiogenesis. In this review, we summarize the current knowledge of miRNA functions in glioblastoma with an emphasis on its significance in glioblastoma oncogenic signaling and its potential to serve as a disease biomarker and a novel therapeutic target in oncology.

  3. General Stress Responses in the Honey Bee

    Directory of Open Access Journals (Sweden)

    Naïla Even

    2012-12-01

    Full Text Available The biological concept of stress originated in mammals, where a “General Adaptation Syndrome” describes a set of common integrated physiological responses to diverse noxious agents. Physiological mechanisms of stress in mammals have been extensively investigated through diverse behavioral and physiological studies. One of the main elements of the stress response pathway is the endocrine hypothalamo-pituitary-adrenal (HPA axis, which underlies the “fight-or-flight” response via a hormonal cascade of catecholamines and corticoid hormones. Physiological responses to stress have been studied more recently in insects: they involve biogenic amines (octopamine, dopamine, neuropeptides (allatostatin, corazonin and metabolic hormones (adipokinetic hormone, diuretic hormone. Here, we review elements of the physiological stress response that are or may be specific to honey bees, given the economical and ecological impact of this species. This review proposes a hypothetical integrated honey bee stress pathway somewhat analogous to the mammalian HPA, involving the brain and, particularly, the neurohemal organ corpora cardiaca and peripheral targets, including energy storage organs (fat body and crop. We discuss how this system can organize rapid coordinated changes in metabolic activity and arousal, in response to adverse environmental stimuli. We highlight physiological elements of the general stress responses that are specific to honey bees, and the areas in which we lack information to stimulate more research into how this fascinating and vital insect responds to stress.

  4. Psychophysiological responses to stress after stress management training in patients with rheumatoid arthritis.

    Directory of Open Access Journals (Sweden)

    Sabine J M de Brouwer

    Full Text Available BACKGROUND: Stress management interventions may prove useful in preventing the detrimental effects of stress on health. This study assessed the effects of a stress management intervention on the psychophysiological response to stress in patients with rheumatoid arthritis (RA. METHODS: Seventy-four patients with RA, who were randomly assigned to either a control group or a group that received short-term stress management training, performed a standardized psychosocial stress task (Trier Social Stress Test; TSST 1 week after the stress management training and at a 9-week follow-up. Psychological and physical functioning, and the acute psychophysiological response to the stress test were assessed. RESULTS: Patients in the intervention group showed significantly lower psychological distress levels of anxiety after the training than did the controls. While there were no between-group differences in stress-induced tension levels, and autonomic (α-amylase or endocrine (cortisol responses to the stress test 1 week after the intervention, levels of stress-induced tension and cortisol were significantly lower in the intervention group at the 9-week follow-up. Overall, the response to the intervention was particularly evident in a subgroup of patients with a psychological risk profile. CONCLUSION: A relatively short stress management intervention can improve psychological functioning and influences the psychophysiological response to stress in patients with RA, particularly those psychologically at risk. These findings might help understand how stress can affect health and the role of individual differences in stress responsiveness. TRIAL REGISTRATION: TrialRegister.nl NTR1193.

  5. MicroRNAs That Contribute to Coordinating the Immune Response in Drosophila melanogaster.

    Science.gov (United States)

    Atilano, Magda L; Glittenberg, Marcus; Monteiro, Annabel; Copley, Richard R; Ligoxygakis, Petros

    2017-09-01

    Small noncoding RNAs called microRNAs (miRNAs) have emerged as post-transcriptional regulators of gene expression related to host defenses. Here, we have used Drosophila melanogaster to explore the contribution of individual or clusters of miRNAs in countering systemic Candida albicans infection. From a total of 72 tested, we identify 6 miRNA allelic mutant backgrounds that modulate the survival response to infection and the ability to control pathogen number. These mutants also exhibit dysregulation of the Toll pathway target transcripts Drosomycin ( Drs ) and Immune-Induced Molecule 1 ( IM1 ). These are characteristics of defects in Toll signaling, and consistent with this, we demonstrate dependency for one of the miRNA mutants on the NF-κΒ homolog Dif. We also quantify changes in the miRNA expression profile over time in response to three pathogen types, and identify 13 mature miRNA forms affected by pathogens that stimulate Toll signaling. To complement this, we provide a genome-wide map of potential NF-κB sites in proximity to miRNA genes. Finally, we demonstrate that systemic C. albicans infection contributes to a reduction in the total amount of branch-chained amino acids, which is miRNA-regulated. Overall, our data reveal a new layer of miRNA complexity regulating the fly response to systemic fungal infection. Copyright © 2017 Atilano et al.

  6. MicroRNAs Modulate Oxidative Stress in Hypertension through PARP-1 Regulation

    Directory of Open Access Journals (Sweden)

    Douglas F. Dluzen

    2017-01-01

    Full Text Available Oxidative stress is thought to contribute to aging and age-related diseases, such as cardiovascular and neurodegenerative diseases, and is a risk factor for systemic arterial hypertension. Previously, we reported differential mRNA and microRNA (miRNA expression between African American (AA and white women with hypertension. Here, we found that the poly-(ADP-ribose polymerase 1 (PARP-1, a DNA damage sensor protein involved in DNA repair and other cellular processes, is upregulated in AA women with hypertension. To explore this mechanism, we identified two miRNAs, miR-103a-2-5p and miR-585-5p, that are differentially expressed with hypertension and were predicted to target PARP1. Through overexpression of each miRNA-downregulated PARP-1 mRNA and protein levels and using heterologous luciferase reporter assays, we demonstrate that miR-103a-2-5p and miR-585-5p regulate PARP1 through binding within the coding region. Given the important role of PARP-1 in DNA repair, we assessed whether overexpression of miR-103a-2-5p or miR-585-5p affected DNA damage and cell survival. Overexpression of these miRNAs enhanced DNA damage and decreased both cell survival and colony formation. These findings highlight the role for PARP-1 in regulating oxidative DNA damage in hypertension and identify important new miRNA regulators of PARP-1 expression. These insights may provide additional avenues to understand hypertension health disparities.

  7. Plant responses to water stress

    Science.gov (United States)

    Kar, Rup Kumar

    2011-01-01

    Terrestrial plants most often encounter drought stress because of erratic rainfall which has become compounded due to present climatic changes.Responses of plants to water stress may be assigned as either injurious change or tolerance index. One of the primary and cardinal changes in response to drought stress is the generation of reactive oxygen species (ROS), which is being considered as the cause of cellular damage. However, recently a signaling role of such ROS in triggering the ROS scavenging system that may confer protection or tolerance against stress is emerging. Such scavenging system consists of antioxidant enzymes like SOD, catalase and peroxidases, and antioxidant compounds like ascorbate, reduced glutathione; a balance between ROS generation and scavenging ultimately determines the oxidative load. As revealed in case of defence against pathogen, signaling via ROS is initiated by NADPH oxidase-catalyzed superoxide generation in the apoplastic space (cell wall) followed by conversion to hydrogen peroxide by the activity of cell wall-localized SOD. Wall peroxidase may also play role in ROS generation for signaling. Hydrogen peroxide may use Ca2+ and MAPK pathway as downstream signaling cascade. Plant hormones associated with stress responses like ABA and ethylene play their role possibly via a cross talk with ROS towards stress tolerance, thus projecting a dual role of ROS under drought stress. PMID:22057331

  8. Identification of microRNAs Involved in the Host Response to Enterovirus 71 Infection by a Deep Sequencing Approach

    Directory of Open Access Journals (Sweden)

    Lunbiao Cui

    2010-01-01

    Full Text Available Role of microRNA (miRNA has been highlighted in pathogen-host interactions recently. To identify cellular miRNAs involved in the host response to enterovirus 71 (EV71 infection, we performed a comprehensive miRNA profiling in EV71-infected Hep2 cells through deep sequencing. 64 miRNAs were found whose expression levels changed for more than 2-fold in response to EV71 infection. Gene ontology analysis revealed that many of these mRNAs play roles in neurological process, immune response, and cell death pathways, which are known to be associated with the extreme virulence of EV71. To our knowledge, this is the first study on host miRNAs expression alteration response to EV71 infection. Our findings supported the hypothesis that certain miRNAs might be essential in the host-pathogen interactions.

  9. Role of G3BP1 in glucocorticoid receptor-mediated microRNA-15b and microRNA-23a biogenesis in endothelial cells

    KAUST Repository

    Kwok, Hoi-Hin; Poon, Po-Ying; Mak, Kylie Hin-Man; Zhang, Lin-Yao; Liu, Pei; Zhang, Huoming; Mak, Nai-Ki; Yue, Patrick Ying-Kit; Wong, Ricky Ngok-Shun

    2017-01-01

    MicroRNAs (miRNAs) are a family of non-coding RNAs that play crucial roles in regulating various normal cellular responses. Recent studies revealed that the canonical miRNA biogenesis pathway is subject to sophisticated regulation. Hormonal control

  10. The Small-RNA Profiles of Almond (Prunus dulcis Mill. Reproductive Tissues in Response to Cold Stress.

    Directory of Open Access Journals (Sweden)

    Marzieh Karimi

    Full Text Available Spring frost is an important environmental stress that threatens the production of Prunus trees. However, little information is available regarding molecular response of these plants to the frost stress. Using high throughput sequencing, this study was conducted to identify differentially expressed miRNAs, both the conserved and the non-conserved ones, in the reproductive tissues of almond tolerant H genotype under cold stress. Analysis of 50 to 58 million raw reads led to identification of 174 unique conserved and 59 novel microRNAs (miRNAs. Differential expression pattern analysis showed that 50 miRNA families were expressed differentially in one or both of almond reproductive tissues (anther and ovary. Out of these 50 miRNA families, 12 and 15 displayed up-regulation and down-regulation, respectively. The distribution of conserved miRNA families indicated that miR482f harbor the highest number of members. Confirmation of miRNAs expression patterns by quantitative real- time PCR (qPCR was performed in cold tolerant (H genotype alongside a sensitive variety (Sh12 genotype. Our analysis revealed differential expression for 9 miRNAs in anther and 3 miRNAs in ovary between these two varieties. Target prediction of miRNAs followed by differential expression analysis resulted in identification of 83 target genes, mostly transcription factors. This study comprehensively catalogued expressed miRNAs under different temperatures in two reproductive tissues (anther and ovary. Results of current study and the previous RNA-seq study, which was conducted in the same tissues by our group, provide a unique opportunity to understand the molecular basis of responses of almond to cold stress. The results can also enhance the possibility for gene manipulation to develop cold tolerant plants.

  11. The Small-RNA Profiles of Almond (Prunus dulcis Mill.) Reproductive Tissues in Response to Cold Stress.

    Science.gov (United States)

    Karimi, Marzieh; Ghazanfari, Farahnaz; Fadaei, Adeleh; Ahmadi, Laleh; Shiran, Behrouz; Rabei, Mohammad; Fallahi, Hossein

    2016-01-01

    Spring frost is an important environmental stress that threatens the production of Prunus trees. However, little information is available regarding molecular response of these plants to the frost stress. Using high throughput sequencing, this study was conducted to identify differentially expressed miRNAs, both the conserved and the non-conserved ones, in the reproductive tissues of almond tolerant H genotype under cold stress. Analysis of 50 to 58 million raw reads led to identification of 174 unique conserved and 59 novel microRNAs (miRNAs). Differential expression pattern analysis showed that 50 miRNA families were expressed differentially in one or both of almond reproductive tissues (anther and ovary). Out of these 50 miRNA families, 12 and 15 displayed up-regulation and down-regulation, respectively. The distribution of conserved miRNA families indicated that miR482f harbor the highest number of members. Confirmation of miRNAs expression patterns by quantitative real- time PCR (qPCR) was performed in cold tolerant (H genotype) alongside a sensitive variety (Sh12 genotype). Our analysis revealed differential expression for 9 miRNAs in anther and 3 miRNAs in ovary between these two varieties. Target prediction of miRNAs followed by differential expression analysis resulted in identification of 83 target genes, mostly transcription factors. This study comprehensively catalogued expressed miRNAs under different temperatures in two reproductive tissues (anther and ovary). Results of current study and the previous RNA-seq study, which was conducted in the same tissues by our group, provide a unique opportunity to understand the molecular basis of responses of almond to cold stress. The results can also enhance the possibility for gene manipulation to develop cold tolerant plants.

  12. Smoking-related microRNAs and mRNAs in human peripheral blood mononuclear cells

    International Nuclear Information System (INIS)

    Su, Ming-Wei; Yu, Sung-Liang; Lin, Wen-Chang; Tsai, Ching-Hui; Chen, Po-Hua; Lee, Yungling Leo

    2016-01-01

    Teenager smoking is of great importance in public health. Functional roles of microRNAs have been documented in smoke-induced gene expression changes, but comprehensive mechanisms of microRNA-mRNA regulation and benefits remained poorly understood. We conducted the Teenager Smoking Reduction Trial (TSRT) to investigate the causal association between active smoking reduction and whole-genome microRNA and mRNA expression changes in human peripheral blood mononuclear cells (PBMC). A total of 12 teenagers with a substantial reduction in smoke quantity and a decrease in urine cotinine/creatinine ratio were enrolled in genomic analyses. In Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA), differentially expressed genes altered by smoke reduction were mainly associated with glucocorticoid receptor signaling pathway. The integrative analysis of microRNA and mRNA found eleven differentially expressed microRNAs negatively correlated with predicted target genes. CD83 molecule regulated by miR-4498 in human PBMC, was critical for the canonical pathway of communication between innate and adaptive immune cells. Our data demonstrated that microRNAs could regulate immune responses in human PBMC after habitual smokers quit smoking and support the potential translational value of microRNAs in regulating disease-relevant gene expression caused by tobacco smoke. - Highlights: • We conducted a smoke reduction trial program and investigated the causal relationship between smoke and gene regulation. • MicroRNA and mRNA expression changes were examined in human PBMC. • MicroRNAs are important in regulating disease-causal genes after tobacco smoke reduction.

  13. Smoking-related microRNAs and mRNAs in human peripheral blood mononuclear cells

    Energy Technology Data Exchange (ETDEWEB)

    Su, Ming-Wei [Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (China); Yu, Sung-Liang [Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Lin, Wen-Chang [Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (China); Tsai, Ching-Hui [Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Chen, Po-Hua [School of Medicine, National Taiwan University, Taipei, Taiwan (China); Lee, Yungling Leo, E-mail: leolee@ntu.edu.tw [Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (China)

    2016-08-15

    Teenager smoking is of great importance in public health. Functional roles of microRNAs have been documented in smoke-induced gene expression changes, but comprehensive mechanisms of microRNA-mRNA regulation and benefits remained poorly understood. We conducted the Teenager Smoking Reduction Trial (TSRT) to investigate the causal association between active smoking reduction and whole-genome microRNA and mRNA expression changes in human peripheral blood mononuclear cells (PBMC). A total of 12 teenagers with a substantial reduction in smoke quantity and a decrease in urine cotinine/creatinine ratio were enrolled in genomic analyses. In Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA), differentially expressed genes altered by smoke reduction were mainly associated with glucocorticoid receptor signaling pathway. The integrative analysis of microRNA and mRNA found eleven differentially expressed microRNAs negatively correlated with predicted target genes. CD83 molecule regulated by miR-4498 in human PBMC, was critical for the canonical pathway of communication between innate and adaptive immune cells. Our data demonstrated that microRNAs could regulate immune responses in human PBMC after habitual smokers quit smoking and support the potential translational value of microRNAs in regulating disease-relevant gene expression caused by tobacco smoke. - Highlights: • We conducted a smoke reduction trial program and investigated the causal relationship between smoke and gene regulation. • MicroRNA and mRNA expression changes were examined in human PBMC. • MicroRNAs are important in regulating disease-causal genes after tobacco smoke reduction.

  14. Invited review: decoding the microRNA response to hypoxia

    DEFF Research Database (Denmark)

    Pocock, Roger

    2011-01-01

    responses. The ability to sense and respond to hypoxia is of fundamental importance to aerobic organisms and dysregulated oxygen homeostasis is a hallmark in the pathophysiology of cancer, neurological dysfunction, myocardial infarction, and lung disease. miRNAs are ideal mediators of hypoxic stress...

  15. Immunomodulating microRNAs of mycobacterial infections.

    Science.gov (United States)

    Bettencourt, Paulo; Pires, David; Anes, Elsa

    2016-03-01

    MicroRNAs are a class of small non-coding RNAs that have emerged as key regulators of gene expression at the post-transcriptional level by sequence-specific binding to target mRNAs. Some microRNAs block translation, while others promote mRNA degradation, leading to a reduction in protein availability. A single miRNA can potentially regulate the expression of multiple genes and their encoded proteins. Therefore, miRNAs can influence molecular signalling pathways and regulate many biological processes in health and disease. Upon infection, host cells rapidly change their transcriptional programs, including miRNA expression, as a response against the invading microorganism. Not surprisingly, pathogens can also alter the host miRNA profile to their own benefit, which is of major importance to scientists addressing high morbidity and mortality infectious diseases such as tuberculosis. In this review, we present recent findings on the miRNAs regulation of the host response against mycobacterial infections, providing new insights into host-pathogen interactions. Understanding these findings and its implications could reveal new opportunities for designing better diagnostic tools, therapies and more effective vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. MicroRNA and the innate immune response toinfluenza A virus infection in pigs

    DEFF Research Database (Denmark)

    Brogaard, Louise

    response to influenza A virus infection requires the joint expression profiling of protein-coding gene and microRNA expression. Paper 1 is a review which emphasizes the importance of the pig in the study of influenza Avirus infections. Pigs are themselves natural hosts for influenza A virus, and our close......Influenza A virus infections are a major public health concern. Many million cases of diseaseassociated with influenza A virus occur every year during seasonal epidemics, and especially vulnerable populations such as the elderly, pregnant women, young children, and individual swith underlying...... conditions such as diabetes and patients of autoimmune diseases are at higher risk of severe complications from influenza A virus infection. However, in otherwise healthy individuals, influenza A virus infection is relatively short-lived, commonly being cleared within one to two weeks. Influenza A virus...

  17. Abiotic stressors and stress responses

    DEFF Research Database (Denmark)

    Sulmon, Cecile; Van Baaren, Joan; Cabello-Hurtado, Francisco

    2015-01-01

    Abstract Organisms are regularly subjected to abiotic stressors related to increasing anthropogenic activities, including chemicals and climatic changes that induce major stresses. Based on various key taxa involved in ecosystem functioning (photosynthetic microorganisms, plants, invertebrates), we...... review how organisms respond and adapt to chemical- and temperature-induced stresses from molecular to population level. Using field-realistic studies, our integrative analysis aims to compare i) how molecular and physiological mechanisms related to protection, repair and energy allocation can impact...... life history traits of stressed organisms, and ii) to what extent trait responses influence individual and population responses. Common response mechanisms are evident at molecular and cellular scales but become rather difficult to define at higher levels due to evolutionary distance and environmental...

  18. MicroRNA expression characterizes oligometastasis(es.

    Directory of Open Access Journals (Sweden)

    Yves A Lussier

    Full Text Available Cancer staging and treatment presumes a division into localized or metastatic disease. We proposed an intermediate state defined by ≤ 5 cumulative metastasis(es, termed oligometastases. In contrast to widespread polymetastases, oligometastatic patients may benefit from metastasis-directed local treatments. However, many patients who initially present with oligometastases progress to polymetastases. Predictors of progression could improve patient selection for metastasis-directed therapy.Here, we identified patterns of microRNA expression of tumor samples from oligometastatic patients treated with high-dose radiotherapy.Patients who failed to develop polymetastases are characterized by unique prioritized features of a microRNA classifier that includes the microRNA-200 family. We created an oligometastatic-polymetastatic xenograft model in which the patient-derived microRNAs discriminated between the two metastatic outcomes. MicroRNA-200c enhancement in an oligometastatic cell line resulted in polymetastatic progression.These results demonstrate a biological basis for oligometastases and a potential for using microRNA expression to identify patients most likely to remain oligometastatic after metastasis-directed treatment.

  19. The ROS-sensitive microRNA-9/9* controls the expression of mitochondrial tRNA-modifying enzymes and is involved in the molecular mechanism of MELAS syndrome.

    Science.gov (United States)

    Meseguer, Salvador; Martínez-Zamora, Ana; García-Arumí, Elena; Andreu, Antonio L; Armengod, M-Eugenia

    2015-01-01

    Mitochondrial dysfunction activates mitochondria-to-nucleus signaling pathways whose components are mostly unknown. Identification of these components is important to understand the molecular mechanisms underlying mitochondrial diseases and to discover putative therapeutic targets. MELAS syndrome is a rare neurodegenerative disease caused by mutations in mitochondrial (mt) DNA affecting mt-tRNA(Leu(UUR)). Patient and cybrid cells exhibit elevated oxidative stress. Moreover, mutant mt-tRNAs(Leu(UUR)) lack the taurine-containing modification normally present at the wobble uridine (U34) of wild-type mt-tRNA(Leu(UUR)), which is considered an etiology of MELAS. However, the molecular mechanism is still unclear. We found that MELAS cybrids exhibit a significant decrease in the steady-state levels of several mt-tRNA-modification enzymes, which is not due to transcriptional regulation. We demonstrated that oxidative stress mediates an NFkB-dependent induction of microRNA-9/9*, which acts as a post-transcriptional negative regulator of the mt-tRNA-modification enzymes GTPBP3, MTO1 and TRMU. Down-regulation of these enzymes by microRNA-9/9* affects the U34 modification status of non-mutant tRNAs and contributes to the MELAS phenotype. Anti-microRNA-9 treatments of MELAS cybrids reverse the phenotype, whereas miR-9 transfection of wild-type cells mimics the effects of siRNA-mediated down-regulation of GTPBP3, MTO1 and TRMU. Our data represent the first evidence that an mt-DNA disease can directly affect microRNA expression. Moreover, we demonstrate that the modification status of mt-tRNAs is dynamic and that cells respond to stress by modulating the expression of mt-tRNA-modifying enzymes. microRNA-9/9* is a crucial player in mitochondria-to-nucleus signaling as it regulates expression of nuclear genes in response to changes in the functional state of mitochondria. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email

  20. MicroRNA Expression Profiling by Bead Array Technology in Human Tumor Cell Lines Treated with Interferon-Alpha-2a

    Directory of Open Access Journals (Sweden)

    Siegrist Fredy

    2009-01-01

    Full Text Available Abstract MicroRNAs are positive and negative regulators of eukaryotic gene expression that modulate transcript abundance by specific binding to sequence motifs located prevalently in the 3' untranslated regions of target messenger RNAs (mRNA. Interferon-alpha-2a (IFNα induces a large set of protein coding genes mediating antiproliferative and antiviral responses. Here we use a global microarray-based microRNA detection platform to identify genes that are induced by IFNα in hepatoma- or melanoma-derived human tumor cell lines. Despite the enormous differences in expression levels between these models, we were able to identify microRNAs that are upregulated by IFNα in both lines suggesting the possibility that interferon-regulated microRNAs are involved in the transcriptional repression of mRNA relevant to cytokine responses.

  1. The Yeast Environmental Stress Response Regulates Mutagenesis Induced by Proteotoxic Stress

    Science.gov (United States)

    Shor, Erika; Fox, Catherine A.; Broach, James R.

    2013-01-01

    Conditions of chronic stress are associated with genetic instability in many organisms, but the roles of stress responses in mutagenesis have so far been elucidated only in bacteria. Here, we present data demonstrating that the environmental stress response (ESR) in yeast functions in mutagenesis induced by proteotoxic stress. We show that the drug canavanine causes proteotoxic stress, activates the ESR, and induces mutagenesis at several loci in an ESR-dependent manner. Canavanine-induced mutagenesis also involves translesion DNA polymerases Rev1 and Polζ and non-homologous end joining factor Ku. Furthermore, under conditions of chronic sub-lethal canavanine stress, deletions of Rev1, Polζ, and Ku-encoding genes exhibit genetic interactions with ESR mutants indicative of ESR regulating these mutagenic DNA repair processes. Analyses of mutagenesis induced by several different stresses showed that the ESR specifically modulates mutagenesis induced by proteotoxic stress. Together, these results document the first known example of an involvement of a eukaryotic stress response pathway in mutagenesis and have important implications for mechanisms of evolution, carcinogenesis, and emergence of drug-resistant pathogens and chemotherapy-resistant tumors. PMID:23935537

  2. MicroRNAs in Prostate Cancer

    Science.gov (United States)

    2008-11-01

    lymphoma. Genes Chromosom. Cancer 39:167–69 131. O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. 2007. MicroRNA-155 is induced during the...carcinoma. J. Virol. 81:1033–36 155. Xi Y, Nakajima G, Gavin E, Morris CG, Kudo K, et al. 2007. Systematic analysis of microRNA expression of RNA extracted ...diversity. miRNAs were extracted from the unique sequences by searching against miRNA database (miRbase release 10.0; http://microrna.sanger.ac.uk

  3. MicroRNA expression in benign breast tissue and risk of subsequent invasive breast cancer.

    Science.gov (United States)

    Rohan, Thomas; Ye, Kenny; Wang, Yihong; Glass, Andrew G; Ginsberg, Mindy; Loudig, Olivier

    2018-01-01

    MicroRNAs are endogenous, small non-coding RNAs that control gene expression by directing their target mRNAs for degradation and/or posttranscriptional repression. Abnormal expression of microRNAs is thought to contribute to the development and progression of cancer. A history of benign breast disease (BBD) is associated with increased risk of subsequent breast cancer. However, no large-scale study has examined the association between microRNA expression in BBD tissue and risk of subsequent invasive breast cancer (IBC). We conducted discovery and validation case-control studies nested in a cohort of 15,395 women diagnosed with BBD in a large health plan between 1971 and 2006 and followed to mid-2015. Cases were women with BBD who developed subsequent IBC; controls were matched 1:1 to cases on age, age at diagnosis of BBD, and duration of plan membership. The discovery stage (316 case-control pairs) entailed use of the Illumina MicroRNA Expression Profiling Assay (in duplicate) to identify breast cancer-associated microRNAs. MicroRNAs identified at this stage were ranked by the strength of the correlation between Illumina array and quantitative PCR results for 15 case-control pairs. The top ranked 14 microRNAs entered the validation stage (165 case-control pairs) which was conducted using quantitative PCR (in triplicate). In both stages, linear regression was used to evaluate the association between the mean expression level of each microRNA (response variable) and case-control status (independent variable); paired t-tests were also used in the validation stage. None of the 14 validation stage microRNAs was associated with breast cancer risk. The results of this study suggest that microRNA expression in benign breast tissue does not influence the risk of subsequent IBC.

  4. Circulating MicroRNAs as Potential Biomarkers of Exercise Response

    Directory of Open Access Journals (Sweden)

    Mája Polakovičová

    2016-10-01

    Full Text Available Systematic physical activity increases physical fitness and exercise capacity that lead to the improvement of health status and athletic performance. Considerable effort is devoted to identifying new biomarkers capable of evaluating exercise performance capacity and progress in training, early detection of overtraining, and monitoring health-related adaptation changes. Recent advances in OMICS technologies have opened new opportunities in the detection of genetic, epigenetic and transcriptomic biomarkers. Very promising are mainly small non-coding microRNAs (miRNAs. miRNAs post-transcriptionally regulate gene expression by binding to mRNA and causing its degradation or inhibiting translation. A growing body of evidence suggests that miRNAs affect many processes and play a crucial role not only in cell differentiation, proliferation and apoptosis, but also affect extracellular matrix composition and maintaining processes of homeostasis. A number of studies have shown changes in distribution profiles of circulating miRNAs (c-miRNAs associated with various diseases and disorders as well as in samples taken under physiological conditions such as pregnancy or physical exercise. This overview aims to summarize the current knowledge related to the response of blood c-miRNAs profiles to different modes of exercise and to highlight their potential application as a novel class of biomarkers of physical performance capacity and training adaptation.

  5. Genetic variant rs3750625 in the 3'UTR of ADRA2A affects stress-dependent acute pain severity after trauma and alters a microRNA-34a regulatory site.

    Science.gov (United States)

    Linnstaedt, Sarah D; Walker, Margaret G; Riker, Kyle D; Nyland, Jennifer E; Hu, JunMei; Rossi, Catherine; Swor, Robert A; Jones, Jeffrey S; Diatchenko, Luda; Bortsov, Andrey V; Peak, David A; McLean, Samuel A

    2017-02-01

    α2A adrenergic receptor (α2A-AR) activation has been shown in animal models to play an important role in regulating the balance of acute pain inhibition vs facilitation after both physical and psychological stress. To our knowledge, the influence of genetic variants in the gene encoding α2A-AR, ADRA2A, on acute pain outcomes in humans experiencing traumatic stress has not been assessed. In this study, we tested whether a genetic variant in the 3'UTR of ADRA2A, rs3750625, is associated with acute musculoskeletal pain (MSP) severity following motor vehicle collision (MVC, n = 948) and sexual assault (n = 84), and whether this influence was affected by stress severity. We evaluated rs3750625 because it is located in the seed binding region of miR-34a, a microRNA (miRNA) known to regulate pain and stress responses. In both cohorts, the minor allele at rs3750625 was associated with increased musculoskeletal pain in distressed individuals (stress*rs3750625 P = 0.043 for MVC cohort and P = 0.007 for sexual assault cohort). We further found that (1) miR-34a binds the 3'UTR of ADRA2A, (2) the amount of repression is greater when the minor (risk) allele is present, (3) miR-34a in the IMR-32 adrenergic neuroblastoma cell line affects ADRA2A expression, (4) miR-34a and ADRA2A are expressed in tissues known to play a role in pain and stress, (5) following forced swim stress exposure, rat peripheral nerve tissue expression changes are consistent with miR-34a regulation of ADRA2A. Together, these results suggest that ADRA2A rs3750625 contributes to poststress musculoskeletal pain severity by modulating miR-34a regulation.

  6. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways

    Science.gov (United States)

    Bergsma, Alexis L.; Senchuk, Megan M.; Van Raamsdonk, Jeremy M.

    2016-01-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxidative stress response, and the DAF-16-mediated stress response. We find that the decline in stress resistance with age is at least partially due to a decreased ability to activate protective mechanisms in response to stress. In contrast, we find that any baseline increase in stress caused by the advancing age is too mild to detectably upregulate any of the stress response pathways. Further exploration of how worms respond to stress with increasing age revealed that the ability to mount a hormetic response to heat stress is also lost with increasing age. Overall, this work demonstrates that resistance to all types of stress declines with age. Based on our data, we speculate that the decrease in stress resistance with advancing age results from a genetically-programmed inactivation of stress response pathways, not accumulation of damage. PMID:27053445

  7. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways.

    Science.gov (United States)

    Dues, Dylan J; Andrews, Emily K; Schaar, Claire E; Bergsma, Alexis L; Senchuk, Megan M; Van Raamsdonk, Jeremy M

    2016-04-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxidative stress response, and the DAF-16-mediated stress response. We find that the decline in stress resistance with age is at least partially due to a decreased ability to activate protective mechanisms in response to stress. In contrast, we find that any baseline increase in stress caused by the advancing age is too mild to detectably upregulate any of the stress response pathways. Further exploration of how worms respond to stress with increasing age revealed that the ability to mount a hormetic response to heat stress is also lost with increasing age. Overall, this work demonstrates that resistance to all types of stress declines with age. Based on our data, we speculate that the decrease in stress resistance with advancing age results from a genetically-programmed inactivation of stress response pathways, not accumulation of damage.

  8. Genetic variant rs3750625 in the 3′UTR of ADRA2A affects stress-dependent acute pain severity after trauma and alters a microRNA-34a regulatory site

    Science.gov (United States)

    Linnstaedt, Sarah D.; Walker, Margaret G.; Riker, Kyle D.; Nyland, Jennifer E.; Hu, JunMei; Rossi, Catherine; Swor, Robert A.; Jones, Jeffrey S.; Diatchenko, Luda; Bortsov, Andrey V.; Peak, David A.; McLean, Samuel A.

    2016-01-01

    α2A adrenergic receptor (α2A-AR) activation has been shown in animal models to play an important role in regulating the balance of acute pain inhibition vs. facilitation after both physical and psychological stress. To our knowledge the influence of genetic variants in the gene encoding α2A-AR, ADRA2A, on acute pain outcomes in humans experiencing traumatic stress has not been assessed. In this study, we tested whether a genetic variant in the 3′UTR of ADRA2A, rs3750625, is associated with acute musculoskeletal pain (MSP) severity following motor vehicle collision (MVC, n = 948) and sexual assault (n = 84), and whether this influence was affected by stress severity. We evaluated rs3750625 because it is located in the seed binding region of miR-34a, a microRNA (miRNA) known to regulate pain and stress responses. In both cohorts, the minor allele at rs3750625 was associated with increased MSP in distressed individuals (stress*rs3750625 p = 0.043 for MVC cohort and p = 0.007 for sexual assault cohort). We further found that (1) miR-34a binds the 3′UTR of ADRA2A, (2) the amount of repression is greater when the minor (risk) allele is present, (3) miR-34a in the IMR-32 adrenergic neuroblastoma cell line affects ADRA2A expression, (4) miR-34a and ADRA2A are expressed in tissues known to play a role in pain and stress, (5) following forced swim stress exposure, rat peripheral nerve tissue expression changes are consistent with miR-34a regulation of ADRA2A. Together these results suggest that ADRA2A rs3750625 contributes to post-stress MSP severity by modulating miR-34a regulation. PMID:27805929

  9. Agreeableness, Extraversion, Stressor and Physiological Stress Response

    OpenAIRE

    Xiaoyuan Chu; Zhentao Ma; Yuan Li; Jing Han

    2015-01-01

    Based on the theoretical analysis, with first-hand data collection and using multiple regression models, this study explored the relationship between agreeableness, extraversion, stressor and stress response and figured out interactive effect of agreeableness, extraversion, and stressor on stress response. We draw on the following conclusions: (1) the interaction term of stressor (work) and agreeableness can negatively predict physiological stress response; (2) the interaction term of stresso...

  10. Alternative Splicing Control of Abiotic Stress Responses.

    Science.gov (United States)

    Laloum, Tom; Martín, Guiomar; Duque, Paula

    2018-02-01

    Alternative splicing, which generates multiple transcripts from the same gene, is an important modulator of gene expression that can increase proteome diversity and regulate mRNA levels. In plants, this post-transcriptional mechanism is markedly induced in response to environmental stress, and recent studies have identified alternative splicing events that allow rapid adjustment of the abundance and function of key stress-response components. In agreement, plant mutants defective in splicing factors are severely impaired in their response to abiotic stress. Notably, mounting evidence indicates that alternative splicing regulates stress responses largely by targeting the abscisic acid (ABA) pathway. We review here current understanding of post-transcriptional control of plant stress tolerance via alternative splicing and discuss research challenges for the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. MicroRNAs in right ventricular remodelling.

    Science.gov (United States)

    Batkai, Sandor; Bär, Christian; Thum, Thomas

    2017-10-01

    Right ventricular (RV) remodelling is a lesser understood process of the chronic, progressive transformation of the RV structure leading to reduced functional capacity and subsequent failure. Besides conditions concerning whole hearts, some pathology selectively affects the RV, leading to a distinct RV-specific clinical phenotype. MicroRNAs have been identified as key regulators of biological processes that drive the progression of chronic diseases. The role of microRNAs in diseases affecting the left ventricle has been studied for many years, however there is still limited information on microRNAs specific to diseases in the right ventricle. Here, we review recently described details on the expression, regulation, and function of microRNAs in the pathological remodelling of the right heart. Recently identified strategies using microRNAs as pharmacological targets or biomarkers will be highlighted. Increasing knowledge of pathogenic microRNAs will finally help improve our understanding of underlying distinct mechanisms and help utilize novel targets or biomarkers to develop treatments for patients suffering from right heart diseases. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  12. Genome-Wide Identification and Analysis of Drought-Responsive Genes and MicroRNAs in Tobacco

    Directory of Open Access Journals (Sweden)

    Fuqiang Yin

    2015-03-01

    Full Text Available Drought stress response is a complex trait regulated at transcriptional and post-transcriptional levels in tobacco. Since the 1990s, many studies have shown that miRNAs act in many ways to regulate target expression in plant growth, development and stress response. The recent draft genome sequence of Nicotiana benthamiana has provided a framework for Digital Gene Expression (DGE and small RNA sequencing to understand patterns of transcription in the context of plant response to environmental stress. We sequenced and analyzed three Digital Gene Expression (DGE libraries from roots of normal and drought-stressed tobacco plants, and four small RNA populations from roots, stems and leaves of control or drought-treated tobacco plants, respectively. We identified 276 candidate drought responsive genes (DRGs with sequence similarities to 64 known DRGs from other model plant crops, 82 were transcription factors (TFs including WRKY, NAC, ERF and bZIP families. Of these tobacco DRGs, 54 differentially expressed DRGs included 21 TFs, which belonged to 4 TF families such as NAC (6, MYB (4, ERF (10, and bZIP (1. Additionally, we confirmed expression of 39 known miRNA families (122 members and five conserved miRNA families, which showed differential regulation under drought stress. Targets of miRNAs were further surveyed based on a recently published study, of which ten targets were DRGs. An integrated gene regulatory network is proposed for the molecular mechanisms of tobacco root response to drought stress using differentially expressed DRGs, the changed expression profiles of miRNAs and their target transcripts. This network analysis serves as a reference for future studies on tobacco response stresses such as drought, cold and heavy metals.

  13. MicroRNA function in Drosophila melanogaster.

    Science.gov (United States)

    Carthew, Richard W; Agbu, Pamela; Giri, Ritika

    2017-05-01

    Over the last decade, microRNAs have emerged as critical regulators in the expression and function of animal genomes. This review article discusses the relationship between microRNA-mediated regulation and the biology of the fruit fly Drosophila melanogaster. We focus on the roles that microRNAs play in tissue growth, germ cell development, hormone action, and the development and activity of the central nervous system. We also discuss the ways in which microRNAs affect robustness. Many gene regulatory networks are robust; they are relatively insensitive to the precise values of reaction constants and concentrations of molecules acting within the networks. MicroRNAs involved in robustness appear to be nonessential under uniform conditions used in conventional laboratory experiments. However, the robust functions of microRNAs can be revealed when environmental or genetic variation otherwise has an impact on developmental outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Stress proteins and the immune response.

    Science.gov (United States)

    Moseley, P

    2000-07-25

    The heat shock or stress response is one of the most highly conserved adaptive responses in nature. In single cell organisms, the stress response confers tolerance to a variety of stresses including hyperthermia, hyperoxia, hypoxia, and other perturbations, which alter protein synthesis. This tolerance phenomenon is also extremely important in the multicellular organism, resulting in not only thermal tolerance, but also resistance to stresses of the whole organism such as ischemia-reperfusion injury. Moreover, recent data indicates that these stress proteins have the ability to modulate the cellular immune response. Although the terms heat shock proteins (HSPs) and stress proteins are often used interchangeably, the term stress proteins includes the HSPs, the glucose-regulated proteins (GRPs) and ubiquitin. The stress proteins may be grouped by molecular weight ranging from the large 110 kDa HSP110 to ubiquitin at 8 kDa. These proteins serve as cellular chaperones, participating in protein synthesis and transport through the various cellular compartments. Because these proteins have unique cellular localizations, the chaperone function of the stress proteins often involves a transfer of peptides between stress proteins as the peptide is moved between cellular compartments. For example, HSP70 is a cytosolic and nuclear chaperone, which is critical for the transfer of cellular peptides in the mitochondrion through a hand-off that involves mitochondrial HSP60 at the inner mitochondrial membrane. Similarly, cytosolic proteins are transferred from HSP70 to gp96 as they move into the endoplasmic reticulum. The central role of the stress proteins in the transfer of peptides through the cell may be responsible for the recently recognized importance of the stress proteins in the modulation of the immune system [Feder, M.E., Hofmann, G.E., 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61

  15. Transcriptional 'memory' of a stress: transient chromatin and memory (epigenetic) marks at stress-response genes.

    Science.gov (United States)

    Avramova, Zoya

    2015-07-01

    Drought, salinity, extreme temperature variations, pathogen and herbivory attacks are recurring environmental stresses experienced by plants throughout their life. To survive repeated stresses, plants provide responses that may be different from their response during the first encounter with the stress. A different response to a similar stress represents the concept of 'stress memory'. A coordinated reaction at the organismal, cellular and gene/genome levels is thought to increase survival chances by improving the plant's tolerance/avoidance abilities. Ultimately, stress memory may provide a mechanism for acclimation and adaptation. At the molecular level, the concept of stress memory indicates that the mechanisms responsible for memory-type transcription during repeated stresses are not based on repetitive activation of the same response pathways activated by the first stress. Some recent advances in the search for transcription 'memory factors' are discussed with an emphasis on super-induced dehydration stress memory response genes in Arabidopsis. © 2015 The Author The Plant Journal © 2015 John Wiley & Sons Ltd.

  16. Opposite Effects of Stress on Pain Modulation Depend on the Magnitude of Individual Stress Response.

    Science.gov (United States)

    Geva, Nirit; Defrin, Ruth

    2018-04-01

    The effect of acute stress on pain threshold and intolerance threshold are reported as producing either hypoalgesia or hyperalgesia. Yet, the contribution of individual stress reactivity in this respect has not been established. The aim was to test 2 pain modulation paradigms under acute stress manipulation, to our knowledge, for the first time, to study whether stress differentially affects pain modulation, and whether the effect is related to individual stress response. Participants were 31 healthy subjects. Conditioned pain modulation (CPM) and pain adaptation were measured before and after inducing an acute stress response using the Montreal Imaging Stress Task. Subjects' stress response was evaluated according to salivary cortisol, autonomic function, and perceived stress and anxiety. The Montreal Imaging Stress Task induced a validated stress response. On a group level, stress induced reduction in CPM magnitude and increase in pain adaptation compared with baseline. These responses correlated with stress reactivity. When the group was subdivided according to stress reactivity, only high stress responders exhibited reduced CPM whereas only low stress responders exhibited increased pain adaptation. The results suggest that acute stress may induce opposite effects on pain modulation, depending on individual stress reactivity magnitude, with an advantage to low stress responders. This study evaluated the effect of acute stress on pain modulation. Pain modulation under stress is affected by individual stress responsiveness; decreased CPM occurs in high stress responders whereas increased pain adaptation occurs in low stress responders. Identification of high stress responders may promote better pain management. Copyright © 2017 The American Pain Society. Published by Elsevier Inc. All rights reserved.

  17. Subtractive hybridization-mediated analysis of genes and in silico prediction of associated microRNAs under waterlogged conditions in sugarcane (Saccharum spp.

    Directory of Open Access Journals (Sweden)

    Mohammad Suhail Khan

    2014-01-01

    Full Text Available Sugarcane is an important tropical cash crop meeting 75% of world sugar demand and it is fast becoming an energy crop for the production of bio-fuel ethanol. A considerable area under sugarcane is prone to waterlogging which adversely affects both cane productivity and quality. In an effort to elucidate the genes underlying plant responses to waterlogging, a subtractive cDNA library was prepared from leaf tissue. cDNA clones were sequenced and annotated for their putative functions. Major groups of ESTs were related to stress (15%, catalytic activity (13%, cell growth (10% and transport related proteins (6%. A few stress-related genes were identified, including senescence-associated protein, dehydration-responsive family protein, and heat shock cognate 70 kDa protein. A bioinformatics search was carried out to discover novel microRNAs (miRNAs that can be regulated in sugarcane plants subjected to waterlogging stress. Taking advantage of the presence of miRNA precursors in the related sorghum genome, seven candidate mature miRNAs were identified in sugarcane. The application of subtraction technology allowed the identification of differentially expressed sequences and novel miRNAs in sugarcane under waterlogging stress. The comparative global transcript profiling in sugarcane plants undertaken in this study suggests that proteins associated with stress response, signal transduction, metabolic activity and ion transport play important role in conferring waterlogging tolerance in sugarcane.

  18. Subtractive hybridization-mediated analysis of genes and in silico prediction of associated microRNAs under waterlogged conditions in sugarcane (Saccharum spp.)

    KAUST Repository

    Khan, Mohammad Suhail

    2014-06-09

    Sugarcane is an important tropical cash crop meeting 75% of world sugar demand and it is fast becoming an energy crop for the production of bio-fuel ethanol. A considerable area under sugarcane is prone to waterlogging which adversely affects both cane productivity and quality. In an effort to elucidate the genes underlying plant responses to waterlogging, a subtractive cDNA library was prepared from leaf tissue. cDNA clones were sequenced and annotated for their putative functions. Major groups of ESTs were related to stress (15%), catalytic activity (13%), cell growth (10%) and transport related proteins (6%). A few stress-related genes were identified, including senescence-associated protein, dehydration-responsive family protein, and heat shock cognate 70. kDa protein. A bioinformatics search was carried out to discover novel microRNAs (miRNAs) that can be regulated in sugarcane plants subjected to waterlogging stress. Taking advantage of the presence of miRNA precursors in the related sorghum genome, seven candidate mature miRNAs were identified in sugarcane. The application of subtraction technology allowed the identification of differentially expressed sequences and novel miRNAs in sugarcane under waterlogging stress. The comparative global transcript profiling in sugarcane plants undertaken in this study suggests that proteins associated with stress response, signal transduction, metabolic activity and ion transport play important role in conferring waterlogging tolerance in sugarcane. © 2014 The Authors.

  19. Personality traits modulate emotional and physiological responses to stress.

    Science.gov (United States)

    Childs, Emma; White, Tara L; de Wit, Harriet

    2014-09-01

    An individual's susceptibility to psychological and physical disorders associated with chronic stress exposure, for example, cardiovascular and infectious disease, may also be predicted by their reactivity to acute stress. One factor associated with both stress resilience and health outcomes is personality. An understanding of how personality influences responses to acute stress may shed light upon individual differences in susceptibility to chronic stress-linked disease. This study examined the relationships between personality and acute responses to stress in 125 healthy adults, using hierarchical linear regression. We assessed personality traits using the Multidimensional Personality Questionnaire (MPQ-BF), and responses to acute stress (cortisol, heart rate, blood pressure, mood) using a standardized laboratory psychosocial stress task, the Trier Social Stress Test. Individuals with high Negative Emotionality exhibited greater emotional distress and lower blood pressure responses to the Trier Social Stress Test. Individuals with high agentic Positive Emotionality exhibited prolonged heart rate responses to stress, whereas those with high communal Positive Emotionality exhibited smaller cortisol and blood pressure responses. Separate personality traits differentially predicted emotional, cardiovascular, and cortisol responses to a psychosocial stressor in healthy volunteers. Future research investigating the association of personality with chronic stress-related disease may provide further clues to the relationship between acute stress reactivity and susceptibility to disease.

  20. Environmental contaminants and microRNA regulation: Transcription factors as regulators of toxicant-altered microRNA expression

    Energy Technology Data Exchange (ETDEWEB)

    Sollome, James; Martin, Elizabeth [Department of Environmental Science & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill (United States); Sethupathy, Praveen [Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC (United States); Fry, Rebecca C., E-mail: rfry@unc.edu [Department of Environmental Science & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill (United States); Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC (United States)

    2016-12-01

    MicroRNAs (miRNAs) regulate gene expression by binding mRNA and inhibiting translation and/or inducing degradation of the associated transcripts. Expression levels of miRNAs have been shown to be altered in response to environmental toxicants, thus impacting cellular function and influencing disease risk. Transcription factors (TFs) are known to be altered in response to environmental toxicants and play a critical role in the regulation of miRNA expression. To date, environmentally-responsive TFs that are important for regulating miRNAs remain understudied. In a state-of-the-art analysis, we utilized an in silico bioinformatic approach to characterize potential transcriptional regulators of environmentally-responsive miRNAs. Using the miRStart database, genomic sequences of promoter regions for all available human miRNAs (n = 847) were identified and promoter regions were defined as − 1000/+500 base pairs from the transcription start site. Subsequently, the promoter region sequences of environmentally-responsive miRNAs (n = 128) were analyzed using enrichment analysis to determine overrepresented TF binding sites (TFBS). While most (56/73) TFs differed across environmental contaminants, a set of 17 TFs was enriched for promoter binding among miRNAs responsive to numerous environmental contaminants. Of these, one TF was common to miRNAs altered by the majority of environmental contaminants, namely SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 3 (SMARCA3). These identified TFs represent candidate common transcriptional regulators of miRNAs perturbed by environmental toxicants. - Highlights: • Transcription factors that regulate environmentally-modulated miRNA expression are understudied • Transcription factor binding sites (TFBS) located within DNA promoter regions of miRNAs were identified. • Specific transcription factors may serve as master regulators of environmentally-mediated microRNA expression.

  1. Environmental contaminants and microRNA regulation: Transcription factors as regulators of toxicant-altered microRNA expression

    International Nuclear Information System (INIS)

    Sollome, James; Martin, Elizabeth; Sethupathy, Praveen; Fry, Rebecca C.

    2016-01-01

    MicroRNAs (miRNAs) regulate gene expression by binding mRNA and inhibiting translation and/or inducing degradation of the associated transcripts. Expression levels of miRNAs have been shown to be altered in response to environmental toxicants, thus impacting cellular function and influencing disease risk. Transcription factors (TFs) are known to be altered in response to environmental toxicants and play a critical role in the regulation of miRNA expression. To date, environmentally-responsive TFs that are important for regulating miRNAs remain understudied. In a state-of-the-art analysis, we utilized an in silico bioinformatic approach to characterize potential transcriptional regulators of environmentally-responsive miRNAs. Using the miRStart database, genomic sequences of promoter regions for all available human miRNAs (n = 847) were identified and promoter regions were defined as − 1000/+500 base pairs from the transcription start site. Subsequently, the promoter region sequences of environmentally-responsive miRNAs (n = 128) were analyzed using enrichment analysis to determine overrepresented TF binding sites (TFBS). While most (56/73) TFs differed across environmental contaminants, a set of 17 TFs was enriched for promoter binding among miRNAs responsive to numerous environmental contaminants. Of these, one TF was common to miRNAs altered by the majority of environmental contaminants, namely SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 3 (SMARCA3). These identified TFs represent candidate common transcriptional regulators of miRNAs perturbed by environmental toxicants. - Highlights: • Transcription factors that regulate environmentally-modulated miRNA expression are understudied • Transcription factor binding sites (TFBS) located within DNA promoter regions of miRNAs were identified. • Specific transcription factors may serve as master regulators of environmentally-mediated microRNA expression

  2. A novel serum microRNA panel to discriminate benign from malignant ovarian disease.

    LENUS (Irish Health Repository)

    Langhe, Ream

    2015-01-28

    Ovarian cancer is the seventh most common cancer in women and the most frequent cause of gynaecological malignancy-related mortality in women. Currently, no standardized reliable screening test exists. MicroRNA profiling has allowed the identification of signatures associated with diagnosis, prognosis and response to treatment of human tumours. The aim of this study was to determine if a microRNA signature could distinguish between malignant and benign ovarian disease. A training set of 5 serous ovarian carcinomas and 5 benign serous cystadenomas were selected for the initial experiments. The validation set included 20 serous ovarian carcinomas and 20 benign serous cystadenomas. The serum\\/plasma focus microRNA Exiqon panel was used for the training set. For the validation set a pick and mix Exiqon panel, which focuses on microRNAs of interest was used. A panel of 4 microRNAs (let-7i-5p, miR-122, miR-152-5p and miR-25-3p) was significantly down regulated in cancer patients. These microRNAs target WNT signalling, AKT\\/mTOR and TLR-4\\/MyD88, which have previously been found to play a role in ovarian carcinogenesis and chemoresistance. let-7i-5p, miR-122, miR-152-5p and miR-25-3p could act as diagnostic biomarkers in ovarian cancer.

  3. Microrna-31 mediates radiation induced apoptosis selectively in malignant tumour cells with dysfunctional P53

    International Nuclear Information System (INIS)

    Kumar, Ashish; Mukherjee, Prabuddho; Babu, Bincy; Chandna, Sudhir

    2016-01-01

    The protein p53 has been recognized as an important radio-responsive protein which functions mainly through transcriptional control of its target genes and microRNAs that target multiple response pathways. In this study, we investigate a putative link between p53 functionality and microRNA-31 expression that largely contributes to cellular transformation/malignancy and also establishes the role of miR-31 in radiation-induced cell death. The expression of miR-31 is found to be attenuated in cells in successive stages of cancer progression

  4. Extraversion and cardiovascular responses to recurrent social stress: Effect of stress intensity.

    Science.gov (United States)

    Lü, Wei; Xing, Wanying; Hughes, Brian M; Wang, Zhenhong

    2017-10-28

    The present study sought to establish whether the effects of extraversion on cardiovascular responses to recurrent social stress are contingent on stress intensity. A 2×5×1 mixed-factorial experiment was conducted, with social stress intensity as a between-subject variable, study phase as a within-subject variable, extraversion as a continuous independent variable, and cardiovascular parameter (HR, SBP, DBP, or RSA) as a dependent variable. Extraversion (NEO-FFI), subjective stress, and physiological stress were measured in 166 undergraduate students randomly assigned to undergo moderate (n=82) or high-intensity (n=84) social stress (a public speaking task with different levels of social evaluation). All participants underwent continuous physiological monitoring while facing two consecutive stress exposures distributed across five laboratory phases: baseline, stress exposure 1, post-stress 1, stress exposure 2, post-stress 2. Results indicated that under moderate-intensity social stress, participants higher on extraversion exhibited lesser HR reactivity to stress than participants lower on extraversion, while under high-intensity social stress, they exhibited greater HR, SBP, DBP and RSA reactivity. Under both moderate- and high-intensity social stress, participants higher on extraversion exhibited pronounced SBP and DBP response adaptation to repeated stress, and showed either better degree of HR recovery or greater amount of SBP and DBP recovery after stress. These findings suggest that individuals higher on extraversion exhibit physiological flexibility to cope with social challenges and benefit from adaptive cardiovascular responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. MicroRNA-125b Affects Vascular Smooth Muscle Cell Function by Targeting Serum Response Factor

    Directory of Open Access Journals (Sweden)

    Zhibo Chen

    2018-04-01

    Full Text Available Background/Aims: Increasing evidence links microRNAs to the pathogenesis of peripheral vascular disease. We recently found microRNA-125b (miR-125b to be one of the most significantly down‑regulated microRNAs in human arteries with arteriosclerosis obliterans (ASO of the lower extremities. However, its function in the process of ASO remains unclear. This study aimed to investigate the expression, regulatory mechanisms, and functions of miR-125b in the process of ASO. Methods: Using the tissue explants adherent method, vascular smooth muscle cells (VSMCs were prepared for this study. A rat carotid artery balloon injury model was constructed to simulate the development of vascular neointima, and a lentiviral transduction system was used to overexpress serum response factor (SRF or miR-125b. Quantitative real‑time PCR (qRT‑PCR was used to detect the expression levels of miR‑125b and SRF mRNA. Western blotting was performed to determine the expression levels of SRF and Ki67. In situ hybridization analysis was used to analyze the location and expression levels of miR-125b. CCK-8 and EdU assays were used to assess cell proliferation, and transwell and wound closure assays were performed to measure cell migration. Flow cytometry was used to evaluate cell apoptosis, and a dual-luciferase reporter assay was conducted to examine the effects of miR‑125b on SRF. Immunohistochemistry and immunofluorescence analyses were performed to analyze the location and expression levels of SRF and Ki67. Results: miR-125b expression was decreased in ASO arteries and platelet-derived growth factor (PDGF-BB-stimulated VSMCs. miR-125b suppressed VSMC proliferation and migration but promoted VSMC apoptosis. SRF was determined to be a direct target of miR-125b. Exogenous miR-125b expression modulated SRF expression and inhibited vascular neointimal formation in balloon-injured rat carotid arteries. Conclusions: These findings demonstrate a specific role of the mi

  6. Mechanical and IL-1β Responsive miR-365 Contributes to Osteoarthritis Development by Targeting Histone Deacetylase 4

    Directory of Open Access Journals (Sweden)

    Xu Yang

    2016-03-01

    Full Text Available Mechanical stress plays an important role in the initiation and progression of osteoarthritis. Studies show that excessive mechanical stress can directly damage the cartilage extracellular matrix and shift the balance in chondrocytes to favor catabolic activity over anabolism. However, the underlying mechanism remains unknown. MicroRNAs (miRNAs are emerging as important regulators in osteoarthritis pathogenesis. We have found that mechanical loading up-regulated microRNA miR-365 in growth plate chondrocytes, which promotes chondrocyte differentiation. Here, we explored the role of the mechanical responsive microRNA miR-365 in pathogenesis of osteoarthritis (OA. We found that miR-365 was up-regulated by cyclic loading and IL-1β stimulation in articular chondrocytes through a mechanism that involved the transcription factor NF-κB. miR-365 expressed significant higher level in rat anterior cruciate ligament (ACL surgery induced OA cartilage as well as human OA cartilage from primary OA patients and traumatic OA Patients. Overexpression of miR-365 in chondrocytes increases gene expression of matrix degrading enzyme matrix metallopeptidase 13 (MMP13 and collagen type X (Col X. The increase in miR-365 expression in OA cartilage and in response to IL-1 may contribute to the abnormal gene expression pattern characteristic of OA. Inhibition of miR-365 down-regulated IL-1β induced MMP13 and Col X gene expression. We further showed histone deacetylase 4 (HDAC4 is a direct target of miR-365, which mediates mechanical stress and inflammation in OA pathogenesis. Thus, miR-365 is a critical regulator of mechanical stress and pro-inflammatory responses, which contributes cartilage catabolism. Manipulation of the expression of miR-365 in articular chondrocytes by miR-365 inhibitor may be a potent therapeutic target for the prevention and treatment of osteoarthritis.

  7. miRBase: integrating microRNA annotation and deep-sequencing data.

    Science.gov (United States)

    Kozomara, Ana; Griffiths-Jones, Sam

    2011-01-01

    miRBase is the primary online repository for all microRNA sequences and annotation. The current release (miRBase 16) contains over 15,000 microRNA gene loci in over 140 species, and over 17,000 distinct mature microRNA sequences. Deep-sequencing technologies have delivered a sharp rise in the rate of novel microRNA discovery. We have mapped reads from short RNA deep-sequencing experiments to microRNAs in miRBase and developed web interfaces to view these mappings. The user can view all read data associated with a given microRNA annotation, filter reads by experiment and count, and search for microRNAs by tissue- and stage-specific expression. These data can be used as a proxy for relative expression levels of microRNA sequences, provide detailed evidence for microRNA annotations and alternative isoforms of mature microRNAs, and allow us to revisit previous annotations. miRBase is available online at: http://www.mirbase.org/.

  8. Everyday stress response targets in the science of behavior change.

    Science.gov (United States)

    Smyth, Joshua M; Sliwinski, Martin J; Zawadzki, Matthew J; Scott, Stacey B; Conroy, David E; Lanza, Stephanie T; Marcusson-Clavertz, David; Kim, Jinhyuk; Stawski, Robert S; Stoney, Catherine M; Buxton, Orfeu M; Sciamanna, Christopher N; Green, Paige M; Almeida, David M

    2018-02-01

    Stress is an established risk factor for negative health outcomes, and responses to everyday stress can interfere with health behaviors such as exercise and sleep. In accordance with the Science of Behavior Change (SOBC) program, we apply an experimental medicine approach to identifying stress response targets, developing stress response assays, intervening upon these targets, and testing intervention effectiveness. We evaluate an ecologically valid, within-person approach to measuring the deleterious effects of everyday stress on physical activity and sleep patterns, examining multiple stress response components (i.e., stress reactivity, stress recovery, and stress pile-up) as indexed by two key response indicators (negative affect and perseverative cognition). Our everyday stress response assay thus measures multiple malleable stress response targets that putatively shape daily health behaviors (physical activity and sleep). We hypothesize that larger reactivity, incomplete recovery, and more frequent stress responses (pile-up) will negatively impact health behavior enactment in daily life. We will identify stress-related reactivity, recovery, and response in the indicators using coordinated analyses across multiple naturalistic studies. These results are the basis for developing a new stress assay and replicating the initial findings in a new sample. This approach will advance our understanding of how specific aspects of everyday stress responses influence health behaviors, and can be used to develop and test an innovative ambulatory intervention for stress reduction in daily life to enhance health behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Traversing the Links between Heavy Metal Stress and Plant Signaling

    Science.gov (United States)

    Jalmi, Siddhi K.; Bhagat, Prakash K.; Verma, Deepanjali; Noryang, Stanzin; Tayyeba, Sumaira; Singh, Kirti; Sharma, Deepika; Sinha, Alok K.

    2018-01-01

    Plants confront multifarious environmental stresses widely divided into abiotic and biotic stresses, of which heavy metal stress represents one of the most damaging abiotic stresses. Heavy metals cause toxicity by targeting crucial molecules and vital processes in the plant cell. One of the approaches by which heavy metals act in plants is by over production of reactive oxygen species (ROS) either directly or indirectly. Plants act against such overdose of metal in the environment by boosting the defense responses like metal chelation, sequestration into vacuole, regulation of metal intake by transporters, and intensification of antioxidative mechanisms. This response shown by plants is the result of intricate signaling networks functioning in the cell in order to transmit the extracellular stimuli into an intracellular response. The crucial signaling components involved are calcium signaling, hormone signaling, and mitogen activated protein kinase (MAPK) signaling that are discussed in this review. Apart from signaling components other regulators like microRNAs and transcription factors also have a major contribution in regulating heavy metal stress. This review demonstrates the key role of MAPKs in synchronously controlling the other signaling components and regulators in metal stress. Further, attempts have been made to focus on metal transporters and chelators that are regulated by MAPK signaling. PMID:29459874

  10. MicroRNA-29 facilitates transplantation of bone marrow-derived mesenchymal stem cells to alleviate pelvic floor dysfunction by repressing elastin.

    Science.gov (United States)

    Jin, Minfei; Wu, Yuelin; Wang, Jun; Ye, Weiping; Wang, Lei; Yin, Peipei; Liu, Wei; Pan, Chenhao; Hua, Xiaolin

    2016-11-17

    Pelvic floor dysfunction (PFD) is a condition affecting many women worldwide, with symptoms including stress urinary incontinence (SUI) and pelvic organ prolapse (POP). We have previously demonstrated stable elastin-expressing bone marrow-derived mesenchymal stem cells (BMSCs) attenuated PFD in rats, and aim to further study the effect of microRNA-29a-3p regulation on elastin expression and efficacy of BMSC transplantation therapy. We inhibited endogenous microRNA-29a-3p in BMSCs and investigated its effect on elastin expression by RT-PCR and Western blot. MicroRNA-29-inhibited BMSCs were then transplanted into PFD rats, accompanied by sustained release of bFGF using formulated bFGF in poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NP), followed by evaluation of urodynamic tests. MicroRNA-29a-3p inhibition resulted in upregulated expression and secretion of elastin in in vitro culture of BMSCs. After co-injection with PLGA-loaded bFGF NP into the PFD rats in vivo, microRNA-29a-3p-inhibited BMSCs significantly improved the urodynamic test results. Our multidisciplinary study, combining microRNA biology, genetically engineered BMSCs, and nanoparticle technology, provides an excellent stem cell-based therapy for repairing connective tissues and treating PFD.

  11. Energetic stress: The reciprocal relationship between energy availability and the stress response.

    Science.gov (United States)

    Harrell, C S; Gillespie, C F; Neigh, G N

    2016-11-01

    The worldwide epidemic of metabolic syndromes and the recognized burden of mental health disorders have driven increased research into the relationship between the two. A maladaptive stress response is implicated in both mental health disorders and metabolic disorders, implicating the hypothalamic-pituitary-adrenal (HPA) axis as a key mediator of this relationship. This review explores how an altered energetic state, such as hyper- or hypoglycemia, as may be manifested in obesity or diabetes, affects the stress response and the HPA axis in particular. We propose that changes in energetic state or energetic demands can result in "energetic stress" that can, if prolonged, lead to a dysfunctional stress response. In this review, we summarize the role of the hypothalamus in modulating energy homeostasis and then briefly discuss the relationship between metabolism and stress-induced activation of the HPA axis. Next, we examine seven mechanisms whereby energetic stress interacts with neuroendocrine stress response systems, including by glucocorticoid signaling both within and beyond the HPA axis; by nutrient-induced changes in glucocorticoid signaling; by impacting the sympathetic nervous system; through changes in other neuroendocrine factors; by inducing inflammatory changes; and by altering the gut-brain axis. Recognizing these effects of energetic stress can drive novel therapies and prevention strategies for mental health disorders, including dietary intervention, probiotics, and even fecal transplant. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Circulating MicroRNAs in Plasma of Hepatitis B e Antigen Positive Children Reveal Liver-Specific Target Genes

    DEFF Research Database (Denmark)

    Winther, Thilde Nordmann; Jacobsen, Kari Stougaard; Mirza, Aashiq Hussain

    2014-01-01

    Background and Aim. Hepatitis B e antigen positive (HBeAg-positive) children are at high risk of severe complications such as hepatocellular carcinoma and cirrhosis. Liver damage is caused by the host immune response to infected hepatocytes, and we hypothesise that specific microRNAs play a role...... in this complex interaction between virus and host. The study aimed to identify microRNAs with aberrant plasma expressions in HBeAg-positive children and with liver-specific target genes. Methods. By revisiting our previous screen of microRNA plasma levels in HBeAg-positive and HBeAg-negative children...... with chronic hepatitis B (CHB) and in healthy controls, candidate microRNAs with aberrant plasma expressions in HBeAg-positive children were identified. MicroRNAs targeting liver-specific genes were selected based on bioinformatics analysis and validated by qRT-PCR using plasma samples from 34 HBe...

  13. A plasma microRNA signature as a biomarker for acquired aplastic anemia.

    Science.gov (United States)

    Hosokawa, Kohei; Kajigaya, Sachiko; Feng, Xingmin; Desierto, Marie J; Fernandez Ibanez, Maria Del Pilar; Rios, Olga; Weinstein, Barbara; Scheinberg, Phillip; Townsley, Danielle M; Young, Neal S

    2017-01-01

    Aplastic anemia is an acquired bone marrow failure characterized by marrow hypoplasia, a paucity of hematopoietic stem and progenitor cells, and pancytopenia of the peripheral blood, due to immune attack on the bone marrow. In aplastic anemia, a major challenge is to develop immune biomarkers to monitor the disease. We measured circulating microRNAs in plasma samples of aplastic anemia patients in order to identify disease-specific microRNAs. A total of 179 microRNAs were analyzed in 35 plasma samples from 13 aplastic anemia patients, 11 myelodysplastic syndrome patients, and 11 healthy controls using the Serum/Plasma Focus microRNA Polymerase Chain Reaction Panel. Subsequently, 19 microRNAs from the discovery set were investigated in the 108 plasma samples from 41 aplastic anemia patients, 24 myelodysplastic syndrome patients, and 43 healthy controls for validation, confirming that 3 microRNAs could be validated as dysregulated (>1.5-fold change) in aplastic anemia, compared to healthy controls. MiR-150-5p (induction of T-cell differentiation) and miR-146b-5p (involvement in the feedback regulation of innate immune response) were elevated in aplastic anemia plasma, whereas miR-1 was decreased in aplastic anemia. By receiver operating characteristic curve analysis, we developed a logistic model with these 3 microRNAs that enabled us to predict the probability of a diagnosis of aplastic anemia with an area under the curve of 0.86. Dysregulated expression levels of the microRNAs became normal after immunosuppressive therapy at 6 months. Specifically, miR-150-5p expression was significantly reduced after successful immunosuppressive therapy, but did not change in non-responders. We propose 3 novel plasma biomarkers in aplastic anemia, in which miR-150-5p, miR-146b-5p, and miR-1 can serve for diagnosis and miR-150-5p for disease monitoring. Clinicaltrials.gov identifiers:00260689, 00217594, 00961064. Copyright© Ferrata Storti Foundation.

  14. Regulation of Corticosteroidogenic Genes by MicroRNAs

    Directory of Open Access Journals (Sweden)

    Stacy Robertson

    2017-01-01

    Full Text Available The loss of normal regulation of corticosteroid secretion is important in the development of cardiovascular disease. We previously showed that microRNAs regulate the terminal stages of corticosteroid biosynthesis. Here, we assess microRNA regulation across the whole corticosteroid pathway. Knockdown of microRNA using Dicer1 siRNA in H295R adrenocortical cells increased levels of CYP11A1, CYP21A1, and CYP17A1 mRNA and the secretion of cortisol, corticosterone, 11-deoxycorticosterone, 18-hydroxycorticosterone, and aldosterone. Bioinformatic analysis of genes involved in corticosteroid biosynthesis or metabolism identified many putative microRNA-binding sites, and some were selected for further study. Manipulation of individual microRNA levels demonstrated a direct effect of miR-125a-5p and miR-125b-5p on CYP11B2 and of miR-320a-3p levels on CYP11A1 and CYP17A1 mRNA. Finally, comparison of microRNA expression profiles from human aldosterone-producing adenoma and normal adrenal tissue showed levels of various microRNAs, including miR-125a-5p to be significantly different. This study demonstrates that corticosteroidogenesis is regulated at multiple points by several microRNAs and that certain of these microRNAs are differentially expressed in tumorous adrenal tissue, which may contribute to dysregulation of corticosteroid secretion. These findings provide new insights into the regulation of corticosteroid production and have implications for understanding the pathology of disease states where abnormal hormone secretion is a feature.

  15. MicroRNAs in sensorineural diseases of the ear

    Directory of Open Access Journals (Sweden)

    Kathy eUshakov

    2013-12-01

    Full Text Available Non-coding microRNAs have a fundamental role in gene regulation and expression in almost every multicellular organism. Only discovered in the last decade, microRNAs are already known to play a leading role in many aspects of disease. In the vertebrate inner ear, microRNAs are essential for controlling development and survival of hair cells. Moreover, dysregulation of microRNAs has been implicated in sensorineural hearing impairment, as well as in other ear diseases such as cholesteatomas, vestibular schwannomas and otitis media. Due to the inaccessibility of the ear in humans, animal models have provided the optimal tools to study microRNA expression and function, in particular mice and zebrafish. A major focus of current research has been to discover the targets of the microRNAs expressed in the inner ear, in order to determine the regulatory pathways of the auditory and vestibular systems. The potential for microRNA manipulation in development of therapeutic tools for hearing impairment is as yet unexplored, paving the way for future work in the field.

  16. Approaches to modeling the development of physiological stress responsivity.

    Science.gov (United States)

    Hinnant, J Benjamin; Philbrook, Lauren E; Erath, Stephen A; El-Sheikh, Mona

    2018-05-01

    Influential biopsychosocial theories have proposed that some developmental periods in the lifespan are potential pivot points or opportunities for recalibration of stress response systems. To date, however, there have been few longitudinal studies of physiological stress responsivity and no studies comparing change in physiological stress responsivity across developmental periods. Our goals were to (a) address conceptual and methodological issues in studying the development of physiological stress responsivity within and between individuals, and (b) provide an exemplar for evaluating development of responsivity to stress in the parasympathetic nervous system, comparing respiratory sinus arrhythmia (RSA) responsivity from middle to late childhood with middle to late adolescence. We propose the use of latent growth modeling of stress responsivity that includes time-varying covariates to account for conceptual and methodological issues in the measurement of physiological stress responsivity. Such models allow researchers to address key aspects of developmental sensitivity including within-individual variability, mean level change over time, and between-individual variability over time. In an empirical example, we found significant between-individual variability over time in RSA responsivity to stress during middle to late childhood but not during middle to late adolescence, suggesting that childhood may be a period of greater developmental sensitivity at the between-individual level. © 2017 Society for Psychophysiological Research.

  17. Proteomic studies of drought stress response in Fabaceae

    Directory of Open Access Journals (Sweden)

    Tanja ZADRAŽNIK

    2015-11-01

    Full Text Available Drought stress is a serious threat to crop production that influences plant growth and development and subsequently causes reduced quantity and quality of the yield. Plant stress induces changes in cell metabolism, which includes differential expression of proteins. Proteomics offer a powerful approach to analyse proteins involved in drought stress response of plants. Analyses of changes in protein abundance of legumes under drought stress are very important, as legumes play an important role in human and animal diet and are often exposed to drought. The presented results of proteomic studies of selected legumes enable better understanding of molecular mechanisms of drought stress response. The study of drought stress response of plants with proteomic approach may contribute to the development of potential drought-response markers and to the development of drought-tolerant cultivars of different legume crop species.

  18. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework

    International Nuclear Information System (INIS)

    Calabrese, Edward J.; Bachmann, Kenneth A.; Bailer, A. John; Bolger, P. Michael; Borak, Jonathan; Cai, Lu; Cedergreen, Nina; Cherian, M. George; Chiueh, Chuang C.; Clarkson, Thomas W.; Cook, Ralph R.; Diamond, David M.; Doolittle, David J.; Dorato, Michael A.; Duke, Stephen O.; Feinendegen, Ludwig; Gardner, Donald E.; Hart, Ronald W.; Hastings, Kenneth L.; Hayes, A. Wallace; Hoffmann, George R.; Ives, John A.; Jaworowski, Zbigniew; Johnson, Thomas E.; Jonas, Wayne B.; Kaminski, Norbert E.; Keller, John G.; Klaunig, James E.; Knudsen, Thomas B.; Kozumbo, Walter J.; Lettieri, Teresa; Liu, Shu-Zheng; Maisseu, Andre; Maynard, Kenneth I.; Masoro, Edward J.; McClellan, Roger O.; Mehendale, Harihara M.; Mothersill, Carmel; Newlin, David B.; Nigg, Herbert N.; Oehme, Frederick W.; Phalen, Robert F.; Philbert, Martin A.; Rattan, Suresh I.S.; Riviere, Jim E.; Rodricks, Joseph; Sapolsky, Robert M.; Scott, Bobby R.; Seymour, Colin; Sinclair, David A.; Smith-Sonneborn, Joan; Snow, Elizabeth T.; Spear, Linda; Stevenson, Donald E.; Thomas, Yolene; Tubiana, Maurice; Williams, Gary M.; Mattson, Mark P.

    2007-01-01

    Many biological subdisciplines that regularly assess dose-response relationships have identified an evolutionarily conserved process in which a low dose of a stressful stimulus activates an adaptive response that increases the resistance of the cell or organism to a moderate to severe level of stress. Due to a lack of frequent interaction among scientists in these many areas, there has emerged a broad range of terms that describe such dose-response relationships. This situation has become problematic because the different terms describe a family of similar biological responses (e.g., adaptive response, preconditioning, hormesis), adversely affecting interdisciplinary communication, and possibly even obscuring generalizable features and central biological concepts. With support from scientists in a broad range of disciplines, this article offers a set of recommendations we believe can achieve greater conceptual harmony in dose-response terminology, as well as better understanding and communication across the broad spectrum of biological disciplines

  19. Response of Desulfovibrio vulgaris to Alkaline Stress

    Energy Technology Data Exchange (ETDEWEB)

    Stolyar, S.; He, Q.; He, Z.; Yang, Z.; Borglin, S.E.; Joyner, D.; Huang, K.; Alm, E.; Hazen, T.C.; Zhou, J.; Wall, J.D.; Arkin, A.P.; Stahl, D.A.

    2007-11-30

    The response of exponentially growing Desulfovibrio vulgarisHildenborough to pH 10 stress was studied using oligonucleotidemicroarrays and a study set of mutants with genes suggested by microarraydata to be involved in the alkaline stress response deleted. The datashowed that the response of D. vulgaris to increased pH is generallysimilar to that of Escherichia coli but is apparently controlled byunique regulatory circuits since the alternative sigma factors (sigma Sand sigma E) contributing to this stress response in E. coli appear to beabsent in D. vulgaris. Genes previously reported to be up-regulated in E.coli were up-regulated in D. vulgaris; these genes included three ATPasegenes and a tryptophan synthase gene. Transcription of chaperone andprotease genes (encoding ATP-dependent Clp and La proteases and DnaK) wasalso elevated in D. vulgaris. As in E. coli, genes involved in flagellumsynthesis were down-regulated. The transcriptional data also identifiedregulators, distinct from sigma S and sigma E, that are likely part of aD. vulgaris Hildenborough-specific stress response system.Characterization of a study set of mutants with genes implicated inalkaline stress response deleted confirmed that there was protectiveinvolvement of the sodium/proton antiporter NhaC-2, tryptophanase A, andtwo putative regulators/histidine kinases (DVU0331 andDVU2580).

  20. Integrative Analysis of Sex-Specific microRNA Networks Following Stress in Mouse Nucleus Accumbens.

    Science.gov (United States)

    Pfau, Madeline L; Purushothaman, Immanuel; Feng, Jian; Golden, Sam A; Aleyasin, Hossein; Lorsch, Zachary S; Cates, Hannah M; Flanigan, Meghan E; Menard, Caroline; Heshmati, Mitra; Wang, Zichen; Ma'ayan, Avi; Shen, Li; Hodes, Georgia E; Russo, Scott J

    2016-01-01

    Adult women are twice as likely as men to suffer from affective and anxiety disorders, although the mechanisms underlying heightened female stress susceptibility are incompletely understood. Recent findings in mouse Nucleus Accumbens (NAc) suggest a role for DNA methylation-driven sex differences in genome-wide transcriptional profiles. However, the role of another epigenetic process-microRNA (miR) regulation-has yet to be explored. We exposed male and female mice to Subchronic Variable Stress (SCVS), a stress paradigm that produces depression-like behavior in female, but not male, mice, and performed next generation mRNA and miR sequencing on NAc tissue. We applied a combination of differential expression, miR-mRNA network and functional enrichment analyses to characterize the transcriptional and post-transcriptional landscape of sex differences in NAc stress response. We find that male and female mice exhibit largely non-overlapping miR and mRNA profiles following SCVS. The two sexes also show enrichment of different molecular pathways and functions. Collectively, our results suggest that males and females mount fundamentally different transcriptional and post-transcriptional responses to SCVS and engage sex-specific molecular processes following stress. These findings have implications for the pathophysiology and treatment of stress-related disorders in women.

  1. MicroRNAs, epigenetics and disease

    DEFF Research Database (Denmark)

    Silahtaroglu, Asli; Stenvang, Jan

    2010-01-01

    Epigenetics is defined as the heritable chances that affect gene expression without changing the DNA sequence. Epigenetic regulation of gene expression can be through different mechanisms such as DNA methylation, histone modifications and nucleosome positioning. MicroRNAs are short RNA molecules...... which do not code for a protein but have a role in post-transcriptional silencing of multiple target genes by binding to their 3' UTRs (untranslated regions). Both epigenetic mechanisms, such as DNA methylation and histone modifications, and the microRNAs are crucial for normal differentiation...... diseases. In the present chapter we will mainly focus on microRNAs and methylation and their implications in human disease, mainly in cancer....

  2. ON THE PRO-METASTATIC STRESS RESPONSE TO CANCER THERAPIES: EVIDENCE FOR A POSITIVE CO-OPERATION BETWEEN TIMP-1, HIF-1α, AND miR-210

    Directory of Open Access Journals (Sweden)

    Haissi eCui

    2012-07-01

    Full Text Available In contrast to expectations in the past that tumor starvation or unselective inhibition of proteolytic activity would cure cancer, there is accumulating evidence that microenvironmental stress, such as hypoxia or broad spectrum inhibition of metalloproteinases can promote metastasis. In fact, malignant tumor cells, due to their genetic and epigenetic instability, are predisposed to react to stress by adaptation and, if the stress persists, by escape and formation of metastasis. Recent recognition of the concepts of dynamic evolution as well as population and systems biology is extremely helpful to understand the disappointments of clinical trials with new drugs and may lead to paradigm-shifts in therapy strategies. This must be complemented by an increased understanding of molecular mechanism involved in stress response. Here, we review new roles of Hypoxia-inducible factor-1 (HIF-1, one transcription factor regulating stress response-related gene expression: HIF-1 is crucial for invasion and metastasis, independent from its pro-survival function. In addition, HIF-1 mediates pro-metastatic microenvironmental changes of the proteolytic balance as triggered by high systemic levels of tissue inhibitor of metalloproteinases-1 (TIMP-1, typical for many aggressive cancers, and regulates the metabolic switch to glycolysis, notably via activation of the microRNA miR-210. There is preliminary evidence that TIMP-1 also induces miR-210. Such positive-regulatory co-operation of HIF-1α, miR-210, and TIMP-1, all described to correlate with bad prognosis of cancer patients, opens new perspectives of gaining insight into molecular mechanisms of metastasis-inducing evasion of tumor cells from stress.

  3. How age, sex and genotype shape the stress response.

    Science.gov (United States)

    Novais, Ashley; Monteiro, Susana; Roque, Susana; Correia-Neves, Margarida; Sousa, Nuno

    2017-02-01

    Exposure to chronic stress is a leading pre-disposing factor for several neuropsychiatric disorders as it often leads to maladaptive responses. The response to stressful events is heterogeneous, underpinning a wide spectrum of distinct changes amongst stress-exposed individuals'. Several factors can underlie a different perception to stressors and the setting of distinct coping strategies that will lead to individual differences on the susceptibility/resistance to stress. Beyond the factors related to the stressor itself, such as intensity, duration or predictability, there are factors intrinsic to the individuals that are relevant to shape the stress response, such as age, sex and genetics. In this review, we examine the contribution of such intrinsic factors to the modulation of the stress response based on experimental rodent models of response to stress and discuss to what extent that knowledge can be potentially translated to humans.

  4. Staphylococcal response to oxidative stress

    Directory of Open Access Journals (Sweden)

    Rosmarie eGaupp

    2012-03-01

    Full Text Available Staphylococci are a versatile genus of bacteria that are capable of causing acute and chronic infections in diverse host species. The success of staphylococci as pathogens is due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative stress. Endogenous oxidative stress is a consequence of life in an aerobic environment; whereas, exogenous oxidative and nitrosative stress are often due to the bacteria’s interaction with host immune systems. To overcome the deleterious effects of oxidative and nitrosative stress, staphylococci have evolved protection, detoxification, and repair mechanisms that are controlled by a network of regulators. In this review, we summarize the cellular targets of oxidative stress, the mechanisms by which staphylococci sense oxidative stress and damage, oxidative stress protection and repair mechanisms, and regulation of the oxidative stress response. When possible, special attention is given to how the oxidative stress defense mechanisms help staphylococci control oxidative stress in the host.

  5. When does stress help or harm? The effects of stress controllability and subjective stress response on stroop performance.

    Science.gov (United States)

    Henderson, Roselinde K; Snyder, Hannah R; Gupta, Tina; Banich, Marie T

    2012-01-01

    The ability to engage in goal-directed behavior despite exposure to stress is critical to resilience. Questions of how stress can impair or improve behavioral functioning are important in diverse settings, from athletic competitions to academic testing. Previous research suggests that controllability is a key factor in the impact of stress on behavior: learning how to control stressors buffers people from the negative effects of stress on subsequent cognitively demanding tasks. In addition, research suggests that the impact of stress on cognitive functioning depends on an individual's response to stressors: moderate responses to stress can lead to improved performance while extreme (high or low) responses can lead to impaired performance. The present studies tested the hypothesis that (1) learning to behaviorally control stressors leads to improved performance on a test of general executive functioning, the color-word Stroop, and that (2) this improvement emerges specifically for people who report moderate (subjective) responses to stress. Experiment 1: Stroop performance, measured before and after a stress manipulation, was compared across groups of undergraduate participants (n = 109). People who learned to control a noise stressor and received accurate performance feedback demonstrated reduced Stroop interference compared with people exposed to uncontrollable noise stress and feedback indicating an exaggerated rate of failure. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest reduction in Stroop interference. In contrast, in the group exposed to uncontrollable events, self-reported stress failed to predict performance. Experiment 2: In a second sample (n = 90), we specifically investigated the role of controllability by keeping the rate of failure feedback constant across groups. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest Stroop

  6. Plant Responses to Nanoparticle Stress

    Directory of Open Access Journals (Sweden)

    Zahed Hossain

    2015-11-01

    Full Text Available With the rapid advancement in nanotechnology, release of nanoscale materials into the environment is inevitable. Such contamination may negatively influence the functioning of the ecosystems. Many manufactured nanoparticles (NPs contain heavy metals, which can cause soil and water contamination. Proteomic techniques have contributed substantially in understanding the molecular mechanisms of plant responses against various stresses by providing a link between gene expression and cell metabolism. As the coding regions of genome are responsible for plant adaptation to adverse conditions, protein signatures provide insights into the phytotoxicity of NPs at proteome level. This review summarizes the recent contributions of plant proteomic research to elaborate the complex molecular pathways of plant response to NPs stress.

  7. Response inhibition and cognitive appraisal in clients with acute stress disorder and posttraumatic stress disorder.

    Science.gov (United States)

    Abolghasemi, Abass; Bakhshian, Fereshteh; Narimani, Mohammad

    2013-08-01

    The purpose of the present study was to compare response inhibition and cognitive appraisal in clients with acute stress disorder, clients with posttraumatic stress disorder, and normal individuals. This was a comparative study. The sample consisted of 40 clients with acute stress disorder, 40 patients with posttraumatic stress disorder, and 40 normal individuals from Mazandaran province selected through convenience sampling method. Data were collected using Composite International Diagnostic Interview, Stroop Color-Word Test, Posttraumatic Cognitions Inventory, and the Impact of Event Scale. Results showed that individuals with acute stress disorder are less able to inhibit inappropriate responses and have more impaired cognitive appraisals compared to those with posttraumatic stress disorder. Moreover, results showed that response inhibition and cognitive appraisal explain 75% of the variance in posttraumatic stress disorder symptoms and 38% of the variance in posttraumatic stress disorder symptoms. The findings suggest that response inhibition and cognitive appraisal are two variables that influence the severity of posttraumatic stress disorder and acute stress disorder symptoms. Also, these results have important implications for pathology, prevention, and treatment of posttraumatic stress disorder and acute stress disorder.

  8. Dysfunctional stress responses in chronic pain.

    Science.gov (United States)

    Woda, Alain; Picard, Pascale; Dutheil, Frédéric

    2016-09-01

    Many dysfunctional and chronic pain conditions overlap. This review describes the different modes of chronic deregulation of the adaptive response to stress which may be a common factor for these conditions. Several types of dysfunction can be identified within the hypothalamo-pituitary-adrenal axis: basal hypercortisolism, hyper-reactivity, basal hypocortisolism and hypo-reactivity. Neuroactive steroid synthesis is another component of the adaptive response to stress. Dehydroepiandrosterone (DHEA) and its sulfated form DHEA-S, and progesterone and its derivatives are synthetized in cutaneous, nervous, and adipose cells. They are neuroactive factors that act locally. They may have a role in the localization of the symptoms and their levels can vary both in the central nervous system and in the periphery. Persistent changes in neuroactive steroid levels or precursors can induce localized neurodegeneration. The autonomic nervous system is another component of the stress response. Its dysfunction in chronic stress responses can be expressed by decreased basal parasympathethic activity, increased basal sympathetic activity or sympathetic hyporeactivity to a stressful stimulus. The immune and genetic systems also participate. The helper-T cells Th1 secrete pro-inflammatory cytokines such as IL-1-β, IL-2, IL-6, IL-8, IL-12, IFN-γ, and TNF-α, whereas Th2 secrete anti-inflammatory cytokines: IL-4, IL-10, IGF-10, IL-13. Chronic deregulation of the Th1/Th2 balance can occur in favor of anti- or pro-inflammatory direction, locally or systemically. Individual vulnerability to stress can be due to environmental factors but can also be genetically influenced. Genetic polymorphisms and epigenetics are the main keys to understanding the influence of genetics on the response of individuals to constraints. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Profile of cerebrospinal microRNAs in fibromyalgia.

    Directory of Open Access Journals (Sweden)

    Jan L Bjersing

    Full Text Available Fibromyalgia (FM is characterized by chronic pain and reduced pain threshold. The pathophysiology involves disturbed neuroendocrine function, including impaired function of the growth hormone/insulin-like growth factor-1 axis. Recently, microRNAs have been shown to be important regulatory factors in a number of diseases. The aim of this study was to try to identify cerebrospinal microRNAs with expression specific for FM and to determine their correlation to pain and fatigue.The genome-wide profile of microRNAs in cerebrospinal fluid was assessed in ten women with FM and eight healthy controls using real-time quantitative PCR. Pain thresholds were examined by algometry. Levels of pain (FIQ pain were rated on a 0-100 mm scale (fibromyalgia impact questionnaire, FIQ. Levels of fatigue (FIQ fatigue were rated on a 0-100 mm scale using FIQ and by multidimensional fatigue inventory (MFI-20 general fatigue (MFIGF.Expression levels of nine microRNAs were significantly lower in patients with FM patients compared to healthy controls. The microRNAs identified were miR-21-5p, miR-145-5p, miR-29a-3p, miR-99b-5p, miR-125b-5p, miR-23a-3p, 23b-3p, miR-195-5p, miR-223-3p. The identified microRNAs with significantly lower expression in FM were assessed with regard to pain and fatigue. miR-145-5p correlated positively with FIQ pain (r=0.709, p=0.022, n=10 and with FIQ fatigue (r=0.687, p=0.028, n=10.To our knowledge, this is the first study to show a disease-specific pattern of cerebrospinal microRNAs in FM. We have identified nine microRNAs in cerebrospinal fluid that differed between FM patients and healthy controls. One of the identified microRNAs, miR-145 was associated with the cardinal symptoms of FM, pain and fatigue.

  10. Profile of cerebrospinal microRNAs in fibromyalgia.

    Science.gov (United States)

    Bjersing, Jan L; Lundborg, Christopher; Bokarewa, Maria I; Mannerkorpi, Kaisa

    2013-01-01

    Fibromyalgia (FM) is characterized by chronic pain and reduced pain threshold. The pathophysiology involves disturbed neuroendocrine function, including impaired function of the growth hormone/insulin-like growth factor-1 axis. Recently, microRNAs have been shown to be important regulatory factors in a number of diseases. The aim of this study was to try to identify cerebrospinal microRNAs with expression specific for FM and to determine their correlation to pain and fatigue. The genome-wide profile of microRNAs in cerebrospinal fluid was assessed in ten women with FM and eight healthy controls using real-time quantitative PCR. Pain thresholds were examined by algometry. Levels of pain (FIQ pain) were rated on a 0-100 mm scale (fibromyalgia impact questionnaire, FIQ). Levels of fatigue (FIQ fatigue) were rated on a 0-100 mm scale using FIQ and by multidimensional fatigue inventory (MFI-20) general fatigue (MFIGF). Expression levels of nine microRNAs were significantly lower in patients with FM patients compared to healthy controls. The microRNAs identified were miR-21-5p, miR-145-5p, miR-29a-3p, miR-99b-5p, miR-125b-5p, miR-23a-3p, 23b-3p, miR-195-5p, miR-223-3p. The identified microRNAs with significantly lower expression in FM were assessed with regard to pain and fatigue. miR-145-5p correlated positively with FIQ pain (r=0.709, p=0.022, n=10) and with FIQ fatigue (r=0.687, p=0.028, n=10). To our knowledge, this is the first study to show a disease-specific pattern of cerebrospinal microRNAs in FM. We have identified nine microRNAs in cerebrospinal fluid that differed between FM patients and healthy controls. One of the identified microRNAs, miR-145 was associated with the cardinal symptoms of FM, pain and fatigue.

  11. MicroRNA-140-5p attenuated oxidative stress in Cisplatin induced acute kidney injury by activating Nrf2/ARE pathway through a Keap1-independent mechanism.

    Science.gov (United States)

    Liao, Weitang; Fu, Zongjie; Zou, Yanfang; Wen, Dan; Ma, Hongkun; Zhou, Fangfang; Chen, Yongxi; Zhang, Mingjun; Zhang, Wen

    2017-11-15

    Oxidative stress was predominantly involved in the pathogenesis of acute kidney injury (AKI). Recent studies had reported the protective role of specific microRNAs (miRNAs) against oxidative stress. Hence, we investigated the levels of miR140-5p and its functional role in the pathogenesis of Cisplatin induced AKI. A mice Cisplatin induced-AKI model was established. We found that miR-140-5p expression was markedly increased in mice kidney. Bioinformatics analysis revealed nuclear factor erythroid 2-related factor (Nrf2) was a potential target of miR-140-5p, We demonstrated that miR-140-5p did not affect Kelch-like ECH-associated protein 1 (Keap1) level but directly targeted the 3'-UTR of Nrf2 mRNA and played a positive role in the regulation of Nrf2 expression which was confirmed by luciferase activity assay and western blot. What was more, consistent with miR140-5p expression, the mRNA and protein levels of Nrf2, as well as antioxidant response element (ARE)-driven genes Heme Oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase l (NQO1) were significantly increased in mice kidney tissues. In vitro study, Enforced expression of miR-140-5p in HK2 cells significantly attenuated oxidative stress by decreasing ROS level and increasing the expression of manganese superoxide dismutase (MnSOD). Simultaneously, miR-140-5p decreased lactate dehydrogenase (LDH) leakage and improved cell vitality in HK2 cells under Cisplatin-induced oxidative stress. However, HK2 cells transfected with a siRNA targeting Nrf2 abrogated the protective effects of miR-140-5p against oxidative stress. These results indicated that miR-140-5p might exert its anti-oxidative stress function via targeting Nrf2. Our findings showed the novel transcriptional role of miR140-5p in the expression of Nrf2 and miR-140-5p protected against Cisplatin induced oxidative stress by activating Nrf2-dependent antioxidant pathway, providing a potentially therapeutic target in acute kidney injury. Copyright © 2017

  12. Comfort food is comforting to those most stressed: evidence of the chronic stress response network in high stress women.

    Science.gov (United States)

    Tomiyama, A Janet; Dallman, Mary F; Epel, Elissa S

    2011-11-01

    Chronically stressed rodents who are allowed to eat calorie-dense "comfort" food develop greater mesenteric fat, which in turn dampens hypothalamic-pituitary-adrenocortical (HPA) axis activity. We tested whether similar relations exist in humans, at least cross-sectionally. Fifty-nine healthy premenopausal women were exposed to a standard laboratory stressor to examine HPA response to acute stress and underwent diurnal saliva sampling for basal cortisol and response to dexamethasone administration. Based on perceived stress scores, women were divided into extreme quartiles of low versus high stress categories. We found as hypothesized that the high stress group had significantly greater BMI and sagittal diameter, and reported greater emotional eating. In response to acute lab stressor, the high stress group showed a blunted cortisol response, lower diurnal cortisol levels, and greater suppression in response to dexamethasone. These cross-sectional findings support the animal model, which suggests that long-term adaptation to chronic stress in the face of dense calories result in greater visceral fat accumulation (via ingestion of calorie-dense food), which in turn modulates HPA axis response, resulting in lower cortisol levels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. The Emerging Role of MicroRNA-155 in Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Richard Y. Cao

    2016-01-01

    Full Text Available MicroRNAs have been demonstrated to be involved in human diseases, including cardiovascular diseases. Growing evidences suggest that microRNA-155, a typical multifunctional microRNA, plays a crucial role in hematopoietic lineage differentiation, immunity, inflammation, viral infections, and vascular remodeling, which is linked to cardiovascular diseases such as coronary artery disease, abdominal aortic aneurysm, heart failure, and diabetic heart disease. The effects of microRNA-155 in different cell types through different target genes result in different mechanisms in diseases. MicroRNA-155 has been intensively studied in atherosclerosis and coronary artery disease. Contradictory results of microRNA-155 either promoting or preventing the pathophysiological process of atherosclerosis illustrate the complexity of this pleiotropic molecule. Therefore, more comprehensive studies of the underlying mechanisms of microRNA-155 involvement in cardiovascular diseases are required. Furthermore, a recent clinical trial of Miravirsen targeting microRNA-122 sheds light on exploiting microRNA-155 as a novel target to develop effective therapeutic strategies for cardiovascular diseases in the near future.

  14. MicroRNA from tuberculosis RNA: A bioinformatics study

    OpenAIRE

    Wiwanitkit, Somsri; Wiwanitkit, Viroj

    2012-01-01

    The role of microRNA in the pathogenesis of pulmonary tuberculosis is the interesting topic in chest medicine at present. Recently, it was proposed that the microRNA can be a useful biomarker for monitoring of pulmonary tuberculosis and might be the important part in pathogenesis of disease. Here, the authors perform a bioinformatics study to assess the microRNA within known tuberculosis RNA. The microRNA part can be detected and this can be important key information in further study of the p...

  15. Altered spinal microRNA-146a and the microRNA-183 cluster contribute to osteoarthritic pain in knee joints.

    Science.gov (United States)

    Li, Xin; Kroin, Jeffrey S; Kc, Ranjan; Gibson, Gary; Chen, Di; Corbett, Grant T; Pahan, Kalipada; Fayyaz, Sana; Kim, Jae-Sung; van Wijnen, Andre J; Suh, Joon; Kim, Su-Gwan; Im, Hee-Jeong

    2013-12-01

    The objective of this study was to examine whether altered expression of microRNAs in central nervous system components is pathologically linked to chronic knee joint pain in osteoarthritis. A surgical animal model for knee joint OA was generated by medial meniscus transection in rats followed by behavioral pain tests. Relationships between pathological changes in knee joint and development of chronic joint pain were examined by histology and imaging analyses. Alterations in microRNAs associated with OA-evoked pain sensation were determined in bilateral lumbar dorsal root ganglia (DRG) and the spinal dorsal horn by microRNA array followed by individual microRNA analyses. Gain- and loss-of-function studies of selected microRNAs (miR-146a and miR-183 cluster) were conducted to identify target pain mediators regulated by these selective microRNAs in glial cells. The ipsilateral hind leg displayed significantly increased hyperalgesia after 4 weeks of surgery, and sensitivity was sustained for the remainder of the 8-week experimental period (F = 341, p pain was correlated with pathological changes in the knee joints as assessed by histological and imaging analyses. MicroRNA analyses showed that miR-146a and the miR-183 cluster were markedly reduced in the sensory neurons in DRG (L4/L5) and spinal cord from animals experiencing knee joint OA pain. The downregulation of miR-146a and/or the miR-183 cluster in the central compartments (DRG and spinal cord) are closely associated with the upregulation of inflammatory pain mediators. The corroboration between decreases in these signature microRNAs and their specific target pain mediators were further confirmed by gain- and loss-of-function analyses in glia, the major cellular component of the central nervous system (CNS). MicroRNA therapy using miR-146a and the miR-183 cluster could be powerful therapeutic intervention for OA in alleviating joint pain and concomitantly regenerating peripheral knee joint cartilage. © 2013

  16. Associations between circadian and stress response cortisol in children.

    Science.gov (United States)

    Simons, Sterre S H; Cillessen, Antonius H N; de Weerth, Carolina

    2017-01-01

    Hypothalamic-pituitary-adrenal (HPA) axis functioning is characterized by the baseline production of cortisol following a circadian rhythm, as well as by the superimposed production of cortisol in response to a stressor. However, it is relatively unknown whether the basal cortisol circadian rhythm is associated with the cortisol stress response in children. Since alterations in cortisol stress responses have been associated with mental and physical health, this study investigated whether the cortisol circadian rhythm is associated with cortisol stress responses in 6-year-old children. To this end, 149 normally developing children (M age  = 6.09 years; 70 girls) participated in an innovative social evaluative stress test that effectively provoked increases in cortisol. To determine the cortisol stress response, six cortisol saliva samples were collected and two cortisol stress response indices were calculated: total stress cortisol and cortisol stress reactivity. To determine children's cortisol circadian rhythm eight cortisol circadian samples were collected during two days. Total diurnal cortisol and diurnal cortisol decline scores were calculated as indices of the cortisol circadian rhythm. Hierarchical regression analyses indicated that higher total diurnal cortisol as well as a smaller diurnal cortisol decline, were both uniquely associated with higher total stress cortisol. No associations were found between the cortisol circadian rhythm indices and cortisol stress reactivity. Possible explanations for the patterns found are links with children's self-regulatory capacities and parenting quality.

  17. Stress-related cortisol responsivity modulates prospective memory.

    Science.gov (United States)

    Glienke, K; Piefke, M

    2017-12-01

    It is known that there is inter-individual variation in behavioural and physiological stress reactions to the same stressor. The present study aimed to examine the impact of cortisol responsivity on performance in a complex real life-like prospective memory (PM) paradigm by a re-analysis of data published previously, with a focus on the taxonomy of cognitive dimensions of PM. Twenty-one male subjects were stressed with the Socially Evaluated Cold Pressor Test (SECPT) before the planning of intentions. Another group of 20 males underwent a control procedure. Salivary cortisol was measured to assess the intensity of the biological stress response. Additionally, participants rated the subjective experience of stress on a 5-point rating scale. Stressed participants were post-hoc differentiated in high (n = 11) and low cortisol responders (n = 10). Cortisol niveau differed significantly between the two groups, whereas subjective stress ratings did not. PM performance of low cortisol responders was stable across time and the PM performance of controls declined. High cortisol responders showed a nominally weaker PM retrieval across the early trails and significantly improved only on the last trial. The data demonstrate for the first time that participants with a low cortisol responsivity may benefit from stress exposure before the planning phase of PM. PM performance of high cortisol responders shows a more inconsistent pattern, which may be interpreted in the sense of a recency effect in PM retrieval. Alternatively, high cortisol responses may have a deteriorating effect on PM retrieval, which disappeared on the last trials of the task as a result of the decrease of cortisol levels across time. Importantly, the data also demonstrate that the intensity of cortisol responses does not necessarily correspond to the intensity of the mental experience of stress. © 2017 British Society for Neuroendocrinology.

  18. Response Inhibition and Cognitive Appraisal in Clients with Acute Stress Disorder and Posttraumatic Stress Disorder

    Directory of Open Access Journals (Sweden)

    Abass Abolghasemi

    2013-09-01

    Full Text Available Objective: The purpose of the present study was to compare response inhibition and cognitive appraisal in clients with acute stress disorder, clients with posttraumatic stress disorder, and normal individuals .Method:This was a comparative study. The sample consisted of 40 clients with acute stress disorder, 40 patients with posttraumatic stress disorder, and 40 normal individuals from Mazandaran province selected through convenience sampling method. Data were collected using Composite International Diagnostic Interview, Stroop Color-Word Test, Posttraumatic Cognitions Inventory, and the Impact of Event Scale. Results:Results showed that individuals with acute stress disorder are less able to inhibit inappropriate responses and have more impaired cognitive appraisals compared to those with posttraumatic stress disorder. Moreover, results showed that response inhibition and cognitive appraisal explain 75% of the variance in posttraumatic stress disorder symptoms and 38% of the variance in posttraumatic stress disorder symptoms .Conclusion:The findings suggest that response inhibition and cognitive appraisal are two variables that influence the severity of posttraumatic stress disorder and acute stress disorder symptoms. Also, these results have important implications for pathology, prevention, and treatment of posttraumatic stress disorder and acute stress disorder

  19. Tonic immobility differentiates stress responses in PTSD.

    Science.gov (United States)

    Fragkaki, Iro; Stins, John; Roelofs, Karin; Jongedijk, Ruud A; Hagenaars, Muriel A

    2016-11-01

    Tonic immobility (TI) is a state of physical immobility associated with extreme stress and the development of posttraumatic stress disorder (PTSD). However, it is unknown whether TI is associated with a distinct actual stress response, i.e., objective immobility measured by a stabilometric platform. This study made a first step in exploring this as well as differences in body sway responses between PTSD patients and healthy controls. We hypothesized that PTSD would be related to increased body sway under stress, whereas TI would be related to decreased body sway under stress. Eye closure was selected as a PTSD-relevant stress induction procedure. Body sway and heart rate (HR) were measured in 12 PTSD patients and 12 healthy controls in four conditions: (1) maintaining a stable stance with eyes open, (2) with eyes closed, (3) during a mental arithmetic task with eyes open, and (4) with eyes closed. As predicted, PTSD patients showed increased body sway from eyes open to eyes closed compared to controls and this effect was eliminated by executing the arithmetic task. Most importantly, retrospective self-reported TI was associated with lower body sway increases in PTSD and higher body sway decreases in controls from eyes-open to eyes-closed conditions. These preliminary findings suggest that eye closure has a different effect on PTSD patients than controls and that high self-reported TI might indicate a distinct stress response pattern, i.e., a proneness for immobility. It may be relevant to take such individual differences in stress-response into account in PTSD treatment.

  20. Neuronal responses to physiological stress

    DEFF Research Database (Denmark)

    Kagias, Konstantinos; Nehammer, Camilla; Pocock, Roger David John

    2012-01-01

    damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses......Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. It can be divided into three different aspects: environmental stress, intrinsic developmental stress, and aging. Throughout life all living organisms are challenged...... by changes in the environment. Fluctuations in oxygen levels, temperature, and redox state for example, trigger molecular events that enable an organism to adapt, survive, and reproduce. In addition to external stressors, organisms experience stress associated with morphogenesis and changes in inner...

  1. Accurate microRNA target prediction correlates with protein repression levels

    Directory of Open Access Journals (Sweden)

    Simossis Victor A

    2009-09-01

    Full Text Available Abstract Background MicroRNAs are small endogenously expressed non-coding RNA molecules that regulate target gene expression through translation repression or messenger RNA degradation. MicroRNA regulation is performed through pairing of the microRNA to sites in the messenger RNA of protein coding genes. Since experimental identification of miRNA target genes poses difficulties, computational microRNA target prediction is one of the key means in deciphering the role of microRNAs in development and disease. Results DIANA-microT 3.0 is an algorithm for microRNA target prediction which is based on several parameters calculated individually for each microRNA and combines conserved and non-conserved microRNA recognition elements into a final prediction score, which correlates with protein production fold change. Specifically, for each predicted interaction the program reports a signal to noise ratio and a precision score which can be used as an indication of the false positive rate of the prediction. Conclusion Recently, several computational target prediction programs were benchmarked based on a set of microRNA target genes identified by the pSILAC method. In this assessment DIANA-microT 3.0 was found to achieve the highest precision among the most widely used microRNA target prediction programs reaching approximately 66%. The DIANA-microT 3.0 prediction results are available online in a user friendly web server at http://www.microrna.gr/microT

  2. Coping as a mediator of the relationship between stress mindset and psychological stress response: a pilot study.

    Science.gov (United States)

    Horiuchi, Satoshi; Tsuda, Akira; Aoki, Shuntaro; Yoneda, Kenichiro; Sawaguchi, Yusuke

    2018-01-01

    Coping, the cognitive and behavioral effort required to manage the effects of stressors, is important in determining psychological stress responses (ie, the emotional, behavioral, and cognitive responses to stressors). Coping was classified into categories of emotional expression (eg, negative feelings and thoughts), emotional support seeking (eg, approaching loved ones to request encouragement), cognitive reinterpretation (eg, reframing a problem positively), and problem solving (eg, working to solve the problem). Stress mindset refers to the belief that stress has enhancing (stress-is-enhancing mindset) or debilitating consequences (stress-is-debilitating mindset). This study examined whether coping mediated the relationship between stress mindset and psychological stress responses. Psychological stress responses were conceptualized as depression-anxiety, irritability-anger, and helplessness. The following two hypotheses were tested: 1) a stronger stress-is-enhancing mindset is associated with less frequent use of emotional expression, emotional support seeking, and problem solving, which in turn is associated with lower levels of depression-anxiety, irritability-anger, and helplessness; 2) a stronger stress-is-debilitating mindset is associated with more frequent use of these coping strategies, which in turn is associated with higher levels of these psychological stress responses. The participants were 30 male and 94 female undergraduate and graduate students (mean age =20.4 years). Stress mindset, coping, and psychological stress responses were measured using self-report questionnaires. Six mediation analyses were performed with stress-is-enhancing mindset or stress-is-debilitating mindset as the independent variable, one of the psychological stress responses as the dependent variable, and the four coping strategies as mediators. Emotional expression partially mediated the relationship between a strong stress-is-debilitating mindset and higher irritability

  3. Exosome-mediated microRNA transfer plays a role in radiation-induced bystander effect.

    Science.gov (United States)

    Xu, Shuai; Wang, Jufang; Ding, Nan; Hu, Wentao; Zhang, Xurui; Wang, Bing; Hua, Junrui; Wei, Wenjun; Zhu, Qiyun

    2015-01-01

    Bystander effects can be induced through cellular communication between irradiated cells and non-irradiated cells. The signals that mediate this cellular communication, such as cytokines, reactive oxygen species, nitric oxide and even microRNAs, can be transferred between cells via gap junctions or extracellular medium. We have previously reported that miR-21, a well described DDR (DNA damage response) microRNA, is involved in radiation-induced bystander effects through a medium-mediated way. However, the mechanisms of the microRNA transfer have not been elucidated in details. In the present study, it was found that exosomes isolated from irradiated conditioned medium could induce bystander effects. Furthermore, we demonstrated plenty of evidences that miR-21, which is up-regulated as a result of mimic transfection or irradiation, can be transferred from donor or irradiated cells into extracellular medium and subsequently get access to the recipient or bystander cells through exosomes to induce bystander effects. Inhibiting the miR-21 expression in advance can offset the bystander effects to some extent. From all of these results, it can be concluded that the exosome-mediated microRNA transfer plays an important role in the radiation-induced bystander effects. These findings provide new insights into the functions of microRNAs and the cellular communication between the directly irradiated cells and the non-irradiated cells.

  4. Cesium Toxicity Alters MicroRNA Processing and AGO1 Expressions in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Il Lae Jung

    Full Text Available MicroRNAs (miRNAs are short RNA fragments that play important roles in controlled gene silencing, thus regulating many biological processes in plants. Recent studies have indicated that plants modulate miRNAs to sustain their survival in response to a variety of environmental stimuli, such as biotic stresses, cold, drought, nutritional starvation, and toxic heavy metals. Cesium and radio-cesium contaminations have arisen as serious problems that both impede plant growth and enter the food chain through contaminated plants. Many studies have been performed to define plant responses against cesium intoxication. However, the complete profile of miRNAs in plants during cesium intoxication has not been established. Here we show the differential expression of the miRNAs that are mostly down-regulated during cesium intoxication. Furthermore, we found that cesium toxicity disrupts both the processing of pri-miRNAs and AGONOUTE 1 (AGO1-mediated gene silencing. AGO 1 seems to be especially destabilized by cesium toxicity, possibly through a proteolytic regulatory pathway. Our study presents a comprehensive profile of cesium-responsive miRNAs, which is distinct from that of potassium, and suggests two possible mechanisms underlying the cesium toxicity on miRNA metabolism.

  5. Alterations of MicroRNAs in Solid Cancers and Their Prognostic Value

    International Nuclear Information System (INIS)

    Chira, Panagiota; Vareli, Katerina; Sainis, Ioannis; Papandreou, Christos; Briasoulis, Evangelos

    2010-01-01

    MicroRNAs (miRNAs) are evolutionarily conserved, naturally abundant, small, regulatory non-coding RNAs that inhibit gene expression at the post-transcriptional level in a sequence-specific manner. Each miRNA represses the protein expression of several coding genes in a manner proportional to the sequence complementarity with the target transcripts. MicroRNAs play key regulatory roles in organismal development and homeostasis. They control fundamental biological processes, such as stem-cell regulation and cellular metabolism, proliferation, differentiation, stress resistance, and apoptosis. Differential miRNA expression is found in malignant tumors in comparison to normal tissue counterparts. This indicates that miRNA deregulation contributes to the initiation and progression of cancer. Currently, miRNA expression signatures are being rigorously investigated in various tumor types, with the aim of developing novel, efficient biomarkers that can improve clinical management of cancer patients. This review discusses deregulated miRNAs in solid tumors, and focuses on their emerging prognostic potential

  6. Dissecting microRNA dysregulation in age-related macular degeneration: new targets for eye gene therapy.

    Science.gov (United States)

    Askou, Anne Louise; Alsing, Sidsel; Holmgaard, Andreas; Bek, Toke; Corydon, Thomas J

    2018-02-01

    MicroRNAs (miRNAs) are key regulators of gene expression in humans. Overexpression or depletion of individual miRNAs is associated with human disease. Current knowledge suggests that the retina is influenced by miRNAs and that dysregulation of miRNAs as well as alterations in components of the miRNA biogenesis machinery are involved in retinal diseases, including age-related macular degeneration (AMD). Furthermore, recent studies have indicated that the vitreous has a specific panel of circulating miRNAs and that this panel varies according to the specific pathological stress experienced by the retinal cells. MicroRNA (miRNA) profiling indicates subtype-specific miRNA profiles for late-stage AMD highlighting the importance of proper miRNA regulation in AMD. This review will describe the function of important miRNAs involved in inflammation, oxidative stress and pathological neovascularization, the key molecular mechanisms leading to AMD, and focus on dysregulated miRNAs as potential therapeutic targets in AMD. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  7. Zika virus alters the microRNA expression profile and elicits an RNAi response in Aedes aegypti mosquitoes.

    Directory of Open Access Journals (Sweden)

    Miguel A Saldaña

    2017-07-01

    Full Text Available Zika virus (ZIKV, a flavivirus transmitted primarily by Aedes aegypti, has recently spread globally in an unprecedented fashion, yet we have a poor understanding of host-microbe interactions in this system. To gain insights into the interplay between ZIKV and the mosquito, we sequenced the small RNA profiles in ZIKV-infected and non-infected Ae. aegypti mosquitoes at 2, 7 and 14 days post-infection. ZIKA induced an RNAi response in the mosquito with virus-derived short interfering RNAs and PIWI-interacting RNAs dramatically increased in abundance post-infection. Further, we found 17 host microRNAs (miRNAs that were modulated by ZIKV infection at all time points. Strikingly, many of these regulated miRNAs have been reported to have their expression altered by dengue and West Nile viruses, while the response was divergent from that induced by the alphavirus Chikungunya virus in mosquitoes. This suggests that conserved miRNA responses occur within mosquitoes in response to flavivirus infection. This study expands our understanding of ZIKV-vector interactions and provides potential avenues to be further investigated to target ZIKV in the mosquito host.

  8. WRKY transcription factors in plant responses to stresses.

    Science.gov (United States)

    Jiang, Jingjing; Ma, Shenghui; Ye, Nenghui; Jiang, Ming; Cao, Jiashu; Zhang, Jianhua

    2017-02-01

    The WRKY gene family is among the largest families of transcription factors (TFs) in higher plants. By regulating the plant hormone signal transduction pathway, these TFs play critical roles in some plant processes in response to biotic and abiotic stress. Various bodies of research have demonstrated the important biological functions of WRKY TFs in plant response to different kinds of biotic and abiotic stresses and working mechanisms. However, very little summarization has been done to review their research progress. Not just important TFs function in plant response to biotic and abiotic stresses, WRKY also participates in carbohydrate synthesis, senescence, development, and secondary metabolites synthesis. WRKY proteins can bind to W-box (TGACC (A/T)) in the promoter of its target genes and activate or repress the expression of downstream genes to regulate their stress response. Moreover, WRKY proteins can interact with other TFs to regulate plant defensive responses. In the present review, we focus on the structural characteristics of WRKY TFs and the research progress on their functions in plant responses to a variety of stresses. © 2016 Institute of Botany, Chinese Academy of Sciences.

  9. The Role of the Transcriptional Response to DNA Replication Stress.

    Science.gov (United States)

    Herlihy, Anna E; de Bruin, Robertus A M

    2017-03-02

    During DNA replication many factors can result in DNA replication stress. The DNA replication stress checkpoint prevents the accumulation of replication stress-induced DNA damage and the potential ensuing genome instability. A critical role for post-translational modifications, such as phosphorylation, in the replication stress checkpoint response has been well established. However, recent work has revealed an important role for transcription in the cellular response to DNA replication stress. In this review, we will provide an overview of current knowledge of the cellular response to DNA replication stress with a specific focus on the DNA replication stress checkpoint transcriptional response and its role in the prevention of replication stress-induced DNA damage.

  10. The Role of the Transcriptional Response to DNA Replication Stress

    Science.gov (United States)

    Herlihy, Anna E.; de Bruin, Robertus A.M.

    2017-01-01

    During DNA replication many factors can result in DNA replication stress. The DNA replication stress checkpoint prevents the accumulation of replication stress-induced DNA damage and the potential ensuing genome instability. A critical role for post-translational modifications, such as phosphorylation, in the replication stress checkpoint response has been well established. However, recent work has revealed an important role for transcription in the cellular response to DNA replication stress. In this review, we will provide an overview of current knowledge of the cellular response to DNA replication stress with a specific focus on the DNA replication stress checkpoint transcriptional response and its role in the prevention of replication stress-induced DNA damage. PMID:28257104

  11. mESAdb: microRNA expression and sequence analysis database.

    Science.gov (United States)

    Kaya, Koray D; Karakülah, Gökhan; Yakicier, Cengiz M; Acar, Aybar C; Konu, Ozlen

    2011-01-01

    microRNA expression and sequence analysis database (http://konulab.fen.bilkent.edu.tr/mirna/) (mESAdb) is a regularly updated database for the multivariate analysis of sequences and expression of microRNAs from multiple taxa. mESAdb is modular and has a user interface implemented in PHP and JavaScript and coupled with statistical analysis and visualization packages written for the R language. The database primarily comprises mature microRNA sequences and their target data, along with selected human, mouse and zebrafish expression data sets. mESAdb analysis modules allow (i) mining of microRNA expression data sets for subsets of microRNAs selected manually or by motif; (ii) pair-wise multivariate analysis of expression data sets within and between taxa; and (iii) association of microRNA subsets with annotation databases, HUGE Navigator, KEGG and GO. The use of existing and customized R packages facilitates future addition of data sets and analysis tools. Furthermore, the ability to upload and analyze user-specified data sets makes mESAdb an interactive and expandable analysis tool for microRNA sequence and expression data.

  12. The relationship between personality and the response to acute psychological stress.

    Science.gov (United States)

    Xin, Yuanyuan; Wu, Jianhui; Yao, Zhuxi; Guan, Qing; Aleman, André; Luo, Yuejia

    2017-12-04

    The present study examined the relationship between personality traits and the response to acute psychological stress induced by a standardized laboratory stress induction procedure (the Trier Social Stress Test, TSST). The stress response was measured with a combination of cardiovascular reactivity, hypothalamic-pituitary-adrenal axis reactivity, and subjective affect (including positive affect, negative affect and subjective controllability) in healthy individuals. The Generalized Estimating Equations (GEE) approach was applied to account for the relationship between personality traits and stress responses. Results suggested that higher neuroticism predicted lower heart rate stress reactivity, lower cortisol stress response, more decline of positive affect and lower subjective controllability. Individuals higher in extraversion showed smaller cortisol activation to stress and less increase of negative affect. In addition, higher openness score was associated with lower cortisol stress response. These findings elucidate that neuroticism, extraversion and openness are important variables associated with the stress response and different dimensions of personality trait are associated with different aspects of the stress response.

  13. ABA signaling in stress-response and seed development.

    Science.gov (United States)

    Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2013-07-01

    KEY MESSAGE : We review the recent progress on ABA signaling, especially ABA signaling for ABA-dependent gene expression, including the AREB/ABF regulon, SnRK2 protein kinase, 2C-type protein phosphatases and ABA receptors. Drought negatively impacts plant growth and the productivity of crops. Drought causes osmotic stress to organisms, and the osmotic stress causes dehydration in plant cells. Abscisic acid (ABA) is produced under osmotic stress conditions, and it plays an important role in the stress response and tolerance of plants. ABA regulates many genes under osmotic stress conditions. It also regulates gene expression during seed development and germination. The ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. ABRE-binding protein (AREB)/ABRE-binding factor (ABF) transcription factors (TFs) regulate ABRE-dependent gene expression. Other TFs are also involved in ABA-responsive gene expression. SNF1-related protein kinases 2 are the key regulators of ABA signaling including the AREB/ABF regulon. Recently, ABA receptors and group A 2C-type protein phosphatases were shown to govern the ABA signaling pathway. Moreover, recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress-response and seed development. The control of the expression of ABA signaling factors may improve tolerance to environmental stresses.

  14. MiR-192-Mediated Positive Feedback Loop Controls the Robustness of Stress-Induced p53 Oscillations in Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Richard Moore

    2015-12-01

    Full Text Available The p53 tumor suppressor protein plays a critical role in cellular stress and cancer prevention. A number of post-transcriptional regulators, termed microRNAs, are closely connected with the p53-mediated cellular networks. While the molecular interactions among p53 and microRNAs have emerged, a systems-level understanding of the regulatory mechanism and the role of microRNAs-forming feedback loops with the p53 core remains elusive. Here we have identified from literature that there exist three classes of microRNA-mediated feedback loops revolving around p53, all with the nature of positive feedback coincidentally. To explore the relationship between the cellular performance of p53 with the microRNA feedback pathways, we developed a mathematical model of the core p53-MDM2 module coupled with three microRNA-mediated positive feedback loops involving miR-192, miR-34a, and miR-29a. Simulations and bifurcation analysis in relationship to extrinsic noise reproduce the oscillatory behavior of p53 under DNA damage in single cells, and notably show that specific microRNA abrogation can disrupt the wild-type cellular phenotype when the ubiquitous cell-to-cell variability is taken into account. To assess these in silico results we conducted microRNA-perturbation experiments in MCF7 breast cancer cells. Time-lapse microscopy of cell-population behavior in response to DNA double-strand breaks, together with image classification of single-cell phenotypes across a population, confirmed that the cellular p53 oscillations are compromised after miR-192 perturbations, matching well with the model predictions. Our study via modeling in combination with quantitative experiments provides new evidence on the role of microRNA-mediated positive feedback loops in conferring robustness to the system performance of stress-induced response of p53.

  15. Mini-review: Biofilm responses to oxidative stress.

    Science.gov (United States)

    Gambino, Michela; Cappitelli, Francesca

    2016-01-01

    Biofilms constitute the predominant microbial style of life in natural and engineered ecosystems. Facing harsh environmental conditions, microorganisms accumulate reactive oxygen species (ROS), potentially encountering a dangerous condition called oxidative stress. While high levels of oxidative stress are toxic, low levels act as a cue, triggering bacteria to activate effective scavenging mechanisms or to shift metabolic pathways. Although a complex and fragmentary picture results from current knowledge of the pathways activated in response to oxidative stress, three main responses are shown to be central: the existence of common regulators, the production of extracellular polymeric substances, and biofilm heterogeneity. An investigation into the mechanisms activated by biofilms in response to different oxidative stress levels could have important consequences from ecological and economic points of view, and could be exploited to propose alternative strategies to control microbial virulence and deterioration.

  16. Context and strain-dependent behavioral response to stress

    Directory of Open Access Journals (Sweden)

    Baum Amber E

    2008-06-01

    Full Text Available Abstract Background This study posed the question whether strain differences in stress-reactivity lead to differential behavioral responses in two different tests of anxiety. Strain differences in anxiety-measures are known, but strain differences in the behavioral responses to acute prior stress are not well characterized. Methods We studied male Fisher 344 (F344 and Wistar Kyoto (WKY rats basally and immediately after one hour restraint stress. To distinguish between the effects of novelty and prior stress, we also investigated behavior after repeated exposure to the test chamber. Two behavioral tests were explored; the elevated plus maze (EPM and the open field (OFT, both of which are thought to measure activity, exploration and anxiety-like behaviors. Additionally, rearing, a voluntary behavior, and grooming, a relatively automatic, stress-responsive stereotyped behavior were measured in both tests. Results Prior exposure to the test environment increased anxiety-related measures regardless of prior stress, reflecting context-dependent learning process in both tests and strains. Activity decreased in response to repeated testing in both tests and both strains, but prior stress decreased activity only in the OFT which was reversed by repeated testing. Prior stress decreased anxiety-related measures in the EPM, only in F344s, while in the OFT, stress led to increased freezing mainly in WKYs. Conclusion Data suggest that differences in stressfulness of these tests predict the behavior of the two strains of animals according to their stress-reactivity and coping style, but that repeated testing can overcome some of these differences.

  17. Microarray Analysis of microRNA Expression during Axolotl Limb Regeneration

    Science.gov (United States)

    Holman, Edna C.; Campbell, Leah J.; Hines, John; Crews, Craig M.

    2012-01-01

    Among vertebrates, salamanders stand out for their remarkable capacity to quickly regrow a myriad of tissues and organs after injury or amputation. The limb regeneration process in axolotls (Ambystoma mexicanum) has been well studied for decades at the cell-tissue level. While several developmental genes are known to be reactivated during this epimorphic process, less is known about the role of microRNAs in urodele amphibian limb regeneration. Given the compelling evidence that many microRNAs tightly regulate cell fate and morphogenetic processes through development and adulthood by modulating the expression (or re-expression) of developmental genes, we investigated the possibility that microRNA levels change during limb regeneration. Using two different microarray platforms to compare the axolotl microRNA expression between mid-bud limb regenerating blastemas and non-regenerating stump tissues, we found that miR-21 was overexpressed in mid-bud blastemas compared to stump tissue. Mature A. mexicanum (“Amex”) miR-21 was detected in axolotl RNA by Northern blot and differential expression of Amex-miR-21 in blastema versus stump was confirmed by quantitative RT-PCR. We identified the Amex Jagged1 as a putative target gene for miR-21 during salamander limb regeneration. We cloned the full length 3′UTR of Amex-Jag1, and our in vitro assays demonstrated that its single miR-21 target recognition site is functional and essential for the response of the Jagged1 gene to miR-21 levels. Our findings pave the road for advanced in vivo functional assays aimed to clarify how microRNAs such as miR-21, often linked to pathogenic cell growth, might be modulating the redeployment of developmental genes such as Jagged1 during regenerative processes. PMID:23028429

  18. Microarray analysis of microRNA expression during axolotl limb regeneration.

    Directory of Open Access Journals (Sweden)

    Edna C Holman

    Full Text Available Among vertebrates, salamanders stand out for their remarkable capacity to quickly regrow a myriad of tissues and organs after injury or amputation. The limb regeneration process in axolotls (Ambystoma mexicanum has been well studied for decades at the cell-tissue level. While several developmental genes are known to be reactivated during this epimorphic process, less is known about the role of microRNAs in urodele amphibian limb regeneration. Given the compelling evidence that many microRNAs tightly regulate cell fate and morphogenetic processes through development and adulthood by modulating the expression (or re-expression of developmental genes, we investigated the possibility that microRNA levels change during limb regeneration. Using two different microarray platforms to compare the axolotl microRNA expression between mid-bud limb regenerating blastemas and non-regenerating stump tissues, we found that miR-21 was overexpressed in mid-bud blastemas compared to stump tissue. Mature A. mexicanum ("Amex" miR-21 was detected in axolotl RNA by Northern blot and differential expression of Amex-miR-21 in blastema versus stump was confirmed by quantitative RT-PCR. We identified the Amex Jagged1 as a putative target gene for miR-21 during salamander limb regeneration. We cloned the full length 3'UTR of Amex-Jag1, and our in vitro assays demonstrated that its single miR-21 target recognition site is functional and essential for the response of the Jagged1 gene to miR-21 levels. Our findings pave the road for advanced in vivo functional assays aimed to clarify how microRNAs such as miR-21, often linked to pathogenic cell growth, might be modulating the redeployment of developmental genes such as Jagged1 during regenerative processes.

  19. Identifying salt stress-responsive transcripts from Roselle ( Hibiscus ...

    African Journals Online (AJOL)

    Hibiscus sabdariffa L.). Identifying the potentially novel transcripts responsible for salt stress tolerance in roselle will increase knowledge of the molecular mechanism underlying salt stress responses. In this study, differential display reverse ...

  20. Small Molecule, Big Prospects: MicroRNA in Pregnancy and Its Complications

    Directory of Open Access Journals (Sweden)

    Meng Cai

    2017-01-01

    Full Text Available MicroRNAs are small, noncoding RNA molecules that regulate target gene expression in the posttranscriptional level. Unlike siRNA, microRNAs are “fine-tuners” rather than “switches” in the regulation of gene expression; thus they play key roles in maintaining tissue homeostasis. The aberrant microRNA expression is implicated in the disease process. To date, numerous studies have demonstrated the regulatory roles of microRNAs in various pathophysiological conditions. In contrast, the study of microRNA in pregnancy and its associated complications, such as preeclampsia (PE, fetal growth restriction (FGR, and preterm labor, is a young field. Over the last decade, the knowledge of pregnancy-related microRNAs has increased and the molecular mechanisms by which microRNAs regulate pregnancy or its associated complications are emerging. In this review, we focus on the recent advances in the research of pregnancy-related microRNAs, especially their function in pregnancy-associated complications and the potential clinical applications. Here microRNAs that associate with pregnancy are classified as placenta-specific, placenta-associated, placenta-derived circulating, and uterine microRNA according to their localization and origin. MicroRNAs offer a great potential for developing diagnostic and therapeutic targets in pregnancy-related disorders.

  1. Molecular signatures in Arabidopsis thaliana in response to insect attack and bacterial infection.

    Science.gov (United States)

    Barah, Pankaj; Winge, Per; Kusnierczyk, Anna; Tran, Diem Hong; Bones, Atle M

    2013-01-01

    Under the threat of global climatic change and food shortages, it is essential to take the initiative to obtain a comprehensive understanding of common and specific defence mechanisms existing in plant systems for protection against different types of biotic invaders. We have implemented an integrated approach to analyse the overall transcriptomic reprogramming and systems-level defence responses in the model plant species Arabidopsis thaliana (A. thaliana henceforth) during insect Brevicoryne brassicae (B. brassicae henceforth) and bacterial Pseudomonas syringae pv. tomato strain DC3000 (P. syringae henceforth) attacks. The main aim of this study was to identify the attacker-specific and general defence response signatures in A. thaliana when attacked by phloem-feeding aphids or pathogenic bacteria. The obtained annotated networks of differentially expressed transcripts indicated that members of transcription factor families, such as WRKY, MYB, ERF, BHLH and bZIP, could be crucial for stress-specific defence regulation in Arabidopsis during aphid and P. syringae attack. The defence response pathways, signalling pathways and metabolic processes associated with aphid attack and P. syringae infection partially overlapped. Components of several important biosynthesis and signalling pathways, such as salicylic acid (SA), jasmonic acid (JA), ethylene (ET) and glucosinolates, were differentially affected during the two the treatments. Several stress-regulated transcription factors were known to be associated with stress-inducible microRNAs. The differentially regulated gene sets included many signature transcription factors, and our co-expression analysis showed that they were also strongly co-expressed during 69 other biotic stress experiments. Defence responses and functional networks that were unique and specific to aphid or P. syringae stresses were identified. Furthermore, our analysis revealed a probable link between biotic stress and microRNAs in Arabidopsis and

  2. Molecular signatures in Arabidopsis thaliana in response to insect attack and bacterial infection.

    Directory of Open Access Journals (Sweden)

    Pankaj Barah

    Full Text Available BACKGROUND: Under the threat of global climatic change and food shortages, it is essential to take the initiative to obtain a comprehensive understanding of common and specific defence mechanisms existing in plant systems for protection against different types of biotic invaders. We have implemented an integrated approach to analyse the overall transcriptomic reprogramming and systems-level defence responses in the model plant species Arabidopsis thaliana (A. thaliana henceforth during insect Brevicoryne brassicae (B. brassicae henceforth and bacterial Pseudomonas syringae pv. tomato strain DC3000 (P. syringae henceforth attacks. The main aim of this study was to identify the attacker-specific and general defence response signatures in A. thaliana when attacked by phloem-feeding aphids or pathogenic bacteria. RESULTS: The obtained annotated networks of differentially expressed transcripts indicated that members of transcription factor families, such as WRKY, MYB, ERF, BHLH and bZIP, could be crucial for stress-specific defence regulation in Arabidopsis during aphid and P. syringae attack. The defence response pathways, signalling pathways and metabolic processes associated with aphid attack and P. syringae infection partially overlapped. Components of several important biosynthesis and signalling pathways, such as salicylic acid (SA, jasmonic acid (JA, ethylene (ET and glucosinolates, were differentially affected during the two the treatments. Several stress-regulated transcription factors were known to be associated with stress-inducible microRNAs. The differentially regulated gene sets included many signature transcription factors, and our co-expression analysis showed that they were also strongly co-expressed during 69 other biotic stress experiments. CONCLUSIONS: Defence responses and functional networks that were unique and specific to aphid or P. syringae stresses were identified. Furthermore, our analysis revealed a probable link between

  3. Plant Nucleolar Stress Response, a New Face in the NAC-Dependent Cellular Stress Responses

    OpenAIRE

    Iwai Ohbayashi; Munetaka Sugiyama

    2018-01-01

    The nucleolus is the most prominent nuclear domain, where the core processes of ribosome biogenesis occur vigorously. All these processes are finely orchestrated by many nucleolar factors to build precisely ribosome particles. In animal cells, perturbations of ribosome biogenesis, mostly accompanied by structural disorders of the nucleolus, cause a kind of cellular stress to induce cell cycle arrest, senescence, or apoptosis, which is called nucleolar stress response. The best-characterized p...

  4. In response to community violence: coping strategies and involuntary stress responses among Latino adolescents.

    Science.gov (United States)

    Epstein-Ngo, Quyen; Maurizi, Laura K; Bregman, Allyson; Ceballo, Rosario

    2013-01-01

    Among poor, urban adolescents, high rates of community violence are a pressing public health concern. This study relies on a contextual framework of stress and coping to investigate how coping strategies and involuntary stress responses may both mediate and moderate the relation between exposure to community violence and psychological well-being. Our sample consists of 223 ninth grade Latino adolescents from poor, urban families. In response to community violence, these adolescents reported using an array of coping strategies as well as experiencing a number of involuntary stress responses; the most frequent coping responses were turning to religion and seeking social support. Hierarchical regression analyses demonstrated that involuntary stress responses mediated the relations between both witnessing or being victimized by violence and poorer psychological functioning, while coping strategies moderated these relations. These findings suggest that the negative psychological effects of exposure to community violence may, in part, be explained by involuntary stress responses, while religious-based coping may serve as a protective factor.

  5. Psychophysiological responses to stress after stress management training in patients with rheumatoid arthritis.

    NARCIS (Netherlands)

    Brouwer, S.J.M. de; Kraaimaat, F.W.; Sweep, F.C.; Donders, A.R.T.; Eijsbouts, A.; Koulil, S. van; Riel, P.L.C.M. van; Evers, A.W.M.

    2011-01-01

    BACKGROUND: Stress management interventions may prove useful in preventing the detrimental effects of stress on health. This study assessed the effects of a stress management intervention on the psychophysiological response to stress in patients with rheumatoid arthritis (RA). METHODS: Seventy-four

  6. Genome-wide identification of microRNA targets in human ES cells reveals a role for miR-302 in modulating BMP response

    Science.gov (United States)

    Lipchina, Inna; Elkabetz, Yechiel; Hafner, Markus; Sheridan, Robert; Mihailovic, Aleksandra; Tuschl, Thomas; Sander, Chris; Studer, Lorenz; Betel, Doron

    2011-01-01

    MicroRNAs are important regulators in many cellular processes, including stem cell self-renewal. Recent studies demonstrated their function as pluripotency factors with the capacity for somatic cell reprogramming. However, their role in human embryonic stem (ES) cells (hESCs) remains poorly understood, partially due to the lack of genome-wide strategies to identify their targets. Here, we performed comprehensive microRNA profiling in hESCs and in purified neural and mesenchymal derivatives. Using a combination of AGO cross-linking and microRNA perturbation experiments, together with computational prediction, we identified the targets of the miR-302/367 cluster, the most abundant microRNAs in hESCs. Functional studies identified novel roles of miR-302/367 in maintaining pluripotency and regulating hESC differentiation. We show that in addition to its role in TGF-β signaling, miR-302/367 promotes bone morphogenetic protein (BMP) signaling by targeting BMP inhibitors TOB2, DAZAP2, and SLAIN1. This study broadens our understanding of microRNA function in hESCs and is a valuable resource for future studies in this area. PMID:22012620

  7. Differential expression analysis of balding and nonbalding dermal papilla microRNAs in male pattern baldness with a microRNA amplification profiling method.

    Science.gov (United States)

    Goodarzi, H R; Abbasi, A; Saffari, M; Fazelzadeh Haghighi, M; Tabei, M B; Noori Daloii, M R

    2012-05-01

      Male pattern baldness or androgenetic alopecia is a common disorder affecting almost 50% of men throughout their lifetime, with androgens and genetics having significant contributing aetiologies. In contrast to the positive regulatory effect of androgens on body hair growth, they are thought to alter scalp hair follicle behaviour pathophysiologically, leading to male pattern baldness. However, the exact mechanisms of this paradoxical action have not yet been elucidated. The role of microRNAs, a novel group of noncoding RNAs impacting almost every aspect of biology, health and human diseases, has been documented in hair follicle formation. In addition, their deregulation in cancer of the prostate, a target organ of androgens, has also been well established. To investigate the possible contribution of microRNAs in the pathophysiology of male pattern baldness. We initially screened microRNA expression profiles of balding and nonbalding hair follicle papillae with a sensitive microRNA cloning method, microRNA amplification profiling, and statistically analysed significant differentially expressed microRNAs in balding relative to nonbalding dermal papillae, with real-time polymerase chain reaction as a confirmatory method to quantify expression in eight individuals affected with the disorder.   We detected the significant upregulation of miR-221, miR-125b, miR-106a and miR-410 in balding papilla cells.   We found four microRNAs that could participate in the pathogenesis of male pattern baldness. Regarding the strong therapeutic potential of microRNAs and the easy accessibility of hair follicles for gene therapy, microRNAs are possible candidates for a new generation of revolutionary treatments. © 2011 The Authors. BJD © 2011 British Association of Dermatologists.

  8. Coping as a mediator of the relationship between stress mindset and psychological stress response: a pilot study

    Directory of Open Access Journals (Sweden)

    Horiuchi S

    2018-03-01

    Full Text Available Satoshi Horiuchi,1 Akira Tsuda,2 Shuntaro Aoki,3,4 Kenichiro Yoneda,5 Yusuke Sawaguchi6 1Faculty of Social Welfare, Iwate Prefectural University, Iwate, 2Department of Psychology, Kurume University, Fukuoka, 3Research Fellow of Japan Society for the Promotion of Science, Tokyo, 4Graduate School of Psychological Science, Health Sciences University of Hokkaido, Hokkaido, 5Graduate School of Psychology, Kurume University, Fukuoka, 6Graduate School of Social Welfare, Iwate Prefectural University, Iwate, Japan Background: Coping, the cognitive and behavioral effort required to manage the effects of stressors, is important in determining psychological stress responses (ie, the emotional, behavioral, and cognitive responses to stressors. Coping was classified into categories of emotional expression (eg, negative feelings and thoughts, emotional support seeking (eg, approaching loved ones to request encouragement, cognitive reinterpretation (eg, reframing a problem positively, and problem solving (eg, working to solve the problem. Stress mindset refers to the belief that stress has enhancing (stress-is-enhancing mindset or debilitating consequences (stress-is-debilitating mindset. This study examined whether coping mediated the relationship between stress mindset and psychological stress responses. Psychological stress responses were conceptualized as depression-anxiety, irritability-anger, and helplessness. The following two hypotheses were tested: 1 a stronger stress-is-enhancing mindset is associated with less frequent use of emotional expression, emotional support seeking, and problem solving, which in turn is associated with lower levels of depression-anxiety, irritability-anger, and helplessness; 2 a stronger stress-is-debilitating mindset is associated with more frequent use of these coping strategies, which in turn is associated with higher levels of these psychological stress responses. Materials and methods: The participants were 30 male and

  9. Tonic immobility differentiates stress responses in PTSD

    NARCIS (Netherlands)

    Fragkaki, I; Stins, J.F.; Roelofs, K.; Jongedijk, R.A.; Hagenaars, M.A.

    2016-01-01

    Background: Tonic immobility (TI) is a state of physical immobility associated with extreme stress and the development of posttraumatic stress disorder (PTSD). However, it is unknown whether TI is associated with a distinct actual stress response, i.e., objective immobility measured by a

  10. Identification of arbuscular mycorrhiza (AM-responsive microRNAs in tomato

    Directory of Open Access Journals (Sweden)

    Ping eWu

    2016-03-01

    Full Text Available A majority of land plants can form symbiosis with arbuscular mycorrhizal (AM fungi. MicroRNAs (miRNAs have been implicated to regulate this process in legumes, but their involvement in non-legume species is largely unknown. In this study, by performing deep sequencing of sRNA libraries in tomato roots and comparing with tomato genome, a total of 700 potential miRNAs were predicted, among them, 187 are known plant miRNAs that have been previously deposited in miRBase. Unlike the profiles in other plants such as rice and Arabidopsis, a large proportion of predicted tomato miRNAs was 24 nt in length. A similar pattern was observed in the potato genome but not in tobacco, indicating a Solanum genus-specific expansion of 24-nt miRNAs. About 40% identified tomato miRNAs showed significantly altered expressions upon Rhizophagus irregularis inoculation, suggesting the potential roles of these novel miRNAs in AM symbiosis. The differential expression of five known and six novel miRNAs were further validated using qPCR analysis. Interestingly, three up-regulated known tomato miRNAs belong to a known miR171 family, a member of which has been reported in Medicago truncatula to regulate AM symbiosis. Thus, the miR171 family likely regulates AM symbiosis conservatively across different plant lineages. More than 1000 genes targeted by potential AM-responsive miRNAs were provided and their roles in AM symbiosis are worth further exploring.

  11. Common features of microRNA target prediction tools

    Directory of Open Access Journals (Sweden)

    Sarah M. Peterson

    2014-02-01

    Full Text Available The human genome encodes for over 1800 microRNAs, which are short noncoding RNA molecules that function to regulate gene expression post-transcriptionally. Due to the potential for one microRNA to target multiple gene transcripts, microRNAs are recognized as a major mechanism to regulate gene expression and mRNA translation. Computational prediction of microRNA targets is a critical initial step in identifying microRNA:mRNA target interactions for experimental validation. The available tools for microRNA target prediction encompass a range of different computational approaches, from the modeling of physical interactions to the incorporation of machine learning. This review provides an overview of the major computational approaches to microRNA target prediction. Our discussion highlights three tools for their ease of use, reliance on relatively updated versions of miRBase, and range of capabilities, and these are DIANA-microT-CDS, miRanda-mirSVR, and TargetScan. In comparison across all microRNA target prediction tools, four main aspects of the microRNA:mRNA target interaction emerge as common features on which most target prediction is based: seed match, conservation, free energy, and site accessibility. This review explains these features and identifies how they are incorporated into currently available target prediction tools. MicroRNA target prediction is a dynamic field with increasing attention on development of new analysis tools. This review attempts to provide a comprehensive assessment of these tools in a manner that is accessible across disciplines. Understanding the basis of these prediction methodologies will aid in user selection of the appropriate tools and interpretation of the tool output.

  12. Phosphate-dependent root system architecture responses to salt stress

    KAUST Repository

    Kawa, Dorota; Julkowska, Magdalena; Montero Sommerfeld, Hector; Horst, Anneliek ter; Haring, Michel A; Testerink, Christa

    2016-01-01

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced main root length and increased the number of lateral roots of Arabidopsis Col-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75mM) on all measured RSA components. At higher NaCl concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid (ABA) signaling compared to the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By Genome Wide Association Mapping (GWAS) 13 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.

  13. Phosphate-dependent root system architecture responses to salt stress

    KAUST Repository

    Kawa, Dorota

    2016-05-20

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced main root length and increased the number of lateral roots of Arabidopsis Col-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75mM) on all measured RSA components. At higher NaCl concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid (ABA) signaling compared to the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By Genome Wide Association Mapping (GWAS) 13 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.

  14. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways

    OpenAIRE

    Dues, Dylan J.; Andrews, Emily K.; Schaar, Claire E.; Bergsma, Alexis L.; Senchuk, Megan M.; Van Raamsdonk, Jeremy M.

    2016-01-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxi...

  15. MicroRNA expression profiling of the porcine developing brain

    DEFF Research Database (Denmark)

    Podolska, Agnieszka; Kaczkowski, Bogumil; Busk, Peter Kamp

    2011-01-01

    MicroRNAs are small, non-coding RNA molecules that regulate gene expression at the post-transcriptional level and play an important role in the control of developmental and physiological processes. In particular, the developing brain contains an impressive diversity of microRNAs. Most micro...... and the growth curve when compared to humans. Considering these similarities, studies examining microRNA expression during porcine brain development could potentially be used to predict the expression profile and role of microRNAs in the human brain....

  16. Work stress and innate immune response.

    Science.gov (United States)

    Boscolo, P; Di Gioacchino, M; Reale, M; Muraro, R; Di Giampaolo, L

    2011-01-01

    Several reports highlight the relationship between blood NK cytotoxic activity and life style. Easy life style, including physical activity, healthy dietary habits as well as good mental health are characterized by an efficient immune response. Life style is related to the type of occupational activity since work has a central part in life either as source of income or contributing to represent the social identity. Not only occupational stress, but also job loss or insecurity are thus considered serious stressful situations, inducing emotional disorders which may affect both neuroendocrine and immune systems; reduced reactivity to mitogens and/or decreased blood NK cytotoxic activity was reported in unemployed workers or in those with a high perception of job insecurity and/or job stress. Although genetic factors have a key role in the pathogenesis of autoimmune disorders, occupational stress (as in night shifts) was reported associated to an increased incidence of autoimmune disorders. Monitoring blood NK response may thus be included in the health programs as an indirect index of stressful job and/or poor lifestyle.

  17. Hormonal modulation of the heat shock response: insights from fish with divergent cortisol stress responses

    DEFF Research Database (Denmark)

    LeBlanc, Sacha; Höglund, Erik; Gilmour, Kathleen M.

    2012-01-01

    shock response, we capitalized on two lines of rainbow trout specifically bred for their high (HR) and low (LR) cortisol response to stress. We predicted that LR fish, with a low cortisol but high catecholamine response to stress, would induce higher levels of HSPs after acute heat stress than HR trout....... We found that HR fish have significantly higher increases in both catecholamines and cortisol compared with LR fish, and LR fish had no appreciable stress hormone response to heat shock. This unexpected finding prevented further interpretation of the hormonal modulation of the heat shock response...

  18. Cortisol responses to naturalistic and laboratory stress in student teachers: comparison with a non-stress control day.

    Science.gov (United States)

    Wolfram, Maren; Bellingrath, Silja; Feuerhahn, Nicolas; Kudielka, Brigitte M

    2013-04-01

    Ambulatory assessments of hypothalamus-pituitary-adrenal axis responses to acute natural stressors yield evidence on stress regulation with high ecological validity. Sampling of salivary cortisol is a standard technique in this field. In 21 healthy student teachers, we assessed cortisol responses to a demonstration lesson. On a control day, sampling was repeated at analogous times. Additionally, the cortisol awakening response (CAR) was assessed on both days. Participants were also exposed to a laboratory stressor, the Trier Social Stress Test, and rated their individual levels of chronic work stress. In pre-to-post-stress assessment, cortisol levels declined after the lesson. However, post-stress cortisol levels were significantly higher compared with those on the control day. Also, the Trier Social Stress Test yielded higher cortisol responses when using the control day as reference baseline. Associations between the CAR and chronic stress measures were observed solely on the control day. There were no significant associations between cortisol responses to the natural and laboratory stressors. Our results indicate that a control day might be an important complement in laboratory but especially in ambulatory stress research. Furthermore, associations between chronic stress measures and the CAR might be obscured by acute stress exposure. Finally, responses to the laboratory stressor do not seem to mirror natural stress responses. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Modulation of immune responses in stress by Yoga

    Directory of Open Access Journals (Sweden)

    Arora Sarika

    2008-01-01

    Full Text Available Stress is a constant factor in today′s fastpaced life that can jeopardize our health if left unchecked. It is only in the last half century that the role of stress in every ailment from the common cold to AIDS has been emphasized, and the mechanisms involved in this process have been studied. Stress influences the immune response presumably through the activation of the hypothalamic-pituitary adrenal axis, hypothalamic pituitary-gonadal axis, and the sympathetic-adrenal-medullary system. Various neurotransmitters, neuropeptides, hormones, and cytokines mediate these complex bidirectional interactions between the central nervous system (CNS and the immune system. The effects of stress on the immune responses result in alterations in the number of immune cells and cytokine dysregulation. Various stress management strategies such as meditation, yoga, hypnosis, and muscle relaxation have been shown to reduce the psychological and physiological effects of stress in cancers and HIV infection. This review aims to discuss the effect of stress on the immune system and examine how relaxation techniques such as Yoga and meditation could regulate the cytokine levels and hence, the immune responses during stress.

  20. MicroRNAs: Potential Biomarkers and Therapeutic Targets for Alveolar Bone Loss in Periodontal Disease

    Directory of Open Access Journals (Sweden)

    Tadayoshi Kagiya

    2016-08-01

    Full Text Available Periodontal disease is an inflammatory disease caused by bacterial infection of tooth-supporting structures, which results in the destruction of alveolar bone. Osteoclasts play a central role in bone destruction. Osteoclasts are tartrate-resistant acid phosphatase (TRAP-positive multinucleated giant cells derived from hematopoietic stem cells. Recently, we and other researchers revealed that microRNAs are involved in osteoclast differentiation. MicroRNAs are novel, single-stranded, non-coding, small (20–22 nucleotides RNAs that act in a sequence-specific manner to regulate gene expression at the post-transcriptional level through cleavage or translational repression of their target mRNAs. They regulate various biological activities such as cellular differentiation, apoptosis, cancer development, and inflammatory responses. In this review, the roles of microRNAs in osteoclast differentiation and function during alveolar bone destruction in periodontal disease are described.

  1. Effects of pathogen reduction systems on platelet microRNAs, mRNAs, activation, and function.

    Science.gov (United States)

    Osman, Abdimajid; Hitzler, Walter E; Meyer, Claudius U; Landry, Patricia; Corduan, Aurélie; Laffont, Benoit; Boilard, Eric; Hellstern, Peter; Vamvakas, Eleftherios C; Provost, Patrick

    2015-01-01

    Pathogen reduction (PR) systems for platelets, based on chemically induced cross-linking and inactivation of nucleic acids, potentially prevent transfusion transmission of infectious agents, but can increase clinically significant bleeding in some clinical studies. Here, we documented the effects of PR systems on microRNA and mRNA levels of platelets stored in the blood bank, and assessed their impact on platelet activation and function. Unlike platelets subjected to gamma irradiation or stored in additive solution, platelets treated with Intercept (amotosalen+ ultraviolet-A [UVA] light) exhibited significantly reduced levels of 6 of the 11 microRNAs, and 2 of the 3 anti-apoptotic mRNAs (Bcl-xl and Clusterin) that we monitored, compared with platelets stored in plasma. Mirasol (riboflavin+ UVB light) treatment of platelets did not produce these effects. PR neither affected platelet microRNA synthesis or function nor induced cross-linking of microRNA-sized endogenous platelet RNA species. However, the reduction in the platelet microRNA levels induced by Intercept correlated with the platelet activation (p < 0.05) and an impaired platelet aggregation response to ADP (p < 0.05). These results suggest that Intercept treatment may induce platelet activation, resulting in the release of microRNAs and mRNAs from platelets. The clinical implications of this reduction in platelet nucleic acids secondary to Intercept remain to be established.

  2. Intronic microRNAs

    International Nuclear Information System (INIS)

    Ying, S.-Y.; Lin, S.-L.

    2005-01-01

    MicroRNAs (miRNAs), small single-stranded regulatory RNAs capable of interfering with intracellular mRNAs that contain partial complementarity, are useful for the design of new therapies against cancer polymorphism and viral mutation. MiRNA was originally discovered in the intergenic regions of the Caenorhabditis elegans genome as native RNA fragments that modulate a wide range of genetic regulatory pathways during animal development. However, neither RNA promoter nor polymerase responsible for miRNA biogenesis was determined. Recent findings of intron-derived miRNA in C. elegans, mouse, and human have inevitably led to an alternative pathway for miRNA biogenesis, which relies on the coupled interaction of Pol-II-mediated pre-mRNA transcription and intron excision, occurring in certain nuclear regions proximal to genomic perichromatin fibrils

  3. When does stress help or harm? The effects of stress controllability and subjective stress response on Stroop performance.

    Directory of Open Access Journals (Sweden)

    Roselinde Kaiser Henderson

    2012-06-01

    Full Text Available The ability to engage in goal-directed behavior despite exposure to stress is critical to resilience. Questions of how stress can impair or improve behavioral functioning are important in diverse settings, from athletic competitions to academic testing to clinical therapy. Previous research suggests that controllability is a key factor in the impact of stress on behavior: learning how to control stressors buffers people from the negative effects of stress on subsequent cognitively demanding tasks. In addition, research suggests that the impact of stress on cognitive functioning depends on an individual’s response to stressors: moderate responses to stress can lead to improved performance while extreme (high or low responses can lead to impaired performance. The present studies tested the hypothesis that 1 learning to behaviorally control stressors leads to improved performance on a test of general executive functioning, the color-word Stroop, and that 2 this improvement emerges specifically for people who report moderate (subjective responses to stress. Experiment 1: Stroop performance, measured before and after a stress manipulation, was compared across groups of undergraduate participants (n=109. People who learned to control a noise stressor and received accurate performance feedback demonstrated reduced Stroop interference compared with people exposed to uncontrollable noise stress and feedback indicating an exaggerated rate of failure. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest reduction in Stroop interference. In contrast, in the group exposed to uncontrollable events, self-reported stress failed to predict performance. Experiment 2: In a second sample (n=90, we specifically investigated the role of controllability by keeping the rate of failure feedback constant across groups. In the group who learned behavioral control, those who reported moderate levels of stress

  4. Refining the multisystem view of the stress response: Coordination among cortisol, alpha-amylase, and subjective stress in response to relationship conflict

    Science.gov (United States)

    Powers, Sally I.; Granger, Douglas A.

    2013-01-01

    This study investigated associations among young adults' hypothalamic-pituitary-adrenal axis activity, autonomic nervous system activity, and subjective stress in response to interpersonal conflict to better characterize coordination across stress systems. Seven saliva samples were collected from 199 young adult opposite-sex couples before, during, and after they discussed an unresolved relationship conflict. Samples were later assayed for cortisol and alpha-amylase (sAA). Couples rated anticipatory stress prior to the conflict and perceived stress immediately following the task. Growth curve modeling was used to examine two possible levels of within-person coordination across physiological systems: alignment between cortisol and sAA responses throughout the sampling period (“matched phase coordination”), and association between overall levels of cortisol and sAA in response to conflict (“average level coordination”). Whereas both partners showed the former type of coordination, only women showed the latter type. Positive anticipation of the stressor predicted stronger cortisol-sAA matched phase coordination for women. Pre-task ratings related to women's sAA, and post-task ratings related to both partners' cortisol responses. Implications for a multisystem interpretation of normal and pathological responses to daily stress are discussed. PMID:23684904

  5. Refining the multisystem view of the stress response: coordination among cortisol, alpha-amylase, and subjective stress in response to relationship conflict.

    Science.gov (United States)

    Laurent, Heidemarie K; Powers, Sally I; Granger, Douglas A

    2013-07-02

    This study investigated associations among young adults' hypothalamic-pituitary-adrenal axis activity, autonomic nervous system activity, and subjective stress in response to interpersonal conflict to better characterize coordination across stress systems. Seven saliva samples were collected from 199 young adult opposite-sex couples before, during, and after they discussed an unresolved relationship conflict. Samples were later assayed for cortisol and alpha-amylase (sAA). Couples rated anticipatory stress prior to the conflict and perceived stress immediately following the task. Growth curve modeling was used to examine two possible levels of within-person coordination across physiological systems: alignment between cortisol and sAA responses throughout the sampling period ("matched phase coordination"), and association between overall levels of cortisol and sAA in response to conflict ("average level coordination"). Whereas both partners showed the former type of coordination, only women showed the latter type. Positive anticipation of the stressor predicted stronger cortisol-sAA matched phase coordination for women. Pre-task ratings related to women's sAA, and post-task ratings related to both partners' cortisol responses. Implications for a multisystem interpretation of normal and pathological responses to daily stress are discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Progress in research on ionizing radiation-induced microRNA

    International Nuclear Information System (INIS)

    Hu Zheng; Tie Yi; Sun Zhixian; Zheng Xiaofei

    2011-01-01

    MicroRNAs (miRNAs) are small single-stranded noncoding RNAs consisting of 21-23 nucleotides that play important gene-regulatory roles in eukaryotes by pairing to the mRNAs of protein-coding genes to direct their posttranscriptional repression. A growing body of evidence indicates that alterations in miRNA expression may occur following exposure to several oxidative stress including ionizing radiation. So miRNAs may serve as potential new targets for co-therapies aiming to improve the effects of radiation disease therapy in cancer patients. The progress in research on ionizing radiation-induced miRNAs is reviewed in this paper. (authors)

  7. Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum.

    Directory of Open Access Journals (Sweden)

    Caitlin E Burklew

    Full Text Available Nanoparticles are a class of newly emerging environmental pollutions. To date, few experiments have been conducted to investigate the effect nanoparticles may have on plant growth and development. It is important to study the effects nanoparticles have on plants because they are stationary organisms that cannot move away from environmental stresses like animals can, therefore they must overcome these stresses by molecular routes such as altering gene expression. microRNAs (miRNA are a newly discovered, endogenous class of post-transcriptional gene regulators that function to alter gene expression by either targeting mRNAs for degradation or inhibiting mRNAs translating into proteins. miRNAs have been shown to mediate abiotic stress responses such as drought and salinity in plants by altering gene expression, however no study has been performed on the effect of nanoparticles on the miRNA expression profile; therefore our aim in this study was to classify if certain miRNAs play a role in plant response to Al(2O(3 nanoparticle stress. In this study, we exposed tobacco (Nicotiana tabacum plants (an important cash crop as well as a model organism to 0%, 0.1%, 0.5%, and 1% Al(2O(3 nanoparticles and found that as exposure to the nanoparticles increased, the average root length, the average biomass, and the leaf count of the seedlings significantly decreased. We also found that miR395, miR397, miR398, and miR399 showed an extreme increase in expression during exposure to 1% Al(2O(3 nanoparticles as compared to the other treatments and the control, therefore these miRNAs may play a key role in mediating plant stress responses to nanoparticle stress in the environment. The results of this study show that Al(2O(3 nanoparticles have a negative effect on the growth and development of tobacco seedlings and that miRNAs may play a role in the ability of plants to withstand stress to Al(2O(3 nanoparticles in the environment.

  8. Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum).

    Science.gov (United States)

    Burklew, Caitlin E; Ashlock, Jordan; Winfrey, William B; Zhang, Baohong

    2012-01-01

    Nanoparticles are a class of newly emerging environmental pollutions. To date, few experiments have been conducted to investigate the effect nanoparticles may have on plant growth and development. It is important to study the effects nanoparticles have on plants because they are stationary organisms that cannot move away from environmental stresses like animals can, therefore they must overcome these stresses by molecular routes such as altering gene expression. microRNAs (miRNA) are a newly discovered, endogenous class of post-transcriptional gene regulators that function to alter gene expression by either targeting mRNAs for degradation or inhibiting mRNAs translating into proteins. miRNAs have been shown to mediate abiotic stress responses such as drought and salinity in plants by altering gene expression, however no study has been performed on the effect of nanoparticles on the miRNA expression profile; therefore our aim in this study was to classify if certain miRNAs play a role in plant response to Al(2)O(3) nanoparticle stress. In this study, we exposed tobacco (Nicotiana tabacum) plants (an important cash crop as well as a model organism) to 0%, 0.1%, 0.5%, and 1% Al(2)O(3) nanoparticles and found that as exposure to the nanoparticles increased, the average root length, the average biomass, and the leaf count of the seedlings significantly decreased. We also found that miR395, miR397, miR398, and miR399 showed an extreme increase in expression during exposure to 1% Al(2)O(3) nanoparticles as compared to the other treatments and the control, therefore these miRNAs may play a key role in mediating plant stress responses to nanoparticle stress in the environment. The results of this study show that Al(2)O(3) nanoparticles have a negative effect on the growth and development of tobacco seedlings and that miRNAs may play a role in the ability of plants to withstand stress to Al(2)O(3) nanoparticles in the environment.

  9. MicroRNA 10a marks regulatory T cells

    DEFF Research Database (Denmark)

    Jeker, Lukas T; Zhou, Xuyu; Gershberg, Kseniya

    2012-01-01

    MicroRNAs (miRNAs) are crucial for regulatory T cell (Treg) stability and function. We report that microRNA-10a (miR-10a) is expressed in Tregs but not in other T cells including individual thymocyte subsets. Expression profiling in inbred mouse strains demonstrated that non-obese diabetic (NOD......) mice with a genetic susceptibility for autoimmune diabetes have lower Treg-specific miR-10a expression than C57BL/6J autoimmune resistant mice. Inhibition of miR-10a expression in vitro leads to reduced FoxP3 expression levels and miR-10a expression is lower in unstable "exFoxP3" T cells. Unstable...... and phenotype of natural Treg nor the capacity of conventional T cells to induce FoxP3 in response to TGFβ, RA, or a combination of the two. Thus, miR-10a is selectively expressed in Treg but inhibition by antagomiRs or genetic ablation resulted in discordant effects on FoxP3....

  10. Regulation of neutrophil senescence by microRNAs.

    Directory of Open Access Journals (Sweden)

    Jon R Ward

    2011-01-01

    Full Text Available Neutrophils are rapidly recruited to sites of tissue injury or infection, where they protect against invading pathogens. Neutrophil functions are limited by a process of neutrophil senescence, which renders the cells unable to respond to chemoattractants, carry out respiratory burst, or degranulate. In parallel, aged neutrophils also undergo spontaneous apoptosis, which can be delayed by factors such as GMCSF. This is then followed by their subsequent removal by phagocytic cells such as macrophages, thereby preventing unwanted inflammation and tissue damage. Neutrophils translate mRNA to make new proteins that are important in maintaining functional longevity. We therefore hypothesised that neutrophil functions and lifespan might be regulated by microRNAs expressed within human neutrophils. Total RNA from highly purified neutrophils was prepared and subjected to microarray analysis using the Agilent human miRNA microarray V3. We found human neutrophils expressed a selected repertoire of 148 microRNAs and that 6 of these were significantly upregulated after a period of 4 hours in culture, at a time when the contribution of apoptosis is negligible. A list of predicted targets for these 6 microRNAs was generated from http://mirecords.biolead.org and compared to mRNA species downregulated over time, revealing 83 genes targeted by at least 2 out of the 6 regulated microRNAs. Pathway analysis of genes containing binding sites for these microRNAs identified the following pathways: chemokine and cytokine signalling, Ras pathway, and regulation of the actin cytoskeleton. Our data suggest that microRNAs may play a role in the regulation of neutrophil senescence and further suggest that manipulation of microRNAs might represent an area of future therapeutic interest for the treatment of inflammatory disease.

  11. Detection of plant microRNAs in honey.

    Directory of Open Access Journals (Sweden)

    Angelo Gismondi

    Full Text Available For the first time in the literature, our group has managed to demonstrate the existence of plant RNAs in honey samples. In particular, in our work, different RNA extraction procedures were performed in order to identify a purification method for nucleic acids from honey. Purity, stability and integrity of the RNA samples were evaluated by spectrophotometric, PCR and electrophoretic analyses. Among all honey RNAs, we specifically revealed the presence of both plastidial and nuclear plant transcripts: RuBisCO large subunit mRNA, maturase K messenger and 18S ribosomal RNA. Surprisingly, nine plant microRNAs (miR482b, miR156a, miR396c, miR171a, miR858, miR162a, miR159c, miR395a and miR2118a were also detected and quantified by qPCR. In this context, a comparison between microRNA content in plant samples (i.e. flowers, nectars and their derivative honeys was carried out. In addition, peculiar microRNA profiles were also identified in six different monofloral honeys. Finally, the same plant microRNAs were investigated in other plant food products: tea, cocoa and coffee. Since plant microRNAs introduced by diet have been recently recognized as being able to modulate the consumer's gene expression, our research suggests that honey's benefits for human health may be strongly correlated to the bioactivity of plant microRNAs contained in this matrix.

  12. MicroRNAs: role and therapeutic targets in viral hepatitis

    NARCIS (Netherlands)

    van der Ree, Meike H.; de Bruijne, Joep; Kootstra, Neeltje A.; Jansen, Peter Lm; Reesink, Hendrik W.

    2014-01-01

    MicroRNAs regulate gene expression by binding to the 3'-untranslated region (UTR) of target messenger RNAs (mRNAs). The importance of microRNAs has been shown for several liver diseases, for example, viral hepatitis. MicroRNA-122 is highly abundant in the liver and is involved in the regulation of

  13. Genetics and Molecular Biology of Epstein-Barr Virus-Encoded BART MicroRNA: A Paradigm for Viral Modulation of Host Immune Response Genes and Genome Stability

    Directory of Open Access Journals (Sweden)

    David H. Dreyfus

    2017-01-01

    Full Text Available Epstein-Barr virus, a ubiquitous human herpesvirus, is associated through epidemiologic evidence with common autoimmune syndromes and cancers. However, specific genetic mechanisms of pathogenesis have been difficult to identify. In this review, the author summarizes evidence that recently discovered noncoding RNAs termed microRNA encoded by Epstein-Barr virus BARF (BamHI A right frame termed BART (BamHI A right transcripts are modulators of human immune response genes and genome stability in infected and bystander cells. BART expression is apparently regulated by complex feedback loops with the host immune response regulatory NF-κB transcription factors. EBV-encoded BZLF-1 (ZEBRA protein could also regulate BART since ZEBRA contains a terminal region similar to ankyrin proteins such as IκBα that regulate host NF-κB. BALF-2 (BamHI A left frame transcript, a viral homologue of the immunoglobulin and T cell receptor gene recombinase RAG-1 (recombination-activating gene-1, may also be coregulated with BART since BALF-2 regulatory sequences are located near the BART locus. Viral-encoded microRNA and viral mRNA transferred to bystander cells through vesicles, defective viral particles, or other mechanisms suggest a new paradigm in which bystander or hit-and-run mechanisms enable the virus to transiently or chronically alter human immune response genes as well as the stability of the human genome.

  14. The surgical stress response: should it be prevented?

    DEFF Research Database (Denmark)

    Kehlet, H

    1991-01-01

    clinical trials have demonstrated a reduction in various aspects of postoperative morbidity by such a nociceptive blockade. Although a causal relationship has still to be demonstrated, these findings strongly argue the concept of "stress-free anesthesia and surgery" as an important instrument in improving......Postoperative complications such as myocardial infarction, pulmonary infection, thromboembolism and fatigue are probably related to increased demands, hypermetabolism, catabolism and other physiologic changes included in the global "surgical stress response." Strategies have been developed...... to suppress the detrimental components of the stress response so as to improve postoperative outcome. Of the various techniques to reduce the surgical stress response, afferent neural blockade with regional anesthesia to relieve pain is the most effective, although not optimal. Data from numerous controlled...

  15. Silencing of microRNA-155 in mice during acute inflammatory response leads to derepression of c/ebp Beta and down-regulation of G-CSF

    DEFF Research Database (Denmark)

    Worm, Jesper; Stenvang, Jan; Petri, Andreas

    2009-01-01

    microRNA-155 (miR-155) has been implicated as a central regulator of the immune system, but its function during acute inflammatory responses is still poorly understood. Here we show that exposure of cultured macrophages and mice to lipopolysaccharide (LPS) leads to up-regulation of miR-155......-stimulating factor (G-CSF), a central regulator of granulopoiesis during inflammatory responses. Consistent with these data, we show that silencing of miR-155 in LPS-treated mice by systemically administered LNA-antimiR results in derepression of the c/ebp Beta isoforms and down-regulation of G-CSF expression...

  16. Stretching the stress boundary: Linking air pollution health effects to a neurohormonal stress response.

    Science.gov (United States)

    Kodavanti, Urmila P

    2016-12-01

    Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer's and diabetes. A neurohormonal stress response (referred to here as a systemic response produced by activation of the sympathetic nervous system and hypothalamus-pituitary-adrenal (HPA)-axis) has been implicated in a variety of psychological and physical stresses, which involves immune and metabolic homeostatic mechanisms affecting all organs in the body. In this review, we provide new evidence for the involvement of this well-characterized neurohormonal stress response in mediating systemic and pulmonary effects of a prototypic air pollutant - ozone. A plethora of systemic metabolic and immune effects are induced in animals exposed to inhaled pollutants, which could result from increased circulating stress hormones. The release of adrenal-derived stress hormones in response to ozone exposure not only mediates systemic immune and metabolic responses, but by doing so, also modulates pulmonary injury and inflammation. With recurring pollutant exposures, these effects can contribute to multi-organ chronic conditions associated with air pollution. This review will cover, 1) the potential mechanisms by which air pollutants can initiate the relay of signals from respiratory tract to brain through trigeminal and vagus nerves, and activate stress responsive regions including hypothalamus; and 2) the contribution of sympathetic and HPA-axis activation in mediating systemic homeostatic metabolic and immune effects of ozone in various organs. The potential contribution of chronic environmental stress in cardiovascular, neurological, reproductive and metabolic diseases, and the knowledge gaps are also discussed. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu. Published by Elsevier B.V.

  17. Cortisol Response to Stress in Adults with Attention Deficit Hyperactivity Disorder.

    Science.gov (United States)

    Corominas-Roso, Margarida; Palomar, Gloria; Ferrer, Roser; Real, Alberto; Nogueira, Mariana; Corrales, Montserrat; Casas, Miguel; Ramos-Quiroga, Josep Antoni

    2015-03-17

    Differences in the cortisol response have been reported between children exhibiting the inattentive and hyperactive/impulsive subtypes of attention deficit hyperactivity disorder. However, there is no such information about adults. The aim of the present study was to determine the possible differences between the combined and inattentive subtypes in the cortisol response to stress. Ninety-six adults with attention deficit hyperactivity disorder, 38 inattentive and 58 combined, without any medical or psychiatric comorbidities and 25 healthy controls were included. The Trier Social Stress Test was used to assess physiological stress responses. Clinical data and subjective stress levels, including the Perceived Stress Scale, were also recorded. No significant differences in the cortisol response to the Trier Social Stress Test were found between patients and controls. However, albeit there were no basal differences, lower cortisol levels at 15 (P=.015), 30 (P=.015), and 45 minutes (P=.045) were observed in the combined compared with the inattentive subtype after the stress induction; these differences disappeared 60 minutes after the stress. In contrast, the subjective stress responses showed significant differences between attention deficit hyperactivity disorder patients and controls (Pattention deficit hyperactivity disorder subtypes. In turn, subjective stress measures, such as the Perceived Stress Scale, positively correlated with the whole cortisol stress response (Pattention deficit hyperactivity disorder adults exhibited a normal cortisol response to stress when challenged. Nevertheless, the inattentive patients displayed a higher level of cortisol after stress compared with the combined patients. Despite the differences in the cortisol response, adults with attention deficit hyperactivity disorder reported high levels of subjective stress in their every-day life. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  18. Cell Wall Metabolism in Response to Abiotic Stress

    Science.gov (United States)

    Gall, Hyacinthe Le; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  19. Transcriptome Responses to Combinations of Stresses in Arabidopsis

    DEFF Research Database (Denmark)

    Rasmussen, Simon; Barah, Pankaj; Suarez-Rodriguez, Maria Cristina

    2013-01-01

    In Arabidopsis, the response of the majority of the genes cannot be predicted from single stress experiments and only a small fraction of the genes have potential antagonistic responses, indicating that plants have evolved to cope with combinations of stresses and therefore may be bred to endure...

  20. MicroRNA-211 Regulates Oxidative Phosphorylation and Energy Metabolism in Human Vitiligo.

    Science.gov (United States)

    Sahoo, Anupama; Lee, Bongyong; Boniface, Katia; Seneschal, Julien; Sahoo, Sanjaya K; Seki, Tatsuya; Wang, Chunyan; Das, Soumen; Han, Xianlin; Steppie, Michael; Seal, Sudipta; Taieb, Alain; Perera, Ranjan J

    2017-09-01

    Vitiligo is a common chronic skin disorder characterized by loss of epidermal melanocytes and progressive depigmentation. Vitiligo has complex immune, genetic, environmental, and biochemical causes, but the exact molecular mechanisms of vitiligo development and progression, particularly those related to metabolic control, are poorly understood. In this study we characterized the human vitiligo cell line PIG3V and the normal human melanocyte line HEM-l by RNA sequencing, targeted metabolomics, and shotgun lipidomics. Melanocyte-enriched microRNA-211, a known metabolic switch in nonpigmented melanoma cells, was severely down-regulated in vitiligo cell line PIG3V and skin biopsy samples from vitiligo patients, whereas its predicted targets PPARGC1A, RRM2, and TAOK1 were reciprocally up-regulated. microRNA-211 binds to PGC1-α 3' untranslated region locus and represses it. Although mitochondrial numbers were constant, mitochondrial complexes I, II, and IV and respiratory responses were defective in vitiligo cells. Nanoparticle-coated microRNA-211 partially augmented the oxygen consumption rate in PIG3V cells. The lower oxygen consumption rate, changes in lipid and metabolite profiles, and increased reactive oxygen species production observed in vitiligo cells appear to be partly due to abnormal regulation of microRNA-211 and its target genes. These genes represent potential biomarkers and therapeutic targets in human vitiligo. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Unraveling the microRNA of Caragana korshinskii along a precipitation gradient on the Loess Plateau, China, using high-throughput sequencing.

    Directory of Open Access Journals (Sweden)

    Pengbo Ning

    Full Text Available Drought remains one of the main factors that negatively affect plant growth and development. Caragana korshinskii is widely distributed on the Loess Plateau, China, where it mediates soil and water loss and helps prevent desertification. However, little is known about the stress response mechanisms of C. korshinskii in water-starved environments. MicroRNAs (miRNAs have been implicated in the regulation of plant responses to several types of biotic and abiotic stress. Here, we describe the miRNAs of wild C. korshinskii from Huangling, Yulin, and Dalad Banner, which occur along a precipitation gradient. Using next-generation sequencing technology, we obtained a total of 13 710 681, 15 048 945, and 15 198 442 reads for each location, respectively; after filtering and BLAST analysis, 490 conserved miRNAs and 96 novel miRNAs were characterized from the sRNAome data, with key functions determined using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. We also designed stem-loop qRT-PCR to validate the expression patterns of 5 conserved miRNAs (miR390, miR398, miR530, miR2119, and miR5559 that obviously responded to water stress in plants grown both under natural and experimental water stress conditions and found that the expression levels of miR2119 and miR5559 were negatively correlated with their predicted target genes. This study is the first to identify miRNAs from wild C. korshinskii and provides a basis for future studies of miRNA-mediated gene regulation of stress responses in C. korshinskii.

  2. MicroRNA-21 Increases Proliferation and Cisplatin Sensitivity of Osteosarcoma-Derived Cells.

    Directory of Open Access Journals (Sweden)

    Vanita Vanas

    Full Text Available Osteosarcoma is the most common primary bone tumor and poor prognosis for osteosarcoma patients is mainly due to chemotherapy resistance. MicroRNAs are important to maintain pathophysiological mechanisms of cancer and influence cell sensitivity to chemotherapy. In this study, we tested the functions of microRNA-21 for malignant features as well as for drug resistance of osteosarcoma. We used Northern blot to measure microRNA-21 levels in osteosarcoma-derived cell lines. MicroRNA-21 activity was modulated by either expressing a sponge to decrease its activity in an osteosarcoma-derived cell line expressing high levels of microRNA-21 or by introducing pri-microRNA-21 in a cell line with low endogenous levels. Cell migration was determined in a scratch assay and cell proliferation was measured by performing growth curve analysis. Sensitivity of the cells towards chemotherapeutics was investigated by performing cell viability assays and calculating the IC50 values. While cell migration was unaffected by modulated microRNA-21 levels, microRNA-21 inhibition slowed proliferation and exogenously expressed microRNA-21 promoted this process. Modulated microRNA-21 activity failed to effect sensitivity of osteosarcoma-derived cell lines to doxorubicin or methotrexate. Contrarily, reduction of microRNA-21 activity resulted in enhanced resistance towards cisplatin while ectopic expression of microRNA-21 showed the opposite effect. Increased microRNA-21 levels repressed the expression of Sprouty2 and ectopic expression of Sprouty2 was able to largely rescue the observed effects of microRNA-21 in osteosarcoma. In summary, our data indicate that in osteosarcoma microRNA-21 expression is an important component for regulation of cell proliferation and for determining sensitivity to cisplatin.

  3. Gene expression and stress response mediated by the epigenetic regulation of a transposable element small RNA.

    Directory of Open Access Journals (Sweden)

    Andrea D McCue

    2012-02-01

    Full Text Available The epigenetic activity of transposable elements (TEs can influence the regulation of genes; though, this regulation is confined to the genes, promoters, and enhancers that neighbor the TE. This local cis regulation of genes therefore limits the influence of the TE's epigenetic regulation on the genome. TE activity is suppressed by small RNAs, which also inhibit viruses and regulate the expression of genes. The production of TE heterochromatin-associated endogenous small interfering RNAs (siRNAs in the reference plant Arabidopsis thaliana is mechanistically distinct from gene-regulating small RNAs, such as microRNAs or trans-acting siRNAs (tasiRNAs. Previous research identified a TE small RNA that potentially regulates the UBP1b mRNA, which encodes an RNA-binding protein involved in stress granule formation. We demonstrate that this siRNA, siRNA854, is under the same trans-generational epigenetic control as the Athila family LTR retrotransposons from which it is produced. The epigenetic activation of Athila elements results in a shift in small RNA processing pathways, and new 21-22 nucleotide versions of Athila siRNAs are produced by protein components normally not responsible for processing TE siRNAs. This processing results in siRNA854's incorporation into ARGONAUTE1 protein complexes in a similar fashion to gene-regulating tasiRNAs. We have used reporter transgenes to demonstrate that the UPB1b 3' untranslated region directly responds to the epigenetic status of Athila TEs and the accumulation of siRNA854. The regulation of the UPB1b 3' untranslated region occurs both on the post-transcriptional and translational levels when Athila TEs are epigenetically activated, and this regulation results in the phenocopy of the ubp1b mutant stress-sensitive phenotype. This demonstrates that a TE's epigenetic activity can modulate the host organism's stress response. In addition, the ability of this TE siRNA to regulate a gene's expression in trans blurs

  4. Heart rate variability response to mental arithmetic stress in patients with schizophrenia Autonomic response to stress in schizophrenia

    NARCIS (Netherlands)

    Castro, Mariana N.; Vigo, Daniel E.; Weidema, Hylke; Fahrer, Rodolfo D.; Chu, Elvina M.; De Achaval, Delfina; Nogues, Martin; Leiguarda, Ramon C.; Cardinali, Daniel P.; Guinjoan, Salvador N.

    Background: The vulnerability-stress hypothesis is an established model of schizophrenia symptom formation. We sought to characterise the pattern of the cardiac autonomic response to mental arithmetic stress in patients with stable schizophrenia. Methods: We performed heart rate variability (HRV)

  5. miRBase: annotating high confidence microRNAs using deep sequencing data.

    Science.gov (United States)

    Kozomara, Ana; Griffiths-Jones, Sam

    2014-01-01

    We describe an update of the miRBase database (http://www.mirbase.org/), the primary microRNA sequence repository. The latest miRBase release (v20, June 2013) contains 24 521 microRNA loci from 206 species, processed to produce 30 424 mature microRNA products. The rate of deposition of novel microRNAs and the number of researchers involved in their discovery continue to increase, driven largely by small RNA deep sequencing experiments. In the face of these increases, and a range of microRNA annotation methods and criteria, maintaining the quality of the microRNA sequence data set is a significant challenge. Here, we describe recent developments of the miRBase database to address this issue. In particular, we describe the collation and use of deep sequencing data sets to assign levels of confidence to miRBase entries. We now provide a high confidence subset of miRBase entries, based on the pattern of mapped reads. The high confidence microRNA data set is available alongside the complete microRNA collection at http://www.mirbase.org/. We also describe embedding microRNA-specific Wikipedia pages on the miRBase website to encourage the microRNA community to contribute and share textual and functional information.

  6. By Targeting Stat3 microRNA-17-5p Promotes Cardiomyocyte Apoptosis in Response to Ischemia Followed by Reperfusion

    Directory of Open Access Journals (Sweden)

    Weijie Du

    2014-08-01

    Full Text Available Background: Several studies have confirmed the role of microRNAs in regulating ischemia/reperfusion-induced cardiac injury (I/R-I. MiR-17-5p has been regarded as an oncomiR in the development of cancer. However, its potential role in cardiomyocytes has not been exploited. The aim of this study is to investigate the role of miR-17-5p in I/R-I and the underlying mechanism through targeting Stat3, a key surviving factor in cardiomyocytes. Methods: MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromide assay was used to detect the cell viability. ELISA and TUNEL were performed to measure apoptosis of neonatal rat ventricular cardiomyocytes (NRVCs. Infarct area was estimated by TTC (triphenyltetrazolium chloride and Evans blue staining. Western blot analysis was employed to detect the Stat3 and p-Stat3 levels and real-time RT-PCR was used to quantify miR-17-5p level. Results: The miR-17-5p level was significantly up-regulated in I/R-I mice and in NRVCs under oxidative stress. Overexpression of miR-17-5p aggravated cardiomyocyte injury with reduced cell viability and enhanced apoptotic cell death induced by H2O2, whereas inhibition of miR-17-5p by its antisense AMO-17-5p abrogated the deleterious changes. Moreover, the locked nucleic acid-modified antisense (LNA-anti-miR-17-5p markedly decreased the infarct area and apoptosis induced by I/R-I in mice. Furthermore, overexpression of miR-17-5p diminished the p-Stat3 level in response to H2O2. The results from Western blot analysis and luciferase reporter gene assay confirmed Stat3 as a target gene for miR-17-5p. Conclusion: Upregulation of miR-17-5p promotes apoptosis induced by oxidative stress via targeting Stat3, accounting partially for I/R-I.

  7. Development and blind clinical validation of a microRNA based predictor of response to treatment with R-CHO(E)P in DLBCL

    DEFF Research Database (Denmark)

    Knudsen, Steen; Hother, Christoffer; Grønbæk, Kirsten

    2015-01-01

    MicroRNAs (miRNA) are a group of short noncoding RNAs that regulate gene expression at the posttranscriptional level. It has been shown that microRNAs are independent predictors of outcome in patients with diffuse large B-cell lymphoma (DLBCL) treated with the drug combination R-CHOP. Based on th...

  8. Moving through the Stressed Genome: Emerging Regulatory Roles for Transposons in Plant Stress Response.

    Science.gov (United States)

    Negi, Pooja; Rai, Archana N; Suprasanna, Penna

    2016-01-01

    The recognition of a positive correlation between organism genome size with its transposable element (TE) content, represents a key discovery of the field of genome biology. Considerable evidence accumulated since then suggests the involvement of TEs in genome structure, evolution and function. The global genome reorganization brought about by transposon activity might play an adaptive/regulatory role in the host response to environmental challenges, reminiscent of McClintock's original 'Controlling Element' hypothesis. This regulatory aspect of TEs is also garnering support in light of the recent evidences, which project TEs as "distributed genomic control modules." According to this view, TEs are capable of actively reprogramming host genes circuits and ultimately fine-tuning the host response to specific environmental stimuli. Moreover, the stress-induced changes in epigenetic status of TE activity may allow TEs to propagate their stress responsive elements to host genes; the resulting genome fluidity can permit phenotypic plasticity and adaptation to stress. Given their predominating presence in the plant genomes, nested organization in the genic regions and potential regulatory role in stress response, TEs hold unexplored potential for crop improvement programs. This review intends to present the current information about the roles played by TEs in plant genome organization, evolution, and function and highlight the regulatory mechanisms in plant stress responses. We will also briefly discuss the connection between TE activity, host epigenetic response and phenotypic plasticity as a critical link for traversing the translational bridge from a purely basic study of TEs, to the applied field of stress adaptation and crop improvement.

  9. Moving through the Stressed Genome: Emerging Regulatory Roles for Transposons in Plant Stress Response

    Science.gov (United States)

    Negi, Pooja; Rai, Archana N.; Suprasanna, Penna

    2016-01-01

    The recognition of a positive correlation between organism genome size with its transposable element (TE) content, represents a key discovery of the field of genome biology. Considerable evidence accumulated since then suggests the involvement of TEs in genome structure, evolution and function. The global genome reorganization brought about by transposon activity might play an adaptive/regulatory role in the host response to environmental challenges, reminiscent of McClintock's original ‘Controlling Element’ hypothesis. This regulatory aspect of TEs is also garnering support in light of the recent evidences, which project TEs as “distributed genomic control modules.” According to this view, TEs are capable of actively reprogramming host genes circuits and ultimately fine-tuning the host response to specific environmental stimuli. Moreover, the stress-induced changes in epigenetic status of TE activity may allow TEs to propagate their stress responsive elements to host genes; the resulting genome fluidity can permit phenotypic plasticity and adaptation to stress. Given their predominating presence in the plant genomes, nested organization in the genic regions and potential regulatory role in stress response, TEs hold unexplored potential for crop improvement programs. This review intends to present the current information about the roles played by TEs in plant genome organization, evolution, and function and highlight the regulatory mechanisms in plant stress responses. We will also briefly discuss the connection between TE activity, host epigenetic response and phenotypic plasticity as a critical link for traversing the translational bridge from a purely basic study of TEs, to the applied field of stress adaptation and crop improvement. PMID:27777577

  10. Friend or Foe: MicroRNAs in the p53 network.

    Science.gov (United States)

    Luo, Zhenghua; Cui, Ri; Tili, Esmerina; Croce, Carlo

    2018-04-10

    The critical tumor suppressor gene TP53 is either lost or mutated in more than half of human cancers. As an important transcriptional regulator, p53 modulates the expression of many microRNAs. While wild-type p53 uses microRNAs to suppress cancer development, microRNAs that are activated by gain-of-function mutant p53 confer oncogenic properties. On the other hand, the expression of p53 is tightly controlled by a fine-tune machinery including microRNAs. MicroRNAs can target the TP53 gene directly or other factors in the p53 network so that expression and function of either the wild-type or the mutant forms of p53 is downregulated. Therefore, depending on the wild-type or mutant p53 context, microRNAs contribute substantially to suppress or exacerbate tumor development. Copyright © 2018. Published by Elsevier B.V.

  11. Oxidative stress impairs the heat stress response and delays unfolded protein recovery.

    Directory of Open Access Journals (Sweden)

    Masaaki Adachi

    2009-11-01

    Full Text Available Environmental changes, air pollution and ozone depletion are increasing oxidative stress, and global warming threatens health by heat stress. We now face a high risk of simultaneous exposure to heat and oxidative stress. However, there have been few studies investigating their combined adverse effects on cell viability.Pretreatment of hydrogen peroxide (H(2O(2 specifically and highly sensitized cells to heat stress, and enhanced loss of mitochondrial membrane potential. H(2O(2 exposure impaired the HSP40/HSP70 induction as heat shock response (HSR and the unfolded protein recovery, and enhanced eIF2alpha phosphorylation and/or XBP1 splicing, land marks of ER stress. These H(2O(2-mediated effects mimicked enhanced heat sensitivity in HSF1 knockdown or knockout cells. Importantly, thermal preconditioning blocked H(2O(2-mediated inhibitory effects on refolding activity and rescued HSF1 +/+ MEFs, but neither blocked the effects nor rescued HSF1 -/- MEFs. These data strongly suggest that inhibition of HSR and refolding activity is crucial for H(2O(2-mediated enhanced heat sensitivity.H(2O(2 blocks HSR and refolding activity under heat stress, thereby leading to insufficient quality control and enhancing ER stress. These uncontrolled stress responses may enhance cell death. Our data thus highlight oxidative stress as a crucial factor affecting heat tolerance.

  12. Targeted nanoparticle delivery of therapeutic antisense microRNAs presensitizes glioblastoma cells to lower effective doses of temozolomide in vitro and in a mouse model.

    Science.gov (United States)

    Malhotra, Meenakshi; Sekar, Thillai Veerapazham; Ananta, Jeyarama S; Devulapally, Rammohan; Afjei, Rayhaneh; Babikir, Husam A; Paulmurugan, Ramasamy; Massoud, Tarik F

    2018-04-20

    Temozolomide (TMZ) chemotherapy for glioblastoma (GBM) is generally well tolerated at standard doses but it can cause side effects. GBMs overexpress microRNA-21 and microRNA-10b, two known oncomiRs that promote cancer development, progression and resistance to drug treatment. We hypothesized that systemic injection of antisense microRNAs (antagomiR-21 and antagomiR-10b) encapsulated in cRGD-tagged PEG-PLGA nanoparticles would result in high cellular delivery of intact functional antagomiRs, with consequent efficient therapeutic response and increased sensitivity of GBM cells to lower doses of TMZ. We synthesized both targeted and non-targeted nanoparticles, and characterized them for size, surface charge and encapsulation efficiency of antagomiRs. When using targeted nanoparticles in U87MG and Ln229 GBM cells, we showed higher uptake-associated improvement in sensitivity of these cells to lower concentrations of TMZ in medium. Co-inhibition of microRNA-21 and microRNA-10b reduced the number of viable cells and increased cell cycle arrest at G2/M phase upon TMZ treatment. We found a significant increase in expression of key target genes for microRNA-21 and microRNA-10b upon using targeted versus non-targeted nanoparticles. There was also significant reduction in tumor volume when using TMZ after pre-treatment with loaded nanoparticles in human GBM cell xenografts in mice. In vivo targeted nanoparticles plus different doses of TMZ showed a significant therapeutic response even at the lowest dose of TMZ, indicating that preloading cells with antagomiR-21 and antagomiR-10b increases cellular chemosensitivity towards lower TMZ doses. Future clinical applications of this combination therapy may result in improved GBM response by using lower doses of TMZ and reducing nonspecific treatment side effects.

  13. Response to stress in Drosophila is mediated by gender, age and stress paradigm.

    Science.gov (United States)

    Neckameyer, Wendi S; Nieto-Romero, Andres R

    2015-01-01

    All living organisms must maintain equilibrium in response to internal and external challenges within their environment. Changes in neural plasticity (alterations in neuronal populations, dendritic remodeling, and synaptic turnover) are critical components of the homeostatic response to stress, which has been strongly implicated in the onset of affective disorders. However, stress is differentially perceived depending on the type of stress and its context, as well as genetic background, age and sex; therefore, an individual's maintenance of neuronal homeostasis must differ depending upon these variables. We established Drosophila as a model to analyze homeostatic responses to stress. Sexually immature and mature females and males from an isogenic wild-type strain raised under controlled environmental conditions were exposed to four reproducible and high-throughput translatable stressors to facilitate the analysis of a large number of animals for direct comparisons. These animals were assessed in an open-field arena, in a light-dark box, and in a forced swim test, as well as for sensitivity to the sedative effects of ethanol. These studies establish that immature and mature females and males represent behaviorally distinct populations under control conditions as well as after exposure to different stressors. Therefore, the neural substrates mediating the stress response must be differentially expressed depending upon the hormonal status of the brain. In addition, an adaptive response to a given stressor in one paradigm was not predictive for outcomes in other paradigms.

  14. Tomato NAC transcription factor SlSRN1 positively regulates defense response against biotic stress but negatively regulates abiotic stress response.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available Biotic and abiotic stresses are major unfavorable factors that affect crop productivity worldwide. NAC proteins comprise a large family of transcription factors that play important roles in plant growth and development as well as in responses to biotic and abiotic stresses. In a virus-induced gene silencing-based screening to identify genes that are involved in defense response against Botrytis cinerea, we identified a tomato NAC gene SlSRN1 (Solanum lycopersicum Stress-related NAC1. SlSRN1 is a plasma membrane-localized protein with transactivation activity in yeast. Expression of SlSRN1 was significantly induced by infection with B. cinerea or Pseudomonas syringae pv. tomato (Pst DC3000, leading to 6-8 folds higher than that in the mock-inoculated plants. Expression of SlSRN1 was also induced by salicylic acid, jasmonic acid and 1-amino cyclopropane-1-carboxylic acid and by drought stress. Silencing of SlSRN1 resulted in increased severity of diseases caused by B. cinerea and Pst DC3000. However, silencing of SlSRN1 resulted in increased tolerance against oxidative and drought stresses. Furthermore, silencing of SlSRN1 accelerated accumulation of reactive oxygen species but attenuated expression of defense genes after infection by B. cinerea. Our results demonstrate that SlSRN1 is a positive regulator of defense response against B. cinerea and Pst DC3000 but is a negative regulator for oxidative and drought stress response in tomato.

  15. The effects of environmental chemical carcinogens on the microRNA machinery.

    Science.gov (United States)

    Izzotti, A; Pulliero, A

    2014-07-01

    The first evidence that microRNA expression is early altered by exposure to environmental chemical carcinogens in still healthy organisms was obtained for cigarette smoke. To date, the cumulative experimental data indicate that similar effects are caused by a variety of environmental carcinogens, including polycyclic aromatic hydrocarbons, nitropyrenes, endocrine disruptors, airborne mixtures, carcinogens in food and water, and carcinogenic drugs. Accordingly, the alteration of miRNA expression is a general mechanism that plays an important pathogenic role in linking exposure to environmental toxic agents with their pathological consequences, mainly including cancer development. This review summarizes the existing experimental evidence concerning the effects of chemical carcinogens on the microRNA machinery. For each carcinogen, the specific microRNA alteration signature, as detected in experimental studies, is reported. These data are useful for applying microRNA alterations as early biomarkers of biological effects in healthy organisms exposed to environmental carcinogens. However, microRNA alteration results in carcinogenesis only if accompanied by other molecular damages. As an example, microRNAs altered by chemical carcinogens often inhibits the expression of mutated oncogenes. The long-term exposure to chemical carcinogens causes irreversible suppression of microRNA expression thus allowing the transduction into proteins of mutated oncogenes. This review also analyzes the existing knowledge regarding the mechanisms by which environmental carcinogens alter microRNA expression. The underlying molecular mechanism involves p53-microRNA interconnection, microRNA adduct formation, and alterations of Dicer function. On the whole, reported findings provide evidence that microRNA analysis is a molecular toxicology tool that can elucidate the pathogenic mechanisms activated by environmental carcinogens. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Stress response in medically important Mucorales.

    Science.gov (United States)

    Singh, Pankaj; Paul, Saikat; Shivaprakash, M Rudramurthy; Chakrabarti, Arunaloke; Ghosh, Anup K

    2016-10-01

    Mucorales are saprobes, ubiquitously distributed and able to infect a heterogeneous population of human hosts. The fungi require robust stress responses to survive in human host. We tested the growth of Mucorales in the presence of different abiotic stress. Eight pathogenic species of Mucorales, including Rhizopus arrhizus, Rhizopus microsporus, Rhizomucor pusillus, Apophysomyces elegans, Licthemia corymbifera, Cunninghamella bertholletiae, Syncephalastrum racemosum and Mucor racemosus, were exposed to different stress inducers: osmotic (sodium chloride and d-sorbitol), oxidative (hydrogen peroxide and menadione), pH, cell wall and metal ions (Cu, Zn, Fe and Mg). Wide variation in stress responses was noted: R. arrhizus showed maximum resistance to both osmotic and oxidative stresses, whereas R. pusillus and M. indicus were relatively sensitive. Rhizopus arrhizus and R. microsporus showed maximum resistance to alkaline pH, whereas C. bertholletiae, L. corymbifera, M. racemosus and A. elegans were resistant to acidic pH. Maximum tolerance was noted in R. microsporus to Cu, R. microsporus and R. arrhizus to Fe and C. bertholletiae to Zn. In contrast, L. corymbifera, A. elegans and M. indicus were sensitive to Cu, Zn and Fe respectively. In conclusion, R. arrhizus showed high stress tolerance in comparison to other species of Mucorales, and this could be the possible reason for high pathogenic potential of this fungi. © 2016 Blackwell Verlag GmbH.

  17. 2010 MICROBIAL STRESS RESPONSE GORDON RESEARCH CONFERENCE, JULY 18-23, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Sarah Ades

    2011-07-23

    The 2010 Gordon Research Conference on Microbial Stress Responses provides an open and exciting forum for the exchange of scientific discoveries on the remarkable mechanisms used by microbes to survive in nearly every niche on the planet. Understanding these stress responses is critical for our ability to control microbial survival, whether in the context of biotechnology, ecology, or pathogenesis. From its inception in 1994, this conference has traditionally employed a very broad definition of stress in microbial systems. Sessions will cover the major steps of stress responses from signal sensing to transcriptional regulation to the effectors that mediate responses. A wide range of stresses will be represented. Some examples include (but are not limited to) oxidative stress, protein quality control, antibiotic-induced stress and survival, envelope stress, DNA damage, and nutritional stress. The 2010 meeting will also focus on the role of stress responses in microbial communities, applied and environmental microbiology, and microbial development. This conference brings together researchers from both the biological and physical sciences investigating stress responses in medically- and environmentally relevant microbes, as well as model organisms, using cutting-edge techniques. Computational, systems-level, and biophysical approaches to exploring stress responsive circuits will be integrated throughout the sessions alongside the more traditional molecular, physiological, and genetic approaches. The broad range of excellent speakers and topics, together with the intimate and pleasant setting at Mount Holyoke College, provide a fertile ground for the exchange of new ideas and approaches.

  18. The War Fighter's Stress Response: Telemetric and Noninvasive Assessment

    National Research Council Canada - National Science Library

    O'Donnell, Amanda

    2003-01-01

    ... and biological responses to stress. Specifically, stress-hardy individuals retain mental focus and clarity of memory under stress, commit fewer errors during stress, experience less burnout, demonstrate better navigational skills...

  19. Adaptive Responses to Thermal Stress in Mammals

    Directory of Open Access Journals (Sweden)

    Yasser Lenis Sanin

    2015-12-01

    Full Text Available The environment animals have to cope with is a combination of natural factors such as temperature. Extreme changes in these factors can alter homeostasis, which can lead to thermal stress. This stress can be due to either high temperatures or low temperatures. Energy transference for thermoregulation in homoeothermic animals occurs through several mechanisms: conduction, convection, radiation and evaporation. When animals are subjected to thermal stress, physiological mechanisms are activated which may include endocrine, neuroendocrine and behavioral responses. Activation of the neuroendocrine system affects the secretion of hormones and neurotransmitters which act collectively as response mechanisms that allow them to adapt to stress. Mechanisms which have developed through evolution to allow animals to adapt to high environmental temperatures and to achieve thermo tolerance include physiological and physical changes in order to reduce food intake and metabolic heat production, to increase surface area of skin to dissipate heat, to increase blood flow to take heat from the body core to the skin and extremities to dissipate the heat, to increase numbers and activity of sweat glands, panting, water intake and color adaptation of integument system to reflect heat. Chronic exposure to thermal stress can cause disease, reduce growth, decrease productive and reproductive performance and, in extreme cases, lead to death. This paper aims to briefly explain the physical and physiological responses of mammals to thermal stress, like a tool for biological environment adaptation, emphasizing knowledge gaps and offering some recommendations to stress control for the animal production system.

  20. MicroRNAs in fruit trees: discovery, diversity and future research directions.

    Science.gov (United States)

    Solofoharivelo, M C; van der Walt, A P; Stephan, D; Burger, J T; Murray, S L

    2014-09-01

    Since the first description of microRNAs (miRNAs) 20 years ago, the number of miRNAs identified in different eukaryotic organisms has exploded, largely due to the recent advances in DNA sequencing technologies. Functional studies, mostly from model species, have revealed that miRNAs are major post-transcriptional regulators of gene expression in eukaryotes. In plants, they are implicated in fundamental biological processes, from plant development and morphogenesis, to regulation of plant pathogen and abiotic stress responses. Although a substantial number of miRNAs have been identified in fruit trees to date, their functions remain largely uncharacterised. The present review aims to summarise the progress made in miRNA research in fruit trees, focusing specifically on the economically important species Prunus persica, Malus domestica, Citrus spp, and Vitis vinifera. We also discuss future miRNA research prospects in these plants and highlight potential applications of miRNAs in the on-going improvement of fruit trees. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. Intracellular proteins produced by mammalian cells in response to environmental stress

    Science.gov (United States)

    Goochee, Charles F.; Passini, Cheryl A.

    1988-01-01

    The nature of the response of mammalian cells to environmental stress is examined by reviewing results of studies where cultured mouse L cells and baby hamster kidney cells were exposed to heat shock and the synthesis of heat-shock proteins and stress-response proteins (including HSP70, HSC70, HSP90, ubiquitin, and GRP70) in stressed and unstressed cells was evaluated using 2D-PAGE. The intracellular roles of the individual stress response proteins are discussed together with the regulation of the stress response system.

  2. Systematic Prediction of the Impacts of Mutations in MicroRNA Seed Sequences

    Directory of Open Access Journals (Sweden)

    Bhattacharya Anindya

    2017-05-01

    Full Text Available MicroRNAs are a class of small non-coding RNAs that are involved in many important biological processes and the dysfunction of microRNA has been associated with many diseases. The seed region of a microRNA is of crucial importance to its target recognition. Mutations in microRNA seed regions may disrupt the binding of microRNAs to their original target genes and make them bind to new target genes. Here we use a knowledge-based computational method to systematically predict the functional effects of all the possible single nucleotide mutations in human microRNA seed regions. The result provides a comprehensive reference for the functional assessment of the impacts of possible natural and artificial single nucleotide mutations in microRNA seed regions.

  3. Identification and validation of human papillomavirus encoded microRNAs.

    Directory of Open Access Journals (Sweden)

    Kui Qian

    Full Text Available We report here identification and validation of the first papillomavirus encoded microRNAs expressed in human cervical lesions and cell lines. We established small RNA libraries from ten human papillomavirus associated cervical lesions including cancer and two human papillomavirus harboring cell lines. These libraries were sequenced using SOLiD 4 technology. We used the sequencing data to predict putative viral microRNAs and discovered nine putative papillomavirus encoded microRNAs. Validation was performed for five candidates, four of which were successfully validated by qPCR from cervical tissue samples and cell lines: two were encoded by HPV 16, one by HPV 38 and one by HPV 68. The expression of HPV 16 microRNAs was further confirmed by in situ hybridization, and colocalization with p16INK4A was established. Prediction of cellular target genes of HPV 16 encoded microRNAs suggests that they may play a role in cell cycle, immune functions, cell adhesion and migration, development, and cancer. Two putative viral target sites for the two validated HPV 16 miRNAs were mapped to the E5 gene, one in the E1 gene, two in the L1 gene and one in the LCR region. This is the first report to show that papillomaviruses encode their own microRNA species. Importantly, microRNAs were found in libraries established from human cervical disease and carcinoma cell lines, and their expression was confirmed in additional tissue samples. To our knowledge, this is also the first paper to use in situ hybridization to show the expression of a viral microRNA in human tissue.

  4. Characterization and identification of microRNA core promoters in four model species.

    Directory of Open Access Journals (Sweden)

    Xuefeng Zhou

    2007-03-01

    Full Text Available MicroRNAs are short, noncoding RNAs that play important roles in post-transcriptional gene regulation. Although many functions of microRNAs in plants and animals have been revealed in recent years, the transcriptional mechanism of microRNA genes is not well-understood. To elucidate the transcriptional regulation of microRNA genes, we study and characterize, in a genome scale, the promoters of intergenic microRNA genes in Caenorhabditis elegans, Homo sapiens, Arabidopsis thaliana, and Oryza sativa. We show that most known microRNA genes in these four species have the same type of promoters as protein-coding genes have. To further characterize the promoters of microRNA genes, we developed a novel promoter prediction method, called common query voting (CoVote, which is more effective than available promoter prediction methods. Using this new method, we identify putative core promoters of most known microRNA genes in the four model species. Moreover, we characterize the promoters of microRNA genes in these four species. We discover many significant, characteristic sequence motifs in these core promoters, several of which match or resemble the known cis-acting elements for transcription initiation. Among these motifs, some are conserved across different species while some are specific to microRNA genes of individual species.

  5. Genome-wide Investigation of microRNAs and Their Targets in Brassica rapa ssp. pekinensis Root with Plasmodiophora brassicae Infection

    Directory of Open Access Journals (Sweden)

    Xiaochun Wei

    2016-07-01

    Full Text Available Increasing evidence has revealed that microRNAs play a pivotal role in the post transcriptional regulation of gene expression in response to pathogens in plants. However, there is little information available about the expression patterns of miRNAs and their targets in Chinese cabbage (Brassica rapa ssp. pekinensis under Plasmodiophora brassicae stress. In the present study, using deep sequencing and degradome analysis, a genome-wide identification of miRNAs and their targets during P. brassicae stress was performed. A total of 221 known and 93 potentially novel miRNAs were successfully identified from two root libraries of one control (635-10CK and P. brassicae-treated Chinese cabbage samples (635-10T. Of these, 14 known and 10 potentially novel miRNAs were found to be differentially expressed after P. brassicae treatment. Degradome analysis revealed that the 223 target genes of the 75 miRNAs could be potentially cleaved. KEGG (Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested that the putative target genes of the miRNAs were predominately involved in selenocompound metabolism and plant hormone signal transduction. Then the expression of 12 miRNAs was validated by quantitative real-time PCR (qRT-PCR. These results provide insights into the miRNA-mediated regulatory networks underlying the stress response to the plant pathogen P. brassicae.

  6. Hypothalamic oxytocin mediates social buffering of the stress response.

    Science.gov (United States)

    Smith, Adam S; Wang, Zuoxin

    2014-08-15

    While stressful life events can enhance the risk of mental disorders, positive social interactions can propagate good mental health and normal behavioral routines. Still, the neural systems that promote these benefits are undetermined. Oxytocin is a hormone involved in social behavior and stress; thus, we focus on the impact that social buffering has on the stress response and the governing effects of oxytocin. Female prairie voles (Microtus ochrogaster) were exposed to 1 hour immobilization stress and then recovered alone or with their male partner to characterize the effect of social contact on the behavioral, physiological, and neuroendocrine stress response. In addition, we treated immobilized female voles recovering alone with oxytocin or vehicle and female voles recovering with their male partner with a selective oxytocin receptor antagonist or vehicle. Group sizes varied from 6 to 8 voles (N = 98 total). We found that 1 hour immobilization increased anxiety-like behaviors and circulating levels of corticosterone, a stress hormone, in female prairie voles recovering alone but not the female prairie voles recovering with their male partner. This social buffering by the male partner on biobehavioral responses to stress was accompanied by increased oxytocin release in the paraventricular nucleus of the hypothalamus. Intra-paraventricular nucleus oxytocin injections reduced behavioral and corticosterone responses to immobilization, whereas injections of an oxytocin receptor antagonist blocked the effects of the social buffering. Together, our data demonstrate that paraventricular nucleus oxytocin mediates the social buffering effects on the stress response and thus may be a target for treatment of stress-related disorders. Published by Society of Biological Psychiatry on behalf of Society of Biological Psychiatry.

  7. Tissue-specific regulation of mouse MicroRNA genes in endoderm-derived tissues

    OpenAIRE

    Gao, Yan; Schug, Jonathan; McKenna, Lindsay B.; Le Lay, John; Kaestner, Klaus H.; Greenbaum, Linda E.

    2010-01-01

    MicroRNAs fine-tune the activity of hundreds of protein-coding genes. The identification of tissue-specific microRNAs and their promoters has been constrained by the limited sensitivity of prior microRNA quantification methods. Here, we determine the entire microRNAome of three endoderm-derived tissues, liver, jejunum and pancreas, using ultra-high throughput sequencing. Although many microRNA genes are expressed at comparable levels, 162 microRNAs exhibited striking tissue-specificity. After...

  8. Roles of microRNA-15 family in normal and pathological late lung development

    OpenAIRE

    Sakkas, Elpidoforos

    2016-01-01

    MicroRNAs are key regulators of organogenesis and during the last years many studies focused on microRNA expression during embryonic development. To date, there is no study to report possible roles of microRNAs in late lung development and especially during the alveolarization process. The objective of this study was to identify microRNAs that are deregulated under hyperoxic conditions and to assess whether microRNA expression can be modulated in vivo. Lung microRNA expression screening wa...

  9. Investigating the roles of MicroRNAs in biotic stress response induced by Rhizoctonia solani in rice

    Energy Technology Data Exchange (ETDEWEB)

    Syuhada, O. Nurfarahana; Kalaivani, N. [School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2014-09-03

    Sheath blight disease, caused by Rhizoctonia solani 1802/KB was screened on two rice varieties, Oryza sativaindica cultivar MR219 and Oryza sativa indica cultivar UKMRC9. The disease symptom was severe in MR219 compared to UKMRC9. Total RNA from R. solani 1802/KB, infected rice leaves of MR219 and infected rice leaves of UKMRC9 were extracted using TRIzol reagent, purified and sent for small RNA sequencing. Three miRNA libraries were generated and analyzed. The libraries generated 65 805, 78 512 and 81 325 known miRNAs respectively. The structure of miRNA of these samples was predicted. The up-regulated and down-regulated of miRNAs target gene prediction and its target functions were discovered and were mainly related to the growth and development of metabolism, protein transport, transcriptional regulation, stress response, and hormone signaling and electron transfer. Sheath blight-induced differential expression of known miRNAs tends to targetMYB transcription factor, F-box proteins, NBS-LRR, leucine-rich repeat receptor protein kinases and zinc finger proteins. Detecting new miRNAs and measuring the expression profiles of known miRNAs is an important tasks required for a better understanding of various biological conditions. Therefore, further analysis using Gene Ontology Slim will be conducted to deduce some biological information from the datasets obtained.

  10. Perceived stress at work is associated with attenuated DHEA-S response during acute psychosocial stress.

    Science.gov (United States)

    Lennartsson, Anna-Karin; Theorell, Töres; Kushnir, Mark M; Bergquist, Jonas; Jonsdottir, Ingibjörg H

    2013-09-01

    Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEA-S) have been suggested to play a protective role during acute psychosocial stress, because they act as antagonists to the effects of the stress hormone cortisol. This study aims to investigate whether prolonged psychosocial stress, measured as perceived stress at work during the past week, is related to the capacity to produce DHEA and DHEA-S during acute psychosocial stress. It also aims to investigate whether prolonged perceived stress affects the balance between production of cortisol and DHEA-S during acute psychosocial stress. Thirty-six healthy subjects (19 men and 17 women, mean age 37 years, SD 5 years), were included. Perceived stress at work during the past week was measured by using the Stress-Energy (SE) Questionnaire. The participants were divided into three groups based on their mean scores; Low stress, Medium stress and High stress. The participants underwent the Trier Social Stress Test (TSST) and blood samples were collected before, directly after the stress test, and after 30 min of recovery. General Linear Models were used to investigate if the Medium stress group and the High stress group differ regarding stress response compared to the Low stress group. Higher perceived stress at work was associated with attenuated DHEA-S response during acute psychosocial stress. Furthermore, the ratio between the cortisol production and the DHEA-S production during the acute stress test were higher in individuals reporting higher perceived stress at work compared to individuals reporting low perceived stress at work. There was no statistical difference in DHEA response between the groups. This study shows that prolonged stress, measured as perceived stress at work during the past week, seems to negatively affect the capacity to produce DHEA-S during acute stress. Given the protective functions of DHEA-S, attenuated DHEA-S production during acute stress may lead to higher risk for adverse

  11. Lipolysis Response to Endoplasmic Reticulum Stress in Adipose Cells*

    Science.gov (United States)

    Deng, Jingna; Liu, Shangxin; Zou, Liangqiang; Xu, Chong; Geng, Bin; Xu, Guoheng

    2012-01-01

    In obesity and diabetes, adipocytes show significant endoplasmic reticulum (ER) stress, which triggers a series of responses. This study aimed to investigate the lipolysis response to ER stress in rat adipocytes. Thapsigargin, tunicamycin, and brefeldin A, which induce ER stress through different pathways, efficiently activated a time-dependent lipolytic reaction. The lipolytic effect of ER stress occurred with elevated cAMP production and protein kinase A (PKA) activity. Inhibition of PKA reduced PKA phosphosubstrates and attenuated the lipolysis. Although both ERK1/2 and JNK are activated during ER stress, lipolysis is partially suppressed by inhibiting ERK1/2 but not JNK and p38 MAPK and PKC. Thus, ER stress induces lipolysis by activating cAMP/PKA and ERK1/2. In the downstream lipolytic cascade, phosphorylation of lipid droplet-associated protein perilipin was significantly promoted during ER stress but attenuated on PKA inhibition. Furthermore, ER stress stimuli did not alter the levels of hormone-sensitive lipase and adipose triglyceride lipase but caused Ser-563 and Ser-660 phosphorylation of hormone-sensitive lipase and moderately elevated its translocation from the cytosol to lipid droplets. Accompanying these changes, total activity of cellular lipases was promoted to confer the lipolysis. These findings suggest a novel pathway of the lipolysis response to ER stress in adipocytes. This lipolytic activation may be an adaptive response that regulates energy homeostasis but with sustained ER stress challenge could contribute to lipotoxicity, dyslipidemia, and insulin resistance because of persistently accelerated free fatty acid efflux from adipocytes to the bloodstream and other tissues. PMID:22223650

  12. miR319, miR390, and miR393 Are Involved in Aluminum Response in Flax (Linum usitatissimum L.).

    Science.gov (United States)

    Dmitriev, Alexey A; Kudryavtseva, Anna V; Bolsheva, Nadezhda L; Zyablitsin, Alexander V; Rozhmina, Tatiana A; Kishlyan, Natalya V; Krasnov, George S; Speranskaya, Anna S; Krinitsina, Anastasia A; Sadritdinova, Asiya F; Snezhkina, Anastasiya V; Fedorova, Maria S; Yurkevich, Olga Yu; Muravenko, Olga V; Belenikin, Maxim S; Melnikova, Nataliya V

    2017-01-01

    Acid soils limit agricultural production worldwide. Major reason of crop losses in acid soils is the toxicity of aluminum (Al). In the present work, we investigated expression alterations of microRNAs in flax ( Linum usitatissimum L.) plants under Al stress. Flax seedlings of resistant (TMP1919 and G1071/4_k) and sensitive (Lira and G1071/4_o) to Al cultivars and lines were exposed to AlCl 3 solution for 4 and 24 hours. Twelve small RNA libraries were constructed and sequenced using Illumina platform. In total, 97 microRNAs from 18 conserved families were identified. miR319, miR390, and miR393 revealed expression alterations associated with Al treatment of flax plants. Moreover, for miR390 and miR393, the alterations were distinct in sensitive and resistant to Al genotypes. Expression level changes of miR319 and miR390 were confirmed using qPCR analysis. In flax, potential targets of miR319 are TCPs, miR390-TAS3 and GRF5, and miR393-AFB2-coding transcripts. TCPs, TAS3, GRF5, and AFB2 participate in regulation of plant growth and development. The involvement of miR319, miR390, and miR393 in response to Al stress in flax was shown here for the first time. We speculate that these microRNAs play an important role in Al response via regulation of growth processes in flax plants.

  13. MicroRNA Regulation of Abiotic Stress Response in 7B-1 Male-Sterile Tomato Mutant

    Czech Academy of Sciences Publication Activity Database

    Omidvar, Vahid; Mohorianu, I.; Dalmay, T.; Fellner, Martin

    2015-01-01

    Roč. 8, č. 3 (2015), s. 1-13 ISSN 1940-3372 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : 7B-1 mutant * abiotic stress * miRNAs Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.509, year: 2015

  14. New research progress of microRNAs in retinoblastoma

    Directory of Open Access Journals (Sweden)

    Jing Zeng

    2014-11-01

    Full Text Available Retinoblastoma(RBis the most common intraocular malignancy of children with extremely poor prognosis. MicroRNAs are small non-coding single-stranded RNAs in eukaryotic cells, which regulate the expression of gene by mRNA degradation or translation inhibition. MicroRNAs, acting as oncogenes or tumor suppressor genes, are associated with the occurrence and development of RB directly, which is vital for the early diagnosis and clinical targeted therapy of RB. This review summarized the expression of microRNAs in RB and the related mechanism.

  15. MicroRNA-22 impairs anti-tumor ability of dendritic cells by targeting p38.

    Directory of Open Access Journals (Sweden)

    Xue Liang

    Full Text Available Dendritic cells (DCs play a critical role in triggering anti-tumor immune responses. Their intracellular p38 signaling is of great importance in controlling DC activity. In this study, we identified microRNA-22 (miR-22 as a microRNA inhibiting p38 protein expression by directly binding to the 3' untranslated region (3'UTR of its mRNA. The p38 down-regulation further interfered with the synthesis of DC-derived IL-6 and the differentiation of DC-driven Th17 cells. Moreover, overexpression of miR-22 in DCs impaired their tumor-suppressing ability while miR-22 inhibitor could reverse this phenomenon and improve the curative effect of DC-based immunotherapy. Thus, our results highlight a suppressive role for miR-22 in the process of DC-invoked anti-tumor immunity and that blocking this microRNA provides a new strategy for generating potent DC vaccines for patients with cancer.

  16. Exercise-Induced Oxidative Stress Responses in the Pediatric Population

    Directory of Open Access Journals (Sweden)

    Alexandra Avloniti

    2017-01-01

    Full Text Available Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty.

  17. MicroRNA profiling of primary cutaneous large B-cell lymphomas.

    Directory of Open Access Journals (Sweden)

    Lianne Koens

    Full Text Available Aberrant expression of microRNAs is widely accepted to be pathogenetically involved in nodal diffuse large B-cell lymphomas (DLBCLs. However, the microRNAs profiles of primary cutaneous large B-cell lymphomas (PCLBCLs are not yet described. Its two main subtypes, i.e., primary cutaneous diffuse large B-cell lymphoma, leg type (PCLBCL-LT and primary cutaneous follicle center lymphoma (PCFCL are characterized by an activated B-cell (ABC-genotype and a germinal center B-cell (GCB-genotype, respectively. We performed high-throughput sequencing analysis on frozen tumor biopsies from 19 cases of PCFCL and PCLBCL-LT to establish microRNA profiles. Cluster analysis of the complete microRNome could not distinguish between the two subtypes, but 16 single microRNAs were found to be differentially expressed. Single microRNA RT-qPCR was conducted on formalin-fixed paraffin-embedded tumor biopsies of 20 additional cases, confirming higher expression of miR-9-5p, miR-31-5p, miR-129-2-3p and miR-214-3p in PCFCL as compared to PCLBCL-LT. MicroRNAs previously described to be higher expressed in ABC-type as compared to GCB-type nodal DLBCL were not differentially expressed between PCFCL and PCLBCL-LT. In conclusion, PCFCL and PCLBCL-LT differ in their microRNA profiles. In contrast to their gene expression profile, they only show slight resemblance with the microRNA profiles found in GCB- and ABC-type nodal DLBCL.

  18. Differential MicroRNA Expression in Human Macrophages with Mycobacterium tuberculosis Infection of Beijing/W and Non-Beijing/W Strain Types.

    Directory of Open Access Journals (Sweden)

    Lin Zheng

    Full Text Available The role of microRNAs in association with Mycobacterium tuberculosis (MTB infection and the immunology regulated by microRNAs upon MTB infection have not been fully unravelled. We examined the microRNA profiles of THP-1 macrophages upon the MTB infection of Beijing/W and non-Beijing/W clinical strains. We also studied the microRNA profiles of the host macrophages by microarray in a small cohort with active MTB disease, latent infection (LTBI, and from healthy controls.The results revealed that 14 microRNAs differentiated infections of Beijing/W from non-Beijing/W strains (P<0.05. A unique signature of 11 microRNAs in human macrophages was identified to differentiate active MTB disease from LTBI and healthy controls. Pathway analyses of these differentially expressed miRNAs suggest that the immune-regulatory interactions involving TGF-β signalling pathway take part in the dysregulation of critical TB processes in the macrophages, resulting in active expression of both cell communication and signalling transduction systems.We showed for the first time that the Beijing/W TB strains repressed a number of miRNAs expressions which may reflect their virulence characteristics in altering the host response. The unique signatures of 11 microRNAs may deserve further evaluation as candidates for biomarkers in the diagnosis of MTB and Beijing/W infections.

  19. Social stress response in adolescents with bipolar disorder.

    Science.gov (United States)

    Casement, Melynda D; Goldstein, Tina R; Gratzmiller, Sarah M; Franzen, Peter L

    2018-05-01

    Theoretical models posit that stressors contribute to the onset and maintenance of bipolar disorder in adolescence through disruptions in stress physiology, but physiological response to stressors has not been evaluated in adolescents with bipolar illness. The present study tests the hypothesis that adolescents with bipolar disorder will have greater reactivity to a laboratory social stress task than healthy adolescents. Adolescents with bipolar illness (n = 27) and healthy adolescents (n = 28) completed a modified version of the Trier Social Stress Task. Stress response was assessed using high frequency heart rate variability (HF-HRV), heart rate (HR), mean arterial blood pressure (MAP), salivary cortisol, and subjective stress. Multilevel models were used to test for group differences in resting-state physiology, and stress reactivity and recovery. Adolescents with bipolar disorder had greater reactivity in HF-HRV (z = 3.32), but blunted reactivity in MAP (z = -3.08) and cortisol (z = -2.60), during the stressor compared to healthy adolescents. They also had lower resting HF-HRV (z = -3.49) and cortisol (z = -2.86), and higher resting HR (z = 3.56), than healthy adolescents. These results indicate that bipolar disorder is associated with disruptions in autonomic and endocrine response to stress during adolescence, including greater HF-HRV reactivity. Further research should evaluate whether these individual differences in stress physiology precede and predict the onset of mood episodes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Oxidative stress response after laparoscopic versus conventional sigmoid resection

    DEFF Research Database (Denmark)

    Madsen, Michael Tvilling; Kücükakin, Bülent; Lykkesfeldt, Jens

    2012-01-01

    Surgery is accompanied by a surgical stress response, which results in increased morbidity and mortality. Oxidative stress is a part of the surgical stress response. Minimally invasive laparoscopic surgery may result in reduced oxidative stress compared with open surgery. Nineteen patients...... scheduled for sigmoid resection were randomly allocated to open or laparoscopic sigmoid resection in a double-blind, prospective clinical trial. Three biochemical markers of oxidative stress (malondialdehyde, ascorbic acid, and dehydroascorbic acid) were measured at 6 different time points (preoperatively......, 1 h, 6 h, 24 h, 48 h, and 72 h postoperatively). There were no statistical significant differences between laparoscopic and open surgery for any of the 3 oxidative stress parameters. Malondialdehyde was reduced 1 hour postoperatively (P...

  1. The relationship between personality and the response to acute psychological stress

    NARCIS (Netherlands)

    Xin, Yuanyuan; Wu, Jianhui; Yao, Zhuxi; Guan, Qing; Aleman, Andre; Luo, Yuejia

    2017-01-01

    The present study examined the relationship between personality traits and the response to acute psychological stress induced by a standardized laboratory stress induction procedure (the Trier Social Stress Test, TSST). The stress response was measured with a combination of cardiovascular

  2. Modulation of microRNA activity by semi-microRNAs (smiRNAs

    Directory of Open Access Journals (Sweden)

    Isabelle ePlante

    2012-06-01

    Full Text Available The ribonuclease Dicer plays a central role in the microRNA pathway by catalyzing the formation of 19 to 24-nucleotide (nt long microRNAs. Subsequently incorporated into Ago2 effector complexes, microRNAs are known to regulate messenger RNA (mRNA translation. Whether shorter RNA species derived from microRNAs exist and play a role in mRNA regulation remains unknown. Here, we report the serendipitous discovery of a 12-nt long RNA species corresponding to the 5’ region of the microRNA let-7, and tentatively termed semi-microRNA, or smiRNA. Using a smiRNA derived from the precursor of miR-223 as a model, we show that 12-nt long smiRNA species are devoid of any direct mRNA regulatory activity, as assessed in a reporter gene activity assay in transfected cultured human cells. However, smiR-223 was found to modulate the ability of the microRNA from which it derives to mediate translational repression or cleavage of reporter mRNAs. Our findings suggest that smiRNAs may be generated along the microRNA pathway and participate to the control of gene expression by regulating the activity of the related full-length mature microRNA in vivo.

  3. MicroRNAs and Target Genes As Biomarkers for the Diagnosis of Early Onset of Parkinson Disease

    Directory of Open Access Journals (Sweden)

    Ahmad R. Arshad

    2017-10-01

    Full Text Available Among the neurodegenerative disorders, Parkinson's disease (PD ranks as the second most common disorder with a higher prevalence in individuals aged over 60 years old. Younger individuals may also be affected with PD which is known as early onset PD (EOPD. Despite similarities between the characteristics of EOPD and late onset PD (LODP, EOPD patients experience much longer disease manifestations and poorer quality of life. Although some individuals are more prone to have EOPD due to certain genetic alterations, the molecular mechanisms that differentiate between EOPD and LOPD remains unclear. Recent findings in PD patients revealed that there were differences in the genetic profiles of PD patients compared to healthy controls, as well as between EOPD and LOPD patients. There were variants identified that correlated with the decline of cognitive and motor symptoms as well as non-motor symptoms in PD. There were also specific microRNAs that correlated with PD progression, and since microRNAs have been shown to be involved in the maintenance of neuronal development, mitochondrial dysfunction and oxidative stress, there is a strong possibility that these microRNAs can be potentially used to differentiate between subsets of PD patients. PD is mainly diagnosed at the late stage, when almost majority of the dopaminergic neurons are lost. Therefore, identification of molecular biomarkers for early detection of PD is important. Given that miRNAs are crucial in controlling the gene expression, these regulatory microRNAs and their target genes could be used as biomarkers for early diagnosis of PD. In this article, we discussed the genes involved and their regulatory miRNAs, regarding their roles in PD progression, based on the findings of significantly altered microRNAs in EOPD studies. We also discussed the potential of these miRNAs as molecular biomarkers for early diagnosis.

  4. Analysis of Stress-Responsive Gene Expression in Cultivated and Weedy Rice Differing in Cold Stress Tolerance.

    Directory of Open Access Journals (Sweden)

    Caroline Borges Bevilacqua

    Full Text Available Rice (Oryza sativa L. cultivars show impairment of growth in response to environmental stresses such as cold at the early seedling stage. Locally adapted weedy rice is able to survive under adverse environmental conditions, and can emerge in fields from greater soil depth. Cold-tolerant weedy rice can be a good genetic source for developing cold-tolerant, weed-competitive rice cultivars. An in-depth analysis is presented here of diverse indica and japonica rice genotypes, mostly weedy rice, for cold stress response to provide an understanding of different stress adaptive mechanisms towards improvement of the rice crop performance in the field. We have tested a collection of weedy rice genotypes to: 1 classify the subspecies (ssp. grouping (japonica or indica of 21 accessions; 2 evaluate their sensitivity to cold stress; and 3 analyze the expression of stress-responsive genes under cold stress and a combination of cold and depth stress. Seeds were germinated at 25°C at 1.5- and 10-cm sowing depth for 10d. Seedlings were then exposed to cold stress at 10°C for 6, 24 and 96h, and the expression of cold-, anoxia-, and submergence-inducible genes was analyzed. Control plants were seeded at 1.5cm depth and kept at 25°C. The analysis revealed that cold stress signaling in indica genotypes is more complex than that of japonica as it operates via both the CBF-dependent and CBF-independent pathways, implicated through induction of transcription factors including OsNAC2, OsMYB46 and OsF-BOX28. When plants were exposed to cold + sowing depth stress, a complex signaling network was induced that involved cross talk between stresses mediated by CBF-dependent and CBF-independent pathways to circumvent the detrimental effects of stresses. The experiments revealed the importance of the CBF regulon for tolerance to both stresses in japonica and indica ssp. The mechanisms for cold tolerance differed among weedy indica genotypes and also between weedy indica and

  5. Cortisol stress response in post-traumatic stress disorder, panic disorder, and major depressive disorder patients.

    Science.gov (United States)

    Wichmann, Susann; Kirschbaum, Clemens; Böhme, Carsten; Petrowski, Katja

    2017-09-01

    Previous research has focussed extensively on the distinction of HPA-axis functioning between patient groups and healthy volunteers, with relatively little emphasis on a direct comparison of patient groups. The current study's aim was to analyse differences in the cortisol stress response as a function of primary diagnosis of panic disorder (PD), post-traumatic stress disorder (PTSD), and major depressive disorder (MDD). A total of n=30 PD (mean age±SD: 36.07±12.56), n=23 PTSD (41.22±10.17), n=18 MDD patients (39.00±14.93) and n=47 healthy control (HC) individuals (35.51±13.15) participated in this study. All the study participants were female. The Trier Social Stress Test (TSST) was used for reliable laboratory stress induction. Blood sampling accompanied the TSST for cortisol and ACTH assessment. Panic-related, PTSD-specific questionnaires and the Beck Depression Inventory II were handed out for the characterisation of the study groups. Repeated measure ANCOVAs were conducted to test for main effects of time or group and for interaction effects. Regression analyses were conducted to take comorbid depression into account. 26.7% of the PD patients, 43.5% of the PTSD patients, 72.2% of the MDD patients and 80.6% of the HC participants showed a cortisol stress response upon the TSST. ANCOVA revealed a cortisol hypo-responsiveness both in PD and PTSD patients, while no significant group differences were seen in the ACTH concentrations. Additional analyses showed no impact of comorbid depressiveness on the cortisol stress response. MDD patients did not differ in the hormonal stress response neither compared to the HC participants nor to the PD and PTSD patients. Our main findings provide evidence of a dissociation between the cortisol and ACTH concentrations in response to the TSST in PTSD and in PD patients, independent of comorbid depression. Our results further support overall research findings of a cortisol hypo-responsiveness in PD patients. A hypo-response

  6. Psychological stress during exercise: cardiorespiratory and hormonal responses.

    Science.gov (United States)

    Webb, Heather E; Weldy, Michael L; Fabianke-Kadue, Emily C; Orndorff, G R; Kamimori, Gary H; Acevedo, Edmund O

    2008-12-01

    The purpose of this study was to examine the cardiorespiratory (CR) and stress hormone responses to a combined physical and mental stress. Eight participants (VO2(max) = 41.24 +/- 6.20 ml kg(-1) min(-1)) completed two experimental conditions, a treatment condition including a 37 min ride at 60% of VO2(max) with participants responding to a computerized mental challenge dual stress condition (DSC) and a control condition of the same duration and intensity without the mental challenge exercise alone condition (EAC). Significant interactions across time were found for CR responses, with heart rate, ventilation, and respiration rate demonstrating higher increases in the DSC. Additionally, norepinephrine was significantly greater in the DSC at the end of the combined challenge. Furthermore, cortisol area-under-the-curve (AUC) was also significantly elevated during the DSC. These results demonstrate that a mental challenge during exercise can exacerbate the stress response, including the release of hormones that have been linked to negative health consequences (cardiovascular, metabolic, autoimmune illnesses).

  7. Psychological and hormonal stress response patterns during a blood donation.

    Science.gov (United States)

    Hoogerwerf, M D; Veldhuizen, I J T; Merz, E-M; de Kort, W L A M; Frings-Dresen, M H W; Sluiter, J K

    2017-11-01

    Donating blood has been associated with increased stress responses, with scarce evidence indicating that levels of psychological and hormonal stress are higher pre-donation than post-donation. We investigated whether a blood donation induces psychological and/or hormonal stress during the course of a blood donation, and whether responses differed between men and women, first-time and experienced donors and donors with high or low non-acute stress. In 363 donors, psychological (donation-stress and arousal) and hormonal (cortisol) stress were measured by questionnaire and salivary sample at seven key moments during a routine donation. Non-acute stress was assessed by a questionnaire. Repeated measurement analyses were performed, using the last measurement (leaving the donation center) as reference value. Levels of donation-stress, arousal and cortisol were significantly higher during donation than when leaving the donation center. When compared with men, women reported higher levels of donation-stress and cortisol in the first part of the visit. When compared with first-time donors, experienced donors reported lower levels of donation-stress during the first part of the visit, and higher levels of arousal but less reactivity throughout the visit. When compared to donors high on non-acute stress, donors low on non-acute stress reported lower levels of donation-stress during the first part of the visit, and showed less cortisol reactivity throughout the visit. Donating blood influences psychological and hormonal stress response patterns. The response patterns differ between women and men, first-time and experienced donors and between donors high and low on non-acute stress. © 2017 International Society of Blood Transfusion.

  8. Computational Characterization of Exogenous MicroRNAs that Can Be Transferred into Human Circulation.

    Directory of Open Access Journals (Sweden)

    Jiang Shu

    Full Text Available MicroRNAs have been long considered synthesized endogenously until very recent discoveries showing that human can absorb dietary microRNAs from animal and plant origins while the mechanism remains unknown. Compelling evidences of microRNAs from rice, milk, and honeysuckle transported to human blood and tissues have created a high volume of interests in the fundamental questions that which and how exogenous microRNAs can be transferred into human circulation and possibly exert functions in humans. Here we present an integrated genomics and computational analysis to study the potential deciding features of transportable microRNAs. Specifically, we analyzed all publicly available microRNAs, a total of 34,612 from 194 species, with 1,102 features derived from the microRNA sequence and structure. Through in-depth bioinformatics analysis, 8 groups of discriminative features have been used to characterize human circulating microRNAs and infer the likelihood that a microRNA will get transferred into human circulation. For example, 345 dietary microRNAs have been predicted as highly transportable candidates where 117 of them have identical sequences with their homologs in human and 73 are known to be associated with exosomes. Through a milk feeding experiment, we have validated 9 cow-milk microRNAs in human plasma using microRNA-sequencing analysis, including the top ranked microRNAs such as bta-miR-487b, miR-181b, and miR-421. The implications in health-related processes have been illustrated in the functional analysis. This work demonstrates the data-driven computational analysis is highly promising to study novel molecular characteristics of transportable microRNAs while bypassing the complex mechanistic details.

  9. Computational Characterization of Exogenous MicroRNAs that Can Be Transferred into Human Circulation

    Science.gov (United States)

    Shu, Jiang; Chiang, Kevin; Zempleni, Janos; Cui, Juan

    2015-01-01

    MicroRNAs have been long considered synthesized endogenously until very recent discoveries showing that human can absorb dietary microRNAs from animal and plant origins while the mechanism remains unknown. Compelling evidences of microRNAs from rice, milk, and honeysuckle transported to human blood and tissues have created a high volume of interests in the fundamental questions that which and how exogenous microRNAs can be transferred into human circulation and possibly exert functions in humans. Here we present an integrated genomics and computational analysis to study the potential deciding features of transportable microRNAs. Specifically, we analyzed all publicly available microRNAs, a total of 34,612 from 194 species, with 1,102 features derived from the microRNA sequence and structure. Through in-depth bioinformatics analysis, 8 groups of discriminative features have been used to characterize human circulating microRNAs and infer the likelihood that a microRNA will get transferred into human circulation. For example, 345 dietary microRNAs have been predicted as highly transportable candidates where 117 of them have identical sequences with their homologs in human and 73 are known to be associated with exosomes. Through a milk feeding experiment, we have validated 9 cow-milk microRNAs in human plasma using microRNA-sequencing analysis, including the top ranked microRNAs such as bta-miR-487b, miR-181b, and miR-421. The implications in health-related processes have been illustrated in the functional analysis. This work demonstrates the data-driven computational analysis is highly promising to study novel molecular characteristics of transportable microRNAs while bypassing the complex mechanistic details. PMID:26528912

  10. The role of stress mindset in shaping cognitive, emotional, and physiological responses to challenging and threatening stress.

    Science.gov (United States)

    Crum, Alia J; Akinola, Modupe; Martin, Ashley; Fath, Sean

    2017-07-01

    Prior research suggests that altering situation-specific evaluations of stress as challenging versus threatening can improve responses to stress. The aim of the current study was to explore whether cognitive, physiological and affective stress responses can be altered independent of situation-specific evaluations by changing individuals' mindsets about the nature of stress in general. Using a 2 × 2 design, we experimentally manipulated stress mindset using multi-media film clips orienting participants (N = 113) to either the enhancing or debilitating nature of stress. We also manipulated challenge and threat evaluations by providing positive or negative feedback to participants during a social stress test. Results revealed that under both threat and challenge stress evaluations, a stress-is-enhancing mindset produced sharper increases in anabolic ("growth") hormones relative to a stress-is-debilitating mindset. Furthermore, when the stress was evaluated as a challenge, a stress-is-enhancing mindset produced sharper increases in positive affect, heightened attentional bias towards positive stimuli, and greater cognitive flexibility, whereas a stress-is-debilitating mindset produced worse cognitive and affective outcomes. These findings advance stress management theory and practice by demonstrating that a short manipulation designed to generate a stress-is-enhancing mindset can improve responses to both challenging and threatening stress.

  11. Stress responses during ageing: molecular pathways regulating protein homeostasis.

    Science.gov (United States)

    Kyriakakis, Emmanouil; Princz, Andrea; Tavernarakis, Nektarios

    2015-01-01

    The ageing process is characterized by deterioration of physiological function accompanied by frailty and ageing-associated diseases. The most broadly and well-studied pathways influencing ageing are the insulin/insulin-like growth factor 1 signaling pathway and the dietary restriction pathway. Recent studies in diverse organisms have also delineated emerging pathways, which collectively or independently contribute to ageing. Among them the proteostatic-stress-response networks, inextricably affect normal ageing by maintaining or restoring protein homeostasis to preserve proper cellular and organismal function. In this chapter, we survey the involvement of heat stress and endoplasmic reticulum stress responses in the regulation of longevity, placing emphasis on the cross talk between different response mechanisms and their systemic effects. We further discuss novel insights relevant to the molecular pathways mediating these stress responses that may facilitate the development of innovative interventions targeting age-related pathologies such as diabetes, cancer, cardiovascular and neurodegenerative diseases.

  12. Circulating MicroRNA Responses between 'High' and 'Low' Responders to a 16-Wk Diet and Exercise Weight Loss Intervention.

    Science.gov (United States)

    Parr, Evelyn B; Camera, Donny M; Burke, Louise M; Phillips, Stuart M; Coffey, Vernon G; Hawley, John A

    2016-01-01

    Interactions between diet, physical activity and genetic predisposition contribute to variable body mass changes observed in response to weight loss interventions. Circulating microRNAs (c-miRNAs) may act as 'biomarkers' that are associated with the rate of change in weight loss, and/or play a role in regulating the biological variation, in response to energy restriction. To quantify targeted c-miRNAs with putative roles in energy metabolism and exercise adaptations following a 16 wk diet and exercise intervention in individuals with large (high responders; HiRes) versus small (low responders; LoRes) losses in body mass. From 89 male and female overweight/obese participants who completed the intervention (energy restriction from diet, 250 kcal/d, and exercise, 250 kcal/d), subgroups of HiRes (>10% body mass loss, n = 22) and LoRes (exercise and diet intervention suggests a putative role for these 'biomarkers' in the prediction or detection of individual variability to weight loss interventions.

  13. Effect of childhood physical abuse on cortisol stress response.

    Science.gov (United States)

    Carpenter, Linda L; Shattuck, Thaddeus T; Tyrka, Audrey R; Geracioti, Thomas D; Price, Lawrence H

    2011-03-01

    Abuse and neglect are highly prevalent in children and have enduring neurobiological effects. Stressful early life environments perturb the hypothalamic-pituitary-adrenal (HPA) axis, which in turn may predispose to psychiatric disorders in adulthood. However, studies of childhood maltreatment and adult HPA function have not yet rigorously investigated the differential effects of maltreatment subtypes, including physical abuse. In this study, we sought to replicate our previous finding that childhood maltreatment was associated with attenuated cortisol responses to stress and determine whether the type of maltreatment was a determinant of the stress response. Salivary cortisol response to the Trier Social Stress Test (TSST) was examined in a non-clinical sample of women (n = 110). Subjects had no acute medical problems and were not seeking psychiatric treatment. Effects of five maltreatment types, as measured by the Childhood Trauma Questionnaire, on cortisol response to the TSST were investigated. To further examine the significant (p < 0.005) effect of one maltreatment type, women with childhood physical abuse (PA) (n = 20) were compared to those without past PA (n = 90). Women reporting childhood PA displayed a significantly blunted cortisol response to the TSST compared with subjects without PA, after controlling for estrogen use, age, other forms of maltreatment, and other potential confounds. There were no differences between PA and control groups with regard to physiological arousal during the stress challenge. In a non-clinical sample of women with minimal or no current psychopathology, physical abuse is associated with a blunted cortisol response to a psychosocial stress task.

  14. Differential MicroRNA Expression in Human Macrophages with Mycobacterium tuberculosis Infection of Beijing/W and Non-Beijing/W Strain Types.

    Science.gov (United States)

    Zheng, Lin; Leung, Eric; Lee, Nelson; Lui, Grace; To, Ka-Fai; Chan, Raphael C Y; Ip, Margaret

    2015-01-01

    The role of microRNAs in association with Mycobacterium tuberculosis (MTB) infection and the immunology regulated by microRNAs upon MTB infection have not been fully unravelled. We examined the microRNA profiles of THP-1 macrophages upon the MTB infection of Beijing/W and non-Beijing/W clinical strains. We also studied the microRNA profiles of the host macrophages by microarray in a small cohort with active MTB disease, latent infection (LTBI), and from healthy controls. The results revealed that 14 microRNAs differentiated infections of Beijing/W from non-Beijing/W strains (PmicroRNAs in human macrophages was identified to differentiate active MTB disease from LTBI and healthy controls. Pathway analyses of these differentially expressed miRNAs suggest that the immune-regulatory interactions involving TGF-β signalling pathway take part in the dysregulation of critical TB processes in the macrophages, resulting in active expression of both cell communication and signalling transduction systems. We showed for the first time that the Beijing/W TB strains repressed a number of miRNAs expressions which may reflect their virulence characteristics in altering the host response. The unique signatures of 11 microRNAs may deserve further evaluation as candidates for biomarkers in the diagnosis of MTB and Beijing/W infections.

  15. Critical-like features of stress response in frictional packings

    International Nuclear Information System (INIS)

    Cakir, Abdullah; Silbert, Leonardo E

    2015-01-01

    The mechanical response of static, unconfined, overcompressed face centred cubic, granular arrays is studied using large-scale, discrete element method simulations. Specifically, the stress response due to the application of a localised force perturbation—the Green function technique—is obtained in granular packings generated over several orders of magnitude in both the particle friction coefficient and the applied forcing. We observe crossover behaviour in the mechanical state of the system characterised by the changing nature of the resulting stress response. The transition between anisotropic and isotropic stress response exhibits critical-like features through the identification of a diverging length scale that distinguishes the spatial extent of anisotropic regions from those that display isotropic behaviour. A multidimensional phase diagram is constructed that parameterises the response of the system due to changing friction and force perturbations. (paper)

  16. Identification of differentially expressed microRNAs in human male breast cancer

    Directory of Open Access Journals (Sweden)

    Schipper Elisa

    2010-03-01

    Full Text Available Abstract Background The discovery of small non-coding RNAs and the subsequent analysis of microRNA expression patterns in human cancer specimens have provided completely new insights into cancer biology. Genetic and epigenetic data indicate oncogenic or tumor suppressor function of these pleiotropic regulators. Therefore, many studies analyzed the expression and function of microRNA in human breast cancer, the most frequent malignancy in females. However, nothing is known so far about microRNA expression in male breast cancer, accounting for approximately 1% of all breast cancer cases. Methods The expression of 319 microRNAs was analyzed in 9 primary human male breast tumors and in epithelial cells from 15 male gynecomastia specimens using fluorescence-labeled bead technology. For identification of differentially expressed microRNAs data were analyzed by cluster analysis and selected statistical methods. Expression levels were validated for the most up- or down-regulated microRNAs in this training cohort using real-time PCR methodology as well as in an independent test cohort comprising 12 cases of human male breast cancer. Results Unsupervised cluster analysis separated very well male breast cancer samples and control specimens according to their microRNA expression pattern indicating cancer-specific alterations of microRNA expression in human male breast cancer. miR-21, miR519d, miR-183, miR-197, and miR-493-5p were identified as most prominently up-regulated, miR-145 and miR-497 as most prominently down-regulated in male breast cancer. Conclusions Male breast cancer displays several differentially expressed microRNAs. Not all of them are shared with breast cancer biopsies from female patients indicating male breast cancer specific alterations of microRNA expression.

  17. Identification of serum microRNA biomarkers for tuberculosis using RNA-seq.

    Directory of Open Access Journals (Sweden)

    Hongtai Zhang

    Full Text Available Tuberculosis (TB remains a significant human health issue. More effective biomarkers for use in tuberculosis prevention, diagnosis, and treatment, including markers that can discriminate between healthy individuals and those with latent infection, are urgently needed. To identify a set of such markers, we used Solexa sequencing to examine microRNA expression in the serum of patients with active disease, healthy individuals with latent TB, and those with or without prior BCG inoculation. We identified 24 microRNAs that are up-regulated (2.85-1285.93 fold and 6 microRNAs that are down-regulated (0.003-0.11 fold (P<0.05 in patients with active TB relative to the three groups of healthy controls. In addition, 75 microRNAs were up-regulated (2.05-2454.58 fold and 11 were down-regulated (0.001-0.42 fold (P<0.05 in latent-TB infected individuals relative to BCG- inoculated individuals. Of interest, 134 microRNAs were differentially-expressed in BCG-inoculated relative to un-inoculated individuals (18 up-regulated 2.9-499.29 fold, 116 down-regulated 0.0002-0.5 fold, providing insights into the effects of BCG inoculation at the microRNA level. Target prediction of differentially-expressed microRNAs by microRNA-Gene Network analysis and analysis of pathways affected suggest that regulation of the host immune system by microRNAs is likely to be one of the main factors in the pathogenesis of tuberculosis. qRT-PCR validation indicated that hsa-miR-196b and hsa-miR-376c have potential as markers for active TB disease. The microRNA differential-expression profiles generated in this study provide a good foundation for the development of markers for TB diagnosis, and for investigations on the role of microRNAs in BCG-inoculated and latent-infected individuals.

  18. MicroRNA-125a Inhibits Autophagy Activation and Antimicrobial Responses during Mycobacterial Infection.

    Science.gov (United States)

    Kim, Jin Kyung; Yuk, Jae-Min; Kim, Soo Yeon; Kim, Tae Sung; Jin, Hyo Sun; Yang, Chul-Su; Jo, Eun-Kyeong

    2015-06-01

    MicroRNAs (miRNAs) are small noncoding nucleotides that play critical roles in the regulation of diverse biological functions, including the response of host immune cells. Autophagy plays a key role in activating the antimicrobial host defense against Mycobacterium tuberculosis. Although the pathways associated with autophagy must be tightly regulated at a posttranscriptional level, the contribution of miRNAs and whether they specifically influence the activation of macrophage autophagy during M. tuberculosis infection are largely unknown. In this study, we demonstrate that M. tuberculosis infection of macrophages leads to increased expression of miRNA-125a-3p (miR-125a), which targets UV radiation resistance-associated gene (UVRAG), to inhibit autophagy activation and antimicrobial responses to M. tuberculosis. Forced expression of miR-125a significantly blocked M. tuberculosis-induced activation of autophagy and phagosomal maturation in macrophages, and inhibitors of miR-125a counteracted these effects. Both TLR2 and MyD88 were required for biogenesis of miR-125a during M. tuberculosis infection. Notably, activation of the AMP-activated protein kinase significantly inhibited the expression of miR-125a in M. tuberculosis-infected macrophages. Moreover, either overexpression of miR-125a or silencing of UVRAG significantly attenuated the antimicrobial effects of macrophages against M. tuberculosis. Taken together, these data indicate that miR-125a regulates the innate host defense by inhibiting the activation of autophagy and antimicrobial effects against M. tuberculosis through targeting UVRAG. Copyright © 2015 by The American Association of Immunologists, Inc.

  19. The Role of microRNAs in the Pathogenesis of Herpesvirus Infection.

    Science.gov (United States)

    Piedade, Diogo; Azevedo-Pereira, José Miguel

    2016-06-02

    MicroRNAs (miRNAs) are small non-coding RNAs important in gene regulation. They are able to regulate mRNA translation through base-pair complementarity. Cellular miRNAs have been involved in the regulation of nearly all cellular pathways, and their deregulation has been associated with several diseases such as cancer. Given the importance of microRNAs to cell homeostasis, it is no surprise that viruses have evolved to take advantage of this cellular pathway. Viruses have been reported to be able to encode and express functional viral microRNAs that target both viral and cellular transcripts. Moreover, viral inhibition of key proteins from the microRNA pathway and important changes in cellular microRNA pool have been reported upon viral infection. In addition, viruses have developed multiple mechanisms to avoid being targeted by cellular microRNAs. This complex interaction between host and viruses to control the microRNA pathway usually favors viral infection and persistence by either reducing immune detection, avoiding apoptosis, promoting cell growth, or promoting lytic or latent infection. One of the best examples of this virus-host-microRNA interplay emanates from members of the Herperviridae family, namely the herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2), human cytomegalovirus (HCMV), human herpesvirus 8 (HHV-8), and the Epstein-Barr virus (EBV). In this review, we will focus on the general functions of microRNAs and the interactions between herpesviruses, human hosts, and microRNAs and will delve into the related mechanisms that contribute to infection and pathogenesis.

  20. Overexpression of a cytosolic abiotic stress responsive universal stress protein (SbUSP mitigates salt and osmotic stress in transgenic tobacco plants

    Directory of Open Access Journals (Sweden)

    Pushpika eUdawat

    2016-04-01

    Full Text Available The Universal Stress Protein (USP is a ubiquitous protein and plays an indispensable role in plant abiotic stress tolerance. The genome of Salicornia brachiata contains two homologues of intron less SbUSP gene which encodes for salt and osmotic responsive universal stress protein. In vivo localization reveals that SbUSP is a membrane bound cytosolic protein. The role of the gene was functionally validated by developing transgenic tobacco and compared with control (wild type and vector control plants under different abiotic stress condition. Transgenic lines (T1 exhibited higher chlorophyll, relative water, proline, total sugar, reducing sugar, free amino acids, polyphenol contents, osmotic potential, membrane stability and lower electrolyte leakage and lipid peroxidation (malondialdehyde content under stress treatments than control (WT and VC plants. Lower accumulation of H2O2 and O2- radicals was also detected in transgenic lines compared to control plants under stress conditions. Present study confers that overexpression of the SbUSP gene enhances plant growth, alleviates ROS buildup, maintains ion homeostasis and improves the physiological status of the plant under salt and osmotic stresses. Principal component analysis (PCA exhibited a statistical distinction of plant response to salinity stress, and a significant response was observed for transgenic lines under stress, which provides stress endurance to the plant. A possible signaling role is proposed that some downstream genes may get activated by abiotic stress responsive cytosolic SbUSP, which leads to the protection of cell from oxidative damages. The study unveils that ectopic expression of the gene mitigates salt or osmotic stress by scavenging ROS and modulating the physiological process of the plant.

  1. Differentially expressed microRNA in multiple sclerosis: A window into pathogenesis?

    DEFF Research Database (Denmark)

    Martin, Nellie Anne; Illés, Zsolt

    2014-01-01

    MicroRNA are small non-coding RNA that mediate mRNA translation repression or mRNA degradation, and thereby refine protein expression levels. More than 30–60% of all genes are regulated by microRNA. Exploring disease-related microRNA signatures is an emerging tool in biomarker discovery, and sile......MicroRNA are small non-coding RNA that mediate mRNA translation repression or mRNA degradation, and thereby refine protein expression levels. More than 30–60% of all genes are regulated by microRNA. Exploring disease-related microRNA signatures is an emerging tool in biomarker discovery......RNA related to multiple sclerosis has increased significantly in recent years. Differentially expressed microRNA have been identified in the whole blood, serum, plasma, cerebrospinal fluid, peripheral blood mononuclear cells, blood-derived cell subsets and brain lesions of patients with multiple sclerosis....... Most studies applied a non-candidate approach of screening by microarray and validation by quantitative polymerase chain reaction or next generation sequencing; others used a candidate-driven approach. Despite a relatively high number of multiple sclerosis-associated microRNA, just a few could...

  2. The endoplasmic reticulum stress response in disease ...

    African Journals Online (AJOL)

    Rafael Vincent M. Manalo

    2017-07-12

    Jul 12, 2017 ... Review. The endoplasmic reticulum stress response in disease pathogenesis and pathophysiology .... This is an open access article under the CC BY-NC-ND license ... chain binding protein (BIP); however, ER stress permits the release, .... drugs designed to alleviate it often cause more harm long-term.

  3. Overtime work and stress response in a group of Japanese workers.

    Science.gov (United States)

    Sato, Yuji; Miyake, Hitoshi; Thériault, Gilles

    2009-01-01

    Working long overtime hours is considered a cause of mental health problems among workers but such a relationship has yet to be empirically confirmed. To clarify the influence of overtime work on response to stress and to assess the role of other stress-related factors on this relationship. The study was conducted among 24 685 employees of a company in Japan. Stress response, job stressors and social supports were assessed by the Brief Job Stress Questionnaire. Participants were divided into five categories of overtime (0-19, 20-39, 40-59, >or=60 h of overtime per month and exempted employees). The nonadjusted odds ratios for stress response for 40-59 and >or=60 overtime hours per month in reference to 0-19 overtime hours were 1.11 [95% confidence interval (CI) 1.03-1.19] and 1.62 (95% CI 1.50-1.76), respectively. After adjustment for self-assessed amount of work, mental workload and sleeping time, the association between overtime work and stress response disappeared. This large cross-sectional study shows that overtime work appears to influence stress response indirectly through other stress factors such as self-assessed amount of work, mental workload and sleeping time.

  4. MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN

    International Nuclear Information System (INIS)

    Tan, Guangyun; Shi, Yuling; Wu, Zhao-Hui

    2012-01-01

    Highlights: ► miR-22 is induced in cells treated with UV radiation. ► ATM is required for miR-22 induction in response to UV. ► miR-22 targets 3′-UTR of PTEN to repress its expression in UV-treated cells. ► Upregulated miR-22 inhibits apoptosis in cells exposed to UV. -- Abstract: DNA damage response upon UV radiation involves a complex network of cellular events required for maintaining the homeostasis and restoring genomic stability of the cells. As a new class of players involved in DNA damage response, the regulation and function of microRNAs in response to UV remain poorly understood. Here we show that UV radiation induces a significant increase of miR-22 expression, which appears to be dependent on the activation of DNA damage responding kinase ATM (ataxia telangiectasia mutated). Increased miR-22 expression may result from enhanced miR-22 maturation in cells exposed to UV. We further found that tumor suppressor gene phosphatase and tensin homolog (PTEN) expression was inversely correlated with miR-22 induction and UV-induced PTEN repression was attenuated by overexpression of a miR-22 inhibitor. Moreover, increased miR-22 expression significantly inhibited the activation of caspase signaling cascade, leading to enhanced cell survival upon UV radiation. Collectively, these results indicate that miR-22 is an important player in the cellular stress response upon UV radiation, which may promote cell survival via the repression of PTEN expression.

  5. MicroRNAs expression profile in solid and unicystic ameloblastomas

    Science.gov (United States)

    Setién-Olarra, A.; Bediaga, N. G.; Aguirre-Echebarria, P.; Aguirre-Urizar, J. M.; Mosqueda-Taylor, A.

    2017-01-01

    Objectives Odontogenic tumors (OT) represent a specific pathological category that includes some lesions with unpredictable biological behavior. Although most of these lesions are benign, some, such as the ameloblastoma, exhibit local aggressiveness and high recurrence rates. The most common types of ameloblastoma are the solid/multicystic (SA) and the unicystic ameloblastoma (UA); the latter considered a much less aggressive entity as compared to the SA. The microRNA system regulates the expression of many human genes while its deregulation has been associated with neoplastic development. The aim of the current study was to determine the expression profiles of microRNAs present in the two most common types of ameloblastomas. Material & methods MicroRNA expression profiles were assessed using TaqMan® Low Density Arrays (TLDAs) in 24 samples (8 SA, 8 UA and 8 control samples). The findings were validated using quantitative RTqPCR in an independent cohort of 19 SA, 8 UA and 19 dentigerous cysts as controls. Results We identified 40 microRNAs differentially regulated in ameloblastomas, which are related to neoplastic development and differentiation, and with the osteogenic process. Further validation of the top ranked microRNAs revealed significant differences in the expression of 6 of them in relation to UA, 7 in relation to SA and 1 (miR-489) that was related to both types. Conclusion We identified a new microRNA signature for the ameloblastoma and for its main types, which may be useful to better understand the etiopathogenesis of this neoplasm. In addition, we identified a microRNA (miR-489) that is suggestive of differentiating among solid from unicystic ameloblastoma. PMID:29053755

  6. Overexpression of a Cytosolic Abiotic Stress Responsive Universal Stress Protein (SbUSP) Mitigates Salt and Osmotic Stress in Transgenic Tobacco Plants

    Science.gov (United States)

    Udawat, Pushpika; Jha, Rajesh K.; Sinha, Dinkar; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    The universal stress protein (USP) is a ubiquitous protein and plays an indispensable role in plant abiotic stress tolerance. The genome of Salicornia brachiata contains two homologs of intron less SbUSP gene which encodes for salt and osmotic responsive USP. In vivo localization reveals that SbUSP is a membrane bound cytosolic protein. The role of the gene was functionally validated by developing transgenic tobacco and compared with control [wild-type (WT) and vector control (VC)] plants under different abiotic stress condition. Transgenic lines (T1) exhibited higher chlorophyll, relative water, proline, total sugar, reducing sugar, free amino acids, polyphenol contents, osmotic potential, membrane stability, and lower electrolyte leakage and lipid peroxidation (malondialdehyde content) under stress treatments than control (WT and VC) plants. Lower accumulation of H2O2 and O2− radicals was also detected in transgenic lines compared to control plants under stress conditions. Present study confers that overexpression of the SbUSP gene enhances plant growth, alleviates ROS buildup, maintains ion homeostasis and improves the physiological status of the plant under salt and osmotic stresses. Principal component analysis exhibited a statistical distinction of plant response to salinity stress, and a significant response was observed for transgenic lines under stress, which provides stress endurance to the plant. A possible signaling role is proposed that some downstream genes may get activated by abiotic stress responsive cytosolic SbUSP, which leads to the protection of cell from oxidative damages. The study unveils that ectopic expression of the gene mitigates salt or osmotic stress by scavenging ROS and modulating the physiological process of the plant. PMID:27148338

  7. High expression of microRNA-625-3p is associated with poor response to first-line oxaliplatin based treatment of metastatic colorectal cancer

    DEFF Research Database (Denmark)

    Rasmussen, Mads Heilskov; Jensen, Niels; Tarpgaard, Line Schmidt

    2013-01-01

    The backbone of current cytotoxic treatment of metastatic colorectal cancer (mCRC) consists of a fluoropyrimidine together with either oxaliplatin (XELOX/FOLFOX) or irinotecan (XELIRI/FOLFIRI). With an overall objective response rate of approximately 50% for either treatment combination, a major...... analyses showed that miR-625-3p was not dysregulated between normal and cancer samples, nor was its expression associated with recurrence of stage II or III disease, indicating that miR-625-3p solely is a response marker. Finally, we also found that these miRNAs were up-regulated in oxaliplatin resistant...... unsolved problem is that no predictors of response to these treatments are available. To address this issue, we profiled 742 microRNAs in laser-capture microdissected cancer cells from responding and non-responding patients receiving XELOX/FOLFOX as first-line treatment for mCRC, and identified, among...

  8. Stress Response and Artemisinin Resistance in Malaria Parasite

    Science.gov (United States)

    2017-07-01

    AWARD NUMBER: W81XWH-16-1-0241 TITLE: Stress Response and Artemisinin Resistance in Malaria Parasite PRINCIPAL INVESTIGATOR: Juan C. Pizarro...SUBTITLE Stress Response and Artemisinin Resistance in Malaria Parasite 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1-0241 5c. PROGRAM ELEMENT...13. SUPPLEMENTARY NOTES 14. ABSTRACT In malaria , drug resistance is a major treat to disease control efforts. Unfortunately, there is a significant

  9. The role of microRNA in diseases of the biliary system

    Directory of Open Access Journals (Sweden)

    A.E. Abaturov

    2017-10-01

    Full Text Available This literature review provides current information about role of microRNA in diseases of the biliary system. For writing the article, we used such databases, as Scopus, Web of Science, MedLine, PubMed, Google Scholar, CyberLeninka, RSCI. The mechanisms of formation and action of microRNA are demonstrated. The data of scientific researches on the association of various microRNAs in the development and progression of diseases of the biliary system are presented. The influence of ursodeoxycholic acid on the expression of microRNA is considered. Attention is focused on the therapeutic efficacy and benefits of using ursodeoxycholic acid in diseases of the biliary system due to the effect on the activity of the generation of some microRNAs.

  10. The relationship between beginning teachers' stress causes, stress responses, teaching behaviour and attrition

    NARCIS (Netherlands)

    Harmsen, Ruth; Lorenz, Michelle; Maulana, Ridwan; van Veen, Klaas

    2018-01-01

    In this study, the relationships between beginning teachers’ perceived stress causes, stress responses, observed teaching behaviour and attrition is investigated employing structural equation modelling (SEM). A total of 143 BTs were surveyed using the Questionnaire on the Experience and Evaluation

  11. Circulating microRNA-200 Family as Diagnostic Marker in Hepatocellular Carcinoma.

    Directory of Open Access Journals (Sweden)

    Sameer A Dhayat

    Full Text Available In this clinical study, we aimed to evaluate the role of circulating microRNA-200 family as a non-invasive tool to identify patients with cirrhosis-associated hepatocellular carcinoma (HCC.Prognosis of HCC remains poor with increasing incidence worldwide, mainly related to liver cirrhosis. So far, no reliable molecular targets exist for early detection of HCC at surgically manageable stages. Recently, we identified members of the microRNA-200 family as potential diagnostic markers of cirrhosis-associated HCC in patient tissue samples. Their value as circulating biomarkers for HCC remained undefined.Blood samples and clinicopathological data of consecutive patients with liver diseases were collected prospectively. Expression of the microRNA-200 family was investigated by qRT-PCR in blood serum samples of 22 HCC patients with and without cirrhosis. Serum samples of patients with non-cancerous chronic liver cirrhosis (n = 22 and of healthy volunteers (n = 15 served as controls.MicroRNA-141 and microRNA-200a were significantly downregulated in blood serum of patients with HCC compared to liver cirrhosis (p<0.007 and healthy controls (p<0.002. MicroRNA-141 and microRNA-200a could well discriminate patients with cirrhosis-associated HCC from healthy volunteers with area under the receiver-operating characteristic curve (AUC values of 0.85 and 0.82, respectively. Additionally, both microRNAs could differentiate between HCC and non-cancerous liver cirrhosis with a fair accuracy.Circulating microRNA-200 family members are significantly deregulated in patients with HCC and liver cirrhosis. Further studies are necessary to confirm the diagnostic value of the microRNA-200 family as accurate serum marker for cirrhosis-associated HCC.

  12. Expression of coding (mRNA) and non-coding (microRNA) RNA in lung tissue and blood isolated from pigs suffering from bacterial pleuropneumonia

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Schou, Kirstine Klitgaard; Wendt, Karin Tarp

    2010-01-01

    MicroRNAs are small non-coding RNA molecules (18-23 nt), that regulate the activity of other genes at the post-transcriptional level. Recently it has become evident that microRNA plays an important role in modulating and fine tuning innate and adaptive immune responses. Still, little is known about...... the impact of microRNAs in the development and pathogenesis of lung infections. Expression of microRNA known to be induced by bacterial (i.e., LPS) ligands and thus supposed to play a role in the regulation of antimicrobial defence, were studied in lung tissue and in blood from pigs experimentally infected...... with Actinobacillus pleuropneumoniae (AP). Expression differences of mRNA and microRNA were quantified at different time points (6h, 12h, 24h, 48h PI) using reverse transcription quantitative real-time PCR (Rotor-Gene and Fluidigm). Expression profiles of miRNA in blood of seven animals were further studied using mi...

  13. Role of microRNAs involved in plant response to nitrogen and phosphorous limiting conditions.

    Science.gov (United States)

    Nguyen, Giao N; Rothstein, Steven J; Spangenberg, German; Kant, Surya

    2015-01-01

    Plant microRNAs (miRNAs) are a class of small non-coding RNAs which target and regulate the expression of genes involved in several growth, development, and metabolism processes. Recent researches have shown involvement of miRNAs in the regulation of uptake and utilization of nitrogen (N) and phosphorus (P) and more importantly for plant adaptation to N and P limitation conditions by modifications in plant growth, phenology, and architecture and production of secondary metabolites. Developing strategies that allow for the higher efficiency of using both N and P fertilizers in crop production is important for economic and environmental benefits. Improved crop varieties with better adaptation to N and P limiting conditions could be a key approach to achieve this effectively. Furthermore, understanding on the interactions between N and P uptake and use and their regulation is important for the maintenance of nutrient homeostasis in plants. This review describes the possible functions of different miRNAs and their cross-talk relevant to the plant adaptive responses to N and P limiting conditions. In addition, a comprehensive understanding of these processes at molecular level and importance of biological adaptation for improved N and P use efficiency is discussed.

  14. Associations between circadian and stress response cortisol in children

    OpenAIRE

    Simons, S.S.H.; Cillessen, A.H.N.; Weerth, C. de

    2017-01-01

    Hypothalamic-pituitary-adrenal (HPA) axis functioning is characterized by the baseline production of cortisol following a circadian rhythm, as well as by the superimposed production of cortisol in response to a stressor. However, it is relatively unknown whether the basal cortisol circadian rhythm is associated with the cortisol stress response in children. Since alterations in cortisol stress responses have been associated with mental and physical health, this study investigated whether the ...

  15. Overexpression of miR169o, an Overlapping microRNA in Response to Both Nitrogen Limitation and Bacterial Infection, Promotes Nitrogen Use Efficiency and Susceptibility to Bacterial Blight in Rice.

    Science.gov (United States)

    Chao, Yu; Chen, Yutong; Cao, Yaqian; Chen, Huamin; Wang, Jichun; Bi, Yong-Mei; Tian, Fang; Yang, Fenghuan; Rothstein, Steven J; Zhou, Xueping; He, Chenyang

    2018-03-15

    Limiting nitrogen (N) supply contributes to improved resistance to bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) in susceptible rice (Oryza sativa). To understand the regulatory roles of microRNAs in this phenomenon, sixty-three differentially-expressed overlapping miRNAs in response to Xoo infection and N-limitation stress in rice were identified through deep RNA-sequence and stem loop qRT-PCR. Among these, miR169o was further assessed as a typical overlapping miRNA through the overexpression of the miR169o primary gene. Osa-miR169o-OX plants were taller, and had more biomass accumulation with significantly increased nitrate and total amino acid contents in roots than wild type (WT). Transcript level assays showed that under different N supply conditions miR169o opposite regulated NRT2 which is reduced under normal N supply condition but remarkably induced under N limiting stress. On the other hand, osa-miR169o-OX plants also displayed increased disease lesion lengths and reduced transcriptional levels of defense gene (PR1b, PR10a, PR10b and PAL) compared with WT after inoculation with Xoo. In addition, miR169o impeded Xoo-mediated NRT transcription. Therefore, the overlapping miR169o contributes to increase N use efficiency and negatively regulates the resistance to bacterial blight in rice. Consistently, transient expression of NF-YAs in rice protoplast promoted the transcripts of PR genes and NRT2 genes, while reduced the transcripts of NRT1 genes. Our results provide novel and additional insights into the coordinated regulatory mechanisms of crosstalk between Xoo infection and N-deficiency responses in rice.

  16. Systematic validation of predicted microRNAs for cyclin D1

    International Nuclear Information System (INIS)

    Jiang, Qiong; Feng, Ming-Guang; Mo, Yin-Yuan

    2009-01-01

    MicroRNAs are the endogenous small non-coding RNA molecules capable of silencing protein coding genes at the posttranscriptional level. Based on computer-aided predictions, a single microRNA could have over a hundred of targets. On the other hand, a single protein-coding gene could be targeted by many potential microRNAs. However, only a relatively small number of these predicted microRNA/mRNA interactions are experimentally validated, and no systematic validation has been carried out using a reporter system. In this study, we used luciferease reporter assays to validate microRNAs that can silence cyclin D1 (CCND1) because CCND1 is a well known proto-oncogene implicated in a variety of types of cancers. We chose miRanda (http://www.microRNA.org) as a primary prediction method. We then cloned 51 of 58 predicted microRNA precursors into pCDH-CMV-MCS-EF1-copGFP and tested for their effect on the luciferase reporter carrying the 3'-untranslated region (UTR) of CCND1 gene. Real-time PCR revealed the 45 of 51 cloned microRNA precursors expressed a relatively high level of the exogenous microRNAs which were used in our validation experiments. By an arbitrary cutoff of 35% reduction, we identified 7 microRNAs that were able to suppress Luc-CCND1-UTR activity. Among them, 4 of them were previously validated targets and the rest 3 microRNAs were validated to be positive in this study. Of interest, we found that miR-503 not only suppressed the luciferase activity, but also suppressed the endogenous CCND1 both at protein and mRNA levels. Furthermore, we showed that miR-503 was able to reduce S phase cell populations and caused cell growth inhibition, suggesting that miR-503 may be a putative tumor suppressor. This study provides a more comprehensive picture of microRNA/CCND1 interactions and it further demonstrates the importance of experimental target validation

  17. Regulation of water, salinity, and cold stress responses by salicylic acid

    Directory of Open Access Journals (Sweden)

    Kenji eMiura

    2014-01-01

    Full Text Available Salicylic acid (SA is a naturally occurring phenolic compound. SA plays an important role in the regulation of plant growth, development, ripening, and defense responses. The role of SA in the plant-pathogen relationship has been extensively investigated. In addition to defense responses, SA plays an important role in the response to abiotic stresses, including drought, low temperature, and salinity stresses. It has been suggested that SA has great agronomic potential to improve the stress tolerance of agriculturally important crops. However, the utility of SA is dependent on the concentration of the applied SA, the mode of application, and the state of the plants (e.g., developmental stage and acclimation. Generally, low concentrations of applied SA alleviate the sensitivity to abiotic stresses, and high concentrations of applied induce high levels of oxidative stress, leading to a decreased tolerance to abiotic stresses. In this chapter, the effects of SA on the water stress responses and regulation of stomatal closure are reviewed.

  18. The Effect of Music on the Human Stress Response

    Science.gov (United States)

    Thoma, Myriam V.; La Marca, Roberto; Brönnimann, Rebecca; Finkel, Linda; Ehlert, Ulrike; Nater, Urs M.

    2013-01-01

    Background Music listening has been suggested to beneficially impact health via stress-reducing effects. However, the existing literature presents itself with a limited number of investigations and with discrepancies in reported findings that may result from methodological shortcomings (e.g. small sample size, no valid stressor). It was the aim of the current study to address this gap in knowledge and overcome previous shortcomings by thoroughly examining music effects across endocrine, autonomic, cognitive, and emotional domains of the human stress response. Methods Sixty healthy female volunteers (mean age = 25 years) were exposed to a standardized psychosocial stress test after having been randomly assigned to one of three different conditions prior to the stress test: 1) relaxing music (‘Miserere’, Allegri) (RM), 2) sound of rippling water (SW), and 3) rest without acoustic stimulation (R). Salivary cortisol and salivary alpha-amylase (sAA), heart rate (HR), respiratory sinus arrhythmia (RSA), subjective stress perception and anxiety were repeatedly assessed in all subjects. We hypothesized that listening to RM prior to the stress test, compared to SW or R would result in a decreased stress response across all measured parameters. Results The three conditions significantly differed regarding cortisol response (p = 0.025) to the stressor, with highest concentrations in the RM and lowest in the SW condition. After the stressor, sAA (p=0.026) baseline values were reached considerably faster in the RM group than in the R group. HR and psychological measures did not significantly differ between groups. Conclusion Our findings indicate that music listening impacted the psychobiological stress system. Listening to music prior to a standardized stressor predominantly affected the autonomic nervous system (in terms of a faster recovery), and to a lesser degree the endocrine and psychological stress response. These findings may help better understanding the

  19. Reconstructing a Network of Stress-Response Regulators via Dynamic System Modeling of Gene Regulation

    Directory of Open Access Journals (Sweden)

    Wei-Sheng Wu

    2008-01-01

    Full Text Available Unicellular organisms such as yeasts have evolved mechanisms to respond to environmental stresses by rapidly reorganizing the gene expression program. Although many stress-response genes in yeast have been discovered by DNA microarrays, the stress-response transcription factors (TFs that regulate these stress-response genes remain to be investigated. In this study, we use a dynamic system model of gene regulation to describe the mechanism of how TFs may control a gene’s expression. Then, based on the dynamic system model, we develop the Stress Regulator Identification Algorithm (SRIA to identify stress-response TFs for six kinds of stresses. We identified some general stress-response TFs that respond to various stresses and some specific stress-response TFs that respond to one specifi c stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs is probably suffi cient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the response mechanisms to different stresses may have a bow-tie structure. Second, there may be regulatory cross-talks among different stress responses. In conclusion, this study proposes a network of stress-response regulators and the details of their actions.

  20. MicroRNA pharmacogenomics

    DEFF Research Database (Denmark)

    Rukov, Jakob Lewin; Shomron, Noam

    2011-01-01

    polymorphisms, copy number variations or differences in gene expression levels of drug metabolizing or transporting genes and drug targets. In this review paper, we focus instead on microRNAs (miRNAs): small noncoding RNAs, prevalent in metazoans, that negatively regulate gene expression in many cellular...

  1. MicroRNA-326 acts as a molecular switch in the regulation of midbrain urocortin 1 expression

    Science.gov (United States)

    Aschrafi, Armaz; Verheijen, Jan M.; Gordebeke, Peter M.; Olde Loohuis, Nikkie F.; Menting, Kelly; Jager, Amanda; Palkovits, Miklos; Geenen, Bram; Kos, Aron; Martens, Gerard J.M.; Glennon, Jeffrey C.; Kaplan, Barry B.; Gaszner, Balázs; Kozicz, Tamas

    2016-01-01

    Background Altered levels of urocortin 1 (Ucn1) in the centrally projecting Edinger–Westphal nucleus (EWcp) of depressed suicide attempters or completers mediate the brain’s response to stress, while the mechanism regulating Ucn1 expression is unknown. We tested the hypothesis that microRNAs (miRNAs), which are vital fine-tuners of gene expression during the brain’s response to stress, have the capacity to modulate Ucn1 expression. Methods Computational analysis revealed that the Ucn1 3′ untranslated region contained a conserved binding site for miR-326. We examined miR-326 and Ucn1 levels in the EWcp of depressed suicide completers. In addition, we evaluated miR-326 and Ucn1 levels in the serum and the EWcp of a chronic variable mild stress (CVMS) rat model of behavioural despair and after recovery from CVMS, respectively. Gain and loss of miR-326 function experiments examined the regulation of Ucn1 by this miRNA in cultured midbrain neurons. Results We found reduced miR-326 levels concomitant with elevated Ucn1 levels in the EWcp of depressed suicide completers as well as in the EWcp of CVMS rats. In CVMS rats fully recovered from stress, both serum and EWcp miR-326 levels rebounded to nonstressed levels. While downregulation of miR-326 levels in primary midbrain neurons enhanced Ucn1 expression levels, miR-326 overexpression selectively reduced the levels of this neuropeptide. Limitations This study lacked experiments showing that in vivo alteration of miR-326 levels alleviate depression-like behaviours. We show only correlative data for miR-325 and cocaine- and amphetamine-regulated transcript levels in the EWcp. Conclusion We identified miR-326 dysregulation in depressed suicide completers and characterized this miRNA as an upstream regulator of the Ucn1 neuropeptide expression in midbrain neurons. PMID:27045550

  2. Stress response and the adolescent transition: performance versus peer rejection stressors.

    Science.gov (United States)

    Stroud, Laura R; Foster, Elizabeth; Papandonatos, George D; Handwerger, Kathryn; Granger, Douglas A; Kivlighan, Katie T; Niaura, Raymond

    2009-01-01

    Little is known about normative variation in stress response over the adolescent transition. This study examined neuroendocrine and cardiovascular responses to performance and peer rejection stressors over the adolescent transition in a normative sample. Participants were 82 healthy children (ages 7-12 years, n = 39, 22 females) and adolescents (ages 13-17, n = 43, 20 females) recruited through community postings. Following a habituation session, participants completed a performance (public speaking, mental arithmetic, mirror tracing) or peer rejection (exclusion challenges) stress session. Salivary cortisol, salivary alpha amylase (sAA), systolic and diastolic blood pressure (SBP, DBP), and heart rate were measured throughout. Adolescents showed significantly greater cortisol, sAA, SBP, and DBP stress response relative to children. Developmental differences were most pronounced in the performance stress session for cortisol and DBP and in the peer rejection session for sAA and SBP. Heightened physiological stress responses in typical adolescents may facilitate adaptation to new challenges of adolescence and adulthood. In high-risk adolescents, this normative shift may tip the balance toward stress response dysregulation associated with depression and other psychopathology. Specificity of physiological response by stressor type highlights the importance of a multisystem approach to the psychobiology of stress and may also have implications for understanding trajectories to psychopathology.

  3. Eccentric-exercise induced inflammation attenuates the vascular responses to mental stress

    NARCIS (Netherlands)

    Paine, N.J.; Ring, C.; Aldred, S.; Bosch, J.A.; Wadley, A.J.; Veldhuijzen van Zanten, J.J.C.S.

    2013-01-01

    Mental stress has been identified as a trigger of myocardial infarction (MI), with inflammation and vascular responses to mental stress independently implicated as contributing factors. This study examined whether inflammation moderates the vascular responses to mental stress. Eighteen healthy male

  4. Growth and physiological responses to water and nutrient stress in ...

    African Journals Online (AJOL)

    Growth and physiological responses to water and nutrient stress in oil palm. ... changes in growth, physiology and nutrient concentration in response to two watering regimes (well-watered and water-stress conditions) and ... from 32 Countries:.

  5. Physiological stress response patterns during a blood donation.

    Science.gov (United States)

    Hoogerwerf, M D; Veldhuizen, I J T; Tarvainen, M P; Merz, E-M; Huis In 't Veld, E M J; de Kort, W L A M; Sluiter, J K; Frings-Dresen, M H W

    2018-03-24

    Donating blood is associated with increased psychological stress. This study investigates whether a blood donation induces physiological stress and if response patterns differ by gender, donation experience and non-acute stress. In 372 donors, physiological stress [blood pressure, pulse rate, pulse rate variability (PRV)] was measured at seven moments during routine donation. PRV was assessed using time domain [root mean square of successive differences (RMSSD)] and frequency domain [high frequency (HF) and low frequency (LF) power] parameters. Non-acute stress was assessed by questionnaire. Shape and significance of time course patterns were assessed by fitting multilevel models for each stress measure and comparing men and women, first-time and experienced donors, and donors with high and low levels of non-acute stress. Significant response patterns were found for all stress measures, where levels of systolic blood pressure (F(1,1315) = 24·2, P blood pressure (F(1,1326) = 50·9, P blood pressure/pulse rate in women; higher pulse rate in first-time donors; higher RMSSD at arrival and from screening until leaving in first-time donors; and higher LF and HF in first-time donors. This study shows an increase in physiological stress related to needle insertion, followed by a decrease when leaving the donation centre. Some group effects were also found. © 2018 International Society of Blood Transfusion.

  6. microRNA expression profiling on individual breast cancer patients identifies novel panel of circulating microRNA for early detection

    DEFF Research Database (Denmark)

    Hamam, Rimi; Ali, Arwa M.; Alsaleh, Khalid A.

    2016-01-01

    Breast cancer (BC) is the most common cancer type and the second cause of cancer-related death among women. Therefore, better understanding of breast cancer tumor biology and the identification of novel biomarkers is essential for the early diagnosis and for better disease stratification and mana......Breast cancer (BC) is the most common cancer type and the second cause of cancer-related death among women. Therefore, better understanding of breast cancer tumor biology and the identification of novel biomarkers is essential for the early diagnosis and for better disease stratification...... and management choices. Herein we developed a novel approach which relies on the isolation of circulating microRNAs through an enrichment step using speed-vacuum concentration which resulted in 5-fold increase in microRNA abundance. Global miRNA microarray expression profiling performed on individual samples...... of 46 BC and 14 controls. The expression of those microRNAs was overall higher in patients with stage I, II, and III, compared to stage IV, with potential utilization for early detection. The expression of this microRNA panel was slightly higher in the HER2 and TN compared to patients with luminal...

  7. The significance of translation regulation in the stress response

    OpenAIRE

    Picard, Flora; Loubière, Pascal; Girbal, Laurence; Bousquet, Muriel

    2013-01-01

    Background: The stress response in bacteria involves the multistage control of gene expression but is not entirely understood. To identify the translational response of bacteria in stress conditions and assess its contribution to the regulation of gene expression, the translational states of all mRNAs were compared under optimal growth condition and during nutrient (isoleucine) starvation. Results: A genome-scale study of the translational response to nutritional limitation was performed in t...

  8. Role of plant MicroRNA in cross-species regulatory networks of humans.

    Science.gov (United States)

    Zhang, Hao; Li, Yanpu; Liu, Yuanning; Liu, Haiming; Wang, Hongyu; Jin, Wen; Zhang, Yanmei; Zhang, Chao; Xu, Dong

    2016-08-08

    It has been found that microRNAs (miRNAs) can function as a regulatory factor across species. For example, food-derived plant miRNAs may pass through the gastrointestinal (GI) tract, enter into the plasma and serum of mammals, and interact with endogenous RNAs to regulate their expression. Although this new type of regulatory mechanism is not well understood, it provides a fresh look at the relationship between food consumption and physiology. To investigate this new type of mechanism, we conducted a systematic computational study to analyze the potential functions of these dietary miRNAs in the human body. In this paper, we predicted human and plant target genes using RNAhybrid and set some criteria to further filter them. Then we built the cross-species regulatory network according to the filtered targets, extracted central nodes by PageRank algorithm and built core modules. We summarized the functions of these modules to three major categories: ion transport, metabolic process and stress response, and especially some target genes are highly related to ion transport, polysaccharides and the lipid metabolic process. Through functional analysis, we found that human and plants have similar functions such as ion transport and stress response, so our study also indicates the existence of a close link between exogenous plant miRNA targets and digestive/urinary organs. According to our analysis results, we suggest that the ingestion of these plant miRNAs may have a functional impact on consuming organisms in a cross-kingdom way, and the dietary habit may affect the physiological condition at a genetic level. Our findings may be useful for discovering cross-species regulatory mechanism in further study.

  9. Intra-tumor heterogeneity of microRNA-92a, microRNA-375 and microRNA-424 in colorectal cancer

    DEFF Research Database (Denmark)

    Jepsen, Rikke Karlin; Novotny, Guy Wayne; Klarskov, Louise Laurberg

    2016-01-01

    Various microRNAs (miRNAs) have been investigated in order to improve diagnostics and risk assessment in colorectal cancer (CRC). To clarify the potential of miRNA profiling in CRC, knowledge of intra-tumor heterogeneity in expression levels is crucial. The study aim was to estimate the intra...

  10. MicroRNAs as potential biomarkers in adrenocortical cancer: progress and challenges

    Directory of Open Access Journals (Sweden)

    Nadia eCHERRADI

    2016-01-01

    Full Text Available Adrenocortical carcinoma is a rare malignancy with poor prognosis and limited therapeutic options. Over the last decade, pan-genomic analyses of genetic and epigenetic alterations and genome-wide expression profile studies allowed major advances in the understanding of the molecular genetics of adrenocortical carcinoma. Besides the well-known dysfunctional molecular pathways in adrenocortical tumors such as the IGF2 pathway, the Wnt pathway and TP53, high-throughput technologies enabled a more comprehensive genomic characterization of adrenocortical cancer. Integration of expression profile data with exome sequencing, SNP array analysis, methylation and microRNA profiling led to the identification of subgroups of malignant tumors with distinct molecular alterations and clinical outcomes. MicroRNAs post-transcriptionally silence their target gene expression either by degrading mRNA or by inhibiting translation. Although our knowledge of the contribution of deregulated microRNAs to the pathogenesis of adrenocortical carcinoma is still in its infancy, recent studies support their relevance in gene expression alterations in these tumors. Some microRNAs have been shown to carry potential diagnostic and prognostic values while others may be good candidates for therapeutic interventions. With the emergence of disease-specific blood-borne microRNAs signatures, analyses of small cohorts of patients with adrenocortical carcinoma suggest that circulating microRNAs represent promising non-invasive biomarkers of malignancy or recurrence. However, some technical challenges still remain, and most of the microRNAs reported in the literature have not yet been validated in sufficiently powered and longitudinal studies. In this review, we discuss the current knowledge regarding the deregulation of tumor-associated and circulating microRNAs in adrenocortical carcinoma patients, while emphasizing their potential significance in adrenocortical carcinoma pathogenic

  11. MicroRNA160 Modulates Plant Development and Heat Shock Protein Gene Expression to Mediate Heat Tolerance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Jeng-Shane Lin

    2018-02-01

    Full Text Available Global warming is causing a negative impact on plant growth and adversely impacts on crop yield. MicroRNAs (miRNAs are critical in regulating the expression of genes involved in plant development as well as defense responses. The effects of miRNAs on heat-stressed Arabidopsis warrants further investigation. Heat stress increased the expression of miR160 and its precursors but considerably reduced that of its targets, ARF10, ARF16, and ARF17. To study the roles of miR160 during heat stress, transgenic Arabidopsis plants overexpressing miR160 precursor a (160OE and artificial miR160 (MIM160, which mimics an inhibitor of miR160, were created. T-DNA insertion mutants of miR160 targets were also used to examine their tolerances to heat stress. Results presented that overexpressing miR160 improved seed germination and seedling survival under heat stress. The lengths of hypocotyl elongation and rachis were also longer in 160OE than the wild-type (WT plants under heat stress. Interestingly, MIM160 plants showed worse adaption to heat. In addition, arf10, arf16, and arf17 mutants presented similar phenotypes to 160OE under heat stress to advance abilities of thermotolerance. Moreover, transcriptome and qRT-PCR analyses revealed that HSP17.6A, HSP17.6II, HSP21, and HSP70B expression levels were regulated by heat in 160OE, MIM160, arf10, arf16, and arf17 plants. Hence, miR160 altered the expression of the heat shock proteins and plant development to allow plants to survive heat stress.

  12. Transactional Associations between Youths' Responses to Peer Stress and Depression: The Moderating Roles of Sex and Stress Exposure

    Science.gov (United States)

    Agoston, Anna M.; Rudolph, Karen D.

    2011-01-01

    This study examined transactional associations between responses to peer stress and depression in youth. Specifically, it tested the hypotheses that (a) depression would predict fewer effortful responses and more involuntary, dysregulated responses to peer stress over time; and (b) fewer adaptive and more maladaptive responses would predict…

  13. Stressor specificity of central neuroendocrine responses: implications for stress-related disorders.

    Science.gov (United States)

    Pacák, K; Palkovits, M

    2001-08-01

    Despite the fact that many research articles have been written about stress and stress-related diseases, no scientifically accepted definition of stress exists. Selye introduced and popularized stress as a medical and scientific idea. He did not deny the existence of stressor-specific response patterns; however, he emphasized that such responses did not constitute stress, only the shared nonspecific component. In this review we focus mainly on the similarities and differences between the neuroendocrine responses (especially the sympathoadrenal and the sympathoneuronal systems and the hypothalamo-pituitary-adrenocortical axis) among various stressors and a strategy for testing Selye's doctrine of nonspecificity. In our experiments, we used five different stressors: immobilization, hemorrhage, cold exposure, pain, or hypoglycemia. With the exception of immobilization stress, these stressors also differed in their intensities. Our results showed marked heterogeneity of neuroendocrine responses to various stressors and that each stressor has a neurochemical "signature." By examining changes of Fos immunoreactivity in various brain regions upon exposure to different stressors, we also attempted to map central stressor-specific neuroendocrine pathways. We believe the existence of stressor-specific pathways and circuits is a clear step forward in the study of the pathogenesis of stress-related disorders and their proper treatment. Finally, we define stress as a state of threatened homeostasis (physical or perceived treat to homeostasis). During stress, an adaptive compensatory specific response of the organism is activated to sustain homeostasis. The adaptive response reflects the activation of specific central circuits and is genetically and constitutionally programmed and constantly modulated by environmental factors.

  14. Regulation of MicroRNAs, and the Correlations of MicroRNAs and Their Targeted Genes by Zinc Oxide Nanoparticles in Ovarian Granulosa Cells.

    Directory of Open Access Journals (Sweden)

    Yong Zhao

    Full Text Available Zinc oxide (ZnO nanoparticles (NPs have been applied in numerous industrial products and personal care products like sunscreens and cosmetics. The released ZnO NPs from consumer and household products into the environment might pose potential health issues for animals and humans. In this study the expression of microRNAs and the correlations of microRNAs and their targeted genes in ZnO NPs treated chicken ovarian granulosa cells were investigated. ZnSO4 was used as the sole Zn2+ provider to differentiate the effects of NPs from Zn2+. It was found that ZnO-NP-5 μg/ml specifically regulated the expression of microRNAs involved in embryonic development although ZnO-NP-5 μg/ml and ZnSO4-10 μg/ml treatments produced the same intracellular Zn concentrations and resulted in similar cell growth inhibition. And ZnO-NP-5 μg/ml also specifically regulated the correlations of microRNAs and their targeted genes. This is the first investigation that intact NPs in ZnO-NP-5 μg/ml treatment specifically regulated the expression of microRNAs, and the correlations of microRNAs and their targeted genes compared to that by Zn2+. This expands our knowledge for biological effects of ZnO NPs and at the same time it raises the health concerns that ZnO NPs might adversely affect our biological systems, even the reproductive systems through regulation of specific signaling pathways.

  15. Rapid Generation of MicroRNA Sponges for MicroRNA Inhibition

    NARCIS (Netherlands)

    Kluiver, Joost; Gibcus, Johan H.; Hettinga, Chris; Adema, Annelies; Richter, Mareike K. S.; Halsema, Nancy; Slezak-Prochazka, Izabella; Ding, Ye; Kroesen, Bart-Jan; van den Berg, Anke

    2012-01-01

    MicroRNA (miRNA) sponges are transcripts with repeated miRNA antisense sequences that can sequester miRNAs from endogenous targets. MiRNA sponges are valuable tools for miRNA loss-of-function studies both in vitro and in vivo. We developed a fast and flexible method to generate miRNA sponges and

  16. Comprehensive phenotypic analysis of rice (Oryza sativa) response to salinity stress

    KAUST Repository

    Pires, Inê s S.; Negrã o, Só nia; Oliveira, M. Margarida; Purugganan, Michael D.

    2015-01-01

    affected by salt stress in rice, which puts in question the importance of K+/Na+ when analyzing rice salt stress response. Not only do our results contribute to improve our global understanding of salt stress response in an important crop, but we also use

  17. Depersonalization experiences in undergraduates are related to heightened stress cortisol responses.

    Science.gov (United States)

    Giesbrecht, Timo; Smeets, Tom; Merckelbach, Harald; Jelicic, Marko

    2007-04-01

    The relationship between dissociative tendencies, as measured with the Dissociative Experiences Scale and its amnesia, absorption/imaginative involvement, and depersonalization/derealization subscales, and HPA axis functioning was studied in 2 samples of undergraduate students (N = 58 and 67). Acute stress was induced by means of the Trier Social Stress Test. Subjective and physiological stress (i.e., cortisol) responses were measured. Individuals high on the depersonalization/derealization subscale of the Dissociative Experiences Scale exhibited more pronounced cortisol responses, while individuals high on the absorption subscale showed attenuated responses. Interestingly, subjective stress experiences, as indicated by the Tension-Anxiety subscale of the Profile of Mood States, were positively related to trait dissociation. The present findings illustrate how various types of dissociation (i.e., depersonalization/derealization, absorption) are differentially related to cortisol stress responses.

  18. Low lifetime stress exposure is associated with reduced stimulus–response memory

    Science.gov (United States)

    Goldfarb, Elizabeth V.; Shields, Grant S.; Daw, Nathaniel D.; Slavich, George M.; Phelps, Elizabeth A.

    2017-01-01

    Exposure to stress throughout life can cumulatively influence later health, even among young adults. The negative effects of high cumulative stress exposure are well-known, and a shift from episodic to stimulus–response memory has been proposed to underlie forms of psychopathology that are related to high lifetime stress. At the other extreme, effects of very low stress exposure are mixed, with some studies reporting that low stress leads to better outcomes, while others demonstrate that low stress is associated with diminished resilience and negative outcomes. However, the influence of very low lifetime stress exposure on episodic and stimulus–response memory is unknown. Here we use a lifetime stress assessment system (STRAIN) to assess cumulative lifetime stress exposure and measure memory performance in young adults reporting very low and moderate levels of lifetime stress exposure. Relative to moderate levels of stress, very low levels of lifetime stress were associated with reduced use and retention (24 h later) of stimulus–response (SR) associations, and a higher likelihood of using context memory. Further, computational modeling revealed that participants with low levels of stress exhibited worse expression of memory for SR associations than those with moderate stress. These results demonstrate that very low levels of stress exposure can have negative effects on cognition. PMID:28298555

  19. Glucocorticoids mediate stress-induced impairment of retrieval of stimulus-response memory.

    Science.gov (United States)

    Atsak, Piray; Guenzel, Friederike M; Kantar-Gok, Deniz; Zalachoras, Ioannis; Yargicoglu, Piraye; Meijer, Onno C; Quirarte, Gina L; Wolf, Oliver T; Schwabe, Lars; Roozendaal, Benno

    2016-05-01

    Acute stress and elevated glucocorticoid hormone levels are well known to impair the retrieval of hippocampus-dependent 'declarative' memory. Recent findings suggest that stress might also impair the retrieval of non-hippocampal memories. In particular, stress shortly before retention testing was shown to impair the retrieval of striatal stimulus-response associations in humans. However, the mechanism underlying this stress-induced retrieval impairment of non-hippocampal stimulus-response memory remains elusive. In the present study, we investigated whether an acute elevation in glucocorticoid levels mediates the impairing effects of stress on retrieval of stimulus-response memory. Male Sprague-Dawley rats were trained on a stimulus-response task in an eight-arm radial maze until they learned to associate a stimulus, i.e., cue, with a food reward in one of the arms. Twenty-four hours after successful acquisition, they received a systemic injection of vehicle, corticosterone (1mg/kg), the corticosterone-synthesis inhibitor metyrapone (35mg/kg) or were left untreated 1h before retention testing. We found that the corticosterone injection impaired the retrieval of stimulus-response memory. We further found that the systemic injection procedure per se was stressful as the vehicle administration also increased plasma corticosterone levels and impaired the retrieval of stimulus-response memory. However, memory retrieval was not impaired when rats were tested 2min after the systemic vehicle injection, before any stress-induced elevation in corticosterone levels had occurred. Moreover, metyrapone treatment blocked the effect of injection stress on both plasma corticosterone levels and memory retrieval impairment, indicating that the endogenous corticosterone response mediates the stress-induced memory retrieval impairment. None of the treatments affected rats' locomotor activity or motivation to search for the food reward within the maze. These findings show that stress

  20. Renal sympathetic nerve, blood flow, and epithelial transport responses to thermal stress.

    Science.gov (United States)

    Wilson, Thad E

    2017-05-01

    Thermal stress is a profound sympathetic stress in humans; kidney responses involve altered renal sympathetic nerve activity (RSNA), renal blood flow, and renal epithelial transport. During mild cold stress, RSNA spectral power but not total activity is altered, renal blood flow is maintained or decreased, and epithelial transport is altered consistent with a sympathetic stress coupled with central volume loaded state. Hypothermia decreases RSNA, renal blood flow, and epithelial transport. During mild heat stress, RSNA is increased, renal blood flow is decreased, and epithelial transport is increased consistent with a sympathetic stress coupled with a central volume unloaded state. Hyperthermia extends these directional changes, until heat illness results. Because kidney responses are very difficult to study in humans in vivo, this review describes and qualitatively evaluates an in vivo human skin model of sympathetically regulated epithelial tissue compared to that of the nephron. This model utilizes skin responses to thermal stress, involving 1) increased skin sympathetic nerve activity (SSNA), decreased skin blood flow, and suppressed eccrine epithelial transport during cold stress; and 2) increased SSNA, skin blood flow, and eccrine epithelial transport during heat stress. This model appears to mimic aspects of the renal responses. Investigations of skin responses, which parallel certain renal responses, may aid understanding of epithelial-sympathetic nervous system interactions during cold and heat stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Age-Related Decrease in Stress Responsiveness and Proactive Coping in Male Mice.

    Science.gov (United States)

    Oh, Hee-Jin; Song, Minah; Kim, Young Ki; Bae, Jae Ryong; Cha, Seung-Yun; Bae, Ji Young; Kim, Yeongmin; You, Minsu; Lee, Younpyo; Shim, Jieun; Maeng, Sungho

    2018-01-01

    Coping is a strategic approach to dealing with stressful situations. Those who use proactive coping strategies tend to accept changes and act before changes are expected. In contrast, those who use reactive coping are less flexible and more likely to act in response to changes. However, little research has assessed how coping style changes with age. This study investigated age-related changes in coping strategies and stress responsiveness and the influence of age on the processing of conditioned fear memory in 2-, 12- and 23-month-old male mice. Coping strategy was measured by comparing the escape latency in an active avoidance test and by comparing responses to a shock prod. The results showed that proactivity in coping response gradually decreased with age. Stress responsiveness, measured by stress-induced concentration of corticosterone, was also highest in 2-month-old mice and decreased with age. Consolidation of fear memory was highest in 12-month-old mice and was negatively correlated with the degree of stress responsiveness and proactivity in coping. Fear extinction did not differ among age groups and was not correlated with stress responsiveness or the proactivity of coping. However, the maintenance of extinct fear memory, which was best in 2-month-old mice and worst in 12-month-old mice, was negatively correlated with stress responsiveness but not with coping style. Age-dependent changes in the expression of glucocorticoid receptor (GR) and its regulatory co-chaperones, which are accepted mechanisms for stress hormone stimulation, were measured in the hippocampus. The expression of GR was increased at 12 months compared to other age groups. There were no differences in Hsp70 and BAG1 expression by age. These results can be summarized as follows: (1) stress responsiveness and proactivity in coping decreased with age class; (2) consolidation of fear memory was negatively correlated with both stress responsiveness and proactivity; however, maintenance of

  2. Sex differences in the stress response in SD rats.

    Science.gov (United States)

    Lu, Jing; Wu, Xue-Yan; Zhu, Qiong-Bin; Li, Jia; Shi, Li-Gen; Wu, Juan-Li; Zhang, Qi-Jun; Huang, Man-Li; Bao, Ai-Min

    2015-05-01

    Sex differences play an important role in depression, the basis of which is an excessive stress response. We aimed at revealing the neurobiological sex differences in the same study in acute- and chronically-stressed rats. Female Sprague-Dawley (SD) rats were randomly divided into 6 groups: chronic unpredictable mild stress (CUMS), acute foot shock (FS) and controls, animals in all 3 groups were sacrificed in proestrus or diestrus. Male SD rats were randomly divided into 3 groups: CUMS, FS and controls. Comparisons were made of behavioral changes in CUMS and control rats, plasma levels of corticosterone (CORT), testosterone (T) and estradiol (E2), and of the hypothalamic mRNA-expression of stress-related molecules, i.e. estrogen receptor α and β, androgen receptor, aromatase, mineralocorticoid receptor, glucocorticoid receptor, corticotropin-releasing hormone, arginine vasopressin and oxytocin. CUMS resulted in disordered estrus cycles, more behavioral and hypothalamic stress-related molecules changes and a stronger CORT response in female rats compared with male rats. Female rats also showed decreased E2 and T levels after FS and CUMS, while male FS rats showed increased E2 and male CUMS rats showed decreased T levels. Stress affects the behavioral, endocrine and the molecular response of the stress systems in the hypothalamus of SD rats in a clear sexual dimorphic way, which has parallels in human data on stress and depression. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Spaceflight Modifies Escherichia coli Gene Expression in Response to Antibiotic Exposure and Reveals Role of Oxidative Stress Response

    Directory of Open Access Journals (Sweden)

    Thomas R. Aunins

    2018-03-01

    Full Text Available Bacteria grown in space experiments under microgravity conditions have been found to undergo unique physiological responses, ranging from modified cell morphology and growth dynamics to a putative increased tolerance to antibiotics. A common theory for this behavior is the loss of gravity-driven convection processes in the orbital environment, resulting in both reduction of extracellular nutrient availability and the accumulation of bacterial byproducts near the cell. To further characterize the responses, this study investigated the transcriptomic response of Escherichia coli to both microgravity and antibiotic concentration. E. coli was grown aboard International Space Station in the presence of increasing concentrations of the antibiotic gentamicin with identical ground controls conducted on Earth. Here we show that within 49 h of being cultured, E. coli adapted to grow at higher antibiotic concentrations in space compared to Earth, and demonstrated consistent changes in expression of 63 genes in response to an increase in drug concentration in both environments, including specific responses related to oxidative stress and starvation response. Additionally, we find 50 stress-response genes upregulated in response to the microgravity when compared directly to the equivalent concentration in the ground control. We conclude that the increased antibiotic tolerance in microgravity may be attributed not only to diminished transport processes, but also to a resultant antibiotic cross-resistance response conferred by an overlapping effect of stress response genes. Our data suggest that direct stresses of nutrient starvation and acid-shock conveyed by the microgravity environment can incidentally upregulate stress response pathways related to antibiotic stress and in doing so contribute to the increased antibiotic stress tolerance observed for bacteria in space experiments. These results provide insights into the ability of bacteria to adapt under

  4. Spaceflight Modifies Escherichia coli Gene Expression in Response to Antibiotic Exposure and Reveals Role of Oxidative Stress Response.

    Science.gov (United States)

    Aunins, Thomas R; Erickson, Keesha E; Prasad, Nripesh; Levy, Shawn E; Jones, Angela; Shrestha, Shristi; Mastracchio, Rick; Stodieck, Louis; Klaus, David; Zea, Luis; Chatterjee, Anushree

    2018-01-01

    Bacteria grown in space experiments under microgravity conditions have been found to undergo unique physiological responses, ranging from modified cell morphology and growth dynamics to a putative increased tolerance to antibiotics. A common theory for this behavior is the loss of gravity-driven convection processes in the orbital environment, resulting in both reduction of extracellular nutrient availability and the accumulation of bacterial byproducts near the cell. To further characterize the responses, this study investigated the transcriptomic response of Escherichia coli to both microgravity and antibiotic concentration. E. coli was grown aboard International Space Station in the presence of increasing concentrations of the antibiotic gentamicin with identical ground controls conducted on Earth. Here we show that within 49 h of being cultured, E. coli adapted to grow at higher antibiotic concentrations in space compared to Earth, and demonstrated consistent changes in expression of 63 genes in response to an increase in drug concentration in both environments, including specific responses related to oxidative stress and starvation response. Additionally, we find 50 stress-response genes upregulated in response to the microgravity when compared directly to the equivalent concentration in the ground control. We conclude that the increased antibiotic tolerance in microgravity may be attributed not only to diminished transport processes, but also to a resultant antibiotic cross-resistance response conferred by an overlapping effect of stress response genes. Our data suggest that direct stresses of nutrient starvation and acid-shock conveyed by the microgravity environment can incidentally upregulate stress response pathways related to antibiotic stress and in doing so contribute to the increased antibiotic stress tolerance observed for bacteria in space experiments. These results provide insights into the ability of bacteria to adapt under extreme stress

  5. Spaceflight Modifies Escherichia coli Gene Expression in Response to Antibiotic Exposure and Reveals Role of Oxidative Stress Response

    Science.gov (United States)

    Aunins, Thomas R.; Erickson, Keesha E.; Prasad, Nripesh; Levy, Shawn E.; Jones, Angela; Shrestha, Shristi; Mastracchio, Rick; Stodieck, Louis; Klaus, David; Zea, Luis; Chatterjee, Anushree

    2018-01-01

    Bacteria grown in space experiments under microgravity conditions have been found to undergo unique physiological responses, ranging from modified cell morphology and growth dynamics to a putative increased tolerance to antibiotics. A common theory for this behavior is the loss of gravity-driven convection processes in the orbital environment, resulting in both reduction of extracellular nutrient availability and the accumulation of bacterial byproducts near the cell. To further characterize the responses, this study investigated the transcriptomic response of Escherichia coli to both microgravity and antibiotic concentration. E. coli was grown aboard International Space Station in the presence of increasing concentrations of the antibiotic gentamicin with identical ground controls conducted on Earth. Here we show that within 49 h of being cultured, E. coli adapted to grow at higher antibiotic concentrations in space compared to Earth, and demonstrated consistent changes in expression of 63 genes in response to an increase in drug concentration in both environments, including specific responses related to oxidative stress and starvation response. Additionally, we find 50 stress-response genes upregulated in response to the microgravity when compared directly to the equivalent concentration in the ground control. We conclude that the increased antibiotic tolerance in microgravity may be attributed not only to diminished transport processes, but also to a resultant antibiotic cross-resistance response conferred by an overlapping effect of stress response genes. Our data suggest that direct stresses of nutrient starvation and acid-shock conveyed by the microgravity environment can incidentally upregulate stress response pathways related to antibiotic stress and in doing so contribute to the increased antibiotic stress tolerance observed for bacteria in space experiments. These results provide insights into the ability of bacteria to adapt under extreme stress

  6. Impact of gastro-oesophageal reflux on microRNA expression, location and function.

    Science.gov (United States)

    Smith, Cameron M; Michael, Michael Z; Watson, David I; Tan, Grace; Astill, David St J; Hummel, Richard; Hussey, Damian J

    2013-01-08

    Ulceration of the oesophageal squamous mucosa (ulcerative oesophagitis) is a pathological manifestation of gastro-oesophageal reflux disease, and is a major risk factor for the development of Barrett's oesophagus. Barrett's oesophagus is characterised by replacement of reflux-damaged oesophageal squamous epithelium with a columnar intestinal-like epithelium. We previously reported discovery of microRNAs that are differentially expressed between oesophageal squamous mucosa and Barrett's oesophagus mucosa. Now, to better understand early steps in the initiation of Barrett's oesophagus, we assessed the expression, location and function of these microRNAs in oesophageal squamous mucosa from individuals with ulcerative oesophagitis. Quantitative real-time PCR was used to compare miR-21, 143, 145, 194, 203, 205 and 215 expression levels in oesophageal mucosa from individuals without pathological gastro-oesophageal reflux to individuals with ulcerative oesophagitis. Correlations between microRNA expression and messenger RNA differentiation markers BMP-4, CK8 and CK14 were analyzed. The cellular localisation of microRNAs within the oesophageal mucosa was determined using in-situ hybridisation. microRNA involvement in proliferation and apoptosis was assessed following transfection of a human squamous oesophageal mucosal cell line (Het-1A). miR-143, miR-145 and miR-205 levels were significantly higher in gastro-oesophageal reflux compared with controls. Elevated miR-143 expression correlated with BMP-4 and CK8 expression, and elevated miR-205 expression correlated negatively with CK14 expression. Endogenous miR-143, miR-145 and miR-205 expression was localised to the basal layer of the oesophageal epithelium. Transfection of miR-143, 145 and 205 mimics into Het-1A cells resulted in increased apoptosis and decreased proliferation. Elevated miR-143, miR-145 and miR-205 expression was observed in oesophageal squamous mucosa of individuals with ulcerative oesophagitis. These mi

  7. Abnormal stress responsivity in a rodent developmental disruption model of schizophrenia.

    Science.gov (United States)

    Zimmerman, Eric C; Bellaire, Mark; Ewing, Samuel G; Grace, Anthony A

    2013-10-01

    Although numerous studies have implicated stress in the pathophysiology of schizophrenia, less is known about how the effects of stress interact with genetic, developmental, and/or environmental determinants to promote disease progression. In particular, it has been proposed that in humans, stress exposure in adolescence could combine with a predisposition towards increased stress sensitivity, leading to prodromal symptoms and eventually psychosis. However, the neurobiological substrates for this interaction are not fully characterized. Previous work in our lab has demonstrated that rats born to dams administered with the DNA-methylating agent methylazoxymethanol acetate (MAM) at gestational day 17 exhibit as adults behavioral and anatomical abnormalities consistent with those observed in patients with schizophrenia. Here, we examined behavioral and neuroendocrine responses to stress in the MAM model of schizophrenia. MAM-treated male rats were exposed to acute and repeated footshock stress at prepubertal, peripubteral, and adult ages. Ultrasonic vocalizations (USVs), freezing, and corticosterone responses were quantified. We found that juvenile MAM-treated rats emitted significantly more calls, spent more time vocalizing, emitted calls at a higher rate, and showed more freezing in response to acute footshock stress when compared with their saline (SAL) treated counterparts, and that this difference is not present in older animals. In addition, adolescent MAM-treated animals displayed a blunted HPA axis corticosterone response to acute footshock that did not adapt after 10 days of stress exposure. These data demonstrate abnormal stress responsivity in the MAM model of schizophrenia and suggest that these animals are more sensitive to the effects of stress in youth.

  8. Statistics of the Von Mises Stress Response For Structures Subjected To Random Excitations

    Directory of Open Access Journals (Sweden)

    Mu-Tsang Chen

    1998-01-01

    Full Text Available Finite element-based random vibration analysis is increasingly used in computer aided engineering software for computing statistics (e.g., root-mean-square value of structural responses such as displacements, stresses and strains. However, these statistics can often be computed only for Cartesian responses. For the design of metal structures, a failure criterion based on an equivalent stress response, commonly known as the von Mises stress, is more appropriate and often used. This paper presents an approach for computing the statistics of the von Mises stress response for structures subjected to random excitations. Random vibration analysis is first performed to compute covariance matrices of Cartesian stress responses. Monte Carlo simulation is then used to perform scatter and failure analyses using the von Mises stress response.

  9. Enzyme-free electrochemical detection of microRNA-21 using immobilized hairpin probes and a target-triggered hybridization chain reaction amplification strategy

    International Nuclear Information System (INIS)

    Liu, Hongying; Bei, Xiaoqiong; Xia, Qiuting; Fu, Yan; Zhang, Shi; Liu, Maochuan; Fan, Kai; Zhang, Mingzhen; Yang, Yong

    2016-01-01

    We describe a sensitive enzyme-free bioassay for the determination of microRNA-21. It is based on a combination of target-triggered hybridization chain reaction, tagging with CdTe quantum dots (QDs), and anodic stripping voltammetry. Firstly, a thiolated capture hairpin probe SH-HP1 was immobilized on the surface of a gold electrode. HP1 unfolds in the presence of microRNA-21. If hairpin probe 2 (HP2) is present, a HP1-HP2 complex will be formed which possesses an exposed stem of HP2, and microRNA is released in parallel. The released microRNA-21 triggers a hybridization chain reaction and this leads to form an exposed DNA segment of HP2 and cycle use microRNA-21. With the aid of assistant DNA A1 and A2, the exposed DNA segment of HP2 progressed to a long double strand. The strand is rich in CdTe QDs with the help of QDs-A1. Then, the attached QDs were dissolved with HNO 3 to give dissolved Cd(II) ions. Finally, the corresponding electrochemical current response of Cd(II) is monitored by anodic stripping voltammetry and used to quantify the concentration of microRNA-21. More microRNA-21 participated in this reaction increases the number of CdTe QDs, which results in increased electrochemical current. Thus, an ultrasensitive detection of microRNA-21 is accomplished by anodic stripping voltammetry. This gene assay displays a detection limit as low as 33 aM. It can discriminate between complementary DNA sequence and single-base mismatched DNA, indicating its high specificity. (author)

  10. MicroRNAs in skin tissue engineering.

    Science.gov (United States)

    Miller, Kyle J; Brown, David A; Ibrahim, Mohamed M; Ramchal, Talisha D; Levinson, Howard

    2015-07-01

    35.2 million annual cases in the U.S. require clinical intervention for major skin loss. To meet this demand, the field of skin tissue engineering has grown rapidly over the past 40 years. Traditionally, skin tissue engineering relies on the "cell-scaffold-signal" approach, whereby isolated cells are formulated into a three-dimensional substrate matrix, or scaffold, and exposed to the proper molecular, physical, and/or electrical signals to encourage growth and differentiation. However, clinically available bioengineered skin equivalents (BSEs) suffer from a number of drawbacks, including time required to generate autologous BSEs, poor allogeneic BSE survival, and physical limitations such as mass transfer issues. Additionally, different types of skin wounds require different BSE designs. MicroRNA has recently emerged as a new and exciting field of RNA interference that can overcome the barriers of BSE design. MicroRNA can regulate cellular behavior, change the bioactive milieu of the skin, and be delivered to skin tissue in a number of ways. While it is still in its infancy, the use of microRNAs in skin tissue engineering offers the opportunity to both enhance and expand a field for which there is still a vast unmet clinical need. Here we give a review of skin tissue engineering, focusing on the important cellular processes, bioactive mediators, and scaffolds. We further discuss potential microRNA targets for each individual component, and we conclude with possible future applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Hydrogen-peroxide-induced oxidative stress responses in Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, A.; He, Z.; Redding-Johanson, A.M.; Mukhopadhyay, A.; Hemme, C.L.; Joachimiak, M.P.; Bender, K.S.; Keasling, J.D.; Stahl, D.A.; Fields, M.W.; Hazen, T.C.; Arkin, A.P.; Wall, J.D.; Zhou, J.; Luo, F.; Deng, Y.; He, Q.

    2010-07-01

    To understand how sulphate-reducing bacteria respond to oxidative stresses, the responses of Desulfovibrio vulgaris Hildenborough to H{sub 2}O{sub 2}-induced stresses were investigated with transcriptomic, proteomic and genetic approaches. H{sub 2}O{sub 2} and induced chemical species (e.g. polysulfide, ROS) and redox potential shift increased the expressions of the genes involved in detoxification, thioredoxin-dependent reduction system, protein and DNA repair, and decreased those involved in sulfate reduction, lactate oxidation and protein synthesis. A gene coexpression network analysis revealed complicated network interactions among differentially expressed genes, and suggested possible importance of several hypothetical genes in H{sub 2}O{sub 2} stress. Also, most of the genes in PerR and Fur regulons were highly induced, and the abundance of a Fur regulon protein increased. Mutant analysis suggested that PerR and Fur are functionally overlapped in response to stresses induced by H{sub 2}O{sub 2} and reaction products, and the upregulation of thioredoxin-dependent reduction genes was independent of PerR or Fur. It appears that induction of those stress response genes could contribute to the increased resistance of deletion mutants to H{sub 2}O{sub 2}-induced stresses. In addition, a conceptual cellular model of D. vulgaris responses to H{sub 2}O{sub 2} stress was constructed to illustrate that this bacterium may employ a complicated molecular mechanism to defend against the H{sub 2}O{sub 2}-induced stresses.

  12. TNF-α-Induced microRNAs Control Dystrophin Expression in Becker Muscular Dystrophy.

    Science.gov (United States)

    Fiorillo, Alyson A; Heier, Christopher R; Novak, James S; Tully, Christopher B; Brown, Kristy J; Uaesoontrachoon, Kitipong; Vila, Maria C; Ngheim, Peter P; Bello, Luca; Kornegay, Joe N; Angelini, Corrado; Partridge, Terence A; Nagaraju, Kanneboyina; Hoffman, Eric P

    2015-09-08

    The amount and distribution of dystrophin protein in myofibers and muscle is highly variable in Becker muscular dystrophy and in exon-skipping trials for Duchenne muscular dystrophy. Here, we investigate a molecular basis for this variability. In muscle from Becker patients sharing the same exon 45-47 in-frame deletion, dystrophin levels negatively correlate with microRNAs predicted to target dystrophin. Seven microRNAs inhibit dystrophin expression in vitro, and three are validated in vivo (miR-146b/miR-374a/miR-31). microRNAs are expressed in dystrophic myofibers and increase with age and disease severity. In exon-skipping-treated mdx mice, microRNAs are significantly higher in muscles with low dystrophin rescue. TNF-α increases microRNA levels in vitro whereas NFκB inhibition blocks this in vitro and in vivo. Collectively, these data show that microRNAs contribute to variable dystrophin levels in muscular dystrophy. Our findings suggest a model where chronic inflammation in distinct microenvironments induces pathological microRNAs, initiating a self-sustaining feedback loop that exacerbates disease progression. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. TNF-α-Induced microRNAs Control Dystrophin Expression in Becker Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Alyson A. Fiorillo

    2015-09-01

    Full Text Available The amount and distribution of dystrophin protein in myofibers and muscle is highly variable in Becker muscular dystrophy and in exon-skipping trials for Duchenne muscular dystrophy. Here, we investigate a molecular basis for this variability. In muscle from Becker patients sharing the same exon 45–47 in-frame deletion, dystrophin levels negatively correlate with microRNAs predicted to target dystrophin. Seven microRNAs inhibit dystrophin expression in vitro, and three are validated in vivo (miR-146b/miR-374a/miR-31. microRNAs are expressed in dystrophic myofibers and increase with age and disease severity. In exon-skipping-treated mdx mice, microRNAs are significantly higher in muscles with low dystrophin rescue. TNF-α increases microRNA levels in vitro whereas NFκB inhibition blocks this in vitro and in vivo. Collectively, these data show that microRNAs contribute to variable dystrophin levels in muscular dystrophy. Our findings suggest a model where chronic inflammation in distinct microenvironments induces pathological microRNAs, initiating a self-sustaining feedback loop that exacerbates disease progression.

  14. Sex and stress: Men and women show different cortisol responses to psychological stress induced by the Trier social stress test and the Iowa singing social stress test.

    Science.gov (United States)

    Reschke-Hernández, Alaine E; Okerstrom, Katrina L; Bowles Edwards, Angela; Tranel, Daniel

    2017-01-02

    Acute psychological stress affects each of us in our daily lives and is increasingly a topic of discussion for its role in mental illness, aging, cognition, and overall health. A better understanding of how such stress affects the body and mind could contribute to the development of more effective clinical interventions and prevention practices. Over the past 3 decades, the Trier Social Stress Test (TSST) has been widely used to induce acute stress in a laboratory setting based on the principles of social evaluative threat, namely, a judged speech-making task. A comparable alternative task may expand options for examining acute stress in a controlled laboratory setting. This study uses a within-subjects design to examine healthy adult participants' (n = 20 men, n = 20 women) subjective stress and salivary cortisol responses to the standard TSST (involving public speaking and math) and the newly created Iowa Singing Social Stress Test (I-SSST). The I-SSST is similar to the TSST but with a new twist: public singing. Results indicated that men and women reported similarly high levels of subjective stress in response to both tasks. However, men and women demonstrated different cortisol responses; men showed a robust response to both tasks, and women displayed a lesser response. These findings are in line with previous literature and further underscore the importance of examining possible sex differences throughout various phases of research, including design, analysis, and interpretation of results. Furthermore, this nascent examination of the I-SSST suggests a possible alternative for inducing stress in the laboratory. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. microRNA expression in the neural retina: Focus on Müller glia.

    Science.gov (United States)

    Quintero, Heberto; Lamas, Mónica

    2018-03-01

    The neural retina hosts a unique specialized type of macroglial cell that not only preserves retinal homeostasis, function, and integrity but also may serve as a source of new neurons during regenerative processes: the Müller cell. Precise microRNA-driven mechanisms of gene regulation impel and direct the processes of Müller glia lineage acquisition from retinal progenitors during development, the triggering of their response to retinal degeneration and, in some cases, Müller cell reprogramming and regenerative events. In this review we survey the recent reports describing, through functional assays, the regulatory role of microRNAs in Müller cell physiology, differentiation potential, and retinal pathology. We discuss also the evidence based on expression analysis that points out the relevance of a Müller glia-specific microRNA signature that would orchestrate these processes. © 2017 Wiley Periodicals, Inc.

  16. Cortisol Stress Response Variability in Early Adolescence Attachment, Affect and Sex

    Science.gov (United States)

    Cameron, Catherine Ann; McKay, Stacey; Susman, Elizabeth J.; Wynne-Edwards, Katherine; Wright, Joan M.; Weinberg, Joanne

    2017-01-01

    Attachment, affect, and sex shape responsivity to psychosocial stress. Concurrent social contexts influence cortisol secretion, a stress hormone and biological marker of hypothalamic–pituitary–adrenal axis activity. Patterns of attachment, emotion status, and sex were hypothesized to relate to bifurcated, that is, accentuated and attenuated, cortisol reactivity. The theoretical framework for this study posits that multiple individual differences mediate a cortisol stress response. The effects of two psychosocial stress interventions, a modified Trier Social Stress Test for Teens and the Frustration Social Stressor for Adolescents were developed and investigated with early adolescents. Both of these protocols induced a significant stress reaction and evoked predicted bifurcation in cortisol responses; an increase or decrease from baseline to reactivity. In Study I, 120 predominantly middle-class, Euro-Canadian early adolescents with a mean age of 13.43 years were studied. The girls' attenuated cortisol reactivity to the public performance stressor related significantly to their self-reported lower maternal-attachment and higher trait-anger. In Study II, a community sample of 146 predominantly Euro-Canadian middle-class youth, with an average age of 14.5 years participated. Their self-reports of higher trait-anger and trait-anxiety, and lower parental attachment by both sexes related differentially to accentuated and attenuated cortisol reactivity to the frustration stressor. Thus, attachment, affect, sex, and the stressor contextual factors were associated with the adrenal-cortical responses of these adolescents through complex interactions. Further studies of individual differences in physiological responses to stress are called for in order to clarify the identities of concurrent protective and risk factors in the psychosocial stress and physiological stress responses of early adolescents. PMID:27468997

  17. Cortisol Stress Response Variability in Early Adolescence: Attachment, Affect and Sex.

    Science.gov (United States)

    Cameron, Catherine Ann; McKay, Stacey; Susman, Elizabeth J; Wynne-Edwards, Katherine; Wright, Joan M; Weinberg, Joanne

    2017-01-01

    Attachment, affect, and sex shape responsivity to psychosocial stress. Concurrent social contexts influence cortisol secretion, a stress hormone and biological marker of hypothalamic-pituitary-adrenal axis activity. Patterns of attachment, emotion status, and sex were hypothesized to relate to bifurcated, that is, accentuated and attenuated, cortisol reactivity. The theoretical framework for this study posits that multiple individual differences mediate a cortisol stress response. The effects of two psychosocial stress interventions, a modified Trier Social Stress Test for Teens and the Frustration Social Stressor for Adolescents were developed and investigated with early adolescents. Both of these protocols induced a significant stress reaction and evoked predicted bifurcation in cortisol responses; an increase or decrease from baseline to reactivity. In Study I, 120 predominantly middle-class, Euro-Canadian early adolescents with a mean age of 13.43 years were studied. The girls' attenuated cortisol reactivity to the public performance stressor related significantly to their self-reported lower maternal-attachment and higher trait-anger. In Study II, a community sample of 146 predominantly Euro-Canadian middle-class youth, with an average age of 14.5 years participated. Their self-reports of higher trait-anger and trait-anxiety, and lower parental attachment by both sexes related differentially to accentuated and attenuated cortisol reactivity to the frustration stressor. Thus, attachment, affect, sex, and the stressor contextual factors were associated with the adrenal-cortical responses of these adolescents through complex interactions. Further studies of individual differences in physiological responses to stress are called for in order to clarify the identities of concurrent protective and risk factors in the psychosocial stress and physiological stress responses of early adolescents.

  18. Vaccine-induced inflammation attenuates the vascular responses to mental stress

    NARCIS (Netherlands)

    Paine, N.J.; Ring, C.; Bosch, J.A.; Drayson, M.T.; Aldred, S.; Veldhuijzen van Zanten, J.J.C.S.

    2014-01-01

    Inflammation is associated with poorer vascular function, with evidence to suggest that inflammation can also impair the vascular responses to mental stress. This study examined the effects of vaccine-induced inflammation on vascular responses to mental stress in healthy participants. Eighteen male

  19. A conformation-induced fluorescence method for microRNA detection

    DEFF Research Database (Denmark)

    Aw, Sherry S; Tang, Melissa Xm; Teo, Yin Nah

    2016-01-01

    and quantify microRNAs may aid research into novel aspects of microRNA biology and contribute to the development of diagnostics. By introducing an additional stem loop into the fluorescent RNA Spinach and altering its 3' and 5' ends, we have generated a new RNA, Pandan, that functions as the basis for a micro......MicroRNAs play important roles in a large variety of biological systems and processes through their regulation of target mRNA expression, and show promise as clinical biomarkers. However, their small size presents challenges for tagging or direct detection. Innovation in techniques to sense......RNA sensor. Pandan contains two sequence-variable stem loops that encode complementary sequence for a target microRNA of interest. In its sensor form, it requires the binding of a target microRNA in order to reconstitute the RNA scaffold for fluorophore binding and fluorescence. Binding of the target micro...

  20. Yeast signaling pathways in the oxidative stress response

    Energy Technology Data Exchange (ETDEWEB)

    Ikner, Aminah [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States); Shiozaki, Kazuhiro [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States)]. E-mail: kshiozaki@ucdavis.edu

    2005-01-06

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed.

  1. Yeast signaling pathways in the oxidative stress response

    International Nuclear Information System (INIS)

    Ikner, Aminah; Shiozaki, Kazuhiro

    2005-01-01

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed

  2. Effects of a chronic stress treatment on vaccinal response in lambs.

    Science.gov (United States)

    Destrez, A; Boissy, A; Guilloteau, L; Andanson, S; Souriau, A; Laroucau, K; Chaillou, E; Deiss, V

    2017-05-01

    Farming systems can expose animals to chronic mild stress which is known to induce negative affective state. Affective state in animals, as in humans, can be assessed through behavioral cues. This study aimed to describe the effect of a chronic mild stress, known to induce a negative affective state, on sheep health through their response to vaccination. The study used 15 lambs subjected to a model of chronic mild stress for 15 weeks and 15 lambs reared under conventional farming as a control group. After 7 weeks of stressful treatment, the lambs were individually exposed to a judgment bias test to assess a putative stress-induced 'pessimism.' After 15 weeks of stressful treatment, antibody immune response was measured after an injection of a live vaccine challenge (Chlamydia abortus attenuated vaccine strain 1B). Stressed lambs displayed a pessimistic-like perception in the judgment bias test, revealing a negative affective state. Stressed and control animals showed different immunological reactions to vaccine challenge: stressed sheep had lower hemoglobin concentrations and higher platelet, granulocyte and acute-phase protein concentrations. Antibody response induced by the vaccine strain was not different between stressed and control sheep. Our results suggest that negative affective state induced by chronic stress treatment may induce a stronger inflammatory response to vaccine challenge in sheep. Improvement of animal health may be achieved through consideration of stressors that may affect the emotional and immunological state of sheep.

  3. Similar cold stress induces sex-specific neuroendocrine and working memory responses.

    Science.gov (United States)

    Solianik, Rima; Skurvydas, Albertas; Urboniene, Daiva; Eimantas, Nerijus; Daniuseviciute, Laura; Brazaitis, Marius

    2015-01-01

    Men have higher cold-induced neuroendocrine response than women; nevertheless, it is not known whether a different stress hormone rise elicits different effects on cognition during whole body cooling. The objective was to compare the effect of cold-induced neuroendocrine responses on the performance of working memory sensitive tasks between men and women. The cold stress continued until rectal temperature reached 35.5 degree C or for a maximum of 170 min. Working memory performance and stress hormone concentrations were monitored. During cold stress, body temperature variables dropped in all subjects (P < 0.001) and did not differ between sexes. Cold stress raised plasma epinephrine and serum cortisol levels only in men (P < 0.05). Cold stress adversely affected memory performance in men but not in women (P < 0.05). The present study indicated that similar moderate cold stress in men and women induces sex-specific neuroendocrine and working memory responses.

  4. The microRNA390/TRANS ACTING SHORT INTERFERING RNA3 module mediates lateral root growth under salt stress via the auxin pathway.

    Science.gov (United States)

    He, Fu; Xu, Changzheng; Fu, Xiaokang; Shen, Yun; Guo, Li; Leng, Mi; Luo, Keming

    2018-05-01

    Salt-induced developmental plasticity in a plant root system strongly depends on auxin signaling. However, the molecular events underlying this process are poorly understood. MicroRNA390 (miR390), trans-acting small interference RNAs (tasiRNAs) and AUXIN RESPONSE FACTORs (ARFs) form a regulatory module involved in controlling lateral root (LR) growth. Here, we found that miR390 expression was strongly induced by exposure to salt during LR formation in poplar (Populus spp.) plants. miR390 overexpression stimulated LR development and increased salt tolerance, whereas miR390 knockdown caused by a short tandem target mimic repressed LR growth and compromised salt resistance. ARF3.1, ARF3.2, and ARF4 expression was significantly inhibited by the presence of salt, and transcript abundance was dramatically decreased in the miR390-overexpressing line but increased in the miR390-knockdown line. Constitutive expression of ARF4m harboring mutated trans-acting small interference ARF-binding sites removed the salt resistance of the miR390 overexpressors. miR390 positively regulated auxin signaling in LRs subjected to salt but ARF4 inhibited auxin signaling. Salinity stabilized the poplar Aux/IAA repressor INDOLE-3-ACETIC ACID17.1, and overexpression of an auxin/salt resistant form of this repressor suppressed LR growth in miR390-overexpressing and ARF4-RNAi lines in the presence of salt. Thus, the miR390/TAS3/ARFs module is a key regulator, via modulating the auxin pathway, of LR growth in poplar subjected to salt stress. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  5. The Role of MicroRNAs in Pancreatitis

    Science.gov (United States)

    2015-10-01

    AD______________ AWARD NUMBER: W81XWH-14-1-0469 TITLE: The Role of microRNAs in Pancreatitis PRINCIPAL INVESTIGATOR: Li, Yong RECIPIENT...The Role of MicroRNAs in Pancreatitis 5b. GRANT NUMBER W81XWH-14-1-0469 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Li, Yong 5e...AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Pancreatitis (inflammation of the

  6. Systems responses to progressive water stress in durum wheat.

    Directory of Open Access Journals (Sweden)

    Dimah Z Habash

    Full Text Available Durum wheat is susceptible to terminal drought which can greatly decrease grain yield. Breeding to improve crop yield is hampered by inadequate knowledge of how the physiological and metabolic changes caused by drought are related to gene expression. To gain better insight into mechanisms defining resistance to water stress we studied the physiological and transcriptome responses of three durum breeding lines varying for yield stability under drought. Parents of a mapping population (Lahn x Cham1 and a recombinant inbred line (RIL2219 showed lowered flag leaf relative water content, water potential and photosynthesis when subjected to controlled water stress time transient experiments over a six-day period. RIL2219 lost less water and showed constitutively higher stomatal conductance, photosynthesis, transpiration, abscisic acid content and enhanced osmotic adjustment at equivalent leaf water compared to parents, thus defining a physiological strategy for high yield stability under water stress. Parallel analysis of the flag leaf transcriptome under stress uncovered global trends of early changes in regulatory pathways, reconfiguration of primary and secondary metabolism and lowered expression of transcripts in photosynthesis in all three lines. Differences in the number of genes, magnitude and profile of their expression response were also established amongst the lines with a high number belonging to regulatory pathways. In addition, we documented a large number of genes showing constitutive differences in leaf transcript expression between the genotypes at control non-stress conditions. Principal Coordinates Analysis uncovered a high level of structure in the transcriptome response to water stress in each wheat line suggesting genome-wide co-ordination of transcription. Utilising a systems-based approach of analysing the integrated wheat's response to water stress, in terms of biological robustness theory, the findings suggest that each durum

  7. Identification of serum microRNA biomarkers for tuberculosis using RNA-seq.

    Science.gov (United States)

    Zhang, Hongtai; Sun, Zhaogang; Wei, Wenjing; Liu, Zhonghui; Fleming, Joy; Zhang, Shuai; Lin, Nan; Wang, Ming; Chen, Maoshan; Xu, Yuhui; Zhou, Jie; Li, Chuanyou; Bi, Lijun; Zhou, Guangming

    2014-01-01

    Tuberculosis (TB) remains a significant human health issue. More effective biomarkers for use in tuberculosis prevention, diagnosis, and treatment, including markers that can discriminate between healthy individuals and those with latent infection, are urgently needed. To identify a set of such markers, we used Solexa sequencing to examine microRNA expression in the serum of patients with active disease, healthy individuals with latent TB, and those with or without prior BCG inoculation. We identified 24 microRNAs that are up-regulated (2.85-1285.93 fold) and 6 microRNAs that are down-regulated (0.003-0.11 fold) (PmicroRNAs were up-regulated (2.05-2454.58 fold) and 11 were down-regulated (0.001-0.42 fold) (PmicroRNAs were differentially-expressed in BCG-inoculated relative to un-inoculated individuals (18 up-regulated 2.9-499.29 fold, 116 down-regulated 0.0002-0.5 fold), providing insights into the effects of BCG inoculation at the microRNA level. Target prediction of differentially-expressed microRNAs by microRNA-Gene Network analysis and analysis of pathways affected suggest that regulation of the host immune system by microRNAs is likely to be one of the main factors in the pathogenesis of tuberculosis. qRT-PCR validation indicated that hsa-miR-196b and hsa-miR-376c have potential as markers for active TB disease. The microRNA differential-expression profiles generated in this study provide a good foundation for the development of markers for TB diagnosis, and for investigations on the role of microRNAs in BCG-inoculated and latent-infected individuals.

  8. Deciphering hepatocellular responses to metabolic and oncogenic stress

    Directory of Open Access Journals (Sweden)

    Kathrina L. Marcelo

    2015-08-01

    Full Text Available Each cell type responds uniquely to stress and fractionally contributes to global and tissue-specific stress responses. Hepatocytes, liver macrophages (MΦ, and sinusoidal endothelial cells (SEC play functionally important and interdependent roles in adaptive processes such as obesity and tumor growth. Although these cell types demonstrate significant phenotypic and functional heterogeneity, their distinctions enabling disease-specific responses remain understudied. We developed a strategy for the simultaneous isolation and quantification of these liver cell types based on antigenic cell surface marker expression. To demonstrate the utility and applicability of this technique, we quantified liver cell-specific responses to high-fat diet (HFD or diethylnitrosamine (DEN, a liver-specific carcinogen, and found that while there was only a marginal increase in hepatocyte number, MΦ and SEC populations were quantitatively increased. Global gene expression profiling of hepatocytes, MΦ and SEC identified characteristic gene signatures that define each cell type in their distinct physiological or pathological states. Integration of hepatic gene signatures with available human obesity and liver cancer microarray data provides further insight into the cell-specific responses to metabolic or oncogenic stress. Our data reveal unique gene expression patterns that serve as molecular “fingerprints” for the cell-centric responses to pathologic stimuli in the distinct microenvironment of the liver. The technical advance highlighted in this study provides an essential resource for assessing hepatic cell-specific contributions to metabolic and oncogenic stress, information that could unveil previously unappreciated molecular mechanisms for the cellular crosstalk that underlies the continuum from metabolic disruption to obesity and ultimately hepatic cancer.

  9. Progranulin and Its Related MicroRNAs after Status Epilepticus: Possible Mechanisms of Neuroprotection.

    Science.gov (United States)

    Körtvelyessy, Peter; Huchtemann, Tessa; Heinze, Hans-Jochen; Bittner, Daniel M

    2017-02-24

    The current knowledge about neuroprotective mechanisms in humans after status epilepticus is scarce. One reason is the difficulty to measure possible mediators of these neuroprotective mechanisms. The dawn of microRNA detection in the cerebrospinal fluid (CSF) and the recent advancements in measuring proteins in the CSF such as progranulin, which is, e.g., responsible for neurite outgrowth and limiting exceeding neuroinflammatory responses, have given us new insights into putative neuroprotective mechanisms following status epilepticus. This should complement the animal data. In this review, we cover what is known about the role of progranulin as well as the links between microRNA changes and the progranulin pathway following status epilepticus in humans and animals hypothesizing neuroprotective and neurorehabilitative effects. Progranulin has also been found to feature prominently in the neuroprotective processes under hypoxic conditions and initiating neurorehabilitative processes. These properties may be used therapeutically, e.g., through drugs that raise the progranulin levels and therefore the cerebral progranulin levels as well with the goal of improving the outcome after status epilepticus.

  10. Progranulin and Its Related MicroRNAs after Status Epilepticus: Possible Mechanisms of Neuroprotection

    Directory of Open Access Journals (Sweden)

    Peter Körtvelyessy

    2017-02-01

    Full Text Available The current knowledge about neuroprotective mechanisms in humans after status epilepticus is scarce. One reason is the difficulty to measure possible mediators of these neuroprotective mechanisms. The dawn of microRNA detection in the cerebrospinal fluid (CSF and the recent advancements in measuring proteins in the CSF such as progranulin, which is, e.g., responsible for neurite outgrowth and limiting exceeding neuroinflammatory responses, have given us new insights into putative neuroprotective mechanisms following status epilepticus. This should complement the animal data. In this review, we cover what is known about the role of progranulin as well as the links between microRNA changes and the progranulin pathway following status epilepticus in humans and animals hypothesizing neuroprotective and neurorehabilitative effects. Progranulin has also been found to feature prominently in the neuroprotective processes under hypoxic conditions and initiating neurorehabilitative processes. These properties may be used therapeutically, e.g., through drugs that raise the progranulin levels and therefore the cerebral progranulin levels as well with the goal of improving the outcome after status epilepticus.

  11. Corticosterone mitigates the stress response in an animal model of PTSD.

    Science.gov (United States)

    Jia, Min; Smerin, Stanley E; Zhang, Lei; Xing, Guoqiang; Li, Xiaoxia; Benedek, David; Ursano, Robert; Li, He

    2015-01-01

    Activation of glucocorticoid receptor signaling in the stress response to traumatic events has been implicated in the pathogenesis of stress-associated psychiatric disorders such as post-traumatic stress disorder (PTSD). Elevated startle response and hyperarousal are hallmarks of PTSD, and are generally considered to evince fear (DSM V). To further examine the efficacy of corticosterone in treating hyperarousal and elevated fear, the present study utilized a learned helplessness stress model in which rats are restrained and subjected to tail shock for three days. These stressed rats develop a delayed long-lasting exaggeration of the acoustic startle response (ASR) and retarded body weight growth, similar to symptoms of PTSD patients (Myers et al., 2005; Speed et al., 1989). We demonstrate that both pre-stress and post-stress administration of corticosterone (3 mg/kg/day) mitigates a subsequent exaggeration of the ASR measured 14 days after cessation of the stress protocol. Furthermore, the mitigating efficacy of pre-stress administration of corticosterone (3 mg/kg/day for three days) appeared to last significantly longer, up to 21 days after the cessation of the stress protocol, in comparison to that of post-stress administration of corticosterone. However, pre-stress administration of corticosterone at 0.3 mg/kg/day for three days did not mitigate stress-induced exaggeration of the ASR measured at both 14 and 21 days after the cessation of the stress protocol. In addition, pre-stress administration of corticosterone (3 mg/kg/day for three days) mitigates the retardation of body weight growth otherwise resulting from the stress protocol. Congruently, co-administration of the corticosterone antagonist RU486 (40 mg/kg/day for three days) with corticosterone (3 mg/kg/day) prior to stress diminished the mitigating efficacy of the exogenous corticosterone on exaggerated ASR and stress-retarded body weight. The relative efficacy of pre versus post administration of

  12. MicroRNA203a suppresses glioma tumorigenesis through an ATM-dependent interferon response pathway.

    Science.gov (United States)

    Yang, Chuan He; Wang, Yinan; Sims, Michelle; Cai, Chun; He, Ping; Häcker, Hans; Yue, Junming; Cheng, Jinjun; Boop, Frederick A; Pfeffer, Lawrence M

    2017-12-22

    Glioblastoma (GBM) is a deadly and incurable brain tumor. Although microRNAs (miRNAs) play critical roles in regulating the cancer cell phenotype, the underlying mechanisms of how they regulate tumorigenesis are incompletely understood. We previously showed that miR-203a is expressed at relatively low levels in GBM patients, and ectopic miR-203a expression in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by interferon (IFN) or temozolomide in vitro , and inhibited GBM tumorigenesis in vivo . Here we show that ectopic expression of miR-203a in GBM cell lines promotes the IFN response pathway as evidenced by increased IFN production and IFN-stimulated gene (ISG) expression, and high basal tyrosine phosphorylation of multiple STAT proteins. Importantly, we identified that miR-203a directly suppressed the protein levels of ataxia-telangiectasia mutated (ATM) kinase that negatively regulates IFN production. We found that high ATM expression in GBM correlates with poor patient survival and that ATM expression is inversely correlated with miR-203a expression. Knockout of ATM expression and inhibition of ATM function in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by therapeutic agents in vitro , and markedly suppressed GBM tumor growth and promoted animal survival. In contrast, restoring ATM levels in GBM cells ectopically expressing miR-203a increased tumorigenicity and decreased animal survival. Our study suggests that low miR-203a expression in GBM suppresses the interferon response through an ATM-dependent pathway.

  13. Short-term spatial memory responses in aged Japanese quail selected for divergent adrenocortical stress responsiveness.

    Science.gov (United States)

    Suhr, C L; Schmidt, J B; Treese, S T; Satterlee, D G

    2010-04-01

    Stress-induced glucocorticoids can dampen learning and spatial memory via neuronal damage to the hippocampus. Cognition losses can be transient (associated with acute stress episodes) or permanent as in aged individuals who show chronic glucocorticoid-induced accelerated brain aging and neurodegeneration (dementia). Thus, chronic versus acute stress effects on spatial memory responses of quail selected for reduced (low stress, LS) or exaggerated (high stress, HS) plasma corticosterone (B) response to brief restraint were assessed. Aged food-motivated male LS and HS quail were tested for 10 min in a feed-baited 8-arm radial arm maze (RAM) 1) at 255 d of age (quail who had experienced lifelong management stressors but who were otherwise never intentionally stressed; that is, chronically stressed birds), 2) on the next day post-acute stressor treatment (5 min of restraint), and 3) on the next day without treatment (acute stress recovery). The RAM tests used the win-shift procedure in which visited arms were not rebaited. Radial arm maze performance was measured by determination of the total number of arm choices made, the number of correct entries made into baited arms out of the first 8 choices, the time required to make a choice, and the number of pellets eaten. Line effects (P LS), and number of pellets eaten (HS RAM testing nor its interaction with line further influenced these variables. Thus, although selection for divergent plasma B responsiveness to an acute stressor was found to be associated with severe impairment of spatial memory in aged male HS compared with LS quail, the observed spatial memory impairments (HS > LS) could not be further altered by acute stressor treatment. Line differences in cognition may reflect lifelong management-induced stress episodes that periodically produce higher plasma B responses in HS than LS quail, which underlie HS quail memory deficits, or other etiologies, or both.

  14. Human Milk MicroRNA and Total RNA Differ Depending on Milk Fractionation.

    Science.gov (United States)

    Alsaweed, Mohammed; Hepworth, Anna R; Lefèvre, Christophe; Hartmann, Peter E; Geddes, Donna T; Hassiotou, Foteini

    2015-10-01

    MicroRNA have been recently discovered in human milk signifying potentially important functions for both the lactating breast and the infant. Whilst human milk microRNA have started to be explored, little data exist on the evaluation of sample processing, and analysis to ensure that a full spectrum of microRNA can be obtained. Human milk comprises three main fractions: cells, skim milk, and lipids. Typically, the skim milk fraction has been measured in isolation despite evidence that the lipid fraction may contain more microRNA. This study aimed to standardize isolation of microRNA and total RNA from all three fractions of human milk to determine the most appropriate sampling and analysis procedure for future studies. Three different methods from eight commercially available kits were tested for their efficacy in extracting total RNA and microRNA from the lipid, skim, and cell fractions of human milk. Each fraction yielded different concentrations of RNA and microRNA, with the highest quantities found in the cell and lipid fractions, and the lowest in skim milk. The column-based phenol-free method was the most efficient extraction method for all three milk fractions. Two microRNAs were expressed and validated in the three milk fractions by qPCR using the three recommended extraction kits for each fraction. High expression levels were identified in the skim and lipid milk factions for these microRNAs. These results suggest that careful consideration of both the human milk sample preparation and extraction protocols should be made prior to embarking upon research in this area. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.

  15. Reproduction elevates the corticosterone stress response in common fruit bats.

    Science.gov (United States)

    Klose, Stefan M; Smith, Carolynn L; Denzel, Andrea J; Kalko, Elisabeth K V

    2006-04-01

    Changes in reproductive state or the environment may affect the sensitivity of the hypothalamic-pituitary-andrenal (HPA) axis. However, little is known about the dynamics of the resulting corticosteroid stress response, in particular in tropical mammals. In this study, we address the modulation of corticosterone release in response to different reproductive conditions and seasonality in 326 free-living common fruit-eating bats (Artibeus jamaicensis) on Barro Colorado Island in Panama during dry and wet seasons. We present strong evidence that stress sensitivity is primarily modulated by reproductive condition. In reproductively active females, corticosterone increases were more rapid and reached higher levels, but also decreased significantly faster than in inactive females. The corticosterone response was weaker in reproducing males than in females and delayed compared to non-reproductive males. Testes volume in reproductively active males was negatively correlated with corticosterone concentrations. Our findings suggest differentiated dynamics in the corticosterone stress response between sexes, potentially reflecting conflicting ecological demands. In females, a strong acute corticosterone response may represent high stress- and risk-sensitivity that facilitates escape and thus helps to protect reproduction. In males, suppression during reproductive activity could reflect lowered stress sensitivity to avoid chronically elevated corticosterone levels in times of frequent aggressive and therefore costly inter-male encounters.

  16. MicroRNA-33 promotes the replicative senescence of mouse embryonic fibroblasts by suppressing CDK6

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shun; Huang, Haijiao; Li, Nanhong; Zhang, Bing; Jia, Yubin; Yang, Yukun; Yuan, Yuan; Xiong, Xing-dong; Wang, Dengchuan; Zheng, Hui-ling [Institute of Aging Research, Guangdong Medical University, Dongguan (China); Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan (China); Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Zhanjiang (China); Liu, Xinguang, E-mail: xgliu64@126.com [Institute of Aging Research, Guangdong Medical University, Dongguan (China); Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan (China); Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Zhanjiang (China)

    2016-05-13

    MicroRNAs are a large class of tiny noncoding RNAs, which have emerged as critical regulators of gene expression, and thus are involved in multiple cellular processes, including cellular senescence. MicroRNA-33 has previously been established to exert crucial effect on cell proliferation, lipid metabolism and cholesterol metabolism. Nonetheless, the association between microRNA-33 and cellular senescence and its underlying molecular mechanism are far to be elucidated. The present study has attempted to probe into the effect of microRNA-33 on MEFs senescence. Our data unveiled that microRNA-33 was dramatically down-regulated in senescent MEFs compared to the young MEFs, and ectopic expression of microRNA-33 promoted MEFs senescence, while knock-down of microRNA-33 exhibited a protective effect against senescence phenotype. Moreover, we verified CDK6 as a direct target of microRNA-33 in mouse. Silencing of CDK6 induced the premature senescence phenotype of MEFs similarly as microRNA-33, while enforced expression of CDK6 significantly reverse the senescence-induction effect of microRNA-33. Taken together, our results suggested that microRNA-33 enhanced the replicative senescence of MEFs potentially by suppressing CDK6 expression. -- Highlights: •MicroRNA-33 was dramatically down-regulated in senescent MEF cells. •Altered expression of microRNA-33 exerted a critical role in MEFs senescence. •MicroRNA-33 promoted the replicative senescence of MEFs via targeting of CDK6.

  17. MicroRNA-33 promotes the replicative senescence of mouse embryonic fibroblasts by suppressing CDK6

    International Nuclear Information System (INIS)

    Xu, Shun; Huang, Haijiao; Li, Nanhong; Zhang, Bing; Jia, Yubin; Yang, Yukun; Yuan, Yuan; Xiong, Xing-dong; Wang, Dengchuan; Zheng, Hui-ling; Liu, Xinguang

    2016-01-01

    MicroRNAs are a large class of tiny noncoding RNAs, which have emerged as critical regulators of gene expression, and thus are involved in multiple cellular processes, including cellular senescence. MicroRNA-33 has previously been established to exert crucial effect on cell proliferation, lipid metabolism and cholesterol metabolism. Nonetheless, the association between microRNA-33 and cellular senescence and its underlying molecular mechanism are far to be elucidated. The present study has attempted to probe into the effect of microRNA-33 on MEFs senescence. Our data unveiled that microRNA-33 was dramatically down-regulated in senescent MEFs compared to the young MEFs, and ectopic expression of microRNA-33 promoted MEFs senescence, while knock-down of microRNA-33 exhibited a protective effect against senescence phenotype. Moreover, we verified CDK6 as a direct target of microRNA-33 in mouse. Silencing of CDK6 induced the premature senescence phenotype of MEFs similarly as microRNA-33, while enforced expression of CDK6 significantly reverse the senescence-induction effect of microRNA-33. Taken together, our results suggested that microRNA-33 enhanced the replicative senescence of MEFs potentially by suppressing CDK6 expression. -- Highlights: •MicroRNA-33 was dramatically down-regulated in senescent MEF cells. •Altered expression of microRNA-33 exerted a critical role in MEFs senescence. •MicroRNA-33 promoted the replicative senescence of MEFs via targeting of CDK6.

  18. Stress tolerances of nullmutants of function-unknown genes encoding menadione stress-responsive proteins in Aspergillus nidulans.

    Science.gov (United States)

    Leiter, Éva; Bálint, Mihály; Miskei, Márton; Orosz, Erzsébet; Szabó, Zsuzsa; Pócsi, István

    2016-07-01

    A group of menadione stress-responsive function-unkown genes of Aspergillus nidulans (Locus IDs ANID_03987.1, ANID_06058.1, ANID_10219.1, and ANID_10260.1) was deleted and phenotypically characterized. Importantly, comparative and phylogenetic analyses of the tested A. nidulans genes and their orthologs shed light only on the presence of a TANGO2 domain with NRDE protein motif in the translated ANID_06058.1 gene but did not reveal any recognizable protein-encoding domains in other protein sequences. The gene deletion strains were subjected to oxidative, osmotic, and metal ion stress and, surprisingly, only the ΔANID_10219.1 mutant showed an increased sensitivity to 0.12 mmol l(-1) menadione sodium bisulfite. The gene deletions affected the stress sensitivities (tolerances) irregularly, for example, some strains grew more slowly when exposed to various oxidants and/or osmotic stress generating agents, meanwhile the ΔANID_10260.1 mutant possessed a wild-type tolerance to all stressors tested. Our results are in line with earlier studies demonstrating that the deletions of stress-responsive genes do not confer necessarily any stress-sensitivity phenotypes, which can be attributed to compensatory mechanisms based on other elements of the stress response system with overlapping functions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Physiological Responses to Thermal Stress and Exercise

    Science.gov (United States)

    Iyota, Hiroyuki; Ohya, Akira; Yamagata, Junko; Suzuki, Takashi; Miyagawa, Toshiaki; Kawabata, Takashi

    The simple and noninvasive measuring methods of bioinstrumentation in humans is required for optimization of air conditioning and management of thermal environments, taking into consideration the individual specificity of the human body as well as the stress conditions affecting each. Changes in human blood circulation were induced with environmental factors such as heat, cold, exercise, mental stress, and so on. In this study, the physiological responses of human body to heat stress and exercise were investigated in the initial phase of the developmental research. We measured the body core and skin temperatures, skin blood flow, and pulse wave as the indices of the adaptation of the cardiovascular system. A laser Doppler skin blood flowmetry using an optical-sensor with a small portable data logger was employed for the measurement. These results reveal the heat-stress and exercise-induced circulatory responses, which are under the control of the sympathetic nerve system. Furthermore, it was suggested that the activity of the sympathetic nervous system could be evaluated from the signals of the pulse wave included in the signals derived from skin blood flow by means of heart rate variability assessments and detecting peak heights of velocity-plethysmogram.

  20. The Response to Heat Shock and Oxidative Stress in Saccharomyces cerevisiae

    Science.gov (United States)

    Morano, Kevin A.; Grant, Chris M.; Moye-Rowley, W. Scott

    2012-01-01

    A common need for microbial cells is the ability to respond to potentially toxic environmental insults. Here we review the progress in understanding the response of the yeast Saccharomyces cerevisiae to two important environmental stresses: heat shock and oxidative stress. Both of these stresses are fundamental challenges that microbes of all types will experience. The study of these environmental stress responses in S. cerevisiae has illuminated many of the features now viewed as central to our understanding of eukaryotic cell biology. Transcriptional activation plays an important role in driving the multifaceted reaction to elevated temperature and levels of reactive oxygen species. Advances provided by the development of whole genome analyses have led to an appreciation of the global reorganization of gene expression and its integration between different stress regimens. While the precise nature of the signal eliciting the heat shock response remains elusive, recent progress in the understanding of induction of the oxidative stress response is summarized here. Although these stress conditions represent ancient challenges to S. cerevisiae and other microbes, much remains to be learned about the mechanisms dedicated to dealing with these environmental parameters. PMID:22209905

  1. Stress, Roles and Responsibilities of Single Mothers in Malaysia

    Directory of Open Access Journals (Sweden)

    Mohd Hashim Intan Hashimah

    2015-01-01

    Full Text Available Life as a single mother is often associated with great demands and many challenges. This study examines how a group of single mothers in Malaysia views sources of stress and challenges in their lives. It also investigates perceived roles and responsibilities of single mothers. Three hundred single mothers from all over Malaysia were interviewed in this study. Single mothers reported relatively low level of stress that was mostly related to financial (insufficient pay and day-to-day living. They had fairly low stress on issues related to romantic partner and romantic relationships. They however reported extensive roles and responsibilities. Single mothers reported feeling responsible across various domains of life including for their own health and well-being and also for the health and wellbeing of their family and friends. They reported high level of coping and particularly oriented towards solving the problems. They also reported general satisfaction over life. Correlation analysis indicated significant positive relationships between roles and responsibilities and life satisfaction and coping in which coping was associated with higher level of roles and responsibilities and life satisfaction. There was also a negative correlation between stress and life satisfaction in which more stress was associated with lower life satisfaction. Findings indicated a substantial nurturing role of single mothers and provided important policy and practice implications that highlights the important to study and continuously improve quality of life for these women. Finally, this study highlights the important to continuously study and support, important but marginalized groups in society such as single mothers.

  2. Distinct Trajectories of Cortisol Response to Prolonged Acute Stress Are Linked to Affective Responses and Hippocampal Gray Matter Volume in Healthy Females.

    Science.gov (United States)

    Admon, Roee; Treadway, Michael T; Valeri, Linda; Mehta, Malavika; Douglas, Samuel; Pizzagalli, Diego A

    2017-08-16

    The development of robust laboratory procedures for acute stress induction over the last decades has greatly advanced our understanding of stress responses in humans and their underlying neurobiological mechanisms. Nevertheless, attempts to uncover linear relationships among endocrine, neural, and affective responses to stress have generally yielded inconsistent results. Here, 79 healthy females completed a well established laboratory procedure of acute stress induction that was modified to prolong its effect. Endocrinological and subjective affect assessments revealed stress-induced increases in cortisol release and negative affect that persisted 65 and 100 min after stress onset, respectively, confirming a relatively prolonged acute stress induction. Applying latent class linear mixed modeling on individuals' patterns of cortisol responses identified three distinct trajectories of cortisol response: the hyper-response ( n = 10), moderate-response ( n = 21), and mild-response ( n = 48) groups. Notably, whereas all three groups exhibited a significant stress-induced increase in cortisol release and negative affect, the hyper-response and mild-response groups both reported more negative affect relative to the moderate-response group. Structural MRI revealed no group differences in hippocampal and amygdala volumes, yet a continuous measure of cortisol response (area under the curve) showed that high and low levels of stress-induced cortisol release were associated with less hippocampal gray matter volume compared with moderate cortisol release. Together, these results suggest that distinct trajectories of cortisol response to prolonged acute stress among healthy females may not be captured by conventional linear analyses; instead, quadratic relations may better describe links between cortisol response to stress and affective responses, as well as hippocampal structural variability. SIGNIFICANCE STATEMENT Despite substantial research, it is unclear whether and how

  3. MicroRNA and gene signature of severe cutaneous drug ...

    African Journals Online (AJOL)

    Purpose: To build a microRNA and gene signature of severe cutaneous adverse drug reactions (SCAR), including Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN). Methods: MicroRNA expression profiles were downloaded from miRNA expression profile of patients' skin suffering from TEN using an ...

  4. MicroRNA let-7 modulates the immune response to Mycobacterium tuberculosis infection via control of A20, an inhibitor of the NF-κB pathway.

    Science.gov (United States)

    Kumar, Manish; Sahu, Sanjaya Kumar; Kumar, Ranjeet; Subuddhi, Arijita; Maji, Ranjan Kumar; Jana, Kuladip; Gupta, Pushpa; Raffetseder, Johanna; Lerm, Maria; Ghosh, Zhumur; van Loo, Geert; Beyaert, Rudi; Gupta, Umesh D; Kundu, Manikuntala; Basu, Joyoti

    2015-03-11

    The outcome of the interaction between Mycobacterium tuberculosis (Mtb) and a macrophage depends on the interplay between host defense and bacterial immune subversion mechanisms. MicroRNAs critically regulate several host defense mechanisms, but their role in the Mtb-macrophage interplay remains unclear. MicroRNA profiling of Mtb-infected macrophages revealed the downregulation of miR-let-7f in a manner dependent on the Mtb secreted effector ESAT-6. We establish that let-7f targets A20, a feedback inhibitor of the NF-κB pathway. Expression of let-7f decreases and A20 increases with progression of Mtb infection in mice. Mtb survival is attenuated in A20-deficient macrophages, and the production of TNF, IL-1β, and nitrite, which are mediators of immunity to Mtb, is correspondingly increased. Further, let-7f overexpression diminishes Mtb survival and augments the production of cytokines including TNF and IL-1β. These results uncover a role for let-7f and its target A20 in regulating immune responses to Mtb and controlling bacterial burden. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Cellular stress responses for monitoring and modulating ageing

    DEFF Research Database (Denmark)

    Demirovic, Dino; Schnebert, Sylvianne; Nizard, Carine

    2013-01-01

    biochemical methods, detecting one or more proteins exclusively involved in the specific stress response pathways. The results indicate that the ageing phenotype is a result of an ineffective probability for cells to respond to stress. http://dx.doi.org/10.1016/j.freeradbiomed.2013.08.023...

  6. MicroRNAs in addiction: adaptation's middlemen?

    Science.gov (United States)

    Li, M D; van der Vaart, A D

    2011-12-01

    A central question in addiction is how drug-induced changes in synaptic signaling are converted into long-term neuroadaptations. Emerging evidence reveals that microRNAs (miRNAs) have a distinct role in this process through rapid response to cellular signals and dynamic regulation of local mRNA transcripts. Because each miRNA can target hundreds of mRNAs, relative changes in the expression of miRNAs can greatly impact cellular responsiveness, synaptic plasticity and transcriptional events. These diverse consequences of miRNA action occur through coordination with genes implicated in addictions, the most compelling of these being the neurotrophin BDNF, the transcription factor cAMP-responsive element-binding protein (CREB) and the DNA-binding methyl CpG binding protein 2 (MeCP2). In this study, we review the recent progress in the understanding of miRNAs in general mechanisms of plasticity and neuroadaptation and then focus on specific examples of miRNA regulation in the context of addiction. We conclude that miRNA-mediated gene regulation is a conserved means of converting environmental signals into neuronal response, which holds significant implications for addiction and other psychiatric illnesses.

  7. Proteomic analysis of cold stress responses in tobacco seedlings ...

    African Journals Online (AJOL)

    Cold stress is one of the major abiotic stresses limiting the productivity and the geographical distribution of many important crops. To gain a better understanding of cold stress responses in tobacco (Nicotiana tabacum), we carried out a comparative proteomic analysis. Five-week-old tobacco seedlings were treated at 4°C ...

  8. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants

    Directory of Open Access Journals (Sweden)

    Jong-Myong eKim

    2015-03-01

    Full Text Available Chromatin regulation is essential to regulate genes and genome activities. In plants, the alteration of histone modification and DNA methylation are coordinated with changes in the expression of stress-responsive genes to adapt to environmental changes. Several chromatin regulators have been shown to be involved in the regulation of stress-responsive gene networks under abiotic stress conditions. Specific histone modification sites and the histone modifiers that regulate key stress-responsive genes have been identified by genetic and biochemical approaches, revealing the importance of chromatin regulation in plant stress responses. Recent studies have also suggested that histone modification plays an important role in plant stress memory. In this review, we summarize recent progress on the regulation and alteration of histone modification (acetylation, methylation, phosphorylation, and SUMOylation in response to the abiotic stresses, drought, high-salinity, heat, and cold in plants.

  9. Proteomics analysis of alfalfa response to heat stress.

    Directory of Open Access Journals (Sweden)

    Weimin Li

    Full Text Available The proteome responses to heat stress have not been well understood. In this study, alfalfa (Medicago sativa L. cv. Huaiyin seedlings were exposed to 25 °C (control and 40 °C (heat stress in growth chambers, and leaves were collected at 24, 48 and 72 h after treatment, respectively. The morphological, physiological and proteomic processes were negatively affected under heat stress. Proteins were extracted and separated by two-dimensional polyacrylamide gel electrophoresis (2-DE, and differentially expressed protein spots were identified by mass spectrometry (MS. Totally, 81 differentially expressed proteins were identified successfully by MALDI-TOF/TOF. These proteins were categorized into nine classes: including metabolism, energy, protein synthesis, protein destination/storage, transporters, intracellular traffic, cell structure, signal transduction and disease/defence. Five proteins were further analyzed for mRNA levels. The results of the proteomics analyses provide a better understanding of the molecular basis of heat-stress responses in alfalfa.

  10. Regulation of cellulose synthesis in response to stress.

    Science.gov (United States)

    Kesten, Christopher; Menna, Alexandra; Sánchez-Rodríguez, Clara

    2017-12-01

    The cell wall is a complex polysaccharide network that provides stability and protection to the plant and is one of the first layers of biotic and abiotic stimuli perception. A controlled remodeling of the primary cell wall is essential for the plant to adapt its growth to environmental stresses. Cellulose, the main component of plant cell walls is synthesized by plasma membrane-localized cellulose synthases moving along cortical microtubule tracks. Recent advancements demonstrate a tight regulation of cellulose synthesis at the primary cell wall by phytohormone networks. Stress-induced perturbations at the cell wall that modify cellulose synthesis and microtubule arrangement activate similar phytohormone-based stress response pathways. The integration of stress perception at the primary cell wall and downstream responses are likely to be tightly regulated by phytohormone signaling pathways in the context of cellulose synthesis and microtubule arrangement. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. MicroRNA expression in multiple myeloma is associated with genetic subtype, isotype and survival

    Directory of Open Access Journals (Sweden)

    Pezzella Francesco

    2011-05-01

    Full Text Available Abstract Background MicroRNAs are small RNA species that regulate gene expression post-transcriptionally and are aberrantly expressed in many cancers including hematological malignancies. However, the role of microRNAs in the pathogenesis of multiple myeloma (MM is only poorly understood. We therefore used microarray analysis to elucidate the complete miRNome (miRBase version 13.0 of purified tumor (CD138+ cells from 33 patients with MM, 5 patients with monoclonal gammopathy of undetermined significance (MGUS and 9 controls. Results Unsupervised cluster analysis revealed that MM and MGUS samples have a distinct microRNA expression profile from control CD138+ cells. The majority of microRNAs aberrantly expressed in MM (109/129 were up-regulated. A comparison of these microRNAs with those aberrantly expressed in other B-cell and T-cell malignancies revealed a surprising degree of similarity (~40% suggesting the existence of a common lymphoma microRNA signature. We identified 39 microRNAs associated with the pre-malignant condition MGUS. Twenty-three (59% of these were also aberrantly expressed in MM suggesting common microRNA expression events in MM progression. MM is characterized by multiple chromosomal abnormalities of varying prognostic significance. We identified specific microRNA signatures associated with the most common IgH translocations (t(4;14 and t(11;14 and del(13q. Expression levels of these microRNAs were distinct between the genetic subtypes (by cluster analysis and correctly predicted these abnormalities in > 85% of cases using the support vector machine algorithm. Additionally, we identified microRNAs associated with light chain only myeloma, as well as IgG and IgA-type MM. Finally, we identified 32 microRNAs associated with event-free survival (EFS in MM, ten of which were significant by univariate (logrank survival analysis. Conclusions In summary, this work has identified aberrantly expressed microRNAs associated with the

  12. The stress response system of proteins: Implications for bioreactor scaleup

    Science.gov (United States)

    Goochee, Charles F.

    1988-01-01

    Animal cells face a variety of environmental stresses in large scale bioreactors, including periodic variations in shear stress and dissolved oxygen concentration. Diagnostic techniques were developed for identifying the particular sources of environmental stresses for animal cells in a given bioreactor configuration. The mechanisms by which cells cope with such stresses was examined. The individual concentrations and synthesis rates of hundreds of intracellular proteins are affected by the extracellular environment (medium composition, dissolved oxygen concentration, ph, and level of surface shear stress). Techniques are currently being developed for quantifying the synthesis rates and concentrations of the intracellular proteins which are most sensitive to environmental stress. Previous research has demonstrated that a particular set of stress response proteins are synthesized by mammalian cells in response to temperature fluctuations, dissolved oxygen deprivation, and glucose deprivation. Recently, it was demonstrated that exposure of human kidney cells to high shear stress results in expression of a completely distinct set of intracellular proteins.

  13. The Stress and Coping Responses of Certified Graduate Athletic Training Students

    Science.gov (United States)

    Reed, Sarah

    2004-01-01

    Objective: To assess the sources of stress and coping responses of certified graduate athletic training students. Design and Setting: We interviewed certified graduate athletic training students 3 times over a 9-month period. We transcribed the interviews verbatim and used grounded theory analytic procedures to inductively analyze the participants' sources of stress and coping responses. Subjects: Three male and 3 female certified graduate athletic training students from a postcertification graduate athletic training program volunteered to participate in this investigation. The participants were full-time graduate students, with a mean age of 23 years, who had worked an average of 1.5 years as certified athletic trainers at the time of the first interview. Measurements: We used grounded theory analytic procedures to inductively analyze the participants' sources of stress and coping responses. Results: A total of 6 general sources of stress and 11 coping dimensions were revealed. The stress dimensions were labeled athletic training duties, comparing job duties, responsibilities as student, time management, social evaluation, and future concerns. The coping responses were planning, instrumental social support, adjusting to job responsibilities, positive evaluations, emotional social support, humor, wishful thinking, religion, mental or behavioral disengagement, activities outside the profession, and other outcomes. Conclusions: Certified graduate athletic training students should be encouraged to use problem-focused (eg, seeking advice, planning) and emotion-focused (eg, positive evaluations, humor) forms of coping with stress. PMID:15173872

  14. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters.

    Science.gov (United States)

    Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2005-02-01

    cis-Acting regulatory elements are important molecular switches involved in the transcriptional regulation of a dynamic network of gene activities controlling various biological processes, including abiotic stress responses, hormone responses and developmental processes. In particular, understanding regulatory gene networks in stress response cascades depends on successful functional analyses of cis-acting elements. The ever-improving accuracy of transcriptome expression profiling has led to the identification of various combinations of cis-acting elements in the promoter regions of stress-inducible genes involved in stress and hormone responses. Here we discuss major cis-acting elements, such as the ABA-responsive element (ABRE) and the dehydration-responsive element/C-repeat (DRE/CRT), that are a vital part of ABA-dependent and ABA-independent gene expression in osmotic and cold stress responses.

  15. Associations Between Paternal Responsiveness and Stress Responsiveness in the Biparental California Mouse, Peromyscus californicus

    OpenAIRE

    Chauke, Miyetani

    2012-01-01

    The mechanistic basis of paternal behavior in mammals is poorly understood. Assuming there are parallels between the factors mediating maternal and paternal behavior, it can be expected that the onset of paternal behavior is facilitated by reductions in stress responsiveness, as occurs in females of several mammalian species. This dissertation describes studies investigating the role of stress responsiveness in the expression of paternal behavior in biparental, monogamous California mice (Per...

  16. Dehydration-responsive miRNAs in foxtail millet: genome-wide identification, characterization and expression profiling.

    Science.gov (United States)

    Yadav, Amita; Khan, Yusuf; Prasad, Manoj

    2016-03-01

    A set of novel and known dehydration-responsive miRNAs have been identified in foxtail millet. These findings provide new insights into understanding the functional role of miRNAs and their respective targets in regulating plant response to dehydration stress. MicroRNAs perform significant regulatory roles in growth, development and stress response of plants. Though the miRNA-mediated gene regulatory networks under dehydration stress remain largely unexplored in plant including foxtail millet (Setaria italica), which is a natural abiotic stress tolerant crop. To find out the dehydration-responsive miRNAs at the global level, four small RNA libraries were constructed from control and dehydration stress treated seedlings of two foxtail millet cultivars showing contrasting tolerance behavior towards dehydration stress. Using Illumina sequencing technology, 55 known and 136 novel miRNAs were identified, representing 22 and 48 miRNA families, respectively. Eighteen known and 33 novel miRNAs were differentially expressed during dehydration stress. After the stress treatment, 32 dehydration-responsive miRNAs were up-regulated in tolerant cultivar and 22 miRNAs were down-regulated in sensitive cultivar, suggesting that miRNA-mediated molecular regulation might play important roles in providing contrasting characteristics to these cultivars. Predicted targets of identified miRNAs were found to encode various transcription factors and functional enzymes, indicating their involvement in broad spectrum regulatory functions and biological processes. Further, differential expression patterns of seven known miRNAs were validated by northern blot and expression of ten novel dehydration-responsive miRNAs were confirmed by SL-qRT PCR. Differential expression behavior of five miRNA-target genes was verified under dehydration stress treatment and two of them also validated by RLM RACE. Overall, the present study highlights the importance of dehydration stress-associated post

  17. Identification of reference genes for relative quantification of circulating microRNAs in bovine serum.

    Directory of Open Access Journals (Sweden)

    In-Seon Bae

    Full Text Available Circulating microRNAs in body fluids have been implicated as promising biomarkers for physiopathology disorders. Currently, the expression levels of circulating microRNAs are estimated by reverse transcription quantitative real-time polymerase chain reaction. Use of appropriate reference microRNAs for normalization is critical for accurate microRNA expression analysis. However, no study has systematically investigated reference genes for evaluating circulating microRNA expression in cattle. In this study, we describe the identification and characterization of appropriate reference microRNAs for use in the normalization of circulating microRNA levels in bovine serum. We evaluated the expression stability of ten candidate reference genes in bovine serum by using reverse transcription quantitative real-time polymerase chain reaction. Data were analyzed using geNorm, NormFinder, and BestKeeper statistical algorithms. The results consistently showed that a combination of miR-93 and miR-127 provided the most stably expressed reference. The suitability of these microRNAs was validated, and even when compared among different genders or breeds, the combination of miR-93 and miR-127 was ranked as the most stable microRNA reference. Therefore, we conclude that this combination is the optimal endogenous reference for reverse transcription quantitative real-time polymerase chain reaction-based detection of microRNAs in bovine serum. The data presented in this study are crucial to successful biomarker discovery and validation for the diagnosis of physiopathological conditions in cattle.

  18. Immune and stress responses in oysters with insights on adaptation.

    Science.gov (United States)

    Guo, Ximing; He, Yan; Zhang, Linlin; Lelong, Christophe; Jouaux, Aude

    2015-09-01

    Oysters are representative bivalve molluscs that are widely distributed in world oceans. As successful colonizers of estuaries and intertidal zones, oysters are remarkably resilient against harsh environmental conditions including wide fluctuations in temperature and salinity as well as prolonged air exposure. Oysters have no adaptive immunity but can thrive in microbe-rich estuaries as filter-feeders. These unique adaptations make oysters interesting models to study the evolution of host-defense systems. Recent advances in genomic studies including sequencing of the oyster genome have provided insights into oyster's immune and stress responses underlying their amazing resilience. Studies show that the oyster genomes are highly polymorphic and complex, which may be key to their resilience. The oyster genome has a large gene repertoire that is enriched for immune and stress response genes. Thousands of genes are involved in oyster's immune and stress responses, through complex interactions, with many gene families expanded showing high sequence, structural and functional diversity. The high diversity of immune receptors and effectors may provide oysters with enhanced specificity in immune recognition and response to cope with diverse pathogens in the absence of adaptive immunity. Some members of expanded immune gene families have diverged to function at different temperatures and salinities or assumed new roles in abiotic stress response. Most canonical innate immunity pathways are conserved in oysters and supported by a large number of diverse and often novel genes. The great diversity in immune and stress response genes exhibited by expanded gene families as well as high sequence and structural polymorphisms may be central to oyster's adaptation to highly stressful and widely changing environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Sex differences in chronic stress responses and Alzheimer's disease.

    Science.gov (United States)

    Yan, Yan; Dominguez, Sky; Fisher, Daniel W; Dong, Hongxin

    2018-02-01

    Clinical studies indicate that Alzheimer's disease (AD) disproportionately affects women in both disease prevalence and severity, but the mechanisms underlying this sex divergence are unknown. Though some have suggested this difference in risk is a reflection of known differences in longevity between men and women, mounting clinical and preclinical evidence supports women also having intrinsic susceptibilities towards the disease. While a number of potential risk factors have been hypothesized to affect these differences in risks, none have been definitively verified. In this review, we discuss a novel hypothesis whereby women's susceptibility to chronic stress also mediates increased risk for AD. As stress is a risk factor for AD, and women are twice as likely to develop mood disorders where stress is a major etiology, it is possible that sex dimorphisms in stress responses contribute to the increase in women with AD. In line with this, sex divergence in biochemical responses to stress have been noted along the hypothalamic-pituitary-adrenal (HPA) axis and among known molecular effectors of AD, with crosstalk between these processes also being likely. In addition, activation of the cortical corticotrophin-releasing factor receptor 1 (CRF1) signaling pathway leads to distinct female-biased increases in molecules associated with AD pathogenesis. Therefore, the different biochemical responses to stress between women and men may represent an intrinsic, sex-dependent risk factor for AD.

  20. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ.

    Science.gov (United States)

    Ma, Feng; Xu, Sheng; Liu, Xingguang; Zhang, Qian; Xu, Xiongfei; Liu, Mofang; Hua, Minmin; Li, Nan; Yao, Hangping; Cao, Xuetao

    2011-07-24

    Interferon-γ (IFN-γ) has a critical role in immune responses to intracellular bacterial infection. MicroRNAs (miRNAs) are important in the regulation of innate and adaptive immunity. However, whether miRNAs can directly target IFN-γ and regulate IFN-γ production post-transcriptionally remains unknown. Here we show that infection of mice with Listeria monocytogenes or Mycobacterium bovis bacillus Calmette-Guérin (BCG) downregulated miR-29 expression in IFN-γ-producing natural killer cells, CD4(+) T cells and CD8(+) T cells. Moreover, miR-29 suppressed IFN-γ production by directly targeting IFN-γ mRNA. We developed mice with transgenic expression of a 'sponge' target to compete with endogenous miR-29 targets (GS29 mice). We found higher serum concentrations of IFN-γ and lower L. monocytogenes burdens in L. monocytogenes-infected GS29 mice than in their littermates. GS29 mice had enhanced T helper type 1 (T(H)1) responses and greater resistance to infection with BCG or Mycobacterium tuberculosis. Therefore, miR-29 suppresses immune responses to intracellular pathogens by targeting IFN-γ.

  1. Review of Signal Crosstalk in Plant Stress Responses

    Science.gov (United States)

    This book was prepared to summarize the current understanding of the dynamics of plant response to biotic and abiotic stresses. The preface of the book sets the stage for the contents of the different chapters by outlining that plants defend themselves from various environmental stresses through a v...

  2. In Vitro Assays for Mouse Müller Cell Phenotyping Through microRNA Profiling in the Damaged Retina.

    Science.gov (United States)

    Reyes-Aguirre, Luis I; Quintero, Heberto; Estrada-Leyva, Brenda; Lamas, Mónica

    2018-01-01

    microRNA profiling has identified cell-specific expression patterns that could represent molecular signatures triggering the acquisition of a specific phenotype; in other words, of cellular identity and its associated function. Several groups have hypothesized that retinal cell phenotyping could be achieved through the determination of the global pattern of miRNA expression across specific cell types in the adult retina. This is especially relevant for Müller glia in the context of retinal damage, as these cells undergo dramatic changes of gene expression in response to injury, that render them susceptible to acquire a progenitor-like phenotype and be a source of new neurons.We describe a method that combines an experimental protocol for excitotoxic-induced retinal damage through N-methyl-D-aspartate subretinal injection with magnetic-activated cell sorting (MACS) of Müller cells and RNA isolation for microRNA profiling. Comparison of microRNA patterns of expression should allow Müller cell phenotyping under different experimental conditions.

  3. Acute stress responses: A review and synthesis of ASD, ASR, and CSR.

    Science.gov (United States)

    Isserlin, Leanna; Zerach, Gadi; Solomon, Zahava

    2008-10-01

    Toward the development of a unifying diagnosis for acute stress responses this article attempts to find a place for combat stress reaction (CSR) within the spectrum of other defined acute stress responses. This article critically compares the diagnostic criteria of acute stress disorder (ASD), acute stress reaction (ASR), and CSR. Prospective studies concerning the predictive value of ASD, ASR, and CSR are reviewed. Questions, recommendations, and implications for clinical practice are raised concerning the completeness of the current acute stress response diagnoses, the heterogeneity of different stressors, the scope of expected outcomes, and the importance of decline in function as an indicator of future psychological, psychiatric, and somatic distress. PsycINFO Database Record 2009 APA.

  4. Assessing Stress Responses in Beaked and Sperm Whales in the Bahamas

    Science.gov (United States)

    2016-05-23

    sex and reproductive status (i.e. other physiologic influences) when interpreting levels of GCs as indicators of stress responses. 2.2 2.2 0 Adult... Stress Responses in Beaked and Sperm Whales in the Bahamas" Please find attached final reports for the above referenced ONR award for the period ending...Assessing Stress Responses in Beaked and Sperm Whales in the Bahamas Rosalind M. Rolland D.V.M., Kathleen E. Hunt Ph.D., Elizabeth A. Burgess M.Sc. Ph.D

  5. Chronic stress affects immunologic but not cardiovascular responsiveness to acute psychological stress in humans

    NARCIS (Netherlands)

    Benschop, R. J.; Brosschot, J. F.; Godaert, G. L.; de Smet, M. B.; Geenen, R.; Olff, M.; Heijnen, C. J.; Ballieux, R. E.

    1994-01-01

    This study deals with the effect of chronic stress on physiological responsiveness to an acute psychological stressor in male high school teachers. Chronic stress was operationalized as the self-reported number of everyday problems. Twenty-seven subjects reporting extremely low or high numbers of

  6. Circulating MicroRNA Responses between ‘High’ and ‘Low’ Responders to a 16-Wk Diet and Exercise Weight Loss Intervention

    Science.gov (United States)

    Parr, Evelyn B.; Camera, Donny M.; Burke, Louise M.; Phillips, Stuart M.; Coffey, Vernon G.; Hawley, John A.

    2016-01-01

    Background Interactions between diet, physical activity and genetic predisposition contribute to variable body mass changes observed in response to weight loss interventions. Circulating microRNAs (c-miRNAs) may act as ‘biomarkers’ that are associated with the rate of change in weight loss, and/or play a role in regulating the biological variation, in response to energy restriction. Objective To quantify targeted c-miRNAs with putative roles in energy metabolism and exercise adaptations following a 16 wk diet and exercise intervention in individuals with large (high responders; HiRes) versus small (low responders; LoRes) losses in body mass. Methods From 89 male and female overweight/obese participants who completed the intervention (energy restriction from diet, 250 kcal/d, and exercise, 250 kcal/d), subgroups of HiRes (>10% body mass loss, n = 22) and LoRes (exercise and diet intervention suggests a putative role for these ‘biomarkers’ in the prediction or detection of individual variability to weight loss interventions. PMID:27101373

  7. Genome-wide identification of soybean microRNA responsive to soybean cyst nematodes infection by deep sequencing.

    Science.gov (United States)

    Tian, Bin; Wang, Shichen; Todd, Timothy C; Johnson, Charles D; Tang, Guiliang; Trick, Harold N

    2017-08-02

    The soybean cyst nematode (SCN), Heterodera glycines, is one of the most devastating diseases limiting soybean production worldwide. It is known that small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), play important roles in regulating plant growth and development, defense against pathogens, and responses to environmental changes. In order to understand the role of soybean miRNAs during SCN infection, we analyzed 24 small RNA libraries including three biological replicates from two soybean cultivars (SCN susceptible KS4607, and SCN HG Type 7 resistant KS4313N) that were grown under SCN-infested and -noninfested soil at two different time points (SCN feeding establishment and egg production). In total, 537 known and 70 putative novel miRNAs in soybean were identified from a total of 0.3 billion reads (average about 13.5 million reads for each sample) with the programs of Bowtie and miRDeep2 mapper. Differential expression analyses were carried out using edgeR to identify miRNAs involved in the soybean-SCN interaction. Comparative analysis of miRNA profiling indicated a total of 60 miRNAs belonging to 25 families that might be specifically related to cultivar responses to SCN. Quantitative RT-PCR validated similar miRNA interaction patterns as sequencing results. These findings suggest that miRNAs are likely to play key roles in soybean response to SCN. The present work could provide a framework for miRNA functional identification and the development of novel approaches for improving soybean SCN resistance in future studies.

  8. A Cancer-Indicative microRNA Pattern in Normal Prostate Tissue

    Directory of Open Access Journals (Sweden)

    Thorsten Schlomm

    2013-03-01

    Full Text Available We analyzed the levels of selected micro-RNAs in normal prostate tissue to assess their potential to indicate tumor foci elsewhere in the prostate. Histologically normal prostate tissue samples from 31 prostate cancer patients and two cancer negative control groups with either unsuspicious or elevated prostate specific antigen (PSA levels (14 and 17 individuals, respectively were analyzed. Based on the expression analysis of 157 microRNAs in a pool of prostate tissue samples and information from data bases/literature, we selected eight microRNAs for quantification by real-time polymerase chain reactions (RT-PCRs. Selected miRNAs were analyzed in histologically tumor-free biopsy samples from patients and healthy controls. We identified seven microRNAs (miR-124a, miR-146a & b, miR-185, miR-16 and let-7a & b, which displayed significant differential expression in normal prostate tissue from men with prostate cancer compared to both cancer negative control groups. Four microRNAs (miR-185, miR-16 and let-7a and let-7b remained to significantly discriminate normal tissues from prostate cancer patients from those of the cancer negative control group with elevated PSA levels. The transcript levels of these microRNAs were highly indicative for the presence of cancer in the prostates, independently of the PSA level. Our results suggest a microRNA-pattern in histologically normal prostate tissue, indicating prostate cancer elsewhere in the organ.

  9. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Christen, Verena [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Capelle, Martinus [Crucell, P.O. Box 2048, NL-2301 Leiden (Netherlands); Fent, Karl, E-mail: karl.fent@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology Zürich, Department of Environmental Systems Science, CH-8092 Zürich (Switzerland)

    2013-10-15

    Silver nanoparticles (AgNPs) find increasing applications, and therefore humans and the environment are increasingly exposed to them. However, potential toxicological implications are not sufficiently known. Here we investigate effects of AgNPs (average size 120 nm) on zebrafish in vitro and in vivo, and compare them to human hepatoma cells (Huh7). AgNPs are incorporated in zebrafish liver cells (ZFL) and Huh7, and in zebrafish embryos. In ZFL cells AgNPs lead to induction of reactive oxygen species (ROS), endoplasmatic reticulum (ER) stress response, and TNF-α. Transcriptional alterations also occur in pro-apoptotic genes p53 and Bax. The transcriptional profile differed in ZFL and Huh7 cells. In ZFL cells, the ER stress marker BiP is induced, concomitant with the ER stress marker ATF-6 and spliced XBP-1 after 6 h and 24 h exposure to 0.5 g/L and 0.05 g/L AgNPs, respectively. This indicates the induction of different pathways of the ER stress response. Moreover, AgNPs induce TNF-α. In zebrafish embryos exposed to 0.01, 0.1, 1 and 5 mg/L AgNPs hatching was affected and morphological defects occurred at high concentrations. ER stress related gene transcripts BiP and Synv are significantly up-regulated after 24 h at 0.1 and 5 mg/L AgNPs. Furthermore, transcriptional alterations occurred in the pro-apoptotic genes Noxa and p21. The ER stress response was strong in ZFL cells and occurred in zebrafish embryos as well. Our data demonstrate for the first time that AgNPs lead to induction of ER stress in zebrafish. The induction of ER stress can have several consequences including the activation of apoptotic and inflammatory pathways. - Highlights: • Effects of silver nanoparticles (120 nm AgNPs) are investigated in zebrafish. • AgNPs induce all ER stress reponses in vitro in zebrafish liver cells. • AgNPs induce weak ER stress in zebrafish embryos. • AgNPs induce oxidative stress and transcripts of pro-apoptosis genes.

  10. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish

    International Nuclear Information System (INIS)

    Christen, Verena; Capelle, Martinus; Fent, Karl

    2013-01-01

    Silver nanoparticles (AgNPs) find increasing applications, and therefore humans and the environment are increasingly exposed to them. However, potential toxicological implications are not sufficiently known. Here we investigate effects of AgNPs (average size 120 nm) on zebrafish in vitro and in vivo, and compare them to human hepatoma cells (Huh7). AgNPs are incorporated in zebrafish liver cells (ZFL) and Huh7, and in zebrafish embryos. In ZFL cells AgNPs lead to induction of reactive oxygen species (ROS), endoplasmatic reticulum (ER) stress response, and TNF-α. Transcriptional alterations also occur in pro-apoptotic genes p53 and Bax. The transcriptional profile differed in ZFL and Huh7 cells. In ZFL cells, the ER stress marker BiP is induced, concomitant with the ER stress marker ATF-6 and spliced XBP-1 after 6 h and 24 h exposure to 0.5 g/L and 0.05 g/L AgNPs, respectively. This indicates the induction of different pathways of the ER stress response. Moreover, AgNPs induce TNF-α. In zebrafish embryos exposed to 0.01, 0.1, 1 and 5 mg/L AgNPs hatching was affected and morphological defects occurred at high concentrations. ER stress related gene transcripts BiP and Synv are significantly up-regulated after 24 h at 0.1 and 5 mg/L AgNPs. Furthermore, transcriptional alterations occurred in the pro-apoptotic genes Noxa and p21. The ER stress response was strong in ZFL cells and occurred in zebrafish embryos as well. Our data demonstrate for the first time that AgNPs lead to induction of ER stress in zebrafish. The induction of ER stress can have several consequences including the activation of apoptotic and inflammatory pathways. - Highlights: • Effects of silver nanoparticles (120 nm AgNPs) are investigated in zebrafish. • AgNPs induce all ER stress reponses in vitro in zebrafish liver cells. • AgNPs induce weak ER stress in zebrafish embryos. • AgNPs induce oxidative stress and transcripts of pro-apoptosis genes

  11. Auxin Response Factors (ARFs are potential mediators of auxin action in tomato response to biotic and abiotic stress (Solanum lycopersicum.

    Directory of Open Access Journals (Sweden)

    Sarah Bouzroud

    Full Text Available Survival biomass production and crop yield are heavily constrained by a wide range of environmental stresses. Several phytohormones among which abscisic acid (ABA, ethylene and salicylic acid (SA are known to mediate plant responses to these stresses. By contrast, the role of the plant hormone auxin in stress responses remains so far poorly studied. Auxin controls many aspects of plant growth and development, and Auxin Response Factors play a key role in the transcriptional activation or repression of auxin-responsive genes through direct binding to their promoters. As a mean to gain more insight on auxin involvement in a set of biotic and abiotic stress responses in tomato, the present study uncovers the expression pattern of SlARF genes in tomato plants subjected to biotic and abiotic stresses. In silico mining of the RNAseq data available through the public TomExpress web platform, identified several SlARFs as responsive to various pathogen infections induced by bacteria and viruses. Accordingly, sequence analysis revealed that 5' regulatory regions of these SlARFs are enriched in biotic and abiotic stress-responsive cis-elements. Moreover, quantitative qPCR expression analysis revealed that many SlARFs were differentially expressed in tomato leaves and roots under salt, drought and flooding stress conditions. Further pointing to the putative role of SlARFs in stress responses, quantitative qPCR expression studies identified some miRNA precursors as potentially involved in the regulation of their SlARF target genes in roots exposed to salt and drought stresses. These data suggest an active regulation of SlARFs at the post-transcriptional level under stress conditions. Based on the substantial change in the transcript accumulation of several SlARF genes, the data presented in this work strongly support the involvement of auxin in stress responses thus enabling to identify a set of candidate SlARFs as potential mediators of biotic and abiotic

  12. Cytokinin Cross-talking During Biotic and Abiotic Stress Responses

    Directory of Open Access Journals (Sweden)

    Jose Antonio O'Brien

    2013-11-01

    Full Text Available As sessile organisms, plants have to be able to adapt to a continuously changing environment. Plants that perceive some of these changes as stress signals activate signaling pathways to modulate their development and to enable them to survive. The complex responses to environmental cues are to a large extent mediated by plant hormones that together orchestrate the final plant response. The phytohormone cytokinin is involved in many plant developmental processes. Recently, it has been established that cytokinin plays an important role in stress responses, but does not act alone. Indeed, the hormonal control of plant development and stress adaptation is the outcome of a complex network of multiple synergistic and antagonistic interactions between various hormones. Here, we review the recent findings on the cytokinin function as part of this hormonal network. We focus on the importance of the crosstalk between cytokinin and other hormones, such as abscisic acid, jasmonate, salicylic acid, ethylene, and auxin in the modulation of plant development and stress adaptation. Finally, the impact of the current research in the biotechnological industry will be discussed.

  13. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold and heat

    Directory of Open Access Journals (Sweden)

    Kazuo eNakashima

    2014-05-01

    Full Text Available Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs are master regulators of gene expression. ABRE-binding protein (AREB and ABRE-binding factor (ABF TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein (DREB TFs and NAC TFs are also involved in stress responses including drought, heat and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these transcription factors in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.

  14. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat.

    Science.gov (United States)

    Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2014-01-01

    Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA) is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs) are master regulators of gene expression. ABRE-binding protein and ABRE-binding factor TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein TFs and NAC TFs are also involved in stress responses including drought, heat, and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these TFs in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.

  15. The role of dehydroepiandrosterone on functional innate immune responses to acute stress.

    Science.gov (United States)

    Prall, Sean P; Larson, Emilee E; Muehlenbein, Michael P

    2017-12-01

    The androgen dehydroepiandrosterone (DHEA) responds to stress activation, exhibits anti-glucocorticoid properties, and modulates immunity in diverse ways, yet little is known of its role in acute stress responses. In this study, the effects of DHEA and its sulfate ester DHEA-S on human male immune function during exposure to an acute stressor is explored. Variation in DHEA, DHEA-S, testosterone, and cortisol, along with bacterial killing assays, was measured in response to a modified Trier Social Stress test in 27 young adult males. Cortisol was positively related to salivary innate immunity but only for participants who also exhibited high DHEA responses. Additionally, DHEA positively and DHEA-S negatively predicted salivary immunity, but the opposite was observed for serum-based innate immunity. The DHEA response to acute stress appears to be an important factor in stress-mediated immunological responses, with differential effects on immunity dependent upon the presence of other hormones, primarily cortisol and DHEA-S. These results suggest that DHEA plays an important role, alongside other hormones, in modulating immunological shifts during acute stress. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Plant responsiveness to root-root communication of stress cues.

    Science.gov (United States)

    Falik, Omer; Mordoch, Yonat; Ben-Natan, Daniel; Vanunu, Miriam; Goldstein, Oron; Novoplansky, Ariel

    2012-07-01

    Phenotypic plasticity is based on the organism's ability to perceive, integrate and respond to multiple signals and cues informative of environmental opportunities and perils. A growing body of evidence demonstrates that plants are able to adapt to imminent threats by perceiving cues emitted from their damaged neighbours. Here, the hypothesis was tested that unstressed plants are able to perceive and respond to stress cues emitted from their drought- and osmotically stressed neighbours and to induce stress responses in additional unstressed plants. Split-root Pisum sativum, Cynodon dactylon, Digitaria sanguinalis and Stenotaphrum secundatum plants were subjected to osmotic stress or drought while sharing one of their rooting volumes with an unstressed neighbour, which in turn shared its other rooting volume with additional unstressed neighbours. Following the kinetics of stomatal aperture allowed testing for stress responses in both the stressed plants and their unstressed neighbours. In both P. sativum plants and the three wild clonal grasses, infliction of osmotic stress or drought caused stomatal closure in both the stressed plants and in their unstressed neighbours. While both continuous osmotic stress and drought induced prolonged stomatal closure and limited acclimation in stressed plants, their unstressed neighbours habituated to the stress cues and opened their stomata 3-24 h after the beginning of stress induction. The results demonstrate a novel type of plant communication, by which plants might be able to increase their readiness to probable future osmotic and drought stresses. Further work is underway to decipher the identity and mode of operation of the involved communication vectors and to assess the potential ecological costs and benefits of emitting and perceiving drought and osmotic stress cues under various ecological scenarios.

  17. Role of microRNA-7 and selenoprotein P in hepatocellular carcinoma.

    Science.gov (United States)

    Tarek, Marwa; Louka, Manal Louis; Khairy, Eman; Ali-Labib, Randa; Zakaria Zaky, Doaa; Montasser, Iman F

    2017-05-01

    There is an obvious need to diagnose hepatocellular carcinoma using novel non-invasive and sensitive biomarkers. In this regard, the aim of this study was to evaluate and correlate both relative quantification of microRNA-7 using quantitative real time polymerase chain reaction and quantitative analysis of selenoprotein P using enzyme-linked immunosorbent assay in sera of hepatocellular carcinoma patients, chronic liver disease patients, as well as normal healthy subjects in order to establish a new diagnostic biomarker with a valid non-invasive technique. In addition, this study aimed to investigate whether changes in selenium supply affect microRNA-7 expression and selenoprotein P levels in human hepatocarcinoma cell line (HepG2). The results showed a highly significant decrease in serum microRNA-7 relative quantification values and selenoprotein P levels in malignant group in comparison with benign and control groups. The best cutoff for serum microRNA-7 and selenoprotein P to discriminate hepatocellular carcinoma group from benign and control groups was 0.06 and 4.30 mg/L, respectively. Furthermore, this study showed that changes in selenium supply to HepG2 cell line can alter the microRNA-7 profile and are paralleled by changes in the concentration of its target protein (selenoprotein P). Hence, serum microRNA-7 and selenoprotein P appear to be potential non-invasive diagnostic markers for hepatocellular carcinoma. Moreover, the results suggest that selenium could be used as an anticancer therapy for hepatocellular carcinoma by affecting both microRNA-7 and selenoprotein P.

  18. Psychological stress during exercise: immunoendocrine and oxidative responses.

    Science.gov (United States)

    Huang, Chun-Jung; Webb, Heather E; Evans, Ronald K; McCleod, Kelly A; Tangsilsat, Supatchara E; Kamimori, Gary H; Acevedo, Edmund O

    2010-12-01

    The purpose of this study was to examine the changes in catecholamines (epinephrine [EPI] and norepinephrine [NE]), interleukin-2 (IL-2) and a biomarker of oxidative stress (8-isoprostane) in healthy individuals who were exposed to a dual challenge (physical and psychological stress). Furthermore, this study also examined the possible relationships between catecholamines (NE and EPI) and 8-isoprostane and between IL-2 and 8-isoprostane following a combined physical and psychological challenge. Seven healthy male subjects completed two experimental conditions. The exercise-alone condition (EAC) consisted of cycling at 60% VO(2max) for 37 min, while the dual-stress condition (DSC) included 20 min of a mental challenge while cycling. DSC showed greater EPI and 8-isoprostane levels (significant condition by time interaction). NE and IL-2 revealed significant change across time in both conditions. In addition, following dual stress, EPI area-under-the-curve (AUC) demonstrated a positive correlation with NE AUC and IL-2 AUC. NE AUC was positively correlated with IL-2 AUC and peak 8-isoprostane, and peak IL-2 was positively correlated with peak 8-isoprostane in response to a dual stress. The potential explanation for elevated oxidative stress during dual stress may be through the effects of the release of catecholamines and IL-2. These findings may further provide the potential explanation that dual stress alters physiological homeostasis in many occupations including firefighting, military operations and law enforcement. A greater understanding of these responses to stress can assist in finding strategies (e.g. exercise training) to overcome the inherent psychobiological challenges associated with physically and mentally demanding professions.

  19. Sex Differences in Relationship between Stress Responses and Lifestyle in Japanese Workers

    Directory of Open Access Journals (Sweden)

    Akiko Suzuki

    2014-03-01

    Conclusion: This study showed that stress responses were related to lifestyle among women but not among men. Among women, stress responses were related to sleeping for shorter periods, whereas they were related to working long hours among men. In addition, stress responses were related to eating at night in the univariate analysis, although this relationship was not seen in the multivariate analysis, in either sex.

  20. MicroRNA and gene signature of severe cutaneous drug ...

    African Journals Online (AJOL)

    greater than 30 % of the same patients [5]. Nevertheless, the mechanisms of SJS and TEN are not fully elucidated. MicroRNAs or miRs are single stranded RNAs that are capable of posttranscriptional gene regulation via targeting their Mrna [6]. MicroRNAs are very important regulators in many human diseases, for instance,.

  1. The role of microRNA-200 in progression of human colorectal and breast cancer.

    Directory of Open Access Journals (Sweden)

    Linda Bojmar

    Full Text Available The role of the epithelial-mesenchymal transition (EMT in cancer has been studied extensively in vitro, but involvement of the EMT in tumorigenesis in vivo is largely unknown. We investigated the potential of microRNAs as clinical markers and analyzed participation of the EMT-associated microRNA-200-ZEB-E-cadherin pathway in cancer progression. Expression of the microRNA-200 family was quantified by real-time RT-PCR analysis of fresh-frozen and microdissected formalin-fixed paraffin-embedded primary colorectal tumors, normal colon mucosa, and matched liver metastases. MicroRNA expression was validated by in situ hybridization and after in vitro culture of the malignant cells. To assess EMT as a predictive marker, factors considered relevant in colorectal cancer were investigated in 98 primary breast tumors from a treatment-randomized study. Associations between the studied EMT-markers were found in primary breast tumors and in colorectal liver metastases. MicroRNA-200 expression in epithelial cells was lower in malignant mucosa than in normal mucosa, and was also decreased in metastatic compared to non-metastatic colorectal cancer. Low microRNA-200 expression in colorectal liver metastases was associated with bad prognosis. In breast cancer, low levels of microRNA-200 were related to reduced survival and high expression of microRNA-200 was predictive of benefit from radiotheraphy. MicroRNA-200 was associated with ER positive status, and inversely correlated to HER2 and overactivation of the PI3K/AKT pathway, that was associated with high ZEB1 mRNA expression. Our findings suggest that the stability of microRNAs makes them suitable as clinical markers and that the EMT-related microRNA-200-ZEB-E-cadherin signaling pathway is connected to established clinical characteristics and can give useful prognostic and treatment-predictive information in progressive breast and colorectal cancers.

  2. Circulating microRNA expression profiles associated with systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Carlsen, Anting Liu; Schetter, Aaron J; Nielsen, Christoffer

    2013-01-01

    OBJECTIVE: To evaluate the specificity of expression patterns of cell-free, circulating microRNAs in systemic lupus erythematosus (SLE). METHODS: Total RNA was purified from plasma and 45 different specific mature microRNAs were determined using quantitative reverse transcription polymerase chain...

  3. Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part II: responses in the leaves and general conclusions

    Energy Technology Data Exchange (ETDEWEB)

    Vanhoudt, Nathalie, E-mail: nvanhoud@sckcen.be [Belgian Nuclear Research Center (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Hasselt University, Environmental Biology, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium); Cuypers, Ann [Hasselt University, Environmental Biology, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium); Horemans, Nele [Belgian Nuclear Research Center (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Remans, Tony; Opdenakker, Kelly; Smeets, Karen [Hasselt University, Environmental Biology, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium); Bello, Daniel Martinez [Hasselt University, Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Agoralaan Building D, 3590 Diepenbeek (Belgium); Havaux, Michel [Commissariat a l' Energie Atomique (CEA)/Cadarache, Direction des Sciences du Vivant, Departement d' Ecophysiologie Vegetale et de Microbiologie, Laboratoire d' Ecophysiologie de la Photosynthese, 13108 Saint-Paul-lez-Durance (France); Wannijn, Jean; Van Hees, May [Belgian Nuclear Research Center (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Vangronsveld, Jaco [Hasselt University, Environmental Biology, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium); Vandenhove, Hildegarde [Belgian Nuclear Research Center (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium)

    2011-06-15

    The cellular redox balance seems an important modulator under heavy metal stress. While for other heavy metals these processes are well studied, oxidative stress related responses are also known to be triggered under uranium stress but information remains limited. This study aimed to further unravel the mechanisms by which plants respond to uranium stress. Seventeen-day-old Arabidopsis thaliana seedlings, grown on a modified Hoagland solution under controlled conditions, were exposed to 0, 0.1, 1, 10 and 100 {mu}M uranium for 1, 3 and 7 days. While in Part I of this study oxidative stress related responses in the roots were discussed, this second Part II discusses oxidative stress related responses in the leaves and general conclusions drawn from the results of the roots and the leaves will be presented. As several responses were already visible following 1 day exposure, when uranium concentrations in the leaves were negligible, a root-to-shoot signaling system was suggested in which plastids could be important sensing sites. While lipid peroxidation, based on the amount of thiobarbituric acid reactive compounds, was observed after exposure to 100 {mu}M uranium, affecting membrane structure and function, a transient concentration dependent response pattern was visible for lipoxygenase initiated lipid peroxidation. This transient character of uranium stress responses in leaves was emphasized by results of lipoxygenase (LOX2) and antioxidative enzyme transcript levels, enzyme capacities and glutathione concentrations both in time as with concentration. The ascorbate redox balance seemed an important modulator of uranium stress responses in the leaves as in addition to the previous transient responses, the total ascorbate concentration and ascorbate/dehydroascorbate redox balance increased in a concentration and time dependent manner. This could represent either a slow transient response or a stable increase with regard to plant acclimation to uranium stress

  4. Global analysis of the yeast osmotic stress response by quantitative proteomics

    DEFF Research Database (Denmark)

    Soufi, Boumediene; Kelstrup, C.D.; Stoehr, G.

    2009-01-01

    a comprehensive, quantitative, and time-resolved analysis using high-resolution mass spectrometry of phospho-proteome and proteome changes in response to osmotic stress in yeast. We identified 5534 unique phosphopeptide variants and 3383 yeast proteins. More than 15% of the detected phosphorylation site status...... changed more than two-fold within 5 minutes of treatment. Many of the corresponding phosphoproteins are involved in the early response to environmental stress. Surprisingly, we find that 158 regulated phosphorylation sites are potential substrates of basophilic kinases as opposed to the classical proline......-directed MAP kinase network implicated in stress response mechanisms such as p38 and HOG pathways. Proteome changes reveal an increase in abundance of more than one hundred proteins after 20 min of salt stress. Many of these are involved in the cellular response to increased osmolarity, which include proteins...

  5. MDMA does not alter responses to the Trier Social Stress Test in humans.

    Science.gov (United States)

    Bershad, Anya K; Miller, Melissa A; de Wit, Harriet

    2017-07-01

    ±3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") is a stimulant-psychedelic drug with unique social effects. It may dampen reactivity to negative social stimuli such as social threat and rejection. Perhaps because of these effects, MDMA has shown promise as a treatment for post-traumatic stress disorder (PTSD). However, the effect of single doses of MDMA on responses to an acute psychosocial stressor has not been tested. In this study, we sought to test the effects of MDMA on responses to stress in healthy adults using a public speaking task. We hypothesized that the drug would reduce responses to the stressful task. Volunteers (N = 39) were randomly assigned to receive placebo (N = 13), 0.5 mg/kg MDMA (N = 13), or 1.0 mg/kg MDMA (N = 13) during a stress and a no-stress session. Dependent measures included subjective reports of drug effects and emotional responses to the task, as well as salivary cortisol, heart rate, and blood pressure. The stress task produced its expected increase in physiological responses (cortisol, heart rate) and subjective ratings of stress in all three groups, and MDMA produced its expected subjective and physiological effects. MDMA alone increased ratings of subjective stress, heart rate, and saliva cortisol concentrations, but contrary to our hypothesis, it did not moderate responses to the Trier Social Stress Test. Despite its efficacy in PTSD and anxiety, MDMA did not reduce either the subjective or objective responses to stress in this controlled study. The conditions under which MDMA relieves responses to negative events or memories remain to be determined.

  6. Biological effects and oxidative stress responses in Arabidopsis thaliana following exposure to uranium and copper

    Energy Technology Data Exchange (ETDEWEB)

    Horemans, N.; Saenen, E.; Vandenhove, H.; Vanhoudt, N.; Wannijn, J.; Nauts, R. [Belgian Nuclear Research Centre SCK-CEN (Belgium); Vangronsveld, J.; Cuypers, A. [Hasselt University (Belgium)

    2014-07-01

    leaves, no inductions of the NADPH oxidases or LOX were observed. This possibly indicates that the oxidative stress in the leaves is generated via root-to-shoot signalling since U and Cu are almost completely retained in the roots. Under both U and Cu stress and both in roots and shoots, microRNA398b/c is involved in the post-transcriptional regulation of the superoxide dismutase (SOD) response. As expected from previous research, the expression levels of MIR398b/c increased under U stress while they decreased under Cu stress. This led to a decreased expression of the Cu-requiring Cu/Zn SODs when Cu is below a critical threshold, while their expression will increase under Cu excess. In the multi-pollution setup, the response is comparable to the response observed under Cu stress. In conclusion, it seems that there is an enhanced production of ROS after exposure to U+Cu as compared to the single stressor conditions. However, additional experiments, e.g. with different U and Cu concentrations, are needed to further elucidate the interactions between U and Cu. Document available in abstract form only. (authors)

  7. Validation of the German version of the Ford Insomnia Response to Stress Test.

    Science.gov (United States)

    Dieck, Arne; Helbig, Susanne; Drake, Christopher L; Backhaus, Jutta

    2018-06-01

    The purpose of this study was to assess the psychometric properties of a German version of the Ford Insomnia Response to Stress Test with groups with and without sleep problems. Three studies were analysed. Data set 1 was based on an initial screening for a sleep training program (n = 393), data set 2 was based on a study to test the test-retest reliability of the Ford Insomnia Response to Stress Test (n = 284) and data set 3 was based on a study to examine the influence of competitive sport on sleep (n = 37). Data sets 1 and 2 were used to test internal consistency, factor structure, convergent validity, discriminant validity and test-retest reliability of the Ford Insomnia Response to Stress Test. Content validity was tested using data set 3. Cronbach's alpha of the Ford Insomnia Response to Stress Test was good (α = 0.80) and test-retest reliability was satisfactory (r = 0.72). Overall, the one-factor model showed the best fit. Furthermore, significant positive correlations between the Ford Insomnia Response to Stress Test and impaired sleep quality, depression and stress reactivity were in line with the expectations regarding the convergent validity. Subjects with sleep problems had significantly higher scores in the Ford Insomnia Response to Stress Test than subjects without sleep problems (P Stress Test had significantly lower sleep quality (P = 0.01), demonstrating that vulnerability for stress-induced sleep disturbances accompanies poorer sleep quality in stressful episodes. The findings show that the German version of the Ford Insomnia Response to Stress Test is a reliable and valid questionnaire to assess the vulnerability to stress-induced sleep disturbances. © 2017 European Sleep Research Society.

  8. Heart rate response to post-learning stress predicts memory consolidation.

    Science.gov (United States)

    Larra, Mauro F; Schulz, André; Schilling, Thomas M; Ferreira de Sá, Diana S; Best, Daniel; Kozik, Bartlomiej; Schächinger, Hartmut

    2014-03-01

    Stressful experiences are often well remembered, an effect that has been explained by beta-adrenergic influences on memory consolidation. Here, we studied the impact of stress induced heart rate (HR) responses on memory consolidation in a post-learning stress paradigm. 206 male and female participants saw 52 happy and angry faces immediately before being exposed to the Cold Pressor Test or a non-stressful control procedure. Memory for the faces and their respective expression was tested twice, after 30 min and on the next day. High HR responders (in comparison to low HR responders as well as to the non-stressful control group) showed enhanced recognition memory one day after learning. Our results show that beta-adrenergic activation elicited shortly after learning enhances memory consolidation and that the stress induced HR response is a predictor for this effect. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. A stressful microenvironment: opposing effects of the endoplasmic reticulum stress response in the suppression and enhancement of adaptive tumor immunity.

    Science.gov (United States)

    Rausch, Matthew P; Sertil, Aparna Ranganathan

    2015-03-01

    The recent clinical success of immunotherapy in the treatment of certain types of cancer has demonstrated the powerful ability of the immune system to control tumor growth, leading to significantly improved patient survival. However, despite these promising results current immunotherapeutic strategies are still limited and have not yet achieved broad acceptance outside the context of metastatic melanoma. The limitations of current immunotherapeutic approaches can be attributed in part to suppressive mechanisms present in the tumor microenvironment that hamper the generation of robust antitumor immune responses thus allowing tumor cells to escape immune-mediated destruction. The endoplasmic reticulum (ER) stress response has recently emerged as a potent regulator of tumor immunity. The ER stress response is an adaptive mechanism that allows tumor cells to survive in the harsh growth conditions inherent to the tumor milieu such as low oxygen (hypoxia), low pH and low levels of glucose. Activation of ER stress can also alter the cancer cell response to therapies. In addition, the ER stress response promotes tumor immune evasion by inducing the production of protumorigenic inflammatory cytokines and impairing tumor antigen presentation. However, the ER stress response can boost antitumor immunity in some situations by enhancing the processing and presentation of tumor antigens and by inducing the release of immunogenic factors from stressed tumor cells. Here, we discuss the dualistic role of the ER stress response in the modulation of tumor immunity and highlight how strategies to either induce or block ER stress can be employed to improve the clinical efficacy of tumor immunotherapy.

  10. Social evaluative threat with verbal performance feedback alters neuroendocrine response to stress.

    Science.gov (United States)

    Phan, Jenny M; Schneider, Ekaterina; Peres, Jeremy; Miocevic, Olga; Meyer, Vanessa; Shirtcliff, Elizabeth A

    2017-11-01

    Laboratory stress tasks such as the Trier Social Stress Test (TSST) have provided a key piece to the puzzle for how psychosocial stress impacts the hypothalamic-pituitary-adrenal axis, other stress-responsive biomarkers, and ultimately wellbeing. These tasks are thought to work through biopsychosocial processes, specifically social evaluative threat and the uncontrollability heighten situational demands. The present study integrated an experimental modification to the design of the TSST to probe whether additional social evaluative threat, via negative verbal feedback about speech performance, can further alter stress reactivity in 63 men and women. This TSST study confirmed previous findings related to stress reactivity and stress recovery but extended this literature in several ways. First, we showed that additional social evaluative threat components, mid-task following the speech portion of the TSST, were still capable of enhancing the psychosocial stressor. Second, we considered stress-reactive hormones beyond cortisol to include dehydroepiandrosterone (DHEA) and testosterone, and found these hormones were also stress-responsive, and their release was coupled with one another. Third, we explored whether gain- and loss-framing incentive instructions, meant to influence performance motivation by enhancing the personal relevance of task performance, impacted hormonal reactivity. Results showed that each hormone was stress reactive and further had different responses to the modified TSST compared to the original TSST. Beyond the utility of showing how the TSST can be modified with heightened social evaluative threat and incentive-framing instructions, this study informs about how these three stress-responsive hormones have differential responses to the demands of a challenge and a stressor. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Anion channels: master switches of stress responses.

    Science.gov (United States)

    Roelfsema, M Rob G; Hedrich, Rainer; Geiger, Dietmar

    2012-04-01

    During stress, plant cells activate anion channels and trigger the release of anions across the plasma membrane. Recently, two new gene families have been identified that encode major groups of anion channels. The SLAC/SLAH channels are characterized by slow voltage-dependent activation (S-type), whereas ALMT genes encode rapid-activating channels (R-type). Both S- and R-type channels are stimulated in guard cells by the stress hormone ABA, which leads to stomatal closure. Besides their role in ABA-dependent stomatal movement, anion channels are also activated by biotic stress factors such as microbe-associated molecular patterns (MAMPs). Given that anion channels occur throughout the plant kingdom, they are likely to serve a general function as master switches of stress responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Andrographolide antagonizes cigarette smoke extract-induced inflammatory response and oxidative stress in human alveolar epithelial A549 cells through induction of microRNA-218.

    Science.gov (United States)

    Li, Ying-jie; Yu, Chang-hai; Li, Jing-bo; Wu, Xi-ya

    2013-12-01

    Andrographolide is a major bioactive labdane diterpenoid isolated from Andrographis paniculata and has protective effects against cigarette smoke (CS)-induced lung injury. This study was done to determine whether such protective effects were mediated through modulation of microRNA (miR)-218 expression. Therefore, we exposed human alveolar epithelial A549 cells to cigarette smoke extract (CSE) with or without andrographolide pretreatment and measured the level of glutathione, nuclear factor-kappaB (NF-κB) activation, proinflammatory cytokine production, and miR-218 expression. We found that andrographolide pretreatment significantly restored the glutathione level in CSE-exposed A549 cells, coupled with reduced inhibitor κB (IκB)-α phosphorylation and p65 nuclear translocation and interleukin (IL)-8 and IL-6 secretion. The miR-218 expression was significantly upregulated by andrographolide pretreatment. To determine the biological role of miR-218, we overexpressed and downregulated its expression using miR-218 mimic and anti-miR-218 inhibitor, respectively. We observed that miR-218 overexpression led to a marked reduction in IκB-α phosphorylation, p65 nuclear accumulation, and NF-κB-dependent transcriptional activity in CSE-treated A549 cells. In contrast, miR-218 silencing enhanced IκB-α phosphorylation and p65 nuclear accumulation in cells with andrographolide pretreatment and reversed andrographolide-mediated reduction of IL-6 and IL-8 production. In addition, depletion of miR-218 significantly reversed the upregulation of glutathione levels in A549 cells by andrographolide. Taken together, our results demonstrate that andrographolide mitigates CSE-induced inflammatory response in A549 cells, largely through inhibition of NF-κB activation via upregulation of miR-218, and thus has preventive benefits in CS-induced inflammatory lung diseases.

  13. Identification of H2O2 induced oxidative stress associated microRNAs in HLE-B3 cells and their clinical relevance to the progression of age-related nuclear cataract.

    Science.gov (United States)

    Wang, Song; Guo, Chenjun; Yu, Mengsi; Ning, Xiaona; Yan, Bo; Zhao, Jing; Yang, Angang; Yan, Hong

    2018-04-13

    This study is aimed to screen out the microRNAs (miRNAs) associated with H 2 O 2 induced oxidative stress in human lens epithelial B3 (HLE-B3) cell lines and investigate their relations with the progression of age-related nuclear cataract. H 2 O 2 was used to induce oxidative stress in HLE-B3 cells. A genome-wide expression profiling of miRNAs in HLE-B3 cells was performed to select the differentially expressed miRNAs before and after H 2 O 2 treatment. The selected miRNAs were validated by RT-PCR and fluorescence in situ hybridization (FISH). Clinical specimens were divided into three groups according to the Lens Opacities Classification System III (LOCSIII) and the expression levels of the selected miRNAs were tested by RT-PCR in the three groups. Bioinformatics analyses were applied to predict the target genes of the miRNA hits and construct the miRNA regulatory network. The expression level of MAPK14 was analyzed by Western blot. The H 2 O 2 induced oxidative stress model of HLE-B3 cells was established. Nineteen upregulated and 30 downregulated miRNAs were identified as differentially expressed miRNAs. Seven of the total 49 were validated in the cell model. RT-PCR of the clinical samples showed that the expression levels of miR-34a-5p, miR-630 and miR-335-3p were closely related with the severity of nuclear opacity. The images taken from FISH confirmed the results of RT-PCR. There were 172 target genes of the three miRNAs clustered in the category of response to stress. The regulatory network demonstrated that 23 target genes were co-regulated by multiple miRNAs. MAPK14 was the target gene of three miRNAs and the result were verified by Western blot. Up-regulation of miR-34a-5p and miR-630 and down-regulation of miR-335-3p are related with the progression of age-related nuclear cataract and the underlying mechanism awaits further functional research to reveal.

  14. MicroRNA Mediated Chemokine Responses in Human Airway Smooth Muscle Cells.

    Directory of Open Access Journals (Sweden)

    Mythili Dileepan

    Full Text Available Airway smooth muscle (ASM cells play a critical role in the pathophysiology of asthma due to their hypercontractility and their ability to proliferate and secrete inflammatory mediators. microRNAs (miRNAs are gene regulators that control many signaling pathways and thus serve as potential therapeutic alternatives for many diseases. We have previously shown that miR-708 and miR-140-3p regulate the MAPK and PI3K signaling pathways in human ASM (HASM cells following TNF-α exposure. In this study, we investigated the regulatory effect of these miRNAs on other asthma-related genes. Microarray analysis using the Illumina platform was performed with total RNA extracted from miR-708 (or control miR-transfected HASM cells. Inhibition of candidate inflammation-associated gene expression was further validated by qPCR and ELISA. The most significant biologic functions for the differentially expressed gene set included decreased inflammatory response, cytokine expression and signaling. qPCR revealed inhibition of expression of CCL11, CXCL10, CCL2 and CXCL8, while the release of CCL11 was inhibited in miR-708-transfected cells. Transfection of cells with miR-140-3p resulted in inhibition of expression of CCL11, CXCL12, CXCL10, CCL5 and CXCL8 and of TNF-α-induced CXCL12 release. In addition, expression of RARRES2, CD44 and ADAM33, genes known to contribute to the pathophysiology of asthma, were found to be inhibited in miR-708-transfected cells. These results demonstrate that miR-708 and miR-140-3p exert distinct effects on inflammation-associated gene expression and biological function of ASM cells. Targeting these miRNA networks may provide a novel therapeutic mechanism to down-regulate airway inflammation and ASM proliferation in asthma.

  15. Impact of gastro-oesophageal reflux on microRNA expression, location and function

    Directory of Open Access Journals (Sweden)

    Smith Cameron M

    2013-01-01

    Full Text Available Abstract Background Ulceration of the oesophageal squamous mucosa (ulcerative oesophagitis is a pathological manifestation of gastro-oesophageal reflux disease, and is a major risk factor for the development of Barrett’s oesophagus. Barrett’s oesophagus is characterised by replacement of reflux-damaged oesophageal squamous epithelium with a columnar intestinal-like epithelium. We previously reported discovery of microRNAs that are differentially expressed between oesophageal squamous mucosa and Barrett’s oesophagus mucosa. Now, to better understand early steps in the initiation of Barrett’s oesophagus, we assessed the expression, location and function of these microRNAs in oesophageal squamous mucosa from individuals with ulcerative oesophagitis. Methods Quantitative real-time PCR was used to compare miR-21, 143, 145, 194, 203, 205 and 215 expression levels in oesophageal mucosa from individuals without pathological gastro-oesophageal reflux to individuals with ulcerative oesophagitis. Correlations between microRNA expression and messenger RNA differentiation markers BMP-4, CK8 and CK14 were analyzed. The cellular localisation of microRNAs within the oesophageal mucosa was determined using in-situ hybridisation. microRNA involvement in proliferation and apoptosis was assessed following transfection of a human squamous oesophageal mucosal cell line (Het-1A. Results miR-143, miR-145 and miR-205 levels were significantly higher in gastro-oesophageal reflux compared with controls. Elevated miR-143 expression correlated with BMP-4 and CK8 expression, and elevated miR-205 expression correlated negatively with CK14 expression. Endogenous miR-143, miR-145 and miR-205 expression was localised to the basal layer of the oesophageal epithelium. Transfection of miR-143, 145 and 205 mimics into Het-1A cells resulted in increased apoptosis and decreased proliferation. Conclusions Elevated miR-143, miR-145 and miR-205 expression was observed in

  16. Complex Epigenetic Regulation of Chemotherapy Resistance and Biology in Esophageal Squamous Cell Carcinoma via MicroRNAs

    Directory of Open Access Journals (Sweden)

    Kirsten Lindner

    2018-02-01

    Full Text Available Background: Resistance towards chemotherapy is a major obstacle in the treatment of esophageal squamous cell carcinoma (ESCC. We investigated the role of specific microRNAs in chemotherapy resistance and tumor biology. Methods: We selected three microRNAs from characteristic microRNA signatures of resistant ESCC (hsa-miR-125a-5p, hsa-miR-130a-3p, hsa-miR-1226-3p, and hsa-miR-148a-3p. Effects on chemotherapy, adhesion, migration, apoptosis and cell cycle were assessed in six ESCC cell lines. Target analyses were performed using Western blotting and luciferase techniques. Results: MiR-130a-3p sensitized cells towards cisplatin in 100% of cell lines, miR-148a-3p in 83%, miR-125a-5p in 67%, miR-1226-3p in 50% (p ≤ 0.04. MiR-130a-3p sensitized 83% of cell lines towards 5-FU, miR-148a-3p/miR-125a-5p/miR-1226-3p only 33% (p ≤ 0.015. Several resistance-relevant pathways seem to be targeted on various levels. Bcl-2 was confirmed as a direct target of miR-130a-3p and miR-148a-3p, and p53 as a target of miR-125a-5p. All microRNAs decreased migration and adhesion, except miR-130a-3p, and increased apoptosis. Simultaneous manipulation of two microRNAs exhibited additive sensitizing effects towards cisplatin in 50% (miR-125a-5p/miR-148a-3p, and 75% (miR-148a-3p/miR-130a-3p of cell lines (p ≤ 0.006. Conclusion: Our data present strong evidence that specific microRNA signatures are responsible for drug resistance and aggressiveness of ESCC. Final functional readout of these complex processes appears to be more important than single microRNA-target interactions.

  17. The stress response and the hypothalamic-pituitary-adrenal axis: from molecule to melancholia.

    LENUS (Irish Health Repository)

    O'Connor, T M

    2012-02-03

    Organisms survive by maintaining equilibrium with their environment. The stress system is critical to this homeostasis. Glucocorticoids modulate the stress response at a molecular level by altering gene expression, transcription, and translation, among other pathways. The effect is the inhibition of the functions of inflammatory cells, predominantly mediated through inhibition of cytokines, such as IL-1, IL-6, and TNF-alpha. The central effectors of the stress response are the corticotrophin-releasing hormone (CRH) and locus coeruleus-norepinephrine (LC-NE)\\/sympathetic systems. The CRH system activates the stress response and is subject to modulation by cytokines, hormones, and neurotransmitters. Glucocorticoids also modulate the growth, reproductive and thyroid axes. Abnormalities of stress system activation have been shown in inflammatory diseases such as rheumatoid arthritis, as well as behavioural syndromes such as melancholic depression. These disorders are comparable to those seen in rats whose CRH system is genetically abnormal. Thus, the stress response is central to resistance to inflammatory and behavioural syndromes. In this review, we describe the response to stress at molecular, cellular, neuroendocrine and behavioural levels, and discuss the disease processes that result from a dysregulation of this response, as well as recent developments in their treatment.

  18. Revisiting the Relationship between Transposable Elements and the Eukaryotic Stress Response.

    Science.gov (United States)

    Horváth, Vivien; Merenciano, Miriam; González, Josefa

    2017-11-01

    A relationship between transposable elements (TEs) and the eukaryotic stress response was suggested in the first publications describing TEs. Since then, it has often been assumed that TEs are activated by stress, and that this activation is often beneficial for the organism. In recent years, the availability of new high-throughput experimental techniques has allowed further interrogation of the relationship between TEs and stress. By reviewing the recent literature, we conclude that although there is evidence for a beneficial effect of TE activation under stress conditions, the relationship between TEs and the eukaryotic stress response is quite complex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. microRNA-124 negatively regulates TLR signaling in alveolar macrophages in response to mycobacterial infection.

    Science.gov (United States)

    Ma, Chunyan; Li, Yong; Li, Min; Deng, Guangcun; Wu, Xiaoling; Zeng, Jin; Hao, Xiujing; Wang, Xiaoping; Liu, Jing; Cho, William C S; Liu, Xiaoming; Wang, Yujiong

    2014-11-01

    The emerging roles of microRNAs (miRNAs) in regulating immune responses have attracted increasing attention in recent years; and the alveolar macrophages (AMs) are the main targets of mycobacterial infection, which play a pivotal role in the pathogenesis of Mycobacterium tuberculosis infection. However, the immunoregulatory role of miRNAs in AMs has not been fully demonstrated. In this study, we find that miR-124 is up-regulated in the peripheral leukocytes of patients with pulmonary tuberculosis; furthermore, the expression miR-124 can be induced upon Mycobacterium bovis Bacillus Calmette-Guerin (BCG) infection in both RAW264.7 AM cells in vitro and murine AMs in vivo. Mechanistically, miR-124 is able to modulate toll-like receptor (TLR) signaling activity in RAW264.7 cells in response to BCG infection. In this regard, multiple components of TLR signaling cascade, including the TLR6, myeloid differentiation factor 88 (MyD88), TNFR-associated factor 6 and tumor necrosis factor-α are directly targeted by miR-124. In addition, both overexpression of TLR signaling adaptor MyD88 and BCG infection are able to augment miR-124 transcription, while MyD88 expression silenced by small interfering RNA dramatically suppresses miR-124 expression in AMs in vitro. Moreover, the abundance of miR-124 transcript in murine AMs of MyD88 deficient mice is significantly less than that of their wild-type or heterozygous littermates; and the BCG infection fails to induce miR-124 expression in the lung of MyD88 deficient mouse. These results indicate a negative regulatory role of miR-124 in fine-tuning inflammatory response in AMs upon mycobacterial infection, in part through a mechanism by directly targeting TLR signaling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Linking physiological and cellular responses to thermal stress: β-adrenergic blockade reduces the heat shock response in fish.

    Science.gov (United States)

    Templeman, Nicole M; LeBlanc, Sacha; Perry, Steve F; Currie, Suzanne

    2014-08-01

    When faced with stress, animals use physiological and cellular strategies to preserve homeostasis. We were interested in how these high-level stress responses are integrated at the level of the whole animal. Here, we investigated the capacity of the physiological stress response, and specifically the β-adrenergic response, to affect the induction of the cellular heat shock proteins, HSPs, following a thermal stress in vivo. We predicted that blocking β-adrenergic stimulation during an acute heat stress in the whole animal would result in reduced levels of HSPs in red blood cells (RBCs) of rainbow trout compared to animals where adrenergic signaling remained intact. We first determined that a 1 h heat shock at 25 °C in trout acclimated to 13 °C resulted in RBC adrenergic stimulation as determined by a significant increase in cell swelling, a hallmark of the β-adrenergic response. A whole animal injection with the β2-adrenergic antagonist, ICI-118,551, successfully reduced this heat-induced RBC swelling. The acute heat shock caused a significant induction of HSP70 in RBCs of 13 °C-acclimated trout as well as a significant increase in plasma catecholamines. When heat-shocked fish were treated with ICI-118,551, we observed a significant attenuation of the HSP70 response. We conclude that circulating catecholamines influence the cellular heat shock response in rainbow trout RBCs, demonstrating physiological/hormonal control of the cellular stress response.

  1. Stretching the Stress Boundary: Linking Air Pollution Health Effects to a Neurohormonal Stress Response

    Science.gov (United States)

    Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer’s and diabetes. A neurohormonal stress response (referred here as a systemic response produced by activation ...

  2. Comprehensive transcriptome analysis reveals novel genes involved in cardiac glycoside biosynthesis and mlncRNAs associated with secondary metabolism and stress response in Digitalis purpurea

    Directory of Open Access Journals (Sweden)

    Wu Bin

    2012-01-01

    Full Text Available Abstract Background Digitalis purpurea is an important ornamental and medicinal plant. There is considerable interest in exploring its transcriptome. Results Through high-throughput 454 sequencing and subsequent assembly, we obtained 23532 genes, of which 15626 encode conserved proteins. We determined 140 unigenes to be candidates involved in cardiac glycoside biosynthesis. It could be grouped into 30 families, of which 29 were identified for the first time in D. purpurea. We identified 2660 mRNA-like npcRNA (mlncRNA candidates, an emerging class of regulators, using a computational mlncRNA identification pipeline and 13 microRNA-producing unigenes based on sequence conservation and hairpin structure-forming capability. Twenty five protein-coding unigenes were predicted to be targets of these microRNAs. Among the mlncRNA candidates, only 320 could be grouped into 140 families with at least two members in a family. The majority of D. purpurea mlncRNAs were species-specific and many of them showed tissue-specific expression and responded to cold and dehydration stresses. We identified 417 protein-coding genes with regions significantly homologous or complementary to 375 mlncRNAs. It includes five genes involved in secondary metabolism. A positive correlation was found in gene expression between protein-coding genes and the homologous mlncRNAs in response to cold and dehydration stresses, while the correlation was negative when protein-coding genes and mlncRNAs were complementary to each other. Conclusions Through comprehensive transcriptome analysis, we not only identified 29 novel gene families potentially involved in the biosynthesis of cardiac glycosides but also characterized a large number of mlncRNAs. Our results suggest the importance of mlncRNAs in secondary metabolism and stress response in D. purpurea.

  3. Persistent response of Fanconi anemia haematopoietic stem and progenitor cells to oxidative stress.

    Science.gov (United States)

    Li, Yibo; Amarachintha, Surya; Wilson, Andrew F; Li, Xue; Du, Wei

    2017-06-18

    Oxidative stress is considered as an important pathogenic factor in many human diseases including Fanconi anemia (FA), an inherited bone marrow failure syndrome with extremely high risk of leukemic transformation. Members of the FA protein family are involved in DNA damage and other cellular stress responses. Loss of FA proteins renders cells hypersensitive to oxidative stress and cancer transformation. However, how FA cells respond to oxidative DNA damage remains unclear. By using an in vivo stress-response mouse strain expressing the Gadd45β-luciferase transgene, we show here that haematopoietic stem and progenitor cells (HSPCs) from mice deficient for the FA gene Fanca or Fancc persistently responded to oxidative stress. Mechanistically, we demonstrated that accumulation of unrepaired DNA damage, particularly in oxidative damage-sensitive genes, was responsible for the long-lasting response in FA HSPCs. Furthermore, genetic correction of Fanca deficiency almost completely abolished the persistent oxidative stress-induced G 2 /M arrest and DNA damage response in vivo. Our study suggests that FA pathway is an integral part of a versatile cellular mechanism by which HSPCs respond to oxidative stress.

  4. Does spending time outdoors reduce stress? A review of real-time stress response to outdoor environments

    Science.gov (United States)

    Michelle C. Kondo; Sara F. Jacoby; Eugenia C. South

    2018-01-01

    Everyday environmental conditions impact human health. One mechanism underlying this relationship is the experience of stress. Through systematic review of published literature, we explore how stress has been measured in real-time non-laboratory studies of stress responses to deliberate exposure to outdoor environments. The types of exposures evaluated in this review...

  5. Blood microRNAs in Low or No Risk Ischemic Stroke Patients

    Directory of Open Access Journals (Sweden)

    Jun Rong Tan

    2013-01-01

    Full Text Available Ischemic stroke is a multi-factorial disease where some patients present themselves with little or no risk factors. Blood microRNA expression profiles are becoming useful in the diagnosis and prognosis of human diseases. We therefore investigated the blood microRNA profiles in young stroke patients who presented with minimal or absence of risk factors for stroke such as type 2 diabetes, dyslipidemia and hypertension. Blood microRNA profiles from these patients varied with stroke subtypes as well as different functional outcomes (based on modified Rankin Score. These microRNAs have been shown to target genes that are involved in stroke pathogenesis. The findings from our study suggest that molecular mechanisms in stroke pathogenesis involving low or no risk ischemic stroke patients could differ substantially from those with pre-existing risk factors.

  6. gender and school types as factors responsible for job stress

    African Journals Online (AJOL)

    Emeka Egbochuku

    public Universities should be looked into so that all factors responsible for stress might be .... universities in Malaysia, university academic staffs faced more problems .... adjustment with different coping styles. .... in college students: The role of rumination and stress. ... International Journal of Stress Management, 8, 285–29.

  7. In-vivo quantification of primary microRNA processing by Drosha with a luciferase based system

    International Nuclear Information System (INIS)

    Allegra, Danilo; Mertens, Daniel

    2011-01-01

    Research highlights: → Posttranscriptional regulation of miRNA processing is difficult to quantify. → Our in-vivo processing assay can quantify Drosha cleavage in live cells. → It is based on luciferase reporters fused with pri-miRNAs. → The assay validates the processing defect caused by a mutation in pri-16-1. → It is a sensitive method to quantify pri-miRNA cleavage by Drosha in live cells. -- Abstract: The RNAse III Drosha is responsible for the first step of microRNA maturation, the cleavage of primary miRNA to produce the precursor miRNA. Processing by Drosha is finely regulated and influences the amount of mature microRNA in a cell. We describe in the present work a method to quantify Drosha processing activity in-vivo, which is applicable to any microRNA. With respect to other methods for measuring Drosha activity, our system is faster and scalable, can be used with any cellular system and does not require cell sorting or use of radioactive isotopes. This system is useful to study regulation of Drosha activity in physiological and pathological conditions.

  8. Current status of research on microRNA associated with colorectal cancer liver metastasis

    Directory of Open Access Journals (Sweden)

    WANG Dongxu

    2016-12-01

    Full Text Available Tumor metastasis is a complicated process with multiple steps, and liver metastasis is the most common metastatic mode of colorectal cancer. Deep understanding and study of metastatic mechanism helps to find solutions for colorectal cancer liver metastasis. Recent studies have shown that microRNA are involved in tumor metastasis and recurrence, and studies on microRNA associated with colorectal cancer liver metastasis can provide new thoughts for the development and progression, diagnosis and treatment, and prognosis of the disease. This article summarizes the research advances in microRNA associated with colorectal cancer liver metastasis and reviews the biological function and molecular mechanism of microRNA, which suggests that microRNA have a vital significance in the field of tumor metastasis, especially colorectal cancer liver metastasis.

  9. Microarray Analysis of Transcriptional Responses to Abscisic Acid and Salt Stress in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yucheng Wang

    2013-05-01

    Full Text Available Abscisic acid (ABA plays a crucial role in plant responses to abiotic stress. To investigate differences in plant responses to salt and ABA stimulus, differences in gene expression in Arabidopsis in response to salt and ABA were compared using an Agilent oligo microarray. A total of 144 and 139 genes were significantly up- and downregulated, respectively, under NaCl stress, while 406 and 381 genes were significantly up- and downregulated, respectively, under ABA stress conditions. In addition, 31 genes were upregulated by both NaCl and ABA stresses, and 23 genes were downregulated by these stressors, suggesting that these genes may play similar roles in plant responses to salt and ABA stress. Gene ontology (GO analysis revealed four subgroups of genes, including genes in the GO categories “Molecular transducer activity”, “Growth”, “Biological adhesion” and “Pigmentation”, which were expressed in response to ABA stress but not NaCl stress. In addition, genes that play specific roles during salt or ABA stress were identified. Our results may help elucidate differences in the response of plants to salt and ABA stress.

  10. Differentiating anticipatory from reactive cortisol responses to psychosocial stress

    NARCIS (Netherlands)

    Engert, V.; Efanov, S.I.; Duchesne, A.; Vogel, S.; Corbo, V.; Pruessner, J.C.

    2013-01-01

    Most psychosocial stress studies assess the overall cortisol response without further identifying the temporal dynamics within hormone levels. It has been shown, however, that the amplitude of anticipatory cortisol stress levels has a unique predictive value for psychological health. So far, no

  11. Stress-specific response of the p53-Mdm2 feedback loop

    Directory of Open Access Journals (Sweden)

    Jensen Mogens H

    2010-07-01

    Full Text Available Abstract Background The p53 signalling pathway has hundreds of inputs and outputs. It can trigger cellular senescence, cell-cycle arrest and apoptosis in response to diverse stress conditions, including DNA damage, hypoxia and nutrient deprivation. Signals from all these inputs are channeled through a single node, the transcription factor p53. Yet, the pathway is flexible enough to produce different downstream gene expression patterns in response to different stresses. Results We construct a mathematical model of the negative feedback loop involving p53 and its inhibitor, Mdm2, at the core of this pathway, and use it to examine the effect of different stresses that trigger p53. In response to DNA damage, hypoxia, etc., the model exhibits a wide variety of specific output behaviour - steady states with low or high levels of p53 and Mdm2, as well as spiky oscillations with low or high average p53 levels. Conclusions We show that even a simple negative feedback loop is capable of exhibiting the kind of flexible stress-specific response observed in the p53 system. Further, our model provides a framework for predicting the differences in p53 response to different stresses and single nucleotide polymorphisms.

  12. Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part II: responses in the leaves and general conclusions.

    Science.gov (United States)

    Vanhoudt, Nathalie; Cuypers, Ann; Horemans, Nele; Remans, Tony; Opdenakker, Kelly; Smeets, Karen; Bello, Daniel Martinez; Havaux, Michel; Wannijn, Jean; Van Hees, May; Vangronsveld, Jaco; Vandenhove, Hildegarde

    2011-06-01

    The cellular redox balance seems an important modulator under heavy metal stress. While for other heavy metals these processes are well studied, oxidative stress related responses are also known to be triggered under uranium stress but information remains limited. This study aimed to further unravel the mechanisms by which plants respond to uranium stress. Seventeen-day-old Arabidopsis thaliana seedlings, grown on a modified Hoagland solution under controlled conditions, were exposed to 0, 0.1, 1, 10 and 100 μM uranium for 1, 3 and 7 days. While in Part I of this study oxidative stress related responses in the roots were discussed, this second Part II discusses oxidative stress related responses in the leaves and general conclusions drawn from the results of the roots and the leaves will be presented. As several responses were already visible following 1 day exposure, when uranium concentrations in the leaves were negligible, a root-to-shoot signaling system was suggested in which plastids could be important sensing sites. While lipid peroxidation, based on the amount of thiobarbituric acid reactive compounds, was observed after exposure to 100 μM uranium, affecting membrane structure and function, a transient concentration dependent response pattern was visible for lipoxygenase initiated lipid peroxidation. This transient character of uranium stress responses in leaves was emphasized by results of lipoxygenase (LOX2) and antioxidative enzyme transcript levels, enzyme capacities and glutathione concentrations both in time as with concentration. The ascorbate redox balance seemed an important modulator of uranium stress responses in the leaves as in addition to the previous transient responses, the total ascorbate concentration and ascorbate/dehydroascorbate redox balance increased in a concentration and time dependent manner. This could represent either a slow transient response or a stable increase with regard to plant acclimation to uranium stress. Copyright

  13. 14q32-encoded microRNAs mediate an oligometastatic phenotype.

    Science.gov (United States)

    Uppal, Abhineet; Wightman, Sean C; Mallon, Stephen; Oshima, Go; Pitroda, Sean P; Zhang, Qingbei; Huang, Xiaona; Darga, Thomas E; Huang, Lei; Andrade, Jorge; Liu, Huiping; Ferguson, Mark K; Greene, Geoffrey L; Posner, Mitchell C; Hellman, Samuel; Khodarev, Nikolai N; Weichselbaum, Ralph R

    2015-02-28

    Oligometastasis is a clinically distinct subset of metastasis characterized by a limited number of metastases potentially curable with localized therapies. We analyzed pathways targeted by microRNAs over-expressed in clinical oligometastasis samples and identified suppression of cellular adhesion, invasion, and motility pathways in association with the oligometastatic phenotype. We identified miR-127-5p, miR-544a, and miR-655-3p encoded in the 14q32 microRNA cluster as co-regulators of multiple metastatic pathways through repression of shared target genes. These microRNAs suppressed cellular adhesion and invasion and inhibited metastasis development in an animal model of breast cancer lung colonization. Target genes, including TGFBR2 and ROCK2, were key mediators of these effects. Understanding the role of microRNAs expressed in oligometastases may lead to improved identification of and interventions for patients with curable metastatic disease, as well as an improved understanding of the molecular basis of this unique clinical entity.

  14. Large-scale identification of microRNA targets in murine Dgcr8-deficient embryonic stem cell lines.

    Directory of Open Access Journals (Sweden)

    Matthew P A Davis

    Full Text Available Small RNAs such as microRNAs play important roles in embryonic stem cell maintenance and differentiation. A broad range of microRNAs is expressed in embryonic stem cells while only a fraction of their targets have been identified. We have performed large-scale identification of embryonic stem cell microRNA targets using a murine embryonic stem cell line deficient in the expression of Dgcr8. These cells are heavily depleted for microRNAs, allowing us to reintroduce specific microRNA duplexes and identify refined target sets. We used deep sequencing of small RNAs, mRNA expression profiling and bioinformatics analysis of microRNA seed matches in 3' UTRs to identify target transcripts. Consequently, we have identified a network of microRNAs that converge on the regulation of several important cellular pathways. Additionally, our experiments have revealed a novel candidate for Dgcr8-independent microRNA genesis and highlighted the challenges currently facing miRNA annotation.

  15. MicroRNA regulatory mechanisms on Citrus sinensis leaves to magnesium-deficiency

    Directory of Open Access Journals (Sweden)

    Cui-Lan eMa

    2016-03-01

    Full Text Available Magnesium (Mg-deficiency, which affects crop productivity and quality, widespreadly exists in many agricultural crops, including citrus. However, very limited data are available on Mg-deficiency-responsive microRNAs (miRNAs in higher plants. Using Illumina sequencing, we isolated 75 (73 known and 2 novel up- and 71 (64 known and 7 novel down-regulated miRNAs from Mg-deficient Citrus sinensis leaves. In addition to the remarkable metabolic flexibility as indicated by the great alteration of miRNA expression, the adaptive responses of leaf miRNAs to Mg-deficiency might also involve the following several aspects: (a up-regulating stress-related genes by down-regulating miR164, miR7812, miR5742, miR3946 and miR5158; (b enhancing cell transport due to decreased expression of miR3946 and miR5158 and increased expression of miR395, miR1077, miR1160 and miR8019; (c activating lipid metabolism-related genes by repressing miR158, miR5256 and miR3946; (d inducing cell wall-related gene expansin 8A by repressing miR779; and (e down-regulating the expression of genes involved in the maintenance of S, K and Cu by up-regulating miR395 and miR6426. To conclude, we isolated some new known miRNAs (i.e., miR7812, miR8019, miR6218, miR1533, miR6426, miR5256, miR5742, miR5561, miR5158 and miR5818 responsive to nutrient deficiencies and found some candidate miRNAs that might contribute to Mg-deficiency tolerance. Therefore, our results not only provide novel information about the responses of plant to Mg-deficiency, but also are useful for obtaining the key miRNAs for plant Mg-deficiency tolerance.

  16. No miR quirk: dysregulation of microRNAs in pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Cheung, Philip Y; Szafranska-Schwarzbach, Anna E; Schlageter, Annette M; Andruss, Bernard F; Weiss, Glen J

    2012-01-01

    MicroRNAs are post-transcriptional regulators of gene expression with tissue-specific expression profiles. Dysregulation of microRNAs has been shown to play a role in carcinogenesis. Although progress has been made in the diagnosis and treatment of many cancers, pancreatic cancer remains an intractable public health problem, causing 6.58% of cancer deaths despite making up less than 3% of cancer diagnoses in the United States. No screening, diagnostic or imaging techniques exist with the sensitivity to detect pancreatic cancer in its early, operable stages. Risk factors include numerous inherited syndromes, diabetes mellitus, and hepatitis C virus infection. Here we review the literature regarding dysregulation of microRNA expression in native pancreas, pancreatic ductal adenocarcinoma (the dominant form of pancreatic cancer), and its risk factors to illuminate the biology and progression of this disease. We explore promising evidence for the use of microRNAs as prognostic and diagnostic tools, and discuss emerging reports on microRNA therapeutics.

  17. Prefrontal cortex activity is associated with biobehavioral components of the stress response

    Directory of Open Access Journals (Sweden)

    Muriah D Wheelock

    2016-11-01

    Full Text Available Contemporary theory suggests that prefrontal cortex (PFC function is associated with individual variability in the psychobiology of the stress response. Advancing our understanding of this complex biobehavioral pathway has potential to provide insight into processes that determine individual differences in stress susceptibility. The present study used functional magnetic resonance imaging (fMRI to examine brain activity during a variation of the Montreal Imaging Stress Task (MIST in fifty-three young adults. Salivary cortisol was assessed as an index of the stress response, trait anxiety was assessed as an index of an individual’s disposition towards negative affectivity, and self-reported stress was assessed as an index of an individual’s subjective psychological experience. Heart rate and skin conductance responses were also assessed as additional measures of physiological reactivity. Dorsomedial PFC, dorsolateral PFC, and inferior parietal lobule demonstrated differential activity during the MIST. Further, differences in salivary cortisol reactivity to the MIST were associated with ventromedial PFC and posterior cingulate activity, while trait anxiety and self-reported stress were associated with dorsomedial and ventromedial PFC activity respectively. These findings underscore that PFC activity regulates behavioral and psychobiological components of the stress response.

  18. Plant Responses to Abiotic Stress Regulated by Histone Deacetylases

    Directory of Open Access Journals (Sweden)

    Ming Luo

    2017-12-01

    Full Text Available In eukaryotic cells, histone acetylation and deacetylation play an important role in the regulation of gene expression. Histone acetylation levels are modulated by histone acetyltransferases and histone deacetylases (HDACs. Recent studies indicate that HDACs play essential roles in the regulation of gene expression in plant response to environmental stress. In this review, we discussed the recent advance regarding the plant HDACs and their functions in the regulation of abiotic stress responses. The role of HDACs in autophagy was also discussed.

  19. Let-7 microRNAs are developmentally regulated in circulating human erythroid cells

    Directory of Open Access Journals (Sweden)

    Reed Christopher

    2009-11-01

    Full Text Available Abstract Background MicroRNAs are ~22nt-long small non-coding RNAs that negatively regulate protein expression through mRNA degradation or translational repression in eukaryotic cells. Based upon their importance in regulating development and terminal differentiation in model systems, erythrocyte microRNA profiles were examined at birth and in adults to determine if changes in their abundance coincide with the developmental phenomenon of hemoglobin switching. Methods Expression profiling of microRNA was performed using total RNA from four adult peripheral blood samples compared to four cord blood samples after depletion of plasma, platelets, and nucleated cells. Labeled RNAs were hybridized to custom spotted arrays containing 474 human microRNA species (miRBase release 9.1. Total RNA from Epstein-Barr virus (EBV-transformed lymphoblastoid cell lines provided a hybridization reference for all samples to generate microRNA abundance profile for each sample. Results Among 206 detected miRNAs, 79% of the microRNAs were present at equivalent levels in both cord and adult cells. By comparison, 37 microRNAs were up-regulated and 4 microRNAs were down-regulated in adult erythroid cells (fold change > 2; p let-7 miRNA family consistently demonstrated increased abundance in the adult samples by array-based analyses that were confirmed by quantitative PCR (4.5 to 18.4 fold increases in 6 of 8 let-7 miRNA. Profiling studies of messenger RNA (mRNA in these cells additionally demonstrated down-regulation of ten let-7 target genes in the adult cells. Conclusion These data suggest that a consistent pattern of up-regulation among let-7 miRNA in circulating erythroid cells occurs in association with hemoglobin switching during the fetal-to-adult developmental transition in humans.

  20. Network-based ranking methods for prediction of novel disease associated microRNAs.

    Science.gov (United States)

    Le, Duc-Hau

    2015-10-01

    Many studies have shown roles of microRNAs on human disease and a number of computational methods have been proposed to predict such associations by ranking candidate microRNAs according to their relevance to a disease. Among them, machine learning-based methods usually have a limitation in specifying non-disease microRNAs as negative training samples. Meanwhile, network-based methods are becoming dominant since they well exploit a "disease module" principle in microRNA functional similarity networks. Of which, random walk with restart (RWR) algorithm-based method is currently state-of-the-art. The use of this algorithm was inspired from its success in predicting disease gene because the "disease module" principle also exists in protein interaction networks. Besides, many algorithms designed for webpage ranking have been successfully applied in ranking disease candidate genes because web networks share topological properties with protein interaction networks. However, these algorithms have not yet been utilized for disease microRNA prediction. We constructed microRNA functional similarity networks based on shared targets of microRNAs, and then we integrated them with a microRNA functional synergistic network, which was recently identified. After analyzing topological properties of these networks, in addition to RWR, we assessed the performance of (i) PRINCE (PRIoritizatioN and Complex Elucidation), which was proposed for disease gene prediction; (ii) PageRank with Priors (PRP) and K-Step Markov (KSM), which were used for studying web networks; and (iii) a neighborhood-based algorithm. Analyses on topological properties showed that all microRNA functional similarity networks are small-worldness and scale-free. The performance of each algorithm was assessed based on average AUC values on 35 disease phenotypes and average rankings of newly discovered disease microRNAs. As a result, the performance on the integrated network was better than that on individual ones. In